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Abstract

Making machines understand natural language is a dream of mankind that existed
since a very long time. Early attempts at programming machines to converse with
humans in a supposedly intelligent way with humans relied on phrase lists and simple
keyword matching. However, such approaches cannot provide semantically adequate
answers, as they do not consider the specific meaning of the conversation. Thus, if we
want to enable machines to actually understand language, we need to be able to access
semantically relevant background knowledge. For this, it is possible to query so-called
ontologies, which are large networks containing knowledge about real-world entities
and their semantic relations. However, creating such ontologies is a tedious task, as often
extensive expert knowledge is required. Thus, we need to find ways to automatically
construct and update ontologies that fit human intuition of semantics and semantic
relations. More specifically, we need to determine semantic entities and find relations
between them. While this is usually done on large corpora of unstructured text, previous
work has shown that we can at least facilitate the first issue of extracting entities by
considering special data such as tagging data or human navigational paths. Here, we do
not need to detect the actual semantic entities, as they are already provided because of
the way those data are collected. Thus we can mainly focus on the problem of assessing
the degree of semantic relatedness between tags or web pages. However, there exist
several issues which need to be overcome, if we want to approximate human intuition of
semantic relatedness. For this, it is necessary to represent words and concepts in a way
that allows easy and highly precise semantic characterization. This also largely depends
on the quality of data from which these representations are constructed.

In this thesis, we extract semantic information from both tagging data created by users
of social tagging systems and human navigation data in different semantic-driven social
web systems. Our main goal is to construct high quality and robust vector representa-
tions of words which can the be used to measure the relatedness of semantic concepts.
First, we show that navigation in the social media systems Wikipedia and BibSonomy is
driven by a semantic component. After this, we discuss and extend methods to model
the semantic information in tagging data as low-dimensional vectors. Furthermore, we
show that tagging pragmatics influences different facets of tagging semantics. We then
investigate the usefulness of human navigational paths in several different settings on
Wikipedia and BibSonomy for measuring semantic relatedness. Finally, we propose
a metric-learning based algorithm in adapt pre-trained word embeddings to datasets
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containing human judgment of semantic relatedness.
This work contributes to the field of studying semantic relatedness between words

by proposing methods to extract semantic relatedness from web navigation, learn high-
quality and low-dimensional word representations from tagging data, and to learn
semantic relatedness from any kind of vector representation by exploiting human
feedback. Applications first and foremest lie in ontology learning for the Semantic Web,
but also semantic search or query expansion.
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Zusammenfassung

Einer der großen Träume der Menschheit ist es, Maschinen dazu zu bringen, natürliche
Sprache zu verstehen. Frühe Versuche, Computer dahingehend zu programmieren, dass
sie mit Menschen vermeintlich intelligente Konversationen führen können, basierten
hauptsächlich auf Phrasensammlungen und einfachen Stichwortabgleichen. Solche
Ansätze sind allerdings nicht in der Lage, inhaltlich adäquate Antworten zu liefern, da
der tatsächliche Inhalt der Konversation nicht erfasst werden kann. Folgerichtig ist es
notwendig, dass Maschinen auf semantisch relevantes Hintergrundwissen zugreifen
können, um diesen Inhalt zu verstehen. Solches Wissen ist beispielsweise in Ontologien
vorhanden. Ontologien sind große Datenbanken von vernetztem Wissen über Objekte
und Gegenstände der echten Welt sowie über deren semantische Beziehungen. Das
Erstellen solcher Ontologien ist eine sehr kostspielige und aufwändige Aufgabe, da oft
tiefgreifendes Expertenwissen benötigt wird. Wir müssen also Wege finden, um Ontolo-
gien automatisch zu erstellen und aktuell zu halten, und zwar in einer Art und Weise,
dass dies auch menschlichem Empfinden von Semantik und semantischer Ähnlichkeit
entspricht. Genauer gesagt ist es notwendig, semantische Entitäten und deren Beziehun-
gen zu bestimmen. Während solches Wissen üblicherweise aus Textkorpora extrahiert
wird, ist es möglich, zumindest das erste Problem - semantische Entitäten zu bestimmen
- durch Benutzung spezieller Datensätze zu umgehen, wie zum Beispiel Tagging- oder
Navigationsdaten. In diesen Arten von Datensätzen ist es nicht notwendig, Entitäten
zu extrahieren, da sie bereits aufgrund inhärenter Eigenschaften bei der Datenakquise
vorhanden sind. Wir können uns also hauptsächlich auf die Bestimmung von semantis-
chen Relationen und deren Intensität fokussieren. Trotzdem müssen hier noch einige
Hindernisse überwunden werden. Beispielsweise ist es notwendig, Repräsentationen
für semantische Entitäten zu finden, so dass es möglich ist, sie einfach und semantisch
hochpräzise zu charakterisieren. Dies hängt allerdings auch erheblich von der Qualität
der Daten ab, aus denen diese Repräsentationen konstruiert werden.

In der vorliegenden Arbeit extrahieren wir semantische Informationen sowohl aus
Taggingdaten, von Benutzern sozialer Taggingsysteme erzeugt, als auch aus Naviga-
tionsdaten von Benutzern semantikgetriebener Social Media-Systeme. Das Hauptziel
dieser Arbeit ist es, hochqualitative und robuste Vektordarstellungen von Worten zu
konstruieren, die dann dazu benutzt werden können, die semantische Ähnlichkeit
von Konzepten zu bestimmen. Als erstes zeigen wir, dass Navigation in Social Media-
Systemen unter anderem durch eine semantische Komponente getrieben wird. Danach
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diskutieren und erweitern wir Methoden, um die semantische Information in Tagging-
daten als niedrigdimensionale sogenannte “Embeddings” darzustellen. Darüberhinaus
demonstrieren wir, dass die Taggingpragmatik verschiedene Facetten der Taggingseman-
tik beeinflusst. Anschließend untersuchen wir, inwieweit wir menschliche Navigation-
spfade zur Bestimmung semantischer Ähnlichkeit benutzen können. Hierzu betrachten
wir mehrere Datensätze, die Navigationsdaten in verschiedenen Rahmenbedingun-
gen beinhalten. Als letztes stellen wir einen neuartigen Algorithmus vor, um bereits
trainierte Word Embeddings im Nachhinein an menschliche Intuition von Semantik
anzupassen.

Diese Arbeit steuert wertvolle Beiträge zum Gebiet der Bestimmung von semantischer
Ähnlichkeit bei: Es werden Methoden vorgestellt werden, um hochqualitative semantis-
che Information aus Web-Navigation und Taggingdaten zu extrahieren, diese mittels
niedrigdimensionaler Vektordarstellungen zu modellieren und selbige schließlich besser
an menschliches Empfinden von semantischer Ähnlichkeit anzupassen, indem aus
genau diesem Empfinden gelernt wird. Anwendungen liegen in erster Linie darin,
Ontologien für das Semantic Web zu lernen, allerdings auch in allen Bereichen, die
Vektordarstellungen von semantischen Entitäten benutzen.
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Chapter 1

Introduction

User: “Siri, call me an ambulance!”
Siri: “From now on, I’ll call you ‘An Ambulance‘. OK?”

1.1 Motivation

In 1966, Joseph Weizenbaum developed the computer program ELIZA [244], the first
chatbot ever. Given any utterances from its users, it made use of a thesaurus to find
direct and suitable answers from a large collection of possible phrases. It was specifi-
cally designed to represent a mock Rogerian psychotherapist [197], showing maximal
contempt with a user while simultaneously allowing to show no knowledge of the real
world, by simply paraphrasing the input of the user. However, this experiment only
showed that by choosing very general responses the effect of assuming that a person
is responding can be easily achieved. In fact, Eliza is simply looking up hypernyms or
generalizations of encountered words in the user’s utterances. However, Eliza does not
really understand what a user is really saying and thus cannot be seen as an intelligent
system.

Nowadays, speech understanding systems, such as Amazon’s Alexa, Apple’s Siri or
Google Now, are present on almost every smartphone and on their way into many
households. With greatly increased processing power and sophisticated algorithms,
computers are able to respond much better and much more directly to user’s needs
and intentions1. For example, modern systems like Alexa can inform a user about the
current weather, calendar events and even perform simple actions like opening up apps
with given parameters. This impression of “intelligent” machines is enabled by great
strides in research since ELIZA on how to process and interpret natural language.

The Semantic Web, Ontologies and the Knowledge Acquisition Bottleneck

One key aspect responsible for this development is the evolution of the World Wide
Web from static web pages to semantically supported dynamic user interfaces. In
2001, Berners-Lee, Hendler, and Lassila stated their idea of the Semantic Web [31].

1especially to prevent situations like in the quote above.
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The ultimate goal of the Semantic Web is to make information machine-readable and
-interpretable to enable computers to understand humans. Attributing semantic meaning
to words and entities, while simultaneously connecting this information, is inherent to
human thinking and verbal interaction: Mitchell et al. even could predict the activity
in specific sections of the human brain which are associated to different meanings of
nouns [162]. In the Semantic Web, this knowledge about the semantics of words is made
explicit by extending the plain hyperlink structure between web pages prevalent in the
World Wide Web to represent semantic relations between semantic entities.

The key structures encoding such knowledge are called ontologies. Ontologies are
large databases of entities and contain explicitly named semantic relations between
those entities [88, 224]. Concretely, ontologies contain common, real-world knowledge
about one or many domains. The contents of ontologies are normally hand-crafted
and need extensive expert knowledge to be curated and kept up-to-date. For example,
WordNet, a large linguistic database of the English language, is curated by expert
linguists and provides highly precise information about different meanings of words and
their linguistic connections [72]. However, due to the manual curation process, WordNet
adapts very slowly to recent changes in language. For example, the current version 3.1
of WordNet does not contain information about the meaning of Python as a widely-used
programming language.2 Especially in expert domains, such as medicine or science,
the acquisition of exact and precise knowledge and its subsequent transformation into
machine-readable form is a tedious and expensive task: Constructing and editing such
specialized ontologies or knowledge graphs largely remains a task for domain experts,
and is still unattractive for less knowledgeable and less engaged users. This problem is
also often called the knowledge acquisition bottleneck.

Overcoming the Knowledge Acquisition Bottleneck using Computational

Methods

Today, there exist several big ontologies that contain vast amounts of knowledge in
the general domain, which used different ways to overcome the knowledge acquisi-
tion bottleneck: While Wikidata3 employs a knowledge acquisition strategy similar to
Wikipedia, i.e., letting anyone contribute to its knowledge, the YAGO4 and DBPedia5

ontologies rely solely on computational methods to extend, enhance or construct their
knowledge automatically [12, 225, 235]. The automated process to construct, enhance
and curate ontologies can be described as “Ontology Learning” [145] and has been in the
spotlight of the Semantic Web research community since a long time [54, 99, 145].

While all three ontologies mentioned above are largely constructed automatically, they
cover only general domain knowledge, as that is available in abundance. However, in order
to construct expert domain ontologies in an automated fashion, one often has to resort
to unstructured sources. The extraction of structured knowledge from unstructured

2http://wordnetweb.princeton.edu/perl/webwn?s=Python
3https://www.wikidata.org/
4https://github.com/yago-naga/yago3
5https://wiki.dbpedia.org/
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1.2 Research Topics and Contributions

sources is a non-trivial problem, since it requires to address several inherent problems
of human language that are not present in semi-structured sources. For example, the
intended meaning of a word largely depends on its context, i.e., its surrounding words.
In order to extract such knowledge from unstructured text it is possible to leverage
statistical natural language processing (NLP) methods such as constructing representations
of the semantic meaning of words and entities in natural language text [156, 184, 201,
205].

Social Media Data as a Source for Semantic Information

A rich source of data from which semantic information can be extracted on a large
scale is represented by user contributed content in the Web 2.0. After a period of static
web content, the Web 2.0 enabled users to not only consume provided content, but
also produce and distribute it, without the need for access to expensive hardware or
specialized knowledge. Thus, the Web 2.0 is also called the Social Web, and its prominent
platforms (like Facebook6, Twitter7 and Wikipedia8) are often described as Social Media.

Especially the social encyclopedia Wikipedia symbolizes the collaborative spirit of the
Social Web like no other social system. Because Wikipedia allows anyone to freely edit
its content, Wikipedia grew to the largest encyclopedia available to date with a content
precision that rivals that of Encyclopaedia Brittanica [84]. Because of its size, scientific
precision, and clarity of writing, Wikipedia’s article collection quickly became one of the
most studied textual corpora in today’s NLP community. Another key technology of the
Social Web is represented by social tagging systems, where users can publish any kind of
content, but additionally annotate this content with so-called tags, i.e., short free-form
textual descriptions that allow users to categorize content for ease of later retrieval.
The collection of users, their resources and annotations is called a folksonomy Similar
to Wikipedia, the collaborative nature of social tagging systems and the emergence of
stable semantic structures in their content attracted the interest of many behavioral and
NLP researchers, but also from the Semantic Web community. Mika even went as far
as describing folksonomies as “light-weight ontologies”, because the emerging content
structures showed inherent semantic hierarchical relations [155]. Well-known examples
of social tagging systems are Delicious9, CiteULike10, FlickR11, and BibSonomy12.

1.2 Research Topics and Contributions

In this thesis, we present work on several research topics concerning semantic infor-
mation in social media data and the mutual influence of user behavior and semantic

6https://www.facebook.com
7https://twitter.com/
8https://www.wikipedia.org/
9https://del.icio.us/

10http://www.citeulike.org/
11https://www.flickr.com/
12https://www.bibsonomy.org/
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1 Introduction

information. In the following, we will elaborate each of these topics separately by first
describing the general setting and open problems, explicitly stating our approach to
overcome these problems and finally summarize our findings. Each subsection refers to
the corresponding chapter with the same name later in this work.

1.2.1 Detecting Semantic Influence on Social Media Navigation

Problem Setting. There is plenty of evidence that the navigational behavior of users
is driven by semantic factors. For example, Chi et al. hypothesized that users navigating
social media follow a so-called “information scent”, i.e., they follow information that
might bring them nearer to their actual navigational goal [51]. West and Leskovec
found indications for this behavior in navigation data obtained from the navigation
game Wikispeedia [247]. It is however unclear if this also generalizes to other game
navigation datasets, e.g., data from the WikiGame. Even more, we don’t know how users
in unconstrained settings navigate Wikipedia, i.e., when lacking a predefined goal. While
Doerfel et al. investigated the usage of the social tagging system BibSonomy in [64], they
did not compare hypotheses about actual navigation behavior. Thus we do not know
which factors drive navigation in social tagging systems.

Approach. In order to determine semantic influence on human navigation, we first
have to understand human navigation processes and what drives them on a basic
level. We propose several hypotheses about human navigation behavior in social media
systems and compare them using Bayesian Statistics. For this, we analyze navigation
on a wide range of human click trail datasets gathered from the social media systems
Wikipedia and BibSonomy. While on Wikipedia, we distinguish game and unconstrained
navigation, we investigate several subsets of BibSonomy navigation data defined by user
characteristics. Because both systems possess an inherently semantic nature, it is a logical
assumption that navigation in those systems is influenced by their semantic content.
Thus, we explicitly search for a signal of the influence of semantic information on navigation.
Furthermore, previous work [122, 176] found that groups of users with a certain tagging
behavior also influence the semantic information in tagging data. It is thus only natural
to expect that the navigation behavior of those user groups differs somehow.

Findings and Contributions. Generally, we find that navigation in social media systems
is influenced by semantic information. However, for different datasets, we see varied
impact. While navigation on Wikispeedia and the WikiClickIU dataset can be explained
well by semantic navigation, WikiGame and ClickStream are rather dominated by
degree-based navigation. In BibSonomy, navigation behavior can mainly be explained
by semantic navigation on a user’s own pages. Furthermore, we can find evidence for
different navigation behavior of user groups defined by their tagging pragmatics, e.g., catego-
rizers navigate differently than describers. These results motivate the research later in
Chapter 7.
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1.2.2 Capturing Semantics in Social Tagging Data

Problem Setting. It has been repeatedly shown that social tagging data exhibit emer-
gent structures that make it possible to extract semantic information [28, 29, 48, 86].
In [48], Cattuto et al. provided means to model semantic information as sparse, high-
dimensional co-occurrence vectors and how to semantically grounding those models on
semantic similarity derived from the WordNet taxonomy, concretely the Jiang-Conrath
similarity [112]. There exist several issues both with the model and the evaluation
approach. First of all, the vector representation of tags often suffer from their high di-
mensionality and sparsity, especially on small tagging datasets. Lately, several methods
have been proposed to learn low-dimensional, dense word representations from unstruc-
tured text [156, 184, 227]. It is yet unclear if those methods can be used to also generate
embeddings of tags and how this impacts the semantic information of tagging data.
Furthermore, although Budanitsky and Hirst showed that the Jiang-Conrath measure
exhibits a very high correlation with two small semantic relatedness datasets [44], it
is unclear if the Jiang-Conrath similarity scores generalize well across other semantic
relatedness datasets. If this would not be the case, this would affect the validity of other
works that base their results on semantic similarity scores obtained from WordNet.

Approach. We discuss the WordNet-based evaluation approach of [48] and compare
it with a direct evaluation on human intuition. Next to concretizing drawbacks of the
WordNet-based evaluation, we propose to additionally evaluate tagging semantics directly
on human intuition. We then re-examine two works that base their results on similarity
scores from the WordNet-based Jiang-Conrath similarity measure. By re-evaluating
their results on human intuition, we want to see if their observations still hold or if they
have to be reconsidered. Concretely, we want to see if the qualitative ranking of context
choices for tag vector representations as presented by Cattuto et al. [48] can also be found
when evaluating on human intuition. Additionally, we repeat the experiments by Körner
et al. [122] who measured the influence of tagging pragmatics on tagging semantics. We
extend this experiment by also measuring the influence of pragmatics on a tag sense
discovery process. Finally, we attempt to overcome the high dimensionality and sparsity
issues of the model by Cattuto et al. For this, we explore the applicability of three
well-known word embedding algorithms on tagging data, namely Word2Vec [156], LINE
[227] and GloVe [184].

Findings and Contributions. First of all, we find that the Jiang-Conrath measure
does not generalize well across other semantic relatedness datasets. The subsequent re-
examination of the works by Cattuto et al. [48] and Körner et al. [122] shows that while
some of their observations are still valid in the evaluation setting on human intuition, we
can see differences in some details. For example, we can see that some types of user prag-
matics are more useful to measure semantic similarity, while others generate semantic
information that is beneficial for measuring semantic relatedness. We also find that
tagging pragmatics influence the tag sense discovery process, where we can observe that
a small portion of describers generates the most useful semantic information for this
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application. Finally, we find that generally, embedding tags in low-dimensional vector
spaces can improve the semantic quality of the tag representations, regardless of the chosen
embedding algorithm. Especially the GloVe algorithm captures folksonomy-specific
semantics very well and can always outperform the sparse baseline representation from
[48].

1.2.3 Extracting Semantic Relatedness from Social Media Navigation

Problem Setting. In Chapter 5, we will show that human navigation in information
networks is partially driven by semantic incentives. Additionally, West, Pineau, and
Precup already exploited human navigation on a small subset of Wikipedia to calculate
semantic relatedness between Wikipedia concepts [249]. This indicates that human
navigational paths in social media systems can be exploited as a valuable source of
semantic information. Still, it is unclear if the semantic information is contained in the
actual navigation behavior or in the underlying link network that only allows certain
paths. Also, the results from [249] have been gathered in a game setting, which imposes
an extrinsic bias on navigation behavior. We do not know if that bias influences the
semantic information of those paths. Finally, in contrast to text and tagging data,
information about human navigation is not readily available. However, navigation could
be created artifically by performing random walks on the hyperlink graph. Again, it is
unclear if the creation process of those artificial paths introduces unwanted bias that
has a detrimental effect on the semantic information of those paths.

Approach. We want to determine the usefulness of human navigational paths in
social media systems as a viable source of semantic information. For this, we propose
several methods to model that information as co-occurrence based vectors. Again, we
evaluate our model on game and unconstrained navigation in Wikipedia and as well
as on unconstrained navigation in BibSonomy. As before, we investigate game and
unconstrained navigation on Wikipedia separately. To overcome limitiations in design
and size of our navigation datasets, we also investigate if parameterized random walks
on the social media link graphs can approximate the semantic information contained in
human navigation.

Findings and Contributions. Our results show that human navigation in Wikipedia can
serve as a high quality source of semantic information. Using the proposed co-occurrence
count model, we achieve a high correlation of 0.709 with the human intuition contained
in the semantic relatedness dataset WS-353 (cf. Section 4.4.3). When restricting our-
selves to only a small amount of paths with a low average indegree, we can even achieve
a correlation score of 0.760. Furthermore, we find that the extrinsic bias on naviga-
tion that is imposed by a game setting does not significantly influence the semantic
information in navigation behavior, i.e., that unconstrained navigation on Wikipedia is an
equally viable source for semantic information as game navigation. Here, we can achieve a
correlation score of 0.640 on the semantic relatedness dataset MEN (cf. Section 4.4.5).
As a final result for navigation on Wikipedia, we can even simulate navigation data with
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near-human semantic information by performing biased random walks on the Wikipedia link
graph. Using human navigation on BibSonomy, we can however only extract a smaller
amount of semantic information with a low correlation of scarcely above 0.4 with the
human intuition in WS-353 and Bib100. Although we also experiment with simulated
navigation on BibSonomy and find that simulated semantic navigation generates more
useful semantic information in the resulting paths than than human navigation, we cannot
achieve correlation scores above 0.5 on Bib100 (cf. Section 6.2).

1.2.4 Relative Relatedness Learning: Learning Semantic Relatedness

from Human Feedback

Problem Setting. As seen in the previous chapters, methods to extract semantic in-
formation from semi-structured and unstructured data produce considerably good
representations of human intuition of semantics. Still, there are certain drawbacks
still to overcome. Although the captured information is relatively precise, fine-grained
information in special cases or exclusive to rare topical domains is rarely expressed in
natural language text and thus difficult to include in vector representations. Here it
would help to adapt the learned word embeddings to human intuition by warping the
surrounding vector space by exploiting background knowledge about semantic related-
ness. While there also exist approaches to adapt word embeddings to semantic lexicons,
i.e., information about synonymous and antonymous words, they do not capture the
degree of semantic relatedness between words. However, this information is crucial for a
deep understanding of human intuition of semantic relatedness. Intuitively, humans
are more inclined to compare the strength of a relation to another reference value than
providing absolute judgments of that strength.

Approach. Starting with the intuition that the relative relatedness of word pairs is more
important for determining the semantic quality of word embeddings, we gradually
develop an algorithm to adapt a pre-trained set of word embeddings to such relative
constraints. Because we learn the relative relatedness of word pairs, we call our al-
gorithm Relative Relatedness Learning (RRL). RRL is based on a linear metric learning
approach. In order to show the usefulness of RRL, we evaluate it on several pre-trained
word embedding datasets and train it on several semantic relatedness datasets. Further-
more, we combine it with an algorithm that incorporates lexical knowledge into the
embeddings to discover potential synergy effects. After purposefully training wrong
information to determine if we can manipulate word embeddings also in a negative
direction, we attempt to transfer the knowledge contained in a semantic relatedness
dataset on another to see if we can generalize the obtained knowledge. Finally, we
evaluate RRL in a question answering task.

Findings and Contributions. The main contribution is an algorithm to adapt pre-trained
word embeddings to human intuition of semantic relatedness, the Relative Relatedness
Learning algorithm (RRL). We find that we can exploit relative comparisons of word
relatedness scores (as provided by WS-353 or MEN, cf. Section 4.4) to significantly
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improve the fit of word vectors to human intuition of semantics and even outperform
the state-of-the-art correlation with the MEN dataset. We also show that a combination of
RRL and another approach called Retrofitting is even more useful to improve the semantic
information in word embeddings. Here, we can achieve an unprecedented correlation
score of 0.904 on our MEN test data. Unfortunately, we are unable to transfer the
knowledge in one relatedness dataset to others, which we attribute to the different
kinds of represented semantic information. However, we can also show that when
using specific word embedding datasets, we can even improve the quality of a question
answering task.

1.3 Thesis Outline

We will now describe the structure of this thesis to give the reader an overview of each
chapter. A sketch of the interdependence of all chapters is given in Figure 1.1.

Chapter 1 motivates this work, describes the research topics and contributions for
each topic and finally gives an overview of this work. Chapter 2 provides an extensive
overview of the related work to the central topics of this thesis, namely extracting and
learning semantics from social media data under consideration of user influence. We
will survey approaches which extract semantic relatedness from several sources, such
as folksonomies or Wikipedia, subsequent extensions which fine-tune distributional
models, and then present works shedding light on the mutual influence of user behavior
and semantics. In Chapter 3, we will cover the necessary theoretical and technical
background to understand the methods discussed and introduced in this work. Here,
we first introduce the data structures used in this thesis, the methods on which we build
our research and methods in this thesis, and finally methods to measure and compare
user behavior. Chapter 4 then introduces and detailly describes the used datasets. We
distinguish between text-based and link-based datasets, pretrained word embedding
datasets and ground truth datasets.

Chapters 5 to 8 constitute the main contribution of this work. Their contents have
already elaborated in Section 1.2, so we will only briefly describe each chapter. Chapter 5
focuses on the existence and strength of a semantic component in human navigation
both on Wikipedia and BibSonomy. Chapter 6 then extends upon established methods
to extract and evaluate semantic information from social tagging data (as proposed in
[26] and [48]), before Chapter 7 broadly introduces human navigation in social media
as a viable source of semantic information. Finally, Chapter 8 addresses the problem
of imprecise semantics by proposing an algorithm to learn semantic relatedness from
human feedback.

Chapter 9 concludes this work with a recapitulation of all chapters and a discussion
about potential applications where our research could be put to use. We give pointers to
future research directions about influencing factors on extractable semantics, potential
new approaches to extract high-quality semantics, and challenges in supervised learning
of semantic relations using background knowledge.
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Chapter 5: Influence of Semantics on Human Navigation Behavior

Chapter 7: Capturing Semantics from Human Navigation. . .. . . And Social Tagging (Chapter 6)

Chapter 8: Learning Semantics from Human Feedback
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Figure 1.1: General thesis outline. In this thesis, we focus on methods to handle se-
mantics in navigation and social tagging data. We contribute an analysis of
navigation in social media, namely in Wikipedia and BibSonomy, with regard
to a semantic component in navigation. After having shown the existence
of this component, we propose and evaluate several methods to make the
semantics in navigation visible. Additionally, we discuss how to evaluate
semantics in social tagging data and propose a new way to represent them
as vectors. Finally, we learn from human intuition to improve the semantic
quality of word embeddings.
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Chapter 2

Related Work

Although the basic idea of computing semantics and the application of computing tech-
nology on linguistics dates back much further to the beginning of the Cold War period
[109], it only gained traction with the advent of more and more powerful computers with
adequate processing capabilities to quickly iterate over large portions of text. Especially
after Berners-Lee, Hendler, and Lassila presented their idea of a Semantic Web in 2001
[31], research has not ceased to present an unsurveyable amount of convincing results
on how to extract and formalize semantic information from a wide range of sources,
such as natural language text as well as many other forms of user contributed content.

Section 2.1 references different computational approaches to model the semantic
information contained in various kinds of data. Because the main part of this thesis
focuses on WordNet, Wikipedia and folksonomies as sources for semantic information,
we only consider works that are based on data from these systems. After this, Section 2.2
presents the current state-of-the-art of methods which learn and adapt so-called word
embeddings, that is, dense vector representations of words and their contexts. These
methods are relevant for Sections 6.5 and 8, where we explore semantics of tag em-
beddings and propose a way to improve word embeddings to incorporate semantic
background information. Section 2.3 discusses methods to measure the degree and the
effects of the mutual influence of user behavior and semantics in social media. Again,
we put a special emphasis on folksonomies and Wikipedia. In the final Section 2.4, we
give a brief outlook on potential applications of computational semantics in several
scenarios. Although this thesis mainly contributes methods to model semantic infor-
mation, we feel that it is important for the reader to see how these models can actually
be applied to a wide range of more practical uses, such as word sense disambiguation,
sentiment analysis or query expansion problems. Section 2.5 concludes this chapter by
recapitulating the presented topics and highlights the most important works for this
thesis.
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2.1 Extracting Semantics from Structured and

Semi-Structured Data

This section will give an overview of related work that extracts semantic information
from language and linguistic sources. Although there are many methods that deal with
modelling semantic information in natural language, we will restrict ourselves on works
utilizing data from WordNet, social tagging systems and Wikipedia, as these systems
are heavily used in the main part of this thesis. We especially provide an extensive
view on Wikipedia’s semantics, since a large portion of this work covers the extraction
of semantic relatedness information from Wikipedia (e.g., Section 7.2). A detailled
definition of the structure of all mentioned systems will be given later in Section 3.1.

2.1.1 Leveraging WordNet’s Taxonomy to Compute Semantic Relatedness

WordNet is a large lexical database of verbs, nouns and adverbs [72, 159]. Due to
the highly precise semantic and linguistic information provided by WordNet, several
researchers proposed semantic similarity measures based on WordNet. Some well-
known and frequently used semantic similarity measures are Hirst and St-Onge’s [105]
path-based measure, the information content based distance by Resnik [195] and lastly
the Jiang-Conrath distance [112], which combines the information content nodes and
path distance features. Budanitsky and Hirst analyzed and compared all of them by
evaluating them on human intuition [44]. Their results show that the Jiang-Conrath
measure outperforms its competitors in measuring the semantic similarity of WordNet
concepts and additionally exhibits a very high correlation with human intuition. Con-
sequently, we will utilize the Jiang-Conrath measure (or at least the similarity scores
that it produces) in Section 6.2 as one alternative in a comparison of semantic similarity
gold-standards in order to evaluate the semantic similarity of tags. A similarity measure
that exploits WordNet’s graph structure more intelligently than [105] was proposed
by Hughes and Ramage [108]. They treat the WordNet graph as a Markov chain and
use a generalized PageRank variant to calculate a stationary distribution per word.
Then they interpret a modified version of the Kullback-Leibler divergence between
the distributions of two concepts as their semantic similarity score. Ramage, Rafferty,
and Manning extend this approach on short text similarity [191]. Obviously, all those
methods rely on the vocabulary and structure of WordNet. They are thus unable to deal
with out-of-vocabulary (OoV) words. In order to deal with such OoV words, Agirre et al.
combine a WordNet-based approach reminiscent to that of [108] with two distributional
approaches, namely bag-of-words and window-based word co-occurrence counting on
a corpus of 1.6 Terawords [2]. On a monolingual word similarity task, they achieve a
relatively high correlation value with human intuition of 0.66.

2.1.2 Capturing Semantic Information from Folksonomies

Folksonomies are structures emerging from social tagging systems and have played
an important role in the development of the Web2.0. However, they are also closely
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connected with the Semantic Web. In this thesis, we work with both static folksonomy
data as well as human navigation data on the link network of social annotation systems.
This link network is also based on the folksonomy structures.

Connections between folksonomies and the Semantic Web. Wu, Zhang, and Yu
aimed to enhance the Semantic Web vision of semantically annotated resources by utiliz-
ing the emergent semantics of social tagging systems [252]. Instead of first defining an
ontology to then annotate web resources, they argue to exploit the emergent hierarchical
and semantic structures of already existing annotations in social tagging systems to con-
struct taxonomies. For this, they model the tagging process as a probabilistic generative
model which is learned using an EM approach. Mika went even further and argued that
folksonomies already exhibit hierarchical semantic structures on their own, thus being
lightweight ontologies themselves [155]. Following this, Specia and Motta explored
ways to directly integrate folksonomies and their inherent semantic information into
ontologies [215]. Finally, Angeletou mapped tags to concepts in existing ontologies [5].

Capturing semantic information from tagging data. Instead of directly integrating
existing ontologies and folksonomies, there also exist several methods to explicitly
capture and model these emergent semantics. For example, Cattuto et al. proposed
several ways to measure the semantic similarity of tags by modelling them as context
vectors [48]. This paper is a central aspect to the way we model tag semantics in
this thesis. We will explain the different context variants in Section 3.2.2.1, discuss
their evaluation approach in Section 6.2, and finally extend upon their methodology in
Section 6.5. These context vector representations played a central role in [148], where
Markines et al. compared several vector similarity measures with regard to the measured
semantic similarity. They found that although mutual information of tags provided the
best results, the slightly worse cosine similarity of the corresponding tag vectors scales
better and is thus recommended. Benz et al. also used the tag semantics model from
[48] to evaluate a range of term abstractness measures and concluded that centrality
as well as entropy based measures are good indicators for measuring the semantic
generality level of tags [29]. They then used the best-performing generality measure
as well as the tag-tag-context vector representations from [48] to induce a taxonomy
from tags in [28]. This tag taxonomy construction algorithm that has been proposed
by Benz et al. in [28] is actually an extension of a simpler version of the algorithm
as presented in [103] by Heymann and Garcia-Molina. The added steps include both
synonym combination as well as tag sense disambiguation. While synonyms are detected
using the tag similarity measures presented in [48] and [148], a clustering approach is
used to determine different tag senses that is reminiscent of that in [267]. In [26], Benz
performed some experiments with that algorithm and found that it produces reasonable
results, when compared to WordNet. We use that algorithm later on to determine the
influence of user behavior on tag sense discovery in Section 6.4. In fact, we build on
most of these works mentioned above to measure the semantic relatedness between tags,
both in the static folksonomy (cf. Chapter 6) as well as in navigation on the link graph
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of the social tagging system (cf. Section 7.3).

2.1.3 Capturing Semantic Information from Wikipedia

Wikipedia is a large, publicly editable online encyclopedia with a wide content coverage
in about five million articles. It often serves as a basis for a huge multitude of research
articles, for example in computational semantics. As we will often use Wikipedia as a
source for semantic information in this work, especially in Section 7.2, we will cover
related work for approaches to extract semantic information from each of the following
categories: text-based approaches, approaches based on Wikipedia’s category taxonomy,
link network based approaches, usage based approaches, and hybrids thereof.

Text-based approaches. Wikipedia’s article content is one of the most used natural
language text datasets in research [18, 81, 135, 154], not only because of its quantity
of topics, but also because of the high article quality [84, 153] and semantic stability
over time [219]. One of the most well-known works about semantic relatedness on
Wikipedia was presented by Gabrilovich and Markovitch [81]. They propose the Explicit
Semantic Analysis measure, which calculates semantic relatedness between Wikipedia
concepts. For this, they use the plain Wikipedia article context to construct TF-IDF
vectors. Concretely, they construct a term-document matrix, where the TF-IDF weighted
occurrences in documents are seen as features. Hassan and Mihalcea [97] propose a
similar notion by exploiting the textual context and the label of article links. A word is
thus not expressed by its direct context, but rather only by the links in its immediate
context. These links are then weighted using Pointwise Mutual Information. Both
methods are based on the idea to facilitate Wikipedia articles as features, thus basically
representing term-document approaches. Furthermore, the Wikipedia article corpus is
an often used resource to learn word embeddings [18, 135, 184]. We will use a word
embedding dataset trained on the Wikipedia corpus of 2014 in Chapter 8.

Category taxonomy based approaches. The potential of Wikipedia’s category tax-
onomy for calculating semantic relatedness was shown by Strube and Ponzetto [223].
They apply several measures originally proposed for the WordNet taxonomy on the
Wikipedia category taxonomy and compare the results with several baseline approaches
from WordNet. By using the category structure of Wikipedia, they outperform Google
count based methods and a WordNet baseline. However, they obtain the best result
using Wikipedia, Google and WordNet in combination. In fact, this has been amongst
the first works to characterize the semantic relatedness of Wikipedia articles, without
explicitly considering the context. Radhakrishnan and Varma exploit Wikipedia cate-
gories as semantic tags for articles, which they use to extract semantically related word
pairs [188]. While we also relate Wikipedia articles with each other in Section 7.2, we
use Wikipedia’s link network instead of the category taxonomy.
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Exploiting the static link network. While the article texts contain an abundance
knowledge, another strength of Wikipedia is also the connection of knowledge by hyper-
links. These hyperlinks connect articles which are in some way related to each other.
Since most articles represent semantic concepts, this link network also represents seman-
tic knowledge, which can be extracted. Witten and Milne make use of the Wikipedia
hyperlink structure in order to calculate semantic relatedness [251]. They propose
the Wikipedia Link-based Measure (WLM), which is similar to TF-IDF and the Google
distance measure [53], and evaluate a combination of both on article-link sets obtained
from Wikipedia. Their results show that WLM outperforms both WikiRelate and ESA.
Similarly, Agirre, Barrena, and Soroa [3] study Wikipedia links to determine semantic
relatedness and disambiguation through random walks on the full Wikipedia link data-
set instead of the subset of directed, non-reciprocal links. In this work, we only use the
Wikipedia link structure as a baseline to show that human navigation on these links yields
improved semantic information. Other applications that exploit Wikipedia’s link graph
have been for example proposed by Guo et al., who also exploit the Wikipedia link
graph, however for disambiguating and linking entities to knowledge base entries [92].
Zesch and Gurevych [261] investigate the temporal influence of change in Wikipedia’s
link network on its semantic content. Similar to [238], they could see that with several
semantic similarity measures, the content yielded stable semantics.

