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ABSTRACT

We present a theoretical study on exciton—-exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order
coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostal et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic
three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by
two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the
spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086151

I. INTRODUCTION

Exciton-exciton annihilation (EEA) is a prominent relaxation
process which occurs in organic semi-conductors, light-harvesting
systems, and molecular aggregates, and it has been discussed vividly
in the literature."” The microscopic picture behind the EEA pro-
cess is illustrated, within a basis of localized states, for a dimeric
system consisting of two equal monomers M, shown in the left-
hand and middle-hand panels of Fig. 1. Each monomer possesses
three electronic states, namely, its ground (|g)), first (Je)), and sec-
ond excited states (| f)). The absorption of two photons leads to the
population of delocalized dimer eigenstates. For short enough exci-
tation pulses which are spectrally broad, a coherent superposition
of eigenstates is excited. The resulting wave packets correspond to
states with more or less local character, as discussed in more detail in
Sec. IT A.

An initially prepared localized state will transform, in the
course of time, into other states with local characters. Suppose
now that the prepared wave packet corresponds to the localized
state |ee) (with configuration M*M*) where both monomers are
excited. Thus, electronic excitation energy is present on both sites,

i.e., the photo-excitation produces two localized excitons.®'? As
time passes, the wave packet moves, and the localized state |fg)
(and also |gf), not shown in Fig. 1) with configuration M**M
is populated. The state corresponds to a configuration where one
monomer is excited to its second excited state |f), whereas the
other one is de-excited to its ground state. Upon the usually fast
relaxation (with rate kyr), one ends up in the configuration |eg)
(M*M) with one monomer in its first excited state and the other one
in its ground state. Concerning the energy balance, one finds that
one quantum of excitation energy is missing so that an exciton is
annihilated.

It is an idealization to assume that the initial wave packet has
only the character of the |ee) state. Rather, there are also compo-
nents corresponding to the localized state | fg) (and also |gf)). These
states undergo relaxation. We refer to this process as direct relax-
ation (keeping in mind that this involves a photoinduced creation
of the |fg) and |gf) states as a first step), and it is illustrated in
the right-hand and middle panels of Fig. 1. We address the ques-
tion if it is possible to disentangle the EEA and the direct relaxation
spectroscopically in a dimer.
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FIG. 1. Relaxation dynamics after light-induced excitations (vertical arrows) in the
dimer system. Left and middle panels: lllustration of the EEA process in a localized
picture. The picture reflects the structure of the Hamiltonian [Egs. (2)-(5)] where
localized states are coupled. Two singly excited monomers (M*M*) interact such
(via the coupling K) that one is promoted to its second excited state, whereas the
other one is de-excited to the ground state (M**M). Note that within a wave-packet
picture, the initial state |ee) results from the excitation of a coherent superposition
of eigenstates which evolves in time into the localized state |fg). In a second step,
relaxation takes place where the respective rate is ky. Right and middle panels:
Direct double excitation on one site is followed by relaxation. Both pathways end
up in the same final configuration (M* M), where one quantum of excitation energy
is missing.

Experiments aiming at the characterization of EEA were per-
formed, e.g., on aggregates of perylene bisimide in the liquid
or conjugated polymers.*>'% In a theoretical study,
Briiggemann and Pullerits have simulated a fifth-order signal in the
Fenna—-Matthews—Olson complex numerically that carries informa-
tion on EEA.'® Recently, it was shown that it is possible to detect
exciton-exciton interactions and to extract diffusion time constants
from coherent two-dimensional (2D) spectra.'® The EEA is con-
nected to an appearance of spectral peaks during a pulse delay time
(population time) and it becomes more effective if the laser fields
interacting with a sample are of high intensity. This is due to the fact
that, with increasing field strength, the number of prepared exci-
tons becomes larger, and the probability that two excitons meet is
enlarged. This field-strength dependency is mapped by different rise
times of specific spectral peaks.

In this paper, we explicitly calculate 2D spectra and analyze how
the temporal evolution of 2D peaks is connected to the annihilation
process. In treating a dimer, the dynamics of interest starts when the
exciton pair is already formed. It is then clear that the time scale
associated with an exciton diffusion process is missing. Whereas
Briiggemann and Pullerits determined 2D spectra for two selected
times,'® our calculations span the entire temporal range where decay
processes take place after laser excitation.

