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Abstract	
	

I	
	

ABSTRACT	 	

A	 major	 therapeutic	 challenge	 is	 the	 increasing	 incidence	 of	 chronic	 disorders.	

The	persistent	 impairment	 or	 loss	 of	 tissue	 function	 requires	 constitutive	 on‐demand	

drug	availability	optimally	achieved	by	a	drug	delivery	system	ideally	directly	connected	

to	the	blood	circulation	of	the	patient.	However,	despite	the	efforts	and	achievements	in	

cell‐based	 therapies	 and	 the	 generation	 of	 complex	 and	 customized	 cell‐specific	

microenvironments,	the	generation	of	functional	tissue	is	still	unaccomplished.		

This	study	demonstrates	the	capability	to	generate	a	vascularized	platform	technology	to	

potentially	overcome	the	supply	restraints	for	graft	development	and	clinical	application	

with	immediate	anastomosis	to	the	blood	circulation.		

The	ability	 to	decellularize	segments	of	 the	rat	 intestine	while	preserving	 the	ECM	for	

subsequent	 reendothelialization	 was	 proven.	 The	 reestablishment	 of	 a	 functional	

arteriovenous	perfusion	circuit	enabled	the	supply	of	co‐cultured	cells	capable	to	replace	

the	 function	 of	 damaged	 tissue	 or	 to	 serve	 as	 a	 drug	 delivery	 system.	 During	 in	 vitro	

studies,	 the	applicability	of	 the	developed	miniaturized	biological	vascularized	scaffold	

(mBioVaSc‐TERM®)	was	demonstrated.	While	indicating	promising	results	in	short	term	

in	vivo	studies,	long	term	implantations	revealed	current	limitations	for	the	translation	

into	clinical	application.	The	gained	insights	will	impact	further	improvements	of	quality	

and	performance	of	this	promising	platform	technology	for	future	regenerative	therapies.		
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ZUSAMMENFASSUNG	

Eine	kontinuierlich	steigende	Inzidenz	chronischer	Krankheiten	stellt	eine	immer	größer	

werdende	 therapeutische	 Herausforderung	 dar.	 Der	 anhaltende	 Funktionsverlust	 von	

Geweben	 erfordert	 die	 bedarfsgerechte	 Verfügbarkeit	 von	 Wirkstoffen,	 deren	

kontinuierliche	 Bereitstellung	 und	 Verteilung	 über	 die	 Blutzirkulation	 von	

implantierbaren	 Pharmakotherapie‐Produkten	 gelöst	 werden	 kann.	 Trotz	 der	

Fortschritte	 und	 Erfolge	 mit	 Zelltherapien	 sowie	 der	 Nachbildung	 der	 Zell‐eigenen	

Nischen	 konnten	 bisher	 noch	 keine	 funktionellen	 Gewebe	 für	 die	 medizinische	

Anwendbarkeit	hergestellt	werden.		

Diese	 Studie	 zeigt	 die	 Möglichkeit	 zur	 Herstellung	 einer	 vaskularisierten	 Plattform‐

Technologie	 um	 die	 Beschränkung	 der	 Nährstoff‐Versorgung	 zu	 überwinden	 für	 die	

Entwicklung	 von	 Transplantaten	 für	 die	 klinische	 Anwendung	 und	 deren	 sofortige	

Anastomose	an	die	Blutzirkulation.		

Die	Möglichkeit	Rattendarmsegmente	zu	dezellularisieren,	die	Extrazellulärmatrix	und	

das	 interne	 Gefäßsystem	 dabei	 jedoch	 zu	 erhalten	 um	 diese	 Strukturen	

wiederzubesiedeln	 wurde	 bewiesen.	 Das	 Wiederherstellen	 des	 funktionellen	

arteriovenösen	 Perfusionskreislaufs	 ermöglichte	 die	 Versorgung	 von	 Ko‐kultivierten	

Zellen	um	damit	funktionalen	Gewebeersatz	bzw.	‐modelle	aufzubauen	oder	als	Medizin‐

Produkt	 Einsatz	 zu	 finden.	 In	 vitro‐Studien	 zeigten	 eindrucksvoll	 Reife	 und	

Anwendbarkeit	 des	 hier	 entwickelten	 miniaturisierten,	 biologischen,	 vaskularisierten	

Scaffold	 (mBioVaSc‐TERM®).	Während	 in	 in	 vivo‐Studien	 zunächst	 vielversprechende	

Ergebnisse	 erzielt	wurden,	 zeigten	 Langzeit	 Implantationen	die	 aktuellen	Grenzen	 zur	

Translation	 in	 die	 klinische	 Anwendung.	 Die	 gewonnenen	 Erkenntnisse	 werden	 dazu	

dienen	Qualität	und	Funktionalität	dieser	vielversprechenden	Plattform‐Technologie	zu	

verbessern	um	zukünftige	regenerative	Therapien	zu	ermöglichen.	
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1.	Introduction	
	

1	
	

1.	INTRODUCTION		

1.1	Tissue	homeostasis	–	maintaining	tissue	function	

The	extracellular	space,	mainly	consisting	of	water,	proteins,	and	polysaccharides,	depicts	

the	non‐cellular	component	of	tissues	and	organs1.	It	provides	not	only	framework	and	

thereby	the	architecture,	but	also	elicits	biochemical	and	biomechanical	effects	on	cells2.		

During	 organogenesis,	 tissue	 environment	 is	 highly	 fluctuating	 due	 to	 continuous	 and	

extensive	extracellular	matrix	(ECM)	deposition,	degradation,	and	structural	organization	

as	well	as	cellular	proliferation,	migration,	and	differentiation1.		

For	 tissue‐specific	 function,	 ECM‐architecture	 and	 cellular	 homeostasis	 are	 critical3.	

However,	tissue	homeostasis	is	hardly	static	but	a	dynamic	reciprocity	between	cells	and	

ECM.	 The	 bidirectional	 interactions	 result	 in	 continuous	 ECM	 remodeling	 eliciting	

mechanical	 forces	 and	 biochemical	 mediators	 bound	 to	 the	 matrix	 triggering	 cellular	

responses	affecting	cell‐signaling	and	ECM	architecture4	by	secretion	of	ECM	components	

or	ECM‐degrading	enzymes5.		

The	 main	 classes	 of	 ECM	 macromolecules	 are	 proteoglycans	 and	 fibrous	 proteins.	

Proteoglycans	 mainly	 constitute	 hydrated	 gels	 depicting	 functional	 properties	 in	

hydration	 and	 buffering	 of	 mechanical	 force6.	 The	 major	 fibrous	 ECM	 proteins	 are	

collagens,	 elastins,	 fibronectins	 and	 laminins,	 predominantly	 deposited	 by	 fibroblasts.	

Fibroblasts	are	primarily	responsible	for	ECM	remodeling:	both,	buildup	and	degradation.	

Secreted	matrix	metalloproteinases	counterbalance	ECM	protein	synthesis7.		

When	wounded	or	during	disease	the	tissue	homeostasis	between	ECM	degradation	and	

deposition	 as	 well	 as	 cellular	 proliferation,	 differentiation,	 and	 ECM	 remodeling	 is	

unbalanced8.	During	wound	repair	homeostasis	is	gradually	recovered.	Regeneration	is	

usually	 orchestrated	 by	 a	 sequence	 of	 cytokines	 recruiting	 cells	 for	matrix	 formation,	

immunocompetent	 cells,	 tissue‐specific	 cells	 repopulating	 the	 newly	 formed	 tissue,	 as	

well	as	neovascularization9.	If	this	process	is	impaired	scar	formation	replaces	functional	

tissue	 regeneration.	 However,	 the	 major	 therapeutic	 challenges	 are	 chronic	 wounds,	

increasing	in	incidence	due	the	prevalence	of	diabetes,	obesity	and	vascular	disorders	in	

an	aging	society9.	
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1.2	Therapeutic	strategies	to	restore	or	substitute	tissue	functionality		

For	 replacement	of	an	endocrine	 function,	 it	 is	not	necessarily	 required	 to	 restore	 the	

whole	organ	but	only	the	respective	cells	or	their	secretome.		

The	cellular	secretory	function	can	be	substituted	and/or	regeneration	can	be	stimulated	

by	drug	delivery.	 The	disadvantage	 of	 classical	 pharmacological	 treatment	 is	 that	 it	 is	

usually	manually	applied	and	has	to	be	strictly	surveyed	as,	in	contrast,	endocrine	cells	

have	an	intrinsic	feedback	mechanism	regulating	the	secretion10.		

Furthermore,	 technical	 devices	 for	 drug	 delivery	 get	 increasingly	 applied11.	 Typically	

equipped	with	a	sensor	to	measure	e.g.	blood	glucose	level	and	a	pumping	device	loaded	

with	the	respective	compounds.	These	devices	are	commonly	either	externally	attached	

to	 the	 patient	 with	 a	 needle	 penetrating	 the	 skin	 or	 implanted	 subcutaneously.	 The	

problem	 for	 the	 implanted	 device	 besides	 encapsulation	 is	 the	 repeated	 surgical	

intervention	 when	 reloading	 the	 compounds.	 The	 external	 devices	 bear	 the	 risk	 of	

infection	due	to	the	needle	permanently	piercing	the	skin.		

An	 alternative	 is	 the	 transplantation	 of	 the	 respective	 cells/organoids	 or	 organs.	

However,	 facing	 drawbacks	 as	 donor	 compatibility	 and	 availability	 as	 well	 as	

immunosuppression12	in	addition	to	the	need	for	a	suitable	implantation	site	to	ensure	

graft	 survival13.	 Moreover,	 after	 islet	 transplantation	 in	 type	 1	 diabetes	 patients,	 the	

success	rate	is	only	at	about	50	%	over	three	years14.		

To	circumvent	the	use	of	allo‐	or	xenografts,	gene	therapy	could	be	utilize	to	genetically	

manipulate	autologous	cells	to	secrete	the	respective	compounds.	Apart	from	regulatory	

and	safety	concerns15,	it	is	extremely	laborious	to	also	implement	the	respective	feedback	

mechanisms	 to	 ensure	 an	 intrinsic	 regulation	 for	 secretion.	 An	 alternative	 source	 for	

transplantable	 organs	 was	 promised	 by	 tissue	 engineering	 (TE)	 providing	 in	 vitro	

generated	autologous	grafts.	However,	the	generation	of	functional	full	thickness	organs	

is	still	not	achieved,	yet16.	

Currently	in	development	are	prevascularized	biological	drug	delivery	systems	intended	

to	circumvent	foreign	body	response	and	to	provide	an	optimized	microenvironment	for	

cellular	functionality,	direct	connection	to	the	blood	circulation,	as	well	as	a	protective	

barrier	around	the	implemented	cells17.	Preclinical	data	in	mice	describe	the	restoration	
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of	 glycemic	 homeostasis	 by	 implementation	 of	 human	 embryonic	 stem	 cell‐derived	

pancreatic	endoderm	cells	in	a	subcutaneously	established	prevascularized	pouch17.		

	

1.3	Tissue	Engineering	and	Regenerative	Medicine	

In	tissue	engineering	(TE)	and	regenerative	medicine	(RM),	therapeutic	approaches	are	

being	 developed	 to	 alleviate	 healthcare	 problems	 related	 to	 the	 diseases	 of	 cellular	

deficiency,	including	loss	of	tissue/organ	functionality.	Tissues	and	organs	are	damaged	

by	disease	(acute	and	chronic),	trauma,	or	congenital	defects.	The	aim	is	to	support	the	

innate	 healing	 capabilities	 to	 recover	 tissues	 or	 to	 replace	 them	by	 in	 vitro	 generated	

grafts	(Fig.	1).		

While	the	current	definitions	of	TE	and	RM	were	determined	in	the	late	twentieth	century,	

the	basic	principles	 and	 ideas	date	back	more	 than	10,000	years18	 ago.	 10,000	before	

Christ	(BC)	the	principles	of	RM	have	been	applied	using	linen,	gut,	or	heads	of	large	biting	

ants	 as	 synthetic,	 natural,	 and	 biological	materials,	 respectively,	 to	 enable	 or	 support	

wound	healing19.	The	first	known	transplantation	of	live	skin	grafts	was	conducted	by	an	

Indian	surgeon	Susruta20	around	2,500	BC.	The	most	classical	example	of	RM	dates	back	

to	around	1,500	BC	guiding	regeneration	of	skin	wounds	with	cell‐supportive	scaffolds.	

Lint,	grease	and	honey	were	applied	onto	skin	wounds	providing	a	fibrous	scaffold	with	a	

barrier	against	pathogens	and	a	hypertonic	antibiotic	function,	respectively21.	The	first	

conveyed	description	of	in	vivo	regeneration	dates	back	to	about	700	years	BC	in	ancient	

Greek	mythology22.		
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Figure	1.	Concept	of	Tissue	Engineering.		
The	classical	concept	of	TE	describes	the	generation	of	 functional,	autologous	grafts	to	replace	
deficient	tissues.	To	produce	autologous	tissue	grafts	with	the	constituting	organ	functionality,	
the	relevant	cell	types	are	isolated	from	biopsies	and	expanded	in	vitro.	The	combination	of	cells	
with	scaffolds	enables	3D	organotypic	culture,	while	chemical	and	mechanical	stimuli	promote	
functional	maturation.	Finally,	the	ex	vivo	established	autologous	grafts	are	transplanted	into	the	
patient	to	restore	or	substitute	lost	tissue	and/or	function.	Alternatively,	the	grafts	are	utilized	as	
personalized	 test	 systems	 for	 drug	 screening	 or	 the	 evaluation	 of	 therapeutic	 strategies.	
Copyrighted	reprint23.		
	

	

1.3.1	Definition	of	Tissue	Engineering	

TE	aims	at	the	production	of	functional	tissue	substitutes	to	replace	deficient	tissues24,25	

and	thereby	restore	tissue	homeostasis.	Engineered	tissues	can	serve	as	model	for	further	

investigations	on	development,	homeostasis,	and	pathogenesis.	This	is	often	achieved	by	

a	combination	of	preferably	autologous	cells,	soluble	or	coupled	molecules26,	synthetic	or	

natural	scaffolds,	and	bioreactors27.	

	

1.3.2	Definition	of	Regenerative	Medicine		

The	main	focus	 in	RM	aims	on	the	stimulation	or	reactivation	of	 innate	developmental	

processes	 or	 the	 endogenous	 regenerative	 capacity	 initiating	 repair	 and	 regeneration	

until	 restoration	of	cellular/tissue	homeostasis	and	 functionality28,29.	A	combination	of	
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scaffolds	with	cellular	and	pharmacological	therapies	or	products	are	generated	ex	vivo	

but	applied	to	stimulate	the	in	vivo	healing	process18,30.		

	

1.3.3	Scaffolds	for	Tissue	Engineering	and	Regenerative	Medicine	

Critical‐size‐defects	 or	 loss	 of	 functions	of	 an	organ	 cannot	be	 compensated	naturally,	

thus,	for	reconstruction,	replacement	is	the	only	viable	treatment	option.	Approaches	in	

TE	combine	living	cells	and/or	growth	factors	with	materials	providing	an	appropriate	

microenvironment	 for	cells	 to	pursue	 their	native	 function.	Thereby,	 the	generation	of	

tissue	substitutes	providing	the	required	structures	and	components	enable	to	replace	or	

to	 stimulate	 the	 innate	 regenerative	 capabilities	 and	 restore	 the	 original	 tissue.	

Consequently,	when	generating	tissues	 in	vitro,	 it	 is	critical	 to	provide	an	environment	

mimicking	 cell‐specific	 cues,	 including	 physical	 properties	 and	 morphogens	 guiding	

cellular	behavior.	Dependent	on	the	tissue,	the	material	and	mechanical	properties	of	the	

scaffold	such	as	mechanical	rigidity	or	flexibility	can	vary	widely	serving	various	purposes	

either	by	retention,	presentation,	or	controlled	release	of	growth	factors;	or	by	enabling	

cell	attachment	and/or	facilitating	migration	as	well	as	guiding	cellular	differentiation31.	

Further	requirements	for	the	materials	utilized	as	implants	demand	to	be	biocompatible,	

non‐toxic,	 non‐immunogenic,	 non‐carcinogenic,	 nor	 dislocate	 or	 erode	 over	 time	 but	

integrate	into	the	adjacent	tissues32.		

Synthetic	 biomaterials	 used	 in	 TE	 are	 mainly	 polymers33,34,	 of	 which	 many	 have	

regulatory	approval	for	medical	application.	Manifold	other	materials	and	technologies,	

e.g.	 structured	 macroporous	 hydrogels35,	 electrospinning36,37,	 and	 bioprinting38,39	

emerged	within	the	last	years	to	generate	scaffolds	for	TERM.	During	chemical	synthesis,	

the	 material	 properties	 can	 be	 customized	 upon	 the	 aggregation	 state,	 injectability,	

transparency,	 topography,	porosity,	 and	resorption.	However,	 cellular	 toxicity	 is	 still	 a	

challenge	to	overcome	for	most	polymers.		

Natural	scaffolds	comprise	ECM	components	such	as	proteins	and	polysaccharides.	On	the	

one	hand,	they	exhibit	high	biocompatibility,	on	the	other	hand,	they	potentially	provoke	

immunogenicity	 upon	 implantation,	 especially	 in	 combination	 with	 allogenic	 or	

xenogenic	 cells	 or	 cellular	 remnants.	 Nevertheless,	 progress	 was	 made	 with	 skin40,	

cartilage41,	heart42,43	and	heart	valves44,45,	liver46,	and	lung46,47.		
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The	 most	 recently	 ascending	 natural	 scaffolds	 are	 decellularized	 tissue	 matrices.	

By	removing	 the	 tissue’s	 cells	 and	 remnants	 thereof,	 immunogenic	 reactions	 are	

avoided48	 while	 preservation	 of	 the	 natural	 ECM	 in	 structure,	 composition,	 and	

mechanical	 integrity	 enables	 the	 generation	 of	 a	 native‐like	 cellular	 environment	 for	

tissue	 generation	 and	 regeneration49.	 Therefore,	 the	 cellular	 phenotype	 can	 be	

maintained	and	cell	attachment,	motility,	and	differentiation50	is	facilitated.	Furthermore,	

its	 biological	 nature	 assures	 to	 be	 non‐toxic	 and	 biocompatible51.	 To	 restore	 tissue	

functionality,	the	scaffold	is	ideally	reseeded	with	autologous	cells.	Tissue	maturation	is	

enabled	 by	 specifically	 designed	 bioreactors	 providing	 physiological	 conditions	 and	

applying	mechanical	stimuli52.	In	contrast	to	de	novo	engineering	of	tissues,	decellularized	

tissue	matrices	take	advantage	of	the	preservation	of	the	whole	original	tissue	framework,	

especially	vascular	networks53.	While	considered	for	clinical	application,	there	are	mainly	

bioengineered	 hollow	 organs,	 such	 as	 bladder54,55	 and	 tracheal56	 grafts	 available.	

Preliminary	full	thickness	whole	organs,	such	as	kidney57,	liver46,	lungs58	or	limbs59,	are	

in	progress	for	rodent	transplantation.		

	

1.3.4	Cell	sources	for	tissue	engineering	strategies		

Tissue	 functionality	 mostly	 requires	 specialized	 cell	 types,	 often	 a	 distinct	 spatial	

organization	 and	 an	 orchestrated	 interaction	 between	 different	 cells	 and	 cell	 types.	

The	utilization	of	the	specific	cell	source	is	critical	for	the	generation	of	in	vitro	engineered	

tissue.		

Most	prevalent	is	the	use	of	cell	lines,	indefinitely	proliferating	cells	that	can	usually	be	

traced	back	to	one	single	immortalized	cell.	There	are	manifold	cell	lines	from	plenty	of	

tissues	available.	However,	the	immortalization	is	based	on	mutations	in	the	genome	that	

can	alter	the	biology	of	the	cell.		

Primary	 cells	 are	 freshly	 isolated	 from	 tissue	 and	 therefore	 closely	 reflect	 the	natural	

cellular	 behavior	 and	 function.	 In	 contrast	 to	 cell	 lines,	 primary	 cells	 should	 only	 be	

cultured	 for	 a	 few	 population	 doublings	 to	 ensure	 an	 in	 vivo‐representative	 cellular	

character.		
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Stem	 cells	 proliferate	 almost	 indefinitely	 and	 have	 the	 capacity	 to	 differentiate	 into	

specialized	cell	types60.	However,	the	availability	is	limited	and	in	the	case	of	embryonic	

stem	cells	tightly	restricted	by	law61.		

Since	autologous	cells,	either	primary	differentiated	or	multipotent	adult	stem	cells62,	are	

preferred	for	therapeutic	intervention	due	to	immunologic	tolerance.	However,	primary	

cells	are	often	not	applicable	due	to	tissue/cellular	impairment	and	respective	stem	cells	

are	 lacking.	Furthermore,	stems	cells	require	a	defined	niche	to	maintain	their	specific	

properties63.	Therefore,	induced	pluripotent	stem	cells	(iPSC)	emerged	as	an	alternative	

cell	source62.		

Since	 iPSCs	 were	 first	 described	 in	 2006	 when	 differentiated	 adult	 cells	 were	

reprogrammed	 to	 a	pluripotent	embryonic‐like	 state	with	 the	 capacity	 to	differentiate	

into	 cells	 of	 all	 embryonic	 lineages64	 it	 was	 promised	 to	 be	 able	 to	 unlock	 hidden	

regenerative	potential	of	organs	similar	to	fish,	amphibians,	and	reptiles65.	Pluripotency	

describes	 the	 capacity	 of	 a	 stem	 cell	 to	 differentiate	 in	 any	 of	 the	 three	 germ	 layers:	

endoderm	 –	 developing	 e.g.	 the	 gastrointestinal	 tract	 and	 the	 lungs;	 mesoderm	 –	

developing	e.g.	muscle,	bone,	and	blood;	and	ectoderm	–	developing	e.g.	epidermal	tissues	

and	the	nervous	system66.	However,	most	applications	of	stem	cells	in	RM	are	inefficient	

and	 the	 anticipated	 hopes	 to	 cure	 degenerative	 diseases	 were	 not	 achieved,	 yet.	

Nevertheless,	 iPSCs	can	 theoretically	be	differentiated	 into	any	cell	 type	applicable	 for	

cell‐based	TE67.		

	

1.3.5	Clinical	applications	of	tissue	engineered	scaffolds		

The	first	clinically	applied	bioengineered	tissue	was	a	trachea	analogon68.	However,	this	

seemingly	simple	tissue	such	as	a	straight	tubular	windpipe	to	be	replaced	by	a	prosthetic	

substitute	took	almost	a	century	of	research	until	its	implantation.		

Solid	 or	 nonporous	 prosthetic	materials	 failed	 in	 clinical	 application	 due	 to	 infection,	

dislodgement,	 migration,	 extrusion,	 and	 stenosis,	 as	 well	 as	 non‐re‐epithelialization,	

precluding	long	term	incorporation32.		

Employing	tracheal	allografts	instead	of	synthetic	windpipes	still	caused	immunological	

rejection69.	 Chemical	 pre‐treatment	 of	 tracheal	 allo‐	 and	 xenografts	 reduced	

immunogenicity	and	necrosis70,	however,	also	 resulted	 in	poor	cartilage	and	epithelial	
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constitution71.	 Animal	 studies	 demonstrated	 the	 reduced	 immunogenic	 rejection	 after	

cryopreservation72,73	but	elicited	ischemia	in	the	grafts74,75.		

The	 final	 success	 to	 generate	 a	 functional	 replacement	 was	 achieved	 employing	 a	

decellularized	 matrix	 for	 tracheal	 reconstruction76.	 A	 decellularized	 porcine	 jejunal	

segment	 was	 reseeded	 with	 autologous	 costal	 chondrocytes,	 smooth	 muscle	 cells,	

respiratory	 epithelium,	 and	 endothelial	 progenitor	 cells.	 Bioreactor	 technology	 was	

employed	 for	 cellular,	 and	 consequently,	 tissue	 maturation	 by	 applying	 physiological	

stimuli	to	emerge	into	a	multi	cell	layered	in	vitro	vascularized	bioartificial	scaffold	with	

tracheal	functional	elements	including	respiratory	epithelium	cilial	movement77.		

The	 fails	 of	 cell‐free	 scaffolds	and	 the	 clinical	 success	of	 the	multi	 cellular	biologically	

vascularized	 scaffold	made	 clear	 that	only	 living	vascularized	 tissue	 can	 substitute	 for	

functional	regeneration.		

	

1.4	Vascularization		

Despite	success	in	early	TE,	around	the	1980s,	with	realtively	avascular	tissues	and	low	

cellular	metabolic	rates	that	could	be	met	by	nutrient	diffusion,	the	generation	of	complex	

tissues	still	fails	in	majority.	The	main	problem	in	the	development	of	complex	functional	

tissue	 is	 due	 to	 the	 fact	 of	 proper	 nutrition	 while	 orchestration	 of	 homotypic	 and	

heterotypic	cell‐cell	interactions	in	a	spatially	controlled	micrometer	scaled	environment.	

The	 vascular	 network	 provides	 the	 infrastructure	 to	 supply	 the	 cells	 the	 required	

nutrients	and	oxygen	but	also	enables	the	metabolic	exchange	of	factors,	substrates	and	

products	and	maintains	the	water	and	protein	balance	between	intra‐	and	extravascular	

compartments.	 Furthermore,	 the	 vascular	 wall	 functions	 as	 a	 barrier	 preventing	

pathogens	or	harmful	materials	circulating	in	the	blood	from	spreading	into	tissues78.		

	

1.4.1	Vascular	development	and	vessel	composition			

The	importance	of	vascularization	is	reflected	in	its	developmental	priority	being	the	first	

functional	organ	developed	 in	 the	vertebrate	embryo.	During	embryonic	development,	

the	coordinated	orchestration	of	movement	and	differentiation	of	cell	lineages	form	blood	

vessels,	 originating	 together	 with	 the	 heart79.	 Thereby,	 the	 supply‐infrastructure	 for	

tissue	nutrition	is	established	and	even	before	the	uptake	of	vascular	functions,	inductive	
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signals	 for	 patterning	 and	 organogenesis	 are	 provided	 by	 vasculogenic	 ECs80.	 Before	

further	maturation	of	the	vascular	network,	arteries	and	veins	composed	solely	of	ECs	are	

morphologically	 not	 discriminable,	 but	 on	molecular	 level	 the	 angioblasts	 are	 already	

primed	 by	 distinct	 signaling	 pathways	whether	 forming	 arteries	 or	 veins81,82.	 In	 later	

stages,	further	ECs	arise	from	already	existing	endothelial	cells	integrated	in	the	vascular	

structure79.	During	maturation	of	the	vascular	network	a	gradual	transition	from	arteries	

to	arterioles	to	capillaries,	enabling	nutrient	exchange,	merging	into	venules	and	veins	is	

established	(Fig.	2).		

Vasculogenesis	describes	the	de	novo	formation	of	blood	vessels,	mainly	occurring	during	

embryogenesis83.	Whereas	during	angiogenesis,	new	vessels	predominantly	sprout	from	

existing	 vessels.	 During	 angiogenesis,	 the	 cells	 reorganize	 their	 vessel	 structure	 by	

migration	and	proliferation	forming	and	stabilizing	new	vascular	lumen84.	Major	trigger	

for	 vascular	 sprouting	 are	mechanical	 stimuli	 such	 as	 changes	 in	 blood	 flow,	 velocity,	

hydrostatic	pressure,	and	resistance	in	the	vascular	bed85.		

Besides	 endothelial	 cells	 composing	 the	 inner	 surface	 of	 blood	 and	 lymphatic	 vessels,	

pericytes	are	recruited	 to	 the	endothelial	 layer	 to	enhance	blood	vessel	stabilization79.	

The	vascular	cells,	then,	deposit	collagenous	and	elastic	fibers	assembling	the	vessel	walls.	

Smooth	muscle	cells	compose	a	major	part	of	the	wall	of	large	blood	vessels	and	facilitate	

vascular	contractility86.		
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Figure	2.	Blood	vessels	–	types	and	composition.		
Vascular	wall	composition	of	artery,	vein,	and	capillaries.	Capillaries	are	composed	of	only	an	EC	
layer	on	a	basement	membrane	with	 few	dispersed	pericytes	dependent	on	the	capillary	 type.	
Arterioles	 and	 venules	 are	 additionally	 covered	 by	 a	 layer	 of	 smooth	 muscle	 cells	 (SMCs).	
Artery	and	vein	depict	the	largest	vessels	in	terms	of	lumen	diameter	and	wall	thickness,	typically	
composed	 of	 three	 layers	 embedding	 SMCs	 and	 fibroblasts	 in	 collagen	 and	 elastic	 fibers	 to	
withstand	and	regulate	the	blood	pressure.	Copyrighted	reprint87.		
	
	

1.4.2	The	necessity	for	vascularization	

Graft	 integration	 is	 critical	 to	 functionally	 and	 structurally	 substitute	 for	 the	 original	

tissue,	thereby,	the	interconnection	with	the	host	vasculature	is	inevitable	as	a	cell‐based	

graft	needs	to	be	supplied.	Aside	of	few	exceptions	as	e.g.	cartilage,	in	the	body,	most	cells	

are	not	more	 than	100‐200	µm	away	 from	a	capillary	assuring	sufficient	diffusion	and	

exchange	 of	 nutrients,	 oxygen,	 and	 waste	 products	 from	 the	 bloodstream66.	 Thereby,	

the	viability	of	cells	and	tissues	is	maintained,	furthermore,	making	regeneration	possible.		

Tissue‐engineered	 dense	 complex	 3D	 structures	 quickly	 exceed	 the	 nutrient	 diffusion	

limit,	thereby	becoming	inadequately	supplied,	ultimately	leading	to	necrosis88.	Without	

the	 implementation	of	an	adequate	 infrastructure	 for	mass	 transfer,	 tissue‐engineered	

structures	will	not	exceed	a	size	necessary	for	clinical	application.	Therefore,	it	is	critical	
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that	engineered	tissues	are	vascularized	to	grant	the	embedded	cells	access	to	nutrition	

supply	and	metabolic	factors.	

Besides	 the	 indispensability	of	 vascular	 structures	when	attempting	 to	generate	 living	

thick	tissues	 in	vitro,	 the	 lack	of	vascularization	also	 impedes	the	graft	 integration	and	

functional	 tissue	 restoration	 in	 vivo89.	 Furthermore,	 the	 co‐culture	 of	 endothelial	

cells	(EC)	with	tissue‐specific	cells	not	only	grants	better	integrated	vascularized	grafts	

but	also	improves	tissue‐specific	function90.		

	

1.4.3	Vascularization	strategies	in	TE	

Despite	early	awareness	of	proper	gas	and	nutrient	supply	in	biology,	initial	TE	products	

developed	in	material	sciences	lacked	the	integration	of	living	cells	or	a	strategy	for	their	

nutrition.	 Subsequently,	 various	 vascularization	 strategies	 arose	 approaching	 the	 task	

with	diverse	methods	such	as	scaffold	functionalization,	microfluidic	systems,	cell‐based	

techniques,	modular	assembly,	and	in	vivo	systems91.		

Scaffold	 functionalization	 comprised	 either	 various	 structural	 methods	 of	 increasing	

scaffold	porosity	up	to	the	formation	of	channels	to	form	perfusable	elements	within	the	

scaffold92	or	biochemical	modifications	of	 the	material	 surface	presenting	or	 releasing	

angiogenic	factors	to	initiate	angiogenesis93	and	promote	vascular	ingrowth	in	vivo,	which	

was	demonstrated	to	improve	graft	survival94.	

Cell‐based	techniques	describe	the	implementation	of	ECs	or	endothelial	progenitor	cells	

to	 establish	 a	 pre‐vascularization	 of	 a	 construct	 in	 order	 to	 provide	 a	 functional	

vasculature95.	The	degrees	of	pre‐vascularization	vary	from	in	vitro	establishment	before	

implantation96	to	in	vivo	self‐assembly	of	vascular	structures97.	Furthermore,	co‐cultures	

of	ECs	and	a	 combination	of	 tissue‐specific	 cell	 types,	 enable	 to	 establish	vascularized	

tissues98.	 The	 integration	 of	 ECs	 is	 achieved	 either	 as	 multicellular	 spheroids99,100	 or	

simple	 loose	mixing	of	 the	cells	 in	 the	scaffold101.	ECs,	especially	 in	spheroidal	culture,	

produce	 capillary‐like	 sprouts,	 increased	 in	 presence	 of	 angiogenic	 factors102	 and	

fibroblast	co‐culture103.	This	characteristic	is	utilized	for	scaffold	pre‐vascularization.		

An	 in	 vivo	 approach	 is	 the	 formation	 of	 an	 arteriovenous	 loop	with	 a	 host	 vessel	 and	

subsequent	embedding	in	a	tissue	chamber.	The	ECM	in	between	the	shunt	loop	within	

the	 chamber	 becomes	 densely	 vascularized	 by	 a	 sprouting	 capillary	 network104.	
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Alterations	in	scaffold	material,	pore	size,	and	biochemical	loading	improve,	direct,	and	

control	neoangiogenesis	in	the	ECM	embedded	within	the	loop105.	The	addition	of	tissue‐

specific	cells	in	the	matrix	within	the	loop	before	implantation	allows	the	generation	of	

vascularized	 functional	 tissue	 up	 to	 a	 thickness	 of	 2	 mm106.	 Bigger	 more	 complex	

3D	tissues	might	be	generated	in	large	animal	models107.	However,	for	the	generation	of	

large	tissues	by	this	loop‐approach,	the	formation	of	vascularization	in	between	the	loop	

needs	 to	 be	 promoted	 in	 vitro	 by	 prevascularization	 or	 biochemical	 scaffold	

modification108.	However,	human	application	of	this	method	is	critical	as	it	either	requires	

repeated	 surgical	 interventions	 until	 full	 autologous	 graft	 vascularization	 or	 if	

vascularized	 in	 an	 animal	 model	 the	 graft	 will	 be	 xenograft	 requiring	

immunosuppression.	

Approaching	the	connection	between	scaffold	vascularization	and	host	circulation,	it	was	

demonstrated	 that	 pre‐vascularization	 of	 scaffolds	 accelerated	 the	 adhesion	 of	 the	

vascular	 networks109.	 The	 thereby	 created	 vascular	 pedicles	 for	 engineered	 tissues	

facilitated	 subsequent	 transplantation	 and	 thereby	 integration	 into	 the	 implantation	

site110,	 however	 requires	 multiple	 surgeries.	 Regarding	 clinical	 applicability,	 most	

approaches	 for	 graft	 vascularization	 are	 still	 only	 viable	 for	 small	 tissues	 as	 vascular	

ingrowth	 or	 self‐assembly	 in	 a	 dense	 tissue	 takes	 too	 long	 until	 full	 functional	

vascularization	 is	 established	 within	 a	 voluminous	 tissue,	 thereby	 risking	 necrosis.	

Large,	thick	tissue	substitutes	require	an	immediate	and	full	perfusion	with	nutrients	and	

oxygen	to	survive	and	be	maintained.	Nevertheless,	for	in	vivo	application,	the	functional	

anastomosis	with	the	host	circulation	for	an	immediate	functional	perfusion	remains	a	

critical	unmet	task.		

	

1.5	BioVaSc	–	Biologically	vascularized	scaffold	

Gathering	 the	mentioned	 properties	 and	 concerns,	 an	 ideal	 scaffold	 should	 provide	 a	

microenvironment	for	3D	tissue‐like	cell	culture	with	an	embedded	vascular	network	that	

can	 be	 anastomosed	 to	 the	 blood	 circulation	 of	 a	 patient	 when	 considered	 for	

transplantation.	 The	 so	 far	 most	 promising	 engineered	 tissue	 combining	 the	 before	

mentioned	advantages	in	one	tissue	graft	was	the	BioVaSc‐TERM®.	The	BioVaSc‐TERM®	

is	 based	on	 a	decellularized	porcine	 jejunal	 segment	 explanted	with	 adjacent	 vascular	

structures.		
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During	explantation	of	the	intestinal	segments	for	the	BioVaSc‐TERM®,	the	preservation	

of	 all	 vessel	 structures	 was	 highly	 critical.	 Also	 the	 decellularization	 protocol	 was	

established	to	preserve	the	vasculature.	The	subsequently	established	acellular	luminal	

intestinal	 structure	 served	 as	 a	 scaffold	 for	 3D	 cell	 culture	with	 a	 preserved	 vascular	

network.	Once	revascularized	with	autologous	ECs,	 it	provided	a	vascular	network	 for	

nutrient	 supply.	The	 vessels	 comprised	 a	diameter	 from	about	200	μm	until	 about	2–

20	μm	 in	 the	 capillary	 bed	 of	 the	 lumen.	 The	 cannulation	 before	 explantation	 and	

consecutive	 preservation	 of	 mesenteric	 arterial	 and	 venous	 vessels	 allowed	 the	

connection	of	the	vasculature	to	a	perfusion	bioreactor.	Thereby,	the	pedicles	served	as	a	

feeding	input	and	draining	outlet	for	perfusion	culture	and	mass	transfer	throughout	the	

scaffold111,112.	 The	 vascular	 structures	 were	 repopulated	 and	 matured	 ensuring	 a	

sufficient	nutrient	 supply	 for	 further	 implemented	 cells	 to	 establish	 tissue‐specific	 co‐

cultures	 on	 the	 luminal	 ECM	 ultimately	 generating	 vascularized	 tissue	 grafts	 (Fig.	 3).	

Cell	viability	and	functionality	of	 tissue‐specific	cells	was	proven	 in	vitro.	The	scaffolds	

intrinsic	properties	allowed	tissue	reconstruction	 in	vitro	proving	subsequent	vascular	

tightness	 upon	 in	 vivo	 anastomosis113.	 Furthermore,	 the	 preserved	mesenteric	 vessels	

allowed	 for	 immediate	 anastomosis	 and	 connection	 to	 a	 host	 vascular	 circulation	

impeding	tissue	degeneration	upon	implantation112,113.		
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Figure	3.	Porcine‐	and	rat‐derived	biologically	vascularized	scaffolds.		
Decellularized	 ECM	 scaffolds	 with	 preserved	 vascular	 structures	 derived	 from	 porcine	
respectively	 rat	 jejunum.	 The	 BioVaSc‐TERM®	 and	 miniaturized	 mBioVaSc‐TERM®	 serve	 as	
platform	technology	for	the	generation	of	bioartificial	tissue	grafts	or	as	drug	delivery	system.		
	
	

1.6	Aim	of	the	thesis	

Full	 tissue	 vascularization	 still	 depicts	 a	 major	 problem	 in	 TE	 for	 the	 generation	 of	

clinically	 relevant	 grafts.	 Pre‐vascularization	 of	 cell‐based	 scaffolds	 significantly	

improved	tissue	integration	upon	implantation.	However,	for	tissues	bigger	than	micro‐

scaled,	an	immediate	connection	to	the	host	circulation	is	required	for	sufficient	nutrient	

supply	 and	 graft	 vitality.	 The	 BioVaSc‐TERM®	 meets	 the	 mentioned	 requirements.	

Nevertheless,	 the	 full	 potential	 of	 this	 technology	has	not	 been	exploited	 yet.	 Its	 scale	

causes	the	requirement	of	vast	amounts	of	specific	cellular	material	for	recellularization	

limiting	its	applicability,	in	particular	in	basic	research	and	preclinical	utilization	as	well	

the	implantation	in	small	animal	models.		
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The	aim	of	this	study	was	to	establish	a	miniaturized	biological	vascularized	scaffold	with	

a	mature	functional	vascular	network	enabling	tissue‐specific	recellularization	with	less	

cells	 necessary	 as	 well	 as	 implantation	 in	 small	 animal	models	 for	 preclinical	 animal	

studies.	Furthermore,	the	utilization	of	the	vessel	system	and	its	applicability	as	a	delivery	

system	 by	 secretion	 of	 bioactive	 drugs	 into	 the	 vascular	 circulation	 was	 to	 be	

demonstrated.	In	vivo	studies	were	designed	to	indicate	the	capacity	and	proof	of	concept	

of	the	platform	technology.		

The	first	part	of	the	thesis	was	to	establish	a	decellularization	protocol	for	rat	intestinal	

segments,	 to	 remove	 host	 cells	 and	 preserve	 the	 biological	 ECM	 components	 and	

architecture.	Next,	the	embedded	innate	vascular	system	had	to	be	reendothelialized	to	

develop	a	tight	vascular	barrier	enabling	arteriovenous	circulation.	Therefore,	a	dynamic	

perfusion	bioreactor	setup	promotes	vascular	maturation	and	provides	physiological	gas	

and	nutrient	supply	distributed	via	afferent	feeding	and	efferent	draining	vessels.		

To	demonstrate	 the	capacity	 to	maintain	co‐cultures,	various	 tissue‐specific	cells	were	

cultured	 in	 close	 proximity	 to	 the	 capillaries	 embedded	 inside	 the	 luminal	 ECM.	

Thereby,	the	 ex	 vivo	 generation	 of	 tissue‐like	 grafts	 was	 promoted.	 Demonstrating	

physiological	metabolic	functions	and	the	secretion	of	biologically	active	compounds	into	

the	vascular	circulation	 indicated	 the	capability	 to	potentially	serve	as	a	drug	delivery	

system.		

Finally,	in	vivo	studies	demonstrated	the	feasibility	of	vascular	anastomosis	to	the	blood	

circulation	of	a	host	animal	facilitating	implantation	in	small	animal	models	to	examine	

clinical	applicability	and	functionality.		
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2.	MATERIALS		

2.1	Biological	materials	

Biological	scaffolds	were	dissected	from	Wistar	and	Lewis	rats.	In	vivo	implantation	was	

performed	on	 female	NIH‐Foxn1nu	rats.	All	 rats	were	at	 an	age	of	 about	8	weeks	and	

obtained	from	Charles	River,	Sulzfeld,	Germany.	All	animals	were	kept	on	a	standard	diet	

and	water	ad	 libitum	at	a	12	day	and	night	cycle.	All	animals	received	humane	care	 in	

compliance	with	the	guidelines	by	the	FELASA,	WHO	and	FDA	(WHO‐TRS978	Annex3	und	

FDA‐OCTGT	Preclinical	Guidance)	and	§§4	&	8	Protection	of	Animals	Act	and	in	consent	

after	 approval	 from	 our	 institutional	 animal	 protection	 board,	 University	 Würzburg.	

Organ	explantation	was	performed	under	registration	reference	number	#	55.2	2532‐2‐

256	 and	 in	 vivo	 animal	 studies	were	 performed	 under	 registration	 reference	 number	

#2532‐2‐12.	Anesthesia	during	surgery	was	administered	by	Isoflurane	inhalation,	pain	

management	 was	 treated	 with	 Carprofen	 (dosage	 and	 application	 was	 5	 mg/kg	 s.c.)	

according	 to	 the	 recommendation	 of:	 'Pain	 therapy	 for	 laboratory	 animals	

GV‐SOLAS'‐guideline	 by	 the	 Committee	 for	 anesthesia	 and	 analgesia,	 in	

2015.	Upon	termination	of	the	experiments,	animals	were	sacrificed	in	accordance	with	

the	 ethical	 committee	 approval	 and	 received	 an	 overdose	 of	 CO2	 with	 a	 subsequent	

cardiocentesis	as	approved.		

