
Jóakim Gunnarsson v. Kistowski

Measuring, Rating, and Predicting
the Energy Efficiency of Servers

Dissertation, Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik, 2019

Gutachter: Prof. Dr.-Ing. Samuel Kounev, Julius-Maximilians-Universität Würzburg
Prof. Dr. Hartmut Schmeck, Karlsruher Institut für Technologie

Datum der mündlichen Prüfung: 1. März 2019

This document is licensed under the
Creative Commons Attribution-ShareAlike 4.0 DE License (CC BY-SA 4.0 DE):
http://creativecommons.org/licenses/by-sa/4.0/deed.de

ii

http://creativecommons.org/licenses/by-sa/4.0/deed.de

Abstract

Energy efficiency of computing systems has become an increasingly important
issue over the last decades. In 2015, data centers were responsible for 2% of the
world’s greenhouse gas emissions, which is roughly the same as the amount
produced by air travel. In addition to these environmental concerns, power
consumption of servers in data centers results in significant operating costs,
which increase by at least 10% each year. To address this challenge, the U.S. EPA
and other government agencies are considering the use of novel measurement
methods in order to label the energy efficiency of servers.
The energy efficiency and power consumption of a server is subject to a

great number of factors, including, but not limited to, hardware, software
stack, workload, and load level. This huge number of influencing factors
makes measuring and rating of energy efficiency challenging. It also makes it
difficult to find an energy-efficient server for a specific use-case. Among others,
server provisioners, operators, and regulators would profit from information
on the servers in question and on the factors that affect those servers’ power
consumption and efficiency. However, we see a lack of measurement methods
and metrics for energy efficiency of the systems under consideration. Even
assuming that a measurement methodology existed, making decisions based
on its results would be challenging. Power prediction methods that make use of
these results would aid in decision making. They would enable potential server
customers to make better purchasing decisions and help operators predict the
effects of potential reconfigurations.

Existing energy efficiency benchmarks cannot fully address these challenges,
as they only measure single applications at limited sets of load levels. In
addition, existing efficiency metrics are not helpful in this context, as they
are usually a variation of the simple performance per power ratio, which is only
applicable to single workloads at a single load level. Existing data center
efficiency metrics, on the other hand, express the efficiency of the data center
space and power infrastructure, not focusing on the efficiency of the servers
themselves. Power prediction methods for not-yet-available systems that could
make use of the results provided by a comprehensive power ratingmethodology
are also lacking. Existing power prediction models for hardware designers

iii

have a very fine level of granularity and detail that would not be useful for data
center operators.
This thesis presents a measurement and rating methodology for energy

efficiency of servers and an energy efficiency metric to be applied to the results
of this methodology. We also design workloads, load intensity and distribution
models, and mechanisms that can be used for energy efficiency testing. Based
on this, we present power prediction mechanisms and models that utilize our
measurement methodology and its results for power prediction.
Specifically, the six major contributions of this thesis are:

• We present a measurement methodology and metrics for energy effi-
ciency rating of servers that use multiple, specifically chosen workloads
at different load levels for a full system characterization.
We evaluate the methodology and metric with regard to their repro-
ducibility, fairness, and relevance. We investigate the power and perfor-
mance variations of test results and show fairness of the metric through
a mathematical proof and a correlation analysis on a set of 385 servers.
We evaluate the metric’s relevance by showing the relationships that can
be established between metric results and third-party applications.

• We create models and extraction mechanisms for load profiles that vary
over time, as well as load distribution mechanisms and policies. The
models are designed to be used to define arbitrary dynamic load intensity
profiles that can be leveraged for benchmarking purposes. The load
distribution mechanisms place workloads on computing resources in a
hierarchical manner.
Our load intensity models can be extracted in less than 0.2 seconds and
our resultingmodels feature amedianmodeling error of 12.7% on average.
In addition, our new load distribution strategy can save up to 10.7% of
power consumption on a single server node.

• We introduce an approach to create small-scale workloads that emulate
the power consumption-relevant behavior of large-scale workloads by
approximating their CPU performance counter profile, and we introduce
TeaStore, a distributed, micro-service-based reference application. Tea-
Store can be used to evaluate power and performance model accuracy,
elasticity of cloud auto-scalers, and the effectiveness of power saving
mechanisms for distributed systems.
We show that we are capable of emulating the power consumption behav-
ior of realistic workloads with a mean deviation less than 10% and down

iv

to 0.2 watts (1%). We demonstrate the use of TeaStore in the context of
performance model extraction and cloud auto-scaling also showing that it
may generate workloads with different effects on the power consumption
of the system under consideration.

• We present a method for automated selection of interpolation strategies
for performance and power characterization. We also introduce a con-
figuration approach for polynomial interpolation functions of varying
degrees that improves prediction accuracy for system power consumption
for a given system utilization.
We show that, in comparison to regression, our automated interpolation
method selection and configuration approach improves modeling accu-
racy by 43.6% if additional reference data is available and by 31.4% if it is
not.

• We present an approach for explicit modeling of the impact a virtualized
environment has on power consumption and a method to predict the
power consumption of a software application. Both methods use results
produced by our measurement methodology to predict the respective
power consumption for servers that are otherwise not available to the
person making the prediction.
Our methods are able to predict power consumption reliably for multiple
hypervisor configurations and for the target application workloads. Ap-
plication workload power prediction features a mean average absolute
percentage error of 9.5%.

• Finally, we propose an end-to-end modeling approach for predicting the
power consumption of component placements at run-time. The model
can also be used to predict the power consumption at load levels that
have not yet been observed on the running system.
We show that we can predict the power consumption of two different
distributed web applications with a mean absolute percentage error of
2.2%. In addition, we can predict the power consumption of a system at
a previously unobserved load level and component distribution with an
error of 1.2%.

The contributions of this thesis already show a significant impact in science
and industry. The presented efficiency rating methodology, including its met-
ric, have been adopted by the U.S. EPA in the latest version of the ENERGY
STAR Computer Server program. They are also being considered by additional

v

regulatory agencies, including the EU Commission and the China National In-
stitute of Standardization. In addition, the methodology’s implementation and
the underlying methodology itself have already found use in several research
publications.

Regarding future work, we see a need for new workloads targeting special-
ized server hardware. At the moment, we are witnessing a shift in execution
hardware to specialized machine learning chips, general purpose GPU com-
puting, FPGAs being embedded into compute servers, etc. To ensure that our
measurement methodology remains relevant, workloads covering these areas
are required. Similarly, power prediction models must be extended to cover
these new scenarios.

vi

Zusammenfassung

In den vergangenen Jahrzehnten hat die Energieeffizienz von Computersyste-
men stark an Bedeutung gewonnen. Bereits 2015 waren Rechenzentren für 2%
der weltweiten Treibhausgasemissionen verantwortlich, was mit der durch den
Flugverkehr verursachten Treibhausgasmenge vergleichbar ist. Dabei wirkt
sich der Stromverbrauch von Rechenzentren nicht nur auf die Umwelt aus,
sondern verursacht auch erhebliche, jährlich um mindestens 10% steigende,
Betriebskosten. Um sich diesen Herausforderungen zu stellen, erwägen die U.S.
EPA und andere Behörden die Anwendung von neuartigen Messmethoden,
um die Energieeffizienz von Servern zu bestimmen und zu zertifizieren.

Die Energieeffizienz und der Stromverbrauch eines Servers wird von vielen
verschiedenen Faktoren, u.a. der Hardware, der zugrundeliegenden Ausfüh-
rungssoftware, der Arbeitslast und der Lastintensität, beeinflusst. Diese große
Menge an Einflussfaktoren führt dazu, dass die Messung und Bewertung der
Energieeffizienz herausfordernd ist, was die Auswahl von energieeffizienten
Servern für konkreteAnwendungsfälle erheblich erschwert. Informationen über
Server und ihre Energieeffizienz bzw. ihren Stromverbrauch beeinflussenden
Faktoren wären für potentielle Kunden von Serverhardware, Serverbetreiber
und Umweltbehörden von großem Nutzen. Im Allgemeinen mangelt es aber
an Messmethoden und Metriken, welche die Energieeffizienz von Servern in
befriedigendemMaße erfassen und bewerten können. Allerdings wäre es selbst
unter der Annahme, dass es solche Messmethoden gäbe, dennoch schwierig
Entscheidungen auf Basis ihrer Ergebnisse zu fällen. Um derartige Entschei-
dungen zu vereinfachen, wären Methoden zur Stromverbrauchsvorhersage
hilfreich, um es potentiellen Serverkunden zu ermöglichen bessere Kaufent-
scheidungen zu treffen und Serverbetreibern zu helfen, die Auswirkungen
möglicher Rekonfigurationen vorherzusagen.

Existierende Energieeffizienzbenchmarks können diesen Herausforderungen
nicht vollständig begegnen, da sie nur einzelne Anwendungen bei wenigen
Lastintensitätsstufen ausmessen. Auch sind die vorhandenen Energieeffizi-
enzmetriken in diesem Kontext nicht hilfreich, da sie normalerweise nur eine
Variation des einfachen Verhältnisses von Performanz zu Stromverbrauch dar-
stellen, welches nur auf einzelne Arbeitslasten bei einer einzigen gemessenen
Lastintensität angewandt werden kann. Im Gegensatz dazu beschreiben die

vii

existierenden Rechenzentrumseffizienzmetriken lediglich die Platz- und Stro-
minfrastruktureffizienz von Rechenzentren und bewerten nicht die Effizienz
der Server als solche. Methoden zur Stromverbrauchsvorhersage noch nicht
für Kunden verfügbarer Server, welche die Ergebnisse einer ausführlichen
Stromverbrauchsmessungs- und Bewertungsmethodologie verwenden, gibt
es ebenfalls nicht. Stattdessen existieren Stromverbrauchsvorhersagemetho-
den und Modelle für Hardwaredesigner und Hersteller. Diese Methoden sind
jedoch sehr feingranular und erfordern Details, welche für Rechenzentrums-
betreiber nicht verfügbar sind, sodass diese keine Vorhersage durchführen
können.
In dieser Arbeit werden eine Energieeffizienzmess- und Bewertungsmetho-

dologie für Server und Energieeffizienzmetriken für diese Methodologie vor-
gestellt. Es werden Arbeitslasten, Lastintensitäten und Lastverteilungsmodelle
und -mechanismen, die für Energieeffizienzmessungen und Tests verwendet
werden können, entworfen. Darauf aufbauend werden Mechanismen und Mo-
delle zur Stromverbrauchsvorhersage präsentiert, welche dieseMessmethodolo-
gie unddie damit produzierten Ergebnisse verwenden.Die sechsHauptbeiträge
dieser Arbeit sind:

• Eine Messmethodologie und Metriken zur Energieeffizienzbewertung
von Servern, diemehrere, verschiedeneArbeitslasten unter verschiedenen
Lastintensitäten ausführt, um die beobachteten Systeme vollständig zu
charakterisieren.
Diese Methodologie wird im Bezug auf ihre Wiederholbarkeit, Fairness
und Relevanz evaluiert. Es werden die Stromverbrauchs- und Performanz-
variationen von wiederholten Methodologieausführungen untersucht
und die Fairness der Methodologie wird durch mathematische Bewei-
se und durch eine Korrelationsanalyse anhand von Messungen auf 385
Servern bewertet. Die Relevanz der Methodologie und der Metrik wird
gezeigt, indem Beziehungen zwischen Metrikergebnissen und der Ener-
gieeffizienz von anderen Serverapplikationen untersucht werden.

• Modelle und Extraktionsverfahren für sich mit der Zeit verändernde
Lastprofile, sowie Lastverteilungsmechanismen und -regeln. Die Modelle
können dazu verwendet werden, beliebige Lastintensitätsprofile, die zum
Benchmarking verwendet werden können, zu entwerfen. Die Lastvertei-
lungsmechanismen, hingegen, platzieren Arbeitslasten in hierarchischer
Weise auf Rechenressourcen.
Die Lastintensitätsmodelle können in weniger als 0,2 Sekunden extrahiert
werden, wobei die jeweils resultierenden Modelle einen durchschnittli-

viii

chen Medianmodellierungsfehler von 12,7% aufweisen. Zusätzlich dazu
kann die neue Lastverteilungsstrategie auf einzelnen Servern zu Strom-
verbrauchseinsparungen von bis zu 10,7% führen.

• Ein Ansatz um kleine Arbeitslasten zu erzeugen, welche das Stromver-
brauchsverhalten von größeren, komplexeren Lasten emulieren, indem
sie ihre CPU Performance Counter-Profile approximieren sowie den Tea-
Store: Eine verteilte, auf dem Micro-Service-Paradigma basierende Refe-
renzapplikation. Der TeaStore kann verwendet werden, um Strom- und
Performanzmodellgenauigkeit, Elastizität von Cloud Autoscalern und
die Effektivität von Stromsparmechanismen in verteilten Systemen zu
untersuchen.
Das Arbeitslasterstellungsverfahren kann das Stromverbrauchsverhalten
von realistischen Lasten mit einer mittleren Abweichung von weniger
als 10% und bis zu einem minimalen Fehler von 0,2 Watt (1%) nach-
ahmen. Die Anwendung des TeaStores wird durch die Extraktion von
Performanzmodellen, die Anwendung in einer automatisch skalierenden
Cloudumgebung und durch eine Demonstration der verschiedenen mög-
lichen Stromverbräuche, die er auf Servern verursachen kann, gezeigt.

• Eine Methode zur automatisierten Auswahl von Interpolationsstrategien
im Bezug auf Performanz und Stromverbrauchscharakterisierung. Diese
Methode wird durch einen Konfigurationsansatz, der die Genauigkeit
der auslastungsabhängigen Stromvorhersagen von polynomiellen Inter-
polationsfunktionen verbessert, erweitert.
Im Gegensatz zur Regression kann der automatisierte Interpolations-
methodenauswahl- und Konfigurationsansatz die Modellierungsgenau-
igkeit mit Hilfe eines Referenzdatensatzes um 43,6% verbessern und
kann selbst ohne diesen Referenzdatensatz eine Verbesserung von 31,4%
erreichen.

• Einen Ansatz, der explizit den Einfluss von Virtualisierungsumgebungen
auf den Stromverbrauchmodelliert und eineMethode zur Vorhersage des
Stromverbrauches von Softwareapplikationen. Beide Verfahren nutzen
die von der in dieser Arbeit vorgegestellten Stromverbrauchsmessme-
thologie erzeugten Ergebnisse, um den jeweiligen Stromverbrauch von
Servern, die den Vorhersagenden sonst nicht zur Verfügung stehen, zu
ermöglichen.
Die vorgestellten Verfahren können den Stromverbrauch für verschiedene
Hypervisorkonfigurationen und für Applikationslasten zuverlässig vor-

ix

hersagen. Die Vorhersage des Stromverbrauchs von Serverapplikationen
erreicht einen mittleren absoluten Prozentfehler von 9,5%.

• Ein Modellierungsansatz zur Stromverbrauchsvorhersage für Laufzeit-
platzierungsentscheidungen von Softwarekomponenten, welcher auch
dazu verwendet werden kann den Stromverbrauch für bisher nicht beob-
achtete Lastintensitäten auf dem laufenden System vorherzusagen.
Der Modellierungsansatz kann den Stromverbrauch von zwei verschie-
denen, verteilten Webanwendungen mit einem mittleren absoluten Pro-
zentfehler von 2,2% vorhersagen. Zusätzlich kann er den Stromverbrauch
von einem System bei einer in der Vergangenheit nicht beobachteten
Lastintensität und Komponentenverteilung mit einem Fehler von 1,2%
vorhersagen.

Die Beiträge in dieser Arbeit haben sich bereits signifikant auf Wissenschaft
und Industrie ausgewirkt. Die präsentierte Energieeffizienzbewertungsmetho-
dologie, inklusive ihrerMetriken, ist von der U.S. EPA in die neueste Version des
ENERGY STAR Computer Server-Programms aufgenommen worden und wird
zurzeit außerdem von weiteren Behörden, darunter die EU Kommission und
die Nationale Chinesische Standardisierungsbehörde, in Erwägung gezogen.
Zusätzlich haben die Implementierung der Methodologie und die zugrunde-
liegende Methodologie bereits Anwendung in mehreren wissenschaftlichen
Arbeiten gefunden.

In Zukunft werden im Rahmen von weiterführenden Arbeiten neue Ar-
beitslasten erstellt werden müssen, um die Energieeffizienz von spezialisierter
Hardware zu untersuchen. Zurzeit verändert sich die Server-Rechenlandschaft
in der Hinsicht, dass spezialisierte Ausführungseinheiten, wie Chips zum ma-
schinellen Lernen, GPGPU Rechenchips und FPGAs in Servern verbaut werden.
Um sicherzustellen, dass die Messmethodologie aus dieser Arbeit weiterhin
relevant bleibt, wird es nötig sein, Arbeitslasten zu erstellen, welche diese Fälle
abdecken, sowie Stromverbrauchsmodelle zu entwerfen, die in der Lage sind,
derartige spezialisierte Hardware zu betrachten.

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 State-of-the-Art . 3
1.4 Goals and Research Questions . 4
1.5 Contribution and Evaluation Summary 6
1.6 Thesis Outline . 10

I Foundations and Related Work 11

2 Foundations 13
2.1 Transactions and Server Performance Metrics 13
2.2 Load Profiles . 14
2.3 Benchmarks . 16

2.3.1 Definition of Benchmark 16
2.3.2 Types of Benchmarks . 17

2.4 Benchmark Quality Criteria . 17
2.4.1 Relevance . 18
2.4.2 Reproducibility . 19
2.4.3 Fairness . 20
2.4.4 Verifiability . 22
2.4.5 Usability . 23
2.4.6 Relevance of Benchmark Quality Criteria to this Work . . 23

2.5 Performance Counters . 23

3 State-of-the-Art 25
3.1 Experimental Studies on Server and CPU Power Consumption . 26

3.1.1 Experimental studies of server power management . . . 26
3.1.2 Experimental studies of CPU power management 27

3.2 Benchmarks, Test Applications, and Metrics 27
3.2.1 Energy Efficiency Benchmarks 28
3.2.2 Distributed Software Workloads and Test Applications . 29

xi

Contents

3.2.3 Energy Efficiency Metrics 32
3.3 Load Profiles, Load Distribution, and CPU Performance Counters 33

3.3.1 Load Profiles . 33
3.3.2 Load Distribution . 35
3.3.3 CPU Performance Counters 36

3.4 Offline Power Prediction . 37
3.5 Online Power Prediction . 38

II Measuring and Rating the Energy Efficiency of Servers 41

4 Methodology for Server Efficiency Rating 43
4.1 Introduction . 43
4.2 Server Power Rating Methodology 45

4.2.1 Device and Software Setup 45
4.2.2 Workload and Worklets 47
4.2.3 Worklet Dispatch and Load Levels 49

4.3 Energy-Efficiency Metrics . 51
4.3.1 Worklet Performance Metrics 52
4.3.2 Efficiency Metrics . 53

4.4 Concluding Remarks . 55

5 Advanced Load Profiles for Energy Efficiency Measurement 57
5.1 Load Profiles with Varying Load Intensity over Time 58

5.1.1 Descartes Load Intensity Model 61
5.1.2 High-level DLIM . 63
5.1.3 Model Instance Extraction 65

5.2 Hierarchical Load Distribution 71
5.2.1 Load Distribution of Worklets 73

5.3 Concluding Remarks . 75

6 Advanced Workloads for Energy Efficiency Measurement 77
6.1 Performance Event Trigger Framework 78

6.1.1 General PET Approach . 79
6.1.2 Performance Counter Relevance to Power 82
6.1.3 Event Trigger Implementation 83

6.2 TeaStore: A Micro-Service Reference Application 85
6.2.1 TeaStore Description . 87
6.2.2 Architecture . 88
6.2.3 Services . 90

xii

Contents

6.3 Concluding Remarks . 93

III Modeling the Energy Efficiency of Servers 95

7 Interpolating Power Consumption 97
7.1 Introduction . 97
7.2 Interpolation Functions . 99
7.3 Determining Interpolation Accuracy 100
7.4 Interpolation Selection and Configuration 101

7.4.1 Interpolation Function Configuration 102
7.4.2 Break Detection for Polynomial Interpolation 102

7.5 Concluding Remarks . 104

8 Offline Prediction of Power Consumption 105
8.1 Offline Power Prediction for Virtualized Environments 106

8.1.1 Measuring Power Consumption and Energy Efficiency . 108
8.1.2 Prediction Approach . 109

8.2 Offline Power Prediction for Target Applications 114
8.2.1 Challenges when using SERT for Offline Power Prediction115

8.3 Offline Power Prediction . 116
8.3.1 Regressor and Response Variables 117
8.3.2 Prediction Formalisms under Consideration 119
8.3.3 Interpolating Measurement Results 119
8.3.4 Self-Prediction Accuracy 120
8.3.5 Parameter Modeling and Optimization 121

8.4 Concluding Remarks . 121

9 Online Prediction of Power Consumption 123
9.1 Introduction . 123
9.2 Power Prediction Model . 126

9.2.1 Workload Deployment Power Prediction 126
9.2.2 Single Server Power Prediction 131
9.2.3 Concluding Remarks . 133

IV Validation and Conclusions 135

10 Quality of the Server Efficiency Rating Methodology 141
10.1 Reproducibility . 141

10.1.1 Run-to-Run Efficiency and Power Variations 142

xiii

Contents

10.1.2 Intra-Run Power Variations 144
10.2 Fairness . 148

10.2.1 Metric Changes for Basic Energy-Efficiency Properties . 148
10.2.2 Metric Score Correlations 150

10.3 Relevance . 153
10.3.1 Deriving Weights . 153
10.3.2 Ranking Servers for the DVDStore 154

10.4 Summary . 155

11 Evaluation of Load Profiles and Placements 157
11.1 Evaluation of DLIM Load Profile Extraction 157

11.1.1 Internet Traffic Archive and BibSonomy Traces 159
11.1.2 Wikipedia Traces . 162

11.2 Energy Efficiency of Hierarchical Load Distribution 165
11.2.1 Energy Efficiency for Homogeneous Workloads 166
11.2.2 Energy Efficiency for Heterogeneous Workloads 178

11.3 Summary . 180

12 Accuracy and Applicability of Workloads for Energy Efficiency Measurement181
12.1 Power-Profile emulation using Performance Event Triggers . . . 181

12.1.1 Accuracy of Performance Event Triggers 181
12.1.2 Side Effects of Event Triggers 188
12.1.3 PET . 188

12.2 Use-Cases for the TeaStore Reference and Test Application . . . 198
12.2.1 Performance Modeling . 199
12.2.2 Auto-Scaling . 205
12.2.3 Energy-Efficiency Analysis 209

12.3 Summary . 214

13 Accuracy of Power Interpolation 215
13.1 Models for Comparison . 216
13.2 Comparison of Interpolation Methods 217
13.3 Interpolation using Reference Dataset 220
13.4 Interpolation using Cross-Validation 222
13.5 Summary . 222

14 Evaluation of Offline Power Prediction 225
14.1 Evaluation of Power Prediction for Virtualized Environments . . 225

14.1.1 Prediction without Sub-Models 226
14.1.2 Self-Prediction Error and Actual Prediction Error 227

xiv

Contents

14.1.3 Prediction with Sub-Models 228
14.2 Evaluation Offline Power Prediction for Target Applications . . 230

14.2.1 Measuring Target Application Power and Performance . 231
14.2.2 Unoptimized Power Prediction 232
14.2.3 Predicting Power using Interpolation and Optimization . 233
14.2.4 Parameter Optimization and no Interpolation 234
14.2.5 Interpolation with Baseline Parameters 234
14.2.6 Prediction Accuracy depending on Interpolation Method 235

14.3 Summary . 236

15 Applying Online Power Prediction using Real-World Workloads 239
15.1 Methodology . 239

15.1.1 Experiment Setup . 239
15.1.2 Test Applications . 240
15.1.3 Load Generation . 241
15.1.4 Measurement Methodology 242
15.1.5 Metrics . 242

15.2 Power Saving Potential . 243
15.3 Workload Deployment Power Prediction 244

15.3.1 Number of Training Vectors and Prediction Accuracy . . 244
15.3.2 Predicting Previously Unobserved Deployments 245
15.3.3 Power Prediction for Previously Unobserved Throughput

Levels . 246
15.3.4 Evaluation Results for RUBiS 247

15.4 Single Server Power Prediction 248
15.5 Combined Models Prediction Accuracy 249
15.6 Predicting Power for Containers 250
15.7 Summary . 251

16 Conclusions 253
16.1 Summary . 253
16.2 Benefits . 256
16.3 Future Work . 258

Bibliography 271

xv

Publications

Journals

Kistowski, J. von, N. Herbst, S. Kounev, H. Groenda, C. Stier, and S. Lehrig
(2017a). “Modeling and Extracting Load Intensity Profiles”. In: ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS) 11.4, 23:1–23:28.

Peer-Reviewed International Conference Contributions

Full Papers

Eismann, S., J. Grohmann, J. Walter, J. von Kistowski, and S. Kounev (2019).
“Integrating Statistical Response Time Models in Architectural Performance
Models”. In: 2019 IEEE International Conference on Software Architecture (ICSA).
Full paper acceptance Rate: 21.9%. Hamburg, Germany.

Kistowski, J. von, J. Grohmann, N. Schmitt, and S. Kounev (2019a). “Predicting
Server Power Consumption from Standard Rating Results”. In: Proceedings of
the 19th ACM/SPEC International Conference on Performance Engineering (ICPE
2019). Full paper acceptance rate: 18.6%. Mumbai, India: ACM.

Kistowski, J. von, J. Pais, T. Wahl, K.-D. Lange, H. Block, J. Beckett, and S.
Kounev (2019b). “Measuring the Energy Efficiency of Transactional Loads
on GPGPU”. In: Proceedings of the 19th ACM/SPEC International Conference on
Performance Engineering (ICPE 2019). Mumbai, India: ACM.

Eismann, S., J. Walter, J. von Kistowski, and S. Kounev (2018). “Modeling of
Parametric Dependencies for Performance Prediction of Component-based
Software Systems at Run-time”. In: 2018 IEEE International Conference on
Software Architecture (ICSA). Full paper acceptance Rate: 25.6%.

Kistowski, J. von, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and S. Kounev
(2018b). “TeaStore: AMicro-Service Reference Application for Benchmarking,
Modeling and Resource Management Research”. In: Proceedings of the 26th
IEEE International Symposium on the Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS 2018). Milwaukee, WI,
USA.

xvii

Contents

Kistowski, J. von, H. Block, J. Beckett, C. Spradling, K.-D. Lange, and S. Kounev
(2016a). “Variations in CPU Power Consumption”. In: Proceedings of the 7th
ACM/SPEC International Conference on Performance Engineering (ICPE 2016).
Delft, the Netherlands: ACM.

Kistowski, J. von, J. Beckett, K.-D. Lange, H. Block, J. A. Arnold, and S. Kounev
(2015b). “Energy Efficiency of Hierarchical Server Load Distribution Strate-
gies”. In: Proceedings of the IEEE 23nd International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS
2015). Full paper acceptance rate: 19%. Atlanta, GA, USA: IEEE.

Kistowski, J. von, H. Block, J. Beckett, K.-D. Lange, J. A. Arnold, and S. Kounev
(2015c). In: Proceedings of the 6th ACM/SPEC International Conference on Per-
formance Engineering (ICPE 2015). Acceptance rate: 27%. Austin, TX, USA:
ACM.

Kistowski, J. von, N. R. Herbst, D. Zoller, S. Kounev, and A. Hotho (2015d).
“Modeling and Extracting Load Intensity Profiles”. In: Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2015). Acceptance rate: 29%. Firenze, Italy.

Short Papers

Kistowski, J. von, M. Deffner, and S. Kounev (2018a). “Run-time Prediction of
Power Consumption for Component Deployments”. In: Proceedings of the 15th
IEEE International Conference on Autonomic Computing (ICAC 2018). Trento,
Italy.

Schmitt, N., J. von Kistowski, and S. Kounev (2017a). “Emulating the Power
Consumption Behavior of Server Workloads using CPU Performance Coun-
ters”. In: Proceedings of the 25th IEEE International Symposium on the Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS
2017). Banff, Canada.

Kistowski, J. von and S. Kounev (2015). “Univariate Interpolation-based Mod-
eling of Power and Performance”. In: Proceedings of the 9th EAI International
Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS
2015). Berlin, Germany.

Work-In-Progress/Vision Papers

Schmitt, N., J. von Kistowski, and S. Kounev (2017b). “Predicting Power Con-
sumption of High-Memory-Bandwidth Workloads”. (Work-In-Progress Pa-

xviii

Tutorial/Tool Papers

per). In: Proceedings of the 8th ACM/SPEC on International Conference on Perfor-
mance Engineering (ICPE 2017). L’Aquila, Italy: ACM, pp. 353–356.

– (2017c). “Towards a Scalability and Energy Efficiency Benchmark for VNF”.
(Vision Paper). In: Proceedings of the 9th TPC Technology Conference on Perfor-
mance Engineering and Benchmarking (TPCTC 2017). Munich, Germany.

Tutorial/Tool Papers

Bucek, J., K.-D. Lange, and J. von Kistowski (2018). “SPEC CPU2017: Next-
Generation Compute Benchmark”. (Poster Paper). In: Companion of the 2018
ACM/SPEC International Conference on Performance Engineering (ICPE 2018).
Berlin, Germany: ACM, pp. 41–42.

Kistowski, J. von, K.-D. Lange, J. A. Arnold, S. Sharma, J. Pais, and H. B. (2018)
(2018c). “Measuring and Benchmarking Power Consumption and Energy
Efficiency”. (Tutorial Paper). In:Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering. Berlin, Germany: ACM, pp. 57–65.

Kistowski, J. von,M.Deffner, J. A. Arnold, K.-D. Lange, J. Beckett, and S. Kounev
(2017b). “Autopilot: Enabling easy Benchmarking of Workload Energy Ef-
ficiency”. In: Proceedings of the 8th ACM/SPEC International Conference on
Performance Engineering (ICPE 2017). Best Demo Award. L’Aquila, Italy: ACM.

Kistowski, J. von, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning, and P.
Cao (2015a). “How to Build a Benchmark”. In:Proceedings of the 6thACM/SPEC
International Conference on Performance Engineering (ICPE 2015). Austin, TX,
USA: ACM.

Kistowski, J. G. von, N. R. Herbst, and S. Kounev (2014a). “LIMBO: A Tool For
Modeling Variable Load Intensities”. In: Proceedings of the 5th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE 2014). Dublin, Ireland:
ACM.

Peer-Reviewed International Workshop Contributions

Kistowski, J. von, M. Schreck, and S. Kounev (2016b). “Predicting Power Con-
sumption in Virtualized Environments”. In: Computer Performance Engineer-
ing: 13th European Workshop, EPEW 2016, Chios, Greece, October 5-7, 2016,
Proceedings. Ed. by D. Fiems, M. Paolieri, and N. A. Platis. Cham: Springer
International Publishing, pp. 79–93.

xix

Contents

Kistowski, J. G. von, N. R. Herbst, and S. Kounev (2014b). “Modeling Variations
in Load Intensity over Time”. In: Proceedings of the 3rd International Workshop
on Large-Scale Testing (LT 2014), co-located with the 5th ACM/SPEC International
Conference on Performance Engineering (ICPE 2014). Dublin, Ireland: ACM.

Kistowski, J. von, N. R. Herbst, and S. Kounev (2014c). “Using and Extending
LIMBO for the Descriptive Modeling of Arrival Behaviors”. In: Proceedings
of the Symposium on Software Performance 2014. Best Poster Award. Stuttgart,
Germany: University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, pp. 131–140.

Book Chapters

Lange, K.-D. and J. von Kistowski (2018). “Energy Benchmarking”. In: Encyclo-
pedia of Big Data Technologies. Ed. by S. Sakr and A. Zomaya. Cham: Springer
International Publishing, pp. 1–6.

Technical Reports

Kistowski, J. von, K.-D. Lange, J. A. Arnold, H. Block, G. Darnell, J. Beckett,
and M. Tricker (2017c). The SERT Metric and the Impact of Server Configuration.
Tech. rep. 7001 Heritage Village Plaza, Suite 225, Gainesville, VA 20155, USA:
Standard Performance Evaluation Corporation (SPEC).

Brunnert, A. et al. (2015). Performance-oriented DevOps: A Research Agenda. Tech.
rep. SPEC-RG-2015-01. SPEC Research Group — DevOps Performance Work-
ing Group, Standard Performance Evaluation Corporation (SPEC).

Kuperberg, M., N. R. Herbst, J. G. von Kistowski, and R. Reussner (2011). Defin-
ing and Quantifying Elasticity of Resources in Cloud Computing and Scalable
Platforms. Tech. rep. Am Fasanengarten 5, 76131 Karlsruhe, Germany: Karl-
sruhe Institute of Technology (KIT).

Tool and Software Contributions

Peer Reviewed Tool Contributions

Jóakim von Kistowski and Simon Eismann and Norbert Schmitt and André
Bauer and JohannesGrohmann and Samuel Kounev (2019).TeaStore. Standard
Performance Evaluation Corporation Research Group (SPEC RG) accepted
Tool.

xx

Contributions to Industry Standard Tools

Jóakim von Kistowski and Andreas Weber and Nikolas Herbst (2015). LIMBO.
Standard Performance Evaluation Corporation Research Group (SPEC RG)
accepted Tool. https://research.spec.org/tools/overview/limbo.html.

Contributions to Industry Standard Tools

Standard Performance EvaluationCorporation (SPEC) (2017a).ChauffeurWorklet
Development Kit v2. http://spec.org/chauffeur-wdk/.

– (2017b). Server Efficiency Rating Tool (SERT) v2. http://spec.org/sert2/.

xxi

Chapter 1

Introduction

In the introduction to this doctoral thesis, we first motivate the topic of research
and set the general context. We then proceed to present the concrete problem
statement addressed in this work, before introducing the current state-of-the-art
and show that it does not sufficiently address the identified problems. Based on
this, we define concrete goals and research questions. Next, we summarize the
contributions of this work, which address these goals. We also describe how
we evaluate these contributions. Finally, we provide an outline of the thesis.

1.1 Motivation

Energy efficiency of computing systems has become an ever more important
issue over the last decades. In addition tomobile and other end-user devices, the
energy efficiency of data centers and servers has gained attention. In 2010, the
U.S. Environmental ProtectionAgency (U.S. EPA) estimated that 3% of the entire
energy consumption in the U.S. is caused by data center power draw (Lange
and Tricker, 2011). According to a New York Times study from 2012, data
centers worldwide consume about 30 billion watts. This is equivalent to the
approximate output of 30 nuclear power plants (Babcock, 2012). According
to The Guardian in 2015 (Vaughan, 2015), they are responsible for 2% of the
world’s greenhouse gas emissions, which is similar to the amount produced by
air travel.

In addition to these environmental concerns, power consumption of servers
in data centers results in significant operating costs. These costs are ever in-
creasing. Cecci and Pultz, 2016 estimate that ongoing data center power costs
are increasing at least 10% per year. They also estimate the power consump-
tion’s share of a data center’s total operating costs will increase during the next
years. This effect is mostly attributable to higher density of servers within data
centers and to the higher power density of many state-of-the-art devices. They
conclude that optimizing the IT power consumption within the data center is
one of the major cost saving measures.

1

Chapter 1: Introduction

Coming to a similar conclusion, the U.S. EPA launched its ENERGY STAR
Computer Server program (EPA, 2013) with the goal of labeling energy-efficient
servers. Servers with a high energy efficiency are to receive the ENERGY STAR
label, enabling potential buyers to purchase more efficient devices. To this end,
the U.S. EPA has called for measurement methodologies to facilitate the server
labeling. The implementation of the methodology presented in this thesis is
the result of this call and is now part of the ENERGY STAR Computer Server
specification in its 3rd iteration. Similarly, other regulatory bodies, such as the
China National Institute of Standardization (CNIS) and the EU Commission,
are currently considering adoption of this methodology.

1.2 Problem Statement

The energy efficiency and power consumption of a server are subject to a
great number of factors. Firstly, and most obviously, the server’s hardware
components have a direct effect on power consumption and performance. In
addition, power consumption and efficiency depend on the workload executed
by the server, the workload’s load intensity/load level and its load distribution,
i.e., the resources on the server allocated for processing the workload. Finally,
the server’s software stack, in addition to the applicationworkload, may have an
effect on power consumption and/or efficiency. This stack includes operating
systems and potential hypervisors and/or language runtimes.
This high number of influencing factors makes finding an energy-efficient

server for a specific use-case very difficult. Among others, server provisioners,
operators, and regulators would profit from sufficient and structured infor-
mation on the servers in question and on the factors that affect those servers’
power consumption and efficiency. Specifically, it is hard for server provisioners
to acquire sufficient information on a server and its interaction with all the
mentioned influencing factors in order to make good purchasing decisions.
Similarly, an operator must be able to obtain this information for his or her
servers in order to be able to deploy software artifacts on those servers onwhich
they consume the least power. Government regulators, in turn, would like to
certify low energy or energy-efficient devices, but must do so in a very general
way, as they have very little information on the device’s intended use.

In general, we see a lack of measurement methods for power consumption
and energy efficiency. The concrete steps for performing such measurements
and ratings based on those measurements remain undefined: Which workloads
to execute for efficiency measurements, how to place and run these workloads,
how to configure measurements for different load levels, and where to instru-

2

1.3 State-of-the-Art

ment the system under test? Finally, which metrics to use for comparing the
obtained results regarding efficiency and power consumption remains an open
question. Note that a fair metric is especially important for government regu-
lators, who need it to define pass/fail criteria for energy efficiency labels and
certifications based on measurement results.

Even assuming that a measurement methodology were to exist, making deci-
sions based on its results would still be a non-trivial process. Ideally, a server’s
potential buyer would like to know the power consumption of a target appli-
cation for the server. Even if standardized measurement results are provided,
the consumption of the specific target application would remain unknown. A
server operator, on the other hand, may have the opportunity to obtain mea-
surements at run-time. Yet, predicting the effects potential reconfigurations
have on a running server environment is still challenging.

In summary, the problem addressed by this thesis is twofold: Firstly, no com-
prehensive measurement and rating methodology for server energy efficiency
exists, covering the range of influencing factors. In addition, there is no metric
that would help to compare the results of such amethodology. Secondly, we see
a need for power prediction mechanisms to enable intelligent decision making
based on the results provided by such a methodology.

1.3 State-of-the-Art

Existing measurement and rating methods for energy efficiency exist in the
form of energy efficiency benchmarks. Server energy efficiency benchmarks run
a stable load for a period of time and then compute energy efficiency as a func-
tion of the benchmark’s performance and power consumptionmeasured during
the benchmark run. Energy efficiency benchmarks, such as JouleSort (Rivoire
et al., 2007b), measure the energy efficiency of a single workload, potentially
run with several different settings. Yet they always run at maximum speed, not
accounting for the different load levels a server would be subject to in produc-
tion use. As a first step towards this work, SPECpower_ssj2008 (Lange, 2009)
addresses this by executing its workload at ten different load levels. However,
no existing energy efficiency benchmark or methodology takes multiple work-
loads with different load levels into account. The benchmarks are all designed
to demonstrate efficiency for a single use case, instead of the broad application
scenario described in our problem statement.
Efficiency metrics used for comparison are limited to variations of the per-

formance per power ratio, as used by Rivoire et al., 2007b and Metri et al., 2012
(or in reverse by Poess et al., 2010). This metric has the major drawback of

3

Chapter 1: Introduction

only being applicable to a single load level and workload. In return, power
proportionality metrics, such as those of Schall et al., 2012 and Hsu and Poole,
2015, only display the range of power consumption and are not intended for
energy efficiency comparisons.
Making informed decisions based on rating results requires prediction of

the decisions’ effects. In our case, this means prediction of power consumption
for unavailable systems (e.g., when considering a system for purchase) or pre-
diction of power consumption effects of changes on running systems. Offline
power prediction models for not-yet-available systems do exist. However, these
models, such as those of Brooks et al., 2000 and Kahng et al., 2009 are intended
for hardware designers and require a highly detailed level of knowledge on the
hardware components and their electrical properties. Other offline prediction
models, such as those by Basmadjian et al., 2011 and Stier et al., 2015, are soft-
ware architecture models intended for software designers comparing different
potential design decisions. They do not make use of measurement results
provided by benchmarks or rating methodologies. Online power prediction
models, on the other hand, are included in power management mechanisms,
such as those of Beloglazov et al., 2012 and Urgaonkar et al., 2010. They only
apply very generic utilization based power models, which generally feature
low accuracy (Rivoire et al., 2008).
Summarizing, no comprehensive energy efficiency rating method for mul-

tiple workloads and load levels exists. Consequently, metrics and prediction
methods based on such a rating methodology are also needed.

1.4 Goals and Research Questions

Based on our problem statement and the drawbacks of the current state-of-the-
art, we formulate two major overarching goals. The contributions in the two
following parts of this thesis address these goals. Part II primarily addresses
the first goal, whereas Part III addresses the second. To specify the goals in
further detail, we pose specific research questions to be considered for each of
the goals. We pose a total of eight research questions (RQs), five of which are
related to the first goal and three of which are related to the second goal.

Goal A: Create a comprehensive power and energy efficiency measurement
and rating methodology for servers.
The methodology should enable rating of a broad range of servers and
should be applicable for users in different contexts, including regulators,
system designers, and potential buyers.

4

1.4 Goals and Research Questions

This major goal can be split into several research questions that have to be
answered in order to arrive at a comprehensive methodology. We formulate
five questions. The first two questions must be answered in order to create
the base methodology, whereas the additional three expand on those first two
questions.

RQ A.1: How to place, execute, and measure workloads in a reproducible and
representative manner for energy efficiency rating?

RQ A.2: How to aggregate results of different multi-stage energy efficiency
tests producing a fair energy efficiency metric?

RQ A.3: How to model and create realistic, varying load profiles for energy
efficiency testing?

RQ A.4: How to heterogeneously distribute load for different placements in
energy efficiency testing?

RQ A.5: How to create reference workloads for complex test setups in dis-
tributed scenarios?

Goal B: Provide methods for using the results of the measurement methodol-
ogy for data center provisioners and/or operators.
Data center provisioners and/or operators should be given methods to
use the data provided in the measurement results for better decision
making by helping to predict the effects of their actions.

We specify this second goal further by splitting it into three research ques-
tions. Each of these questions formulates a concrete use-case for measurement
results obtained using our rating methodology.

RQ B.1: How to obtain information about load level power consumption for
a load level not covered by the measurements made when applying the
methodology?

RQ B.2: How to predict the power consumption of a concrete target applica-
tion or software stack (such as a hypervisor) for a server for which the
methodology’s results are available?

RQ B.3: How to use power measurements or pre-measured results at run-time
to predict the power consumption of software component placements?

5

Chapter 1: Introduction

1.5 Contribution and Evaluation Summary

This thesis contains six major contributions, some of which consist of two sub-
contributions. These contributions address our research questions and problem
statement. They can be split into two parts, each part focusing on one of our
major goals.

Contribution 1: Methodology for Server Efficiency Rating
This contribution addresses Goal A and and research questions RQ A.1
and RQ A.2. The contribution contains a measurement methodology and
metrics for energy efficiency rating of servers that use multiple, specifi-
cally chosen workloads at different load levels for a full system character-
ization. As part of the contribution, we show howmetrics are aggregated
over the load levels and workloads in order to arrive at a final energy
efficiency score that can, among other things, be used by regulators.
We evaluate the methodology and metric with regard to their repro-
ducibility, fairness, and relevance. We investigate the power and perfor-
mance variations of test results and show fairness of the metric through
mathematical proof and a correlation analysis on a set of 385 servers. In
addition, we evaluate relevance by showing the relationships that can
be established between metric results and third-party applications. We
show that our methodology helps decision makers and regulators make
reliable decisions on the energy efficiency of servers.
The methodology has been implemented as part of the Server Efficiency
Rating Tool (SERT) released by the Standard Performance Evaluation
Corporation (SPEC), which was developed at the request of the U.S. EPA
for use in the Energy Star program for servers. A test using the SERT
2.0, which implements many of the features introduced in this thesis,
including our proposed metric, is required for acceptance in the Energy
Star program. Many parts and analyses of the methodology have been
published in the Proceedings of the ICPE 2015, ICPE 2016, and ICPE 2018
conferences (Kistowski et al., 2015c, Kistowski et al., 2016a, and Kistowski
et al., 2018c).

Contribution 2: Load Profiles for Energy Efficiency Measurement
Expanding on the first contribution, we address research questions RQ A.3
and RQ A.4 using two sub-contributions. We create models and model
extraction mechanisms for load profiles that vary over time. The models
are designed to be used to define arbitrary dynamic load intensity profiles
that can be leveraged for benchmarking purposes to evaluate the behavior

6

1.5 Contribution and Evaluation Summary

of a system under different dynamic workload scenarios. In addition to
the load profile models, we describe a modification to our methodology
for evaluation of hierarchical load distribution. We also introduce load
distribution policies that place workloads on computing resources in a
hierarchical manner (i.e., first servers, then CPU sockets, then CPU cores).

We evaluate the load intensity models and demonstrate their ability to
capture realistic load intensity profiles by automatically extracting load
intensity models from a representative set of nine different real-world
traces. Each extraction concludes in less than 0.2 seconds and our result-
ing models feature a median modeling error of 12.7% on average. An
implementation of the models and extraction methods is available as part
of the LIMBO toolkit, which has been reviewed and endorsed by the
Standard Performance Evaluation Corporation, Research Group (SPEC
RG). In addition to the load profile modeling evaluation, we evaluate
the load distribution strategies on a range of systems and test a variety
of combinations applying different load distribution strategies on the
different levels of the execution hierarchy. We also show that our new
load distribution strategy can save up to 10.7% of power consumption on
a single server node. Publications regarding this contribution has been
published at ACM TaaS (Kistowski et al., 2017a), SEAMS 2015 (Kistowski
et al., 2015d), and MASCOTS 2015 (Kistowski et al., 2015b).

Contribution 3: Workloads for Energy Efficiency Measurement
We address RQ A.5 in our third contribution by presenting workload
creation methods and workloads. Firstly, we introduce an approach
to create small-scale workloads that emulate the power consumption-
relevant behavior of large scale workloads by approximating their CPU
performance counter profile. We construct a Performance Event Trigger
Framework (PET), designed to use performance counter measurements of
third-party applications to construct a small-scale workload that emulates
the third-party application’s resource profile with the goal of reproducing
its power consumption-relevant behavior. We also introduce TeaStore, a
test and reference application for distributed systems. TeaStore can be
used to evaluate power and performance model accuracy, elasticity of
cloud auto-scalers, and the effectiveness of power saving mechanisms for
distributed systems.

We validate PET by applying it to four different applications, ranging
from small-scale test applications over standard benchmarks to a virtual
network function. We show that PET is capable of emulating the power

7

Chapter 1: Introduction

consumption behavior of realistic workloads with a mean deviation less
than 10% and down to 0.19 W (1%). Additionally, we demonstrate the
use of TeaStore for three target use cases. We extract performance models,
demonstrate TeaStore’s use in an auto-scaling environment and show that
it offers placement options with different power consumption, energy
efficiency, and performance optima. These contributions have been pub-
lished at the MASCOTS 2017 and MASCOTS 2018 conferences (Schmitt
et al., 2017a and Kistowski et al., 2018b).

Contribution 4: Power Consumption Interpolation Methods
Moving on to Goal B, we tackle research question RQ B.1 by presenting
a method for automated selection of interpolation strategies for perfor-
mance and power characterization. We also introduce a configuration
approach for polynomial interpolation functions of varying degrees that
improves prediction accuracy for system power consumption for a given
system utilization.
We evaluate our interpolation method’s ability to predict the power con-
sumption of an unmeasured load level. We show that interpolation fea-
tures superior accuracy compared to regression in this domain. In com-
parison to regression, our automated interpolation method configuration
and selection approach improves modeling accuracy by 43.6% if addi-
tional reference data is available and by 31.4% if it is not. This contribution
has been published at the VALUETOOLS 2015 conference (Kistowski and
Kounev, 2015).

Contribution 5: Methods for Offline Prediction of Power Consumption
Addressing RQ B.2, we introduce two offline power prediction mecha-
nisms: Firstly, we present an approach for explicit modeling of the impact
a virtualized environment has on power consumption. Secondly, we
introduce a method to predict the power consumption of a software
application. Both methods use results produced by the SERT implemen-
tation of our measurement methodology to predict the respective power
consumption for servers that are otherwise not available to the person
making the prediction.
We evaluate both methods by comparing power predictions against real-
world systems. We predict the power consumption of multiple configura-
tions of the Xen hypervisor and compare the predicted power consump-
tion of the virtualized environment against our measurements. We also
predict the power consumption of three different workloads on a target
server. Our methods are able to predict power consumption reliably for

8

1.5 Contribution and Evaluation Summary

multiple hypervisor configurations and for the target application work-
loads. Application workload power prediction features a mean average
absolute error of 9.5%. This contribution have been published at EPEW
2015 (Kistowski et al., 2016b) and the ICPE 2019 conference (Kistowski
et al., 2019a).

Contribution 6: Method for Online Prediction of Power Consumption
Finally, we address RQ B.3 by proposing an end-to-end modeling ap-
proach for predicting the power consumption of component placements
at run-time. The approach captures the individual components’ power
profiles and their interactions based on which it can predict the power
consumption of a new component placement configuration. The model
can also be used to predict the power consumption at load levels that
were not yet observed on the running system.

We evaluate our models and prediction mechanism using two different
web applications deployed in a heterogeneous environment with servers
of different CPU hardware architectures. We predict the power consump-
tion of different component placements and show that we can predict the
power consumption of previously unobserved deployments with a mean
absolute percentage error of 2.2%. We published this contribution at the
ICAC 2018 conference (Kistowski et al., 2018a).

Our contributions can assist regulators in specifying energy efficiency criteria
for servers and they help data center provisioners to make more informed
decisions when selecting servers. Server operators can apply many of the
methods presented here to better provision their servers at different times
during a server’s life-cycle. Hardware and software developers can use the
proposed models and measurement methods for testing and for comparison of
design alternatives. Finally, researchers can use the measurement methods of
this thesis to evaluate their own work, as demonstrated in many chapters of the
thesis itself. In addition, they can use the models and methodologies presented
here as part of their own research. This can be demonstrated using the LIMBO
framework and its corresponding load profile models, which have already been
adopted and used by several follow-up works in other application domains,
for example, by Herbst et al., 2015, Groenda and Stier, 2015, and Becker et al.,
2017a.

9

Chapter 1: Introduction

1.6 Thesis Outline

This thesis is structured into four parts, excluding this introductory chapter
(Chapter 1). Part I covers the foundations needed for understanding the thesis
in Chapter 2 and describes the current state-of-the-art in Chapter 3.
Part II contains our contributions regarding measurement and rating of

server energy efficiency and power. This part contains the contributions to-
wards Goal A, which includes research questions RQ A.1 through RQ A.5. We
present our efficiency rating methodology in Chapter 4, our load intensity pro-
file and load distribution models and methods in Chapter 5, and our workloads
and workload creation methods in Chapter 6.

Next, Part III details our contributions regarding modeling and prediction of
server power consumption, addressing Goal B, including research questions
RQ B.1 through RQ B.3. We present our power interpolation approach in
Chapter 7, our offline power prediction methods in Chapter 8 and our online
prediction method in Chapter 9.

Part IV evaluates all of our contributions. Firstly, we evaluate the contribu-
tions of Part II.We evaluate themeasurementmethodology regarding relevance,
reproducibility, and fairness in Chapter 10, the load profile models and load
distribution policies in Chapter 11 and our workloads in Chapter 12. We then
evaluate the contributions of Part III. Chapter 13 investigates the accuracy of our
interpolation method, Chapter 14 compares the predictions of our offline pre-
diction methods against real-world measurements, and Chapter 15 applies our
online prediction model using real-world systems and software applications.
Finally, we conclude the thesis and provide an outlook in Chapter 16.

Disclaimer

This thesis contains measurement results obtained with the following SPEC
benchmarks and tools: SPECpower_ssj2008, SPEC SERT in versions 1 and
2, and SPEC ChauffeurWDK. Unless noted otherwise, these results must be
considered non-compliant and have been obtained according to the SPEC fair-
use policy for academic use (see Standard Performance Evaluation Corporation,
2018 for further details).

10

Part I

Foundations and Related Work

Chapter 2

Foundations

This chapter lays the foundation required for understanding the contributions
of the thesis. We assume that the reader is familiar with basic measures of
electricity, specifically with Energy, measured in Joules [J] or Watthours [Wh]
and electrical power, measured in Watts [W].
In this chapter, we first introduce the concept of transactionality that is used

in the following work and discuss the established performance metrics. Next,
we discuss load profiles, introducing open and closed workloads, including a
definition of load intensity, and discussing basics of time series needed for our
work on load profile changes over time. We then define the term benchmark
and transition to discussing the criteria that a benchmark must meet in order
to be considered a quality benchmark. These criteria are driving factors behind
our design decisions regarding our power methodology and are being used
to evaluate the quality of this methodology in Chapter 12. Of course, this
methodology itself serves a foundation to the work of the following Chapters.
We also discuss CPU Performance Counters as foundations to this work. They
are used in many of our approaches and as part of several evaluations.

2.1 Transactions and Server Performance Metrics

All contributions in this thesis are designed for and around servers in a standard
data center environment. The rating methodology rates the efficiency of these
servers, the workloads are to be executed on them, and the prediction methods
predict their power consumption. For all these use cases, we consider servers
that serve a continuous stream of requests with a focus on the rate at which
those requests are processed. Instead of either serving a request or not (or
rather, serving the maximum rate of requests or running idle), the continuous
stream of requests makes the servers under consideration appear to run at
a relatively steady low load (meaning a low request rate below the server’s
maximum potential). This is in contrast to servers used in batch processing
or High Performance Computing (HPC) environments, which tend to run at

13

Chapter 2: Foundations

a high load level for long periods of time solving a single, highly complex
problem.

We refer to the work units served by such a server as “transactions”. In this
context, a transaction is any work unit that begins when a unit of work starts
computation after being triggered by an external request and ends when a
response is sent. In the case of performance benchmarking, no external user
requiring a response exists. Consequently, a transaction is considered to be any
unit of work for which a definite beginning and end can be specified.

We use two primary performance metrics for our transactional server perfor-
mance tests:

• Response Time (Eq. 2.1)

responsetime = tend − tstart (2.1)

where tend is the point in time at which a transaction concludes computa-
tion and tstart is the point in time, when it starts.

• Throughput (Eq. 2.2)

throughput =
#transactions

t
(2.2)

where t is the timeduringwhich themeasurementwasmade and#transactions
is the number of transactions that concluded during this time.
Throughput is directly related to the arrival rate λ of transactions. The
arrival rate is the rate of transactions arriving on the system. In theory,
for systems that are not over-utilized, i.e., systems where an incoming
transaction can begin execution immediately, the arrival rate equals the
throughput.

2.2 Load Profiles

Our rating methodology and models use and capture load intensity in the
form of user, job, or request arrival rates. Depending on the use-case, the load
intensity may be steady or vary over time. For both cases, we employ an open
workload view. Schroeder et al., 2006 define open workloads as workloads, in
which new jobs arrive independently of job completions. Our workloads and
workload models are designed around the open workload paradigm. They do
not make any assumptions about the completion times of the work units. This
decision is based on the assumption that users in a typical cloud environment

14

2.2 Load Profiles

Figure 2.1: The decomposition of a time series into seasonal, trend, and remain-
der (Verbesselt et al., 2010).

are unaware of one another and access a software service without having any
knowledge of other users’ behavior.

For this thesis, we define load intensity as a function describing arrival rates
of workload units (e.g., users, sessions, or requests) over time. We define the
arrival rate r(t) at time t as follows:

r(t) = R′(t)
with R(t) = |{ut0 |t0 ≤ t}|

where R(t) is the amount of work units ut0 with arrival time t0 that have arrived
up until time t. R′ is the derivative thereof.

In this thesis, we consider arrival rates of work units with the goal of creating
or analyzing workloads. For varying arrival rates, analysis can be helped by
decomposing the time series of the varying rates into its different parts. Time
series decomposition is an established field of research and its primary concepts
are used as a foundation of this work. Specifically, we use the approach of
Breaks for Additive Season and Trends (BFAST) (Verbesselt et al., 2010) as a
foundation.
BFAST decomposes time series into the following functions:

• Seasonal: an infinitely repeating function of the time series’ seasonal
characteristics (such as sin or cos functions)

• Trend: an additive trend that shows the change of the seasonal pattern
over time

15

Chapter 2: Foundations

• Remainder: the remainder, which is assumed to consist of random noise

Figure 2.1 shows an example decomposition of a time series into its con-
stituent parts. This sort of decomposition can be relevant for workload model-
ing and can be used to detect recurring patterns, trends, etc.

2.3 Benchmarks

This thesis introduces an energy efficiency rating methodology, which shares
many aspects with energy efficiency benchmarks. In this section, we provide a
definition of the term “benchmark” in the context of performance evaluation.
Note that we differentiate between benchmarks with the purpose of product
comparison and rating tools, which are intended for standardized measure-
ments as part of a product development or evaluation process. We explain the
differences between the three types of benchmarks: specification-based, kit-
based, and hybrid. We also present the properties and criteria that any quality
benchmark or rating tool must fulfill. For this, we focus on the properties that
workloads of quality benchmarks must meet.

2.3.1 Definition of Benchmark

We define a benchmark as a “Standard tool for the competitive evaluation
and comparison of competing systems or components according to specific
characteristics, such as performance, dependability, or security”.

This definition is a variation of a definition provided byVieira et al., 2012with
a focus on the competitive aspects of benchmarks, as that is the primary pur-
pose of standardized benchmarks as developed, for example, by the Standard
Performance Evaluation Corporation (SPEC) and the Transaction Processing
Performance Council (TPC).
In contrast, we define tools for the non-competitive system evaluation and

comparison as rating tools. Rating tools are primarily intended for a standard-
ized method of evaluation for research purposes, regulatory programs, or as
part of a system improvement and development approach. Rating tools can
also be standardized and should generally follow the same design and quality
criteria as benchmarks. For example, the methodology proposed in this work
has been implemented in SPEC’s Server Efficiency Rating Tool (SERT), but
follows many of the design guidelines for benchmarks.

16

2.4 Benchmark Quality Criteria

2.3.2 Types of Benchmarks

Computer benchmarks typically fall into three general categories: specification-
based, kit-based, and a hybrid between the two. Specification-based benchmarks
describe functions that must be achieved, required input parameters and ex-
pected outcomes. The implementation to achieve the specification is left to the
individual running the benchmark. Kit-based benchmarks provide the imple-
mentation as a required part of official benchmark execution. Any functional
differences between products that are allowed to be used for the benchmark
must be resolved ahead of time and the individual running the benchmark is
typically not allowed to alter the execution path of the benchmark.
Specification-based benchmarks begin with a definition of a business prob-

lem to be simulated by the benchmark. The key criteria for this definition are
the benchmark quality aspects discussed in Section 2.4. Specification-based
benchmarks have the advantage of allowing innovative software to address
the business problem of the benchmark by proving that the new implementa-
tion (Huppler and Johnson, 2014) complies with the specified requirements.
On the other hand, specification-based benchmarks require substantial devel-
opment prior to running the benchmark, and may have challenges proving that
all the requirements of the benchmark are met.
Kit-based benchmarks may appear to restrict some innovative approaches

to a business problem, but have the significant advantages of providing near
“load and go” implementations that greatly reduce the cost and time required to
run the benchmarks. For kit-based benchmarks, the “specification” is used as a
design guide for the creation of the kit. For specification-based benchmarks, the
specification is presented as a set of rules to be followed by a third party who
will implement and run the benchmark. This allows for substantial flexibility in
how the benchmark’s business problemwill be resolved - a principal advantage
for specification-based benchmarks.

A hybrid of these may be necessary if the majority of the benchmark can be
provided in a kit, but there is a desire to allow some functions to be implemented
at the discretion of the individual running the benchmark.

2.4 Benchmark Quality Criteria

Benchmark designers must balance several, often conflicting, criteria in order to
be successful. Several factors must be taken into consideration, and trade-offs
between various design choices will influence the strengths and weaknesses
of the benchmark and its workload. Since no single workload can be strong

17

Chapter 2: Foundations

in all of these areas, there will always be a need for multiple workloads and
benchmarks (Skadron et al., 2003).

It is important to understand the characteristics of a benchmark andworkload
to determine whether or not it is applicable for a particular situation. When
developing a new benchmark, the goals should be defined so that choices
between competing design criteria can be made in accordance with those goals
to achieve the desired balance. Several researchers and industry participants
have listed various desirable characteristics of benchmarks: Huppler, 2009;
García-Castro and Gómez-Pérez, 2006; Skadron et al., 2003; Stefani et al., 2003;
Henning, 2000; Gustafson and Snell, 1995 and Sim et al., 2003. The contents
of the lists vary based on the perspective of the author and their choice of
terminology and grouping of characteristics, but most of the concepts are
similar. The key characteristics can be organized in the following groups,
which will be discussed in more detail in the next sections:

• Relevance: How closely the benchmark behavior correlates to behaviors
that are of interest to consumers of the results

• Reproducibility: The ability to consistently produce similar results when
the benchmark is run with the same test configuration

• Fairness: Allowing different test configurations to compete on their mer-
its with-out artificial limitations

• Verifiability: Providing confidence that a benchmark result is accurate

• Usability: Avoiding roadblocks for users to run the benchmark in their
test environments

All benchmarks are subject to these same criteria, but each category includes
additional issues that are specific to the individual benchmark, depending on
the benchmark’s goals.

2.4.1 Relevance

“Relevance” is a highly important characteristic of a benchmark. Even if the
workload was perfect in every other regard, it will be of minimal use if it
doesn’t provide relevant information to its consumers. Yet relevance is also a
characteristic of how the benchmark results are applied; benchmarks may be
highly relevant for some scenarios and of minimal relevance for others. For
the consumer of benchmark results, an assessment of a benchmark’s relevance
must be made in context of the planned use of those results. For the benchmark

18

2.4 Benchmark Quality Criteria

designer, relevance means determining the intended use of the benchmark and
then designing the benchmark to be relevant for those areas. A general assess-
ment of the relevance of a benchmark or workload involves two dimensions: the
breadth of its applicability, and the degree to which the workload is relevant
in that area. For example, an Extensible Markup Language (XML) parsing
benchmark may be highly relevant as a measure of XML parsing performance,
somewhat relevant as a measure of enterprise server application performance,
and not at all relevant for graphics performance of 3D games. Conversely, a
suite of CPU benchmarks such as SPEC CPU2006 may be moderately relevant
for a wide range of computing environments. Generalizing these examples:
benchmarks that are designed to be highly relevant in a specific area tend to
have narrow applicability, while benchmarks that attempt to be applicable to a
broader spectrum of uses tend to be less meaningful for any particular scenario
(Huppler, 2009).

In this work, we consider scalability as an important aspect of relevance, par-
ticularly for server benchmarks. Most relevant benchmarks are multi-process
and/ormulti-threaded in order to be able to take advantage of the full resources
of the server (Skadron et al., 2003). Achieving scalability in any application is
difficult; for a benchmark, the challenges are often even greater because the
benchmark is expected to run on a wide variety of systems with significant
differences in available resources. Benchmark designers must also strike a
careful balance between avoiding artificial limits to scaling and behaving like
real applications (which often have scalability issues of their own).

2.4.2 Reproducibility

Reproducibility is the capability of the benchmark to produce the same results
consistently for a particular test environment. It includes both run-to-run
consistency and the ability for another tester to independently reproduce the
results on another system. In practice, reproducibility can be measured using
statistical variability measures accross benchmark results.
Ideally, a benchmark result is a function of the hardware and software con-

figuration, so that the benchmark is a measure of the performance of that
environment; if this were the case, the benchmark would have perfect con-
sistency. In reality, the complexity inherent in a modern computer system
introduces significant variability in the performance of an application. This
variability is introduced by several factors, including things such as the timing
of thread scheduling, dynamic compilation, physical disk layout, network con-
tention, and user interaction with the system during the run (Huppler, 2009).
Energy efficiency benchmarks often have additional sources of variability due

19

Chapter 2: Foundations

to power management technologies dynamically making changes to system
performance and temperature changes affecting power consumption.

Benchmarks can address this run-to-run variability by running for long
enough periods of time to include representative samples of these variable
behaviors. Some benchmarks require submission of multiple runs with scores
that are near each other as evidence of consistency. Benchmarks also tend to
run at steady state, unlike more typical applications which have variations in
load due to factors such as the usage patterns of users.

The ability to reproduce results in another test environment is largely tied to
the ability to build an equivalent environment. Industry standard benchmarks
require results submissions to include a description of the test environment,
typically including both hardware and software components as well as config-
uration options. Similarly, published research that includes benchmark results
generally includes a description of the test environment that produced those
results. However, in both of these cases, the description may not provide
enough detail for an independent tester to be able to assemble an equivalent
environment.

Hardware must be described in sufficient detail for another person to obtain
identical hardware. Software versions must be stated so that it is possible to
use the same versions when reproducing the result. Tuning and configuration
options must be documented for firmware, operating system, and application
software so that the same options can be used when re-running the test. TPC
benchmarks require a certified auditor to audit results and ensure compliance
with reporting requirements. SPEC uses a combination of automatic validation
and committee review to establish compliance.