In a conventional noncollinear photon-echo 2D experiment,
one records a third-order signal which is triggered by three laser
pulses with wave vectors 12n, where the signal in direction 125 is
detected under the phase-matching condition 7@ = —121 + 122 + 123.
The 2D spectrum then appears in an energy range, both for the
excitation and the detection step, that is centered around the
photon energy of the pulses being in resonance with the transi-
tion from the ground to the first excited state. These 2D tech-
niques have been developed first in nuclear magnetic resonance
spectroscopy'7'® and later on in the infrared'”?° and opti-
cal regime.?6% Using coherent optical 2D spectroscopy, various

ARTICLE scitation.org/journalljcp

scientific questions were addressed such as the characterization of
intermolecular couplings and conformational states in dimers,>*
energy transfer®> and excitonic structures of photosynthetic sys-
tems,>® the role of electronic and vibrational coherences,>”>2 the
reaction dynamics in molecular switches,*° ultrafast photo-induced
charge transfer,”’ or the dynamics in nanostructures.*’*? Here,
however, we wish to evaluate not just the single-exciton dynam-
ics following excitation, but to reveal higher-order exciton-exciton
interactions (EEI), i.e., following the initial preparation of two exci-
tations within the same system. In general, such higher-order effects
overlap with the regular photon-echo-type 2D spectra and lead to
distorted line shapes as well as modified kinetic evolution. Thus, it
is difficult (if possible at all) to isolate a signal which reflects the
two-exciton interactions. On the other hand, the appropriate fifth-
order signal'® arises if exciton-exciton interaction is present. Thus,
we here address which features of the EEI 2D signal contain which
type of information.

To understand the basic idea of the mapping of an EEA pro-
cess via 2D spectroscopy, we treat a molecular dimer employing only
electronic states, thereby neglecting internal nuclear degrees of free-
dom. Electronic level models have been used successfully to describe
many properties of molecular aggregates.'%“*“* This applies to
exciton-exciton annihilation processes as well.'%45-4° What is not
described in detail is the internal conversion and relaxation which
proceed via vibrational states.>® Also, the appearance of the 2D
spectra will change when including the vibrational motion.>'°? In
particular, the spectral peaks discussed in Sec. III are no longer
resolved.

The analysis of dimers has proved to be crucial if properties
of larger aggregates are to be understood.**“%55 A first thorough
theoretical study of dimers which included intra-monomer vibra-
tional degrees of freedom was performed by Fulton and Gouterman
as early as 1964.%* Recently, the so-called dimer approach was intro-
duced which combines high-level quantum chemical calculations on
dimeric systems with the quantum dynamical treatments of nuclear
degrees of freedom.>> In order to deal with multiple excitations
correctly, we have to incorporate at least three electronic levels for
each monomer and also the effect of an environment on the sys-
tem.' %57 The underlying model is described in Sec. 1. There, we
also present the time-propagation scheme and details on the calcu-
lation of the 2D spectra. Numerical results are given in Sec. I1I, and
a summary is presented in Sec. V.

Il. THEORY AND MODEL
A. Dimer Hamiltonian

We regard a homodimer with only electronic degrees of free-
dom. For each monomer M, three states are taken into account,
namely, the electronic ground state |g), a first state |e), and a sec-
ond excited state | f). The respective energies are €g, €, and ¢;. The
dimer Hamiltonian reads

H:H0+H1+H2+H3, (1)
with

Ho = Exs(lsg)asl). @
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Hy = Eeg(Jeg) (egl +lge)gel) + T (Jeg) (gel +he ). @)
Fy = Ee([ee) (eel ) + Eqr (1£2)(f3] + 2/)(gf1)
+K(|fg) (eel +[gf)(ee| + hc.), (4)

Hy = By (Ife)(fel + ) ef]) + L(IfeNef| +he). )

where h.c. is the Hermitian conjugate. The Hamiltonian is repre-
sented in the basis of localized electronic monomer states. These
localized states differ in the number of excitation quanta in the
monomers (see Fig. 1). When the first monomer is in its electronic
state |n) and the second in its state |m), the localized dimer state is
denoted as |nm). The ground state of energy Eg = 2¢, is |gg). Sin-
gle excitation leads to the states |eg) and |ge) of equal energy E.,
= €, + €. which are coupled through the matrix element J. The lat-
ter results from the electronic interaction of the two locally excited
configurations and expressions for the matrix elements are readily
available.'® Double excitation of a single monomer yields the states
|fg) and |gf) (energy E,s = ¢ + ¢f), and simultaneous excitation of
both monomers results in the state |ee) with energy E., = 2¢.. The
latter three configurations interact, where the respective matrix ele-
ment is K which can be calculated from the Coulomb interaction
if the electronic wave functions are available.'® We neglect the cou-
pling between | fg) and |gf) which would mediate the transfer of two
excitation quanta. Finally, the presence of three excitation quanta
leads to states | fe) and |ef ) with energies E.; which are also coupled
to each other via the interaction of the excited-state configurations
(matrix element L). The Hamiltonian contains contributions from
excited states with up to three excitation quanta. Thus, the state | ff)
is neglected.