In	vitro	cell	cultures	and	revascularization	were	established	from	primary	human	dermal	

microvascular	ECs	isolated	from	prepuce.	Additionally,	fibroblasts	were	isolated	from	the	

same	source	as	ECs.	Considered	as	a	source	of	β‐cell	replacement,	neonatal	pig	islet‐like	

cell	cluster	(NICCs)	were	isolated	from	piglets	and	kindly	provided	by	Prof.	Dr.	Eckhard	

Wolf	(Molecular	Animal	Breeding	and	Biotechnology,	LMU	München,	Munich,	DE).	hPSC‐

derived	mesothelial	 cells	 and	 their	 respective	 differentiation	 and	 culture	media	 were	

kindly	provided	by	Prof.	Dr.	Stephen	Dalton	(Center	for	Molecular	Medicine,	University	of	

Georgia,	Georgia,	USA).	Further	cell	lines	were	employed	as	stated	in	Table	1.	
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Table	1.	Cell	lines	employed.	

Cell	line	 Supplier	/	manufacturer	

Human	embryonic	kidney	cells	HEK293T	 LGC	Standards	GmbH,	Wesel,	DE	

Chinese	hamster	ovary	cells	CHO	 LGC	Standards	GmbH,	Wesel,	DE	

Human	upcyte®	hepatocytes	 Medicyte	GmbH,	Heidelberg,	DE	

Human	upcyte®	liver	sinusoidal	endothelial	cells		 Medicyte	GmbH,	Heidelberg,	DE	

Human	upcyte®	mesenchymal	stem	cells	(MSC)	 Medicyte	GmbH,	Heidelberg,	DE	

	

Upcyte®	 hepatocytes,	 liver	 sinusoidal	 ECs	 and	 MSCs	 were	 stably	 transduced	 with	

lentiviral	 constructs	 carrying	 sequences	which	 code	 for	 certain	 proliferation‐inducing	

factors114.	The	upcyte®	process	allowed	almost	unlimited	cell	proliferation	of	cells	from	

one	donor	with	a	performance	similar	to	the	original	primary	cells115.		

	

2.2	Equipment	and	consumables	

Utilized	laboratory	equipment	and	consumables	are	listed	below.	

Table	2.	Laboratory	equipment.		

Designation	 Specification	 Manufacturer	

Aspiration	system	

	

Vascusafe	 Integra	Biosciences,	Biebertal,	
DE	

Autoclaves	 Tecnoklav	

TableTop	Autoclave	

Varioklav	

Biomedis,	Giessen,	DE	

Systec,	Wettenberg,	DE	

H+P,	Hackermoos,	DE	

Cell	culture	safety	cabinet	

	

Safe2020	 Thermo	Fisher	Scientific,	
Dreieich,	DE	

CO2	incubator	 Hot‐Air	Disinfectable	
Gassed	Incubator	
BBD	6220	

Bioreactor	incubator	
system	

Haraeus,	Hanau,	DE	

	

Chair	TERM,	JMU	Würzburg,	
Würzburg,	DE	

Centrifuge	 Multifuge	X1R	
	

Thermo	Fisher	Scientific,	
Dreieich,	DE	
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Microcentrifuge	5417R	

Minicentrifuge	

Heraeus	Pico	17	
Centrifuge	

Eppendorf,	Hamburg,	DE	

Hartenstein,	Würzburg,	DE	

Thermo	Fisher,	DE	

Cold‐storage	room	 	 Genheimer,	Höchberg,	DE	

Drying	oven	for	
microscopy	slides	

TDO	66	 Medite,	Dietikon,	CH	

Electrode	 Chopstick	Electrode	
STX3	

Merck,	Darmstadt,	DE	

Epithelial	Volt‐Ohm	Meter	 Millicell®	ERS‐2	 Merck,	Darmstadt,	DE	

Erlenmeyer	flask	 Glass	 VWR,	Ismaning,	DE	

Forceps	 Standard	
Micro‐Adson	
Dumont	#5	

Fine	Science	Tools,	
Heidelberg,	DE	

Freezers	 ‐20	°C	

‐80	°C	

Liebherr,	Biberach,	DE	

Kendro,	München,	DE	

Freezing	container	 Mr.	Frosty	 ThermoFisher	Scientific	

Fume	hood	 	 Prutscher	Laboratory	
Systems,	Neudörfl,	AT	

Gel	casting	tray	 	 Peqlab,	Darmstadt,	DE	

Gel	combs	 10	well,	1.5	mm	
20	well,	1.5	mm	
34	well,	1.5	mm	

Peqlab,	Darmstadt,	DE	

Gel	electrophoresis	system	 PerfectBlue	 Peqlab,	Darmstadt,	DE	

Gel	system	power	supply	 EV243	 Peqlab,	Darmstadt,	DE	

Hemocytometer	 0.1	mm,	0.0025	mm2	 Hartenstein	GmbH,	Würzburg,	
DE	

Ice	machine	 AF‐80	 HIBU	Eismaschinen	GmbH	&	
Co.KG,	DE	

Immersion	thermostat	 Alpha	A	 Lauda,	Lauda‐Königshofen,	DE	

Liquid	nitrogen	tank	 MV	815	P‐190	‐180	°C	 Jutta	Ohst	german‐cryo	GmbH,	
DE	

Microplate	reader	 Infinite	M200	 Tecan	Deutschland	GmbH,	DE	

Microscopes	 Biorevo	BZ‐9000	 KEYENCE,	Neu‐Isenburg,	DE	

Microwave	 NN‐E205W	 Panasonic,	Hamburg,	DE	
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Mounting	pins		 for	ring	preparations	 DMT,	Aarhus,	DK	

Muscle	strip	Myograph	
system		

820MS	 DMT,	Aarhus,	DK	

Orbital	shaker	 KM‐2	Akku	 Edmund	Bühler,	Hechingen,	
DE	

PCR	UV	cabinet	 Captair	Bio	 Erlab,	Köln,	DE	

pH	meter	 	 Mettler	Toledo,	Giessen,	DE	

Pipets	 0.5‐10	µl	
10‐100	µl	
100‐1,000	µl	

Eppendorf,	Hamburg,	DE	

Pipetting	aid	 Pipetboy	 Brand,	Wertheim,	DE	

Rocking	platform	 	 neoLab,	Heidelberg,	DE	

Scales	 Precision	balance	PCB	

	
Microbalance	SE2	Ultra	

Kern,	Balingen‐Frommern,	DE	

Sartorius	Stedium	Biotech,	
Göttingen,	DE	

Scissors	 Iris	
Surgical	

Fine	Science	Tools,	
Heidelberg,	DE	

Septophag	 	 Hesse,	Emmerich,	DE	

Sliding	microtome	 SM	2010R	 Leica,	Wetzlar,	DE	

Steam	Cooker	 MultiGourmet	 Braun,	Kronberg/Taunus,	DE	

Thermal	shaker	 Thermomixer	comfort	 Eppendorf	AG,	DE	

Thermocycler	 Thermocycler	48	 SensoQuest,	Göttingen,	DE	

Tissue	embedding	center		 EG1150H	 Leica,	Wetzlar,	DE	

Tissue	float	bath	 GFL	1052	 Medax,	Kiel,	DE	

Tissue	processor	 Microm	STP	120	 Thermo	Fisher	Scientific,	
Dreieich,	DE	

TissueRuptor	 	 Qiagen,	Hilden,	DE	

Trans	illuminator	 	 Vilber	Lourmat,	FR	

Ultrapure	water	system	 	 Millipore,	Schwalbach,	DE	

Vortex	shaker	 Vortex‐Genie	2	 Scientific	Industries	via	Carl	
Roth,	Karlsruhe,	DE	

Water	bath	

	

	 Julabo	Labortechnik,	Seelbach,	
DE	

Western	blot	imaging	 Fluor‐Chem	Q	system	 CellBiosciences,	DE	
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Table	3.	Laboratory	consumables.	

Designation	 Specification	 Manufacturer	

Air	filter	 Minisart®	HY	Syringe	
Filter,	0.2	µm	
hydrophobic	PTFE	

Sartorius	Stedim	Biotech	
GmbH,	DE	

Autoclaving	container	 Stainless	steel	
sterilization	container	

Fine	Science	Tools,	
Heidelberg,	DE	

Blotting	membrane	 Polyvinylidene	
Difluoride	

ROCHE	Deutschland	Holding	
GmbH,	DE	

Cannulas		 Vasofix®	Safety	0.70	x	
19	mm,	G	24	yellow	

B.	Braun	Melsungen	AG,	
Melsungen,	DE	

Cell	culture	dishes		 Petri	dishes	94	mm	 Greiner	Bio‐One,	
Frickenhausen,	DE	

Cell	culture	flask	 25	cm2	
75	cm2	
150	cm2	

TPP,	Trasadingen,	DE	

Cell	culture	multiwell	
plates	

6	well	
12	well	
24	well	
48	well	
96	well	

TPP,	Trasadingen,	DE	

Cell	strainer		 40	µm	
70	µm	

Greiner	Bio‐One,	
Frickenhausen,	DE	

Centrifuge	tubes		 15	ml	
50	ml	

Greiner	Bio‐One,	DE	

Cover	slips	for	microscopy	
slides	

24	x	60	mm	 Menzel‐Gläser,	
Braunschweig,	DE	

Cryotubes		 1.5	ml		 ThermoFisher	Scientific,	
Dreieich,	DE	

Dako	Pen	 	 Dako,	Hamburg,	DE	

Embedding	cassettes	 	 Klinipath,	Duiven,	DE	

Embedding	filter	paper	 	 Labonord,	Mönchengladbach,	
DE	

Glass‐reactor	 Bottles		
Cannulas	
Corpus	

Weckert	Labortechnik,	
Kitzingen,	DE	

Gloves		 Latex	
Nitril		

Kimberly‐Clark,	Koblenz,	DE	
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Microcentrifuge	tubes	 0.2	µl	

0.5	ml	
1.5	ml	
2	ml	

Biozym,	Oldendorf,	DE	

Eppendorf,	Hamburg,	DE	

	

Microscopy	slides	 Polysine	
Super‐Frost	Plus	

Langenbrinck,	Emmerdingen,	
DE	

Microtome	blades		 A35	 pfm	medical,	Köln,	DE	

Multiwell	plates		 96	well	black	 Greiner	Bio‐One,	
Frickenhausen,	DE	

Parafilm	 	 Sigma‐Aldrich,	DE	

Pasteur	pipettes	 glass	 Brand,	Wertheim,	DE	

Pipet	tips	 0.5‐10	µl	
10‐100	µl	
100‐1,000	µl	

Nerbe	plus,	Winsen/Luhe,	DE	

Pressure	sensor	dome	 for	Transducer	SP	844	 HJK	Sensoren	+	Systeme	
GmbH	&	Co.	KG,	Merching,	
DE	

Scalpel	blades		 	 Hartenstein	GmbH,	DE	

Serological	pipettes		 5	ml,	
10	ml,	
25	ml,	
50	ml	

Greiner	Bio‐One,	
Frickenhausen,	DE	

Sewing	Thread		

	

Silkam	4/0	 Braun,	Melsungen,	DE	

Staining	dish	with	lid	 105	x	85	x	70	 Carl	Roth,	Karlsruhe,	DE	

Syringes	 1	ml	Omnifix	

2	ml	Discardit	II	
5	ml	Discardit	II	
10	ml	Discardit	II	
20	ml	Discardit	II	

Braun,	Melsungen,	DE	

BD	Biosciences,	Heidelberg,	
DE	

Syringe	filter	 0.2	µm	pore	size	
Minisart	NML	

Sartorius	Stedium	Biotech,	
Göttingen,	DE	

Tubing	

	

PharMed®BPT	
(Ismaprene)	

Silicon	tubing	Tygon	
3350		

	

Ismatec,	Wertheim‐
Mondfeld,	DE	

Saint‐Gobain,	Courbevoie,	FR	
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Tubing	connection	 Male	Luer	Integral	Lock	
Ring	to	200	Series	Barb		

Female	Luer	Lug	Style	to	
200	Series	Barb	

Y	Tube	Fitting	with	
Classic	Series	Barb		

each	1/8"	(3.2	mm)	ID	
Tubing,	Natural	Kynar	
PVDF	

Nordson	Medical	MedNet,	
Münster,	DE	

Transwells		 Corning®	Transwell®	
polyester	membrane	cell	
culture	inserts		

Sigma‐Aldrich,	München,	DE	

Whatmanpaper		 	 Sigma‐Aldrich,	München,	DE	

	

	

2.3	Chemicals	and	cell	culture	reagents		

Table	4.	Chemicals	and	cell	culture	reagents.	

Designation	 Catalog	no.	 Manufacturer	

2‐Propanol	 9866.6	 Carl	Roth,	Karlsruhe,	DE	

Acetic	acid	 6755.1	 Carl	Roth,	Karlsruhe,	DE	

Acid	fuchsin	Ponceau	
Azophloxin	

10180	 Morphisto,	Frankfurt	Main,	DE	

AcLDL	 L35354	 Invitrogen,	Darmstadt,	DE	

Acrylamide	Rotipherese	Gel30	 3029	 Carl	Roth,	Karlsruhe,	DE	

Agar‐Agar	 2363.2	 Carl	Roth,	Karlsruhe,	DE	

Agarose	LE	 840004	 Biozym,	Hessisch	Oldendorf,	DE	

Albumin	fraction	V	(BSA)	 2834.4	 Carl	Roth,	Karlsruhe,	DE	

Ammonium	persulfate	 431532	 Sigma‐Aldrich,	München,	DE	

Antibody	Diluent	Lab	Vision	OP	
Quanto	

TA‐125‐ADQ	 Thermo	Scientific,	Dreieich,	DE	

ß‐Mercaptoethanol	 M31448	 Sigma‐Aldrich,	München,	DE	

Benzyl	alcohol	 24122	 Sigma‐Aldrich,	München,	DE	

Benzyl	benzoate	 B6630	 Sigma‐Aldrich,	München,	DE	
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Brilliant	blue	R	250	 3862	 Carl	Roth,	Karlsruhe,	DE	

Bromophenol	blue	sodium	salt	 A512.1	 Carl	Roth,	Karlsruhe,	DE	

Carbachol	 C4382	 Sigma‐Aldrich,	München,	DE	

Carprofen	(Rimadyl®)	 779‐358	 Henry	Schein,	Melville,	USA	

Chloroform	 C2432	 Sigma‐Aldrich,	München,	DE	

Citric	acid	monohydrate	 3958	 Carl	Roth,	Karlsruhe,	DE	

Collagen	IV	 C5533	 Serva	Electrophoresis,	Heidelberg,	
DE	

DeoxyribonucleaseI	from	
bovine	pancreas	

DN25	 Sigma‐Aldrich,	München,	DE	

Diclofenac	 D6899	 Sigma‐Aldrich,	München,	DE	

Dimethylsulfoxid	(DMSO)	 D2438	 Sigma‐Aldrich,	München,	DE	

DMEM/F‐12,	GlutaMAX	
Supplement	

31331‐093	 Gibco,	Darmstadt,	DE	

DNA	ladder	plus	100‐3000	bp	 25‐2020	 Peqlab,	Darmstadt,	DE	

EDTA	 6381‐92‐6	 Sigma‐Aldrich,	München,	DE	

Entellan	 1079610100	 Merck,	Darmstadt,	DE	

Eosin	1%	aqueous	 10177	 Morphisto,	Frankfurt	Main,	DE	

Ethanol,	denatured,	96	%	 T171.2	 Carl	Roth,	Karlsruhe,	DE	

FCS	 FCS.ADD.0500	 Bio	&	SELL	GmbH,	Feucht,	DE	

FDA	(Fluoresceindiacetat)		 F7378	 Sigma‐Aldrich,	München,	DE	

Fibronektin	 33016‐015	 Thermo	Scientific,	Dreieich,	DE	

FITC‐coupled	albumin	66	kDa	 A	9771	 Sigma‐Aldrich,	München,	DE	

FITC‐Dextran	4	kDa	 46944	 Sigma‐Aldrich,	München,	DE	

FITC‐Dextran	40	kDa	 FD40S	 Sigma‐Aldrich,	München,	DE	

Fluoromount‐G	DAPI	 SBA‐0100‐20	 Biozol,	Eching,	DE	

GelRed	 M3199.0500	 Genaxxon,	Ulm,	DE	

D‐Glucose	 G8270	 Sigma‐Aldrich,	München,	DE	

Glutaraldehyd	 G5882	 Sigma‐Aldrich,	München,	DE	

Glycerin	 3783.2	 Carl	Roth,	Karlsruhe,	DE	

Glycerol	 M6145	 Sigma‐Aldrich,	München,	DE	

Glycine	 3908.3	 Sigma‐Aldrich,	München,	DE	
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H2O2	 8070.2	 Carl	Roth,	Karlsruhe,	DE	

Haematoxylin	according	to	
Mayer	

10231	 Morphisto,	Frankfurt	Main,	DE	

Haematoxylin	according	to	
Weigert	

10225	 Morphisto,	Frankfurt	Main,	DE	

HCl	 1.09057.1000	 VWR,	Darmstadt,	DE	

Heparin‐Sodium	2500	 	 Ratiopharm,	Ulm,	DE	

Isoflurane		 1214	 Cp	pharma,	Burgdorf,	DE	

L‐Glutamin	 G7513	 Sigma‐Aldrich,	München,	DE	

Lightgreen‐	Goldner	III	 10369	 Morphisto,	Frankfurt	Main,	DE	

Matrigel	matrix,	Corning	 FALC356231	 Omnilab,	Bremen,	DE	

Methanol	 32213	 Sigma‐Aldrich,	München,	DE	

Mowiol	 0713.1	 Carl	Roth,	Karlsruhe,	DE	

MSCGM™	Mesenchymal	Stem	
Cell	Growth	Medium	

PT‐3001	 Lonza,	Basel,	CH	

MTT	(3‐(4,5‐Dimethyl‐2‐
Thiazolyl)‐2,5‐Diphenyl‐2H‐
Tetrazolium	bromide)	

20395	 SERVA,	Heidelberg,	DE	

Na2/EDTA	 E5134	 Sigma‐Aldrich,	München,	DE	

NaCl	 HN00.3	 Carl	Roth,	Karlsruhe,	DE	

NaOH	 6771.3	 Carl	Roth,	Karlsruhe,	DE	

Nω‐Nitro‐L‐arginine	methyl	
ester	

N5751	 Sigma‐Aldrich,	München,	DE	

NP40	 68412‐54‐4	 AppliChem,	Darmstadt,	DE	

NucBlue	Live	ReadyProbes	 R37605	 Invitrogen,	Darmstadt,	DE	

Orange	G	 11602	 Morphisto,	Frankfurt	Main,	DE	

Osmiumtetroxid	 E19100	 Science	Services,	München,	DE	

Paraffin	Roti‐Plast	 6642.6	 Carl	Roth,	Karlsruhe,	DE	

Paraformaldehyd	4	%	 A3813	 	

PBS‐	 D8662	 Sigma‐Aldrich,	München,	DE	

PBS+	 D8537	 Sigma‐Aldrich,	München,	DE	

Penicillin‐Streptomycin	(100x)	 P4333	 Sigma‐Aldrich,	München,	DE	

PI	(Propidiumiodid)		 P4170	 Sigma‐Aldrich,	München,	DE	
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Picric	fuchsine		 3925	 Carl	Roth,	Karlsruhe,	DE	

Polybrene	 H9268	 Sigma‐Aldrich,	München,	DE	

Propylenoxid	 20401	 Science	Services,	München,	DE	

Protein	Marker	PeqGold		
14.4‐116	kDa	

16893941	 Peqlab	Biotechnology,	Erlangen,	DE	

Protein	Marker	Quadcolor	4		
6‐300	kDa	

830537	 Biozym,	Hessisch	Oldendorf,	DE	

Proteaseinhibitor	 5892791001	 Sigma‐Aldrich,	München,	DE	

Puromycin	 A1113803	 Life	Technologies,	Darmstadt,	DE	

Roticlear	 A538.5	 Carl	Roth,	Karlsruhe,	DE	

Schiff	reagent	 3952016	 Sigma‐Aldrich,	München,	DE	

Sodium	deoxycholat	 D6750	 Sigma‐Aldrich,	München,	DE	

Sodium	disulfite	 407410	 Sigma‐Aldrich,	München,	DE	

Sodium	Dodecyl	Sulfate	(SDS)	 CN30.3	 Carl	Roth,	Karlsruhe,	DE	

Sodium	phosphate	dibasic	 S7907	 Sigma‐Aldrich,	München,	DE	

Sodium	phosphate	monobasic	 S8282	 Sigma‐Aldrich,	München,	DE	

Sodium	Pyruvate	(100mM)	 11360039	 Life	Technologies,	Darmstadt,	DE	

TE	buffer	pH	8.0	 A2575	 AppliChem,	Darmstadt,	DE	

TEMED	 2367.2	 Carl	Roth,	Karlsruhe,	DE	

Tissue	lysis	reagent	QIAzol	 79306	 Qiagen,	Hilden,	DE	

TRIS	base	 T6066	 Sigma‐Aldrich,	München,	DE	

TRIS‐HCl	 9090.1	 Carl	Roth,	Karlsruhe,	DE	

Triton‐X	100	 3051.2	 Carl	Roth,	Karlsruhe,	DE	

Trizma	hydrochloride	(Tris‐
HCl)	

T5941	 Sigma‐Aldrich,	München,	DE	

Trypan	blue	 T8154	 Sigma‐Aldrich,	München,	DE	

Trypsin‐EDTA	10x	 59418C	 Sigma‐Aldrich,	München,	DE	

Tryptone	 8952.4	 Carl	Roth,	Karlsruhe,	DE	

Tween	20	 8.22184.0500	 VWR,	Darmstadt,	DE	

upcyte®	Hepatocyte	Growth	
Medium	

	 Medicyte	GmbH,	Heidelberg,	DE	

upcyte®	liver	organoid	culture	
medium	

	 Medicyte	GmbH,	Heidelberg,	DE	
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upcyte®	LSEC	Medium	 	 Medicyte	GmbH,	Heidelberg,	DE	

VascuLife	VEGF‐Mv	Endothelial	
Complete	Kit	

LL‐0005	 CellSystems	Biotechnologie	
Vertrieb	GmbH,	Troisdorf,	DE	

Versene	 15040	 Life	technologies,	Carlsbad,	USA	

WST‐1	 11644807001	 Roche,	Basel,	CH	

X‐treme	Gene9	 06365787001	 Roche,	Basel,	CH	

Xylene	 A538.2	 Carl	Roth,	Karlsruhe,	DE	

Yeast	extract	 2363.2	 Carl	Roth,	Karlsruhe,	DE	

	

	

2.4	Media,	solutions,	and	buffers		

Table	5.	Composition	of	cell	culture	media.	

Medium		 	 Composition		

CHO	culture	medium		 	
10	%	(v/v)	

Ham's	F12	
FBS	

hdmEC		 	
5	ng/ml	
50	µg/ml	
1	µg/ml	
10	mM	

15	ng/ml	
5	ng/ml	
5	ng/ml	

0.75	U/ml	
5	%	(v/v)	

Vasculife	basal	medium	
rh	FGF	basic	
Ascorbic	acid	
Hydrocortisone	hemisuccinate	
L‐glutamine		
rh	IGF‐1	
rh	EGF	
rh	VEGF	
Heparin	sulfate	
FBS	

Fibroblasts	 	
10	%	(v/v)	

DMEM	
FBS	

HEK293T	 	
10	%	(v/v)	

2	mM	

DMEM	
FBS	
L‐glutamine	

NICC		 	
0.5	%	(v/v)	

10	mM	
50	µM	

1	x	
1	x	

10	mM	
1.6	mM	

Ham's	F10	
BSA	
Glucose	
IBMX	
Pen/Strep	
Glutamine	
Nicotinamide	
CaCl2x2H2O	
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Table	 6.	 Composition	 of	 solutions	 and	 buffers	 for	 biochemical	 and	 histological	

analysis.	

Buffer			 	 Composition		

DNaseI	solution		
(decellularization)	

250	ml	
100	mg	

PBS	
DNaseI	

Sodium	deoxycholat	
solution		

4	%	(w/v)	 Sodium	deoxycholate	

BSA	blocking	buffer		
(histology)	

1	x	
5	%	(w/v)	

PBS	
BSA	

Citrate	buffer	(10	x)	 42	g/l	
17.6	g/l	

Citric	acid	
NaOH	pellets	
pH	6.0	

Citrate	buffer	for	antigen	
retrieval			

10	%	(v/v)	 Citrate	buffer	(10	x)	

PBST	washing	buffer		
(histology)	

1	l	
0.5	%	(v/v)	
fill	up	to	10	l	

PBS	(10	x)	
Tween‐20	
Deionized	water	

Agarose	gel	 10	%	(v/v)	
0.6	–	1.2	%	(w/v)	

TAE	buffer	(10	x)	
Agarose		

Master	mix	for	PCR	 18.7	µl	
6	µl	
1	µl	
1	µl	

0.3	ml	
1	µl	
1	µl	

Deionized	water	
Mango	Taq	buffer	
MgCl2	
dNTPs	
Polymerase	
Forward	primer	5	pmol/µl	
Reverse	primer	5	pmol/µl	

TAE	buffer	(10	x)	
(nucleic	acid	gel	
electrophoresis)	

0.4	M	
0.2	M	

3.72	g/l	

Tris	
Acetic	acid	
EDTA	sodium	salt	

APS	(40	%)	
(SDS	gel)	

4	g	
10	ml	

Ammoniumperoxodisulfate	
Deionized	water	

Coomassie	Brilliant	Blue		 1.25	l	
250	ml	

1	l	
6.25	g	

Deionized	water	
Acetic	acid	
Methanol		
Brillant	Blue	R	250	

Coomassie	destain		
	

10	%	(v/v)	
10	%	(v/v)			

2‐propanol	
Acetic	acid	

Lower	Tris	buffer		
(SDS	gel	electrophoresis)	

1.5	M	
0.4	%	(w/v)	

Tris	base		
SDS	pellets	
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Reducing	sample	buffer	
(5x)		

1.5	M	
10	%	(w/v)	
2	%	(w/v)	

0.01	%	(w/v)	
5	%	(v/v)	

Tris	base		
Glycerin		
SDS	pellets	
Bromphenol	blue	
β‐	mercaptoethanol	

RIPA	lysis	buffer	
	

50	mM	
137	mM	
1	mM	

1	%	(v/v)		
1	%	(w/v)	
0.1%	(w/v)		

Tris	base	
NaCl	
EDTA	
Triton‐X	100	
Sodium	deoxycholate	
SDS	pellets	

Running	buffer	(10	x)		
(SDS	gel	electrophoresis)	

250	mM	
1.9	M	

1.5	%	(w/v)		

Tris	base		
Glycine		
SDS	pellets	

TBS	(10	x)	 150	mM	
25	mM	

NaCl	
Tris	base	

TBST	washing	buffer		
	

1	l	
0.05	%	(v/v)	
fill	up	to	10	l	

TBS	(10	x)	
Tween‐20	
deionized	water	

Transfer	buffer	(10	x)	
(western	blot)	

25	mM	
192	mM	

Tris	base		
Glycine		

Transfer	buffer		
(western	blot)	

10	%	(v/v)	
20	%	(v/v)	

Transfer	buffer	(10	x)	
Methanol		

Upper	Tris	buffer		
(SDS	gel	electrophoresis)	

0.5	M	
0.4	%	(w/v)	

Tris	base		
SDS	pellets	

	

	

2.5	Commercially	obtained	kits	

Table	7.	Commercially	obtained	kits.	

Designation	 Catalog	no.	 Manufacturer	

Activin	A	DuoSet		
ELISA	Development	kit	

DY338	 R&D	Systems,	Minneapolis,	USA	

CellTiter	96®	AQueous	One	
Solution	Cell	Proliferation	Assay	

G3582	 Promega,	Madison,	USA	

CellTiter‐Glo®	Luminescent	Cell	
Viability	Assay	 	

G7570	 Promega,	Madison,	USA	

Collagen	Assay	‐	SircolTM		 S1111	 Biocolor,	Carrickfergus,	UK	
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DC	Protein	Assay		
(Western	Blot)	

500‐0116	 Bio‐Rad	Laboratories,	München,	
DE	

DCS	Super	Vision	2	HRP‐Polymer‐
Kit	

PD000KIT	 DCS	Innovative	Diagnostik‐
Systeme,	Hamburg,	DE	

DNeasy	Blood	&	Tissue	Kit	 69504	 Qiagen,	Hilden,	DE	

Elastin	Assay	‐	Fastin™	 F2000	 Biocolor,	Carrickfergus,	UK	

GDF‐8/Myostatin	Immunoassay	
Quantikine®	ELISA	

DGDF80	 R&D	Systems,	Minneapolis,	USA	

Gel	Extraction	Kit	 28704	 Qiagen,	Hilden,	DE	

Glycosaminoglycan	Assay	‐	
Blyscan™	

B1000	 Biocolor,	Carrickfergus,	UK	

Insulin	ELISA	 10‐1200‐01	 Mercodia,	Uppsala,	SE	

KAPA	HiFi	PCR	Kit	 KR0368	 KAPA	biosystems,	Wilmington,	
USA	

PCR	Purification	Kit	 28104	
28004	

Qiagen,	Hilden,	DE	

Plasmid	Miniprep	Kit	 27104	 Qiagen,	Hilden,	DE	

Quant‐iT™	PicoGreen®	dsDNA	
Reagenz		

P7589	 Invitrogen,	Carlsbad,	USA	

Total	Bile	Acids	Enzyme	Cycling	
Method	kit	

DZ042A	 Diazyme,	Poway,	USA	

WesternBright	
Chemiluminescence	substrat	
Quantum	

541015	 Biozym,	Hessisch	Oldendorf,	DE	

	

	

2.6	Lentiviral	expression	systems	

Table	8.	Lentiviral	expression	vectors.	

Plasmid	 Vector	type	 Marker	 Catalog	no.	 Manufacturer	

pCDH‐CMV‐MCS‐
EF1‐Puro	

Cloning	and	
Expression		

Puro	 CD510B‐1‐SBI	 BioCat	GmbH,	
Heidelberg,	DE	

pCDH‐CMV‐MCS‐
EF1‐GFP‐T2A‐Puro	

Cloning	and	
Expression		

GFP	+	Puro	 CD513B‐1‐SBI	 BioCat	GmbH,	
Heidelberg,	DE	
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psPAX2	 Packaging		 	 12260	 Addgene,	
Cambridge,	USA	

pMD2.G	 Envelope		 	 12259	 Addgene,	
Cambridge,	USA	

	

	

2.7	Oligonucleotides	

Table	9.	PCR	primer	oligonucleotides	employed	for	cloning.	

Gene	 NCBI	RefSeq	 Primer	sequence	 Inserted	

digestion	

site	

Transcript	

size	[bp]	

Melting	

Temp.	

[°C]	

hMSTN	 NM_005259.2	 ggagaatctagacatgcaaaa
actgcaactctg		

gagagagaattcaggggaaa
accttccatgtt	

	

XbaI	

	

EcoRI	

1,127	 60	

hINHBA	 NM_002192	 ggagaatctagagcagggcct
tttaaaaaggc	

gaaggagaattcgacaactct
tgctccctttc	

XbaI	

	

EcoRI	

1,280	 60	

	

	

2.8	Antibodies	

Table	10.	Primary	antibodies	employed	for	immunohistological	staining.	

Antigene		 Host		 Clone		 Concentra

tion		

Manufacturer		 Isotype		

aSMA	 mouse	 1A4	 1	µg/ml	 Abcam,	Cambridge,	UK	 IgG2a	

Caspase‐3,	
activated	

rabbit	 polyclonal	 2	µg/ml	 Abcam,	Cambridge,	UK	 Serum		

CD31	 mouse	 JC70A	 35	ng/ml	 DakoCytomation,	
Glostrup,	DK	

IgG1	



2.	Materials	
	

31	
	

CD31	 mouse	 P2B1	 1	µg/ml	 Abcam,	Cambridge,	UK		 IgG1	

CD90	 rabbit	 YG031111
C	

1:250	 Abcam,	Cambridge,	UK	 IgG	

CK18	 mouse	 C‐04	 200	ng/ml	 Abcam,	Cambridge,	UK	 IgG1	

Glucagon		 rabbit	 EP3070	 1:1000	 Abcam,	Cambridge,	UK	 IgG	

Insulin	 Guinea	
Pig	

polyclonal	 1:100	 DakoCytomation,	
Glostrup,	DK	

	

Ki67		 rabbit	 SP6	 1:100	 Abcam,	Cambridge,	UK	 IgG	

NG2		 mouse	 HMB45	 1:100	 Abcam,	Cambridge,	UK	 IgG1	

vWF	 mouse	 F8/86	 100	ng/ml	 DakoCytomation,	
Glostrup,	DK	

IgG1	

vWF	 rabbit	 polyclonal	 1:100	 Abcam,	Cambridge,	UK	 IgG	

	

	

Table	11.	Secondary	antibodies	employed	for	immunohistological	staining.	

Antigene		 Dye		 Host		 Dilution		 Manufacturer		

Mouse		 Alexa	Fluor	488	 Donkey		 1:400	 ThermoFisher	Scientific	
GmbH,	DE	

Rabbit		 Alexa	Fluor	488	 Donkey	 1:400	 Invitrogen,	Darmstadt,	DE	

Guinea	Pig	 Alexa	Fluor	488	 Goat		 1:400	 Invitrogen,	Darmstadt,	DE	

Mouse		 Alexa	Fluor	555	 Donkey		 1:400	 Invitrogen,	Darmstadt,	DE	

Rabbit		 Alexa	Fluor	555	 Donkey	 1:400	 Invitrogen,	Darmstadt,	DE	

Mouse		 Alexa	Fluor	647	 Donkey		 1:400	 Invitrogen,	Darmstadt,	DE	

Rabbit		 Alexa	Fluor	647	 Donkey	 1:400	 Invitrogen,	Darmstadt,	DE	

	

	

2.9	Software	

Table	12.	Software	employed.		

Software		 Developer		

Bio‐Rad	CFX	Manager	 Bio‐Rad	Laboratories,	München,	DE	

Clone	Manager	6		 Sci‐Ed	Software,	Denver,	USA	
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Image	J	 Wayne	Rasband,	NIH,	USA	

Imaris		 Bitplane,	Zurich,	CH	

Keyence	BZ	II	Analyzer	
Keyence	BZ	II	Viewer	

KEYENCE,	Neu‐Isenburg,	DE	

Origin	 OriginLab,	Northampton,	USA	

Visio	 Microsoft	Corporation,	Redmond,	USA	

	

	 	



3.	Methods	
	

33	
	

3.	METHODS	

3.1	Murine	intestinal	tissue	preparation	

3.1.1	Scaffold	explantation		

The	 abdominal	 wall	 was	 disinfected	 and	 cut	 open	 by	 a	 median	 laparotomy	 (Fig.	 4).	

The	intestine	 was	 set	 aside	 at	 first	 to	 expose	 the	 mesenterica	 superior,	 the	 vessels	

supplying	 duodenum,	 jejunum,	 and	 ilium.	 Vessels	were	 uncovered	 carefully	 removing	

adjacent	lymph	nodes	and	possible	fat	and	connective	tissue	to	facilitate	cannulation	with	

a	24	gauge	catheter.	Arteria	mesenterica	superior	and	vena	mesenterica	superior	were	

individually	 cannulated	 and	 the	 cannulas	 fixed	 with	 a	 surgical	 thread	 to	 prevent	

dislocation.	Heparin	(100	IE/kg)	was	administrated	into	the	feeding	artery	via	the	placed	

cannula	and	flushed	through	the	intestinal	vascular	tree.	Flow	and	blood	clearance	was	

monitored	 visually.	 A	 flushed	 5	 to	 10	 cm	 long	 jejunal	 segment	 was	 chosen	 for	

explantation.	 Redundant	 adjacent	 vessels	were	 ligated	 to	 allow	 flow	 only	 through	 the	

isolated	segment.	The	segment	was	additionally	flushed	with	PBS.	Venous	return	affirmed	

full	circulation.	Subsequently,	the	ligated	segment	with	its	cannulated	feeding	artery	and	

draining	vein	was	resected	and	extracted.	Another	washing	step	assured	integrity,	proper	

explantation	of	the	segment,	and	flushed	residual	blood	inside	the	vasculature.	Finally,	the	

intestinal	 lumen	was	cleared	off	feces.	The	resulting	scaffold	appeared	clean	but	fleshy	

due	to	the	dense	native	connective	tissue.	The	specimen	were	stored	at	4	°C	until	further	

processing.	

	

3.1.2	Decellularization		

The	explanted	scaffold	was	decellularized	with	a	modified	protocol	based	on	a	previously	

described	 method116,117.	 Both,	 the	 intestinal	 lumen	 and	 the	 vascular	 tree	 were	

continuously	perfused	for	detergent	delivery	and	mechanical	removal	of	cellular	debris	

using	a	roller	pump	at	a	turnover	of	1	rpm	equivalent	to	0.6	ml/h.	For	decellularization	

the	scaffold	was	successively	perfused	with	deionized	water	4	°C	for	24	h,	 followed	by	

perfusion	with	4	%	sodium	deoxycholate	at	RT	for	4	h,	and	finally	with	1	mg/ml	DNase‐I	

and	1	%	P/S	in	PBS+	at	37	°C	for	3	h.	Every	step	was	followed	by	a	30	min	PBS	wash	with	
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a	final	washing	step	over	night	at	4	°C.	After	treatment	the	scaffolds	were	sterilized	by	

25	kGy	gamma‐irradiation	and	stored	in	PBS	at	4	°C.		

	

3.1.3	Bile	acid	evaluation		

Following	the	Total	Bile	Acids	kit	protocol,	180	µl	reagent	1	were	rendered	per	well	into	

a	96	well	plate.	2.7	µl	of	each,	sample,	control,	and	calibrator,	were	added.	After	3	min	of	

incubation	at	37	°C	samples	a	blank	value	was	set	at	405	nm.	Thereafter,	60	µl	of	reagent	2	

were	added	and	further	incubated	at	37	°C	with	bile	acid	values	to	be	determined	after	

60	and	120	s.	The	difference	between	the	120	and	60	s	value	was	incorporated	into	the	

calculation	for	the	total	bile	and	deoxycholic	acid	concentration:		

.ܿ݊݋ܿ ൌ
݈݁݌݉ܽݏ∆ െ ∆ܾ݈ܽ݊݇

ݎ݋ݐܽݎܾ݈݅ܽܿ∆ െ ∆ܾ݈ܽ݊݇
∗ 50	μܯ	

	

3.1.4	Biocompatibility	assay	

Biocompatibility	of	the	acellular	mBioVaSc‐TERM®	was	performed	in	compliance	with	

DIN	 EN	 ISO	 10993‐5	 for	 medicinal	 products.	 The	 acellular	 scaffold	 was	 incubated	 in	

1	ml	cell	culture	medium	per	3	cm2	for	72	h	at	37	°C	on	a	rocking	shaker.	Pure	cell	culture	

medium	incubated	alongside	served	as	control.	Meanwhile,	about	20,000	target	cells	were	

cultured	 for	24	h	 in	a	96	well	 format.	Culture	medium	was	discarded	on	 the	cells	and	

replaced	 by	 the	 incubated	 culture	 media,	 fresh	 culture	 medium,	 1%	 SDS,	 as	 well	 as	

4	%	sodium	deoxycholate	and	incubated	for	another	24	h.	Cell	viability	was	determined	

adding	20	µl	CellTiter	96®	AQueous	One	Solution	Reagent	onto	100	µl	of	fresh	culture	

medium.	The	120	µl	mix	replaced	the	culture	medium	on	the	cells	and	was	incubated	for	

1h	at	37	°C.	Absorbance	was	recorded	at	490nm	using	a	96‐well	plate	reader.		

	

3.1.5	DNA	purification	from	tissue	

Up	 to	 25	mg	 tissue	was	 cut	 into	 pieces	 and	 combined	with	 180	 µl	 of	 ATL	 buffer	 and	

20	µl	proteinase	K	solution	in	a	microcentrifuge	tube.	Until	 thorough	lysis	the	mix	was	

incubated	 at	 56	°C	 on	 a	 shaking	 heating	 block	 and	 vortexed	 occasionally.	 Then,	

200	µl	buffer	AL	and	200	µl	96	%	ethanol	were	added	and	vortexed	each	time.	The	mixture	
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was	transferred	into	a	DNeasy	spin	column	and	centrifuged	over	6,000	rcf	for	1	min.	The	

flow	 through	was	 discarded,	 500	 µl	 of	 AW1	 solution	were	 added	 to	 the	 column,	 and	

centrifuged	for	1	min	at	over	6,000	rcf.	The	flow	through	was	again	discarded,	500	µl	of	

AW2	solution	were	added	to	the	column,	and	centrifuged	for	2	min	at	20,000	rcf.	For	DNA	

elution,	the	flow	through	was	discarded,	200	µl	buffer	AE	were	pipetted	directly	onto	the	

membrane	of	the	column,	and	centrifuged	for	1	min	at	over	6,000	rcf.		

	

3.1.6	Graft	implantation	

Surgical	 implantations	of	 the	mBioVaSc‐TERM®	were	conducted	by	Dr.	 Johannes	Baur	

(Department	 of	 General,	 Visceral,	 Vascular	 and	 Pediatric	 Surgery,	 University	 Hospital	

Würzburg,	Würzburg,	DE).	For	graft	implantation	into	the	regio	abdominalis,	female	NIH‐

Foxn1nu	rats	were	employed.	During	the	procedure,	general	anesthesia	was	induced	by	

continuous	 isoflurane	 inhalation‐anesthesia	with	subcutaneous	preoperative	carprofen	

analgesia	of	5	mg/kg.	The	abdominal	cavity	was	opened	by	a	median	laparotomy	(Fig.	14).	

The	infrarenal	aorta	abdominalis	and	the	infrahepatic	vena	cava	were	dissected	from	fat	

and	connective	tissue.	After	clamping	the	vessels	proximal	and	distal,	an	incision	of	about	

3	mm	was	cut	into	the	vessels	for	the	subsequent	anastomosis	of	the	mBioVaSc‐TERM®	

onto	the	host	circulation.	The	mBioVaSc‐TERM®	arterial	vessel	was	anastomosed	side‐

to‐end	to	the	aorta	abdominalis	and	the	scaffolds	vein	to	the	vena	cava.	After	examination	

of	 the	 patency	 of	 the	 anastomosis	 and	 the	 pervading	 of	 the	 scaffold	 with	 blood	 the	

abdominal	cavity	was	closed	occluding	the	abdominal	musculature	and	closure	of	the	skin	

with	 sutures.	 After	 surgical	 intervention,	 carprofen	 was	 administered	 as	 well	 as	 the	

following	three	days.	

	

3.1.7	Animal	stress	scoring		

Animals	were	monitored	 on	 a	 daily	 basis	 upon	 indications	 of	 general	 condition,	 body	

weight,	 posture,	 overall	 social	 behavior,	 and	 in	 case	of	 doubt	 clinical	 indications	were	

examined.	Dependent	on	the	score,	the	experiments	were	executed	as	planned	or	stopped	

prematurely	to	minimize	harm	for	the	animal.			
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Table	13.	Score	sheet.	

	 Score	

Criteria		 0	 1	 2	 3	

Bodyweight	 Unaffected		
or	gain	

Loss	between		
5	and	10	%	

Loss	between	10	
and	20	%	

Loss	above		
20	%	

General	
condition	

Clean	orifices	
and	eyes	

Lightly	
encrusted	
orifices	or	eyes	

Unnatural	
posture,	
encrusted	
orifices	or	eyes	

Paralysis,	
breathing	
difficulties	

Behavior		 Typical	behavior		 Increased	rest	 Lethargy	 Apathy		

Clinical	
indication	

Typical	body	
temperature,	
breathing,	and	
pulse		

Slightly	
Increased	
respiratory	rate	

Irregular	
respiratory	rate	

Strongly	
reduced	feeding	
and	water	
uptake,	animal	
feels	cold		

Actions	to	
undertake	

Nothing		 Thorough		
observation	

If	one	criterion	
persists	for	
more	than	two	
days	or	two	
criteria	appear	
at	the	same	
time:	
termination		

Termination		

	

	

3.2	Cell	culture		

3.2.1	Cell	culture	conditions	

If	not	otherwise	stated	cells	were	maintained	in	a	controlled	humidified	incubator	at	37	°C	

with	5	%	CO2	in	cell	specific	culture	medium.		