2.4.3 Fairness

Fairness ensures that systems can compete on their merits without artificial
constraints. Because benchmarks always have some degree of artificiality, it
is often necessary to place some constraints on test environments in order to
avoid unrealistic configurations that take advantage of the simplistic nature of
the benchmark.
Benchmark development requires compromises among multiple design

goals; benchmarks developed by a consensus of experts are generally per-
ceived as being more fair than a benchmark designed by a single company
(García-Castro and Gómez-Pérez, 2006). While “design by committee” may
not be the most efficient way to develop an application, it does require that
compromises are made in such a way that multiple interested parties are able
to agree that the final benchmark is fair. As a result, benchmarks produced by

20

2.4 Benchmark Quality Criteria

organizations such as SPEC and the TPC (both of which are comprised by mem-
bers from companies in the industry as well as academic institutions and other
interested parties) are generally regarded as fair measures of performance.

Benchmarks require a variety of hardware and software components to pro-
vide an environment suitable for running the benchmark. It is often necessary
to place restrictions on what components may be used. Careful attention must
be placed on these restrictions to ensure that the benchmark remains fair. Some
restrictions must be made for technical reasons. For example, a benchmark
implemented in Java requires a Java Virtual Machine (JVM) and an operating
system and hardware that supports it. A benchmark that performs heavy disk
IO may effectively require a certain number of disks to achieve acceptable
IO rates, which would therefore limit the benchmark to hardware capable of
supporting that number of disks.
Benchmark run rules often require hardware and software to meet some

level of support or availability. While this restricts what components may be
used, it is actually intended to promote fairness. Because benchmarks are by
nature simplified applications, it is often possible to use simplified software
to run them; this software may be quite fast because it lacks features that may
be required by real applications. For example, enterprise servers typically
require certain security features in their software which may not be directly
exercised by benchmark applications; software that omitted these features
may run faster than software that includes them, but this simplified software
may not be usable for the customer base that the benchmark is targeted to.
Rules regarding software support can be a particular challenge when using
open source software, which is often supported primarily by the developer
community rather than commercial support mechanisms.
These situations require a careful balance. Placing too many or inappropri-

ate limits on the configuration may disallow results that are relevant to some
legitimate situations. Placing too few restrictions can pollute the pool of pub-
lished results and, in some cases, reduce the number of relevant results because
vendors can’t compete with the “inappropriate” submissions. Portability is an
important aspect of fairness. Achieving portability with benchmarks written
in Java is relatively simple; for C and C++, it can be more difficult (Henning,
2000).

Benchmark run rules often include stipulations on how results may be used.
These requirements are intended to promote fairness when results are pub-
lished and compared, and often include provisions that require certain ba-
sic information to be included any time that results are given. For example,
SPECpower_ssj2008 requires that if a comparison is made for the power con-

21

Chapter 2: Foundations

sumption of two systems at the 50% target load level, the performance of each
system at the 50% load level as well as the overall ssj_ops/watt value must also
be stated. SPEC has perhaps the most comprehensive fair use policy which
further illustrates the types of fair use issues that benchmarks should consider
when creating run rules (Standard Performance Evaluation Corporation, 2018).

In addition to run rules and portability, fairness is also an important aspect of
a benchmark’s final metric. The metric must present the benchmark’s result in
a way that does not artificially disadvantage certain systems or configurations.

2.4.4 Verifiability

Within the industry, benchmarks are typically run by vendors who have a
vested interest in the results. In academia, results are subjected to peer review
and interesting results will be repeated and built upon by other researchers.
In both cases, it is important that benchmark results are verifiable so that the
results can be deemed trustworthy.

Good benchmarks perform some amount of self-validation to ensure that the
workload is running as expected, and that run rules are being followed. For
example, a workload might include configuration options intended to allow
researchers to change the behavior of the workload, but standard benchmarks
typically limit these options to some set of compliant values which can be
verified at runtime. Benchmarks may also perform some functional verification
that the output of the test is correct; these tests could detect some cases where
optimizations (e.g., experimental compiler options) are producing incorrect
results.
Verifiability is simplified when configuration options are controlled by the

benchmark, or when these details can be read by the benchmark. In this case,
the benchmark can include the details with the results. Configuration details
that must be documented by the user are less trustworthy since they could
have been entered incorrectly.

One way to improve verifiability is to include more details in the results than
are strictly necessary to produce the benchmark’s metrics. Inconsistencies in
this data could raise questions about the validity of the data. For example, a
benchmark with a throughput metric might include response time information
in addition to the transaction counts and elapsed time.
Of course, Verifiability ties in with Reproducibility, considering that eas-

ily reproducible results are also easy to verify. In addition, verifiability can
be ensured using reporting and setup criteria and benchmark result review
processes.

22

2.5 Performance Counters

2.4.5 Usability

Most users of benchmarks are technically sophisticated, making ease of use
less of a concern than it is for more consumer-focused applications. There
are, however, several reasons why ease of use is important. One of the most
important ease of use features for a benchmark is self-validation. This was
already discussed in terms of making the benchmark verifiable. Self-validating
workloads give the tester confidence that the workload is running properly.

Another aspect of ease of use is being able to build practical configurations
for running the benchmark. For example, the current top TPC-C result has
a system under test with over 100 distinct servers, over 700 disk drives and
11,000 SSD ash modules (with a total capacity of 1.76 petabytes), and a system
cost of over $30 million USD. Of the 18 non-historical accepted TPC-C results
published between January 1, 2010 and August 24, 2013, the median total
system cost was $776,627 USD. These configurations aren’t economical for most
potential users (Huppler, 2009).

Accurate descriptions of the system hardware and software configuration
are critical for reproducibility, but can be a challenge due to the complexity of
these descriptions. Benchmarks can improve ease of use by providing tools to
assist with this process.

2.4.6 Relevance of Benchmark Quality Criteria to this Work

Considering this work and, especially, our energy efficiency rating method-
ology, we rank relevance, reproducibility, and fairness as the most important
characteristics. Verifiability can be partially ensured through reproducible
results and is otherwise ensured through a review or regulation process. Us-
ability, on the other hand, is an aspect of concrete benchmark implementations
and UI and thus less relevant for the underlying methodology.

2.5 Performance Counters

We measure performance using CPU performance counters in several parts of
this thesis. CPU counter measurements require system internal instrumenta-
tion, which is usually included in the CPU per default and must be enabled
using software. We focus on CPU counters as a means of instrumentation,
as the CPU is the hardware component with the highest variability in power
consumption (Barroso and Holzle, 2007) and thus the component with the
highest potential for power savings. In addition, CPU performance counters

23

Chapter 2: Foundations

can report on DRAM activity (RAM being the component with the second
highest power variability).
Hardware manufacturers implement performance counters in most proces-

sors to monitor a system’s behavior by recording a variety of events, such as
cache misses, branch mispredictions, memory accesses, and others. Perfor-
mance counters can be read using either specialized software, performance
monitoring utilities of the operating system, or by directly accessing model
specific registers of the CPU. Most counters log events on a system wide ba-
sis but some allow reading event subsets on a per socket or per core basis.
In general, performance counters can be partitioned into the following two
groups(see AMD64 Architecture Programmer’s Manual Volume 2: System Pro-
gramming 2016 and Intel® 64 and IA-32 Architectures Software Developer’s Manual
2016):

• Occurrence event, counting how often an event has been observed.

• Duration event, counting the accumulated clock ticks during the occurance
of an event.

The operating system itself also provides event counters that can be accessed
by a user. For example, the Linux /proc/stat file gives insight on how many
hard- and software interrupts have been processed and the number of context
switches performed. Most operating system performance counters can be
accessed through the proc directory.

Monitoring performance events does have disadvantages (Weaver et al., 2013).
Modern implementations of performance counters have inaccuracies due to a
tendency to deviate. Non-determinism, which manifests as identical workloads
resulting in different counter values, and overcount, where performance coun-
ters were increased multiple times for the same instruction, are the two causes
of deviation.

24

Chapter 3

State-of-the-Art

We structure the state-of-the-art into five parts:

• We examine existing studies on server and cpu power consumption in Sec-
tion 3.1. These studies show potential avenues of research, help motivate
ourwork, and inspire some of ourmethods and evaluationmethodologies
throughout this thesis.

• Section 3.2 investigates existing benchmarks for power consumption and
energy efficiency. It also examines existing distributed test and reference
applications for servers that could be used for energy efficiency tests, espe-
cially regarding evaluation of energy efficiency management approaches.
Finally, it describes the existing power and efficiency metrics that are used
in or may be used by energy ratings. The related work of this section is
relevant to contributions throughout this thesis, but especially relevant
to the rating methodology, introduced in Chapter 4 and the workloads
introduced in Chapter 6.

• The state-of-the-art in several additional concerns that relate to energy
efficiency measuring and rating is explored in Section 3.2.1. It describes
load profiles and load models, load distribution methods and policies, and addi-
tional instrumentation for measurements using CPU performance counters.
These related works are relevant four our load modeling and distribution
methods of Chapter 5.2 and some of the workloads of Chapter 6.

• We investigate existing models related to offline power prediction in Sec-
tion 3.4. These models are relevant, considering that we introduce our
own offline power prediction models in Chapter 8.

• Finally, we introduce the state-of-the-art that relates to online power pre-
diction in Section 3.5. These models and formalisms expand on the state-
of-the-art on offline prediction and are considered regarding our own
online power prediction method, which is introduced in Chapter 9.

25

Chapter 3: State-of-the-Art

3.1 Experimental Studies on Server and CPU Power
Consumption

A number of studies regarding the energy efficiency and power consumption
of servers exist. These studies focus on different aspects, such as CPU power
consumption or power consumption of distributed deployments. In the context
of our work, they serve as motivation for our energy distribution methodology
of Section 5.2 and online power prediction in Chapter 9. They demonstrate
the potential for power savings and provide insights into the effects of existing
power saving mechanisms. In addition to studies on server power consumption
and efficiency, we investigate existing studies of processor power consumption
and efficiency. These studies are relevant in the context of this work, as we
introduce several processor-heavy workloads (especially in Section 6.1) and
use CPU performance counters throughout our evaluation.

3.1.1 Experimental studies of server power management

Several studies of server power management, including the effects of workload
consolidation have been conducted in the past: Nathuji and Schwan, 2007
present a study that explores the integration of power management policies,
including workload consolidation in virtualized environments using micro-
benchmarks. Srikantaiah et al., 2008 explore energy efficiency for workload
consolidation on the server level for several workload mixes. Chen et al., 2013
analyze the power consumption of three different task types on a single phys-
ical server. Examined impact factors include the number of running Virtual
Machines (VMs), task configuration parameters, and four different target load
levels. Lefèvre and Orgerie, 2010 examine multiple balancing and unbalancing
strategies for virtual machines in cloud environments. Finally, Jin et al., 2012
concentrate on the trade-off between the virtualization overhead and efficiency
increase when using VMs to aggregate workloads on fewer physical machines
with higher utilization. They also explore the influence of different workloads
on efficiency.
To the best of our knowledge, these existing studies do not consider hierar-

chical compositions of multiple load distribution strategies at a high number of
load levels (e.g., server level, CPU socket level, CPU core level). Our introduc-
tion of a hierarchical load distribution scheme in Section 5.2 demands such an
analysis, which we provide in Section 11.2. We analyze the interdependencies
of processor architecture, workload type, load level, and distribution strategy
with the goal of achieving optimum energy efficiency for both homogeneous
and heterogeneous workloads.

26

3.2 Benchmarks, Test Applications, and Metrics

3.1.2 Experimental studies of CPU power management

A number of studies analyzing the power consumption of servers and proces-
sors exist. These studies analyze variations in power consumption for individ-
ual processors with focus on themajor impact factors that can cause a difference
in power consumption: Huang et al., 1995 and George et al., 1994 analyze CPU
power consumption at the circuit level. They examine individual transistors
and their integration with the goal of power characterization and simulation.
However, when analyzing power consumption of most commercially available
processors, this circuit level power consumption is usually considered as a
black-box, as information on processor internals is commonly not available.
Bellosa, 2000 and Russell and Jacome, 1998 analyze power consumption

depending on workload with a focus on the executed CPU instructions. They
characterize CPU power based on performance counter data. Similarly, Contr-
eras andMartonosi, 2005a build a powermodel using performance counters. To
this end, they use industry standard benchmarks, such as SPEC CPU2006 Hen-
ning, 2000 for a thorough and representative analysis.
Processor power management exists at many system levels. All of these

may impact power consumption. Gomaa et al., 2004 and Heo et al., 2003 ex-
amine the impact of the physical location where a task is executed inside the
CPU on power consumption and heat generation. Other management tech-
niques, such as Dynamic Voltage and Frequency Scaling (DVFS) (Schönherr
et al., 2010 and Basmadjian and De Meer, 2012), also have significant impact
on CPU power consumption and heat. CPU pinning can also affect the power
consumption of a workload. Podzimek et al., 2015 analyze the effect of CPU
pinning configurations for two virtualized processes on performance degra-
dation through resource contention, they also measure power consumption
during their experiments.
Studies of CPU power and power management are relevant to this work

for two major reasons: The workloads in this thesis are designed to elicit
different levels of power consumption from the tested servers. Some of these
workloads (especially in Section 6.1) are CPU-bound and make implicit use of
the knowledge gained in these studies. In addition, we use CPU performance
counters extensively in our evaluation, considering that the related work has
found many correlations between CPU counters and power related behavior.

3.2 Benchmarks, Test Applications, and Metrics

We examine existing benchmarks and workloads in two areas: (1) energy efficiency
and (2) distributed systems. Most dedicated energy efficiency benchmarks, such

27

Chapter 3: State-of-the-Art

as the ones of Rivoire et al., 2007b or Lange, 2009 are not designed with dis-
tributed deployment as a primary use-case. Yet, power management of dis-
tributed server systems is a topic addressed in many of our related works in
Sections 3.1.1, 3.4, and 3.5, and our contributions in Chapters 6 and 9. As a
result, we also examine existing benchmarks and reference applications for
modern distributed server deployments, many of which are used in related
work on energy-efficient management of servers. Finally, we also examine (3)
the metrics that energy efficiency benchmarks and data center provisioners use
to describe the energy efficiency of their systems.

3.2.1 Energy Efficiency Benchmarks

A great number of energy efficiency benchmarks exist. Many of these bench-
marks have been created for end user devices, especially mobile devices, for
which battery run-time is an important factor. Due to this reason, energy effi-
ciency tests, such as Lochmann et al., 2017, characterize the different behavior
patterns of users on those devices and observe the device states triggered by
this behavior.
In contrast, server benchmarks focus less on the user, as end users do not

directly use the system in the same manner as they would a mobile device.
Common and widely used benchmarks, such as SPEC CPU (Henning, 2000)
test the performance of server hardware components with respect to their
functionality.
Server energy efficiency benchmarks run a stable load for a period of time

and then compute energy efficiency as a function of the benchmark’s perfor-
mance and power consumption measured during the benchmark run. Joule-
Sort (Rivoire et al., 2007b) is one of the earliest benchmarks of this type. It
measures the energy efficiency when sorting large amounts of data. It always
runs at maximum speed, but does feature different run levels with varying data
sizes of the sorted arrays. SPECpower_ssj2008 (Lange, 2009) is a benchmark
that emulates a transactional business application. It features ten different load
levels, which scale with the application’s throughput. It can be seen as the
predecessor to this work. Finally, the TPC explicitly allows for energy mea-
surement during the execution of all of their current benchmarks (Poess et al.,
2010). These benchmarks are specifically designed for database performance
testing and are often executed in highly distributed systems. In addition to
the standard load levels that TPC benchmarks use for performance testing, a
TPC-based energy efficiency test requires reporting of idle power consumption
of the setup under test.

28

3.2 Benchmarks, Test Applications, and Metrics

In contrast to the existing benchmarks, the rating methodology in Chapter 4
performs energy efficiency measurements for multiple workloads at multiple
load levels. Different workloads may run at different load levels enabling a
thorough characterization of the system under test. Also note that it is designed
to enable ratings of servers used in production environments. Consequently,
we do not require instrumentation of separate hardware modules within the
server. This sets the methodology of this work apart from a significant class of
related works, which do perform internal instrumentation, such as Economou
et al., 2006b.

3.2.2 Distributed Software Workloads and Test Applications

Many distributed software benchmarks and reference application exist. Yet,
with the emergence of modern trends like DevOps, the focus of research bench-
marks has moved from fixed multi-tier application benchmarks, such as SPEC-
jEnterprise 2010 (Standard Performance Evaluation Corporation (SPEC), 2010),
towards more scalable micro-service applications. With this shift in how appli-
cations are developed, deployed and maintained, requirements for research
benchmarking reference applications have changed. In this section, we examine
the existing reference applications and workloads in regards to their ability
to meet these new requirements. Section 6.2 introduces TeaStore as a new
distributed reference application, based on the micro-service paradigm. In this
examination of existing reference applications, we show the need for TeaStore as
a newworkload that can be used to examine the energy efficiency, performance,
and other non-functional aspects of distributed system management.

Micro-services offer many degrees of freedom, such as placing your services
in a public or private cloud (Ezhilchelvan and Mitrani, 2016), predictive elastic
resource scaling (Gong et al., 2010), and auto-scaling (Chieu et al., 2009). These
possible degrees of freedom have led micro-service architectures to be adopted
in many areas of application, which, noteworthy in the context of this thesis,
includes energy management (Bao et al., 2016). In addition to requiring these
degrees of freedom, other requirements become necessary for a reference ap-
plication to be used in research. Aderaldo et al., 2017 identify 15 requirements
for micro-service research benchmarks. Table 3.1 lists these requirements and
checks common benchmark applications for compliance. In terms of compli-
ance to these criteria, TeaStore satisfies all criteria except Alternate Versions (R11)
and Community Usage & Interest (R12) and is, in terms of requirements, identical
to the Sock Shop (Weaveworks Inc., 2017). R12, in particular, cannot be satisfied
by a newly proposed reference application. ACME Air (IBM, 2015), Spring
Cloud Demo (Bastani, 2015) and MusicStore (.NET Foundation, 2017), also

29

Chapter 3: State-of-the-Art

Table 3.1: Micro-service benchmark introduced by Aderaldo et al., 2017 and
our research benchmark requirements for TeaStore (TS) in comparison to ACME
Air (AA), Spring Cloud Demo Apps (SCD), Shocks Shop (SoSh) and Music-
Store (MS).

Micro-service Benchmark Requirement TS AA SCD SoSh MS
R1 Explicit Topological View X X X
R2 Pattern-based Architecture X X X X X
R3 Easy Access from a Version Control Repository X X X X X
R4 Support Continuous Integration X X X
R5 Support for Automated Testing X X X
R6 Support for Dependency Management X X X X X
R7 Support for Reusable Container Images X X X X
R8 Support for Automated Deployment X X
R9 Support for Container Orchestration X X X
R10 Independence of Automation Technology X X
R11 Alternate Versions X X
R12 Community Usage & Interest X

Research Benchmark Requirement
B1 Service must Stress System Under Test X X (unknown) X
B2 Support for Different Load Behavior in Services X X X
B3 Support for Different Load Generators X X X X X
B4 Load Profiles Publicly Available X

compared in Table 3.1, satisfy fewer requirements. These criteria suit micro-
service benchmarks, yet they do not cover the ability of an application to be
used as a reference research benchmark application in research domains, such
as resource management and software analysis and modeling. We therefore
extended the requirements by four research benchmark requirements B1-B4
in Table 3.1. To research current performance challenges, an application must
put actual load on the System Under Test (B1), without focusing on a single
server component like memory or CPU load (B2). The application should also
be able to be put under load by different load generators to fit a wide variety of
benchmarking environments (B3) and the used load profiles should be public
for repeatability (B4). The TeaStore satisfies all these criteria while the next best
application, ACME Air, only misses publicly available load profiles.

With the changing requirements and the fast living development of modern
web services, the available reference applications cannot keep up and thus can-
not cover all requirements for micro-service research benchmarking. The Rice
University Bidding System (RUBiS) was first released in 2002. It is an eBay-like
bidding platform (RUBiS User’s Manual 2008) that has been implemented using
various technologies including PHP, EJB and Java HTTP servlets. The different
available implementations allow for benchmarking of the underlying technolo-
gies (Cecchet et al., 2003), the specific implementations themselves (Cecchet

30

3.2 Benchmarks, Test Applications, and Metrics

et al., 2002), the impact of applying common design patterns (RUBiS User’s
Manual 2008) and the already mentioned predictive elastic resource scaling
methods (Gong et al., 2010). RUBiS only has a single application service and
an Apache HTTP load balancer (RUBiS User’s Manual 2008). While RUBiS
supports remote procedure calls across multiple hosts, it can only be scaled as
a single service. In contrast, each service of TeaStore can be scaled individually.
This allows for creating different resource usage characteristics through the
deployment of TeaStore’s services, consistent with the micro-service paradigm.
Similar to RUBiS, the Dell DVD Store (Dell, Inc., 2011), released in 2001, also
features multiple implementations. It is a single-service application that imple-
ments a simple web store for DVDs. The CloudStore application on the other
hand, has a different focus. It is a book store built as a reference application for
comparing cloud providers, cloud service architectures, and cloud deployment
options. It implements the Transaction Performance Council’s TPC-W specifi-
cation. However, TPC-W is obsolete since 2005. Like RUBiS, CloudStore suffers
from inherent scalability bottlenecks. It has been used for elasticity benchmark-
ing, evaluating scalability metrics (see CloudScale Consortium, 2016, Lehrig
et al., 2018, and Brataas et al., 2017) in order to test an infrastructure’s ability
to mitigate these bottlenecks. Just like RUBiS and the DVD Store, the Cloud-
Store application lacks many degrees of freedom regarding deployment and
configuration due to their single-service implementations.

A more modern and established benchmark both in research and in the
commercial domains is the SPECjEnterprise2010 (Standard Performance Evalu-
ation Corporation (SPEC), 2010) from the Standard Performance Evaluation
Corporation (SPEC). SPECjEnterprise2010 implements a three tier web store
with separate UI, business logic, and persistence components. It can be used to
evaluate resource management techniques in a distributed setting (Willnecker
et al., 2015b). Unfortunately, it lacks support for modern micro-service archi-
tectures due to its classic three tier architecture. It therefore can also not fulfill
the micro-service requirements discussed earlier.

The PalladioComponentModel (PCM)-Media Store is designed as a component-
based application with components that can be deployed on different systems
and therefore closer to a micro-service application than RUBiS, Dell DVD Store,
CloudStore and SPECjEnterprise2010. Each component can be replaced to
support different architectures. The Media Store is specifically developed for
evaluating design-time performance modeling techniques (Happe et al., 2011).
Also developed with a focus on design-time performance modeling is the Com-
mon Component Modeling Example (CoCoME). It was used in a Dagstuhl
Research Seminar to compare different modeling approaches (Rausch et al.,

31

Chapter 3: State-of-the-Art

2008). TeaStore, on the other hand, not only supports design-time modeling,
but is also available with built-in instrumentation required for benchmarking,
run-time model extraction, as well as elasticity and energy efficiency measure-
ments.
Many other benchmark and test applications, like JPetStore (Oracle and

Microsystems, 2005), PetClinic (Software, 2016), ACME Air (IBM, 2015), Spring
Cloud Microservice Example (Bastani, 2015), Sock Shop (Weaveworks Inc.,
2017) and MusicStore (.NET Foundation, 2017) are available. Yet, PetClinic,
SCME, Sock Shop and MusicStore are primarily designed as demonstrators
for specific technologies and not as research benchmark reference applications.
Additionally, modern services such as Sock Shop are built with consistent
performance in mind and do not pose the performance challenges that current
research aims at.

TeaStore, presented in Section 6.2 offers a modern micro-service architecture
for research benchmarks compared to other reference and benchmarking ap-
plications. It can also fullfill most micro-service benchmarking requirements
shown in Table 3.1 without beeing a technology demonstrator like Sock Shop.
TeaStore also offers different performance characteristics for each service and
is not limited to a single use case like the PCMMedia Store and CoCoME.

3.2.3 Energy Efficiency Metrics

Many metrics for energy efficiency of servers exist. Some, such as the Green
Grid metrics PUE and DCiE (Belady et al., 2008) are designed to measure
relative efficiency of an entire data center. Thesemetrics usually take data center
properties in addition to the server power consumption and/or performance
into account. For example, the PUE considers the data center’s infrastructure
power. Similarly, the SWaP (Rivoire et al., 2007a) metric considers the physical
space occupied by a server within a data center.
The primary energy efficiency metric of all of the energy efficiency bench-

marks in Section 3.2.1 is a variation of performance per power. JouleSort (Rivoire
et al., 2007b) divides the amount of sorted data by the energy spent (Joule) while
sorting, whereas SPECpower_ssj2008 (Lange, 2009) divides the throughput
(ops) by power consumption in Watt. The ASEE metric (Metri et al., 2012) gen-
eralizes this approach as an application specific energy efficiency metric, where
an application’s energy efficiency is its output (usually throughput) divided by
its power consumption. The TPC benchmarks (Poess et al., 2010) also employ
this metric, only in reverse (power consumption per performance).
The basic energy efficiency metric, as used in the mentioned benchmarks,

works well as long as only a single application is tested at a single load level.

32

3.3 Load Profiles, Load Distribution, and CPU Performance Counters

However, it results in multiple separate scores for multiple applications or
multiple load levels. SPECpower_ssj2008 (Lange, 2009) addresses this by using
the sum of the separate energy efficiency scores as its final score. This approach
works as long as the tested load levels remain fixed and as long as the application
under test does not change. Further characterization of the energy related
behavior of devices over multiple load levels is provided by a class of metrics,
referred to as energy proportionality metrics (see Schall et al., 2012 and Hsu
and Poole, 2015). These metrics characterize how power consumption scales
over load levels. However, they are power metrics only, usually missing the
efficiency component.
The existing metrics do not aggregate energy efficiency for multiple work-

loads or load levels. SPECpower_ssj2008 (Lange, 2009) is the only exception, yet
its method is limited to a single workload with a fixed pre-determined number
of load levels. In contrast, the metric presented in Chapter 4 provides a single
score for multiple workloads and with varying numbers of load levels.

3.3 Load Profiles, Load Distribution, and CPU Performance
Counters

In addition to the benchmarks, workloads, and metrics described in the pre-
vious section, we investigate the state-of-the art in other areas relevant for
efficiency measurement and rating: load profiles, load distribution, and addi-
tional instrumentation. Specifically, we focus on load profiles that vary over
time, workload distribution on multiple layers within the computing infras-
tructure, and CPU performance counters. CPU performance counters receive
attention in this work, as they can be used to analyze and characterize the
workloads under consideration. As mentioned in Section 2.5, we focus on
CPU, as it is the hardware component with the highest variability in power
consumption (Barroso and Holzle, 2007) and thus the component with the
highest potential for power savings.

3.3.1 Load Profiles

Regarding load profiles, several approaches to describe and generate work-
loads with variable intensity exist in literature. However, they differ from our
approach in the following key aspects: Firstly, a set of approaches works purely
statistically using independent random variables and therefore does not offer
models describing load intensity changes over time. Secondly, approaches for
workload or user behavior modeling model the structure of the actual units of

33

Chapter 3: State-of-the-Art

work they dispatch or emphasize the behavior of users after their arrival on
the system. In contrast, our models from Section 5.1 focus on the description of
request or user arrivals, not user behavior and impact after arrival. This is done
by combining both deterministic and statistical approaches, which goes beyond
existing purely statistical modeling approaches. We group related work into at
least one of the following categories:

• User behavior models: Hoorn et al., 2008, Roy et al., 2013, and Beitch
et al., 2010 propose workload models that capture the behavior and tasks
triggered by different types of users. Zakay and Feitelson, 2013 partition
workloads according to the user types, and then sample workload traces
for each user type to capture the user behavior. This differs from our
approach in this thesis. The varying load profiles of this thesis focus
on modeling user or work unit arrival processes. We note that models
like the above can be easily combined with the approach introduced in
Section 5.1 to further characterize the user behavior after a request has
arrived at the system and a client session is started.

• Resource demand focused modeling, modeling the specific work units:
These approaches focus on modeling the units of work processed by the
system and estimating the system’s resource demands. Casale et al., 2012
focus on modeling bursty workloads, whereas Barford and Crovella, 1998
focus on file distribution and popularity.

• Statistical inter-arrival models: These approaches capture the workload
intensity using statistical distributions. Feitelson, 2002 creates a statistical
model for parallel job schedulers. Li, 2010 models batch workloads for
eScience grids and Menascé et al., 2003 as well as Reyes-Lecuona et al.,
1999 analyze workloads at multiple levels, such as request and session
level. These approaches use independent random variables to capture
inter-arrival rate distributions. These random variables do not describe
changes in load intensity behavior over time.

• Regression techniques, such as MARS (Friedman, 1991), M5 trees (Quin-
lan et al., 1992), or cubic forests (Kuhn et al., 2012): these techniques are
capable of calibrating mathematical functions to fit a measured arrival
rate trace. In contrast to explicit user arrival models, they do not convey
the additional information of the types and composition of load intensity
variation components.

In Section 5.1, we introduce a combined deterministic and statistical ap-
proach. This approach is expected to enable a better mapping between arrival

34

3.3 Load Profiles, Load Distribution, and CPU Performance Counters

rate variations and their respective time-stamps compared to the related work
listed here. A composite piece-wise mathematical function, as used in this
thesis, can capture load intensity profiles more effectively than independent
random variables. This approach also enables a better understanding of a
benchmark’s behavior for users intending to apply it for benchmarking pur-
poses. This primary purpose of being used in benchmarks is also one of the
primary points that sets our approach apart from most of the related works,
which are generally not intended for workload generation. The drawback of a
deterministic model is the difficulty in capturing random behavior. For this
reason, we include an optional random noise element, which deviates from the
otherwise deterministic functions and enables a combined deterministic and
statistical modeling approach.

3.3.2 Load Distribution

In general, load distribution is considered an important aspect influencing
the energy efficiency of systems. Usually, it is considered in the context of
workload consolidation. The primary idea behind workload consolidation
being that work consolidated onto fewer resources should consume less power
and increase efficiency. There are numerous different approaches to workload
consolidation, which differ with respect to various aspects regarding the sys-
tems the load consolidation is being performed on. Some approaches account
for temperature, some for device wear-and-tear, some account for resource
provisioning and deprovisioning times, and so on.

Pinheiro et al., 2001 feature one of the first approaches to node-wise load
distribution. It showed the promise of workload consolidation, although many
of the mechanisms were still executed manually. Chen et al., 2005 introduce
a workload distribution mechanism that accounts for power consumption,
temperature, and device wear-and-tear. Quan et al., 2012 compare multiple
resource allocation strategies, including strategies that use a Unified Modeling
Language (UML)-based meta-modeling approach for power prediction. The
approach by Kusic et al., 2008 allocates work using lookahead control. It has
the goal of minimizing power consumption, while keeping quality-of-service
(QoS) above a set threshold. Dorronsoro et al., 2014, Raghavendra et al., 2008,
and Verma et al., 2008a feature hierarchical power management approaches.
Load consolidation is, however, only managed on a per-machine or core-cluster
level. CPU-level task consolidation is evaluated separately by Gomaa et al.,
2004 and Heo et al., 2003. Both works focus on power density with the purpose
of minimizing heat generation within micro-processors.

35

Chapter 3: State-of-the-Art

Load distribution algorithms are also found in some specialized application
areas: For example, Bolla et al., 2014 distribute virtual network functions across
a cluster with a focus on energy efficiency while also taking software defined
networking into account.
The above mentioned load distribution mechanisms feature advanced de-

cision making engines that decide when to change or reconfigure the current
load distribution. The target load distribution is based on basic distribution
strategies, primarily load consolidation. We evaluate these basic strategies
in Section 11.2 and introduce a new one with the goal of offering additional
options to power management decision engines in Section 5.2.

3.3.3 CPU Performance Counters

We explore CPU performance counters as a means to perform additional in-
strumentation of energy efficiency workloads under consideration. Our goal
is the use of such counters to gain additional information about workloads’
behavior regarding power consumption and the creation of workloads with
specific characteristics, as described in Section 6.1.
Generally, performance counters are often used for software performance

analysis or for compiler optimizations (Eyerman et al., 2006 or Cavazos et
al., 2007). For example, power consumption aware thread scheduling based
on performance counters is explored by Singh et al., 2009 and Bellosa, 2000.
Having a framework that can reliably trigger performance events can be used
for validation and testing such implementations.

Modeling power consumption based on performance counters is also a possi-
ble application. Bircher and John, 2012, Lewis et al., 2008 and Isci andMartonosi,
2003 develop models that estimate power consumption as a function of perfor-
mance counters, dependent on the workload. Contreras and Martonosi, 2005b
create a model based on performance counters but focus on embedded devices
with specialized CPU and memory architecture. Kadayif et al., 2001 describe a
tool based on performance counters for the UltraSPARC platform which pro-
vides energy estimations. These works show that performance counters can be
used for power estimations. It is therefore expected that the proposed frame-
work of Section 6.1, which emulates the power consumption-related behavior
of a workload by triggering counter events, is a viable approach for power
characterization that can help in model validation and in test cases for tooling
and instrumentation.

Using performance counters in such a context requires understanding of their
accuracy. Zaparanuks et al., 2009 study this accuracy of performance counter
measurement facilities. Weaver et al., 2013 identify two major deviations of

36

3.4 Offline Power Prediction

performance counters, whereas the overhead of common performance counter
implementations is researched in a later work (Weaver, 2015). They show that
the current PAPI interface has significant overhead.

3.4 Offline Power Prediction

Many modeling approaches for prediction of power consumption of server
workloads exist. To illustrate the difference to our approach, we classify existing
approaches in four non-exclusive categories: generic server power models,
models for virtualized environments, cluster/cloud level models, and offline
application power prediction models.

Generic server powermodels characterize or predict the power consumption
of a single physical server. They have some overlap with offline power models
(e.g., Gurumurthi et al., 2002), yet many are not specifically designed for offline
prediction. Rivoire et al., 2008 provides an overview of generalized, generic
full-system power models. These models can utilize a variety of methods, such
as interpolation (Fan et al., 2007), regression (Lewis et al., 2008; Lee and Brooks,
2006), or others (Chen et al., 2011; Dhiman et al., 2010; Niu et al., 2010). They also
vary regarding their purpose and, especially, regarding the type of data that they
use to model the power consumption. For this work, we distinguish between
hardware-based and workload-based power models. Hardware-based models,
such as Lewis et al., 2008; Lee andBrooks, 2006 andDhiman et al., 2010 are based
on system-level data, such as architectural parameters, performance counters
and utilization metrics. This data is often collected at run-time or during a
calibration step from the system under consideration. Workload-based models,
such as Economou et al., 2006a, are usually trained for specific workloads and
use application-level parameters such as request arrival rates. In general, these
models may be used to model systems that contain a virtualization layer, even
though they do not explicitly model it. Some of these methods are used as
inspiration for our explicit modeling of the virtualization layer’s impact in
Section 8.
Virtual machine power models, such as the ones by Choi et al., 2008, Kansal

et al., 2010 and Bohra and Chaudhary, 2010, use instrumentation to additionally
model the power impact of a virtual machine. These models use online data,
gathered from the target system for detailed characterization. Thus, these
models focus on immediate run-time decisions based on online measurements.
In contrast, our approach in Section 8 enables power prediction before the
target system is available for running the target load.

37

Chapter 3: State-of-the-Art

Cluster/cloud level models are often provided as part of larger power man-
agement decision engines (Verma et al., 2008a, Basmadjian et al., 2011 and
Verma et al., 2008b). These models are created to support online decisions on
workload placement within a larger group of servers. They capture the impact
of potential decisions in terms of the effects and costs of online reconfigura-
tions. We examine this class of works in greater detail in the following section
(Section 3.5 on online power prediction).

Offline application power models, such as those by Basmadjian et al., 2011,
Kahng et al., 2009, and Gurumurthi et al., 2002 predict the power consumption
of a software application running on servers and are intended for use at design
time. Such models can be architecture-based, see Basmadjian et al., 2011 and
Stier et al., 2015, which expand upon software architecture models for design
time power comparisons. These models are intended to compare software
design alternatives for distributed systems and focus on the relative power
prediction results with reduced absolute accuracy of single server predictions.
In contrast, offline power models for hardware designers focus on maximum
accuracy for single hardware components by requiring extremely detailed
modeling of their properties. These models, such as the CPU model of Brooks
et al., 2000 and Kahng et al., 2009, are usually intended for hardware system
designers, analyzing their potential device architectures. Modeling approaches
of such a granularity are also employed on a full server level by Gurumurthi et
al., 2002, which allows for detailedmodeling of full systems. In contrast to these
models, our model learns purely from standard benchmark and application
efficiency measurement, requiring no explicit modeling by the user.
Our power prediction mechnisms in Chapter 8 differ from the discussed

related work in two key aspects:

1. They are designed to leverage available offline data that can be accessed
even if the target system is not available. This allows for power prediction
of a workload (optionally running within a virtualized environment) on
an inaccessible system, for example, before having bought such a system.

2. They consider multiple levels of system load and enable predictions for
different load levels.

3.5 Online Power Prediction

Regarding online power prediction, we survey related work in two areas: Archi-
tectural performancemodels, and energy-aware powermanagement. The architectural
performance models show some overlap with the cluster/cloud level models

38

3.5 Online Power Prediction

examined in the previous section. In addition, the system-level power prediction
models, of the previous section remain relevant in the context of online power
prediction.

Architectural performance models (e.g., Becker et al., 2009 and Huber et
al., 2017) model the software architecture and infrastructure of a component-
based system for performance prediction. They can be used for design-time
performance prediction (Becker et al., 2009) or run-time prediction (Huber et al.,
2017). These models can be combined or extended with power information on
power consumption to enable power prediction, as done for example by Stier
et al., 2015. An example of an architecture-level model for power prediction,
based on fine granular modeling of the software architecture and underlying
hardware infrastructure, can be found in the work of Basmadjian et al., 2011.

Architectural models normally require detailed information on the system’s
software architecture, resource demands, and hardware infrastructure. To
reduce the modeling overhead, Huber et al., 2017 propose an approach to
automatically extract architectural models at system run-time. This approach,
however, has not yet been applied to power prediction.
Energy-aware power management techniques may employ generic power

models or advanced online power prediction models (such as the one intro-
duced in Chapter 9 of this thesis) to predict the power consumption of the
system states that might result from management decisions. The typical goal
is to minimize power consumption within certain Quality-of-Service (QoS)
constraints (Beloglazov et al., 2012), or to maximize overall efficiency (Jung
et al., 2010). The common technical mechanism by which management systems
achieve this is VMmigration (Beloglazov et al., 2012; Tian et al., 2012; Jung et al.,
2010; Urgaonkar et al., 2010). The impact of the power management decisions
is often estimated using established basic power prediction methods. For exam-
ple, Beloglazov et al., 2012 use a utilization-based linear power model described
by Rivoire et al., 2008, whereas Urgaonkar et al., 2010 use a quadratic power
model. Other works construct their ownmodel of the underlying systems, such
as Tian et al., 2012, who model servers using stochastic Petri nets. Many of such
power management models and/or their respective optimization methods also
find application in related fields of research, such as smart homes (Mauser
et al., 2017, 2014) or Smart Grids (Förderer et al., 2018).

We propose an end-to-end online power prediction model in Chapter 9. This
model goes beyond single system power prediction models, as it learns the
power consumption of a distributed application on multiple heterogeneous
machines. It does so by learning relationships between component distributions
and the power consumption of the machines. However, elements of the system-

39

Chapter 3: State-of-the-Art

level models can be utilized in our power prediction scenario. Specifically, we
leverage established regression models as part of our end-to-end modeling
approach.

40

Part II

Measuring and Rating the Energy
Efficiency of Servers

Chapter 4

Methodology for Server Efficiency Rating

Data centers and servers consume a significant amount of electrical power. As
future data centers increase in size, it becomes increasingly important to be able
to select servers based on their energy efficiency. Rating the efficiency of servers
is challenging, as it depends on the software executed on a server and on its
load profile. To account for this, a measurement and rating methodology for
servers must make use of both realistic and varying workloads. Existing energy
efficiency benchmarks either run standardized application loads at multiple
load levels or multiple micro-benchmarks at full load. This does not enable a
full analysis of system behavior as the energy efficiency for different kinds of
software at low load levels remains unknown.

This chapter addresses this thesis’ research questions RQ A.1 and RQ A.2 of
Goal A. To address RQ A.1: “How to place, execute, and measure workloads
in a reproducible and representative manner for energy efficiency rating?”, it
introduces a measurement methodology for energy efficiency rating of servers
that use multiple, specifically chosen workloads at different load levels for
a full system characterization. Addressing RQ A.2: “How to aggregate re-
sults of different multi-stage energy efficiency tests producing a fair energy
efficiency metric?”, it presents an energy efficiency metric for this methodol-
ogy. The methodology and workloads have been implemented in the SPEC
Server Efficiency Rating Tool (SERT). A significant contribution in this thesis
is the evaluation of the methodology in Chapter 10, which shows the applica-
bility and use of the measurement methodology specifically considering its
reproducibility, fairness, and relevance. We evaluate the proposed metrics by
investigating their energy efficiency rating on a set of 385 different servers.

4.1 Introduction

Improving the energy efficiency of data centers and servers requires the ability
to measure and rate that efficiency. A comprehensive rating method can enable
data center owners to purchase more efficient devices. It can also help service

43

Chapter 4: Methodology for Server Efficiency Rating

providers to select the most efficient servers for their specific applications.
Finally, a reliable rating method makes it possible for regulatory government
agencies to define standards and regulations specifying which devices are
considered energy-efficient and which are not. To achieve these goals, the
rating method must meet a number of criteria, which are mostly derived from
the criteria of a good computer systems benchmark, as described in Chapter 2:
It must be relevant, reproducible, fair, and verifiable.
Most servers in modern day data centers are not being utilized to their full

capacity. Instead, servers are used to serve requests that arrive over time and are
provisioned with additional capacity in order to be able to cope with variations
in load, such as unexpected bursts. This leads to an average load somewhere
between 10% and 50% (Barroso and Holzle, 2007). In addition, servers are used
to run many kinds of different software. This is especially important for rating
tools targeted for use by regulators, as a test running a single representative
application can not show the many behaviors of the multitude of potential
real-world server software setups.
Existing server-efficiency tests do not consider both of these issues. While

some tests used for power and efficiency testing, such as JouleSort (Rivoire
et al., 2007b), run multiple workloads in a suite, these tests are executed only at
full load. In contrast, existing benchmarks that test at multiple load levels are
usually application benchmarks that test an application or a set of applications
for a specific domain, (e.g., Lange, 2009 and Poess et al., 2010).

This chapter presents a rating methodology for commodity servers including
a measurement methodology and metrics for this methodology. It is designed
to characterize and rate the energy efficiency of a System under Test (SUT) for
multiple contexts and load profiles. To this end, the methodology executes
multiple mini-workloads, called worklets, which are run at multiple load levels
to showcase differences in system behavior regarding energy efficiency. We
also introduce the metrics used for server efficiency calculation. We show how
metrics are aggregated over the load levels and worklets in order to arrive
at a final energy efficiency score that can, among other things, be used by
regulators. The methodology is implemented in the SPEC SERT, which was
developed at the request of the U.S. Environmental Protection Agency (U.S.
EPA) for use in the Energy Star program for servers. A test using the SERT 2.0,
which implements many of the features discussed in this work, is required for
acceptance in the Energy Star program.
The goal of this work is the creation of a rating methodology that provides

both insight into the behavior of application servers for many potential work-
loads and load levels, while at the same time still producing a single score

44

4.2 Server Power Rating Methodology

energy efficiency metric that can be used by regulators to define criteria on
efficiency certification.
The major contributions of this chapter are as follows:

1. A measurement methodology for measuring the power consumption and
energy efficiency of servers at multiple load levels,

2. A collection of mini-workloads, called worklets, for analysis of energy
efficiency behavior of different server subsystems,

3. Server energy efficiency metrics that account for multiple load levels
and workloads and a final single-score metric that can be used for server
rating.

We evaluate the methodology and metric in Chapter 10 considering their
reproducibility, fairness, and relevance. We investigate the power and per-
formance variations of test results and show fairness of the metric through
mathematical proof and a correlation analysis on a set of 385 servers. Finally,
we evaluate relevance by showing the relationships that can be established
between metric results and third-party applications. We show that our method-
ology helps decision makers and regulators make reliable decisions on the
energy efficiency of servers.

4.2 Server Power Rating Methodology

Wepresent a ratingmethodology for the energy efficiency of commodity servers
for multiple workloads and load levels. It covers device setup, constraints for
measurement devices, and workload dispatch and calibration. It also covers
the execution order and metrics for multiple workloads run as parts of a larger
testing suite. In addition to describing the methodology, we also describe the
workloads and mini-workloads (worklets) as shipped with our methodology
implementation in the SPEC SERT.

4.2.1 Device and Software Setup

Our device and software setup is based on the setup of the SPECpower_ssj2008
(see Lange, 2009), which is an initial iteration of parts of this methodology,
created by some of the methodology’s co-authors. The System under Test (SUT)
is at the center of the power measurement setup. It is a single physical system,
which runs the workloads under test. The SUT’s power consumption and its
performance during testing are used to derive the energy efficiency score. As

45

Chapter 4: Methodology for Server Efficiency Rating

Controller Director

System under Test (SUT)

Power Analyzer PSU

Temp. Sensor

Network

Host

CPU 0 CPU n

Core 0 Core m

HWT 0 HWT k HWT 0 HWT k

Client Client Client Client

starts

pinned

HWT: Hardware Thread
PSU: Power Supply

Figure 4.1: Server power measurement device setup.

the purpose of the test is rating the energy efficiency of the SUT device, it should
not run any software in addition to the tests itself and the bare minimum of
required software, such as the operating system and JVM. Performance metrics
are gathered from the SUT using the testing software harness. Specifically,
we refer to the actual test execution software on the SUT as the host. The
host in turn spawns separate clients for each logical CPU (logical processor,
often referred to as hardware thread). For most workloads, the transactional
workload is executed sequentially on the clients. Parallelism is achieved by
running multiple clients concurrently. Any computation apart from the actual
workload, for example, metric calculation, is run on external devices. The clients
collect the performance metrics of the workload they execute and forward this
information to the host.
The workload is controlled by the controller system. The controller system

decides which workload to run at which load level. It also collects all measure-
ments both from the SUT (the host on the SUT), aswell as externalmeasurement
devices and it calculates the metrics and scores. We refer to the collection of
software managing all instances and measurement devices on the controller as
the director. They are illustrated in Fig. 4.1.
Considering external sensors, we require at least one power analyzer and

one temperature sensor. The power analyzer measures the power consumption

46

4.2 Server Power Rating Methodology

of the entire SUT, whereas the temperature sensor can be used to verify the
validity of measurements by assuring that all experiments are conducted under
similar environmental conditions. External power and temperature instrumen-
tation is used, as opposed to potential internal instrumentation, as it makes no
assumptions about the internal structure of the SUT allowing for maximum
portability of the methodology. In addition, it allows tight constraints on the
accuracy of the power measurement devices. Specifically, power measurement
devices must feature a maximum measurement uncertainty of 1% or better.

4.2.2 Workload and Worklets

The goal of the measurement methodology is the execution of different mini-
workloads at multiple load levels each. We call those mini-workloads worklets
and group them into worklet-collections, which we refer to as workloads. Specif-
ically, a workload is a collection of worklets with a common testing goal. All
worklets within a workload are designed to test a common resource by utilizing
it in a specific fashion. They execute work units, referred to as transactions. Our
implementation of the methodology in the SERT v2.0 features three separate
workloads for CPU, Memory, and Storage. Each of these workloads consists of
multiple worklets, which are executed at several load levels. The worklet code
has been contributed by different members of the SPEC Open Systems Group
(OSG) Power subcommittee.

In the following, we describe each of the workloads in detail. Each of the
workloads was designed so that it primarily stresses the server subsystem after
which it was named (CPU workload stresses CPU, Memory workload stresses
memory, Storage workload stresses internal storage devices).

4.2.2.1 CPU

We define the CPU workload as the collection of all CPU worklets. SERT
implements a total of seven different CPU worklets:

1. Compress: De-/compresses data using a modified Lempel-Ziv-Welch
(LZW) method (Welch, 1984)

2. CryptoAES: Encrypts/decrypts data using the AES block cipher algo-
rithms

3. LU: Computes the LU factorization of a dense matrix using partial pivot-
ing

4. SHA256: Performs SHA-256 hashing transformations on a byte array

47

Chapter 4: Methodology for Server Efficiency Rating

5. SOR (Jacobi Successive Over-Relaxation): Exercises typical access pat-
terns in finite difference applications

6. SORT Sorts a randomized 64-bit integer array during each transaction

7. Hybrid / SSJ: Performs multiple different simultaneous transactions,
simulating an enterprise application

4.2.2.2 Memory

The memory workload consists of worklets that have been designed to scale
with installed memory. The primary memory characteristics being tested are
bandwidth and capacity.
The memory worklets serve as the major exception to the load level and

interval specification in Section 4.2.3. In contrast to other worklets, they do not
scale via transaction rate, but instead scale with memory capacity. In addition,
they do not use throughput as their performance metric, but they modify it to
include bandwidth and/or capacity.

1. Flood: A sequential memory bandwidth test that exercisesmemory using
arithmetic operations and copy instructions. Flood’s performance score
is a function of both the memory capacity and the bandwidth measured
during testing.

2. Capacity: A memory capacity test that performs XML operations on
a minimum and maximum data set. The final metric is a function of
transaction rate and physical memory size.

4.2.2.3 Storage

We include a workload for testing storage in order to enable a well-rounded
system test. Storage worklets test the server’s internal storage devices.

1. Random: Reads and writes data to/from random file locations.

2. Sequential: Reads and writes data to/from file locations that are picked
sequentially

4.2.2.4 Idle

Idle keeps the system in an idle state in order to measure the idle power con-
sumption. Idle does not perform any work and has no performance. Conse-
quently, it does not measure any efficiency metric, but only power consumption.

48

4.2 Server Power Rating Methodology

4.2.3 Worklet Dispatch and Load Levels

Worklets are designed to be executed at multiple load levels. We define these
load levels using the transaction rate at which a worklet is run. Each worklet
features transactions, which are the basic work units performed by the worklet
(e.g., one array being compressed is one transaction for the Compress worklet).
The maximum (100%) load level is defined as the load level at which as many
transactions as possible are executed per second on the respective SUT. Lower
load levels are achieved by deliberatelywaiting in between separate transactions
in order to achieve lower performance and lower system utilization. To this
end, the SUT must run each worklet in a calibration mode to determine the
maximum transaction rate that the worklet can achieve. For each target load
level (e.g., 100%, 75%, 50%, 25%), the director calculates the target transaction
rate and derives the corresponding mean time from the start of one transaction
to the start of the next transaction. During measurement, these delays are
randomized using an exponential distribution that statistically converges to the
desired transaction rate. The randomization ensures that different CPU cores
are not always active at the exact same time. Please note, that load levels do
not equal CPU utilization, which is a common misconception. A load level of
50% means that a worklet only runs 50% as many transactions as compared to
full load, it does not necessarily mean that the CPU is utilized at 50%. Scaling
via transactions, instead of CPU utlization, allows the methodology to be used
in a broader setting, i.e., for non-CPU heavy workloads.
This generic load level calibration is used for all worklets except for the

memory worklets. The memory worklets have been desigend to scale with
memory capacity instead of transaction rate, providing an additional insight
into system behavior.

4.2.3.1 Phases and Intervals

All worklets are run in three phases: A warm-up phase, a calibration phase,
and a measurement phase. The warm-up phase runs the worklet at full load
for a short period of time without performing any measurements. It ensures
that transient effects that occur at the first execution of each worklet do not
affect power and performance measurements. Common transient effects are
caching effects and side-effects of the Java Just-In-Time (JIT) compiler. After
warm-up, the worklet enters the calibration phase. During calibration, worklet
transactions are executed as fast as possible. This means that for each execution
unit (hardware thread) a transaction is scheduled exactly as the execution unit
becomes available, without a waiting time after conclusion of the previous

49

Chapter 4: Methodology for Server Efficiency Rating

transaction. The result of the calibration phase is the maximum transaction
rate of the worklet on the specific SUT. Finally, the measurement phase takes
place. In the measurement phase, transactions are scheduled according to the
load level specification (see Section 4.2.3).

Each phase is split into a configurable number of intervals, which serve differ-
ent purposes, depending on the phase in question. Each interval is the period
in time during which the actual work of the phase is being done. The durations
of these intervals have been determined based on practices established in prior
works (Lange, 2009) and then modified using results from internal tests. They
are evaluated implicitly in our reproducibility analysis in Chapter 10. The
worklet is put to sleep for ten seconds between intervals (and phases), allow-
ing the hardware to cool down and become ready for the next interval. Each
interval is also split into three time periods, a pre-measurement, measurement,
and post-measurement period. The pre-measurement period allows for an
additional warm-up for each separate interval, whereas the post-measurement
period ensures that the worklet and hardware do not begin shutdown during
measurement. In these periods, the worklets are already being executed at
the target load level, yet no measurements are recorded. Per default the pre-
measurement and a post-measurement period run for a duration of 15 seconds
each. The measurement period performs the phase-specific work. It measures
the maximum throughput during calibration and the current throughput, as
well as the power consumption during the measurement phase. Per default,
each measurement period in a measurement interval is executed for a duration
of 120 seconds. Within this time, all transactions are logged and powermeasure-
ments are reported at one second intervals. The interval’s power consumption
is the average over the 120 reported values.

Each phase runs its intervals in sequence. The type of sequence depends on
the phase in question. The warm-up phase only runs a single interval of vary-
ing length, whereas the calibration phase runs multiple identical calibration
intervals in sequence. The calibration result is the average throughput of those
intervals. The measurement phase runs its intervals in the so-called graduated
measurement sequence when adhering to the load level specification. The
graduated measurement sequence executes the intervals at gradually dimin-
ishing target transaction rates. Fig. 4.2 illustrates an example calibration phase
with a single calibration interval and a measurement phase with a graduated
measurement sequence, containing three intervals.

50

4.3 Energy-Efficiency Metrics

Time

L
o

ad
 In

te
n

si
ty

P
r
e
-M
e
a
s
u
r
e
m
e
n
t

15
 s

P
o
s
t-
M
e
a
s
u
r
e
m
e
n
t

15
 s

Calibr.

120 s

10 s10 s 10 s 10 s 10 s

15
 s

15
 s100%

120 s

15
 s

15
 s67%

120 s

15
 s

15
 s33%

120 s

Scenario

Interval Interval Interval Interval

Scenario

Scenario

Scenario

Figure 4.2: Intervals for calibration and measurement phase.

4.3 Energy-Efficiency Metrics

We introduce multiple energy efficiency metrics for measurements obtained
using our methodology. The measurement methodology is designed to run
multiple separate worklets at multiple load levels, which are then grouped into
workloads. Metrics must provide insight into these stages of measurement and
should also reflect the structure of the methodology. Our approach addresses
this challenge by providing energy efficiency metrics at the following steps in
the methodology. For these steps each efficiency metric is an aggregate of the
efficiency at the subordinate levels of measurement. Separate energy efficiency
metrics are calculated at these steps, as illustrated in Fig. 4.3:

1. Interval efficiency

2. Worklet efficiency (over all load levels)

3. Workload efficiency (for all worklets)

4. Total efficiency

The basic interval efficiency metric is the energy efficiency as a ratio of the
performance over the power consumption during the interval. Worklet effi-
ciency is an aggregate of all load level intervals that were measured for any
given worklet. Workload efficiency is the aggregate energy efficiency of all
the worklets grouped within the workload. Finally, we propose a final score

51

Chapter 4: Methodology for Server Efficiency Rating

LU

SOR

SSJ

CPU
Workload Score
(Geometric Mean)

Memory
Workload Score
(Geometric Mean)

Storage
Workload Score
(Geometric Mean)

Final Score
(Weighted Geometric Mean)

2. Worklet Efficiency Scores 3. Workload Efficiency Scores 4. Final Score1. Interval Efficiency
Scores

Worklet Score
(Geometric Mean)

Worklet Score
(Geometric Mean)

Worklet Score
(Geometric Mean)

LU: 25% Load
Power Perf.

Efficiency

LU: 50% Load
Power Perf.

Efficiency

LU: 100% Load
Power Perf.

Efficiency

Figure 4.3: Calculation order of energy efficiency metrics.

that provides a single number metric for the entire suite of workloads. The
final score is primarily intended to be used by regulators when making server
energy efficiency labeling decisions.

4.3.1 Worklet Performance Metrics

Our methodology uses throughput as its primary performance metric for the
transactional workloads. Considering that throughput operates on different
scales depending on the size of transactions, we normalize it using the through-
put of a reference system. Normalized throughput (η) thus refers to the relative
speedup of the SUT compared to the reference system (Eq. 4.1).

η =
τ

ρ
(4.1)

where η is the normalized throughput, τ the measured throughput, and ρ
the reference throughput.

In addition to normalizing the average throughput, we also report its coeffi-
cient of variation. This enables users of the methodology to gage the stability
of the load levels and enhances confidence in the results.

52

4.3 Energy-Efficiency Metrics

The memory worklets serve as an exception. Both worklets have been de-
signed to scale with the available memory on the SUT. This is a direct result
of the scalability requirement mentioned in Section 2.4. However, the per-
formance score should also reward systems with greater memory capacity,
considering that greater capacity allows for more caching, etc. in large server
scale applications. Yet, scaling perfectly, the memory worklets can not test for
this property. In addition, a test that is designed to use a certain amount of
memory, more than some servers provide, might easily become outdated in
the future as the amount of memory increases. To cope with this challenge,
memory worklets include the memory capacity in their performance scores.
Flood uses throughput (memory bandwidth) of its memory accesses as its

base performance. In contrast to all other worklets, its performance metric is
not load level agnostic, as it does not scale using transaction rate, but using
memory capacity. The Flood performance score for each load level is the
measured bandwidth multiplied by the load level.

Capacity uses regular throughput, but multiplies it with the square root of the
system’s physical memory capacity, arriving at capacity performance κ (Eq. 4.2).
This allows the capacity worklet to easily represent the system’s capacity for
any future system. The square root has been chosen, as memory DIMM sizes
have continuously doubled in the past.

κ = τ ∗ √µ (4.2)

where κ is the capacity performance, τ the measured throughput, and µ the
physical memory size.

4.3.2 Efficiency Metrics

We calculate energy efficiency separately for each load level / interval. Dur-
ing each interval, we measure power consumption and average throughput.
We derive normalized throughput. Interval efficiency is then calculated by
dividing normalized throughput by power consumption. Considering that nor-
malized throughput is often significantly smaller than the power consumption
in practice, and considering it has no upper bound, we multiply this score with
a constant factor of 1000 (Eq. 4.3). This is a cosmetic factor that has been chosen
in order to move the resulting score into a number range that is easier to read
for a human reader.

ι =
η

φ
∗ 1000 (4.3)

53

Chapter 4: Methodology for Server Efficiency Rating

where ι is the interval efficiency, η the normalized throughput, and φ the
power consumption.

Interval energy efficiency is similar to standard energy efficiency, as found in
literature (Metri et al., 2012; Poess et al., 2010; Lange, 2009). Themajor difference
that sets our version of this metric apart is the normalization of performance.
Note that throughput divided by power consumption (in Watt) is mathemati-
cally identical to transactions per Joule, as used by Rivoire et al., 2007b. Based on
the separate interval energy efficiency metrics, we iteratively calculate Worklet
energy efficiency, then Workload energy efficiency, and, finally, total energy
efficiency.

4.3.2.1 Worklet Energy Efficiency

The worklet energy efficiency score γ is calculated using the geometric mean of
each worklet’s separate interval scores (Eq. 4.4). We use the geometric mean
over the arithmetic mean as it is known to preserve ratios (such as energy
efficiency). The geometric mean is chosen in favor of the arithmetic mean
or sum, as used in SPECpower_ssj2008 (Lange, 2009). The major difference
between the geometric mean and arithmetic mean is that the arithmetic mean
favors load levels with higher efficiency scores. Traditionally, higher load levels
also feature higher efficiency scores onmost systems. As a result, the arithmetic
mean usually favors the results of high load levels. A change in energy efficiency
at a higher load level has a greater impact on the final score than it would at a
lower load level. The geometric mean, on the other hand, treats relative changes
in efficiency equally at each load level.

γ = exp

(
1

n
∗

n∑
i=1

ln(ιi)

)
(4.4)

where γ is the worklet efficiency, n the number of load levels per worklet,
and ιi the energy efficiency for load level i.

4.3.2.2 Workload Energy Efficiency

Workload efficiency ψ is calculated by aggregating the efficiency scores of all
worklets within the workload using the geometric mean (Eq. 4.5). The worklet
efficiency scores are the results of the score calculation in Eq. 4.4.

ψ = exp

(
1

m
∗

m∑
i=1

ln(γi)

)
(4.5)

54

4.4 Concluding Remarks

where ψ is the workload efficiency,m the number of worklets per workload
and γi the energy-efficiency for each specific worklet.

4.3.2.3 Final Aggregate Energy Efficiency

The server energy-efficiency score σ is the final aggregate of the workload
scores. It too is derived using the geometric mean. In contrast to the other
geometric mean aggregates, the final score does not consider all workloads
equally. Instead, it uses a weighted mean, putting a different focus on each of
the workload scores. Weights may be chosen freely to enable a fair comparison
for each specific use case (Eq. 4.6). For such specific use-cases, they can be
found by investigating and comparing on-server resource usage, as done in
Section 10.3, or using regression, similar to the approach of Chapter 8.

σ = exp

(
1

k
∗

k∑
i=1

(wi ∗ ln(ψi))

)
(4.6)

where σ is the server efficiency, k the number of workloads, ψi the ith work-
load, and wi the weight assigned to this workload.

Specific weights, used by the U.S. EPA with their adoption of the methodol-
ogy’s implementation in the SERT v2.0 are as follows:

• High CPU weight: 65%

• Medium Memory weight: 30%

• Low Storage weight: 5%

This specific weighting is targeted at regular data center compute nodes,
resulting in a high CPU and mediummemory weight that is intended to mirror
a typical real-world compute workload’s resource profile. Storage is weighted
with a low 5% weight, as storage servers are not the target devices for this
weighting.

4.4 Concluding Remarks

This chapter introduced a power rating methodology for servers. This method-
ology is our answer toRQA.1 (“How to place, execute, andmeasure workloads
in a reproducible and representative manner for energy efficiency rating?”).
It specifies SUT instrumentation, workload dispatch, a collection of reference
workloads, measurement phases and intervals, and power and energy efficiency

55

Chapter 4: Methodology for Server Efficiency Rating

metrics. The metrics, in turn, are our answer to RQ A.2 (“How to aggregate
results of different multi-stage energy efficiency tests producing a fair energy
efficiency metric?”). We evaluate this methodology in Chapter 10 for three ma-
jor quality criteria: reproducibility, fairness, and relevance. The contributions
of this chapter and the work towards these contributions has been published
in the Proceedings of the ICPE 2015, ICPE 2016, and ICPE 2018 conferences
(Kistowski et al., 2015c, Kistowski et al., 2016a, and Kistowski et al., 2018c).

56

Chapter 5

Advanced Load Profiles for Energy Efficiency
Measurement

Today’s system developers and operators face the challenge of creating software
systems that make efficient use of dynamically allocated resources under highly
variable and dynamic load profiles, while at the same time delivering reliable
performance. Benchmarking of systems under these constraints is difficult,
as state-of-the-art benchmarking frameworks provide only limited support
for emulating such dynamic and highly variable load profiles for the creation
of realistic workload scenarios. Load distribution plays a crucial role in this
context. It can be used to improve energy efficiency of servers as (un-)balancing
strategies can be leveraged to distribute the varying load over one or multiple
systems. Ideally, load is distributed in a way in which resources are utilized at
high performance, yet low overall power consumption. This can be achieved
on multiple levels, from load distribution on single CPU cores to machine level
load distribution on distributed systems.

With modern day server architectures providing load distribution opportu-
nities at several layers, evaluating and answering the question of optimal load
distribution has become non-trivial. Work has to be distributed hierarchically
in a fashion that enables maximum energy efficiency at each level. Current
load distribution approaches do not test this. Instead, they distribute load
based on generalized assumptions about the energy efficiency of servers. These
assumptions are based either on very machine-specific or highly generalized
observations that may or may not hold true over a variety of systems and con-
figurations. Similarly, standard benchmarks and benchmarking methodologies,
including base methodology, introduced in Chapter 4, do not support varying
loads over time, but typically confine themselves to workloads with constant
or stepwise increasing loads. Alternatively, they support replaying of recorded
load traces. Statistical load intensity descriptions also do not sufficiently capture
concrete load profile variations over time.

57

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

This chapter presents two contributions that enable use of advanced load
profiles for power and efficiency testing and research. Addressing RQ A.3:
“How to model and create realistic, varying load profiles for energy efficiency
testing?” of Goal A, we present a method for modeling varying load profiles
over time. Addressing RQ A.4: “How to heterogeneously distribute load for
different placements in energy efficiency testing?”, we introduce workload dis-
tribution mechanisms for hierarchic distribution of workloads on the execution
resources within servers or clusters.