Hybrid approaches. Finally, there exist approaches which combine both the article
contents and the link graph information. In [258], Yazdani and Popescu-Belis augment
the Wikipedia link network with links based on semantic relatedness and then perform
random walks on that network. Finally, they approximate the resulting visiting prob-
ability distribution for each node (and sets of nodes for text fragment similarity) in
an embedding space. Their results indicate a significant improvement in correlation
with human intuition compared to LSA, when they weigh the constructed semantic
links higher than Wikipedia’s hyperlink structure in their relatedness measure. Zheng
et al. make use of content and structure of Wikipedia, considering inlinks, outlinks,
categories, Dice-, Google- and TF-IDF-based measures to compute semantic relatedness.
They combine all measures using supervised machine-learning to calculate individual
weights for all approaches [266]. Using the optimal weights, they achieve a correlation
of up to 0.72 with WS-353. Unfortunately, the authors don’t provide information from
where they obtained their training data. In [259], Yeh et al. apply the method from [108]
on Wikipedia, i.e., calculating a Personalized PageRank on the Wikipedia graph. This
resulted in small improvements upon other relatedness measures like ESA [81]. Lastly,
Dallmann et al. [55] investigated random walks on the Wikipedia link graph in order
to extract semantic relatedness information. They found that with a simple uniformly
primed random walk, the extracted semantics produced already competitive evaluation
scores. This work will be presented in Section 7.2.4. Aditionally, we perform further
experiments with non-uniformly primed random walks, amongst these a random walker
that navigates towards articles, whose content is similar to the current article. This way,
we try to artifically reproduce the semantic information content in human navigation.
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2.1.4 Evaluating Extracted Semantic Information

Naturally, there exists a plethora of approaches to evaluate semantic information models
if they fit to human intuition. In [44], Budanitsky and Hirst identified three types of
evaluation scenarios. First, a theoretical evaluation of mathematical properties of a
measure, as for example proposed in [137]. Second, comparison with human judgment
of Word Similarity. Third, the use of an extrinsic task, i.e., in an external framework
that somehow makes use of models of semantic information. In the following, we will
present works about the latter two approaches, but we additionally also describe two
other approaches that are found in literature, namely analogy testing, which has only
recently been proposed, and multiple choice testing.

Word Similarity. Probably the most widespread evaluation approach is to compare
similarity scores of word pairs, as produced by a semantic representation model, to
human judgment of the semantic similarity of those pairs [18, 44, 81, 97, 210]. The first
datasets containing such scores have been proposed in 1965 [199] and 1991 [160]. After
that, it took some years to develop the bigger and today very famous WS-353 (short for
WordSimilarity-353) dataset [75]. After this, several other datasets have appeared [43,
104, 143, 171]. The actual evaluation score is determined by computing the correlation
between human and model scores. We will use this method heavily in this work and
will describe it in detail in Section 3.2.4, as well as the used human intuition datasets
in Section 4.4. Furthermore, we introduce a new semantic relatedness dataset with
human judgment to explicitly measure the semantic information of domain-specific
vocabulary from BibSonomy. In fact, there also exists another evaluation approach
that is based on measuring word similarity, albeit in an indirect way. Cattuto et al.
proposed to interpret the scores of the Jiang-Conrath measure on WordNet as a close
resemblance of human intuition [48]. However, they did not compute the correlation of
their scores with Jiang-Conrath scores, but rather the average Jiang-Conrath distance of
tags to their closest concept as determined by the model. In Section 6.2, we compare this
evaluation approach with evaluation on human intuition. In [148], Markines et al. then
again computed correlation between model scores and Jiang-Conrath scores, i.e., they
combined both approaches.

Analogy Testing. One standard way of evaluating semantic relatedness measures or
word embeddings is to measure how well analogies are found in vector space [135,
156]. For example, given a 4-tuple of words (a,b,c,d), the goal is to match d as closely
as possible with the vector b − a + c. This task was inspired by Turney [229]. The
most prominent example and motivation for many word embedding papers was given
in [156] by the illustrative equation king −man + woman ≈ queen. Technically, this
simply tests if the embedding algorithm can also encode implicit relations into the word
embeddings. Idea-wise, this then leads to embedding explicitly named relations, as
done in Knowledge Graph embedding methods, such as TransR, TransE or TransH, to
just name a few.
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Multiple Choice Tests. Multiple Choice Tests are a standard question type, for exam-
ple in IQ tests. A variant of this is to let the word embeddings take a TOEFL-test [77],
which is basically a similar scenario as the analogy tests, except that now out of word
groups, the odd-one-out is to be found instead of the correct word. Levy, Bullinaria, and
McCormick recently proposed a new vocabuarly test to evaluate semantic vectors on, as
they identified some practical problems in the use of multiple choice tests as general
evaluation measures [133].

Extrinsic Evaluations. Finally, it is also possible to indirectly evaluate semantic word
embeddings by applying them in an extrinsic task. For example, Wieting et al. used
their word embeddings in a sentiment analysis task by training a convolutional neural
network with them [250]. In turn, this neural network had to classify sentences regarding
their sentiment [118]. In a different setting, Both, Thoma, and Rettinger [39] applied
word embeddings to a knowledge base completion task. Lastly, Chen et al. proposed a
framework for question answering by reading Wikipedia articles [49]. Their framework
allows to take a set of word embeddings as input, so this can also be used as an extrinsic
evaluation task. We will present a broader overview of several applications of semantic
information models in Section 2.4.

2.2 Learning Semantics with and without Background

Information

Opposed to the simple extraction of semantic relatedness information from text or
knowledge bases, as done by the approaches presented in the previous section, there
has been a lot of work done lately towards learning such representations, in both un-
supervised and supervised settings. We present approaches to learn and refine word
embeddings using external knowledge, thus covering both unsupervised and supervised
learning approaches. Here we also talk about approaches that include external knowl-
edge directly into the embedding process. Because co-occurrence information between
words can also be depicted as a graph, we additionally presented graph embedding
approaches. In Section 6.5, we first train embeddings from tagging data to investigate
if these representations can capture the semantic information of tagging data better
than high-dimensional co-occurrence count vectors. Finally, we propose an algorithm to
adapt word embeddings to external knowledge of semantic relatedness in Chapter 8
that is based on a linear metric learning approach.

2.2.1 Learning Word Embeddings

While count-based methods as presented in Section 2.1 are able to capture semantic
information from language corpora pretty well, they are nothing else than more or less
sophisticated heuristics. The following word embedding approaches on the other hand
are optimized for a given task, e.g., to predict the context of a word or to maximize the
information content of the vector model. All of the models in this section can be seen
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as unsupervised approaches, i.e., they do not exploit external knowledge to learn word
embeddings.

Encoding semantic information in word embeddings. Ever since Mikolov et al. pub-
lished Word2Vec in 2013 [156], the success of so-called word embedding models could
not be halted anymore. In his seminal work, Mikolov showed that constructing low-
dimensional word models could be done without costly factorizing huge, sparse matrices
as they appear in co-occurrence models [46, 230] and also without training a complete
language model [25] with a lot of overhead and a very long training time. For this, he
used two shallow neural network with only one layer to predict words from their con-
texts or vice versa. Since then, Word2Vec has established itself as the de facto baseline
for each and every NLP paper in existence that only touches word embeddings. This
is hardly surprising, as Baroni, Dinu, and Kruszewski showed in [18] that word predic-
tion models generally outperform co-occurrence counting vector representations on a
number of tasks including determining word relatedness, synonym detection, concept
categorization and analogy detection. In their work, they argue that “this new way to
train [distributional semantic models] is attractive because it replaces the essentially heuristic
stacking of vector transforms in earlier models with a single, well-defined supervised learning
step” [18].

Count-based vs predictive embedding models. On the other hand, Pennington,
Socher, and Manning proposed a simple model called GloVe [184], which makes use of
global first-order co-occurrence statistics to construct word vectors. In their experiments,
they again could outperform Word2Vec, thus directly contradicting Baroni’s results. In
[135], Levy and Goldberg then performed an extensive comparison of count-based and
prediction-based word representation models and explore the parameter space for PPMI
matrices, SVD, Word2Vec’s Skip-Gram method and the GloVe algorithm and compare
the resulting vector representations regarding to their performance on word relatedness
and analogy tasks. They find that in contrast to the findings of [18] and [184], predictive
embedding methods such as Word2Vec do not necessarily outperform count-based
methods, but both are rather on par with each other, if the training parameters are
chosen correctly. With these results, they finally gave recommendations how to get the
most out of self-trained word embedding models [134].

Encoding semantic information using graph embeddings. Another potential way
of embedding words is by constructing a co-occurrence graph and then applying a
graph embedding algorithm, such as DeepWalk [185], LINE [227], node2vec [87], or
HARP [50]. The DeepWalk [185] algorithm by Perozzi, Al-Rfou’, and Skiena also aims at
embedding nodes in low-dimensional vector spaces. However, instead of sophisticated
learning algorithms, DeepWalk conducts uniformly random walks on the graph and
then trains a Word2Vec model on these walks. This way, they generate context for nodes
and receive embeddings whose similarities are relative to node distances in the graph.
Building on that, [87] by Grover and Leskovec modifies DeepWalk in such a way that the
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random walks are not completely random anymore, but follow a depth- or breadth-first
search algorithm. Tang et al. proposed the LINE algorithm [227], which addresses the
problem of embedding very large information networks with up to millions of nodes
into low-dimensional network spaces. LINE also preserves both the local and global
properties of the graph, i.e., first-order node proximities (edges) as well as second-order
proximities, which are represented by the shared neighborhoods. They perform several
experiments on large real-world datasets and outperform DeepWalk as well as Mikolov’s
SkipGram, while also using less training time. Finally, the HARP algorithm proposed in
[50] by Chen et al. builds upon DeepWalk, LINE, and Node2Vec by not only embedding
the neighborhood of a node, but also the hierarchical structure of the graph. Using this
approach, they are able to achieve an improvement of up to 14% of the Macro F1 score
compared to the original implementations.

Combining embeddings with taxonomies and ontologies. Lastly, there have been
attempts to not only induce semantic relations between words, but even combine these
relations into complete taxonomies. Although While Fu et al. proposed a vector space
transformation approach to determine hierarchical relations from word embeddings
[78], Ristoski et al. built on that approach to induce large-scale taxonomies. Nickel and
Kiela went a step further and developed an algorithm to directly embed such hierarchical
relations onto a Poincare disk space [168]. However, this discards information about
the semantic similarity relations between words. Lately, some researchers extended
the idea of graph embeddings to knowledge graphs, i.e., ontologies, with different and
explicitly named relations. For this, several algorithms have been proposed to embed
the relations between two entities in the entity space as well. Well-known examples
are TransE [37], TransG [256], Flexible Translation [73] and TransH [241]. We will not
explain them here, since this is out of scope for this work. While embedding ontologies
relies on the existence of ontologies, a possible option to actually find potential new
relations between entities in an embedding space to enrich an ontology embedding is
proposed in [80]. In this work, Fulda et al. extract “feasible applications” for entities, i.e.,
how these entities are used in the real world, from plain Wikipedia article text using a
reinforcement learning setting and pre-trained word embeddings.

Out-of-vocabulary problems in word embeddings. A major issue of word embed-
ding algorithms is that they learn the embeddings in an offline manner, which limits the
available vocabulary. Adding new words often makes retraining the model necessary.
To solve this, Luo et al. proposed an approach to learn word embeddings in an online
manner [142]. Bahdanau et al. [14] use the description text of potential dictionary defini-
tions to handle OOV words. Another option would be to train sub-word embeddings, i.e.,
embeddings of word parts instead of the whole words, as proposed by Pinter, Guthrie,
and Eisenstein [186]. This way, at least new words which are constructable from those
word parts could be added without retraining the whole model.
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2.2.2 Learning to Adapt Word Embeddings to Background Knowledge

While the task to correctly determine the semantic relatedness of words or texts has been
around for a long time, there are still few approaches which actually learn semantic
relatedness in supervised settings. Bridging the gap between unsupervised relatedness
learning approaches and human intuition by injecting background knowledge can be
accomplished with post-processing methods or with directly injecting this knowledge in
the embedding process.

Incorporating synonymy and antonymy in word embeddings. Faruqui et al. and
Halawi et al. presented methods to fit pre-trained embedding vectors to their neigh-
borhood defined by synonymy relations [69, 93]. Additionally, Mrkšić et al. proposes
to additionally inject antonymy constraints [163]. The aim of all three works is to
maximize the similarity of synonymous words, and in the case of [163], simultaneously
minimizing the similarity of antonyms. Hereby, synonymy constraints acted as attractors
in the semantic vector space, while the antonymy constraints acted as repellants. These
constraints are often taken from so-called “lexicons”, i.e., lists of synonymous words. For
example, synonym information can be taken from WordNet or the Paraphrase Database
[82]. However, there rarely exist curated lists of antonyms. Wieting et al. [250] pre-
sented paraphrase models using Recursive Neural Networks to fine-tune existing word
embeddings with knowledge extracted from paraphrases, i.e., synonymous segments of
text despite differences in structure and wording. This is a similar approach to using
lexicons, except that the paraphrases that Wieting uses are actual texts, as opposed to
singular words as in the approaches of Halawi, Mrksic and Faruqui. Yu and Dredze
directly include similarity constraints from the PPDB database into the word embedding
process [260]. However, they also experiment with pretrained word embeddings, on
which they then additionally train their model. In their experiments, their proposed
model initialized with pretrained word embeddings outperforms all other models in a
synonym prediction task.

Incorporating the strength of semantic relations into word embeddings. One fun-
damental issue of the abovementioned approaches is that they cannot distinguish the
actual degree of similarity or dissimilarity. For example, great and good are semantically
similar, as are good and amazing. However, the intensity of similarity, i.e., the strength of
the relation, is greater between great and good, as for example the sentiment distance
between both words is smaller than between good and amazing.

The following approaches are able to differentiate better between similarity and
dissimilarity, as they also include the “intensity” or degree of similarity. Kim, Marneffe,
and Fosler-Lussier propose to learn a vector space transformation, where on the one
hand similar words are closer in space, but they also include “intensity information”
in their learning process [117]: In a cluster of closely related words, they order them
by intensity and base their metric on that. The relative intensity of a word is found
by counting the number of n-grams “x but not y” in google searches for two words x
and y, e.g., good but not great. This means that y is more intense than x. Niebler et al.
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proposed an approach to learn semantic relatedness from human judgment of word pair
relatedness [170]. However, they do not use the actual judgment scores, but, in a similar
fashion as the Spearman rank correlation coefficient, exploit the relative order of word
pairs, determined by the judged scores. Their results show significant improvements in
rank correlation upon those of the vectors they learned from. However it is not clear
if this improvement would also notably benefit a human-centered application, i.e., if
humans would even note the quality increase of the applied word embeddings. We will
introduce this algorithm in detail in Chapter 8.

Incorporating external semantic knowledge in the embedding process. There also
exist methods which incorporate background knowledge directly into the embedding
process. In [177], Ono, Miwa, and Sasaki proposed a word-embedding based approach
to automatically detect antonyms in a supervised setting. For this, they include antonym
and synonym constraints into the embedding process and then use these embeddings
to predict word similarity. For example, Bian, Gao, and Liu leverage morphological
knowledge, i.e., information about word prefixes or syllables, in the embedding pro-
cess to overcome vocabulary incompleteness and word ambiguities [33]. While this
approach improved results greatly on the word analogy task compared to Word2Vec,
it performed similarly well on word relatedness and sentence completion tasks. In
[167], Nguyen, Walde, and Vu integrate antonym and synonym relations directly into a
Skip-Gram model.1 They do this by additionally strengthening the most salient features
for determining word similarity.

Relation of word embedding post-processing methods and metric learning. Fi-
nally, it is interesting to point out that, while most authors do not mention it, these
approaches are very similar and sometimes even inspired by well-known metric learning
algorithms. The counterfitting approach by Mrkšić et al. in [163] uses a very similar
objective to the Large-Margin Nearest Neighbor Metric Learning algorithm proposed by
Weinberger and Saul [243], as in both works similar vectors are attracted and dissimilar
vectors repelled from each other. Also,in Chapter 8, we explicitly state that the Relative
Relatedness Learning algorithm is largely inspired by the Least-Squares Metric Learning
algorithm by Liu et al. [139].

2.3 Mutual Influence of Semantics and User Behavior

Language is an intrinsic part of how humans express their thoughts about the world.
It is driven by expressing the conceptualizations that humans make when trying to
understand their surroundings. While the semantics of human-generated web content
are obviously influenced by human behavior, it is not as trivial to characterize semantics
as an influence factor on behavior. Addressing this question, Pirolli and Card [187]
proposed their Information Foraging Theory, which describes how humans search for in-
formation. It is based on the assumption that humans follow an information scent to find

1https://github.com/nguyenkh/AntSynDistinction
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the most lucrative gain in information and are able to adapt to external circumstances
to maximize that gain [51]. Since we will investigate user behavior and its influence on
semantic information in many parts of this thesis, we will give an overview of works
regarding the mutual influence of semantics and user navigation.

2.3.1 Modelling (Semantic) Influence on Human Navigation Behavior

As already mentioned in the introduction, Chi et al. argued in [51] that users follow
an information scent to reach their goals in navigational settings. Thus, Berendt [30]
used site semantics to support and improve navigation on business websites. Juvina and
Oostendorp show that navigational models should also consider semantic and structural
knowledge in order to find suitable models of human navigation in the web [114].

Modelling navigation behavior using Markov chains. A promising approach to
model human navigation is provided by Markov models, which have been previously
used for clickstream data by Bollen et al. [36]. However, Singer et al. noted that although
Markov chains of higher order are too complex and inefficient to be actually useful, the
memoryless Markov model of order 1 does account well for navigation on the Web [208].
Singer et al. then presented the HypTrails method which is used to compare different
hypotheses about user navigation [207]. The HypTrails approach has also been success-
fully applied by Becker et al. on navigational paths on the MicroWorkers crowdsourcing
platform [19] as well as on real-life movements derived from temporal and geospatial
information from FlickR photos [22]. Furthermore, it has also been implemented in a
distributed fashion [21]. Finally, Becker et al. extended this model to mixed hypotheses
of potentially longer orders [20]. Both the HypTrails and MixedTrails approaches make
it possible to measure the semantic influence on navigation. In fact, in [20] and [207],
the authors show that game navigation on Wikipedia, last.fm and Yelp are all driven by
semantic navigation, at least to some extent. In Chapter 5, we utilize HypTrails to find
and quantify a potential semantic component that drives human navigation behavior in
information networks, namely Wikipedia and BibSonomy.

Structural features of human navigation. Lamprecht et al. [128] identify features
in the structure of Wikipedia articles which influence user navigation on Wikipedia.
In general they find that users tend to click links which are located near the top of an
article page, which are at the same time more general than links in the lower parts of
articles. Dimitrov et al. finally investigate navigational behavior on unconstrained user
navigation on Wikipedia [60]. There, they find that humans prefer navigation towards
less connected links in the network but still navigate semantically. Similar to [128],
they also find that the position of links in an article influences navigation, indicating a
“visual top-left preference” of links. Finally, in [61], Dimitrov et al. extend the analyses
from [60] with a hypothesis-based investigation of general user navigation behavior on
Wikipedia. They find that users navigate more towards the periphery of the Wikipedia
link network, i.e., towards less connected pages as well as towards semantically similar
articles, but mainly if they are visible to the user. In Section 5.2, we build upon some
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of these works, where we analyze and compare the navigation behavior of users in
Wikipedia in a game setting and an unconstrained setting. This in part overlaps with
some of the cited works above, however we put a special emphasis on the strength of
semantic navigation in Wikipedia.

2.3.2 Folksonomy Usage Patterns and their Influence on Semantics

The semantic knowledge contained in the tag distributions of folksonomies is as diverse
and subjective as the users that create this knowledge. This knowledge emerges and
stabilizes through constant usage, after which we can extract semantic information, but
also analyze user behavior and motivation and its influence on this semantic information.

Stabilization of semantic information through regular usage and contribution. In
[149], Mathes hypothesized that tag distributions follow a power law distribution.
Consequently, Golder and Huberman showed in [85] that after a certain time span,
regularities in user activity, tag frequencies and relative frequency proportions could be
observed. Wagner et al. [238] stated that social interaction in tagging systems allowed the
inherent semantics to stabilize faster than in tagging systems without social interaction.
This is largely attributed to the fact that social interaction options allow users to copy
other users’ posts, thus easily contributing to the stabilization process. In turn, this
stabilization motivated further investigations of tagging systems, especially about the
effective extraction of semantically stable content [28, 29, 48] and motivation of tag
usage [4, 94, 122, 221].

Analyzing usage of social tagging systems. Heckner, Heilemann, and Wolff con-
ducted a user survey on their motivation of using social tagging systems, that is, if
users store resources for either their own retrieval or social sharing purposes [100].
That survey showed that on Delicious, retrieval of own resources was a more important
purpose of using social tagging systems. Fu et al. [79] argued that in social tagging
systems, the fact that users can see the posts of other users leads to imitiation effects: In
their experiments, they show that if users can see the tags of like-minded users, they
tend to assign the same or at least semantically similar tags. While there exists a large
amount of literature on tagging systems, to the best of our knowledge, there exists only
a small amount of work utilizing and analyzing log data from a tagging system. Millen
and Feinberg [157, 158] investigated user logs of the social tagging system Dogear, which
is internally used at IBM. They could find strong evidence for social navigation, i.e.,
users are looking at posts from other people instead of mainly their own. Damianos
et al. also proposed a social tagging system for a corporate intranet and to utilize log
data to characterize users according to their behavior [56]. In [64], a thorough study
of user behavior in BibSonomy and its potential influences was presented by Doerfel
et al. The study is based on four assumptions about the usage of social tagging systems,
e.g., the assumption that users are social and provide content to share it with other users
instead of storing it for self-retrieval. Furthermore, Niebler et al. investigated several
hypotheses about navigation in a social tagging system [173]. While (similar to the

23



2 Related Work

results of [100]) users indeed mostly navigated on their own pages, they did so by using
semantic aspects, thus uncovering a semantic component in human navigation on social
tagging systems. We will extend the findings of [64] and [173] in Section 5.3, mainly
focusing on the explanation of navigation behavior with hypotheses.

Identifying and classifying tagging motivations and their impact on tagging se-

mantics. To characterize usage pragmatics in social tagging systems, i.e., the tagging
motivations of users, Strohmaier, Körner, and Kern introduced two user prototypes
[222]: First, the categorizers, which assign selected tags from a carefully designed and
controlled vocabulary, meant to categorize the posted resources for better retrieval
afterwards. Second, the describers with completely opposite behaviorial traits, such as
rather describing resources with a free and large vocabulary, but without any struc-
ture. In consequence, Körner et al. explored the impact of categorizers and describers
on the quality of semantic representations extracted from tagging data [122]. Their
results show that describers, due to their rich vocabulary and expressiveness generate
more useful data for semantic extraction. In [271], Zubiaga, Körner, and Strohmaier
explored the influence of tagging pragmatics on emergent social classification, finding
that categorizers produce more useful tags than describers for this task. While most of
the works rely on the assumption that many users contribute to the contents of social
tagging systems, Lorince et al. argue that most of the content is actually produced by
“supertaggers”, i.e., extremely active users [141]. Their results show that for example
in Delicious, roughly 5% of all users account for more than 50% of social annotations.
They could also show that supertaggers are rather counted as describers. Niebler et al.
defined two additional classes of users, based on the semantic generality of their tags
[176], namely generalists and specialists. We will cover this work in detail in Section 6.4,
where we will show that tagging pragmatics exerts influence on the performance of
tagging semantics, in this case on the discovery of different tag senses. We found that
small portions of the most extreme describers and generalists produce the best tagging
data for word sense disambiguation. Moreover, we also use these two new tagger classes
to show that they are in some cases even more useful for extracting semantic relatedness
than describers and categorizers in Section 6.3.3, thus extending the work of Körner
et al. [122]. As a last type of users that have large impact on the quality of social tagging
systems in several aspects, if not detained, research has also investigated the behavior of
anti-social taggers, i.e., spammers. Krause et al. proposed several algorithms to detect
spammers in social bookmarking systems [125], considering several features, such as
profile features, location based features, activity based features, and semantic features.

2.3.3 Influence of Navigation Patterns in Wikipedia on Semantic

Information

Millions of users use the collaborative encyclopædia Wikipedia on a daily basis to
satisfy their information needs. Naturally, most users do not contribute information, but
only consume the provided contents. Understanding the users’ needs to consume that
information, especially their exploration behavior in Wikipedia’s hyperlink network to
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access connected information, has been extensively researched throughout many works.

Analysis of human navigation behavior on Wikipedia. West, Pineau, and Precup
created a game called Wikispeedia to supervise user navigational behaviour [249]. They
used the data collected from this game to examine the taken paths when provided with
a navigation task. It was shown that most navigation followed a “zoning-out-homing-in
pattern”, i.e., users first navigate to general pages, before narrowing down on the target
page. They also proposed a new semantic relatedness measure for pairs encountered
in paths, but it only can measure relatedness between concepts if they appeared on a
path together. In [247], the authors examine a bigger dataset from Wikispeedia than
in [249] and develop a method to predict the next target in a path. Their findings
in human navigation analysis support their previous results, which they successfully
apply to target prediction, what in turn could be used to improve website navigation
design. In [203], Scaria et al. predicted user abandonment of navigation games in
Wikispeedia after a few clicks. In their analyses, they also took the semantic distance
between the current page and the goal concept into account and showed that unfinished
paths often do not come anywhere near the target page in a game, when considering
the semantic distance between the current page and the target page, which in turn
leads user to give up navigation. West and Leskovec proceeded to design heuristic-
driven random walkers [246]. Their goal was to optimize finding the shortest possible
paths for Wikipedia navigation games. Although humans were already relatively good
at this task, random walkers primed with sophisticated heuristics were often able to
outperform humans. Using unconstrained Wikipedia navigation data, West, Paranjape,
and Leskovec recommended links that should be inserted in Wikipedia [248] to improve
user navigation and information gathering. It exploits human wayfinding strategies
to circumvent missing hyperlinks to give recommendations for potential links to be
inserted. However, by inserting hyperlinks, they change the data needed for link-based
semantic relatedness approaches (see Section 2.1.3). Lastly, Singer et al. analyzed
webserver logs of Wikipedia together with results from a user questionnaire to find out
why people actually use Wikipedia [209]. They found that there exists a large spectrum
of usage reasons with the most picked questionnaire response being that people heard
about a topic in the media.

Extracting semantic information from human navigation on Wikipedia. Improv-
ing upon the semantic relatedness measure as proposed in [249], Singer et al. built an
approach to exploit the sequential nature of pages in navigational paths to calculate
semantic relatedness [210]. Here, they considered a large dataset of human navigational
paths from the WikiGame2. Additionally, they show that human navigation contains
a significantly increased amount of semantic information, compared to the plain link
network or to artifically created paths, thus making the suitability of human naviga-
tion for semantic relatedness extraction visible. We will cover [210] in Section 7.2.2,
where we will additionally compare the original results from the WikiGame to those

2http://www.thewikigame.com
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we obtain by applying our methodology on Wikispeedia data. We find that while game
navigation data in general contains very useful semantic information, a small portion of
low-indegree paths contains even more precise semantics. Niebler et al. [175] built on
the results from [210] and explored unconstrained navigation using the ClickStream
data from the Wikimedia foundation [255]. We will discuss this approach and its results
in more detail in Section 7.2.3. We first compare game and unconstrained navigation
by evaluating the semantic quality of both navigation variants. After showing that
unconstrained navigation also differs from artificial navigation, we concluded that un-
constrained navigation is similarly well fit to provide semantic information. However,
we cannot apply the exact same methodology to extract the semantic information as we
did in [210]

Simulating human navigation with random walks on the Wikipedia link graph.

However, the investigated dataset of unconstrained Wikipedia navigation in [175]
only contains transition information instead of full-fledged navigational paths or even
navigation sessions by specific users as in the WikiGame. A potential idea is to conduct
random walks on the Wikipedia link structure to artificially augment navigational data.
In [246], West and Leskovec compared the ability of random walks to those of humans
to find shortest paths. While humans already are quite good at this task, by drawing on
huge amounts of background knowledge, West and Leskovec could show that algorithms
with sophisticated heuristics are able to surpass humans on this task. In [55], Dallmann
et al. then exploit random walks to extract semantic relatedness. While on the one
hand random walks generated by uniformly random navigation yield sufficiently good
semantics, they actually do not encode human navigation. However, when priming
the random walker with weights obtained by human navigation, the resulting pseudo-
human random walks achieved competitive results in a semantic relatedness task. A
related approach to [55] was presented by Zhao, Liu, and Sun [265]. They apply Deep-
Walk [185] on the Chinese Wikipedia and evaluate their findings on a smaller Chinese
variant of WS-353, a standard evaluation dataset for semantic relatedness of words.
However, there are several key differences to the approach by Dallmann et al.: For exam-
ple, Zhao, Liu, and Sun consider a network not only consisting of Wikipedia pages, but
also of Wikipedia categories and even words from the articles [265]. In Section 7.2.4, we
will present the experiments described in [55] and extend them by priming the random
walker with hypotheses used in Chapter 5 to simulate pseudo-human navigation, in
order to investigate the influence on the extractable semantics.

2.4 Outlook: Applications of Semantic Information Models

Semantic representations of words and sentences are widely needed and used in a variety
of applications and studies, e.g., correcting word spelling errors [45], text segmentation
using lexical cohesion [124, 146], image [211] or document [218] retrieval, cognitive
science [226], fact checking [52], and many more. It is thus important to also emphasize
potential applications for models of semantic information, since they actually are the
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reason why we want to make computers understand language. Here, we largely focus on
word sense disambiguation, since this is the main topic in Section 6.4, where we addi-
tionally measure the influence of tagging behavior on tag sense discovery, as mentioned
above. Nonetheless, we also give pointers to other interesting fields of applications, such
as query expansion, tag recommendation or sentiment analysis.

Word Sense Disambiguation and Discovery. One core problem of computational
semantics is to resolve word ambiguity, that is, distinguishing different word senses.
In statistical natural language processing, there exist supervised, dictionary-based and
unsupervised word sense disambiguation approaches [147]. In the following, we only
focus on dictionary-based and unsupervised algorithms.

Dictionary-based clustering algorithms rely on sense definitions defined in dictionaries
or thesauri. One of the first dictionary-based algorithms for word sense disambiguation
is the Lesk algorithm [131], which was adapted by Banerjee and Pedersen so it can be
applied to WordNet [16]. It is based on word overlaps between the sense glosses3 of
the disambiguated word and the sense glosses in the dictionary. Using tagging data,
Angeletou, Sabou, and Motta [6] first identify a set of candidate senses for a given
tag within WordNet, interpret co-occurring tags as context and then use a measure of
semantic relatedness to choose the most appropriate sense. In a similar manner, Garcia-
Silva et al. use cosine similarity between tag co-occurrence vectors and a bag-of-words
representation of Wikipedia pages to identify the most suitable sense definition within
DBPedia4 [83]. Lee et al. also computes a relevance score between tags and Wikipedia
articles for the same purpose [130]. Liu, Yu, and Meng [140] present a new approach
to evaluate senses of words in search queries by facilitating WordNet. Using a three
step method the authors first use WordNet to gather information about the hyponyms,
synonyms etc. of the terms found in the system. In case the correct senses of all terms
cannot be determined a frequency based approach and a web search is conducted to try
to find the remaining missing senses of a term.

Unsupervised approaches attempt to partition the context of a given term into clusters
corresponding to its different senses. [11] analyzed several folksonomy-derived networks
with regard their suitability to discover word senses by graph clustering algorithms.
These networks are constructed by correspondingly omitting one of the three folksonomy
building blocks of users, resources or tags. Zhang, Wu, and Yu [262] proposed an
entropy-based metric to capture the level of ambiguity of a given tag. Si and Sun take
into account a web-based measure of semantic relatedness as well as well as textual
article content to disambiguate tags in webblogs by spectral clustering [206]. Au Yeung,
Gibbins, and Shadbolt [10] use tags from Delicious to disambiguate search queries from
a search engine. For a given tag, Au Yeung, Gibbins, and Shadbolt identify tags that are
related in different contexts by applying a community detection algorithm. In [28], Benz
et al. apply hierarchical agglomerative clustering of co-occuring tags to identify different
senses and to ultimately construct a simple is-a taxonomy from tagging data. Finally,

3A gloss is a short description of a word sense.
4http://www.dbpedia.org
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Ratinov et al. [193] proposed an WSD algorithm which leverages the Wikipedia link
network. Finally, Arora et al. used the linear algebraic structure of word embeddings to
improve word sense disambiguation [8].

Tag Recommendation. Especially on tagging systems, recommending fitting tags for
new posts is a very important task and crucial for offering users usage comfort, so they
keep using the system. Also, by recommending fitting and already used tags, recom-
mender systems help in stabilizing tagging semantics in social tagging systems. Here,
Jäschke et al. described and compared several recommendation algorithms with regard
to their applicability to tagging data [111]. Doerfel and Jäschke analyzed recommenda-
tion evaluation systems [62]. Additionally, Doerfel, Jäschke, and Stumme looked at the
role of k-cores in recommender system benchmarks and extended the notion of cores to
set-cores [63]. In a recent work, Zoller et al. exploited log data from the social tagging
system BibSonomy to recommend recently used and semantically suitable tags [268].

Search and Query Expansion. Search plays an exceptional role in the web and in
fact enabled lots of semantic research through fields like information retrieval [42] and
query expansion [234]. One very important work on search in folksonomies is presented
in [106], where Hotho et al. proposed the FolkRank algorithm, enabling efficient search
and ranking in folksonomies. As long as search engines served as mere sophisticated
information retrieval engines based on keyword matching, the enhancement of searching
could be overcome by query expansion techniques. There are works based on mining
semantics from search logs for query expansion [240], using semantically close terms to
enrich queries [233], using knowledge bases to find suitable terms [90, 165], generating
complete query substitutions [91, 113], or including social aspects into search [34, 232].
Naturally, there are also hybrid efforts to improve search by combining keyword based
and semantic search [32, 35]

Multilinguality and Translation. Multilinguality and translation are still open prob-
lems, since there are no easy ways to project one language into another. Next to that,
synonyms in one language are not necessarily synonyms in another. There has been
a big amount of research addressing such issues. For a recent survey of multilingual
word embeddings, see [200]. Koehn, Och, and Marcu first proposed a phrase-based
translation model [121]. Hassan and Mihalcea [98] exploit Wikipedia’s inter-language
links to calculate semantic relatedness across languages. [269] introduce bilingual word
embeddings, regardless of exact word co-occurrences in parallel training text. Faruqui
and Dyer used correlations between different languages to improve performance of se-
mantic relatedness measurements in the single languages and named the model BiCCA
for Bilingual Correlation Based Embeddings [70]. In [231], Upadhyay et al. empirically
compare several bilingual word embedding frameworks, namely BiSkip [144], BiCVM
[101], BiCCA [70], and BiVCD [236]. On 4 tasks, the BiSkip model was largely able to
outperform its competitors. In a very recent work, Zhang et al. managed to construct
bilingual lexica in an unsupervised way by training adversarial neural networks. Lately,
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DeepL managed to perform machine translation with extremely high quality5. However,
the details of their translation are not published due to commercial reasons.

Sentiment Analysis. Sentiment is closely related to word semantics. As sentiment is
a In [213], Socher et al. proposed a deep neural network model of semantic composition-
ality over a sentiment treebank. They use pretrained word embeddings to determine
the sentiment of a sentence. This approach has been chosen to evaluate [69]. Kim
[118] proposed a CNN architecture for text classification, which accepts pretrained
word embeddings as input, thus providing a practical extension to any kind of word
embeddings. In fact, it can then directly be used to classify the sentiment of texts, as
e.g., done in [250].

2.5 Summary

In this chapter, we addressed many points related to computational semantics on social
media data. We will now conclude this chapter by recapitulating the presented topics
and highlight the most important works for this thesis.

In Section 2.1, we covered work on the extraction of semantic relatedness from Word-
Net, folksonomies and Wikipedia. Since we use the WordNet-based Jiang-Conrath
similarity measure in Section 6.2 as a baseline for semantic relatedness, we provided
an overview of works that compute semantic similarity on WordNet. Especially on
Wikipedia, we presented many variants on how to extract semantics, e.g., by exploiting
the link structure, the Wikipedia categories, the article texts or combinations of all
sources. The results from these previous works provide a strong argument for the choice
of Wikipedia as a research corpus. Additionally, they show that not only the article
texts, but also the link structure connecting these articles shows great potential as a
source for semantic information. We will use that result in Section 7.2, where we use
the semantics contained in the Wikipedia link structure both as a baseline as well as a
basis to perform parameterized random walks. Furthermore, because we discuss the
evaluation and representation of tagging semantics in Chapter 6, we gave pointers to
the most relevant work in this field.