	

3.2.2	Primary	dermal	microvascular	endothelial	cell	isolation		

Skin	 biopsies	 from	 human	 prepuce	 were	 washed	 with	 PBS	 and	 redundant	 fat	 and	

connective	tissue	was	removed.	The	tissue	was	then	cut	into	strips	of	2	to	3	mm	width	and	

incubated	in	dispase	o/n	at	4	°C.	For	the	isolation	of	microvascular	endothelial	cells	from	
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the	dermis	the	epidermal	part	of	the	skin	was	detached	with	forceps.	The	dermal	strips	

were	washed	with	Versene	and	then	incubated	for	40	min	at	37	°C	in	trypsin/EDTA.	The	

enzymatic	reaction	was	stopped	by	adding	of	1	%	FCS	to	the	volume	and	the	strips	were	

transferred	into	pre‐warmed	Vasculife	medium.	Each	dermal	strip	was	scratched	eight	

times	with	light	pressure	with	a	scalpel	to	isolate	the	ECs	therefrom.	The	cell	suspension	

was	transferred	into	a	cell	strainer	and	subsequently	centrifuged	for	5	min	at	1,200	rpm.	

Cells	were	seeded	in	a	density	of	1*104	cells/cm2.	Medium	was	exchanged	every	third	or	

fourth	day.	 To	 eliminate	 fibroblasts	 from	 the	 isolated	ECs	Vasculife	was	 removed	 and	

replaced	by	Versene	incubating	for	4	to	10	min	until	fibroblasts	were	detached.		

	

3.2.3	Primary	dermal	fibroblast	cell	isolation		

For	 fibroblast	 isolation	 skin	 biopsies	 from	 human	 prepuce	 were	 treated	 similarly	 to	

EC	isolation.	Briefly,	dermis	and	epidermis	were	cut	in	stripes,	separated	from	each	other	

and	if	desired	ECs	enzymatically	and	mechanically	detached	from	the	dermal	part.	The	

dermis	was	further	cut	into	3x3	mm	cubic	pieces	and	incubated	in	collagenase	solution	

for	45	min	at	37	°C.	The	pellet	was	washed	twice	by	centrifugation	at	1,200	rpm	for	5	min	

in	cell	culture	medium.	Finally,	the	dermal	pieces	were	transferred	and	dispersed	in	a	cell	

culture	flask	with	cell	culture	medium.	The	medium	level	should	not	allow	for	the	tissues	

to	detach	 from	the	 flask	to	allow	cell	outgrowth.	After	5	d	cells	were	grown	out	of	 the	

tissue	and	the	skin	pieces	were	washed	out	of	the	flask	for	subsequent	cell	culture.		

	

3.2.4	Cell	count	and	cellular	vitality		

An	 aliquot	 of	 a	 cell	 suspension	 was	 mixed	 with	 trypan	 blue	 and	 about	 10	 µl	 of	 the	

suspension	 were	 transferred	 into	 a	 Neubauer	 chamber.	 Placed	 under	 a	 microscope,	

in	each	of	the	four	big	squares	white	appearing	living	cells	and	the	dead	cells	appearing	

blue	were	counted.	Determining	cell	number	per	ml,	 the	mean	of	all	 four	square	were	

calculated,	multiplied	by	 the	dilution	 factor	of	 the	original	cell	 suspension	with	 trypan	

blue,	as	well	as	multiplied	with	the	volume	of	the	chamber:	

݊݋݅ݏ݊݁݌ݏݑݏ	݈݈݁ܿ	݈݉	ݎ݁݌	ݐ݊ݑ݋ܿ	݈݈݁ܿ ൌ ݏ݈݈݁ܿ	݃݊݅ݒ݈݅	݂݋	݊ܽ݁݉ ∗ ݎ݋ݐ݂ܿܽ	݊݋݅ݐݑ݈݅݀ ∗ 10,000	

Relative	cellular	vitality	results	from	the	amount	of	living	cells	compared	to	dead	cells:	
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ሾ%ሿݕݐ݈݅ܽݐ݅ݒ ൌ
ݏ݈݈݁ܿ	݃݊݅ݒ݈݅	݂݋	ݐ݊ݑ݋݉ܽ
ݏ݈݈݁ܿ	݀ܽ݁݀	݂݋	ݐ݊ݑ݋݉ܽ

∗ 100	

	

3.2.5	Passaging	of	adherent	cells	

Cells	cultured	adherent	were	washed	with	PBS‐	before	Trypsin/EDTA	incubation	at	37	°C	

for	up	to	5	min	until	cells	have	detached.	Detachment	can	microscopically	be	controlled	

upon	their	morphology.	After	all	cells	have	detached,	enzymatic	reaction	was	stopped	by	

addition	of	10	%	FCS	to	the	total	volume.	Cell	suspension	was	centrifuged	to	form	a	pellet	

and	subsequently	resuspended	 in	 fresh	cell	culture	medium,	counted,	and	subcultured	

into	a	new	cell	culture	flask	in	desired	concentration.		

	

3.2.6	Freezing	of	cells	

Cells	 were	 detached	 from	 adherent	 culture,	 counted,	 and	 cell	 suspension	 adjusted	 to	

about	1*106	cells/ml	of	fresh	cell	culture	medium	supplemented	with	10	to	20	%	FCS	and	

10	 %	 DMSO	 serving	 as	 cryoprotectant.	 Finally,	 the	 suspension	 was	 transferred	 into	

cryotubes,	placed	into	Mr.	Frosty,	which	in	turn	was	stored	at	‐80	°C	o/n.	For	long	term	

storage,	the	cryo‐vials	were	transferred	into	a	liquid	nitrogen	tank.		

	

3.2.7	Thawing	of	cells	

Frozen	cells	were	transferred	into	a	37	°C	prewarmed	water	bath.	Thawn	cell	suspension	

was	transferred	into	prewarmed	cell	culture	medium,	centrifuged	for	5	min	at	1,200	rpm	

if	not	recommended	otherwise,	resuspended	in	fresh	prewarmed	cell	culture	medium	to	

replace	 the	cell	 toxic	DMSO	supplemented	medium,	and	 transferred	 into	a	 cell	 culture	

flask.		

	

3.2.8	Liver‐like	organoid	formation	

Liver‐like	organoid	formation	was	performed	as	previously	described	by	Ramachandran	

et	 al.118.	 Hepatocytes,	 liver	 sinusoidal	 endothelial	 cells119	 and	 bone	 marrow‐derived	

mesenchymal	stem	cells	were	cultured	in	upcyte®	Hepatocyte	Growth	Medium,	upcyte®	
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LSEC	Medium	and	MSCGM™	Mesenchymal	Stem	Cell	Growth	Medium,	respectively.	For	

liver	organoid	formation,	cells	were	mixed	in	liver	organoid	growth	medium,	and	cultured	

on	Matrigel™‐coated	plates	until	 the	 formation	of	 liver	 organoids	by	 self‐organization.	

After	3	d	in	culture,	the	spheroidal	organoids	were	carefully	transferred	from	the	matrigel	

culture	 placed	 inside	 the	 revascularized	 lumen	 to	 be	 integrated	 and	 supplied	 by	 the	

mBioVaSc‐TERM®.		

	

3.2.9	Viability	assay	via	membrane	leakage		

Dilution	of	1	µl	of	0.5	mg/ml	FDA	as	well	as	9	µl	of	0.05	mg/ml	PI	in	990	ml	PBS‐.	FDA/PI	

solution	was	added	to	cells	and	fluorescence	was	examined	after	10	s	with	an	appropriate	

microscope	within	30	min	before	cells	become	impaired	by	the	cytotoxic	solution.	Non‐

fluorescent	fluoresceindiacetate	was	examined	when	converted	to	fluorescein	by	living	

cells	with	 an	 excitation	wavelength	 of	 467	 to	 498	 nm	 and	 an	 emission	wavelength	 of	

513	to	556	nm.	Propidiumiodide,	on	the	other	hand,	was	examined	when	entered	the	cells	

via	damaged	cell	membranes	and	bound	to	nucleic	acids	with	an	excitation	wavelength	of	

542	to	582	nm	and	an	emission	wavelength	of	604	to	644	nm.	

	

3.2.10	Viability	assay	via	mitochondrial	reductase	activity	

For	 qualitative	 analysis,	 MTT	 reagent	 was	 diluted	 to	 1	mg/ml	 with	 fresh	 cell	 culture	

medium.	The	solution	was	added	to	the	cells	and	incubated	for	90	min	under	cell	culture	

conditions.	When	the	tetrazolium	dye	MTT	was	reduced	to	purple	insoluble	formazan,	the	

solution	was	discarded	and	the	cells	washed	with	PBS+	before	photo‐documentation.		

For	quantitative	determination	3	mg	MTT	/ml	purified	water	was	diluted	further	1:1	with	

fresh	cell	culture	medium.	Onto	cultured	cells,	medium	was	replaced	by	250	µl	of	MTT	

solution	in	a	96	well	and	incubated	for	4	h	under	cell	culture	conditions	to	allow	reduction	

of	 MTT	 to	 insoluble	 formazan	 and	 its	 intracellular	 deposition.	 The	 solution	was	 then	

discarded	and	200	µl	DMSO	with	25	µl	glycine	buffer	(0.1	M	glycine,	0.1	M	NaCl,	pH	10.5)	

were	 added	 per	well	 to	 solubilize	 the	 purple	 formazan.	 Absorbance	was	 examined	 at	

570	nm.		
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3.2.11	Viability	assay	via	mitochondrial	dehydrogenase	activity	

Culture	medium	on	cells,	typically	5*103	per	96	well	as	guiding	value	in	200	µl	cell	culture	

medium,	was	replaced	by	200µl	of	test‐media,	fresh	culture	medium	serving	as	negative	

control,	and	culture	medium	with	1	%	SDS	as	positive	control.	After	24	h	incubation	at	

37	°C	and	5	%	CO2	all	media	were	replaced	by	200	µl	of	a	WST‐1	solution	diluted	1:10	in	

PBS+	 and	 kept	 in	 the	 incubator	 for	 1	 h	 until	 analysis.	 Absorbance	was	 determined	 at	

450	nm	with	reference	wavelength	of	620	nm	after	shaken	for	1	min.		

	

3.2.12	Viability	assay	via	quantification	of	cellular	ATP		

Cells	were	cultured	in	a	96	well	plate	until	confluency.	Cells	were	washed	with	PBS+	and	

subsequently	100	µl	 fresh	 culture	medium	were	added	as	well	 as	100	µl	CellTiter	Glo	

reagent.	The	Tecan	luminescence	reader	allowed	for	shaking	the	culture	plate	for	2	min,	

and	 subsequent	 incubation	 in	 the	dark	 for	10	min	before	 luminescence	determination	

using	an	integration	time	of	1	s,	with	the	luminescent	signal	directly	proportional	to	the	

intracellular	ATP.		

	

3.2.13	Graft	vascularization		

For	revascularization,	detached	ECs	were	successively	injected	through	the	arterial	and	

venous	 cannulas	 into	 the	 vascular	 tree	 of	 the	 scaffold.	 Allowing	 cell	 adherence	 to	 the	

vascular	 walls,	 infusion	 was	 followed	 by	 a	 1	 h	 static	 incubation	 until	 a	 subsequent	

injection	into	both	vessels	and	another	1	h	static	incubation.	Dependent	on	scaffold	size,	

0.5	 to	 1	ml	 of	 a	 1x106	 cells/ml	 EC	 suspension	 was	 introduced	 per	 injection	 with	 an	

infusion	rate	of	4	ml/min.	To	allow	maturation	and	functional	 lining	of	 the	endothelial	

barrier	 on	 the	 vascular	 bed	 the	 scaffold	 was	 connected	 to	 a	 bioreactor	 in	 which	 the	

vascular	 system	 was	 perfused	 dynamically	 mimicking	 physiological	 blood	 pressure.	

For	standardization	 and	 reproducibility	 the	 perfusion	 in	 the	 bioreactor	was	 computer	

controlled.	Temperature,	CO2	concentration	and	pressure	were	monitored	and	adjusted	

as	well	as	the	dynamic	perfusion	was	controlled	in	order	to	achieve	physiological	blood	

circulating	conditions.		
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3.2.14	Bioreactor	setup	

Glass	cannulas	were	fixed	in	a	glass	reactor	and	connected	via	tubes	with	glass	bottles	

storing	culture	medium	and	serving	as	pressure	compensation.	Both	glass	bottles	were	

interconnected	via	two	tubing	systems.	One	of	them	allowing	media	flow	via	a	peristaltic	

pump,	the	other	one	clamped	serving	as	bypass.	The	pressure	compensation	bottle	was	

connected	 to	 the	 arterial	 inflow	with	 a	 pressure	 dome	 to	 sensor	 the	 inflow	 pressure	

(represented	by	the	scheme	in	Fig.	7C).		

	

3.3	Histological	staining		

3.3.1	Fixation	and	paraffin	embedding	

Samples	 were	 fixed	 in	 4	 %	 PFA	 for	 2	 h	 and	 subsequently	 placed	 in	 cassettes	 for	

dehydration	and	embedding	in	paraffin	as	described	in	table	14.		

Table	14.	Paraffin	embedding.	

Reagent	incubation	 Time	[h]	

Tap	water	 2	

Ethanol	50	%	 1	to	o/n	

Ethanol	70	%	 1	

Ethanol	90	%	 1	

Ethanol	96	%	 1	

Isopropanol	 1	

Isopropanol	 1	

Isopropanol/	Xylene	1:2	 1	

Xylene	 1	

Xylene	 1	

paraffin	 o/n	

paraffin	 o/n	
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3.3.2	De‐wax	and	rehydration	

Microtome	sections	of	paraffin	embedded	samples	on	glass	slides	were	stored	for	1	h	at	

60	°C	until	paraffin	was	melted.	To	de‐wax	the	samples	 they	were	 incubated	 in	xylene	

twice	for	10	min	each.	For	rehydration	of	the	samples,	they	passed	through	a	descending	

alcohol	series	ranging	from	96	%	ethanol,	to	80	%,	to	70	%,	to	50	%	dipped	in	three	times	

until	arriving	in	purified	water.		

	

3.3.3	Haematoxylin	and	eosin	(H&E)	stain	

Microtome	sections	of	paraffin	embedded	samples	were	de‐waxed	and	rehydrated.	Stain	

was	conducted	as	described	in	table	15.	

Table	15.	Haematoxylin	and	eosin	(H&E)	stain.	

Reagent	incubation	 Time	[min]	

Haematoxylin	according	to	Mayer	 6	

Purified	water	 Gently	flowing	until	no	more	dye	washed	off	

Tap	water	 5	

Eosin		 6	

Purified	water	 Gently	flowing	until	no	more	dye	washed	off	

Ethanol	70	%	 Dip	in	twice	

Ethanol	96	%	 2	

Isopropanol	 5	

Isopropanol	 5	

Xylene	 5	

Xylene	 5	

Entellan®	mounting	 	

	

Haematoxylin	stained	the	nuclei	blue	by	binding	of	the	dye‐metal	complex	to	basophilic	

DNA.	Most	positively	charged	intracellular	and	extracellular	proteins	were	stained	red	or	

pink	by	eosin.		
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3.3.4	Feulgen	stain	

Sodium	 disulfite	 washing	 solution	 was	 prepared	 as	 followed:	 95	 ml	 purified	 water,	

5	ml	sodium	disulfite,	and	1	ml	HCl.	Samples	were	prepared	by	common	de‐paraffination	

and	successively	rehydrated.	Stain	was	conducted	as	described	in	table	16.	

Table	16.	Feulgen	stain.	

Reagent	incubation	 Time	[min]	

Tap	water	 10	

HCl	 50	

Purified	water	 2	

Purified	water	 2	

Schiffs	reagent	 60	

Sodium	disulfite	washing	 3	

Sodium	disulfite	washing	 3	

Purified	water	 2	

Purified	water	 2	

Ethanol	50	%	 1	

Ethanol	70	%	 1	

Ethanol	80	%	 1	

Ethanol	99	%	 1	

Xylene	 1	

Entellan®	mounting	 	

	

DNA	 and	 other	 chromosomal	 material	 was	 semi‐quantitatively	 stained	 red.	

The	background	can	be	counterstained	if	desired	but	was	unstained	otherwise.		

	

3.3.5	Elastica	van	Gieson	stain	

Samples	 were	 prepared	 by	 common	 de‐wax	 and	 successively	 rehydrated.	 Stain	 was	

conducted	as	described	in	table	17.	
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Table	17.	Elastica	mit	van	Gieson	stain.	

Reagent	incubation	 Time	[min]	

Haematoxylin	according	to	Weigert	 15	

Tap	water		 5	

picric	fuchsine	solution		 2	

Purified	water	 Gently	flowing	until	no	more	dye	washed	off	

Ethanol	70	%	 Dipping	in	three	times	

Ethanol	96	%	 5	

Isopropanol	 5	

Xylene	 5	

Xylene	 5	

Entellan®	mounting	 	

	

Nuclei	were	stained	dark	brown,	elastic	fibers	red	to	dark	violet.		

	

3.3.6	Trichrome	stain	according	to	Masson	Goldner	

Microtome	 sections	 of	 paraffin	 embedded	 samples	 were	 de‐waxed	 and	 rehydrated.	

Staining	was	conducted	as	described	in	table	18.	

Table	18.	Trichrome	stain	according	to	Masson	Goldner.	

Reagent	incubation	 Time	[min]	

Haematoxylin	according	to	Weigert	 5	

Purified	water	 0.1	

Tap	water		 8,	flowing	

Acid	fuchsine	Ponceau	 4	

Acidic	acid	1	%	 0.1	

Orange	G	 5	

Acidic	acid	1	%	 0.1	

Lightgreen	Goldner	III	 6	

Acidic	acid	1	%	 0.1	



3.	Methods	
	

45	
	

Tap	water	 1,	flowing	

Ethanol	96	%	 2	

Ethanol	96	%	 2	

Isopropanol	 2	

Xylene	 5	

Xylene	 5	

Entellan®	mounting	 	

	

Haematoxylin	 stains	 the	 nuclei	 blue	 by	 binding	 of	 the	 dye‐metal	 complex	 to	

basophilic	DNA.	 Acid	 fuchsin	 Ponceau	 stained	 the	 cytoplasm	 red.	 Lightgreen	 stained	

collagen	fibers	of	the	connective	tissue	green.		

	

3.3.7	Immunohistochemistry		

10x	Citrate	buffer	was	prepared	by	dissolving	42	g/l	citric	acid	monohydrate	into	purified	

water.	 pH	 was	 adjusted	 to	 6.0	 with	 5	 M	 NaOH.	 Washing	 buffer	 was	 prepared	 with	

0.5	%	Tween‐20	 in	 PBS.	 Paraffin	 sections	were	 de‐waxed	 and	 rehydrated.	 Thereafter,	

antigen	epitopes	were	heat‐induced	demasked	in	1x	citrate	buffer	at	100	°C	for	20	min.	

In	case	of	intracellular	antigens	cells	were	additionally	permeabilized	with	0.3	%	Triton‐

X100	in	PBS	for	10	min.	Intracellular	peroxidase	was	blocked	by	incubation	with	3	%	H2O2	

in	purified	water	 for	10	min	and	washed	 for	5	min	 thereafter.	Unspecific	binding	was	

blocked	by	5	%	BSA	in	antibody	dilution	solution	during	at	least	30	min.	Primary	antibody	

was	incubated	o/n	at	4	°C.	Before	and	after	10	min	polymer	enhancer	incubation	at	RT	

samples	were	washed	three	times	5	min	in	washing	buffer.	HRP	polymer	was	incubated	

for	20	min	at	RT	and	washed	afterwards	three	times	5	min.	DAB	solution	was	incubated	

for	 about	 5	 min	 until	 staining.	 Slides	 were	 transferred	 into	 washing	 buffer,	 then	

counterstained	in	haemalaun	for	30	to	45	s	and	tap	water	for	60	to	90	s.	Transferred	in	

purified	water,	the	samples	were	successively	dehydrated	as	described	in	table	19.	
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Table	19.	Dehydration.	

Reagent	incubation	 Time	[min]	

Ethanol	70	%	 Dipping	inside	twice	

Ethanol	96	%	 2	

Isopropanol		 2	

Xylene	 3	

Xylene	 3	

Entellan®	mounting	 	

	

	

3.3.8	Immunofluorescence	(IF)	

Paraffin	sections	were	de‐waxed	and	rehydrated.	Thereafter,	antigen	epitopes	were	heat‐

induced	demasked	in	citrate	buffer	at	100	°C	for	20	min.	In	case	of	intracellular	antigens	

cells	 were	 additionally	 permeabilized	 with	 0.3	 %	 Triton‐X100	 in	 PBS	 for	 10	 min.	

Unspecific	binding	was	blocked	by	5	%	BSA	in	antibody	dilution	solution	during	at	least	

30	min.	 Primary	 antibody	was	 incubated	 o/n	 at	 4	 °C.	 Before	 and	 after	 1	 h	 secondary	

antibody	 incubation	at	RT	samples	were	washed	 three	 times	5	min	 in	washing	buffer.	

Samples	were	mounted	in	Fluoromount	G	+	DAPI.		

	

3.3.9	Light	sheet	fluorescence	microscopy	

Whole	 mount	 sections	 were	 fixed	 and	 stained	 by	 immunofluorescence	 as	 described	

before.	 Optical	 clearing	 for	 light	 sheet	 microscopy	 was	 performed	 by	 a	 two‐step	

process120	 involving	 a	 2	 h	 incubation	 in	 n‐hexane	 followed	 by	 three	 times	

30	min	incubation	in	a	1:3	benzyl	benzoate	/	benzyl	alcohol	solution.		

	

3.3.10	Preparation	for	transmission	electron	microscopy	

0.1	 M	 phosphate	 buffer	 was	 prepared	 using	 10.9	 g/l	 sodium	 phosphate	 dibasic,	

3.2	g/l	sodium	phosphate	monobasic,	and	pH	was	adjusted	to	7.3.	Cells	and	tissue	models	

were	 washed	 properly	 with	 PBS	 before	 fixed	 at	 4	 °C	 o/n	 in	 0.1	 M	 phosphate	 buffer,	
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4	%	PFA,	 and	 1	 %	 glutaraldehyde.	 Samples	 were	 washed	 afterwards	 three	 times	 in	

phosphate	 buffer	 for	 10	min	 each.	 Then,	 osmiumtetroxide	was	 diluted	 to	 1	 vol.‐%	 in	

phosphate	buffer	and	samples	were	incubated	for	1	h	with	subsequent	washing	steps	of	

5	min	with	phosphate	buffer	twice	and	once	5	min	with	purified	water.	After	washing,	

samples	were	successively	dehydrated	 in	30,	50,	70,	and	96	%	ethanol	 for	5	min	each	

followed	 by	 10	min	 in	 100	 %	 ethanol,	 twice.	 Then	 samples	 were	 incubated	 in	

propylenoxide	for	10	min,	twice,	and	o/n	in	a	1:1	propylenoxide/epon	mixture.	The	next	

day,	 samples	were	 incubated	 in	 epon	 for	2	h,	 then	embedded	 in	 epon.	Polymerization	

occurs	at	55	to	60	°C	during	24	to	72	h.	Ultra‐thin	sections	were	cut	and	contrasted	using	

uranyl	acetate	for	20	min	and	iron	citrate	for	7	min	followed	by	30	min	air	dry.		

	

3.4	Characterization	of	vascular	barrier	function	

3.4.1	FITC‐dextran	barrier	permeability	

A	sterile	filtered	0.25	mg/ml	FITC‐dextran	solution	in	cell	culture	medium	was	prepared	

and	prewarmed	to	37	°C.	The	culture	medium	of	the	barrier	models	was	removed	and	

replaced	with	fresh	medium	in	the	basolateral	compartment	and	with	the	FITC‐dextran	

solution	in	the	apical	compartment.	It	was	critical	to	establish	a	similar	medium	level	in	

both	compartments.	The	models	were	cultured	for	30	min	on	an	orbital	shaker	at	37°	in	

the	CO2	 incubator.	 200	µl	 of	 the	basolateral	 compartment	were	 transferred	 in	 a	 black	

96	well	 plate	 and	 analyzed	 upon	 fluorescent	 particles	 passing	 the	 barrier	 by	 a	

fluorescence	 reader	with	 an	 absorption	 of	 490	 nm	 and	 an	 emission	 of	 525	 nm.	 Fresh	

culture	medium	and	the	FITC‐dextran	solution	served	as	control.	The	cell	culture	models	

could	be	cultured	further	afterwards	with	a	full	fresh	medium	exchange.		

	

3.4.2	Trans‐endothelial	electrical	resistance	(TEER)	

For	 barrier	 model	 maintenance	 it	 is	 crucial	 that	 the	 electrode	 was	 disinfected	 with	

70	%	ethanol	for	15	min	before	application.	For	reproducible	analysis	the	Millicell®	ERS‐

2	system	was	calibrated	before	each	usage,	the	electrode	was	equilibrated	in	fresh	cell‐

specific	 culture	 medium,	 and	 culture	 medium	 of	 the	 constructs	 was	 exchanged	

beforehand.	With	the	models	placed	on	a	heating	plate	to	ensure	37	°C	the	electrodes	were	
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applied	 to	 the	 compartments	 separated	 from	 the	 cellular	 barrier	 and	 the	 electrical	

resistance	 determined.	 For	 each	 condition,	 the	 measurement	 was	 performed	 in	

triplicates.	 Cell	 free	 inserts	 served	 as	 negative	 control.	 Evaluation	of	 the	 actual	 TEER‐

value	from	the	determined	resistance	was	calculated	as:	

ሾΩ	݁ݑ݈ܽݒ	ܴܧܧܶ ∗ ܿ݉ଶሿ

ൌ ሺ݈݁݌݉ܽݏ	݁ܿ݊ܽݐݏ݅ݏ݁ݎ	ሾΩሿ െ ሾΩሿሻ	݁ܿ݊ܽݐݏ݅ݏ݁ݎ	݈ܾ݇݊ܽ ∗ 	ሾܿ݉ଶሿܽ݁ݎܽ	݁ݎݑݐ݈ݑܿ

After	measurement,	the	models	were	cultured	further	in	the	incubator.	The	electrode	was	

disinfected	in	70	%	ethanol	for	5	min.	

	

3.4.3	Intravital	microscopy		

To	 analyze	 vessel	 integrity	 and	 microvascular	 permeability	 real‐time	 fluorescence	

intravital	microscopy	was	 employed	 as	 described	 previously121.	 The	 graft	 was	 placed	

under	a	standard	inverted	microscope	and	perfused	with	carbogen‐gassed	PBS	solution	

at	 37	 °C.	 Intravital	 real‐time	 fluorescence	 was	 detected	 after	 infusion	 of	 either	 FITC‐

coupled	dextran	or	albumin	solution	in	PBS	or	blood	directly	into	the	vasculature	via	the	

arterial	 pedicle.	 For	 in	 vivo	 analysis	 the	 animal	 was	 kept	 under	 anesthesia	 while	 the	

jugular	 vein	 was	 prepared	 for	 infusion	 with	 the	 dye	 and	 the	 vascular	 perfusion	 was	

observed	under	a	fluorescence	microscope	as	described.		

	

3.4.4	LDL	uptake	

Endothelial	 cells	 incorporate	 LDL	 through	 receptor‐mediated	 endocytosis.	

To	demonstrate	the	metabolic	function	the	ECs	inside	the	vessel	structures	the	graft	was	

exposed	to	10	µg/ml	AcLDL	for	4	h	at	37°	C	by	infusing	the	solution	through	the	arterial	

pedicle	 of	 the	 vascularized	 scaffold.	 Nuclei	 were	 stained	 by	 incubation	 of	 2	 drops	 of	

NucBlue™	Live	ReadyProbes™	per	1	ml	assay	solution	for	30	min.	A	standard	fluorescence	

microscope	was	employed	for	visualization.	

	

3.4.5	Myography		

Segments	 of	 reendothelialized	 vessels	 were	 dissected	 and	 mounted	 on	 pins	 inside	 a	

myograph	 organ	 bath	 system	 to	 determine	 vascular	 contraction.	 The	 chambers	 of	 the	
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myograph	were	washed	with	distilled	water,	preheated	to	37	°C	with	 freshly	prepared	

krebs	henseleit	buffer	solution,	and	constantly	gassed	with	carbogen.	Reendothelialized	

vessels	of	the	mBioVaSc‐TERM®	were	dissected	from	surrounding	connective	tissue	and	

a	 segment	 of	 about	 3	mm	was	mounted	 on	 the	 pins	 of	 each	 chamber.	 The	 pins	were	

tightened	and	the	vessel	segments	incubated	in	the	chambers.	After	1	h	of	equilibration,	

vasodilation	was	 inhibited	 by	 3	 µM	 diclofenac	 and	 200	 µM	N‐nitro‐L‐arginine	methyl	

ester.	Vasoconstriction	was	stimulated	by	increasing	concentrations	of	0.1	µM,	1	µM	and	

10	µM	carbachol.		

	

3.5	Bacterial	culture		

3.5.1	Casting	of	agar	plates	

10	g	tryptone,	5	g	yeast	extract,	and	10	g	NaCl	were	dissolved	into	500	ml	purified	water	

provided	 in	a	volumetric	 flask	placed	on	a	magnetic	stirrer.	pH	was	set	 to	7.5	and	 the	

volume	was	stocked	with	purified	water	to	a	final	volume	of	1	l.	The	generated	LB	medium	

was	split	into	two	500	ml	bottles,	to	each	3.25	g	agar‐agar	was	added,	and	brought	for	

autoclaving	 immediately.	 Agar	 dissolved	 while	 autoclaving.	 Afterwards,	 the	 hot	

LB	medium	with	agar	was	cooled	a	little	but	while	still	liquid	cast	in	petri	dishes.	Desired	

antibiotics	were	added	right	before	casting.		

	

3.5.2	Bacteria	culture	conditions	

Bacteria	were	cultured	in	LB	medium	in	an	Erlenmeyer	flask	in	a	stirring	shaker	at	37	°C	

typically	overnight.		

	

3.5.3	Bacterial	transformation	by	heat	shock		

While	bacterial	transformation	foreign	DNA	was	introduced	into	bacteria	in	order	to	store	

and	replicate	introduced	plasmids.	Frozen	E.	coli	were	thawn	on	ice	and	100	ng	plasmid	

DNA	was	mixed	in.	In	case	of	prior	ligation,	the	whole	preparation	was	added.	After	DNA	

addition,	bacteria	and	DNA	were	incubated	on	ice	for	5	min	followed	by	a	heat	shock	for	

45	s	at	42	°C.	Afterwards,	after	another	cool	down	for	5	min	on	ice	to	allow	membrane	
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closure	800	µl	of	LB	medium	were	added	and	transformed	bacteria	cultured	at	37	°C	for	

30	to	60	min	to	allow	antibiotic	resistance	coded	on	the	plasmid	to	be	translated.	Bacteria	

were	seeded	onto	agar	plates	that	were	pre‐warmed	to	RT	and	cultured	o/n	at	37	°C	to	

grow	 cultures	 of	 bacteria	 successfully	 transformed.	 The	 following	 day	 cultures	 were	

picked	 and	 transferred	 into	 a	 liquid	 stirring	 culture	 to	 allow	 for	 bacterial	 growth	 and	

subsequent	plasmid	isolation.		

	

3.5.4	Mini	prep	

Overnight	bacterial	culture	was	harvested	by	centrifugation	at	6,000	rcf	for	15	min	at	4	°C.	

The	bacterial	pellet	was	resuspended	in	0.3	ml	buffer	P1.	0.3	ml	buffer	P2	were	added,	

mixed	by	inverting	4	to	6	times,	and	incubated	for	5	min.	0.3	ml	prechilled	Buffer	P3	were	

added,	mixed	by	inverting	4	to	6	times,	incubated	for	5	min	on	ice,	and	then	centrifuged	

for	10	min	at	14,000	to	18,000	rcf.	Meanwhile,	a	QIAGEN‐tip	20	was	equilibrated	with	

1	ml	buffer	QBT.	After	equilibration,	supernatant	was	applied	to	the	tip	and	after	flown	

through,	the	tip	was	washed	twice	with	2	ml	buffer	QC	each.	DNA	was	eluted	with	0.8	ml	

buffer	QF	and	precipitated	by	adding	0.56	ml	isopropanol	and	centrifuging	at	15,000	rcf	

for	30	min	at	4	°C.	Supernatant	was	discarded,	the	pellet	washed	with	1	ml	70	%	ethanol,	

and	 centrifuged	 at	 15,000	 rcf	 for	 10	min.	 The	 resultant	 DNA	 pellet	 was	 air	 dried	 for	

5	to	10	min	and	dissolved	in	TE	buffer.		

	

3.6	Molecular	genetics	

3.6.1	Chromosomal	DNA	determination	

A	standard	curve	was	prepared	by	serial	dilution	in	advance	ranging	from	25	pg/ml	to	

25	ng/ml	in	a	low	range	or	from	1	ng/ml	to	1	µg/ml	in	a	high	range.	100	µl	of	standard,	

blank,	 and	 samples	 were	 applied	 in	 duplicates	 into	 a	 black	 96	 well	 plate.	 To	 each,	

100	µl	pico	 green	 reagent	 was	 added	 and	 incubated	 together	 for	 2	 to	 5	 min	 while	

protected	 from	 light	 to	minimize	photobleaching.	Fluorescence	was	measured	with	an	

excitation	 of	 480	nm	 and	 emission	 of	 525	 nm.	 Quantification	 of	 DNA	 amount	 is	

determined	on	the	basis	of	the	standard	curve.		
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3.6.2	PCR	

For	 amplification	 of	 DNA	 fragments	 10	 µl	 of	 5x	 KAPA	 HiFi	 buffer	 was	 mixed	 with	

1.5	µl	10	mM	KAPA	dNTP	mix,	1.5	µl	10	µM	forward	primer,	1.5	µl	reverse	primer,	up	to	

100	ng	DNA	template,	and	1	U	KAPA	HiFi	DNA	polymerase	filled	up	to	50	µl	PCR	grade	

water.	PCR	was	performed	following	a	cycling	protocol	with	an	initial	denaturation	step	

at	95	°C	for	3	min	followed	by	15	to	30	cycles	of	20	s	denaturation	at	98	°C,	15	s	annealing	

at	60	to	75	°C	depending	on	the	primers	used,	and	15	to	60	s	per	kb	DNA	to	be	extended	

at	72	°C.	Final	extension	was	performed	at	72	°C	for	1	min	per	kb	DNA.		

	

3.6.3	DNA	purification	from	agarose	gel	or	PCR	

Excised	DNA	from	gel	after	electrophoresis	was	placed	in	microcentrifuge	tube	and	per	

10	mg	gel	10	µl	membrane	binding	solution	was	added,	vortexed	and	incubated	at	50	to	

65	°C	until	complete	dissolving	of	the	gel.		

To	PCR	amplified	DNA	 fragments	an	equal	volume	of	membrane	binding	 solution	was	

added.		

DNA	in	membrane	binding	solution	was	transferred	to	the	SV	minicolumn,	incubated	for	

1	min,	and	centrifuged	at	16,000	rcf	for	1	min	to	allow	DNA	to	bind	to	the	column.	The	

flowthrough	was	discarded.	For	washing	700	µl	wash	solution	was	centrifuged	through	

the	 column	at	16,000	 rcf	 for	1	min.	Washing	was	 repeated	with	500	µl	wash	 solution	

centrifuging	for	5	min	and	then	without	wash	solution	for	1	min	but	with	the	lid	open	to	

allow	evaporation	of	any	residual	ethanol.	DNA	was	eluted	with	50	µl	nuclease	free	water	

centrifuging	1	min	at	16,000	rcf	after	a	1	min	incubation.		

	

3.6.4	Cloning		

Cloning	allowed	the	insertion	of	properties	into	cells	such	as	drug	resistance	markers	or	

specific	protein	expression	via	DNA	insertion.	Digestion	of	DNA	from	a	plasmid	source	

with	 the	 appropriate	 restriction	 enzymes	 allowed	 DNA	 fragment	 generation	 for	

immediate	 unidirectional	 insertion	 into	 a	 vector.	 Alternatively,	 PCR	 primers	 were	

designed	with	restriction	sites	to	allow	unidirectional	cloning	into	a	vector.	Restriction	

digestion	was	performed	adding	10	units	of	restriction	enzyme,	1	µg	DNA,	and	5	µl	of	
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10x	NEBuffer	up	to	a	total	volume	of	50	µl	and	incubated	for	1	h	at	the	restriction	enzyme	

dependent	 temperature.	 Using	 fast	 digestion	 enzymes,	 a	 total	 volume	 of	 20	 µl	 was	

prepared	with	2µl	of	10x	fast	digest	buffer,	1	µg	DNA,	and	1µl	fast	digest	enzyme	incubated	

for	5	min	at	37	°C.	Vectors	were	digested	the	same	way	as	the	inserts.	To	prevent	self‐

ligation	 of	 vectors,	 dephosphorylation	 was	 performed	 using	 5	 units	 of	 Antarctic	

phosphatase	with	1	to	5	µg	of	digested	vector	DNA	in	2	µl	of	10x	buffer	in	a	total	volume	

of	20	µl	for	15	min	at	37	°C.	Reaction	was	heat	inactivated	for	5	min	at	70	°C.	Vector	and	

insert	were	purified	before	 ligation	by	 fragment	 size	 separation	 in	an	agarose	gel	 and	

subsequent	excision	and	retrieval.	Ligation	was	performed	using	a	molar	ratio	of	vector	

to	insert	of	1:3.	A	total	of	about	100	ng	DNA	was	mixed	with	10	µl	of	10x	T4	ligase	buffer	

and	1	µl	T4	DNA	ligase	in	a	total	volume	of	20	µl	incubated	for	5	min	at	RT.	All	volumes	

were	added	up	to	the	recommended	volume	with	nuclease	free	water.		

The	coding	sequences	of	ActivinA	and	Myostatin	were	cut	out	of	bacterial	plasmids	using	

restriction	enzymes.	The	same	enzymes	were	used	to	cleave	the	vector	plasmids	before	

ligation	of	vector	and	gene	of	interest.	Control	digests	of	the	newly	ligated	vector	plasmids	

resulting	 in	 the	 expected	 fragment	 sizes	 were	 analyzed	 by	 gelelectrophoresis.	

Subsequently,	 HEK293T	 cells	 were	 transduced	 with	 the	 vector	 plasmid	 along	 with	

plasmids	 encoding	 lentiviral	 encapsulation	 and	 packaging	 proteins.	 The	 thereby	

produced	virus	particles	were	afterwards	used	to	transfect	CHO	cells	introducing	the	gene	

of	interest	into	the	host	cell	genome.	

	

3.6.5	Transfection	for	virus	production	

HEK	293T	cells	were	passaged	and	cultured	until	a	confluency	of	70	to	80	%.	Lentiviral	

packaging	 and	 envelope	 vector	 as	 well	 as	 the	 transfer	 vector	 containing	 the	 gene	 of	

interest	to	be	integrated	were	mixed	in	a	molar	ratio	of	2:1:1	to	a	final	mass	of	2	µg	in	

200	µl	of	serum	free	cell	culture	medium,	typical	for	a	6	well	format.	Per	1	µg	DNA	added,	

3	µl	 transfection	reagent	were	added	and	mixed	gently	and	then	incubated	for	25	min	

at	RT	to	form	complexes.	Meanwhile,	medium	was	exchanged	onto	the	HEK	cells	and	into	

the	fresh	medium	the	DNA	mix	was	added	dropwise.	It	was	compulsory	to	wear	protective	

equipment	and	follow	safety	precautions.	The	next	day,	medium	was	exchanged	onto	the	

HEK	 cells	 and	 replaced	 with	 fresh	 culture	 medium	 supplemented	 with	 30	 %	 FCS	 to	

enhance	 virus	 production	 for	 the	 following	 48	 h.	 Virus	 containing	 supernatant	 was	
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harvested	 and	 filtered	 with	 a	 0.45	 µm	 filter	 with	 low	 protein	 binding	 capacity	 or	

centrifuged	at	2,000	rpm	to	eradicate	cellular	remnants.	Virus	was	used	immediately	for	

transduction	or	stored	at	‐80	°C.		

	

3.6.7	Viral	transduction	

Before	transduction,	antibiotic	selection	was	tested	on	the	cells	to	determine	the	minimal	

concentration	necessary	for	cell	death.	The	cell	layer	should	be	about	20	to	50	%	confluent	

therefore	 when	 assayed.	 Additionally,	 polybrene	 compatibility	 was	 investigated	

beforehand	on	the	cells	as	its	application	improved	transducability.		

For	viral	transduction,	cells	to	be	transduced	were	seeded	typically	in	a	6	well	format	to	

be	at	60	to	70	%	confluency	72	h	thereafter.	Then,	virus	was	applied	to	the	cell	layer	as	

well	as	fresh	cell	culture	medium	up	to	2	ml,	yet	at	least	one	third	of	the	total	volume	to	

be	cell	culture	medium.	It	was	compulsory	to	wear	protective	equipment	and	follow	safety	

precautions.	Virus	was	incubated	for	24	to	72	h	to	allow	for	gene	introduction	until	fresh	

medium	 exchange	 to	 allow	 for	 proliferation	 of	 the	 transduced	 cells.	 3	to	5	d	 after	

transduction	 cells	 were	 selected	 upon	 the	 implemented	 antibiotic	 in	 the	 beforehand	

determined	 concentration.	 If	 no	 antibiotic	 resistance	 was	 integrated	 but	 fluorescence	

was,	selection	could	be	conducted	via	FACS	sorting.		

Evidence	 of	 residual	 virus	 availability	 in	 the	 culture	medium	was	 investigated	 at	 the	

earliest	after	3	passages.	Therefore,	supernatant	of	the	transduced	cells	was	transferred	

onto	 HEK	 293T	 cells	 at	 about	 50	%	 confluency.	 Past	 72	 h	 of	 incubation,	 cells	 were	

investigated	 upon	 viral	 integration	 via	 ELISA,	 PCR,	 or	 fluorescent	 protein	 expression	

detection.		

	

3.7	Proteomic	analysis	

3.7.1	Protein	precipitation	

To	 precipitate	 protein	 four	 times	 the	 volume	 of	 ‐20	 °C	 acetone	was	 added,	 vortexed,	

incubated	for	60	min	at	‐20	°C,	and	then	centrifuged	for	10	min	at	13,000	to	15,000	rcf.	

Supernatant	was	carefully	discarded	without	disrupting	the	protein	pellet.	Subsequently,	
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acetone	was	allowed	to	evaporate	 for	30	min.	Protein	pellet	was	dissolved	with	buffer	

appropriate	for	the	downstream	process	and	stored	at	‐20	°C.		

	

3.7.2	SDS	Gel	and	Coomassie‐stain		

Buffers	were	prepared	as	follows	in	purified	water:		

10x	SDS	running	buffer	consisted	of	250mM	tris	base,	1.9	M	glycin,	and	1.5	%	SDS.	