Firstly, we present the Descartes Load Intensity Model (DLIM). DLIM provides
a modeling formalism for describing load intensity variations over time. A
DLIM instance can be used as a compact representation of a recorded load
intensity trace, providing a powerful tool for benchmarking and performance
analysis. As manually obtaining DLIM instances can be time consuming, we
present an automated extractionmethod. Secondly, we introduce amodification
to our methodology for evaluation of load distribution strategies. We use a
modified version of the SPEC SERT implementation of our power methodology
to measure the energy efficiency of a variety of hierarchical load distribution
strategies on single and multi-node systems. We also introduce a new strategy
and evaluate energy efficiency for homogeneous and heterogeneous workloads
over different hardware configurations.
We evaluate both the load intensity models and load distributions in Chap-

ter 11. DLIM model expressiveness is validated using the presented extraction
method. Extracted DLIM instances exhibit a median modeling error of 12.4%
on average over nine different real-world traces covering between two weeks
and seven months. Additionally, extraction methods perform orders of magni-
tude faster than existing time series decomposition approaches. Our results
analyzing the load distributions show that the selection of a load distribution
strategy depends heavily on workload, system utilization, as well as hardware.
Used in conjunction with existing strategies, our new load distribution strategy
can reduce a single system’s power consumption by up to 10.7%.

5.1 Load Profiles with Varying Load Intensity over Time

Today’s cloud and web-based IT services need to handle large numbers of con-
current users under highly variable and dynamic load intensities. Customers
access services independently of each other and expect a stable Quality-of-
Service (QoS). In this context, any knowledge about a service’s load intensity
profile becomes a crucial information for managing the underlying IT resource
landscape. Load profiles with large amounts of concurrent users are typically

58

5.1 Load Profiles with Varying Load Intensity over Time

strongly influenced by deterministic patterns due to human habits, trends,
calendar effects, and events. The performance evaluation of systems under
these dynamic conditions poses new challenges. Our power benchmarking
methodology from Chapter 4, as well as benchmarking frameworks such as
Faban1, Rain (see Beitch et al., 2010), and JMeter (see Halili, 2008) allow request
injection rates to be configured either to constant values, or to stepwise increas-
ing rates (e.g., for stress tests) or variable rates based on recorded workload
traces. The challenges arising when applying open workload models for bench-
marking are not thoroughly addressed by these frameworks, as varying load
intensity profiles are a common observation in real world systems and require
consideration in benchmarking.

In this section, we address RQ A.3: “How to model and create realistic, vary-
ing load profiles for energy efficiency testing?” by introducing the Descartes
Load Intensity Model (DLIM). DLIM offers a fine-grained, structured and acces-
sible Meta-Object Facility (MOF)-based meta-model to describe load intensity
profiles by editing and combining piece-wise mathematical functions. At a
higher abstraction level, we propose the high-level Descartes Load Intensity Model
(hl-DLIM) to support the description of load variations using a small set of
parameters to characterize seasonal patterns, trends, as well as bursts and noise.
DLIM can be used to define an arbitrary dynamic load intensity profile that can
be leveraged for benchmarking purposes to evaluate the behavior of a system
under different dynamic workload scenarios (e.g., bursty workloads, seasonal
load spikes). This is useful in many use-cases, for example, for both online and
off-line evaluation of the quality of system adaptation mechanisms such as elas-
tic resource provisioning techniques inmodern cloud environments. DLIM and
hl-DLIM are both MOF-based meta-models for load intensity description. This
allows the use of tools and techniques provided for model driven development
in conjunction with DLIM. As such, we offer a model-to-model transformation
from hl-DLIM to the detailed DLIM. In contrast to pure regression approaches,
DLIM offers the advantage of classifying load intensity variations by type, as
they are fitted to certain model elements. As a result, models include additional
type information, which is useful when analyzing or modifying load intensity
variations. Further DLIM-based applications and developments in the fields of
benchmarking and system resource management at run-time are enabled by
providing automatic model extraction processes. Specifically, we envision the
use of automatically extracted load intensity profiles as part of autonomic and
self-aware system management by employing them in the following contexts:

• Benchmarking and Analysis: Using the load intensity model, we can
1Faban http://faban.org

59

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

create, extract, and modify load profiles to create testing profiles specif-
ically designed to elicit target system behavior for testing. This is the
prime use-case for which DLIM is used in this work.

• Load Forecasting: Automatically extracted load intensity profiles can
be used to forecast the changes in arrival rates at run-time. This, in
turn, enables pro-active resource management and system adaptation. A
description of DLIM’s use in this context can be found in the thesis of
Herbst, 2018.

• Anomaly Detection: A load profile model can serve as a baseline for the
online detection of anomalous load behavior, such as unplanned bursts.

• Load Classification: The compact information about load behavior con-
tainedwithin themodel can be used to classify profile categories, enabling
dynamic distinction between user or application types based on profile
characteristics.

A load intensity profile, represented as aDLIMmodel instance, can be created
either manually by the user or it can be extracted from a request arrival trace
obtained by monitoring a real-life production system. Given a trace, the trace
can be represented in a mathematical form as a compact DLIM model instance.
The latter captures the major properties of the trace (e.g., burstiness, seasonality,
patterns and trends) and can be used at any time to automatically generate an
equivalent trace (exhibiting the same properties). Furthermore, startingwith an
extracted model instance, the instance can be easily modified to reflect a given
target dynamic load scenario under investigation, for example, changing the
frequency of bursts or adding a given trend behavior. Load intensity profiles,
represented as DLIM model instances, can be used in a variety of application
scenarios, for example, for emulating request/job arrivals in benchmarking
experiments, or for analyzing mathematical properties of real-life workloads
(e.g., burstiness, seasonality). In the latter case, load intensity profiles provide
valuable information for performance modeling and capacity planning studies.
Manual construction and maintenance of DLIM model instances becomes
infeasible in complex scenarios orwhen using it at run-time. hl-DLIM addresses
this by providing a more concise way for load intensity profile description. This
enables the quick and easy creation of an initial model instance. For the easy
creation ofmodel instances based on real-world data, we introduce and validate
an automated DLIM model extraction method, which we call the Simple DLIM
Extraction Method (s-DLIM) for DLIM instances. It is based on the idea of time
series decomposition as taken in Breaks for Additive Season and Trends (BFAST,

60

5.1 Load Profiles with Varying Load Intensity over Time

introduced by Verbesselt et al., 2010). Additional DLIM extraction methods
that enhance DLIM’s use in different contexts, such as in load forecasting, are
found in the thesis of Herbst, 2018.

Chapter 11, Section 11.1 evaluates DLIM’s expressivness and highlights as its
major benefits the new capabilities to accurately automatically extract load in-
tensity models (12,7%medianmodeling error on average) from a representative
set of nine different real-world traces. Each extraction completes in less than
0.2 seconds. These results demonstrate and validate the capability of DLIM
to capture realistic load intensity profiles. An implementation of the models
and extraction methods is available as part of the LIMBO toolkit2. We use this
implementation as part of our work in Chapters 6 and 9, which demonstrates
the usefulness of our method.

5.1.1 Descartes Load Intensity Model

TheDescartes Load IntensityModel (DLIM) describes the profile of arrival rates
over time with a focus on describing variations and capturing characteristic
load intensity behaviors. At its core, it uses piece-wise mathematical functions
to approximate the varying rates with support for periodicity and flexibility to
adapt and incorporate unplanned events. The DLIM meta-model is visualized
in Fig. 5.1.

Being a composition of piece-wise mathematical functions, DLIM uses a Se-
quence of functions as its central element. Functionsmay be added ormultiplied
with one another using mathematical operators. The result of this approach is
a sequence of function-trees, which describe the arrival rate behavior during
a time period as defined by the containing Sequence. Specifically, a Sequence
carries a number of TimeDependentFunctionContainers, which describe the du-
ration of each interval and are executed in sequence. The containers, in turn,
contain the actual mathematical functions describing the arrival rates. The
Sequence’s execution repeats as many times as indicated by the terminateAfter-
Loops attribute. Alternatively, the sequence repeats for the time indicated by
the terminateAfterTime attribute. If both are set, we calculate the final duration
as the minimum of either the looping time or the specific terminateAfterTime
attribute (Eq. 5.1).

finalDuration =min(terminateAfterLoops ∗ loopDuration,
terminateAfterT ime)

(5.1)

2LIMBO http://descartes.tools/limbo

61

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

Figure 5.1: The Descartes Load Intensity Meta-Model without the child imple-
mentations of the abstract Noise, Burst, Seasonal, and Trend.

Infinite sequences are not allowed in order to guarantee termination. Any
Function can be combined with other Functions using a Combinator, which
results in a TimeDependentFunctionContainer carrying an entire tree of functions.
The TimeDependentFunctionContainer describes its arrival rates for a set duration,
after which the next TimeDependentFunctionContainer in the parent Sequence’s
list is processed.
Function is the abstract parent class to mathematical functions contained

within a TimeDependentFunctionContainer. Being abstract, it cannot be instan-
tiated. Instead a number of non-abstract children are provided that can be
used as Functions. The most notable concrete Function is the Sequence, which
effectively means that any TimeDependentFunctionContainer may hold a Sequence
in its Function tree. This contained Sequencemust be unique, preventing cyclical
containment dependencies. The other concrete Functions fall into one of the
following categories (each represented by their abstract super-class): Seasonal,
Burst, Noise, or Trend.

62

5.1 Load Profiles with Varying Load Intensity over Time

A Function holds a list ofCombinators. ACombinator allows the combination of
this Function’s arrival rateswith the arrival rates generated by other concurrently
running Functions. The Combinator contains operators such as + and ∗. Any
Function contained within a Combinator is defined for the exact same duration
as its containing parent Function.

5.1.2 High-level DLIM

DLIM offers a convenient way of structuring and ordering functions for the
description of load intensity profiles. However, from the standpoint of a human
user, it provides limited abstract knowledge about those variations, as the
tree of composite piece-wise mathematical functions may be difficult to grasp.
hl-DLIM addresses this issue by providing means to capture load intensity
variations with a limited number of parameters. These parameters can then be
used to quickly define and characterize a load intensity model. Inspired by the
time-series decomposition approach in BFAST (Verbesselt et al., 2010), hl-DLIM
is split into a Seasonal and Trend part. Additionally, as hl-DLIM is intended for
modeling load profiles, it features a Burst and a Noise part. In contrast to DLIM,
it is designed to model a subset of the most common load variation profiles in
favor of better readability.
The Seasonal part describes the underlying composite function that repeats

after every seasonal duration (e.g., every day in a month long load intensity
description). hl-DLIM describes the seasonal part using the following parame-
ters (as shown in Fig. 5.2): period, number of peaks, base arrival rate level, first peak
arrival rate, and last peak arrival rate. Additional peak arrival rates are derived
using linear interpolation.

0
0

time

ar
riv

al
 r

at
e

Last Peak
Arrival Rate

First Peak
Arrival Rate

Base Arrival Rate
between Peaks

Base Arrival
Rate Level

Interval Containing Peaks

Period

Figure 5.2: hl-DLIM Seasonal part.

63

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

calibrateyBurstyPart
toymatch
burstylist

buildyBurstyPart

burstylist

getypositiveyoutlierytime-stamps
getyarrivalyratesyatytime-stamps

getyburstylist

BurstyPart

calibrateyTrendyPart
toymatch
trendylist

buildyTrendyPart

trendylist

calculateytrendysegmentyduration
getyarrivalyratesyatytime-stamps

getytrendylist

TrendyPart

buildySeasonalyPart

seasonalyparameters

extractypeaksextractylows

SeasonalyPart

localymaximalocalyminima

calculateylocalyminimayandymaxima

buildyNoiseyPart

calculateydifferenceydistribution

calculateydifference
betweenyfiltered

andyoriginal
arrivalyrates

originalyarrivalyrates

NoiseyPart
(filtered)

arrivalyrates

applyygaussianyfilter[noynoiseyextraction]

[noiseyextraction]

Figure 5.3: Activity diagram of the Simple DLIM Extraction Method. (s-DLIM)

64

5.1 Load Profiles with Varying Load Intensity over Time

The Trend part describes an overarching function that captures the overall
change in the load intensity over multiple seasonal periods. It does so by
constructing a list of equi-length Trend segments. These segments describe the
respective arrival rates at their start and end points. The arrival rate of the
Seasonal part is then interpolated to match the segment’s arrival rate. In contrast
to the Trend within BFAST, the hl-DLIM Trend can interact with the Seasonal
part either by addition or multiplication. A multiplicative trend holds promise
for the domain of arrival rate modeling, as existing traces seem to indicate a
greater Trend impact on peaks in comparison to its impact on local minima. The
Trend part is defined using the following parameters: number of seasonal periods
within one trend (i.e., the length of a single trend segment), operator (addition or
multiplication), and the list of seasonal arrival rate peaks. The latter defines the
arrival rate at the beginning and end of the Trend segments. The Trend segment
functions are defined so that they always begin and end at the largest Seasonal
Peak. The concrete Trend function, interpolating between each segment’s start
and end point, can be either a linear, exponential, logarithmic, or sin function. As
a result, the values contained in this list define the resulting maximum peak
after applying the Trend at the corresponding point in time. The point in time
at which each arrival rate in this list is defined is always the time of the largest
peak in a Seasonal iteration.

The Burst part allows the definition of recurring bursts, which are added
onto the existing Seasonal and Trend behavior. It is defined using the following
parameters: first burst offset, inter burst period, burst peak arrival rate, and burst
width.
The Noise part allows the addition of a uniform distributed noise function

defined by its Minimum Noise Rate and Maximum Noise Rate. Other Noise
distributions can easily be added to DLIM instances, which are obtained from
hl-DLIM instances via a model-to-model transformation.

5.1.3 Model Instance Extraction

In this section, we present the Simple DLIM Extraction Method (s-DLIM). It
extracts a DLIM instance. This process (and its resulting DLIM instance) are
inspired by the time-series decomposition approach used in BFAST (Verbesselt
et al., 2010). s-DLIM extracts a repeating Seasonal Part and a non-repeating Trend
Part. The non-repeating Trend Part contains a list of Trend segments of fixed
size that interpolate between their start and end arrival rate value. The Trend
list extends throughout the entire time duration for which the extracted model
is defined. Additionally, a Burst Part and an optional Noise Part are extracted.
s-DLIM is visualized in Fig. 5.3.

65

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

5.1.3.1 Extracting an s-DLIM Instance

The following sections describe the extraction of the different model parts by
s-DLIM.

Extracting the Seasonal Part The Seasonal Part of the arrival rate trace is mod-
eled using a Sequence of TimeDependentFunctionContainers and their Functions.
Each Function interpolates the corresponding peaks and lows within each sea-
sonal period. As a result, the following data needs to be derived in order to
build the Seasonal Part:

• Duration of the seasonal period

• Arrival rate peaks and their time-stamps

• Arrival rate lows and their time-stamps

• Function type used to interpolate between peaks and lows.

The seasonal period (length) is set by the user. It is usually selected using
expert knowledge about the trace. A trace that extends over multiple days and
contains daily patterns, for example, features a period of 24 hours. The peaks
and lows are automatically determined by using a local minimum/maximum
search on the arrival rates within the trace. The local arrival rate minima
and maxima and their corresponding time-stamps within a seasonal period
constitute the peaks and lows. Since the trace usually containsmultiple seasonal
periods, the respective median arrival rate value is selected for each local
maximum andminimumwithin the Seasonal Part. Selecting the median instead
of the mean reduces the impact of outliers on the extracted value. As a result,
the derived functions interpolate first between the first median low and the first
median peak, then between the first median peak and the second median low,
and so on. The last low must be of the same arrival rate as the first low in order
for the Seasonal Part to repeat seamlessly. The type of the interpolating function
(linear, exponential, logarithmic, sin) can be selected by the user, depending on
his needs. According to our experience, the sin interpolation usually results in
a good model fit. The Seasonal Part extraction is illustrated in Algorithm 5.1.

Extracting the Trend Part The Trend Part consist of a series of functions (trend
segments) that are either added or multiplied onto the Seasonal Part. Each
trend segment begins at the maximum peak of the Seasonal Part and ends at
the maximum peak of the Seasonal Part in a later Seasonal iteration.

66

5.1 Load Profiles with Varying Load Intensity over Time

Algorithm 5.1: Extracting the Seasonal part.
Data: duration: seasonal period duration,

LIST: list of tuples ~t =

(
arrivalRate
timeStamp

)
,

1 rootSequence: root Sequence of the DLIM instance
2 Function extractSeasonalPart()
3 MIN← getLocalMinima (LIST)
4 MAX← getLocalMaxima (LIST)
5 peakNum← median(number of peaks within each Seasonal iteration)
6 for i← 0 to peakNum− 1 do
7 peak [i].arrivalRate← median(arrival rate of all ith peaks ∈ MAX

within each seasonal iteration)
8 peak [i].timeStamp← median(time stamp of all ith peaks ∈ MAX

within each seasonal iteration)
/* In seasonal iterations with more than peakNum peaks,

the ith peak is selected, so that peaks are evenly
spaced throughout that seasonal iteration. */

9 peak [i]←
(
peak[i].arrivalRate
peak[i].timeStamp

)
;

10 for i← 0 to peakNum− 1 do
11 low [i].arrivalRate← median(arrival rate of all ith lows ∈ MIN within

each seasonal iteration)
12 low [i].timeStamp← median(time stamp of all ith lows ∈ MIN within

each seasonal iteration)
/* In seasonal iterations with more than peakNum lows,

the ith low is selected, so that lows are evenly
spaced throughout that seasonal iteration. */

13 low [i]←
(
low[i].arrivalRate
low[i].timeStamp

)
;

14 for i← 0 to peakNum− 1 do
15 interpolatingFunction← DLIM Function starting at low [i], ending at

peak [i]
16 rootSequence.append(interpolatingFunction)

67

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

Algorithm 5.2: Extracting the Trend part using s-DLIM.
Data: duration: seasonal period duration,

LIST: list of tuples ~t =

(
arrivalRate
timeStamp

)
,

1 MAX: list of local maxima in LIST,
2 trendSequence: root Sequence of all Trend segments
3 Function extractTrendPart()
4 largestPeakOffset← offset of peak with largest arrival rate within a

seasonal iteration
5 largestPeakArrivalRate← arrival rate of peak with largest arrival rate

within a seasonal iteration
6 iterations← LIST.lastTuple.timeStamp/duration
7 for i← 0 to iterations do
8 a← nearestTuple(MAX, i ∗ duration + largestPeakOffset)
9 trendPoint [i] = a/largestPeakArrivalRate

10 trendSequence.append(constant trendPoint [0] with duration
largestPeakOffset)

11 for i← 0 to iterations do
12 interpolatingFunction← DLIM Function starting at trendPoint [i],

ending at trendPoint [i+1]
13 trendSequence.append(interpolatingFunction with duration duration)
14 trendSequence.append(constant trendPoint [iterations] with duration

(duration− largestPeakOffset))

15 Function nearestTuple(tuple list L, time)

16 returns the tuple ~t =

(
arrivalRate
timeStamp

)
∈ Lwith minimal

d← |L.timeStamp− time|

This minimizes errors with trend calibration. The trend extraction calibrates
the trend in a way that the model output arrival rate at the trend segment’s
beginning (or end) equals the trace’s actual arrival rate at the respective point
in time. The shape of the trend function (linear, exponential, logarithmic, sin)
is predefined as a sin-shape, but can be changed on demand.

s-DLIM extracts a list of equal-length trend segments. These segments have a
user defined duration that is amultiple of the seasonal period. Like the seasonal
period, the trend segment duration is also selected usingmeta-knowledge about

68

5.1 Load Profiles with Varying Load Intensity over Time

Algorithm 5.3: Calculating the Noise distribution.

Data: LIST: list of read tuples ~t =

(
arrivalRate
timeStamp

)
;

1 Function calculatNoiseDistribution()
2 FILTERED_LIST← applyGaussianFilter(LIST)
3 for i← 0 to |LIST| − 1 do
4 difference[i]← LIST [i].arrivalRate - FILTERED_LIST [i].arrivalRate
5 distribution← normal distribution with mean(difference) and

standardDistribution(difference)

the trace. The segments are then calibrated at their beginning and end to match
the arrival rates in the trace. The s-DLIM Trend Part extraction is displayed in
Algorithm 5.2.

Extracting the Burst Part Extracting bursts is a matter of finding the points
in time at which significant outliers from the previously extracted Seasonal
and Trend parts are observed in the trace. Once a burst is found, it is added to
the root Sequence and then calibrated to match the arrival rate from the trace.
Finding a burst requires the arrival rate in the trace to differ significantly from
the predicted value based on the Seasonal and Trend parts. In order to eliminate
false positives due to Seasonal Parts that are offset time wise, the Seasonal Part
used for the reference model in the burst recognition activity differs from the
actual extracted Seasonal Part. The difference is that the Seasonal Part used in
the burst recognition activity does not interpolate between the peaks and lows
of the original arrival rate trace. Instead it interpolates only between the peaks.
This removes false positives due to seasonal periods that are slightly offset in
time, however, it also eliminates bursts that do not exceed the current seasonal
peak. This trade-off is considered acceptable, since time wise offset seasonal
periods are commonly observed.

Extracting the Noise Part TheNoise Part extraction consists of two steps: Noise
reduction and the calculation of the noise distribution. The idea behind our
approach is to first reduce the noise observed within the arrival rates contained
in the trace, and then reconstruct the reduced noise by calculating the difference
between the original trace and the filtered one. Having filtered the noise, the
extraction of the Seasonal Part, Trend Part, and Burst Part are then performed on

69

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

the filtered trace. This has a significant impact on the extraction accuracy of
these parts, and thus on the overall accuracy of the extracted model instance.

Noise is reduced via the application of a one-dimensional Gaussian filter on
the read arrival rates. A Gaussian filter has a kernel based on the Gaussian
distribution, it thus has the following form (as defined by Blinchikoff and
Zverev, 1986):

G(x) = 1√
2πσ

e−
x2

2σ2

We choose the kernel width depending on the Seasonal period (duration of
a single seasonal iteration) and the expected number of peaks (local maxima)
within a Seasonal period:

KernelWidth = SeasonalPeriod
ExpectedMax#SeasonalPeaks

A Gaussian filter’s kernel width is defined as:

KernelWidth = 6 · σ − 1

As a result, the standard deviation is:

σ =
SeasonalPeriod

ExpectedMax#SeasonalPeaks
+1

6

The Noise Part is modeled as a normally distributed random variable. This
variable is added to the DLIM instance’s root Sequence. The normal distribu-
tion’s mean and standard deviation are calculated as the mean and standard
deviation of the differences between the filtered arrival rate trace. This is
illustrated in Algorithm 5.3.

Summarizing, we address RQ A.3 (“How to model and create realistic, vary-
ing load profiles for energy efficiency testing?”) by introducing the DLIM
modeling mechanism for load intensity profiles. DLIM is designed to enable
modeling of seasonal patterns, trends, bursts, and noise within arrival rate
profiles over time. We also provide an automated extraction mechanism, called
s-DLIM, which extracts DLIM model instances from arrival rate traces. The
models and extractors are implemented in the open-source LIMBO toolkit
and have been extensively used in other works, for example, by Herbst et al.,
2015, Groenda and Stier, 2015, and Becker et al., 2017a. We use DLIM to create
load profiles for power benchmarking in Chapters 12 and 15. The work on the
models and approaches of this section has been published, among others, at
ACM TAAS (Kistowski et al., 2017a) and SEAMS 2015 (Kistowski et al., 2015d).

70

5.2 Hierarchical Load Distribution

5.2 Hierarchical Load Distribution

The rising power consumption of servers and data centers over the last decades
leads to an increasing pressure on hardware vendors to design systems with a
high energy efficiency. Equally, software developers are tasked with the design
and development of energy efficient applications.

Servers are rarely fully idle; but instead, they often serve requests that arrive
at low frequencies leading to a typical load at a low-resource utilization level,
as described by Barroso and Holzle, 2007. As a result, software can be de-
signed to distribute its load on target systems in a manner that reduces power
consumption. Typically, work is consolidated on as few systems as possible, al-
lowing unused systems to enter power saving states. Designing such workload
consolidation mechanisms and policies is challenging, as load intensity varies
dynamically (see Section 5.1). Additionally, power consumption, performance,
and energy efficiency characteristics change depending on workload, utiliza-
tion, and machine hardware and software configuration. Finally, newer server
processors, such as Intel’s Haswell generation processors, feature advanced
core-level power management mechanisms, which may warrant the application
of workload consolidation on a processor core level.
Current load distribution approaches balance load based on generalized

assumptions about the energy efficiency of servers. Most existing power con-
solidation approaches, such as the ones described by Pinheiro et al., 2001 and
Chen et al., 2005, consolidate as much work as possible on each machine until a
pre-configured threshold of performance degradation ismet. These approaches
assume optimal energy efficiency at full machine level utilization. Similar as-
sumptions are made for many existing power management solutions. These
approaches also do not attempt to fully maximize energy efficiency as they only
minimize power consumption within specified performance constraints. They
do not maximize the tradeoff between performance and power.

Hierarchical power management solutions explore the possibilities of trigger-
ing power saving states and mechanisms of hardware components. Raghaven-
dra et al., 2008 and Verma et al., 2008a, for example, take the effects of CPU
Dynamic Voltage and Frequency Scaling (DVFS) into account. They do not,
however, make use of lower level load distribution, such as core-wise load
distribution.
In this section, we address RQ A.4: “How to heterogeneously distribute

load for different placements in energy efficiency testing?”. We describe a
modification of our power methodology to measure the energy efficiency of
a variety of load distribution strategies on single and multi-node systems.
Specifically, we modify the SERT implementation of the methodology. We

71

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

specify the target load intensity (transaction arrival rate) and target workload
on a client by client basis for each load level, with the clients being pinned to
specific CPU cores. Using this approach we can emulate any load distribution
policy for transactional workloads, allowing the evaluation of energy efficiency
for homogeneous and heterogeneous workloads over different hardware and
software configurations. In addition, we introduce load distribution policies,
which we apply using this modification.

We describe the load distribution policies and our modifications to the mea-
surement methodology. The analysis and policy evaluation is found in Chap-
ter 11, Section 11.2. The goal of this part of the thesis is to gain insight in
how different load balancing and unbalancing strategies affect overall power
consumption and energy efficiency. The core contributions if this section and
Section 11.2 are:

1. We introduce a modification to the workload placement of our measure-
ment methodology to allow for hierarchical load distribution.

2. We investigate power consumption and energy efficiency of load balanc-
ing and consolidation policies at multiple utilization levels on a range of
hardware configurations, including different architectures.

3. We explore the power consumption and energy efficiency of hierarchical
load distribution on four levels: logical CPUs, physical CPUs, separate
CPU sockets, and machine level load distribution for distributed multi-
node systems.

4. We demonstrate that the effectiveness of load distribution policies de-
pends on multiple factors, including workload type and load level for
both homogeneous and heterogeneous workloads.

5. We combine existing strategies to create a new load distribution strategy
using partial consolidation to target maximum energy efficiency across
as many execution units as possible.

We evaluate the load distribution strategies in Chapter 11, Section 11.2 on a
range of systems with increasing complexity: a one-socket system, two dual-
socket systems of different architectures and two dual-socket systems running
the workload in a multi-node configuration. For each of these systems, we test
a variety of combinations applying different load distribution strategies on the
different levels of the execution hierarchy (nodes, sockets, physical CPU cores,
logical CPU cores).

72

5.2 Hierarchical Load Distribution

We show that the selection of a single most energy-efficient strategy is only
possible on smaller or older systems. For other systems, the most energy
efficient load distribution strategy depends on workload type and load level.
For some loads, the most efficient strategy is not always the commonly assumed
one, for example, full load consolidation on a multi-node level can have a
smaller energy efficiency than other load distributions. We also show that our
new strategy can save up to 10.7% of power consumption on a single server
node.

5.2.1 Load Distribution of Worklets

Wemodify our power rating methodology of Chapter 4 and its implementation
in the SERT to specify the target load percentage on a client-by-client basis. The
goal of this modification is the creation of target load distributions for load
distribution testing. The methodology’s clients (the basic execution schedulers,
pinned to a single hardware thread) are modified to use separate different
transaction inter-arrival time distributions, instead of using the a global distri-
bution. Each client receives a separate load level specification, which defines a
client-specific target load level for each global load level. Clients must use this
specification to override the global load level the beginning of each interval in
order to derive their own inter-arrival rate distribution. As clients are bound
to a specific SMT unit (hardware thread) and physical CPU, this specification
allows the stressing of each specific core. The operating system ensures that
the client to CPU mapping remains identical over the separate experiments.
Separate configurations can be deployed on each host (in our case, server),
allowing different load distribution behaviors for each host.
We define the following policies for load distribution. Each policy can be

applied individually on every level of the load distribution hierarchy (e.g.,
servers, sockets). This enables the creation of a strategy compositon by selecting
one of these policies for each hierarchy level:

Balanced: Transaction counts are set to be equal for all clients, resulting in a
balanced load across all systems.

Consolidated: Transactions are consolidated on as few clients as possible. As
a result, all clients, with the exception of one, are either idle or at full
utilization.

Energy Efficient Consolidation: This new strategy, introduced in this thesis, keeps
as many clients as possible at the point of maximum energy efficiency.
Specifically, we consolidate load on clients, with the upper load boundary

73

Chapter 5: Advanced Load Profiles for Energy Efficiency Measurement

for each client being the predetermined (calibrated) point of maximum en-
ergy efficiency for the given workload. Only once all clients have reached
this point, do we start to increase client load with rising global load. At
this point, the extra load is still consolidated on as few clients as possible.
This strategy is identical to the consolidation strategy if maximum energy
efficiency for the given workload is achieved at full utilization.

Any of these strategies can be applied at any level of the load distribution
hierarchy. The following hierarchical execution units are targeted: full servers,
CPU sockets, CPU cores, and logical CPU cores (also called hyperthreading or
SMT units).

To enable the execution of heterogeneousworkloadswithin ourmethodology,
we also allow separate specification of the worklet executed on each client (see
Section 4.2.1) in addition to the global default worklet. At the beginning of
each scenario, the client will check if it has been assigned a worklet other than
the global one. In this case, it replaces the global worklet with its own local
worklet.

Specifying different worklets has an adverse effect on calibration. Recall that
our methodology measures the maximum transaction rates of worklets on a
SUT during calibration and uses this to calculate the target load level. However,
co-locating different worklets on parallel resources requires an adaptation to
calibration. This adapted calibration should, however, be conducted with the
separate homogeneous workloads, in order to eliminate the influence of inter-
worklet interference. We address this using separate calibration runs for each
worklet using our default methodology. Each client’s 100% target load level
is then set to the calibration result of the corresponding client and workload
during the calibration run. Note that we only run a single workload per client.
Consequently, we have a maximum granularity of one workload per hardware
thread. Workloads do not get mixed within the hardware threads. We also
consider the possibility of turning affinity of clients off. In this case, clients
are no longer bound to specific cores and may be redeployed by the operating
system at runtime.

Summarizing, we address RQ A.4 (“How to heterogeneously distribute load
for different placements in energy efficiency testing?”). We describe a modi-
fication to our power measurement methodology that can be used to achieve
uneven load distributions on different levels of a server system or cluster. We
introduce load distribution policies to be tested using this modification, in-
cluding one new policy that can be tested using this methodology adaptation.
A thorough analysis using multiple different systems can be found in Chap-

74

5.3 Concluding Remarks

ter 11, Section 11.2. The load distribution strategies and their analysis have
been published at the MASCOTS 2015 conference (Kistowski et al., 2015b).

5.3 Concluding Remarks

This chapter addressed RQ A.3 (“How to model and create realistic, varying
load profiles for energy efficiency testing?”) and RQ A.4 (“How to heteroge-
neously distribute load for different placements in energy efficiency testing?”).
It addressed RQ A.3 by introducing the DLIM modeling mechanism for load
intensity profiles and RQ A.4 by introducing hierarchical load distribution
policies together with a modification to our power rating methodology that
enables hierarchical load distribution.
DLIM is designed to enable modeling of seasonal patterns, trends, bursts,

and noise within arrival rate profiles over time. We also provide an automated
extraction mechanism, called s-DLIM, which extracts DLIM model instances
from arrival rate traces. The models and extractors are implemented in the
open-source LIMBO toolkit and have been extensively used in other works,
for example, by Herbst et al., 2015, Groenda and Stier, 2015, and Becker et
al., 2017a. LIMBO has also been endorsed as a peer-reviewed tool by the
Standard Performance Evaluation Corporation, Research Group (SPEC RG).
We use DLIM to create load profiles for power benchmarking in Chapters 12
and 15. The work on the models and approaches of this section has been
published, among others, at ACM TAAS (Kistowski et al., 2017a) and SEAMS
2015 (Kistowski et al., 2015d).
Our modification to the power measurement methodology can be used to

achieve uneven load distributions on different levels of a server system or
cluster. We introduce load distribution policies, including one new policy that
can be tested using this methodology adaptation. A thorough analysis using
multiple different systems can be found in Chapter 11, Section 11.2. The load
distribution strategies and their analysis have been published at the MASCOTS
2015 conference (Kistowski et al., 2015b).

75

Chapter 6

Advanced Workloads for Energy Efficiency
Measurement

The accurate measurement of a server’s power consumption when running
realistic workloads, which go beyond our mini-workloads of Chapter 4, enables
characterization of its energy efficiency and helps to make better provision-
ing and workload placement decisions. In addition, modern distributed and
network applications offer complex performance behavior and many degrees
of freedom regarding deployment and configuration, which affect energy ef-
ficiency. However, measuring energy efficiency and power consumption of
server applications has become challenging as applications are often distributed
or require work intensive configuration, setup, and specialized load drivers
for reproducible testing. As a result, it may not be feasible to perform tests
using the actual workload that is to be deployed on a server. Even then, ex-
isting production software is often inaccessible for researchers or closed off
to instrumentation. Adding to this problem, existing distributed application
testing and benchmarking frameworks are either designed for specific testing
scenarios, or they do not offer the necessary degrees of freedom needed for
energy efficiency research.
Addressing RQ A.5: “How to create reference workloads for complex test

setups in distributed scenarios?”, we introduce a workload creation approach
and one distributed reference application. Firstly, we present a Performance
Event Trigger Framework (PET) to create small-scale workloads that emulate
the power consumption-relevant behavior of an application by deliberately
triggering specific power relevant performance counter events. These work-
loads can then be easily deployed on a target server for fast and efficient power
characterization. Secondly, we introduce TeaStore, a state-of-the-art micro-
service-based test and reference application. TeaStore offers services with
different performance characteristics and many degrees of freedom regarding
deployment and configuration to be used as a benchmarking framework for
researchers. TeaStore allows evaluating performance modeling and resource

77

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

management techniques; it also offers instrumented variants to enable exten-
sive run-time analysis. We evaluate PET’s workload creation approach and the
TeaStore reference workload in Chapter 12. Specifically, we validate PET by
approximating the power consumption behavior of four different workloads
at multiple load levels. We show that our approach is capable of producing
small-scale workloads that reflect the power consumption behavior of their ref-
erence applications over multiple load levels with a minimum error of less than
1%. Regarding TeaStore, we demonstrate its use in three contexts: performance
modeling, cloud resource management, and energy efficiency analysis. Our
experiments show that TeaStore can be used for evaluating novel approaches in
these contexts and also motivates further research in the areas of performance
modeling and resource management.

6.1 Performance Event Trigger Framework

Reducing the power consumption and improving the energy efficiency of
servers requires the ability to accurately and reliably evaluate their efficiency
when running the applications they are expected to execute during normal
operation. Evaluation results can help to improve energy efficiency by enabling,
among other things, better server purchasing decisions, better application
placement decisions, and more efficient configuration of hardware or software.

However, performing accurate measurements with real world applications
is difficult. Real world applications are often distributed and load is driven
by external requests. This makes the setup and configuration complex, time
consuming, and difficult, especially since it can be hard to evaluate individual
software components on their respective servers in isolation.

Additionally, power measurements using external power meters require sta-
ble loads for a period of time in order to provide accurate measurements (Lange
and Tricker, 2011). Achieving stable loads for real world applications requires
specialized external load drivers and may also limit the configurations for
which a test can be run. As a result, it is often not feasible to run tests using the
actual application under consideration.

In this section, we address RQ A.5: “How to create reference workloads for
complex test setups in distributed scenarios?” with a workload creation mech-
anism. Specifically, we introduce an approach to create small-scale workloads
that emulate the power consumption-relevant behavior of large scale workloads
by approximating their CPU performance counter profile. We analyze perfor-
mance counters and their relation to power consumption to construct PET. It is
designed to use performance counter measurements of third-party applications

78

6.1 Performance Event Trigger Framework

to construct a small-scale workload that emulates the third-party application’s
resource profile with the goal of reproducing its power consumption-relevant
behavior.
The small-scale workload created by PET can be easily executed and mea-

sured on a target server platform. It is locally executable, not part of any larger
distributed workload, requires no additional configuration and is designed to
be a transactional workload that can be run at different load levels for server
and workload characterization.
The major contributions of this section are:

• We characterize and analyze CPU performance counters with respect to
their relevance for server power consumption modeling.

• We show that emulating a workload’s performance counter profile can
lead to a similar or even identical power profile.

• We propose a light-weight approach for emulating a third party work-
load’s power consumption-relevant behavior, enabling easier benchmark-
ing of large scale applications.

We validate our approach in Chapter 12.1 by applying it to four different
applications. They range from small-scale test applications to industry stan-
dard benchmarks. We also evaluate the ability to accurately emulate the power
consumption-relevant behavior of a virtual network function, which, consider-
ing its heavy I/O load, would intuitively be expected to be difficult to model
using CPU performance events. We analyze the ability of the PET framework to
accurately reproduce the original workloads’ performance counters and power
characteristics and compare multiple performance counter triggering options.
We show that PET is capable of emulating the power consumption behavior of
realistic workloads with a mean deviation down to 0.19 W (1%).

6.1.1 General PET Approach

The primary goal of our approach is the emulation of the power consumption-
relevant behavior on a System under Test (SUT) by leveraging performance
counters as a basis for the emulation. To this end, performance counters with
relevance to power consumption will be identified by using a real world ref-
erence workload in the form of a deep packet inspection (DPI) firewall. This
firewall is chosen as a reference as it produces significant CPU load, but is also
bound to other hardware components due to its intensive use of network I/O.

79

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

The firewall is measured at ten load levels (using our measurement method-
ology from Chapter 4), ranging from 10% to 100% in 10% steps. During the
measurement, performance counters and power consumption are recorded
once per second and relevant counters are identified by correlating increase
in counter events with the increase of power consumption over the different
load levels using the Pearson correlation coefficient. A performance counter is
considered relevant if its correlation with power consumption exceeds 0.8. It is
assumed that some performance counters are collinear, causing other counters
to be triggered as side-effects. Instead of not implementing counters causing
side effects in PET, we chose to compensate side effects with composition mech-
anisms. Counters with dependencies or those requiring active management,
such as CPU frequency, are excluded.

After the performance counters with relevance to power consumption are
identified, we implement event triggers designed to generate the respective
performance events on demand by executing suitable artificial workloads. The
accuracy of a concrete event trigger can be influenced by implementation details.
To account for this, several competing trigger implementations are analyzed
for each event under consideration. The implementations capable of reaching
the defined target counter values with the best accuracy are selected and incor-
porated into the PET framework. We also analyze potential side effects of our
implementations by measuring the influence of event trigger implementations
on other counters. Side effects must be considered given that some performance
counters are not independent of each other. Recorded side effects are used
to determine interactions/influences between performance events and their
potential impact regarding the final power consumption emulation. We also
consider background noise, which if not considered may lead to erroneous as-
sumptions regarding the event trigger accuracy and side effects. Consequently,
we measure the counter background noise on the SUT in an idle state for 120 s.

The system on which the measurements are performed is an HP DL20 Gen9
with 16 GiB of memory and a Xeon E3-1230v5 at 3.4 GHz. As Operating Sys-
tem (OS), we use a Debian Linux with kernel version 3.16.0-4-amd64. The
background noise on the SUT using other OS’s and software stacks must be
measured once and made available to PET before deployment. Use of different
hardware should not influence PET. We assume that each component uses a
minimum amount of energy to be active and is consuming a specific amount of
energy for each event occurrence. Assuming that the difference in active idle
energy between different hardware components is negligibly small, influences
can be reduced to how often a component is used. However, transferability
of our approach might be limited if the target system’s architecture differs

80

6.1 Performance Event Trigger Framework

significantly from the original one, for example, if it uses an additional CPU
caching layer that did not exist on the original system. In addition, we assume
that the systems under consideration share the same instruction set (e.g., we do
not intend to test ARM systems with workloads created on an amd64 system).

PET creates the final workload for power consumption behavior using one of
three composition mechanisms. The mechanisms differ by how they account
for the performance counter side effects that are caused by the concrete trigger
implementations and possible collinearities. Combinations of mechanisms
are not used. The first naive method ignores side effects and operates only on
the target event count recorded for the workload. The second composition
mechanism accumulates the side effects as shown in Equation 6.1.

sx =
n∑
i=1

ex,ivi vs,x =

{
vx − sx if sx ≤ vx
0 if sx > vx

(6.1)

We consider a given performance event x with the initial goal of computing
the total number sx of its occurrences as a side effect. x occurs ex,i times as a
side-effect to each single triggering event of another target performance event
i. We can calculate the total number of x’s occurrences as a side event by
multiplying it with the number of times vi each ith event is triggered and then
calculating the sum of these occurrences as a side effect over all i.
Next, we compute the number of times vs,x that we must trigger the perfor-

mance event x considering that it is already being triggered sx times as a side
effect. To this end, we subtract sx from vx, which is the number of times we
would have triggered x had it not been for the side effects. If sx is larger than
vx, vs,x is set to zero, resulting in PET not deliberately triggering this event.

The third composition method uses simulated annealing, as described by Hen-
derson et al., 2003. As previously, the goal is to calculate the total number
of times we must trigger each event, considering that triggering it produces
side-effects that affect the number of times we must trigger other events. We
use simulated annealing, as performance counters can have non-linear de-
pendencies to a degree that makes an analytic solution unfeasible. Simulated
annealing is preferred to regular hill climbing as it is less prone to be caught in
local minima or maxima. As energy function, a modified mean squared error
function f (ω) for the solution ω is used, as shown in Equation 6.2. ω̂i is the
target value for the i-th operation (the number of times the ith trigger must be
run), ωi the current value and ωs,i represents the side effects imposed by the
current configuration. It is calculated using Eq. 6.1, substituting ωi for vi.

f (ω) =
1

n

n∑
i=1

(ω̂i − ωi − ωs,i)2 (6.2)

81

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

Finally, we prune event triggers from the composition. In cases where some
performance counters reach values close to the system’s background noise, it
may be beneficial to remove them from the composition under the assumption
that they have a low or negative impact on the system’s power consumption.
We make this assumption and prune the trigger if at least one of the following
is observed considering the performance counter in question:

• it is overcounting by at least one order of magnitude, taking into account
the median over all load levels,

• it features a correlation with power consumption of less than 0.9 in the
reference measurement,

• it features a median reference value below the background noise.

Not pruning transactions may lead to inaccuracies in both the power con-
sumption as well as the target performance in the power measurement method-
ology. The power methodology is based on reaching target load levels by
injecting respective target throughputs, which can only be done if the sizes
of transactions within the workload are sufficiently small, so that steady state
can be reached during measurement. However, triggers can only trigger an
integer number of performance events. PET’s goal is to preserve the ratio be-
tween different performance events for each transaction within the workload.
Consequently, triggering events that occur in very small numbers causes all
other events to have to be triggered in relatively high numbers, in turn causing
transactions to grow in size. This can cause instability in power measurements
as large transactions are run at low frequencies, making it hard to ensure steady
state during measurements.

6.1.2 Performance Counter Relevance to Power

In this first step of our approach, we analyze performance counters with respect
to their relevance for modeling a system’s power consumption profile. The
goal of this analysis is the selection of the most power relevant counters for
inclusion in the PET framework.

Counters that are implemented in PET and that have a high correlation with
system power include L3 cache misses (L3MISS), L2 cache misses (L2MISS),
memory reads (READ), memory writes (WRITE), instructions retired (INST),
interrupts (irq), and context switches (ctxt). Despite lower correlation (< 0.8),
L3HITs and L2HITs are selected, considering that cache misses do correlate
with power consumption. If a memory access misses L2, it could either hit or

82

6.1 Performance Event Trigger Framework

miss L3. It therefore seems reasonable to include L3HIT as L2 misses could
directly generate L3 hits if needed. As the cache’s content needs to be controlled
to reliably trigger cache misses, L2HIT is also included in PET despite a corre-
lation of 0.727. Hardware interrupts (irq) and the number of context switches
(ctxt) are supported by PET due to their high correlation with power consump-
tion. The user counter is not selected despite a correlation of 0.874 as the test
harness specifies the number of processes used for workload generation. The
softirq counter is not selected despite its correlation of 0.993 because software
interrupts are handled only after a system call or a hardware interrupt. As one
of our main goals is the approximation of large scale workloads, network I/O,
producing hardware interrupts with a correlation of 0.997 is deemed sufficient.
The processes counter has a good correlation (-0.984) but is not selected as the
implementation for context switches (ctxt) creates threads which will interfere
with this counter. Correlation on the remaining events is considered too low to
be relevant or the event has a dependency on an already implemented counter.

6.1.3 Event Trigger Implementation

Triggers to generate performance events can be implemented in multiple ways.
The following paragraphs describe our different implementations for triggering
counters.

6.1.3.1 Cache and Memory Access

To trigger cache hits and misses, an array of at least twice the L3 cache size
and up to 2048 MiB is used. For memory accesses (L3 miss), a pointer is cycled
through the array. L3 hits and L2 misses are generated by a pointer cycling
through a subarray of four times the size of the L2 cache. L2 hits are generated
by accessing the same pointer used for L2 misses, but without moving it prior
to a hit access. As the CPU will always move data with the size of a cache
line, the array is traversed in a step size of 2, 4 and 6 times the cache line to
determine if the step size has an influence on accuracy. A random number is
added to each step size to account for the influence of hardware prefetching.
We implement the cache and memory event triggers using three different
instruction sets, each. We implement the triggers using C, non-temporal SIMD
intrinsics, andAssembler (ASM). In addition, read, write and copy functionality
are implemented and tested with process owned memory, shared memory and
mapped kernel memory marked as uncachable via the page attribute table. In
case of the uncachable memory, only fixed memory locations are used. We

83

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

evaluate the effects of the different implementations in the first part of PET’s
evaluation in Section 12.1.1.

6.1.3.2 Instructions Retired

Retired instructions are implemented by causing instructions to be executed
on the CPU. For efficiency, we trigger multiple instructions per performance
trigger execution by looping over an instruction adding a constant value to a
temporary variable. As a result, the corresponding counter is incremented by
the amount of assembler instructions executed in this loop for each call to the
event trigger.

6.1.3.3 Context Switches

To trigger a context switch, a new process or thread has to be created. Another
option would be to suspend the currently running thread so the OS can switch
to already existing processes or threads. Suspending the workload to trigger
context switches has two disadvantages. The first reason to not further inves-
tigate is the scheduling interval which limits the amount of context switches
in a given time-frame. Secondly, the possibility exists that no thread has to be
switched in during suspension, making this solution random and unreliable.
Therefore a thread is created with an empty workload that is switched in and
immediately joined to be switched out. Consequently, context switches are
always triggered in groups of two.

6.1.3.4 Interrupts

We use the Boost open source library to program the advanced programmable
interrupt controller to throw a local timer interrupt after a deadline is reached.
The deadline is set to the minimum value after which interrupts can be ob-
served.
Summarizing, PET addresses RQ A.5 (“How to create reference workloads

for complex test setups in distributed scenarios?”) in regards to creation ofwork-
loads for specialized resource (CPU) profiles. To create PET, we determined
relevant performance counters to trigger in order to emulate the power profile
of a real-world server application. PET implements these triggers with several
alternate trigger implementations. We evaluate PET’s implementation and
performance counter set in Chapter 12.1. The work on PET has been published
at the MASCOTS 2017 conference (Schmitt et al., 2017a).

84

6.2 TeaStore: A Micro-Service Reference Application

6.2 TeaStore: A Micro-Service Reference Application

Modern distributed component and/or service-based applications have com-
plex performance characteristics, as the constituent services feature different
bottlenecks that may even change over time, depending on the usage profile.
However, these applications also offer many degrees of freedom, which are
intended to help deal with these challenges. They can be deployed in various
ways and configured using different settings and software stacks. These de-
grees of freedom can be used at design-time, deployment-time, and at run-time
for continuous system optimization. Current research employs many methods
of analysis, modeling, and optimization that utilize these degrees of freedom
at different points of the software life-cycle to tackle the challenging perfor-
mance behavior (Ilyushkin et al., 2017; Becker et al., 2009). More generally, the
goal of such research is the improvement of a running system’s non-functional
properties and may include dependability (Lee and Iyer, 1995; Littlewood and
Strigini, 1995) or energy efficiency (Beloglazov et al., 2012; Basmadjian et al.,
2011).

Verifying, comparing, and evaluating the results of such research is difficult.
To enable practical evaluation, researchers need a software application (1) that
they can deploy as reference and (2) that offers realistic degrees of freedom.
The reference application must also feature sufficient complexity regarding
performance behavior to warrant optimizing it in the first place. Finding such
an application and performing the necessary experiments is often difficult.
The software in question should be open source, available for instrumentation,
and should produce results that enable analysis and comparison of research
findings, all while being indicative of how the evaluated research would affect
applications in production use.
Real world distributed software is usually proprietary and cannot be used

for experimentation. It is often inaccessible and lacks the potential for instru-
mentation. In addition, evaluations conducted using such software are difficult
to reproduce and compare, as the software used remains inaccessible for other
researchers. Existing test and reference software, on the other hand, is usually
created for specific testing scenarios (Happe et al., 2011). It is often designed
specifically for evaluating a single contribution, which makes comparisons
difficult. Other existing and broadly used test software does not offer the nec-
essary degrees of freedom and is often manually adapted (Willnecker et al.,
2015b). Some of the most widely used test and reference applications, such
as RUBiS (RUBiS User’s Manual 2008) or Dell DVD Store (Dell, Inc., 2011), are
outdated and therefore not representative of modern real world applications.
Newer distributed reference applications, such as Sock Shop (Weaveworks Inc.,

85

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

2017), are built for maximum scalability and consistent performance and do
not pose the performance challenges that current research aims at.
In this section, we address RQ A.5: “How to create reference workloads

for complex test setups in distributed scenarios?” with a micro-service refer-
ence application. Specifically, we introduce TeaStore12, a micro-services-based
test and reference application that can be used as a benchmarking framework
by researchers. It is designed to provide multiple degrees of freedom that
researchers can vary when evaluating their work. TeaStore consists of five
different services, each featuring unique performance characteristics and bot-
tlenecks. Due to these varying performance characteristics and its distributed
nature, TeaStore may also be used as a software for testing and evaluation of
software performance models and model extraction techniques. It is designed
to be scalable and to support both distributed and local deployments. In ad-
dition, its architecture supports run-time scalability as services and service
instances can be added, removed, and replicated at run-time. The services’ dif-
ferent resource usage profiles enable performance and efficiency optimization
with non-trivial service placement and resource provisioning decisions.

To summarize, we envision the use of TeaStore in the following research
areas, among others:

1. Evaluation of software performance modeling approaches, model extrac-
tors, and model learners.

2. Evaluation of run-time software performance management techniques
such as auto-scaling and service placement algorithms.

3. Evaluation of software energy efficiency, power models, and optimization
techniques.

We demonstrate the applicability of TeaStore as a test application and bench-
marking framework in Chapter 12, Section 12.2 by using it as a reference soft-
ware in experiments that show its applicability in each of the three motivating
research areas. We show that TeaStore can be used as a reference scenario
for performance modeling by creating a simple performance model to predict
the application performance for different deployment options. This exam-
ple model also illustrates the limitations of simplified software performance
models for predicting the performance of complex distributed applications,
while highlighting open research challenges. In addition, we show TeaStore’s
1TeaStore on GitHub: https://github.com/DescartesResearch/TeaStore/
2TeaStore on DockerHub: https://hub.docker.com/u/descartesresearch/

86

https://github.com/DescartesResearch/TeaStore/
https://hub.docker.com/u/descartesresearch/

6.2 TeaStore: A Micro-Service Reference Application

elastic run-time scalability by running it using a state-of-the-art baseline auto-
scaler. We show that the baseline auto-scaler can scale TeaStore elastically
at run-time, while also demonstrating the limitations of conventional auto-
scalers for complex applications. Finally, we examine the energy efficiency and
power consumption when scaling TeaStore over multiple physical hosts. We
show that distribution and placement decisions lead to different power and
energy efficiency behavior, which can be used to evaluate energy optimization
methods.

6.2.1 TeaStore Description

TeaStore is an online store for tea and tea related utilities. Its products are
sorted into categories. For online shopping, the store supports an overview of
products including preview images for each category and featuring a config-
urable number of products per page. All pages of TeaStore show an overview
header bar and include the category menu and page footer. As main content,
it shows the products for the selected category, including shortened product
information and the preview image. Depending on the number of products
shown per page, the user has the option to cycle through multiple pages of the
category view.

Each product can be viewed on a separate product page containing detailed
information, a large image, and advertisements for other store items. Besides
the regular header, footer, and category list, this page includes a detailed image
of the product (provided by the Image Provider Service), a description, and
price. The page also contains an advertisement panel suggesting three products
that the user might be interested in. The advertised products are provided by
the Recommender Service and are selected depending on the viewed product.

All products can be placed in a shopping cart and users can proceed to order
the current shopping cart. The user can choose to modify the shopping cart at
any time. The shopping cart page lists all products currently included in the
cart together with some product information and the quantity. The shopping
cart view also displays product advertisements, which are, again, provided by
the separate Recommender service and selected depending on the shopping
cart’s contents.

To order, the usermust supply personal information about the billing address
and payment details. After confirmation by the user, the current shopping cart
is stored in the order history database through the Persistence service. The
store also supports user authentication and login. Registered users can view
their order history after login.

87

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

Figure 6.1: TeaStore architecture.

In addition to regular operations, TeaStore’s user interface provides an
overview of all running service instances and an option to regenerate the
database. In case a specific database setup or size is necessary, it can be regen-
erated with user defined parameters. These include the number of categories,
number of products per category, number of users, and maximum orders per
user history. The service overview and database regeneration are not intended
to be run during an experiment run, but separately on experiment setup.

All functionality is contained within the five primary micro-services and the
Registry service.

6.2.2 Architecture

TeaStore consists of five distinct services and a Registry service as shown in
Figure 6.1. All services communicate with the Registry. Additionally, the
WebUI service issues calls to the Image Provider, Authentication, Persistence
and Recommender services.
The Image Provider and Recommender service both connect to a provided

interface at the Persistence service. However, this is only necessary on startup
(dashed lines). The Image Provider must generate an image for each product,
whereas the Recommender needs the current order history as training data.
Once running, only the Authentication and the WebUI access, modify, and
create data using the Persistence service.

88

6.2 TeaStore: A Micro-Service Reference Application

All services communicate via Representational State Transfer (REST) calls,
as REST has established itself as the de-facto industry standard in the micro-
service domain. The services are deployed as web-services on Apache Tomcat.
Yet, the services can be deployed on any Java application server able to run
web-services packaged as war files. As an alternative to deploying the war files,
we provide convenient Docker images containing the entire Tomcat stack. Each
service is packaged in its own war file or Docker image.
TeaStore uses the client-side load balancer Ribbon3 to allow replication of

instances of one service type. Ribbon distributes REST calls among running
instances of a service. Instead of using Netflix Eureka4, TeaStore uses its own
registry that supplies service instances with target instances of a specified
target specific service type. To enable this, all running instances register and
unregister at the registry, which can be queried for all running instances of a
service. This allows for dynamic addition and removal of service instances
during run-time. Each service also sends heartbeats to the registry. In case a
service is overloaded or crashed and therefore fails to send heartbeat messages,
it is removed from the list of available instances. Subsequently, it will not
receive further requests from other services. This mechanism ensures good
error recovery andminimizes the amount of requests sent to unavailable service
instances that would otherwise generate request timeouts.
As TeaStore is primarily a benchmarking and testing application, it is open

source and suitable for instrumentation using available monitoring solutions.
Pre-instrumented Docker images for each service that include the Kieker5 mon-
itoring application (Hoorn et al., 2012, 2009) as well as a central trace repository
service, are already available. We use Kieker, as it requires no source code
instrumentation and the instrumentation can be adapated at runtime. However,
as TeaStore is open source, other monitoring solutions, such as Prometheus 6

or Logstash 7 can also be utilized.
Generally, all requests to theWebUI by a user or load generator are handled in

a similar fashion. The WebUI always retrieves information from the Persistence
service. If all information is available, images for presentation are fetched
from the Image Provider and embedded into the page. Finally a Java Server
Page (JSP) is compiled and returned. This behavior ensures that even non-
graphical browsers and simple load generators that otherwise would not fetch

3Netflix Ribbon: https://github.com/Netflix/ribbon
4Netflix Eureka: https://github.com/Netflix/eureka
5Kieker APM: http://kieker-monitoring.net/
6Prometheus: https://prometheus.io/
7Logstash: https://www.elastic.co/products/logstash

89

https://github.com/Netflix/ribbon
https://github.com/Netflix/eureka
http://kieker-monitoring.net/
https://prometheus.io/
https://www.elastic.co/products/logstash

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

Figure 6.2: Service calls when requesting product page.

images from a regular site cause image I/O in TeaStore, ensuring comparability
regardless of the load generation method.

Figure 6.2 shows the service calls for a user request for a product information
page. After receiving the Hypertext Transfer Protocol (HTTP) request, the
WebUI checks the user’s login status by calling the Auth service. Next, it queries
the Persistence service for the corresponding product information, based on
a unique identifier. Afterwards, the WebUI requests advertisement options
for the current product from the Recommender service, which generates a
recommendation based on the learned historical order data. The call to the
Recommender service takes the current login status into account. Specifically, a
logged in user receives personalized recommendations, whereas an anonymous
user is served recommendations based on general item popularity. Having
received all product information, the WebUI queries the image provider to
supply a full size image of the product shown in detail and preview images for
the recommendations. The image data is embedded in the Hypertext Markup
Language (HTML) response as base-64 encoded strings.

6.2.3 Services

TeaStore consists of five services, in addition to a registry necessary for service
discovery and load balancing. In case monitoring is enabled, a trace repository
service can be used to collect the monitoring traces centrally.

90

6.2 TeaStore: A Micro-Service Reference Application

6.2.3.1 WebUI

This service provides the user interface, compiling and serving JSPs. All data,
available categories, their products, product recommendations and images,
are retrieved from the Image Provider and Persistence service instances. The
WebUI service performs preliminary validity checking on user inputs before
passing the inputs to the Persistence service. The WebUI focuses purely on
presentation and web front-end operations. However, the performance of the
WebUI depends on the page that has to be rendered as each page contains at
least one picture in different formats.

6.2.3.2 Image Provider

The Image Provider serves images of different image sizes to the WebUI when
being queried. It optimizes image sizes depending on the target size in the
presentation view. The Image Provider uses an internal cache and returns
the image with the target size from the cache if available. If the image is not
available for this size, the image provider uses the largest available image for
the category or product, scales it to the target size, and enters it into the cache.
It uses a least frequently used cache, reducing resource demand on frequently
accessed data. Through the caching, the response time for an image depends
onwhether this image is in the cache or not. This service queries the Persistence
service once on start-up to generate all product images with a fixed random
seed.

6.2.3.3 Authentication

This service is responsible for the verification of both the login and the session
data of a user. The session data is validated using SHA-512 hashes. For login
verification, the BCrypt algorithm is used. The session data includes informa-
tion about the current shopping cart content, the user’s login status and old
orders. Thus, the performance of the hashing for the session data depends on
number of articles in the cart and number of old orders. Furthermore, as all
session data is passed to the client, the Authentication itself manages to remain
stateless and does not need additional information on startup.

6.2.3.4 Recommender

The Recommender service uses a rating algorithm to recommend products for
the user to purchase. The recommendations are based on items other customers
bought, on the products in a user’s current shopping cart, and on the product

91

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

the user is viewing at the time. The initial Recommender instance usually uses
the automatically generated data-set, as provided by the Persistence service at
initial startup, for training. Any additional Recommender instance queries ex-
isting Recommender service instances for their training data-set and uses only
those purchases for training. This way, all Recommenders stay coherent, rec-
ommending identical products for the same input. In addition, using identical
training input also ensures that different instances of the Recommender service
exhibit the same performance characteristics, which is important for many
benchmarking and modeling contexts. The Recommender service queries the
Persistence service only once on startup.

For recommending, different algorithm implementations exhibiting different
performance behaviors are available. Next to a fallback algorithm based on over-
all item-popularity, two variants of Slope One (Lemire and Maclachlan, 2005)
and one order-based nearest-neighbor approach are currently implemented.
One variant of Slope One calculates the predicted rating matrix beforehand and
keeps it in the memory (memory-intensive), wheras the other one calculates
every row if needed, but discards all results after each recommendation step
(CPU-intensive).

6.2.3.5 Persistence

The Persistence service provides access and caching for the store’s relational
database. Products, their categories, purchases, and registered store users are
stored in a relational Structured Query Language (SQL) database. The Persis-
tence service uses caching to decrease response times and to reduce the load on
the database itself for improved scalability. The cache is kept coherent across
multiple Persistence service instances. We use the EclipseLink JPA implemen-
tation as a black-box cache. All data inside the database itself is generated at
the first start of the initial persistence instance. By using a persistence service
in separation from the actual database, we improve scalability by providing a
replicable caching service. However, the performance of the database accesses
depends on the content in the database that is changed or can be repopulated
during the operation of the store.

6.2.3.6 Registry

The registry is not part of the TeaStore application under test but is a necessary
support service. It keeps track of all running service instances, their IP ad-
dresses or host names and port numbers under which the services are available.
All service instances send keep-alive messages to the registry after registration.

92

6.3 Concluding Remarks

If a service unregisters or no keep-alive message is received within a fixed time
frame, the service is removed from the list of available service instances. All
services can query the list of service instances for a specified service type in
order to distribute their outgoing requests between running target instances.

TraceRepository The services are configured with optional Kieker monitor-
ing8 (Hoorn et al., 2012, 2009). With monitoring enabled, each service instance
collects information about utilization, response times and call paths. Collect-
ing these monitoring traces manually is only feasible for small deployments,
however, TeaStore deployments can include hundreds of service instances.
Therefore, we offer a central trace repository, which consists of an AMQP server
coupled with a graphical web interface. All service instances send their logs to
the AMQP server. The web interface collects them and makes them available
for download. The trace repository does not only reduce the effort required
to acquire the monitoring traces, but also enables online analysis such as on-
line resource demand estimation (Spinner et al., 2014). Kieker traces are also
available for use with tools other than Kieker’s own tooling, as they can be
automatically transformed to Open Execution Trace Exchange (OPEN.xtrace)
traces, an open source trace format enabling interoperability between software
performance engineering approaches (Okanović et al., 2016).

Summarizing, TeaStore addresses RQ A.5 (“How to create workloads for
specialized tests, such as distributed tests or tests with certain resource usage
profiles?”) regarding tests of distributed applications. It is a micro-service
testing and reference application that can be used for evaluation of research in
several domains, including energy efficiency of distributed service placements,
consisting of five primary services. We show TeaStore’s use in research, using
three use-cases in Chapter 12, Section 12.2. TeaStore has been published at
the MASCOTS 2018 conference (Kistowski et al., 2018b) and is available as an
open-source application on GitHub and DockerHub.

6.3 Concluding Remarks

This chapter addressed RQ A.5 (“How to create workloads for specialized
tests, such as distributed tests or tests with certain resource usage profiles?”).
In regards to creation of workloads for specialized resource (CPU) profiles
this question is addressed with the Performance Event Trigger Framework
(PET). We describe PET’s approach and how to find relevant performance
8Kieker setup: https://github.com/DescartesResearch/TeaStore/wiki/
Testing-and-Benchmarking

93

https://github.com/DescartesResearch/TeaStore/wiki/Testing-and-Benchmarking
https://github.com/DescartesResearch/TeaStore/wiki/Testing-and-Benchmarking

Chapter 6: Advanced Workloads for Energy Efficiency Measurement

counters to trigger in order to emulate the power profile of a real-world server
application. PET’s implementation and performance counter set are evaluated
in Chapter 12.1. The work on PET has been published at the MASCOTS 2017
conference (Schmitt et al., 2017a).

Regarding tests of distributed applications, we address RQ A.5 by introduc-
ing TeaStore, a testing and reference application that can be used for evaluation
of research in several domains, including energy efficiency of distributed ser-
vice placements. TeaStore is a micro-service application that consists of five
primary services. We show TeaStore’s use in research, using three use-cases
in Chapter 12, Section 12.2. TeaStore has been published at the MASCOTS
2018 conference (Kistowski et al., 2018b) and is available as an open-source
application on GitHub and DockerHub.