We now switch to the basis of eigenstates of the dimer which are
obtained by diagonalization of the dimer Hamiltonian H [Eq. (1)]
[see Fig. 2 (left)]. Besides the ground state |G) = |gg) (of energy
G = Eg), one finds the one-exciton states which are (&) linear
combinations of the |eg) and |ge) local states

L

V2

and the eigenenergies are

1) = —=(leg) ~Ige)), 1E2) = —=(leg) +1ge)).  (®)

L
V2

Eleeg*]; EZZEeg+]- (7)
The three states | D, ) of the second excited-state manifold with ener-
gies D, are linear combinations of the |fg), |ee) and |gf) states
(n = 1_3))

IDn) = cm|fg) + cnalee) + cuslg f)- ®

The coefficients are functions of the monomer eigenenergies and the
coupling K, and they are not given explicitly here. The respective
eigenenergies are

1

D = E(Eee+ng = \/(Bee = Egy ) +8K2), ©9)

D =Ey, (10)
1

Ds = E(Eee +Egp 1/ (Bee — Egy )? + 8 K2). (11
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FIG. 2. Level scheme of the dimer model. The left-hand side shows the order of the
eigenenergies of the dimer Hamiltonian. The right-hand side illustrates the excita-
tion scheme. The laser excitation (indicated by the dipole operator ;) couples the
ground (|G)) state with the manifold of first excited states (|E), energies Ej, Ej),
the latter with the manifold of second excited states (|D), energies Dy, Dy, Ds),
and also the second excited states with the two third excited states (|F), energies
F4, F2). The |F) and |D) states decay non-radiatively with the state-to-state rates
Knm.

Finally, the third excited states are (+) combinations of |ef) and

| fe)s

(1)~ 1f0), 1B} = —=(lef) +1f0)),  12)

£ =
|F1) >

1
V2
with energies

F1 :Eef —L, F2 :Eef + L. (13)

The level structure of the dimer is illustrated in the left-hand part of
Fig. 2 and involves eight states of different energies.

Let us comment on the relation between the localized states
and the eigenstates in the connection with a femtosecond pulse
experiment as described in this paper. Because the pulses are ener-
getically broad, linear combinations of the eigenstates are prepared
by the field-matter interaction. These wave packets are of more
or less localized character. Regard, as a simple example, an exci-
tation of a wave packet |y(¢)) consisting of the |E1) and |E;)
states

(1) = a1 e T B +ay e 7 E), (14)

with coefficients a; and a,. Switching to the local basis, we have

(1)) = (ﬁ T )|eg>

ay _ipt G2 _ipy
+l——=e "+ — e n e). (15)
( V2 V2 )‘g)
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The local character of the component |eg) being present in the wave
packet is characterized by calculating the population of this state by
projection

ol +laol

5 + |a1||az| cos [(Ez — Ex)t/h + ],

Peg (1) = I{egly (1))’
(16)

where f3 is the relative phase between the coefficients a; and a,. Thus,
the population in the local configuration |eg) oscillates as a function
of time where the oscillation period is given by the energy spacing
of the two states being present in the wave packet. In this example,
the population in the second component |ge) is just Pg(t) = |ai|*
+ |a2|2 — Py (1), so there is a transfer of population between the two
local configurations. Depending on the relative magnitude of the
coefficients, the population dynamics shows more or less temporal
variations superimposed on a background.

A similar consideration concerning the population of local-
ized components can be applied to the linear combination of the
states |Dy). This brings us to the following interpretation of Fig. 1:
A femtosecond excitation involving the absorption of two photons
prepares an initial wave packet consisting of the coherent superpo-
sition of the three states |D,). At some time, the localized state |ee)
(M*M*) is populated. As time passes, the local character of the wave
packet changes and the population of the component | fg) (M**M)
increases; afterwards, annihilation can occur.

We restrict our calculations to configurations where all tran-
sition dipole moments of the monomers are aligned parallel to
each other and are orthogonal to the vector between the cen-
ters of mass of the two monomers.“>“* The couplings are then
taken as positive (being consistent with the Forster coupling'©).
According to the positive value of the coupling J, this corre-
sponds to an H-aggregate. We note that, for dimers and degen-
erate levels E = Ee, the annihilation rate is similar for H- and
J-aggregates.>®

The parameters entering into the dimer Hamiltonian are sum-
marized in Table I. These are the monomer energies and the cou-
plings J, K, and L. Also given is a value for the relaxation rate
ky for the |e) < |f) monomer transition. The chosen value yields
a lifetime of 67 fs for the second excited state. In the context of

TABLE |. Parameters employed in the numerical calculations. The monomer energies
are denoted as €g, €, € and J, K, L are coupling constants. The relaxation rate from
the second to the first excited monomer state is k. Relaxation from the first excited
monomer state to the ground state is not included so that the respective rate ky; is
equal to zero.