5x	reducing	sample	buffer	consisted	of	1.5	M	tris	base,	2	%	SDS,	10	%	glycerol,	0.01	%	

bromophenol	blue	sodium	salt,	and	5	%	β‐mercaptoethanol.	For	non‐reducing	buffer,	β‐

mercaptoethanol	was	left	out.		

Lower	tris	consisted	of	1.5	M	tris	base	and	0.4	%	SDS.		

Upper	tris	consisted	of	0.5	M	tris	base	and	0.4	%	SDS.		

APS	stock	solution	for	SDS	gels	was	prepared	diluting	40	%‐w/v	ammonium	persulfate.	

1	ml	aliquots	were	stored	at	‐20	°C.	

Coomassie	 stain	 solution	 was	 filtered	 after	 solving	 of	 250	 ml	 acetic	 acid,	

1,000	ml	methanol,	6.25	g	brilliant	blue	in	1,250	ml	purified	water.		

Destain	solution	consisted	of	10	%‐v/v	isopropanol	and	10	%‐v/v	acetic	acid.		

10	 ml	 10	 %	 resolving	 gel	 sufficient	 for	 two	 gels	 consisted	 of	 2.5	 ml	 lower	 tris,	

3.3	ml	acrylamide,	 2.2	 ml	 purified	 water,	 2	 ml	 glycerol,	 14	µl	 APS,	 and	 14	 µl	 TEMED.	

Cast	gel	immediately	after	addition	of	APS	and	TEMED	before	gel	polymerization.		

5ml	stacking	gel	consisted	of	1.25	ml	upper	tris,	0.5	ml	acrylamide,	3.2	ml	purified	water,	

12	µl	APS,	and	12	µl	TEMED.	Cast	gel	immediately	after	addition	of	APS	and	TEMED	before	

gel	polymerization.		

For	 each	 gel	 prepared,	 two	 glass	 slides	 were	 washed	 with	 purified	 water	 and	

70	%	ethanol.	 Spacers	were	 placed	 in	 between	 the	 glasses	 and	 placed	 as	 one	 into	 the	

clamping	system.	Resolving	gel	was	cast	up	to	two	thirds	in	between	the	glass	slides	and	

covered	with	purified	water	to	ensure	a	straight	horizontal	line	after	polymerization	for	

30	min.	Water	 was	 then	 removed	 and	 stacking	 gel	 was	 cast	 and	 sealed	 with	 a	 comb	

creating	the	pockets	after	polymerization	for	30	min.	Gels	in	glass	slides	were	clamped	in	

the	electrophoresis	system.	1x	running	buffer	was	 filled	 into	 the	chambers	and	combs	

removed.	Samples	were	mixed	with	5x	loading	buffer	to	end	up	with	1x	loading	buffer,	
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heated	for	5	min	at	95	°C,	and	spun	down.	20	to	30	µl	of	sample	were	introduced	into	each	

pocket.	5	µl	marker	was	used	for	size	indication.	Voltage	and	output	power	were	set	to	

maximum	and	current	was	set	to	25	mA	per	gel.	After	the	run,	the	gel	was	removed	from	

the	electrophoresis	system	as	well	as	 from	the	glasses	and	transferred	 into	Coomassie	

stain	 for	 at	 least	 1	 h	 incubation	 on	 a	 rocking	 shaker.	 To	 remove	 excessive	 Coomassie	

staining	 the	 gel	 was	 incubated	 in	 destain	 solution	 until	 visualization	 of	 the	 specific	

staining.		

	

3.7.3	Western	blotting	

After	protein	separation	via	SDS	gel	electrophoresis,	gels	were	rinsed	with	transfer	buffer	

and	transferred	onto	the	blotting	chamber	into	a	sandwich	consisting	of	three	whatman	

paper,	blotting	membrane,	the	gel,	another	three	whatman	paper.	Whatman	paper	were	

soaked	with	 transfer	 buffer.	 Closing	 the	 lid,	 blotting	was	 performed	 for	 1	 to	 1.5	 h	 at	

3	mA/cm2	of	gel.	Successful	blotting	was	visible	by	transfer	of	the	stained	marker	from	

the	gel	onto	the	membrane.	The	membrane	was	then	transferred	into	blocking	solution	

for	1	h	to	inhibit	unspecific	antibody	binding.	Primary	antibody	was	diluted	in	5	to	10	ml	

of	blocking	solution	and	incubated	on	the	blot	for	1	to	2	h	at	RT	or	o/n	at	4	°C.	Blots	were	

washed	afterwards	three	times	for	10	min	each	in	TBST,	then	incubated	in	HRP	coupled	

secondary	 antibody	 for	 1	 h	 at	RT.	Blots	were	 again	washed	 twice	 for	 5	min	 each	 and	

developed	immediately	after.	For	blot	development,	the	blot	was	covered	with	a	mixture	

of	 1	 ml	 peroxide	 solution	 and	 1	 ml	 luminol	 enhancer	 solution.	 After	 30	 to	 60	 s	 of	

incubation	the	signal	was	acquired.		

	

3.7.4	Elastin	ELISA		

For	 determination	 of	 α‐elastin	 content,	 tissue	 samples	 were	 incubated	 in	 750	 µl	 of	

0.25	M	oxalic	 acid	 at	 100	 °C	 for	 60	min.	 After	 cooling	 down	 to	 room	 temperature	 the	

samples	 were	 centrifuged	 for	 10	 min	 at	 10,000	 rpm	 to	 collect	 the	 supernatant.	

The	procedure	was	repeated	 for	two	more	times	until	 the	tissue	was	digested.	Of	each	

digest	duplicates	of	100	µl	were	mixed	with	100	µl	ice	cold	elastin	precipitation	reagent	

by	 vortexing.	 After	 precipitation	 for	 15	 min	 samples	 were	 centrifuged	 for	 10	 min	 at	

12,000	rpm.	The	supernatant	was	discarded	while	the	pellet	was	vortexed	with	1	ml	dye	
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reagent.	Reaction	between	elastin	 and	dye	was	 allowed	while	90	min	 incubation	on	a	

rotational	 shaker.	 After	 centrifugation	 for	 10	 min	 at	 12,000	 rpm	 unbound	 dye	 was	

discarded.	 250	 µl	 dye	 dissociation	 reagent	 added,	 shortly	 vortexed,	 and	 incubated	 for	

10	min	to	disassociate	bound	dye	from	elastin.	200	µl	were	transferred	into	a	transparent	

96	well	plate	and	examined	at	513	nm.	Elastin	amount	directly	proportional	to	the	dye	is	

calculated	 from	 a	 standard	 curve	 typically	 ranging	 from	 0	 to	 60	 µg.	 Blank	 value	 was	

subtracted	from	all	determined	values.		

	

3.7.5	Collagen	ELISA	

Test	samples,	standard,	and	blanks	were	prepared	in	microcentrifuge	tubes	and	filled	up	

to	100	µl	volume.	1	ml	Sircol	Dye	Reagent	was	added,	mixed	by	invertingand	placed	in	a	

mechanical	shaker	for	30	min	to	allow	formation	of	collagen‐dye	complexes.	The	bound	

collagen	was	centrifuged	 for	1	min	at	12,000	rpm	and	 the	supernatant	was	discarded.	

Unbound	dye	was	removed	with	750μl	ice‐cold	Acid‐Salt	Wash	Reagent.	Before	discarding	

the	wash	reagent	it	was	centrifuged	for	10	min	at	12,000	rpm.	To	recover	the	dye	bound	

to	collagen	250	µl	Alkali	Reagent	were	added,	vortexed,	incubated	for	5	min	to	allow	for	

proper	 dye	 release.	 200	 µl	 were	 transferred	 into	 a	 96	 well	 plate,	 absorbance	 was	

determined	at	555	nm.		

	

3.7.6	Glucose	stimulated	insulin	secretion	

Insulin	 secretion	 of	 pancreatic	 islets	 was	 stimulated	 by	 glucose	 incubation	 after	

deprivation	with	KRB	buffer.	Therefore,	the	islets	were	pre‐incubated	in	3	mM	glucose	for	

30	min	 before	 glucose	 stimulated	 insulin	 secretion	 incubating	 the	 cells	with	 3,	 5,	 and	

10	mM	glucose.	Supernatant	was	taken	and	analyzed	by	ELISA.		

	

3.7.7	Insulin	ELISA		

In	a	96	well	format	25µl	insulin	ELISA	calibrator	standards,	controls,	and	samples	were	

mixed	with	100	µl	enzyme	conjugate	solution	and	incubated	for	2	h	on	a	plate	shaker	with	

about	800	rpm	at	RT.	The	plate	was	washed	six	 times	with	wash	buffer.	Subsequently	
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200	µl	TMB	substrate	were	added	and	incubated	for	15	min.	After	addition	and	proper	

mixing	of	50	µl	stop	solution	optical	density	was	determined	at	450	nm.		

	

3.7.8	Activin	A	ELISA	

Capture	antibody	was	diluted	in	PBS	to	working	concentration	and	immediately	used	to	

coat	a	96	well	microplate	with	100	µl	per	well.	The	sealed	plate	was	incubated	o/n	at	RT.	

The	wells	were	then	washed	three	times	with	washing	buffer.	To	block	unspecific	binding	

sites	300	µl	reagent	diluent	were	incubated	for	at	least	1	h	and	subsequently	again	washed	

three	times.	For	assay	procedure,	100	µl	sample	respectively	standards	were	added	per	

well	together	with	100	µl	of	1	M	urea.	The	plate	was	mixed	gently,	covered,	and	incubated	

for	2	h	at	RT.	After	another	triple	washing	step	100	µl	detection	antibody	was	added	and	

covered	for	another	2	h	at	RT	with	another	subsequent	triple	washing	step.	Afterwards,	

100	µl	streptavidin‐HRP	was	added	and	incubated	for	20	min	at	RT	avoiding	direct	light.	

After	subsequent	washing,	100	µl	substrate	solution	were	added	and	incubated	for	20	min	

at	RT	avoiding	direct	light.	Then,	50	µl	stop	solution	were	added	and	throroughly	mixed	

in.	Optical	density	was	determined	immediately	using	a	microplate	reader	set	to	450	nm	

with	correction	set	to	540	or	570	nm.	Protein	concentration	was	calculated	by	means	of	

the	standard	curve.		

	

3.7.9	Myostatin	ELISA	

Upon	reagent	preparation,	samples	were	activated	to	remove	the	GDF‐8	pro‐peptide.	All	

reagents	were	at	RT.	1	N	HCl	was	added	to	the	sample,	mixed,	and	incubated	for	10	min	

at	RT.	1.2	N	NaOH/0.5	M	HEPES	and	calibrator	diluent	RD5‐26	were	added	to	the	mix.	

Activated	samples	were	assayed	within	2	h.	50	µl	assay	diluent	was	added	to	microplate	

strips	with	50	µl	samples,	controls,	and	serial	diluted	standards	were	added	and	incubated	

for	2	h	on	a	horizontal	orbital	microplate	shaker	set	at	500	rpm.	Washing	was	performed	

four	 times	 with	 wash	 buffer.	 200	 µl	 GDF‐8	 conjugate	 were	 added	 and	 incubated	 for	

another	2	h	shaking	with	subsequent	washing.	200	µl	substrate	solution	were	added	and	

incubated	for	30	min	protected	from	light.	50	µl	stop	solution	were	added	to	each	well.	

Thorough	mixing	was	indicated	by	color	change	from	blue	to	yellow.	Optical	density	was	

determined	using	a	microplate	reader	set	to	450	nm	with	correction	set	to	540	or	570	nm.	
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Protein	concentration	was	calculated	by	means	of	the	standard	curve.	The	dilution	factor	

from	sample	activation	was	calculated	in	the	concentration	determined	off	the	standard	

curve.		

	

3.7.10	Bioactivity	assay	of	Activin	A	/	Myostatin	

Cells	virally	transduced	to	produce	Activin	A	respectively	Myostatin	were	cultured	and	

protein	secreted	into	the	supernatant	was	collected.	For	both	proteins,	Activin	A	as	well	

as	 Myostatin,	 their	 impact	 on	 cell	 proliferation	 of	 mouse	 plasmacytoma	 cell	 line	

(MPC)‐11122	was	utilized.	Both	proteins	were	described	in	 literature	to	 inhibit	MPC‐11	

cellular	proliferation,	Activin	A	with	an	EC50	of	around	0.75	to	3	ng/ml	and	Myostatin	

with	an	EC50	of	around	30	to	40	ng/ml.	to	Test	Biological	activity,	protein	supernatant	

was	transferred	as	a	dilution	series	onto	MPC‐11	cultured	in	a	96	well	format.	After	48	h	

incubation	cellular	viability	was	determined	giving	an	indication	of	the	biological	activity	

of	the	secreted	protein,	its	EC50	and	thereof	its	present	concentration	in	the	supernatant.		

	

3.8	Statistical	analysis		

All	 results	 are	 expressed	 as	 mean	 ±	 standard	 deviation	 (SD).	 Differences	 between	

experimental	 groups	 were	 analyzed	 using	 the	 one‐tailed	 independent	 samples	 t‐test.	

A	value	of	p	<	0.05	was	considered	as	statistically	significant	(*),	p	<	0.01	as	statistically	

highly	significant	(**).	p	>	0.05	was	considered	as	statistically	not	significant.		
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4.	RESULTS	

The	 aim	 of	 this	 thesis	 was	 to	 generate	 a	 scaffold	 of	 rat	 intestine	 that	 resembles	 the	

structural	properties	of	 the	BioVaSc‐TERM®.	After	establishing	a	suitable	explantation	

strategy,	a	protocol	 for	detergent‐based	perfusion	decellularization	of	 the	scaffold	was	

developed.	The	miniaturized	version	of	 the	BioVaSc‐TERM®,	 that	 is	 referred	 to	as	 the	

mBioVaSc‐TERM®,	was	characterized	on	 its	 structure	and	composition	by	histological	

and	protein	biochemical	analyses.	Preservation	of	an	intact	vascular	system	was	analyzed	

by	 reendothelialization	 of	 the	 vessel	 structures,	 thereby	 demonstrating	 scaffold	

biocompatibility	 in	 vitro.	 Scaffold	 revascularization	 was	 utilized	 to	 maintain	 complex	

multicellular	co‐cultures	viable	to	perform	functional	metabolic	conversion	and	protein	

secretion	 analysis.	 Finally,	 implantation	 into	 rats	 demonstrated	 in	 vivo	 survival	 of	 the	

mBioVaSc‐TERM®	 and	 highlighted	 its	 potential	 as	 biological	 scaffold	 for	 clinical	

application.		

	

4.1	Establishment	of	the	mBioVaSc‐TERM®	

The	overall	base	of	this	work	was	to	determine	an	optimal	rat	jejunal	segment	to	obtain	

a	biological	 scaffold	 similar	 to	 the	 porcine	 BioVaSc‐TERM®.	 Focus	 was	 on	 an	 easy	

preparation	 strategy	 of	 the	 tissue,	 the	 preservation	 of	 its	 native	 ECM	 characteristics,	

as	well	as	an	accessible	vascular	system.	

	

4.1.1	Explantation	of	a	rat	jejunal	segment		

Homologue	to	the	porcine	BioVaSc‐TERM®,	the	mBioVaSc‐TERM®	was	generated	from	

rat	 jejunal	 segments.	 The	 explantation	 is	 depicted	 in	 figure	 4,	 indicating	 the	 incisions	

made	 for	 a	 laparotomy	 (Fig.	 4A)	 to	 gain	 access	 into	 the	 abdominal	 cavity	 and	 the	

subsequent	 preparation	 of	 the	 cannulation	 and	 dissection	 of	 the	 intestinal	 segment.	

The	mesenteric	vessels	(Fig.	4B;	highlighted	by	arrowheads),	which	branch	off	from	the	

abdominal	 aorta	 and	 leading	 into	 the	 hepatic	 portal	 vein,	 were	 dissected	 from	

surrounding	 connective	 tissue	and	 fat.	The	 superior	mesenteric	artery	and	antidromic	

vein,	 supplying	 and	 draining	 the	 small	 intestine,	 respectively,	 were	 prepared	 for	

cannulation	(Fig.	4C	and	D)	to	grant	access	to	the	vascular	network	enabling	its	perfusion	
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with	PBS,	thereby	flushing	out	the	blood	before	coagulation.	Full	clearance	from	blood	by	

PBS	perfusion	 indicated	 an	 intact,	 perfusable	 arteriovenous	 loop.	 A	 jejunal	 segment	

cleared	from	blood	was	ligated	(Fig.	4E)	to	prevent	leakage	and	to	enable	maintenance	of	

an	intact	arteriovenous	circulation	after	extraction.		

Hence,	 a	miniaturized	 homologue	 to	 the	 BioVaSc‐TERM®	with	 an	 accessible	 vascular	

circulation	was	obtained	from	the	rat	(Fig.	4F).		

	

	

Figure	4.	Cannulation	and	explantation	of	the	mBioVaSc‐TERM®.		
A	jejunal	segment	was	explanted	from	rat	intestine.	(A)	The	abdominal	cavity	of	an	euthanized	rat	
was	 opened	with	 a	median	 laparotomy	 and	 vertical	 relief	 cuts	 (represented	 by	 dotted	 lines).	
(B)	The	superior	mesenteric	artery	(indicated	by	‘A’)	and	the	superior	mesenteric	vein	(indicated	
by	 ‘V’)	 were	 dissected	 from	 surrounding	 connective	 tissue.	 (C)	Surgical	 silk	 threads	 were	
prepared	to	immediately	tie	(D)	the	cannula	inserted	in	the	superior	mesenteric	artery	and	vein.	
(E)	The	vasculature	was	rinsed	through	the	arterial	cannula	to	wash	out	residual	blood.	A	jejunal	
segment	was	determined,	ligated	(indicated	by	arrowheads)	and	(F)	extracted.	The	lumen	of	the	
scaffold	was	subsequently	cleaned	from	blood	and	feces.		
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4.1.2	Decellularization	and	structural	characterization	of	the	mBioVaSc‐TERM®	

For	further	processing	of	the	explanted	native	tissue,	the	host	cells	were	removed	to	avoid	

immune	reactions	when	used	for	transplantation	strategies123.	To	reach	this	aim	existing	

decellularization	protocols	were	adopted	and	modified	accordingly.		

Based	 upon	 a	 literature	 survey	 referring	 to	 decellularization	 methods	 of	 intestinal	

structures,	relevant	protocols116,117,	mainly	using	sodium	deoxycholate	(SDC)	and	DNase	

for	 perfusion	 decellularization,	were	 initially	 reproduced	 and	 subsequently	 optimized	

upon	the	devices	in‐house	as	well	as	the	structural	ECM	preservation	and	cell	removal.		

Thereby,	a	detergent‐based	protocol	for	perfusion	decellularization	of	both,	the	vascular	

system	 and	 the	 scaffold	 lumen,	 was	 established	 (Fig.	 5A):	 the	 explanted	 scaffold	 was	

consecutively	exposed	to	distilled	water	for	24	h	at	4	°C	for	osmotic	cell	lysis,	SDC	for	4	h	

at	RT	for	chemical	lysis,	and	DNase	solution	for	3	h	at	37	°C	for	enzymatic	DNA	cleavage.	

Multiple	washing	steps	with	PBS	in	between	each	step	and	after	the	procedure	ensured	

the	 removal	 of	 residual	 cell‐toxic	 detergents.	 Sterility	 of	 the	 resultant	 scaffold	 was	

attained	by	γ‐irradiation.		

Afterwards,	histological	staining	and	protein	biochemical	quantification	of	residual	ECM	

components	and	DNA	were	performed	for	scaffold	characterization	to	demonstrate	the	

preservation	of	ECM	components	and	architecture	but	removal	of	host	cells.		

The	macroscopic	appearance	after	decellularization	indicated	the	removal	of	the	cellular	

mass,	leaving	a	transparent	scaffold	(Fig.	5B’)	if	compared	to	the	native	intestine	(Fig.	5B).	

Hematoxylin	 and	 eosin	 (H	 and	E)	 staining	 of	 the	 decellularized	 scaffold	 revealed	 an	

overall	ECM	preservation	and	its	structural	integrity	(Fig.	5C	and	C’).	No	remaining	cells	

were	observed	compared	to	the	native	structure	(Fig.	5C	and	C’).		

To	highlight	the	removal	of	cells,	residual	DNA	was	investigated.	Feulgen	staining	(Fig.	5D	

and	 D’)	 qualitatively	 proved	 DNA	 clearance.	 Fluorometric	 and	 spectral	 photometric	

quantification	confirmed	that	more	than	80	%	of	the	DNA	was	removed	to	a	content	of	

25	ng	DNA	/mg	dry	weight	of	the	tissue	(Fig.	5H).	To	determine	whether	the	remaining	

DNA	 was	 of	 high	 or	 low	 molecular	 weight,	 the	 fragment	 length	 was	 analyzed	 by	

gelelectrophoresis.	 Low	 molecular	 weight	 DNA	 might	 not	 be	 detrimental	 but	 could	

potentially	implicate	immunoproliferative	effects	on	host	lymphocytes124,	whereas	high	

molecular	 weight	 DNA	 evokes	 immunogenic	 rejection	 upon	 transplantation125.	
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The	gelelectrophoretical	 analysis	 of	 the	 residual	 DNA	 proved	 the	 absence	 of	 high	

molecular	 DNA,	 indicating	 removal	 of	 cells,	 but	 cannot	 exclude	 the	 presence	 of	 low	

molecular	fragments	or	nucleotides	due	to	the	detection	limit	below	100	base	pairs	(bp)	

(Fig.	5G).	However,	also	gelelectrophoresis	with	concentrated	DNA	revealed	only	a	faint	

smear	indicating	the	residual	DNA	irrelevant.		

Summarizing,	with	an	average	amount	of	less	than	25	ng	DNA/mg	ECM	dry	weight	and	

a	fragment	length	below	100	bp	of	remaining	DNA,	the	generated	ECM	scaffold	potentially	

fulfills	all	necessary	criteria	for	an	intended	medical	application126.		

Despite	 an	 expected	 loss	 of	 overall	 matrix	 mass	 during	 decellularization,	

Masson’s	trichrome	staining	(Fig.	5E	and	E’)	confirmed	the	conservation	of	the	major	ECM	

components	 such	 as	 collagen	 as	 well	 as	 the	 removal	 of	 cell	 cytoplasm.	 Besides	 the	

structural	 components	providing	a	 framework	 for	 cells,	 functionality	 of	 the	 scaffold	 is	

determined	by	elastic	fibers	(Fig.	5F	and	F’).	In	addition	to	the	histological	evaluation	of	

the	 scaffold,	 quantitative	 determination	 by	 protein	 biochemical	 analysis	 revealed	 the	

extent	of	matrix	protein	preservation.	 In	contrast	 to	DNA	removal,	 the	majority	of	 the	

analyzed	ECM	proteins	were	 retained.	About	70	%	of	 total	 collagen	 (Fig.	5I),	 the	most	

abundant	structural	protein	constituting	the	scaffolds	connective	tissue127,	was	confirmed	

to	be	preserved	after	decellularization.	Again,	considering	a	loss	of	matrix,	about	60	%	of	

the	 elastic	 fibers	was	 preserved	 compared	 to	 the	 native	 tissue	 (Fig.	 5J).	 Furthermore,	

electron	 microscopic	 analysis	 (Fig.	 5L‐N)	 revealed	 the	 preservation	 of	 intact	 ECM	

structures,	such	as	the	basement	membrane.		

In	 summary,	 after	 explantation	 of	 a	 rat‐derived	 intestinal	 segment,	 host	 cells	 were	

removed	via	an	established	perfusion	decellularization	protocol	through	the	luminal	as	

well	as	the	vascular	compartment.	Structural	ECM	proteins	could	mostly	be	preserved,	

including	the	vascular	basement	membrane	serving	as	structural	and	functional	guide	for	

neovascularization,	resulting	in	an	acellular	scaffold	of	plain	ECM	that	enabled	its	therapy‐

dependent	 cellular	 reconstruction	 while	 avoiding	 immune	 reactions	 upon	

transplantation123.		
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Figure	5.	Qualitative	and	quantitative	characterization	of	the	acellular	rat	jejunal	
segment.		
The	cannulated	intestinal	segments	were	decellularized	preserving	ECM	and	vascular	framework	
to	serve	as	a	cell‐free	scaffold	supporting	prevascularized	cellular	reconstruction.	(A)	Workflow	
of	 the	 decellularization	 protocol.	 (B+B‘)	 Representative	 macroscopic	 pictures	 of	 the	 scaffold.	
In	contrast	 to	 (B)	 the	 native	 jejunal	 segment,	 (B’)	 the	 decellularized	 scaffold	 appeared	
transparent.	(C‐F‘)	Histological	analysis	of	(C‐F)	the	native	rat	jejunal	segment	in	comparison	to	
(C‘‐F‘)	 the	 decellularized	 mBioVaSc‐TERM®:	 (C+C‘)	 Representative	 pictures	 of	 H&E	 staining.	
(D+D‘)	Feulgen‐stained	 samples	 depict	 DNA	 residues.	 (E+E‘)	 Masson‘s	 Trichrome	 staining	
representing	 residual	 collagen	 (turquois),	 muscle	 fibers	 (dark	 red),	 as	 well	 as	 cell	 cytoplasm	
(pink)	between	the	scaffold	and	native	tissue.	(F+F‘)	Elastica	vanGieson	reaction	eliciting	elastic	
fibers	 within	 the	 matrix.	 (G)	 DNA	 fragment	 length	 separation	 via	 gelectrophoretic	 analysis.	
(H)	Quantitative	 determination	 of	 the	 DNA	 amount	 in	 the	 native	 and	 decellularized	 tissue.	
(I+J)	Quantification	of	the	major	ECM	components:	(I)	Collagen	and	(J)	Elastin	before	and	after	
decellularization.	 (K‐N)	 ECM	 network	 depicted	 by	 (K)	 light	 microscopy	 and	 (L‐N)	 scanning	
electron	microscopy	(SEM).	Scale	bars:	(C‐F‘)	100	μm,	(K)	1000	µm,	(L)	50	µm,	(M)	5	µm,	(N)	1	µm.	
Error	bars:	mean	±	SD;	*,	p	<	0.05;	**,	p	<	0.01;	t‐test.	Copyrighted	reprint128;	modified.		
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4.2	Revascularization	capacity	of	the	mBioVaSc‐TERM®		

After	verifying	the	preservation	of	the	ECM	structure	and	biochemical	components,	the	

next	aim	was	to	analyze	the	integrity	of	the	preserved	vessel	system	and	its	capacity	for	

reendothelialization.		

	

4.2.1	Characterization	of	genetically	modified	endothelial	cells		

To	 investigate	 the	 preservation	 of	 the	 decellularized	 vessel	 system	 in	 the	 mBioVaSc‐

TERM®,	 the	 acellular	 vascular	 network	 was	 repopulated	 with	 human	 dermal	

microvascular	endothelial	cells	(hdmEC).		

Endothelial	cells	were	isolated	from	human	foreskin,	separated	from	other	cell	types,	and	

expanded	 according	 to	 an	 in‐house	 established	 protocol.	 Furthermore,	 the	 isolated	

hdmECs	 were	 lentivirally	 transduced	 either	 with	 a	 green	 fluorescent	 protein	 (GFP)	

containing	expression	vector	or	with	the	DNA	sequence	for	GFP	clonally	replaced	for	red	

fluorescent	 protein	 (RFP),	 to	 express	 either	 GFP	 or	 RFP,	 respectively.	 Thereby,	 non‐

invasive	live	imaging	of	the	reendothelialized	vascular	structures	was	feasible.	To	ensure	

the	 endothelial	 character	 after	 genetic	 modification,	 the	 cells	 were	 subsequently	

characterized	 upon	 their	 growth	 kinetics,	 protein	 expression	 profile,	 and	 barrier	

formation	capacity	to	assure	vessel	formation	capability	and	functionality.		

At	 first,	 characteristic	 marker	 genes	 of	 hdmECs	 that	 proof	 their	 cellular	 identity	 and	

functionality	after	genetic	modification	were	analyzed	quantitatively	by	FACS	analysis.	

Figure	6A	shows	that	96.9	%	of	the	examined	cells	expressed	the	platelet	endothelial	cell	

adhesion	molecule	(PECAM)‐1	also	known	as	cluster	of	differentiation	(CD)	31.	97.6	%	of	

the	 cells	 analyzed,	 expressed	 the	 membrane	 glycoprotein	 CD105.	 The	 angiopoietin	

receptor	 TIE2	 was	 detected	 on	 67.8	%	 of	 the	 cells.	 CD34,	 characteristic	 for	 capillary	

endothelial	cells,	was	verified	on	95.1	%	of	the	hdmECs.	VE	cadherin	was	proven	to	be	

expressed	on	98.7	%.	CD146,	the	melanoma	cell	adhesion	molecule	(MCAM),	was	verified	

on	 94.7	%	of	 the	 hdmECs.	 Only	 vascular	 endothelial	 growth	 factor	 (VEGF)‐receptor	 2	

could	not	be	identified	by	FACS.		

Besides	 the	 presence	 of	 functional	 EC	 surface	 proteins,	 the	 ability	 of	 the	 genetically	

modified	 hdmECs	 to	 form	 a	 functional	 tight	 endothelial	 barrier	was	 investigated	 on	 a	

trans‐well	system,	providing	information	about	their	functionality.		
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The	proliferative	potential	of	the	genetically	modified	GFP‐	or	RFP‐tagged	hdmECs	was	

assessed	performing	a	cell	viability	assay	(Fig.	6B).		

Further,	functionality	of	the	hdmECs	to	form	a	tight	barrier	was	investigated	by	measuring	

the	transendothelial	electrical	resistance	(TEER)	of	the	formed	cell	layer	during	a	culture	

period	of	35	d	(Fig.	6C).	With	reaching	confluence,	the	TEER	value	increased	consistently	

until	peaking	at	about	14	Ω*cm2,	similar	to	the	TEER	value	of	hdmEC	barriers	described	

in	literature129.		

Furthermore,	 fluorescein	 isothiocyanate	 (FITC)‐coupled	 dextran	 was	 applied	 apically	

onto	the	cell	 layer	to	evaluate	endothelial	permeability.	Fluorospectrometrical	analysis	

quantified	that	after	 two	weeks	of	culture	only	about	1	%	of	 the	FITC‐coupled	dextran	

passed	 the	 established	 endothelial	 barrier	 (Fig.	6D).	 Thereafter,	 the	 barrier	 integrity	

remained	 stable	 throughout	 the	 culture	 period	 of	 35	 d	 preventing	 most	 of	 the	 low	

molecular	weight	compound	to	pass	the	endothelial	barrier.	

Characterizing	 the	 genetically	 modified	 GFP‐/RFP‐tagged	 hdmECs,	 the	 cells	 exhibited	

endothelial	 markers	 specific	 for	 cell‐cell	 junctions,	 cell‐ECM	 adherence,	 blood	 vessel	

formation,	 and	 angiogenesis.	 Furthermore,	 confluent	 endothelial	 layers	 established	

functional	barrier	properties.	Subsequently,	both,	the	native	hdmECs	as	well	as	the	GFP‐	

or	RFP‐tagged	hdmECs	were	used	to	repopulate	the	vascular	structures	of	the	mBioVaSc‐

TERM®	in	upcoming	experiments.		
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Figure	6.	Endothelial	cell	characterization.		
Primary	 human	 dermal	microvascular	 and	 GFP/RFP‐tagged	 hdmECs	were	 analyzed	 upon	 cell	
type‐specific	properties.	(A)	FACS	analysis	revealed	EC‐characteristic	markers	for	angiogenesis	
(CD31	and	CD105),	blood	vessel	formation	(TIE2),	and	cell	adhesion	(VE‐Cad,	CD34,	and	CD146).	
(B)	CellTiter	 Glo	 analysis	 indicated	 the	 proliferative	 potential	 of	 the	 employed	 ECs.	 Proving	
endothelial	 barrier	 properties	 of	 a	 confluent	 EC	 layer,	 (C)	 TEER	measurement	 demonstrated	
increasing	 tightness	 and	 resistance	 over	 time	 and	 (D)	 constantly	 low	 permeability	 for	
macromolecules	was	shown	as	demonstrated	for	FITC‐dextran.	Error	bars:	mean	±	SD;	t‐test.		
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4.2.2	Revascularization	capacity	of	ECs	to	repopulate	the	mBioVaSc‐TERM®		

After	identification	of	their	functional	endothelial	character,	the	isolated	primary	hdmECs	

and	modified	GFP‐/RFP‐tagged	hdmECs,	were	infused	into	and	dispersed	throughout	the	

whole	preserved	vascular	tree	of	the	decellularized	scaffold	(Fig.	7A	and	B).	After	static	

incubation	 to	 enable	 attachment	 to	 the	 basement	 membrane,	 the	 reendothelialized	

mBioVaSc‐TERM®	 was	 connected	 to	 a	 custom‐made	 perfusion	 bioreactor	 system	

(Fig.	7C)	mimicking	physiological	vascular	perfusion.	The	thereby	applied	shear	stress	on	

the	ECs	is	critical	for	vessel	maturation130,131.		

To	facilitate	pulsatile	perfusion	culture,	the	custom‐made	bioreactor	technology	for	the	

BioVaSc‐TERM®,	consisting	of	a	glass	reactor	connected	to	media	reservoirs	via	a	roller	

pump	 installed	 inside	 an	 incubator	was	 adapted	 for	 the	 use	 of	 the	mBioVaSc‐TERM®	

(Fig.	7D).	To	maintain	a	physiological	pressure	profile	at	all	times	throughout	the	culture	

period,	 the	applied	pressure	was	sensor‐controlled	and	automatically	regulated	by	the	

implementation	 of	 an	 automated	 computer‐aided	 feedback	mechanism	 regulating	 the	

pumping	device.	Both,	arterial	and	venous	pressure	profiles	were	individually	monitored	

representing	their	physiological	conditions	(Fig.	7D).		

For	 the	 evaluation	 of	 vascular	 leakage,	 the	 hdmEC‐endothelialized	mBioVaSc‐TERM®	

was	perfused	with	phenol	red	in	PBS	and	with	blood.	Infusion	of	phenol	red	through	the	

arterial	pedicle	resulted	in	unobstructed	leakage	of	the	fluid	through	the	vascular	barrier	

(Fig.	 7E).	 In	 contrast,	when	 perfusing	 the	 vessels	with	 heparinized	 blood	 (Fig.	 7F)	 no	

leakage	was	observed	but	the	infused	blood	passed	through	the	arteriovenous	loop	of	the	

mBioVaSc‐TERM®	and	left	through	the	venous	cannula.	However,	only	the	hemoglobin	

of	the	red	blood	cells	was	macroscopically	visible,	stating	that	erythrocytes	could	not	pass	

the	endothelial	barrier.		

To	examine	the	repopulation	capacity	of	the	vascular	system	and	the	lining	of	the	arterial	

and	venous	vascular	networks	as	well	as	their	junctions,	the	arterial	and	venous	pedicles	

were	 repopulated	with	 either	 GFP‐	 or	 RFP‐expressing	 hdmECs,	 respectively	 (Fig.	 7G).	

By	means	of	fluorescently	tagged	cells,	it	was	feasible	to	monitor	the	repopulation	of	the	

vascular	system	by	live	imaging	techniques	to	discriminate	the	arterial	and	venous	vessels	

and	 capillaries	 of	 the	 whole	 scaffold.	 Thereby,	 thorough	 revascularization	 could	 be	

investigated	by	non‐invasive	and	non‐destructive	methods.		
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Moreover,	the	capacity	of	the	hdmECs	to	form	a	functional	tight	vascular	barrier	within	

the	 vessel	 structure	 of	 a	 3D	 scaffold	 as	well	 as	 the	 transition	 from	 arterial	 to	 venous	

capillaries	was	proven.		

	

	

	

Figure	7.	mBioVaSc‐TERM®	revascularization	by	vascular	perfusion.		
The	 vascular	 network	 of	 the	 intestinal	 segment	 was	 preserved	 by	 conservative	 perfusion	
decellularization,	enabling	the	repopulation	of	the	3D	vessel	structures	with	hdmECs	via	infusion	
directly	into	the	vascular	structures	to	generate	a	revascularized	scaffold.	(A)	Cannulas	facilitated	
a	direct	access	to	the	vascular	tree.	(B)	Static	incubation	after	distribution	throughout	the	whole	
vascular	 system	 facilitated	 cellular	 adherence	 initiating	 the	 repopulation.	 (C)	Schematic	
representation	and	(D)	live	setup	of	the	culture	setup	within	a	custom‐made	bioreactor	system.	
An	integrated	pumping	device	enabled	nutrient	supply	by	physiological	pulsatile	perfusion	and	
additionally	exerting	shear	stress	onto	the	ECs	within	the	vessels	promoting	barrier	maturation.	
Continuous	 monitoring	 of	 physiological	 parameters,	 such	 as	 simulated	 blood	 pressure,	
temperature,	and	oxygenation	enabled	constant	computer‐aided	regulation	of	culture	conditions	
as	well	 as	a	physiological	pressure	profile.	 (E)	Phenol	 red	perfusion	of	 the	mBioVaSc‐TERM®,	
representing	cell	culture	media	perfusion.	(F)	Culturing	the	mBioVaSc‐TERM®	with	heparinized	
blood	showed	no	signs	of	leakage	and	allowed	a	macroscopic	identification	of	the	vascular	system.	
(G)	Live	imaging	of	GFP‐	and	RFP‐tagged	hdmECs	infused	through	the	arterial	and	venous	pedicle	
of	 the	 mBioVaSc‐TERM®,	 respectively.	 Scale	 bars:	 (E‐F)	10	mm,	 (G)	 3	 mm.	 (B)	 Copyrighted	
reprint132;	modified.	(A,	D‐G)	Copyrighted	reprint128,	modified.		
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Cytocompatibility	 of	 the	 scaffold	 was	 assessed	 by	 repopulation	 with	 hdmECs.	

Cellular	metabolic	 activity	 and	 vitality	 of	 hdmECs	 cultured	 inside	 the	 3D	 vascular	

environment	was	confirmed	by	MTT	and	FDA/PI	staining,	respectively	(Fig.	8A	and	D).	

By	physiological	perfusion	culture,	the	cells	were	maintained	viable	within	the	vascular	

network	lining	the	inherent	vessels	throughout	seven	weeks	of	in	vitro	cultivation.		

Examining	 whether	 the	 cultured	 hdmECs	 retained	 their	 endothelial	 character	 in	 a	

3D	vessel	 environment,	 the	 presence	 of	 functional	 endothelial	 markers	 was	 verified.	

The	hdmECs	 inside	 the	 vascular	 structures	 were	 shown	 to	 be	 positive	 for	 CD31	

(Fig.	8B	and	E)	and	vWF	(Fig.	8C	and	F)	by	immunohistological	stainings.	However,	based	

on	 the	 analysis	 of	 the	whole	mount	 stainings	 (Fig.	8E	and	F),	 highlighting	 the	 hdmECs	

populating	 the	 capillary	 structures	 from	 the	 top	 view,	 the	 revascularization	 appeared	

partially	discontinuous,	suggesting	the	capillaries	to	be	either	blocked	or	permeable	via	

paracellular	exchange133.		

	

	

Figure	8.	Revascularization	of	the	mBioVaSc‐TERM®.		
Characterization	 of	 hdmECs	 populating	 the	 vascular	 system	 of	 the	 mBioVaSc‐TERM®	 after	
maturation	 in	 a	 perfusion	 bioreactor	 system.	 (A)	Metabolic	 activity	 of	 the	 ECs	 populating	 the	
branching	 capillary	 network	 of	 the	 mBioVaSc‐TERM®	 by	 a	 colorimetric	 MTT	 assay.	
Immunohistological	 detection	 of	 the	 endothelial	 marker	 (B)	 CD31	 and	 (C)	 vWF	 in	 capillary	
structures	 in	 cross	 sections	 of	 the	 luminal	 part	 of	 the	 revascularized	 mBioVaSc‐TERM®	
(highlighted	 by	 arrowheads).	 (D)	 Life‐dead	 staining	 differentiating	 viable	 (FDA)	 and	
apoptotic/necrotic	(PI)	ECs.	Top	view	on	a	whole	mount	immunofluorescence	(IF)	staining	of	the	
EC‐marker	 (E)	CD31	and	 (F)	 vWF	on	 the	 inner	 luminal	 surface.	 Scale	bars:	 (A,	D,	E,	 F)	1	mm,	
(B,C)	200	μm.	Copyrighted	reprint128;	modified.		
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In	 summary,	 hdmECs	 used	 for	 repopulation	 of	 the	 whole	 vascular	 network	 of	 the	

mBioVaSc‐TERM®	were	demonstrated	to	be	viable	and	vital,	and	to	display	EC‐specific	

characteristics	 after	 infusion	 and	 culture	within	 the	 scaffold	during	 long‐term	 culture.	

Furthermore,	 the	 originally	 arterial	 and	 venous	 vascular	 structures	 could	 be	

discriminated	 within	 the	 scaffold	 by	 infusion	 of	 genetically	 modified	 GFP‐	 or	 RFP‐

expressing	 hdmECs	 through	 the	 respective	 cannulas.	 The	 integrity	 of	 the	 vascular	

network	forming	a	tight	barrier	in	the	afferent	feeding	and	efferent	draining	vessels	and	

its	 arteriovenous	 loop	 was	 demonstrated	 by	 the	 return	 of	 blood	 through	 the	 venous	

pedicle	of	the	scaffold	after	arterial	infusion.	Macroscopically,	the	blood	was	clearly	visible	

inside	 the	 vasculature,	 while	 phenol	 red	 leaked	 out,	 indicating	 vascular	 tightness	 but	

permeability	for	fluids	and	low	molecular	weight	compounds.		

	

4.2.3	Demonstrating	vascular	barrier	integrity	by	perfusion	analysis	

Continuous	perfusion	through	an	arteriovenous	loop	is	strongly	dependent	on	an	intact	

EC	 barrier	 that	 is	 completely	 removed	 in	 decellularized	 tissues	 and	 usually	 hardly	

accomplished	to	be	reestablished	thoroughly.	Therefore,	the	volume	returned	from	the	

efferent	 vessel	 of	 the	 scaffold,	 referred	 to	 as	 the	 venous	 return,	was	determined	 after	

infusion	through	the	arterial	vessel.		

Already	after	explantation	of	the	intestinal	segment	from	the	donor	animal,	the	decrease	

in	venous	return	by	30	%	was	highly	significant	(Fig.	9;	ex	vivo	‐	blood),	presumably	due	

to	cutting	open	vessels	upon	extraction	and	altered	surrounding	tissue	pressure	onto	the	

vasculature.	Perfusion	of	the	scaffold	ex	vivo	with	PBS	instead	of	blood	(Fig.	9;	ex	vivo	‐	

PBS)	resulted	in	a	significantly	declined	venous	return.	Presumably	due	to	missing	plasma	

proteins	not	exhibiting	colloid	osmotic	pressure	thereby	reducing	fluid	extrusion66	in	the	

PBS.	Clearing	the	lumen	off	feces	resulted	in	the	infused	fluid	leaking	through	the	capillary	

bed	 into	 the	 lumen,	 thereby	 further	 declining	 the	 volume	passing	 through	 the	 venous	

cannula	(Fig.	9;	ex	vivo,	lumen	cleared	‐	PBS).	Removing	all	cells	and	thus	the	endothelial	

barrier	by	decellularization	resulted	in	immediate	leakage	and	thereby	a	complete	loss	of	

the	vascular	circulation	(Fig.	9;	mBioVaSc	w/o	ECs	‐	PBS).	Also	by	infusion	of	whole	blood	

into	the	acellular	scaffold	no	perfusion	was	observed,	but	confirmed	the	entire	disruption	

of	the	vessel	integrity	(Fig.	9;	mBioVaSc	w/o	ECs	‐	blood).	However,	when	repopulated	

with	 hdmECs,	 the	 vascular	 integrity	 of	 the	 scaffold	 could	partially	 be	 restored	 (Fig.	 9;	
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mBioVaSc	+	ECs	‐	PBS).	 Perfusing	 the	 reendothelialized	mBioVaSc‐TERM®	with	 blood,	

the	 venous	 return	 was	 restored	 to	 30	 %	 of	 the	 native	 in	 vivo	 situation	 (Fig.	 9;	

mBioVaSc	+	ECs	‐	blood).		