94

Part III

Modeling the Energy Efficiency of
Servers

Chapter 7

Interpolating Power Consumption

Performance and power scale non-linearly with device utilization, making
characterization and prediction of energy efficiency at a given load level a
challenging issue. A common approach to address this problem is the creation
of power or performance state tables for a pre-measured subset of all possible
system states. Approaches to determine performance and power for a state
not included in the measured subset use simple estimation methods, such as
nearest neighbor interpolation, or define state switching rules. This leads to a
loss in accuracy regarding estimation of these unmeasured system states. In
this chapter, we address RQ B.1 of Goal B: “How to obtain information about
load level power consumption for a load level not covered by the measurements
made when applying the methodology?”. We compare different interpolation
functions and automatically configure and select functions for a given domain
or measurement set. We evaluate our approach in Chapter 13 by comparing
interpolation of measurement data subsets against power and performance
measurements on a commodity server. We show that for non-extrapolating
models interpolation is significantly more accurate than regression, with our
automatically configured interpolation function improving modeling accuracy
up to 43.6%.

7.1 Introduction

Computational devices have to run at a great range of device utilization lev-
els with power and performance scaling non-linearly over the different load
levels, as power saving mechanisms, such as Dynamic Voltage and Frequency
Scaling (DVFS) are being used. Being able to characterize and predict the
power consumption and performance at a target load level improves the quality
of management decisions and helps to improve overall energy efficiency. A
common and highly accurate method for the characterization of power and
performance of a workload on a target system at a given load level is the mea-

97

Chapter 7: Interpolating Power Consumption

surement of said characteristics. Measurement results are then stored in a table
for the set of different measured load levels and used for subsequent decisions.
These stored measurement results contain power and performance values

for a subset of possible system states. Determining the power and performance
of the system at other states remains challenging, yet necessary for accurate
management decisions. Currently, several approaches to estimate power con-
sumption at these states exits: Some tools, such as the ones by Apte and Doshi,
2014 and Verma et al., 2008a only consider the existing pre-defined states and
determine the current state either by nearest neighbor interpolation or through
other rule-based mechanisms. Another approach is the training of models
based on measured data. Models range from simple models, such as the linear
power model described by Tu et al., 2013 or Bohrer et al., 2002 and variations
thereof (Fan et al., 2007), to more complex regression models, which also take
additional system properties into account (Nagasaka et al., 2010; Lewis et al.,
2008; Lee and Brooks, 2006). Trained models can be used for the prediction of
non-measured power states on the original system. They also offer the advan-
tage of allowing the transfer of knowledge to other systems beyond the training
system. To do so, they only require a re-training of a smaller subset of model
parameters. The major drawback to the modeling approach is the introduction
of the model’s error. Regression models, in particular, even introduce errors
when modeling the pre-measured data points.

In comparison to approximation, interpolation increases prediction accuracy,
as it does not sacrifice or approximate any of the pre-measured results. A great
number of different interpolation methods exist. Depending on the system and
the power or performance metric under observation, a different interpolation
method may be optimal. In addition, some interpolation methods can be
configured with varying degrees of freedom.

This chapter presents a method for automated selection of interpolation and
configuration strategies for performance and power characterization with the
goal of minimizing prediction errors for unmeasured performance and power.
The major contributions of this chapter are as follows:

1. We present an approach for automated selection of an interpolation strat-
egy for a given set of performance or power measurements.

2. We introduce a method for configuration of interpolation strategies.

3. We propose a composition of piece-wise polynomial interpolators of
varying degrees for the interpolation of a system’s power over utilization
function.

98

7.2 Interpolation Functions

The methodology presented in this chapter has been implemented in a freely
available open-source library1.
We evaluate our method in Chapter 13 based on power and performance

measurements using ten of the workloads of the SERT implementation of our
power rating methodology in Chapter 4. Measurements are performed for 100
load levels per workload. Prediction accuracy is then evaluated regarding the
methods’ ability to predict power and performance for all load levels based
on a sub-set of the measurements. We show that for bounded problem spaces
interpolation features superior accuracy compared to regression. On our set
of measurement data, our automated interpolation method configuration and
selection approach improves modeling accuracy by 43.6% in comparison to
regression if additional reference data is available and by 31.4% if it is not.

7.2 Interpolation Functions

Hoschek and Lasser, 1993 define scattered data interpolation as the reconstruc-
tion of a continuous function f(x) from n different sample points
{(x1, f1), (x2, f2), ..., (xn, fn)}. In this thesis, we consider 2-dimensional func-
tions, where f(x) is our power or performance metric and the input metric x
the corresponding system metric (usually utilization). For these purposes, we
consider the following interpolation functions:

• Nearest Neighbor Interpolation: f(x) = f(xi) with xi ∈ {x1, ..., xn}
being the nearest neighbor to x, meaning that ∀xj ∈ {x1, ..., xn} : |x −
xi| ≤ |x− xj |.

• Linear Interpolation: Given the two nearest neighbors of x, xi and xi+1,
with xi ≤ x and xi+1 > x (Eq. 7.1):

f(x) = f(xi) + (f(xi+1)− f(xi))
x− xi
xi+1 − xi

(7.1)

• Shepard Interpolation (Shepard, 1968): f(x) = f(xi) if x = xi, otherwise
(Eq. 7.2):

f(x) =

∑n
i=1wi(x)f(xi)∑n

i=1wi(x)
(7.2)

with wi(x) = 1
|x−xi|p .

1Library: http://descartes.tools/interpolation

99

Chapter 7: Interpolating Power Consumption

Parameter p is freely configurable and usually selected based on experi-
ence. We select it using our auto-configuration approach.

• Polynomial Interpolation: f(x) = anx
n + an−1x

n−1 + ... + a0x
0, with

the coefficients ai being the solution of the following system of equations
(Eq. 7.3):

xn0 xn−10 · · · x00
xn1 xn−11 · · · x01
...

...
xnn xn−1n · · · x0n

an
an−q
...
a0

 =

f(x0)
f(x1)

...
f(xn)

 (7.3)

Polynomial interpolation of large datasets is prone to oscillation, also
known as Runge’s Phenomenon, see Shen et al., 2012. To avoid this, we
do not only perform polynomial interpolation on the entire dataset. We
also split the set into subsets of size m and interpolate these subsets
using polynomial functions of degreem− 1. The composite function of
these piece-wise polynomials constitutes the interpolation function for
the entire dataset.

• Spline Interpolation: A special type of piece-wise polynomial interpola-
tion, which guarantees that the overall function remains continuous in
all interpolated data points. The contributions of this thesis use the cubic
spline implementation of the Apache Commons Math library, described
by Burden and Faires, 1989.

7.3 Determining Interpolation Accuracy

We determine the accuracy of an interpolation function using one of these
two methods: Interpolation against a reference dataset or cross validation.
For single cases, the latter of these two options is the more common one, as
interpolation accuracy improves with additional interpolated data. As a result,
all available data is included in the interpolated data, leaving no additional
data for referencing. However, a reference dataset is most useful when deter-
mining the optimal interpolation method for a given problem domain (in our
case, a class of power or performance functions). In such a case, the optimal
interpolation function for the entire class of problems can be determined using
an (independent) reference dataset, e.g., a reference dataset measured on a
separate machine.

100

7.4 Interpolation Selection and Configuration

If a reference datasetR containing the tuples (xi, yi) is available, we calculate
a set of absolute errors E with E = {e1, ..., en} for interpolation function f as
in Eq. 7.4:

∀(xi, yi) ∈ R : ei = |f(xi)− yi| (7.4)

If no reference dataset exists, we calculate the set of absolute errors E via
cross-validation on the interpolated dataset I containing the tuples (xi, yi),
with |I| = n. We create a set of cross-validation-sets Vi as shown in Eq. 7.5:

∀i ∈ {2, ..., n− 1} : Vi = I \ {(xi, yi)} (7.5)

With fi being the interpolation function constructed using Vi, we calculate the
cross-validation errors as in Eq. 7.6:

∀i ∈ {2, ..., n− 1} : ei−1 = |fi(xi)− yi| (7.6)

Our implementation allows the metric for calculation of the final aggregate
error of the error set E to be passed using a functional expression. In this
contribution, we use the arithmetic mean (MAE) and median.

7.4 Interpolation Selection and Configuration

We allow selection of the best interpolation function for the problem’s domain
using an independent reference dataset containing a larger set of data points,
which describes a similar problem as the dataset to be interpolated. This is
usually the case if both datasets describe power per load level measurements,
yet they were measured for different workloads on different machines. As the
function to be interpolated is of the same type, we can use the independent
reference dataset for interpolation method and configuration space detection.
In such a case, we create a subset of the same size as the set to be interpolated,
containing datapoints with the closest possible input values to the input values
of the independent reference dataset (x-axis values in a 2D function). Then
we select the best configuration and interpolation methods for this subset by
comparing the aggregate modeling error of the potential interpolationmethods.
The function with the minimum aggregate error, calculated using the selected
aggregate error metric (see Section 7.3), is selected as the final interpolation
function. For functions with a configurable parameter (degree of freedom),
this parameter must be auto-configured first. Finally, we transfer the selected
method and configuration to the actual set to be interpolated.

101

Chapter 7: Interpolating Power Consumption

In some cases, reference data is not available and selection of a single pre-
configured interpolationmethod is not possible, either due to a lack of sufficient
domain knowledge or because of the problem domain’s nature. In this case,
we select the best interpolation function for a given dataset by calculating
the cross-validation error. As specified in Section 7.3, we compute different
cross-validation datasets, each with one data point removed. At least one data
point must be removed for cross-validation, as the self-prediction error of an
interpolation function is always 0. Consequently, cross-validation using the
full dataset is not possible. We evaluate the interpolation method’s ability to
predict the missing data point for each of the cross-validation datasets. The
function with the minimum aggregate error over all cross-validation datasets
is selected as the final interpolation function.

7.4.1 Interpolation Function Configuration

Among the existing interpolation functions used in this chapter, two function
types feature a configurable degree of freedom. Shepard interpolation features
the parameter p, which is usually configured using a positive single digit integer
number, yet is theoretically infinite. Piece-wise polynomial interpolation, on the
other hand, can only range between polynomials of degree 1 and polynomials
of degree dataset_size− 1.
We select the final configuration parameter using a hill-climbing approach,

as the parameters have a specified minimum value in all of our cases. To apply
hill-climbing, each parameter must have an initial parameter instance p0 and a
function h so that pi = h(pi−1). With f(pi) being the parametrized interpolation
function and e(f(pi)) being its error metric and using an initial infinite error,
we iterate over the parameters pi in an ascending order (using h) as long as
e(f(pi+1)) ≤ e(f(pi)).

7.4.2 Break Detection for Polynomial Interpolation

To improve interpolation accuracy for performance and power measurements,
we introduce a new approach to parametrization of piece-wise polynomials.
This approach is designed to minimize the interpolation error due to state
changes caused by device power management. These state changes cause non-
continuous behavior in a power or performance function. Consequently, it pays
to introduce breaks at these points when interpolating polynomials.

Breakpoints are detected at the data points featuring the greatest difference
between their power/performance and their successor’s power/performance.
Meaning that given a list (y0, . . . ym) of data points to interpolate and given a

102

7.4 Interpolation Selection and Configuration

set of n breakpoint indices B, with |B| = n, n < k, the following has to hold
true: ∀i ∈ B : |yi+1 − yi| > |yj+1 − yj |, with j /∈ B.
We use these break points for piece-wise polynomial interpolation by inter-

polating polynomials over the subsets defined within breakpoint boundaries.
An example of such a state change as mentioned above is the activation of

a processor’s turbo mechanism, which leads to a significant sudden increase
in performance and power draw at high utilization. The effect is reproducible
on newer processors and can be observed at the sudden increase of power
consumption around the 80% load level mark in Fig. 7.1, which shows the
power consumption for the seven CPU workloads of the SPEC SERT suite over
a range of target load levels. Each of the workloads was sampled at 50 load
levels ranging from 2% load to 100% device load.

RHEL6.4_E5-2690_8x8GB Power

Compress CryptoAes Lu Sha256 Sor Sort XmlValidate

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

P
o

w
e

r
(W

a
tt

)

Figure 7.1: Power consumption of SERT CPU worklets on Fujitsu PRIMERGY
RX300S7 system.

The amount of breakpoints to be applied remains a freely configurable param-
eter. It can be determined and set using the hill-climbing approach introduced
in Section 7.4.1, making the dynamically split polynomial interpolation the
third function with a configurable degree of freedom in this paper.

103

Chapter 7: Interpolating Power Consumption

7.5 Concluding Remarks

This chapter addressed RQ B.1 (“How to obtain information about load level
power consumption for a load level not covered by the measurements made
when applying the methodology?”) using several interpolation methods for
power and energy efficiency. It presents an automated selection and config-
uration mechanism that is either able to select good interpolation methods
based on reference-datasets or based on no additional information using cross-
validation. We also present a break-point detection mechanism for piece-wise
polynomial interpolation using varying degrees. The contributions of this
chapter have been implemented in an open-source interpolation library. It is
used as part of our work in Chapter 9. They have also been published at the
VALUETOOLS 2015 conference (Kistowski and Kounev, 2015).

104

Chapter 8

Offline Prediction of Power Consumption

Energy efficiency and power consumption of data centers can be improved
through intelligent placement of workloads on specific servers. Placing specific
target applications on servers onwhich they run in an energy-efficientmanner is
a first step in this regard. To enable this placement, virtualization is commonly
employed as it allows for dynamic reallocation of work and abstraction from the
concrete server hardware. However, estimating the power consumption of an
application on a not-yet-available server is difficult, as nameplate power values
are generally overestimations and do not capture the power consumption for
the multiple potential load levels. Offline power models are able to predict
the consumption of hardware components accurately, but are usually intended
for system design, requiring very specific and detailed knowledge about the
system under consideration. In addition, existing power prediction for servers
is limited to non-virtualized contexts or it does not take multiple load levels
into account. These approaches also fail to leverage publicly available data on
server efficiency and instead require experiments to be conducted on the target
system. This makes them unwieldy when making decision regarding systems
that are not yet available to the decision maker.

In this chapter, we address RQ B.2: “How to predict the power consumption
of a concrete target application or software stack (such as a hypervisor) for a
server for which the methodology’s results are available?” by introducing two
offline power prediction methods. Both use the readily available data provided
by the SPEC SERT implementation of our power rating methodology to pre-
dict the power consumption of workloads on a target server that is otherwise
unavailable for testing. Firstly, we address the research question regarding
power prediction of hypervisors by predicting the power consumption of SERT
workloads for different load levels in virtualized environments. Secondly, we
address the question regarding third-party software applications by predicting
the power consumption of such applications for multiple load levels.

We evaluate our approaches in Chapter 14. We compare predicted results of
our hypervisor power prediction method against measurements in multiple

105

Chapter 8: Offline Prediction of Power Consumption

virtualized environment configurations on a target server that differs signif-
icantly from the reference system used for experimentation. We show that
power consumption of CPU and storage loads can be reliably predicted with
a prediction error of less than 15% across all tested virtualized environment
configurations. Finally, we evaluate the accuracy of our third-party application
power prediction by predicting the power consumption of three applications on
different physical servers. Our method is able to achieve an average prediction
error of 9.49%.

8.1 Offline Power Prediction for Virtualized Environments

The use of virtualized environments is a common approach to tackle the issue
of increasing data center power consumption. Such environments abstract the
concrete hardware on which work is executed, thus offering more placement
options. They can be used to consolidate work on a smaller number of servers
or to dynamically change resource allocations at run-time. This may lead to
increased energy efficiency despite the initial power and performance overhead
caused by virtualization.

Prediction or estimation of hypervisor power consumption is a prerequisite
for intelligent server purchasing decisions with the goal to optimize energy
efficiency, as they are used on a majority of servers, especially in the cloud
domain. Prediction techniques may be useful at various times. For example,
theymay help at run-time to predict the effects of workloadmigration; theymay
help at deployment time to determine the adequate resource allocation for a new
application; they may help when designing a new execution environment to
optimize its energy efficiency. The latter is especially challenging as the devices
under consideration may not be available yet, preventing instrumentation
of these devices; finally, cloud providers need a method for predicting the
power consumption of hypervisors for not-yet-available servers. After all, the
hypervisor executed on the server is one of the few workload-relevant points of
information known to a cloud provider when purchasing new devices, whereas
the actual workload depends on the customer and changes regularly at run-
time.

Prediction of power consumption and energy efficiency of servers must also
be capable of dealing with multiple load levels on the devices under considera-
tion. Fan et al., 2007 state that servers usually operate in a load range between
10% and 50%. Consequently, while the prediction of power consumption at
maximum load may be necessary and useful for capacity planning it offers
little information about the actual power draw at run-time.

106

8.1 Offline Power Prediction for Virtualized Environments

Existing methods for predicting power consumption that explicitly model
virtualized environments are usually designed for run-time prediction using
online data obtained during system execution. These methods use this run-
time data to assist management decisions based on current and past system
behavior. The major drawback of such an approach is its inability to provide
information about systems that are not yet accessible, meaning that they cannot
be used for impact assessment of a virtualized environment during the early
stages of a cluster’s or cloud’s design.

Models that explicitly model the impact of a virtualized environment on the
overall energy efficiency and power consumption also do not express differences
in target system load levels. They support modeling the power impact of the
virtualized environment at maximum load, whereas online models allow for
assessment of load levels based on past run-time measurements.

In this section, we address RQ B.2: “How to predict the power consumption
of a concrete target application or software stack (such as a hypervisor) for
a server for which the methodology’s results are available?” in the context
of power prediction of hypervisors. We introduce an approach for explicit
modeling of the impact a virtualized environment has on power consumption.
The approach enables the prediction of this impact on two target load levels
of 50% and 100%, the former being more relevant for predicting run-time
power and the latter being more useful for capacity planning. The method is
intended for off-line power prediction enabling its use before the target device
is accessible. To this end, we utilize the data produced by the SPEC SERT
implementation of our methodology, used by the U.S. EPA in the Energy Star
standard (EPA, 2013).
By using the available SERT results of a target device and performing mea-

surements in a virtualized and non-virtualized environment on an available
reference machine, we can predict the impact of virtualization on the power
consumption of the inaccessible target device.
The major contributions of this section are as follows:

1. We measure the power consumption of virtualized environments using
the SPEC SERT, showing how standard benchmarks can be used to char-
acterize the energy efficiency of servers running in such environments.

2. We present an approach for predicting the power consumption ofmultiple
workloads running in a virtualized environment. This approach uses
data that can be obtained without having direct access to the target server
and enables prediction at two target load levels.

107

Chapter 8: Offline Prediction of Power Consumption

We evaluate our approach in Chapter 14, Section 14.1 by predicting the power
consumption of multiple configurations of the Xen hypervisor (Chisnall, 2008).
We measure virtualized and non-virtualized power consumption using the
SPEC SERT, both on a reference (base) machine and on the target system. We
predict power consumption of the target system based on measured results of
the referencemachine and the non-virtualized SERT results of the target system,
as they would be measured for the U.S. EPA Energy Star submission. We then
compare the predicted power consumption of the virtualized environment
against our measurements on the target machine.
In the evaluation, we show that our approach is able to predict power con-

sumption reliably for multiple hypervisor configurations at both load levels of
50% and 100%. We also show that it features great accuracy for the prediction
of CPU-heavy SERT workloads’ power consumption.

8.1.1 Measuring Power Consumption and Energy Efficiency

We measure power consumption and energy efficiency using SPEC’s SERT
implementation of our measurement methodology in Chapter 4. The method-
ology (and the SERT) have been designed to be executed on an operating system
running directly on the SUT’s hardware. The only additional abstraction layer
is a JVM used to execute Java-based workloads. In addition to using SERT in
non-virtualized environments, we also apply it in virtualized environments, as
described in detail in Section 8.1.1.1.

We consider all of SERT’s worklets, with Capacity serving in a double role. It
is implemented as the regular Capacityworklet as part of the Memory workload
and separately in the CPU workload under the name of XMLvalidate. XMLvali-
date is configured to use less memory, never exceeding the memory capacity of
the SUT and scale with the transaction rate, identical to the scaling behavior of
all other CPU worklets.

8.1.1.1 Measuring Power on Virtualized Systems

We measure energy efficiency of virtualized systems by deploying our work-
loadswithinVMs on the SUT.We execute theworkloads’ transactions in parallel
on all of the SUT’s active VMs. Since all VMs share the same physical host, we
expect the sum of the VMs transaction rates to be similar to the transaction rates
on the non-virtualized SUT (or the SUT with exactly one active VM), although
some performance impact by the virtualization itself is to be expected.
Virtual machines on the SUT may be over-provisioned, meaning that in

the case of multiple VMs, each VM is allowed to utilize more of the physical

108

8.1 Offline Power Prediction for Virtualized Environments

resources than would be available if all VMs on the system were at full load.
We account for this by also using a configuration that allows each VM to utilize
all processors on the SUT (CPU-share of 100%). This means that, although each
VM is theoretically capable of fully utilizing all available CPUs, it may not be
able to do so in practice as other VMs may be occupying some CPU time.

Table 8.1: Virtual environment configurations.
Config. # VMs CPU-share

1 1 100%
2 2 100% (over-provisioning)
3 2 50% (equal sharing)

We measure and predict power consumption and energy efficiency both for
virtualized environments that are configured to allow over-provisioning of
processing time for the virtual machines, as well as a configuration that shares
the available processors equally and does not allow for over-provisioning.
Specifically, we use the three configurations shown in Table 8.1.
Fig. 8.1 shows that our general measurement methodology of achieving

load levels by scaling the target throughput works as expected in virtualized
environments. Throughput scales linearly over the different load levels with
minor differences between the configurations. For the XMLValidate workload,
over-provisioning seems to impact performance resulting in a slightly lower
throughput, yet the workload still scales as expected over the load levels.

8.1.2 Prediction Approach

We predict the power consumption of a virtualized environment with a spec-
ified configuration on a given target system by using measurements from a
reference (base) system. Again, the idea behind our prediction approach is
to enable the prediction of power consumption of a virtualized environment
on a target machine that is not available to the person making the prediction.
Because of this, the only data that we can assume to be available to this person
is a standard non-virtualized SERT result of the target machine. The general
idea behind our prediction approach is that we train a model to capture how
the virtualized environment in its given configuration affects the power charac-
teristics of a system. This training is done using the reference system. Once
training is complete, the learned model can be applied to the SERT result of the
target system, providing a prediction and characterization of the power impact
of the virtualized environment.

109

Chapter 8: Offline Prediction of Power Consumption

0 10 20 30 40 50 60 70 80 90 100

Load-Level-(%)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
co

re
1-VM

2-VMs,-100%-CPU-share

2-VMs,---50%-CPU-share

Figure 8.1: Throughput-scaling of the different VM configurations for XMLval-
idate workload.

To this end, three sets of data must be available. A non-virtualized SERT
result of the reference system, a SERT result of the virtualized environment on
the reference system, and a SERT result of the non-virtualized target system.
The reference system must be available to the person making the prediction,
as specific measurements for the target environment must be performed on
this system. The SERT results for the systems running without a virtualized
environment may be obtained from third party sources (such as the system
manufacturer). The non-virtualized results for the reference system can also be
obtained through measurements by the person making the prediction.
We use multiple linear regression for prediction of the virtualized environ-

ment’s impact on power consumption. Using the data obtained for the reference
system, we construct a system of equations as ourmodel. In thismodel, we train
the linear coefficients for the regressor variables, which represent the power
consumption of the workloads as measured in the non-virtualized environment.
For each workload, the power consumption in the virtualized environment
serves as response variables.
As stated in Section 8.1.1, we use 12 workloads in our model, providing

us with 12 independent regressor variables: Idle, Compress, CryptoAES, LU,
SOR, XMLValidate, Sort, SHA256, HDD Sequential, HDD Random, SSJ, and

110

8.1 Offline Power Prediction for Virtualized Environments

Flood. Each of these workloads (except Idle) is measured at at least two load
levels (50% and 100%). We use the workloads at their respective load levels to
construct a system of equations as follows (Eq. 8.1):

y = Xβ + ε (8.1)

where

y =

Idle
Compress100%
CryptoAES100%

...
Flood100%

Idle
Compress50%
CryptoAES50%

...
Flood50%

,β =

β1
β2
...
β24

 , ε =

ε1
ε2
...
ε24

 ,

andX being the control matrix that contains the regressor variables. X is
constructed as in Eq. 8.2.

X =

0 Compress100% CryptoAES100% . . . F lood100%
Idle 0 CryptoAES100% . . . F lood100%
Idle Compress100% 0 . . . F lood100%
...

Idle Compress100% CryptoAES100% . . . 0
0 Compress50% CryptoAES50% . . . F lood50%

Idle 0 CryptoAES50% . . . F lood50%
Idle Compress50% 0 . . . F lood50%
...

Idle Compress50% CryptoAES50% . . . 0

(8.2)

However, creating a regression model where each workload is predicted
using all other workloads is not optimal. Someworkloads’ power characteristics
differ significantly from other workloads, as they scale differently with load
levels or do not scale at all (Idle). This can lead to inaccurate predictions if such
workloads are included in an equation for the prediction of another workload
for which they are not suited.

111

Chapter 8: Offline Prediction of Power Consumption

prediction

Predicted power

non-virtualized target
system SERT resultprediction model

sub-model for
workload

predict power
for target workloads

test possible sub-models
for self-prediction error

get workload
without sub-model

sub-models

virtualized & non-virtualized
reference system SERT results

[no]

[every workload in a sub-model?]

[yes]

Figure 8.2: Power prediction approach outline.

We introduce a heuristic for pruning workloads to avoid the use of workloads
that may lead to a decrease in prediction accuracy. Specifically, we use the self-
prediction error. The self-prediction error is the model’s error when predicting
the response variables it was trained with. We then create models that only
contain subsets of the overall workloads. These sub-models are optimized
towards their self-prediction error. This self-prediction error can be minimized
either for a single targetworkload or for allworkloadswithin the sub-model. For
a single workload, the self-prediction error is the absolute difference between
the predicted and measured power consumption. For all workloads in the
sub-model the self-prediction error is the result of Eq. 8.3.

self-prediction error =
1

n
·
n∑
i=1

∣∣∣∣predicted Watti − actual Watti
actual Watti

∣∣∣∣ (8.3)

where i is are the indexes of the nworkloads in the sub-model.
For each workload there are 212 = 4096 possible sub-models, as each work-

load may or may not be used in the sub-model. Removal of the empty sub-
model and sub-models that include only one workload, results in a total of
4083 potential models. Fortunately, as the self-prediction error only depends

112

8.1 Offline Power Prediction for Virtualized Environments

on the reference system, these combinations must only be tested once and the
same sub-models may then be reused for prediction of other target systems.
The sub-models are used for prediction of workload power consumption

on the target system. For this prediction, they receive the result of a SERT
run on the non-virtualized target system and use this to predict the power
consumption the workloads would exhibit on the target system if they ran in
the virtualized environment tested on the reference system. An outline of the
entire approach is shown in Fig. 8.2.

Summarizing, we address RQ B.2 (“How to predict the power consumption
of a concrete target application or software stack (such as a hypervisor) for a
server for which the methodology’s results are available?”) regarding power
prediction of the software stack. To this end, we describe an offline prediction
approach for the power consumption of virtual machine hypervisors. This
approach uses results of the SPEC SERT to train regression and predict the
SERT result of a virtualized system. We evaluate the approach’s accuracy in
Chapter 14.1. The prediction method of this section has been published at
EPEW 2015 (Kistowski et al., 2016b).

113

Chapter 8: Offline Prediction of Power Consumption

8.2 Offline Power Prediction for Target Applications

Server providers rely on educated guesses and experience when trying to
choose the most efficient and least consuming servers for their specific appli-
cation. Nameplate information about the considered devices, as supplied by
the vendor, is usually an overestimation and inaccurate. In addition, standard
benchmarks do not reflect the target application to be run on the servers in
question. The ability to accurately asses the power consumption of the servers
under consideration for their intended application would enable planning and
provisioning of energy efficient server landscapes.

Existing power models are either very generic and do not consider the work-
load, or they are assumed to be trained at run-time. Models that predict power
for unavailable systems and components, such as those of Brooks et al., 2000
and Kahng et al., 2009, are primarily intended for server and hardware com-
ponent design. They require very detailed knowledge on system internals,
which would be available to a system designer, but not necessarily to someone
intending to buy such a system.
This section addresses RQ B.2: “How to predict the power consumption

of a concrete target application or software stack (such as a hypervisor) for a
server for which the methodology’s results are available?” regarding power
prediction of software applications. It proposes a prediction method for power
consumption of servers based on standard rating tool results. The prediction
method uses publicly available rating data to predict the power consumption
of servers under consideration for a target application. Specifically, the method
uses data available from the SERT implementation of our power methodology
of Chapter 4, which is required to run for U.S. E.P.A. Energy Star labeling (EPA,
2013). Using our method, a server provisioner can predict the power consump-
tion of a future server running a target application even without access to it. Of
course, this also implies that the server provisioner does not have to perform
any measurements on the server under consideration.
Predicting the power consumption of servers using standard rating tool re-

sults is difficult, as this result set is relatively small. To address this issue, we
consider multiple prediction formalisms and introduce a parameter optimiza-
tion method. We also investigate the use of interpolation to generate additional
data points for training and prediction.
The goal of this section is to provide accurate prediction of server power

consumption for a target workload at multiple load levels, based on the SERT
results of the target server. We envision the result of this prediction, containing
information on the concrete workload under consideration and multiple load

114

8.2 Offline Power Prediction for Target Applications

levels, to be of use for planners and potential server customers when making
their decisions. In a nutshell, the core contributions are:

1. We introduce an offline prediction method for server power consumption
based on standard rating tool results.

2. We present a parameter optimization method for automated tuning of
prediction formalisms.

3. We investigate and show the use of interpolation methods to create addi-
tional training and prediction data for the power prediction domain.

We evaluate our offline prediction method in Chapter 14, Section 14.2 by pre-
dicting the power consumption of three target workloads on separate physical
servers. We evaluate the prediction accuracy the effects of parameter opti-
mization and interpolation. We show that our method can predict the power
consumption of applications for an unavailable server using only standard
rating tool results with a mean average absolute error of 9.5%, measured using
real-world, physical servers andworkloads. We also show that our combination
of interpolation and parameter optimization methods greatly aids in achieving
accurate predictions in a domain with little training and prediction data.

8.2.1 Challenges when using SERT for Offline Power Prediction

As explained in Chapter 4, SERT features seven CPU worklets in version 2.0.
Each worklet is measured at four load levels (25%, 50%, 75%, 100%), with the
exception of SSJ. SSJ is measured at eight load levels instead of the four levels
of the other CPU worklets. In addition to the CPU worklets, the two storage
worklets are run at two load levels (50% and 100%).

In addition, SERT features two memory worklets: Flood and Capacity. Flood
tests the SUT’s memory bandwidth, whereas Capacity tests its capacity. How-
ever, the memory worklets do not use the same load level scaling mechanism
as the other worklets. Each features two load levels that differ in the amount of
memory reserved for the worklet instead of scaling with the transaction rate.
Because of this, we expect these worklets not be as useful in training power
models as the storage and CPU worklets.
The major challenge in training models based on SERT results is twofold:

1) The amount of data points per worklet is relatively small and 2) it varies
between the worklets. The load levels can be configured in theory, but standard
compliant runs use the load levels described in this section. As we intend our
model to be used with publicly available results, we must deal with the small
and varying load level numbers.

115

Chapter 8: Offline Prediction of Power Consumption

Input and Variable Processing

Parameter Optimization

Select
Regressor
Variables

Current
Server SERT

Result

Current
Server App

Result

Target Server
SERT Result

Interpolate
Missing

Variables

Select
Response
Variables

Interpolate
Missing

Variables

Training
Regressors

Response
Variables

Prediction
Regressors

Determine Search
(Sub-)Space

Find Local
Minima

Modeling
Formalisms

Optimized
Formalisms

Formalism Selection

Compute Self-
Prediction Error

Modeling
Formalisms

Single Best
Formalism

repeat

Predict Power

Target Server
App Result

Figure 8.3: Outline of power prediction approach.

8.3 Offline Power Prediction

The goal of our offline power prediction approach is the prediction of a target
application on a target server not yet available to the operator currently running
the application. The general idea behind the prediction approach is as follows:
The operator has a current server on which the target application in question is
being executed or upon which it can be deployed for testing. The operator
measures the performance and power consumption of the target application
for multiple load levels on this server. The prediction also requires a SERT
result for the current server, which can be measured or obtained using a public
database. Finally, it also requires a SERT result for the target server, which can
be obtained from the vendor or a public database.
Predicting the power consumption of the target application for multiple

potential target devices can help decision makers when deciding with which
device to provision their cluster or data center. In addition, this approach could

116

8.3 Offline Power Prediction

also be used in a general software placement context. An outline of the overall
approach is illustrated in Figure 8.3. The approach is modular, allowing to
use a regression method from a pool of methods. Specifically we consider the
following methods:

• Regression Tree (CART): the maximum number of leaf nodes in a tree (max
nodes) and the number of instances in a node before splitting (node size)

• Random Forest and Gradient Tree Boost: the number of trees in the forest
(num trees)

• Gaussian Process Regression: the shrinkage regularization parameter of
the gaussian processe’s kernel and the kernel width

8.3.1 Regressor and Response Variables

In general, power prediction is a prediction problem on a continuous scale
and can thus be posed as a regression problem. These problem statements can
be solved by various regression and/or classification algorithms. In general,
regression problems have the following form (Eq. 8.4):

Y ≈ f(X,β) (8.4)

where y is the vector of response variables (also called dependent variables),X
the set of regressor variables (also called independent variables), and β the set of
regression parameters to be trained. In this work, we map our domain specific
measurement results to generic regressor variables and response variables,
allowing for a range of regression and classification models to be used, as
opposed to limiting ourselves to a single model.

8.3.1.1 Target Application Power Response Variable for Training

We measure the power consumption of the target application at multiple load
levels on the current server. We then construct the training response vector from
these power consumption results. As an example, the measurements at four
load levels (100%, 75%, 50%, 25%), the training response vector y would be
constructed as shown in Equation 8.5:

y =

power(App100%)
power(App75%)
power(App50%)
power(App25%)

 . (8.5)

117

Chapter 8: Offline Prediction of Power Consumption

Note that the number of load levels may have great impact on the prediction
accuracy. Specifically, not all load levelsmeasured for the target applicationmay
havemeasurement counterparts for all worklets in the SERT (and thus in our set
X of independent regressor variables). We tackle this issue using interpolation
in Section 8.3.3. As explained in Chapter 4, the load levels are derived from
the workload’s throughput. Consequently, this approach is applicable to any
application with a measurable throughput. For many applications, this would
be a request rate (e.g., HTTP requests per second for web applications).

8.3.1.2 SERT Results as Regressor Variables

The matrix X of independent regressor variables is constructed from the per-
load level measurement results of the separate worklets. Specifically, we con-
struct a vector from a singlemeasurementmetric, such as power or performance
over the load levels of a worklet. We consider the following metrics for con-
struction of our vectors:

• Performance: The average throughput of the worklet at the specified
load level (in s−1).

• Power Consumption: The average power consumption of the SUT when
running the worklet at the specified load level (inW).

We do not consider the measured temperature, as it is measured as a control
metric at the SUT inlet and thus independent from the system state. Equa-
tion 8.6 shows an example regressor variable matrix X that uses the load level
percentages and power consumption of several worklets with four load levels.

X =

1 0.75 0.5 0.25

pwr(Com.100%) pwr(Com.25%)
pwr(AES100%) pwr(AES25%)

...
...

...
...

pwr(SSJ100%) pwr(SSJ25%)

 . (8.6)

Again, the number of measured load levels is important and affects accuracy.
Yet, as explained in Section 8.2.1, the worklets within SERT are measured
with different load level counts. However, many regression methods require
training vectors of equal size. In our case, this would imply measurements
with the same load level counts for all worklets. We address this issue threefold
by (1) discarding load levels, (2) discarding worklets, and (3) interpolation
(see Section 8.3.3). We discard some worklets that do not fit into the load

118

8.3 Offline Power Prediction

level schema (such as Capacity) or feature too few load levels for accurate
interpolation (Flood and the storage worklets). In addition, we can add the
power consumption of the Idle worklet as the power consumption of each
worklet at 0% load.

8.3.1.3 System Power as Expected Output

The models predict system power consumption for each of the load levels of
the application under consideration running on the target server. The number
of load levels is implicitly specified by the size of the training response vector y.

8.3.2 Prediction Formalisms under Consideration

We consider four underlying prediction formalisms for power prediction: re-
gression trees in three variations and Gaussian mixture models. These for-
malisms can be used as part of our power prediction framework. For regression
trees, we use Regression trees (CART) (Breiman et al., 1984), gradient tree
boosting (Friedman, 2001), and random forests (Breiman, 2001). In general,
regression trees are built using binary recursive partitioning, which means
repeated iterative splitting of data into partitions or branches.
Gaussian Mixture Models are stochastic models based on a a mix of proba-

bility distributions. They capture a target distribution using superposition of
multiple Gaussian distributions, adjusting their means and covariances. Gaus-
sian mixture models are a candidate for power prediction in this work, as they
have been used to model power consumption of server environments in the
past (Dhiman et al., 2010).

8.3.3 Interpolating Measurement Results

We require the same amount of measurements for each worklet used to con-
struct the regressor matrix X . However, SERT’s default settings measure dif-
ferent worklets with different load level counts. We consider two options to
tackle this issue: zero padding and interpolation. Both methods are intended
to create artificial results at the missing load levels for the respective worklets.
Zero padding simply fills the gaps in load levels for worklets with too few

levels with results containing the value 0. This method is primarily useful if
these results are needed for mathematical correctness, but otherwise discarded
later in the prediction process (i.e., when the prediction method in question
does not use them). Otherwise, the expectation is that zero padding enables
the prediction to run, but with negative effects on prediction accuracy.

119

Chapter 8: Offline Prediction of Power Consumption

Interpolation creates missing results based on the neighboring load levels’
results. In general, it is the reconstruction of a continuous function f(x) from n
different sample points {(x1, f1), (x2, f2), ..., (xn, fn)}. We investigate the use
of three interpolation methods, which are explained in detail in Chapter 7:

• Nearest Neighbor Interpolation

• Linear Interpolation

• The cross-validation interpolation approach of Chapter 7, which selects an
interpolation method from a range of polynomial and scattered interpo-
lation methods using cross validation. Note that this approach requires
a minimum of three points of data in a set to be interpolated. This is an
issue in our use-case, as some worklets only feature two datapoints. We
have to discard these worklets when using this interpolation, whereas
nearest neighbor and linear interpolation are capable of working on the
smaller sets.

8.3.4 Self-Prediction Accuracy

Our power prediction model uses parameter optimization and cross-validation
of the different underlying modeling formalisms in order to increase the pre-
diction’s accuracy. During this optimization phase, each potential optimization
candidate is evaluated and either discarded or adopted. We use the model’s
self-prediction error for this run-time evaluation. We then predict the training
target application power consumption values and compare the resulting errors.
We allow the use of several error metrics for this comparison and consider two,
specifically:

1. Root Mean Squared Error:

eRMSE =

√∑n
i=1(y

′
i − yi)2
n

.

2. Mean Absolute Percentage Error:

eMAPE =
100

n

n∑
i=1

‖y′i − yi‖
yi

.

120

8.4 Concluding Remarks

8.3.5 Parameter Modeling and Optimization

The prediction formalisms used by our offline prediction approach feature
several different formalism-specific parameter settings that can affect the pre-
diction’s accuracy. Specifically, we consider the following parameters:

We optimize these parameters automatically using amethod inspired byNoor-
shams et al., 2013. We create a generic parameter model, which sets the opti-
mization exploration space for each paramter by assigning it a minimum and
maximum value and an initial exploration step size. We then apply an iterative
local search for each parameter. We split the parameter’s search space between
its minimum and maximum values into k + 1 eqal parts, resulting from the
parameter’s step size. We then calculate the self-prediction error of the model
with the parameter under consideration for each of the potential values. We
then create local search spaces around each local minimum, and iteratively
explore those search spaces with a halved step size. This process repeats un-
til a maximum search depth d is achieved, at which point the smallest local
minimum is picked. We perform the parameter value search for each potential
parameter. This is then repeated iteratively for all parameters for n iterations,
where n the number of parameters per default.

Summarizing, we address RQ B.2 (“How to predict the power consumption
of a concrete target application or software stack (such as a hypervisor) for a
server for which the methodology’s results are available?”) regarding power
prediction of a target appplication. To this end, we describe an offline prediction
approach for the power consumption of such applications. This approach uses
results of the SPEC SERT to train regressionmodels including interpolation and
parameter optimization. We evaluate approach’s accuracy in Chapter 14.2. The
prediction method of this section has been published at ICPE 2019 (Kistowski
et al., 2019a).

8.4 Concluding Remarks

This chapter addressed RQ B.2 (“How to predict the power consumption of
a concrete target application or software stack (such as a hypervisor) for a
server for which the methodology’s results are available?”). We address the
question regarding power prediction of the software stack and regarding third-
party software applications. To this end, we describe two offline prediction
approaches able to predict the power consumption of otherwise unavailable
servers. The first approach predicts the power consumption of virtual machine
hypervisors, whereas the second predicts application power consumption.
Both use results of the SPEC SERT to train their respective regression models.

121

Chapter 8: Offline Prediction of Power Consumption

We evaluate the accuracy of both approaches in Chapter 14. The work in this
chapter has been published at EPEW 2015 (Kistowski et al., 2016b) and ICPE
2019 (Kistowski et al., 2019a).

122

Chapter 9

Online Prediction of Power Consumption

The power consumption of servers in data centers depends greatly on the soft-
ware running on each server and how it interacts with the hardware. As a result,
different deployments of distributed software components on heterogeneous
servers can lead to significant differences in power consumption depending on
which component is deployed on which server and depending on what work-
loads the components are exposed to. As workloads and load intensity change,
components may be re-deployed or exchanged in order to reduce the power
consumption for the current load profile. Deciding which component to place
on which server during run-time remains difficult as the power consumption
that would result from such a placement remains unknown. Existing work
on component deployment optimization at run-time focuses on maximizing
performance. Work that considers power consumption does so in the context
of static design time placement decisions.
In this chapter, we address RQ B.3 of Goal B: “How to use power measure-

ments or pre-measured results at run-time to predict the power consumption
of software component placements?”. We introduce a model to predict the
power consumption of component placements at run-time based on the load
and power profile collected for a running distributed application in a heteroge-
neous environment. In addition, we present a model, which enables the use
of our approach without dedicated power measurement devices, predicting
power consumption based on load intensity and performance counters. We
show that we can predict the power consumption of two different distributed
web applications with a mean absolute percentage error of 2.2%. In addition,
we can predict the power consumption of a system at a previously unobserved
load level and component distribution with an error of 1.2%.

9.1 Introduction

The power consumed by servers in data centers depends on the specific software
running on each server and on how this software interacts with the underly-

123

Chapter 9: Online Prediction of Power Consumption

ing hardware. Differences in the software design, specific implementation,
and the hardware on which it runs can result in different power profiles, as
can be observed in our rating methodology evaluation in Chapter 12. As a
result, the deployment of distributed software components on heterogeneous
servers can lead to significant differences in power consumption depending
on which component is deployed on which server. In addition, the power
consumption depends on each component’s workload, which usually varies
over time, especially in common transactional enterprise applications, such
as the web or database applications considered in Chapter 11.1. For each soft-
ware component, the power consumption may scale differently as the load
increases. Therefore, the most efficient component placement on the servers
under consideration may change over time.

As the load changes over time, components (or services) may be re-deployed
to different devices in order to reduce the power consumption for the current
load profile. They may also be replaced by components with the same interface
but with a different implementation that provides better efficiency for the
current load level. In addition, modern architectures allow for load balancing
between multiple deployment instances of each component, allowing for a
great number of potential deployment options. For example, components or
(micro-) services may be replicated, exchanged, or moved to different devices.
The power consumption of such potential deployments is unknown in advance,
making informed management decisions difficult.
Existing approaches for prediction of non-functional properties of compo-

nent deployment focus on performance. Architectural component modeling
platforms, such as the ones of Becker et al., 2009 and Huber et al., 2017 support
the prediction of performance characteristics at design time and run-time. Some
architectural models also feature a power prediction aspect. However, these
power prediction methods are used in a static context based on pre-defined
system power models. Such models typically provide low accuracy or they
are highly dependent on specific workloads (Rivoire et al., 2008) and require
modeling in advance.

In this chapter, we propose an end-to-end modeling approach for predicting
the power consumption of component placements at run-time. This includes
a software deployment model, capturing the deployment of components on
physical hosts while explicitly supporting the modeling of component repli-
cations and different component implementations. The deployment model
is designed to only require basic information about the system, specifically
about the structure and deployment infrastructure, such that it can be easily
assembled without much modeling effort. The power prediction model makes

124

9.1 Introduction

use of run-time monitoring data about the observed power consumption under
varying load levels. It captures the individual components’ power profiles
and their interactions based on which it can predict the power consumption
of a new component placement configuration. The model can also be used to
predict the power consumption at load levels that were not yet observed on the
running system. In addition to the general end-to-end model, we introduce
a separate single server power model, which is based on our offline power
prediction model of Chapter 8.2. This single server power model eliminates
the need for dedicated power measurement devices at run-time that would
otherwise be required to use our general end-to-end prediction model.
The goal of this chapter is to enable informed component placement deci-

sions that minimize the system power consumption. Our modeling approach
can be used to find the least power consuming deployment option for a target
throughput level. It can also be used in conjunction with any existing software
performance model to optimize the energy efficiency of distributed systems.
Note that our modeling approach is agnostic of the type of distributed archi-
tecture, e.g., if it is a component or (micro-)service based architecture. All
of these architectures allow for distribution and replication of their software
entities and our model is designed be used in either of these contexts. However,
we use the term component throughout this paper to refer to components or
(micro-)services.

The major contributions of this chapter and its evaluation in Chapter 12 are
as follows:

1. We propose an end-to-end modeling approach for run-time prediction
of the power consumption of component deployments in heterogeneous
environments.

2. We present a deployment model that supports the use of replicated com-
ponents with alternate implementations with the goal of enabling power
predictions.

3. We integrate a separate single server power model that eliminates the
need for dedicated power measurement devices for run-time power pre-
diction.

4. We demonstrate the extent to which varying loads and varying com-
ponent deployments can be used to train power prediction models at
run-time.

We evaluate our models in Chapter 15 using two different web applications
deployed in a heterogeneous environment with servers of different CPU hard-

125

Chapter 9: Online Prediction of Power Consumption

ware architectures. We predict the power consumption of different component
placements, including placements that make use of component replication
and that vary the component implementations. We show that we can predict
the power consumption of previously unobserved deployments with a mean
absolute percentage error of 2.2%. In addition, we show that we can predict
the power consumption of a system at a previously unobserved load level and
component distribution with an error of 1.2%.

9.2 Power Prediction Model

We introduce two separate power models. The first model is an end-to-end
model for predicting the power consumption of a workload based on its de-
ployment on physical or virtual machines and based on the load intensity. The
second one predicts the power consumption of a physical server based on
performance counters and standard benchmark results. The two models can be
combined, as the end-to-end model requires the sum total power consumption
of the physical machines on which it runs. It uses this data for training. This
required information can be obtained using run-time measurements, which
requires power instrumentation. This instrumentation can be omitted when
combining it with our server power prediction model.

9.2.1 Workload Deployment Power Prediction

The workload deployment power prediction model is designed to predict
the power consumption of an end-to-end system for a specific component
deployment at a specified load.

The model input, training data, and expected output are illustrated in Fig. 9.1.
The power model requires the current throughput and the current deployment
as input. It is trained using the power consumption of the entire system, which
depends on the deployment and throughput. The model predicts the end-to-
end systempower consumption for a specified newdeployment. The prediction
method is not fixed and may be changed.

9.2.1.1 Prediction Method

Power prediction is a problem on a continuous scale and can thus be posed as a
regression problem. Consequently, both of our prediction models are designed
to pose and solve regression problem statements. These problem statements

126

9.2 Power Prediction Model

Example Host 1

 deployment1 : Component1

 deployment2 : Component4

Example Host 2

 deployment3 : Component1

 deployment4 : Component2

 deployment5 : Component3

Current Full-System
Power Consumption

Current Througput

Current Deployment

Power
Model

Predicted System
Power for new

Deployment

Output Data

Input Data

Response Data

Prediction Model

Training Data: Model: Output:

Target
Deployment

Target
Throughput

Figure 9.1: Workload deployment power prediction data flow with example
deployment.

can be solved by various regression and/or classification algorithms. In general,
regression problems have the following form (Eq. 9.1):

Y ≈ f(X,β) (9.1)

where Y is the set of dependent variables (also called response variables),X
the set of independent variables (also called regressor variables), and β the set
of regression parameters to be trained. In this work, we use generic regressor
variables and regression parameters, allowing any type of regression models
to be used, as opposed to limiting ourselves to a single model, such as linear
regression. The following regression models and algorithms are explicitly
supported:

• Regression Trees, part of the Classification And Regression Tree (CART)
class of algorithms, first introduced by Breiman et al., 1984,

• Random Forests, a classification algorithm using different uncorrelated
parallel decision trees (Breiman, 2001),

127

Chapter 9: Online Prediction of Power Consumption

*

DeploymentModel

Host

Implementation

*

NoComponent

Deployment

replications: Integer

Component
*

*

*

1

* 1

Figure 9.2: Deployment meta-model.

• Gradient Tree Boosting, a boosting method for decision trees, proposed
by Friedman, 2001.

9.2.1.2 Throughput as Input Variable

We consider throughput on the level of the entire distributed application. We
use throughput in favor of load intensity (request/job arrival rate) because
of the scaling behavior of power consumption regarding these two proper-
ties. As long as the system is not saturated (remains under capacity), power
consumption scales in a workload specific way as the load increases. At load
levels below saturation, throughput equals the load intensity. However, once
the load intensity exceeds system capacity (the maximum throughput), both
the throughput and the power consumption stop scaling and stabilize at a
given level. This observation is already used for workloads in power rating
and benchmarking and is applied in our rating methodology in Chapter 4. It
justifies our use of throughput instead of load intensity.

When mapping to regression model regressor variables, throughput can be
mapped to a single variable.

9.2.1.3 Deployment Model as Input Variable

The deployment model describes which component (or service) is deployed on
which host. It supports component replication (multiple instances of the same
component) and multiple competing component implementations. Fig. 9.2
shows the deployment model’s meta-model.

128

9.2 Power Prediction Model

The deployment model maps the components to the physical hosts on which
they are deployed. We refer to each mapping of a component to a host as a
deployment. Each component may feature multiple deployments, as it may
be replicated across multiple hosts. For each host, the components within its
deployments must all be unique, however, if a component is deployed multiple
times on the same host, the replication parameter of the deployment may be
used to indicate this. Each component may have multiple component implemen-
tations. Each implementation has exactly one (possibly replicated) component
that it implements. When deploying a component, the concrete implementa-
tion used in the deployment must be specified. We provide a no component
implementation, which is used to create valid models for regression algorithms
that require the specification of a mapping of each component to each host,
even though the component may not be deployed on that host. Note that on
a semantic level no implementation equals a replication factor of 0. However,
some power prediction methods may gain accuracy from modeling both the
zero replication factor as well as the no implementation mapping. Also note
that hosts may be either physical or virtual hosts, even if multiple virtual hosts
are co-located on the same physical machine. However, our model assumes
that virtual hosts are fixed to physical hosts to avoid having to explicitly model
mappings between the two. Consequently, a VM migration would be modeled
as a component changing its deployment to a new virtual host.

When mapping a deployment model to regressor variablesX , every com-
ponent must feature a deployment for each host. It should use a no component
implementation in case it is not actually deployed on the specific host. We
specify regressor variables as shown in Algorithm 9.1. Firstly, we create a
regressor for the total number of hosts. Then, for each host and each deploy-
ment, we create a regressor with the replication count of that deployment. We
assign an integer value to each component implementation in ascending order,
starting from 0. This implementation tag is used for the final regressor for the
specific deployment. This final step may be omitted if only a single known
implementation exists for the component in question.

The deployment model and the power prediction model as a whole are
load distribution agnostic. This means that no explicit component assembly
specification or seperate specification of distribution strategies is required. The
effect of load distribution is implicitly learned when learning the relationship
between deployment, throughput, and power consumption.

129

Chapter 9: Online Prediction of Power Consumption

Algorithm 9.1:Mapping of the deployment model to regressor variables.
Data: regressors: ordered list of regressorsX ,
deploymentModel: instance of DeploymentModel

1 Function createRegressors()
2 regressors.append(deploymentModel.hosts)
3 for host← deploymentModel.hosts do
4 for deployment← host.deployments do
5 regressors.append(deployment.replications)
6 if |deployment.component.implementations| > 1 then
7 regressors.append(
8 mapImplementationToInteger(
9 deployment.implementation))

9.2.1.4 System Power Response Variable for Training

System power consumption in watts must be collected during run-time. We
collect the aggregate power consumption of all physical hosts in the system.
Power can be collected using one of two ways:

1. using one ormore external powermeasurement deviceswhich instrument
the hosts under observation,

2. using the single server power prediction model, which is introduced in
Section 9.2.2.

9.2.1.5 System Power as Expected Output

The model predicts system power for a given system throughput and deploy-
ment model instance. The predicted power in watts is the sum total consump-
tion of all physical hosts.

9.2.1.6 Applying the Model to a Running System

The power prediction model is designed for use in a run-time system where
data on current deployments, throughput, and power consumption (via mea-
surements or through the use of our single server power modeling approach)
is continuously being gathered. The model may be retrained at each point in
time with the most current data sets. We envision the following application
scenario (an example scenario is illustrated in Fig. 9.3).

130

9.2 Power Prediction Model

0

2000

4000

6000

8000

10000

12000

14000

Time

Tr
an

sa
ct

io
n/

 s
ec

Throughput

Throughput

Training Phase Prediction Phase

Depl 1 Depl 2 Depl 3 Depl 2 Depl 4 ?

Software Deployments

Figure 9.3: Example scenario for use of the workload deployment power pre-
diction model.

The load intensity of production server systems typically varies over time.
We train the model by observing the system under varying load intensity. We
log the throughput of the system on a continuous basis (e.g., once per second).
In addition, we log the power consumption and information on the current
deployment. From these observations, we obtain a new training vector. The
model may be retrained at any point in time and is expected to be retrained
periodically. Once trained, it may be used to predict power consumption of a
future configuration. This future configuration could be either a previously
unobserved deployment, a previously unobserved load level, or both.

9.2.2 Single Server Power Prediction

The run-time power model described in the previous section requires power
consumption data for training. However, we cannot assume that every physical
server has a power analyzer attached to it. Consequently, in this section, we
propose a server power prediction model that can be used to predict the power
of a single server. This model is designed to be used as a substitute for separate
power analyzers in case they are not available. It is inspired by the offline
prediction model of Chapter 8.2, but adapted to use performance counters to
enhance its accuracy in an online prediction context.
The single server power model requires offline training in order to fully

characterize the power behavior of the servers in question. Again, we use the

131

Chapter 9: Online Prediction of Power Consumption

CPU Performance
Counters

Single Server
Power

Single Server
Power Model

Single Server
Power

Output Data

Input Data

Response Data

Prediction Model

Training Data: Model: Output:

Figure 9.4: Single server power prediction model data flow.

SERT implementation of our rating methodology in Chapter 4 considering that
it is run on all server models as part of the U.S. EPA Energy Star testing process.
As a short recap: SERT uses a total of 13 different mini-workloads, called
“worklets”. Each of these worklets, except for the idle worklet, are executed
at multiple load levels. For each of the load levels, SERT measures worklet
throughput and power consumption on a per second basis. In contrast to the
offline prediction method of Chapter 8.2, we configure our SERT runs, which
gather the model’s training data, to 25 load levels per worklet.
We also modify SERT to measure average CPU performance counters in

addition to throughput and system power consumption for each load level.
This is the same modification also used in Chapter 10. This allows us to train
a power prediction model that predicts power consumption based on CPU
performance counters (see Fig. 9.4). We train our model using those worklets
for which power consumption scales with throughput and which are run at
multiple throughput levels. Worklets fitting these criteria are the seven CPU
worklets and the SSJ worklet (see Section 4.2.2.1).

Again, regression is used as prediction method. The CPU performance
counters are mapped to regressor variables, the measured workload power is
used as response variable.
We make use of the ability of modern CPUs to report their own power

consumption. We employ this feature for power measurements, considering
that CPU power consumption has been shown to correlate significantly with
full-system power consumption (Rivoire et al., 2008). In addition, we consider
workload memory characteristics. Unfortunately, thememory power consumption
performance counter is only available on very few platforms, so we use memory
bytes written counter instead. We expect it to have a greater correlation to the

132

9.2 Power Prediction Model

memory power consumption than the CPU counter for memory bytes read, as
the latter includes cache reads (see our performance counter description and
analysis in Chapter 6.1), which do not cause any memory power draw. We
explore the model’s accuracy when using further CPU performance counters
in Chapter 15.4.

9.2.3 Concluding Remarks

This chapter addressed RQ B.3 (“How to use power measurements or pre-
measured results at run-time to predict the power consumption of software
component placements?”) by presenting an online prediction method for the
power consumption of distributed component deployments on servers. It con-
sists of two parts: an online part, which predicts power consumption of systems
depending on component deployments and load intensity and an offline part,
which predicts the power consumption of the single servers within the overall
system using performance counters. We evaluate both parts separately and
when used together in Chapter 15. The models and prediction methods of
this chapter have been published at the ICAC 2018 conference (Kistowski et al.,
2018a).

133

Part IV

Validation and Conclusions

Evaluation Goals

The work presented in this thesis follows two main goals, as introduced in
Section 1.4:

Goal A: Create a comprehensive power and energy efficiency measurement
and rating methodology for servers.
The methodology should enable rating of a broad range of servers and
should be applicable for users in different contexts, including regulators,
system designers, and potential buyers.

Goal B: Provide methods for using the results of the measurement methodol-
ogy for data center provisioners and/or operators.
Data center provisioners and/or operators should be given methods to
use the data provided in the measurement results for better decision
making by helping to predict the effects of their actions.

To achieve this goal, we introduced a measurement and rating methodology,
workloads, and load models and distributions in Part II and power models and
prediction methods in Part III.

The goal of the evaluation presented in this part is to demonstrate that
our rating methodology and the additional contributions adding to it adhere
to the following quality criteria, as presented in Section 2.4: (1) relevance,
(2) reproducibility, and (3) fairness. Regarding the models and prediction
methods, our main evaluation goal is to determine the accuracy at which these
formalisms can describe power consumption.

In the following, these evaluation goals are broken down into several specific
evaluation questions (EQs) to be answered. We pose evaluation questions for
our rating methodology and its related contributions and describe evaluation
aspects concerning the accuracy of our power models and prediction methods.

137

Quality of Power Rating Methodology

Our power measurement and rating methodology should ensure the primary
quality criteria for benchmarks (see Section 2.4). We evaluate it regarding
the criteria of relevance, reproducibility and fairness. The remaining two crite-
ria, verifiability and usability, do not receive focus since they depend on the
specific implementations and applications of the methodology. Regarding
reproducibility, our evaluation must answer these questions:

• EQ A.1: Does the methodology produce consistent power and perfor-
mance results when applying it repeatedly? (addresses reproducibility)

• EQ A.2: Does the metric correctly order systems by their energy effi-
ciency? (addresses fairness)

• EQ A.3: Does the metric have a relationship with the energy efficiency of
real-world workloads? (addresses relevance)

We pose evaluation questions for the additional contributions of Part II,
which are evaluated in Chapters 11 and 12. Those contributions also address
some of the above mentioned quality criteria. Each of the following questions
targets the quality criterion, which the specific contribution addresses the most.
This is mostly relevance, with one exception.

• EQ A.4: Can the modeling formalism and extractor accurately express
the load variations of real-world load profiles? (primary quality criterion:
relevance)

• EQ A.5: Can we evaluate the energy efficiency of load distribution poli-
cies? (primary quality criterion: relevance)

• EQ A.6: Can we accurately emulate the power profile of a more com-
plex workloads using performance counters? (primary quality criterion:
reproducibility)

• EQ A.7: Can our distributed reference application be used to evaluate
the quality of micro-service placements regarding energy efficiency and
power? (primary quality criterion: relevance)

Prediction Accuracy

Our power models and prediction methods should model and predict the
power consumption of servers with good accuracy. Therefore, our evaluation
questions are relatively straight forward:

138

• EQ B.1: Can interpolation be used to accurately model power consump-
tion per load level on servers?

• EQB.2: Can we accurately predict the power consumption of hypervisors
and applications on unavailable servers, based on results provided by
our rating methodology?

• EQ B.3: Can we accurately predict the power consumption of a potential
software component placement based on run-time data?

139

Chapter 10

Quality of the Server Efficiency Rating
Methodology

We evaluate our methodology with respect to the primary quality criteria for
benchmarks (see Chapter 2). We address relevance, reproducibility and fair-
ness. Verifiability and usability are not considered since they depend on the
specific implementations and applications of the methodology. We evaluate
reproducibility by analyzing the power and performance variations when ap-
plying the methodology repeatedly. We show the fairness of the methodology’s
metric by presenting a mathematical proof and showing correlations of metric
results to energy efficiency properties of servers. Finally, we evaluate relevance
by analyzing the metric score’s relationship to real-world workload energy
efficiency.

The evaluation of our methodology answers the evaluation questions EQA.1
through EQ A.3. To recap the questions, they are:

• EQ A.1: Does the methodology produce consistent power and perfor-
mance results when applying it repeatedly? (addresses reproducibility)

• EQ A.2: Does the metric correctly order systems by their energy effi-
ciency? (addresses fairness)

• EQ A.3: Does the metric have a relationship with the energy efficiency of
real-world workloads? (addresses relevance)

10.1 Reproducibility

We investigate the reproducibility of our methodology, addressing EQ A.1
(“Does the methodology produce consistent power and performance results
when applying it repeatedly?”) by analyzing the variations in energy efficiency
and power consumption of selected worklets. We analyze these variations
between separate (re-)runs of a test. The goal of this investigation is to show that

141

Chapter 10: Quality of the Server Efficiency Rating Methodology

these variations are sufficiently small to be able to trust a result obtained using
our methodology. We focus on CPU-worklets with high power consumption, as
the CPU is the hardware part with the greatest power variation in commodity
servers (Barroso andHolzle, 2007). Consequently, we focus on the LU, Compress,
SOR, and SHA256worklets. As a reference point, we characterize and measure
the power consumption of the Idle worklet. We investigate how variations in
efficiency and power consumption are affected by a worklet’s load level and
by BIOS settings. Specifically, we investigate the effect that the CPU Turbo has
on power variations. As a reference workload, we use LINPACK. It is a high
power-consuming workload that does not employ our methodology, it only
runs at a single (maximum) load level. However, it still enables us to compare
the run-to-run and intra-run variation of workloads within our methodology
to a workload that does not employ it. We use LINPACK to compare power
consumption variations only (not efficiency), as it does not measure throughput.
Similarly, Idle is only used when comparing power consumption.
We use two different systems for these experiments:

• Sun Server X3-2 system with 4 x 4 GB RAM. This system has an Intel
Xeon E5-2609 processor (80 W Thermal Design Power (TDP)) with four
cores running at a frequency of 2.4 GHz. This system does not feature
a turbo mode. Instead, we perform a series of tests with all BIOS power
management disabled.

• Fujitsu RX2540 M1 system with 4 x 16 GB RAM. We use an Intel’s Xeon
E5-2680 v3 processor on this system. It features 12 cores and a base
frequency of 2.5 GHz (up to 3.3 GHz with turbo, 120 W TDP).

We employ the Intel Performance Counter Monitor (Intel PCM, see Willhalm
et al., 2012) to collect additional performance data in addition to full-system
power consumption and worklet throughput. Intel Performance Counter Moni-
tor (Intel PCM) collects performance counters from the CPU itself. We use it to
collect information on CPU power consumption, CPU temperature, and clock
frequency.

10.1.1 Run-to-Run Efficiency and Power Variations

We investigate the run-to-run variations of our worklets by repeating our entire
measurement suite 50 times on a Sun Server X3-2 system using a single E5-2609
processor. We run the entire experiment once with BIOS power management
enabled and once with BIOS power management disabled. Firstly, we inves-
tigate the coefficient of variation (CV) for the energy efficiency score of each

142

10.1 Reproducibility

Table 10.1: CVs in % for mean energy efficiency for measurement repeats on
Sun Server X3-2.

Load Com. LU SHA SOR

N
o
M
gm

t. 25% 0.92 1.05 0.88 0.85
50% 1.02 0.95 0.72 0.69
75% 0.96 0.83 0.91 0.71
100% 0.91 1.04 0.79 0.72

M
gm

t.

25% 0.95 1.01 1.04 0.83
50% 0.87 0.87 0.92 0.75
75% 0.78 0.87 0.77 0.68
100% 0.77 0.84 0.67 0.68

interval. The CV is a normalized value defined as the ratio of the standard
deviation divided by the sample’s mean. In contrast to a comparison of the raw
standard deviation, the CV allows comparing workloads and load levels with
different mean power consumption or efficiency.