€ €. €f
Energy (eV) 0.0 1.0 2.2
J K L
Coupling (eV) 0.2 0.1 0.05
kM kM
Rate (fs™ 1) 0.015 0.0
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exciton-exciton annihilation, similar values have been reported; see,
e.g., Refs. 46, 48, and 49. The finite lifetime introduces a line broad-
ening which is in the order of 10 meV. We note that the simul-
taneously occurring processes of internal conversion and relax-
ation are determined by transitions which involve the energetically
close lying vibrational states in the second and first electronically
excited states. Within our electronic level model, an energy of about
1 eV is transferred to the surrounding. The bath does not absorb
this energy in one quantum, rather the energy transfer takes place
successively in dissipating smaller quanta of vibrational energies.
Relaxation from the first excited monomer states to their ground
states (kyr) is not included because it typically occurs on time scales
longer than those we consider in the present study of short-time
dynamics.

The energy of the |fg) state is roughly twice the energy of
the |eg) state. This is motivated by the fact that we are inter-
ested in spectra which exhibit intensity in the region of twice the
excitation energy of the first electronic transition. It is a condi-
tion for exciton—exciton annihilation that a single-exciton (doubly
excited) state is available that has about twice the energy of a one-
exciton (singly excited) state because only then the initial step of
the EEA process happens under energy conservation. Usually, due
to a high density of states in larger molecules, a resonant transition
is possible at this energy. Note that this is also possible in atomic
systems.>”

The coupling constants J, K, and L are chosen such that the
2D spectra exhibit several well resolved peaks. The value of J deter-
mines the splitting of the one-exciton states E; and E,, but the
eigenstates and thus the rates k., for transitions into these states
do not depend on J (see Sec. II B). Thus, the strength of this cou-
pling has no influence on the dynamics of the annihilation process.
The same holds for the coupling L and transitions involving the
eigenstates |F1), |F2). The strength of the coupling K, however, is
important because it directly determines the efficiency of the EEA
process.

B. Propagation

For the time propagation of the dimer system coupled to
an environment, we solve a stochastic Schrédinger equation.>®>?
From the ensemble of stochastic wave functions obtained within
this approach, the reduced density matrix of a system can be con-
structed. It is then possible to calculate the expectation value of any
system operator. The adaption of the quantum-jump approach to
calculate 2D spectra is described in detail in Ref. 60, and here we
briefly summarize the working equations needed. A simplified ver-
sion of the propagation scheme is applied which neglects dephasing
processes.

As detailed further, we allow relaxation from the second excited
states |D,) to the singly excited states |E,,) and also from the third
excited states |F,) to the second excited states | D, ); see Fig. 2 (right).
The model does not incorporate intraband relaxation. Concerning
the annihilation dynamics, such dissipative processes taking place
between the |E) states do not have a pronounced effect because
when an |E) state is reached, no further annihilation takes place.
On the other hand, intraband relaxation within the |D) manifold
might be of importance because it eliminates possibly existing coher-
ences on the time scale of this process. If the lowest eigenstate |D; )
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is reached, annihilation is blocked because it is no longer possi-
ble to exchange population between the |ee), |fg) and |gf) local
configurations.

The stochastic propagation scheme described here is applied to
the manifolds of excited states. The ground state |G) which cannot
be reached by relaxation processes develops in time as a stationary
state, i.e., with the phase factor exp(— é Gt). Denoting the eigenstates
as |n) and the respective energies as E, leads to the expansion of the
excited-state wave packet as

(1)) = X cn(t) |n), (17)

with expansion coefficients c,(t) and where n = {E;, E», D1, D5, D3,
Fy, F»}. We note that because the calculation of the 2D spectra is per-
formed within perturbation theory, the norm of |y(#)) is not equal to
one. In order to apply the stochastic propagation scheme, it is neces-
sary to normalize it. This is done at each time step, and the original
norm is restored after the propagation step.

For the short-time propagator, which advances the state for a
time step dt, two possible realizations exist. A jump from an initial
state |n) to a final state |m) takes place with the probability p;(t),
where j indicates “jump,” leading to

cn(t)
len (1)

The jumps take place between the eigenstates and are not to be
confused with any kind of hopping process between the differ-
ent monomer units. In our calculation, only downward jumps are
included. The second possibility is a coherent propagation where the
respective probability is p.(t), where ¢ indicates “coherent,” and the
state vector is advanced as

ly(t +dr)) = |m). (18)

,é‘Endtfrndt/Z |7’l>, (19)

lw(t+dt)) = \/_Z (1) e
with
c(t) =1-dt Y Tulea(t)[* + O(dt?), (20)
and T, are escape rates (defined below). The coherent propagation
step is norm conserving to first order in dt.
The numbers p;(t) and p.(t) are fixed as follows. The jump rate

between the states |n) and |m) is denoted as kum, and the state-to-
state jump probability is