Next, we focussed on ways to learn semantic information in Section 2.2. Concretely, we
described algorithms to embed semantic information in low-dimensional vector spaces.
In Section 6.5, we make use of some of those methods to learn tag embeddings. Addi-
tionally, we perform several experiments using pre-trained word embedding datasets
in Chapter 8. We also presented several works on including external knowledge into
such pre-trained embedding datasets, as well as in the embedding process itself. This
is especially relevant for Chapter 8, where we propose an algorithm to incorporate the
knowledge from semantic relatedness datasets (cf. Section 4.4) into pre-trained word
embedding datasets.

Section 2.3 gave an overview of works regarding the mutual influence of semantics
and user behavior in the web. We argued that although it is obvious that user behavior

5In fact, roughly 3 times better than Google’s translation engine: https://www.deepl.com/press.html
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influences the semantics of web content, it is not as trivial to see if semantics influence
user behavior. Again, we put an emphasis on folksonomies and Wikipedia. The mutual
influence of semantics and behavior is a recurring theme in this work. First, we analyze
and quantify a semantic influence on navigation on Wikipedia and folksonomies in
Chapter 5. Then we exploit the existence of semantics in navigation to construct word
representations both from BibSonomy and Wikipedia navigation in several settings in
Chapter 7. Finally, in Section 6.4, we measure the influence of tagging pragmatics on
tag sense discovery in social tagging systems.

In the last part of this section, we gave an outlook of different applications of se-
mantic information models. Section 2.4 starts with a description of several word sense
disambiguation algorithms, before we presented works on tag recommendation, multi-
linguality and translation, query expansion and sentiment analysis. In this thesis, we
make use of a tag sense discovery algorithm to show the influence of tagging pragmatics
on different facets of tagging semantics. Addtionally, we use a question answering
framework that is based on word embeddings to evaluate the quality of our Relative
Relatedness Learning algorithm to adapt word embeddings to external knowledge in a
realistic setting.
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Chapter 3

Foundations

In this thesis, we focus on extracting semantic information from social media data.
Social media data are available in various forms, mainly semi-structured or completely
lacking any explicit structure. For example, tagging data from folksonomies can be
seen as semi-structured data, since the folksonomy determines the assignment of tags
to resources, but does not impose any other restrictions on the user. Methods from
computational semantics aim to model the semantic information contained in such data.
In contrast to lexical or formal semantics, computational semantics aim to represent
semantic meaning and structure as mathematical structures, e.g., vectors or matrices.
We can then compute semantics of more complex structures, such as navigational paths
or even whole link graphs. This gives us the advantage to automatically analyze user-
contributed textual content to better understand and support users in their goals in the
social web.

This chapter explains and defines many basic concepts of computational semantics
which we apply in the remainder of this thesis. First, we introduce several types of data
structures from which we will extract semantic knowledge, such as folksonomies or
the Wikipedia information network. After this, we go into detail about how we can
model that semantic information and how we can compute semantic relatedness, i.e.,
the intensity of a latent semantic relation between words, given the introduced models
of semantic knowledge. In the last part of this chapter, we will introduce different
models of user behavior in tagging data. Also, we describe the method that we used to
analyze human navigation in social media. At the end of this chapter, we summarize the
presented content.

3.1 Implicit and Explicit Forms of Semantic Knowledge in the

Web

Ever since the advent of the World Wide Web in 1990, millions of users added content
for public consumption. With the evolution of interactive technologies, user engagement
skyrocketed and let the Web 2.0 or Social Web emerge, which is characterized by very
easy content contribution and social collaboration possibilities, even for layman users.
Representative systems and websites for the Social Web already mentioned in the
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introduction are Twitter1, Facebook2, or YouTube3 to just mention a few. These systems
can be described by the abstract concept of social media. By actively participating in
social media systems, users leave imprints of their subconscious, semantic knowledge in
the contributed content. Thus, the WWW can be seen as a huge repository of human
knowledge.

However, dependent on the nature of the used social media, this knowledge can
be semi-structured, like in Wikipedia or social tagging systems, or unstructured, i.e.,
data with no explicit formal structure and which is available mostly in the form of free
text, for example as posts on Twitter or Facebook. In the course of this thesis, we will
be working on making this implicit semantic knowledge explicit. While there also exist
highly-structured knowledge repositories of explicitly characterized human knowledge,
such as DBPedia4, WordNet5 and ConceptNet6, these are hardly social, as they are either
carefully hand-crafted by experts or created semi-automatically. Still, we can use these
hand-crafted knowledge bases as a valid gold standard of semantic knowledge.

In this section, we will present different types of data structures which contain
human knowledge in descending order of structuredness. First, we introduce two semi-
structured types of datasets, on which we will perform the majority of our experiments
in this thesis, namely Folksonomies and Wikipedia. After this we introduce WordNet,
a large lexical database of English terms. At the end of this section, we introduce
ontologies and knowledge graphs, which are, although hardly constructed by social
means, the most structured knowledge representation entities currently in existence.
Although we do not directly use them, they motivate the analyses and methodological
contributions of this thesis.

3.1.1 Social Tagging Systems and Folksonomies

Social Tagging Systems have played an important role in the development of both the
Semantic Web and the Web 2.0. In these systems, users collect resources and annotate
them with freely chosen keywords, called tags. Examples are BibSonomy7, for collecting
web links and scholarly publications, Delicious8 for bookmarks, FlickR9 for images,
and last.fm10 for music. Figure 3.1 shows a screenshot of BibSonomy to illustrate an
exemplary user interface of a social tagging system. Although Twitter, Instagram11 and
meanwhile even Facebook also support adding so-called “hashtags” to their posts, it is
not compulsory to do so, as opposed to the systems mentioned above. However, Wagner

1https://www.twitter.com
2https://www.facebook.com
3https://www.youtube.com
4https://wiki.dbpedia.org/
5https://wordnet.princeton.edu/
6http://conceptnet.io/
7http://www.bibsonomy.org
8https://www.delicious.com, ceased service in 2017
9http://www.flickr.com

10http://last.fm
11https://www.instagram.com
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Figure 3.1: Illustrative screenshot of the social tagging system BibSonomy. The image
shows the user page of the user thoni that contains all posts in the personomy
of that user.

and Strohmaier argue that even those systems could be considered as social tagging
systems [239].

In this thesis, we analyse two aspects of social tagging systems: First, we work on
methods to model and evaluate the semantic information emerging from actively con-
tributed content. For this, we leverage the structure emerging from social tagging
systems, the so-called Folksonomy, in Chapter 6. Second, we investigate in how far
passively contributed information, concretely human navigation data in social tagging
systems, can be used to build models of semantic knowledge. We do so by analyzing log
data about the browsing behavior of users on the user interface of social tagging systems
in Section 5.3.

3.1.1.1 Folksonomies

The data structures emerging from social tagging systems are called Folksonomies. The
term “folksonomy” was first coined in 2004 by Thomas van der Wal in a mailing list
post12. There he introduced the term as a portmanteau of “folk” and “taxonomies”,
analogous to the description of folksonomies as a “user-created bottom-up categorical
structure with an emergent thesaurus”. A thesaurus is a form of a controlled vocabulary
that organizes words using semantic relations of synonymy. Together with the emerging
hierarchical category structure, folksonomies can thus be interpreted as taxonomies
generated by folks.

A first systematic analysis of these emergent semantic structures has been performed
by Golder and Huberman [86]. One core finding was that the openness of these systems

12http://vanderwal.net/folksonomy.html
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Figure 3.2: Representation of a folksonomy as a tri-partite hypergraph and its corre-
sponding links in the user interface of a social tagging system, e.g., BibSon-
omy. The hyperedges are defined by the tag assignment set Y , which is a
ternary relation between the entity sets tags (T ), users (U ) and resources (R).

did not give rise to a “tag chaos”, but led to the emergence of stable semantic patterns.
Cattuto reported similar results and denoted the emerging patterns as “semantic finger-
prints” of resources [47]. Finally, Wagner et al. presented several measures for semantic
stability in social tagging streams, e.g., from Twitter, but also from Delicious [238].
Using these measures, they showed that tagging activity quickly led to the stabilization
of the respective semantics, thus supporting the choice of tagging data as a stable source
for semantic relatedness extraction. Following up, Mika even described folksonomies
as light-weight ontologies [155], thus underlining the quality of the emergent semantic
structures. According to Hotho et al., social tagging systems thus are able to overcome
the knowledge acquisition bottleneck [106]. Consequently, there exist several works
that propose methods to extract that emergent semantic information from folksonomies
(cf. Section 2.1.2).

In this thesis, we follow the folksonomy definition by Hotho et al. given in [106]:

Definition 1 (Folksonomy). A folksonomy is a tuple F := (U,T ,R,Y ), of finite sets U , T , R,
and Y . The elements of U , T , and R are called users, tags, and resources, respectively. Y is a
ternary relation between them, i.e., Y ⊆U × T ×R, and denotes the set of tag assignments.

One corollary result from this definition is that folksonomies possess a tri-partite
structure, i.e., they can be modeled using a hypergraph with three partitions. The nodes
of this graph are represented by the tags T , users U and resources R, while the edges
are defined by Y . Figure 3.2 shows an illustration of the folksonomy hypergraph.

We can now also define Posts and a Personomy, which we will especially need later for
the definition of BibSonomy web page representations:
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Definition 2 (Post). A post Pur ⊆ Y in a folksonomy F is a collection of tag assignments
(u,t, r) for a given user u and a given resource r, i.e., a non-empty subset

Pur :=
{
(u′ , t, r ′) ∈ Y |u′ = u,r ′ = r

}
. (3.1)

The tags of a post are described by Tur = {t ∈ T |(u,t, r) ∈ Pur}.

Definition 3 (Personomy). A personomy Pu is the set of all tag assignments by a certain
user u, defined as

Pu :=
{
(u′ , t, r) ∈ Y |u′ = u

}
. (3.2)

The tags and resources used by user u are given by Tu := {t ∈ T |(u,t, r) ∈ Pu} and Ru :=
{r ∈ R|(u,t, r) ∈ Pu}, respectively.

A trivial relation between the personomy Pu of a user and her posts is given by

Pu =
⋃
u′=u

Pu′r (3.3)

Figure 3.1 shows the personomy of user thoni. As can be seen, the personomy consists
of many singular posts. For example, the first publication post of user thoni “The
Wisdom in Tweetonomies” has been annotated with the tags twitter and folksonomy.
This could be formally expressed as

P :=
{
(“thoni′′ ,“twitter′′ ,“The Wisdom in Tweetonomies”),

(“thoni′′ ,“twitter′′ ,“The Wisdom in Tweetonomies”)
}

These definitions will play a role in defining our models of context for tags in order to
determine the semantic relatedness between tags in Section 3.2.2.1. We will further use
them in Section 6.2, Section 6.5, and Section 6.4.

3.1.1.2 Social Tagging System User Interfaces

As social tagging systems and folksonomies share many similar traits, it is obvious that
also the user interface of social tagging systems bears semantic features. Especially for
the context of navigation, we will now define what we understand as a (content) page in
a social tagging system and how we can characterize it. The following definitions are
constructed on the example of the user interface of BibSonomy. However, with minor
modifications, the definitions still hold for any other social tagging system user interface.

Definition 4 (Page in a Social Tagging System). A content page or simply page in the user
interface of a social tagging system shows information about sets of posts. These sets of posts
are determined by different filters, such as a user account, a set of tags, a resource key or a
combination of those. Formally, a page can be expressed as a set of posts that share at least one
coordinate:

p(u′ ,t′ ,r ′) :=
{
(u,t, r) ∈ Y |u = u′ ∨ t = t′ ∨ r = r ′

}
(3.4)
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Table 3.1: The considered page types in the BibSonomy system. All page types are re-
trieval types, that is, they return entries in the folksonomy tag assignments.
The formal description of each page type denotes the corresponding folkson-
omy subsets.

page type category description folksonomy subset

/user/USER user contains all posts from USER PUSER

/user/USER/TAG tag contains posts from USER

which have been tagged
with TAG

{P ∈ PUSER :
(USER,TAG, r) ∈ P }

/tag/TAG tag contains posts which have
been tagged with TAG

{P ∈ F : (u,TAG, r) ∈ P }

/url/RES resource description page of a book-
mark RES not specific to any
user

⋃
u∈U Pu,RES

/bibtex/RES resource publication page of RES not
specific to any user

⋃
u∈U Pu,RES

/bibtex/RES/USER resource describes a page of a publi-
cation RES specific to USER

PUSER,RES

Although most social tagging systems contain pages that do not carry any content, we
focus only on pages that carry explicitly named folksonomic content in this thesis. Addi-
tionally, the landing page of BibSonomy or full-text search results are not considered as
content pages, although they show folksonomic content, because the content shown is
not a folksonomy subset determined by a folksonomy entity. For BibSonomy, Table 3.1
lists the considered page types as well as their corresponding folksonomy subsets.

In general, each page in a social tagging system can be semantically represented by its
tag cloud:

Definition 5 (Tag Cloud of a Page in a Social Tagging System). A tag cloud of a page in
a social tagging system is the multiset13 of all tags viewable on that page, resulting from a
multiset union of the tags of the posts in the page’s posts set:

T agCloud(p(u′ ,t′ ,r ′)) :=multiset
{
t|(u,t, r) ∈ p(u′ ,t′ ,r ′)

}
(3.5)

Furthermore, a page in a social tagging system can have an owner, that is, the user who
posted the contents on that page. For example, the page /user/thoni from Figure 3.1
shows all posts of the page’s owner, the user thoni. We denote the set of pages that
belong to a user u as Vu . However, there also exist pages with posts from different users
which consequentially do not have an owner. Such a page is /tag/web: It shows all posts
of all users that have been annotated with the tag web. This distinction as well as the

13A multiset is a set which can contain many instances of the same item, e.g., {web,web,semantic}.
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definition of pages in social tagging systems are important in Section 5.3.1, where we
analyze and discuss user navigation in BibSonomy. Additionally, we make use of the tag
cloud in Section 7.3 to extract semantic information from user navigation in BibSonomy.

We also can now define a Social Tagging System Graph as follows:

Definition 6 (Social Tagging System Graph). A social tagging system graph is a finite
graph G

F
= (P (u,t, r),E) where F is the underlying folksonomy as given in Definition 1,

P (u,t, r) denote the folksonomy pages from Definition 4 and E are the links between those
pages. The existence of links between two pages strongly depends on the folksonomy structure
of the social tagging system.

Usually, the page of a resource r will contain actual hyperlinks leading to the page
of the resource’s owner u as well as to the pages of the tags u that are assigned to the
resource. However, although we state in Definition 6 that links in the user interface
originate on the folksonomy data of the social tagging system, the actual form of
these links depends on the implementation of the social tagging system. For example,
BibSonomy tag pages also link to related tags, although the folksonomy structure does
not directly connect tags with each other (see Figure 3.2).

Analogous to pages that are owned by a user, there also exists a subgraph of a user’s
own pages:

G
Pu

= (Vu ,Eu), (3.6)

where Vu defines all pages which have the same owner u and Eu is the subset of E that
connects these pages. Pu denotes the personomy as described in Definition 3. We will
use that subgraph as well as its complement to characterize human navigation behavior
in social tagging systems in Section 5.3.

3.1.2 Wikipedia

The Wikipedia encyclopedia is one of the figurehead projects of the Social Web. By
encouraging all its users to contribute and edit its content, it quickly grew to one of
the most frequently visited webpages in the world, while maintaining an encyclopedic
precision that rivals that of Encyclopaedia Brittanica [84], as already mentioned in the
introduction of this thesis. At the same time, it also is the biggest encyclopedia in the
world with up-to-date content in about 5 million articles in the English Wikipedia alone.
Wikipedia is also the most trusted internet resource in Germany, according to a survey
by the GPRA in October 2017 with roughly 1000 German citizens14. Not only this, it is
also one of the most visited resources for scientific researchers15, as 84,7% of a group of
1 354 consulted researchers used Wikipedia as a knowledge source in their daily work.

What makes Wikipedia such an interesting resource for researchers is the fact that
anyone can contribute to its content and link that content to other pages with related

14http://www.horizont.net/agenturen/nachrichten/GPRA-Vertrauensindex-Facebook-und-
Yahoo-fallen-durch-Wikipedia-raeumt-ab-163201

15http://www.zbw.eu/de/ueber-uns/aktuelles/meldung/news/social-media-forschende-nutzen-
am-haeufigsten-wikipedia/
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Figure 3.3: Screenshot of the Wikipedia page about “Coffee”. We can see a textual
description of the general concept, links to the sense disambiguation page,
and links to other related pages.

content. Figure 3.3 shows a screenshot of the Wikipedia page about “coffee” At the
same time, the Wikimedia foundation regularly provides dumps of the whole Wikipedia
universe and a large amount of usage information16. This way, a huge and freely
accessible knowledge pool is created, containing not only text data about a multitude of
topics, but also explicit linkage of somehow semantically related concepts, as well as its
creation and usage history, such as page views and navigation information.

Contrary to taxonomies or ontologies, Wikipedia is rather an information network,
since its main goal is to enable users to discover, contribute and disseminate information
instead of providing an exact semantic representation of concepts and their explicit
relations. We first define a Wikipedia page as follows:

Definition 7 (Wikipedia page). A Wikipedia page or Wikipedia article

ptitle = (title, content)

is a tuple of a string title, denoting the title of the page (name) as well as another string
content, which contains a definition as well as a description of the concept given by the title.
Each article in Wikipedia represents a single semantic concept.

This concept is then connected to other concepts via hyperlinks, thus making the
information in Wikipedia better accessible for humans. Consequently, we define the
Wikipedia information network as a graph in a similar manner as for folksonomies
(Definition 6):

16https://dumps.wikimedia.org/
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Definition 8 (Wikipedia graph). We define a Wikipedia W graph G as a graph G
W

=
(V

W
,E

W
) with vertices – i.e., pages or concepts – V

W
= {p1, . . . ,pn} and directed edges – i.e.,

links between those pages – E
W

=
{
(pi ,pj )|pi ,pj ∈ VW

}
.

The content of page also contains all the links which define the edges originating
from this page. In fact, an edge (pi ,pj) can only be contained in E

W
, if and only if

the content of page pi contains a hyperlink to page pj . We can now define inlinks(pi)
and outlinks(pi) for a given page pi . The set of outlinks contains all links originating
from pi and is easily deduced as outlinks(pi) =

{
(pi ,pj ) ∈ EW |pj ∈ VW

}
. The set of inlinks

contains all links pointing from different pages to page pj and is defined analogously as

inlinks(pj ) =
{
(pi ,pj ) ∈ EW |pi ∈ VW

}
. The cardinality of inlinks and outlinks of a page pi

are called the in- and outdegree of pi , respectively. The sum of in- and outdegree gives
the degree of pi .

3.1.3 The WordNet Taxonomy

WordNet is a well-known lexical database of English words, verbs, adverbs and adjec-
tives [72]. It organizes words with a shared meaning in so-called “synsets”. These
synsets thus represent semantic concepts. On the one hand, they can be used to resolve
synonmy, i.e., that different words describe the same concept, but also polysemy, i.e., that
a word can describe different concepts, depending on its context. Additionally, WordNet
contains a brief description of each meaning of a synonym, the so-called gloss.

WordNet is not only a thesaurus, i.e., a lexicon of synonyms, but also a semantic
network. This means that in WordNet, semantic concepts are linked if they are seman-
tically related. WordNet covers meronymy (part-of relations) and antonymy (opposite
meanings) relations. Additionally, all synsets are hierarchically organized in a directed,
acyclic graph structure, where most of the edges represent semantic generality relations
between synsets. This hierarchical is-a relation is called hyperoynmy or hyponymy. For
example, the synset dog has a hypernym canine and a hyponym pug. There have also
been attempts to include relations about the semantic relatedness of concepts that are
weighted according to the intensity of the relatedness [40]. Unfortunately, they finally
proved to be unsuccessful due to the high amount of possible relations and the great
uncertainty of human perception.

The greatest strength of WordNet is that it contains highly accurate linguistic knowl-
edge about the English language, because it was manually created and curated by
linguists. Additionally, WordNet provides easy-to-use programmatic access, for exam-
ple on its website17. For these reasons, it has been widely used in research for many
purposes, such as gold standard for the evaluation of knowledge base construction
algorithms [28, 168], word sense disambiguation approaches [], and even as source of
semantic similarity measures, as we will see in Section 3.2.

The fact that WordNet is curated manually is also one reason for its potentially great-
est shortcoming, the slow ingestion of new knowledge into WordNet. For example, the

17http://wordnetweb.princeton.edu/perl/webwn
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synset for “Python” does not cover the well-established meaning of the Python pro-
gramming language. It can thus only serve as a source of general linguistic knowledge.
However, this knowledge is still present in a very precise form, which leaves WordNet
as one of the best sources of semantic information in existence. We will use WordNet as
the basis for measures of semantic similarity in Section 7.3.

3.1.4 Ontologies and Knowledge Graphs

For sake of completeness, we will lastly introduce ontologies and knowledge graphs,
although we do not directly use them in this thesis. As these structures provide the
central motivation for the methods and analyses presented in this thesis, it is important
to provide a description as well as a formal definition of each.

The most structured form to encode semantic knowledge today is given by Ontologies.
Studer, Benjamins, Fensel, et al. define an ontology as follows [224]:

Definition 9 (Ontology). An ontology is a formal, explicit specification of a shared concep-
tualisation.

We will now explain the atomic parts of that definition briefly. A conceptualisation
is an abstract description of an observed, real-world entity. By postulating that it is
shared, we expect that conceptualisation to not be subjective, but objective, or at least
in some way more broadly accepted. By describing that shared conceptualization, we
obtain an explicit specification of it. Finally, we want that specification to be as strict
and exact as possible, so we would formulate it in a formal way, i.e., mathematically. In
summary, ontologies allow us to store and access human common-sense knowledge in
machine-readable form. For a longer, in-depth discussion of the parts that constitute
Definition 9, we refer the reader to [88].

While ontologies define the abstract structure of knowledge, knowledge graphs collect
and organize actual instances of that knowledge. In [68], Ehrlinger and Wöß identify
and compare several definitions and assumptions of what a knowledge graph is seen as
in literature. They conclude that a commonly accepted definition could be as follows:

Definition 10 (Knowledge Graph (Ehrlinger and Wöß)). A knowledge graph acquires and
integrates information into an ontology and applies a reasoner to derive new knowledge.

This means that a knowledge graph makes use of an ontology as an abstract schema of
information, while it contains that explicit information itself.

Paulheim characterizes a knowledge graph in a slightly different way, [180]:

Definition 11 (Knowledge Graph (Paulheim)). A knowledge graph

1. mainly describes real world entities and their interrelations, organized in a graph.

2. defines possible classes and relations of entities in a schema.

3. allows for potentially interrelating arbitrary entities with each other.

4. covers various topical domains.
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In contrast to the definition by Ehrlinger and Wöß, Paulheim phrases his definition
of an knowledge graph in such a way that an ontology is only a part of a knowledge
graph instead of a separate entity. It has also to be noted that Paulheim does not con-
sider WordNet as a knowledge graph, since WordNet only describes semantic relations
between words, not things. This is largely based on his decision that words are not
real-world entities, although he admits that this is a rather “philosophical discussion”
[180]. However, besides this point, WordNet largely fulfils all criteria of a knowledge
graph as postulated in Definition 11. For this reason, we will still consider WordNet as
a knowledge graph, where needed.

Besides the well-known knowledge graphs Wikidata, DBPedia, YAGO, and Word-
Net, there also exists ConceptNet, which originated from the crowdsourcing project
Open Mind Common Sense [217]. It collects knowledge from various sources, such as
Wiktionary, WordNet, and a subset of DBPedia. In this thesis, we will use the Con-
ceptNet Numberbatch word embeddings, which are constructed from the ConceptNet
knowledge base [216]. We will introduce them in Section 4.3.

3.2 Computational Methods to Model Distributional Semantic

Knowledge

Computational Semantics is a subfield of Computational Linguistics and focuses on the
study of automatically computing the meaning of words or sentences and the subsequent
processing of that information in several applications in Natural Language Processing
and Understanding. Such applications are for example determining the semantic relat-
edness of words and texts [129, 156, 230, 266] Text Classification and Clustering [118,
264], Sentiment Analysis [138, 178], Translation [15, 253], and many others. The term
Computational Semantics also encompasses many other research fields, such as Lexical
Semantics and Distributional Semantics. Lexical semantics techniques are highly related
to Semantic Web techniques, where entities are represented as nodes in ontologies and
knowledge graphs (as presented in Section 3.1) and are connected by explicit semantic
relations. For example, in the statement

dbp:apple rdf:type yago:fruit113134947,

dbp:apple denotes the DBPedia entity apple, rdf:type makes clear that the type of the
apple is a fruit. Fruits are denoted by the Yago entity yago:fruit113134947. So, in
human language, the statement above is the same as

An apple is a kind of fruit.

Such statements in ontologies and knowledge graphs are also called facts. Inserting new
entities and facts is often done manually. As mentioned before, WordNet is completely
hand-crafted by linguistic experts. As a consequence, constructing and updating Word-
Net (and other ontologies) requires considerable effort and expert knowledge and is
thus very tedious and time-consuming. This especially becomes a problem if we want to
create ontologies that cover specialized domain knowledge. The difficulties in acquiring
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valid, timely, precise, and structured knowledge, for example in such expert domains, is
generally known as the knowledge acquisition bottleneck.

In order to overcome the knowledge acquisition bottleneck for domain knowledge,
an option is to automatically gather information about unknown entities and to deduce
new facts from known ones. For this, we explore distributional semantics approaches to
extract such information from natural language. Research about Distributional Semantics
concerns itself with determining words with similar or related meaning by studying their
contexts and their distribution within those contexts. The following two quotes offer a
very intuitive description of the central goals that we want to achieve in distributional
semantics. In 1954, Harris stated this in his “Distributional Hypothesis” [96]:

Words that occur in the same contexts tend to have similar meanings.

In [76], Firth coined one of the most well-known quotes in this context:

“You shall know a word by the company it keeps”.

In this thesis, we focus on computing distributional semantics from social media data.
More specifically, we develop distributional word representations from tagging data,
navigation data on Wikipedia and navigation data on BibSonomy. Our goal is to obtain
highly precise semantic relatedness measures on top of these representations, which reflect
human intuition as closely as possible.

In this section, we will first introduce the vector space model (VSM) to model dis-
tributional semantic information in linear vector spaces. This model provides the
groundwork for all models of semantic information that we present in this thesis. As
the quality of the vector space model depends on a sensible choice of context, we will
present several options to design that context in folksonomies and in navigation. After
this, we explain how we actually measure semantic relatedness using the just defined
word vector representations. For this, we also discuss the notions of semantic relatedness
and semantic similarity. To assess the quality of the measured semantic relatedness scores,
we describe two variants of how to compare these scores with human intuition and
calculate a corresponding evaluation score, on which we will base our results. At the end
of this section, we will introduce two applications of the vector space model. While the first
method aims at enriching and refining the vector representations constructed by a VSM
model, the other method exploits the semantic knowledge in the vectors to discover and
disambiguate multiple meanings of words.

3.2.1 The Vector Space Model: Expressing Words as Vectors

In order to “compute” with words, they need to be somehow modeled in a computable
form. In Distributional Semantics, the meaning of a word is mostly computed from the
distribution of its semantic or syntactic context in large collections of texts. One way to
model words by their context in a computable form is to construct vector representations.
This approach is called the Vector Space Model (VSM) and was first introduced by Salton,
Wong, and Yang [201]. It allows us to apply linear algebra methods in order to perform
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mathematical operations with the semantic information of the entities, or documents in
our case, which are represented by those vectors.

The first applications of the vector space model lie in the SMART information re-
trieval system to retrieve suitable candidate documents from a large document corpus
[202]. Later adaptations of the VSM then allowed to represent words by the documents
they have been used in, or by their textual context. Turney and Pantel provided an
extensive survey of VSM applications in literature and identified three classes of VSMs:
term-document, word-context and pair-pattern matrices, resulting in three classes of appli-
cations [230]. In the course of this thesis, we will however only focus on the first two
classes.

In the following, we will first formally introduce and explain the vector space model
for documents. After this, we describe variants of the VSM to construct vector represen-
tations of words.

3.2.1.1 Formal Definition of the Vector Space Model: Document-Level Semantics

Salton, Wong, and Yang used vectors to represent text documents di by the terms tj
that the document di contained. If a term tj occurs k times in a document di , the
corresponding cell dij in the document vector equals k:

di := (. . . ,dij , . . .) = (. . . , k, . . .) (3.7)

The length of that vector depends on the size of the vocabulary VD := {t1, . . . , tn} of a given
corpus D := {d1, . . . ,dm} of documents. The vocabulary VD contains all terms that occur at
least once in a document from D. The idea behind this document representation is that
the words contained in a document determine its topic. This can also be seen as some
kind of document-level semantics: Two documents are semantically similar, if they have
similar topics, i.e., their content overlaps. It has to be noted that these vectors pay no
regard to the actual sequential structure of words inside the documents. This way of
expressing documents by words is also called a bag-of-words approach.

With these document vectors, we can construct a matrix TD ∈Nm×n
0 from a document

corpus D, where m is the size of D, and n is the size of the set of all occuring terms, i.e.,
the vocabulary of D. Thus, a whole document corpus D := {di |1 ≤ i ≤m} can be expressed
as the term-document matrix TDD:

TDD :=

t1 · · · tj · · · tn



d1
...

...
...

di · · · · · · dij · · · · · ·
...

...

dm
...

(3.8)

The rows of this matrix are the document vectors for each document di , as given in
Equation (3.7). This matrix is usually very sparse, as documents rarely share a high
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d1: “The quick brown fox jumps.”
d2: “A brown fox is quick.”

(a) Example corpus D

(
1 1 1 1
1 1 1 0

)
(b) Term-document

matrix WD

quick
brown
f ox
jumps


0 2 2 1
2 0 2 1
2 2 0 1
1 1 1 0


(c) Word-Word Co-occurrence

matrix XD

Figure 3.4: An example for word-word co-occurrence and term-document matrices,
constructed from a document corpus D = {d1,d2}.

amount of vocabulary with each other. Figure 3.4b shows the resulting document-term
matrix for the document collection D from Figure 3.4a.

A severe issue of the standard term-document vector space model is that common
words that occur in many documents show a high impact on document retrieval. This
however contradicts their overall importance to characterize a fraction of documents.
To counter this effect, the TF-IDF model adds a weighting factor to each term-document
entry that also takes the impact of a word on a limited number of documents into
account [13]. TF-IDF stands for Term-Frequency with Inverted Document Frequency and is
formally defined in Equation (3.9)

d
tf idf
ij := dij · log

(
|D|

| {dk ∈ D|dik > 0} |

)
(3.9)

This rules out “common” words, which do not contribute much to the characterization
of a fraction of documents, since they occur so often, but also emphasizes the important
terms, which are most descriptive for the document at hand. TF-IDF is by far the
most used weighting scheme in information retrieval We apply TF-IDF in Chapter 5 to
semantically characterize web pages, as well as in Section 7.3 to extract relevant terms
of BibSonomy pages.

3.2.1.2 Variants of the Vector Space Model for Word-Level Semantics

The term-document matrix from the original vector space model was mostly intended
for document retrieval based on a coarse “semantic” document representation. We are
however interested in determining the semantics of the words inside such documents.
In the following, we will present several variants of the vector space model that enable
us to determine such word-level semantics.

Word-Word Co-Occurrence Counting In this thesis, we mainly construct word-context
or word-word co-occurrence count matrices. In general, these matrices are constructed in
the same way as term-document matrices, only that we now count the co-occurrences
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of words in a pre-defined context. This allows us to represent a word wi as a vector vi ,
where

vi := (vi1, . . . , vij , . . . , vin). (3.10)

Here, vij denotes the co-occurrence count of wi with wj in a predefined context. For a
discussion of potential context choices we refer to Section 3.2.2. The resulting matrix W
is trivially symmetric, as can be gathered from Equation (3.11):

W :=

w1 · · · wj · · · wn



w1
. . .

...
. . .

wi vij
...

. . .
wn

(3.11)

Figure 3.4c shows how a constructed word-word co-occurrence matrix W of a docu-
ment corpus D would look like after stopword removal. Because jumps only occurs in
document d1, it also co-occurs only once with all other words.

Additionally, we use Word-Word Co-Occurrence Binarization. This is the most simple
variant of word-word co-occurrence, as it only denotes if two words co-occurred instead
of counting these co-occurrences. This straightens out the effect of words that occur very
often and thus extremely dominate the co-occurrence distribution. At the same time,
rarely occurring words show a higher impact on the vector representation. The formal
definition is the same as of word-word co-occurrence, only that wij can exclusively
assume the values 0 or 1. We will apply binarization in Chapter 7 to extract improved
semantics from unconstrained navigation both on Wikipedia and BibSonomy.

Word Embeddings While the co-occurrence counting approaches presented in the
preceding section are a very intuitive way to represent words or documents as vectors,
they suffer from sparsity and very high dimensionality. This impacts machine learning
algorithms, since a large number of weights has to be learned from only very few
examples, since the vectors are extremely sparse. Also, sparsity itself poses a problem,
since it originates from insufficient or missing information and could lead to inaccurate
or even wrong information. Concretely, the curse of dimensionality describes the problem
that with increasing number of dimensions, the distances between any pair of vectors
tend to approximate the same value, i.e., in very high dimensions, vectors are distributed
equidistantly. In NLP, this can for example occur if a text contains many synonymous
words that have each been used only rarely. Each of these words however defines a new
dimension, although they would formally describe the same feature.

A possible way to alleviate the problems of high-dimensional, sparse vectors as de-
scribed above is to embed vectors in a low-dimensional space. While the idea of dimension
reduction for co-occurrence matrices by factorizing them has been around for some time
(see for example Latent Semantic Analysis [58] or Principal Component Analysis [182]),
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wt−2 wt−1 wt+1 wt+2

embedding layer

wt

Figure 3.5: Illustration of Word2Vec’s skipgram neural network architecture. The word
words wt−2, wt−1, wt+1, and wt+2 are used to predict the word wt. The
word embedding for wt is finally represented by the weights of the neural
network’s hidden layer.

it recently gained a lot of traction with the advent of neural embedding models. The
idea here is not to costly factorize a huge word co-occurrence matrix, but instead di-
rectly learn the low-dimensional word embeddings that approximate the columns of the
factorized matrix. In [25], Bengio et al. proposed a language model based on neural
networks. Later on, Mikolov et al. proposed Word2Vec [156], a fast and easy-to-use
embedding method to predict a word from its context. This training objective is based
on the intuition that words with similar contexts are in turn also similar. There have
been other embedding learning algorithms mimicking Word2Vec’s behaviour, such as
GloVe [184] or LINE [227]. In this work, we make use of GloVe, LINE and Word2Vec.
In the following, we briefly describe the intuition behind each of these, their training
objectives and their relation to each other.

The most well-known word embedding algorithm today, Word2Vec, makes use of a
shallow neural network, i.e., with only a single hidden layer, to produce word embed-
dings. It comes in two variants: predicting the context of a given word (SkipGram)
or predicting a word from a given context (CBOW) [156]. The word representations
are extracted from the hidden layer of the neural network. For an illustrative example,
see Figure 3.5. The Skip-Gram optimization objective is to maximize the prediction
probability p(wt+j |wt) of a context word wt+j , given a center word wt.

1
|V |

|V |∑
t=1

∑
−c≤j≤c,
j,0

logp(wt+j |wt) (3.12)

Here, c is the context size and p(wt+j |wt) is defined via the softmax function

p(wt+j |wt) =
exp

(
v′Tt+jvt

)
∑|V |
i=1 exp

(
v′Ti vt

) (3.13)

The vectors vi are the actual learned embeddings of words wi , which we will use later in
this work, concretely in Section 6.5. Because Equation (3.13) depends on the size of the
vocabulary in the denominator, computing its value is expensive. In order to decrease
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computation time, Mikolov et al. experimented with different ways to approximate the
denominator term. Discussing those is however irrelevant to the scope of this thesis and
we refer the reader to the original paper [156].