The CVs for the interval efficiencies in Table 10.1 are very small, regardless of
BIOS setting. The greatest CV is the CV of 1.04% for LU at 100% load (and SHA
at 25% load). Regarding absolute power consumption, Idle min/max power
consumption difference is 0.1 W and the greatest absolute difference is LU at
75% load with 0.8 W. Notably, the repeated measurements exhibit a correla-
tion between power consumption and CPU temperature. The corresponding
correlation coefficient is greater than 84% for all interval measurements with
the exception of SHA256 at 55% correlation. However, there seems to be no
significant correlation between power and performance variations, with a mean
correlation coefficient of 21.9%.
To investigate further, we compare mean power consumption measured in

the different runs. This comparison includes LINPACK and Idle in addition to
the SERT worklets.
The power means of the separate measurement runs only differ slightly.

With balanced power management, Idle CPU power shows the smallest mean
difference of 0.1 W (0.67%), ranging between 14.83 W and 14.93 W. The largest
mean difference for the worklets is found for LU at 50% load. However, it is
only a total difference of 1.32 W (4.02%), with the minimum being 32.82 W and
maximum CPU power of 34.14 W. LINPACK features the overall greatest total
difference of 3.50 W (6.80%).
Subsequently, the coefficients of variation for the measurement means in

Table 10.2 are also very small. The greatest CV is the CV for LINPACK (which

143

Chapter 10: Quality of the Server Efficiency Rating Methodology

Table 10.2: CVs in % for mean CPU power for measurement repeats on Xeon
E5-2609.

Load Idle Com. LU SHA SOR LIN.
N
o
M
gm

t. 0% 0.17
25% 0.06 0.31 0.23 0.25
50% 0.09 0.35 0.36 0.20
75% 0.11 0.59 0.41 0.15
100% 0.12 0.10 0.32 0.07 0.12

W
ith

M
gm

t. 0% 0.13
25% 0.15 0.26 0.24 0.13
50% 0.13 0.81 0.31 0.28
75% 0.11 0.60 0.31 0.21
100% 0.15 0.15 0.21 0.18 1.19

also features the greatest min/max difference) with 1.19%, the next greatest
being 0.81% for LU at 50% load. These numbers do not change significantlywith
BIOS power management disabled. Idle min/max difference is still 0.1 W and
the greatest min/max difference is LU at 75% load with an absolute difference
of 0.8 W and a CV of 0.6%.
Again, all workload/load level combinations show a positive correlation

coefficient regarding CPU temperature. This coefficient is the largest at full
load, with all coefficients greater than 84% with the exception of SHA256 at
55% correlation.
Generally, we see that efficiency variations are very small, both for BIOS

power management enabled and disabled. Even these small variations can
be correlated temperature, which is at least partially an external effect under
control of the tester.

10.1.2 Intra-Run Power Variations

In addition to our run-to-run efficiency and power comparisons of the previous
section, we analyze power variations within a single measurement run using
our methodology executed on the Fujitsu system with its Xeon E5-2680 v3
processor. Regarding performance variations, note that the methodology spec-
ifies a maximum CV of 5% within a run. Results with a higher performance
variation are considered invalid and must be re-run. As a result, we focus on
the variations in power measurements.

144

10.1 Reproducibility
power_graph_22

Compress Idle LINPACK_on LU SHA256 SOR

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

20

40

60

80

100

120

140

160

180

200

M
e

a
n

 P
o

w
e

r
(W

)

Figure 10.1: System power consumption of the Fujitsu server with median
Xeon E5-2680 v3 processor.

System power consumption for all workloads on the Fujitsu system is shown
in Figure 10.1. The figure displays the power consumption (in Watt) for each
of the workloads over the full range of load levels. In contrast to the other
workloads, Idle and the reference workload LINPACK feature only one load
level each. Idle power is the smallest consumer, whereas LINPACK is the
largest consumer, closely followed by LU at full load. The workloads scale
almost linearly over load levels, increasing in power consumption with each
additional level. In this section, we focus on the run-to-run and intra-run
variances of the power measurement for each separate load level/workload
combination. An analysis of the power scaling behavior of the workloads can
be found in Section 10.3.
Again, we analyze the coefficient of variation (CV) for the power measure-

ments. Table 10.3 displays the CV for CPU power consumption as measured by
the Intel RAPL counter. It shows that variation during a 120 second measure-
ment interval is relatively low and stable at a CV between 0.3% and 1.44%. This
variation is independent of the processor’s current load level and turbo setting.
It is also similar for many workloads. The compression workload varies more
in its power consumption. We attribute this behavior to the greater intensity
of its memory access which introduces more seemingly random behavior in
performance and power consumption.

The LINPACK workload behaves slightly different to the worklets running
within our methodology as it varies even less in its power consumption. This

145

Chapter 10: Quality of the Server Efficiency Rating Methodology

is not purely attributable to the fact that LINPACK does not run within our
methodology, though. The LU worklet, which runs within our methodology,
features even smaller variations at maximum load. This indicates that LIN-
PACK’s low variation is more a result of workload design, rather than the
underlying measurement methodology.

Themajor outlier in Table 10.3 is the Idle workload. On a single idle processor
sample, power consumption can vary for 35.17% with turbo on, but only 0.84%
without turbo. This observation underlines that operating system and CPU
powermanagementmay lead to variations in power consumption, as idle power
minimization is a major goal of those power saving mechanisms. This variation
can already be observed during the time frame of a single measurement run.
We back this assertion with the correlation of CPU power consumption and fre-
quency. For most workloads, CPU power consumption and frequency correlate
little. To illustrate, LU’s CPU power/frequency correlation coefficient ranges
between 8.6% (25% load) and 33.3% (100% load). Other workloads are similar,
as frequency remains relatively stable during the workloads’ execution. The
Idle workload, however, shows significant correlation. The Idle interval with
the turbo setting on, in particular, exhibits a CPU power/frequency correlation
coefficient of 94.2%. This observation backs two design decisions within our
methodology: It shows that our workload scheduling mechanism successfully
manages to achieve a stable load on the CPU, preventing sudden frequency
changes that would affect power measurements during the run. It also backs
the decision to not include the Idle power consumption in the final metric score.
Idle power is an important characteristic of computing systems and should thus
be reported, but these results show that measuring it can be somewhat error
prone, which might negatively affect the stability of any final metric which
includes it.
Table 10.4 shows the variations in full system power for each measurement

interval. Most CVs are smaller than their CPU power counterparts in Table 10.3.
This indicates that amajority of the variation is caused byCPUpower variations,
rather than power variations due to other system components. This is especially
true for the variations during system idle time. Specifically, the Idle worklet
with turbo enabled features a CPU power standard deviation of 4.02 W at a
mean CPU power consumption of 12.11W, whereas the entire system features a
similar standard deviation of 5.73 W at a mean power consumption of 54.07 W.
The correlation coefficient of 99.93%betweenCPUand systempower for the Idle
measurement underlines this observation that CPU power directly influences
system power.

LINPACK behaves differently, however. Its system power CV is significantly

146

10.1 Reproducibility

Table 10.3: Coefficients of variaton (CV) in % for CPU power consumption on
system, running a Xeon E5-2680 v3 processor.

Load Idle Com. LU SHA SOR LIN.
Tu

rb
o
on

0% 33.17
25% 5.63 0.53 1.20 3.63
50% 0.65 0.66 1.44 0.55
75% 0.61 0.66 1.23 0.42
100% 0.30 0.03 0.63 0.52 0.04

Tu
rb
o
off

0% 0.84
25% 2.51 0.56 1.11 2.46
50% 0.57 0.60 1.23 0.39
75% 0.62 0.41 1.27 0.38
100% 0.38 0.40 0.61 0.05 0.04

Table 10.4: CV in % for system power consumption on Xeon E5-2680 v3 system.
Load Idle Com. LU SHA SOR LIN.

Tu
rb
o
on

0% 10.47
25% 2.59 0.30 0.71 1.73
50% 0.36 0.46 0.90 0.30
75% 0.50 0.45 0.89 0.31
100% 0.36 0.19 0.29 0.33 4.14

Tu
rb
o
off

0% 0.34
25% 1.00 0.31 0.63 1.25
50% 0.34 0.35 0.70 0.21
75% 0.39 0.30 0.82 0.25
100% 0.28 0.30 0.17 0.15 3.69

larger than its CPU power CV. The same is true for the standard deviation of
its power consumption. We attribute this effect to LINPACK using additional
system resources, especially cooling, that are not visible in the CPU power
consumption.

Concluding, we learn that power measurements are very stable, both within
one measurement run and in their means for multiple runs, addressing EQ A.1
(“Does the methodology produce consistent power and performance results
when applying it repeatedly?”). The mean power consumption remains very
similar. The Idle workload is the major outlier. It can pose challenges as un-
foreseen power management may cause significant variation during single
measurement intervals. However, mean idle power remains consistent over
multiple measurements, which indicates that our default measurement dura-
tion is reasonable.

147

Chapter 10: Quality of the Server Efficiency Rating Methodology

10.2 Fairness

We consider the fairness of our methodology to be primarily influenced by its
metric, as the metric produces the results used for any comparison for which
fairness should be ensured. In addition to the metric, testing constraints as
defined by the regulators using the methodology also influence fairness, but
are outside of the scope of the methodology itself.

We investigate the applicability of the metric in two steps, addressing EQA.2
(“Does the metric correctly order systems by their energy efficiency?”): Firstly,
we show that themetric correctly accounts for changes in basic energy efficiency
related properties of the tested system by presenting a mathematical proof.
Secondly, we use measurements from 385 different servers to show that the
metric results correlate to many intuitions regarding energy efficiency. Note
that we evaluate the relationship of the partial metrics within our metric in
Section 10.3.

10.2.1 Metric Changes for Basic Energy-Efficiency Properties

Firstly, we show that our metric scales as expected with changes in system
properties that should always result in an improvement of the energy efficiency
score (or inverse). This helps to validate the fundamental properties of our
metric. For this validation, we consider two systems A and B, where system A
is identical to system B in all but one characteristic (e.g., power consumption).
This characteristic differs for at least one point of measurement (measurement
result of one interval for a single worklet). Basically, we show that a simple
improvement in a single characteristic of a server would lead to the expected
result in the power methodology’s metric.

The weighted geometric mean (GM) over a list X = (x1, . . . , xn) of size n is
smaller than the weighted geometric mean over a list Y = (y1, . . . , yn) of size n
if Eq. 10.1 holds true for all elements within X and Y :

∀i ∈ [1, n] : xi ≤ yi and ∃j ∈ [1, n] : xj < yj . (10.1)

Lemma 1 can also be applied to unweighted geometric means, as these are
weighted geometric means where each weight wi = 1

n .

148

10.2 Fairness

Proof of Lemma 1.

xj < yj ==⇒ ln(xj) < ln(yj)

==⇒ wj ∗ ln(xj) < wj ∗ ln(yj)

Eq.10.1
====⇒

n∑
i=0

(wj ∗ ln(xi)) <

n∑
i=0

(wj ∗ ln(yi))

==⇒ exp

∑
xj∈X

wj ∗ ln(xj)

 < exp

∑
yj∈Y

wj ∗ ln(yj)

= GM(X) < GM(Y)

To recap: The final metric score is the weighted geometric mean of the
workload scores (O), which, in turn, are the geometric means of the worklet
scores (E). The worklet scores are the geometric means of the load level scores
(L, with load levels li ∈ L), and each load level score is the ratio of normalized
throughput over power consumption (tp).
Using Lemma 1, we show the following three properties of the metric:

1. If server A has a lower power consumption than server B for at least one
measurement interval (with otherwise identical power consumption and
performance), the final metric score improves.

2. If server A has a higher performance than server B for at least one mea-
surement interval (with otherwise identical power consumption and
performance), the final metric score improves.

3. If server A has a higher overall efficiency than server B for at least one
measurement interval (with otherwise identical power consumption and
performance), the final metric score improves (generalization of 1. and
2.).

Proof of Metric Properties.

1. ∃i : li(A) ∈ L(A), li(A) = ti(A)
pi(A)

and li(B) ∈ L(B), li(B) = ti(B)
pi(B) where

ti(A) = ti(B) and pi(A) < pi(B),
but ∀lj(A) and ∀lj(B) ∈ L(B) where j 6= i : lj(A) = lj(B)

pi(A) < pi(B) =⇒ ti(A)
pi(A)

> ti(B)
pi(B) =⇒ li(A) > li(B)

149

Chapter 10: Quality of the Server Efficiency Rating Methodology

2. ∃i : li(A) ∈ L(A), li(A) = ti(A)
pi(A)

and li(B) ∈ L(B), li(B) = ti(B)
pi(B) where

ti(A) > ti(B) and pi(A) = pi(B),
but ∀lj(A) and ∀lj(B) ∈ L(B) where j 6= i : lj(A) = lj(B)

ti(A) > ti(B) =⇒ ti(A)
pi(A)

> ti(B)
pi(B) =⇒ li(A) > li(B)

3. ∃i : li(A) ∈ L(A) and li(B) ∈ L(B) where li(A) > li(B),
but ∀lj(A) ∈ L(A) and ∀lj(B) ∈ L(B) where j 6= i : lj(A) = lj(B)

li(A) > li(B)
Lemma 1
=====⇒ GM(L(A)) > GM(L(B)) =⇒ E(A) > E(B)

=⇒ GM(E(A)) > GM(E(B)) =⇒ O(A) > O(B)

=⇒ GM(O(A)) > GM(O(B))

10.2.2 Metric Score Correlations

We investigate the applicability of the metric by analyzing the correlation
coefficient of metric scores with changes in basic server properties. For this
analysis, we collect SERT results from a total of 385 different physical servers
of different generations and architectures1. Analogously to the mathematical
analysis in Section 10.2.1, we analyze how changes in basic energy and power-
related server properties correlate with the metric’s score.

Similar systems (systems with similar or the same hardware) should feature
some correlation between these basic properties and the metric score. For
example, due to their similarity, system configurations based on the same
processor and overall systemmanufacturer are likely to bemore energy-efficient
if they feature a lower idle power consumption. We expect such correlations
to exist for similar systems. However, we also expect this correlation to be
lower for systems from different generations or architectures, as these become
more diverse and feature more unknown factors that impact energy efficiency.
Similarly, we expect large systems (systems with many processor sockets, multi-
server blade systems, etc.) to have too many variation points regarding energy
efficiency, making it difficult to correlate their efficiency to a single property.
Even for similar systems, we never expect near-perfect correlation as that would
mean that energy efficiency can be reduced to the simple properties under
analysis.
1Note: Some results are non-compliant and have been obatined according to the SPEC fair-use
policy for academic use.

150

10.2 Fairness

Table 10.5: Correlation coefficients of energy efficiency score and power char-
acteristics for servers, grouped by number of sockets.

Servers Correlation Coefficients
#Servers #Sockets Idle Power Min Power Max Power

82 1 -0.68 -0.52 -0.48
326 2 -0.19 -0.17 0.06
67 4 -0.45 -0.41 -0.29

We consider the following properties:

• Idle power consumption: Systems that scale similarly over load levels
regarding their energy efficiency but differ in base power consumption
(idle power) should feature a negative correlation with idle power con-
sumption. Systemswith great variations in their efficiency scaling and/or
performance might not feature a significant correlation with idle power,
though.

• Minimum power consumption under load: Analogously to idle power,
we expect similar system’s energy efficiency to correlate with the mini-
mum power consumption measured using our methodology while the
system was under load.

• Maximum power consumption: We also expect similar system’s energy
efficiency to correlate with maximum power consumption.

We calculate the Pearson correlation coefficient for these properties and the
metric’s score on the servers in question. We group the servers into categories
based on name-plate similarity, meaning similarity regarding their nominal
hardware configuration. Firstly, we investigate server energy efficiency score
correlations based on processor socket count.

Table 10.5 shows the correlation coefficients for the servers’ energy efficiency
with idle, minimum, and maximum power, grouped by the number of CPU
sockets. It shows an expected negative correlation between energy efficiency
and idle power for the single-socket system. Similarly, minimum andmaximum
power feature a small, slightly less pronounced negative correlation. These
correlations show that many systems with a lower idle, minimum, or maximum
power consumption manage to get a better energy efficiency score. Yet, it also
shows that servers are diverse enough that energy efficiency is not always better
for systems with lower idle, minimum, or maximum power. These correla-
tions indicate that our efficiency metric behaves as expected. Interestingly, the

151

Chapter 10: Quality of the Server Efficiency Rating Methodology

Table 10.6: Correlation coefficients of energy efficiency score and power char-
acteristics for servers, grouped by processor models.

Servers Correlation Coefficients
#Servers CPU Idle Power Min Power Max Power

12 E3-1230 v3 -0.97 -0.94 -0.95
19 E5-2603 v3 0.05 -0.20 0.05
16 E5-2620 v3 -0.73 -0.65 -0.69
16 E5-2630 v3 -0.94 -0.92 -0.98
20 E5-2660 v3 -0.51 -0.44 -0.47
17 E5-2690 -0.36 -0.83 -0.32
24 E5-2690 v2 -0.36 -0.40 -0.41
29 E5-2699 v3 -0.16 -0.11 -0.34

four-socket systems also feature some correlation for their power consumption
metrics and energy efficiency. Idle and min power have only slightly lower
correlations to energy efficiency when compared to the single-socket systems.
Maximum power does not follow this trend, though, as four-socket systems fea-
ture significant variations and volatility regarding power consumption under
high load. The dual-socket systems are the major outliers, their great num-
ber and variations between systems cause no significant correlation between
efficiency and the simple power properties.
To stress that the correlations exist for similar classes of servers, we group

servers by CPU model for all models with at least 12 different measured con-
figurations. Table 10.6 shows the correlation coefficients for idle, min, and max
power with energy efficiency for these servers. These groups show significant
correlations between the power metrics and energy efficiency, as derived by our
methodology’s metric. Correlations are greater for “smaller” processors (i.e.,
processors with less power and performance volatility). The only exception is
the group of servers using the E5-2620 v3 processor. The measurements for
these processors have been taken on almost-identical server configurations,
leaving too much space for the random measurement noise to influence the
correlation coefficient.

In general, the correlations show that our energy efficiency metric shows an
increased efficiency for systems where such an increase would be expected.
However, they also show the need for a complex energy efficiency metric, as the
characteristic of energy efficiency does not always boil down to simple power
properties, such as a reduced idle consumption.

Answering EQ A.2 (“Does the metric correctly order systems by their energy

152

10.3 Relevance

efficiency?”), our mathematical proof and the correlations show that the metric
does order our servers under consideration correctly by matching the expected
order and properties of energy efficiency in those cases where they are already
known.

10.3 Relevance

Finally, we address the aspect of relevance and EQ A.3 (“Does the metric score
have a relationship with the energy efficiency of real-world workloads?”). To
this end, we show that our metric produces relevant results by defining a
relationship between those results and the efficiency of a real-world workload.
The goal of showing such a relationship is demonstrating that it is possible to
define a semantic relationship between the workload scores within the metric
and the energy efficiency of a third-party software. This shows that a person
running tests using our methodology could use a result based on our metric to
decide on the efficiency of a system regarding their target software applications.

We measure the energy efficiency of SERT Suite and the Dell DVDStore (Dell,
Inc., 2011), as our third-party application, on six servers. Next, we weight our
SERT workload scores with weights that correspond to the CPU, memory, and
storage behavior of the DVDStore workloads. We then use these weights to
calculate our final server efficiency score (see Eq. 4.6), instead of the standard
U.S. EPA weights. We use this alternate server score to rank the systems under
test by their expected DVDStore energy-efficiency ranking. Comparing this
ranking to the actual DVDStore results and their respective ranking, we gain
insights into the applicability of our metric for estimating a server’s efficiency
in production use. In addition, by modeling real-world applications using
our workload scores this analysis demonstrates that relevant worklets and
workloads were selected for the methodology implementation.

10.3.1 Deriving Weights

We weigh the SERT workload scores for their similarity with the DVDStore
regarding energy efficiency. We do not derive weights using regression or a
similar mechanism. Regression would optimize the weights to achieve final
weighted scores that mimic the DVDStore scores with the smallest error, which
defeats the purpose of our test. Instead, we try to derive weights by investi-
gating how the DVDStore utilizes a system using power measurements and
power/performance counters. Using this approach, we get a more “semantic”
similarity that focuses on workload behavior similarities.

153

Chapter 10: Quality of the Server Efficiency Rating Methodology

We collect the power counters p on a per-second basis during each worklet’s
measurement phase and compute the average counter value for the interval
p(int) at the end of the measurement phase. For each worklet and interval, we
obtain a vector ~p(int) of all performance counters. Finally, we construct a vector
for eachworkload by averaging the performance counter valuesmeasured for all
the separate worklets within the workload. We choose the average, as the power
and performance counters are not ratios (in contrast to energy efficiency). With
three total workloads, we arrive at three vectors for each interval: ~c(int) (CPU),
~m(int) (Memory), and ~s(int) (Storage). Finally, we measure the performance
counter vector ~t(int) for each interval of the target workload (DVDStore).

We define workload similarity weights using barycentric coordinates Floater,
2003 that express the normalized distance between our target workload and the
SERT workloads. Using the three workload vectors ~c(int), ~m(int), and ~s(int),
we are able to span a plane within the n-dimensional space of possible perfor-
mance counter values (n being the number of power/performance counters and
thus the dimension of the vectors). We project the target workload vector ~t(int)
onto this plane, arriving at two-dimensional vectors ~c2d(int), ~m2d(int), ~s2d(int)
for the SERT workloads and ~t2d(int) for the target workload. ~c2d(int), ~m2d(int),
~s2d(int) can be used to define a triangle. We derive a barycentric coordinate
~b(int) for ~t2d(int) within this triangle. This coordinate shows the normalized
relative position of ~t2d(int) in relation to ~c2d(int), ~m2d(int), ~s2d(int).
We choose the following concrete power counters: wall power, measured

using the external power analyzer, CPU power, and memory power, measured
using Intel’s Intel PCM (Willhalm et al., 2012). We measure the SERT and the
DVDStore on a reference machine with an eight-core Intel Xeon E5-2640 v3
and 32 GB of RAM. The DVDStore is deployed and driven using the SPEC
ChauffeurWDK framework (Arnold, 2013). We arrive at a CPU weight of 0.55,
memory weight of 0.26, and storage weight of 0.19.

10.3.2 Ranking Servers for the DVDStore

Table 10.7 shows the emulated and measured DVDStore scores on all tested
systems. Note that the SERT results with weights are based on normalized
performance results, whereas the actual DVDStore results are not normalized,
resulting in the different order of magnitude of the scores.
The servers are ranked in the same order based on the DVDStore scores

derived using weighted SERT scores, and based on the actually measured DVD-
Store scores. This indicates that a ranking based on separate workload scores
within the overall metric is helpful for decision makers regarding production
deployments and indicates that the worklets within the SERT implementation

154

10.4 Summary

Table 10.7: Ranking of measured and weight-simulated DVDStore efficiency
scores.

Cores Idle Max SERT DVDStore DVDStore Rank Rank
Power Power (weights) (measured) (weights) (meas.)

4 29.4 W 99.4 W 12.19 13.41 48.23 5 5
4 28.3 W 106.1 W 14.79 16.25 65.12 3 3
8 38.1 W 140.4 W 15.99 16.73 68.92 2 2
10 42.6 W 151.8 W 15.40 15.71 58.15 4 4

2 x 8 98.4 W 423.9 W 9.99 9.73 39.1 6 6
32 53.3 W 238.0 W 39.26 44.41 93.99 1 1

are representative regarding the amount of information that they can provide.
Note that the 10-core server in Table 10.7 features an anomaly when comparing
the regular SERT score and the DVDStore scores. The server is more efficient
than the second quad-core server based on the regular SERT score. However, it
is less efficient for both the emulated and measured DVDStore results. This,
again, stresses the need for a broader selection of workloads within a bench-
marking suite, as opposed to a single application benchmark. It also answers
EQ A.3 (“Does the metric have a relationship with the energy efficiency of
real-world workloads?”) regarding our partial metrics, showing that they can
indeed be used to define relationships to real-world workloads, enhancing
relevance.

10.4 Summary

We showed that our methodology exhibits the three primary properties of
benchmark quality. We evaluated its reproducibility (answering EQA.1: “Does
the methodology produce consistent power and performance results when
applying it repeatedly?”) by analyzing the coefficients of variation in and
between runs of our suite. In our tests, the coefficient of variation for worklet
interval efficiency stayed below 1.1%. Next, we analyzed fairness of our metric
(answering EQ A.2: “Does the metric correctly order systems by their energy
efficiency?”). We showed that several improvements in system efficiency lead
to an increase in metric score. We also showed that some correlations exist
in metric score and system properties that would intuitively be considered
more efficient. Finally, we evaluated the relevance of our methodology and
metric (answering EQA.3: “Does themetric have a relationshipwith the energy
efficiency of real-world workloads?”) by demonstrating that our metric can

155

Chapter 10: Quality of the Server Efficiency Rating Methodology

be used to derive relationships to third-party workloads, enabling decision
makers to select energy-efficient systems for their specific domain.

156

Chapter 11

Evaluation of Load Profiles and Placements

We introduce two methods for extending our energy efficiency rating method-
ology in Chapter 5. The first is a modeling method for load intensity profiles,
which allows specification and extraction of load traces that vary with time.
Among other things, this model can be used for testing of power management
and optimization mechanisms at run-time. The latter method is an adaptation
of our methodology for hierarchical load distribution. This method enables
testing of uneven load distribution and heterogeneous workloads.
In this chapter, we evaluate both methods. Addressing EQ A.4 (“Can the

modeling formalism and extractor accurately express the load variations of
real-world load profiles?”), the DLIM load profile model’s expressiveness is
evaluated using its extractionmechanism. We extractmodel instances from real-
world load traces and analyze the extraction’s accuracy. Addressing EQ A.5
(“Can we evaluate the energy efficiency of load distribution policies?”), the
workload distribution mechanism, on the other hand, is used for a thorough
analysis of system efficiency, in which we analyze how systems behave for
different load distribution policies. We also evaluate our own distribution
policy, described in Section 5.2.1, as part of this analysis.

11.1 Evaluation of DLIM Load Profile Extraction

We evaluate the Simple DLIM Extraction Method (s-DLIM) extraction method
for our DLIM load profile model from Chapter 5, Section 5.1 and address
EQ A.4 (“Can the modeling formalism and extractor accurately express the
load variations of real-world load profiles?”) using nine different real-world
Web server traces covering between two weeks and seven months. The traces
all are strongly influenced by human usage patterns.

s-DLIM is applied to extract model instances for all traces. We also separately
evaluate the effect of noise extraction including noise reduction. The shape of
the interpolating functions is always selected as the DLIM SinTrend, meaning
that sin-flanks are always used for the interpolation between arrival rate peaks

157

Chapter 11: Evaluation of Load Profiles and Placements

and lows. We choose SinTrend because it fits closest to the original trace in the
majority of cases. For the same reasons, ExponentialIncreaseAndDecline is always
selected for Burst modeling (it is a child of Burst in the DLIM meta-model).
Trends are selected to be multiplicative since this way they have a lower impact
on arrival rate lows and a relatively high impact on arrival rate peaks (contrary
to additive Trends, which have a constant impact on both). We do this, since
arrival rate lows vary less than arrival rate peaks according to our observations.

Extraction is also configured with varying Trend lengths. Best results are
expected at Trend length of one Seasonal period, whereas lower accuracy is
expected at the longest evaluated Trend length of three Seasonal periods.

We evaluate the model extraction accuracy by computing the relative errors
for each pair of corresponding entries in the extracted model instance and trace.
The median of the absolute percentage error values (MdAPE) is presented in
this work. In this context, the mean absolute percentage error (MAPE) is prone
to deflection by positive outliers. Moreover, we compare the extraction error
and run-time on commodity hardware (Core i7 4770, 16 GB RAM) against the
BFAST time-series decomposition of (Verbesselt et al., 2010) (which returns
split data as opposed to a descriptive model). To enable a fair comparison,
we configured BFAST to extract one seasonal pattern and not more than one
trend per day. In contrast to DLIM, where seasonal patterns are represented by
piece-wise interpolating functions, in BFAST’s output, the seasonal pattern is
represented as a less compact discrete function.

Table 11.1: Model extraction errors for the Internet Traffic Archive and BibSon-
omy traces.
Trace 1. ClarkNet 2. NASA 3. Saskat. 4. WC98 5. BibSonomy
Parameters relative relative relative relative relative
(Trend, Noise) median (%) median (%) median (%) median (%) median (%)
length 1, extracted 21.195 26.446 35.551 19.735 26.988
length 1, reduced 17.509 23.56 26.492 16.882 21.479
length 1, ignored 12.409 18.812 29.171 12.979 23.831
length 2, ignored 14.734 20.8 30.273 15.691 26.786
length 3, ignored 14.919 27.577 32.085 19.161 28.218
BFAST 12.243 no result no result no result no result
s-DLIM (avg. ms) 4.2 25.2 118.8 11.8 125
BFAST (avg. ms) 76276 no result no result no result no result

158

11.1 Evaluation of DLIM Load Profile Extraction
WorldCup98,5s-DLIM,5trend5length51,5noise5ignored5Arrival5Rates

WorldCup98,.s-DLIM,.trend.length.1,.noise.ignored WorldCup98,.trace

0 250 500 750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 3.750

time5(155min)

0

2.500

5.000

7.500

10.000

12.500

15.000

17.500

20.000

22.500

25.000

27.500

30.000
a

rr
iv

a
l5

ra
te

Figure 11.1: Arrival rates of the original WorldCup98 trace (blue) and the
extracted DLIM instance (red) using s-DLIM with a Trend length of 1 and
ignoring noise.

11.1.1 Internet Traffic Archive and BibSonomy Traces

The first batch of traces was retrieved from The Internet Traffic Archive1. The
Internet Traffic Archive includes the following traces: ClarkNet-HTTP (Internet
provider WWW server), NASA-HTTP (Kennedy Space Center WWW server),
Saskatchewan-HTTP (University WWW server), and WorldCup98 (official World
Cup 98 WWW servers). Additionally, we used a six week long trace of access
times to the social bookmarking system BibSonomy (Benz et al., 2010), beginning
on May 1st 20112. All traces were parsed to arrival rate traces with a quarter-
hourly resolution (96 arrival rate samples per day).

Table 11.1 shows the relative median errors for our extraction using different
configurations. It also displays run-time of the overall most accurate extraction
configuration (ignoring noise, trend length 1) as an average value over ten runs.
In cases in which BFAST decomposition terminated, errors and run-times are
also displayed for BFAST. The ClarkNet and NASA extraction results show that
a Trend length of 1 provides the best accuracy. Noise reduction does not seem
to help for this particular trace during the DLIM extraction. The result does not
improve when extracting a noise distribution model, as noise generated by a
random variable does not reproduce the exact measured results and increases
the absolute arrival rate difference between trace and model. We trace the

1Internet Traffic Archive: http://ita.ee.lbl.gov/
2The request log dataset is obtainable on request for research purposes:
http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/

159

Chapter 11: Evaluation of Load Profiles and Placements

discrepancies between the extracted model instance and the original trace to
three major causes:

• In some cases, bursts are not detected with full accuracy.

• The NASA server was shut down for maintenance between time-stamps
2700 and 2900. The extraction method does not have contingencies for
this case, as we only extract positive bursts.

• Deviating Seasonal patterns are a major cause of inaccuracy in the ex-
tracted models. The extraction method assumes a single, repeating Sea-
sonal Part. Depending on the trace, this assumption may be valid to a
different extent. In this case, the extracted Seasonal pattern is able to
approximatemost days in the trace, but a number of significant deviations
occur. Manual modeling in the DLIM editor can circumvent this problem,
as DLIM itself supports mixes of multiple seasonal patterns. We are cur-
rently working on extending the automated extractors to make use of this
feature. Ideas range from the inclusion of additional meta-knowledge,
such as calendar information, to the implementation of seasonal break
detection, as introduced in BFAST (see Verbesselt et al., 2010).

In the case of the Saskatchewan-HTTP extraction, noise reduction improves
the s-DLIM results. However, overall the results are not as good as they are
for the other traces. The major explanation for the relatively poor results is
once more the Seasonal pattern deviation. Since the Saskatchewan-HTTP trace
extends over 7 months, the Seasonal patterns have a lot of room for deviation.
The model extractor fails to capture this. This leads to an additional error
in the Trend calibration, as trends are supposed to be calibrated, so that the
greatest Seasonal peak in every Seasonal iterationmatches the trace’s nearest local
arrival rate maximum. Since the Seasonal pattern deviation causes the extracted
Seasonal peak’s time of day to not match the trace’s Seasonal peak’s time of day,
the calibration takes place at the wrong point of time. This also explains why
a majority of extracted days have a lower peak then their counterparts in the
original trace.
The major deviation from the trace’s Seasonal patterns also explains why

s-DLIM performs better using noise reduction for the Saskatchewan-HTTP
extraction. Noise reduction helps to mitigate the effect of seasonal pattern
changes over time, thus reducing the effect of the Seasonal pattern deviation.
Similarly to the Saskatchewan trace, s-DLIM extraction of the BibSonomy

trace also improveswith noise filtering. We explain this through the observation
that the BibSonomy trace features a significant number of bursts, occurring at

160

11.1 Evaluation of DLIM Load Profile Extraction
BibSonomy,5s-DLIM,5trend5length51,5noise5reduced5Arrival5Rates

BibSonomy,.s-DLIM,.trend.length.1,.noise.reduced BibSonomy,.trace

0 250 500 750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 3.750 4.000 4.250 4.500

time5(155min)

0

100

200

300

400

500

600

700

800

900

1.000

a
rr

iv
a

l5
ra

te

Figure 11.2: Arrival rates of the original BibSonomy trace (blue) and the ex-
tracted DLIM instance (red) using s-DLIM with Trend length 1 and noise reduc-
tion.

a relatively high frequency, as well as significant noise (as seen in Fig. 11.2).
Without filtering, some of these bursts are included in the seasonal pattern by
the s-DLIM extractor, distorting the extracted seasonal pattern. When applying
noise reduction, the influence of these bursts is diminished. Therefore, the
extracted seasonal pattern is more stable, leading to increased accuracy asmajor
bursts are still extracted during s-DLIMs burst extraction. The BibSonomy
trace demonstrates that s-DLIM is capable of dealing with traces featuring a
significant amount of noise.

Comparing the accuracy of our extractionmethodswith that of BFAST proves
difficult, given that, for four of the five considered traces, BFAST did not termi-
nate within 1.5 hours, which would make BFAST execution at least 45000 times
slower than s-DLIM in these cases. However, the ClarkNet trace extraction
shows that our extraction methods exhibit accuracy comparable to the accuracy
of BFAST in cases where BFAST terminates in a reasonable amount of time.
To eliminate the possibility of BFAST not terminating due to configuration
errors on our side, we ran the same configuration on shortened versions of
the respective traces. BFAST’s time-series analysis of these shortened traces
terminated, however, the latter are too short to meet our criteria of sufficiently
long traces with recurring seasonal patterns and trends.

161

Chapter 11: Evaluation of Load Profiles and Placements

Table 11.2: wikipedia.org model extraction errors.
1. German 2. French 3. Russian 4. English

Trace Wikipedia Wikipedia Wikipedia Wikipedia
Parameters relative relative relative relative
(Trend, Noise) median (%) median (%) median (%) median (%)
length 1, extracted 11.215 10.472 9.964 7.764
length 1, eliminated 10.511 8.566 9.912 7.838
length 1, ignored 8.538 7.6 11.251 4.855
length 2, ignored 9.956 8.973 11.683 5.27
length 3, ignored 11.771 9.813 11.42 7.23
BFAST 11.223 8.511 5.809 2.302
s-DLIM (avg. ms) 3.9 3.5 5.8 3.2
BFAST (avg. ms) 23518 23630 23803 21517

11.1.2 Wikipedia Traces

The second batch of traces was retrieved from the Wikipedia page view statis-
tics3. They were parsed from the projectcount dumps, which already feature
arrival rates with an hourly resolution. We restrict our analysis to the English,
French, German and Russian Wikipedia projects, covering four of the six most
requested Wikipedia projects and being distributed over different time-zones.
All traces are from December 2013, with the exception of the English Wikipedia
trace, which is from November 2013. The English December 2013 trace exhibits
a major irregularity during the 4th day, which we attribute to a measurement
or parsing error. While the French, German, and Russian Wikipedia projects
are mostly accessed from a single time zone, the English Wikipedia is retrieved
from all over the world. Thus, evaluating the impact of access behavior over dif-
ferent time zones and helping to assess how well the DLIM extraction methods
deal with local vs. global access patterns.
The Wikipedia extraction results in Table 11.2 confirm many of the obser-

vations made with the Internet Traffic Archive traces. E.g., Trend length of 1
performs best. The overall accuracy, however, is significantly better than for
the Internet Traffic Archive traces since the Seasonal pattern deviation, while
still relevant, exhibits less impact than before.

The RussianWikipedia trace differs from the otherWikipedia traces. Noise re-
duction improves s-DLIM. The overall accuracy is similar to the otherWikipedia
trace extractions. For this single trace, however, the Seasonal patterns are shaped
in such a way that the noise reduction lessens the impact of the Seasonal pattern
deviation.

3Wikipedia traces: http://dumps.wikimedia.org/other/ pagecounts-raw/2013/

162

11.1 Evaluation of DLIM Load Profile Extraction
fr.wikipedia.org, s-DLIM, trend length 1, noise ignored Arrival Rates

fr.wikipedia.org,4s-DLIM,4trend4length41,4noise4ignored fr.wikipedia.org,4trace

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750

time (h)

0

250.000

500.000

750.000

1.000.000

1.250.000

1.500.000

1.750.000

2.000.000

2.250.000

2.500.000

2.750.000
a

rr
iv

a
l

ra
te

Figure 11.3: Arrival rates of the original French Wikipedia trace (blue) and the
extracted DLIM instance (red) using s-DLIM with Trend length 1 and ignoring
noise.

The extraction results for the English Wikipedia trace exhibit by far the best
overall accuracy across all examined traces. The reason for this is the unusually
high arrival rate base level. Since wikipedia.org is accessed globally at all times,
the load intensity variations on top of the base level have little impact on the
relative load variations in general. As a result, all modeling errors are also
relatively small.
In terms of accuracy, our extraction process performs as well as the BFAST

decompositions. s-DLIM performs better than BFAST for both the German and
French Wikipedia traces (e.g., see Fig. 11.3). Here, s-DLIM’s accuracy profits
from its support of multiplicative trends. BFAST does, however, provide better
accuracy for the English and Russian traces. In these cases BFAST’s sophisti-
cated trend calibration mechanisms outperform s-DLIM. s-DLIM is, however,
significantly faster than BFAST. Running on the same machine, LIMBO’s s-
DLIM implementation performed on average 8354 times faster than BFAST’s R
implementation and returned results in all cases in less than 0.2 seconds.
Summarizing, our evaluation of the DLIM model extractor’s accuracy an-

swers EQ A.4 (“Can the modeling formalism and extractor accurately express
the load variations of real-world load profiles?”). It shows that DLIM is an
expressive modeling mechanism that is able to capture load profiles with great
accuracy. The extractor is able to extract load intensity models with a median
modeling error of 12.7% from a representative set of nine different real-world
traces. It is also able to perform these extractions quickly, as each extraction
completes in less than 0.2 seconds. The major source of errors in models is

163

Chapter 11: Evaluation of Load Profiles and Placements

seasonal drift in original traces. The “s-DLIM” model extractor, used in this
work, does not yet have a method to account for this drift. In general, the
results demonstrate and validate the capability of DLIM to capture realistic
load intensity profiles.

164

11.2 Energy Efficiency of Hierarchical Load Distribution

11.2 Energy Efficiency of Hierarchical Load Distribution

We address EQ A.5 (“Can we evaluate the energy efficiency of load distribu-
tion policies?”) by evaluating the three load distribution strategies using our
adapted methodology on a range of systems with increasing complexity: a
one-socket system, two dual-socket systems of different architectures and two
dual-socket systems running the workload in a multi-node configuration. For
each of these systems, we test a variety of combinations applying different load
distribution strategies on the different levels of the execution hierarchy (nodes,
sockets, physical CPU cores, logical CPU cores).
As this part of our work focuses on distribution strategies for server loads,

we employ those worklets within our methodology’s SERT implementation
that offer opportunities to be distributed in multiple ways. As a result, we
use worklets with at least some CPU-bound work, as this enables core-wise
placement of the worklet’s load. For a more detailed analysis, we use 10% in-
crements in load levels. The following worklets are the core worklets employed
in our measurements: CryptoAES, LU, XMLValidate (a variant of the Capacity
worklet that scales with transaction rates instead of memory size), and SSJ.

We evaluate the different load distribution strategies on four systems: A
Fujitsu PRIMERGY TX1310 M1 machine is used as our SUT for the evaluation
of physical core and SMT unit distribution strategies on a one socket system.
Themachine is equippedwith an Intel XeonE3-1230 v3CPU (Haswell) featuring
a base frequency of 3.3 GHz (up to 3.9 GHz with Turbo) and four DIMMs of
DDR3 RAM. Power consumption of this machine is measured using a ZES
Zimmer LMG95 power analyzer. Multi-socket load distribution strategies are
tested on a Dell PowerEdge R720 and Dell PowerEdge R730 system. Both
systems are equipped with 2 CPU sockets and eight DIMMs of RAM each. The
Ivy Bridge based PowerEdge R720 system features two Intel Xeon E5-2667 v2
processors with a base frequency of 3.3 GHz (up to 4.0 GHz with Turbo),
whereas the Haswell based PowerEdge R730 system is equipped with two Intel
Xeon E4-2667 v3 CPUs with a base frequency of 3.2 GHz (up to 3.6 GHz with
Turbo). The AC wall power for both of the dual-socket systems is measured
using a Yokogawa WT210 power analyzer. Finally, we evaluate multi-node
load distribution strategies by simulating multi-node results using the Dell
systems and through separate measurements on a cluster featuring two HP
ProLiant BL260a Gen9 Blades with two 18-core Intel Xeon E5-2699 v3 CPUs
each. The blades differ from the other systems as they make use of shared PSUs,
provisioned to support up to 16 servers. CPU frequency scaling (including
Turbo) and all other BIOS power saving mechanisms have been turned on. For
these experiments, we use Windows Server 2012 R2 as the operating system.

165

Chapter 11: Evaluation of Load Profiles and Placements
SOR Power

Cores-BALANCED_SMT-BALANCED_Sor

Cores-CONSOLIDATED_SMT-BALANCED_Sor

Cores-CONSOLIDATED_SMT-CONSOLIDATED_Sor

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

20

30

40

50

60

70

P
o

w
e

r

Figure 11.4: Power consumption of distributions for SOR on single-socket
system.

11.2.1 Energy Efficiency for Homogeneous Workloads

We evaluate the power consumption and energy efficiency of hierarchical load
distribution for homogeneous workloads onmultiple systems. Firstly, we evalu-
ate different combinations of load distribution on the core and logical processor
level using a single-socket system. The balancing and consolidation strategies
are evaluated for all worklets, and the efficiency strategy is applied for the LU
worklet. We then test the impact of socket-level load distribution on Ivy Bridge
and Haswell systems, introducing additional load distribution combinations
with the added level in the distribution hierarchy. We also evaluate load distri-
bution with operating system level load migration, before finally investigating
the effects of node level load management.

11.2.1.1 Load Distribution for all Worklets on Single-Socket System

Load distribution is achieved by varying the target throughput per logical
processor with the goal of achieving the pre-specified global load level. This
target load level is achieved with consistency for all distribution strategies. The
coefficient of variation (CV) for any given worklet throughput at a target load
level never exceeds 3.3%, with an average CV of 0.7%. As a result, energy
efficiency of the distributions is primarily influenced by power consumption.

The load distribution strategies’ power consumption is shown in Figure 11.4.
Simultaneous Multi-Threading (SMT) is turned on for these measurements.

166

11.2 Energy Efficiency of Hierarchical Load Distribution
SOR Throughput/Power

Cores-BALANCED_SMT-BALANCED_Sor

Cores-CONSOLIDATED_SMT-BALANCED_Sor

Cores-CONSOLIDATED_SMT-CONSOLIDATED_Sor

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

25

50

75

100

125

150

175

200

225

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.5: Energy Efficiency of distributions for SOR on single-socket system.

The power consumption can differ significantly depending on load level. Specif-
ically, the balanced distribution outperforms the consolidation strategies be-
tween 30% and 70% load. This observation can be explained by the CPUs
frequency scaling. State of the art processors feature dynamic frequency scal-
ingmechanisms designed to increase performance on a subset of available cores
in case of uneven load distribution. This feature is usually referred to as “Turbo”
and causes single CPU cores to dynamically overclock as long as a number of
thermal and power constraints are met. Core-wise load consolidation causes
single cores to quickly reach a load level that triggers the core’s turbo. In the
case of our quad-core system, a global load level of 20% already causes a local
load level of 80% on core 0. At this point, power consumption diverges and
energy efficiency drops in comparison to a balanced load distribution (as can
be seen in Figure 11.5).
However, power consumption and energy efficiency are not affected signif-

icantly by load consolidation on the level of SMT units. While SMT threads
are provided and executed in hardware, they are not pinned to an exclusive
set of execution units in the same sense as a physical CPU core. Instead, log-
ical processors on the same core share their execution units. Subsequently,
redistributing load between those logical processors on the same core has little
impact for homogeneous loads, as the same execution units remain in use.

Wewere able to repeat the observationsmade for the SORworklet for all other
worklets. All worklets exhibited maximum power consumption when using
consolidation strategies and maximum energy efficiency when using a balanc-

167

Chapter 11: Evaluation of Load Profiles and Placements
Cores-CONSOLIDATED_SMT-CONSOLIDATED Power

CryptoAes Lu SSJ Sor XmlValidate

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Figure 11.6: Power consumption of fully consolidated load on single-socket
system.

ing strategy. Power consumption for all worklets using the fully consolidated
strategy is displayed in Figure 11.6. The worklet’s order in power consumption
remains identical over utilization levels and distribution strategies, with one
exception. As the SSJ worklet is not a purely CPU boundworkload, but a hybrid
workload emulating typical business transaction software, it contains a number
of non-CPU bottlenecks. As a result, it scales differently with increasing load
compared to the CPU bound worklets. It is also affected differently by the
selected load distribution strategy. Specifically, it always consumes more power
than SOR using the fully balanced strategy, yet consumes less power between
the 10% and 50% load levels using the fully consolidated strategy.

LU Throughput/Power

Cores-BALANCED_SMT-BALANCED_Lu

Cores-CONSOLIDATED_SMT-CONSOLIDATED_Lu

Cores-EFFICIENT_SMT-BALANCED_Lu

Cores-EFFICIENT_SMT-EFFICIENT_Lu

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.7: Power consumption of efficiency strategies on single socket system.

168

11.2 Energy Efficiency of Hierarchical Load Distribution

11.2.1.2 Efficiency Strategy on Single-Socket System

We evaluate the efficiency strategy using the LU worklet, as LU reaches the
point of optimal energy consumption on a load level less than 100% on the
majority of systems. On the single-socket system the load level for maximum
energy efficiencywith LU is 60%with 264.0 transactions/watt. However, energy
efficiency at full load is only slightly worse at 260.5 transactions/Watt. The new
strategy is not as efficient as the balanced strategy on the single-socket system
(note: this is in contrast to the multi-socket system in Section 11.2.1.4). It is,
however, more efficient than full load consolidation, confirming the energy
inefficiency of forced turbo overclocking through load consolidation. Once the
point of maximum energy efficiency is passed, the strategy allows consolidation
of load up to 100%, thus displaying the power consumption of the consolidation
strategies.

SOR Throughput/Power

HSW_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_SMT-BALANCED_Sor

HSW_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_SMT-CONSOLIDATED_Sor

IVB_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_SMT-BALANCED_Sor

IVB_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_SMT-CONSOLIDATED_Sor

10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

25

50

75

100

125

150

175

200

225

250

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.8: Energy efficiency of consolidated strategy with and without SMT
unit consolidation on both dual-socket systems for SOR.

11.2.1.3 Load Distribution for all Worklets on Dual-Socket System

The dual-socket systems offer an additional layer on the load distribution
hierarchy, as load can be distributed on a socket-by-socket basis. Performance
variation depending on the selected strategy remains minimal with an average
CV of 0.4% on the Haswell and 0.5% on the Ivy Bridge System.

Measurements on the dual-socket systems also confirm that load distribution
on SMT units within the same core has no effect on power consumption and
energy efficiency. This observation remains true for both Haswell and Ivy

169

Chapter 11: Evaluation of Load Profiles and Placements
SOR Throughput/Power

IVB_Sockets-BALANCED_Cores-BALANCED_Sor

IVB_Sockets-BALANCED_Cores-CONSOLIDATED_Sor

IVB_Sockets-CONSOLIDATED_Cores-BALANCED_Sor

IVB_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_Sor

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

25

50

75

100

125

150

175

200

225

250

275

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.9: Energy efficiency of load distribution strategies on Ivy Bridge
dual-socket systems for SOR.

Bridge architectures across all worklets and strategies. A selected comparison
is shown in Figure 11.8. As a result, we will only display the results for strategy
compositions using a balancing strategy on the SMT level for all following
measurements.

The dual-socket Ivy Bridge measurement results in Figure 11.9 are represen-
tative for the results with all workloads. Keeping the workloads fully balanced
on all levels is still the most efficient strategy, as it was for the single-socket
system. However, balancing is not always the most efficient sub-strategy in
all cases. When core-level load consolidation is employed, load consolidation
on a socket level improves energy efficiency at lower load levels, meaning
that full consolidation on both the socket and CPU levels beats a CPU level
consolidation on balanced sockets. This can be explained by the observation
that the amount of cores onto which work is consolidated for both of these
strategies remains the same. The difference is only in the location of the given
cores. When consolidating sockets, only cores on one socket are activated,
allowing cores on the other socket to remain in more energy efficient modes
and, more importantly, keeping them from going into turbo. Balancing cores
on consolidated sockets improves energy efficiency further, as cores are kept in
their most energy efficient load range.
The dual-socket Haswell measurement results in Figure 11.10 are the first

results to significantly deviate from one of our principal previous observations,
as the balanced strategy is not the reliably best strategy at all load levels. Socket
level load balancing improves energy efficiency for all workloads making it

170

11.2 Energy Efficiency of Hierarchical Load Distribution
SOR Throughput/Power

HSW_Sockets-BALANCED_Cores-BALANCED_Sor

HSW_Sockets-BALANCED_Cores-CONSOLIDATED_Sor

HSW_Sockets-CONSOLIDATED_Cores-BALANCED_Sor

HSW_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_Sor

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

25

50

75

100

125

150

175

200

225

250

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.10: Energy efficiency of load distribution strategies on Haswell dual-
socket systems for SOR.

more efficient than pure load balancing at high load. This effect is visible to
a different extent depending on the specific workload. It can differ both in
the range of load levels for which consolidation is superior to balancing, as
well in the amount of energy saved. A comparison of these factors is shown in
Table 11.3.

Worklet Load level Avg. power Max. power
range difference difference

CryptoAES 80% – 90% 12.3 W 16.3 W
LU 80% – 90% 30.0 W 34.4 W
SOR 80% – 90% 11.5 W 16.6 W
SSJ 90% 1.6 W 1.6 W
XMLValidate 90% 10.3 W 10.3 W

Table 11.3: Load level range where socket consolidation has a lower power
consumption than fully balanced load (inclusive). The shown differences are
power consumption differences within this range.

Core-level load consolidation is always less efficient than the same strategy
composition without core level consolidation. However, some workloads (SOR,
LU, and CryptoAES) gain such a significant increase in energy efficiency from
using socket level consolidation that consolidation on all levels still outperforms

171

Chapter 11: Evaluation of Load Profiles and Placements
LU Throughput/Power

IVB_Sockets-BALANCED_Cores-BALANCED_Lu

IVB_Sockets-BALANCED_Cores-EFFICIENT_Lu

IVB_Sockets-CONSOLIDATED_Cores-BALANCED_Lu

IVB_Sockets-EFFICIENT_Cores-BALANCED_Lu

IVB_Sockets-EFFICIENT_Cores-EFFICIENT_Lu

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

25

50

75

100

125

150

175

200

225

250

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.11: Energy efficiency of load distribution strategies on Ivy Bridge
dual-socket system for LU.

the fully balanced strategy at high load. Similarly, these worklets also profit
from core-wise load balancing at high load: It is, however, not as efficient as
socket level consolidation only.

11.2.1.4 Efficiency Strategy on Dual-Socket System

Effectiveness of the efficiency strategies varies depending on processor architec-
ture. On Ivy Bridge, maximum energy efficiency for LU is reached at the 80%
load level (see Figure 11.11). Socket-level load distribution using the efficiency
strategy features better energy efficiency than full socket-level consolidation,
yet still doesn’t reach the energy efficiency of a fully balanced system.

The Haswell dual-socket system reacts in a completely different way to the
efficiency strategies, as shown in Figure 11.12. Particularly, the socket level
efficiency strategy features better energy efficiency than the fully balanced
distribution and the socket level consolidation strategy at a number of load
levels. LU’s load level of maximum energy efficiency is 50%. Per definition,
the efficiency strategy and the fully balanced strategy result in an identical
load distribution at this load level. At lower load than 50% the fully balanced
approach still remains the most energy efficient. At those load levels, the
efficiency strategy attempts to keep as many sockets as possible at 50% load,
which leads to partial load consolidation and consumes more power than a
balanced load at less than 50%. Beyond 50% load, the efficiency strategies
attempt to consolidate work on as few units as possible, while keeping the

172

11.2 Energy Efficiency of Hierarchical Load Distribution
LU Throughput/Power

HSW_Sockets-BALANCED_Cores-BALANCED_Lu

HSW_Sockets-BALANCED_Cores-EFFICIENT_Lu

HSW_Sockets-CONSOLIDATED_Cores-BALANCED_Lu

HSW_Sockets-EFFICIENT_Cores-BALANCED_Lu

HSW_Sockets-EFFICIENT_Cores-EFFICIENT_Lu

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

50

100

150

200

250

300

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.12: Energy efficiency of load distribution strategies on Haswell dual-
socket system for LU.

rest at 50%. On the socket level this means that one socket is kept at 50% load,
while the other increases in load. Beyond the 75% load level, the first socket is
fully utilized and the efficiency strategy behaves identical to the consolidation
strategy, as it can now only increase load on the remaining socket. At 60%
load the strategy of keeping a socket at maximum energy efficiency pays off,
resulting in greater efficiency than using pure balancing. Beginning at the
70% global load level the socket level efficiency strategy starts distributing
load similarly (and then identically) to the socket level consolidation strategy.
Consequently, the energy efficiency of these two strategies behaves the same.

On our dual-socket Haswell system, the efficiency load distribution strategy
saves up to 33 W (10.7% relative savings) in comparison to the fully balanced
strategy. Within the interval between maximum energy efficiency (50%) and
full load (both exclusive) it allows for an average energy saving of 15.4 W (5.8%
relative savings). In conclusion, we recommend amixed load balancing strategy
for a multi-socket Haswell system. We recommend a fully balanced strategy up
to the load level of maximum energy efficiency. At greater loads our efficiency
strategy performs better and should be used instead.

11.2.1.5 No CPU Pinning

The OS features additional mechanisms, which can be used once CPU pinning
is disabled. Specifically, it is able to migrate running threads from one core to
another. This way the local CPU utilization can be changed to a level, which is

173

Chapter 11: Evaluation of Load Profiles and Placements
CryptoAES Throughput/Power

HSW_Sockets-BALANCED_Cores-BALANCED_CryptoAes

HSW_Sockets-BALANCED_Cores-BALANCED_no-pinning_CryptoAes

HSW_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_CryptoAes

HSW_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_no-pinning_CryptoAes

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

100

200

300

400

500

600

700

800

900

1,000

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.13: Energy efficiency of load distribution strategies, including non-
pinning strategies, on Haswell dual-socket system for CryptoAES.

seemingly independent of the actual thread loads, as threads can be continu-
ously relocated at run-time. We disable CPU pinning to analyze the effect of
this behavior on power consumption.

For the previous measurements using CPU affinity, most observations were
observable over all worklets and only varied in their respective impact. Non-
pinned distribution shows far greater variability depending on the workload.
Figure 11.13 shows the energy efficiency of a few selected strategies using the
CryptoAES worklet. For this specific worklet, non-pinned strategies cannot
match the energy efficiency of the fully balanced strategy using CPU pinning.
There are still significant differences in the energy efficiency of the different non-
pinning strategies, as thread migration does not cancel unevenly distributed
load.

LU (see Figure 11.14) behaves completely different, as the non-pinned bal-
anced strategy performs with greater energy efficiency than the pinned strategy
at high loads. It even outperforms the efficiency strategy at 60% load. It does,
however, not perform as efficiently as the efficiency strategy at loads of 80%
and greater. For the other worklets, which were not evaluated for the efficiency
strategy, the non-pinned balanced strategy performs equal to (SOR) or better
(SSJ, XMLValidate) than its pinned counterpart. The energy efficiency of pinned
socket-level consolidation at 90% load is always greatest, though.

174

11.2 Energy Efficiency of Hierarchical Load Distribution
LU Throughput/Power

HSW_Sockets-BALANCED_Cores-BALANCED_Lu

HSW_Sockets-BALANCED_Cores-BALANCED_no-pinning_Lu

HSW_Sockets-CONSOLIDATED_Cores-CONSOLIDATED_no-pinning_Lu

HSW_Sockets-EFFICIENT_Cores-BALANCED_Lu

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

50

100

150

200

250

300

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.14: Energy efficiency of load distribution strategies, including non-
pinning strategies, on Haswell dual-socket system for LU.

11.2.1.6 Multi-Node Load Distribution

In contrast to hardware components within a system, separate server nodes
executing independent units of work without any common external resources
do not feature any contention. As a result, we can evaluate the energy efficiency
of multi-node distribution strategies by simulating multi-node performance
and power from single system measurements. For each global load level, we
calculate the load that must be reached by any single node within the cluster.
We then read the measured power and performance data for the given local
load level and compute cluster wide power and performance. Performance
variation is again negligible with an average CV of 0.2% over all strategies.

Figure 11.15 shows the energy efficiency of multi-node distribution strategies
when unused systems are turned off. Figure 11.16, on the other hand, assumes
that unused nodes remain in an idle state. Most notably, node level load
consolidation only leads to maximum energy efficiency when unused nodes
are switched off. Even then it is only the best strategy at low load up to 30 –
40%. In the 40% to 70% load range it is less efficient than a number of strategies,
including balancing and efficiency strategies. At the highest load levels it shares
maximum efficiency with node level balancing in combination with the socket
level efficiency distribution. Load consolidation loses its advantage at low loads
once unused systems are left idling. In that case it is only slightly more efficient
than load balancing and equally as efficient as the node-level efficiency strategy
at 20% load.

175

Chapter 11: Evaluation of Load Profiles and Placements

LU Throughput/Power

Nodes-BALANCED_Sockets-BALANCED_Lu

Nodes-BALANCED_Sockets-EFFICIENT_Lu

Nodes-CONSOLIDATED_Sockets-BALANCED_Lu

Nodes-CONSOLIDATED_Sockets-EFFICIENT_Lu

Nodes-EFFICIENT_Sockets-BALANCED_Lu

Nodes-EFFICIENT_Sockets-EFFICIENT_Lu

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

25

50

75

100

125

150

175

200

225

250

275

300

325

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.15: Energy efficiency of load distribution strategies on two nodes
using the Haswell dual-socket system for LU. Unused nodes are turned off.

LU Throughput/Power

Nodes-BALANCED_Sockets-BALANCED_Lu

Nodes-BALANCED_Sockets-EFFICIENT_Lu

Nodes-CONSOLIDATED_Sockets-BALANCED_Lu

Nodes-CONSOLIDATED_Sockets-EFFICIENT_Lu

Nodes-EFFICIENT_Sockets-BALANCED_Lu

Nodes-EFFICIENT_Sockets-EFFICIENT_Lu

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

25

50

75

100

125

150

175

200

225

250

275

300

325

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.16: Energy efficiency of load distribution strategies on two nodes
using the Haswell dual-socket system for LU. Unused nodes remain idle.

176

11.2 Energy Efficiency of Hierarchical Load Distribution
LU Power

Nodes-BALANCED_Sockets-BALANCED_Lu

Nodes-BALANCED_Sockets-CONSOLIDATED_Lu

Nodes-CONSOLIDATED_Sockets-BALANCED_Lu

Nodes-CONSOLIDATED_Sockets-CONSOLIDATED_Lu

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

P
o

w
e

r

Figure 11.17: Power consumption of load distribution strategies on two HP
dual-socket nodes for LU. Unused nodes remain idle.

Figure 11.17 shows the power consumption of the multi-node results, as
measured on our two HP servers. These results differ significantly from the
previously simulated results. On these systems load consolidation consumes
more power than balanced load at low load levels, whereas it saves power at
higher loads. We attribute most of this difference to the Xeon E5-2699 v3 CPUs,
which operate within the HP servers. These CPUs have a lower frequency
(2.3 GHz) in comparison to the Xeon E5-2667 v3 CPU (3.2 GHz) yet feature 18
physical cores per socket in comparison to the 8 cores of the Xeon E5-2667 v3.
Another influencing factor for the blade’s power consumption is the shared
power infrastructure, including shared PSUs.

11.2.1.7 Homogeneous Workloads - Conclusions

The measurement results using homogeneous workloads show that our new
efficiency load distribution strategy, applied on the socket level, can reduce
power consumption of servers at high utilization. To a lesser degree, load
consolidation on the socket level can also improve energy efficiency at high
utilization. In contrast, a balanced load is the best choice for low load levels
and the CPU core level. Multi-node systems benefit from load consolidation at
low loads as unused systems can enter power saving states or shut down. We
also demonstrate that CPU-pinned strategies perform equally or better than
their non-pinned counterparts.

177

Chapter 11: Evaluation of Load Profiles and Placements
Energy Efficiency

Cores-BALANCED_SMT-BALANCED_CLEAN

Cores-BALANCED_SMT-BALANCED_MIXED

Cores-CONSOLIDATED_SMT-BALANCED_CLEAN

Cores-CONSOLIDATED_SMT-BALANCED_MIXED

Cores-CONSOLIDATED_SMT-CONSOLIDATED_CLEAN

Cores-CONSOLIDATED_SMT-CONSOLIDATED_MIXED

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

100

200

300

400

500

600

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.18: Energy efficiency of heterogeneous load distribution strategies
on Haswell single-socket system.

11.2.2 Energy Efficiency for Heterogeneous Workloads

We evaluate the energy efficiency of concurrently executing independent work-
loads using the previously introduced distribution strategies. In addition, we
allow the specific worklets to be pinned to logical processors on given cores.
As each core on our SUT’s features two logical processors, worklets can be
either deployed on a core with a worklet of a different type already running on
it (mixed) or it can be deployed on a core with another instance of the same
worklet running concurrently (clean). For our experiments, we use the SOR and
CryptoAES worklets, as they are sufficiently heterogeneous featuring different
performance and energy bottlenecks.

Figure 11.18 shows the energy efficiency for the different distribution strate-
gies on the single-socket Haswell based system. Performance impact of the
distribution strategies is very small again, with an average CV of 0.1% for each
load level over the different strategies, including mixed and clean strategies.
Power consumption is influenced, however, resulting in different efficiency
for the strategies. For the balanced strategy, mixing worklets onto the same
core has a positive effect on efficiency, as hyperthreading distributes used and
unused execution units in a more efficient manner. Heterogeneous workloads
offer more options for efficient hyperthreading as heterogeneous workloads
tend to use less of the same execution units, enabling concurrent hardware
multi-threading on the same core. Heterogeneous load distribution on the
dual-socket system (see Figure 11.19) confirms observations from the single-

178

11.2 Energy Efficiency of Hierarchical Load Distribution
Energy Efficiency

Sockets-BALANCED_Cores-BALANCED_CLEAN

Sockets-BALANCED_Cores-BALANCED_MIXED

Sockets-CONSOLIDATED_Cores-BALANCED_MIXED

Sockets-CONSOLIDATED_Cores-CONSOLIDATED_MIXED

0 10 20 30 40 50 60 70 80 90 100

Load Level (%)

0

100

200

300

400

500

600

700

T
h

ro
u

g
h

p
u

t/
P

o
w

e
r

Figure 11.19: Energy efficiency of heterogeneous load distribution strategies
on Haswell dual-socket system.

socket result. Mixed execution of worklets remains more energy efficient for the
balanced strategy. Additionally, balanced load distribution is still less energy
efficient than consolidated loads at high utilization, as it was for homogeneous
workloads.

Concluding, the observations made for homogeneous workloads remain
valid for heterogeneous workloads. In addition, energy efficiency can be im-
proved by deploying different workload types onto the same core.

Summarizing, we answer EQ A.5 (“Can we evaluate the energy efficiency of
load distribution policies?”) by demonstrating the impact of hierarchical load
distribution on the energy efficiency of both homogeneous and heterogeneous
workloads. We evaluate load distribution and load distribution policies on four
levels of the computational hierarchy (servers, sockets, CPU cores, and SMT
units). We show that the selection of a single most energy-efficient strategy is
only possible on smaller or older systems. For other systems the most energy
efficient load distribution strategy depends onworkload type and load level. For
some loads, the most efficient strategy is not always the commonly assumed
one, for example, full load consolidation on a multi-node level can have a
smaller energy efficiency than other load distributions. We also show that our
new strategy can save up to 10.7% of power consumption on a single server
node.