Pum(t) = knm |ea(£)[* dt. (1)
This yields the total jump probability
pi(t) = 20 2 pum(1), (22)

n m¥n

and the probability for the coherent propagation is

pe(t) = 1-pj(t) = c(t). (23)
Furthermore, the escape rates are defined as
Tw=>" kum. (24)
m¥n
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As mentioned in the Introduction, the EEA involves a radiationless
transition between the monomer states | f) and |e). We take the cor-
responding rate kj; as a parameter. Relaxation processes between
the first excited-state manifold and the ground state are neglected
because, according to Kasha’s rule,®’ they usually proceed on a
much longer time scale than regarded here. Note also that we treat
only transitions between the different manifolds of excited electronic
states. This assumes that intraband relaxation takes place on a much
longer time scale.

To calculate the transition rates kum, the mixing of the states
|fg), |gf) | fe), and |ef) into the initial (|n)) and final state (|m)) has
to be taken into account, and we define

K = (1(nlf2)F [eglm) P + L(nlg )P I{gelm)l”
+[Itnlfe) P + I{nlef ) |IGeelm) * Jkar. (25)

For the propagation, we calculate the probabilities pum(t) and pc(f)
at each time ¢ and arrange these numbers in the unit interval
[0, 1]. Within a Monte Carlo sampling, a random number drawn
from a uniformly distributed pool determines the next step in
the propagation scheme. The time step has to be chosen small
enough to ensure that the jump probabilities are much smaller
than one. In our numerical calculation, we used dt = 0.3 fs and
a number of N, = 1500 runs to yield convergent results. The
described stochastic propagation applies to the excited-state wave
packet. The ground state is treated differently because there, only
the coherent time evolution takes place. The quantum-jump scheme
enables us to evolve a wave packet for one time step. To start
the propagation, initial conditions have to be specified. They are
connected to the laser excitation process and will be discussed in
Sec. 11 C.

Repeating the calculation N, times yields the reduced density
operator for the dimer

PO = 5 S0, (26)

where |y;(f)) now denotes the total state of the system and [ labels
the single runs. It can be shown®? that the matrix elements of p(t)
[Eq. (26)] fulfill the Redfield equations within the secular approx-
imation.®? The expectation values for any system operator O then
is

O)(t) = Z yi(®)[Olyi(1))- (27)

Z\~

Thus, the outlined stochastic approach can be used to calculate
2D signals®?5° as is usually done using the density-matrix descrip-
tion.54°66

C. 2D signals

The monomer transition dipole moments between the ground
and first excited states of monomer m are denoted as fieg,m, and those
between the second and third state as jif.,,. The dimer transition-
dipole operator in the localized basis is
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" = (Jegieg1 (gel + |ge)icg (g8l + lee)fcs (gel + lee)ficga(eg]
+lef Viegr (g 1+ | fe)fia( 8l + | f@fires (eg]
+18f )i calgel + | eVige (eel + lef Vigeo (eel ) + e, (28)

The total electric field is the sum of three pulses
- 3 - - - g
E(t) = Y (Ei(+ky 1) + Ei( ks 1) ), (29)
1=1
with the components

E(+k,t) = ggl(t— 1)) e t=1) e+ (30)

Here, the polarization vectors ¢ are taken as equal for all pulses.
The center frequencies are w;, and the pulse envelopes g;(t — T;)
are centered at times T'. In the numerical examples, we employ the
impulsive limit for the pulses, i.e., we use g(t — T)) = A;8(t — T}),
with the field strengths A;. If not stated differently, the molecule-
field coupling takes a value of |uegmAll = |dpemAll = 0.5 eV.
Because we use perturbation theory and calculate normalized quan-
tities, the actual value for this coupling is not of importance. Cal-
culations with finite pulses of 5 fs (full width at half maximum)
yield results which do not differ essentially from the ones pre-
sented in Sec. III. Within the dipole approximation, the depen-
dence of the field on the coordinate vector 7 is neglected. We
include the respective phase factor in Eq. (30) to identify the radia-
tive transitions contributing to the phase-matched signal, see below.
Using the rotating-wave approximation,®” which is employed
in the numerical calculations, the fields E/(+k;,t) and Ej(=k;,t)
belong to the processes of absorption and stimulated emission,
respectively.