In contrast to Word2Vec, the GloVe algorithm by Pennington, Socher, and Manning
exploits the global context of words instead of the local context, i.e., the make use
of the vast amount of word repetition in the global corpus context [184]. Thus, the
resulting word embeddings are similar when the mutual information of two words is
high. GloVe takes a word-word co-occurrence matrix W = (wij ) as input, as described in
Equation (3.11). In the optimization objective, i.e., minimize

V∑
i,j=1

f (wij )
(
vTi ṽj + bi + b̃j − logwij

)2
, (3.14)

vi and ṽi are the resulting embedding vectors for a word and its context, respectively.
b and b̃ are bias vectors, again for a word and its context. Finally, the weight function
f downweighs rare words and thus reduces the impact of data noise on the resulting
model. In the conducted experiments in [184], Pennington, Socher, and Manning
argue that the GloVe model outperforms Mikolov’s Word2Vec as well as a set of other
embedding algorithms in analogy and word relatedness tasks. Still, they note that by
choosing a set of right parameters, this advantage can be diminished, and that this
needs a more thorough analysis. Later, Levy, Goldberg, and Dagan showed in [134]
that the performance of both algorithms is indeed heavily influenced by the choice of
hyperparameters.

Finally, LINE [227] is a graph embedding algorithm to obtain vector representations
for nodes in a graph instead of words. However, the global context of a word can
then be encoded in the neighborhood of a node in the co-occurrence graph. It is thus
still possible to learn word embeddings with this method. LINE attempts to reflect
the proximity of a node in the graph in the distance of the generated embeddings.
The algorithm relies on two definitions of node proximity. The first-order proximity
in a network is the local pairwise proximity of two nodes, i.e., the weight of an edge
connecting these two nodes. For each pair of vertices linked by an edge (i, j), the weight
on that edge ωij indicates the first-order proximity between i and j. If there is no edge
between i and j, their first-order proximity is 0. Thus, the first-order neighborhood of a
node i contains all nodes j which are directly connected with an edge to i. The strength
of this correlation is defined by the weight ωij of the edge. To achieve this objective,
LINE minimizes the following objective function:

O1 = −
∑

(i,j)∈E
ωij log

 1

1 + exp
(
−
〈
vi ,vj

〉) (3.15)

Here, vi and vj are the embeddings of nodes i and j in the graph. The second-order
proximity of two nodes between a pair of vertices (i, j) in a network is the similarity
between their first-order neighborhoods. Mathematically, let pi = (wi,1, . . . ,wi,|V |) denote
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Figure 3.6: Illustration of node neighborhoods in a graph as defined in [227]. The light-
blue filled nodes are considered first-order neighborhood for node 7, while
the thickness of the edges denote the weight of the connection. For example,
the edge between nodes 6 and 7 has weight ω6,7. The nodes filled with red
define the most amount of the second-order neighborhood of nodes 5 and 6
(with a red border).

the first-order proximity of i with all the other vertices, then the second-order proximity
between i and j is determined by the similarity between pi and pj . If no vertex is linked
from/to both i and j, the second-order proximity between i and j is 0.

O2 = −
∑

(i,j)∈E
ωij log

 exp
(〈
vi ,vj

〉)
∑|V |
k=1 exp(〈vi ,vk〉))

 (3.16)

Both types of node proximity are illustrated in Figure 3.6.
LINE embeddings are typically constructed by separately learning embeddings for the

first-order and second-order proximity objectives and by subsequently concatenating
them. This way, both proximity variants can influence the similarity of nodes, or in our
case words.

We will discuss the applicability of each word embedding algorithm on tagging data
in Section 6.5, before we evaluate the learned tag embeddings on human intuition.
In Chapter 8, the low dimensionality of those embeddings enables us to design an
algorithm that refines the word vectors to better reflect human intuition of semantic
relatedness.

3.2.2 Choosing the Right Context

What is common to all models in the preceding section, is that they rely on word co-
occurrences in a given context. Obviously, the quality of a model relies heavily on the
amount of provided information by a) choosing the right context and b) the right size
of the context. In this section, we will briefly present how the context is chosen in in
folksonomies and in any kind of graph.
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3.2.2.1 Context in Folksonomies

Because folksonomies exhibit a tripartite structure (see Section 3.1.1) of users, tags and
resources, the choice of a suitable context for extraction of semantic knowledge has been
extensively discussed [48, 262]. In this thesis, we will stick to the context definitions by
Cattuto et al. [48], which we will re-evaluate in Section 7.3.1.2.

Given a folksonomy F = (U,T ,R,Y ), Cattuto et al. define three natural first-order
co-occurrence context descriptions for tags based on the posts in a social tagging system,
all of which can finally be used in the vector construction methods we introduced in
Section 3.2.1.1. The context of a tag can be described by either its co-occurring tags in
the same post, by the users who have used this tag, or by the resources that this tag has
been assigned to. They employ a vector space model to represent words, i.e., tags, by
their contexts, so the corresponding feature spaces are of the dimensions |T |, |U |, and
|R|, respectively. Thus, each context description can also be represented as a matrix
C ∈ Rk×|T |, where k denotes the dimension of the corresponding feature space. The
column vectors vj of these matrices represent the corresponding semantic contexts of
each tag tj , j = 1, . . . , |T |.

Tag Context The tag context matrix Ctag ∈R|T |×|T | describes the context of a tag based
on the posts in a folksonomy, i.e., the distinct annotations of resources by users.

C
tag
ij :=

∣∣∣∣{(u,r) ∈U ×R | (u,ti , r), (u,tj , r) ∈ Pur
}∣∣∣∣ (3.17)

The entry in a matrix cell Ctagij in the tag context matrix is hence the number of posts
Pur , where a user u assigned both tags ti and tj to the same resource r.

Resource Context If we consider the resource context of tags, we obtain a matrix
Cres ∈R|R|×|T |, which is defined as follows:

Cresij :=
∣∣∣∣{u ∈U | (u,tj , ri) ∈ Y

}∣∣∣∣ (3.18)

This measure counts how often a tag occurred with the same resource.

User Context In the user context matrix Cuser ∈R|U |×|T |, the entries describe how often
a tag has been used by the same user.

Cuserij :=
∣∣∣∣{r ∈ R | (ui , tj , r) ∈ Y

}∣∣∣∣ (3.19)

Cattuto et al. found that resource context produced the best results for the construction
of meaningful co-occurrence vectors, closely followed by tag context. Still, the tag
context similarity yielded the most clear-cut results in many other experiments, so we
will use this context type in the remainder of this work, if not specified otherwise. We
use all those context definitions in Section 7.3.1.2.
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3.2.2.2 Context in Graphs

The context of a node in graphs is not as easily defined as in text. Textual context, e.g.,
in a sentence, is one-dimensional: There are either words in front or behind the current
position. In graphs, there is no concept of “before” or “behind”.

Node Neighborhood Instead, one can define a Neighborhood of a node. In [227], this
neighborhood is characterized in two ways. The first-order neighborhood is defined as
all nodes directly connected to the current node, while the second-order neighborhood
includes all nodes that share a similar first-order neighborhood with the current node.
Figure 3.6 shows an illustration of both neighborhood variants. However, as we already
introduced that in Section 3.2.1.2, we will not explain either concept here.

Paths in a Graph In contrast to the notion of node neighborhoods in a graph, another
option is to generate context for nodes by walking the graph. This way, a one-dimensional
context is artificially generated (similar to a sentence in natural language), on which we
can subsequently apply any methodology from Section 3.2.

Definition 12 (Navigational Paths in a Graph). Given a graph G = (V ,E) with vertices V
and directed edges E = {(v,w)|v,w ∈ V }, we define a path p ∈ P from the set of all paths P onG
as a sequence of vertices p = (v1, . . . , vn) with vi ∈ V ,1 ≤ i ≤ n and (vi ,vi+1) ∈ E,1 ≤ i ≤ n− 1.
The length of a path p is defined as the length of the corresponding sequence of vertices.

Paths in a Graph can originate from various sources, such as a collection of all potential
node sequences of a given length [210], a set of randomly generated paths [55, 87, 185],
or human navigation [175, 210, 249]. In Chapter 7, we will propose methods the exploit
human navigation as well as artificially created random walks in social media systems
to model semantic knowledge. Consequently, navigational paths play a central role in
this thesis.

Additionally, we show that human navigation is a valuable source of semantic informa-
tion, when compared to the static graph structure of social media pages. In this chapter,
we will generally work on link graphs, i.e., graphs of web pages p that are connected
through directed links (pi ,pj ).

3.2.3 Measuring Semantic Relatedness and Similarity

For many applications in NLP and Ontology Learning, it is necessary to determine if
two words are related to a certain extent. While determining the nature of that relation
is also important for many tasks, we exclusively focus on measuring the strength of such
a relation in this thesis.

Before we show how we can use the semantic models defined in the previous sections,
we introduce the notion of a similarity measure. We define a similarity measure between
two entities i and j, each represented by a vector vi and vj , as follows:
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Definition 13 (Similarity Measure). Given a coherent interval S ⊆R, a function

sim(vi ,vj ) : Rn ×Rn→ S ⊆R (3.20)

is called a similarity measure between two feature vectors vi ,vj ∈ R
n, if it suffices the

following conditions:

1. sim(vi ,vi) = max
{
sim(vi ,vj )|vj ∈Rn

}
.

2. sim(vi ,vj ) = 0, iff vi and vj are completely unrelated.

3. sim(vi ,vj ) > sim(vi ,vk)⇔ vj is more similar to vi than vk .

While S can span the whole of R, it can be easily normalized to the interval [0;1]. In
a semantic interpretation a similarity value of 0 between two word vectors vi and vj
means complete unrelatedness, while a value of 1 means semantic synonymy. However,
scores near 1 indicate that both words might be semantically connected by some kind of
semantic relation. We also interpret the similarity score as the strength or intensity of the
relation.

3.2.3.1 Distinguishing Semantic Relatedness and Similarity

For the remainder of this work, we feel it is important to point out the difference between
semantic relatedness and similarity. Although both concepts are based on the notion
that entities are to some extent semantically related to each other, the notion of actual
similarity is a much more strict one.

Generally speaking, semantic relatedness between concepts represents the degree of
“closeness” between those concepts [205]. While closeness is to a great extent subjective,
there exists at least a consensus margin (see e.g., the singular voting results for the
WS-353 dataset, Figure 3.9). An example of two semantically related words are coffee
and cup, because one pours coffee into a cup, so both words are in some way related.

There also exists the notion of semantic similarity. In [137], Lin et al. gave an
information-theoretic definition for general similarity, based on rather abstract proposi-
tions of “commonality” and “descriptions” of two objects. The object similarity is then
defined as the ratio of the commonality information and the description information.
Similarity is much more narrow than relatedness, in a sense that while coffee and cup

are related, they are in no way similar, because one can not usually roast or drink a
cup. However, tea and coffee are similar in a way that you can use both to make a
very pleasant drink. But even here, the degree of similarity is subjective to the judging
person, as a tea drinker with a distaste of coffee might rule them both more different
than someone who likes to drink both. However, even the person disliking coffee cannot
rationally judge it total dissimilar to tea, so with similarity, there also exists a subjectivity
margin.

Both semantic relatedness and semantic similarity have different applications. For
example, semantic similarity is useful to resolve synonymy or to construct synsets in
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cossim(v1,v2) = cos(α) ≈ 0.95

cossim(v2,v3) = cos(β) ≈ 0.77

Figure 3.7: Illustration of the cosine similarity measure for vectors. The similarity
between two vectors only depends on the angle between both vectors. Thus,
similar vectors that point in the same direction have a high cosine similarity,
regardless of their Euclidean distance.

ontologies, while semantic relatedness is important to construct semantic relations
between concepts, including semantic similarity.

In this thesis, we will mostly focus on determining the semantic relatedness between
terms. Wherever necessary, we will explicitly state if we aim to model semantic similarity.

3.2.3.2 The Cosine Similarity Measure for VSMs

The cosine measure is one of the most used relatedness measures in literature [13].
Intuitively, it measures the “closeness” of two points on a unit sphere in an Euclidean
space. This means that the smaller the angle between two vector is, the higher the cosine
similarity of two vectors. This is illustrated in Figure 3.7 Given two feature vectors vi ,vj ,
the cosine measure is defined as follows:

cosine(vi ,vj ) =

〈
vi ,vj

〉
|vi | ·

∣∣∣vj ∣∣∣ =
〈
vi
|vi |
,
vj∣∣∣vj ∣∣∣

〉
. (3.21)

The cosine measure is directly related to the L2 norm and, written as a distance d(x,y) :=
1− cosine(x,y), even equivalent to the Euclidean distance on normalized vectors. Since
the calculation of the cosine measure is linear, it is very efficient to process and thus
widely used. In this thesis, we use the cosine measure as the main vector similarity measure
and as a measure of semantic relatedness.

It is possible to parameterize the cosine measure (in fact, we propose to do this in
Chapter 8) by incorporating a positive semidefinite matrix (PSD) M as follows:18

cosineM(vi ,vj ) :=

〈
vi ,vj

〉
M

‖vi‖M‖vj‖M
=

vTi Mvj√
vTi Mviv

T
j Mvj

(3.22)

The PSD condition for M is necessary to enable cosineM to satisfy the conditions of
a scalar product. Since M is PSD, it is also symmetric and thus can be expressed as

18A quadratic matrix is positive semidefinite iff its eigenvalues are equal or greater than 0.
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a product of a matrix D with its own transpose: M = DTD. If we insert that into
Equation (3.22), we get

cosineM(vi ,vj ) =
vTi D

TDvj√
vTi D

TDviv
T
j D

TDvj

=
(Dvi)TDvj
‖Dvi‖‖Dvj‖

=

〈
Dvi ,Dvj

〉
‖Dvi‖‖Dvj‖

, (3.23)

i.e., we receive the original cosine measure, but of the transformed vectors Dvi . Techni-
cally speaking, this even means that not necessarily the cosine measure is adapted, but
the word vectors themselves.

3.2.3.3 WordNet-Based Semantic Similarity Measures

As already described in Section 3.1.3, WordNet encodes several explicit semantic re-
lations between entities. Usually, those relations are not weighted. For applications,
for example semantically supported search engines, a weighted notion of similarity or
relatedness is however important to find more relevant results. Intuitively, WordNet
is especially well suited to calculate semantic relatedness between its entities, with
hypernomial and hyponymial links between synonym sets and instances. Because of this
intuition, many semantic relatedness measures based on WordNet have been proposed.
For an extensive overview and comparison of WordNet based similarity measures, the
reader is referred to [44]. In the following, we will introduce two well-known measures,
which we will discuss in more detail in Section 7.3.1.2.

The first and most simple WordNet based semantic similarity measure is the tax-
onomic shortest-path similarity measure by Hirst, St-Onge, et al. [105] . Jiang and
Conrath proposed the Jiang-Conrath distance [112], which combines Resnik’s infor-
mation content similarity measure [195] and the taxonomic shortest-path similarity
measure. In the following, we will specifically define those two prominent semantic
similarity measures on WordNet.

Taxonomic Shortest-Path Similarity The taxonomic shortest-path similarity by Hirst,
St-Onge, et al. depends on the length of the shortest path between two concepts x and y
in the WordNet taxonomy [105]:

simpath(x,y) := max
p∈P(x,y)

1
len(p)

(3.24)

Here, P(x,y) denotes the set of all paths in the WordNet taxonomy between x and y.
This measure is very intuitive, since the farther two entities are away in the taxonomy
tree, the less related they are.

Jiang-Conrath Distance and Similarity In [112], Jiang and Conrath proposed a dis-
tance measure on the WordNet hierarchy, which depends both on the aforementioned
path-based similarity as well as on an information content criterion inspired by Resnik’s
measure [195]. It is defined as

djcn(x,y) := IC(x) + IC(y)− 2 · IC(LSuper(x,y)), (3.25)
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where IC(x) is the information content of x in WordNet and LSuper(x,y) is the least
common subsumer, i.e., the lowest node in the WordNet hierarchy which both subsumes
x and y. In [44], Budanitsky and Hirst showed that the Jiang-Conrath distance yields the
highest correlation with human intuition among all of the compared similarity measures.
It is important to note that Equation (3.25) defines a distance measure. A corresponding
similarity measure can be obtained by e.g., calculating

simjcn(x,y) :=
1 +α

djcn(x,y) +α
(3.26)

with α > 0 to avoid division by zero.

3.2.4 Evaluating Semantic Relatedness Measures

The goal of creating a semantic relatedness measure is always to mimick human intuition
of semantic relatedness. To this end, it is necessary to ground the measure on a gold
standard of relatedness information. Additionally, we perform a statistical significance
check to see if the produced scores are indeed valid. Over time, literature provided
many options to do so. Schnabel et al. [204] listed a set of evaluation approaches and
discussed each of them briefly. We will focus on two approaches, which “ground” a
semantic relatedness measure on human intuition.

3.2.4.1 Grounding on Semantic Relatedness Datasets

In this work, we mainly focus on evaluation on semantic relatedness datasets, as done
throughout many works in literature [43, 44, 75]. While this way of evaluating semantic
relatedness has some flaws [71], it is one of the most direct options to evaluate the
modeled semantic information on human intuition. In fact, we will use this method
throughout the whole thesis as the main performance indicator of our models.

In order to correctly assess how well the semantic relatedness scores produced by a
relatedness measure fit to human intuition of semantic relatedness, we can compare
them to human judgment. As described in Section 4.4, there exist semantic relatedness
datasets which contain lists of word pairs together with human-assigned relatedness
scores, i.e., human judgment of semantic relatedness. The procedure of evaluating
semantic relatedness measures on those scores is then as follows:

1. For each pair of words in the human intuition dataset where both words also
possess a vector representation, calculate the cosine similarity of those vector
representations.

2. Calculate the correlation for the word pair ranking induced by the human-assigned
scores and the word pair ranking induced by the cosine scores.

3. The nearer the correlation score of both rankings is to 1, the better can the vector
representations be used to approach human intuition of semantic relatedness.
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It is furthermore important to note the number of pairs on which the correlation score
is calculated. A higher coverage of word pairs in an evaluation dataset also means a
stronger claim of validity for the calculated scores (see below). Additionally, correlation
scores from different word pair subsets are hardly comparable, since the actual gold
standard that we evaluate against changes. The reason why one can not always evaluate
against each single pair of concepts is that the concept might not even be present in the
underlying corpus.

We now briefly discuss the choice of the method to calculate correlation scores. In
literature, there largely exist two popular choices of how to determine the correlation
score. The first is the Pearson correlation coefficient, which determines a potential linear
correlation between two random variables X and Y [183]:

r := rX,Y :=
Cov(X,Y )
σXσY

=
Cov(X,Y )√

Var(X)Var(Y )
(3.27)

Cov denotes the covariance of X and Y , while σX is the standard deviation of X, which
equals the square root of its variance Var(X). The Pearson coefficient takes into account
the actual values of the random variables and compares them with each other. In contrast,
the Spearman rank correlation coefficient, relies on the ranking of the values, i.e., the
fact that one value is higher than another is more important, but not how much higher
it is. The value ranking of a random variable X is denoted by rgX and describes the
list position of each value in a sorted list of values. It thus measures the monotonic
correlation between two random variables and is defined as follows [214]:

ρ := ρX,Y :=
Cov(rgX , rgY )
σrgXσrgY

(3.28)

Concretely, this also constitutes a Pearson correlation, but between two rankings of
scores instead of the scores themselves. The constitued difference and the need for a
variation of the Pearson correlation coefficient can be seen in the Anscombe quartet.
The Anscombe quartet consists of 4 different distributions of data points with the same
Pearson correlation, but different Spearman correlations [7]. It is depicted in Figure 3.8.

Applied to the evaluation of semantic relatedness scores, the Spearman correlation
intuitively captures what measuring semantic relatedness is about: We want to be able
to validate an interpretable monotonic claim such as

money and bank are more closely related than drink and ear

than an uninterpretable judgment about an arbitrary absolute score, such as

alcohol and chemistry are 54.8% correlated.

We support this intuition by looking at the score standard deviation of the human
judgement scores in both WS-353 and Bib100, which will be introduced in detail in
Section 4.4 and Section 6.2, respectively. Figure 3.9 shows a joint scatter plot of mean
human judgment of relatedness together with its standard deviation. Especially for
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Figure 3.8: Anscombe quartet. There are 4 distributions depicted, each with the same
Pearson correlation score, but different Spearman correlations. While the
Pearson correlation measures a linear correlation, Spearman denotes the
monotonic correlation between two random variables X and Y .

the lesser related pairs, human judgment sometimes shows differences of more than
4 score points and is only relatively low near completely unrelated and highly related
word pairs. We also plotted the density of judgments to underline that obversation.
Thus, if humans are unsure how a medium-related pair of words should be judged via
an absolute score and thus give scores spanning a great range, it is not necessary for a
computer to return absolute values of relatedness, either.

Lastly, to determine the validity of a correlation score or an improvement upon another
score, it is necessary to get a notion of their statistical significance. For this, we can either
determine if the score is significantly different from zero, i.e., if the observed correlation
score is actually present, or if two scores are significantly different. To calculate a p-value,
we use Fisher’s z-transformation for Spearman correlation scores [74]:

p(ρ1,ρ2,n) := 1− error
0.5 · (z(ρ1)− z(ρ2)) ·

√
n− 3
1.06

 (3.29)
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(b) Bib100

Figure 3.9: Joint plot of mean human judgment with standard deviation for both WS-353
and Bib100 together with judgment density. For both datasets, the standard
deviation is lower towards the extremes of the judgment range, as can be
seen from the underlying density plot. The datasets will be introduced in
Section 4.4.

Here, z denotes the z-transformation z(ρ) := log 1+ρ
1−ρ and error is the Gaussian error

function error(x) := 2√
π

∫ x
0 e
−τ2

dτ . Finally, n denotes the number of samples on which
the two correlation coefficients ρ1 and ρ2 have been calculated. The constant 1.06 is
determined empirically [74].

Naturally, the higher n, the more valid is the claim. For example, the Spearman
correlation score of a ranking X = [1,2,3] with itself is ρ(X,X) = 1. A simple swap of
two items, e.g., Y = [1,3,2], results in a Spearman correlation score of ρ(X,Y ) = 0.5,
which is a difference of 0.5. However, if conduct the same experiment with a list of
100 items and again switch only the last two items, we obtain a score difference of 0.05.
Consequently, the more items are compared using the Spearman correlation coefficient,
the more difficult it is to create big score differences. Thus, the significance of a high
score difference is higher if the compared rankings consist of a large number of items.

3.2.4.2 Grounding on Word Thesauri

The semantic similarity measures proposed in Section 3.2.3.3, especially the Jiang-
Conrath measure, exhibit a very high correlation with human judgment [44]. In [48]
and [148], the Jiang-Conrath measure has been used as a proxy of an evaluation ground
truth for semantic similarity measures. We will describe that evaluation approach here,
because we will compare it to the evaluation on human judgment in Section 6.2.

Given a set of tags T and a context-based semantic similarity measure simctxt (cf.
Section 3.1.1) on these tags, we first calculate for each tag t ∈ T the most closely related
tag t′ ∈ T \ {t} according to simctxt. For each of these pairs (t, t′), we then calculate
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the mean of the WordNet-based semantic relatedness scores simwn(t, t′). Under the
assumption that sim(x,y) is bounded, this can be formally expressed as:

eval(simctxt , relwn) :=
1
|T |

∑
t∈T
simwn

(
t,argmax

t′,t
simctxt (t, t′)

)
(3.30)

Here, simwn is any similarity measure defined on WordNet. In this work, we use both the
taxonomic shortest path similarity (Equation (3.24)) as well as the Jiang Conrath distance
(Equation (3.25)), or more concretely, its similarity version, as defined in Equation (3.26).
We discuss this evaluation approach in Section 6.2 and compare it with the evaluation
on human judgment described in Section 3.2.4.1.

3.2.5 Post-Processing and Applying Word Vector Representations for

Semantic Information Gain

Often enough, word representations capture human intuition rather well, although
their abilities to reflect that intuition are always limited. While this on the one hand
depends on the algorithm to construct word embeddings, this representation is also
heavily influenced by the underlying corpus. Even corpora with standard vocabulary
and general topics that cover most of the vocabulary contained in human evaluation
datasets cannot exactly capture the actual relations and score rankings defined in the
evaluation datasets. For example, a corpus containing scientific papers will hardly be
able to correctly assess the semantic similarity of dog and cat. On the other hand, the
exact meaning of the word paper depends on the context it is used in. In order to fix
such problems, there have been some efforts to adapt or fine-tune existing word represen-
tations in a post-processing step, as well as methods that apply the vector representations
to discover additional knowledge.

In the following, we will first introduce the Retrofitting algorithm by Faruqui et
al., which is used to adapt vector representations to external semantic resources, in
this case to semantic lexicons [69]. After this, we describe an approach to discover
and disambiguate the different meanings of social tags, that is based on clustering the
context of those tags. This tag disambiguation algorithm has been proposed by Benz
[26].

3.2.5.1 Improving Vector Representations using Lexicons: Retrofitting

Faruqui et al. introduced a method called Retrofitting, where a set of existing word
vectors Q̂ is adapted to a semantic lexicon, i.e., a dictionary of word-word relations. For
example, the synset relations in WordNet can be interpreted as such a lexicon. In [69],
they aim to infer new vectors Q from the old ones Q̂ by ensuring that the new vectors qi
stay close to their old representations q̂i , but also close to the vectors qj of neighboring
words according to the semantic lexicon. The minimization function is thus

Ψ (Q) =
n∑
i=1

αi‖qi − q̂i‖2 +
∑

(i,j)∈E
βij‖qi − qj‖2

 (3.31)
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By varying αi and βij , it is possible to put different weight on each criterion. The set of
edges E, which define the neighborhood of a word, can for example be taken from an
ontology, such as WordNet. While the resulting word vectors improved representation of
semantics, Faruqui et al. could show that their results even hold in other languages. Also,
retrofitting only affects vectors of words that occur in the lexicon, while the remaining
vector space remains untouched. We will use Retrofitting as a baseline in Chapter 8.

Usually, those methods use external knowledge to either move some word vectors
nearer towards others or even change the complete vector space. Technically, this process
is called Metric Learning and has been an active field of research since 2003 [257]. The
goal is to learn a distance metric according to a given set of constraints. Bellet, Habrard,
and Sebban provided an exhaustive survey of metric learning algorithms in [23].

3.2.5.2 Discovering Word Senses Using Vector Representations

An important problem in modelling semantic information as vectors is polysemy, i.e.,
when a single word may have multiple meanings. Polysemy clearly affects functions of
social media such as information retrieval or browsing: Because of the different senses
of a word may be semantically unrelated (e.g., apple is both a fruit and a computer
manufacturing company), the user is presented with irrelevant content. While this
problem is present basically within all systems dealing with natural language, we
consider it especially in the context of social annotation systems, as the open vocabulary
as well as the lack of structure (compared to, e.g., the syntax of a written text) makes
this issue in social annotation systems unique and interesting.

NLP approaches in the field of word sense discovery like [66, 179] are typically applying
clustering approaches to divide a suitable context of a given term into partitions which
correspond to its senses. When transferring this idea to social annotation systems,
the problem can be divided into the following subproblems, (i) context identification,
i.e., how to construct a “suitable” context and (ii) context disambiguation, i.e., how to
subdivide this context into senses.

In the following, we describe a two-step approach for context identification and
disambiguation for tagging data, as described by Benz in his thesis [26]. We will use the
same approach later in Section 6.4, however this time in order to measure the impact of
user pragmatics (see Section 3.3.1) on the tag disambiguation process.

Sense Context Identification. In prior work, [9] performed extensive studies on the
characteristics of different context definitions for the task of tag sense discovery. The
authors examined tag- and user-based document networks, as well as tag co-occurrence
and similarity networks. It was found that tag similarity networks provided “the most
clear-cut results among all the network types”.

The next question is which tags to include in the context of a given tag t. The goal
here is to choose a sample of context tags which are representative for t’s main senses.
Here, Benz follows the heuristic described by [192], who found that the 20 strongest
first-order associations [. . . ] are [. . . ] a good mix of the two main senses for each word. In the
case of tagging systems, first-order associations correspond to tag-tag co-occurrences.
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Figure 3.10: The process illustrated in this section and an exemplary sense context graph
of the tag swing. While the upper tag cluster loosely corresponds to the golf
sense of the word, the lower tag cluster corresponds to the programming
library sense of the word. For readability reasons, only edges with weights
> 0.18 are included in this illustration.

Although Benz does not necessarily target to discover two main senses, he follows the
following steps to construct a context for a given tag t:

1. Let t ∈ T be a tag whose senses are to be discovered.

2. Let SCt = (Vt ,Et) be an initially empty undirected graph, whose edges are weighted
by a weighting function w : Vt→R. This graph is called the sense context graph for
t.

3. The vertices Vt are constructed by adding those 20 tags ti ∈ T ,ti , t, i = 1, . . . ,20
which co-occur most often together with t.

4. The edges are constructed by computing the pairwise tag context relatedness as
described above among all t ∈ Vt; an edge is added between ti and tj if their simi-
larity is greater than zero. The weights of the edges are given by the corresponding
similarity value.

Figure 3.10 shows the process of inferring senses from tagging data and an exemplary
sense context graph for the tag swing.

Sense Context Disambiguation. Given this graph representation of the context, the
next problem is how to divide it into partitions which denote different meanings.
Amongst others, clustering techniques have been used to this end, e.g., Clustering
By Committee [179], Markov Clustering [66] or graph clustering [9]. In a different
context, this problem is similar to community detection, for which modularity-based
clustering techniques showed promising results [132]. These techniques were also
applied to sense detection by [9].
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In order to better examine the influence of pragmatic factors, Benz adopted hierar-
chical agglomerative clustering as used in [28] as a representative of a standard sense
discovery algorithm. Based on the similarities among the context tags which form
the edges of the sense context graph SCt, the hierarchical clustering procedure can be
directly applied to form “sense clusters” in the following way:

1. Compute the distance matrix containing the distance between each pair of tags.
Similarity values s are transformed into distances d according to d = 1− s. Treat
each tag as a cluster.

2. Find the least distant pair of clusters using the distance matrix. Merge these
two clusters into one cluster. Update the distance matrix to reflect this merge
operation.

3. If all objects are in one cluster, stop. Otherwise, go to step 2.

This procedure results in a so-called dendrogram, which graphically depicts the level
of distance at which each merging step took place. Hierarchical agglomerative clustering
algorithms can mainly be differentiated based the scheme by which the distance matrix
in step 2 is updated. The core question here is how the distance between merged
clusters is computed. Let U = {u1, . . . ,ui} ⊆O be a newly created cluster by merging two
existing clusters S ⊆O and T ⊆O, and let V = {v1, . . . , vj} ⊆O be another cluster. Typical
standard schemes are single link, complete link or average link clustering. In [26], Benz
found that Ward’s minimum variance method showed the most promising results [242]. It
updates the distance matrix according to:

dist(U,V ) =

√
|V |+ |S |
x

dist(V ,S)2 +
|V |+ |T |

x
dist(V ,T )2 +

|V |
x

dist(S,T )2 (3.32)

(Here, x = |V |+ |S |+ |T |).
As stated above, the outcome of the clustering step is not a fixed set of clusters, but

rather a dendrogram which captures the agglomerative merging steps. In order to
derive clusters (which is desirable in this case), this dendrogram needs to be further
parameterized. One method is to “cut” the latter into a set of flat sense clusters by using
a distance threshold τ .

Once sense clusters are identified, the computed senses need to be labeled. In the
literature, the most popular tags within the resulting clusters are sometimes used [9].
Benz chose a single label by selecting the tag ti within the sense cluster which maximizes
the tag context relatedness to the tag t which is to be disambiguated. More formally,
let S = {t1, . . . , ti} be a sense cluster of t, and let sim denote one of the three relatedness
measures mentioned above. Then Benz chose the label tS for S by tS = argmaxt′∈Ssim(t, t′)

While no tags were eliminated from the sense cluster, tS can be taken as a rudimentary
description of what the cluster is about. We will refer to the remaining tags as sense tags
because they serve as additional descriptions.
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3.3 Characterizing User Behavior in the Social Web

Analyzing the behavior of humans in the web is since long a highly interesting topic
for a large part of the research community. Not only do researchers want to know how
humans make use of the resources in the web[38, 67, 141], but also why they act like they
do [4, 24, 221]. This knowledge can then be used to improve user interfaces or the kind
and amount of provided information so that humans are enabled to exploit the whole
potential of the World Wide Web. Additionally, there exists evidence that user behavior
also influences the semantic information of social media data. In the example of social
tagging systems, users who assign many different tags to their resources contribute more
valuable semantic information than users who make use of an organized, yet limited
vocabulary [122].

In this section, we first introduce several measures to categorize users of social tagging
systems according to their tagging behavior. After that, we describe a method to compare
hypotheses about user navigation. We apply that method in Chapter 5 on user navigation
in social media systems. In that context, we will also show that the tagging behavior of
users, as defined by the introduced measures, also impacts navigation behavior in social
tagging systems.

3.3.1 User Behavior Types in Folksonomies

As mentioned in Section 2.3, users in social tagging systems can be characterized by how
they assign tags to resources. For example, Strohmaier, Körner, and Kern defined the two
classes of categorizers and describers [221], while Lorince et al. identified supertaggers and
non-supertaggers [141]. In this work, we use categorizers and describers to measure an
effect of user tagging pragmatics on navigation behavior (Section 5.3) as well as on word
sense disambiguation (Section 6.4). In the following, we will describe some pragmatic
user measures which help us characterize users either as categorizers or describers, as
defined in [122].

3.3.1.1 Categorizers and Describers

The notion of categorizers and describers was initially presented by Strohmaier et al.
in [221] and further elaborated in [123] by introducing and evaluating different measures
for tagging motivation. We now introduce each measure, since we will also be using
them in Section 6.3.3 and Section 6.4 to measure the input of users on tagging semantics.

Vocabulary Size The first measure is the vocabulary size of a user:

vocab(u) := |Tu | (3.33)

Tu is the set of tags used by user u and has already been defined in Definition 3. Intu-
itively, categorizers are characterized by having a smaller, controlled vocabulary, while
describers freely assign tags to resources, thus probably possessing a large vocabulary.
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Tag/Resource Ratio (trr) The tag/resource ratio measures how many unique tags on
average were assigned to resources.

trr(u) =
|Tu |
|Ru |

(3.34)

This follows the same intuition as the vocabulary size, but might provide a clearer
picture of the verbosity of users than just the vocabulary size.

Average Tags per Post (tpp) Similar to the tag/resource ratio, the average tags per
post measure now measures how many tags were assigned per post. Essentially, this
should be the same as the tag resource ratio, except that we now also count multiple tag
occurrences, e.g., the same tag on several posts.

tpp(u) =
∑
r |Tur |
|Ru |

(3.35)

This addresses the verbosity nature of describers, who assign lots of tags to any resource.

Orphan Ratio Finally, the orphan ratio measures the number of abandoned tags.

orphan(u) =
|T ou |
|Tu |

,T ou = {t : ‖R(t)‖ ≤ n} ,n =
⌈
|R(tmax)|

100

⌉
(3.36)

Here, tmax denotes the tag that was used the most and defines a certain threshold for
each users. Tags below this threshold are considered “orphaned” tags, as they are rarely
used.

3.3.1.2 Generalists and Specialists

Another interesting distinction between different kinds of users and user behavior is
based on the diversity of interests. For example in [220], Stirling proposed a general
framework to measure diversity. The author suggests three fundamental properties to
measure diversity heuristically: 1. Variety targets the number of categories, 2. Balance
describes the distribution of items and 3. Disparity measures the degree of dissimilarity
of the elements.

Identifying topical interests is an important task in order to recognize “valuable” users
for different tasks. Kang and Lerman [115] for example introduce an automatic approach
to distinguish between expert and novice users based on the knowledge structure the
users express in social annotation systems. The authors define several features related
to the properties introduced by Stirling [220] described above.

In our work, we aim to distinguish between specialists who exhibit a narrow topical
focus when annotating resources and generalists who exhibit an interest in a wide variety
of topics. Although there is preliminary research on this distinction, no valid measures
for making this distinction automatically are available today. For this reason, we adopt
a set of four metrics – motivated by the work of Stirling [220] and others – that capture
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some high-level intuitions about generalists and specialists in social annotation systems
in general. We do not require these measures to represent valid measures for these
distinctions, because for the anticipated experiments it is sufficient that they capture
pragmatic factors. We leave the task of evaluating these measures in - for example -
human subject studies to future work.

Mean degree centrality This measure calculates the mean degree centrality (based on
the tag-tag co-occurrence graph) of all tags in a personomy and is determined by

mdc(u) =

∑
t∈Tu

deg(t)

|Tu |
. (3.37)

The calculation is based on the degree of a tag measured on the tag-cooccurrence vector
space of the folksonomy. The sum of the degrees of all tags is divided by the total number
of distinct tags Tu of this user. The intuition behind this measure is that generalists
would use more tags that co-occur with many other tags throughout the folksonomy.
Hence, generalists would get a high degree centrality whereas specialist would keep this
measure low. This metric covers the proposed disparity by Stirling [220].