However,	 during	 in	 vitro	 culture,	 the	 perfusion	 with	 standard	 culture	 media	 hardly	

reestablished	venous	return	due	to	lacking	extracellular	tissue	pressure	and	no	colloid	

osmotic	 gradient	 in	 between	 vessel	 lumen	 and	 extravascular	 space	 as	 indicated	 by	

Figure	9	(mBioVaSc	+	ECs	‐	PBS).		

	

	

	

Figure	 9.	 Venous	 return	 profile	 at	 different	 stages	 of	 mBioVaSc‐TERM®	
establishment	
The	volume	returned	 through	 the	venous	outlet	upon	arterial	 infusion	 through	 the	mBioVaSc‐
TERM®	 during	 stages	 of	 scaffold	 preparation	 from	 in	 vivo	 to	 decellularization	 to	
reendothelialization.	Showing	a	gradual	decline	of	the	returned	solution	when	explanted	until	no	
return	detectable	through	the	venous	pedicle	when	decellularized.	After	reendothelialization	of	
the	vascular	system	the	venous	return	increased.	Error	bars:	mean	±	SD;	*p	<	0.05,	**p	<	0.01,	
***p	<	0.001;	t‐test.	Copyrighted	reprint128;	modified.		
	
	

Beyond	 the	 examination	 of	 the	 endothelial	 character,	 cellular	 metabolic	 activity	 and	

vitality,	as	well	as	the	capacity	to	form	an	intact	barrier	within	the	vessel	structures	of	the	

mBioVaSc‐TERM®,	 a	 functional	metabolic	 cellular	 uptake	was	 investigated	within	 the	
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3D	vessel	environment.	LDL	uptake	demonstrated	receptor‐mediated	endocytosis	by	the	

hdmECs.	 Thereby,	 hdmEC	 functionality	 was	 demonstrated	 for	 cells	 populating	 the	

vascular	network	of	the	mBioVaSc‐TERM®	(Fig.	10A).		

After	 verification	 of	 the	 reproducibility	 of	 the	 revascularization,	 the	 end‐point	

examinations	were	replaced	by	non‐destructive	live	imaging	of	the	vascular	structure.		

Investigating	 the	 EC	 barrier	 integrity	 of	 the	 reendothelialized	 mBioVaSc‐TERM®,	 the	

vascular	network	was	perfused	with	fluorescently	coupled	dextran	and	albumin,	solved	

either	 in	 PBS	 or	 blood,	 and	 microscopically	 evaluated	 by	 intravital	 microscopy	 live	

imaging.	In	detail,	the	scaffold	was	perfused	with	FITC‐coupled	dextran	(~40	kDa)	solved	

in	PBS	(Fig.	10B),	FITC‐coupled	albumin	(~66	kDa)	in	PBS	(Fig.	10C),	and	FITC‐coupled	

albumin	solved	in	heparinized	full	blood	(Fig.	10D)	via	the	arterial	pedicle.	Vessels	were	

perfused	and	monitored	for	15	minutes	repeatedly	washing	out	and	reinjecting	with	no	

sign	 of	 major	 leakage	 out	 of	 the	 vascular	 bed	 demonstrating	 vascular	 tightness	 and	

integrity.	 Remarkably,	 while	 perfusion	 with	 blood,	 the	 fluorescent	 particles	 could	 be	

individually	 detected	 (Fig.	10D).	 Thereby,	 the	 particles	 could	 be	 tracked	 following	 the	

arterial	 influx	and	a	delayed	efflux	 in	 the	adjacent	venous	vessel.	The	perfusion	of	 the	

particles	 inside	 the	whole	bloodstream	 through	 an	 intact	 arteriovenous	 loop	 could	 be	

assumed.		
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Figure	10.	Vascular	perfusion	of	the	EC‐repopulated	mBioVaSc‐TERM®.		
Perfusion	 culture	 of	 the	 mBioVaSc‐TERM®	 was	 performed	 in	 a	 bioreactor	 system.	
Vascular	functionality	and	barrier	integrity	was	visualized	by	live	microscopy.	(A)	AcLDL	uptake	
by	hdmECs	in	the	capillary	bed	of	the	mBioVaSc‐TERM®.	Intravital	microscopy	with	(B)	FITC‐
coupled	dextran	(40	kD),	(C)	FITC‐albumin	(66	kDa)	resuspended	in	PBS	and	(D)	FITC‐albumin	
solved	 in	 blood	 perfusion.	 The	 perfusion	 of	 the	 fluorescent	 particles	 through	 the	 capillaries	
demonstrated	 no	 leakage	 after	 reendothelialization	 on	 a	 microscopic	 level	 under	 perfusion	
condition.	(B’‐D’)	Respective	phase	contrast	images	of	the	perfused	luminal	capillaries.	Scale	bars:	
(A‐D’)	100	µm.	Copyrighted	reprint128;	modified.		
	
	

In	summary,	venous	return	demonstrated	the	perfusion	of	the	arteriovenous	circulation	

of	 the	 revascularized	 mBioVaSc‐TERM®.	 Vessel	 integrity	 and	 vascular	 tightness	 was	

confirmed	 by	 intravital	 microscopy	 of	 the	 capillaries	 within	 the	 luminal	 wall.	

Besides	maturation	of	hdmECs,	thereby	establishing	a	tight	endothelial	barrier,	functional	

receptor‐mediated	endocytosis	was	proven	as	well	as	paracellular	nutrient	exchange	in	

the	capillary	bed.		

In	conclusion,	establishing	a	circulation	with	afferent	feeding	vessels,	a	capillary	network,	

and	efferent	draining	vessels	by	repopulation	of	the	mBioVaSc‐TERM®	provided	the	basis	

for	future	nutrient	supply	of	luminal	cultured	cells.		
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4.2.4	 Analysis	 of	 the	 differentiation	 capacity	 of	 hPSC‐derived	mesothelial	 cells	

towards	ECs,	pericytes,	and	aSMA+	cells	within	the	mBioVaSc‐TERM®	

In	parallel	to	the	generation	of	the	mBioVaSc‐TERM®,	a	cooperation	partner	developed	a	

protocol	 to	 generate	 human	 pluripotent	 stem	 cell	 (hPSC)‐derived	mesothelial	 cells134:	

multipotent	vascular	progenitors	 that	can	be	 further	differentiated	 into	ECs,	pericytes,	

and	smooth	muscle	cells.	They	were	described	to	self‐assemble	to	vessel‐like	structures	

and	support	vascularization135	and	tissue	repair136	in	vivo.		

Here,	 hPSCs	 differentiated	 towards	 the	 mesothelium	 lineage	 by	 Thomas	 Colunga	

(Dalton	Lab,	PI:	 Prof.	Dr.	 Stephen	Dalton,	 Center	 for	Molecular	Medicine,	University	 of	

Georgia,	 Georgia,	 USA),	 were	 infused	 into	 the	 mBioVaSc‐TERM®	 connected	 to	 the	

perfusion	bioreactor.	Within	the	3D	scaffold,	the	cells	were	further	differentiated	based	

on	the	protocol	established	by	T.	Colunga.		

Whole	mount	analysis	 (Fig.	11A	and	B)	of	 the	vessels	revealed	vascular	 lining	with	all	

three	 differentiated	 cells	 types.	 Cross	 sections	 of	 different	 vessels	 with	 distinctive	

diameters	demonstrated	the	cellular	composition	(Fig.	11C‐D’’).	CD31‐positive	ECs	were	

lining	the	inner	vascular	barrier	of	all	vessels	with	neural/glial	antigen	(NG)	2‐positive	

pericytes137	 in	 close	proximity.	 In	 contrast	 to	 the	ECs,	pericytes	were	distributed	only	

sparsely.	Besides	ECs	and	pericytes,	capillaries	were	not	enclosed	by	smooth	muscle	cells	

(SMCs).	 Larger	 vessels,	 however,	 were	 surrounded	 by	 thick	 layers	 of	 alpha‐smooth	

muscle	actin	(aSMA)‐positive	cells.		

Displaying	the	presence	of	all	three	vascular	cell	types	differentiated	from	one	progenitor,	

demonstrated	 the	 capacity	 of	 the	 hPSC‐derived	 mesothelial	 cells	 and	 the	 established	

differentiation	protocol	to	differentiate	the	cells	from	one	progenitor	lineage	into	three	

distinct	 lineages	 within	 a	 3D	 ex	 vivo	 model.	 The	mBioVaSc‐TERM®	with	 its	 inherent	

vascular	network	enables	the	further	examination	of	cellular	differentiation	in	an	in	vivo‐

like	 3D	 environment	 resembling	 the	 native	 extracellular	 vascular	 architecture.	

Furthermore,	 with	 the	 mBioVaSc‐TERM®	 connected	 to	 the	 bioreactor	 setup,	 further	

stimulation,	such	as	shear	stress	by	pulsatile	perfusion	mimicking	a	physiological	in	vivo‐

like	 condition,	 can	 be	 applied	 onto	 the	 cells	 and	 its	 influence	 on	 differentiation	

determined.		
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With	a	layer	of	aSMA‐positive	cells	implemented	within	the	vascular	wall	of	larger	vessels,	

SMC	functionality	was	examined	next	upon	vasoconstriction.	As	indicated	in	Figure	11C’’,	

larger	diameter	vessels	depicted	a	thicker	layer	of	aSMA+	cells,	a	segment	of	the	feeding	

arterial	vessel	was	dissected	and	mounted	in	a	myograph.	However,	despite	stimulation	

of	the	vascular	segments	with	up	to	10	mM	carbachol	(CCh)	upon	muscular	contraction,	

no	relevant	increase	in	applied	force	was	measured	besides	a	baseline	(Fig.	11E).		

The	functional	analysis	of	myography	in	conjunction	with	the	immunofluorescent	staining	

suggested	the	incompleteness	of	the	muscular	sheet	and	thereby	the	inability	to	perform	

physiological	muscular	contraction.		

Full	vascularization	towards	densely	populated	and	completely	interconnected	cellular	

conjunctions	 remained	 to	 be	 improved,	 primarily	 by	 enhancing	 seeding	 and	 culture	

conditions.	Nevertheless,	mesothelial	cells	appeared	to	represent	a	viable	alternative	cell	

source	accounting	for	their	potential	to	differentiate	into	ECs,	pericytes	and	SMA+	cells	in	

a	 3D	 environment	 to	 generate	 functional	 vascular	 structures,	 applicable	 in	 TE	 and	

regenerative	medicine.	
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Figure	11.	Composition	of	differentiated	mesothelial	 cells	within	 the	mBioVaSc‐
TERM®.		
Mesothelial	 cells	 were	 infused	 in	 the	 vascular	 structures	 of	 the	 mBioVaSc‐TERM®	 and	
differentiated	 towards	 ECs,	 pericytes,	 and	 SMCs.	 The	 cellular	 character	 was	 determined	 by	
immunohistological	 staining	against	CD31,	NG2,	and	aSMA,	 respectively.	Vascular	composition	
and	 cellular	 distribution	 was	 examined	 immunohistologically	 on	 (A,	 B)	 whole	 mounts	 of	 the	
vascular	 network	 and	 on	 (C‐D’’)	 cross	 sections	 of	 vessels	 of	 different	 diameter	 ranging	 from	
capillaries	to	large	vessels.	(E)	Myographic	assessment	of	force	applied	by	muscle	contraction	of	
a	circular	vessel	segment	after	equilibration	and	upon	0.1	µM,	1	µM,	and	10	mM	Carbachol	(CCh)	
stimulation.	Scale	bars:	100	µm.	
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4.3.	Biocompatibility	of	the	mBioVaSc‐TERM®	for	tissue	development		

After	 revascularization	 of	 the	 mBioVaSc‐TERM®	 vessel	 system,	 co‐cultures	 were	

established	 within	 the	 luminal	 compartment	 of	 the	 scaffold	 to	 further	 demonstrate	

biocompatibility	 and	 the	 capacity	 to	 generate	 functional	 tissue	 grafts	 in	 future.	

Implementation	of	diverse	organ‐specific	cell	types	with	distinct	applications	verified	the	

capability	of	the	vascular	perfusion	to	maintain	co‐cultured	cells	nurtured	and	to	prove	

the	function	as	a	suitable	scaffold	in	TE.		

	

4.3.1	Setup	of	co‐culture	conditions	enabling	the	generation	of	tissue	culture	 	

Establishing	 consecutively	 a	 co‐culture	 system	 of	 two	 or	 more	 different	 cell	 types	 to	

generate	 a	 functional	 tissue	 graft	 requests	 great	 demands	 on	 media	 composition	

providing	critical	cues	for	all	employed	cells.		

At	first,	the,	viability,	vitality,	and	metabolic	activity	of	cells	co‐cultured	in	the	lumen	of	

the	 scaffold	 was	 analyzed	 to	 be	 maintained	 throughout	 long‐term	 culture,	 indicating	

biocompatibility	of	the	mBioVaSc‐TERM®.	This	was	verified	for	each	cell	line	used	for	co‐

culture	 as	 for	 each	 cell	 line	 an	 adapted	 media	 composition	 had	 to	 be	 established,	

confirming	cell	viability	of	all	implemented	cells.		

Fibroblasts	are	the	most	common	cells	of	connective	tissue	that	are	cultured	in	a	basic,	

less‐defined	medium	without	the	need	of	important	growth	factors	like	other	cell	types.	

They	are	often	used	in	TE	approaches,	interacting	with	other	cells	and	further	playing	an	

important	 role	 for	 ECM	 turnover138.	 Therefore,	 these	 cells	 were	 used	 initially	 to	

demonstrate	 the	 combinability	 of	 different	 cell	 types	 with	 distinct	 media	 and	

supplementations	for	cell	viability	when	co‐cultured	within	the	mBioVaSc‐TERM®.		

In	 a	 first	 step,	 the	 suitability	 of	 the	mBioVaSc‐TERM®	 for	 co‐culture	 of	 hdmECs	with	

Human	dermal	fibroblasts	was	analyzed.	The	fibroblasts	were	adapted	to	be	cultured	in	

EC	 culture	 medium	 simplifying	 the	 media	 composition	 applied	 to	 the	 co‐culture.	

The	fibroblasts	were	cultured	either	directly	on	the	ECM	of	the	inner	luminal	wall	in	close	

proximity	 to	 the	embedded	capillaries	 (Fig.	12A)	or	 the	 fibroblasts	were	enclosed	 in	a	

collagen	gel	cast	inside	the	lumen	(Fig.	12B).	For	both	luminal	culture	methods,	the	cells	

were	 analyzed	 by	 MTT	 and	 FDA/PI	 demonstrating	 cellular	 vitality	 and	 viability	

throughout	the	whole	 luminal	culture	(Fig.	12C)	as	well	as	 integrated	 in	a	collagen	gel	
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(Fig.	12D).	Further	implemented	cell	lines	for	co‐culture	were	analyzed	with	comparable	

results,	proving	luminal	co‐culture	to	be	viable.		

	

	

Figure	12.	Establishment	of	intraluminal	co‐culture	conditions.		
Schematic	 representation	 of	 cells	 cultured	 inside	 the	 lumen	 of	 the	 mBioVaSc‐TERM®	 either	
(A)	directly	on	the	luminal	ECM	adjacent	to	the	capillaries	or	(B)	embedded	in	a	collagen	hydrogel	
cast	 inside	 the	 luminal	 compartment.	 (C)	Top	view	on	 intraluminal	 cultured	cells	 stained	with	
FDA/PI	showing	a	confluent	cell	layer	of	viable	cells.	(D)	MTT	analysis	on	a	cross	section	through	
the	mBioVaSc‐TERM®	lumen	showing	metabolic	activity	of	cells	cultured	in	a	collagen	hydrogel	
inside	the	intestinal	scaffold.		
	

	

Culturing	fibroblasts	inside	the	luminal	compartment,	demonstrated	the	capacity	of	the	

revascularized	mBioVaSc‐TERM®	to	maintain	co‐cultures	viable	and	vital	over	long‐term	

culture.	Despite	the	fact	that	fibroblasts	can	play	a	significant	role	in	tissue	culture138,	the	

aim	 was	 to	 establish	 the	 mBioVaSc‐TERM®	 as	 a	 platform	 technology	 for	 complex	

multicellular	 tissue	 or	 organ	 culture.	 Therefore,	 the	 demand	 for	 optimized	 media	

supplementation	 and	 sustained	 nutrient	 supply	 was	 increased	 by	 incorporating	

metabolic	highly	demanding	liver‐like	organoids	inside	the	scaffold	lumen,	as	the	liver	is	

a	densely	vascularized	organ	highly	active	in	enzymatic	conversion139.		

Spheroidal	 liver‐like	 organoids	 were	 generated	 (Fig.	 13A	 and	 B)	 as	 described118	 and	

transferred	 into	 the	 lumen	 of	 the	 revascularized	 mBioVaSc‐TERM®,	 placed	 in	 close	

proximity	 to	 the	 capillaries	 embedded	 in	 the	 luminal	 wall	 (Fig.	 13C).	 Similar	 to	

commercially	 available	 perfusion	 systems118,	 the	 organoid	 culture	 period	 was	

significantly	prolonged	for	up	to	one	week	when	implemented	in	the	mBioVaSc‐TERM®	

placed	in	the	perfusion	bioreactor	setup	(Fig.	13D)	instead	of	only	for	a	maximum	of	three	

days	in	static	conditions.	During	culture	period,	cellular	viability	of	the	organoid	(Fig.	13E)	

was	 demonstrated	 by	MTT	 analysis.	 Immunohistochemical	 analysis	was	 performed	 to	

confirm	 of	 the	 hepatocyte	 character	 by	 anti‐cytokeratin	 (CK)	 18	 staining	 (Fig.	13F).	
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Hepatocyte	 functionality	 was	 examined	 by	 enzymatic	 conversion	 of	 acetaminophen,	

dextrorphan,	 6ß‐OH‐testosteron,	 and	 4‐OH‐diclofenac	 by	 the	 cytochromes	 CYP1A2,	

CYP2D6,	 CYP3A4,	 and	 CYP2C9,	 respectively.	 For	 enzymatic	 conversion	 analysis,	 the	

organoids	were	explanted	from	the	scaffold	and	exposed	to	the	respective	compound	to	

determine	the	cytochrome	conversion	rates	by	high	performance	liquid	chromatography	

(HPLC).	 HPLC	 analysis	 was	 performed	 by	 Prof.	 Dr.	 Angela	 Mally	 (Department	 of	

Toxicology,	University	of	Würzburg,	Würzburg,	DE).	Comparing	 the	 liver‐like	organoid	

co‐cultures	 to	confluent	2D	hepatocyte	cultures,	enzymatic	 functionality	was	shown	to	

remain	only	on	a	basal	 level	(Fig.	13G).	Pre‐incubation	with	3‐methylcholanthrene	and	

phenobarbital	 did	 not	 significantly	 increase	 the	 hepatic	 drug‐metabolizing	 enzymatic	

conversion	rate.		
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Figure	13.	Liver‐like	organoid	implementation	in	the	reendothelialized	mBioVaSc‐
TERM®.	
(A+B)	Liver‐like	organoids	were	generated	by	self‐condensation	of	a	confluent	multicellular	layer	
within	three	days.	(C)	To	sustain	the	high	metabolic	need	of	the	organoids,	they	were	implemented	
in	the	luminal	compartment	of	the	revascularized	mBioVaSc‐TERM®	and	(D)	connected	to	the	
bioreactor	setup	for	perfusion	culture.	(E)	MTT	analysis	confirmed	metabolic	activity	of	the	dense	
cell	organoids.	(F)	Immunohistochemical	staining	against	cytokeratin	(CK)	18	on	a	cross	section	
of	 a	 liver‐like	 organoid	 within	 the	 scaffold	 lumen.	 (G)	Enzymatic	 conversion	 demonstrating	
functionality	of	the	hepatocytes	within	the	co‐culture	and	as	mono‐culture	was	demonstrated	for	
liver‐typical	cytochromes.	Scale	bars:	(F)	100	µm.	Error	bars:	mean	±	SD;	t‐test.	
	

	

In	 summary,	 the	 mBioVaSc‐TERM®	 was	 reendothelialized	 with	 hdmECs	 and	

subsequently	used	to	maintain	co‐cultures	within	the	luminal	compartment	viable,	vital,	

and	functional.	Fibroblasts	were	populating	the	luminal	matrix	as	cell	layer	or	embedded	

in	a	hydrogel	cast	inside	the	lumen.	Furthermore,	dense	multicellular	organoids	were	co‐

cultured.	 The	 proof	 to	 maintain	 cells	 viable	 and	 vital	 inside	 the	 luminal	 part	 of	 the	

mBioVaSc‐TERM®,	supplied	by	the	adjacent	embedded	hdmECs,	was	demonstrated	and	
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basal	 functionality	 was	 maintained.	 However,	 ineffective	 induction	 of	 increased	

enzymatic	metabolism	revealed	the	necessity	for	further	optimization	of	the	culture	and	

maturation	conditions	for	the	organoids	cultured	inside	the	scaffold.	

	

4.3.2	Distribution	of	bioactive	compounds	throughout	the	vascular	system	

Co‐culturing	cells	inside	the	luminal	part	of	the	scaffold	with	ECs	was	shown	to	be	feasible,	

even	 with	 complex	 and	 demanding	 multicellular	 organoids	 maintained	 viable	 and	

functional.	 Beyond	 nutrient	 delivery	 to	 sustain	 vitality,	 the	 vasculature	 could	 also	 be	

utilized	to	distribute	drugs	secreted	by	cells	cultured	in	the	lumen	of	the	scaffold.		

In	a	pilot	experiment,	 the	capacity	of	 the	mBioVaSc‐TERM®	as	a	scaffold	 for	cells	 that	

secrete	 signaling	 molecules,	 such	 as	 hormones,	 cytokines,	 and	 growth	 factors,	 was	

investigated.	

To	achieve	this,	cells	secreting	Activin	A	and	Myostatin	were	generated.	Both,	Activin	A	

and	 Myostatin	 were	 shown	 to	 negatively	 regulate	 skeletal	 muscle	 growth140.	 The	

respective	gene	coding	for	Activin	A	and	Myostatin	was	cloned	into	the	multiple	cloning	

site	of	the	lentiviral	expression	vector	pCDH‐CMV‐MCS‐EF1‐Puro	and	finally	introduced	

into	Chinese	hamster	ovary	(CHO)	cells	by	lentiviral	transduction.		

For	the	in	vitro	proof	of	drug	secretion	and	distribution,	the	cells	were	implemented	into	

the	luminal	compartment	of	the	revascularized	mBioVaSc‐TERM®.	Medium	supernatant	

from	all	compartments	of	the	bioreactor	system,	including	the	vessel	compartment	was	

analyzed	by	ELISA	for	protein	secretion	(Fig.	14A).	Notably,	despite	the	concentration	of	

secreted	protein	appeared	to	be	similar,	the	total	amount	was	up	to	200	%	higher	in	the	

3D	perfusion	culture	 than	 in	static	2D	cell	 culture.	Mock	 transduced	CHO	cells	did	not	

secrete	any	detectable	Activin	A	nor	Myostatin.		

The	proof	of	biological	activity	of	the	secreted	protein	was	critical	for	the	functionality.	

Therefore,	the	inhibitory	effect	of	Activin	A	and	Myostatin	on	proliferation	of	responsive	

cells	was	utilized	in	a	dose	dependent	manner122.	The	applied	Activin	A‐	and	Myostatin‐

containing	supernatant	taken	from	2D,	reactor,	and	vessel	compartment	showed	the	same	

proliferation	 inhibitory	 effect	 in	 a	 dilution	 series	 in	 a	 bioassay	 for	 each	 protein:	with	

increasing	 protein	 concentration	 administered,	 the	 lower	 cellular	 proliferation	 was	

examined	(Fig.	14B).		
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Figure	14.	In	vitro	drug	secretion	from	the	mBioVaSc‐TERM®.		
CHO	cells	genetically	modified	for	Activin	A	(Act	A)/Myostatin	(MSTN)	secretion	were	cultured	
within	the	luminal	compartment	of	the	mBioVaSc‐TERM®.	(A)	Secretion	levels	were	determined	
from	 supernatant	 from	 standard	 2D	 cell	 culture	 flask	 as	well	 as	 from	 the	 bioreactor	 and	 the	
vascular	compartment	by	ELISA	quantification.	(B)	The	secreted	proteins	were	applied	in	a	dose‐
dependent	cell‐based	assay	 inhibiting	cellular	proliferation	 to	determine	 its	biological	 activity.	
Error	bars:	mean	±	SD;	t‐test.	(A)	Copyrighted	reprint128;	modified.		
	
	

Demonstrating	maintained	viability	and	sustained	release	of	biologically	active	proteins	

from	 constitutively	 secreting	 cells	 as	 well	 as	 protein	 distribution	 throughout	 the	

bioreactor	system,	indicated	the	applicability	of	the	mBioVaSc‐TERM®	as	a	drug	delivery	

system.	However,	to	also	demonstrate	the	capacity	of	the	scaffold	to	maintain	complex	

native	 cell	 cluster	 naturally	 secreting	 proteins	 upon	 a	 highly	 regulated	 feedback	

mechanism	viable	and	functional,	pancreatic	 islets	were	co‐cultured	inside	the	 luminal	

compartment	of	the	revascularized	mBioVaSc‐TERM®.		

Neonatal	 pig	 islet‐like	 cell	 clusters	 (NICC)	 represent	 a	 cluster	 of	 different	 cell	 types	

composing	a	pancreatic	islet	isolated	that	can	be	utilized	for	cell	therapy	in	type	1	diabetes	

patients141	due	to	their	endocrine	insulin	secretory	activity	when	matured.		

NICCs	 were	 isolated	 by	 Dr.	 Elisabeth	 Kemter	 (Molecular	 Animal	 Breeding	 and	

Biotechnology,	PI:	Prof.	Dr.	Eckhard	Wolf,	LMU	München,	Munich,	DE),	co‐cultured	in	the	

lumen	 of	 the	 revascularized	 mBioVaSc‐TERM®	 (Fig.	 15A),	 and	 investigated	 for	 their	

viability	and	functionality	when	cultured	in	vitro.		

At	 first,	 the	 amount	 of	 NICCs	 to	 be	 cultured	 per	 area	 on	 the	 ECM	 and	 media	

supplementation	 for	 co‐culture	 with	 hdmECs	 was	 determined.	 The	 final	 media	

composition	consisted	of	a	1:1	volume	mixture	of	basal	Vasculife	and	Ham’s	F10	medium	

including	each	supplements	in	their	doubled	concentration	to	balance	the	dilution.	Based	

on	the	beforehand	established	culture	conditions	the	NICCs	were	cultured	in	the	lumen	of	
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the	 endothelialized	 mBioVaSc‐TERM®	 accordingly.	 The	 metabolic	 activity	 of	 the	 cell	

clusters	was	analyzed	by	MTT	for	up	to	20	days	in	culture	(Fig.	15B).	Noticeable	thereby,	

the	islets	tended	to	cluster	around	the	vascular	structures.	H&E	staining	on	cross	sections	

of	 the	 cultured	 organoids	 within	 the	 scaffold	 demonstrated	 that	 the	 cells	 lost	 their	

spheroidal	 shape	 and	 rather	 adhered	 as	 a	 cell	 layer	 to	 the	 luminal	 ECM	 (Fig.	 15C).	

Further	immunohistological	examination	displayed	the	presence	of	only	few	insulin‐	and	

glucagon‐positive	cells	(Fig.	15D),	presumably	due	to	the	not	yet	fully	differentiated	but	

immature	neonatal	character	of	the	cells142.		

To	 determine	 endocrine	 functionality	 of	 the	 cells,	 insulin	 secretion	was	measured	 by	

ELISA	 analysis	 of	 the	 supernatant.	 Therefore,	 the	 cells	 were	 pre‐incubated	 in	

3	mM	glucose	for	30	min	before	glucose	stimulated	insulin	secretion	incubating	the	islet	

containing	scaffolds	with	3,	5,	and	10	mM	glucose.	Comparing	the	insulin	release,	there	

was	 no	 significant	 increase	 above	 the	 basal	 secretion	 level	 determined	 (Fig.	 15E).	

Moreover,	the	insulin	release	declined	over	time,	even	though	with	an	overall	less	steep	

decline	by	trend	when	incubated	with	10	mM	glucose,	indicating	insufficient	stimulation	

when	cultured	under	low	glucose	conditions.		

Furthermore,	 the	 influence	 of	 additional	 co‐cultures	 on	 NICC	 viability	 and	 insulin	

secretion	was	investigated	infusing	the	NICCs	along	with	ECs	and	mesenchymal	stem	cells	

(MSC)	 inside	 the	 luminal	 part	 of	 the	mBioVaSc‐TERM®	 cultured	with	 10	mM	 glucose	

supplementation.	Performing	an	 insulin	ELISA	with	 the	 respective	supernatants,	 there	

was	 a	 slight	 yet	 insignificant	 increase	 in	 insulin	 release	 detected	 over	 time	 (Fig.	15F).	

This	trend	was	demonstrated	to	be	similar	for	all	co‐culture	conditions.	However,	when	

NICCS	 were	 co‐cultured	 with	 hdmECs	 or	 with	 MSCs	 and	 hdmECs,	 the	 overall	 insulin	

secretion	 was	 increased	 compared	 to	 NICCs	 only	 and	 NICCs	 with	 MSCs.	 However,	

no	direct	impact	of	ECs	on	insulin	secretion	is	described	in	literature,	hypothesizing	an	

indirect	effect	of	ECs	on	presumably	 increased	vitality	or	sensitivity	of	 the	co‐cultured	

NICCs.		

In	 summary,	 even	 though	 the	 spheroidal	 shape	 was	 lost,	 the	 long‐term	 viability	 and	

vitality	of	NICCs	within	the	mBioVaSc‐TERM®	was	demonstrated.	In	consideration	of	the	

immature	 character	 of	 the	 neonatal	 isolated	 islet‐like	 cell	 clusters,	 a	 sustained	 basal	

insulin	 secretion	 was	 maintained	 when	 cultured	 with	 10	 mM	 glucose.	 Less	 glucose	
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supplementation	 indicated	a	decrease	 in	 insulin	 secretion	or	a	decline	 in	cell	viability,	

whereas	co‐culture	with	ECs	might	increase	insulin	secretion	by	elevated	NICC	vitality.		

	

	

Figure	 15.	 Vascularized	 endocrine	 pancreatic	 tissue	 generation	with	 functional	
insulin	secretion.		
NICCs	 cultured	 in	 the	 reendothelialized	 mBioVaSc‐TERM®	 to	 develop	 an	 endocrine	 tissue.	
(A)	NICCs	 were	 cultured	 inside	 the	 luminal	 compartment	 in	 close	 proximity	 to	 the	 perfused	
endothelialized	 capillary	 network.	 (B)	 Colorimetric	MTT	 assay	 determining	metabolic	 activity	
revealed	 a	 distinct	 staining	 of	 the	 ECs	 inside	 the	 vascular	 structures	 and	 the	 islets	 clustering	
around	vessels.	(C)	H&E	overview	stain	on	cross	sections	showed	a	cell	monolayer	residing	on	the	
luminal	 wall.	 (D)	 The	 presence	 of	 insulin‐	 and	 glucagon‐positive	 cells	 was	 demonstrated	 by	
immunofluorescence	staining.	Functional	insulin	secretion	of	NICCs	was	determined	by	insulin‐
ELISA	(E)	after	stimulation	with	3,	5,	and	10	mM	glucose	as	well	as	 (F)	after	stimulation	with	
10	mM	glucose	examining	the	influence	of	co‐cultures	with	ECs	and	MSCs	on	insulin	secretion.	
Scale	bars:	(C)	100	µm,	(D)	50	µm.	Error	bars:	mean	±	SD;	t‐test.	
	

	

In	summary,	the	proof	of	concept	was	demonstrated	for	the	utilization	of	the	mBioVaSc‐

TERM®	as	a	platform	to	maintain	co‐cultures	of	complex	cellular	organoids	viable	and	

sustain	 functional	 enzymatic	 conversion	 as	 well	 as	 secretion	 of	 bioactive	 signaling	

molecules,	 however	 only	 on	 a	 basal	 level.	 Functional	 stimulation	 to	 proof	 increased	

endocrine	secretion	based	on	a	 feedback	mechanism	or	enhanced	enzyme	activity	still	

had	to	be	demonstrated	to	further	proof	the	applicability	of	the	mBioVaSc‐TERM®	as	a	

drug	delivery	system.		
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4.4	In	vivo	application	demonstrating	proof	of	concept	in	a	small	animal	rat	model	

The	vascular	tightness	was	verified	and	co‐cultures	inside	the	lumen	were	demonstrated	

to	 be	 maintained	 viable	 as	 well	 as	 to	 support	 sustained	 biologically	 active	 protein	

secretion	showing	 the	applicability	and	versatility	of	 the	scaffold.	Thereby,	 the	 in	vitro	

proof	of	concept	was	demonstrated	for	the	mBioVaSc‐TERM®	to	be	developed	towards	a	

platform	technology	for	endocrine	tissue	graft	generation.		

Furthermore,	the	intended	application	of	the	mBioVaSc‐TERM®	was	the	translation	into	

clinical	practice	as	a	drug	delivery	system	or	tissue	replacement.	As	the	in	vitro	results	

were	promising,	the	scaffold	was	intended	to	be	applied	for	in	vivo	proof	of	concept.		

For	 in	 vivo	 experiments,	 at	 first,	 the	 mBioVaSc‐TERM®	 was	 reendothelialized	 and	

cultured	 in	vitro	 for	up	to	14	days	until	sufficient	maturation	of	the	vascular	system	to	

ensure	its	vascular	tightness	for	an	implantation	in	nude	rats.		

	

4.4.1	Anastomosis	of	the	mBioVaSc‐TERM®	with	the	blood	circulation	

First	transplantations	were	undertaken	to	elicit	feasibility	and	to	establish	a	reproducible	

routine	of	anastomosis	of	the	arterial	and	venous	vessel	of	the	mBioVaSc‐TERM®	onto	

the	respective	vessels	of	the	rat.	All	surgical	procedures	were	conducted	by	Dr.	Johannes	

Baur	(Department	of	General,	Visceral,	Vascular	and	Pediatric	Surgery,	PI:	Prof.	Dr.	C.	Otto,	

University	Hospital	Würzburg,	Würzburg,	DE).	The	caudal	part	of	the	abdominal	aorta	as	

well	 as	 the	 caudal	 vena	 cava	proved	 to	 be	 appropriate	 for	 the	 anastomosis	with	 little	

vascular	offset	and	a	high	blood	flow.	Furthermore,	the	abdominal	area	provided	enough	

space	 for	 an	 un‐compressed	 positioning	 at	 the	 gut	 area	 from	where	 the	 scaffold	was	

originally	extracted.		

The	rats	were	kept	under	constant	anesthesia	while	their	abdominal	wall	was	opened	by	

a	laparotomy	(Fig.	16A)	for	subsequent	implantation.	The	caudal	part	of	the	abdominal	

aorta	as	well	as	 the	caudal	vena	cava	(Fig.	16B)	were	prepared	 for	anastomosis	of	 the	

preserved	mesenteric	arterial	and	venous	vessels	of	the	mBioVaSc‐TERM®,	respectively,	

by	 clearing	 and	 freeing	 them	 from	 connective	 tissue	 attached	 to	 the	 vasculature.	

After	end‐to‐side	 anastomosis	 of	 both	 vessels	 to	 the	 rat’s	 vasculature	 (Fig.	 16C)	 the	

surgical	clamps	(i.e.	serrefines)	were	removed.	Once	opened,	an	immediate	blood	inflow	

into	the	mBioVaSc‐TERM®	was	clearly	observable.	The	bloodstream	entered	the	feeding	
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vessel	flowing	through	the	different	branches,	guiding	the	blood	flow	towards	the	lumen	

where	 it	 spread	out	 into	 the	 vast	branching	 capillaries	 (Fig.	 16D).	The	 constant	blood	

perfusion	through	the	whole	vascularization	of	the	scaffold	as	well	as	the	venous	return	

were	proven	by	manual	drainage	of	the	vessels.	For	this,	the	blood	perfused	vessels	of	the	

mBioVaSc‐TERM®	were	dissected	 to	branch	off	 the	blood	 inflow	with	 forceps	and	 the	

retained	blood	was	drained	out	with	another	pair	of	forceps.	Subsequently,	the	branched	

off	blood	flow	was	released	and	a	directed	flow	was	observed	from	arterial	to	venous.		

Thereby,	the	methodological	technique	to	reliably	ensure	an	unobstructed	anastomosis	

and	directed	blood	circulation	throughout	the	arteriovenous	network	of	the	mBioVaSc‐

TERM®	was	verified.		

After	anastomosis,	the	blood	perfusion	through	the	vasculature	of	the	mBioVaSc‐TERM®	

connected	 to	 the	 animal’s	 circulation	 was	 investigated	 in	 terms	 of	 vascular	 stability,	

perfusion,	 and	 leakage	 over	 a	 course	 of	 30	minutes	 (n	 =	 4).	 In	 all	 animals,	 no	 visible	

leakage	was	detected	at	any	time	point	nor	position,	confirming	the	in	vitro	results	when	

perfusing	the	scaffold	with	blood.	Additionally	performed	manual	drainages	at	different	

positions	 of	 the	 scaffold	 proved	 the	 continuous	 unidirectional	 blood	 flow	 in	 feeding	

arterial	 and	 draining	 venous	 vessels	 as	 well	 as	 in	 the	 luminal	 capillaries	 (Fig.	 16D).	

Representative,	in	two	of	the	animals,	the	vascular	tightness	of	the	mBioVaSc‐TERM®	and	

its	perfusion	connected	 to	 the	animal’s	 circulation	was	 further	confirmed	by	real‐time	

intravascular	 fluorescence	 microscopy.	 For	 this,	 fluorescently	 labeled	 albumin	 was	

injected	into	the	jugular	vein	of	the	anesthetized	animal	with	the	abdomen	opened	and	

the	 mBioVaSc‐TERM®	 anastomosed	 to	 the	 animal’s	 circulation	 as	 mentioned	 before.	

Thus,	 the	 injected	 tracer	 was	 distributed	 systemically	 throughout	 the	 animal’s	 blood	

system	 and	 was	 also	 detected	 within	 the	 vasculature	 of	 the	 anastomosed	 mBioVaSc‐

TERM®	within	less	than	1	minute	and	was	distinctly	visible	thereafter.	After	cutting	off	

the	 anastomosis	 to	 explant	 the	 scaffold	 (Fig.	 16E),	 immunohistochemical	 analysis	

confirmed	the	presence	of	CD31‐positive	cells	in	all	examined	vascular	compartments	of	

the	scaffolds,	i.e.	in	the	larger	vessel	in	close	proximity	to	the	anastomosis	(Fig.	16F),	in	the	

distal	 vascular	 branches	 leading	 towards	 the	 lumen	 (Fig.	 16G)	 and	 in	 the	 luminal	

capillaries	(Fig.	16H).	
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Figure	16.	Anastomosis	of	the	mBioVaSc‐TERM®	to	a	host	vasculature.		
The	reendothelialized	vessels	of	the	mBioVaSc‐TERM®	were	connected	the	circulation	of	a	rat.	
(A)	 The	 abdominal	 wall	 of	 the	 recipient	 rat	 was	 opened	 by	 a	 median	 laparotomy.	 (B)	 The	
infrarenal	 part	 of	 the	 aorta	 abdominalis	 and	 the	 caudal	 part	 of	 the	 vena	 cava	 (indicated	 by	
arrowheads)	were	dissected	from	surrounding	connective	tissue.	(C)	Side‐to‐end	anastomosis	of	
arterial	 and	 venous	 vessels	 of	 the	 mBioVaSc‐TERM®	 with	 the	 abdominal	 vasculature	 of	 the	
animal	(highlighted	by	arrowhead).	(D)	Blood	inflow	into	the	vascular	system	of	the	mBioVaSc‐
TERM®	 including	 the	 capillary	 network	 embedded	 in	 the	 luminal	 wall	 (highlighted	 by	
arrowheads	and	inlet)	after	release	of	the	clamps.	(E)	Macroscopic	appearance	of	the	implanted	
mBioVaSc‐TERM®.	The	dotted	lines	indicated	the	cross	sections	for	(F‐H)	immunohistochemical	
analysis	of	the	endothelialized	vessels	proximal,	distal,	and	luminal	to	the	anastomosis	by	anti‐
CD31	staining.	Scale	bars:	(F‐H)	100	μm.	Copyrighted	reprint128;	modified.		
	
	

4.4.2	Confirmation	of	in	vivo	biocompatibility	after	graft	implantation		

After	 the	 intraoperative	confirmation	of	 the	 feasibility	and	tightness	of	 the	established	

anastomosis	 and	 the	 reendothelialized	 mBioVaSc‐TERM®	 vessels,	 the	 scaffold	 was	

analyzed	upon	its	vascular	integrity	and	biocompatibility	in	successive	studies	for	up	to	

120	days.		

For	 the	 implantation	 studies	 with	 the	 mBioVaSc‐TERM®	 connected	 to	 the	 animal’s	

circulation	inside	the	abdomen,	the	scaffold	was	prepared	and	the	anastomosis	sutured	

as	described	above.	After	confirmation	of	the	vascular	tightness	and	exclusion	of	leakage,	

the	mBioVaSc‐TERM®	remained	in	the	abdominal	cavity	next	to	 the	animal’s	 intestine	

and	the	abdominal	wall	was	sutured.	After	a	short	recovery	period,	the	rats	showed	no	

signs	 of	 pain	 nor	 of	 altered	 behavior	 aside	 from	 early	 evident	 dizziness	 due	 to	 the	

anesthetics.	 Throughout	 the	 various	 implantation	 periods	 of	 3	 (n	 =	 4),	 7	 (n	 =	 3),	
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30	days	(n	=	 5),	 and	 120	 days	 (n=3)	 the	 animals	 were	 monitored	 daily.	 Body	 weight	

measurement	and	score	upon	general	social,	feeding	and	movement	behavior	observation	

determined	continuation	or	termination	of	the	animal	experiment	(Fig.	17).	Due	to	the	

stress	of	the	surgical	intervention	all	animals	were	scored	with	‘2’.	Administration	of	the	

anti‐inflammatory	and	pain‐relieving	drug	carprofen	resulted	in	decreased	signs	of	post‐

operative	suffering	and	therefore	a	scoring	of	 ‘1’	or	 ‘0’	within	the	first	three	days	after	

surgery	and	no	increase	thereafter,	except	for	one	animal,	that’s	body	posture	was	bent.	

For	all	animals,	beside	one	(Fig.	17;	marked	with	*),	normal	weight	gain	and	no	altered	

behavior	 was	 observed	 as	 compared	 to	 control	 animals	 during	 the	 whole	 study.	