Given the dipole operator and the fields, the time-dependent
interaction term is

Wi(e) = @' (o). (31)
Because we work in the basis of eigenstates, the transition-dipole
operator ji' is transformed into the same basis yielding the oper-
ator ji which couples the eigenstates, where, initially, we start in

the ground state |G). The perturbation induces a polarization in the
system which reads

B(t) = (y(t)|uly (1)), (32)

where the state vector |y(t)) describes the time evolution of the sys-
tem. We are interested in the fifth-order contribution to the polariza-
tion projected on the detection vector é; which is taken to be parallel
to the laser polarization €

PO - SOl il w) o

The states |y")(¢)) which enter into the latter expression are deter-
mined in nth order perturbation theory. An additional restriction
to the number of contributions is the phase-matching condition
125 = —2121 + 2%2 + 123 which we impose. In what follows, only paths
with the time order T < T, < T are considered. The coherence time
is defined as 7 = T, — T and the population time as T = T3 — T5.
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An additional time variable used further below is the detection time
t' which has its origin at the center of the third pulse.

Within the stochastic approach, a single run leads to the state
vector

5
() = 3 i (1)), (34)
n=0
and the polarization is calculated by an average over N, runs as
1 NS . ol sn
PS(5) (t’, T, T) = ﬁ Z <l//l( )(tl, T, T) € AM|V/1(5 )(t,, T, T)),
T I=1n=0

(35)

where the dependence of the polarization on the three time variables
is explicitly noted. Details of the numerical propagation scheme for
the perturbative states \1//1(”) (t)) are given in Ref. 60.

From the polarization, we obtain the 2D spectrum via 2D
Fourier transformation as®®

S(Ew, T,Er) = i f at’ f drei® e BB (¢ TLr),  (36)

with the energy axes E; for the excitation and E; for the detection

step. Here, the polarization PS(S)(t', T,T) contains only the contri-
butions which satisfy the phase-matching condition. The spectra are
averaged over molecular orientations relative to the field vector in
discretizing the orientational angle. In the present case, where we
assume an all-parallel transition dipole geometry this yields an over-
all factor. For different geometries, however, one has to perform the
average explicitly because different contributions to the signal are
weighted differently.>?

The paths contributing to the signal are conventionally illus-
trated using double-sided Feynman diagrams.®*%® In the present
case, one finds seven diagrams'>'® which are collected in Fig. 3.
There, transitions are indicated between the dimer states |G), |E),
|D), and |F). The respective matrix elements which enter into the
polarization can be identified as (where we skip the time arguments
and the index, labeling the different stochastic runs)

I: <l[/(G4)(—2i(1 +27C'2)‘€‘d'ﬁ‘lﬂél)(lz3)),

e (y (2K + ko) [eq- iy (ke + Ks)),
M (y <2k + o+ K)oy (k).
Ve (y <2k +ka)[ea- iy S (2k2)s
Vi (v (2k0)[ea iyt 2k + k),
VI (v 2k +ks)[eq -yl (2k2)),
ViL: (g (<2k)[ea- v (2K: + Ks)).

(n+n")

Here, the ket state |yy (nky + n'ks)) is created by absorp-
tion of n photons from pulse 2 (k;) and n’ photons from pulse
3 (ks). The bra state (y &™) (=2k; + nk, + n'ks)| results from
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t lll. RESULTS
v ks | |E)G| ks | |D){(E] To get an insight into the relaxation dynamics of the dimer
system, we first regard the energy expectation values
I 70T e L Y £ By
r Gy [T 2T eyl [T Bt L& (wi(0) | + Erfi(e)) -
tot(£) = — >
N R ST N (o))
I 1 with Hamiltonians defined in Egs. (3) and (4), where the ground
t state and the third excited states do not enter. Starting from the
y Fs \E)(G] Fs \DY(E| ground state |G), the energy is calculated for times t after the inter-
Z (4 action with the first two pulses both acting impulsively at time ¢ = 0.
T |EY(E]| th |D)(D| +hs The populated states which contribute to Ei(t) can be identified
. =1 1G)(D| T ks \G)(D| from Fig. 3 in setting the interactions with the third pulse (k3) equal
+h2 2%y to zero. In Fig. 4, we compare calculations with zero and non-zero
|G)(G] > |G)(G]| o values of the coupling K, leaving all other parameters the same. For
—2k —2k1 K equal to zero, the eigenstates of the Hamiltonian H; [Eq. (4)] are
I v the local states |ee), | fg), and |gf). Then, because we do not include
' relaxation between these states, the local state |ee) cannot evolve into
. = the | fg) or |gf) state so that the annihilation channel is closed. Our
t ks | |[F)(D| approach here is that of a reference system which deviates as little as
T =1 |DY(D| possible from the one to be understood. Formally, this means tl}at
+kg we divide the Hamiltonian in that for the reference system (say, H)
T ~"1 |G)(D] and the rest (Hp). In our case, HP is that part of H, [Eq. (4)] which
+2k2 G)(G] contains the coupling K. The properties of the reference system are
ok, similar to the total one. The difference is the level splitting in the |D)
v manifold and the respective eigenfunctions. The consequence of this
degeneracy is that the annihilation does not take place. This allows
us to get some insight about a system which is excited similar to
¢ b h the total one but decays exclusively via the direct relaxation pathway
v ks | |E)G] ks | |D)(E| (see Fig. 1).
T B E] T ks T By For the K = 0 case, we find an exponential decay of the
ol D A NN AN energy E:(t). The decay can be assigned to the relaxation of the
|D){D]| |D)(D|
| |G)(D| e |G)(D|
Llevel I 7 onel Y
—2k —2k; 1.2
VI VII

FIG. 3. Double-sided Feynman diagrams illustrating the fifth-order processes lead-
ing to the 2D spectra under the phase-matching condition k; = —2k; + 2k, + k.