179

Chapter 11: Evaluation of Load Profiles and Placements

11.3 Summary

This chapter addresses EQ A.4 (“Can the modeling formalism and extractor
accurately express the load variations of real-world load profiles?”) and EQA.5
(“Canwe evaluate the energy efficiency of load distribution policies?”) by evalu-
ating our load profilemodeling formalisms and extractors and load distribution
policies.

Our evaluation of the DLIM model extractor’s accuracy answers EQ A.4 and
shows that DLIM is an expressive modeling mechanism that is able to capture
load profiles with great accuracy. The extractor is able to extract load intensity
models with a median modeling error of 12.7% from a representative set of
nine different real-world traces. It is also able to perform these extractions
quickly, as each extraction completes in less than 0.2 seconds. The major source
of errors in models is seasonal drift in original traces. The “s-DLIM” model
extractor, used in this work, does not yet have a method to account for this
drift. In general, the results demonstrate and validate the capability of DLIM
to capture realistic load intensity profiles.
We answer EQ A.5 by demonstrating the impact of hierarchical load dis-

tribution on the energy efficiency of both homogeneous and heterogeneous
workloads. We evaluate load distribution and load distribution policies on four
levels of the computational hierarchy (servers, sockets, CPU cores, and SMT
units). We show that the selection of a single most energy-efficient strategy is
only possible on smaller or older systems. For other systems the most energy
efficient load distribution strategy depends on workload type and load level.
For some loads, the most efficient strategy is not always the commonly assumed
one, e.g., full load consolidation on amulti-node level can have a smaller energy
efficiency than other load distributions. We also show that our new strategy
can save up to 10.7% of power consumption on a single server node.

180

Chapter 12

Accuracy and Applicability of Workloads for
Energy Efficiency Measurement

This chapter evaluates the advanced workloads introduced in Chapter 6. We
evaluate the ability of performance event triggers of Section 6.1 to emulate an
application’s power profile using multiple reference workloads in Section 12.1.
This evaluation addresses EQ A.6 (“Can we accurately emulate the power
profile of more complex workloads using performance counters?”). We show
the use of the TeaStore reference and test application of Section 6.2 in three
application scenarios in Section 12.2, with one of these scenarios addressing
EQ A.7 (“Can our distributed reference application be used to evaluate the
quality of micro-service placements regarding energy efficiency and power?”).

12.1 Power-Profile emulation using Performance Event Triggers

We address EQ A.6 (“Can we accurately emulate the power profile of more
complex workloads using performance counters?”) and evaluate our approach
for power emulation using performance event triggers introduced inChapter 6.1
by measuring each trigger implementation by itself to determine its accuracy.
Each trigger’s most viable solution is incorporated into PET for use in the final
workload compositions. This final framework is then evaluated for its ability to
emulate the power consumption behavior of different server workloads with
increasing complexity. For each of the workloads, measurements are taken
for parallel and sequential versions with one, four and eight processes. As L2
cache misses are triggered as L3 hits, L2 misses are implicitly evaluated using
L3 hits.

12.1.1 Accuracy of Performance Event Triggers

We evaluate the event trigger implementations based on their ability to reach
pre-defined constant event counter numbers. Cache counters are evaluated

181

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

16 32 64 128 256 512 1024 2048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

Figure 12.1: L3 cachemisses for one process, step size 2 and target value 1×106.

based on their ability to accurately reach a target event count of 1 × 106. As
memory access will always result in a complete cache line being read or written,
memory read and write triggers must reach a total byte count of 64× 106. For
instructions retired, a value of 1× 1010 is set as the target event count. Context
switches and interrupts are set to a target value of 1×105. For multiple triggers
of the same type running in parallel, target values must be reached for each
parallel process. Performance counters are measured on an idle system for
120 s to establish the background noise of the system.

L3 Cache Misses The evaluation of non-parallelized L3 cache miss triggers
with sequential memory access is shown in Figure 12.1 and 12.2. Except for the
ASM read implementation, sequential access with varying step sizes performs
poorly. Write functions in particular generate almost no cache misses. Only
ASM read features a small deviation of less than -3.5% for memory sizes larger
than 512 MiB with a step size of 6.
If a random factor is added to the step size, an overall improvement can

be observed, as shown in Figure 12.3, especially for step sizes larger than 2.
Increasing the step size to 4 and 6 improves the obtained results with -6.6%
and -3.5% deviation for the ASM read trigger implementation and a memory
size greater 512 MiB. It can be seen that the SIMD implementations trigger
caches but deviate further from the target event count than the C and ASM
implementations. Adding a random factor does not have an effect on the
accuracy of the write functions.

182

12.1 Power-Profile emulation using Performance Event Triggers

16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

Figure 12.2: L3 cachemisses for one process, step size 6 and target value 1×106.

Using shared memory instead of virtual process memory yields similar
behavior for non-parallelized triggers. Setting parts of memory as uncachable
results in a neglectable amount of L3 cache misses. We assume that accessing
uncachable memory is not counted towards cache misses and therefore not
further investigated for triggering cache misses or hits.

16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Memory allocated / Mbyte

L3
 c

ac
he

 m
is

se
s

SIMD/Read
SIMD/Write
SIMD/Copy
ASM/Read
ASM/Write
ASM/Copy
C/Read
C/Write
C/Copy

Figure 12.3: L3 cache misses for one process, step size 6, random step and
target value 1× 106.

The L3 cache miss trigger exhibits similar behavior when used in parallel
with 4 and 8 processes. Using shared memory requires system calls but is
otherwise comparable to using process owned memory and therefore not used

183

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

Table 12.1: L3 cache hits for process owned memory and target values 1× 106,
4× 106 and 8× 106 bytes.

1 Process 4 Processes 8 Processes
No rnd Rnd No rnd Rnd No rnd Rnd

SIMD
Read 165 031 923 975 443 037 3 391 786 2 248 193 5 253 885
Write 932 1420 6984 6088 22 623 31 034
Copy 193 001 922 185 1 328 717 2 218 435 1 579 026 3 738 683

ASM
Read 204 282 966 181 1 225 584 3 408 932 1 747 484 4 047 238
Write 914 1489 12 381 10 786 26 052 34 182
Copy 222 718 979 248 1 459 860 3 155 795 2 478 220 4 343 272

C
Read 213 862 971 336 743 568 3 537 446 1 516 549 4 199 528
Write 778 1421 8872 13 675 26 676 28 181
Copy 259 416 968 232 1 358 422 2 701 179 1 556 921 4 320 763

in PET. We can conclude that a step size of 6 works best overall and that the
C and ASM implementations exhibit a higher overall accuracy than the SIMD
implementation, with ASM exhibiting the most promising characteristics. It
is included in PET without randomness and using a step size of 6 together
with a memory size of 512 MiB, as a compromise between memory footprint
and accuracy. Larger step sizes were not evaluated as accurate results can be
achieved with a step size of 6.

L3 Cache Hits and L2 Cache Misses Cache hits are measured similarly as L3
cache misses, except we only evaluate a step size of 6 due to its promising
characteristics. The results are presented in Table 12.1. Not applying a random
factor leads to fewer cache hits than targeted. Using shared memory results in
similar behavior as observed with L3 cache misses. As with L3 cache misses,
ASM and C implementations perform better than SIMD.

With a deviation of -11.5%, the C read implementation performs best when
four processes are executed in parallel. The ASM and SIMD functions deviate
further from the target value. Major discrepancies can be observed when
using eight processes. Increasing the parallel process count from one to four
processes scales reasonably well, yet increasing the process count above the
number of physical cores does not. An exception to this observation is the
SIMD read function. Its accuracy does not decrease as sharply with high
parallelization. However, it does have a lower accuracy at lower process counts.
The C read trigger shows the most deterministic behavior overall and scales

184

12.1 Power-Profile emulation using Performance Event Triggers

Table 12.2: Bytes read results with uncachable memory and target values
64× 106, 256× 106 and 512× 106 bytes.

Processes Implementation Bytes read Deviation

1 SIMD 64 002 560 0.004%
ASM 64 038 080 0.060%
C 64 025 024 0.039%

4 SIMD 242.41× 106 −5.31%
ASM 255.98× 106 −0.01%
C 191.16× 106 −25.33%

8 SIMD 326.43× 106 −36.24%
ASM 343.67× 106 −32.88%
C 347.82× 106 −32.07%

with the process count up to the physical core count. We therefore integrate it
into PET.

L2 Cache Hits The separate L2 cache hit trigger is not able of generating enough
cache hits to reach the target value. Using more than one process does not
result in an improvement. It is therefore not deemed sufficiently accurate to be
included in PET.

16 32 64 128 256 512 1024 2048
1

2

3

4

5

6

7
x 10

7

Memory allocated / Mbyte

B
yt

es
 w

rit
te

n
to

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random
SIMD
ASM
C

Figure 12.4: Bytes written results for one process with process owned memory
and target value 64× 106 bytes.

Bytes Read from Memory Controller As shown for L3 cache misses, a step size
of 6 works best in triggering cache misses. Therefore, investigations for other
step sizes are omitted. The results in Table 12.2 show a large overcount on

185

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

16 32 64 128 256 512
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

8

Memory allocated / Mbyte

B
yt

es
 w

rit
te

n
to

 m
em

or
y

co
nt

ro
lle

r

SIMD / random
ASM / random
C / random

SIMD
ASM
C

Figure 12.5: Bytes written results for eight processes with process owned
memory and target value 512× 106 bytes.

all implementations and memory sizes. When using uncachable memory,
overcounting can be reduced to a minimum. Especially if parallelizing using 4
processes, the ASM read implementation comes close to the target value with
only a small deviation. With 8 processes, deviations are larger with over -30%
across all implementations. The ASM read function performs similarly as the C
function and works well on lower process counts if combined with uncachable
memory and therefore integrated into PET.

Bytes Written to Memory Controller The results for a single process are pre-
sented in Figure 12.4 using process ownedmemory. The implementation works
well for memory sizes of 512 MiB and larger. For parallelized triggers, as shown
in Figure 12.5, the implementations are not as accurate. Functions including a
random step size perform better. Using shared memory yields the same charac-
teristics. The uncachable memory kernel module, as shown with the bytes read
triggers, is expected to work well but instead less than half of the target bytes
are written to memory. As the results show, the bytes written event trigger
struggles at approximating the target value in multi-process environments.

Instructions Retired Retiring instructions works with good accuracy and devi-
ations below 1%, as Table 12.3 shows.

Context Switches To test if our trigger implementations actually cause context
switches in groups of two, we evaluate the implementation with different
correction factors f by which the target event count is divided. The results in

186

12.1 Power-Profile emulation using Performance Event Triggers

Table 12.3: Retired instructions measurement results with target values of
1× 1010, 4× 1010 and 8× 1010.

Processes Result Deviation

1 10.005× 109 0.05%
4 40.121× 109 0.30%
8 80.414× 109 0.52%

Table 12.4: Context switches measurement results and target values of 1× 105,
4× 105 and 8× 105 switches.

Factor f
Proc. 2.00 1.25 1.00

1 70 350 −29.7% 100 588 0.6% 120 641 20.6%
4 271 683 −32.1% 400 689 0.2% 481 324 20.3%
8 470 265 −41.2% 757 056 −5.4% 940 653 17.6%

Table 12.4 show, using f = 2.00 causes a high deviation for one process and
even higher for 4 and 8 processes. A deviation of around 20% can be measured
if no correction is made. We also test if using a correction factor of f = 1.25 can
correct for overcounting. This works well with one and four processes. With
eight processes, a slightly higher deviation can be observed in comparison to
fewer processes, but overall accuracy is still better. We therefore use f = 1.25
in PET.

Interrupts The results in Table 12.5 show that the interrupt implementation
performs well with only minor deviations from the target value.

Table 12.5: Interrupt measurement results and target values of 1× 105, 4× 105

and 8× 105 interrupts.
Processes Result Deviation

1 100 276.0 0.3%
4 400 946.0 0.2%
8 798 682.3 −0.2%

187

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

Table 12.6: Side effects of performance event triggers per event generated for
eight processes.

Source event
P. ctr. L3MISS L3HITS READ WRITE INST irq ctxt

L3MISS 0.04 42.5× 10−5 8.1× 10−4 1.03× 10−7 0.3 10.4
L3HITS 0.02 36.1× 10−4 0.004 6.20× 10−7 4.7 73.7
READ 85.5 38.5 65.1 20.09× 10−5 265.4 7604.8
WRITE 21.2 10.4 13.6 55.71× 10−5 119.4 4732.3
INST 131.1 75.8 24.1 130.6 15 385.1 23 620.4
irq 0.000 03 0.0003 3.1× 10−5 1.9× 10−5 5.24× 10−8 0.001
ctxt 0.000 02 0.0007 8.5× 10−4 18.6× 10−4 11.63× 10−8 2.0

12.1.2 Side Effects of Event Triggers

The results for performance counters not explicitly triggered are shown in
Table 12.6. We present only the side effects for parallelized measurements with
8 processes, as the final evaluation of PET uses as many processes as there are
logical cores on the SUT (as is default in our power methodology). All side
effect measurements exceed background noise and are accounted for in PET,
using one of the three composition methods described in Section 6.1.

Table 12.7: PI workload mean and maximum deviation and CV.
Power Deviation

Measurement Mean Max. CV

Full Naive 2.95% 14.96% 6.94%
Accumulation −1.93% −12.43% 7.24%
Sim. An. −42.05% −59.63% 28.26%

Pruned Naive −1.32% −4.39% 1.79%
Accumulation −0.62% −4.51% 2.00%
Sim. An. 2.18% 9.36% 3.45%

12.1.3 PET

PET is evaluated using four workloads with increasing complexity on the
same set of selected performance counters. The first is the synthetic workload
PI, designed to only stress the CPU by approximating π using the Gregory-
Leibniz series π ≈ 4 ·

∑n
k=1 (−1)k+1 /2k − 1 with n randomly chosen between

[1000, 100000] for each transaction. As our second and third workloads in this
evaulation we utilize XMLValidate and SSJ. The latter is also used in the SERT

188

12.1 Power-Profile emulation using Performance Event Triggers

Table 12.8: PI workload performance counter results.
Perf. Background Achieved / Target Value
counter Corr. noise factor Naive Accu. Sim.An.

L3MISS 0.91 0.031 454.520 404.483 518.529
L3HITS 0.91 0.003 621.546 532.234 673.416
READ 0.98 1.079 348.933 142.329 175.925
WRITE 0.99 2.244 250.555 166.988 159.703
INST 0.99 3.406 1.083 1.077 0.154
irq 0.22 2.319 0.685 0.596 6.302
ctxt 0.97 24.310 0.678 0.634 1.306

implementation of our measurement methodology from Chapter 4. Both XML-
Validate and SSJ stress the CPU andmemory. For each transaction, XMLValidate
randomly moves comments inside an XML document which is then validated
against an XML schema using the simple Application Programming Interface
(API) for XML (SAX) and the document object model. SSJ resembles a real
world application with six different transactions. It simulates an online transac-
tion processing as a server side Java application, including placing new orders,
payment, checking order status, processing orders for delivery, query stock
level and generating customer reports. The last and most demanding workload
is a DPI firewall that also uses additional I/O devices (network interface card
(NIC)) driven by external load generators.

For each load level, a pre-measurement, measurement andpost-measurement
time of 30 s, 120 s and 10 s is used. For each workload, we evaluate PET’s three
composition mechanisms (see Section 6.1). We include the 95% confidence
interval of each load level for all PET power measurement results, as well as the
mean and maximum deviation and coefficient of variation (CV) over all load
levels. We also analyze the ability to accurately trigger the target performance
counters and evaluate the results for each of the three different composition
mechanisms.

PI Workload When using a performance trigger composition that ignores side
effects, power consumption behavior seems accurate on average. However, the
maximum deviation is over 10% as shown in Table 12.7. If accumulating side
effects, the CV is higher but it deviates less from the target power consumption
on average and at its peak. Using simulated annealing to account for side effects
does not perform as well and has a lower accuracy. When pruning performance
triggers, all triggers except instructions retired and context switches can be
removed (see Table 12.8).

189

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

Load Level [%]

P
ow

er
 [W

at
t]

Reference
Naive
Accumulation
Simulated Annealing

Figure 12.6: PI workload power consumption behavior with removed event
triggers.

Pruning event triggers results in an overall improvement for all three com-
position methods, shown in Table 12.7 and Figure 12.6. The mean deviation
from the target power consumption with the naive approach improves by a
small margin while its CV and maximum deviation show a notable decrease.
Accumulating side effects improves on mean and maximum deviation as well
as CV. Simulated annealing also improves through pruning and in the same
range as the naive and accumulation compositions. For PI, accumulating side
effects for the pruned trigger composition is determined as the best solution, as

Table 12.9: XMLValidate mean and maximum deviation and CV.
Power Deviation

Measurement Mean Maximum CV

Full Naive −10.48% −38.93% 27.69%
Accumulation −4.32% −11.29% 5.04%
Sim. An. −52.57% −67.78% 26.81%

Pruned Naive −23.31% −39.48% 29.82%
Accumulation −4.36% −11.57% 5.40%
Sim. An. −18.85% −27.02% 8.61%

190

12.1 Power-Profile emulation using Performance Event Triggers

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

100

Load Level [%]

P
ow

er
 [W

at
t]

Reference
Naive
Accumulation
Simulated Annealing

Figure 12.7: XMLValidate workload power consumption behavior.

its average deviation is closest to the target power consumption behavior with
only marginally higher maximum deviation and CV. The results show that the
local, CPU heavy, PI workload can be approximated with good accuracy and
only minor deviations from the target power behavior with our approach.

XMLValidate Power measurements using PET compositions without event
trigger pruning are shown in Figure 12.7 and the deviations are shown in
Table 12.9. Not all load levels reach a steady state, but lower load levels with a
steady state achieve the target power consumption with minor deviations. At

Table 12.10: XMLValidate performance counter results.
Perf. Background Achieved / Target Value
counter Corr. noise factor Naive Accu. Sim.An.

L3MISS 0.99 12.454 0.038 0.015 0.845
L3HITS 0.99 1.291 0.062 0.014 0.967
READ 0.98 463.950 1.880 0.049 0.320
WRITE 0.98 865.172 0.684 0.065 0.342
INST 0.98 5.868 0.069 0.666 0.084
irq 0.47 1.040 0.454 6.855 16.093
ctxt 0.96 5.928 0.053 114.533 5.680

191

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

100

Load Level [%]

P
ow

er
 [W

at
t]

Reference
Naive
Accumulation
Simulated Annealing

Figure 12.8: XMLValidate workload power consumption behavior with pruned
performance event trigger.

the 100 % load level, the naive method features the largest deviation and it is
therefore unlikely that it could reach other load levels with reasonable accuracy.
Accumulation works well and reaches deviations and a CV comparable to the
PI workload.

Based onTable 12.10, L3 cachemisses and hits, bytes read andwritten, and the
retired instruction count are not pruned for all measurements. The interrupts
are pruned from all configurations due to low correlation. Context switches
are removed from accumulation due to a significant overcount. However, some

Table 12.11: SSJ mean and maximum deviation and CV.
Power Deviation

Measurement Mean Maximum CV

Full Naive 12.35% 26.44% 19.37%
Accumulation 13.28% 27.61% 7.03%
Sim. An. −5.52% −9.35% 3.66%

Pruned Naive −3.35% 20.91% 12.99%
Accumulation 2.97% 27.84% 9.92%
Sim. An. −9.63% −17.37% 7.38%

192

12.1 Power-Profile emulation using Performance Event Triggers

Table 12.12: SSJ performance counter results.
Perf. Background Achieved / Target Value
counter Corr. noise factor Naive Accu. Sim.An.

L3MISS 0.98 63.033 0.028 0.091 0.891
L3HITS 0.98 6.500 0.119 0.117 1.164
READ 1.00 706.852 1.071 0.164 0.927
WRITE 0.98 531.555 0.450 0.008 2.123
INST 0.98 1.652 0.186 1.563 0.799
irq 0.97 0.475 1.329 6.271 1.664
ctxt 0.99 0.597 0.291 65.128 54.963

load levels still do not achieve steady states, even with event trigger pruning.
As with the PI workload, simulated annealing works better with fewer event
triggers. Using a more complex workload does not necessarily result in a
higher deviation. The accumulation measurement is in close proximity to the
PI workload without pruning, with a mean deviation of below 5 %. Yet pruning
performance triggers does not necessarily yield better results. This is mainly
due to the workload stressing more hardware components, which in turn leads
to fewer event triggers that can be removed.

100 90 80 70 60 50 40 30 20 10
20

30

40

50

60

70

80

90

100

Load Level [%]

P
ow

er
 [W

at
t]

Reference
Naive
Accumulation
Simulated Annealing

Figure 12.9: SSJ power consumption behavior with removed event triggers.

193

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

SSJ The results for SSJ are shown in Table 12.11. Ignoring side effects does
not yield good results for the SSJ workload. Accumulation exceeds the refer-
ence power consumption whereas simulated annealing achieves a reasonable
approximation that deviates 5 % on average with the maximum deviation stay-
ing below 10 %. When trigger pruning is applied, only interrupts and context
switches are a viable option to remove, as they are below the background noise
as shown in Table 12.12.
Results for the pruned configuration are presented in Figure 12.9. It shows

an improvement for the naive approach but above the 50 % load level, power
behavior emulation accuracy decreases. Composition using accumulation
improves power accuracy on average, but not the CV and maximum deviation.
The measurement still seems affected by the same effects observed without
pruning and exceeds the target power consumption at full load. Simulated
annealing does not improve this effect either.

We show that even a complex workload can be emulated with a reasonable
accuracy below 10 % on both mean and maximum deviations. Yet a mean
deviation of less than 5 % is not achieved. We also conclude that reducing the
amount of event triggers may not always improve the emulation for complex
workloads.

100 90 80 70 60 50 40 30 20 10
20

25

30

35

40

45

50

55

60

Load Level [%]

P
ow

er
 [W

at
t]

Reference
Naive
Accumulation
Simulated Annealing

Figure 12.10: NFV workload power consumption behavior.

194

12.1 Power-Profile emulation using Performance Event Triggers

Table 12.13: NFV mean and maximum deviation and CV.
Power Deviation

Measurement Mean Maximum CV

Full Naive −6.63% −16.35% 8.27%
Accumulation −23.69% −40.19% 14.33%
Sim. An. −20.77% −35.97% 12.33%

Pruned Naive −4.52% 27.18% 13.42%
Accumulation −23.38% −39.83% 14.28%
Sim. An. −20.83% 36.20% 12.28%

Long Naive −8.84% −16.47% 5.86%
Accumulation −23.68% −40.23% 14.33%
Sim. An. −21.00% −36.19% 12.32%

NFV The DPI firewall stresses hardware parts otherwise not used by the pre-
viously employed CPU and memory bound workloads. Using the firewall,
we evaluate the ability to emulate the power consumption-relevant behavior
even though specific hardware components (NICs) remain unused. The results
in Figure 12.10 and Table 12.13 show that this can be achieved. The naive
composition that ignores side effects works best, deviating the least from the
target in both mean and maximum power consumption. Yet it slightly underes-
timates power consumption consistently with one exception at the 90 % load
level. All PET compositions favor underestimation. This behavior is expected
considering that PET does not utilize NICs. The accumulation and simulated
annealing compositions do not achieve the naive method’s good accuracy with
higher deviations and CVs. For pruned compositions only the L3 cache misses
can be removed according to Table 12.14.
Pruning performance events to trigger does not result in an overall better

Table 12.14: NFV workload performance counter results.
Perf. Background Achieved / Target Value
counter Correlation noise factor Naive Accu. Sim.An.

L3MISS 0.97 2.776 1.380 0.019 1.572
L3HITS 0.97 0.260 1.748 0.021 1.729
READ 0.94 72.297 9.215 0.009 0.996
WRITE 0.97 91.529 5.092 0.010 1.395
INST 0.98 1.927 0.267 0.146 0.257
irq 1.00 44.395 0.070 0.506 0.311
ctxt 0.99 103.710 0.082 0.364 0.305

195

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

100 90 80 70 60 50 40 30 20 10
20

25

30

35

40

45

50

55

60

Load Level [%]

P
ow

er
 [W

at
t]

Reference
Naive
Accumulation
Simulated Annealing

Figure 12.11: NFV power consumption behavior with 240 s measurement.

approximation. This coincides with the results for the XMLValidate and SSJ
workloads. Accumulation and simulated annealing show only minor effects
on the efficacy of pruning. Pruning improves naive compositions on average
but at the cost of a higher CV and maximum deviation. The pruned naive
composition still consumes too much power at the 90 % load level, which could
be the result of the low transaction count in total.
To achieve more stable measurements for load levels where steady states

are not reached, we repeat measurements with an elongated measurement
phase of 240 s without pruning. We expect that a longer measurement phase
might reduce the CV as well as increasing the total transaction count, as a
longer measurement phase allows for a more stable measurement. Figure 12.11
and Table 12.13 show the results. The mean deviation for the accumulation
composition increases but is still below 10 %. Its CV and maximum deviation
improve significantly. Accumulation and simulated annealing compositions
are not influenced by the longer measurement phase. We expect the naive
composition results to converge towards the results of simulated annealing
and accumulated compositions, indicating that NICs remain unused by PET.
However, the naive composition approximates the I/O heavy load’s power
with a reasonable accuracy of less than 10 % on average. Simulated annealing
and accumulation are not as accurate.
Summarizing, we evaluate our power profile emulation approach using

196

12.1 Power-Profile emulation using Performance Event Triggers

performance event triggers, addressing EQ A.6 (“Can we accurately emulate
the power profile of more complex workloads using performance counters?”).
We evaluate these performance triggers separately and determine the best
performance trigger implementations in order to accurately trigger performance
counter events. We also evaluate our overall PET framework, which emulates
entire real-world workloads using the separate trigger implementations. We
show that PET is capable of emulating the power consumption behavior of
realistic workloads with a mean deviation down to 0.19 W (1%) and even show
that it is able to emulate the power profile of I/O intensive applications, such
as virtual network functions.

197

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

12.2 Use-Cases for the TeaStore Reference and Test Application

We demonstrate the use of TeaStore, which is introduced in Chapter 6.2. Specif-
ically, we show its application in three use-cases. All use-cases are designed to
show that TeaStore can be used as a software that exhibits the characteristics
that are addressed or needed for the respective field of research. Specifically,
we show TeaStore’s use in three areas of research. We show that it can be used
as a distributed application for evaluating and extracting software performance
models, for testing single and multi-tier auto-scalers, and for software energy
efficiency analysis and management, which addresses EQ A.7 (“Can our dis-
tributed reference application be used to evaluate the quality of micro-service
placements regarding energy efficiency and power?”). The use-cases are con-
structed as examples of the state-of-the art that current research has to compare
itself against. For example, the auto-scaling example uses the standard state-of-
the-art reactive auto-scaler, against which more advanced research scalers have
to be compared.
For all of the experiments, we utilize much of the standard testing tools

and profiles found in TeaStore’s documentation. We generate load using an
HTTP load generator, which sends requests based on an open workload model.
Requests are defined using a load profile, in which the request rate may vary
over time. For our measurements, the load profile may be constant, linearly
increasing (stress test profile), or based on a real-world load trace. We extract the
real world trace using the LIMBO load intensity model extraction mechanism,
introduced in Chapter 5.1, and modify it to describe the load intensity in a
range that can be handled by our SUT, varying between almost no load and
the maximum throughput capacity. On the time scale, the real-world traces are
modified to execute the load variations of the original multiple-day-long trace
within one hour.

The content of the requests (meaning, the user actions) are defined using a
stateful user profile. Each time a request is sent, an idle user from the pool of
users is selected to execute a single action on the store. The user then performs
that action and returns to the pool. This means that the user state and actions
are chosen as they would be in a closed workload model (Schroeder et al., 2006),
whereas the arrival times of the single requests are chosen according to an open
workload model. We use a cyclical user profile, in which users browse the store.
Figure 12.12 shows this profile. Users log in, browse the store for products, add
these products to the shopping cart and then log out. The number of users is
chosen depending on the maximum load.

We place TeaStore’s primary services on several HPE ProLiant DL160 servers,
each equipped with a Xeon E5-2640 v3 processor with 16 logical cores at 2.6

198

12.2 Use-Cases for the TeaStore Reference and Test Application

Start
Page Sign In

Profile

Shopping
Cart

Category
View

Product
View

1 2

3

4

6
7

8

9

1011

12

5

Webpage

Call from Load
Generator

Start / End
of User Profile

Webpage Send
from Web-Service

1.
2.
3.
4.

5.

6.

7.

8.

9.

10.
11.
12.

GET
GET
POST
GET

GET

GET

GET

GET

GET

GET
GET

Start Page
Sign In
Send login data for random user
Category View for random category
and 30 items per page
Product View for random product
on first page
Shopping Cart; add currently
viewed product
Category View with previous
category
Category View with random page
number
Shopping Cart; add random product
from current category view
Profile
Start Page and Logout
Start Over

Figure 12.12: “Browse” user profile configured in HTTP load generator for our
use-cases, including web pages delivered and HTTP request type. Unused web
pages are omitted for clarity.

GHz and 32 GB RAM. The servers run Debian 9 and Docker 17.12.1-ce. The
service registry is executed on an additional physical host. We run the front-end
load balancer and load generator on separate machines with network links to
each of the service hosts.

12.2.1 Performance Modeling

Performance models provide a powerful tool for prediction of performance
metrics, such as utilization or response time. These predictions enable smart
capacity planning, especially in a micro-service environment where containers
can be added or removed within seconds. Examples for such performance
models are RESOLVE (Sitaraman et al., 2001), ROBOCOP (Bondarev et al., 2005),
PCM (Becker et al., 2009), SAMM (Becker et al., 2017b), CACTOS (Groenda
et al., 2017) and UMLMARTE (Gérard and Selic, 2008). These models have a
limited number of real world case studies, making it difficult to evaluate their
applicability for real world scenarios. Additionally, quantitative comparison of
performance models is challenging, as common case studies do not exist.

We showcase that TeaStore is well suited as a case study for advanced per-
formance modeling concepts. We use a novel modeling mechanism, modeling
TeaStore. Using TeaStore, we show that this novel mechanism can improve
modeling accuracy when compared to standard state-of-the-art approaches.
This, in reverse, highlights TeaStore’s ability to evaluate the applicability and
modeling accuracy of novel formalisms. Specifically, we evaluate the modeling
concepts for parametric dependencies, see (Eismann et al., 2018), using TeaStore.
This modeling formalism has the capability of modeling and predicting the

199

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

impact of the changes within a workload profile, which can be mapped to a
parameter in the underlying model. We compare this novel formalism to a
standard state-of-the-art modeling method, by also constructing a model of
TeaStore using the Descartes Modeling Language (DML) (Huber et al., 2017).
Both models are used to predict the utilization of previously unseen deploy-
ments under different load levels. Using TeaStore, we aim to show that the
ability of the novel modeling formalism to capture parametric changes in the
workload profile increases prediction accuracy in comparison to the state-of-
the-art method, which does not model this aspect. This comparison shows
how TeaStore can be used as a case study to highlight the benefits of advanced
performance modeling concepts.

The category page can display different amounts of products per page, based
on user preference. We investigate the question of how changing the default
number from five products per page to ten products per page impacts the
performance. We assume that for a default of five products per page, some
users manually switch to ten or twenty products per page, leading to the
distribution shown in Equation 12.1, where P5(x) denotes the probability of
any given user displaying the amount of x products per page, when a default
value of 5 is pre-configured.

P5(x) =

0.9 if x = 5

0.09 if x = 10

0.01 if x = 20

0 else.

(12.1)

Equation 12.2 shows the assumed distribution for a default of ten products
per page, where P10(x) denotes the probability of any given user displaying the
amount of x products per page, when a default value of 10 is pre-configured.
We aim to predict the impact of this change to the products per page on the
performance of TeaStore.

P10(x) =

0 if x = 5

0.99 if x = 10

0.01 if x = 20

0 else.

(12.2)

We model the software architecture based on TeaStore architecture shown in
Fig. 6.1. To parameterize the service demands in the static model, we deploy
each service on a bare-metal server as shown in Fig. 12.13a, measure the uti-
lization for a load of 1000 requests per second, using the usage distribution

200

12.2 Use-Cases for the TeaStore Reference and Test Application

of Equation 12.1, and calculate the service demands according to Equation
12.3. The service demand defines the average time the CPU spends serving
one request at the respective service (Spinner et al., 2015).

SerD = U/λ, (12.3)

where U is the utilization and λ is the arrival rate. For the parametric model, we
use linear regression to derive the Equations 12.4-12.6 for the service demands
of the WebUI, ImageProvider and Persistence services, respectively.

SerDWeb = 0.0034 + 0.00016 ∗ ProductsPerPage. (12.4)

SerDImg = 0.0012 + 0.00011 ∗ ProductsPerPage. (12.5)

SerDPer = 0.0022 + 0.00005 ∗ ProductsPerPage. (12.6)

The service demand for the Authentication service remains static, as it is not
influenced by the number of products per page. In both models, the recom-
mender service was not included, since no recommendations are displayed on
the categories page.

To evaluate the resulting models, we deploy an instance of every service on
five servers to represent a production system, as shown in Figure 12.13b. For
each server, we measure the CPU utilization under a load of 1000, 2000, 3000,
4000 and 5000 requests per second for the usage distributions from Equations
12.1 and 12.2. We compare the measured utilizations with the predicted utiliza-
tions using the static model and the parametric model for both distributions.
Fig. 12.14 shows the absolute prediction errors for both models. For a default
of five products per page, both the static and the parametric model have an
absolute utilization prediction error of< 5%. This is expected, as this is the sce-
nario the static model was built for and calibrated with. However, for a default
of ten products per page, the parametric model significantly outperforms the
static model. Using TeaStore as a case study, we are able to highlight the benefit
of modeling parametric dependencies. This illustrates TeaStore’s applicability
for model evaluation in one specific context.

Aside from parametric dependencies, TeaStore provides many opportunities
to evaluate performance modeling concepts due to its performance properties.
In the following, we list a number of challenges, which could be evaluated
using TeaStore. We also list some example approaches that motivate or tackled
these issues in the past:

201

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

(a) Calibration deployment.

(b) Evaluation deployment.

Figure 12.13: Deployments for model prediction. Services are abbreviated to
their first letter.

Deployment options TeaStore offers a large variety of deployment options,
as each service can be individually deployed and scaled. The prediction
of resource utilizations and response times for previously unseen deploy-
ments and configurations is the most common use case for performance
engineering. This task overlaps with the remaining challenges and there-
fore offers itself as a scenario for benchmarking of performance modeling
approaches.

Internal state For some services, the performance does not only depend on the
request, but also the internal state of the service. In TeaStore, the database
size influences the service demand of the persistence provider service.

202

12.2 Use-Cases for the TeaStore Reference and Test Application

0
2

4
6

8
10

Arrival Rate [Request/s]

A
bs

ol
ut

e
E

rr
or

 [%
]

1000 2000 3000 4000 5000

Default 5 Products + Static Model
Default 5 Products + Parametric Model
Default 10 Products + Static Model
Default 10 Products + Parametric Model

Figure 12.14: Absolute prediction error of the static and parametric model for
two workload profiles and five workload intensities.

The number of entries in the database can dynamically change during
operation, leading to changing persistence provider service demands.
See e.g., (Happe et al., 2014).

Caching Caching mechanisms are challenging to model, as the behavior of a
service with caching depends on its workload profile. The more frequent
a small subset of items is requested, the more effective caching becomes.
The Persistence and Image Provider of TeaStore implement caching. The
implementation of the image provider cache is known and can bemodeled
as a white-box, whereas the persistence provider cache is part of the JPA
implementation and has to be modeled as a black-box. See e.g., Bianchi
et al., 2013 and Garetto et al., 2016

Network For distributed applications, network delays can influence their re-
sponse time and can be a bottleneck which limits the maximum through-
put. This means, the network topology and limitations need to be taken
into account in a performance model to prevent significant prediction
errors. As instances of each TeaStore service can be deployed on different
machines, potentially even in different data centers, network delays can
significantly influence the system response times. The Image Provider

203

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

transmits potentially large images over the network, which can lead to a
network bottleneck. See e.g., Rygielski et al., 2016.

Load types The CPU of a server is the most common bottleneck for applica-
tions, however the I/O capacity or the available memory can also be a
bottleneck. Additionally, the load profile of two services deployed on the
same machine influences how well they run in parallel. The authentica-
tion service causes CPU load, the Image provider I/O load and both the
Image and Persistence provider caches cause memory load. Therefore,
modeling of different load types is necessary to accurately predict the
performance of TeaStore. See e.g., Huber et al., 2017.

Startup behavior Some systems dynamically add or remove service instances
in order to adapt to changing workload. Whether a service starts instantly
or takes some time until it is available, is an important factor when pre-
dicting the response times of such systems. The TeaStore services cover
both cases. New Recommender instances need to be trained before they
can process requests and Image provider instances need to generate the
image files upon startup. For the remaining services new instances can be
added and removed within seconds. See e.g., Papadopoulos et al., 2016.

Alternate Implementations Deciding between multiple implementations of
the same component or service is a classic performance modeling chal-
lenge. TeaStore provides multiple recommender algorithms and image
provider caches, which provides the opportunity for configuration opti-
mization case studies. See e.g., Koziolek et al., 2013.

Timed tasks In most cases, the load of a system depends on the number of
requests it receives. Sometimes, a system also regularly performs some
tasks without user input, usually some kind of maintenance tasks. Model-
ing this behavior explicitly is important, as this load occurs independently
of the user behavior. The Recommender service can be configured to
be retrained at a regular interval, which is a realistic example of such a
maintenance task.

We show that TeaStore can be used as a case-study for performance modeling
approaches. It provides sufficient complexity to challenge existing approaches.
The open source nature of TeaStore enables white-box modeling and any mea-
surements using TeaStore can be easily replicated, since we provide docker con-
tainers with integrated monitoring. Therefore, TeaStore is a suitable case-study
for a quantitative comparison between performance modeling approaches.

204

12.2 Use-Cases for the TeaStore Reference and Test Application

These comparisons can be done using manually created models or automat-
ically extracted models using approaches such as the approaches of Walter
et al., 2017a; Willnecker et al., 2015a; Krogmann et al., 2010 and Walter et al.,
2017b. Using automatically extracted models would allow comparisons of
full tool-chains, provided by the respective modeling formalisms, in a realistic
usage scenario.

12.2.2 Auto-Scaling

In order to show that TeaStore works in an elastic manner and can thus be
used for auto-scaling experiments, we stress an early development version of
TeaStore using workloads derived from two different real-world traces (FIFA
World Cup 1998, see Arlitt and Jin, 2000, and BibSonomy, see Benz et al., 2010).
We employ a common, generic auto-scaler (Chieu et al., 2009) to automatically
scale the store at run-time as the load intensity varies. We evaluate the quality
of the scaler’s decisions using a set of standard auto-scaler evaluation metrics.

12.2.2.1 Workload

We stress TeaStore using load intensity profiles based on different real-world
workloads: (i) BibSonomy and (ii) FIFA World Cup 1998. We select a sub-set
lasting four days from each of those traces. The BibSonomy trace represents
HTTP requests to the social bookmarking system BibSonomy (see Benz et al.,
2010) during April 2017. The FIFA1 trace is a popular trace that was analyzed
by Arlitt and Jin, 2000. The FIFA trace represents HTTP requests to the FIFA
servers during the world championship between April and June 1998. We
modify the traces to cover the load intensity range between a low load that can be
covered using aminimal TeaStore deployment and a high load level that reaches
the maximum capacity of the potential deployments for this scenario. On the
time scale, the experiment is modified so that the load intensity variations of
the original four days are executed within one hour.

12.2.2.2 Auto-Scaler

In 2009, Chieu et al., 2009 present a reactive scaling algorithm for horizontal
scaling. This mechanism provisions VMs based on an application’s scaling
indicators. Among other things, the indicators consist of the number of active
connections or the number of requests per second. The auto-scaler monitors
these indicators for each VM and calculates the moving average. Next, the
1FIFA Source: http://ita.ee.lbl.gov/html/contrib/WorldCup.html

205

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

Table 12.15: Mapping of config. number and used containers.
Configuration

Service #1 #2 #3 #4 #5 #6 #7 #8 #9
WebUI 1 1 2 3 3 4 5 5 6
Image Provider 1 1 2 3 3 4 5 5 6
Authentication 1 2 3 4 5 6 7 8 9
Recommender 1 1 1 2 2 2 3 3 3
Persistence 1 2 2 3 4 4 5 6 6

virtual machines with active sessions above or below given thresholds are
determined. Finally, if all virtual machines have active sessions above a given
threshold, new instances are provisioned. Upon detecting VMs with active
sessions below the threshold and with at least one virtual machine that has no
active session, idle instances are removed.

In these experiments we aim to use a representative auto-scaler. Conse-
quently, we choose this reactive technique, as the underlying mechanism is
simple and straight-forward. Based on this simplicity, this reactive generic
auto-scaling-mechanism can and does serve as baseline approach when com-
paring state-of-the-art research auto-scalers. For our experiments, we use a
re-implementation of this reactive algorithm that scales docker containers and
name it React. In the evaluation framework of Ilyushkin et al., 2018, React shows
a generic and stable scaling performance.

Scaling distributed applications is still an open research challenge and cur-
rently not supported by many state-of-the-art auto-scalers and not by our
baseline auto-scaler. To account for this, we provide a best-effort list of which
service to scale at which stage. This list acts as a mapping between the dis-
tributed services of TeaStore and the expected single service instances (scaling
units) typically addressed by auto-scalers. Specifically, in our case, the auto-
scaler under test always deploys a full-stack as the first scaling unit, then one
Authentication and one Persistence instance as the second unit and, finally, one
WebUI, Authentication, and Image instance each as the third scaling unit. Each
service instance is limited to one virtual CPU core on the host machine. For
additional scaling units, these three steps are repeated on the next available
physical host (see Table 12.15). We use up to three physical server, resulting in
a maximum configuration with a total of 30 service containers.

206

12.2 Use-Cases for the TeaStore Reference and Test Application

12.2.2.3 Quantifying Scaling Behaviour

In order to evaluate the scaling decisions made by React, we consider the
proportion of failed transactions, the average response time and a set of system-
oriented elasticity metrics endorsed by the SPEC RG (see Herbst and more,
2016). In particular, we focus on the wrong provisioning time share.
The wrong provisioning time share captures the time in which the system

is in an under-provisioned (or over-provisioned) state during the experiment
interval. That is, the under-provisioning time share τU describes the time relative to
themeasurement duration, in which the system is under-provisioned. Similarly,
the over-provisioning time share τO describes the time relative to themeasurement
duration in which the system is in an over-provisioned state. The range of this
metric is the interval [0, 100]. The best value of 0 is achieved, when the system
features no over- or under-provisioning during the measurement. We define
both metrics τU and τO as follows:

τU [%] :=
100

T
·
T∑
t=1

max(sgn(dt − st), 0)∆t

τO[%] :=
100

T
·
T∑
t=1

max(sgn(st − dt), 0)∆t , where

dt is the minimal amount of scaling units required to meet the Service Level
Objectives (SLOs) under the load intensity at time t, st is the resource supply at
time t, and T is the experiment duration. ∆t denotes the time interval between
the last and the current change either in demand d or supply s.
To know whether or not the system is in an under-provisioned or over-

provisioned state, we execute separate off-line calibrationmeasurements, which
measure the average throughput of each target configuration in an over-loaded
state. Based on this configuration, capacity information, and the load intensity
of our traces, we are able to derive the required resource configuration for each
point in time, which we can then use for calculating the time share metrics.

12.2.2.4 Evaluation

The scaling behavior of React on both the FIFA and BibSonomy traces is shown
in Figure 12.15 and in Figure 12.16. Both figures are structured as follows:
The horizontal axis shows the experiment time in minutes; the vertical axis
represents the current number of scaling units (the configuration). Table 12.15
shows the mapping between the number and used containers. The red, dashed
curve represents the required configuration, which has been derived using the

207

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

0 10 20 40 50 6030
Time [min]

0

1

2

3

4

5

6

7

8
C

on
fig

ur
at

io
n

nu
m

be
r

Supplied Configuration
Demanded Configuration

Figure 12.15: Scaling behavior for the FIFA trace.

separate off-line calibration tests, and the blue curve shows the supplied config-
uration, as measured during the experiment. For both traces, React scales the
system in a similar fashion. That is, in both traces, the supplied configuration
matches the required configuration for long periods. However, some devia-
tions between supplied and required configurations occur. In Figure 12.15, for
example, the system is in an under-provisioned state in the entire interval be-
tween minute 2 and 5. Overall, the under-provisioning and over-provisioning
time-shares are equal or below 15% in both traces (see Table 12.16), indicating
good scaling behavior. In addition to the low time-share metrics, the assertion
of good scaling behavior is backed up by the observation that the proportion
of failed transactions is below 2% and the average response time is lower than
0.19 s for both traces.

The results of our auto-scaler tests indicate that TeaStore can be used to com-
pare the elasticity and performance of state-of-the art auto-scalers. Specifically,
they show that TeaStore can even be used for comparing commonly used and
state-of-the art autoscalers, even though these scalers are usually limited to
single tier scaling. In addition, the results show that TeaStore exhibits robust
behavior during run-time scaling, as the proportion of failed transactions is
below 2%. This characteristic is achieved through themicro-service architecture
and the client-side load balancers. The results also indicate that TeaStore is
sufficiently scalable to allow for experiments of this kind.
Many open challenges remain, despite the good performance of the React

208

12.2 Use-Cases for the TeaStore Reference and Test Application

0 10 20 40 50 6030
Time [min]

0

1

2

3

4

5

6

7

8

C
on

fig
ur

at
io

n
nu

m
be

r
Supplied Configuration
Demanded Configuration

Figure 12.16: Scaling behavior for the BibSonomy trace.

Table 12.16: Result metric overview for both traces.
Metric Fifa BibSonomy
τU under-provisioning time share 15% 13%
τO over-provisioning time share 7% 6%
Proportion of failed transactions 1% 1%
Average response time 0.18 s 0.15 s

auto-scaler. In these experiments, the service deployment order is fixed and the
auto-scalers do not have to decide which service to place on whichmachine, but
rather when to add or remove the next configuration from the pre-defined list
of configurations. Distributed application deployment decisions of this kind
remain an open challenge. Furthermore, load profiles may be more complex,
as the used profile does not change the database and does not change in the
user actions performed over time. Real-world auto-scalers face the challenge of
evolving user-behavior and changes in request service demands over time.

12.2.3 Energy-Efficiency Analysis

Energy efficiency and power predictionmethods, such as the ones of Beloglazov
et al., 2012 and Basmadjian et al., 2011 are often employed to solve a placement
problem for services in distributed systems. The underlying challenge is that

209

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

0 50 100 150 200

0
2

4
6

8

Time [s]

E
ne

rg
y

E
ffi

ci
en

cy
 [1

/J
]

#1: WARIP; −
#4: WARIP; IP
#7: WARIP; WARP

Figure 12.17: Energy efficiency for linearly increasing load. Services are abbre-
viated to their first letter.

different distributions of application services across physical hosts may not only
result in different performance behavior but also in differences in overall power
consumption. This section demonstrates this effect using TeaStore, addressing
EQ A.7 (“Can our distributed reference application be used to evaluate the
quality of micro-service placements regarding energy efficiency and power?”).
We show that different distributions of TeaStore’s services can result in different
performance and in different power consumption both on homogeneous and
heterogeneous systems.

For these experiments, we use an increasing load intensity profile. The load
profile starts at 8 requests per second and increases to 2000 requests per second
over the time of fourminutes. Request content is, again, specified using the user
browse profile for the 128 users accessing the store. Depending on the current
SUT configuration, some of the four minutes are spent in an under-provisioned
state, in which the load intensity exceeds the capacity of the SUT. We measure
the power consumption of the physical servers and throughput of TeaStore
during the entire run. However, we only take those measurements into account,
which are measured during the time in which load arrives at the system. Each
measurement is taken on a per-second basis and thus tightly coupled to the
current load intensity.
We calculate the following metrics based on the throughput and power

consumption:

210

12.2 Use-Cases for the TeaStore Reference and Test Application

Table 12.17: Energy efficiency on homogeneous servers. Services are abbrevi-
ated to their first letter.

Serv.1 Serv.2 Capacity Max Pwr Eff.
1 WARIP - 779.7 ±[29.7] 114.4 W 5.3
2 WI ARP 1177.5 ±[31.5] 193.6 W 4.2
3 WAI RP 883.4 ±[39.4] 175.8 W 3.8
4 WARIP IP 863.0 ±[40.5] 173.5 W 3.9
5 WARIP AIP 1228.7 ±[18.9] 208.4 W 4.2
6 WAIP WARP 1231.8 ±[18.7] 203.7 W 4.3
7 WARIP WAIP 1404.1 ±[14.5] 217.9 W 4.3
8 WARIP WARIP 1413.2 ±[14.7] 217.7 W 4.3

1. Energy Efficiency: We use the energy efficiency metric of our methodol-
ogy in Chapter 4:

Efficiency[J−1] =
Throughput[s−1]

Power[W]

As energy efficiency is a ratio, we aggregate multiple energy efficiency
scores using the geometric mean.

2. Estimated Capacity: We estimate the throughput capacity of each con-
figuration by averaging the last 50 seconds of our load profile. Note that
all configurations are operating at maximum load (capacity) at this time.

3. Maximum Power Consumption: The maximum power consumption
measured (in watts). It indicates the power load that the configuration
can put on the SUT.

12.2.3.1 Energy Efficiency on Homogeneous Systems

We run TeaStore with un-restrained docker containers on up to two of our
testing servers. Table 12.17 shows the estimated capacity, maximum power,
and geomean energy efficiency for different TeaStore deployments on those
servers (Service names in the table are abbreviated to their first letter). The
table confirms our previous assertion that the store performs differently de-
pending on the service distribution. Capacity (maximum throughput) varies
significantly for the different deployments, with some two-server deployments
barely exceeding the capacity of the single server deployment and others almost
doubling it.

211

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

The single server deployment (deployment #1) features the lowest perfor-
mance, but also the lowest power consumption. As a result, it has the highest
energy efficiency among all tested configurations. This is mostly due to our
increasing stress test profile. At low load, as the load increases, the single sys-
tem is still capable of handling all requests, while also consuming less power.
At high load, it operates at capacity, but still consumes less power than the
two-server setups. Figure 12.17 visualizes the energy efficiency over time for
the single-server and two selected two-server deployments. The figure shows
that an efficient two-server deployment can reach a similar energy efficiency as
the single-server deployment at maximum load. However, some low perfor-
mance deployments are incapable of reaching this efficiency and are overall
less efficient due to the power overhead of the second server.

Among the two-server deployments, maximum power consumption is usu-
ally greater for those deployments with greater capacity, but some notable
differences exist, which indicate room for power and efficiency optimization,
even on a homogeneous system. Two notable examples emerge: Comparing
deployment #2 with deployment #3, shows that deployment #2, which deploys
the WebUI and Image services on one and the Auth, Recommender, and Per-
sistence services on the other server has both a better performance, as well as
smaller power footprint than deployment #3, which deploys the WebUI, Auth,
and Image services on one server and the Image and Persistence services on
another server. Consequently, deployment #2 features a better energy efficiency.
In this example, one deployment is obviously better than another and TeaStore
could be used to evaluate if a prediction or management mechanism actually
selects the better option. However, in some cases power does not scale the same
as performance. This case is hinted at when comparing deployment #5 and
#6. Both deliver equal performance, but deployment #6 consumes slightly less
power and is therefore a bit more efficient.

12.2.3.2 Energy Efficiency on Heterogeneous Systems

For our measurements on heterogeneous systems we replace the second server
with an HP ProLiant DL20 system, which features an Intel Xeon E3-1230 v5
processor with 4 cores at 3.5 GHz and 16 GB RAM. This second server does
not offer as much performance and consumes less power compared to its 8
core counterpart. Naturally, when deploying on this heterogeneous system,
the order of deployment matters, as servers differ in power and performance.
Table 12.18 shows the measurement results of the heterogeneous system.

It shows the performance, power, and energy efficiency for selected deploy-
ments. It illustrates the effect that deployment order has on the heterogeneous

212

12.2 Use-Cases for the TeaStore Reference and Test Application

Table 12.18: Energy efficiency on heterogeneous servers. Services are abbrevi-
ated to their first letter.

8 core 4 core Capacity Max Pwr Eff.
1 WARIP - 779.7 ±[29.7] 114.4 W 5.3
2 AIP WARIP 781.1 ±[11.1] 163.1 W 3.9
3 WARIP AIP 1207.3 ±[23.4] 189.5 W 4.6
4 WAIP WARIP 1011.9 ±[24.7] 179.6 W 4.4
5 WARIP WAIP 1067.7 ±[26.7] 187.0 W 4.3
6 WARIP WARIP 1003.9 ±[24.9] 179.7 W 4.1

system, especially regarding deployments #2 and #3, which are the same de-
ployment, except that they deploy each respective stack on the different server.
Deployment #2 deploys the full stack on the smaller server and replicates some
components on the larger machine, wheres deployment #3 does the reverse.
Although deployment #3 consumes more power than #2, it has a far better
performance and greater overall efficiency. It should also be noted that deploy-
ments with fewer services on the smaller machine seem to be more efficient in
the heterogeneous environment compared to the respective deployments in the
homogeneous environment, which deploy the smaller stack on an equivalent
machine. Deployment #5 corresponds to deployment #7 on the homogeneous
system (see Table 12.17), which is themost efficient system in that context. How-
ever, on the heterogeneous system, it is trumped in performance and efficiency
by deployment #3, which places fewer services on the smaller machine.
In addition, the heterogeneous system demonstrates an efficiency – per-

formance trade-off when compared to the homogeneous system. The most
efficient heterogeneous deployment has a slightly lower performance capacity
than the best homogeneous one, yet consumes less power and has a better
energy efficiency.

Overall, our experiments show that TeaStore exhibits different performance
and power behavior depending on deployment, both on heterogeneous and
homogeneous systems. Due to this, it can be used to evaluate the prediction
accuracy of power prediction mechanisms. In addition, some of our configura-
tions feature a performance – efficiency trade-off, which is highly relevant for
power and performance management, showing that TeaStore can be used to
evaluate such management approaches.

Summarizing, we demonstrate the use of TeaStore, introduced in Chapter 6.2
in three application scenarios: Performance model evaluation, auto-scaler eval-
uation, and evaluation of energy efficiency of service placements, addressing

213

Chapter 12: Accuracy andApplicability ofWorkloads for Energy EfficiencyMeasurement

EQ A.7 (“Can our distributed reference application be used to evaluate the
quality of micro-service placements regarding energy efficiency and power?”).
Researchers may decide to use TeaStore and the corresponding testing tools and
profiles in any of these three primary application scenarios. TeaStore can also
be used in additional settings to achieve evaluation results that demonstrate the
applicability of their work, while also enhancing comparability of their results.

12.3 Summary

This chapter addresses EQ A.6 (“Can we accurately emulate the power profile
of more complex workloads using performance counters?”) and EQ A.7 (“Can
our distributed reference application be used to evaluate the quality of micro-
service placements regarding energy efficiency and power?”) by evaluating our
performance counter based workload emulation approach and demonstrating
the use of TeaStore.

We evaluate our power profile emulation approach using performance event
triggers, addressing EQ A.6. To this end, we evaluate these performance trig-
gers separately and determine the best performance trigger implementations
in order to accurately trigger performance counter events. We also evaluate our
overall PET framework, which emulates entire real-world workloads using the
separate trigger implementations. We show that PET is capable of emulating
the power consumption behavior of realistic workloads with a mean deviation
down to 0.2 W (1%) and even show that it is able to emulate the power profile
of I/O intensive applications, such as virtual network functions.
We demonstrate the use of TeaStore, introduced in Chapter 6.2 in three

application scenarios: Performance model evaluation, auto-scaler evaluation,
and evaluation of energy efficiency of service placements, addressing EQ A.7.
Researchers may decide to use TeaStore and the corresponding testing tools and
profiles in any of these three primary application scenarios. TeaStore can also
be used in additional settings to achieve evaluation results that demonstrate the
applicability of their work, while also enhancing comparability of their results.

214

Chapter 13

Accuracy of Power Interpolation

We evaluate the accuracy of our interpolation methods from Chapter 7 based
on measurements using the SERT implementation of our methodology of
Chapter 4, addressing EQ B.1 (“Can interpolation be used to accurately model
power consumption per load level on servers?”). The goal of using the SERT is
to utilize its many worklets and load levels for a thorough evaluation of our
interpolation method on the function of server power per load.

We use all of SERT’s worklets, except for the memory Capacity worklet, as it
doesn’t scale with load levels, and the XMLvalidate worklet, which didn’t scale
correctly for fine-granular target load levels. The usedworklets are: six different
CPU worklets (Compress, CryptoAES, LU, SHA256, SOR, and SORT), the two
storage worklets (Random and Sequential, see Lange et al., 2012), the memory
Flood worklet, described by Lange et al., 2013, and the hybrid SSJ worklet.
We exercise each of the worklets at 100 different load levels, with a separate
idle power measurement serving as a 101st measurement at the 0% load level.
For each of these intervals, throughput (in s−1) and power consumption (in
W) are measured. Energy efficiency (in s−1

W = 1
J) can be derived from these

measurements by dividing throughput by power consumption.
We select both evenly distributed as well as scattered subsets of measure-

ments from the original 101 results. Evenly distributed subsets are selected
using the data points from 5, 6, or 11 equi-distant load levels (i.e., the 0%, 25%,
25% ... load levels for five data points, the 0%, 20%, 40% ... load levels for six
data points, etc.). As a result, our data sets have load level intervals of 25%,
20%, or 10% between the considered levels. The scattered subset is selected
based on 8 scattered load levels. These scattered levels stay the same during the
entire evaluation to ensure comparability of results. All models are evaluated
based on their ability to accurately reconstruct the entire original measurement
for the given workload using no additional data. We compute the relative ab-
solute error (|pmodel − preferece|/preference) for each data point in the reference
measurement. The mean and median of this relative point-wise difference in

215

Chapter 13: Accuracy of Power Interpolation

Table 13.1: Mean modeling errors of interpolation and reference methods for
the power over load level function of the SSJ workload.

Interval sizes
Model 10% 20% 25% scattered
Cubic Spline 0.172% 0.222% 0.224% 0.19%
Max. degree Polynomial 0.35% 0.249% 0.304% 0.215%
Linear 0.169% 0.297% 0.296% 0.175%
Nearest Neighbor 0.704% 1.419% 1.772% 1.117%
Piece-Wise Polynomial (degree 2) 0.168% 0.225% 0.255% 0.191%
Piece-Wise Polynomial (degree 3) 0.19% 0.243% 0.317% 0.26%
Piece-Wise Polynomial (degree 4) 0.204% 0.246% - 0.218%
Shepard (weight 1) 1.325% 1.449% 1.639% 1.434%
Shepard (weight 2) 0.353% 0.651% 0.793% 0.58%
Split Polynomial (1 break) 0.35% 0.249% 0.304% 0.215%
Split Polynomial (2 breaks) 0.305% 0.246% 0.317% 0.197%
Split Polynomial (3 breaks) 0.294% 0.217% 0.241% 0.191%
Split Polynomial (4 breaks) 0.284% 0.233% 0.296% 0.26%
Linear Power Model 2.757% 2.757% 2.757% 2.757%
Exponentially Corrected Model 4.023% 3.96% 3.938% 4.042%
Linear Regression 0.344% 0.255% 0.317% 0.199%

predicted and measured data serve as error metrics for the overall model. Of
course, a smaller relative error corresponds to a more accurate model.

13.1 Models for Comparison

We compare the accuracy of our interpolation functions with three common
power modeling approaches:

• Linear Power Model:
The linear power consumption model is a common model in literature. It
is relatively simple, using only two data points, yet features a surprising
accuracy and robustness (see Rivoire et al., 2008). It calculates power
consumption at a target load level u ∈ [0, 1] as seen in Eq. 13.1:

p(u) = pidle + (pmax − pidle)u (13.1)

• Linear Power Model with Exponential Correction:
This power model, introduced by Fan et al., 2007, modifies the linear

216

13.2 Comparison of Interpolation Methods

Table 13.2: Median modeling errors of interpolation and reference methods
for the power over load level function of the SSJ workload.

Interval sizes
Model 10% 20% 25% scattered
One single max. degree Polynomial 0.18% 0.185% 0.149% 0.144%
Piece-Wise Polynomial (degree 2) 0.09% 0.143% 0.205% 0.154%
Split Polynomial (1 break) 0.18% 0.185% 0.149% 0.144%
Split Polynomial (2 breaks) 0.151% 0.182% 0.194% 0.127%
Split Polynomial (4 breaks) 0.171% 0.143% 0.279% 0.186%
Linear Regression 0.186% 0.185% 0.267% 0.128%

power model using an exponential correction factor r, accounting for the
curvature in power per utilization functions (Eq. 13.2):

p(u) = pidle + (pmax − pidle)(2u− ur) (13.2)

We determine r by reforming the problem into a linear one and then
fitting r by minimizing the square errors using linear regression.

• Polynomial Fitting using Regression:
We create polynomials of varying degrees to fit the measured results.
These functions model either power or performance with the load lev-
els serving as the input parameter. Regression is applied to fit the co-
efficients a0, a1, ..., an of the polynomial interpolation function p(u) =
anx

n + ...a1x + a0. We use the Apache Commons Math OLS multiple
linear regression implementation.

13.2 Comparison of Interpolation Methods

Acomparison of themeanmodeling accuracy of the interpolation andmodeling
methods for the power per load level function of the hybrid SSJ workload is
shown in Table 13.1. As mentioned previously, the displayed modeling error
metric is themean of the relative absolute differences between each data point in
the reference measurement and the corresponding model prediction. The table
shows the modeling error for interpolation methods and the different power
models. Interpolation methods with multiple configuration options (such as
Shepard weights) are marked with their respective configuration. The optimal
interpolation method changes depending on input dataset size. Table 13.1
shows the modeling errors for all of the evaluation datasets.

217

Chapter 13: Accuracy of Power Interpolation
LU Interpolation

Reference Dataset Cubic Spline Piece-Wise Equi-Distant Polynomial (degree 3)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Load Level (%)

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

P
o

w
e

r
(W

)

Figure 13.1: Accuracy of LU interpolation for interpolation set at 20% load level
intervals.

Compared to the simple power models, all other interpolation functions are
highly accurate, with modeling errors reliably less than 1% for all dataset sizes.
The two exceptions are nearest neighbor and Shepard interpolation.

Polynomial interpolation provides the greatest accuracy, the optimal configu-
ration (equi-distant splits, dynamic splits, or splines) depends on the size of the
input dataset. Optimal configuration changes depending on whether accuracy
is optimized towards mean or median accuracy. As Table 13.2 shows, the opti-
mal interpolation strategy changes for all datasets except for the 10% interval
dataset. However, median accuracy favors piece-wise polynomial interpolation
as well.
The power per load level curve of select interpolation methods for the 20%

interval subset and the reference dataset for SSJ is shown in Figure 13.2. This
figure shows that the two most accurate interpolation methods for SSJ (cubic
spline and equi-distant split polynomial with three splits) approximate the
reference measurement almost perfectly with the exception of a few irregular
spikes in the reference dataset’s power consumption around the 25% and 90%
load levels.

Regression is not as accurate as any of the piece-wise polynomial interpola-
tion methods (equi-distant splits, dynamic splits, or splines) in cases of equi-
distant data. For our scattered dataset, regression is only slightly less accurate
than cubic spline interpolation.
It is also notable that the dynamically split polynomial interpolation and

218

13.2 Comparison of Interpolation Methods
SSJ Interpolation

Reference Dataset Cubic Spline Piece-Wise Equi-Distant Polynomial (degree 3)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Load Level (%)

240

250

260

270

280

290

300

310

320

330

340

350

P
o

w
e

r
(W

)

Figure 13.2: Accuracy of SSJ interpolation for interpolation set at 20% load
level intervals.

interpolation using one polynomial of maximum degree feature identical accu-
racy for this workload. This effect is the result of the largest difference in power
consumption for SSJ taking place right before full utilization. Consequently, the
first breakpoint is set at full utilization, resulting in no change to polynomial
interpolation without breakpoints.
This observation is specific to SSJ and does not repeat for other workloads.

The CPU-bound LUworkload’s power scales differently with increased load, as
can be seen in the power scaling behavior of the LUworkload. Figure 13.1 shows
that LU has a sharper increase in power consumption beginning at 60% load.
This results in a visible impact on interpolation accuracy (see Table 13.3), as
interpolation methods must correctly recognize this sudden increase in power
draw. The accuracy gap between interpolation and regression is significantly
higher than for SSJ, in addition cubic spline interpolation does not perform as
well. However, piece-wise polynomials (equi-distant and dynamically split)
are still the overall best choice in most cases and a good choice in all cases.
Table 13.4 shows the most accurate interpolation strategies for all worklet

– subset combinations. Configuration parameters and model accuracy are
displayed in parentheses behind each respective optimal strategy. Polynomial
interpolation always outperforms regression, as some version of polynomial
interpolation is always themost accurate of the evaluated interpolationmethods
(Keep in mind that linear interpolation is polynomial interpolation with piece-
wise polynomials of degree 1). The best interpolation method is our new

219

Chapter 13: Accuracy of Power Interpolation

Table 13.3: Mean modeling errors of interpolation and reference methods for
the power over load level function of the LU workload.