The	mBioVaSc‐TERM®	 was	 tolerated	 by	 the	 rats	 without	 any	 notable	 complications,	

incompatibility	 or	 rejection	 except	 for	 one	 animal.	 The	 weight	 gain	 of	 this	 one	 rat	

stagnated	and	exhibited	signs	of	acute	abdominal	pain	after	seven	days	postoperatively	

and	 therefore	 was	 euthanized	 (Fig.	17;	marked	 with	 *).	 Post	 mortem	 examination	

revealed	that	a	progressing	ileus	had	occurred	in	this	animal.	Presumably,	the	incidence	

was	likely	not	directly	linked	to	the	compatibility	of	the	scaffold	but	a	common	intestinal	

obstruction.	Besides	the	one	euthanized	animal,	the	others	were	examined	as	scheduled.		
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Figure	17.	Monitoring	and	scoring	of	experimental	animals.	
NIH‐Foxn1nu	 rats	were	 employed	 for	 implantation	 studies.	 The	 implanted	mBioVaSc‐TERM®	
remained	in	vivo	for	3,	7,	30,	and	120	days.	Within	the	respective	time	periods,	the	animal	were	
weighed	and	scored	upon	monitoring	general	social,	feeding	and	movement	behavior	on	a	daily	
basis.	Score	evaluation:	0	–	no	indications,	no	intervention	necessary;	1	‐	thorough	observation	
due	 to	 indications	 of	 altered	 or	 abnormal	 behavior;	 2	 –	 termination	 in	 case	 of	 persisting	 or	
multiple	 indications	 of	 suffering;	 3	 –	 immediate	 termination	 indicated	 by	 severe	 suffering.	
Error	bars:	mean	±	SD;	t‐test.		
	
	

4.4.3	Successive	overgrowth	of	the	scaffolds	during	the	implantation	period	

Macroscopic	assessment	of	 the	mBioVaSc‐TERM®	after	reopening	 the	abdomen	of	 the	

laboratory	animals	revealed	a	successive	overgrowth	with	connective	tissue	dependent	

on	the	implantation	period.		

In	particular,	the	first	cohort	was	investigated	3	days	post	implantation.	The	implant	was	

easily	 identified	 being	 embedded	 in	 between	 the	 rat’s	 intestine.	 At	 first	 glance,	 the	

macroscopic	 morphology	 of	 the	 mBioVaSc‐TERM®	 (Fig.	18A)	 and	 its	 anastomosis	

(Fig.	18A;	 inlet)	was	widely	unchanged	 to	 its	 original	 appearance	before	 implantation.	

There	 were	 no	 macroscopic	 signs	 of	 necrosis	 and	 only	 minimal	 negligible	 fibrotic	

encapsulation	detected.	Furthermore,	the	blood	supply	within	the	scaffold’s	vascular	tree	
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was	clearly	detectable	throughout	the	scaffolds	vasculature	from	the	side	of	anastomosis	

to	the	lumen’s	capillary	bed	(Fig.	18A).		

After	7	days	 in	vivo,	 the	implanted	scaffold	was	surrounded	by	loose	connective	tissue,	

thereby	loosely	adherent	to	the	tissues	around	the	implant,	but	easily	dissected	thereof	

(Fig.	 18B).	 Nevertheless,	 it	 appeared	macroscopically	 intact	with	 its	 vasculature	 filled	

with	blood.		

Explanting	the	mBioVaSc‐TERM®	30	days	post	implantation,	it	was	entirely	encapsulated	

by	connective	tissue	and	thereby	adherent	to	the	surrounding	abdominal	wall.	While	after	

short‐term	experiments	the	graft	surrounding	connective	tissue	was	only	thin	and	loose,	

after	30	days	the	surrounding	tissue	was	thicker	and	the	scaffold	compressed	instead	of	

spread	(Fig.	18C).	The	naturally	produced	connective	tissue	had	to	be	removed	in	order	

to	identify	the	mBioVaSc‐TERM®	inside	the	abdomen.	Despite	the	fibrotic	encapsulation,	

the	 anastomosis	was	 still	 intact	 (Fig.	 18C;	 inlet).	 However,	macroscopically	 no	 visible	

blood	flow	was	detected	anymore,	not	even	in	the	larger	vessels.		

Implanted	for	120	days,	the	mBioVaSc‐TERM®	was	indistinguishably	integrated	within	

the	connective	tissue	and	thereby	unrecoverable	for	detailed	examination	(Fig.	18D).		

Enveloping	 the	 graft	 into	 a	 surgical	 fleece	 to	 separate	 it	 from	 the	 surrounding	 tissue	

resulted	in	the	degradation	of	the	graft	after	30	days	of	implantation	(Fig.	18E).	Therefore,	

the	scaffold	was	not	considered	for	further	analysis.		

	

	

Figure	18.	Macroscopic	evaluation	of	the	implanted	mBioVaSc‐TERM®.	
After	implantation	period	for	(A)	3,	(B)	7,	(C)	30,	and	(D)	120	days	the	abdomen	was	opened	by	a	
laparotomy	to	recover	 the	 transplanted	scaffold.	Additionally,	 (E)	 the	revascularized	graft	was	
enveloped	with	a	surgical	mesh	and	implanted	for	30	days.	The	mBioVaSc‐TERM®	was	evaluated	
macroscopically	upon	integrity,	blood	perfusion,	and	intact	anastomosis.		
	
	



4.	Results	
	

91	
	

4.4.4	Fading	of	functional	markers	on	ECs	and	liver‐like	organoids		

The	vascularized	scaffold	was	established	in	order	to	nourish	and	maintain	engineered	

tissue	 in	 vivo.	 To	 proof	 that	 the	 mBioVaSc‐TERM®	was	 capable	 of	 being	 utilized	 for	

maintaining	tissue	culture	in	vivo,	the	vasculature	was	lined	with	hdmECs	and	spheroidal	

liver	 organoids	 were	 generated	 and	 implemented	 into	 the	 lumen	 of	 the	 vascularized	

scaffold.		

Immunohistochemical	 analysis	was	 performed	 to	 confirm	 that	 the	 vascular	 structures	

were	lined	with	ECs	and	the	luminal	implemented	liver‐like	organoids	displayed	cell	type‐

specific	markers	as	well	as	proliferative	capabilities.		

In	particular,	anti‐CD31	staining	was	performed	on	cross	sections	as	indicated	by	dotted	

lines	on	the	macroscopic	representation	of	the	explanted	mBioVaSc‐TERM®	after	3	days	

of	implantation	(Fig.	19A).	On	vessels	proximal	(Fig.	19B),	distal	(Fig.	19B’),	and	luminal	

(Fig.	19B’’)	 to	 the	 anastomosis,	 CD31+	 ECs	were	 displayed	 to	 tightly	 line	 the	 vascular	

structures	of	different	diameter.	Additionally,	integrated	liver‐like	organoids	in	the	in	vivo	

study,	were	examined	immunohistochemically	for	the	cell	characteristic	markers	of	the	

three	 implemented	organoid	 cell	 types.	Hepatocytes	were	 verified	by	CK18	 (Fig.	19C),	

liver	 sinusoidal	 ECs	 by	 CD31	 (Fig.	 19D),	 and	MSCs	 by	 CD90	 (Fig.	 19E).	 Furthermore,	

proliferative	capabilities	were	examined	by	Ki67	(Fig.	19F)	and	apoptosis	was	observed	

by	activated	cleaved	caspase	3	stain	(Fig.	19G).		

Similarly,	after	7	days	in	vivo,	the	explanted	scaffold	was	macroscopically	mainly	intact	

(Fig.	19H).	The	proximal	(Fig.	19I)	and	distal	vasculature	(Fig.	19I’)	to	the	anastomosis	

depicted	 CD31‐positive	 cells	 in	 all	 observed	 vessels.	 The	 CD31+	 ECs	 lining	 capillaries	

inside	 the	 lumen	 of	 the	 scaffold	 could	 be	 clearly	 demonstrated	 (Fig.	 19I’’).	 However,	

some	of	the	vascular	structures	appeared	not	be	endothelialized	completely	suggesting	a	

beginning	vascular	obliteration	in	retrospective	consideration	of	the	30	day	implantation	

results.	The	markers	CK18	(Fig.	19J),	CD31	(Fig.	19K),	and	CD90	(Fig.	19L)	for	the	liver‐

like	 organoids	 were	 demonstrated	 as	 well	 as	 Ki67	 (Fig.	 19M)	 and	 activated	 cleaved	

caspase	3	(Fig.	19N).	However,	the	detected	signal	for	caspase	3	was	increased	whereas	

Ki67	was	decreased	compared	to	the	3	days	implant.	Furthermore,	the	structural	integrity	

of	the	organoid	appeared	fragmented.	
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The	progressive	deterioration	of	the	microscopically	revealed	structures	proceeded	over	

a	time	period	for	up	to	30	days.	Macroscopically,	the	original	structure	of	the	mBioVaSc‐

TERM®	was	not	recovered	after	explanation	(Fig.	19O).	Immunohistochemical	analysis	

revealed	a	fading	of	the	endothelial	barrier	in	the	larger	proximal	(Fig.	19P)	and	distal	

(Fig.	 19P’)	 vessels	 and	 only	 a	 scattered	 CD31+	 EC	 detection	 in	 the	 luminal	 capillaries	

(Fig.	19P’’).	The	fate	of	the	implemented	liver	organoids	matched	the	EC‐examination	of	

the	 vascular	 structures	 of	 the	 implanted	 mBioVaSc‐TERM®	 in	 terms	 of	 successive	

deterioration.	Similar	to	the	fading	EC	markers,	a	progressive	structural	dispersion	of	the	

implemented	organoids	and	decreased	signal	intensity	was	observed	on	CK18	(Fig.	19Q),	

CD31	(Fig.	19R),	and	CD90	(Fig.	19S)	staining.	Equivalently,	Ki67	(Fig.	19T)	also	decreased	

further,	whereas	activated	cleaved	caspase	3	(Fig.	19U)	was	further	increased.	
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Figure	19.	Graft	explantation	and	immunohistological	examination.		
Characterization	 of	 the	mBioVaSc‐TERM®	upon	 (A,	H,	O)	macroscopic	 appearance	 and	 (B’‐U)	
immunohistochemical	 analysis	 after	 implantation	 for	 (A‐G)	 3,	 (H‐N)	 7,	 and	 (O‐U)	 30	 days.	
The	inlets	show	a	magnification	of	the	blood‐perfused	vascular	tree.	The	dashed	lines	indicate	the	
cross	sections	for	staining	against	CD31:	(B,	I,	P)	proximal	to	the	anastomosis,	(B’,	I’,	P’)	on	distal	
parts	 of	 the	 vasculature,	 and	 (B’’,	 I’’,	 P’’)	 through	 the	 lumen.	 Liver‐like	 organoids	 were	
implemented	 in	 the	 luminal	 compartment,	 confirmed	 by	 staining	 against:	 (C,	 J,	 Q)	 CK18,	
(D,	K,	R)	CD31,	and	(E,	L,	S)	CD90	for	hepatocytes,	endothelial	cells,	and	mesenchymal	stem	cells,	
respectively.	Highlighting	proliferative	 cells	by	 (F,	M,	T)	Ki67	 staining	 as	well	 as	 apoptosis	by	
(G,	N,	U)	activated	cleaved	Caspase3.	Scale	bars:	100	μm.	Copyrighted	reprint128;	modified.		
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In	conclusion,	for	the	mBioVaSc‐TERM®	the	in	vivo	proof	of	concept	for	the	feasibility	of	

transplantation	 and	 short	 term	 implantation	was	 demonstrated.	 The	 anastomosis	 and	

vasculature	of	the	scaffold	prove	to	be	tight	when	connected	to	the	animal’s	circulation	

and	perfused	with	the	host’s	blood.	However,	cell‐	and	apoptosis‐specific	marker	analysis	

during	long‐term	implantation	revealed	fading	vascular	and	organoid	integrity.		

Despite	the	given	drawbacks	after	long	term	implantation,	the	impressive	in	vitro	as	well	

as	the	promising	short	term	in	vivo	results	depicted	first	steps	for	the	mBioVaSc‐TERM®	

towards	a	platform	technology	to	generate	implantable	vascularized	(endocrine)	tissues	

that	 can	be	anastomosed	 to	 the	host	blood	circulation	 for	an	 immediate	blood	supply.	

Yet,	long	term	in	vivo	stability	and	persistence	of	the	scaffold	have	to	be	improved.		
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5.	DISCUSSION	

With	increasing	life	expectancy	in	conjunction	with	the	prevalence	of	risk	factors	such	as	

diabetes,	high	blood	pressure,	obesity,	smoking,	environmental	pollution	etc.	the	amount	

of	acute	and	chronic	organ	failures	ascends143.	Organ	impairments	severely	deteriorate	

quality	of	life	and	social	status	by	negatively	impacting	or	impeding	daily	activity,	physical	

and	psychological	performance,	and	employment.	A	wide	range	of	metabolic	dysfunctions	

can	 be	 pharmaceutically	 compensated	 but	 the	 only	 definitive	 treatment	 is	 organ	

transplantation.	 Nevertheless,	 the	 availability	 of	 donor	 organs	 is	 limited144.	 Hence,	

there	is	an	increasing	demand	for	improved	tissue	regeneration	or	bio‐engineered	tissue	

substitutes	 with	 clinical	 relevance	 being	 biocompatible,	 non‐	 immunogenic,	 non‐

thrombogenic,	but	biologically	functional.	While	recent	advances	in	TE	succeeded	in	the	

generation	 of	 flat	 2D	 or	 hollow	 tissues145,146,	 even	 towards	 clinical	 application76,147,	

functional	 tissue	 engineering	 of	 complex	 solid	 organs	 is	 still	 unmet	 due	 to	 the	 lack	 of	

whole	 tissue	 nutrition.	 Nevertheless,	 progression	 towards	 whole	 organ	 generation	 is	

being	made	in	small	animal	models	by	whole	organ	decellularization	and	recellularization	

of	 complex	 organs	 such	 as	 liver46,	 lung187,47,	 heart148,	 kidney57,	 and	 limbs59.	 However,	

adequate	vascularization	to	meet	the	demand	for	nutrient	supply	of	the	generated	organ	

is	the	most	critical	issue	that	has	not	yet	been	solved	to	maintain	the	tissue	viable.	In	this	

regard,	tissue	decellularization	and	recellularization	appears	most	promising	but	is	still	

in	its	infancy149.	For	this	reason,	a	consecutive	built	up	of	functional	organ	tissue	seemed	

consequential,	 generating	 a	 vascularized	 matrix	 as	 framework	 for	 subsequent	 tissue	

establishment	and	maturation.		

Resulting	thereof,	aim	of	this	thesis	was	to	purge	a	rat	intestinal	segment	from	host	cells	

to	 serve	 as	 an	 acellular	 platform	 to	 reconstruct	 a	 transplantable	 vascularized	 tissue,	

depending	on	the	demand	of	the	therapeutic	intention.	This	approach	met	the	principles	

of	TE27	and	RM28,29	laying	the	base	for	the	generation	of	an	advanced	therapy	medicinal	

product	(ATMP).	This	technology	might	be	utilized	in	future	to	replace	and	functionally	

restore	impaired	tissue,	or	to	function	as	a	drug	delivery	system	to	consistently	assure	the	

release	of	need‐based	pharmacologically	active	components	in	vivo.		

With	 the	 BioVASc‐TERM®,	 Prof.	 Heike	 Walles	 already	 established	 of	 a	 vascularized	

platform	technology	 for	 tissue	engineering	 indicating	the	capacity	 for	 translating	basic	
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research	 into	 clinical	 application113.	 Ongoing	 research	 continuously	 extends	 the	

applicability	 of	 the	BioVaSc‐TERM®	and	 its	 related	 SIS	 onto	 the	 generation	of	 further	

tissues	and	disease	models	such	as	skin150,	meniscus151,	intestinal152,	and	various	tumor	

models153‐155.	 However,	 although	 the	 size	 of	 the	 porcine‐derived	 scaffold	 enables	 the	

preclinical	 application	 in	 large	 animal	models	 to	 anastomose	 the	 vascular	 tree	 of	 the	

BioVaSc‐TERM®	without	mismatch,	the	application	in	small	animal	models	is	excluded	

due	to	its	size.	Nevertheless,	preclinical	studies	in	small	animal	models	are	preferential	to	

large	animal	models	for	initial	proof	of	concept156.	Furthermore,	its	size	requires	a	vast	

amount	of	cells	for	recellularization,	resulting	in	enormous	effort,	cost,	and	time	for	basic	

research.	Therefore,	technology	transfer	and	miniaturization	of	the	BioVaSc‐TERM®	as	a	

platform	 technology	 is	necessary	 to	enable	 transplantation	 in	 small	animal	models	 for	

proof	of	concept	studies.		

	

5.1	Identification	of	a	suitable	tissue	for	miniaturization	of	the	BioVaSc‐TERM®	

The	advantages	of	the	BioVaSc‐TERM®	were	the	versatility	to	reconstruct	a	wide	range	

of	 tissues	 on	 a	 collagenous	 scaffold	 embedding	 a	 vascular	 network.	 After	 in	 vitro	

maturation	 in	 a	 perfusion	 bioreactor	 system	 applying	 tissue‐specific	 stimulation,	

the	established	 graft	 could	 then	 immediately	 be	 anastomosed	 to	 a	 patient’s	 blood	

circulation	 to	mediate	 sustained	 in	 vivo	 survivability.	 The	 underlying	 reason	 allowing	

immediate	anastomosis	and	vascular	blood	supply	was	the	preservation	and	utilization	

of	 the	 innate	 vascularization	 of	 the	 scaffold’s	 3D	 ECM	 structure.	 For	 miniaturization	

purpose,	those	properties	had	to	be	necessarily	reflected.		

Regarding	 scaffold	 size,	 the	 dimensions	 were	 considered	 to	 be	 as	 small	 as	 possible	

requiring	only	a	minimum	amount	of	 cells	 for	 repopulation,	enabling	proof	of	 concept	

studies	 in	 small	 animal	 models,	 and	 minimal	 invasive	 implantations	 in	 patients.	

Nevertheless,	a	sufficient	amount	of	functional	cells	had	to	be	implemented	to	assure	a	

functional	physiologic	therapeutic	effect.	Furthermore,	a	vascular	in‐	and	outlet	had	to	be	

feasible	 to	 be	 anastomosed	 without	 vascular	 offset	 to	 enable	 perfusion	 and	 prevent	

leakage	or	rupture.		

A	 lot	of	synthetic	scaffolds	are	biocompatible,	highly	reproducible	in	their	preparation,	

and	 even	 their	 manufacturing	 can	 be	 automated	 for	 a	 large	 part157.	 However,	 it	 is	
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technically	 not	 yet	 feasible	 to	 suffice	 the	 requirements	 mimicking	 a	 natural	

vascularization	including	one	afferent	and	one	efferent	vessel	interconnected	by	a	dense	

capillary	bed	embedded	in	a	3D	ECM	meshwork.		

Therefore,	 the	 natural	 jejunal	 segment	 indicated	 ideal	 properties	 as	 a	 biologically	

vascularized	scaffold	establishing	a	platform	technology	comprising	a	tubular	collagen‐

based	ECM	with	an	embedded	vascular	network.	Hence,	for	down	scaling	of	the	porcine‐

derived	 BioVaSc‐TERM®,	 a	 naturally	 occurring	 ECM	 homologue	 from	 a	 small	 animal	

model	 had	 to	 be	 identified	 facilitating	 scaffold	 explantation,	 decellularization,	 and	

subsequent	 tissue	 graft	 reconstruction.	 The	 most	 important	 part	 thereby	 was	 the	

feasibility	 of	 the	 explantation	 while	 preserving	 the	 vascular	 structures	 for	 further	

processing.		

The	most	prevalent	small	animal	models	employed	 for	research,	being	mouse	and	rat,	

were	 considered	 first	 for	 evaluation	 of	 the	 feasibility	 of	 vascular	 cannulation	 and	

retention.		

At	first	consideration,	the	mouse	model	was	empirically	assessed	for	miniaturization	of	a	

biologically	 vascularized	 scaffold	 due	 to	 its	 small	 size,	 prevalent	 usage,	 and	 low	 cost.	

Mouse	whole	 organ	 decellularization	 via	 cannulation	 and	partial	 recellularization	was	

shown	 previously	 for	 heart158	 and	 lung159,160.	 However,	 in	 the	 described	 studies,	 the	

cannulation	was	achieved	via	the	heart.	The	vessels	directly	supplying	the	intestine	were	

too	 thin	 and	 their	 diameter	 too	 narrow	 to	 introduce	 an	 indwelling	 cannula.	 As	 the	

vasculature	cannot	efficiently	be	utilized	without	cannulation,	the	initial	selection	of	the	

mouse	model	as	donor	for	scaffold	miniaturization	was	dismissed	due	to	the	vasculature	

being	 inapplicable	 for	 stable	 permanent	 cannulation	 and	 thereby	 for	 perfusion	

decellularization	and	reestablishment	of	the	vascular	system.		

The	 preservation	 of	 the	 vascular	 tree	 was	 the	 major	 requirement	 for	 the	 scaffold.	

Taxonomically,	 the	 next	 bigger	 prevalent	 small	 animal	 model	 of	 the	 murine	 family	

employed	 was	 the	 rat,	 which	 was	 successfully	 examined	 upon	 feasibility	 of	 vascular	

cannulation,	perfusion,	and	scaffold	explantation	as	represented	in	figure	4.	Furthermore,	

the	vascular	network	was	prepared	similar	to	the	BioVaSc‐TERM®	possessing	one	main	

feeding	vessel,	a	capillary	network	branching	thereof	enabling	the	supply	of	the	scaffold,	

and	 finally	 leading	 into	 a	 draining	 vessel.	 The	 defined	 in‐	 and	 outlet	 enabled	 in	 vitro	
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perfusion	and	later,	after	maturation	of	the	graft,	the	reanastomosis	to	a	vascular	system	

in	vivo.		

However,	for	the	generation	of	the	porcine‐derived	scaffold,	the	vascular	branches	that	

are	 emerging	 directly	 from	 the	 superior	mesenteric	 artery	 and	 those	 leading	 into	 the	

superior	mesenteric	vein	were	utilized	for	cannulation	as	feeding	and	draining	vessels,	

respectively.	By	approaching	the	mesenteric	branches	of	a	2.5	m	long	porcine	jejunum161	

three	to	four	segments	could	be	explanted.	In	contrast,	the	mesenteric	branches	leading	

into	the	rat	intestinal	segments	were	as	well	too	thin	to	be	cannulated.	Nevertheless,	the	

superior	mesenteric	artery,	branching	off	from	the	abdominal	aorta,	and	antidromic	vein,	

which	 leads	 into	 the	 hepatic	 portal	 vein,	 were	 big	 enough	 for	 cannulation	 with	 the	

smallest	available	cannulas.	However,	the	exploitation	of	the	superior	mesenteric	vessels	

limited	the	amount	of	explanted	intestinal	segments.	Nonetheless,	the	critical	step	for	the	

usability	of	a	suitable	segment	is	the	retention	of	the	vascular	circulation	and	its	further	

accessibility	 for	decellularization,	recellularization,	perfusion	culture,	and	anastomosis.	

Therefore,	 after	 the	 feeding	 artery	 and	 draining	 vein	 were	 cannulated,	 one	 jejunal	

segment	with	an	intact	arteriovenous	circulation	was	extracted	per	rat.		

	

5.2	Establishment	of	a	decellularization	protocol	for	rat	intestine		

For	 further	 processing,	 a	 well‐balanced	 decellularization	 protocol	 was	 critical	 for	

effectively	 removing	 cellular	 materials	 provoking	 an	 adverse	 inflammatory	 response	

upon	 implantation123	 while	 maintaining	 native	 ECM	 structure	 facilitating	

recellularization162,163.		

In	TE,	a	multitude	of	various	methods	have	been	established	for	the	decellularization	of	

different	 tissues	 and	 organs164	 based	 on	 chemical,	 enzymatic,	 and	 mechanical	

procedures126	 targeting	 different	 components.	 Despite	 an	 extensive	 experience	 with	

decellularization	 of	 porcine	 jejunal	 segments113,	 the	 miniaturization	 was	 not	

accomplished	 by	 a	 simple	 “scale	 down”	 of	 the	 established	 protocols	 due	 to	 different	

scaffold	parameters	and	properties,	such	as	the	vessel	diameter,	scaffold	thickness,	and	

cellular	masses.	The	decellularization,	recellularization,	and	cultivation	procedures	were	

adapted	almost	completely	anew.		
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At	 the	 same	 time,	 Totonelli	 et	 al.	 published	 a	 protocol	 describing	 a	 rat	 intestinal	

decellularization	 method116.	 Consequently,	 the	 protocol	 described	 was	 reproduced,	

adopted	 on	 the	 in‐house	 available	 laboratory	 equipment,	 and	 optimized	 upon	 cell,	

especially	 DNA	 removal	 as	well	 as	 ECM	preservation.	 The	 overall	matrix	 composition	

appeared	already	well	preserved	and	the	original	host	DNA	was	removed	to	a	great	extent.	

The	detergent	concentrations	and	incubation	times	were	only	customized	upon	the	in‐

house	 operational	 procedures	 but	 were	 kept	 to	 the	 described	 suggestion	 as	 close	 as	

feasible.	With	the	DNase	incubation	adjustment	to	be	performed	at	37	°C	instead	of	room	

temperature	 the	 enzymatic	 DNA	 cleavage	 activity	 was	 increased.	 However,	

with	biocompatibility	 assays	 indicating	 poor	 cell	 survival	 of	 freshly	 seeded	 cells	 after	

processing	 of	 the	 intestinal	 segment,	 additional	 repeated	 washing	 steps	 were	

implemented	to	assure	the	removal	of	cytotoxic	detergents.		

A	multistep	perfusion	decellularization	protocol	using	a	combination	of	chemical	 lysis,	

enzymatic	DNA	cleavage,	and	multiple	washing	steps	was	set	up	(Fig.	5A).		

Initially,	 to	minimize	 the	 incubation	 time	with	more	 detrimental	 chemicals,	 ultrapure	

water	 was	 utilized	 for	 osmotic	 cell	 lysis	 with	 barely	 disintegrating	 effects	 on	 ECM	

components	and	architecture126.	Considering	osmotic	cellular	rupture,	it	was	likely	that	

cell‐ECM	contacts	persisted	with	attached	cell	membrane	fragments	as	well	as	conjugated	

intracellular	proteins.	Subsequently,	harsher	acting	sodium	deoxycholate	(SDC)	was	used	

to	solubilize	residual	cytoplasmic	membranes,	lipids,	and	DNA165.	Subsequent	perfusion	

of	 a	 DNase	 solution	 enzymatically	 hydrolyzed	 residual	 high	 molecular	 weight	

deoxyribonucleotide	chains166,167.	To	improve	DNase‐mediated	enzymatic	activity	of	DNA	

lysis,	the	incubation	was	performed	at	37	°C	in	contrast	to	previously	published	protocols,	

in	which	this	step	was	performed	at	room	temperature116,117.	The	perfusion	was	steadily	

applied	 at	 constant	 flow	 causing	 a	 pressure	 gradient	 assuring	 and	 accelerating	 the	

delivery	and	penetration	depth	through	the	3D	ECM	of	the	cell	lysis	reagents	as	well	as	

flushing	out	of	cellular	debris126,168.	Mechanical	properties	of	the	ECM	were	shown	not	to	

be	significantly	affected	by	perfusion	decellularization169.	Even	though	ionic	detergents,	

such	 as	 SDC,	 sodium	 dodecyl	 sulfate,	 or	 Triton	X‐200,	 are	 commonly	 used	 for	

decellularization	 as	 they	 can	 thoroughly	 solubilize	 cell	 and	 nuclear	 membranes	 and	

completely	 denature	 proteins,	 these	 properties	 also	 account	 for	 damaging	 ECM	

proteins165.	 SDC	 appeared	 to	 be	 the	 least	 detrimental	 of	 the	 ionic	 detergents	 but	

insufficient	 for	 complete	 removal	 of	 cellular	 components	 while	 damaging	 matrix	
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components.	 Alkaline	 solutions	 are	 rather	 suitable	 for	 the	 decellularization	 of	 dense	

structures	as	they	harshly	degrade	structural	matrix	components.	Non‐ionic	detergents,	

proteases,	 and	 chelators,	 however,	 are	 in	 general	 very	mild	 and	 thereby	 ineffective	 in	

complete	cellular	remnant	removal.	To	reduce	the	amount	and	exposure	time	of	chemical	

agents,	 cellular	disruption	can	be	achieved	beforehand	by	repeated	 freeze‐thaw	cycles	

instead	 of	 osmotic	 cell	 lysis.	 However,	 even	 though	 it	 does	 not	 significantly	 impair	

mechanical	 ECM	 properties,	 it	 leaves	 disruptions	 in	 the	 tissue	 ultrastructure168,170.	

Finally,	since	decellularization	was	carried	out	under	non‐sterile	conditions,	the	resulting	

scaffold	was	exposed	to	ionizing	radiation	(>25	kGy)	for	sterilization	to	assure	sterility	

for	cell	culture	and	implantation.	Disinfection	and	sterilization	was	shown	not	to	alter	cell	

adhesion	capability	onto	the	ECM171.		

	

5.3	 Scaffold	 characterization	 upon	 cell	 removal,	 structural	 preservation,	 and	

biocompatibility	

With	establishing	a	protocol	for	tissue	decellularization	the	thereof	emerging	scaffold	was	

thoroughly	characterized	in	terms	of	cell	and	DNA	removal,	ECM	preservation,	as	well	as	

subsequently	biocompatibility	for	recellularization.	Qualitative	analysis	was	carried	out	

histologically.	 Quantitative	 examination	 was	 performed	 by	 spectrometric	 and	

colorimetric	analysis.	For	ECM	component	preservation	 two	of	 the	main	ECM	proteins	

were	examined:	collagen	and	elastin.	With	about	30%	of	the	total	mass,	collagen	is	the	

most	prevalent	ECM	protein	representing	a	main	structural	element	as	well	as	providing	

tensile	 strength	 and	 supporting	 cell	 adhesion,	 chemotaxis,	 migration,	 and	 tissue	

development172,173.	Elastin	fibers	are	often	associated	with	collagens	providing	elasticity	

to	the	incorporated	tissues174.	

Even	though	the	 incubation	time	of	SDC	was	reduced	by	 initial	utilization	of	ultrapure	

water	for	cell	rupture,	due	to	tight	cell‐matrix	anchorage,	loss	of	ECM	was	inevitable.	Even	

though	the	loss	in	collagen	and	elastin	were	both	statistically	significant	(Fig.	5I	and	J),	

it	was	structurally	not	relevant	as	observed	 in	the	histological	(Fig.	5C’,	E’,	and	F’)	and	

ultrastructural	 analysis	 (Fig.	5L‐N)	as	 critical	 structural	ECM	proteins	 could	mostly	be	

preserved,	 including	 the	 vascular	 basement	 membrane,	 highly	 important	 for	 cellular	
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proliferation,	migration,	and	differentiation,	serving	as	structural	and	functional	guide	for	

neovascularization175.	

Despite	the	ECM	being	the	essential	basis	and	framework	for	subsequent	recellularization	

leading	to	a	functional	implant,	the	decellularization	process	was	balanced	primarily	on	

full	 cellular	 removal	 avoiding	 immunogenic	 graft	 rejection.	 The	 preservation	 of	 the	

biochemical	composition,	3D	organization,	and	integrity	of	the	ECM	was	subordinated	to	

immunogenicity	but	of	highest	importance	for	subsequent	recellularization.		

Feulgen	stain,	spectroscopic	determination,	and	electrophoretic	analysis	prove	the	DNA	

removal	(Fig.	5D’,	G,	and	H).	Whereas	the	native	DNA	was	detected	and	represented	as	

high	 molecular	 weight	 chromosomal	 DNA	 by	 electrophoretic	 analysis	(Fig.	5G).	

Official	benchmarks	for	effectively	decellularized	tissues	for	implantation	are	only	hardly	

available.	 Besides	 guidelines	 on	 sterility168	 and	 endotoxin	 amount176,	 recommended	

criteria	are	the	lack	of	nuclei,	and	residual	dsDNA	below	50	ng	per	mg	dry	weight	and	

200	base	pairs	in	length126	to	avoid	host	immune	responses177.		

Besides	 host	 cellular	 DNA178,	 also	 bacteria	 are	 capable	 of	 evoking	 immunogenic	 graft	

rejection	 or	 residual	 decellularization	 solutions	 might	 elicit	 local	 inflammation	 or	

necrosis.	 Originating	 from	 the	 intestine,	 endotoxins	 are	 complex	

lipopolysaccharides	(LPS)	which	are	a	major	part	of	the	gram‐negative	bacteria	cell	wall	

and	extensively	abundant	in	the	jejunum	and	colon179.	Despite	the	most	amount	of	LPS	

being	found	at	the	villus	tips179	and	thereby	exposed	while	the	perfusion	decellularization	

process,	 residual	 LPS	 can	 elicit	 proinflammatory	 responses	 leading	 to	 systemic	

inflammation,	with	subsequently	increased	microvascular	permeability	and	consecutive	

breakdown	 of	 microcirculatory	 flow	 significantly	 contributing	 to	 organ	 failure121.	

Furthermore,	cytotoxicity	tests180,181	indicated	no	cause	of	cellular	damage	when	exposed	

to	the	acellular	scaffold	after	its	completed	preparation	indicating	primarily	no	residual	

bile	acids	after	sodium	deoxycholate	treatment	during	decellularization182.		

Subsequently,	for	demonstrating	biocompatibility,	the	scaffold	was	employed	for	initial	

recellularization.	 To	 indicate	 the	 capability	 of	 the	 mBioVaSc‐TERM®	 to	 establish	 a	

platform	technology	for	functional	graft	generation,	the	preserved	basement	membrane	

of	 the	 vascular	 tree	 was	 revascularized.	 Metabolic	 activity	 and	 cell	 viability	 were	

demonstrated	 by	 colorimetric	 MTT	 and	 vitality	 by	 CellTiter	 Glo	 analysis.	 In	 addition,	

in	vitro	cultured	cells	are	usually	more	sensitive	to	toxic	agents	due	to	the	direct	exposure.	
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Therefore,	a	material	considered	as	non‐toxic	after	verification	in	vitro,	is	expected	also	

to	be	innocuous	in	vivo183.		

Another	critical	marker	for	immunogenicity	besides	residual	DNA	is	the	alpha‐Gal	epitope	

on	 xenogenic	 cells184,185	 most	 conveniently	 assayed	 quantitatively	 by	 ELISA186.	

However,	alpha‐Gal	 analysis	was	 not	 considered	 due	 to	 the	manifold	 results	 attesting	

biocompatibility	 together	with	 the	similar	positive	experience	made	with	 the	BioVaSc‐

TERM®.	 Inflammatory	 response	 to	 implanted	 biomaterials	 can	 also	 be	 determined	

in	vitro	by	macrophage	test	systems,	being	developed	in	parallel187,188.	Acelluar	SIS‐based	

matrices	were	demonstrated	to	not	elicit	 immune	reactions	upon	transplantation123,189	

and	to	enhance	survival	of	implemented	cells190.	

Following	the	established	decellularization	protocol	all	reference	points	for	acellularity,	

cytotoxicity,	inflammation,	and	sterility	were	met	for	the	mBioVaSc‐TERM®.		

In	summary,	a	perfusion	decellularization	protocol	for	rat	small	intestine	was	established,	

based	 on	 a	 previously	 published	 method116,117.	 Effectively	 preserving	 the	 original	

intestinal	 architecture	 while	 efficiently	 removing	 host	 cells	 resulted	 in	 an	 acellular	

scaffold	 of	 plain	 ECM	meeting	 the	 demands	 and	 benchmarks	 for	 clinical	 applicability.	

Furthermore,	 biocompatibility	 was	 demonstrated	 indicating	 to	 capacity	 for	

recellularization	of	the	mBioVaSc‐TERM®.		

	

5.4	Reestablishment	of	the	vascular	system	

Despite	initial	general	indication	for	biocompatibility,	the	proof	for	EC	adhesion,	growth,	

proliferation,	migration,	and	maturation	of	a	functional	barrier	was	to	be	demonstrated.		

The	reconstitution	of	the	vessel	structures	was	required	to	assure	a	functional	vascular	

network	providing	sufficient	nutrient	and	oxygen	supply	for	a	complex	dense	3D	tissue.	

Furthermore,	the	endothelial	barrier	is	critical	for	maintaining	water	and	protein	balance	

between	 the	 intra‐	 and	 extravascular	 space.	 Beyond,	 haemocompatibility	 of	 a	 scaffold	

connected	 to	 the	 host	 blood	 circulation	 is	 critical	 for	 a	 functional	 implant	 avoiding	

immediate	coagulation191.	Therefore,	lining	the	acellular	vessel	structures	of	the	scaffold	

with	an	endothelial	cell	layer	reduces	the	risk	of	thrombosis	when	implanted	in	vivo192.	

This	accounts	especially	for	decellularized	biological	matrices	as	they	mainly	consist	of	

collagen	–	and	as	seen	in	the	SEM	images,	the	basal	membrane	is	in	some	places	widely	
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disrupted	 due	 to	 the	 decellularization	 process	 uncovering	 the	 underlying	 collagen	

network	 directly	 exposing	 a	 highly	 abundant	 matrix	 component	 with	 prothrombotic	

properties193,194.	Coagulation	is	part	of	the	humoral	defense	specifically	activated	when	

blood	 interacts	 with	 subendothelial	 layered	 collagens	 and	 vWF195	 to	 stop	 blood	 loss.	

However,	facing	an	implanted	scaffold	with	vascular	structures	dominated	by	collagen	the	

subsequent	 coagulation	 will	 result	 in	 thrombosis	 ultimately	 completely	 blocking	 the	

vascular	 access	 to	 the	 scaffold.	 Successively,	 the	 established	 tissue	 will	 become	

undernourished	and	finally	apoptotic	causing	more	harm	to	the	patient.		

Therefore,	the	vessel	system	of	the	scaffold	was	successfully	recellularized	with	human	

dermal	 microvascular	 endothelial	 cells	 (hdmEC)	 establishing	 a	 functional	 tight	

endothelial	barrier	with	antithrombotic	properties195	providing	hemocompatibility.		

	

5.4.1	Revascularization‐capacity	of	the	vascular	structures	with	primary	ECs	

Before	 vascular	 recellularization	 of	 the	 scaffold,	 primary	 isolated	 hdmECs	 were	

lentivirally	 transduced	 for	 either	 GFP	 or	 RFP	 expression	 to	 enable	 live	 imaging.	

Thereafter,	 they	 were	 characterized	 upon	 their	 cellular	 markers196	 relevant	 for	

vasculogenesis,	 angiogenesis,	 mitogenesis,	 migration,	 permeability,	 cell‐cell	 contact,	

blood	vessel	formation,	as	well	as	their	ability	to	form	functional	barriers129	(Fig.	6).	

CD31	is	a	cell	surface	marker	on	endothelial	cells	for	intercellular	junctions,	critical	for	

angiogenesis,	 and	 a	 prevalently	 applied	 marker	 for	 EC	 identification.	 CD34	 is	 mostly	

present	 on	 hematopoietic	 stem	 cells	 and	 capillary	 endothelial	 cells.	 CD31	 and	 CD34,	

in	combination,	 characterize	 vascular	 endothelial	 cells	 with	 high	 specificity.	 CD105,	

also	known	as	Endoglin	(ENG),	is	a	membrane	glycoprotein	and	auxiliary	receptor	for	the	

TGF‐beta	 receptor	 complex	 with	 a	 crucial	 role	 in	 angiogenic	 endothelial	 cells	 due	 to	

affecting	cytoskeletal	organization	and	migration	during	vascular	remodeling.	TIE2	is	an	

angiopoietin	 receptor	 on	 the	 cell	 surface,	 crucial	 for	 blood	 vessel	 formation.	

The	determined	VE	cadherin	is	crucial	in	vascular	endothelial	cell‐cell	adhesion	and	major	

determinant	 of	 endothelial	 permeability.	 CD146,	 the	 melanoma	 cell	 adhesion	

molecule	(MCAM),	is	highly	expressed	in	cells	of	the	blood	vessel	wall,	 linking	the	cells	

actin	 cytoskeleton	 to	 laminin	 in	 the	ECM.	Only	 the	 examination	of	 the	VEGFR‐2	 led	 to	

almost	no	detection	of	positive	cells	presenting	the	receptor	on	their	membrane	surfaces.	
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VEGFR‐2	is	one	of	the	VEGF	receptors	mediating	most	of	the	known	cellular	responses	of	

VEGF,	 thereby	 highly	 important	 for	 vasculogenesis	 and	 angiogenesis,	 as	 well	 as	

mitogenesis	and	migration.	However,	upon	cell	confluency	VEGFR‐2	gets	internalized	by	

contact	inhibition197	potentially	explaining	the	lack	of	positive	detection	by	FACS	analysis.		

In	 total,	 the	 isolated	 cells	 were	 homogeneously	 positive	 for	 endothelial	 marker	 and	

especially	functional	markers	such	as	cell‐cell	and	cell‐ECM	adhesion,	as	well	as	important	

marker	 for	 angiogenesis	 and	 blood	 vessel	 formation.	 Furthermore,	 the	 capability	 to	

proliferate	and	to	form	a	tight	barrier	was	demonstrated	by	TEER	and	FITC	permeability	

assays.	Thereby,	 the	 genetically	modified	GFP/RFP‐expressing	ECs	depicted	 a	 suitable	

source	for	revascularization	enabling	non‐invasive	live	microscopy	for	validation	of	the	

recellularization.		

Next,	the	capacity	of	the	decellularized	vascular	structures	of	the	mBioVaSc‐TERM®	to	

restore	the	intra‐vascular	barrier	was	determined	by	revascularization	with	ECs.	A	tight	

endothelial	 lining	 facilitates	 hemocompatibility	 of	 a	 collagenous	 scaffold,	 avoiding	

coagulation	when	in	contact	with	blood192.	Revascularization	was	already	demonstrated	

for	the	BioVaSc‐TERM®	in	vitro111	as	well	as	when	anastomosed	to	the	brachial	vascular	

bundle	 of	 a	 human	 arm113.	 Furthermore,	 vascular	 structures	 of	 a	 rat‐derived	

decellularized	intestinal	segment	were	already	used	to	determine	the	angiogenic	capacity	

in	vitro198.	The	rat‐derived	segment	was	to	date	only	demonstrated	to	facilitate	 in	vitro	

reendothelialization	 of	 individual	 vascular	 channel	 segments	 by	 demonstrating	 vessel	

formation,	 a	 competence	 for	 neovascularization198	 and	 to	 exhibit	 pro‐angiogenic	

properties	 facilitating	 vessel	 ingrowth	 indicated	 by	 an	 in	 vivo	 chicken	 chorioallantoic	

membrane	(CAM)	assay116.		

Pursuing	 full	 graft	 vascularization	 to	 generate	 fully	 vascularized	 tissues,	 thorough	

reendothelialization	 of	 the	 whole	 scaffold	 was	 demonstrated	 and	 arteriovenous	

circulation	was	validated	in	this	work.	Despite	distinguishable	reendothelialization	of	the	

former	arterial	and	venous	vessels	by	differently	labeled	ECs,	arteries	and	veins	were	not	

fully	reestablished	as	only	ECs	were	utilized	for	revascularization.		