Mean Q1 degree centrality This measure is similar to the mean degree centrality
described before. The equation for this metric is

mqdc(u) =

∑
t∈Q1u

deg(t)

|Q1u |
. (3.38)

The difference is that we just consider the most used tags of a user. To do this we
calculate the first quartile Q1u of the tag usage vector (i.e., the number of occurrences
of the tags) of a personomy. With this measure we want to remove the long tail of the
tag usage vector of a personomy and just focus on the most used tags. Again generalists
would acquire a high value whereas for specialists this measure should stay low.

Tag entropy The tag entropy characterizes the distribution of tags in a personomy and
is defined by

ten(u) = −
|Tu |∑
i=1

p(ti)log2(p(ti)). (3.39)

It can help us to understand user behavior based on tag occurrence distribution. Each
tag occurrence count in a personomy is normalized by the total number of occurrences
and stored in the probability vector p. A user can either use the tags of her personomy
equally often or can focus on some few tags very often. In the first case the tag entropy
would be high which would indicate that the user is more of a generalist whereas in the
second case the value would be lower and the person would provide more of a specialist
behavior.
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Similarity score The similarity score calculates the average similarity of all tag pairs
of a personomy. The formula for this final measure is

ssc(u) =
∑

t1∈Tu ,t2∈Tu ,t1,t2

sim(t1, t2)
|Tu | ∗ (|Tu | − 1)

(3.40)

The similarity sim(·, ·) of the tag pairs is measured by the cosine similarity of the tags’
vector representations. A high value would indicate that a person uses many closely
related tags and this would display that she focuses just on a topical sub-field of the
folksonomy leading to specialist behavior. In the other case the value would be low
if a user uses very dissimilar tags and this would describe a typical generalist of such
systems. This metric again covers the disparity of the tags within a personomy.

3.3.2 Navigation Behavior in Social Media Systems

The analysis of navigation behavior in the web is a wide field of research that has been
around as long as the web itself. Next to the analysis of navigation in the entire web
graph [150–152], researchers also aimed to understand navigation in closed systems like
Wikipedia [245, 247] or social tagging systems [64, 65].

3.3.2.1 Navigation in Wikipedia

Although Wikipedia can be used as a simple source of knowledge to satisfy an imminent
information need, its dense and meaningful link structure also invites to explore new
things. Sometimes, this serendipitous browsing behavior can lead to fascinating new
discoveries.19 Both the goal-oriented navigation and browsing navigation represent the
duality of navigation or searching, according to Guha, McCool, and Miller [89].

Navigating Wikipedia for fun: The Wikipedia Games A very concrete variant of
goal-oriented navigation manifested itself in the Wikipedia game, a navigation game
based on Wikipedia’s link structure, which we will describe in the following. Playing
a navigation game on Wikipedia dates back to at least 200420 21 and has been first
conceived by students at Amherst College22. In its original form, the main objective was
to navigate from a random source page to a random target page, which is picked first.
The source page is then determined by following a series of random links starting from
the target page. The actual game was then to find the way back using as least clicks
as possible. In order to prevent cheating, a number of rules had to be followed. For
example, it was only allowed to use links from the page’s content. Still, those navigation
games were played directly on the Wikipedia web page, so determining a winner or
preventing fraud was done manually.

19This has even been acknowledged in a very prominent web comic: https://xkcd.com/214/
20https://en.wikipedia.org/w/index.php?title=Wikipedia:Wiki_Game&offset=&limit=500&

action=history
21Keep in mind that Wikipedia only exists since 2001
22https://en.wikipedia.org/w/index.php?title=Wikipedia:Wiki_Game&oldid=7731042
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Table 3.2: Comparison of visited page types in game and unconstrained navigation on
Wikipedia. We can see that unconstrained navigation, as represented by
WikiClickIU and ClickStream, occurs more often on pages about Persons and
Movies. In contrast, game navigation from the WikiGame is less focused on
pages about these concrete instances.

WikiGame WikiClickIU ClickStream

Person 76 295 496
Movie 56 218 331
Other 858 476 172

Subsequently, two prominent Wikipedia navigation games have emerged that pro-
vided appropriate user interfaces to prevent cheating and to compete against players on
the whole world. The only purpose of the WikiGame23 was to create a fun game, easily
accessible for everyone. In contrast, Wikispeedia24 was explicitly created as a “game
with a purpose”, to collect navigation data in order to infer semantic relations between
Wikipedia articles [249]. The underlying network is from a static corpus designed for
schools [249]. The page corpus of WikiGame is not restricted to just a few pages, but
uses the whole available Wikipedia, but preprocesses each page before presentation, as
mentioned above.

Unconstrained Navigation on Wikipedia In contrast to the goal-oriented naviga-
tion of the Wikipedia games, users often also browse randomly across Wikipedia’s
link network. Singer et al. conducted a study about the motivations of people to use
Wikipedia [209] and found that a large portion of users visited Wikipedia to improve
their knowledge about a given topic by discovering related facts. Other users tended
to navigate Wikipedia out of boredom, where navigation was less targeted, but rather
serendipitous, i.e., about discovering entirely new things. Still, another group of users
visited Wikipedia to directly satisfy an information need, i.e., they are looking for a
specific concept and want to get to that information as fast as possible without randomly
navigating along the Wikipedia graph. Obviously, these types of behavior fundamentally
differ from behavior in a game setting. This can also be seen in the types of visited
pages. For this, we compared the entities of the top 1000 visited pages in the WikiGame,
the ClickStream and the WikiClickIU datasets, which we will still introduce in more
detail later in Section 4.2. Table 3.2 shows the distribution of page categories across the
three datasets. The majority of pages in WikiClickIU (∼53%) can be assigned to persons
and movies, as is the case in our baseline, ClickStream (∼83%). Opposed to that, the
WikiGame top pages mostly focus on other topics (∼86%).

23http://thewikigame.com
24http://www.wikispeedia.net
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3.3.2.2 Navigation Behavior in Social Tagging Systems

While social tagging systems have long been in the focus of research about the emergent,
individual and collective processes that can be observed in such systems, there have
been only rare attempts to understand the actual usage and navigation processes.

In [64], Doerfel et al. analyzed a large dataset of usage logs of BibSonomy, mainly with
regard to several assumptions about the way that users collect and share information.
However, they also gave a closer look to the retrieval behavior of people in social
tagging system, i.e., how they retrieve stored information. While in BibSonomy, most
information is shared publicly, Doerfel et al. noticed that the majority of navigation and
thus retrieval happens on a user’s own pages. While this first systematic analysis of
folksonomy usage shed some light on the behavioral properties of navigation, it only
focussed on local transitions. In order to obtain new insights about the global navigation
behavior, i.e., how users actually navigate BibSonomy, we extend upon this work in
Section 5.3.

3.3.3 Analyzing User Navigation using Navigational Hypotheses

Understanding human trails on the Web and the underlying generative processes is an
open and complex challenge for the research community. Previous work that addresses
these problems has been covered in Section 2.3.

A promising approach to generally model human navigation is provided by Markov
models, which have been previously used for clickstream data in [36]. Singer et al.
noted in [208] that while Markov chains of higher order are too complex and inefficient
to actually be useful, the memoryless first-order Markov model does account well for
human navigation on the Web. Singer et al. then presented the HypTrails method in [207].
Hyptrails is used to compare different hypotheses about user navigation and has been
applied in both web [19] and real-life contexts [22].

In this section, we will first give a short introduction to Hyptrails. We explain how
we formulate hypotheses about human navigation and then describe how Hyptrails is
used to qualitatively compare two hypotheses. After that, we define several standard
hypotheses from literature that serve as a basis for the analysis of user behavior in
Wikipedia (Section 5.2) and BibSonomy (Section 5.3).

In Chapter 5, we will apply HypTrails on human navigation data from Wikipedia
and BibSonomy in order to find a semantic component in navigation on these networks.
We will use the standard hypotheses defined below, adaptations thereof to the special
structure of the social tagging system BibSonomy as well as new hypotheses.

3.3.3.1 Formulating and Comparing Navigation Hypotheses with Hyptrails

We will now describe how we formulate hypotheses about how users navigate a specific
system and how HypTrails is applied to compare the evidence of these hypotheses to the
evidence of the actual navigation, using the Bayes factor. The higher the Bayes factor,
the more probable is a given hypothesis to have generated the navigational data.
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HypTrails utilizes first-order Markov chain models and Bayesian inference for express-
ing and comparing hypotheses about human navigation behavior. In our case, the states
of the Markov Chain are pages in a social media system, while our hypotheses represent
ideas about how users navigate these pages. Specifically, hypotheses are formulated as
transition probabilities. That is, given a page pi ∈ G in a link graph G, we define the
probability to choose any other page pj ∈ G as P (pj |pi).

We use transition functions P to represent hypotheses, which can easily be converted
into the required probability distributions by normalizing the values for each source
state pi :

P (pj |pi) =
1∑

pk∈G P (pk |pi)
P (pj |pi) (3.41)

To obtain insights into the relative plausibility of a set of hypotheses
H = {H1, . . . ,Hn} given data D, HypTrails resorts to the Bayes factor, which compares the
marginal likelihoods

P (D |Hi) =
∫
P (D |θ) · P (θ|Hi)dθ, (3.42)

also called evidences, of the different hypotheses Hi . Generally, a hypothesis Hi is more
“plausible” than another hypothesis Hj if its marginal likelihood P (D |Hi) is greater than
the likelihood P (D |Hj ). According to the reference table in [116], the difference of two
hypothesis evidences is decisive, if this difference is greater than 10. Thus, all differences
reported in Chapter 5 are decisive. Hypotheses are encoded into the marginal likelihood
via the prior P (θ|Hi) by eliciting the parameters of a Dirichlet distribution from the
corresponding transition probabilities of a hypothesis Hi and a concentration factor K .

The higher we set K , the more we believe in a given hypothesis. This means that
the higher K , the stronger we believe in the actual transition probability distribution
specified by the hypothesis. With lower values of K , the Dirichlet prior also assigns
probability mass to other probability distributions similar to the original one, thus, we
give the hypothesis some “tolerance“. To understand the difference of our hypotheses
in detail, we compare hypotheses based on different values of K . We always express
evidences on a log scale.

Note that, while HypTrails gives significant results regarding the ordering of the
plausibility of different hypotheses, it is not an absolute measure. We can thus only
give a qualified statement regarding the qualitative, not the quantitative difference in
performance between the evidence of two hypotheses.

3.3.3.2 Standard Hypotheses

In the following, we define several standard hypotheses for navigation that have been
proposed by Becker et al. [20] and Singer et al. [207]. They will serve as a basic charac-
terization of navigation in social media systems in Chapter 5. While Dimitrov et al. also
proposed some hypotheses for navigation on Wikipedia [61], we do not use them since a
main result of that work is that users preferably click links that they can see.
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Self-Loop Hypothesis The assumption here is that users would never leave the page
that they are currently on, because they keep refreshing the page. This hypothesis is the
absolute baseline, since it does not use the underlying network at all.

P self loop(pi ,pj ) =

1, if pj = pi
0, otherwise

(3.43)

Uniform Hypothesis This hypothesis expresses the belief that transitions from any
page to every other page are equally likely. This enables potential “navigation” to
otherwise not directly reachable pages, also called teleportation. The uniform hypothesis
also serves as a baseline, since it does not incorporate any knowledge of the network.

P unif orm(pi ,pj ) = 1 (3.44)

Structural Hypothesis Similar to the uniform hypothesis, this hypothesis represents
the belief that people navigate randomly, but this time they follow the provided link
structure, instead of teleporting to any possible page.

P structural(pi ,pj ) =

1, if (pi ,pj ) ∈ E
0, otherwise

(3.45)

Semantic Hypothesis Finally, the semantic hypothesis is based on the most amount
of knowledge about the system that users navigate on. Not only does it make use of the
link structure, but it also takes the semantic similarity of pages into account. Each page
pi is then represented by a vector vi . The semantic hypothesis thus postulates that users
on pi navigate towards pages pj whose vector representations vj are similar to vi .

P tf idf (pi ,pj ) = cossim(vi ,vj ) (3.46)

The construction process of the vector representation vi of page pi is determined specifi-
cally for each system.

Due to the usually very high number of states in navigation datasets, we additionally
restrict the semantic hypothesis to transitions between linked pages. This means that
users on pi navigate only towards pages pj , which are linked to pi , but prefer pages
whose vector vj is more similar to vi .

P tf idf (pi ,pj ) =

cossim(vi ,vj ), if (pi ,pj ) ∈ E
0, otherwise

(3.47)

This way, we have to compute significantly fewer transition probabilities than if we
assumed that semantic navigation was independent of the underlying link structure.

The semantic hypothesis will be in the focus of interest in Chapter 5, as it captures
the semantic component in human navigation of social media systems.
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3.4 Summary and Relations to this Work

The Web is a large fountain of knowledge. Especially with the advent of the Web 2.0
and its possibilities to easily contribute content, the interest rose in tapping into this
knowledge. While some of this knowledge is already captured in highly structured
databases, such as Knowledge Graphs or WordNet, the overwhelming majority is still
implicitly encoded in either slightly or completely unstructured text.

We introduced several potential sources of semantic information with varying amounts
of structure in Section 3.1, namely WordNet as a knowledge base, folksonomies such as
BibSonomy or Delicious, and Wikipedia as an information network. In order to make
this knowledge explicit and exploitable, we described methods to capture semantic relat-
edness information from text and tagging systems in Section 3.2. Here, we talked about
context-based word representation methods which construct sparse, high-dimensional
co-occurrence counting matrices as well as word embeddings methods, i.e., which embed
words in low-dimensional vector spaces. After discussing the choice of a suitable seman-
tic context to construct word representations, we introduced several similarity measures
that we use in this work. Finally we talked about potential evaluation approaches to
ensure the quality of the word representations introduced above. Here we emphasized
statistical tests to validate evaluation performance improvements. Lastly, Section 3.3
introduced and discussed several ways to measure the influence of human behavior on
web data. We concentrated on tagging behavior in folksonomies and on user navigation
in the web. For each, we introduced existing approaches, e.g., measures to determine the
type of a user determined by her tagging behavior in folksonomies and the HypTrails
approach to compare hypotheses about navigation behavior [207].

After having reviewed the methods and approaches presented in this chapter, we are
now able to define and present our advances in measuring semantic relatedness from
tagging data and navigation in social media systems.
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Chapter 4

Datasets

This chapter describes all datasets used in this work. Although we also use WordNet,
we already introduced it in Section 3.1.3. While Chapters 5 and 7 mainly focus on the
analysis of human navigation on BibSonomy or random walks on the Wikipedia link
network, Chapter 8 applies the results from Chapter 7 to learn improved semantic word
representations, but also uses folksonomy data and pretrained word embedding datasets.
The semantic evaluation is always performed on semantic relatedness datasets as the
most direct representation of human intuition.

Consequently, we partition the presentation of the used datasets into four categories:
We describe text-based datasets, i.e., folksonomy and Wikipedia article data, in Sec-
tion 4.1. Section 4.2 introduces all link-based datasets, such as WikiGame navigation
data but also the static BibSonomy link graph. In Section 4.3, we give an overview of the
pretrained word embeddings that we use in Chapter 8, while Section 4.4 finally describes
the semantic relatedness datasets that we use throughout this work for evaluation, but
also as a learning resource in Chapter 8. Table 4.1 lists all used datasets, their type and
the chapter where they are applied.

4.1 Text-based Datasets

The following section describes all text-based datasets used in this work. A dataset is
text-based, if it is somehow based on any kind of free-form word sequences, be it tagging
data from folksonomies or natural language texts as in Wikipedia articles. In the case
of folksonomy data, we cover three different datasets with tagging data from three big
social tagging systems, namely from Delicious, BibSonomy, and CiteULike. Delicious
is focused on information technoogy and design related fields, while BibSonomy and
CiteULike rely on a rather research-oriented audience. For each folksonomy dataset, we
provide a short overview of the dataset contents together with some basic statistics.

We also use three Wikipedia-based text datasets, the first two containing Wikipedia
article texts, while the third contains a lexicon of word senses, as provided by the
Wikipedia disambiguation pages. The Wikipedia article texts are used for the con-
struction of the semantic hypotheses for the WikiGame, Wikispeedia, ClickStream,
and WikiClickIU datasets in Section 5.2, while the Wikipedia disambiguation lexicon
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Table 4.1: List of all datasets used in this thesis. We also give the dataset type and the
chapters where each dataset is used.

Name Type Used in chapters

BibSonomy folksonomy text 5, 6
Delicious folksonomy text 6, 8
CiteULike folksonomy text 6
Wikipedia senses text 6
Wikipedia abstracts text 5, 7

WikiGame link 5, 7
Wikispeedia link 5, 7
WikiLink link 5, 7
WikiClickIU link 5, 7
ClickStream link 5, 7
BibSonomy request logs link 5, 7

WikiGloVe embeddings 8
WikiNav embeddings 8
ConceptNet Numberbatch embeddings 8

WS-353 relatedness 6, 7, 8
MEN relatedness 6, 7, 8
Bib100 relatedness 6, 7, 8
MTurk relatedness 6, 8
SimLex-999 relatedness 6, 8

provides the evaluation basis for the sense discovery process in Section 6.4.

4.1.1 Delicious tagging data

Delicious1 is a social tagging system, where users can share their webpage bookmarks
and freely annotate them with tags. The system has been started in late 2003, pioneering
social bookmarking in the web and up until recently, remained one of the most widely
used social tagging applications. However, after being repeatedly sold to different
companies, the effort spent on maintaining Delicious slowly deteriorated and in the
summer of 2017, it was finally shut down. Its userbase was mainly interested in
design and computer science topics, as can be seen from the list of the ten mostly used
tags. Furthermore, the used tags cover rather “normal” words instead of serving as
functional elements of the corresponding system. Still, we analyze the tagging data from
Delicious because it has been thoroughly studied in the literature and offers sufficiently
meaningful and fine-grained emerged semantics and also covers slightly different and
more mainstream topics than the other two tagging datasets that we analyzed. In this

1http://www.delicious.com
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Table 4.2: Statistics about the Delicious dataset.

popular tags Statistics

design, blog,
tools, webdesign,
software, web,
reference,
programming,
video, music

Complete dataset
|Y | |U | |T | |R| |P |
1 026 152 357 1 951 207 14 782 752 118 520 382 339 383 297

Restricted dataset (top10k most popular tags)
|Y | |U | |T | |R| |P |
813 996 501 1 890 707 10 000 93 842 540 289 573 985
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thesis, we use a freely available dataset from 2011, which was provided by [270]. The
dump is freely available for download at 2. We list some basic statistics about the
Delicious tagging data in Table 4.2.

4.1.2 BibSonomy tagging data

The social tagging system BibSonomy provides users with the possibility to collect
bookmarks (links to websites) or references to scientific publications and annotate them
with tags.3 It was created in 2006 as a practical implementation of the folksonomy
model and to explore new research ideas hands-on [27]. Since then, a great ecosystem for
integration with Google Scholar, WordPress, Typo3 and other publishing and publication
management tools has grown both in possibilities and interest. Because tagging systems
have long been in the focus of spammers (cf. [125]), we filtered this dataset to only
include data of manually classified non-spammers. The used BibSonomy dump covers all
non-spam tagging assignments from 2006 till the end of 2015.4 Most notably, Table 4.3
shows that the BibSonomy dataset is the smallest of all the folksonomy datasets, which
partially impacts results when using this dataset in experiments [26]. We will however
see that BibSonomy folksonomy data still provide a valuable asset to calculate semantic
relatedness.
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Table 4.3: Statistics about the BibSonomy dataset.

popular tags Statistics

imported, software, web,
deutschland,
programming, blog,
tools, myown, research,
internet

Complete dataset
|U | |T | |R| |Y | |P |
9 401 186 228 1 204 544 3 529 046 1 304 919

Restricted dataset (top10k most popular tags)
|U | |T | |R| |Y | |P |
8 632 10 000 1 019 473 2 770 082 1 113 707
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4.1.3 CiteULike tagging data

We took a snapshot of the official CiteULike page from September 2016.5 Since CiteU-
Like describes itself as a “free service for managing and discovering scholarly refer-
ences”, it contains tags mostly centered around research topics. From Table 4.4 it can
be seen that it is especially popular with biologists, because tags describing the worm
“Caenorhabditis elegans” are frequently occurring, although also some functional tags
like “no-tag” and “bibtex-import” appear often. While notably bigger in size than the
BibSonomy folksonomy dataset, the specialized vocabulary of the CiteULike folksonomy
data could possibly impact any kind of semantic relatedness calculations. We will see
evidence for this in Section 6.5.

4.1.4 Wikipedia article texts

While we do not directly leverage the content part of Wikipedia in this work to calculate
semantic relatedness, we still exploit it for e.g. creating hypotheses about navigation
in Wikipedia or to create baselines for semantic relatedness extraction from navigation
(see Chapters 5 and 7).

We employ two differently dated snapshots of Wikipedia articles: The first snapshot
is from 2011 and corresponds to the version of Wikipedia where most of the games in
our WikiGame dataset have been played on. The second snapshot dates to 2015 and
corresponds to the links present in the ClickStream dataset, which will be described in

2http://www.zubiaga.org/datasets/socialbm0311/
3http://www.bibsonomy.org
4http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
5http://www.citeulike.org/faq/data.adp
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Table 4.4: Statistics about the CiteULike dataset.

popular tags Statistics

no-tag, bibtex-import,
qchem, nucl review,
humans, elegans,
celegans, c_elegans,
nematode

Complete dataset
|U | |T | |R| |Y | |P |
151 417 976 799 5 206 525 22 712 888 6 710 449

Restricted dataset (top10k most popular tags)
|U | |T | |R| |Y | |P |
141 398 10 000 4 548 320 15 988 259 5 780 554
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Table 4.5: Properties of the Wikipedia text datasets.

Dataset Covered Pages/Concepts Raw Vocabulary size used in chapter

Wikipedia 2011 3 727 955 2 245 332 5, 7, 6
Wikipedia 2015 5 057 105 6 191 635 5, 7

the next section. Statistics about both datasets are given in Table 4.5.

4.1.5 Wikipedia disambiguation pages

Furthermore, we use the 2011 Wikipedia dataset to collect a large collection of possible
word senses for tags in Delicious and BibSonomy by parsing the so-called disambiguation
pages in Wikipedia. These pages can either be identified by their URL (containing
the suffix _(disambiguation)), or via their membership to the Wikipedia category of
disambiguation pages. Such pages list several possible senses or meanings of a given
word, together with a brief sentence that characterizes that sense. A sense is one of
possibly many different meanings of a word, depending on its context, e.g., banks could
mean the banks of a river or a number of financial institutes. For a polysemous term, such
a page typically contains an enumeration of its senses in form of a bulleted list, with
each item containing a short description of that sense. If no disambiguation page was
available, we used the first paragraph of a page as description, because it often describes
the “standard meaning” of that term. The dataset at hand contains 9820 word sense
lists, where however 6315 only have a single sense. Figure 4.1 shows the distribution of
senses in Wikipedia for those 9820 words. Most words have between 10 and 20 different
meanings.
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Figure 4.1: Distribution of Wikipedia senses per tag for 9820 tags from Delicious and
BibSonomy. While 6315 tags only have a single sense, most words have
between 10 and 20 different meanings.

4.2 Link-based Datasets

The following section covers all link-based datasets used in this work. We call a dataset
link-based, if it does not directly contain any textual information and can directly be
expressed as an unweighted or weighted graph. This includes both static link networks
as well as transition graphs collected from human navigation on the web.

The investigation of these datasets in order to extract semantic relatedness from them
is especially intriguing, since (i) we do not have to rely on natural language text anymore
to extract semantic information between concepts and (ii) open up another dimension
where semantic relatedness information is subconciously applied by humans.

In this section, we describe several Wikipedia-based link datasets, including four
datasets of actual human navigation on Wikipedia, both in a game and an unconstrained
setting, and the raw link networks corresponding to the page datasets presented in the
previous section. Furthermore, we introduce the BibSonomy folksonomy link network
as well as a dataset with human navigation on BibSonomy spanning several years. The
datasets introduced in this section are in the central spot of Chapters 5 and 7, where
we will first analyse the datasets for a potential semantic component that drives human
navigation and then attempt to extract that information using the vector space model
introduced in Section 3.2.1.1.

4.2.1 Navigation Games on Wikipedia: WikiGame and Wikispeedia

The first available datasets containing information about navigation on the Wikipedia
graph were collected in game settings. The game hoster can collect data in a controlled
navigation scenario and does not have to be overly concerned with privacy issues, as
users do not follow their own, private interests. Thus, access to such data is easier and
less cumbersome. Furthermore, as people have fun playing such a game, they do so
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Table 4.6: Characteristics of the WikiGame navigation dataset.
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All paths
Only successful paths
Only successful paths

Pages Sessions Users Paths per user
360,417 361,115 260,095 6.92

Paths Nodes ∅ path len.

All 1,799,015 10.758,242 5.98
Succ. 653,081 4,116,879 6.30
Unsucc. 1,145,934 6,641,363 5.80

Most popular pages
United_States, United_Kingdom, England, Europe, North_America,
New_York_City, California, France, Japan, U.S._state

repeatedly and finally generate lots of data. In this work, we use two different datasets
containing game navigation, namely data from the WikiGame and from Wikispeedia.

4.2.1.1 WikiGame

The WikiGame dataset is based on the online game “The WikiGame”6.This platform
offers users a multiplayer game, where the goal is to navigate from one Wikipedia page
(the start page) to another Wikipedia page (the target page) which is linked to the start
page through Wikipedia underlying topological link network. The users can leverage
most of Wikipedia’s directed link structure to reach their target node. However, the
WikiGame removes certain links (such as category links or links to page lists). Other
competition modes than randomly generated games are for example such as “5 clicks to
Jesus”, where players have to reach the Jesus page in 5 clicks or less.

In some cases, the WikiGame data suggest that users follow links in their paths
between articles that might not yet exist in Wikipedia’s topological link network. This
can happen when, for example, users use the back button in their browser to navigate
to a previous article, and the current article does not have a link back to the previous
one. We cannot easily determine the page to which the user has backtracked, since
the WikiGame data only log the visited page, not where the click originated. One
explanation for such behavior could be that users originally end up at a concept they
are not happy with and decide that going another route may be a better idea. This is a
rich feature of this dataset as it enables us to establish relations between concepts that
we normally would not see using Wikipedia’s link network.

Furthermore, we know which paths are successful – i.e., the user has reached the
target concept – and which are unsuccessful – i.e., the user has failed to find a route to
the target in the given timeframe. Table 4.6 shows some main characteristics of the
WikiGame dataset. The adjusted dataset at hand consists of 1 799 015 navigation paths
captured between 2009-02-17 and 2011-09-12. We can see differences in the path length

6http://thewikigame.com/
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Table 4.7: Characteristics of the Wikispeedia navigation dataset. Please note that the
number of users in Wikispeedia and all dependent statistics are based on the
number of unique ip address hashes, so the number of actual users might be
lower than that.
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42,631 4,182 20,868∗ 3.65∗

Paths Nodes ∅ path len.

All 76,193 442,605 5.81
Succ. 51,318 4,169 6.36
Unsucc. 24,875 4,061 4.68

Most popular pages
United_States, Europe, United_Kingdom, England, Earth, Africa, World_War_II,
North_America, Animal, Brain

distribution for successful, unsuccessful paths and all paths, but each distribution
exhibits a peak at a length of around six (Table 4.6).

4.2.1.2 Wikispeedia

Wikispeedia is an online game similar in nature to the WikiGame. It has been created by
Robert West as part of his research on human navigation in online networks [203, 246,
247], but more specifically to extract semantic relations between words from human
navigation [249]. In this game, users are again provided with a start and a target page.
Contrarily to the WikiGame, users do not compete with each other to e.g., be the fastest
person to reach the goal page, but rather play the game individually. An interesting
feature that this dataset posesses is that backclicks are explicitly recorded, in contrast
to the WikiGame data, where only the visited pages are recorded. To assimilate the
structures of both datasets, we remove the backlick information in the Wikispeedia
data and only leave the page visit information. The collected navigation data can be
freely downloaded7. Compared to the WikiGame dataset, the Wikispeedia dataset is
very small in size and restricted to only a very small body of preprocessed articles,
based on an excerpt of Wikipedia created for schools8. However, it still can serve as a
fully-featured dataset containing human navigation in a game setting, and acts another
basis for the claims made about constrained vs unconstrained navigation later on in
Section 5.2. Again, Table 4.7 shows some main characteristics of the Wikispeedia dataset.
The distribution of path lengths is depicted in Table 4.7.

7http://snap.stanford.edu/data/wikispeedia.html
8http://schools-wikipedia.org/
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Table 4.8: Characteristics of the ClickStream navigation dataset. Please note that Click-
Stream only consists of transition data, so the path length distribution consists
of only one data point.

Pages 2,193,539 Nodes 984,979,972
Paths 12,366,773 ∅ path len. 2

Most popular pages
Deaths_in_2015, Fifty_Shades_of_Grey_(film), 87th_Academy_Awards, Bird-
man_(film), Islamic_State_of_Iraq_and_the_Levant, Dakota_Johnson,
Fifty_Shades_Darker, Jamie_Dornan, Fifty_Shades_Freed, Jane_Wilde_Hawking

4.2.2 Unconstrained Navigation on Wikipedia: ClickStream and

WikiClickIU

While game navigation data are collected in a controlled setting, as mentioned above,
real-world navigation does not impose any constraints on users. Consequently, the
behavior in unconstrained settings is fundamentally different to that of users in game
settings. For example on the public version of Wikipedia, we expect browsing users
to rather explore new knowledge and to be interested in concrete information about
books or actors rather than pages about common knowledge, such as tree or apple. Our
results about unconstrained navigation are obtained from the analysis of two datasets:
ClickStream, which contains navigation collected directly on the Wikipedia page, and
WikiClickIU, collected at the University of Indiana.

4.2.2.1 ClickStream

To approximate large-scale, unconstrained human navigation behavior on Wikipedia
originating from the whole web, we use a dataset extracted from the Wikipedia web-
server logs in February 2015 [255]. This dataset contains an accumulation of transitions
with their respective occurrence counts, i.e., how many users used a particular transition
between two Wikipedia pages in the whole month. Transitions with less than 10 occur-
rences have been removed. We only used the transitions with both source and target
pages inside the main namespace of Wikipedia. This dataset is by far the biggest dataset
with human navigation data that we have access to and spans a large part of the actual
Wikipedia link graph (cf. Table 4.10). However, it is also the most anonymized dataset,
where we get no information about individual users. With over 984 979 972 requests
across 12 366 773 links, originating from 1 383 301 pages to 2 046 154 target pages on
2 193 539 pages overall (as shown in Table 4.8), we receive a very clear representation of
at least aggregated human navigation on Wikipedia.

4.2.2.2 WikiClickIU

The WikiClickIU dataset contains navigational information from real-world traffic on
Wikipedia, originating from the University of Indiana. It is part of a larger dataset of
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Table 4.9: Characteristics of the WikiClickIU navigation dataset.
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Table 4.10: Size comparison of all Wikipedia link datasets. We report the number unique
pages, the number of uniquely visited links, as well as the unique source
and target pages of these links.

Dataset Pages Links Sources Targets
WikiLink 2011 3 594 896 208 276 022 3 587 386 3 577 026
WikiLink 2015 4 801 501 315 049 408 4 797 593 4 437 093

ClickStream 2 193 539 12 366 773 1 383 301 2 046 154
WikiClickIU 810 626 910 170 338 552 492 601
WikiGame 360 417 2 266 623 330 693 357 068
Wikispeedia 4 182 58 043 4 177 3 768

about 53.5 billion HTTP requests originating from Indiana University between 2008
and 2010, which was published by Meiss et al. to study structure and dynamics of
Web traffic networks [151]. The data have been strongly anonymized, so there is no
information about the IP where the request originated or the currently navigating user.
However, referer information for each log entry is provided, so we can at least partially
reconstruct the subset of the Wikipedia graph actually traversed by users and make out
individual sessions. All requests originating from and targeting the Wikipedia domain
were extracted, thus about 4 million requests with 1.3 million distinct target Wikipedia
content pages were retained.We were furthermore able to reconstruct a set of 1 295 550
navigational paths with an average path length of 2.06, as shown in Table 4.9.

4.2.3 Wikipedia’s Static Link Network: WikiLink

The WikiLink datasets represent the plain link network of Wikipedia in two snapshots,
corresponding to the Wikipedia page datasets presented in the previous section. The
datasets are restricted to only direct links (no redirects) between pages in the main
namespace of Wikipedia. Table 4.10 displays basic statistics for both WikiLink datasets
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Table 4.11: Characteristics of the BibSonomy navigation dataset.
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Nodes 742,844
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/user/gottfriedv, /user/avs, /user/thorade,
/user/jaeschke, /user/trude

in comparison to all other Wikipedia navigation datasets that we introduced until now.
We use two snapshots of the Wikipedia link network. The first WikiLink snapshot

is from July 2011. The reason for this choice was that this was the dump closest to the
timestamps in the WikiGame dataset that was publicly available9. We obtained the
present page-to-page network provided by this dump and limited it to links between
pages from the main namespace and also to links between the distinct pages available
in our WikiGame dataset. The reason for this is that in Section 7.2.2.2, we compare
the human navigational paths through the network with the corresponding topological
network to see if human influence in the form of navigation impacts the quality of the
semantic model upon the link network. Additionally, we use the 2011 WikiLink snapshot
to analyze navigation in the WikiGame and WikiClickIU datasets (see Section 5.2). We
also used a WikiLink dump from February 2015. This dataset served on the one hand
again to provide the basis for a structural analysis of unconstrained navigation for the
ClickStream navigation dataset in Section 5.2, but also as a basis to generate random
walks across the whole of Wikipedia as well as some subsets of the link network in
Section 7.2.4. Finally, to analyze navigation on Wikispeedia, we used the link graph
provided by West and Leskovec, which was extracted from the “Wikipedia for schools”
project, on which Wikispeedia is based (cf. Section 4.2.1.2).10

4.2.4 BibSonomy Website Usage

We were able to collect a large dataset of webserver request logs on BibSonomy that
we use to shed light how people make use of the system. In this thesis, we analyze the
motivations of user navigation behavior in BibSonomy in Section 5.3. Additionally, we
attempt to extract semantic information from human navigational paths on BibSonomy
in Section 7.3. In the following, we will first describe the raw log files of BibSonomy,
before provide some information about the navigational paths.

9Wikipedia only makes a specific amount of recent dumps available for download
10http://snap.stanford.edu/data/wikispeedia.html
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Table 4.12: BibSonomy request log and link network statistics. We report both the
statistics for the BibSonomy request logs, collected from 2006 to 2012, and
statistics about the static BibSonomy link network that we constructed. We
provide information about the unique pages, the number of unique links
between pages, as well as the number of unique source and target pages in
each dataset.

Dataset Requests Pages Links Sources Targets

BibSonomy logs 479 471 181 974 248 299 92 842 154 692
BibSonomy logs, min 1
tag

327 060 150 328 208 929 77 125 128 036

BibSonomy link net-
work

- 5 609 774 69 552 262 5 609 774 5 609 774

4.2.4.1 BibSonomy Request Logs

The BibSonomy log files include all HTTP requests to the website (caching is disabled),
including common request attributes like IP address, date, referer and target, as well as a
session identifier and a cookie containing the name of the logged-in user.

We first restricted the datasets to data that had been created between the start of
BibSonomy in 2006 and the end of 2011, since early in 2012 the login mechanism was
modified, which introduced significant changes to the logging infrastructure. Out of
the over 2.5 billion requests, we additionally filtered out requests to extra resources
including CSS, JavaScript, and image files as well as requests from web bots (using a
heuristic comparing user agents to those of known bots in various online databases).
Due to its high rank in search engines, BibSonomy is a popular target for spammers.
Spammers are users who store links to advertisement sites to increase their visibility
on the web. BibSonomy uses a learning classifier [125] as well as manual classification
by the system’s administrators to detect spam. In our experiments, we only considered
direct (i.e., no redirected) valid requests, which have been generated by logged-in
nonspammers. Furthermore, both the referer and the target page of a request must be
a retrieval page (see Section 3.1.1.2). Table 3.1 lists all considered retrieval pages. For
example, the page /tag/web is considered a retrieval page, since it issues an explicit
query, namely all resources tagged with web. On the other hand, /settings is not
considered as a retrieval page, because it does not query the content database. Although
both the landing page as well as search pages show information from the tag assignment
table, they do not count as retrieval pages, because the information there was not
explicitly requested, as opposed to tag filtering, user requests or document pages.
Finally, we only consider those pages which contained any content, i.e., where any tags
were shown. This is not the case if, for example, a tag list is filtered by a non-existent tag.
After filtering requests The remaining dataset then retains 327 060 log entries, generated
by 17 932 nonspammers on 150 328 unique BibSonomy pages. The statistics can be seen
in Table 4.12.
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4.2.4.2 Human Navigational Paths on BibSonomy

The log dataset unfortunately only contains information about the particular clicks that
a user made on BibSonomy, but no direct information about the complete path that she
took. Because we have a lot of information about the navigating user, the requested
resources as well as the referring pages of a click, we can partially reconstruct how these
users actually navigated the system along several clicks.