Interval sizes
Model 10% 20% 25% scattered
Cubic Spline 0.198% 0.48% 0.901% 0.256%
One Polynomial 1.187% 1.37% 1.472% 1.391%
Linear 0.219% 0.241% 0.856% 0.2%
Piece-Wise Polynomial (degree 2) 0.226% 0.442% 0.922% 0.268%
Piece-Wise Polynomial (degree 3) 0.239% 0.412% 0.744% 0.331%
Split Polynomial (1 break) 0.156% 0.53% 0.744% 0.304%
Split Polynomial (4 breaks) 0.127% 0.241% 0.856% 0.257%
Linear Regression 0.526% 1.305% 1.774% 0.823%

method using the dynamically split polynomial with one breakpoint. It is the
most accurate interpolationmethod in 11 cases, followed by linear interpolation,
which is best in seven cases. In the end, though, the exact best polynomial
method differs for a given problem and dataset. Finding a good configuration
within this space remains a challenge.

13.3 Interpolation using Reference Dataset

Next, we evaluate the efficiency of automatic selection of a good interpolation
function using an independent reference dataset. We choose the SSJ measure-
ment set as our reference dataset and then choose the corresponding interpola-
tion function for any given subset based on the optimal interpolation function
of SSJ for this given subset.

The default SPEC SERT configuration actually offers a similar use-case as it
samples SSJ at a greater number of load levels than for all other workloads. In
order to achieve a more thorough evaluation, our sampling rate is higher than
SERT’s default rate, but the use-case remains similar.
The accuracy of interpolation based on automated interpolation selection

and configuration using SSJ as the reference dataset is displayed in Table 13.5.
Although interpolation selection based on an independent reference dataset
is, of course, less accurate than interpolation using the optimal interpolation
function, selected using the actual measurement set for the given workload
(see Tabe 13.4), it is still more accurate than all other methods.

Compared to using regression, interpolation using an independent reference
dataset features an improvement of 43.6% (mean over the relative improve-
ments) in accuracy. Compared to always choosing the single, most commonly

220

13.3 Interpolation using Reference Dataset

Table 13.4: Mean modeling errors of best interpolation function for each work-
load.

Worklet 10% intervals 20% intervals 25% intervals scattered
SSJ Polynomial

(degree 2)
(0.168%)

Polynomial
(3 breaks)
(0.217%)

Spline
(0.224%)

Linear
(0.175%)

Compress Polynomial
(3 breaks)
(0.165%)

Linear
(0.308%)

Linear
(0.385%)

Polynomial
(3 breaks)
(0.277%)

Cryp-
toAES

Polynomial
(2 breaks)
(0.115%)

Linear
(0.328%)

Polynomial
(1 break)
(0.824%)

Polynomial
(1 break)
(0.214%)

SHA256 Polynomial
(degree 3)
(0.156%)

Spline
(0.186%)

Spline
(0.181%)

Polynomial
(degree 4)
(0.112%)

LU Polynomial
(4 breaks)
(0.127%)

Linear
(0.241%)

Polynomial
(1 break)
(0.744%)

Linear (0.2%)

SOR Polynomial
(2 breaks)
(0.099%)

Linear
(0.22%)

Polynomial
(1 break)
(0.607%)

Polynomial
(1 break)
(0.167%)

Sort Polynomial
(2 breaks)
(0.148%)

Polynomial
(1 break)
(0.425%)

Polynomial
(1 break)
(0.8%)

Polynomial
(1 break)
(0.271%)

Flood Polynomial
(3 breaks)
(0.065%)

Polynomial
(degree 2)
(0.06%)

Polynomial
(degree 2)
(0.08%)

Nearest
Neighbor
(1.023%)

Sequential Polynomial
(1 break)
(0.099%)

Polynomial
(1 break)
(0.226%)

Polynomial
(1 break)
(0.129%)

Polynomial
(2 breaks)
(0.089%)

Random Polynomial
(3 breaks)
(0.037%)

One Polyno-
mial (0.049%)

One Polyno-
mial (0.058%)

Polynomial
(3 breaks)
(0.049%)

best interpolation method (dynamically split polynomial interpolation with
one breakpoint), automated selection and configuration still improves model
accuracy by 20.025% (mean over the relative improvements).

221

Chapter 13: Accuracy of Power Interpolation

Table 13.5: Meanmodeling errors of independent reference based interpolation
for each workload, using SSJ as the reference dataset.
Worklet 10% intervals

Piece-wise
Polynomial
(degree 2)

20% intervals
Split Polyno-
mial (3 break-
points)

25% intervals
Cubic Spline

scattered
Piece-wise
Polynomial
(degree 1)

Compress 0.229% 0.581% 0.457% 0.278%
Cryp-
toAES

0.165% 0.404% 0.904% 0.296%

LU 0.226% 0.46% 0.901% 0.2%
SHA256 0.197% 0.232% 0.181% 0.174%
SOR 0.156% 0.357% 0.682% 0.206%
Sort 0.207% 0.478% 0.948% 0.417%
Flood 0.898% 2.017% 2.529% 0.787%
Sequential 0.123% 0.255% 0.178% 0.109%
Random 0.039% 0.056% 0.061% 0.058%

13.4 Interpolation using Cross-Validation

Although cross-validation based configuration and selection lacks the addi-
tional data of its reference based counterpart, it is still fairly accurate. Specif-
ically it is 31.36% more accurate than linear regression. The full results are
displayed in Table 13.6.

Themajor drawback of the cross-validation based configuration and selection
are the different scales between the cross-validation problem and the final
dataset to be interpolated. For example, when removing a data point from the
10% utilization interval set, the interpolation function has to interpolate a 20%
utilization gap. Its ability to do so is then judged to indicate its accuracy when
interpolating equi-distant data-points at 10% intervals.

13.5 Summary

Our evaluation of interpolation accuracy answers EQ B.1 (“Can interpolation
be used to accurately model power consumption per load level on servers?”).
It shows that interpolation features superior accuracy compared to regression
for bounded problem spaces. In comparison to regression, our automated
interpolation method configuration and selection approach improves modeling
accuracy by 43.6% if additional reference data is available and by 31.4% if
it is not. Our selection method also improves accuracy compared to simply

222

13.5 Summary

Table 13.6: Mean modeling errors of cross-validation based interpolation.

Worklet
10% intervals 20% intervals 25% intervals scattered

SSJ One Polyno-
mial (0.35%)

Polynomial
(degree 2)
(0.225%)

Polynomial
(1 break)
(0.304%)

One Polyno-
mial (0.215%)

Com-
press

Linear (0.24%) Polynomial
(3 breaks)
(0.581%)

Polynomial
(2 breaks)
(0.509%)

Polynomial
(degree 3)
(0.277%)

Cryp-
toAES

One Polyno-
mial (0.459%)

Linear
(0.328%)

Linear
(0.91%)

Polynomial
(degree 3)
(0.334%)

LU Polynomial
(5 breaks)
(0.16%)

Linear
(0.241%)

Linear
(0.856%)

Linear (0.2%)

SHA256
Spline (0.186%) One Polyno-

mial (0.351%)
Polynomial
(2 breaks)
(0.363%)

Polynomial
(degree 2)
(0.235%)

SOR Spline (0.135%) Linear
(0.22%)

Polynomial
(degree 1)
(0.701%)

Polynomial
(degree 2)
(0.234%)

Sort Polynomial
(1 break)
(0.204%)

Linear
(0.443%)

Linear
(1.026%)

Linear
(0.417%)

Flood Nearest Neigh-
bor (0.727%)

Nearest
Neighbor
(1.96%)

Nearest
Neighbor
(2.678%)

Polynomial
(5 breaks)
(0.79%)

Se-
quen-
tial

Linear
(0.138%)

Nearest
Neighbor
(0.316%)

Polynomial
(1 break)
(0.129%)

Polynomial
(2 breaks)
(0.089%)

Ran-
dom

Polynomial
(6 breaks)
(0.043%)

One Polyno-
mial (0.049%)

Linear
(0.068%)

One Polyno-
mial (0.051%)

choosing themost commonly accurate interpolationmethod (themethod that is
the most accurate method for most cases) by 20.0%. As a more general note, we
show that power characteristics of a system under observation lend themselves
well towards being interpolated if extrapolation is not required.

223

Chapter 14

Evaluation of Offline Power Prediction

We describe two use-cases for offline power prediction in Chapter 8, each with
a corresponding prediction approach. The first approach predicts the power
consumption of virtual machine hypervisors , wherease the second predicts
the power consumption of a target application. Both models use rating results
of the SERT implementation of our power rating methodology in Chapter 4 to
predict the consumption of unavailable servers.

In this chapter, we evaluate both approaches., addressing EQ B.2 (“Can we
accurately predict the power consumption of hypervisors and applications on
unavailable servers, based on results provided by our rating methodology?”).
We train our models using SERT results and reference results measured on local
servers and analyze the accuracy of the resulting power prediction. We also
analyze potential different training sets and our approaches’ configurations as
to their impact on accuracy.

14.1 Evaluation of Power Prediction for Virtualized
Environments

We evaluate the accuracy of our virtual machine hypervisor power prediction
approach in Chapter 8, Section 8.1 by predicting the power consumption of a
target system and then comparing the predicted consumption against the actu-
ally measured power draw. We perform this prediction for multiple workloads
and investigate how prediction accuracy is impacted by the target workload
choice. This evaluation addresses EQ B.2 (“Can we accurately predict the
power consumption of hypervisors and applications on unavailable servers,
based on results provided by our rating methodology?”) regarding prediction
of hypervisors.
The systems used in our evaluation have significant differences, as they are

from different generations. One system is from 2015 and uses a Haswell genera-
tion Intel processor, whereas the other one is an older machine from 2010 with a

225

Chapter 14: Evaluation of Offline Power Prediction

Table 14.1: Hardware configuration of servers.
Reference System Target System

Model HP ProLiant DL160 Gen9 HP ProLiant DL380 G5
CPU model Intel Xeon E5-2640 v3 Intel Xeon E5420
Number of cores 8 4
Hardware threads 16 8
CPU frequency 2.60 GHz 2.50 GHz
Memory 2 x 16 GB 2 x 8 GB
Harddisk 1 x 460 GB 1 x 400 GBA3, 1 x 120 GB
Network 1 Gbit/s 1 Gbit/s

Harpertown generation processor. More details on the hardware configuration
of the systems used for the evaluation are shown in Table 14.1. These two de-
vices were selected for this evaluation because the power characteristics of the
two servers are very different. The reference system has a power consumption
in the range between 36.7 W and 141.8 Wwhereas the target system features an
idle power of 237.6 W and a highest measured power consumption of 334.8 W.
This means that, because of the significant differences between the devices,
there is no intuitive way to guess the power consumption based on simple
assumptions and a more complex prediction method is needed.

Both systems run XenServer 6.5 as the hypervisor for their virtualized envi-
ronments. The virtual machines themselves are running Ubuntu Server (64-bit)
14.04.2 as their guest operating system with Oracle Java Runtime Environment
1.7.0_79. The operating system for the non-virtualized configuration is Debian
GNU/Linux 8.0 (Jessie) on the reference system and Ubuntu Server (64-bit)
14.04.2 on the target system.

We measure power consumption of the non-virtualized environment for
both systems using our regular measurement methodology from Chapter 4.
We then measure the power consumption for each of the three virtualized
environment configurations from Table 8.1 in Section 8.1.1.1 on both systems.
Finally, using the measurement results from the reference system, we predict
the power consumption for each of those configurations on the target system.

14.1.1 Prediction without Sub-Models

Firstly, we investigate if sub-model creation using the self-prediction error
as a heuristic is needed. To this end, we predict power consumption using
all workloads without any sub-models. Table 14.2 shows the relative predic-

226

14.1 Evaluation of Power Prediction for Virtualized Environments

Table 14.2: Relative difference between predicted and actual power (no sub-
models).

Workload 100% Load 50% Load
Idle 487% 481%
Compress 97% 111%
CryptoAES 95% 110%
LU 92% 108%
SOR 104% 116%
XMLValidate 95% 109
Sort 98% 112%
SHA256 100% 113%
Sequential 53% 55%
Random 447% 448%
SSJ 100% 113%
Flood 208% 203%

tion accuracy using this approach. Even using the most accurate regression
implementation (stepwise regression for this specific case), the prediction ac-
curacy without sub-model creation is poor. CPU workloads have a relative
error around 100%, with some workloads exhibiting even worse prediction
accuracy. This indicates that additional optimization (e.g., using sub-models)
is necessary.

14.1.2 Self-Prediction Error and Actual Prediction Error

As an intermediate step of the evaluation, we investigate if the self-prediction
error of the reference system is actually a good indicator for the final prediction
error of a sub-model. The relationship between a sub-model’s self-prediction
error on the reference system and the actual prediction error regarding the
target system for the virtualized environment configuration with one VM is
shown in Fig. 14.1. The figure shows that the self-prediction error is a good
indicator for sub-models, as long as the self-prediction error remains low. The
great majority of sub-models with self-prediction errors of less than 10% also
has an actual prediction error of less than 10%.

Sub-modelswith a self-prediction error ofmore than 10%are farmore volatile
and cover a wide range of actual prediction errors. Fortunately, this is not very
relevant for our prediction approach, as it always selects the sub-models with
the lowest self-prediction error. These observations repeat for the other two
virtualized environment configurations.

227

Chapter 14: Evaluation of Offline Power Prediction

Self-Prediction Error
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
re

di
ct

io
n

E
rr

or
 r

eg
ar

di
ng

 th
e

T
ar

ge
t S

er
ve

r

0

0.2

0.4

0.6

0.8

1

1.2

(a) All sub-models.
Self-Prediction Error

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
re

di
ct

io
n

E
rr

or
 r

eg
ar

di
ng

 th
e

T
ar

ge
t S

er
ve

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Models with self-prediction error ≤ 0.1.

Figure 14.1: Relationship between self-prediction error and actual prediction
error.

14.1.3 Prediction with Sub-Models

Finally, we evaluate the prediction error of sub-models obtained using the self-
prediction heuristic. We measure the absolute and relative difference between
themeasured power consumption on the target system and the predicted power.
The prediction errors for the virtualized environment configuration with one
VM (configuration #1 in Table 8.1) are shown in Fig. 14.2.

D
iff

er
en

ce
 (

W
at

t)

0

5

10

15

20

25

30

35

Idle

Compress

CryptoAES LU
SOR

XMLValidate Sort

SHA256

Sequential

Random SSJ

100% Load Level
50% Load Level

(a) Absolute Difference

D
iff

er
en

ce
 (

%
)

0

2

4

6

8

10

12

14

Idle

Compress

CryptoAES LU
SOR

XMLValidate Sort

SHA256

Sequential

Random SSJ

100% Load Level
50% Load Level

(b) Relative Difference

Figure 14.2: Prediction errors for configuration with 1 VM.

The CPU-heavy workloads all feature a prediction error of less than 10%,
with Compress and XMLValidate even featuring a relative prediction error of

228

14.1 Evaluation of Power Prediction for Virtualized Environments

less than 1% at 50% load. CryptoAES prediction is the least accurate among
the CPU workloads, yet its prediction error does not exceed 10%. The relative
prediction inaccuracy for CryptoAES is easily explained as the workload makes
use of the specialized AES CPU instruction set on the reference system. The
target system’s CPU does not use this instruction set as it is too old.

Idle and the Storage workloads (Sequential and Random) are not as accurate
as the CPU workloads with prediction errors between 10% and 14%. Storage
power prediction is difficult, as the systems have very different storage con-
figurations (1 HDD vs. 2 HDDs) and Idle prediction is hard, since no other
workload in this collection resembles it. Under these conditions, the prediction
is still quite accurate. The only workload that does not feature any accurate
predictions is the Flood workload. It is missing in Fig. 14.2 because it features a
prediction error of 117% and 118% for its two load levels. This can be attributed
to two factors: The difference in system memory and the absence of any other
workload that resembles Flood and that might help to increase its prediction
accuracy.
The virtualized environments configurations with two VMs can also be

predicted with good accuracy. CPU and storage workloads still remain in the
accuracy range of prediction errors less than 15%. Idle is predicted with slightly
diminished accuracy (18% relative error). The only exception is the CryptoAES
workload. Due to its use of a specialized hardware instruction set, it struggles
severely with virtual machine over-provisioning (configuration #2 in Table 8.1).
Performance on the reference system itself is already impacted significantly by
the virtualized environment configuration. As a result, the prediction accuracy
for this configuration suffers and drops to 22% and 24%, respectively.

Summarizing, we evaluate our offline prediction mechanism for virtual ma-
chine hypervisor power consumption, answering EQ B.2 (“Can we accurately
predict the power consumption of hypervisors and applications on unavailable
servers, based on results provided by our rating methodology?”) for this con-
text. We evaluate the benefits of partitioning our overall model into sub-models
using self-prediction accuracy as a heuristic. The results show that power con-
sumption of CPU and storage loads can be reliably predicted with a prediction
error of less than 15% across all tested virtualized environment configurations.

229

Chapter 14: Evaluation of Offline Power Prediction

14.2 Evaluation Offline Power Prediction for Target Applications

We evaluate our offline prediction model in Chapter 8, Section 8.2 using three
target applications and three different real-world, physical servers. This evalu-
ation addresses EQ B.2 (“Can we accurately predict the power consumption of
hypervisors and applications on unavailable servers, based on results provided
by our rating methodology?”) regarding software applications on unavail-
able servers. We run the SPEC SERT on each of those servers to measure and
characterize its power consumption. We then predict the target applications’
power consumption when running on two of those servers using the respective
target server’s SERT and a training set consisting of a SERT result and target
application power measurements from one of the servers. We compare mea-
sured application power consumption with the predicted consumption for all
measured load levels and servers and calculate the aggregate prediction error
using the mean absolute percentage error (MAPE).
We consider the following three applications:

• Pi: A worklet that ships with the SPEC ChauffeurWDK (Arnold, 2013)
and computes Pi by calculating up to 100000 iterations of the Gregory-
Leibniz series.

• Friendgraph: Friendgraph is supposed to emulate a simple social net-
work graph of “friends”, which store arbitrary numeric properties within
amatrix. A transaction calculates “friend”-value by aggregating a friend’s
matrix with all of its first and second-order friends.

• Dell DVD Store (Dell, Inc., 2011): The Dell DVD Store is a test web
application developed by Dell. We use its PHP implementation with a
MariaDB database and deploy using Docker. We generate load using
users who browse the store in a cyclical pattern. Users log in, search
for items, add one item to the cart, and then log out. We choose the
DVD Store instead of the TeaStore from Chapter 6 considering that the
DVD Store is primarily deployed as a single instance on a single machine,
which fits the use-case of this evaluation.

All servers in our experiment run Debian 9.4 (Kernel 4.9.82), with Docker
18.03.0-ce, and Java HotSpot 64-Bit (build 25.161-b12). Table 14.3 shows the
hardware configuration of our three testing devices, which we identify using
the core-count.

230

14.2 Evaluation Offline Power Prediction for Target Applications

Table 14.3: System under test specification including power characteristics
measured using SERT.

4 core 8 core 10 core
Model HP ProLiant HP ProLiant HP ProLiant

DL20 DL160 DL160
CPU 4 cores 8 cores 10 cores
Xeon Model E3-1230 v5 E5-2640 v3 E5-2650 v3

Clock 3.4 GHz 2.6 GHz 2.3 GHz
Generation Skylake Haswell Haswell
Memory 2 x 8 GB 2 x 16 GB 2 x 16 GB
Storage 1 x 460 GB 1 x 460 GB 1 x 460 GB
Idle Pwr 28.3 W 39.6 W 42.6 W
Max Pwr 106.1 W 139.7 W 151.8 W

14.2.1 Measuring Target Application Power and Performance

We measure the target application power consumption and performance using
our power measurement methodology of Chapter 4. We do this by imple-
menting our workloads within the SPEC ChauffeurWDK (Arnold, 2013) or by
implementing a load driver in Chauffeur to drive the external workload in case
of the DVD Store. Using this methodology and implementation, we measure
the target applications’ power and performance (throughput) at four target
load levels: 25%, 50%, 75%, and 100%. We connect an external power measure-
ment device to the AC power inlet of the SUT. An external director machine
controls the experiment using a network connection to the SUT. The SUT runs
Chauffeur’s host-software, which launches client processes that execute the
workload or delegate it to the DVD Store using HTTP.

Applying our powermethodologies default durations, we perform awarmup
run for 30 seconds and then calibrate themaximum load level of the target appli-
cation by running it on parallel on every available hardware thread. We repeat
this calibration two times, with each separate run having a pre-measurement
duration of 15 seconds, a measurement duration of 120 seconds, and a post-
measurement duration of 15 seconds.

After calibration, we measure performance and power consumption for the
target load levels in descending order. The load levels’ pre-measurement,
post-measurement, and measurement times are equal to the calibration. Our
reported per-load-level power and performance results are the average of the
120 second measurements. The maximum coefficient of variation during our

231

Chapter 14: Evaluation of Offline Power Prediction

Table 14.4: Unoptimized, baseline prediction errors of base formalisms.
Formalism Avg. MAPE
Gradient Tree Boost 32.94%
Regression Tree 19.42%
Random Forest 31.03%
Gaussian Regression 100%

measurement runs is the performance variation of the Dell DVD Store at full
load on the 10 core machine. It features a CV of 1.6%, which is well below the
maximum boundary of 5%.

14.2.2 Unoptimized Power Prediction

Firstly, we analyze the accuracy of our prediction formalisms without interpola-
tion, optimization, and formalism selection. This analysis serves as a baseline to
classify room for improvement for our method. When not using interpolation,
we only use worklets with at least four load levels, meaning that the memory
and storage worklets are discarded. For the SSJ worklet, we discard the four of
the eight load levels that do not appear in the other worklets. Table 14.4 shows
the prediction errors of this baseline method. Considering that parameter
optimization is removed, we set each of the regression formalism’s parameters
to the minimum parameter of our parameter space.
The results in Table 14.4 show differences in the prediction accuracies of

the underlying formalisms. Yet, even the more accurate methods suffer from
poor accuracy when not optimized and without any interpolation. In general,
the regression mechanisms seem to be able to capture the problem with some
error. Gradient Tree Boost and Random Forest both feature a mean absolute
percentage error of slightly more than 30%. Even though these two formalisms
achieve similar average results, they differ in terms of variance. Gradiant Tree
Boost’s MAPE has a standard deviation of 11.8%, whereas the Random Forest
has a lower variation of 7.7%. Both methods can not achieve the accuracy of
the regular Regression Tree, though. It has an average MAPE of 19.42% with a
standard deviation of only 2.6%.
We attribute this to the relatively little amount of training data available.

Four load levels per worklet do not provide sufficient data for an accurate
training of all formalisms. The Gaussian Regression and Neural Networks are
most affected by this. Seven worklets with at least four load levels plus idle
seems to not provide sufficient data to derive multiple Gaussian distributions.

232

14.2 Evaluation Offline Power Prediction for Target Applications

Table 14.5: Formalism prediction error with adaptive interpolation and param-
eter optimization.

Formalism Avg. MAPE
Gradient Tree Boost 32.94%
Regression Tree 10.89%
Random Forest 32.05%

Consequently, we do not consider Gaussian Mixture Models in the following
tests.

14.2.3 Predicting Power using Interpolation and Optimization

Our baseline tests indicate that the amount of data provided by SERT results is
too small for most prediction methods. Consequently, we enable interpolation
in conjunction with our prediction formalism parameter optimization method.
The interpolation mechanism ensures that no measurement must be discarded
in worklets with high load level counts. Specifically, it creates artificial load
levels for all worklets with fewer levels than SSJ, which is the worklet featuring
the most load levels. As a result, all worklets are padded to a total of nine
load levels (eight SSJ load levels plus idle power). We use all worklets with
a minimum of four load levels, enabling the use of adaptive interpolation.
Paramter optimization is left at default settings, meaning that it uses as many
iterations as the underlying method has parameters for optimization. Our
regression formalisms feature two parameters, each, resulting in an iteration
count of two.

The prediction accuracy of our three regression formalisms used with adap-
tive load-level interpolation and parameter optimization is shown in Table 14.5.
Gradient Tree Boost’ accuracy improves, but only by 0.004% percentage points,
which is not significant. Random Forest’s accuracy even decreases by 1.2%
points. However, Regression Tree improves significantly. With optimization
and interpolation enabled, it features an prediction error of 10.89%, which is
an improvement of 8.5 percentage points and relative improvement of 43.9%
compared to our baseline experiment.
The amount of data provided by interpolated results seems to be sufficient

for a tuned regression tree. In contrast, the other two regression methods do
not improve significantly, which leads to conclude that the interpolated SERT
results did still not produce sufficient data for training of accurate models for
these formalisms.

233

Chapter 14: Evaluation of Offline Power Prediction

Table 14.6: Formalism prediction error with parameter optimization, but not
using any interpolation.

Formalism Avg. MAPE
Gradient Tree Boost 32.94%
Regression Tree 19.42%
Random Forest 32.26%

14.2.4 Parameter Optimization and no Interpolation

Thepredictions using parameter optimization and interpolation in Section 14.2.3,
significantly improve the prediction accuracy of the baseline formalisms. The
part played by the parameter optimization and interpolation, respectively, in
this improvement remains an open question. To investigate if parameter opti-
mization caused this improvement by itself, we test our prediction formalisms
using parameter optimization only. That means that we use four load levels
only, discarding excess SSJ load levels and worklets with fewer load levels,
similar to the baseline approach in Section 14.2.3.

Table 14.6 shows the prediction errors of using parameter optimization with-
out interpolation. In general, the differences to baseline prediction are very
small. Gradient Tree Boost and Regression Tree do, in fact, see no change.
Random Forest’s accuracy, on the other hand, decreases. This would indicate
that parameter optimization is of no help for such a small dataset and the
chosen prediction formalisms. However, accuracy increased in the results of
Section 14.2.3, where optimization was used. We investigate this further in the
following tests.

14.2.5 Interpolation with Baseline Parameters

Our tests using optimization without any interpolation in Section 14.2.4 do
not show any significant improvement in prediction accuracy. Consequently,
we investigate if interpolation achieves the improvement of Section 14.2.3 by
itself. To test this, we again apply adaptive interpolation to all worklets with
four load levels in order to match the load level count of SSJ (eight plus idle).
We also, again, interpolate the reference workload to nine load levels.

Table 14.7 shows the prediction accuracy when using the baseline parameter
set on interpolated training and prediction data. Interestingly, these results do
also not differ significantly from the baseline. Gradient Tree Boost and Random
forest improve marginally by less than 1 percentage point. Due to the lack of

234

14.2 Evaluation Offline Power Prediction for Target Applications

Table 14.7: Formalism prediction error with interpolation, but not using any
parameter optimization.

Formalism Avg. MAPE
Gradient Tree Boost 32.91%
Regression Tree 20.40%
Random Forest 30.41%

optimization, Regression Tree’s accuracy decreases when using interpolation
without any parameter optimization.

These results indicate that neither parameter optimization nor interpola-
tion increase prediction accuracy by themselves. In addition, they disprove the
potential conclusion from the optimization-only results in Section 14.2.4 that pa-
rameter optimization does not improve prediction accuracy and improvements
are instead due to interpolation. Instead, the separate tests using interpolation
and parameter optimization only clearly indicate that the combination of both
is responsible for the improvements in prediction accuracy. Interpolation en-
sures that sufficient data is available to run optimization against and parameter
optimization configures the prediction formalisms for the interpolated dataset.

14.2.6 Prediction Accuracy depending on Interpolation Method

Our results in Section 14.2.3 show that interpolation helps in increasing predic-
tion accuracy, particularlywhenusing the Regression Tree prediction formalism.
Those experiments used an adaptive interpolation approach to generate addi-
tional data for training. We investigate the choice of the specific interpolation
method and its impact on accuracy. We focus on the Regression Tree prediction
formalisms, as it shows the greatest sensitivity to interpolation and parameter
optimization in addition to usually providing the most accurate predictions.
Table 14.8 shows the prediction errors of using Regression Tree with parame-
ter optimization based on datasets prepared with the different interpolation
methods.
We investigate zero padding as an alternate approach to the baseline and to

interpolation. Zero padding of missing results allows us to not discard excess
SSJ load levels and still meet the constraints of the prediction methods. As seen
in Table 14.8, using zero padding results in a Regression Tree prediction error of
19.91%, which is slightly less accurate than the baseline prediction. In contrast,
the prediction errors when using the interpolation methods are all significant
improvements compared to the baseline. Nearest Neighbor Interpolation features

235

Chapter 14: Evaluation of Offline Power Prediction

Table 14.8: Regression Tree prediction error depending on interpolation
method.

Interpolation Method Avg. MAPE
Zero Padding 19.91%
Nearest Neighbor 15.49%
Linear Interpolation 9.49%
Adaptive Interpolation 10.89%

the smallest improvement in accuracy, improving the average predictionMAPE
by only 3.92 percentage points. Adaptive Interpolation improves the prediction
by 8.5 percentage points,which is a relative improvement of 43.9% compared
to our baseline experiment.
Interestingly, linear interpolation provides the most accurate predictions

with a MAPE of 9.49%. This is a relative improvement of 51% compared to the
baseline Regression Tree prediction error. Again, we surmise that the small
size of the dataset is a cause for this, as the adaptive interpolation has too few
datapoints (usually four) to adapt itself. Instead, simply picking an interpola-
tion option that always delivers good results and is applicable to such small
sets, seems to lead to more accurate predictions. Figure 14.3 shows the results
of power prediction for the Friendgraph worklet using linear interpolation. As
a sidenote, including the storage worklets in predictions using linear interpo-
lation does not increase prediction accuracy, leading to a prediction error of
14.09%.

Summarizing, the evaluation of our offline application power prediction
approach addresses EQ B.2 (“Can we accurately predict the power consump-
tion of hypervisors and applications on unavailable servers, based on results
provided by our rating methodology?”) regarding applications on unavail-
able servers. It shows that our offline power prediction method can accurately
predict the power consumption of a target server using SERT results. It also
shows that the combination of parameter optimization and interpolation can
significantly increase the prediction accuracy compared to baseline formalisms
by as much as 51%, even though both interpolation and parameter optimization
do not achieve significant improvements in accuracy on their own.

14.3 Summary

The evaluations of this chapter address EQ B.2 (“Can we accurately predict the
power consumption of hypervisors and applications on unavailable servers,

236

14.3 Summary

40
60

80
10

0
12

0
14

0

Load Level [%]

P
ow

er
 [W

]

25 50 75 100

Friendgraph: 4 core (measured)
Friendgraph: 10 core (measured)
Friendgraph: 4 core (predicted)
Friendgraph: 10 core (predicted)

Figure 14.3: Measurements and Regression Tree prediction (using linear inter-
polation) of Friendgraph worklet power.

based on results provided by our rating methodology?”). We evaluate our
offline application power prediction approach and show that it can accurately
predict the power consumption of a target server using SERT results. It also
shows that the combination of parameter optimization and interpolation can
significantly increase the prediction accuracy compared to baseline formalisms
by as much as 51%, even though both interpolation and parameter optimization
do not achieve significant improvements in accuracy on their own.

In addition, we evaluate our offline predictionmechanism for virtualmachine
hypervisor power consumption. We evaluate the benefits of partitioning our
overall model into sub-models using self-prediction accuracy as a heuristic.
The results show that power consumption of CPU and storage loads can be
reliably predicted with a prediction error of less than 15% across all tested
virtualized environment configurations.

237

Chapter 15

Applying Online Power Prediction using
Real-World Workloads

We evaluate the applicability and accuracy of our online power prediction
models from Chapter9, addressing EQ B.3 (“Can we accurately predict the
power consumption of a potential software component placement based on
run-time data?”). We test their ability to predict power consumption in a run-
time scenario under varying load in a heterogeneous environment. We run
two common web applications in a distributed environment consisting of two
different servers using CPUs of different architectures.

15.1 Methodology

The two test applications are deployed on two separate physical servers, which
are put under load by a load generator running on a separate machine. The load
generator collects application level performance data and is controlled by a ded-
icated experiment controller. The controller also collects power measurements
using external measurement devices.

15.1.1 Experiment Setup

The test applications are executed on two different servers from different gen-
erations and using different processor architectures. Their specifications are
shown in Table 15.1. The two SUTs feature different memory sizes and CPUs of
different sizes and architectures. The smaller system (SUT 1) has a quad-core
CPU of the Skylake architecture, running at 3.4 GHz, whereas the larger system
(SUT 2) has an 8-core CPU of the older Haswell generation running at 2.6 GHz.
The two systems differ in their performance and power consumption. Table 15.1
shows the differences in power consumption measured by running SERT on
the SUTs.

239

Chapter 15: Applying Online Power Prediction using Real-World Workloads

Table 15.1: System under test specification including power characteristics as
measured using SERT.

SUT 1 SUT 2
Model HP ProLiant DL20 HP ProLiant DL160
CPU Intel Xeon E3-1230 v5, Intel Xeon E5-2640 v3,

4 cores at 3.4 GHz 8 cores a 2.6 GHz
Memory 2 x 8 GB 2 x 16 GB
Storage 1 x 460 GB 1 x 460 GB
Idle Power 27.1 W 36.4 W
Max Power 98.1 W 140.6 W

The SUTs are connected to a load generator machine that can send requests to
either or both machines, depending on the current component deployment. In
addition, the SUTs are connected using a separate network for communicating
with each other. The load generator and SUTs are connected to an external
experiment controller. The controller collects application level performance
metrics from the load generator, as well as system metrics (CPU performance
counters) from the SUTs themselves. The systemmetrics are needed for training
the single server power prediction model. The controller also communicates
with the external Yokogawa WT310 power measurement devices, which are
connected to the SUTs and measure their DC power consumption at the power
inlet. Fig. 15.1 shows the overall experiment setup.

15.1.2 Test Applications

We use two common 2-tier, PHP-based, web applications for testing. The
advantage of using PHP-based web applications is that we can emulate the
effect of different (functionally identical) implementations by exchanging the
web server (and PHP module) on which the applications are run. We use the
following two applications:

• Dell DVD Store 6.1.1.4: A test application developed by Dell that models
a web store for DVDs (Dell, Inc., 2011).

• RUBiS 2.3.2: The Rice University Bidding System that emulates an Ebay-
like auction platform (RUBiS User’s Manual 2008).

We use three different web servers to execute the web tier of the applications:
Apache HTTP Server 2.4.10, Lighttpd 1.4.35, and Nginx 1.6.2, each with their
corresponding PHP modules. We use MySQL Server 5.5.54 as the database

240

15.1 Methodology

Power Analyzer Power Analyzer

SUT 1 SUT 2

Controller

Trigger measurement

Return result
Measure power consumption

Load Generator

Generate load

Figure 15.1: Model evaluation device setup.

for our data tier. We design our usage profiles to be read-only, thus posing
no constraints on database replication in order to allow evaluation of as many
replication strategies as possible. This means that the web servers and the
database may run on either one or on both SUTs, and different web servers
may run on the two SUTs in case both of them are used for the web tier.

We derive 15 different deployment options from the three different web tier
implementations and the database, with the two SUTs as deployment targets.

15.1.3 Load Generation

The load generator is designed to generate loads with a varying load intensity.
To this end, we assume an open workload model in which requests arrive with
an independent and variable arrival rate. The varying arrival rate is specified
using the DLIM formalism implemented in the LIMBO tool (see Chapter 5). We
use LIMBO to specify a varying load intensity for our training scenarios. This
generated load intensity may be continuous and cover all load intensity ranges
between system idle and the maximum throughput. In some scenarios, we use
a load intensity definition where certain load intensity ranges are omitted on
purpose. We do this when training for evaluation of the prediction accuracy
when predicting power consumption for an unknown load intensity.

For load generation, the arrival rate is sampled from the load intensity de-
scription with a sampling interval of one second. At each point in time the
load generator reaches the target arrival rate by generating the target count of

241

Chapter 15: Applying Online Power Prediction using Real-World Workloads

requests during the given second. During each second, it proceeds according to
the standard load generation behavior defined in our measurement and rating
methodology of Chapter 4. Work units are scheduled in batches and random,
exponentially distributed wait times are added in between the scheduling of
each batch. Wait times and batch sizes are chosen so that the target arrival rate
is reached as accurately as possible.

The request types (determining the actual content of requests) sent to the web
applications follow a cyclic pattern, which is based on a closed workload model.
This means that, whereas the time of each request is chosen according to an
open workload model, the request type and content are stateful and depend
on the previous responses. The type of generated requests are based on a user
profile that emulates a user browsing the store(s), viewing random items, and
adding them to the shopping cart.
The load generator distributes load according to the round robin scheme

when generating load for multiple web-tier instances.

15.1.4 Measurement Methodology

We collect aggregate performance and power measurements on a per-second
basis. Power measurements are made at the DC power inlets of the servers.
The Yokogawa WT310 power measurement devices report average DC power
in watts with a maximum measurement uncertainty of 1%. Application level
performance (load intensity and throughput) is measured directly at the load
generator and collected by the experiment controller.

When collecting performance counters, performance counter measurement
daemons based on the Intel Performance Counter Monitor (Intel PCM, see Will-
halm et al., 2012) are executed on the SUTs. These daemons aggregate perfor-
mance counters on a per-second basis and send the aggregate measurements
to the controller.

15.1.5 Metrics

Weuse the followingmetrics for evaluating the accuracy of the power prediction
models in our prediction scenarios:

• Mean Absolute Error (MAE) in watts

• Median Absolute Error (MdAE) in watts

• Mean Absolute Percentage Error (MAPE)

• Median Absolute Percentage Error (MdAPE)

242

15.2 Power Saving Potential

Table 15.2: Power consumption of the most and least power consuming deploy-
ment configuration at full load.

Deployment Config. SUT 1 SUT 2 Total
SUT 1: Apache; SUT 2: MySQL 81.56 W 54.45 W 136.01 W
Both SUTs: Lighttp + MySQL 45.83 W 59.27 W 105.1 W
Difference 35.73 W -4.82 W 30.91 W

• Minimum and Maximum Absolute Errors in watts

15.2 Power Saving Potential

To demonstrate the range of potential power savings we execute all deployment
variants and measure their power consumption at full load. The difference
between the maximum and minimum power consumption is a strong indicator
of the savings potential that can be achieved by an accurate prediction mech-
anism. Table 15.2 shows the single server and total power consumption and
the specific deployments that use the most and least power at their respective
maximum load.

Note that these are only measurements at maximum load, regardless of the
throughput at maximum load. This means that the least power consuming
deployment at maximum load does not necessarily have to be the least power
consuming deployment at all load levels. Also note that the maximum load
level differs for the different deployment configurations, as some deployments
have a higher throughput capacity than others.
The observed difference in power consumption between the most and least

consuming deployment configuration of 30.91 W (29.4%) also offers a bound
for model prediction errors, as this is the maximum deviation of power con-
sumption that can actually occur in practice in our scenario.

Table 15.3: Gradient Tree Boost prediction accuracy for # training vectors (total
vectors for 8 training deployments).

Vectors MAE MAPE MdAE Error Interval
280 2.69 W 2.70% 1.84 W [-0.50 W, 4.38 W]

560 2.63 W 2.48% 1.70 W [-6.23 W, 3.47 W]

1600 2.08 W 2.17% 1.21 W [-4.71 W, 4.51 W]

2400 1.05 W 1.25% 0.83 W [-6.08 W, 3.09 W]

243

Chapter 15: Applying Online Power Prediction using Real-World Workloads

Table 15.4: Regression Tree prediction accuracy depending on # training vectors
(total # vectors for 8 training deployments).

Vectors MAE MAPE MdAE Error Interval
280 1.61 W 1.59% 0.52 W [-5.02 W, 3.12 W]

560 3.46 W 3.40% 2.84 W [-4.13 W, 9.94 W]

1600 5.01 W 5.11% 3.21 W [-8.15 W, 7.75 W]

2400 0.90 W 1.12% 0.95 W [-1.35 W, 3.72 W]

15.3 Workload Deployment Power Prediction

We evaluate the accuracy of the workload deployment power prediction model
in two steps. Firstly, we evaluate the accuracy of the prediction depending
on the amount of training data. We also use the opportunity to evaluate the
accuracy and applicability of the different prediction methods introduced in
Section 9.2.1.1. Next, we investigate the model’s accuracy for the two primary
application scenarios: prediction of power consumption for previously un-
observed deployments and prediction of power consumption for previously
unobserved throughput levels. We also investigate if both scenarios can be
combined.

15.3.1 Number of Training Vectors and Prediction Accuracy

We evaluate the prediction accuracy of the different predictionmethods that can
be used to implement the workload deployment prediction model considering
the influence of the number of training vectors. For this evaluation, we train
the model with eight separate deployments for the Dell DVD Store. Each
deployment is executed and instrumented for n seconds, where n is the number
of target training vectors for this deployment. We generate a linearly increasing
load intensity that covers all load levels from idle to the maximum load of
the configuration with the highest load capacity (ca. 15000 transactions per
second). We evaluate the mean prediction error when predicting the power
consumption.

Tables 15.3 and 15.4 show the prediction errors for the gradient tree boost and
regression tree prediction methods. Gradient tree boost exhibits an increase
in prediction accuracy with the number of training vectors. The mean and
median errors decrease as the number of vectors increases. All errors using
gradient tree boost are well below our upper error bound of 29.4%.

244

15.3 Workload Deployment Power Prediction

Table 15.5: Prediction error for previously unobserved deployments depending
on # trained deployments and # Web UI component implementations.

#Tr. #UI MAE MAPE MdAE Error
Dep. Interval
3 2 1.98 W 2.18% 1.54 W [-3.9 W, 4.3 W]

5 2 12.4 W 12.48% 10.47 W [-17.1 W, 1.2 W]

7 2 6.41 W 6.68% 5.89 W [-11.1 W, 3.8 W]

11 3 3.1 W 3.17% 2.51 W [-5.3 W, 4.2 W]

14 3 1.9 W 2.21% 1.62 W [-4.9 W, 3.2 W]

The regression tree exhibits a different behavior with respect to the number of
training vectors. Its accuracy decreases at first as the number of training vectors
increases. This is a strong indicator for model overfitting in the case of lower
number of training vectors. The accuracy of the regression tree increases for
larger training data amounts, after manual reconfiguration for those amounts
of training data. This behavior is expected, considering that the boosting
mechanism in gradient tree boost is specifically designed to prevent overfitting.
The random forest exhibits the lowest accuracy of all prediction methods.

It only manages to reach a minimum prediction error of 1.85 W (2.28%) at
2400 training vectors (300 per trained deployment). Because of the overfitting
behavior of the regression trees and the lower accuracy of the random forest,
we focus on the use of our models with the gradient tree boost as prediction
method.

15.3.2 Predicting Previously Unobserved Deployments

To evaluate the prediction accuracy for previously unobserved deployments
we train a varying number of deployments. Each of these deployments is
trained using a linearly increasing load profile over 300 seconds (resulting in
300 training vectors per deployment). We then evaluate the accuracy of the
resulting power prediction model for a deployment that is not in the set of
training deployments.
Table 15.5 shows the power prediction errors using gradient tree boost de-

pending on the number of training deployments as well as the number of
different Web UI component implementations that occur in the set of training
deployments. The table shows that prediction accuracy generally increases sig-
nificantly with additional training deployments, with exception of one outlier.
The predictions for all training data sets, except for the one with five deploy-

245

Chapter 15: Applying Online Power Prediction using Real-World Workloads

Table 15.6: Deployments in the deployment datasets of size three and five and
deployment to predict.

Tr. Set Max Thr. Max power SUT 1 SUT 2
3 & 5 14500 126.1 W Apache DB
3 & 5 14500 118.5 W Lighttpd DB
3 & 5 14500 104.2 W Light+DB Light+DB
5 9000 132.1 W DB Apache
5 12000 102.4 W DB Lighttpd
none 12000 108.7 W Apache+DB Apache+DB

ments, have an error of less than 10%, well below our upper bound of 29.4%.
However, for our dataset, the prediction using only three training deployments
is significantly more accurate than the prediction using a training set of size five
or seven. This effect indicates that the three deployments used for the smallest
training set are similar to the predicted one, leading to model overfitting. In
addition, the greater prediction error for five training deployments is not due
to outliers, as the median error increases as well.

We investigate the specific deployments used for the two prediction scenarios
with three and five deployments, respectively. Table 15.6 shows the deploy-
ments for the training sets of size three and five and the deployment to predict
(the deployment not in any of the training sets in Table 15.5). Table 15.6 also
shows the maximum power consumption of the different deployments. None
of the training deployment features a deployment in which the Apache WebUI
is co-located with the database. However, the smallest training set features
one deployment with co-location that consumes a similar amount of power
compared to the target deployment. When training using this smallest training
set, the gradient tree boost appears to overfit using this training deployment. In
return, the two additional training deployments in the training set of size five
are dissimilar to the target set both in power consumption and the deployment
itself, resulting in a significant error. However, even the error of 12.48% is well
below the upper bound of 29.4%.

15.3.3 Power Prediction for Previously Unobserved Throughput Levels

Another potential scenario for prediction using our run-time model is the
prediction of power consumption for a load intensity that has not been ob-
served in the training set. This type of prediction may be used to optimize the
deployment in preparation for an anticipated load spike.

246

15.3 Workload Deployment Power Prediction

Table 15.7: Prediction error for previously unobserved throughput depending
on # trained deployments.

#Train. Observed Observed MAE MAPE
Depl. Depl. Thr.
3 Yes Yes 0.86 W 0.93%
3 Yes No 1.29 W 1.35%
14 No Yes 0.9 W 1.04%
14 No No 1.1 W 1.22%

For this evaluation, we use the same deployment training sets as in Sec-
tion 15.3.2. Again, we use 300 training vectors per deployment. The training
vectors include power and throughput values for all load levels, except the
ranges between 3000 and 6000 requests per second and 10000 and 13000 re-
quests per second. When predicting for the target deployments, we predict 35
power consumption samples for throughputs in the omited ranges. Specifically,
we predict the power consumption for throughputs of 4500 and 11500 requests
per seccond.

Table 15.7 shows the errors of the prediction. We compare prediction for
throughput levels in the training set with prediction for throughput levels
not in the training set; we also evaluate the prediction accuracy for scenarios
where both the throughput level and the deployment are not in the training
set. Our regression-based power extrapolates the power consumption for
previously unobserved load intensity rangeswith high accuracy. The prediction
for observed and unobserved throughput levels differ by less than 0.4 watts. In
addition, the prediction error for scenarios where both the throughput level and
deployment are unobserved is not significantly higher compared to scenarios
where only the deployment is unobserved. In our case, the difference is only
0.2 watts.

15.3.4 Evaluation Results for RUBiS

To show the more general applicability of our approach, we also evaluate its
accuracy when applying it to the RUBiS web application. RUBiS is also a two
tier web application, which allows the use of the same deployments we used
for the DVD Store. As previously, we use gradient tree boost and collect 300
training vectors per deployment in the training set.

Our model exhibits slightly better accuracy for RUBiS compared to the DVD
Store. Table 15.8 shows this for the prediction results using the full training

247

Chapter 15: Applying Online Power Prediction using Real-World Workloads

Table 15.8: Prediction error comparison for RUBiS and Dell DVD Store.
Application #Train. Observed MAE

Depl. Depl.
Dell DVD Store 14 No 1.9 W
RUBiS 14 No 1.25 W

set. The power consumption of the remaining deployment is predicted with
a slightly better accuracy exhibiting an error of 1.25 watts. Overall, our mea-
surements using RUBiS confirm our previous observations in the context of
the DVD Store.

15.4 Single Server Power Prediction

The single server power prediction model is designed to enable the use of
our workload power prediction model without requiring the use of power
measurement devices at run-time. Instead it uses CPU performance counters
and learns their relationship to power consumption during a SERT run. The
question which SERTworklets andwhich specific performance counters should
be used is not trivial and poses a research challenge. We evaluate multiple
combinations of SERT worklets and performance counters against three target
workloads, each deployed in a non-distributed setting on a single system: DVD
Store, RUBiS and SSJ. SSJ is the hybrid worklet in SERT designed to resemble a
real world enterprise application.

We evaluate the mean prediction error for both servers (SUTs) in our testbed
considering multiple prediction scenarios at various load levels between 100
and 1400 transactions per second.
Table 15.9 shows the prediction errors for single server power consump-

tion for selected performance counter – worklet combinations. The results
support our decision to use the CPU power andMemory Bytes Write counters,
as using these counters leads to results with the smallest errors. Using only
the CRYPTO-AES worklet for training produces the most accurate prediction
results using these two counters. This may be an indicator for some overfitting.
However, training using CRYPTO-AES produces the most accurate results for
all of our prediction workloads (with exception of the case where we predict
SSJ with a training set that includes SSJ). We use this configuration in the rest
of this evaluation, but admit that potential overfitting might require futher
investigation.

248

15.5 Combined Models Prediction Accuracy

Table 15.9: Single server power prediction error depending on trainingworklets
and used performance counters.
Worklets CPU Performance Counters MAE

DVD Store RUBiS SSJ
CRYPTO-AES,
SSJ, SOR, LU

CPU-Power, IO-Bytes,
Memory-Bytes-Write, CPU-
Cycles, CPU-Ref-Cycles,
Memory-Bytes-Read, CPU-
Frequency

4.97 W 4.48 W 3.85 W

CRYPTO-AES CPU-Power, IO-Bytes,
Memory-Bytes-Write, CPU-
Cycles, CPU-Ref-Cycles,
Memory-Bytes-Read, CPU-
Frequency

2.65 W 2.51 W 2.81 W

COMPRESS,
Crypto-
AES, SSJ,
XML_Validate

CPU-Power, Memory-Bytes-
Write

2.16 W 2.47 W 2.35 W

CRYPTO-AES CPU-Power, Memory-Bytes-
Write

1.11 W 0.94 W 1.63 W

CRYPTO-AES CPU-Power 1.34 W 1.15 W 1.71 W
SSJ CPU-Power, Memory-Bytes-

Write
1.56 W 1.76 W 1.08 W

CRYPTO-AES CPU-Power, Memory-Bytes-
Write, Ref-Cycle

3.14 W 2.92 W 3.74 W

CRYPTO-AES CPU-Power, Memory-Bytes-
Write, Memory-Bytes-Read

2.41 W 2.44 W 2.53 W

15.5 Combined Models Prediction Accuracy

The end-to-end scenario for applying our modeling approach includes using
both the workload deployment power prediction model and calibrated single
server power models for all SUTs. We evaluate the prediction error of the
workload deployment power predictionmodel when using the calibrated single
server power models to estimate the power consumption of each SUT. Both
SUTs are instrumented with performance counter listeners, based on Intel
PCM (Willhalm et al., 2012), to collect performance counters at run-time. These
performance counters are used to estimate the current power draw of the SUT.

To evaluate the impact of the error added by using the single server power
predictionmodels, we choose a self-prediction scenario for theworkload deploy-
ment model. The deployment model is trained with all of our 15 deployment

249

Chapter 15: Applying Online Power Prediction using Real-World Workloads

Table 15.10: Error of using both models vs. deployment only.
System Power MAE MAPE
Measured 1.38 W 1.46%
Model 1.8 W 2.01%

options and we evaluate its accuracy when predicting the power consumption
of one of the training models for various target throughput levels. We compare
the relative and absolute errors of the power prediction when using both mod-
els together against the power consumption measured by the dedicated power
measurement devices for the predicted deployment.

Table 15.10 shows the relative and absolute mean self-prediction errors. The
MAE when using power measurements of the power analyzer as input to the
run-time model is 1.38 watts. When substituting the power analyzer with the
single server power model, the MAE increases by 0.42 watts to 1.8 watts. This
is significantly less than the 1.11 W prediction error of the single server power
prediction model measured in the separate model evaluation (see Table 15.9).
Generally, we can conclude that using bothmodels together results in acceptably
small errorswarranting their use in case of the unavailability of hardware power
analyzers.

15.6 Predicting Power for Containers

Moderndistributed applications assembled from components or (micro-)services
that can be freely deployed at run-time are usually executed in virtualized en-
vironments. More recently, the use of containers instead of full virtualization
has also gained popularity. We investigate if our power prediction models can
be used in a containerized environment and evaluate the impact this has on
their accuracy.
We deploy two virtual SUT containers on the physical SUT 1. Both virtual

SUT containers contain a full Debian stack on which the application compo-
nents can be deployed. We can deploy all of the 15 deployment configurations
from the previous experiments on the two virtual SUTs. Doing so introduces a
discrepancy between the single server power model and the workload deploy-
ment power predictionmodel as the models consider different systems than the
systems for which they predict power. The single server power model predicts
power for physical servers, whereas the run-time power model predicts power
for hosts, which in this case are the virtual systems. However, the single server

250

15.7 Summary

Table 15.11: Prediction error when running in containers.
Phys. SUTs Containers MAE MAPE
2 No 1.8 W 2.01%
1 Yes 1.25 W 2.02%

model is workload agnostic, requiring only the set of performance counters per
physical server, which means that the two models can still be used together.

We instrument one of the containers using the performance counter listener
(alternatively, the host operating system could be instrumented instead) and
compare the mean self-prediction error when predicting based on the full
training set, as used in Section 15.5. Table 15.11 shows that the mean percentage
error remains very similar when using containers vs. running on a native
system. From this, we conclude that our approach can be readily applied in
containerized environments.

15.7 Summary

This chapter evaluates our online power prediction mechanism, introduced in
Chapter 9 and answers EQB.3 (“Canwe accurately predict the power consump-
tion of a potential software component placement based on run-time data?”).
We evaluate both the online deployment power prediction method and the sin-
gle server power prediction approach. We also evaluate the end-to-end scenario
that uses both approaches together. The results show that our method can accu-
rately predict the power consumption of previously unobserved deployments
with a mean absolute percentage error of 2.2%.

251

Chapter 16

Conclusions

This chapter concludes the thesis and provides a summary of its contributions.
We discuss the benefits of our work and give an overview of potential future
work.

16.1 Summary

This thesis addresses two main goals: Goal A (create a comprehensive power
and energy efficiency measurement and rating methodology for servers) is
addressed by presenting a measurement and rating methodology for energy
efficiency of servers and an energy efficiency metric to be applied to the results
of this methodology. We also design workloads and load intensity and distri-
bution models and mechanisms that can be used for energy efficiency testing.
Based on this, we addressGoal B (provide methods for using the results of the
measurement methodology for data center provisioners and/or operators) by
presenting power prediction mechanisms and models that utilize our measure-
ment methodology and its results for power prediction. Specifically, the major
contributions presented in this thesis are:

Contribution 1: Methodology for Server Efficiency Rating

This thesis presents a methodology for measuring and rating the energy ef-
ficiency of servers. The methodology describes experiment hardware and
software setup, workload placement, workload measurement phases and in-
tervals, measurement, and metric calculation. It is designed to be used by
regulators and decision makers for rating the energy efficiency of servers. It
measures a collection of grouped mini-workloads (worklets), covering a range
of potential application scenarios in order to provide sufficient insight into the
tested system’s behavior in many different contexts of use.

We present a set of worklets and workload groupings that are implemented
as an implementation of our methodology in the SPEC SERT 2.0. We use

253

Chapter 16: Conclusions

this implementation to evaluate our methodology regarding the properties of
relevance, reproducibility, and fairness. In this evaluation, we show that the
SERT’s worklet selection is relevant and enables a thorough system analysis.
In addition, we investigate reproducibility by analyzing inter and intra-run
variations for our methodology and, finally, we evaluate our metric and its
ability to ensure fairness using mathematical proof, correlations with system
properties and its relationship with third-party workloads.

Contribution 2: Advanced Load Profiles for Energy Efficiency Measurement

We create models and extraction mechanisms for load profiles that vary over
time and load distribution mechanisms and policies. The Descartes Load In-
tensity Model (DLIM) is designed to capture load profiles using a structured
combination of piecewise mathematical functions. This way, models can be
designed, extracted, and/or modified for tests using specialized workloads.
We introduce three methods enabling the automated extraction of DLIM in-
stances from existing arrival rate traces. The load distribution mechanisms
place workloads on computing resources in a hierarchical manner (i.e., first
servers, then CPU sockets, then CPU cores). We modify our measurement
and rating methodology to allow for this kind of placement. For each of those
levels, we select one of three basic strategies, creating a hierarchical strategy
composition. The three basic strategies are: load balancing, load consolidation,
and a new energy-efficient consolidation strategy.

The results of our evaluation show that the proposed load intensity model ex-
traction methods are capable of extracting DLIM instances with good accuracy
from nine different real-world load intensity traces. Our load intensity models
can be extracted in less than 0.2 seconds and our resulting models feature a
median modeling error of 12.7% on average. We also demonstrate the use of
our load distribution method for evaluation. We evaluate the hierarchical load
distribution policies and show that our new load distribution strategy can save
up to 10.7% of power consumption on a single server node.

Contribution 3: Advanced Workloads for Energy Efficiency Measurement

We create additional workloads and workload-creation methods for specialized
use-cases that are often relevant when discussing energy efficiency and power
consumption. Firstly, we introduce PET, a framework for creation of synthetic
workloads that emulate the power-consumption-relevant profile of other appli-
cations. PET is intended to be used to emulate workloads for which the setup
of a power benchmarking infrastructure is either highly complex or infeasible.

254

16.1 Summary

Specifically, we show PET’s use in the context of benchmarking virtual net-
work functions, which usually require a complex network setup. In addition,
we introduce TeaStore, a micro-service based, distributed test and reference
application intended to serve as a benchmarking framework for researchers
evaluating their work. TeaStore is designed to offer the degrees of freedom
and performance characteristics required by software (power-)management,
prediction, and analysis research.

We show that we are capable of emulating the power consumption behavior
of realistic workloads with a mean deviation down to 0.19 W (1%). We also
demonstrate that PET can emulate the power consumption ofworkloadswith an
average deviation of less than 10% even if the original workload used additional
hardware, such as network interface cards. We demonstrate the use of TeaStore
by extracting performance models, using it in an auto-scaling environment,
and showing that it can be placed with different effects on power consumption
of the system under consideration.

Contribution 4: Interpolating Power Consumption

We present a method for automated selection of interpolation strategies for per-
formance and power characterization. We also introduce a new configuration
method for piece-wise polynomial interpolation and two generic automated
configuration and method selection approaches that improve prediction accu-
racy for system power consumption for a given system utilization.
We show that, in comparison to regression, our automated interpolation

method configuration and selection approach improves modeling accuracy by
43.6% if additional reference data is available and by 31.4% if it is not.

Contribution 5: Offline Prediction of Power Consumption

We present twomethods for offline prediction of power consumption of servers.
Both methods use results provided by the SPEC SERT implementation of our
power rating methodology to predict the power consumption of otherwise
unavailable servers. Firstly, we introduce an approach for explicit modeling of
the impact a virtualized environment has on power consumption. The approach
predicts the SERT results when run within a virtualized system. Secondly, we
describe a method to predict the power consumption of a software application.
This approach predicts the power consumption of a third-party application for
multiple load levels.
Our methods are able to predict power consumption reliably for multiple

hypervisor configurations and for the target application workloads. Running

255

Chapter 16: Conclusions

on hypervisors, the power consumption of SERT’s CPU and storage-bound
workloads can be predicted with good accuracy, featuring a relative prediction
error of less than 15% on all configurations. CPUworkloads feature the greatest
accuracy, with some workloads being predicted with errors of less than 1%.
Application workload power prediction features a mean average absolute error
of 9.5%.

Contribution 6: Online Prediction of Power Consumption

Finally, we propose an end-to-end modeling approach for predicting the power
consumption of component placements at run-time. The approach uses run-
time monitoring data to train a deployment and power model that allows the
prediction of power consumption for different deployment options and load
levels in heterogeneous environments. The model can also be used to predict
the power consumption at load levels that were not yet observed on the running
system. Optionally, we allow replacement of run-time power monitors with a
pre-trained performance-counter based single-server power prediction model.

We show that we can predict the power consumption of two different dis-
tributed web applications with a mean absolute percentage error of 2.2%. In
addition, we can predict the power consumption of a system at a previously
unobserved load level and component distribution with an error of 1.2%. We
also show that accurately predicting the power consumption of potential de-
ployments and correctly choosing the least power consuming deployment can
result in power savings of up to 29.4%.

16.2 Benefits

The work in this thesis benefits multiple groups of people. Among others, data
center operators, regulatory govnerment agencies, and hardware developers
benefit from the contributions introduced in this thesis. Specifically, we see the
following major benefits of our work:

• Our power rating methodology is of benefit for regulators, industry prac-
titioners and researchers. Regulators are the primary target group of
the methodology and can use it as-is or with modifications targeted at
their specific domain. They can use it to apply energy efficiency labels
on servers with the goal of reducing the overall power consumption
and carbon footprint. An example of this can be found in the U.S. EPA
adopting the SPEC SERT implementation of this methodology for their
ENERGY STAR program. Industry practitioners and researchers can use

256

16.2 Benefits

the methodology for the great amount of information that it provides
on the systems under test. This information can be used for the develop-
ment of more efficient devices, workloads, and management mechanisms.
Many of the prediction methods in this thesis are an example of such an
application.

• Our load intensity models, load distribution mechanism, and workloads
allow researchers and system designers to performmore specialized tests.
These methods are of special interest in the context of distributed and
cloud computing, where varying load intensities and distributions are
the order of the day. The TeaStore workload allows exploitation of many
of the features that such environments offer. Our PET workload creation
mechanism, on the other hand, can be used to reduce the effort needed for
repeated setup. In general, our methods and workloads allow for more
structured testing, enabling the development of more cost and energy
efficient systems and management approaches.

• The offline power prediction methods, which employ our interpolation
method, can be used by anyone considering to buy a server in order to
make more informed decisions. Servers can be selected based on their
power consumption for the target software environment (hypervisor),
which is especially useful for cloud environments, where the data center
operator knows this information, but does not know the application
to be run on top of the hypervisor. In contrast, someone purchasing a
server with an application in mind can purchase a server with low power
consumption for this specific application, reducing operating costs and
environmental impact.

• The online power prediction approach in this thesis can be used in multi-
ple contexts: It can be used at run-time to find the least power consuming
deployment option for the current throughput of a distributed application,
but it could also be used for energy efficiency prediction when applied
in conjunction with run-time performance prediction models, such as
DML (Huber et al., 2017). In general, the models and the prediction
approach can be leveraged to improve run-time energy management by
providing more accurate predictions of the effect of management actions
when it comes to re-deploying application components.

257

Chapter 16: Conclusions

16.3 Future Work

The contributions in this thesis can be used as a basis for future work. We see
several potential avenues to follow and challenges to address in the future:

Benchmarking of Further Server Hardware Components

Specialized co-processors are gaining popularity in server and cloud envi-
ronments. Many cloud providers already offer services that provide general
purpose GPU (GPGPU) accelerators (Leng et al., 2013). In addition, special-
ized devices are being introduced for blockchain computations (Magaki et al.,
2016) and deep learning (Wang et al., 2016). These device types use different,
sometimes vendor-specific, programming languages making comparison of
performance and power consumption difficult. Therefore, we see a need for
research to address the question of how to designworkloads to benchmark such
devices and servers using them. Such workloads should enable comparability
between equivalent vendor solutions, yet still utilize the different specialized
hardware features that such devices support.

Combining Power and Performance Models

In this thesis, we identified a need for power prediction methods and created
such methods for offline and online contexts. In contrast, many prediction
models already exist for software and server performance (e.g., Huber et al.,
2017, Becker et al., 2009 and many more). Considering that energy efficiency is
the ratio of performance and power, these models may be combined with our
power prediction models for efficiency prediction.

Combining performance and power models is challenging as these models
are not based on the samemodel inputs. For example, our powermodels use the
power per load level data points, provided by the SPEC SERT implementation
of our methodology for the offline scenario or a deployment model with run-
time power measurements for the online scenario. Models with a focus on
performance do not require power measurements and may use deployment
models with different model elements designed for their specific purpose.
Bridging these differences will require significant future work.

Power Management based on Prediction Models

Our power prediction models, especially our online power prediction model,
can be used to predict the effect of power-related management decisions. They

258

16.3 Future Work

can be used by power management, or resource management in general, to
make power aware decisions. We see the integration of our power models into
resourcemanagement as futurework. This integration is challenging in so far as
it has to consider the trade-offs between many potential aspects, including, but
not limited to service level agreements, performance or efficiency optimization,
reliability, etc.

In addition, resource management using our power prediction must consider
the many actions that could be performed in modern management infrastruc-
tures. With containerization further on the rise, these include resource nesting,
additional resource control on the operating system level, and new monitoring
options.

Static Power Models

In this thesis, we present offline power models that predict the power consump-
tion of hypervisors or software stacks on unavailable machines. Both of these
models require the target workload to be executed on an available reference
machine. In contrast, we introduce a performance counter based power model
as part of our online prediction model. Similarly, we also use performance
counters to recreate power profiles. Based on this, we see a potential for static
performance-counter-based power models that would not need a reference
system for calibration. Such models would probably come with a loss of ac-
curacy, but increased ease of use and might be useful in several contexts. For
example, a static performance-counter-based power model could be used in
development for quick estimation of a test case’s power consumption, allowing
for power-aware code optimization.