Therefore,	ECs	were	infused	into	and	dispersed	throughout	the	network	of	the	retained	

vascular	basement	membrane	system199	(Fig.	7A	and	B).	By	preservation	of	the	vascular	

basement	membrane	 the	 cells	were	 able	 to	migrate	 and	 proliferate	 in	 the	 preformed	

vascular	 structures200	 lining	 and	 restoring	 the	 vessels.	 Utilizing	 fluorescently	 labelled	
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cells,	 the	former	arterial	and	venous	vessels	were	individually	displayed	as	well	as	the	

interconnection	 of	 both	 in	 the	 capillary	 bed,	 demonstrating	 a	 circulatory	

network	(Fig.	7G).		

In	 summary,	 scaffold	 revascularization	 was	 established,	 demonstrating	 typical	

endothelial	markers	(Fig.	8B,	C,	E,	and	F),	functionality	(Fig.	9	and	10A),	viability	(Fig.	8A),	

vitality	(Fig.	8D),	and	barrier	 integrity	 (Fig.	10B‐D)	of	 the	ECs	 lining	 the	arteriovenous	

network	 of	 the	 mBioVaSc‐TERM®.	 Beyond,	 the	 recellularization	 capacity	 was	

subsequently	demonstrated	to	enable	complete	revascularization	of	the	vessel	system.		

	

5.4.2	Maturation	of	the	vascular	barrier	by	arteriovenous	perfusion	culture	

With	 intraluminal	 flow	 modulating	 vascular	 permeability201,	 vessels	 exposed	 to	 high	

shear	stress	by	transporting	large	quantities	of	blood	in	short	time	are	usually	thick	and	

hardly	take	part	in	nutrient	exchange,	while	in	the	extensively	branching	capillary	beds	

the	blood	flow	is	low	enabling	mass	exchange.	Flow	in	the	capillaries	is	mainly	determined	

by	colloid	osmotic	and	hydrostatic	pressure202.		

Examining	 revascularization,	 the	 ECs	 were	 lining	 the	 arteriovenous	 tubular	 vascular	

network	demonstrating	typical	endothelial	markers,	functionality,	vitality,	and	viability	

while	embedded	in	a	3D	environment.		

Supporting	 maturation	 of	 the	 vascular	 endothelial	 barrier,	 physiological	 in	 vivo‐like	

conditions	 were	 mimicked	 using	 computer	 aided	 incubator	 and	 bioreactor	

systems	(Fig.	7C	and	D).	Temperature	and	gas	were	controlled	as	well	as	physiological	

pressure	 onto	 the	 vessels	 system	 was	 applied	 by	 pulsatile	 perfusion.	 The	 thereby	

occurring	 shear	 stress	 in	 the	 vasculature	 simulates	 the	 hemodynamic	 forces	 onto	 the	

endothelial	 cells	 stimulating	 maintenance	 of	 vascular	 homeostasis203,204,	

vascular	conductivity205,	vascular	barrier	 integrity78,	maintenance	of	vessel	branches85,	

as	well	as	arteriogenesis206.		

Vascular	 flow,	 arterial	 and	 venous	 circulation,	 and	 endothelial	 barrier	 integrity	 was	

demonstrated	by	 intra	vital	 fluorescence	microscopy	perfusing	with	PBS	 (Fig.	7E)	and	

blood	(Fig.	7F)	as	well	as	by	determination	of	the	venous	return	(Fig.	9).	The	perfusion	

through	 the	 whole	 scaffold,	 especially	 through	 the	 established	 arteriovenous	 loop,	

strongly	 depends	 on	 the	 integrity	 of	 the	 barrier	 function	 by	 the	 ECs,	 usually	 hardly	
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accomplished	in	decellularized	tissues.	In	addition,	also	in	native	vasculature	the	capillary	

bed	 is	 naturally	 prone	 to	 leakage	 that	 is	 returned	 into	 the	 blood	 circulation	 via	 the	

lymphatic	system66.		

The	vascular	endothelial	barriers	in	capillaries	function	as	a	semipermeable	membrane	

to	control	blood–tissue	exchange	of	fluids,	nutrients,	and	metabolic	waste	products	while	

preventing	pathogens	or	harmful	materials	in	the	circulation	from	entering	into	tissues	

by	transporting	cells	of	the	immune	system66.	Most	of	these	characteristics	were	indicated	

in	 the	 mBioVaSc‐TERM®	 after	 perfusion	 culture	 showing	 flow	 and	 culture	 media	

transport	 through	 the	mesenteric	vessels	but	 leakage	of	 fluid,	 indicated	by	phenol	 red	

leakage	(Fig.	7E),	through	the	capillary	bed	in	the	former	gut	lumen.		

In	native	vasculature	most	of	the	leaked	fluid	is	reabsorbed	into	the	lymphatic	system,	

which	was	not	 realizable	 for	 the	mBioVaSc‐TERM®	cultured	 in	vitro	 in	 the	bioreactor	

setup.	The	amount	of	 fluid	reabsorbed	 into	 the	venous	capillaries	 is	dependent	on	 the	

colloid	osmotic	pressure	gradient	between	intra‐	and	extravascular	space	and	hydrostatic	

pressure.	At	the	arterial	end	of	the	capillaries,	hydrostatic	pressure	prevails	forcing	fluid	

out	 of	 the	 vasculature.	 With	 fluid	 extrusion,	 hydrostatic	 pressure	 reduces	 within	 the	

capillary	until	colloid	osmotic	pressure	overbalances	hydrostatic	pressure	at	the	venous	

end	leading	to	reabsorption	of	the	fluid.	However,	since	the	arterial	hydrostatic	pressure	

is	 higher	 than	 the	 oncotic	 blood	 pressure,	 the	 net	 reabsorption	 is	 less	 than	 the	

net	filtration.	This	discrepancy	leads	to	a	net	excess	filtration	of	about	15	%	blood	fluid	

remaining	in	the	interstitial	space	collected	by	the	lymphatic	system66.	Dependent	on	the	

body	posture	and	the	thereby	bearing	pressure	by	body	weight	and	muscular	tonicity	on	

the	vasculature	the	interstitial	fluid	absorption	is	significantly	affected	introducing	tissue	

pressure	as	a	determinant	for	fluid	reabsorption207.		

Within	the	bioreactor	setup,	the	same	culture	medium	was	present	in	all	compartments,	

thereby,	 not	 establishing	 a	 gradient.	 This	 might	 explain	 the	 low	 venous	 return	 when	

perfusing	with	both,	PBS	and	culture	medium,	as	when	perfusing	with	blood,	the	venous	

return	was	significantly	 increased,	very	 likely	due	 to	blood	plasma	proteins	creating	a	

colloid	osmotic	pressure	gradient.	

Furthermore,	the	physiological	venous	blood	pressure	is	low	in	contrast	to	the	arterial	

pulse	pressure	in	consequence	of	the	cardiac	cycle	and	the	muscular	arteries.	Due	to	the	

low	 blood	 pressure,	 the	 blood	 return	 is	 reduced	 if	 not	 supported	 otherwise.	 In	 an	
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organism,	 this	 issue	 is	 overcome	 by	 pumping	 the	 blood	 towards	 the	 heart	 by	

vasoconstriction	 of	 the	 vessels	 themselves	 or	 by	 squeezing	 local	 veins	 during	 skeletal	

muscle	 contractions	 or	 breathing66.	 In	 case	 of	 the	 mBioVaSc‐TERM®	 cultured	 in	 the	

bioreactor	 system,	 smooth	muscle	 cells	were	 lacking	as	well	 as	 a	 “muscular	pump”	or	

“respiratory	pump”.	Nevertheless,	while	perfusing	the	arterial	pedicle	the	perfusion	pump	

of	the	bioreactor	system	created	a	negative	pressure	at	the	venous	pedicle	aiding	venous	

pressure	 and	 venous	 return.	 To	 increase	 the	 venous	 return	 within	 the	 bioreactor	

improving	vascular	maturation,	the	intravascular	hydrostatic	also	the	necessary	colloid	

osmotic	pressure	have	to	be	established	and	maintained202.	This	might	be	mitigated	by	

using	different	media	 for	 vascular	perfusion	 and	 for	 graft	 culture.	Therefore,	 the	 total	

serum	 protein	 concentration	 inside	 the	 vessel	 has	 to	 be	 higher	 than	 extravascular	 to	

ensure	 osmotic	 fluid	 inflow	 after	 capillary	 filtration208.	 Similar	 effects	 were	 indicated	

perfusing	the	mBioVaSc‐TERM®	 in	vitro	with	whole	blood:	unobstructed	flow	through	

the	 vasculature,	 retention	 of	 proteins	 solved	 in	 blood,	 and	 venous	 return	 could	 be	

demonstrated	 by	 vital	microscopy209	with	 FITC‐coupled	 dextran	 and	 venous	 backflow	

quantification.	Despite	physiological	capillary	fluid	exchange	by	plasma	filtration	from	the	

intravascular	space	into	the	interstitial	space	venous	backflow	could	be	reestablished	for	

up	to	40	%	compared	to	native	tissue.		

Heparinized	 whole‐blood	 perfusion	 through	 the	 revascularized	 mBioVaSc‐

TERM®	(Fig.	7F,	 9,	 and	 10D)	 revealed	 no	 thrombosis	 in	 the	 scaffold.	 Interestingly,	

perfusion	of	blood‐isolated	platelets	also	revealed	no	adhesion	to	the	vessel	when	lined	

with	 ECs	 in	 contrast	 to	 EC‐free	 scffolds,	 which	 is	 essential	 for	 blood	 coagulation	 and	

assessable	in	vitro210,211.	Obviously,	the	used	endothelial	cells	formed	tight	barriers	and	

with	endothelial	 lining	of	a	 scaffold	platelet	adhesion	was	diminished	 facing	perfusion	

with	whole‐blood	isolated	platelets.		

In	summary,	considering	that	the	mBioVaSc‐TERM®	was	cultured	in	a	bioreactor	system	

with	culture	media	 it	was	obvious	 to	not	be	able	 to	 fully	 reestablish	 the	native	 in	vivo	

circulation	 and	 venous	 return:	 the	 oncotic	 pressure	 was	 similar	 intra‐	 as	 well	 as	

extravascular	due	to	ubiquitously	available	medium	and	vasoconstriction	was	not	feasible	

due	 to	 missing	 smooth	 muscle	 cell	 layers.	 Nevertheless,	 mimicking	 native	 conditions	

perfusing	with	blood	enabled	a	restoration	of	 the	venous	return	of	40	%	compared	 to	

native	 tissue.	 Furthermore,	 endothelial	 barrier	 integrity	 as	 well	 as	 the	 retention	 of	

proteins	and	high	molecular	particles	resembling	the	size	of	blood	plasma	proteins	was	



5.	Discussion	
	

108	
	

demonstrated	inside	the	capillaries	by	intravital	microscopy.	Apart	from	media	extrusion	

into	interstitial	space,	a	closed	circulatory	blood	vessel	circuit	‐	an	arteriovenous	loop	‐	

was	established.		

	

5.4.3	iPS	technology	depicts	an	alternative	cell	source	for	vascularization		

In	 this	 thesis,	 hPSCs	 that	 were	 differentiated	 into	 the	 mesothelium	 lineage	 were	

demonstrated	 to	 be	 differentiated	 into	ECs,	 pericytes	 and	 SMCs	within	 the	mBioVaSc‐

TERM®	 providing	 3D	 vessel	 structures.	 This	 fortified	 the	 established	 differentiation	

protocol	 by	 Thomas	 Colunga	 (Dalton	Lab,	 PI:	 Prof.	 Dr.	 Stephen	 Dalton,	 Center	 for	

Molecular	Medicine,	University	of	Georgia,	Georgia,	USA)	as	well	as	 the	capacity	of	 the	

mBioVaSc‐TERM®	as	platform	for	vascular	TE.		

The	 visceral	 mesothelium	 is	 a	 thin	 epithelial	 layer	 surrounding	 internal	 organs212.	

During	development,	 a	 fraction	 of	 those	 cells	 undergoes	 epithelial	 to	 mesenchymal	

transition	invading	the	underlying	tissue	and	contributes	to	the	vascular	system213,214.		

Cultured	and	differentiated	in	the	vascular	system	of	the	mBioVaSc‐TERM®,	the	spatial	

distribution	 of	 the	 cells	 resembled	 the	 native	 vessel	 composition	 (Fig.	11).	 However,	

the	vessels	were	only	sparsely	populated	and	functionality	of	the	muscular	layer	as	e.g.	by	

vasoconstriction	 or	 vasodilation	 was	 not	 performed	 even	 upon	 stimulation,	

presumably	due	to	the	imperfect	cell	layer.	Optimizing	recellularization	efficiency	as	for	

the	hdmECs,	dense	and	functional	cell	layers	should	be	attainable,	reconstructing	native‐

like	vessels.		

Moreover,	 hPSCs	 differentiated	 into	 the	 mesothelium	 lineage	 might	 be	 utilized	 to	

reestablish	the	visceral	mesothelial	layer	‐	typically	present	on	internal	organs	‐	around	

the	mBioVaSc‐TERM®.	Enveloping	 the	 scaffold	with	 a	 layer	 of	mesothelial	 cells	might	

reduce	the	incidence	of	peritoneal	adhesions.		

In	 summary,	 hPSC	 technology215	 was	 employed	 to	 differentiate	 cells	 towards	 ECs,	

pericytes,	and	SMCs	from	one	common	progenitor,	 lining	 the	vessels	of	 the	mBioVaSc‐

TERM®.	 Implementation	 of	 those	 three	 different	 cell	 types	 potentially	 enables	 the	

generation	 of	 a	 diversified	 vascular	 network	 superior	 to	 EC	 only	 in	 terms	 of	 vascular	

stability	 and	 functionality.	 For	 clinical	 application,	 it	 is	 feasible	 to	 generate	 patient‐

specific	iPSCs	for	subsequent	differentiation	into	desired	tissue	graft	and	autologous	stem	

cell	therapy216.	However,	this	attempt	is	very	laborious	with	enormous	efforts	necessary	
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for	de‐differentiation	of	somatic	cells	to	pluripotency,	differentiation	towards	the	desired	

functional	organ‐specific	cells,	considering	organs	being	multicellular	tissue,	and	proving	

immunogenic	and	tumorigenic	potential	of	the	generated	cells.		

	

5.4.4	Advancements	for	mBioVaSc‐TERM®	revascularization	

Despite	 the	whole	vascular	 tree	of	 the	mBioVaSc‐TERM®	seemed	 to	be	 recellularized,	

not	all	 capillary	 branches	 were	 observed	 to	 be	 perfused	 during	 intra	 vital	

microscopy	(Fig.	10).	 Thrombosis	 could	 be	 excluded	 at	 this	 point	 causing	 the	 vascular	

obstruction	as	with	plain	culture	media	perfused	coagulation	cascade	was	not	triggered.	

Nevertheless,	blockage	of	the	respective	vessels	was	assumed,	presumably	during	mass	

injection	of	the	endothelial	cells	inside	the	vascular	tree	and	microcirculation	through	the	

capillary	bed.	Thereby,	cells	might	have	blocked	some	capillaries	for	further	perfusion.	

The	lumen	diameter	of	a	capillary	ranges	from	5	‐	10	µm,	wide	enough	for	an	erythrocyte	

to	pass66	but	easily	blocked	by	mass	endothelial	cell	infusion.	Vessel	blockage	by	manual	

mass	 EC	 infusion	 might	 be	 avoided	 by	 modifying	 the	 recellularization	 method	 by	

resuspending	 the	 ECs	 in	 higher	 volumes	 and	 slower	 successive	 infusion.	

Preliminary	results	 showed	 endothelial	 cells	 slowly	 infused	 into	 the	 graft	 vasculature	

within	the	bioreactor	by	the	perfusion	pump	with	similar	cellular	distribution	within	the	

vascular	system.	Functionality	and	perfusability	of	the	newly	established	vascularization	

method	still	has	to	be	confirmed.		

Furthermore,	 pursuing	 complete	 endothelialization,	 vascular	 progenitor	 cells	 were	

proven	to	be	promising	cell	sources	for	in	vitro	vascularization	in	TE44,102	as	they	are	even	

capable	 of	 restoring	 functional	 vascular	 endothelium217	 and	 enhancing	

neovascularization	in	an	ischemic	environment	in	vivo218.	The	crucial	influence	of	these	

progenitors	in	vascular	repair	and	regeneration219	could	be	exploited	to	close	eventual	

gaps	 in	 the	 endothelial	 lining	 of	 the	 vascular	 branches	 by	 perfusion	 of	 vascular	 or	

endothelial	progenitors	after	initial	recellularization.		

In	addition,	oxygenation	of	culture	media220	might	result	 in	 improved	quality	of	grafts	

generated.	 With	 oxygen	 saturation	 being	 overall	 one	 of	 the	 most	 vital	 criteria,	

the	warranty	 of	 physiological	 normoxic	 conditions	 is	 imperative	 for	 maintaining	

reproducible	tissue	viability.	The	implementation	of	oxygenated	culture	media	inside	the	
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bioreactor	incubator	setup	as	well	as	its	sensory	monitoring221	would	reduce	fluctuations	

in	oxygen	concentration	compared	to	oxygen	diffusion	through	the	aqueous	culture	media	

with	 only	 gaseous	 oxygen	 provided	 in	 the	 atmosphere	 of	 the	 incubator.	 Furthermore,	

avoiding	 the	 risk	 of	 hypoxic	 conditions	 might	 improve	 cell	 growth,	 differentiation,	

maintenance,	and	subsequently	experimental	validity.		

Nevertheless,	 these	 results	 reflected	 the	difficulty	of	 the	 full	 restoration	of	 the	natural	

capillary	network	due	to	its	complexity.	However,	the	in	vitro	generation	of	vessels	with	

capillary	 sized	 diameters	 is	 not	 feasible	 with	 currently	 available	 technology.	

Thus,	biological	materials	‐	with	progress	on	graft	vascularization	demonstrated	in	this	

work	and	the	implications	drawn	on	future	advancements	‐	represent	the	most	promising	

source	for	vascular	TE.		

Taken	together,	via	physiological	perfusion	culture	the	vascular	scaffold	was	successfully	

reendothelialized	 with	 hdmECs,	 bearing	 perfusable	 and	 discriminable	 arteriovenous	

transitions	in	the	capillary	bed.	A	venous	return	was	established	utilizing	colloid	osmotic	

pressure	perfusing	with	whole	blood	excluding	undefined	leakage	besides	the	interstitial	

fluid	 homeostasis	 through	 the	 capillary	 diffusion.	 Thrombosis	was	 not	 observed	 even	

with	 whole	 blood	 perfusion	 leading	 to	 the	 assumption	 that	 a	 tight	 haemocompatible	

vascular	 endothelial	 barrier	 was	 established,	 though	 hard	 to	 consistently	 prove	

considering	 the	 vast	 branched	 vessel	 network.	 The	 functional	 arteriovenous	 vascular	

reconstruction	 depicted	 by	 sophisticated	 techniques	 e.g.	 3D	 light	 sheet	 and	

intravital	microscopy	 impressively	 demonstrated	 a	 hallmark	 in	 vascular	 tissue	

engineering.		

However,	 pursuing	 full	 graft	 vascularization,	 only	 an	 endothelialization	was	 achieved.	

The	additional	 implementation	 of	 pericytes	 and	 smooth	muscle	 actin‐positive	 cells	 as	

indicated	by	mesothelial	cell	differentiation	(Fig.	10)	might	enable	the	generation	of	fully	

functional	 vessels	 and	 would	 depict	 a	 milestone	 in	 vascular	 tissue	 engineering.	

Nevertheless,	 for	 the	 newly	 established	 cell	 differentiation,	 the	 cell	 revascularization	

procedure	has	to	be	improved	as	the	vessels	were	not	completely	lined	as	indicated	by	

the	immunohistological	stainings	(Fig.	11).	The	incomplete	repopulation	of	the	vascular	

structures	had	functional	consequences	indicated	by	the	inability	for	vasoconstriction	of	

the	muscular	layer,	even	upon	stimulation	(Fig.	11E).	To	perform	muscular	contraction	

there	has	to	be	a	dense	layer	of	tightly	interconnected	cells	that	was	not	yet	achieved.		
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Considering	 the	 varying	 compositions	 of	 artery,	 arterioles,	 capillaries,	 venules,	 and	

veins222	 to	 be	 implemented	 into	 the	 complex	 branching	 vascular	 network	 of	 the	

mBioVaSc‐TERM®	the	cellular	composition	might	be	more	efficiently	studied	in	simpler	

set‐ups	such	as	vessels	with	only	one	defined	vascular	structure.	With	the	gained	insight	

into	 vessel	 dissection,	 de‐	 and	 recellularization	 a	 follow‐up	 study	 focusing	 on	 single	

straight	 vessels	 might	 further	 promote	 vascular	 TE	 and	 advance	 its	 translation	 into	

clinical	 application,	 bearing	 in	 mind	 the	 huge	 clinical	 demand	 for	 functional	

biocompatible	vascular	grafts.		

	

5.5	Application	of	the	mBioVaSc‐TERM®	as	a	platform	for	multicellular	co‐culture		

With	 revascularization	of	 the	mBioVaSc‐TERM®,	 the	 scaffold	was	demonstrated	 to	be	

suitable	for	cell	culture	and	nutrient	and	gas	supply	was	established	to	feed	cells	for	tissue	

graft	 development	 on	 the	 ECM	 of	 the	 former	 gut	 lumen	 (Fig.	 12).	 Expanding	 the	

applicability	of	the	mBioVaSc‐TERM®,	after	seeding	ECs	in	the	vessel	structures	various	

other	 cell	 types	 –	 including	multicellular	 organoids	 –	were	 co‐cultured	 in	 the	 luminal	

compartment.		

Therefore,	culture	conditions	were	individually	adapted	to	the	need	of	the	implemented	

cell	 types,	 subsequently	 demonstrating	 maintained	 cell	 viability	 and	 function.	

Media	composition	was	not	trivial	to	compose	as	different	cells	with	distinct	demands	for	

growth	factors,	cytokines,	and	hormones	were	cultured	together.		

Furthermore,	 the	 endothelial	 structures	 provided	 a	 distribution	 system	 to	 feed	 co‐

cultured	cells	but	also	to	function	as	distribution	system	to	deliver	compounds	to	the	cells	

for	 metabolic	 conversion	 and/or	 to	 spread	 secreted	 drugs	 throughout	 the	 vascular	

circulation.		

The	endothelial	barrier	integrity	of	the	revascularized	vessels	of	the	mBioVaSc‐TERM®	

was	characterized	to	be	tight	enough	to	retain	proteins	above	40	kDa	but	enabled	leakage	

from	the	capillaries	for	low	molecular	weight	compounds.	In	reverse	conclusion,	it	should	

also	 be	 feasible	 for	 secreted	 proteins	 to	 enter	 the	 vascular	 system	 via	 the	

capillary	network	 enabling	 drug	 secreting	 cells	 to	 release	 compounds	 into	 the	

blood	stream.	 The	 proof	 of	 the	 distribution	 of	 biologically	 active	 drugs	 via	 the	
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vascular	system	 indicated	 the	 capability	 of	 the	 mBioVaSc‐TERM®	 to	 be	 developed	

towards	an	implantable	drug	delivery	system.		

	

5.5.1	Example	of	mBioVaSc‐TERM®	application	for	liver‐like	organoid	culture		

To	demonstrate	the	capacity	of	the	mBioVaSc‐TERM®	to	maintain	highly	metabolic	active	

tissue	 viable	 and	 functional,	 liver‐like	 organoids118	 were	 integrated	 in	 the	 luminal	

scaffold	(Fig.	 13C)	 as	 tissue	 model	 that	 might	 serve	 for	 prospective	 toxicology	 and	

metabolism	studies115.	

In	 a	 preliminary	 work118	 liver‐like	 organoids	 were	 established	 by	 self‐assembly	 of	

hepatocytes,	 liver	sinusoidal	ECs,	and	mesenchymal	stem	cells	cultured	in	high	cellular	

density	(Fig.	13A	and	B).	The	metabolic	and	enzymatic	activity	and	substrate	conversion	

was	 described	 as	 well	 as	 the	 liver‐specific	 protein	 production	 and	 metabolism115.	

After	self‐assembly	 of	 the	 different	 cell	 types	 to	 a	 dense	 organoid,	 they	 could	 only	 be	

maintained	 in	 culture	 for	 a	maximum	 of	 72	 h	 due	 to	 increasing	 nutrient	 and	 oxygen	

deficiency	 leading	 to	 apoptosis	 and	 necrosis	 in	 the	 inner	 cell	 mass	 of	 the	 organoid.	

Acute	nutrient	 and	 oxygen	 deficiency	 could	 be	 circumvented	 by	 implementing	

the	organoids	 into	 a	 dynamic	 perfusion	 culture	 setup118.	 Combining	 the	 organoid	

technology	with	 the	mBioVaSc‐TERM®,	 the	 perfusion	 culture	within	 the	 vascularized	

scaffold	(Fig.	13D)	increased	organoid	culture	for	one	week.	However,	functional	analysis	

by	 HPLC	 of	 converted	 metabolites	 from	 the	 culture	 supernatant	 demonstrated	 that	

the	capacity	for	liver‐specific	enzymatic	conversion	of	the	cultured	organoids	was	only	on	

a	basal	 level	 (Fig.	13G).	However,	 the	hepatocyte	2D	monoculture	 that	was	 serving	as	

control	also	demonstrated	only	basal	enzymatic	activity	upon	stimulation.	In	conclusion,	

the	basal	enzymatic	activity	of	the	organoids	upon	stimulation	was	likely	not	a	result	of	

the	3D	co‐culture	but	due	to	impaired	hepatocytes	that	were	implemented.	Nevertheless,	

viability	 (Fig.	 13E)	 and	 characteristic	marker	 (Fig.	 13F)	 of	 the	 liver‐like	 organoid	was	

maintained	indicating	a	promising	perspective	to	also	demonstrate	functionality	 in	the	

near	future.		
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5.5.2	Example	of	mBioVaSc‐TERM®	application	as	drug	delivery	system		

A	collaboration	was	aiming	to	unravel	the	molecular	causes	of	skeletal	muscle	wasting	

and	to	deduce	therapeutic	strategies	to	neutralize	the	effect	and	ameliorate	the	condition.	

One	 strategy	was	 the	 transplantation	of	 a	drug	delivery	 system	releasing	 inhibitors	of	

proteins	limiting	muscle	mass.	Activin	A	and	Myostatin	are	negatively	regulating	skeletal	

muscle	 mass223‐225.	 Follistatin	 is	 an	 activin‐binding	 protein	 inhibiting	 Activin	A	 and	

Myostatin	and	thereby	ameliorating	their	atrophic	pathology226.	Furthermore,	Activin	A	

facilitates	capillary	formation	similarly	to	VEGF227.	The	mBioVaSc‐TERM®	was	evaluated	

to	be	employed	as	drug	delivery	system.	Considering	animal	studies	in	rat,	there	was	no	

available	rat	model	expressing	the	relevant	phenotype.	Therefore,	the	mBioVaSc‐TERM®	

was	considered	for	implantation	of	cells	overexpressing	Activin	A	and	Myostatin	to	induce	

a	muscle	atrophic	phenotype	to	be	rescued	subsequently.		

For	 the	 proof	 of	 drug	 distribution	 throughout	 the	 vascular	 system,	 CHO	 cells	 were	

employed	and	genetically	modified	for	drug	secretion228.	CHO	cells	depicted	a	prevalent	

model	for	the	production	of	therapeutically	applied	proteins229.		

Cultured	inside	the	mBioVaSc‐TERM®,	the	amount	of	secreted	protein	was	determined	

by	ELISA	(Fig.	14A).	Activin	A	and	Myostatin	secretion	reached	a	certain	concentration	

plateau	in	2D	and	in	3D	culture.	However,	the	total	amount	of	protein	secreted	in	3D	was	

up	to	200	%	increased,	compared	to	the	2D	reference.	An	explanation	of	the	significant	

increase	 in	 secretion	 despite	 similar	 cell	 number	 might	 be	 the	 perfusion	 culture.	

In	contrast	to	static	culture,	within	the	bioreactor	there	was	a	steady	medium	turnover,	

thereby	 constantly	 reducing	 the	 local	 drug	 concentration	 presumably	 avoiding	 a	

saturation	but	facilitating	constant	release.		

Furthermore,	it	was	demonstrated	that	the	secreted	drugs	did	not	only	diffuse	into	the	

surrounding	 reactor	 compartment	 but	 were	 distributed	 throughout	 the	 bioreactor	

system.	Therefore,	the	secreted	drugs	must	have	passed	the	endothelial	barrier	to	reach	

into	the	intravascular	compartment	and	subsequently	being	distributed	throughout	the	

bioreactor	 system.	 Translation	 these	 assumptions	 into	 a	 potential	 clinical	 application,	

secreted	drugs	from	the	mBioVaSc‐TERM®	might	pass	into	the	blood	circulation	and	be	

distributed	throughout	the	body.	Whether	a	systemic	effect	might	be	elicited,	still	has	to	

be	determined	by	further	studies.		
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Beyond	 secretion	 of	 the	 proteins,	 their	 biological	 activity	was	demonstrated	 as	 this	 is	

critical	 to	 elicit	 a	 therapeutic	 effect.	 Utilizing	 the	 effect	 of	 Activin	A	 and	Myostatin	 on	

inhibition	of	cell	proliferation	of	MPC‐11	cells122,	the	biological	activity	was	demonstrated	

by	 applying	 the	 secretome	of	 the	 genetically	modified	CHO	 cells	 onto	MPC‐11	 cells	 to	

determine	 MPC‐11	 proliferation	 kinetics	 dependent	 on	 the	 applied	 supernatant	

concentration	 (Fig.	 14B).	 The	 different	 biological	 efficiency	 of	 both	 proteins	 was	

represented	by	the	distinct	inhibitory	effect	on	the	proliferation	kinetics	in	MPC‐11	cells.	

As	depicted	 in	 figure	14B,	 to	decrease	cellular	MPC‐11	vitality	 to	 the	same	 level	using	

Activin	A	and	Myostatin,	Activin	A	was	diluted	to	a	higher	extent	achieving	similar	cellular	

effects,	reflecting	the	different	effective	concentrations	of	the	proteins	to	induce	a	cellular	

response.	Thereby,	a	shift	in	proliferation	kinetics	towards	increased	dilutions	resulted.		

In	 summary,	 not	 only	 cellular	 survival	 and	 secretion	 was	 demonstrated	 but	 also	 the	

biological	 activity	 of	 the	 secretome	 proving	 the	 concept	 of	 the	 mBioVaSc‐TERM®	 to	

potentially	 serve	 as	 a	 drug	 delivery	 system.	 Furthermore,	 Activin	 A	 might	 enhance	

vascularization	within	the	mBioVaSc.		

Beyond,	the	implementation	of	genetically	engineered	autologous	cells	could	be	a	viable	

strategy	for	clinical	application	and	future	cell	therapy	with	the	mBioVaSc‐TERM®.		

	

5.5.3	Example	of	mBioVaSc‐TERM®	application	as	endocrine	tissue	graft		

The	secretion	of	Activin	A	and	Myostatin	by	the	genetically	modified	CHO	cells	enabled	

the	proof	of	concept	for	drug	secretion	and	distribution	throughout	the	vascular	system	

of	 the	 mBioVaSc‐TERM®.	 In	 contrast	 to	 constitutive	 secretion,	 numerous	 metabolic	

diseases	demand	a	highly	regulated	release	of	factors.	A	constant	secretion	as	with	the	

constitutive	producing	 cells	 generated	above	might	have	disadvantageous	 side	 effects.	

Therefore,	the	drug	secretion	has	to	be	tightly	regulated	in	a	dose	dependent	manner	by	

feedback	mechanisms.	However,	 the	 implementation	of	 all	 the	 required	 feedback	 loop	

mechanisms	by	genetic	engineering	is	highly	laborious.		

To	 demonstrate	 the	 capacity	 of	 the	 mBioVaSc‐TERM®	 to	 maintain	 naturally	 drug	

secreting	 cell	 cluster	 viable	 and	 functional,	 porcine	 neonatal	 islet‐like	

cell	clusters142	(NICC)	were	employed	(Fig.	15A).	Islets	constitute	the	endocrine	function	

of	the	pancreas	secreting	hormones	critical	for	glucose	homeostasis10.		
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For	insulin	secretion,	the	total	amount	of	secreted	protein	was	not	as	high	as	for	Activin	A	

and	Myostatin.	However,	the	latter	proteins	were	produced	by	genetically	modified	cells	

for	constitutive	expression	and	secretion	whereas	 insulin	secretion	 is	highly	regulated	

and	the	cells	more	demanding	on	the	microenvironment	of	their	cellular	niche	for	survival	

and	 function.	 Furthermore,	 the	 employed	 islets	 were	 immature	 when	 isolated	 upon	

insulin	 secretory	 activity230,	 as	 indicated	 by	 the	 immunohistological	 staining	 hardly	

verifying	insulin+	staining	on	the	cultured	NICCs	(Fig.	15D).	Nevertheless,	the	islets	were	

viable	in	the	luminal	culture	within	the	mBioVaSc‐TERM®	(Fig.	15B)	as	well	as	secretion	

of	 insulin	 was	 demonstrated	 in	 the	 co‐culture	 setup.	 However,	 insulin	 secretion	 was	

stimulated	 only	 by	 3,	 5,	 and	 10	mM	 glucose,	 proving	 too	 little	 to	 induce	 an	 elevated	

secretion	rate	above	the	base	level	(Fig.	15E).	Furthermore,	the	impact	of	supplementary	

co‐culture	was	determined	by	seeding	additional	ECs,	MSCs	or	both,	ECs	and	MSCs,	in	the	

luminal	compartment	of	the	mBioVaSc‐TERM®	(Fig.	15F).	MSCs	did	not	demonstrate	to	

have	an	impact	on	insulin	secretion	of	the	NICCs.	The	co‐culture	with	ECs	clearly	indicated	

a	 trend	 in	 increased	 insulin	 secretion.	Though,	 no	 impact	 of	ECs	on	 increasing	 insulin	

secretion	is	known,	it	was	likely	that	the	raised	insulin	levels	were	due	to	elevated	NICC	

viability	by	directly	co‐culturing	ECs	additional	to	the	revascularized	structures.		

In	 summary,	 viability	 of	 cell	 cluster	 co‐cultured	with	 different	 cell	 types	with	 distinct	

demands	on	the	culture	conditions	was	demonstrated	as	well	as	their	secretion,	proving	

the	concept	of	the	mBioVaSc‐TERM®	to	potentially	serve	as	a	framework	to	establish	an	

endo‐	or	exocrine	tissue.		

Moreover,	despite	advances	in	clinical	islet	transplantation	as	the	gold	standard	therapy,	

there	is	still	a	huge	inefficiency	due	to	a	progressive	loss	of	islets	and	islet	function231.	As	a	

far	 future	perspective,	 instead	of	 intravenous	 injection	of	 islets,	 the	mBioVaSc‐TERM®	

might	serve	as	a	tailored	microenvironment	for	islet	survival	and	function	with	adjacent	

vascularization	providing	the	functional	stimuli	and	distribution	network.		

Concerning	the	realization	of	a	secretory	active	organ‐like	tissue,	a	consecutive	study	aims	

to	generate	a	vascularized	3D	organ‐model	of	the	pancreas	combining	vascular	TE	and	iPS	

cell	 technology.	 Based	 on	 the	 herein	 established	 concept,	 the	 mBioVaSc‐TERM®	 will	

provide	the	framework	for	a	3D	co‐culture	system	of	human	iPS	cells	differentiated	into	

pancreatic	 β‐cells232,233	 and	 acinar	 cells234,	 representing	 the	 endocrine	 and	 exocrine	

function	of	the	pancreas,	respectively.		
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5.5.4	Advancements	for	tissue	graft	generation	and	maintenance		

The	perfusion	culture	was	demonstrated	to	be	feasible	and	appeared	superior	to	standard	

static	culture	regarding	long‐term	vitality,	viability,	and	functionality.		

The	co‐culture	of	ECs	within	the	luminal	culture	in	addition	to	reendothelialized	vessels	

indicated	positive	effects	on	vitality	and	thereby	maintained	functionality	as	shown	for	

NICCs.	 Exploiting	 the	 capacity	 of	 ECs	 for	 angiogenesis198,	 combined	 with	 the	

implementation	of	sprouting	and	tube	forming	EC‐spheroids	co‐cultured	with	tissue‐like	

organoids102,103,	 intraluminal	 vascularization	 might	 be	 achieved.	 Inner‐luminal	

vascularization	 interconnected	 to	 the	 capillary	 branches	 embedded	 inside	 the	 luminal	

ECM	 of	 the	 mBioVaSc‐TERM®	 would	 establish	 a	 fully	 pervading	 vessel	 network	

throughout	 the	 luminal	 compartment.	 Thereby,	 promoting	 vascularization	 inside	 the	

luminal	 cavity	 beyond	 revascularization	 of	 the	 scaffold	 vasculature,	 might	 enable	 full	

thickness	tissue	graft	generation.		

Beyond,	 by	 improving	 the	 venous	 return	with	 establishing	 a	 colloid	 osmotic	 gradient	

between	 intra‐	 and	 extravascular	 space	 and	utilizing	 the	distinct	 afferent	 and	 efferent	

vessel	system,	drugs	could	be	delivered	via	the	simulated	blood	stream	to	a	generated	

tissue	 within	 the	 luminal	 compartment	 of	 the	 mBioVaSc‐TERM®.	 The	 returned	

compounds	might	 be	 analyzed	 upon	 the	 capacity	 to	 pass	 the	 endothelial	 barrier	 and	

tissue‐specific	 drug	metabolism	 as	 well	 as	 the	 tissue	 itself	 can	 be	 analyzed	 upon	 the	

metabolic	pathways	induced	by	exposition	to	a	certain	drug	in	an	in	vivo‐like	situation.	

This	technology	might	facilitate	basic	research	on	organ	function	and	metabolic	pathways	

as	 well	 as	 give	 further	 insight	 on	 disease	 patterns	 including	 vascular	 diseases.	

Constituting	 organ‐specific	 tissue	 pervaded	 by	 endothelialized	 vessels,	 the	mBioVaSc‐

TERM®	 might	 function	 as	 an	 in	 vivo‐like	 test	 system	 utilized	 for	 drug	 screening,	

metabolism	and	toxicity	studies	as	well	as	a	cancer	model	enabling	the	examination	of	

tumor	 vascularization	 and	 metastasis.	 Preliminary	 data	 shown	 in	 this	 thesis	 for	 the	

generation	of	liver	and	pancreatic	tissue	indicated	promising	results	towards	the	future	

establishment	of	organ	models	for	drug	screening	and	toxicity	tests.	

Generating	different	tissues	in	different	scaffolds	and	connecting	both	in	a	circuit	within	

a	bioreactor	system,	reciprocal	effects	might	be	determined	representing	a	vascularized	

multi‐organoid	system.		
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In	 summary,	 to	 demonstrate	 the	 capacity	 of	 the	 mBioVaSc‐TERM®	 as	 a	 platform	

technology	 for	 vascularized	 tissue	 graft	 generation,	 multicellular	 organoids,	

genetically	modified	 cells	 for	 drug	 release	 or	 naturally	 hormone	 secreting	 cell	 cluster	

were	 maintained	 viable	 and	 functional	 in	 a	 co‐culture	 setup.	 The	 biologically	 active	

secreted	proteins	were	determined	 to	be	distributed	 throughout	 the	whole	bioreactor	

system.	 The	 different	 applications	 indicated	 further	 improvements	 but	 provided	

promising	results	to	facilitate	the	generation	of	long‐term	functional	graft	tissue	based	on	

the	mBioVaSc‐TERM®.	

	

5.6	Clinical	relevance	and	capacity	of	the	mBioVaSc‐TERM®	for	in	vivo	application	

The	mBioVaSc‐TERM®	was	 demonstrated	 to	 be	 biocompatible	 and	 haemocompatible,	

to	enable	 revascularization	 and	 facilitate	 physiological	 vascular	 perfusion,	 and	 to	

maintain	tissue‐like	co‐culture.		

Next,	 the	 translation	toward	clinical	applicability	was	evaluated,	demonstrating	 in	vivo	

proof	of	 concept	whether	 the	mBioVaSc‐TERM®	 is	 suitable	as	 scaffold	 for	 tissue	graft	

generation	and	further	as	Advanced	Therapy	Medicinal	Product	(ATMP).	To	determine	

the	capacity	as	human	cell	therapy	application,	immunodeficient	small	animal	models	are	

most	 suitable	 to	 not	 compromise	 the	 proof	 of	 concept	 by	 heterologous	 immune	

rejection156.	 In	 particular,	 the	 mBioVaSc‐TERM®	 was	 revascularized	 with	 hdmECs	

classifying	 the	 graft	 as	 xenogenic	 when	 implanted	 in	 rats.	 Therefore,	 immune‐

compromised	nude	rats	were	employed	to	circumvent	immunogenic	rejections	for	proof	

of	concept	for	implantation	and	in	vivo	application	of	the	mBioVaSc‐TERM®.		

For	further	studies,	autologous	cells	can	be	utilized,	however,	vascular	integrity	has	to	be	

proven	for	each	EC	source	introduced.		

Furthermore,	 concerning	 the	 generation	 of	 an	 ATMP,	 preclinical	 studies	 on	 safety,	

efficacy,	and	biodistribution	are	for	practical	and	ethical	reasons	preferentially	examined	

in	small	animal	models.	
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5.6.1	Immediate	and	leakage‐free	vascular	anastomosis	of	the	mBioVaSc‐TERM®	

The	 preserved	 vascular	 structures	 of	 the	 mBioVaSc‐TERM®	 enabled	 an	 immediate	

anastomosis	to	the	circulation	of	rats	for	in	vivo	proof	of	concept	studies.	The	capacity	for	

vascular	anastomosis	displays	a	huge	advantage	over	most	attempts	 in	vascular	 tissue	

engineering	with	only	 the	establishment	of	an	 intrinsic	vascularization	but	no	directly	

connectable	pedicles.		

The	porcine‐derived	BioVaSc‐TERM®	was	already	demonstrated	to	be	connected	to	the	

brachial	vascular	bundle	in	the	upper	arm	of	a	human	patient113.	However,	the	vessels	of	

the	rat‐derived	mBioVaSc‐TERM®	were	distinctly	smaller	in	diameter	and	thereby	more	

demanding	to	suture.	Furthermore,	to	avoid	vascular	offset,	vessels	of	similar	diameter	

are	 favorable	 for	anastomosis.	Microsurgical	handling	of	a	visceral	surgeon	enabled	 to	

suture	the	feeding	and	draining	mesenteric	vessels	of	the	mBioVaSc‐TERM®	onto	a	rat’s	

abdominal	aorta	as	well	as	the	caudal	vena	cava,	respectively	(Fig.	16).		

For	in	vivo	proof	of	concept,	the	mBioVaSc‐TERM®	was	reendothelialized	with	hdmECs	

and	 implanted	 in	 nude	 rats.	 After	 anastomosis	 of	 the	mBioVaSc‐TERM®	 onto	 the	 rat	

vasculature,	 the	 mBioVaSc‐TERM®	 was	 perfused	 by	 an	 unobstructed	 unidirectional	

blood	flow	as	a	part	of	the	animal’s	blood	circulation.	With	the	mBioVaSc‐TERM®	directly	

anastomosed	 to	 the	 blood	 circulation,	 an	 immediate	 foreign	 body	 reaction	 was	 not	

expected	due	to	the	utilization	of	immunodeficient	rat	and	the	well	described	successful	

clinical	 application	 of	 decellularized	 ECM.	 The	 main	 concerns	 were	 leakage	 and	

insufficient	scaffold	haemocompatibility.	Acute	leakage	could	have	resulted	in	bleeding	to	

death	of	the	patient	and	incomplete	lining	of	the	vascular	structures	with	ECs	could	have	

resulted	in	acute	thrombosis	sealing	off	the	blood	supply	within	the	graft	and	in	the	worst	

case	leading	to	an	embolus	outside	the	scaffold.		