For this, we first group the set of transitions both by the session ID and the navigating
user. We then sort the transition groups by their date and then construct a forest of
navigation trees by connecting each transition (pi ,pj) with another transition (pj ,pk),
which has both the closest click date and where there target page of the first transition
equals the referer page of the second transition. Finally, we consider each path from
the root node of such a navigation tree to each of its leaves as a single navigation path.
With this method, we were able to create 263 373 paths with a mean length of 2.82 (see
Table 4.11).

4.2.5 The BibSonomy Link Graph

Finally, we describe the BibSonomy link graph that we use in Section 5.3. The BibSonomy
link graph denotes the potential links that users can follow when browsing on the
BibSonomy website, i.e., its user interface.

Most importantly, we have to note that there exists no explicit link graph as in
Wikipedia, where the link graph is given by the manually inserted links between
different articles. A great portion of the BibSonomy link graph is implicitly defined
by the folksonomy relations between users, resources and tags, as described in Sec-
tion 3.1.1.2. However, since the BibSonomy user interface provides links that do not
exist as folksonomy relations due to usability reasons, the BibSonomy link graph also
contains links between related or co-occurring tags, posts with the same resource from
different users, or even from users to similar users. All of these links are generated
programmatically. As we are mainly interested in navigation on the folksonomy part
of BibSonomy, we restricted link generation to only retrieval pages (cf. Table 3.1). Fig-
ure 4.2 shows the links that we generated between the retrieval page types for each
tag assignment (USER,TAG,RES) ∈ Y . There also exist dynamically created links, for
example, from each page to the user page of the currently logged in user. Because we
would have to generate a link graph for each user that we analyze, we ignore them in
this work. We also do not consider links from tag pages to accumulated tag pages, such
as /tag/web to tag/web+science, since this would result in a exponentially growing
link graph, where almost all transitions would never have been visited. The resulting
link graph contains 69 552 262 transitions between

4.3 Pretrained Word Embeddings

In order to prove the universality of the proposed methods in Chapter 8 to learn semantic
relations in both supervised and unsupervised settings, we applied these methods both

83



4 Datasets

/tag/TAG

/user/USER

/url/RES

/bibtex/RES

/bibtex/RES/USER

/user/USER/TAG

Figure 4.2: The available links between resource pages in the BibSonomy link graph.
Loops denote not only that a page can link to itself, but also to other pages
of the same type. The BibSonomy link graph contains more edges between
different pages than the folksonomy model provides. For example, in a
folksonomy, there are no direct links between same entities, which however
exist in the BibSonomy link graph.

to our own constructed semantic vector models as well as to pretrained word vectors.
This section describes only the pretrained word embedding datasets. We chose the
pretrained vector datasets to show an application of the navigational semantics that we
investigated in Chapter 7, but also to work with otherwise widely-used datasets, that are
also often applied in many NLP tasks. The first two embedding datasets are constructed
from Wikipedia article texts and Wikipedia navigation, respectively, while the third set
of embeddings has been constructed by combining GloVe vectors with the Google News
Word2Vec vectors11 and aligning them with the knowledge base ConceptNet, which has
already been mentioned in Section 3.1.4. The algorithms used to create those datasets
have already been introduced in Section 3.2.1.2.

4.3.1 WikiGloVe

The authors of the GloVe embedding algorithm [184] trained several datasets of vector
embeddings on various text data and made them publicly available.12 Because it has
been demonstrated several times that the textual content of Wikipedia articles can
be exploited to calculate semantic relatedness [81, 189], we use the vectors based on
Wikipedia as a reference for word embeddings generated from natural language. This
dataset consists of 400 000 vectors with dimension 300.

11https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
12https://nlp.stanford.edu/projects/glove/
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4.3.2 WikiNav

Wulczyn published a set of word embeddings generated from navigation data on the
Wikipedia webpage [254] using Word2Vec [156]. Word2Vec was originally intended
to be applied on natural language text, though it can also be applied on navigational
paths [55]. While technically the generated embeddings represent pages in Wikipedia,
most pages also describe a specific concept and we can thus use the generated vectors for
both page and semantic word representations. It has been shown that exploiting human
navigational paths as a source of semantic relatedness yields meaningful results [175,
210, 249]. The dataset at hand consists of 1 828 514 vectors with 100 dimensions. The
vector embeddings have been created from all navigation data in the month of January
2017 and are publicly available.13

4.3.3 ConceptNet Numberbatch

Speer, Chin, and Havasi [217] combined sets of GloVe and Word2Vec vector em-
beddings together with relations from their own semantic network ConceptNet using
retrofitting [69] to receive vector embeddings which currently pose the state-of-the-art
concerning performance in several semantic evaluation settings, such as word related-
ness. The produced vector embeddings achieve correlation values of 0.866 with the
MEN dataset or 0.828 with the WS-353 dataset. We are using the 16.09 version of the
ConceptNet Numberbatch vectors, because these vectors are given as reference in [217],
where the authors claim to have posed a new state-of-the-art performance in correlation
with human intuition. This dataset consists of 426 572 vectors of size 300. The vectors
are freely available for download.14

4.4 Semantic Relatedness Datasets

In order to achieve a realistic judgment of the quality of semantic relatedness scores of
any similarity measure, we need to compare them with human intuition of semantic
relatedness. For this, we use datasets with collected scores of human judgment about the
semantic relatedness of a set of word pairs, which is the most direct representation of
human intuition we can find. These human scores have been gathered by crowdsourcing
jobs, i.e., from more or less random people, who are not necessarily linguistic experts.
Still, the chosen vocabulary and combination of word pairs have been specifically
designed for each crowdsourcing experiment.

In this section, we describe several such datasets with regard to their size, their
covered vocabulary and their construction process. Table 4.13 provides an overview
over all semantic relatedness datasets.

13https://figshare.com/articles/Wikipedia_Vectors/3146878
14https://github.com/commonsense/conceptnet-numberbatch/tree/16.09

85

https://figshare.com/articles/Wikipedia_Vectors/3146878
https://github.com/commonsense/conceptnet-numberbatch/tree/16.09


4 Datasets

Table 4.13: Base statistics for the human intuition similarity datasets. RPP stands for
“Ratings per pair” and denotes the number of judgments that each pair
received. The final relatedness scores are calculated as the average of the
assigned judgments.

Dataset Pairs Words Score Range RPP

RG65 65 48 0,0–4,0 15/36
MC30 30 39 0,0–4,0 38
WS-353 353 487 0–10 13-16
MTurk 287 499 1–5 23
MEN 3 000 751 0–50 50
SimLex-999 999 1 028 0 – 10 ≈50

4.4.1 RG65

The RG65 dataset has been published for a very early judgment of human understanding
of semantic similarity and context comparison [199].

Origin of Words: The authors proposed a set of 65 word pairs generated from 48
general nouns, which seem to be chosen arbitrarily. It was explicitly stressed that “there
was no necessity to study technical vocabulary”, partially, because “using technical
vocabulary would raise the practical difficulty of finding enough competent people to
serve as judges of synonymy of such words” [199]. 15

Data Collection Process: The scores have been collected from two disjunct groups of
students. The first group of 15 subjects was asked to judge the degree of “similarity of
meaning” of a set of 48 word pairs, later from which 12 pairs were discarded, resulting
in 36 word pairs together with human judgment. Each pair has been given a rating
between 0,0 and 4,0. The average inter-rater correlation on these 36 pairs amounted to
85%. The second group, consisting of 36 subjects, was then provided with the final 65
word pairs (which also contain the 36 pairs from the first group). Again, each pair has
been given a rating between 0,0 and 4,0. This way, the authors were able to ensure that
the provided scores were accurate and of a high quality.

Data Quality: The inter-rater correlation between the first and the second group of
raters was as high as 99%. Thus, the data can be assumed to be of a sufficient quality
to be regarded as a direct and reliable representation of human intuition of semantic
similarity. However, the RG65 collection suffers from its small size of only 65 word pairs.
Also, since this dataset contains mainly similar word pairs, it is not perfectly suited to
evaluate semantic relatedness, which is a much broader notion of semantic relationship
(see Section 3.2.3.1).

15Technically, this can be seen as an early variant of the knowledge acquisition bottleneck.
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4.4.2 MC30

Miller and Charles re-created a part of the RG65 dataset and selected a subset of 30 word
pairs consisting of 39 words, taken from the MC30 pairs. The goal was to determine
whether students still agree with the semanntic similarity scores from MC30. [160]

Origin of Words: The 30 word pairs are to equal parts taken from RG65 as follows: 10
pairs are from the top portion of RG65, 10 pairs from the medium related pairs, and 10
pairs are taken from the least correlated set of pairs in RG65.

Data Collection Process: A group of 38 students from the State University of New
York at Oswego were asked to judge the similarity of meaning of each word pair on a
5-point scale from 0 to 4. In order to obtain a notion of different degrees of synonymy,
they were shown three characteristic pairs from RG65. Furthermore, the students were
free to re-rate the pairs at will.

Data Quality: The reproduced scores exhibit a Pearson correlation of 0.97 and a
Spearman rank correlation of 0.95 with the original RG65 scores. From this, it can be
concluded that not only the scores’ quality is very high, but also that human “estimates
remain remarkably stable over more than 25 years” [160].

4.4.3 WS-353

WS-35316 (WordSimilarity-353) [75] is one of the most widely-used and established da-
tasets of human generated relatedness scores to evaluate semantic relatedness measures.
It consists of 353 pairs of English words and names with corresponding relatedness
scores between 0 and 10 for each pair.

Origin of Words: Unfortunately, it is not clear how the words were chosen, except that
all 30 noun pairs from the MC30 dataset provided by [160] are contained.

Data Collection Process: Two groups of raters were asked to judge the semantic
relatedness of all 153 words in this dataset. They had to assign a relatedness value
between 0.0 (no relation) and 10.0 (identical meaning), denoting the assumed common
sense semantic relatedness between two words. Finally, the total rating per pair was
calculated as the mean value of the raters’ judgments.

Data Quality: The correlation of scores in WS-353 with RG65 and MC30 is above 0.9,
both with the Pearson and Spearman correlation coefficients. Again, the data quality
can be judged as very high. The inter-rater correlation of 0.61 however is not as high as
with RG65 and MC30.

16http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
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4.4.4 MTurk

The Mechanical Turk dataset is a collection of 287 word pairs and 499 words from New
York Times articles [189]. Its main purpose was to provide additional evaluation data in
the problem domain of news articles and general vocabulary.

Origin of Words: First, the set of all possible words from the New York Times archive
(1863-2004)17 was intersected with entities from DBPedia. Stop words and words
occurring less than 1000 times were also removed. This way, the resulting vocabulary
consisted of actual entities instead of verbs or adjectives. Then, the list of possible word
pairs is ordered by their point-wise mutual information score. From this list, finally a
stratified sample of 280 word pairs was chosen to be judged by humans.

Data Collection Process: From the previously constructed list of 280 word pairs,
batches of 50 word pairs were given to workers from Amazon’s Mechanical Turk to rate
them on a scale of 1 to 5. Each word pair has been given 10 ratings.

Data Quality: In order to validate the raters, both ten distinct pairs of WS-353 were
included in the judgment process, as well as a captcha variant, where the raters were
asked to solve a simple math question. Raters with less than 0.5 correlation on the
WS-353 pairs or failing the captcha were discarded.

4.4.5 MEN

The MEN Test Collection [43] contains 3 000 word pairs together with human-assigned
semantic relatedness judgments, obtained by crowdsourcing using Amazon Mechanical
Turk18. It is thus the largest collection of human judgment about semantic relatedness
that we use in our experiments.

Origin of Words: All 3000 word pairs were randomly selected from the WaCkypedia
Corpus [17]. Only words that occur more than 700 times are considered. Furthermore,
the words have been taken out of a balanced range relatedness levels based on textual
semantic scores to avoid picking only unrelated pairs.

Data Collection Process: The relatedness scores have been collected as follows: Raters
were given two pairs of words at a time. They were then asked to choose the pair which
pair of words was more related. Each pair was rated 50 times, which leads to a score
between 0 and 50 for each pair. Each score represents the number of times that a specific
word pair has been chosen to be more related than another, unknown word pair. This
also implies that no human worker ever gave a judgment about all word pairs.

17This is only partially available for the public.
18http://clic.cimec.unitn.it/~elia.bruni/MEN
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Data Quality: Due to the generation process of this dataset, the inter-rater correlation
can not be calculated. However, the authors of [43] additionally judged each of the 3000
word pairs again and achieved a very high correlation with the MEN scores of 0.84, so
it is safe to assume that the collected scores provide a valid representation of human
judgment. Also, the inter-rater agreement between the authors was ρ = 0.68, which is a
strong signal on a large number of pairs like in MEN.19

4.4.6 SimLex-999

The SimLex-999 dataset consists of 999 English word pairs and was specifically designed
to contain information about the semantic similarity of words [104]. Of those 999 word
pairs, 666 are noun pairs, 222 are verb pairs, and 111 finally are pairs of adjectives.

Origin of Words: The 999 word pairs were sampled from the University of South
Florida Free Association Database [166]. The authors were especially careful to only
sample similar, not associated/related pairs and also paid attention to include a mix of
more concrete and rather abstract words in the final dataset. Finally, they partitioned
their dataset according to the Part-of-Speech tags of the words, i.e., if they were nouns,
verbs or adjectives (compare above).

Data Collection Process: We only give a short overview of the data collection process,
which itself is rather complicated [104]. Hill, Reichart, and Korhonen instructed 500
US-American workers from Mechanical Turk to explicitly judge the semantic similarity
of all word pairs. Each worker had to rate 119 pairs in groups of 7 pairs on an integer
scale of 0 to 6, which they could visualize on a slider. Additionally, they were presented
with all word pairs in a group at the same time, so the workers could even compare and
later change their judgments to support rating consistency.

Data Quality: To ensure high quality in ratings, the authors inserted checkpoint
questions into the rating process to see if the workers “had retained the correct notion
of similarity”. The inter-rater agreement was reported as ρ = 0.67, which is on a similar
level as that of WS-353 with ρ = 0.61. In order to validate the instructions given to
the raters, Hill, Reichart, and Korhonen then had a sample of 100 pairs from WS-353
judged. Here they found that the human similarity judgments deviated from those in the
WS-353 dataset, indicating that the human raters had well understood their instructions
to rate semantic similarity instead of relatedness.

19The size of the dataset plays an important role in determining statistical significance of correlation scores,
see Section 3.2.4.
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Chapter 5

Detecting Semantic Influence on So-
cial Media Navigation

5.1 Introduction

By knowing which factors drive human navigation, we can gain further insights into
how users make use of information systems. This can subsequently be exploited to
e.g., redesign human user interfaces accordingly to support users in finding the desired
information [59, 127]. While others have already analyzed human navigation behavior
in social media in general [228, 247], we are mainly interested in the influence of semantic
information on navigation behavior. We assume that if are able to show the existence
of a semantic component in navigation, we can also extract it to gain another source
of semantic information. Additionally, since we already know that user pragmatics
influence tagging semantics [122], the question arises if users with certain behavioral
traits also navigate differently.

In this chapter, we analyze navigation behaviour in social media. Our main objective is
to determine if semantic information influences navigation behavior in those systems at
all and if so, how strong its impact is. Additionally, we are interested in how far users
of social tagging systems with certain traits, e.g., their tagging behavior, also exhibit
different navigation behavior. In the same way, we assume that navigation on Wikipedia
in different settings also shows differences. In order to provide a qualitative judgment
for our objectives, we formulate several hypotheses about navigation behavior. For
example, we characterize navigation behaviour by random navigation, teleportation,
and only navigating on the resources of a single user. We then use the Hyptrails method
introduced in Section 3.3.3 to rank those hypotheses by their evidence, which signifies
how well a given hypothesis can explain navigation behavior.

We perform the proposed experiments on human navigation trails collected in game
and unconstrained settings on Wikipedia (cf. Section 4.2.1 and Section 4.2.2), as well
as on the social tagging system BibSonomy (cf. Section 4.2.4). In order to measure the
influence of user characteristics on their navigation behavior in BibSonomy, we analyze
navigation on navigation data subsets that only contain navigation from those users.
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5.2 Wikipedia

In the following, we will analyze different types of navigation on Wikipedia, namely
navigation in a game setting (WikiGame and Wikispeedia) and unconstrained, real-
world navigation (WikiClickIU and ClickStream). While we mainly seek to achieve a
qualitative judgment how strong semantic information impacts navigation behavior
of users, we also want to know if users navigate differently in game settings than in
unconstrained settings.

Intuitively, we expect that Wikipedia navigation shows a strong influence of semantic
information, as pages represent semantic entities, which are linked to other, semantically
related entities. We also expect that the goal-oriented navigation in a game setting is
influenced by different incentives than unconstrained browsing navigation.

In this section, we first define the hypotheses used to analyze the respective navigation
datasets. After this, we first focus separately on analyzing game and unconstrained
navigation. Finally, we compare game and unconstrained navigation regarding the
strength of the semantic hypothesis.

5.2.1 Hypotheses

Hypotheses about navigation on Wikipedia were mainly presented in three works: Singer
et al. analyzed the navigation in the WikiGame in [207], while Becker et al. analyzed
Wikispeedia navigation in [20]. Dimitrov et al. examined unconstrained navigation on
Wikipedia [61]. However, all of these works used different hypotheses to examine the
corresponding navigational data. In this section, we will use a single set of hypotheses
which we will test on all datasets. By doing so, we can compare the relative ordering of
hypothesis likelihoods with each other and deduce potential differences in navigation
behavior between both navigation settings.

We will use the four hypotheses defined in Section 3.3.3.2. Additionally, we define
four degree-based hypotheses that are inspired by results from [210]. To mathematically
define the hypotheses, we provide their transition functions P (pi ,pj), which are then
converted to probability distributions using the notation defined in Equation (3.41).
Each hypothesis is also illustrated in Figure 5.1.

5.2.1.1 Standard Hypotheses

As mentioned above, we use several standard hypotheses that we already introduced in
Section 3.3.3.2. Those were the self-loop hypothesis (selfloop), the uniform hypothesis
(uniform), the structural hypothesis (structural), and the semantic hypothesis (tfidf).

As noted in Section 3.3.3.2, the semantic hypothesis depends on vector representations
vi of the semantics of a page pi to calculate the semantic similarity of pages. We will
now define that representation for Wikipedia articles. Generally, we represent a page pi
as a TF-IDF vector vtf idfi (cf. Equation (3.9)). Following [207], we remove words from
the overall vocabulary that occur in more than 80% of all pages in our Wikipedia article
corpus and use a sub-linear term frequency scaling in the TF-IDF construction. Finally,
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we reduce the dimension of the page vectors vtf idfi by performing a sparse random
projection [136], which preserves Euclidean distance with a guaranteed maximum error,
according to the Johnson-Lindenstrauss Lemma [57]. We finally determine the semantic
similarity of two pages pi ,pj by the cosine similarity of their TF-IDF vectors, as shown
in the general definition of the semantic hypothesis in Equation (3.47). Figure 5.1d
illustrates how the semantic hypothesis assigns weights to page transitions.

5.2.1.2 High and Low Degree Hypotheses

We also introduce new hypotheses to characterize navigation behavior in Wikipedia.
In Section 7.2.2.3, we find that a path subset of 30% with mainly low indegree pages
yield more useful semantic information than the whole path corpus. Consequently, we
formulate hypotheses that assume that users prefer pages that have either high or low in-
or outdegree. This is a more refined assumption than the simple degree hypothesis from
[20], where Becker et al. only postulated that users follow high degree pages.

1. The High Outdegree Hypothesis (outdeg) assumes that users navigate towards
pages with a certain probability relative to their outdegrees.

P outdeg(pi ,pj ) =

outdeg(pj ), if (pi ,pj ) ∈ E
0, otherwise

(5.1)

The intuition at this point is that users navigate to pages that provide access to a
broad range of subsequent pages. This also resembles the intuition from [247] of a
“getting-away” or “zoning-out” pattern in the early stages of a path to reach pages
that are connected to many regions of the Wikipedia graph.

2. The High Indegree Hypothesis (indeg) is similar to the high outdegree hypothe-
sis, but instead assumes navigation towards pages with a high indegree.

P indeg(pi ,pj ) =

indeg(pj ), if (pi ,pj ) ∈ E
0, otherwise

(5.2)

Mostly, pages with a low indegree cover less general topics and are only relevant for
a very small portion of other topics, thus very few pages link to the low indegree
page. On the other hand, pages with a high indegree most likely contain broadly
relevant content, since many other pages reference to them.

Figure 5.1e provides an illustrative example of the weighting scheme of outdeg for the
page Asteroid, which links to Ireland and C.F. Gauss. Under the outdeg hypothesis,
we assume that people would navigate to Ireland with a probability of 0.76, since
Ireland links to 2307 pages. In contrast, navigation towards C.F. Gauss, would occur
only rarely, since the outdegree hypothesis only assigns a probability of 0.01, as the page
points only to 86 pages, which pales in relation to Ireland’s 2307 outlinks.
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For both high degree hypotheses, we also take their counterpart hypotheses into
account, where users navigate to the page with a low in- our outdegree. With this
assumption, we reflect the “homing-in” pattern described in [247], as we assume that
pages with fewer in- or outlinks cover rather specific contents.

3. The Low Outdegree Hypothesis (outdeg_low) can be expressed as follows:

P outdeglow (pi ,pj ) :=

1− poutdeg(pi ,pj ) if (pi ,pj ) ∈ E
0 otherwise

(5.3)

Here, poutdeg (pi ,pj ) denotes the transition probability between pi and pj as follows
from the transition function of high outdegree hypothesis (Equation (5.1)). In-
tuitively, P outdeglow(pi ,pj) assigns a higher transition probability p(pi ,pj) to pages
with a low outdegree.

4. The Low Indegree Hypothesis (indeg_low) is defined analogously as

P indeglow (pi ,pj ) :=

1− pindeg(pi ,pj ) if (pi ,pj ) ∈ E
0 otherwise

(5.4)

5.2.2 Results and Discussion

We evaluate the hypotheses presented above on two types of navigation datasets. The
first kind of navigation data has been collected in a game setting, that is, with a pre-
determined navigation goal and external incentives, such as winning the navigation
game.

5.2.2.1 Game Navigation: WikiGame and Wikispeedia

The analysis of influencing factors, especially a semantic influence, on game navigation
serves as a first step towards understanding the influence of semantic information on
general human navigation in the web. Previous work by West and Leskovec found that
when users in a navigation game navigate towards their target page, they visit pages
that are increasingly semantically related to that target page, the nearer the users are to
their goals [247]. West, Pineau, and Precup attribute that to the use of an “inner map”,
i.e., their knowledge about the semantic connection of Wikipedia pages, that users take
advantage of when playing Wikipedia navigation games [249].

Expectations Based on the observations described above, we can expect that users
navigate semantically, i.e., their navigation decisions are influenced by their background
knowledge about semantic connections between Wikipedia pages. Additionally, we
expect that navigation towards highly connected pages also plays a major role in game
navigation. We base both assumptions on the analysis by West and Leskovec [247], who
provided a first analysis of the navigation behavior in Wikispeedia.
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(a) Uniform Hypothesis (b) Selfloop Hypothesis (c) Structural Hypothesis

0.2 0.1

0.4

0.29 0.14

0.57

(d) Semantic Hypothesis

86 623

2307

0.03 0.21

0.76

(e) High Outdegree Hypothesis

86 623

2307

0.49 0.4

0.12

(f) Low Outdegree-Hypothesis

Figure 5.1: Illustrations of the navigation hypotheses on Wikipedia, as defined in Sec-
tion 5.2.1. A line between two items denotes a hyperlink in Wikipedia. The
weight tags on the edges of Figures 5.1d, 5.1e, and 5.1f denote transition
probabilities, while the numbers next to the pages in the outdegree-based
hypothesis denote the (fictitious) semantic similarities or outdegrees of the
respective pages, respectively.

In order to provide a formal characterization of human navigation in game setting,
we compute the marginal likelihood of several hypotheses about human navigation
(as presented in the preceding section) on both Wikipedia game navigation datasets.
Figure 5.2 and Figure 5.3 show the resulting marginal likelihoods for all hypotheses
with increasing beliefs.

Results We will first separately interpret the hypothesis results on the WikiGame
and on Wikispeedia and then compare the findings on both datasets. Figure 5.2 and
Figure 5.3 show the results on logarithmic scales for the WikiGame and Wikispeedia,
respectively.

A rather interesting observation is that in the WikiGame, the semantic hypothesis
(black, solid line, tfidf) does not explain navigation as well as the structure based
hypotheses (*deg and structural). This observation is in contrast to the assumption
that users in a navigation game would make use of their “inner map” of concepts to
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(b) Zoomed view of the degree-based hypotheses.

Figure 5.2: Hypothesis-based analysis of game navigation in the WikiGame. Both fig-
ures show the marginal likelihoods of the navigational hypotheses on the
WikiGame navigation data.

find the target page [249]. We attribute this discrepancy to the fact that users do not
necessarily follow the semantically closest page, but first of all make use of the link
structure to reach their goal. This is especially the case in the first phase of a game,
as users tend to quickly navigate towards strongly connected pages [247]: First, users
attempt to quickly reach a high outlink page in order to then narrow their search down
again for the target page. In the second phase, the so-called “homing-in” phase, the page
degree decreases as the pages become more specific. At the same time, the users start
to select pages according to their semantic relatedness to the target page. This is an
intuitive behavior, since most users do not know the Wikipedia link graph structure
well enough to directly choose the shortest path to the target page, so they utilize large
link hubs (most notably, the “United States of America” page) to have a greater choice of
links that potentially bring them nearer to their target. Other potential explanations
are that there exist Wikipedia links between semantically unrelated pages or that some
links are not semantically obvious. Still, the semantic hypothesis has a higher marginal
likelihood to explain navigation in the WikiGame than the two baseline hypotheses (gray
lines, selfloop and uniform). Still, as the evidence of the semantic hypothesis is rising
until a certain concentration factor, we can assume that semantic information influences
WikiGame navigation, at least to some extent. We can also observe that users tend to
navigate more towards high outdegree pages and at the same time low outdegree pages
(red lines, outdeg and outdeglow). While this sounds counterintuitive, it can again be
explained because of the two navigation behavior phases in a game setting. However, it
seems that structural navigation is generally more important than semantic navigation.

For Wikispeedia, we get a very different picture. Here, the semantic hypothesis explains
navigation best. We can thus safely assume that navigation behavior in Wikispeedia is
heavily influenced by a semantic incentive. We hypothesize that this is due to a largely
reduced Wikipedia corpus that provides the basis for Wikispeedia. As this corpus is a
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Figure 5.3: Hypothesis-based analysis of game navigation in the Wikispeedia. Both
figures show the marginal likelihoods of the navigational hypotheses on the
Wikispeedia navigation data.

curated subset of Wikipedia specifically designed for schools, we think that this manual
curation effected not only the limited availability of very general real-world pages (like
Table or Apple), but also the number and nature of available links in the dataset. Both
the performances of the semantic hypothesis and the low outdegree hypothesis are in
line with the observation in [247], that users in their “homing-in phase” increasingly
navigate towards semantically more related and at the some time less connected pages.
Surprisingly, the “zoning-out” phase seems to be rather weak in Wikispeedia, as the
outdegree hypothesis cannot explain navigation as well as the other hypothesis. We
can also see that the structural hypothesis (yellow line, structural) provides a better
explanation than the degree based hypotheses (indeg and outdeg, both high and low).
Again, the low outdegree navigation hypothesis (that is, users navigate towards pages
with fewer outlinks) has the highest marginal likelihood of all degree based hypotheses.
Finally, all hypotheses exhibit more influence on navigation than the two baseline
hypotheses.

In our study, the paths from both WikiGame and Wikispeedia contain transitions
that are not represented by actual hyperlinks in the Wikipedia link structure. This is
because WikiGame and Wikispeedia only record the succession of actively visited pages,
i.e., they leave out the referrer of a request. Additionally, we discarded the backclick
information, if it existed (see Section 4.2).

Summary We could show that game navigation is influenced by semantic information.
In Wikispeedia, semantic information explains navigation behavior best (Figure 5.3),
while in the WikiGame, it still exhibits some influence, but other hypotheses account
more for the actual navigation behavior (Figure 5.2). We assume that this is due to the
fact that WikiGame contains a lot more data than Wikispeedia. Also, the Wikispeedia
dataset is built on a hand-selected collection of Wikipedia pages. Since we know nothing
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about its design, we cannot exclude that this influences the semantic navigability of the
Wikispeedia graph.

Generally, we can say that for games on Wikipedia, navigation according to the low
outdegree or according to low indegree is more important than navigating according
to high indegree. Considering the two phases in pathfinding proposed by West and
Leskovec, this accounts mainly for the “homing-in” phase at the end of game paths.

5.2.2.2 Unconstrained Navigation

By analyzing game navigation on Wikipedia, we have taken a first step towards under-
standing human navigation behavior in information networks. Still, game navigation
is influenced by several external factors. For example Wikipedia pages are rendered
differently than on Wikipedia, the underlying Wikipedia corpus is limited to only a
subset of pages and the ultimate motivation to click a link is determined by the game
setting instead of a potential interest in the contents of a page.

We now want to receive a more realistic impression of how users navigate Wikipedia.
For this, we will analyze unconstrained navigation on Wikipedia, that is, real-world
navigation on the public Wikipedia without any external constraints. As opposed
to game navigation data, information about unconstrained user navigation is more
difficult to access or obtain and due to privacy reasons is often accumulated and heavily
anonymized.

In this section, we will analyze two navigation datasets with unconstrained navigation.
The first dataset contains Wikipedia traffic that originates in the University of Indiana
network and is called WikiClickIU. It is introduced in detail in Section 4.2.2.2. The second
dataset, which is named ClickStream, contains accumulated transition data between
Wikipedia pages collected on the public Wikipedia servers and has been described in
Section 4.2.2.1. Both datasets do not contain any information about the navigating users.
For our analyses, we will again use the same hypotheses defined in Section 5.2.1.

Expectations As mentioned before, the paths from the WikiGame and Wikispeedia
contain transitions that are not represented by actual hyperlinks in the Wikipedia link
structure. For the unconstrained navigation data, we do not have such artifacts, since
the unconstrained log data always record both the page where a request originated
and where it led. Even if users would return to a page, a new click would then again
record the origin of that click. In contrast, the game navigation log data do not record
the origin of a click, but only the visited page. Logically, this then induces “wrong”
links in game settings when using the back button. We thus expect that the structural
hypothesis performs much better on unconstrained navigation than on game navigation.
Concerning the semantic navigation hypothesis, we expect it to perform better than in a
game setting, since users are now free to navigate according to their own interests, not
according to a predefined goal page as in a game setting. Finally, Dimitrov et al. found
that users on the public Wikipedia move more towards the periphery of the Wikipedia
graph, i.e., less connected pages [61]. Consequentially, we also expect the low degree
hypotheses to exhibit a higher marginal likelihood than their high degree counterparts.
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Figure 5.4: Hypothesis-based analysis of unconstrained navigation on the ClickStream
data.

Results We will first focus on the results obtained on the ClickStream data, which are
shown in Figure 5.4. As can be seen, all hypotheses explain navigation better than the
two baselines (selfloop and uniform, grey and darkgrey lines), which indicates that all
hypotheses are somehow important. The marginal likelihood of the semantic hypothesis
(tfidf, black line) shows that real-world navigation on the ClickStream data is to some
extent influenced by semantic information. Compared to the indegree hypothesis (indeg,
blue line), it explains navigation better, but only with a lower concentration factor. As
expected, the structural hypothesis has a higher marginal likelihood than almost all other
navigation hypotheses. The only exception is the low indegree hypothesis (indeg_low,
dark blue line), i.e., users often navigate towards pages with a lower indegree than the
current page. Figure 5.5b provides a zoomed view of the structural and index_low

hypotheses so this can be seen better. The index_low hypothesis has a slightly higher
marginal likelihood than the structural hypothesis and thus explains navigation in the
ClickStream dataset a bit better. In this light, it is especially interesting that the indeg

hypothesis, i.e., that users navigate to pages with a high indegree, explains navigation
significantly worse than the index_low hypothesis. A possible interpretation of this
could be that users tend to navigate to more specific instead of more general concepts. A
similar observation can be made when comparing results of the outdeg and outdeg_low

hypotheses: Users would rather choose pages with a lower outdegree, i.e., more specific
pages, than pages with a high outdegree. Possibly, users do not have to navigate to more
general pages as much as they do in a game setting, so they visit connected pages which
cover related aspects in more detail, but are consequently less connected.

On the WikiClickIU data, we can again see in Figure 5.5 that the structural hypothesis
(structural, yellow line) is the most influential factor on navigation amongst those
that we analyze. With a lower concentration factor k, the semantic hypothesis (tfidf,
black line) is a close follower, but with increasing k is overtaken by both outdegree
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Figure 5.5: Hypothesis-based analysis of unconstrained navigation on the WikiClickIU
data.

hypotheses (outdeg and outdeg_low, red and dark red lines). Still, this again shows
that semantic information influences real-world navigation, even when restricted to a
closed set of users, namely those in the university network of the University of Indiana.
Additionally, the semantic hypothesis exhibits a higher marginal likelihood than both
indegree hypotheses (indeg and indeg_low, blue and dark blue lines). A potential
explanation here is that users at the University of Indiana use Wikipedia as a source
of background knowledge concerning only specific topics, e.g., about the state and the
history of Indiana. The performance of the outdegree hypothesis (outdeg) compared
to the indegree hypothesis (indeg) supports this assumption, as users would rather
visit pages with a high outdegree, i.e., a hub page, instead of authority pages with high
indegrees. Again we can observe that users also navigate towards the periphery of the
Wikipedia graph, since for both the outdegree and indegree hypotheses, it is more likely
that users navigate towards low outdegree and low indegree pages instead of highly
connected pages (indeg_low, outdeg_low).

Summary On both navigation datasets, the performance of the semantic hypothesis
shows that navigation in the real world is influenced by semantic information. This is
more obvious on WikiClickIU than on the ClickStream dataset, possibly also because of
the different scope of WikiClickIU: WikiClickIU is restricted to users in the University
of Indiana’s network. Because of this, we can observe that many of the visited pages
have a direct or indirect connection to the university. On the other hand, ClickStream
captures navigation from all users that access the public Wikipedia that probably use
Wikipedia rather as a one-time retrieval knowledge platform, that is, they access a
single article that satisfies their information needs. As already noted by Dimitrov et al.
[61], users tend to navigate more towards the periphery of Wikipedia, because the low
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degree hypotheses show a higher marginal likelihood than their respective high degree
counterparts. Lastly, the structural hypothesis is mostly the best performing hypothesis,
as expected.

5.2.3 Conclusion

In this section, we analyzed four datasets with navigation behavior on Wikipedia. Two
datasets were collected in a game setting and thus imposed constraints on the possible
navigation, namely the WikiGame and the Wikispeedia datasets. Examples of such
constraints are restrictions on the possible link network or the exclusion of content
from Wikipedia pages that led to pages that are “forbidden” in the respective game.
The other two datasets, ClickStream and WikiClickIU contained real-world navigation,
i.e., without any external constraints. This means that users were free to navigate to
wherever they want on Wikipedia.

We found that semantic information exerted a notable influence on navigation behavior
both in game and unconstrained settings. Still, it is not the most defining factor in
explaining human navigation on Wikipedia, except on Wikispeedia, but also plays a
strong role in WikiClickIU navigation. We assumed that on those smaller datasets, the
semantic navigation information is more prominent than on the bigger datasets, where
it is simply drowned out by other types of navigational behavior.

Across all datasets, we could observe that navigation according to structure is often
a good explanation for navigation. This is especially interesting, since in both game
datasets, some users also transitioned between pages that were not interlinked. It also
became clear that users in an unconstrained navigation setting are less inclined to navigate
towards general pages than in a game setting, since possibly they are interested in more
detailed and related information to their current page, which is found more towards the
periphery of the network. This is supported by the larger marginal likelihood of the low
degree hypotheses.

Finally, we could again show that navigation in Wikipedia is oriented towards the
periphery of the Wikipedia graph, i.e., users navigate towards less connected pages. While
this has already been noted in [61] for unconstrained navigation in the ClickStream
dataset, we showed this for another dataset of unconstrained navigation (WikiClickIU)
and on the game navigation datasets (WikiGame and Wikispeedia).