Energy Efficiency of Virtualized Network Functions

This thesis focuses on the energy efficiency of common commodity servers,
which are generally used as regular compute servers. However, such commod-
ity devices are now also being applied in the networking domain for hosting
of virtualized network functions (VNFs) (Botero et al., 2012). This introduces
a new workload type for servers to be measured and managed with regard
to power consumption and energy efficiency. Benchmarking setups and mea-
surement methodologies for such use-cases are a challenging future topic. We
addressed this partially in our performance-counter based power emulation
approach. However, measuring the power consumption and efficiency of non-
emulated virtualized network functions remains challenging. A measurement
methodology for such use-cases must define the hardware setup, which may

259

Chapter 16: Conclusions

be complex and which may differ depending on the specific VNF. It must also
account for network latency and packet loss. This is especially challenging
when trying to define load levels and when validating the functionality of the
VNF under test. In addition, we expect a number of yet unforeseen challenges
to arise when adapting our power rating methodology for this domain.

260

List of Figures

2.1 The decomposition of a time series into seasonal, trend, and
remainder (Verbesselt et al., 2010). 15

4.1 Server power measurement device setup. 46
4.2 Intervals for calibration and measurement phase. 51
4.3 Calculation order of energy efficiency metrics. 52

5.1 The Descartes Load Intensity Meta-Model without the child
implementations of the abstract Noise, Burst, Seasonal, and Trend. 62

5.2 hl-DLIM Seasonal part. 63
5.3 Activity diagram of the Simple DLIM Extraction Method. (s-DLIM) 64

6.1 TeaStore architecture. 88
6.2 Service calls when requesting product page. 90

7.1 Power consumption of SERTCPUworklets on Fujitsu PRIMERGY
RX300S7 system. 103

8.1 Throughput-scaling of the different VM configurations for XM-
Lvalidate workload. 110

8.2 Power prediction approach outline. 112
8.3 Outline of power prediction approach. 116

9.1 Workload deployment power prediction data flowwith example
deployment. 127

9.2 Deployment meta-model. 128
9.3 Example scenario for use of the workload deployment power

prediction model. 131
9.4 Single server power prediction model data flow. 132

10.1 System power consumption of the Fujitsu server with median
Xeon E5-2680 v3 processor. 145

261

List of Figures

11.1 Arrival rates of the original WorldCup98 trace (blue) and the
extracted DLIM instance (red) using s-DLIM with a Trend length
of 1 and ignoring noise. 159

11.2 Arrival rates of the original BibSonomy trace (blue) and the
extracted DLIM instance (red) using s-DLIM with Trend length 1
and noise reduction. 161

11.3 Arrival rates of the original FrenchWikipedia trace (blue) and the
extracted DLIM instance (red) using s-DLIM with Trend length 1
and ignoring noise. 163

11.4 Power consumption of distributions for SOR on single-socket
system. 166

11.5 Energy Efficiency of distributions for SOR on single-socket system.167
11.6 Power consumption of fully consolidated load on single-socket

system. 168
11.7 Power consumption of efficiency strategies on single socket system.168
11.8 Energy efficiency of consolidated strategywith andwithout SMT

unit consolidation on both dual-socket systems for SOR. 169
11.9 Energy efficiency of load distribution strategies on Ivy Bridge

dual-socket systems for SOR. 170
11.10Energy efficiency of load distribution strategies onHaswell dual-

socket systems for SOR. 171
11.11Energy efficiency of load distribution strategies on Ivy Bridge

dual-socket system for LU. 172
11.12Energy efficiency of load distribution strategies onHaswell dual-

socket system for LU. 173
11.13Energy efficiency of load distribution strategies, including non-

pinning strategies, on Haswell dual-socket system for CryptoAES.174
11.14Energy efficiency of load distribution strategies, including non-

pinning strategies, on Haswell dual-socket system for LU. 175
11.15Energy efficiency of load distribution strategies on two nodes

using the Haswell dual-socket system for LU. Unused nodes are
turned off. 176

11.16Energy efficiency of load distribution strategies on two nodes
using the Haswell dual-socket system for LU. Unused nodes
remain idle. 176

11.17Power consumption of load distribution strategies on two HP
dual-socket nodes for LU. Unused nodes remain idle. 177

11.18Energy efficiency of heterogeneous load distribution strategies
on Haswell single-socket system. 178

262

List of Figures

11.19Energy efficiency of heterogeneous load distribution strategies
on Haswell dual-socket system. 179

12.1 L3 cachemisses for one process, step size 2 and target value 1×106.182
12.2 L3 cachemisses for one process, step size 6 and target value 1×106.183
12.3 L3 cache misses for one process, step size 6, random step and

target value 1× 106. 183
12.4 Bytes written results for one process with process owned mem-

ory and target value 64× 106 bytes. 185
12.5 Bytes written results for eight processes with process owned

memory and target value 512× 106 bytes. 186
12.6 PI workload power consumption behavior with removed event

triggers. 190
12.7 XMLValidate workload power consumption behavior. 191
12.8 XMLValidateworkloadpower consumption behaviorwith pruned

performance event trigger. 192
12.9 SSJ power consumption behavior with removed event triggers. . 193
12.10NFV workload power consumption behavior. 194
12.11NFV power consumption behavior with 240 s measurement. . . 196
12.12“Browse” user profile configured in HTTP load generator for

our use-cases, including web pages delivered and HTTP request
type. Unused web pages are omitted for clarity. 199

12.13Deployments for model prediction. Services are abbreviated to
their first letter. 202

12.14Absolute prediction error of the static and parametric model for
two workload profiles and five workload intensities. 203

12.15Scaling behavior for the FIFA trace. 208
12.16Scaling behavior for the BibSonomy trace. 209
12.17Energy efficiency for linearly increasing load. Services are ab-

breviated to their first letter. 210

13.1 Accuracy of LU interpolation for interpolation set at 20% load
level intervals. 218

13.2 Accuracy of SSJ interpolation for interpolation set at 20% load
level intervals. 219

14.1 Relationship between self-prediction error and actual prediction
error. 228

14.2 Prediction errors for configuration with 1 VM. 228

263

List of Figures

14.3 Measurements and Regression Tree prediction (using linear in-
terpolation) of Friendgraph worklet power. 237

15.1 Model evaluation device setup. 241

264

List of Tables

3.1 Micro-service benchmark introduced by Aderaldo et al., 2017
and our research benchmark requirements for TeaStore (TS) in
comparison toACMEAir (AA), SpringCloudDemoApps (SCD),
Shocks Shop (SoSh) and MusicStore (MS). 30

8.1 Virtual environment configurations. 109

10.1 CVs in % for mean energy efficiency for measurement repeats
on Sun Server X3-2. 143

10.2 CVs in % for mean CPU power for measurement repeats on Xeon
E5-2609. 144

10.3 Coefficients of variaton (CV) in % for CPU power consumption
on system, running a Xeon E5-2680 v3 processor. 147

10.4 CV in % for system power consumption on Xeon E5-2680 v3
system. 147

10.5 Correlation coefficients of energy efficiency score and power
characteristics for servers, grouped by number of sockets. 151

10.6 Correlation coefficients of energy efficiency score and power
characteristics for servers, grouped by processor models. 152

10.7 Ranking of measured andweight-simulated DVDStore efficiency
scores. 155

11.1 Model extraction errors for the Internet Traffic Archive and Bib-
Sonomy traces. 158

11.2 wikipedia.org model extraction errors. 162
11.3 Load level range where socket consolidation has a lower power

consumption than fully balanced load (inclusive). The shown
differences are power consumption differences within this range. 171

12.1 L3 cache hits for process owned memory and target values 1×
106, 4× 106 and 8× 106 bytes. 184

12.2 Bytes read results with uncachable memory and target values
64× 106, 256× 106 and 512× 106 bytes. 185

265

List of Tables

12.3 Retired instructions measurement results with target values of
1× 1010, 4× 1010 and 8× 1010. 187

12.4 Context switches measurement results and target values of 1×
105, 4× 105 and 8× 105 switches. 187

12.5 Interruptmeasurement results and target values of 1×105, 4×105

and 8× 105 interrupts. 187
12.6 Side effects of performance event triggers per event generated

for eight processes. 188
12.7 PI workload mean and maximum deviation and CV. 188
12.8 PI workload performance counter results. 189
12.9 XMLValidate mean and maximum deviation and CV. 190
12.10XMLValidate performance counter results. 191
12.11SSJ mean and maximum deviation and CV. 192
12.12SSJ performance counter results. 193
12.13NFV mean and maximum deviation and CV. 195
12.14NFV workload performance counter results. 195
12.15Mapping of config. number and used containers. 206
12.16Result metric overview for both traces. 209
12.17Energy efficiency on homogeneous servers. Services are abbre-

viated to their first letter. 211
12.18Energy efficiency on heterogeneous servers. Services are abbre-

viated to their first letter. 213

13.1 Mean modeling errors of interpolation and reference methods
for the power over load level function of the SSJ workload. . . . 216

13.2 Median modeling errors of interpolation and reference methods
for the power over load level function of the SSJ workload. . . . 217

13.3 Mean modeling errors of interpolation and reference methods
for the power over load level function of the LU workload. . . . 220

13.4 Mean modeling errors of best interpolation function for each
workload. 221

13.5 Mean modeling errors of independent reference based interpo-
lation for each workload, using SSJ as the reference dataset. . . . 222

13.6 Mean modeling errors of cross-validation based interpolation. . 223

14.1 Hardware configuration of servers. 226
14.2 Relative difference between predicted and actual power (no sub-

models). 227
14.3 System under test specification including power characteristics

measured using SERT. 231

266

List of Tables

14.4 Unoptimized, baseline prediction errors of base formalisms. . . 232
14.5 Formalism prediction error with adaptive interpolation and pa-

rameter optimization. 233
14.6 Formalism prediction error with parameter optimization, but

not using any interpolation. 234
14.7 Formalism prediction error with interpolation, but not using

any parameter optimization. 235
14.8 Regression Tree prediction error depending on interpolation

method. 236

15.1 System under test specification including power characteristics
as measured using SERT. 240

15.2 Power consumption of the most and least power consuming
deployment configuration at full load. 243

15.3 Gradient Tree Boost prediction accuracy for # training vectors
(total # vectors for 8 training deployments). 243

15.4 Regression Tree prediction accuracy depending on # training
vectors (total # vectors for 8 training deployments). 244

15.5 Prediction error for previously unobserved deployments de-
pending on # trained deployments and # Web UI component
implementations. 245

15.6 Deployments in the deployment datasets of size three and five
and deployment to predict. 246

15.7 Prediction error for previously unobserved throughput depend-
ing on # trained deployments. 247

15.8 Prediction error comparison for RUBiS and Dell DVD Store. . . 248
15.9 Single server power prediction error depending on training

worklets and used performance counters. 249
15.10Error of using both models vs. deployment only. 250
15.11Prediction error when running in containers. 251

267

Acronyms

API Application Programming Interface. 189

APM Application Performance Monitoring. 89

BFAST Breaks for Additive Season and Trends. 15, 60, 63, 65, 158–161, 163

DLIM Descartes Load Intensity Model. 58–61, 63–65, 70, 75, 157–164, 180, 241,
254, 261, 262

DML Descartes Modeling Language. 200, 257

DVFS Dynamic Voltage and Frequency Scaling. 27, 71, 97

hl-DLIM high-level Descartes Load Intensity Model. 59, 60, 63, 65, 261

HTML Hypertext Markup Language. 90

HTTP Hypertext Transfer Protocol. 30, 31, 90, 118, 159, 160, 198, 199, 205, 231,
240, 263

Intel PCM Intel Performance Counter Monitor. 142, 154, 242, 249

JIT Java Just-In-Time. 49

JSP Java Server Page. 89, 91

JVM Java Virtual Machine. 21, 46, 108

MOF Meta-Object Facility. 59

OS Operating System. 80, 84, 173

OSG Open Systems Group. 47

PCM Palladio Component Model. 31, 32, 199

269

Acronyms

PET Performance Event Trigger Framework. 7, 77–84, 93, 94, 181, 184–189, 191,
195–197, 214, 254, 255, 257

REST Representational State Transfer. 89

s-DLIM Simple DLIM Extraction Method. 60, 64–66, 68–70, 75, 157, 160–164,
180, 261, 262

SERT Server Efficiency Rating Tool. 6, 8, 10, 16, 43–45, 47, 58, 71, 73, 99, 103,
105, 107–110, 113–116, 118, 119, 121, 132, 143, 150, 153–155, 165, 188, 215,
220, 225, 230, 231, 233, 236, 237, 239, 240, 248, 253–256, 258, 261, 266, 267

SLO Service Level Objective. 207

SPEC Standard Performance Evaluation Corporation. 6, 10, 16, 19–22, 27, 28,
31, 43–45, 47, 58, 103, 105, 107, 108, 113, 121, 150, 154, 220, 230, 231, 253,
255, 256, 258

SPEC RG Standard Performance Evaluation Corporation, Research Group. 7,
75, 207

SQL Structured Query Language. 92

SUT System under Test. 44–47, 49, 50, 53, 55, 74, 79, 80, 108, 109, 115, 118, 165,
178, 188, 198, 210, 211, 231, 239–242, 248–250

TDP Thermal Design Power. 142

TPC Transaction Processing Performance Council. 16, 20, 21, 23, 28, 31, 32

U.S. EPA U.S. Environmental Protection Agency. 1, 2, 6, 44, 107, 108, 132, 256

UML Unified Modeling Language. 35, 199

VM Virtual Machine. 26, 39, 108–110, 205, 206, 227–229, 261, 263

XML Extensible Markup Language. 19, 48, 189

270

Bibliography

Aderaldo, C. M., N. C. Mendonça, C. Pahl, and P. Jamshidi (2017). “Benchmark
requirements for microservices architecture research”. In: Proceedings of the
1st International Workshop on Establishing the Community-Wide Infrastructure
for Architecture-Based Software Engineering. IEEE Press, pp. 8–13 (see pages 29,
30).

AMD64 Architecture Programmer’s Manual Volume 2: System Programming (2016).
Advanced Micro Devices Inc. (see page 24).

Apte, V. and B. Doshi (2014). “PowerPerfCenter: A Power and Performance Pre-
diction Tool for Multi-tier Applications”. In: Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering. ICPE ’14. Dublin, Ireland:
ACM, pp. 281–284 (see page 98).

Arlitt, M. and T. Jin (2000). “A Workload Characterization Study of the 1998
World Cup Web Site”. In: IEEE Network 14.3, pp. 30–37 (see page 205).

Arnold, J. (2013). “Chauffeur: A framework for measuring Energy Efficiency of
Servers”. Master Thesis. University of Minnesota (see pages 154, 230, 231).

Babcock, C. (2012). “NY Times data center indictment misses the big picture”.
In: New York, USA (see page 1).

Bao, K., I. Mauser, S. Kochanneck, H. Xu, and H. Schmeck (2016). “A Microser-
vice Architecture for the Intranet of Things and Energy in Smart Buildings:
Research Paper”. In: Proceedings of the 1st International Workshop on Mashups
of Things and APIs. MOTA ’16. Trento, Italy: ACM, 3:1–3:6 (see page 29).

Barford, P. and M. Crovella (1998). “Generating representative Web workloads
for network and server performance evaluation”. In: Proceedings of the 1998
ACM SIGMETRICS joint international conference on Measurement and model-
ing of computer systems. SIGMETRICS ’98/PERFORMANCE ’98. Madison,
Wisconsin, USA: ACM, pp. 151–160 (see page 34).

Barroso, L. and U. Holzle (2007). “The Case for Energy-Proportional Comput-
ing”. In: Computer 40.12, pp. 33–37 (see pages 23, 33, 44, 71, 142).

Basmadjian, R. and H. De Meer (2012). “Evaluating and modeling power con-
sumption of multi-core processors”. In: Future Energy Systems: Where Energy,
Computing and Communication Meet (e-Energy), 2012 Third International Confer-
ence on, pp. 1–10 (see page 27).

271

Bibliography

Basmadjian, R., N. Ali, F. Niedermeier, H. de Meer, and G. Giuliani (2011). “A
Methodology to Predict the Power Consumption of Servers in Data Centres”.
In: Proceedings of the 2nd International Conference on Energy-Efficient Computing
and Networking. e-Energy ’11. New York, New York: ACM, pp. 1–10 (see
pages 4, 38, 39, 85, 209).

Bastani, K. (2015). SpringCloud Example Project. https://github.com/kbastani/
spring-cloud-microservice-example. Accessed: 19.10.2017 (see pages 29,
32).

Becker, S., G. Brataas, and S. Lehrig (2017a). Engineering Scalable, Elastic, and Cost-
Efficient Cloud Computing Applications: The CloudScale Method. 1st. Springer
Publishing Company, Incorporated (see pages 9, 70, 75).

Becker, S., H. Koziolek, and R. Reussner (2009). “The Palladio component model
for model-driven performance prediction”. In: Journal of Systems and Software
82, pp. 3–22 (see pages 39, 85, 124, 199, 258).

Becker, S. et al. (2017b). Q-Impress Consortium. www.q-impress.eu/wordpress/
wp-content/uploads/2009/05/d21-service_architecture_meta-model.
pdf. Accessed: 2017.03.16 (see page 199).

Beitch, A., B. Liu, T. Yung, R. Griffith, A. Fox, and D. A. Patterson (2010). Rain:
A Workload Generation Toolkit for Cloud Computing Applications. Tech. rep.
UCB/EECS-2010-14. EECS Department, University of California, Berkeley
(see pages 34, 59).

Belady, C., A. Rawson, J. Pfleuger, and T. Cader (2008). Green Grid Data Center
Power Efficiency Metrics: PUE and DCIE. Tech. rep. White Paper 6. The Green
Grid (see page 32).

Bellosa, F. (2000). “The Benefits of Event: Driven Energy Accounting in Power-
sensitive Systems”. In: Proceedings of the 9th Workshop on ACM SIGOPS Euro-
pean Workshop: Beyond the PC: New Challenges for the Operating System. EW 9.
Kolding, Denmark: ACM, pp. 37–42 (see pages 27, 36).

Beloglazov, A., J. Abawajy, and R. Buyya (2012). “Energy-aware Resource Al-
location Heuristics for Efficient Management of Data Centers for Cloud
Computing”. In: Future Gener. Comput. Syst. 28.5, pp. 755–768 (see pages 4,
39, 85, 209).

Benz, D., A. Hotho, R. Jäschke, B. Krause, F.Mitzlaff, C. Schmitz, andG. Stumme
(2010). “The Social Bookmark and Publication Management System BibSon-
omy”. In: The VLDB Journal 19.6, pp. 849–875 (see pages 159, 205).

Bianchi, G., A. Detti, A. Caponi, and N. Blefari Melazzi (2013). “Check Before
Storing: What is the Performance Price of Content Integrity Verification in
LRU Caching?” In: SIGCOMM Comput. Commun. Rev. 43.3, pp. 59–67 (see
page 203).

272

https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/kbastani/spring-cloud-microservice-example
www.q-impress.eu/wordpress/wp-content/uploads/2009/05/d21-service_architecture_meta-model.pdf
www.q-impress.eu/wordpress/wp-content/uploads/2009/05/d21-service_architecture_meta-model.pdf
www.q-impress.eu/wordpress/wp-content/uploads/2009/05/d21-service_architecture_meta-model.pdf

Bibliography

Bircher, W. L. and L. K. John (2012). “Complete System Power Estimation
Using Processor Performance Events”. In: IEEE Transactions on Computers
61.4, pp. 563–577 (see page 36).

Blinchikoff, H. J. andA. I. Zverev (1986). Filtering in the time and frequency domains.
Krieger Publishing Co., Inc. (see page 70).

Bohra, A. E. H. and V. Chaudhary (2010). “VMeter: Power modelling for vir-
tualized clouds”. In: Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, pp. 1–8 (see page 37).

Bohrer, P., E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and R.
Rajamony (2002). “The Case for PowerManagement inWeb Servers”. English.
In: Power Aware Computing. Springer US, pp. 261–289 (see page 98).

Bolla, R., R. Bruschi, C. Lombardo, and S.Mangialardi (2014). “DROPv2: Energy-
Efficiency through Network Function Virtualization”. In: IEEE Network 28.2,
pp. 26–32 (see page 36).

Bondarev, E., P. de With, M. Chaudron, and J. Muskens (2005). “Modelling of
input-parameter dependency for performance predictions of component-
based embedded systems”. In: 31st EUROMICRO Conference on Software
Engineering and Advanced Applications. Vienna, Austria: EUROMICRO, pp. 36–
43 (see page 199).

Botero, J. F., X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer
(2012). “Energy Efficient Virtual Network Embedding”. In: IEEE Communica-
tions Letters 16.5, pp. 756–759 (see page 259).

Brataas, G., N. Herbst, S. Ivansek, and J. Polutnik (2017). “Scalability Analysis
of Cloud Software Services”. (Workshop Paper). In: Companion Proceedings of
the 14th IEEE International Conference on Autonomic Computing (ICAC 2017),
Self Organizing Self Managing Clouds Workshop (SOSeMC 2017). Columbus,
Ohio: IEEE (see page 31).

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification
and Regression Trees. Monterey, CA: Wadsworth and Brooks (see pages 119,
127).

Breiman, L. (2001). “Random forests”. In:Machine learning 45.1, pp. 5–32 (see
pages 119, 127).

Brooks, D., V. Tiwari, and M. Martonosi (2000). “Wattch: A Framework for
Architectural-level PowerAnalysis andOptimizations”. In: SIGARCHComput.
Archit. News 28.2, pp. 83–94 (see pages 4, 38, 114).

Burden, R. and J. Faires (1989). Numerical Analysis. PWS-Kent, pp. 126–131 (see
page 100).

273

Bibliography

Casale, G., A. Kalbasi, D. Krishnamurthy, and J. Rolia (2012). “BURN: Enabling
Workload Burstiness in Customized Service Benchmarks”. In: IEEE Transac-
tions on Software Engineering 38.4, pp. 778–793 (see page 34).

Cavazos, J., G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and O. Temam
(2007). “Rapidly Selecting Good Compiler Optimizations using Performance
Counters”. In: CGO ’07 Proceedings of the International Symposium on Code
Generation and Optimization, pp. 185–197 (see page 36).

Cecchet, E., A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel (2003).
“Performance comparison of middleware architectures for generating dy-
namic web content”. In: Proceedings of the ACM/IFIP/USENIX 2003 Interna-
tional Conference on Middleware. Springer-Verlag New York, Inc., pp. 242–261
(see page 30).

Cecchet, E., J. Marguerite, and W. Zwaenepoel (2002). “Performance and scala-
bility of EJB applications”. In: ACM Sigplan Notices. Vol. 37. 11. ACM, pp. 246–
261 (see page 30).

Cecci, H. and J. E. Pultz (2016). “Five Steps to Maximize Data Center Efficiency
and Get Effective Results, Including a Low PUE”. In: (see page 1).

Chen, F., J. Grundy, Y. Yang, J.-G. Schneider, and Q. He (2013). “Experimental
Analysis of Task-based Energy Consumption in Cloud Computing Systems”.
In: Proceedings of the 4th ACM/SPEC International Conference on Performance En-
gineering. ICPE ’13. Prague, Czech Republic: ACM, pp. 295–306 (see page 26).

Chen, J., B. Li, Y. Zhang, L. Peng, and J.-K. Peir (2011). “Statistical GPU power
analysis using tree-based methods”. In: Green Computing Conference and Work-
shops (IGCC), 2011 International, pp. 1–6 (see page 37).

Chen, Y., A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam (2005).
“Managing Server Energy and Operational Costs in Hosting Centers”. In:
Proceedings of the 2005 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems. SIGMETRICS ’05. Banff, Alberta,
Canada: ACM, pp. 303–314 (see pages 35, 71).

Chieu, T. C., A. Mohindra, A. A. Karve, and A. Segal (2009). “Dynamic scaling
of web applications in a virtualized cloud computing environment”. In: E-
Business Engineering, 2009. ICEBE’09. IEEE International Conference on. IEEE,
pp. 281–286 (see pages 29, 205).

Chisnall, D. (2008). The definitive guide to the xen hypervisor. Pearson Education
(see page 108).

Choi, J., S. Govindan, B. Urgaonkar, and A. Sivasubramaniam (2008). “Profiling,
Prediction, and Capping of Power Consumption in Consolidated Environ-
ments”. In: Modeling, Analysis and Simulation of Computers and Telecommunica-

274

Bibliography

tion Systems, 2008. MASCOTS 2008. IEEE International Symposium on, pp. 1–10
(see page 37).

CloudScale Consortium (2016). CloudStore. https://github.com/CloudScale-
Project/CloudStore. Accessed: 18.10.2017 (see page 31).

Contreras, G. and M. Martonosi (2005a). “Power prediction for Intel XScale
reg; processors using performance monitoring unit events”. In: Low Power
Electronics and Design, 2005. ISLPED ’05. Proceedings of the 2005 International
Symposium on, pp. 221–226 (see page 27).

Contreras, G. and M. Martonosi (2005b). “Power Prediction for Intel XScale®

Processors Using Performance Monitoring Unit Events”. In: Proceedings of the
2005 International Symposium on Low Power Electronics and Design. ISLPED ’05.
San Diego, CA, USA: ACM, pp. 221–226 (see page 36).

Dell, Inc. (2011). The DVD Store Version 2. http://en.community.dell.com/
techcenter / extras / w / wiki / dvd - store. Last accessed Jan. 2018 (see
pages 31, 85, 153, 230, 240).

Dhiman, G., K. Mihic, and T. Rosing (2010). “A system for online power predic-
tion in virtualized environments using gaussian mixture models”. In: Design
Automation Conference (DAC), 2010 47th ACM/IEEE, pp. 807–812 (see pages 37,
119).

Dorronsoro, B., S. Nesmachnow, J. Taheri, A. Y. Zomaya, E.-G. Talbi, and P. Bou-
vry (2014). “A hierarchical approach for energy-efficient scheduling of large
workloads in multicore distributed systems ”. In: Sustainable Computing: Infor-
matics and Systems 4.4. Special Issue on Energy Aware Resource Management
and Scheduling (EARMS), pp. 252–261 (see page 35).

Economou, D., S. Rivoire, and C. Kozyrakis (2006a). “Full-system power anal-
ysis and modeling for server environments”. In: In Workshop on Modeling
Benchmarking and Simulation (MOBS (see page 37).

Economou, D., S. Rivoire, C. Kozyrakis, and P. Ranganathan (2006b). “Full-
system power analysis and modeling for server environments”. In: Interna-
tional Symposium on Computer Architecture. IEEE (see page 29).

EPA (2013). ENERGY STAR Program Requirements for Computer Servers. https:
//www.energystar.gov/ia/partners/prod_development/revisions/
downloads/computer_servers/Program_Requirements_V2.0.pdf (see
pages 2, 107, 114).

Eyerman, S., L. Eeckhout, T. Karkhanis, and J. E. Smith (2006). “A Performance
Counter Architecture for Computing Accurate CPI Components”. In: ASP-
LOS XII, pp. 175–184 (see page 36).

Ezhilchelvan, P. and I. Mitrani (2016). “Optimal provision of multiple service
types”. In:Modeling, Analysis and Simulation of Computer and Telecommunication

275

https://github.com/CloudScale-Project/CloudStore
https://github.com/CloudScale-Project/CloudStore
http://en.community.dell.com/techcenter/extras/w/wiki/dvd-store
http://en.community.dell.com/techcenter/extras/w/wiki/dvd-store
https://www.energystar.gov/ia/partners/prod_development/revisions/ downloads/computer_servers/Program_Requirements_ V2.0.pdf
https://www.energystar.gov/ia/partners/prod_development/revisions/ downloads/computer_servers/Program_Requirements_ V2.0.pdf
https://www.energystar.gov/ia/partners/prod_development/revisions/ downloads/computer_servers/Program_Requirements_ V2.0.pdf

Bibliography

Systems (MASCOTS), 2016 IEEE 24th International Symposium on. IEEE, pp. 21–
29 (see page 29).

Fan, X., W.-D. Weber, and L. A. Barroso (2007). “Power Provisioning for a
Warehouse-sized Computer”. In: The 34th ACM International Symposium on
Computer Architecture (see pages 37, 98, 106, 216).

Feitelson, D. (2002). “WorkloadModeling for Performance Evaluation”. English.
In: Performance Evaluation of Complex Systems: Techniques and Tools. Ed. by
M. Calzarossa and S. Tucci. Vol. 2459. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 114–141 (see page 34).

Floater, M. S. (2003). “Mean value coordinates”. In: Computer Aided Geometric
Design 20.1, pp. 19–27 (see page 154).

Förderer, K., M. Ahrens, K. Bao, I. Mauser, and H. Schmeck (2018). “Towards
the Modeling of Flexibility Using Artificial Neural Networks in Energy Man-
agement and Smart Grids”. In: Proceedings of the Ninth International Conference
on Future Energy Systems (e-Energy ’18). Ed. by ACM. Ninth International
Conference on Future Energy Systems (e-Energy ’18), ACM. New York, NY,
USA: ACM, pp. 85–90 (see page 39).

Friedman, J. H. (2001). “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics, pp. 1189–1232 (see pages 119, 128).

– (1991). “Multivariate adaptive regression splines”. In: The annals of statistics,
pp. 1–67 (see page 34).

García-Castro, R. andA. Gómez-Pérez (2006). “Benchmark Suites for Improving
the RDF(S) Importers and Exporters of Ontology Development Tools”. In:
The Semantic Web: Research and Applications. Ed. by Y. Sure and J. Domingue.
Vol. 4011. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 155–169 (see pages 18, 20).

Garetto, M., E. Leonardi, and V. Martina (2016). “A unified approach to the
performance analysis of caching systems”. In: ACM Transactions on Modeling
and Performance Evaluation of Computing Systems 1.3, p. 12 (see page 203).

George, B., G. Yeap, M. Wloka, S. Tyler, and D. Gossain (1994). “Power analy-
sis for semi-custom design”. In: Custom Integrated Circuits Conference, 1994.,
Proceedings of the IEEE 1994, pp. 249–252 (see page 27).

Gérard, S. and B. Selic (2008). “The UML–MARTE Standardized Profile”. In:
IFAC Proceedings Volumes 41.2, pp. 6909–6913 (see page 199).

Gomaa, M., M. D. Powell, and T. N. Vijaykumar (2004). “Heat-and-run: Leverag-
ing SMT andCMP toManage Power Density Through the Operating System”.
In: Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XI. Boston, MA, USA:
ACM, pp. 260–270 (see pages 27, 35).

276

Bibliography

Gong, Z., X. Gu, and J. Wilkes (2010). “Press: Predictive elastic resource scal-
ing for cloud systems”. In: Network and Service Management (CNSM), 2010
International Conference on. IEEE, pp. 9–16 (see pages 29, 31).

Groenda, H. and C. Stier (2015). “Improving IaaS Cloud Analyses by Black-Box
Resource Demand Modeling”. In: Softwaretechnik-Trends 35.3. in print (see
pages 9, 70, 75).

Groenda, H. et al. (2017). CACTOS toolkit version 2: accompanying document for
prototype deliverable D5. 2.2 (see page 199).

Gurumurthi, S., A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, and M.
Kandemir (2002). “Using complete machine simulation for software power
estimation: the SoftWatt approach”. In: Proceedings Eighth International Sym-
posium on High Performance Computer Architecture, pp. 141–150 (see pages 37,
38).

Gustafson, J. and Q. Snell (1995). “HINT: A new way to measure computer
performance”. In: System Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii
International Conference on. Vol. 2, 392–401 vol.2 (see page 18).

Halili, E. H. (2008). Apache JMeter: A Practical Beginner’s Guide to Automated
Testing and performance measurement for your websites. Packt Publishing Ltd
(see page 59).

Happe, J., H. Koziolek, and R. Reussner (2011). “Facilitating performance pre-
dictions using software components”. In: IEEE Software 28.3, pp. 27–33 (see
pages 31, 85).

Happe, L., B. Buhnova, and R. Reussner (2014). “Stateful Component-based Per-
formance Models”. In: Softw. Syst. Model. 13.4, pp. 1319–1343 (see page 203).

Henderson, D., S. H. Jacobson, and A.W. Johnson (2003). The Theory and Practice
of Simulated Annealing. Ed. by F. Glover and G. A. Kochenberger. Boston, MA:
Springer US, pp. 287–319 (see page 81).

Henning, J. L. (2000). “SPEC CPU2000: Measuring CPU Performance in the
New Millennium”. In: Computer 33.7, pp. 28–35 (see pages 18, 21, 27, 28).

Heo, S., K. Barr, and K. Asanovic (2003). “Reducing power density through
activity migration”. In: Low Power Electronics and Design, 2003. ISLPED ’03.
Proceedings of the 2003 International Symposium on, pp. 217–222 (see pages 27,
35).

Herbst, N. (2018). “Methods and Benchmarks for Auto-Scaling Mechanisms in
Elastic Cloud Environments”. PhD thesis. University of Würzburg, Germany
(see pages 60, 61).

Herbst, N. R., S. Kounev, A. Weber, and H. Groenda (2015). “BUNGEE: An Elas-
ticity Benchmark for Self-adaptive IaaS Cloud Environments”. In: Proceedings
of the 10th International Symposium on Software Engineering for Adaptive and

277

Bibliography

Self-Managing Systems. SEAMS ’15. Florence, Italy: IEEE Press, pp. 46–56 (see
pages 9, 70, 75).

Herbst, N. and more (2016). “Ready for Rain? A View from SPEC Research on
the Future of Cloud Metrics”. In: CoRR abs/1604.03470 (see page 207).

Hoorn, A. van, M. Rohr, and W. Hasselbring (2008). “Generating Probabilistic
and Intensity-Varying Workload for Web-Based Software Systems”. In: Pro-
ceedings of the SPEC international workshop on Performance Evaluation: Metrics,
Models and Benchmarks. SIPEW ’08. Darmstadt, Germany: Springer-Verlag,
pp. 124–143 (see page 34).

Hoorn, A. van, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and D.
Kieselhorst (2009). Continuous Monitoring of Software Services: Design and
Application of the Kieker Framework. Forschungsbericht. Kiel University (see
pages 89, 93).

Hoorn, A. van, J. Waller, and W. Hasselbring (2012). “Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis”. In:
Proceedings of the 3rd joint ACM/SPEC International Conference on Performance
Engineering (ICPE 2012). ACM, pp. 247–248 (see pages 89, 93).

Hoschek, J. and D. Lasser (1993). Fundamentals of Computer Aided Geometric
Design. Natick, MA, USA: A. K. Peters, Ltd. (see page 99).

Hsu, C.-H. and S. W. Poole (2015). “Measuring Server Energy Proportionality”.
In: Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering. ICPE ’15. Austin, Texas, USA: ACM, pp. 235–240 (see pages 4,
33).

Huang, C. X., B. Zhang, A.-C. Deng, and B. Swirski (1995). “The Design and
Implementation of PowerMill”. In: Proceedings of the 1995 International Sympo-
sium on Low Power Design. ISLPED ’95. Dana Point, California, USA: ACM,
pp. 105–110 (see page 27).

Huber, N., F. Brosig, S. Spinner, S. Kounev, and M. Bähr (2017). “Model-Based
Self-Aware Performance and Resource Management Using the Descartes
Modeling Language”. In: IEEE Transactions on Software Engineering (TSE) 43.5
(see pages 39, 124, 200, 204, 257, 258).

Huppler, K. (2009). “The Art of Building a Good Benchmark”. In: Performance
Evaluation and Benchmarking. Ed. by R. Nambiar and M. Poess. Vol. 5895.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 18–30
(see pages 18, 19, 23).

Huppler, K. and D. Johnson (2014). “TPC Express - A New Path for TPC Bench-
marks”. English. In: Performance Characterization and Benchmarking. Ed. by
R. Nambiar and M. Poess. Vol. 8391. Lecture Notes in Computer Science.
Springer International Publishing, pp. 48–60 (see page 17).

278

Bibliography

IBM (2015). ACME Air. https://github.com/acmeair/acmeair. Accessed:
19.10.2017 (see pages 29, 32).

Ilyushkin, A., A. Ali-Eldin, N. Herbst, A. Bauer, A. V. Papadopoulos, D. Epema,
andA. Iosup (2018). “AnExperimental Performance Evaluation ofAutoscalers
for Complex Workflows”. In: ACM Transactions on Modeling and Performance
Evaluation of Computing Systems (ToMPECS) 3.2, 8:1–8:32 (see page 206).

Ilyushkin, A., A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit, D. Epema,
and A. Iosup (2017). “An Experimental Performance Evaluation of Autoscal-
ing Policies for Complex Workflows”. In: Proceedings of the 8th ACM/SPEC
International Conference on Performance Engineering (ICPE 2017). Best Paper
Candidate (1/4). l’Aquila, Italy: ACM (see page 85).

Intel® 64 and IA-32 Architectures Software Developer’s Manual (2016). Intel Corpo-
ration (see page 24).

Isci, C. and M. Martonosi (2003). “Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data”. In: Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO 36.
Washington, DC, USA: IEEE Computer Society, pp. 93– (see page 36).

Jin, Y., Y. Wen, and Q. Chen (2012). “Energy Efficiency and Server Virtualization
in Data Centers: An Empirical Investigation”. In: 2012 IEEE Conference on
Computer Communications Workshops, pp. 133–138 (see page 26).

Jung, G., M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu (2010). “Mistral:
Dynamically Managing Power, Performance, and Adaptation Cost in Cloud
Infrastructures”. In: Distributed Computing Systems (ICDCS), 2010 IEEE 30th
International Conference on, pp. 62–73 (see page 39).

Kadayif, I., T.Chinoda, M. Kandemir, N. Vijaykrishnan, M. Irwin, and A. Siva-
subramaniam (2001). “vEC: Virtual Energy Counters”. In: PASTE’01, pp. 28–
31 (see page 36).

Kahng, A. B., B. Li, L. S. Peh, and K. Samadi (2009). “ORION 2.0: A fast and
accurateNoCpower and areamodel for early-stage design space exploration”.
In: 2009 Design, Automation Test in Europe Conference Exhibition, pp. 423–428
(see pages 4, 38, 114).

Kansal, A., F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya (2010). “Virtual
Machine Power Metering and Provisioning”. In: Proceedings of the 1st ACM
Symposium on Cloud Computing. SoCC ’10. Indianapolis, Indiana, USA: ACM,
pp. 39–50 (see page 37).

Koziolek, A., D. Ardagna, and R. Mirandola (2013). “Hybrid Multi-Attribute
QoS Optimization in Component Based Software Systems”. In: Journal of
Systems and Software 86.10, pp. 2542–2558 (see page 204).

279

https://github.com/acmeair/acmeair

Bibliography

Krogmann, K., M. Kuperberg, and R. Reussner (2010). “Using genetic search
for reverse engineering of parametric behavior models for performance pre-
diction”. In: IEEE Transactions on Software Engineering 36.6, pp. 865–877 (see
page 205).

Kuhn, M., S. Weston, C. Keefer, and N. Coulter (2012). Cubist Models For Regres-
sion. http://cran.r-project.org/web/packages/Cubist/vignettes/cubist.pdf,
Last accessed: Oct 2014 (see page 34).

Kusic, D., J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang (2008). “Power
and Performance Management of Virtualized Computing Environments Via
Lookahead Control”. In: Autonomic Computing, 2008. ICAC ’08. International
Conference on, pp. 3–12 (see page 35).

Lange, K.-D. (2009). “Identifying Shades of Green: The SPECpower Bench-
marks”. In: Computer 42.3, pp. 95–97 (see pages 3, 28, 32, 33, 44, 45, 50, 54).

Lange, K.-D., J. A. Arnold, H. Block, N. Totura, J. Beckett, and M. G. Tricker
(2013). “Further Implementation Aspects of the Server Efficiency Rating
Tool (SERT)”. In: Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering. ICPE ’13. Prague, Czech Republic: ACM, pp. 349–360
(see page 215).

Lange, K.-D. and M. G. Tricker (2011). “The Design and Development of the
Server Efficiency Rating Tool (SERT)”. In: Proceedings of the 2nd ACM/SPEC
International Conference on Performance Engineering. ICPE ’11. Karlsruhe, Ger-
many: ACM, pp. 145–150 (see pages 1, 78).

Lange, K.-D., M. G. Tricker, J. A. Arnold, H. Block, and C. Koopmann (2012).
“The Implementation of the Server Efficiency Rating Tool”. In: Proceedings of
the 3rd ACM/SPEC International Conference on Performance Engineering. ICPE
’12. Boston, Massachusetts, USA: ACM, pp. 133–144 (see page 215).

Lee, B. C. andD.M. Brooks (2006). “Accurate and Efficient RegressionModeling
for Microarchitectural Performance and Power Prediction”. In: SIGPLAN Not.
41.11, pp. 185–194 (see pages 37, 98).

Lee, I. andR.K. Iyer (1995). “Software dependability in the TandemGUARDIAN
system”. In: IEEE Transactions on Software Engineering 21.5, pp. 455–467 (see
page 85).

Lefèvre, L. and A.-C. Orgerie (2010). “Designing and Evaluating an Energy
Efficient Cloud”. In: J. Supercomput. 51.3, pp. 352–373 (see page 26).

Lehrig, S., R. Sanders, G. Brataas,M. Cecowski, S. Ivanšek, and J. Polutnik (2018).
“CloudStore—towards scalability, elasticity, and efficiency benchmarking
and analysis in Cloud computing”. In: Future Generation Computer Systems 78,
pp. 115–126 (see page 31).

280

Bibliography

Lemire, D. and A. Maclachlan (2005). “Slope one predictors for online rating-
based collaborative filtering”. In: Proceedings of the 2005 SIAM International
Conference on Data Mining. SIAM, pp. 471–475 (see page 92).

Leng, J., T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and
V. J. Reddi (2013). “GPUWattch: Enabling Energy Optimizations in GPGPUs”.
In: SIGARCH Comput. Archit. News 41.3, pp. 487–498 (see page 258).

Lewis, A., S. Ghosh, and N.-F. Tzeng (2008). “Run-time Energy Consumption
Estimation Based on Workload in Server Systems”. In: Proceedings of the 2008
Conference on Power Aware Computing and Systems. HotPower’08. San Diego,
California: USENIX Association (see pages 36, 37, 98).

Li, H. (2010). “Realistic Workload Modeling and Its Performance Impacts in
Large-Scale eScience Grids”. In: Parallel and Distributed Systems, IEEE Transac-
tions on 21.4, pp. 480–493 (see page 34).

Littlewood, B. and L. Strigini (1995). “Validation of ultra-high dependability
for software-based systems”. In: Predictably Dependable Computing Systems.
Springer, pp. 473–493 (see page 85).

Lochmann, A., F. Bruckner, and O. Spinczyk (2017). “Reproducible Load Tests
for Android Systems with Trace-based Benchmarks”. In: Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering Companion.
ICPE ’17 Companion. L’Aquila, Italy: ACM, pp. 73–76 (see page 28).

Magaki, I., M. Khazraee, L. V. Gutierrez, and M. B. Taylor (2016). “ASIC Clouds:
Specializing the Datacenter”. In: 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pp. 178–190 (see page 258).

Mauser, I., M. Dorscheid, and H. Schmeck (2014). “Run-Time Parameter Selec-
tion and Tuning for Energy Optimization Algorithms”. In: Parallel Problem
Solving from Nature – PPSN XIII. Ed. by T. Bartz-Beielstein, J. Branke, B. Fil-
ipič, and J. Smith. Cham: Springer International Publishing, pp. 80–89 (see
page 39).

Mauser, I., J. Müller, and H. Schmeck (2017). “Utilizing Flexibility of Hybrid
Appliances in Local Multi-modal Energy Management”. In: Proceedings of
the 9th International Conference EEDAL’2017 - Energy Efficiency in Domestic
Appliances and Lighting. JRC Conference and Workshop Report. Publications
Office of the European Union, pp. 1282–1297 (see page 39).

Menascé, D. A., V. A. F. Almeida, R. Riedi, F. Ribeiro, R. Fonseca, and W. Meira
Jr. (2003). “A hierarchical and multiscale approach to analyze E-business
workloads”. In: Perform. Eval. 54.1, pp. 33–57 (see page 34).

Metri, G., S. Srinivasaraghavan, W. Shi, and M. Brockmeyer (2012). “Experi-
mental Analysis of Application Specific Energy Efficiency of Data Centers

281

Bibliography

with Heterogeneous Servers”. In: Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pp. 786–793 (see pages 3, 32, 54).

Nagasaka, H., N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka (2010).
“Statistical power modeling of GPU kernels using performance counters”. In:
Green Computing Conference, 2010 International, pp. 115–122 (see page 98).

Nathuji, R. and K. Schwan (2007). “VirtualPower: Coordinated Power Man-
agement in Virtualized Enterprise Systems”. In: Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles. SOSP ’07. Stevenson,
Washington, USA: ACM, pp. 265–278 (see page 26).

.NET Foundation (2017). MusicStore (test application). https://github.com/
aspnet/MusicStore. Accessed: 18.10.2017 (see pages 29, 32).

Niu, D., Y. Wang, and D. D. Wu (2010). “Power load forecasting using sup-
port vector machine and ant colony optimization”. In: Expert Systems with
Applications 37.3, pp. 2531–2539 (see page 37).

Noorshams, Q., D. Bruhn, S. Kounev, and R. Reussner (2013). “Predictive Perfor-
mance Modeling of Virtualized Storage Systems using Optimized Statistical
Regression Techniques”. In: Proceedings of the ACM/SPEC International Confer-
ence on Performance Engineering (ICPE 2013). ICPE’13. Prague, Czech Republic:
ACM, pp. 283–294 (see page 121).

Okanović, D., A. van Hoorn, C. Heger, A. Wert, and S. Siegl (2016). “Towards
Performance Tooling Interoperability: An Open Format for Representing
Execution Traces”. In: Proceedings of the 13th European Workshop on Performance
Engineering (EPEW ’16). Springer (see page 93).

Oracle and S. Microsystems (2005). JPetStore 2.0. http://www.oracle.com/
technetwork/java/index-136650.html. Accessed: 17.10.2017 (see page 32).

Papadopoulos, A. V., A. Ali-Eldin, K.-E. en, J. Tordsson, and E. Elmroth (2016).
“PEAS: A Performance Evaluation Framework for Auto-Scaling Strategies in
Cloud Applications”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 1.4,
15:1–15:31 (see page 204).

Pinheiro, E., R. Bianchini, E. V. Carrera, and T. Heath (2001). Load Balancing and
Unbalancing for Power and Performance in Cluster-Based Systems (see pages 35,
71).

Podzimek,A., L. Bulej, L. Y. Chen,W. Binder, and P. Tůma (2015). “Analyzing the
Impact of CPU Pinning and Partial CPU Loads on Performance and Energy
Efficiency”. In: Proceedings of the 15th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. CCGRID 2015. Accepted for publication.
Shenzhen, Guangdong, China (see page 27).

Poess, M., R. O. Nambiar, K. Vaid, J. M. Stephens Jr, K. Huppler, and E. Haines
(2010). “Energy benchmarks: a detailed analysis”. In: Proceedings of the 1st

282

https://github.com/aspnet/MusicStore
https://github.com/aspnet/MusicStore
http://www.oracle.com/technetwork/java/index-136650.html
http://www.oracle.com/technetwork/java/index-136650.html

Bibliography

International Conference on Energy-Efficient Computing and Networking. ACM,
pp. 131–140 (see pages 3, 28, 32, 44, 54).

Quan, D. et al. (2012). “Energy Efficient Resource Allocation Strategy for Cloud
Data Centres”. English. In: Computer and Information Sciences II. Ed. by E. Ge-
lenbe, R. Lent, and G. Sakellari. Springer London, pp. 133–141 (see page 35).

Quinlan, J. R. et al. (1992). “Learning with continuous classes”. In: Proceedings
of the 5th Australian joint Conference on Artificial Intelligence. Vol. 92. Singapore,
pp. 343–348 (see page 34).

Raghavendra, R., P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu (2008). “No
"Power" Struggles: Coordinated Multi-level Power Management for the Data
Center”. In: Proceedings of the 13th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS XIII. Seattle,
WA, USA: ACM, pp. 48–59 (see pages 35, 71).

Rausch, A., R. Reussner, R. Mirandola, and F. Plasil (2008). “The Common
Component Modeling Example”. In: Lecture notes in computer science 5153
(see page 31).

Reyes-Lecuona, A., E. González-Parada, E. Casilari, J. Casasola, and A. Diaz-
Estrella (1999). “A page-oriented WWW traffic model for wireless system
simulations”. In: Proceedings ITC. Vol. 16, pp. 1271–1280 (see page 34).

Rivoire, S.,M. Shah, P. Ranganathan, C. Kozyrakis, and J.Meza (2007a). “Models
and Metrics to Enable Energy-Efficiency Optimizations”. In: Computer 40.12,
pp. 39–48 (see page 32).

Rivoire, S., P. Ranganathan, and C. Kozyrakis (2008). “A Comparison of High-
level Full-system Power Models”. In: Proceedings of the 2008 Conference on
Power Aware Computing and Systems. HotPower’08. San Diego, California:
USENIX Association, pp. 3–3 (see pages 4, 37, 39, 124, 132, 216).

Rivoire, S., M. A. Shah, P. Ranganathan, and C. Kozyrakis (2007b). “JouleSort:
A Balanced Energy-efficiency Benchmark”. In: Proceedings of the 2007 ACM
SIGMOD International Conference onManagement of Data. SIGMOD ’07. Beijing,
China: ACM, pp. 365–376 (see pages 3, 28, 32, 44, 54).

Roy, S., T. Begin, and P. Goncalves (2013). “A complete framework for modelling
and generating workload volatility of a VoD system”. In: Wireless Commu-
nications and Mobile Computing Conference (IWCMC), 2013 9th International,
pp. 1168–1174 (see page 34).

RUBiS User’s Manual (2008) (see pages 30, 31, 85, 240).
Russell, J. and M. Jacome (1998). “Software power estimation and optimization
for high performance, 32-bit embedded processors”. In: Computer Design:
VLSI in Computers and Processors, 1998. ICCD ’98. Proceedings. Pp. 328–333
(see page 27).

283

Bibliography

Rygielski, P., M. Seliuchenko, and S. Kounev (2016). “Modeling and Prediction
of Software-Defined Networks Performance using Queueing Petri Nets”. In:
Proceedings of the Ninth International Conference on Simulation Tools and Tech-
niques (SIMUTools 2016). Prague, Czech Republic, pp. 66–75 (see page 204).

Schall, D., V. Hoefner, and M. Kern (2012). “Towards an Enhanced Benchmark
Advocating Energy-Efficient Systems”. In: Topics in Performance Evaluation,
Measurement and Characterization. Ed. by R. Nambiar and M. Poess. Vol. 7144.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 31–45
(see pages 4, 33).

Schönherr, J. H., J. Richling, M. Werner, and G. Mühl (2010). “Event-driven Pro-
cessor Power Management”. In: Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking. e-Energy ’10. Passau, Germany:
ACM, pp. 61–70 (see page 27).

Schroeder, B., A. Wierman, and M. Harchol-Balter (2006). “Open versus closed:
a cautionary tale”. In: Proceedings of the 3rd conference on Networked Systems De-
sign & Implementation - Volume 3. NSDI’06. San Jose, CA: USENIX Association,
pp. 18–18 (see pages 14, 198).

Shen, X., F. Mohd-Zaid, and R. Francis (2012). “Runge Phenomenon: A virtual
artifact in image processing”. In: Proceedings of the 2012 International Conference
on Image Processing, Computer Vision, and Pattern Recognition. Las Vegas, USA
(see page 100).

Shepard, D. (1968). “A Two-dimensional Interpolation Function for Irregularly-
spaced Data”. In: Proceedings of the 1968 23rd ACM National Conference. ACM
’68. New York, NY, USA: ACM, pp. 517–524 (see page 99).

Sim, S. E., S. Easterbrook, and R. C. Holt (2003). “Using Benchmarking to
Advance Research: A Challenge to Software Engineering”. In: Proceedings of
the 25th International Conference on Software Engineering. ICSE ’03. Portland,
Oregon: IEEE Computer Society, pp. 74–83 (see page 18).

Singh, K., M. Bhadauria, and S. A. McKee (2009). “Real Time Power Estima-
tion and Thread Scheduling via Performance Counters”. In: ACM SIGARCH
Computer Architecture News 37, pp. 46–55 (see page 36).

Sitaraman, M., G. Kulczycki, J. Krone, W. F. Ogden, and A. L. N. Reddy (2001).
“Performance Specification of Software Components”. In: SIGSOFT Softw.
Eng. Notes 26.3, pp. 3–10 (see page 199).

Skadron, K., M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and V. S. Pai
(2003). “Challenges in Computer Architecture Evaluation”. In: Computer 36.8,
pp. 30–36 (see pages 18, 19).

Software, P. (2016). Spring PetClinic. https://github.com/spring-projects/
spring-petclinic. Accessed: 19.10.2017 (see page 32).

284

https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic

Bibliography

Spinner, S., G. Casale, F. Brosig, and S. Kounev (2015). “Evaluating Approaches
to Resource Demand Estimation”. In: Performance Evaluation 92, pp. 51–71
(see page 201).

Spinner, S., G. Casale, X. Zhu, and S. Kounev (2014). “LibReDE: A Library
for Resource Demand Estimation”. (Demo Paper). In: Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering (ICPE 2014).
Dublin, Ireland: ACM Press, pp. 227–228 (see page 93).

Srikantaiah, S., A. Kansal, and F. Zhao (2008). “Energy Aware Consolidation for
Cloud Computing”. In: Proceedings of the 2008 Conference on Power Aware Com-
puting and Systems. HotPower’08. San Diego, California: USENIX Association,
pp. 10–10 (see page 26).

Standard Performance Evaluation Corporation (2018). SPEC fair use rule. http:
//www.spec.org/fairuse.html. Gainsville, VA, USA (see pages 10, 22).

Standard Performance Evaluation Corporation (SPEC) (2010). SPEC jEnterprise
2010 Design Document. https://www.spec.org/jEnterprise2010/docs/
DesignDocumentation.html. Accessed: 16.10.2017 (see pages 29, 31).

Stefani, F., A. Moschitta, D. Macii, and D. Petri (2003). “FFT benchmarking for
digital signal processing technologies”. In: 17th IMEKO World Congress (see
page 18).

Stier, C., A. Koziolek, H. Groenda, and R. Reussner (2015). “Model-Based En-
ergy Efficiency Analysis of Software Architectures”. In: Proceedings of the
9th European Conference on Software Architecture (ECSA ’15). Lecture Notes in
Computer Science. Dubrovnik/Cavtat, Croatia: Springer (see pages 4, 38,
39).

Tian, Y., C. Lin, and M. Yao (2012). “Modeling and analyzing power manage-
ment policies in server farms using Stochastic Petri Nets”. In: Future Energy
Systems: Where Energy, Computing and Communication Meet (e-Energy), 2012
Third International Conference on, pp. 1–9 (see page 39).

Tu, J., L. Lu, M. Chen, and R. Sitaraman (2013). “Dynamic provisioning in next-
generation data centers with on-site power production”. In: (see page 98).

Urgaonkar, R., U. Kozat, K. Igarashi, and M. Neely (2010). “Dynamic resource
allocation and power management in virtualized data centers”. In: Network
Operations and Management Symposium (NOMS), 2010 IEEE, pp. 479–486 (see
pages 4, 39).

Vaughan, A. (2015). “How viral cat videos are warming the planet”. In: London,
United Kingdom (see page 1).

Verbesselt, J., R. Hyndman, G. Newnham, and D. Culvenor (2010). “Detecting
trend and seasonal changes in satellite image time series”. In: Remote Sensing
of Environment 114.1, pp. 106–115 (see pages 15, 61, 63, 65, 158, 160).

285

http://www.spec.org/fairuse.html
http://www.spec.org/fairuse.html
https://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html
https://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html

Bibliography

Verma, A., P. Ahuja, and A. Neogi (2008a). “pMapper: Power and Migration
Cost Aware Application Placement in Virtualized Systems”. In: Middleware
2008. Ed. by V. Issarny and R. Schantz. Vol. 5346. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 243–264 (see pages 35, 38, 71, 98).

– (2008b). “Power-aware Dynamic Placement of HPC Applications”. In: Pro-
ceedings of the 22nd Annual International Conference on Supercomputing. Island
of Kos, Greece: ACM (see page 38).

Vieira, M., H. Madeira, K. Sachs, and S. Kounev (2012). “Resilience Benchmark-
ing”. In: Resilience Assessment and Evaluation of Computing Systems. Ed. by
K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel. XVIII. ISBN: 978-3-642-
29031-2. Berlin, Heidelberg: Springer-Verlag (see page 16).

Walter, J., A. D. Marco, S. Spinner, P. Inverardi, and S. Kounev (2017a). “Online
Learning of Run-time Models for Performance and Resource Management
in Data Centers”. In: Self-Aware Computing Systems. Ed. by S. Kounev, J. O.
Kephart, A. Milenkoski, and X. Zhu. Berlin Heidelberg, Germany: Springer
Verlag (see page 205).

Walter, J., C. Stier, H. Koziolek, and S. Kounev (2017b). “An Expandable Extrac-
tion Framework for Architectural Performance Models”. In: Proceedings of the
3rd International Workshop on Quality-Aware DevOps (QUDOS’17). l’Aquila,
Italy: ACM (see page 205).

Wang, C., Q. Yu, L. Gong, X. Li, Y. Xie, and X. Zhou (2016). “DLAU: A Scalable
Deep Learning Accelerator Unit on FPGA”. In: CoRR abs/1605.06894. arXiv:
1605.06894 (see page 258).

Weaver, V. M. (2015). “Self-monitoring Overhead of the Linux perf_event Perfor-
mance Counter Interface”. In: ISPASS 2015. IEEE, pp. 102–111 (see page 37).

Weaver, V. M., D. Terpstra, and S. Moore (2013). “Non-Determinism and Over-
count on Modern Hardware Performance Counter Implementations”. In:
Performance Analysis of Systems and Software, 2013. ISPASS 2013. IEEE Interna-
tional Symposium on (see pages 24, 36).

Weaveworks Inc. (2017). Sock Shop: A Microservice Demo Application. https:
/ / github . com / microservices - demo / microservices - demo. Accessed:
19.10.2017 (see pages 29, 32, 85).

Welch, T. (1984). “A Technique for High-Performance Data Compression”. In:
Computer 17.6, pp. 8–19 (see page 47).

Willhalm, T., R. Dementiev, and P. Fay (2012). Intel® Performance Counter Moni-
tor - A better way to measure CPU utilization. https://software.intel.com/en-
us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-
utilization (see pages 142, 154, 242, 249).

286

http://arxiv.org/abs/1605.06894
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo

Bibliography

Willnecker, F., A. Brunnert, W. Gottesheim, and H. Krcmar (2015a). “Using
dynatrace monitoring data for generating performance models of java ee
applications”. In: Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering. ACM, pp. 103–104 (see page 205).

Willnecker, F., M. Dlugi, A. Brunnert, S. Spinner, S. Kounev, and H. Krcmar
(2015b). “Comparing the Accuracy of Resource Demand Measurement and
Estimation Techniques”. In: Computer Performance Engineering - Proceedings of
the 12th European Workshop (EPEW 2015). Ed. by M. Beltrán, W. Knottenbelt,
and J. Bradley. Vol. 9272. Lecture Notes in Computer Science. Madrid, Spain:
Springer, pp. 115–129 (see pages 31, 85).

Zakay, N. and D. G. Feitelson (2013). “Workload resampling for performance
evaluation of parallel job schedulers”. In: Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering. ICPE ’13. Prague, Czech
Republic: ACM, pp. 149–160 (see page 34).

Zaparanuks, D., M. Jovic, and M. Hauswirth (2009). “Accuracy of performance
counter measurements”. In: ISPASS 2009, pp. 23–32 (see page 36).

287

	Introduction
	Motivation
	Problem Statement
	State-of-the-Art
	Goals and Research Questions
	Contribution and Evaluation Summary
	Thesis Outline

	Foundations and Related Work
	Foundations
	Transactions and Server Performance Metrics
	Load Profiles
	Benchmarks
	Definition of Benchmark
	Types of Benchmarks

	Benchmark Quality Criteria
	Relevance
	Reproducibility
	Fairness
	Verifiability
	Usability
	Relevance of Benchmark Quality Criteria to this Work

	Performance Counters

	State-of-the-Art
	Experimental Studies on Server and CPU Power Consumption
	Experimental studies of server power management
	Experimental studies of CPU power management

	Benchmarks, Test Applications, and Metrics
	Energy Efficiency Benchmarks
	Distributed Software Workloads and Test Applications
	Energy Efficiency Metrics

	Load Profiles, Load Distribution, and CPU Performance Counters
	Load Profiles
	Load Distribution
	CPU Performance Counters

	Offline Power Prediction
	Online Power Prediction

	Measuring and Rating the Energy Efficiency of Servers
	Methodology for Server Efficiency Rating
	Introduction
	Server Power Rating Methodology
	Device and Software Setup
	Workload and Worklets
	Worklet Dispatch and Load Levels

	Energy-Efficiency Metrics
	Worklet Performance Metrics
	Efficiency Metrics

	Concluding Remarks

	Advanced Load Profiles for Energy Efficiency Measurement
	Load Profiles with Varying Load Intensity over Time
	Descartes Load Intensity Model
	High-level DLIM
	Model Instance Extraction

	Hierarchical Load Distribution
	Load Distribution of Worklets

	Concluding Remarks

	Advanced Workloads for Energy Efficiency Measurement
	Performance Event Trigger Framework
	General PET Approach
	Performance Counter Relevance to Power
	Event Trigger Implementation

	TeaStore: A Micro-Service Reference Application
	TeaStore Description
	Architecture
	Services

	Concluding Remarks

	Modeling the Energy Efficiency of Servers
	Interpolating Power Consumption
	Introduction
	Interpolation Functions
	Determining Interpolation Accuracy
	Interpolation Selection and Configuration
	Interpolation Function Configuration
	Break Detection for Polynomial Interpolation

	Concluding Remarks

	Offline Prediction of Power Consumption
	Offline Power Prediction for Virtualized Environments
	Measuring Power Consumption and Energy Efficiency
	Prediction Approach

	Offline Power Prediction for Target Applications
	Challenges when using SERT for Offline Power Prediction

	Offline Power Prediction
	Regressor and Response Variables
	Prediction Formalisms under Consideration
	Interpolating Measurement Results
	Self-Prediction Accuracy
	Parameter Modeling and Optimization

	Concluding Remarks

	Online Prediction of Power Consumption
	Introduction
	Power Prediction Model
	Workload Deployment Power Prediction
	Single Server Power Prediction
	Concluding Remarks

	Validation and Conclusions
	Quality of the Server Efficiency Rating Methodology
	Reproducibility
	Run-to-Run Efficiency and Power Variations
	Intra-Run Power Variations

	Fairness
	Metric Changes for Basic Energy-Efficiency Properties
	Metric Score Correlations

	Relevance
	Deriving Weights
	Ranking Servers for the DVDStore

	Summary

	Evaluation of Load Profiles and Placements
	Evaluation of DLIM Load Profile Extraction
	Internet Traffic Archive and BibSonomy Traces
	Wikipedia Traces

	Energy Efficiency of Hierarchical Load Distribution
	Energy Efficiency for Homogeneous Workloads
	Energy Efficiency for Heterogeneous Workloads

	Summary

	Accuracy and Applicability of Workloads for Energy Efficiency Measurement
	Power-Profile emulation using Performance Event Triggers
	Accuracy of Performance Event Triggers
	Side Effects of Event Triggers
	PET

	Use-Cases for the TeaStore Reference and Test Application
	Performance Modeling
	Auto-Scaling
	Energy-Efficiency Analysis

	Summary

	Accuracy of Power Interpolation
	Models for Comparison
	Comparison of Interpolation Methods
	Interpolation using Reference Dataset
	Interpolation using Cross-Validation
	Summary

	Evaluation of Offline Power Prediction
	Evaluation of Power Prediction for Virtualized Environments
	Prediction without Sub-Models
	Self-Prediction Error and Actual Prediction Error
	Prediction with Sub-Models

	Evaluation Offline Power Prediction for Target Applications
	Measuring Target Application Power and Performance
	Unoptimized Power Prediction
	Predicting Power using Interpolation and Optimization
	Parameter Optimization and no Interpolation
	Interpolation with Baseline Parameters
	Prediction Accuracy depending on Interpolation Method

	Summary

	Applying Online Power Prediction using Real-World Workloads
	Methodology
	Experiment Setup
	Test Applications
	Load Generation
	Measurement Methodology
	Metrics

	Power Saving Potential
	Workload Deployment Power Prediction
	Number of Training Vectors and Prediction Accuracy
	Predicting Previously Unobserved Deployments
	Power Prediction for Previously Unobserved Throughput Levels
	Evaluation Results for RUBiS

	Single Server Power Prediction
	Combined Models Prediction Accuracy
	Predicting Power for Containers
	Summary

	Conclusions
	Summary
	Benefits
	Future Work

	Bibliography