They belong to the matrix elements |-Vl as specified in the text. The time ordering ;

is from bottom to top. Absorption and emission from the pulses k, are indicated &L L1
by arrows pointing towards and away from the box, respectively. Transitions take -
place between the dimer states |G), |E), |D) and |F). Diagram V is the only one V§
which involves the third excited states |F). Note that the paths VI and VIl become 83

only possible if relaxation from |D) is taken into account (indicated by the dashed
lines). 1

two-photon excitation from the first pulse (121) and n/n’-photon

. | .

0.9 .

! |
stimulated emission initiated by pulse 2/3, respectively. The sub- 20 200 400 600 300
script X takes the values |G), |E), |D), and |F). Of course, at later t [fs]
times, the states with X = D, F can further relax into the |E) states.
If no relaxation from the |D) states takes place, the paths I-V are FIG. 4. Energy expectation values of the excited-state manifold for zero and finite

coupling K, as indicated. The excited-state wave packet at time ¢ = 0 is prepared

the only ones possible. However, the two additional paths (VI, VII) 7 e S i s R el s

occur if the relaxation becomes effective.

J. Chem. Phys. 150, 104304 (2019); doi: 10.1063/1.5086151 150, 104304-7
Published under license by AIP Publishing


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

populated | fg) and |gf) components to |eg) and |ge), respectively.
Because there is no relaxation channel for the |ee) component, which
is an eigenstate, the energy expectation value converges to a value
mainly determined by the population in this state. Changing the
coupling to a value of K = 0.1 eV activates the EEA process. Due
to the finite value of K, the initial energy is slightly larger than
in the K = 0 case. One reason for this is that the energies of the
|D) states are different from the K = 0 case [see Egs. (9)-(11)].
Furthermore, the eigenfunctions and also their amplitudes after
excitation differ. This results in a shift of the expectation value
which, in the present case, is larger. The decay no longer proceeds
monoexponentially. The first step of EEA now prompts the indi-
rect relaxation of the |ee) components. This leads to an overall lower
energy expectation value asymptotically. The long-time limit of the
energy is somewhere close to the eigenenergies of the |E1) and |E,)
states which, within the chosen model, are not allowed to decay
further.

We next turn to the 2D spectroscopy. In Fig. 5, spectra are dis-
played in the range around (E;, Er) = Quw;h, w;h), where wy is the

1.4 T T T T T 1
ky =10
13 - (F,— Dy) M
(Ey — G) ‘L 0.5

1.2
— 11 F (Dy — Es) B
% / s
- 0
9o (¥, — Dy) .

0.9 - —

‘ ) ‘ - 05
(D — ) (Dy —G)
0.8 - -
(D1 — E»)
0.7 L } t t L -1
m ool

13 L kar = 0.015 i

1.2 + - B
— 11 F ]
,;' ”
& oL i

0.9 - —

0.8 - 4

[)A? 1 1 1 1 1

1.8 1.9 2 2.1 2.2 2.3 2.4
E. [&V)]

FIG. 5. Real part of 2D spectra for the isolated model (upper panel) and including
system—bath interactions (lower panel). The spectra are normalized to the largest
peak obtained in the isolated dimer.
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laser center frequency. The 2D spectra are calculated using a time
interval from zero to 823 fs in both time variables (¢, 7). The pop-
ulation time is set to T' = 0. The upper panel contains a spectrum
obtained for the isolated dimer, where the coupling to the bath is
switched off (ky = 0). To avoid noise introduced by Fourier trans-
forming a non-periodic function, the time data is multiplied with
Gaussian window functions. In this way, an artificial peak broaden-
ing is introduced which is the same for each peak. The spectrum is
normalized such that its most intense peak assumes a value of one. In
general, peak positions coincide with differences between eigenener-
gies of the eigenstates excited by the ultrashort pulses. Along the E;
axis, three peak positions are expected. However for the chosen par-
allel dipole geometry, the |D,) state is dark and peaks are present
only at energies E; = D; — G and E; = D3 — G. On the E;+ axis, more
peak positions occur, as is indicated in the figure.