5.3 BibSonomy

In the previous section, we analysed human navigation behavior on Wikipedia. While
we gained interesting insights on how humans navigate in game and in unconstrained
scenarios and how this navigation is influenced by semantic information, we restricted
ourselves only to a single webpage system. In this section, we extend our analysis onto
the social tagging system BibSonomy. As mentioned in Chapter 4, BibSonomy is a social
tagging system and thus somewhat different than Wikipedia, both in usability and user
behaviour. In Wikipedia, users contributed content in the form of encyclopaedic articles.
BibSonomy on the other hand stores personalized bookmarks and publications for users,

101



5 Detecting Semantic Influence on Social Media Navigation

that annotate those resources with tags. The emerging structure (as introduced in
Section 3.1.1) is called a folksonomy and serves as the main navigational concept in social
tagging systems, providing links between co-occurring entities. Through those links,
folksonomies possess an inherently semantic nature. We thus assume that navigation in
folksonomies is influenced by such semantic information. Also, studying the general
navigation behavior of users in social tagging systems is of great interest.Consequently,
different studies have addressed this issue: Heckner, Heilemann, and Wolff conducted
a user survey on usage motivation in social tagging systems [100] and Doerfel et al.
used log files to study actual navigation behavior of the overall user population through
request counts [64].

To characterize navigation on BibSonomy, we will formulate explicit navigation
hypotheses that are inspired by the hypotheses in Section 5.2.1. However, we adapted
these hypotheses on the unique features of social tagging systems that we described in
Section 3.1.1. We also study how the performance of explaining navigation behavior
differs on different data subsets, such as navigation grouped by gender, tagging behavior,
or long-term experience. In the process, we revisit the aspects described in [64], and
extend on their work, providing additional explanations for user intentions during
navigation and their comparison. We compare these hypotheses on different subsets
of BibSonomy navigation, gathered over the course of 6 years (see Section 4.2 for a
description of the dataset). Again, we discuss the influence of semantic information on
navigation, but this time, we also include information about the tagging behavior of users.
By this, we aim to show that users with different tagging behavior also exhibit different
navigation behavior. If that is the case, it supports our assumption that navigation is
influenced by semantic information. The content of this section has previously been
published in [173].

5.3.1 Hypotheses

Because the website structure of BibSonomy differs to that of Wikipedia, we adapt the
hypotheses that we applied on Wikipedia (see Section 5.2.1) to the unique features
of social tagging systems. For example, we reformulate the structural hypothesis on
Wikipedia to the folksonomy hypothesis for BibSonomy, i.e., we assume that users use
the folksonomy structure to navigate the BibSonomy website. Each of these hypotheses
represents a basic aspect of navigation in BibSonomy, although they can also be directly
applied to model any kind of social tagging system. In this section, we first formulate the
adapted hypotheses and additionally describe combinations of those hypotheses. Again,
we use the hypothesis notation introduced in Section 3.3.3. The pages are characterized
as defined in Section 3.1.1.

5.3.1.1 Standard Hypotheses

We can use some of the standard hypotheses defined in Section 3.3.3.2 as they are and
apply them on BibSonomy. The uniform hypothesis (uniform) is trivially defined the
same way as in Equation (3.44). In this section, we use the page consistent hypothesis
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(page), which is equivalent to the self-loop hypothesis from Equation (3.43). As with
Wikipedia, we have to define how we represent a page pi as a vector vi so we can compute
the semantic navigation hypothesis (tfidf). Based on the page’s tag cloud, i.e., the set of
tags which appear on that page with respective frequencies (see Section 4.2), we again
define its representation as a TF-IDF vector vtf idfi . Here, a page is treated as a document,
while its tag cloud is treated as the document’s “text”. Finally, page similarities are again
computed with the cosine similarity measure.

5.3.1.2 Social Tagging System Specific Hypotheses

We also introduce two new hypotheses that make use of the folksonomic structure of
social tagging systems, namely the user consistent and category consistent hypotheses.

Category Consistent Hypothesis (cat) Doerfel et al. found that transitions between
two pages often occur between pages of the same category, i.e., after a user has visited a
tag page, the next page is likely to be a tag page again [64]. The same holds for resource
and for user pages. The classification of page URLs in one of these categories is given in
Table 3.1. The hypothesis therefore states that users will navigate towards pages with
the same category, which is a generalization of the previous hypothesis. Figure 5.6d
shows a sketch of this hypothesis. Its formal definition is as follows:

P cat(pi ,pj ) =

1, if cat(pj ) = cat(pi)

0, otherwise
(5.5)

User Consistent Hypothesis (user) Similar to the category consistent hypothesis, the
user hypothesis assumes that in a transition, the target and the source page belong to
the same user. Figure 5.6e illustrates the assumed behavior in this hypothesis. The
motivating intuition for this hypothesis is that visitors, who are interested in the work
of a specific user, will not only read one, but several of her articles and try to further
explore her personomy (cf. Section 3.1.1). It is defined as follows:

P user(pi ,pj ) =

1, if user(pj ) = user(pi)

0, otherwise
, (5.6)

Folksonomy Hypothesis (folk) As mentioned in Section 3.1.1, the link network of
the user interface of BibSonomy is heavily determined by the underlying folksonomy.
Each tag-assignment (u,t, r) links the user u with the tag t, the tag t with the resource
r and the resource r with the user u and vice versa, respectively. In the folksonomy
hypothesis (folk), we assume that users follow links that are provided by the folksonomy
structure:

P f olk(pi ,pj ) =

1,
if pj is directly reachable in
the folksonomy from pi

0, otherwise
(5.7)
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The folksonomy consistent hypothesis (folk) corresponds loosely to the structural hy-
pothesis, which is defined in Equation (3.45). However, the user interface of BibSonomy
provides connections to pages that are not covered in the folksonomy to improve nav-
igability. For example, it is possible to navigate from a tag page to another tag page,
although folksonomies do not allow direct links between those entities. Also, from each
page it is possible to directly navigate to one’s own user page, which is obviously not
possible in a folksonomy.

We allow only tag-tag connections as the single exception in this hypothesis to deviate
from the folksonomy structure. To calculate reachability we construct the page graph
from the tag-assignments in the folksonomy dataset described in Section 4.1 and (since
they are an integral part of the BibSonomy user interface) we add tag-tag relations, when
tags occur at the same posting. Usually, these connections are normally not part of a
folksonomy.

5.3.1.3 Combined Hypotheses

In order to investigate possible mutual influences between hypotheses, it is also possible
to combine them. We choose a multiplicative combination, which corresponds with the
assumption that both combined hypotheses must hold. In contrast, an addition would
mean that at least one hypothesis holds. As we however want to explore the effects of
two hypotheses at the same time, we have to multiply two hypotheses. In the following,
we motivate and describe certain combinations.

Folksonomy Consistent & Semantic Navigation Hypothesis As described earlier, it
is a natural assumption that users utilize the folksonomy structure when navigating a
social bookmarking system. If the folksonomy does indeed exhibit notable semantic
properties, we should be able to see that adding a semantic component to folksonomic
navigation improves the evidence of this hypothesis compared to the bare folksonomy
navigation hypothesis. We define the hypothesis as follows:

P f olk−tf idf (pi ,pj ) := P f olk(pi ,pj ) · P tf idf (pi ,pj ) (5.8)

User Consistent & Semantic Navigation Hypothesis A similar motivation as with
folksonomic and semantic navigation arises when we combine user consistent and se-
mantic navigation. Users are normally thematically restricted in their research interests.
Navigation in the user’s personomy, i.e., all the posts from a user, is expected to show a
strong semantic component. This hypothesis is defined as:

P user−tf idf (pi ,pj ) := P user(pi ,pj ) · P tf idf (pi ,pj ) (5.9)

User Consistent & Folksonomy Navigation Hypothesis The intuition behind com-
bining user consistent and folksonomic navigation is that if users mostly navigate on
their own pages [64], we expect them to navigate there according to the folksonomy
structure to find their way in their own resources. We define this hypothesis as:

P f olk−user(pi ,pj ) := P user(pi ,pj ) · P f olk(pi ,pj ) (5.10)
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(a) Uniform Hypothesis (b) Page Consistent Hypothesis

(c) Folksonomy Hypothesis (d) Category Consistent Hypothesis

(e) User Consistent Hypothesis
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Figure 5.6: Illustrations of the navigation hypotheses defined in Section 5.3.1. Same
colored items depict pages that belong to the same user, while same item
symbols denote page categories. A line between two items denotes a hy-
perlink in BibSonomy. The weight tags in Figure 5.6f denote the cosine
similarity of the connected pages.
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Table 5.1: Transition statistics of different BibSonomy request log subsets, with respect
to user features. We provide the number of unique source states, the number
of unique transitions, the amount of all relevant transitions and the subsection
where the datasets are used.

subset source states links transition
counts

used in

overall 55,129 149,542 327,060 Section 5.3.2.1

inside 37,244 105,222 261,300
Section 5.3.2.2

outside 14,757 28,760 42,193

male 23,090 61,616 130,988
female 5,598 14,413 29,705 Section 5.3.2.3
neutral 28,726 73,575 161,830

shortterm 10,285 21,912 48,221
Section 5.3.2.4

longterm 45,535 126,453 274,302

lower_trr 30,368 83,268 176,755

Section 5.3.2.5
upper_trr 7,084 15,474 32,517
lower_ten 3,459 6,959 15,451
upper_ten 51,542 140,844 307,072

5.3.2 Results and Discussion

We now evaluate the previously proposed hypotheses on the BibSonomy navigation
data. First, the hypotheses are compared on the overall request log dataset. After that,
several subsets of the request logs, filtered according to certain user types, are analyzed
with the same hypotheses. We expect that there are subsets of the data where some
hypotheses perform differently than on the overall dataset. For example, we assume that
users with a categorizing tagging behavior also navigate BibSonomy in a different way to
describers (for an explanation of both user types, see Section 3.3). Thus, we investigate
different data subsets as listed in Table 5.1. We describe each subset in the corresponding
experiment section. 1

5.3.2.1 Overall Request Log Dataset

All of the basic hypotheses explain the observed transitions better than the baseline
(uniform) to varying degrees. Figure 5.7 indicates that they all introduce at least some
structural properties which help to explain the observed transitions.

Besides this fact, there is a clear order of hypotheses: the user consistent hypothesis
works best, the semantic and the folksonomy hypotheses are somewhat similarly plausi-

1Note that while some data subsets are rather small, we still get statistically significant results with regard
to the relative ordering of the studied hypotheses. This has been explained in detail in Section 3.3.3.
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Figure 5.7: Evidence chart for the navigational hypotheses hypotheses on the complete
request log dataset. The values of K denote the logarithm to base 10 of
the concentration factors, i.e., the results at K = 3 were computed using a
concentration factor of 103. Of the basic hypotheses, the user consistent
hypothesis explains the data best, followed by the semantic and the folk-
sonomy hypotheses. When combining the user consistent hypothesis with a
semantic bias, the evidence improves. This indicates that users are actually
semantically biased while navigating through resources. In contrast, combin-
ing other hypotheses with the folksonomy hypothesis does not yield better
explanations for the observed navigation.

ble, followed by the page consistent and the category consistent hypotheses. Many of
the observed effects are explainable by the large number of self-transitions in the dataset
caused, for example, by pagination (cf. Table 5.2):

1. The page consistent hypothesis strongly improves on the uniform hypothesis.

2. The category consistent hypothesis is more plausible than the the uniform hypoth-
esis, even though it directly contradicts navigation as induced by a folksonomy
structure.

3. The user consistent hypothesis as well as semantically induced hypotheses are
strongly favored because of self-transitions, which account for roughly 40% of all
transitions.

Nevertheless, the user consistent as well as semantically induced hypotheses are also
more plausible than the page consistent hypothesis, indicating that their structural
properties cover further important factors. That is, the superiority of the user consistent
hypothesis indicates that users indeed navigate mostly on their own resources (cf.
Table 5.1). In contrast, the valid assumption that this could also be caused by users,
who consistently navigate on content from other users, directly contradicts the results
from [64], where Doerfel et al. found that users mostly navigate on their own pages.
This can also be seen in Table 5.1: navigation inside one’s own resources accounts for
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Table 5.2: Selected request log statistics. Self transitions are transitions from one page
to itself and are mostly induced by pagination effects. Own-transitions are
transitions, where the logged in user owns both the referer and the target page
in a transition.

Distinct visited pages 103,415

All transitions 327,060
self-transitions 123,452
own-transitions 261,300

roughly 80% of all considered transitions. In fact, we found even another proof for that
assumption. The good performance of the semantic hypotheses indicates that semantic
similarity of pages (with regard to tags) is a strong explaining factor for navigation on
our dataset.

Finally, we consider the folksonomy hypothesis which models the navigation we expect
in a folksonomy (see Figure 5.6c). It performs similarly well as the semantic hypotheses.
We observe that the corresponding evidence curve crosses the semantic hypothesis
(TF-IDF) for increasing believe factors K . This indicates that the folksonomy hypothesis
covers an important factor of the navigation, but fails to model certain transitions,
which are covered by the semantic hypothesis. The fact that the folksonomy hypothesis
cannot cover certain transitions is due to navigation outside the folksonomy structure as
elaborated in Section 4.2.

When analyzing the combined hypotheses, we see that overall, the combination of the
user consistent and the semantic hypotheses performs best, indicating that navigation on
BibSonomy can mainly be explained by semantic navigation within one’s own resources.
Although again this could mean that navigation can also occur on the page subset
of another user, we can safely assume that this holds mostly for navigation in one’s
own resources. In contrast, combining the folksonomy hypothesis with the semantic
hypothesis decreases the observed evidence slightly. Also, combining the folksonomy
hypothesis with the user consistent hypothesis decreases the observed evidence dramat-
ically. Both observations indicate that users excessively take advantage of additional
navigation features provided by BibSonomy (see Section 3.1.1) when navigating on their
own resources.

5.3.2.2 Outside Navigation

Because the results for inside navigation (the source and target state belong to the
navigating user) hardly differ from the results on the overall dataset (see Figure 5.7), we
only show and discuss the results for outside navigation.

Motivated by the fact that users often navigate on their own pages [64], we investigate
whether users behave differently when they are browsing the folksonomy outside of their
own resources. In particular, we study the transitions where the source as well as the tar-
get state do not belong to the browsing user. The results can be seen in Figure 5.8. Here,
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Figure 5.8: Evidence curves for navigation outside of the user’s resources. In contrast to
the overall dataset we observe that outside navigation can be explained best
by a hypothesis assuming semantic behavior on the folksonomy structure (cf.
folk-tfidf ).

the best explanation for the observed navigation is the folk-tfidf hypothesis which consid-
ers semantic behavior in combination with the structural properties of the folksonomy.
This allows us to conclude that while users do not use the folksonomy structure when
accessing their own resources (because they most likely explicitly access known publica-
tions), they fall back to the folksonomy structure when browsing resources outside of
their scope. Furthermore, the evidence for the user consistent hypothesis drops strongly
compared to the other hypotheses, because it is restricted to user consistent navigation
outside of the browsing user’s resources. This leads us to believe that browsing outside
of the own resources is a process aimed at the discovery of new resources which in turn
is not bound to the ownership of resources. Additionally, the fact that the plain user
consistent hypothesis performs similarly well as the self-transition hypothesis indicates
that the observed user-consistent outside navigation is mostly due to pagination effects.

5.3.2.3 User Gender

Since gender bias in online systems is an active research area [107, 237], we also inves-
tigate the navigation for different genders. In BibSonomy, users can set their gender
explicitly. If no gender was set, we assign the label neutral, otherwise, we can distinguish
between male and female. In Figure 5.9 we show the evidence charts for the different
gender navigation subsets.

We hardly observe any difference between the genders. There is only a slight difference
when considering the semantic hypotheses compared to the folksonomy hypothesis. It
seems that the navigation behavior of male users shows a tendency towards following
the folksonomy structure whereas the navigation behavior of female and especially
neutral users can be better explained using the semantic hypothesis.
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5.3.2.4 Usage Continuity

Since we expect users to adapt to systems they are using, we investigate if their naviga-
tion behavior changes over time. We divide users into short-term and long-term users,
according to the temporal difference of their first and last request. If the difference
is less than half a year, we classify a user as a short-term user and as a long-term user
otherwise. In Figure 5.10, we report the results for short-term users. The results for
long-term users are very similar to the results of the overall dataset (cf. Section 5.3.2.1).

When comparing against the overall dataset (or, equivalently, the long-term user
group), we observe two conspicuous differences for short-term users. First, the semantic
hypothesis performs significantly better when compared to the folksonomy hypothesis.
Second, the page-consistent and the folk-user hypotheses are explaining navigation
equally well. The former may be explained by the fact that new users are not as tuned
to the folksonomy structure as long-term users. Thus, we may actually observe a
learning process: the longer users work with the folksonomy, the more they exploit the
folksonomy structure in order to navigate their own resources or to discover new ones.
The similar evidence curves for the page-consistent and the folk-user hypotheses can be
explained by increased pagination effects while exploring the system in combination
with the lack of transitions on resources owned by the browsing user. In contrast to
outside navigation, here, the lack of transitions on own resources can be explained by
the fact that new users have no or a lot less own resources than long-term users.

5.3.2.5 Tagger Classes

In [122] and [176], different types of folksonomy users were characterized by their
tagging behavior. [122] define categorizers and describers and [176] identify generalists
and specialists. Categorizers and describers are classified by their tag-resource-ratio (or
short trr, see also Section 3.3). That is, while categorizers use a small set of different tags
for a large number of resources indicating elaborate category systems, describers use
many different tags indicating a very descriptive approach when tagging. Generalists
and specialists can be classified using tag entropy (or short ten, see also Section 3.3).
Where generalists have a high tag entropy, indicating a wide variety of tagged topics
with regard to their resources, specialists have a low entropy indicating a very spe-
cialized set of topics. For both classes we order users according to their trr and ten
values separately and select the upper and lower 30%, respectively. We observe that
categorizers and generalists show very similar evidence curves when compared to the
overall navigation dataset. We show the marginal likelihood charts for describers and
specialists in Figures 5.11a and 5.11b, respectively.

For both describers and specialists, we see the same tendency as for short-term users:
the semantic hypothesis works better compared to the folk hypothesis and the user-
consistent hypothesis has a tendency to perform equally well as the folk-user hypothesis.

The tendency towards semantic navigation over structural navigation on the folkson-
omy structure can most likely be explained by the nature of the tagging types: Specialists
can be considered to be interested in rather few abstract topics, implying a more directed
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browsing behavior than generalists (whose interests are more varied). Consequently,
their navigation is expected to also be more semantically influenced, because of their
use of a small, but highly specialized tag subset. As for describers, resources are tagged
with more keywords. Thus, for the semantic measure based on TFIDF, calculating the
similarity may simply be easier than on the very sparse tagging structures induced by a
categorizer’s tagging habits. This is because if a categorizer only assigns a low number
of tags to her resources, the cosine similarity to another page with only a low number of
tags can easily be zero because of the sparsity of the page representation. Consequently,
the probability to navigate towards that page is zero. On the other hand, if a describer
uses a lot of tags, the chance that the vector representations of two pages share a tag
overlap is higher, resulting in a non-zero cosine similarity between both pages and thus
a positive transition chance. This in turn again influences the navigation hypothesis by
allowing such a transition.

In general, both types, specialists and describers, can be considered to be of a more
explorative nature, as can be seen by the relative performance drop of the folk-user
hypothesis and/or the increase of evidence for the self-transition hypothesis.

5.3.3 Conclusion

Understanding human navigation in web systems is an important step towards improv-
ing the design and usability of web pages. In this section, we analyzed navigational
behavior of users in a social tagging system. We presented several hypotheses on nav-
igational patterns and evaluated them on a large weblog dataset of the social tagging
system BibSonomy.

Beyond confirming the results from Doerfel et al. [64], that is, that users mainly
navigate on their own resources (cf. also Table 5.2), we were able to show that within
these resources, navigation follows a semantic bias (cf. Figure 5.8). Also, the semantic
hypothesis performs well in general, confirming the semantic component in navigation
behavior on BibSonomy.

Furthermore, we studied different navigation subsets and were able to find signifi-
cant differences in behavior. This includes that even though semantic, user consistent
navigation represents a major aspect of the navigational characteristics of BibSonomy,
users fall back to the folksonomy structure when browsing outside of their own pages.
(cf. Section 5.3.2.2). Also while different genders did not exhibit interesting behavioral
deviations (Section 5.3.2.3), short-term users, as well as different tagging types, follow
certain behavioral patterns matching their individual characteristics (Section 5.3.2.4 and
Section 5.3.2.5). In particular, while it was only hypothesized in prior work [122] that
categorizers and describers (as well as generalists and specialists) differ in navigation
behavior, we have found specific components of their behavior which differ significantly,
thus, indicating that navigation behavior and tagging pragmatics are indeed connected.

Overall, we were able to gain new insights into the underlying processes of navigation
in tagging systems, which can be extended and leveraged in the future, for example, by
considering new hypotheses, improving navigation experience or extracting semantics.
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5.4 Summary

This chapter focused on the characterization of navigation in social media systems,
concretely on Wikipedia and BibSonomy. A special focus was given on detecting a
semantic influence on the navigation behavior of users.

In the case of Wikipedia, we discerned between game navigation, i.e., navigation in
a game context, where users have to reach a given target page as fast as possible, and
unconstrained navigation, i.e., navigation without any exterior incentive. We proposed
a set of navigational hypotheses and measured their influence on actual navigation data.
In the following, we will shortly discuss our findings.

Both on Wikipedia and BibSonomy, navigation is influenced by a semantic component.
Although it is not always the strongest factor in navigation, it plays a significant role.
While the semantic component best explains navigation in Wikispeedia (cf. Figure 5.2),
we can see in Figure 5.3 that up to some point of increasing belief, the semantic hypoth-
esis explains some part of the navigation data. A similar behavior can be observed in
unconstrained navigation. Figure 5.5 and Figure 5.4 show that the semantic hypothe-
ses does not suffice to explain navigation, but again explains a part of the navigation
behavior. This can motivate further research as to which part of navigation behavior
interacts with the semantic hypothesis so that the combination of both hypotheses ex-
plains navigation as good as possible. Finally, in BibSonomy, users navigate semantically
on resources of the same user (see Figure 5.7), but the semantic hypothesis still explains
navigation in other aspects as well.

Generally we can say that, since users navigate at least to some extent according to
semantic incentives, we should be able to extract the information generated by human
navigation. However, we might be unable to gather all contained information, since
navigation is also influenced by a lot of other factors, such as the degree (in Wikipedia)
or the ownership (in BibSonomy) of the successive page. Methods to extract at least a
portion of this semantic component will be presented and discussed in Chapter 7.
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(a) Male
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(b) Female
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(c) Neutral

Figure 5.9: Evidence charts of hypotheses split by gender. If a user did not explicitly
define his or her gender in BibSonomy, he or she was classified as neutral.
While there is a slight difference when considering the folksonomy and the
semantic hypothesis (male users seem to navigate using the folksonomy
structure a little more than the other user groups), we observe that all
hypotheses perform equally for all data subsets.
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Figure 5.10: Evidence charts for short-term users (≤ half a year according to their first
and last request). We observe a stronger performance of the semantic
hypothesis compared to the folksonomy hypothesis and see that the self
and folk-user hypotheses perform equally well in explaining navigation.
We attribute this to the increased browsing aspect of new users.
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(a) Describers
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(b) Specialists

Figure 5.11: Evidence chart for different user types according to tagging behavior: de-
scribers and specialists. We see approximately the same characteristics as
for short-term users. Again, we attribute this to a more pronounced bias
towards browsing instead of explicit access to known resources.
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Chapter 6

Capturing Semantics in Social Tagging
Data

6.1 Introduction

Social Tagging Systems are built on semantic information. As we have already noted in
Section 3.1.1, the assignment of free-form textual annotations or tags to posted resources,
for example images or publications, lets semantic structures to emerge [85]. Several
authors introduced methods to capture these emergent semantics. For example, Cattuto
et al. modeled each tag as a high-dimensional co-occurrence vector [48]. Körner et al.
then proceeded to show that there even exist groups of users whose tagging behavior
has a positive influence on the emerging semantics in folksonomies [122].

To show that these tagging vectors really captured semantic relatedness, Cattuto
et al. grounded them on WordNet using the Jiang-Conrath similarity measure [112].
Budanitsky and Hirst have shown that the Jiang-Conrath measure produces scores that
correspond well with human intuition [44]. Consequently, Cattuto et al. argued that the
scores produced by Jiang-Conrath generalize well and can thus also serve as a basis to
evaluate their tagging vector space model.

However, there exist several issues regarding that evaluation procedure. Most impor-
tantly, in [44] the Jiang-Conrath measure was evaluated only on two very small semantic
relatedness datasets. Since the evaluation results in [44] showed very high correlation
of the Jiang-Conrath measure with human intuition, the first issue should exhibit only
a limited impact. However, the second issue needs to be addressed by extending the
evaluation on several other, bigger evaluation datasets. If this extended evaluation shows
that the Jiang-Conrath measure does in fact not generalize, then results obtained from
this evaluation approach should also be reconsidered.

An issue with the tagging vector space model itself, as proposed by Cattuto et al., is
that the vectors representing tag possess a very high number of features [48]. While
most tag vectors are often sparsely populated, the high number of dimensions increases
computational costs, especially in machine learning applications. Additionally, because
of the curse of dimensionality, it gets increasingly more difficult to accurately measure
semantic similarity, since vector distances tend to converge to a uniform distribution in
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high dimensions.
In this chapter, we will approach both problems. We first discuss advantages and

shortcomings of two options to evaluate the semantic quality of vector representations in
Section 6.2. The first option uses scores produced by the Jiang-Conrath measure as a base
for comparison, while the other option directly evaluates semantic similarity scores on
human intuition. We find that the scores produced by the Jiang-Conrath measure do not
generalize as well as assumed to human intuition of semantic relatedness. Consequently,
this necessitates re-evaluation of some results that were obtained using the WordNet-
based approach, concretely those from Cattuto et al. [48] and Körner et al. [122]. We will
repeat those experiments from those papers that are based on the Jiang-Conrath measure
in Section 6.3, but this time evaluate the results on human intuition instead of the Jiang-
Conrath measure. Additionally, we extend the work by Körner et al., which measured
the influence of tagging pragmatics on tagging semantics. We do so by introducing two
new classes of tagging pragmatics. In Section 6.4, use those same classes to show that the
task of tag sense discovery, i.e., discovering and disambiguating different meanings of tag,
is also affected by tagging pragmatics. Finally, we also address the issue of sparsity in
vector representations of tags by exploring the applicability of word embedding algorithms
on social tagging data in Section 6.5. We perform parameter studies for all of the applied
embedding algorithms and compare results using the previously presented evaluation
procedure. Our results show that embeddings produced by the GloVe algorithm [184]
using Delicious tagging data achieve competitive results on a series of human evaluation
datasets. In conclusion, this makes a strong point for the use of tag embeddings in
practical applications.

The contents of this chapter are based on several papers. Section 6.2 and Section 6.3.2
originate from an unpublished technical report from 2015 [171]. The Generalists and
Specialists that we use in Section 6.3.3 have been first defined in a publication from 2013
[176]. That same work also contributes the contents of Section 6.4, where we explore
the impact of tagging pragmatics on tag sense discovery. Finally, Section 6.5 has been
published in 2017 in [174].

6.2 A Critical Examination of WordNet-based Evaluation of

Semantic Similarity

In [48], Cattuto et al. not only proposed several ways to model the semantic information
contained in tagging data, but also introduced a new way to evaluate these models
with regard to their fit to human intuition of semantic relatedness. Concretely, they
compared the similarity scores obtained from the tag vectors to those of two WordNet
based measures, the Jiang-Conrath semantic similarity measure [112] and the taxo-
nomic shortest path distance measure [105] (cf. Section 3.2.3.3). Both of those rely
on the structure of semantic relations in WordNet, which we already introduced in
Section 3.1.3. This evaluation approach of not directly evaluating on human intuition is
based on the assumption that the Jiang-Conrath measure corresponds extremely well
with human intuition, as shown in [44]. In their work, Budanitsky and Hirst evaluated
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several WordNet-based semantic similarity measures in two settings, namely on a word
similarity task and a malapropism task, i.e., how well these measures are fit to detect
spelling errors. The word similarity task is based on comparing the similarity measures
directly on human intuition, that is, semantic relatedness datasets as we introduced
in Section 4.4. Budanitsky and Hirst used two very small and overlapping semantic
relatedness datasets, namely RG65 and MC30, which contain 65 and 30 word pairs,
respectively.

Not only due to the small size of both datasets, but also to the fact that MC30 is
completely contained in RG65, it is difficulat to say how well the WordNet-based
similarity measures generalize, even although they achieved very high evaluation scores
on both datasets. However, if these measures cannot generalize well, then we also need
to re-evaluate approaches that build on semantic similarity scores from WordNet, for
example the tag grounding procedure as introduced in [48] which has also been used in
[122].

In this section, we re-evaluate some of the WordNet-based semantic similarity mea-
sures that were presented in [44] on a wide range of semantic relatedness datasets.
In fact, we evaluate the Jiang-Conrath and taxonomic shortest path similarity in the
same word similarity setting as in [44] using the MC30 and RG65 semantic relatedness
datasets, but also extend the evaluation on other, bigger semantic relatedness datasets.
We expected to find a clear signal whether or not these measures are able to generalize
on measuring semantic similarity of words and are thus either suitable as a proxy for
human intuition or not. Our findings however indicate that the Jiang-Conrath similarity
measure only achieves inferior evaluation results on larger semantic relatedness datasets
and is thus less suited as a general proxy for human intuition. While the widely used al-
ternative of evaluating directly on human intuition seems the more viable way to obtain
valid evaluation results, this method also has some drawbacks. Concretely, we address
the issue of the inferior word coverage of human intuition datasets and analyze how the
quality of evaluation results depends on the covered vocabulary. To demonstrate how
this issue can be overcome, we introduce a new semantic relatedness evaluation dataset
specifically collected to measure the semantic relatedness of tag from the BibSonomy
folksonomy.

6.2.1 Experimental Setup

This section describes the used datasets and resources as well as the experimental setup.

Resources. We evaluate the Jiang-Conrath semantic similarity measure [112] and the
taxonomic shortest path distance [105] on a range of semantic relatedness datasets. This
includes the MC30 and RG65 datasets that were used in [44], but also more recently
published and bigger datasets, namely WS-353, MEN, MTurk, and SimLex-999 (cf.
Section 4.4).

Re-Evaluating the Jiang-Conrath Measure on Human Intuition. The general goal
of semantic relatedness measures is to come as close as possible to human intuition,
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that is, to depict the generally accepted strength of relation as accurately as possible.
Thus, it is crucial that the evaluation scenario sufficiently reflects such human intuition,
as anything else would not provide a valid basis for evaluation. In this experiment,
we discuss whether each evaluation approach is a suitable representation of human
intuition by itself.

A good evaluation method should consistently produce valid and reliable results,
regardless of the given topic context. Naturally, this is hardly possible for highly
specialized topic contexts, such as scientific or medical vocabulary, as opposed to a
general topic context where only general vocabulary is concerned. For example, the
meaning of a paper in a scientific context, i.e., a publication describing a piece of research,
differs from its general meaning, which describes a material that such pieces of research
are usually printed on [102]. Especially in such cases it is necessary to quickly extend
the evaluation basis to reflect special meanings and relations.

We compare the vocabulary coverage of all tagging datasets on both WordNet and
all human intuition datasets on the example of social tagging systems, as these cover a
limited range of topics. Then we introduce a specifically created evaluation dataset that
targets scientific and technical vocabulary, just as in Delicious and BibSonomy. We show
that using this dataset, we can more accurately assess the quality of semantic relatedness
information in tagging vectors constructed from these folksonomies.

6.2.2 Results

In this section, we present the results for all experiments described above.

6.2.2.1 Re-Evaluating the Jiang-Conrath Measure on Human Intuition

Because the Jiang-Conrath and shortest path distances have only been evaluated on
the RG65 and MC30 datasets, we wanted to extend this evaluation to other evaluation
datasets presented in Section 4.1 to assess the quality of the WordNet based measures as
a representation of human intuition of semantic relatedness. For each pair of words in
the semantic relatedness dataset, we match them each on a concept in WordNet. Then
we computed the Jiang-Conrath and taxonomic path distance between these concepts. If
a word matched more than one concept, we chose that which maximized the similarity
score. Table 6.1 shows correlation scores for the evaluation of the WordNet based
measures on human intuition. We report both Pearson (r) and Spearman (ρ) correlation
scores, since although using Spearman’s correlation coefficient is more intuitive in a
semantic relatedness setting, we also want to compare with the Pearson correlation
scores reported in by Budanitsky and Hirst [44]. We can see that, while the correlation
with RG65 and MC30 is very strong, evaluation performance decreases greatly when
using the other evaluation datasets. Most interestingly however is that the Jiang-Conrath
similarity measure is indeed a very good fit for the semantic similarity dataset SimLex-
999. This means that Jiang-Conrath measure seems to measure rather semantic similarity
instead of relatedness, as the correlation with the scores of the semantic relatedness
datasets MEN, WS-353, and MTurk are low. Still, since the number of evaluable pairs is
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Table 6.1: Evaluation of the WordNet semantic similarity measures Jiang-Conrath (jcn)
and taxonomic shortest path distance (path) on different datasets with human
intuition of semantic relatedness (MEN, MTurk) and semantic similarity
(RG65, MC30). When evaluated on more recent datasets, both measures
yield less obvious correlation with human judgment, compared to the scores
achieved on RG65 and MC30. The Jiang-Conrath and the shortest path
distance show a high correlation with similarity datasets, while there seems to
be rather low to no correlation on relatedness datasets. We report both Pearson
(r) and Spearman (ρ) correlation scores, since although using Spearman’s
correlation coefficient is more intuitive in a semantic relatedness setting,
we also want to compare with the Pearson correlation scores reported in by
Budanitsky and Hirst [44].

RG65 MC30 WS-353 MEN MTurk SimLex-999

r
jcn 0.853 0.868 0.063 0.047 0.057 0.536
path 0.784 0.755 0.374 0.378 0.446 0.301

ρ
jcn 0.776 0.826 0.298 0.367 0.364 0.545
path 0.781 0.724 0.296 0.337 0.340 0.221

matched pairs 65 30 348 2606 243 700

very high for all datasets, these results validate our assumption that the Jiang-Conrath
and taxonomic path similarity measures can not generalize as well as thought.

6.2.2.2 Vocabulary Coverage and Extensibility of Semantic Relatedness Datasets

We split this section in two parts. First, we talk about the covered vocabulary in the
evaluation datasets in order to see if we can obtain believable evaluation results. After
that, we describe how we created a semantic relatedness dataset with vocabulary from
BibSonomy, to demonstrate how easily we can obtain domain-specific evaluation data.

Vocabulary Coverage of Evaluation Datasets Table 6.3a shows the overlap of sev-
eral top-frequency tag subsets from both Delicious and BibSonomy with WordNet. As
a trend, we can observe a higher overlap among the more frequent tags. Furthermore,
the overlap of Delicious and WordNet is almost the same as the numbers which have
been reported by [48], although we use a larger, more recent dataset (cf. Table 6.2). This
tells us that over time, the semantic structure and frequency of words in the Delicious
folksonomy have been very stable.

Because the results in Table 6.1 are mediocre compared to other papers, which achieve
much higher correlation values on WS-353 (see Table 6.3), we investigated the reasons
for why BibSonomy and Delicious do not yield more competitive results, although it
has been shown that folksonomies exhibit strong regularities in tag usage, which should
allow to extract semantic relatedness [85]. In Table 6.3b, we show how many words and
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Table 6.2: Overlaps of the top tags from Delicious and BibSonomy with WordNet and
WS-353.

# top tags 100 500 1k 5k 10k

Delicious 78% 75% 74% 61% 54%
BibSonomy 61% 59% 56% 45% 38%

(a) Overlap with WordNet.

Delicious BibSonomy

measure 100 500 1k 5k 10k 100 500 1k 5k 10k

word overlap 17 61 99 240 302 16 50 80 193 248
pair overlap 0 18 37 136 194 5 14 26 114 151

(b) Overlap with WS-353

Table 6.3: Spearman correlation scores on WS-353 in other literature. Note that all
of these works conduct their experiments on Wikipedia data, e.g., the link
network instead of WordNet or tagging data.

paper reported correlation

WikiRelate [223] 0,55
ESA [81] 0,75
WikiGame paths [210] 0,76
TSA [189] 0,8
Conceptnet Numberbatch [217] 0,828

pairs from WS-353 are contained in different subsets of the most frequent tags of the
experiment datasets. For both BibSonomy and Delicious, one must consider the top 5k
tags to achieve a sufficient amount of evaluable pairs on which evaluation is reasonable.
Also, another big part of the pairs is only matchable when the whole experimental
vocabulary is taken into account. In contrast, the vocabulary overlap of BibSonomy and
Delicious to WordNet is relatively high (5400 tags for the top 10k Delicious tags and
3800 tags for the top10k BibSonomy tags, see Table 6.3a).