The	 in	vitro	 tested	vascular	 tightness	and	haemocompatibility	of	 the	 reendothelialized	

vascular	 tree	 were	 confirmed	 in	 vivo,	 preventing	 leakage	 and	 acute	 thrombosis.	

Furthermore,	the	rats	with	implanted	grafts	showed	no	signs	of	rejection	nor	intolerance,	

besides	 one	 complication	 (Fig.	 17),	 presumably	 due	 to	 an	 intestinal	 obstruction	 in	

consequence	of	the	surgical	intervention	during	the	implantation.		
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5.6.2	Potential	integration	of	the	mBioVaSc‐TERM®	into	surrounding	tissue		

It	is	described	in	literature	that	implanted	biomaterials	elicit	foreign	body	response	and	

monocyte	and	macrophage‐like	cells	are	recruited	to	the	site	of	the	implant	facilitating	

ECM	turnover	or	encapsulation	within	the	first	3	days	in	vivo.	At	day	7,	these	implants	are	

completely	sealed	off	by	a	definitive	fibrotic	capsule235.	

In	contrast,	 the	mBioVaSc‐TERM®,	which	is	composed	of	naturally	occurring	ECM	and	

reendothelialized	to	provide	vascular	tightness	and	haemocompatibility	did	not	elicit	any	

signs	 of	 foreign	 body	 reaction	 nor	 graft	 remodeling	 or	 turnover	 within	 the	 first	

3	days	(Fig.	18A).		

Even	 after	 7	 days	 in	vivo,	 the	 mBioVaSc‐TERM®	 was	 only	 faintly	 covered	 by	 loose	

connective	tissue	and	the	vascular	function	seemingly	unimpaired	(Fig.	18B).	As	this	did	

not	 correlate	 with	 the	 typical	 development	 of	 immunogenic	 rejection	 of	 fibrotic	

connective	tissue	encapsulation	to	shield	the	material	from	the	body236	it	was	more	likely	

to	resemble	impaired	healing	potentially	triggering	similar	mechanisms	like	peritoneal	

adhesion.		

30	days	post	 implantation,	 the	scaffold	was	entirely	encapsulated	and	adherent	 to	 the	

surrounding	tissue	but	still	easily	dissected	therefrom	(Fig.	18C).	This	was	in	 line	with	

peritoneal	 healing,	 depicting	 critical	 progression	 of	 adhesion	 formation	 after	 seven	

days237.		

Beyond	 this	 time	 frame,	 when	 implanted	 for	 120	 days	 in	 vivo,	 the	 graft	 was	

indistinguishably	 incorporated	 into	 the	 tissue	 (Fig.	 18D).	 With	 exclusion	 of	 fibrotic	

encapsulation,	the	graft	being	inseparable	from	original	tissues	indicated	graft	integration	

into	the	organism.		

These	results	were	in	line	with	other	implantation	studies	described	in	literature238,239.	

In	fact,	 connective	 tissue	overgrowth	was	utilized	 therein	enabling	vascular	sprouts	 to	

surround	 and	 infiltrate	 the	 transplant.	 Thereby,	 a	 prevascularization	 of	 an	 originally	

avascular	biomaterial	was	achieved.	This	strategy	for	TE	requires	an	implantation	in	vivo	

for	 2	 –	 6	 weeks,	 dependent	 on	 scaffold	 size,	 until	 the	 material	 is	 encapsulated	 by	

connective	tissue	and	vascular	sprouts	have	grown	towards	the	material240.	The	synthetic	

biomaterials	 then	 is	explanted	to	serve	now	as	a	prevascularized	scaffold	allowing	the	

incorporation	of	cellular	components	 in	close	proximity	to	vascular	structures	 in	vitro.	
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Next,	 the	 prevascularized	 graft	 is	 finally	 implanted	 again.	 Due	 to	 the	 beforehand	

established	prevascularization,	the	connection	of	the	vascular	structures	within	the	graft	

and	the	host	vasculature	will	now	occur	quicker	enabling	nutrient	supply	and	minimized	

graft	 necrosis.	 Nevertheless,	 two	 surgeries	 are	 necessary	 and	 after	 explantation	 and	

reimplantation	 the	 ingrown	vessels	do	not	provide	a	connection	 to	 the	circulation	any	

more,	which	has	to	be	reestablished	by	sprouting	anew.		

Comparing	 the	 established	 mBioVaSc‐TERM®	 with	 other	 engineered	 scaffolds235,	

the	innate	 vascularization	 enabled	 direct	 anastomosis	 for	 immediate	 nutrient	 supply,	

and	the	use	of	naturally	occurring	decellularized	scaffolds	could	be	considered	preferable	

in	terms	of	biocompatibility,	immunogenic	rejection	and	foreign	body	reaction.	Thereby,	

the	mBioVaSc‐TERM®	appeared	superior	to	synthetic	avascular	scaffolds.		

However,	 the	 exploitation	 of	 biomaterial	 encapsulation	 indicates	 that	 the	 in	 vivo	

overgrowth	of	 the	mBioVaSc‐TERM®	might	 be	 advantageous	 for	 long‐term	 functional	

tissue	integration.	In	contrast,	sealing	the	mBioVaSc‐TERM®	off	the	surrounding	tissue	

by	 enveloping	 it	 in	 a	 surgical	mesh	 resulted	 in	 degradation	 of	 the	 scaffold	 (Fig.	 18E)	

indicating	that	the	surrounding	tissue	elicited	no	adverse	effects	onto	graft	survival	but	

appeared	beneficial.		

	

Another	explanation	for	connective	tissue	surrounding	the	implanted	graft	is	peritoneal	

adhesion	formation.	Naturally,	internal	organs	are	anchored	within	the	body	but	still	can	

move	freely	to	a	certain	degree	not	sticking	to	each	other	to	ensure	a	functional	motility	

especially	for	the	intestine.	The	“slippery	surface”	on	the	internal	organs	is	provided	by	a	

mesothelial	cell	layer241	secreting	a	surface	active	phospholipid‐based	surfactant242	with	

fibrinolytic	 activity	 protecting	 against	 adhesions	 and	 thromboses243.	 Upon	 injury	 or	

inflammation	 a	 regeneration	 cascade	 is	 triggered	 and	 peritoneal	 healing	 is	 normally	

completed	within	7	–	10	days244	by	differentiation	of	underlying	mesenchymal	 cells245.	

Otherwise,	 if	 regeneration	 is	 impeded,	 scarring	 occurs	 inducing	 peritoneal	 adhesion	

formation245.		

Furthermore,	due	to	surgical	trauma	such	as	tissue	desiccation,	irradiation,	hemorrhage,	

ischemia,	 and	 reactions	 to	 foreign	materials	 introduced	 during	 the	 procedure	 such	 as	

glove	 powder,	 sutures,	 and	 gauze	 the	 host	 abdominal	 organs	 likely	 get	 affected	 and	

normal	healing	mechanism	becomes	impaired	and	shifts	towards	adhesion	formation246.		
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Even	in	clinical	routine	the	incidence	of	peritoneal	adhesion	occurrence	after	abdominal	

surgery	 is	 93	 %.	 However,	 in	 most	 cases,	 they	 do	 not	 cause	 severe	 symptoms.	

Nevertheless,	 they	 might	 progressively	 become	 larger	 and	 tighter	 provoking	 chronic	

abdominal	 pain	 to	 the	 point	 of	 intestinal	 obstruction	 even	 years	 after	 the	 surgery	

requiring	a	second	operation	to	break	the	adhesion247.		

In	 case	 of	 the	 mBioVaSc‐TERM®,	 considering	 the	 1.5	–	2	hours	 surgical	 implantation	

procedure	for	anastomosis	and	implantation	of	the	mBioVaSc‐TERM®	it	was	very	likely	

for	 a	 surgical	 intervention‐caused	 inflammation	 to	 occur.	 Furthermore,	

during	decellularization	 all	 cells	 including	 the	 naturally	 present	 mesothelial	 cells	

secreting	the	protective	surfactant	were	removed.	Thereby,	upon	implantation,	the	graft	

was	 unprotected	 with	 the	 exposed	 bare	 ECM	 of	 the	 mBioVaSc‐TERM®	 incapable	 of	

regeneration,	most	 likely	 triggering	peritoneal	 scarring	 in	 consequence	 of	 the	missing	

surfactant	 and	 surfactant	 producing	 cells.	 Consequently,	 excessive	 ECM	 is	 likely	 to	 be	

deposited	 successively	 establishing	 a	 fibrous	 bridge	 between	 tissues244.	 Thereby,	

the	scaffold	was	exposed	to	matrix	turnover,	scarring	and	thus	fibrous	tissue	deposition	

anchoring	 the	 graft	 to	 its	 abdominal	 environment248	 and	 ultimately	 integrated	 or	

disintegrated	dependent	on	the	biocompatibility	and	vitality	of	the	graft	tissue.		

For	 the	 mBioVaSc‐TERM®,	 adhesion,	 anchorage,	 and	 incorporation	 are	 not	 generally	

disadvantageous.	In	contrast,	the	overgrowth	of	implanted	biomaterials	with	collagenous	

tissue	 and	 cell	 infiltration	was	 exploited	 to	 create	 living	 autologous	 tissue249	with	 the	

mechanical	properties	and	functions	of	the	primarily	implanted	biomaterial250.	However,	

further	 analysis	 has	 to	 demonstrate	 whether	 the	 mBioVaSc‐TERM®	 was	 integrated	

within	the	tissue	with	sprouting	vessels	or	whether	the	surrounding	tissue	was	fibrotic	

deposition	 triggered	 by	 peritoneal	 adhesion.	 Furthermore,	 functional	 tissue	 has	 to	 be	

implemented	inside	the	mBioVaSc‐TERM®	to	demonstrate	the	in	vivo	capacity	as	a	viable	

tissue	graft.	Examining	graft	function	over	time	in	vivo	will	determine	the	main	criterion	

for	evaluation	of	clinical	mBioVaSc‐TERM®	applicability.	

	

5.6.3	Alternative	implantation	sites	avoiding	the	risk	for	peritoneal	adhesion	

Despite	 integration	 of	 the	mBioVaSc‐TERM®	within	 the	 surrounding	 tissue	 not	 being	

disadvantageous,	as	this	procedure	is	deliberately	exploited	for	synthetic	biomaterials	to	
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establish	 prevascularization,	 there	 is	 a	 high	 risk	 for	 peritoneal	 adhesions	 causing	

secondary	 damage.	 This	might	 have	 been	 occurred	 to	 the	 one	 laboratory	 animal	 that	

developed	an	ileus251.		

With	peritoneal	adhesions	being	a	clinically	relevant	problem252,	adhesion	risk	might	be	

reduced	by	optimizing	the	implantation	procedure	or	explore	another	implantation	site,	

subsequently	also	diminishing	the	incidence	of	secondary	intestinal	obstructions.		

In	the	small	animal	model	rat	there	is	hardly	an	alternative	location	for	anastomosis.	A	rat	

jugular	vein	and	carotid	artery	at	the	neck	were	no	option	as	there	was	no	space	for	the	

actual	mBioVaSc‐TERM®	to	be	placed.	The	iliac	vein	and	artery	in	the	lower	abdomen	or	

femoral	vessels	in	the	upper	legs	could	be	considered.	However,	the	latter	might	already	

be	too	small	for	anastomosis	and	even	despite	preparing	the	graft	small	enough	that	it	

could	be	placed	in	a	leg	muscle	pocket,	it	would	be	exposed	to	a	lot	of	force	applied	by	the	

surrounding	leg	musculature	potentially	destructing	the	scaffold.		

In	large	animal	models,	however,	the	above	mentioned	options	will	be	feasible	due	to	the	

different	size	proportions	of	graft	and	recipient	and	therefore	depict	viable	alternatives	

to	the	intraabdominal	space.		

	

5.6.4	Barriers	guarding	the	graft	from	ECM	remodeling	and	deposition		

Besides	relocating	the	implantation	site	various	peritoneal	adhesion	prevention	therapies	

are	in	development253.	The	implementation	of	solid	barriers	to	physically	separate	two	

tissues	 depicted	 the	 clinically	 most	 successful	 adhesion	 barriers	 in	 current	 clinical	

applications253.		

Hence,	to	diminish	the	prevalent	hazard	a	barrier	to	shield	the	implant	was	employed	that	

was	 also	 supposed	 to	 enable	 easier	 graft	 recovery	 and	 subsequent	 analysis.	 The	

GORE®	DUALMESH®	biomaterial	was	used	to	promote	host	tissue	incorporation	on	one	

side	 while	 minimizing	 tissue	 attachment	 on	 the	 other254.	 However,	 employing	 the	

GORE®	DUALMESH®	biomaterial	did	not	reduce	tissue	encapsulation.	In	contrast,	when	

enveloped	 in	 a	 surgical	 mesh	 the	 biomaterial	 pouch	 was	 completely	 encapsulated.	

Moreover,	the	scaffold	within	the	biomaterial	pouch	was	degraded	(Fig.	18E).		

Examining	the	pathologic	state	of	the	implant,	foreign	body	response	is	usually	described	

as	a	non‐specific	immune	response	by	the	infiltration	of	inflammatory	cells	to	destroy	and	
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remove	 foreign	materials255.	 The	 enveloped	 scaffold	was	 very	 likely	 in	 the	 process	 of	

being	phagocytosed	and	removed.	This	indicated	that	the	long‐term	sealing	off	from	the	

surrounding	environment	was	obviously	disadvantageous	in	terms	of	tissue	survival	and	

integration.	In	contrast,	the	scaffold	which	was	not	enveloped	was	completely	integrated	

without	 signs	 of	 adverse	 reactions	 by	 the	 animal.	 In	 both	 cases,	 similar	mechanisms,	

chemical	mediators,	matrix	metalloproteinases,	and	macrophages	present	in	blood	and	

the	 peritoneal	 fluid256	 were	 likely	 responsible	 for	 tissue	 remodeling.	 However,	

the	degraded	scaffold	being	enveloped	and	sealed	off	from	the	environment	indicated	that	

the	triggering	effect	was	elicited	by	factors	circulating	in	the	bloodstream.		

Vascular	sprouting	from	the	surrounding	host	tissue	into	the	graft	might	potentially	have	

occurred	 improving	 graft	 integration.	 The	 immediate	 anastomosis	 establishing	 blood	

circulation	 throughout	 the	 graft	 might	 facilitate	 short‐term	 survival	 of	 the	 implanted	

tissue.	However,	for	long‐term	tissue	integration,	additional	sprouting	and	expansion	of	

the	 vascular	 network	 might	 be	 necessary.	 The	 establishment	 and	 implementation	 of	

further	strategies	to	increase	sprouting	and	enhance	vascularization	seems	advantageous	

for	graft	survival.		

Other	strategies	than	enveloping	the	scaffold	with	a	definite	barrier	to	separate	graft	from	

host	might	 be	more	 promising	 in	minimizing	 the	 risk	 for	 pathologic	 adhesions	 while	

preserving	 the	 mBioVaSc‐TERM®	 from	 degradation	 but	 allowing	 tissue	 integration.	

Approaches	 resembling	 a	 more	 natural	 strategy	 or	 employing	 a	 naturally‐derived	

protectant	might	be	superior	in	protecting	the	internal	organs	from	adhesions	but	still	

enabling	long‐term	integration	of	the	mBioVaSc‐TERM®	without	introducing	an	artificial	

material	eliciting	foreign	body	reaction.		

Instead	 of	 solid	 barriers,	 fluids	 and	 gels	 are	 described	 as	 absorbable	 surfactant	

lubricants257	 to	 reduce	 the	 incidence	of	 adhesions	until	 the	natural	 barrier	 of	 affected	

areas	 is	 regenerated	 after	 a	 surgical	 intervention.	 Embedded	 in	 hydrogels	 or	 applied	

independently,	 medication	 was	 developed	 targeting	 the	 molecular	 mechanisms	 of	 to	

significantly	 decrease	 adhesion	 formation258.	 Hellebrekers	 et	 al.	 reviewed	 fibrinolytic	

agents	 aiming	 for	 the	 prevention	 of	 the	 onset	 of	 adhesion	 or	 the	 immediate	 lysis	 of	

excessive	ECM	deposition	counteracting	developing	fibrous	bridge	formation.		

A	 TE	 approach	 suggested	 the	 implementation	 of	 mesothelial	 cells253	 on	 the	 scaffold	

surface	 providing	 a	 natural	 biological	 barrier.	 hPSCs	 demonstrated	 the	 capacity	 to	 be	
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differentiated	into	the	mesothelium	lineage	and	might	then	be	utilized	to	reestablish	the	

visceral	 mesothelial	 layer	 on	 the	 mBioVaSc‐TERM®,	 as	 present	 on	 internal	 organs	

reducing	 the	 incidence	 of	 peritoneal	 adhesion.	 Regarding	 clinical	 application,	

autologous	cells	 implemented	 potentially	 provoke	 immune	 reactions.	 However,	

autologous	mesothelial	 cell	 isolation	 requires	 the	 determination	 of	 suitable	 sites	 for	

taking	 biopsies,	 the	 establishment	 of	 protocols	 for	 cell	 isolation,	 characterization	 and	

massive	cellular	expansion	to	an	adequate	amount	to	repopulate	the	graft	in	suitable	co‐

culture	conditions.	Starting	with	the	determination	of	an	accessible	location	for	taking	a	

biopsy	for	cell	extraction,	the	whole	process	will	be	extremely	laborious.	The	generation	

of	 mesothelial	 cells	 from	 iPS	 cells	 might	 be	 a	 potential	 alternative,	 however,	

similarly	laborious	and	requires	proof	of	safety	of	the	iPS	cells259.		

Besides	the	implementation	of	cells	facilitating	surface	functionalization,	the	capability	of	

functionalizing	 the	 mBioVaSc‐TERM®	 ECM	 with	 the	 respective	 proteins	 could	 be	

determined	alternatively.		

In	 summary,	 without	 a	 mesh	 envelope	 constituting	 a	 definite	 barrier,	 the	 graft	 was	

integrated	 into	 the	 surrounding	 tissue,	while	 the	mesh	enveloped	graft	was	degraded.	

Nevertheless,	 minimizing	 the	 risk	 of	 peritoneal	 adhesion	 by	 employing	 another	

biodegradable	envelope	or	biological	surface	modification	might	depict	a	viable	solution	

still	enabling	long‐term	tissue	integration.		

	

5.6.5	Vascular	regression	during	long‐term	mBioVaSc‐TERM®	implantation		

During	short‐term	in	vivo	implantation	the	blood	flow	appeared	unobstructed	within	the	

vascular	tree	of	the	mBioVaSc‐TERM®	and	no	acute	signs	of	inflammation	were	indicated.	

However,	after	long‐term	implantation	the	blood	flow	inside	the	scaffold	vasculature	was	

halted	and	the	endothelial	integrity	degraded.		

In	contrast	to	the	analysis	of	the	in	vivo	implanted	mBioVaSc‐TERM®	that	demonstrated	

a	 gradually	 fading	 endothelialization,	 during	 seven	 weeks	 in	 vitro	 culture	 of	 the	

reendothelialized	mBioVaSc‐TERM®	no	vascular	degradation	was	observed.	

In	both	setups	the	mBioVaSc‐TERM®	was	employed	as	a	vascularized	platform	with	only	

the	vascular	tree	cultured	with	cells.	There	was	no	further	demand	for	neither	oxygen	nor	

nutrition	besides	the	ECs	and	there	was	no	VEGF	secretion	for	vascular	stabilization	from	
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subsequent	cells	and	tissue	co‐culture.	Even	during	embryogenesis	vascular	development	

responds	 dynamically	 to	 the	 needs	 of	 the	 surrounding	 tissue	 for	 nutrients	 and	

environmental	 factors	 upon	 blood	 flow	 by	 vascular	 growth	 or	 regression260.	 Thereby,	

the	in	vivo	response	to	a	structure	without	demand	for	oxygen	supply	was	the	regression	

of	the	respective	vasculature261.	However,	during	in	vitro	culture,	VEGF	was	constitutively	

added	to	the	culture	media,	sustaining	the	vascularization.	With	a	stable	vascular	network	

established	 in	 vitro,	 angiogenetic	 vascular	 remodeling	 and	 expansion262	 was	 not	

investigated	in	particular.		

With	 vascular	 regression	 observed	 in	 vivo,	 a	 strategy	 to	 circumvent	 endothelial	

degradation	might	 be	 the	 implementation	 of	 co‐cultured	 cells	 or	 an	 organ‐like	 tissue	

inside	 the	 former	 intestinal	 lumen	 of	 the	 mBioVaSc‐TERM®	 to	 induce	 a	 demand	 for	

nutrients	as	well	as	hypoxia	inside	the	tissue	establishing	an	oxygen	tension	ultimately	

preventing	vascular	regression	and	inducing	vascular	ingrowth263.		

The	vascular	tree	is	highly	adaptable	and	vascular	remodeling	including	angiogenesis	as	

well	 as	 vascular	 regression	 frequently	 occur	 during	physiological	 processes	 as	wound	

healing	and	inflammation264.	Vascular	remodeling	is	mainly	triggered	by	VEGF.	Simplified,	

an	 excess	 of	 VEGF	 results	 in	 angiogenic	 sprouting,	 while	 a	 lack	 leads	 to	 regression	

initiated	by	apoptosis	of	ECs.	The	latter	is	explained	by	anti‐apoptotic	characteristics	of	

VEGF	 promoting	 cell	 survival	 while	 inhibiting	 caspase	 activation265.	 ECs	 express	

endogenous	 VEGF,	 however,	 only	 to	 maintain	 expression	 of	 VEGF	 receptor	 and	 cell	

adhesion	molecules266.		

The	 first	 sign	 for	 vascular	 regression	 is	 stagnancy	 of	 the	 blood	 flow	 in	 the	 respective	

vessels.	Subsequently,	the	vascular	wall	components	become	gradually	removed:	the	ECs	

undergo	 apoptosis267,	 whereas	 the	 fate	 of	 the	 pericytes	 is	 controversially	 discussed	

whether	they	also	become	apoptotic	or	dedifferentiate	into	fibroblast	and	migrate	into	

the	connective	tissue264.	Finally,	residual	debris	of	coagulated	blood	and	apoptotic	cells	

gets	 cleared	 by	 phagocytosis268.	 An	 empty	 basement	 membrane	 is	 the	 only	 remnant	

remaining	 from	the	 former	vessel.	This	phenomenon	described,	explains	 the	observed	

gradual	long‐term	decline	of	the	mBioVaSc‐TERM®	vascularization	in	vivo.		

Without	 sufficient	 stimuli	 to	 sustain	 the	 vascularization	 of	 the	mBioVaSc‐TERM®	and	

promote	 sprouting	 ingrowth,	 successive	 regression	 and	 degeneration	 was	 a	 natural	
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consequence.	Harboring	only	endothelialization,	the	graft	was	missing	relevant	tissue	to	

be	nurtured,	therefore	implant	was	of	no	purpose	leading	to	regression.		

Liver‐like	organoids	were	 implemented,	but	presumably	 too	 little	 to	 induce	a	relevant	

demand	 for	 vascular	 ingrowth	 countering	 the	 vascular	 regression.	 If	 the	 luminal	

compartment	would	be	filled	with	organoids,	an	established	full	thickness	tissue	might	

pose	 a	 high	 enough	 demand	 for	 vascular	 sprouting.	 Hypoxic	 cells	 express	 angiogenic	

molecules,	 such	 as	 VEGF,	 to	 stimulate	 the	 migration	 of	 endothelial	 precursors	 for	

vasculogenesis	and	thereby	reduce	the	oxygen	tension	towards	blood	vessels269.		

VEGF	 release	 from	 the	 mBioVaSc‐TERM®	 to	 prevent	 vascular	 regression270	 and	 to	

stimulate	further	angiogenesis264	and	vascular	ingrowth	might	enhance	vascular	stability	

and	graft	survival.	VEGF	supply	might	also	be	provided	by	coupling	the	protein	to	the	ECM	

facilitating	a	release	over	time	or	by	implementing	VEGF‐secreting	cells.	Cells	utilized	for	

tissue	generation	might	be	genetically	modified	for	additional	VEGF	secretion	to	perform	

their	 tissue‐specific	 function	 in	 addition	 to	 VEGF	 release.	 Thereby,	 sustained	 vascular	

integrity	might	be	demonstrated	as	well	as	sustained	functionality	of	the	implanted	graft	

tissue.	Furthermore,	if	the	function	of	implemented	cells	or	tissue	is	vital	for	host	survival	

as	 in	 a	 rescue	 model	 the	 urge	 to	 maintain	 the	 graft	 viable	 might	 even	 be	 elevated.	

However,	additional	in	vitro	analysis	have	to	be	performed	to	establish	and	characterize	

the	graft	prelaminar	to	further	in	vivo	studies.	

Additional	TE	vascularization	strategies	such	as	further	intra	luminal	endothelial	cell	co‐

culture,	 the	 implementation	 of	 vascular	 spheroids102	 or	 vascular	 growth	 factors	 could	

enhance	 full	 tissue	 vascularization	 inside	 the	 luminal	 cavity	 interconnected	 with	 the	

perfused	vascular	network	of	the	mBioVaSc‐TERM®.	Thereby,	the	intra	luminal	space	of	

the	mBioVaSc‐TERM®	can	serve	as	a	fully	vascularized	and	systemically	interconnected	

microenvironment	for	cells	performing	tissue	specific	function	or	demand‐tailored	drug	

delivery.		
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5.6.6	In	vivo	implantation	demonstrated	proof	of	concept	but	need	for	optimization	

towards	a	functional	tissue	graft	or	drug	delivery	system	

Despite	the	long	history	and	advancements	in	TE,	mainly	thin	layered	or	hollow	tissue	

graft	are	clinically	applicable	due	to	the	urgent	need	for	dense	vascularization	within	in	

full	thickness	organ	grafts.		

Similarly	for	drug	delivery,	an	implantable	self‐sustained	on‐demand	system	remains	to	

be	established.	Amongst	the	first	drug	delivery	systems,	therapeutic	agents	coupled	onto	

polymers	 provided	 a	 controlled	 release	 mathematically	 predictable	 upon	 dose	 and	

period.	Stimuli‐responsiveness	allowed	the	timely	and	spatially	specific	drug	release	from	

polymers271.	 However,	 polymers	 for	 drug	 delivery	 depict	 a	 single	 use	 application	 and	

require	subsequent	administration	when	consumed.	With	the	rising	prevalence	of	chronic	

disorders,	 however,	 the	 demand	 for	 sustainable	 devices	 continually	 rises.	

Despite	pharmacological	advancements	upon	absorption,	distribution,	metabolism,	and	

excretion	(ADME)	 of	 pharmaceutical	 compounds	 and	 promising	 drug	 delivery	

strategies272,	 there	 are	 still	 hardly	 drug	 delivery	 devices	 in	 clinical	 trials	 for	

pharmacokinetic	evaluation273.	Lack	of	efficacy	and	toxicity	appear	to	remain	unmet	for	

clinical	applicability	and	product	approval274.		

Investigating	the	capacity	of	the	mBioVaSc‐TERM®	as	a	platform	technology,	short‐term	

in	 vivo	 proof	 of	 concept	 was	 demonstrated	 depicting	 promising	 results.	 The	 tight	

reendothelialized	vessels	enabled	unobstructed	blood	perfusion	anastomosed	to	the	rat	

vasculature	to	facilitate	nutrient	and	oxygen	supply	for	the	graft.	Thereafter,	the	scaffold	

was	applied	in	long‐term	implantation	and	analyzed	upon	the	utilization	as	a	cell‐based	

implant.		

Liver‐like	 organoid	 culture	 within	 the	 mBioVaSc‐TERM®	 lumen	 indicated	 the	

maintenance	of	in	vivo	tissue	culture,	though,	only	in	short‐term.	Beyond	7	days	in	vivo,	

the	 implemented	 organoids	 demonstrated	 increased	 apoptosis	 (Fig.	 19).	

Further	vascularization	inside	the	lumen	might	promote	tissue	survival	and	enable	the	

full	thickness	tissue	generation.	Moreover,	long‐term	culture	of	the	liver‐like	organoids	

remains	to	be	stabilized	in	vitro	upon	vitality	and	functionality.	

In	comparison,	a	small	diameter	scaffold,	prevascualrized	by	implantation	of	the	hollow	

capsule	until	encapsulated	with	deposited	ECM	and	vascular	ingrowth,	was	utilized	for	



5.	Discussion	
	

128	
	

maintaining	 pancreatic	 islets	 viable	 and	 functional	 for	 more	 than	 120	 days17,238.	

During	the	implantation	period	the	recipient	diabetic	rats	remained	normoglycemic	and	

vessels	were	demonstrated	in	close	proximity	to	the	insulin	secreting	cells	in	subsequent	

analysis238.	This	indicated	the	importance	of	prevascularization	and	the	implementation	

of	 a	 functional	 tissue	 to	pose	a	demand	 for	nutrient	 supply	and	offer	a	benefit	 for	 the	

patient.		

The	capacity	of	the	mBioVaSc‐TERM®	to	serve	as	platform	enabling	the	generation	of	a	

metabolic	active	vascularized	organ	and	be	utilized	for	drug	release	was	indicated	in	vitro.	

Advancing	 from	 the	 identified	 drawbacks,	 improving	 long	 term	 stability	 in	 vivo,	 and	

demonstrating	 functional	 in	 vivo	 tissue	 substitution	 or	 drug	 delivery,	 the	 mBioVaSc‐

TERM®	technology	might	be	a	considered	for	establishing	an	ATMP	serving	as	tissue	graft	

or	drug	delivery	system.	

Demonstrating	safety	of	the	implemented	cells	to	remain	within	the	scaffold,	fluorescently	

labelled	 cells	 might	 be	 cultured	 inside	 the	 mBioVaSc‐TERM®	 lumen,	 enabling	 cell	

tracking	to	determine	whether	the	cells	migrate	outside	the	graft.	Secretion	of	fluorescent	

proteins	or	fluorescently	labeled	proteins	would	allow	for	tracking	the	distribution	of	the	

cell	 secretome,	 proving	 applicability	 as	 drug	 delivery	 system.	 Both	 approaches	 are	

feasible	 as	 the	 in‐house	 available	 In	Vivo	 Imaging	 System	 (IVIS)	 enables	 non‐invasive	

imaging	and	monitoring.		

Furthermore,	 demonstrating	 drug	 secretion	 and	 distribution	 in	 vivo,	 besides	 cells	

secreting	fluorescent	proteins	a	variety	of	available	cell	sources	might	be	implemented	

demonstrating	 functional	 and	 bioactive	 proof	 of	 concept.	 Therefore	 the	 generated	

Activin	A‐	or	Myostatin‐secreting	CHO	cells,	the	liver‐like	organoids	might	be	examined	

upon	human	albumin	secretion,	or	 factor	VIII	secreting	cells	generated	 in	a	project	 for	

hemophilia	 A	 treatment.	 Either	 cell	 type	 is	 accessible	 for	 implementation	 in	 the	

mBioVaSc‐TERM®	with	its	secretome	specifically	detectable	from	blood	samples	taken	

after	implantation	and	verified	by	commonly	available	ELISA	or	western	blot	techniques.	

Examination	of	blood	 samples	enables	 the	 functional	proof	 concept	without	end	point	

analysis	 and	 thereby	 an	 extensive	 time	 course	 of	 steady	 analysis	 of	 availability	 of	 the	

secreted	protein.	 Furthermore,	 dose	 and	 concentration	 of	 the	 secreted	protein	 can	be	

determined	offering	valuable	clues	to	the	cellular	amount	necessary	for	implantation	to	

reach	an	effective	drug	level	for	therapeutic	efficacy.		
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5.8	Summary		

In	 this	 thesis,	 a	 rat	 jejunal	 segment	was	 identified	as	 suitable	 scaffold	 to	 function	as	a	

vascularized	platform	technology	for	TE	and	as	drug	delivery	system.	The	miniaturized	

rat‐derived	version	of	the	BioVaSc‐TERM®	provided	similar	properties	as	the	porcine‐

derived	 scaffold,	 including	 an	 innate	 vascular	 network	 embedded	 in	 a	 natural	 ECM	

providing	 supply	 for	 a	 3D	 cell	 co‐culture	 environment.	 Despite	 the	 smaller	 scale,	

cannulation,	 decellularization,	 revascularization,	 in	 vitro	 perfusion	 culture,	 tissue	

generation,	and	anastomosis	for	in	vivo	application	was	still	feasible.		

With	an	improved	decellularization	protocol,	the	ECM	components	as	well	as	the	vascular	

structures	were	preserved,	while	host	cells	were	removed.		

Next,	the	acellular	scaffold	was	characterized	and	recellularized	after	demonstration	of	

biocompatibility.	 Thereby	 a	 tight	 endothelial	 barrier	 was	 established	 and	 the	

reendothelialized	vascular	network	enabled	physiological	pulsatile	perfusion	culture	of	

the	arteriovenous	circulation,	prevented	leakage,	and	facilitated	venous	return.		

Subsequently,	reseeded	with	multicellular	organoids	or	drug	secreting	cells,	the	capacity	

of	the	mBioVaSc‐TERM®	as	a	platform	technology	for	tissue	culture	and	drug	delivery	

was	indicated	in	vitro	demonstrating	proof	of	concept.		

Finally,	the	scaffold	was	employed	for	in	vivo	studies.	The	feeding	and	draining	vessels	of	

the	 mBioVaSc‐TERM®	 were	 connected	 to	 the	 blood	 circulation	 of	 the	 host	 via	

anastomosis	facilitating	immediate	blood	supply.	As	indicated	in	vitro,	also	in	vivo	the	tight	

endothelial	barrier	demonstrated	heamocompatibility	and	prevented	leakage,	confirming	

vascular	integrity.	Short‐term	implantation	indicated	promising	results	for	translating	the	

mBioVaSc‐TERM®	 into	 clinical	 application.	 Nevertheless,	 unimpeded	 blood	 perfusion	

only	sustained	during	short‐term	studies.	Analysis	of	 long‐term	implantation	indicated	

tissue	integration,	however,	also	cellular	regression.		

	

5.9	Conclusion		

In	 conclusion,	 the	 fundaments	 for	 a	 vascularized	 scaffold	 as	 a	 platform	 for	 cell,	

tissue/organ	culture,	and	drug	delivery	was	established.	Based	upon	a	decellularized	rat	

jejunal	segment	with	a	preserved	feeding	and	draining	vascular	tree,	promising	in	vitro	
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results	were	achieved.	For	the	first	time,	full	vascularization	of	a	3D	graft	with	an	intact	

arteriovenous	loop	through	a	capillary	network	was	demonstrated.		

Despite	 highlighting	 the	 arteriovenous	 circulation	 within	 the	 scaffold	 to	 supply	

implemented	co‐cultures	as	well	as	the	feasibility	of	the	anastomosis	to	enable	immediate	

supply	 in	 vivo,	 the	 effective	 advantage	 of	 both	 still	 has	 to	 be	 demonstrated	 for	 the	

mBioVaSc‐TERM®.	

Furthermore,	 improvement	 of	 vascular	 stability	 and	 the	 advancement	 of	 the	 3D	 co‐

culture	within	the	intraluminal	compartment	has	to	be	further	pursued	to	establish	and	

sustain	a	functional	full	thickness,	fully	vascularized	organ‐like	tissue	graft.	

To	be	considered	for	 future	ATMP	development,	 the	depicted	drawbacks,	 in	particular	

sustained	 long‐term	integrity	 in	vivo,	need	to	be	overcome	to	 facilitate	 translation	into	

clinical	applicability.		

Altogether,	the	herein	observed	discrepancy	between	results	obtained	in	vitro	and	in	vivo	

is	characteristic	for	TE	grafts	demonstrating	impressive	success	 in	vitro	and	promising	

in	vivo	data	in	the	short‐term.	However,	most	TE	grafts	unconvincingly	fail	in	translation	

from	bench	to	bedside.		

Nevertheless,	due	 to	 the	promising	proof	of	 concept	and	 the	displayed	capacity	of	 the	

mBioVaSc	 to	 function	 as	 a	 platform	 for	 tissue	 grafts	 and	 drug	 delivery	 systems,	

the	established	technology	will	surely	impact	TE	and	RM.		

	

5.10	Outlook	on	future	perspectives	

The	mBioVaSc	TERM®	can	be	employed	in	basic	research	to	examine	3D	tissue	culture,	

cell‐cell	and	cell‐matrix	interactions,	metabolic	and	toxicological	surveys,	and	transplant	

development	 with	 the	 possibility	 for	 preclinical	 small	 animal	 model	 implantations	

granting	faster	results	due	to	its	smaller	size,	lower	cell	amount	necessary	for	confluent	

culture	 and	 easier	 handling.	 The	 miniaturized	 biologically	 vascularized	 scaffold	 as	

platform	technology	 for	 the	generation	of	 functional	 tissue	grafts	or	 the	application	as	

drug	delivery	system	could	serve	as	a	powerful	tool	for	TERM	substituting	for	a	loss	of	

tissue/function	 or	 serving	 as	 a	 secretory	 active	 gland,	 dependent	 on	 the	 clinical	 and	

pharmaceutical	issue.	Upon	successful	proof	of	concept	a	translation	into	long‐term	small	

animal	and	preclinical	large	animal	studies	has	to	be	evaluated.		
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Despite	the	success	in	reendothelialization,	the	established	process	might	be	improved	by	

slower	and	prolonged	EC	infusion	as	well	as	the	subsequent	perfusion	with	circulating	

endothelial	 progenitor	 cells	 to	 enhance	 entothelialization	 and	 hemocompatibility275.	

Furthermore,	 fully	 functional	mature	vessels	were	not	re‐established.	Mature	vessels	–	

typically	composed	of	varying	layers	of	smooth	muscle	cells,	pericytes,	and	ECs	–	are	more	

stable	while	newly	formed	vessels	are	less	resistant	to	vascular	regression270.	Although	a	

functional	endothelial	layer	covered	the	retained	basement	membrane,	sufficient	for	most	

capillaries,	the	absence	of	pericytes	leads	to	increased	leakage	of	plasma	and	blood	cells276	

impairing	the	maintenance	of	a	colloid	osmotic	pressure.	For	implementation	of	pericytes,	

protocols	 for	 isolation,	 characterization,	 culture277,	 and	 therapeutic	 application278	 are	

described.	 Moreover,	 the	 larger	 vessels	 within	 the	 mBioVaSc‐TERM®	 lack	 SMCs	

promoting	vascular	sprouting,	angiogenesis,	maturation,	functionality,	and	stability277	as	

well	 as	 pericytes	 contributing	 to	 vessel	 maturity,	 structure,	 and	 stability279.	 Beyond,	

embryonic	stem	and	iPS67	cells	depict	a	potentially	infinite	source	of	autologous	cells	for	

regeneration	 pushing	 towards	 clinical	 application30.	 Furthermore,	 a	 differentiation	

protocol	 for	 hPSCs	 towards	 ECs,	 SMCs,	 and	 pericytes	 was	 established,	 enabling	 the	

generation	of	the	respective	vascular	cells	from	one	common	source.	The	preliminary	data	

gained	with	differentiated	hPSCs	demonstrated	already	promising	results.		

	

In	addition	to	improving	vascular	stability	of	the	vessels	embedded	within	the	scaffold	

ECM,	 the	 capillary	 network	 is	 aimed	 to	 be	 expanded	 to	 sprout	 into	 the	 intraluminal	

compartment	to	fully	pervade	a	full	thickness	tissue.	Intraluminal	tissue	vascularization	

within	 the	 mBioVaSc‐TERM®	might	 be	 achieved	 by	 implementation	 of	 vascular	 cells	

within	the	tissue	exploiting	their	capacity	for	self‐arrangement	demonstrated	by	various	

cell	seeding,	spheroid‐generation,	and	micro‐tissue	aggregation	approaches280,281.		

	

The	 achieved	 success	 in	 decellularization	 and	 revascularization	 of	 a	 vastly	 branched	

vascular	 network	 encourages	 the	 attempt	 to	 generate	 custom‐tailored	 vessels,	 e.g.	 for	

bypass	 surgeries.	 Certainly,	 the	 complexity	 of	 the	 branched	 capillary	 bed	 is	 irrelevant	

when	 generating	 a	 single	 straight	 tubular	 structure,	 however,	 the	 seemingly	

straightforward	 task	 proved	 as	 sophisticated	 endeavor	 as	many	 attempts	 in	 TE	 failed	

despite	an	urgent	demand	in	clinical	application282.	Nevertheless,	considering	the	gained	
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experience	on	decellularization,	acellular	vessels	might	be	established	as	base	framework	

and	assembled	with	primary	isolated	endothelial	cells	and	pericytes	or	respective	cellular	

progenitors	composing	autologous	vascular	grafts.	New	bioreactor	devices	might	have	to	

be	developed	adaptable	to	the	vessel	size.	Further	functional	tests	will	have	to	be	included,	

e.g.	coagulation	assays,	the	proof	of	the	graft’s	ability	on	vasoconstriction	and	–dilation283,	

as	well	as	demonstrating	the	capability	to	withstand	the	physiological	shear	stress	at	the	

desired	 implantation	 site.	 Nevertheless,	 with	 the	 prevalent	 experience	 on	 de‐	 and	

recellularization	of	vascular	structures	and	the	great	 interdisciplinary	team	of	medical,	

biomedical,	 biological	 and	 material	 scientists	 as	 well	 as	 engineers,	 realization	 can	

confidently	be	approached.	Thereafter,	more	studies	on	cellular	reciprocal	effects	will	be	

feasible	due	to	the	simpler	setup.		

		

Employing	 immunodeficient	 RNU	 rats284	 for	 initial	 implantation	 studies	 enabled	 the	

evaluation	of	the	proof	of	concept	of	the	clinical	applicability	of	the	mBioVaSc‐TERM®.	

Considering	 further	 studies,	 the	 use	 of	 autologous	 cells	 circumvents	 the	 need	 for	 the	

recipient	to	be	immune‐deprived.		

	

In	 case	 of	 a	 loss	 of	 function	 or	 tissue	 replacement	with	 no	 cells	 or	 not	 enough	 viable	

autologous	cells	extractable	for	sufficient	expansion	and	graft	establishment	an	allo‐	or	

xenogenic	source	will	be	inevitable.	Thereby,	immunosuppression	becomes	mandatory	to	

protect	 the	 graft	 from	 the	 host	 immune	 response	 even	 though	 the	 application	 of	

immunosuppressants	is	adverse	due	to	its	side	effects285.	In	this	regard,	the	feasibility	of	

the	 implementation	 of	 localized	 immunosuppression	 was	 discussed	 lately	 to	 avoid	

systemic	effects	while	protecting	the	graft286.	With	yet	only	preliminary	data	available,	

localized	 immunosuppression	 emerged	 as	 a	 promising	 strategy	 for	 allo‐	 or	 xenogenic	

graft	transplantation	if	the	utilization	of	autologous	cells	is	not	feasible.		

	

Finally,	for	translation	into	clinical	applicability,	long‐term	implantation	studies	in	small	

animal	 models	 and	 subsequently	 in	 large	 animals	 need	 to	 be	 feasible	 to	 prove	

immunogenicity,	 on‐target	 toxicology,	 dose	 titration,	 and	 pharmacokinetics156	 of	 the	

mBioVaSc‐TERM®	when	developed	towards	an	ATMP	as	functional	drug	delivery	system.		
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