Including relaxation leads to pronounced spectral changes as
can be inferred from the spectrum shown in the lower panel of Fig. 5.
The spectrum is normalized to the one shown in the upper panel of
the figure; i.e., we use the same normalization constant as for ky; = 0.
It is seen that the system-bath coupling results in an intensity loss of
the spectrum. Because the eigenstates |F, ) and | D, ) are de-populated
due to relaxation, all peaks decay relative to the relaxation-free
situation but, in general, with different rates. The peaks involv-
ing the energy difference of two decaying states in the E; direc-
tion lose more intensity. These peaks are no longer seen in the 2D
spectrum.

The analytical expressions for the time-dependent polarization
in the relaxation-free case show that it contains terms which oscil-
late with phase factors ¢*'®*"PDT/" This means that the spectra
exhibit coherences as a function of the population time. Such oscil-
lations were found in 2D spectra detected within the third-order
photon-echo arrangement.*®%%7% To document this dependence,
we calculate spectra using the temporal interval of [0,115] fs for the
coherence and detection time, and we vary the population time from
zero to 350 fs. For each time T, the 2D spectrum is integrated in the
intervals [1.8,2.4] eV and [0.6,1.4] eV along E; and Ey, respectively.
The resulting energy-averaged quantity then is

24eV 14eV

7(T) = f dE, f dEy S(Ev, T, Ey). (38)

1.8eV 0.6eV

In the upper panel of Fig. 6 , we show this curve for the case of zero
coupling K. Again, we use the K = 0 as a reference system where EEA
does not take place. The displayed curve is obtained by subtract-
ing the background signal, which stems from contributions which
do not depend on the population time T. The signal oscillates with
a period of approximately Tp = 2nh/(D; — D1) = 20.4 fs. This is
just what is expected from the energy separation D3 — D; = 0.2 eV
obtained for K = 0. In the present case, where the EEA process
is blocked, the oscillations occur around a value of zero (i.e., the
background signal).

If the coupling is switched on, the annihilation pathway is acti-
vated, and the curve changes substantially. This is documented in the
lower panel of Fig. 6. The oscillations no longer take place around
the background but are superimposed on a decaying signal. For the
chosen value of K = 0.1 eV, the oscillation period is 11.9 fs. Its depen-
dence on the coupling constant K can be calculated from the energy
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FIG. 6. Integrated signal (T as a function of the population time T. The T-
independent background signal obtained for long times is subtracted. Upper panel:
If no coupling K is active only the direct excitation pathway influences the decay
of the signal. The signal oscillates roughly around a value of zero (indicated by the
horizontal line). Lower panel: For non-zero coupling K, where EEA is present, the
oscillations are superimposed on a decaying signal.

difference between D3 — D; using Egs. (9) and (11). For example, if
Eee = Egy, it scales with v/8K.

A comparison of the two cases depicted in Fig. 6 suggests that,
for a dimeric system, the fifth-order signal can indeed be used to
characterize the presence of EEA.

IV. SUMMARY

We studied a model dimer system where the focus was on the
characterization of exciton-exciton annihilation via fifth-order two-
dimensional optical spectroscopy. In the model, relaxation of laser-
excited states proceeds via two pathways. First, two-photon absorp-
tion leads to the population of a manifold of second excited states
which directly relax. The second path includes exciton-exciton anni-
hilation, where an additional population of the decaying states is
prompted by exciton-exciton interaction. A complete disentan-
glement of the two pathways is not possible because the second
step of EEA is identical to the one present in the direct excitation
pathway.

We calculated 2D spectra in the spectral range where signa-
tures of the EEA appear. In particular, energy-integrated spectra
were determined as a function of the population time. The time
interval spans the entire time scale where relaxation takes place.
In a comparison of signals with and without EEA, we found that
the decay curves exhibit pronounced differences. Without EEA
an oscillating signal can be constructed where the oscillations are
damped and occur on top of a background signal. Including EEA
results in damped oscillations which are superimposed on a decay-
ing signal. We thus conclude that, in principle, annihilation pro-
cesses can be traced via 2D spectroscopy for the smallest molecular
aggregate.

ARTICLE scitation.org/journalljcp

In going from the dimer to larger aggregates one faces a differ-
ent situation. In the dimer, the interacting excitons are prepared on
neighboring sites so that EEA starts immediately after laser prepara-
tion of the excitonic states. In a more extended system, excitons may
be prepared on sites which are far apart. Then, the exciton-exciton
interaction will only be effective if the excitons diffuse towards
each other and finally meet. Thus, in larger systems the phenomena
related to the existence of exciton-exciton interactions will appear
time delayed.'® This delay is not present in the dimer case where
laser excitation prepares excitons on the two monomers residing
right next to each other. Investigations on larger aggregates are
under way.
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