Extension and Evaluation on Domain Specific Vocabulary If it concerns domain
specific vocabulary, WordNet cannot easily be extended, since it is a resource hand-
crafted by linguistic experts [72]. This makes vocabulary extensions extremely expensive,
both in time and necessary experience. On the other hand, one can easily collect a
number of tag pairs and have them annotated by humans. In fact, several works have
created human intuition datasets for their purposes already in order to obtain datasets
with more fitting vocabularies. For example, the WS-353 dataset contains very general
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Table 6.4: Comparison of different BibSonomy vocabulary subsets with the WS-353 and
the Bib100 vocabularies.

BibSonomy subset word overlap pair overlap

WS-353 (353 pairs)

top 100 18 4
top 1 000 89 36
top 10 000 269 168

Bib100 (100 pairs)

top 100 14 8
top 1 000 89 70
top 10 000 122 100

words from several topics and thus does not provide a good evaluation basis for news
article semantics. Thus, Radinsky et al. created the MTurk dataset from the New York
Times corpus, to just name a single example.

Because the vocabulary of the WS-353 and MTurk evaluation datasets does not fit
well to the vocabulary of the tagging datasets used in this section, we decided to create a
new evaluation dataset with a more fitting vocabulary to the one used in BibSonomy
and Delicious.1 We will now describe the creation process of Bib100.

We randomly selected 122 words from the top 3 000 words of the BibSonomy dataset
and combined them into 100 word pairs by hand, according to our own perceived
similarity ascending from unrelated to strongly related. In [212], Snow et al. show that
non-expert annotations are equally well suited to evaluate NLP tasks. Consequently, we
had each pair judged 26 times for semantic relatedness using crowdsourced scores by
non-experts. The scores ranged between 0 (no similarity) and 10 (full similarity) on the
MicroWorkers platform. Each rater had to judge the whole set of 100 word pairs at once.
Raters whose ratings deviated from the remaining inter-rater correlation too much, i.e.,
with a correlation difference of 0.2, were excluded. We also manually filtered raters who
obviously judged wrong scores, e.g., zero relatedness between web and internet. The
average interrater agreement is 0.68. With this dataset, we were better able to judge
the semantic quality of word representations constructed from both tagging datasets
used in this section. While this heuristic of creating an evaluation dataset is rather basic
as for example in comparison with the creation process of SimLex-999 [104], we still
obtain a reasonable rating distribution.

In Table 6.4, we can furthermore see how much better Bib100 overlaps with BibSon-
omy tagging data than WS-353 does. Although we obviously can match all pairs of
Bib100 on BibSonomy tagging data, we are also able to match almost double the number
of pairs on the top 1000 tags with an equal number of matched words. Table 6.5 finally
shows the evaluation scores of the Jiang-Conrath and taxonomic path distance measures

1http://www.dmir.org/datasets/bib100
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Table 6.5: Evaluation of the Jiang-Conrath and taxonomic path distance measures on
Bib100. We also report the results on WS-353 as comparison. The evaluation
results of the two WordNet-based similarity measures are still not very good.

Bib100 WS-353

r
jcn 0.255 0.063
path 0.337 0.374

ρ
jcn 0.389 0.298
path 0.277 0.296

matched pairs 83 348

on Bib100. In the following sections, concretely in Section 6.3 and Section 6.5, we will
also use Bib100 as an evaluation dataset for semantics of tagging data.

6.2.3 Discussion

We will now discuss the results from the preceding experiments: We compare the
soundness of the evaluation methods and discuss issues of evaluation on human intuition
datasets.

6.2.3.1 Comparison of Evaluation Approaches

While WordNet makes it possible to evaluate hierarchical relations between concepts,
it is not explicitly designed to calculate semantic relatedness. Nevertheless, similarity
measures, such as the Jiang-Conrath or the path distance measure, exploit the WordNet
graph. [44] even found relatively large correlation with human intuition on semantic
relatedness by comparing against two relatively small datasets. However, we saw in
Table 6.1 that correlations are much smaller when comparing with the larger, more
recent evaluation datasets WS-353, MEN, MTurk and Bib100. Since the goal of extracting
semantic relations is to find measures that are well aligned with human intuition, our
results on WordNet-based metrics are strong evidence against their suitability as a single
base for evaluating extracted semantics.

A possibility to still use the evaluation method depicted in Equation (3.30) would be
to replace the WordNet-based similarity values dwn by humans judgments. However, the
argmax component yields different word pairs for each semantic relatedness measure we
examine. Thus, it is necessary to collect new human judgements every time we evaluate
a new measure. In addition, similarity values should be supported by a minimum
number of human ratings. Now, the original approach calls for 10 000 words to average
over. Assuming a minimum of 10 judgements per word pair, this would require an
overall of 100 000 judgments.

Overall, since WordNet based measures are hardly correlated with human judgements
and adopting the evaluation method by Cattuto et al. to use human judgements is
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expensive, we argue to evaluate directly on datasets containing human judgements
on semantic relatedness using the Spearman correlation coefficient as introduced in
Section 3.2.4. While corresponding datasets are smaller in size than the WordNet
taxonomy and thus are not covering every possible relation between words, they provide
a quicker and more realistic setting for evaluating semantic relatedness measures.

6.2.3.2 Shortcomings of Evaluation on Human Intuition Datasets

After we have argued for the use of datasets covering the actual human intuition on
semantic relatedness, we now discuss some issues that must be considered when using
that approach. First and foremost, the size of the evaluation datasets is important. The
MEN collection is by far the biggest dataset, consisting of 3 000 word pairs. The second
largest dataset is WS-353, containing 353 pairs. Compared to the sizes of our experiment
datasets, and thus to the number of word pairs for which similarity judgments can be
extracted, the evaluation datasets are rather small.

Secondly, human raters exhibit deviations and uncertainty in their judgments. For
word-pairs with a mean similarity between 2 and 7,5, the standard deviation of ratings is
about 3 and lower otherwise. This could be interpreted as insecurity of raters about the
extent of similarity of words, which are neither obviously related nor clearly unrelated.
Figure 3.9 shows the mean distribution of the word-pair similarities with smoothed
standard deviations in Bib100 and WS-353. Interestingly enough, a very similar rating
behavior can be observed for the WS-353 dataset.

Finally, our results show that not only size matters, but for evaluating semantic
relatedness measures the evaluation datasets must also contain “the right” vocabulary –
i.e., yield a high overlap with the experiment datasets. Table 6.3b shows this overlap
between the WS-353 dataset and subsets of the top tags of the experiment datasets
Delicious and BibSonomy. It takes the top 5k tags in each dataset to find a reasonably
large coverage. Another big part of the vocabulary is contained among second half of
the top 10k tags. With the creation of Bib100, we were able to show that it is possible to
achieve more competitive results by creating a dataset with a more fitting vocabulary.
The suitability of the Bib100 vocabulary for both folksonomies can especially be seen in
the high percentage of found word pairs in Table 6.4. Additionally, we will use Bib100
as an evaluation dataset in Section 6.3 and Section 6.5, where we will also see that we
can better capture the domain-specific semantics of BibSonomy and Delicious than with
WS-353.

Moreover, the competitive results on Bib100 are another argument in favor of using
such human intuition datasets to evaluate semantic relatedness: It is very easy to
construct a domain-specific dataset by picking a set of representative, frequently used
words from the experiment dataset vocabulary, combine them into pairs, and to have
them evaluated by humans, e.g., through crowdsourcing. They thus provide a cheap,
easy, and fast option to judge semantic relatedness, while yielding a plausible evaluation
scenario, as they rely directly on the explicitly expressed human intuition of semantic
relatedness.
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6.2.4 Conclusion

In this section, we challenged the evaluation approach for semantics in tagging data
presented by Cattuto et al. in [48], which grounds relatedness scores on those generated
by the WordNet-based Jiang-Conrath measure. We did so by comparing the Cattuto
evaluation measure to another standard way of evaluating semantic relatedness mea-
sures, which compares artifical scores produced by the relatedness measure to actual
human intuition. Our experiments showed that the main assumption for the Cattuto
evaluation measure, namely that Jiang-Conrath produces human-like relatedness scores,
does not hold at all and thus, this way of evaluating relatedness scores is not as viable as
previously assumed, if used as the only evaluation measure. Instead, we should evaluate
semantic relatedness scores, regardless of the generating textual content, on human
intuition directly. While this evaluation approach also has many drawbacks, such as
limited or unfitting vocabulary, it is still the best way to directly evaluate semantic
relatedness to ensure that the measure best fits human intuition.

6.3 Re-Evaluating Measures of Semantic Tag Similarity on

Human Intuition

We have seen in Section 6.2 that the Jiang-Conrath similarity measure does not always
represent human intuition as well as was assumed, and that it cannot generalize well
across different semantic relatedness datasets. As there are several works which base
their results about measuring semantic similarity on evaluation scores that originated
from the Jiang-Conrath measure, their experiments need to be repeated, yet this time
evaluated directly on human intuition. While the evaluation on Jiang-Conrath can still
be considered as a signal for the quality of the semantic similarity measure, a second
evaluation will either support the obtained results and thus make them stronger or can
serve as instigation for further research.

In this section, we re-conduct experiments from two works on measuring the semantic
similarity of social annotations. Concretely, we focus on those experiments that base
their results on scores from the Jiang-Conrath measure. In the first work [48] about
modelling semantic information in tagging data, Cattuto et al. evaluated different tag
context choices to construct vector representations, according to how well they were
able to judge semantic similarity. In this paper, the evaluation on WordNet using the
Jiang-Conrath measure was initially proposed. The second work [122] investigated the
impact of user pragmatics on the semantic quality of the vector representations. A main
implication of their work was that they showed first evidence for a causal link between
user pragmatics and tagging semantics. Again, this was shown using the Jiang-Conrath
measure as evaluation base.

We find that the results from [48] hold in general, but we can also observe some varia-
tions in the qualitative ranking of the tag-tag co-occurrence and tag context similarity
measures. When re-examining the results from [122], we first observe that we cannot
generalize their results across all considered evaluation datasets, as for each evaluation
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dataset, we observe slightly different results. We finally attribute this to the semantic
information encoded in these datasets, be it either semantic relatedness or semantic
similarity (cf. Section 3.2.3.1), with the latter being measured when evaluating on the
Jiang-Conrath measure (cf. Section 6.2).

We will first describe some preliminaries for the experiments conducted in this section,
such as the used folksonomy data and the used methodology to construct tag vectors.
Then we will describe the experimental setup as well as the results of the re-evaluated
experiments from the papers of Cattuto et al. and Körner et al., for which we also discuss
the results in the light of the additional evaluation.

6.3.1 Preliminaries

We use the folksonomy data from Delicious and BibSonomy that we introduced in
Section 4.1. Both datasets are restricted to the top 10k tags. They also contain the
user information needed to construct the folksonomy subsets based on the tagging
pragmatics of users in Section 6.3.3. To construct tag vector representations, we use
the context based representations that Cattuto et al. used in [48] and which have been
described in Section 3.2.2.1, concretely the tag context, resource context and user context
measures, as well as the tag co-occurrence measure.

6.3.2 Distributional Measures of Tag Similarity

In [48], Cattuto et al. provided a systematic characterization and validation of several
measures of tag similarity. Some of these measures were based on a distributional
representation of a tag’s context. We introduced all of these context definitions in
Section 3.2.2.1. Cattuto et al. compared the distributional tag representations with
regard to their ability to measure semantic relatedness between tags. As evaluation,
they used the WordNet-based approach we described in Section 3.2.4. Their results
showed that resource context based similarity outperformed the other context similarity
variants, followed by tag context similarity, tag co-occurrence similarity, FolkRank
similarity and finally user context similarity. Still, all measures yielded better reflection
of supposedly human intuition than a random baseline. In the end, they however
decided to represent tags by the tag-tag co-occurrence context, since it was easier to
construct and computationally more feasible, while at the same time only slightly worse
than representation by resource context.

Since human intuition in general shows stable patterns in their assessment of semantic
relatedness [75, 160, 199], we assume that a good evaluation method for semantic relat-
edness of words also produces score rankings that are comparable to other sufficiently
good evaluation methods. Concretely, if a proven evaluation method determines that a
set of word vectors better reflects human intuition of semantic relatedness than another
set of vectors, then other evaluation methods should also yield the same ordering for
both vector datasets. We expect at least that the ranking of the context based similar-
ity measures still holds in our experiments, i.e., when evaluating on human intuition
instead of WordNet. Additionally, as we extend the experiments on another dataset
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Table 6.6: Results for the WordNet-based evaluation method used by Cattuto et al. [48]
on the Delicious and BibSonomy datasets. We also report the results from
[48] as a reference. We used both the Jiang-Conrath distance (JCN) as well as
the taxonomic path distance (Path) as semantic similarity ground truths. The
best evaluation scores are marked fat.

Delicious BibSonomy Cattuto et al. [48]

JCN Path JCN Path JCN Path

tag cosine 11,0 6,5 14,2 8,2 10,1 6,2
res cosine 10,8 6,4 14,0 8,1 9,1 6,2
user cosine 13,8 7,6 14,1 8,3 13,3 7,9
tag co-occ 13,1 7,6 13,7 8,1 12,3 7,4

(namely BibSonomy), we also expect to see a similar picture there.

Experimental Setup

In the following, we will use the context variants to construct distributional representa-
tions of tags in the Delicious, and BibSonomy folksonomies. The respective folksonomy
datasets have already been introduced in Section 4.1. For each combination of folk-
sonomy data and similarity measure, we then evaluate the semantic relatedness scores
produced by the distributional representations both with the WordNet-based evaluation
as well as on human intuition. We do so to achieve a comparison with the original
evaluation results reported by Cattuto et al. on the one hand, but on the other hand to
also see if both evaluation approaches rank the similarity measures analogously.

Results and Discussion

We now present and discuss the results of both evaluation approaches. First we discuss
the evaluation results on WordNet, before we look closely at the results of evaluation on
human intuition. At the end of this section, we compare them with each other.

Evaluation of Word Vectors on WordNet using the Jiang-Conrath Measure In this
experiment, we evaluate our results on WordNet analogously to [48] by comparing our
results with the taxonomic path length and Jiang-Conrath distances as described in
Equation (3.30). Table 6.6 shows the results of this experiment.

The Delicious results are very similar to the reported results in [48], i.e., tag cosine
similarity based on resource and tag context finds closer nearest concepts according to
Jiang-Conrath and path distance than cosine similarity based on user context or direct
first-order co-occurrence. Similar experiments on BibSonomy have not been reported in
[48]. In our investigation, however, we find that the results for BibSonomy show little to
no variation between the different context descriptions. We will see in the course of this
section that BibSonomy yields a similar ranking of the investigated similarity measures.
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Table 6.7: Results for evaluation on the human similarity intuition datasets for the
Delicious and BibSonomy folksonomy dataset. Best evaluation results are
marked fat. We can see that generally, the qualitative performance ordering
of the context measures holds, as resource context is almost always the best
choice, while user context yields the worst results.

sim WS-353 MTurk MEN Bib100 SimLex-999

tag context 0.452 0.505 0.574 0.636 0.311
res context 0.614 0.662 0.736 0.745 0.478
user context 0.432 0.611 0.583 0.445 0.172
tag co-occ 0.554 0.614 0.718 0.643 0.295

#pairs 202 103 1376 94 398

(a) Delicious

sim WS-353 MTurk MEN Bib100 SimLex-999

tag context 0.384 0.548 0.433 0.626 0.138
res context 0.606 0.668 0.587 0.642 0.171
user context 0.260 0.496 0.381 0.381 -0.030
tag co-occ 0.531 0.675 0.394 0.556 0.104

#pairs 158 62 463 100 213

(b) BibSonomy

Evaluation of Word Vectors on Human Intuition In the following, we evaluate the
folksonomy data using the context measures from [48] directly on human intuition
of similarity, which is represented by the evaluation datasets from Section 4.1. The
evaluation setting has already been described in Section 3.2.4. To provide a wide
evaluation base, we use the same human intuition datasets that we already used in
Section 6.2, namely WS-353, MTurk, MEN, Bib100, and SimLex-999. We omit the
results for RG65 and MC30 because for both datasets, the number of evaluable pairs is
always less than 5, from which we cannot infer any valid evaluation scores.

Table 6.7 shows the results for evaluation on human intuition datasets for the different
context representations. The performance order as reported in Table 6.6 of the results
shown in Table 6.7 is visible to some part, e.g., resource cosine similarity shows a better
correlation than all other context representations. Also, the user context representation
still yields the worst results. However, the distinction between tag co-occurrence and
tag context similarity is not as clearly pronounced as in [48]. In some evaluation settings,
tag co-occurrence is better than tag context similarity, while in other settings, it’s the
other way around.

127



6 Capturing Semantics in Social Tagging Data

Conclusion

In this part of this section, we re-examined the results from [48] in the light of a different
evaluation approach. While in [48], Cattuto et al. compared different context based
vector representations of tags with each other by comparing them to WordNet-based
evaluation scores, we changed the evaluation setting to a direct comparison with human
intuition. We wanted to see if the results from [48] still hold in a qualitative manner,
concretely, if the ranking of the context-based representations with regard to their
semantic evaluation scores are still present.

We found that while the first and last ranks consistently stayed the same, namely
that resource-based context representations provide the best semantic information, we
could not see such a clear distinction between tag-tag co-occurrence and tag context
similarity. In [48], tag context similarity clearly outperformed tag-tag co-occurrence,
but we sometimes observed the opposite. However, we attribute this to the imperfect
vocabulary coverage of each evaluation dataset.

Future work in this section could be to investigate which kind of semantic relatedness
is actually evaluated. Since we found in Section 6.2 that the Jiang-Conrath measure
rather fits to the SimLex-999 dataset, which is explicitly built to measure semantic
similarity, the WordNet-based semantic evaluation approach probably also focusses on
determining semantic similarity instead of relatedness. Also, a combined evaluation
approach, using both WordNet-based evaluation as well as semantic relatedness datasets
would probably be able to combine the best of both worlds and thus provide an extremely
helpful tool for the evaluation of semantic information.

6.3.3 Impact of User Pragmatics on Tagging Semantics

After Cattuto et al. have shown in [48] that distributional similarity measures can
capture the semantic information in folksonomy data, Körner et al. extended upon this
work to investigate potential influencing factors on the quality of the distributional
measures. They assumed that “users with certain usage patterns might contribute more
to the resulting semantics than others” [122]. In their work, they established a link
between user pragmatics, i.e., the characterization of why users assign tags, and tagging
semantics, i.e., the semantic meaning of those tags.

They defined several measures to characterize users either as categorizers or describers,
which we described in Section 3.3. This notion of different tagging behavior has already
previously been established in [221]. Their results indicate that users with many tags
and few resources, i.e., describers, are more useful than others to extract semantic
information. As in [48], they base their results on evaluation scores obtained from the
WordNet-based evaluation using the Jiang-Conrath measure. Consequently, we also
repeat the results from this work and evaluate the resulting vectors on human intuition.
Although details may vary, we expect to see a similar pattern of tagging pragmatics
influence on the extraction quality.
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Experimental Setup

For our evaluation, we use tagging data from Delicious and BibSonomy, each restricted
to the top 10k tags. To model the semantic information as vectors, we use the tag
context similarity as defined in Equation (3.17), i.e., we count how many posts were both
annotated with the same pair of tags. We evaluate these vectors on the MEN, WS-353,
MTurk, Bib100, and SimLex-999 semantic relatedness datasets. However, we will not
discuss th

To measure the impact of the different user groups, we follow [122] and define several
folksonomy partitions. For each metric m ∈ {trr, tpp,vocab,orphan,mdc,mqdc, ten,ssc},
we obtained a list Lm of all users u ∈U sorted in ascending order according to m(u). All
our measures yield low values for categorizers / specialists, while giving high scores to
describers / generalists. This means that e.g., the first user in the mean degree centrality
list (denoted as Lmdc[1]) is assumed to be the most extreme specialist, while the last one
(Lmdc[k], k = |U |) is assumed to be the most extreme generalist.

Because we are interested in the minimum amount of users needed to provide a valid
basis for disambiguation, we start at both ends of the respectively sorted user list Lm
and extract two folksonomy partitions CFm10 and DFm10 based on 10% of the “strongest”
categorizers/specialists (CatSpecm10 = {Lm[i] | i ≤ 0.1 · |U |}) and describers/generalists
(DescGenm10 = {Lm[i] | i ≥ 0.9 · |U |}). The sub-folksonomy

CFm10 = (CUm
10,CT

m
10,CR

m
10,CY

m
10) (6.1)

of F is then induced by CatSpecm10, i.e., it is obtained by

• by the restricted user set CUm
10 := CatSpecm10

• the restricted set of tag assignments CYm10 := {(u,t, r) ∈ Y |u ∈ CatSpecm10}

• the restricted set of tags CTm10 := π2(CYm10)2

• and the resources tagged by the restricted users CRm10 := π3(CYm10)

The sub-folksonomy DFm10 is determined analogously by DescGenm10. We extracted parti-
tions CFmi and DFmi for i = 10,20, . . . ,100.

Results and Discussion

We will now describe and discuss the results of re-evaluating the impact of tagging
pragmatics on tagging semantics.

In Figure 6.1a, we can see that mqdc specialists, more concretely 30% of low mqdc users,
generate the best tagging semantics on Delicious and MEN, where they can achieve a corre-
lation of 0.61. With this, they outperform the baseline score of 0.574, as obtained by all
users. The same signal can be seen for mdc specialists, although slightly weaker. Fur-
thermore, we can see that orphan describers also produce slightly improved semantics,

2πk is the projection operator on the k-th component of a tuple, i.e., π2 ((2,3,4)) = 3
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(a) Delicious results on MEN.
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(b) Delicious results on WS-353.
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(c) Delicious results on Bib100.

Figure 6.1: Impact of tagging pragmatics on tagging semantics in Delicious. The x axis
denotes the percentage of considered users, the y axis shows the Spearman
correlation scores on the corresponding semantic relatedness datasets MEN,
WS-353, and Bib100. Dashed lines indicate generalists/specialists, solid
lines indicate describers/categorizers.
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(a) BibSonomy results on MEN.
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(b) BibSonomy results on WS-353.
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(c) BibSonomy results on Bib100.

Figure 6.2: Impact of tagging pragmatics on tagging semantics in BibSonomy. The x axis
denotes the percentage of considered users, the y axis shows the Spearman
correlation scores on the corresponding semantic relatedness datasets MEN,
WS-353, and Bib100. Dashed lines indicate generalists/specialists, solid
lines indicate describers/categorizers.
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however also with only a weak signal. On WS-353 and Bib100 however, we see different
results (cf. Figure 6.1b and Figure 6.1c). On Bib100, describers and generalists generate
better semantics, with vocab and trr describers achieving the best correlation scores.
However, also mqdc describers yield semantics better than all users on Bib100. This is
especially interesting, as it directly contradicts our observation that mqdc categorizers
yield better semantics on MEN. We will discuss this later.

We additionally performed the experiments on the BibSonomy tagging dataset, as we
wanted to see if the results from Körner et al. and our results on Delicious can generalize
to other social tagging systems that are not too far away in terms of topical coverage.
Figure 6.2 shows the results we obtained there. The first thing we can observe is that
on MEN, orphan describers and m(q)dc specialists still yield the most useful semantic
information, as we already found on Delicious. Additionally, this time 80% of trr
categorizers also achieve a correlation above the baseline. On WS-353, we obtain on the
one hand similar positive results as on MEN, such as orphan describers showing superior
performance 3 We also see some differences to the evaluation of Delicious on WS-353:
First of all, the dominant user group are not m(q)dc generalists anymore, but orphan
describers (like on MEN), but vocab categorizers also show decreased performance.
Finally, on Bib100, we can roughly see a similar behavior of the evaluation scores as on
Delicious, while the describers and generalists behave entirely different. Most notably,
while describers/generalists on Delicious all outperformed the baseline after taking a
portion of 60% of users into account, now almost all scores generated by describers and
generalists are lower than the baseline, with the exception of extreme tpp describers and
ten generalists. Finally, 90% of all trr describers also manage to achieve a score above
the baseline.

Now when comparing these results to those obtained by Körner et al. [122], we can
only see a limited amount of resemblance. While Körner et al. reported that they can
achieve the best evaluation performance by taking 90% of trr categorizers into account,
we can only see this reflected on WS-353, where we still achieve the best correlation
scores by considering either 10% of mqdc specialists or 50% of tpp categorizers. The
usefulness of tpp describers, as advertised in [122], can also only be confirmed on WS-
353, where they achieve extremely similar results to vocab describers. On MEN on the
other hand, we cannot see either pattern reflected. Instead, we see other regular patterns,
such as for example the superiority of mqdc specialists. We explain the different results
in the different evaluation datasets as follows. While MEN, Bib100, and in parts also
WS-353, all aim to evaluate some kind of semantic relatedness between words, we might
find different user groups that satisfy these conditions. On the other hand, as we noted
in Section 6.2, the WordNet-based evaluation is based on comparison with the Jiang-
Conrath measure. However, the Jiang-Conrath measure specifically measures semantic
similarity, which on the other hand is not reflected very much in the evaluation datasets
we mentioned above.

In fact, we also evaluated the produced semantic scores on the SimLex-999 dataset,

3We do not take the WS-353 scores obtained on small categorizer/specialist subsets into account, since we
can only cover a small subset of WS-353 pairs there.
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(a) Delicious results on SimLex-999.
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(b) BibSonomy results on SimLex-999.

Figure 6.3: Impact of tagging pragmatics on tagging semantics, evaluated on the seman-
tic similarity evaluation dataset SimLex-999.

which resembles human intuition of semantic similarity, in Figure 6.3. We can see
that on Delicious, tpp categorizers outperform the semantic baseline by a great margin,
which is in line with [122]. However, vocab and trr describers cannot produce score that
are better than that of all users. Still, in [122], these describer groups also only slightly
outperformed the baseline score. On BibSonomy, tpp categorizers also yield a score
slightly above the baseline, but here are outperformed by orphan categorizers. As for
describers, we can again see that m(q)dc as well as vocab describers perform better than
others. The trr describers again still perform similarly well as the baseline.

Conclusion

In this subsection, we re-evaluated the influence of user groups with a certain tagging
behavior on the extraction of semantic information from tagging data. Concretely, we
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repeated the experiments by Körner et al. [122], only this time we evaluated the semantic
relatedness scores on human intuition instead of using a WordNet-based evaluation. We
could show that tagging pragmatics can positively influence tagging semantics, but in
many different ways. While in [122] only a large subset of users managed to slightly
outperform the baseline of all other users, we found that, depending on the evaluation
dataset and the measured type of semantic relatedness, other user groups were more
useful. Concretely in relation to the results of [122], we only sometimes saw the same
signals that they reported. So for example, while on MEN, we saw that We especially
found that different user groups also address a different kind of semantic relatedness,
something that [122] did not distinguish.

6.3.4 Summary

After we found in Section 6.2 that the Jiang-Conrath semantic similarity measure
does not generalize well, we repeated the experiments of two papers that base their
evaluation on the scores of the Jiang-Conrath measure. We found that the results from
[48] hold to some extent, i.e., resource context similarity yields the best results, while
user context similarity yields the worst results. However, tag context similarity and
tag-tag co-occurrence were not as clearly separated as in [48] and sometimes even
switched position in the ranking. We also repeated the experiments from [122], where
Körner et al. investigated the influence of tagging pragmatics on semantic information
of tagging data. While we found that their results are in general still valid, we observed
different performances of user pragmatics when evaluating on different evaluation
datasets. We especially noticed that some user groups are more useful for measuring
semantic relatedness, while others benefit the determination of semantic similarity.

Overall, we could see that, despite the fact that the Jiang-Conrath measure does not
generalize as well as assumed, the impact on the evaluation results from [48] and [122]
is limited. Still, we could observe some differences, which validated our assumption
that a second evaluation would also bring new and interesting results.

6.4 Influence of Tagging Pragmatics on Tag Sense Discovery

in Folksonomies

Until this point, we assumed that each tag represents a single semantic concept. If
the contexts of two tags were similar enough, we would call them synonymous, i.e.,
describing the same context. For this, we always aggregated all of the different contexts
that tags appeared in (see Section 3.2.2.1). More realistically though, the current meaning
of a tag, i.e., its tag sense, is always determined by its current context and does not always
describe the same concept. For example, in Figure 6.4, the tag apple can refer to a
well-known IT company or (more likely, judging from the context) to the fruit hanging
from a tree. Because apple can have several meanings, it is called polysemous. This can
introduce biases in measuring tag relatedness, since all the contexts of a tag are always
compared with all contexts of the other tag, regardless of the current context. While we
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apple

apple

apple

computer

tree

movie

musical

musical

fruit

OSX

mac

juice

Figure 6.4: Illustration of different word senses for apple. Depending on the context,
apple can refer to the fruit, to musicals in The Big Apple New York, or to the
computer manufacturing company.

already learned in [122] as well as in the re-evaluation in Section 6.3.3 that the tagging
pragmatics of users, i.e., the way users assign tags, impact tag semantics, we also assume
that this is the case with polysemy detection.

In the preceding section, we re-evaluated an approach by Cattuto et al. to capture
the semantic information in tagging data and to measure semantic tag relatedness and
similarity, with the goal of discovering synonymous tags [48]. As an extension, we also
reconsidered the work of Körner et al. how users of social tagging systems with different
tagging pragmatics influenced tagging semantics [122]. We now build upon both works
and apply their ideas on the tasks of tag sense discovery and disambiguation. Concretely,
we use the semantic information model from [48] to measure the influence of user
pragmatics on the quality of the discovered tag senses. For this, we use the pragmatic
user measures that we defined in Section 3.3.1, which partially have been introduced in
[123] and used in [122]. Furthermore, the actual sense discovery process is based on a
hierarchical clustering approach of the context of a given tag [28]. We will specifically
focus on tagging semantics in this section, since in social tagging systems, we already
have a notion of user pragmatics, i.e., of categorizers and describers. Thus, this section
will focus on tag sense discovery and the influence of tagging pragmatics in social tagging
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Figure 6.5: Evaluation of discovered tag senses on Wikipedia. A tag sense cluster
matches a Wikipedia sense, if the sense cluster and the Wikipedia sense
overlap in at least one word.

systems.

6.4.1 Experimental Setup

In order to explore the effects of tagging pragmatics on the ability to discover senses
in tags, we set up a series of experiments where we apply the previously introduced
method for tag sense discovery. Then we segment the entire folksonomy in several
sub-folksonomies based on the pragmatic measures for distinguishing between different
types of users and user behavior. Subsequently, we evaluate the performance of differ-
ent subpopulations on this task. We start by describing how we obtained a “ground
truth” for evaluation from Wikipedia, the WikiTagSenses dataset which we described in
Section 4.1.5.

Evaluation of Discovered Tag Senses on Wikipedia Clearly, identifying a represen-
tative and reliable ground truth dataset which captures (most of) the different senses of
a particular tag is a difficult task. While expert-built dictionaries like WordNet4 contain
descriptions of different word senses, their coverage is limited (e.g., roughly 60% of top
Delicious tags are present in WordNet). Furthermore, due to the dynamic nature of
social tagging systems, “new” senses might emerge quickly which are not yet covered
in the dictionary. For this reason, we have chosen the English version of Wikipedia5 as
ground truth, as its coverage is higher (89% for BibSonomy, and 85% for Delicious) and
we expect the community-driven sense descriptions to be more complete compared to

4http://wordnet.princeton.edu
5http://en.wikipedia.org

136

http://wordnet.princeton.edu
http://en.wikipedia.org


6.4 Influence of Tagging Pragmatics on Tag Sense Discovery in Folksonomies

WordNet. The english Wikipedia provides about 4 million articles and covers a huge
range of topics.

Our main source for sense descriptions are disambiguation pages, as introduced in
Section 4.1.5. For a given term t, we first looked up its disambiguation page, and iterated
over all contained bullet list items b1, . . . , bn−1. Because the first paragraph preceding the
bullet list often describes the “standard meaning”, we added it as an additional item bn.
If no disambiguation page was available, we use the first paragraph of the corresponding
article as a single sense description. The textual description for each item was then
transformed into a bag-of-words representation by (i) splitting it using whitespace as
delimiter, and (ii) removing stopwords and t itself. As a result, we obtain for each term
t a set of Wikipedia sense descriptions WP1

t , . . . ,WPnt , each being essentially of a set of
describing terms. We illustrated this in Figure 6.5.

Determining the clustering parameters As described in Section 3.2.5.2, a crucial
aspect when using hierarchical agglomerative clustering for sense disambiguation is
which parameter to use for “slicing” the dendrogram into distinct clusters. Because
we are finally performing a gold-standard based evaluation of our clusters, our goal
was to fix a parameter in advance for all experimental conditions which is oriented
towards Wikipedia. Varying the distance threshold mainly influences the number of
obtained clusters: While a very low threshold leads to many (singleton) clusters, a high
value results in a single global cluster. So our goal was to set the threshold in such a
way that the resulting distribution of senses comes close to the one found in Wikipedia.
More precisely, we varied the threshold in steps of 0.05 between 0.0 and 1.95, recorded
the distribution of the numbers of senses q, and compared it via the Kullback-Leibler
divergence to the Wikipedia sense distribution p according to D(p||q) =

∑
x p(x) log p(x)

q(x) .
First, we could observe a decrease of the KL divergence when increasing the distance
threshold for both datasets - i.e., the distributions become more similar. After peaking at
0.45 (BibSonomy) and 0.55 (Delicious), the divergence becomes greater again. Based on
this observation, we fixed the distance threshold for all hierarchical clustering conditions
to 0.45 for BibSonomy and 0.55 for the Delicious dataset.

Evaluation metrics Based on the sense clustering SC1
t , . . . ,SC

m
t obtained for each tag

t in each folksonomy partition, we evaluated the “quality” of each clustering by com-
parison with the corresponding Wikipedia senses WP1

t , . . . ,WPnt of t. A crucial question
here is at which point a particular clustered sense SCit “matches” a reference sense WPjt .
We used a simple approach to this end and counted a “hit” when there existed an over-
lap between both sets, i.e., when SCit ∩WPjt ≥ 1. We refer with matches(SC1

t , . . . ,SC
m
t )

to the set of clustered senses which match at least one Wikipedia Sense, and with
matches(WP1

t , . . . ,WPnt ) to those Wikipedia senses which match at least one clustered
sense. While this represents only an approximate matching, inspection of a small sample
of sense pairs revealed that the approach works reasonably well. Future research might
focus on developing and applying more elaborate sense matching approaches. Based on
these matches, we computed two measures inspired by precision and recall according
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to:

precision({SC1
t , . . . ,SC

m
t }, {WP1

t , . . . ,WPnt }) =
matches(SC1

t , . . . ,SC
m
t )

m

and

recall({SC1
t , . . . ,SC

m
t }, {WP1

t , . . . ,WPnt }) =
matches(WP1

t , . . . ,WPnt )
n

6.4.2 Results and Discussion

Figure 6.6 depicts the quality obtained for different disambiguation conditions for the
Delicious dataset. Along the x-axis of each plot, users are being added, sorted by each
pragmatic measure, respectively. This means that the folksonomy partitions are growing
towards the size of the full dataset – which is the reason that all lines meet in their
rightmost point. The y-axis measures precision and recall as defined above. The black
solid line corresponds to the random baseline, in which users were added in random
order.

Table 6.8 gives a qualitative perspective of the implications of tagging pragmatics
on tag sense discovery. While the senses inferred from extreme describers represent
plausible tag sense clusters and accurate matches to Wikipedia senses6, the senses
inferred from specialists or the entire population of users do not capture the different
meanings of the tag swing.

Interpretation: When comparing with the baseline, a first observation is that most
induced sub-folksonomies based on specialist and categorizer intuitions remain below
the random baseline, with increasing quality towards the full dataset condition. This
suggests that tagging data produced predominately by categorizers and specialists does
not enhance performance of the tag sense discovery task.

For describers and generalists, the situation becomes more interesting: While many
partitions based on generalists show a similar behavior and remain below the random
baseline, those based on tag entropy (ten) and partially those based on mean degree
centrality (1st quartile, mqdc) perform better, and score higher precision and recall
values than the complete dataset. This effect is even more pronounced for partitions
based on describers (using trr). It suggests that the pragmatics of tagging influence the
performance of knowledge acquisition tasks such as tag sense discovery. But how do the
pragmatics influence tag sense discovery in detail?

Our results offer preliminary explanations, identifying the particular types of behavior
(such as extreme describers or extreme generalists) that outperform other types of
behaviors (such as categorizers or specialists). On a general level, we can explain some
ways in which tagging pragmatics influence tag sense discovery. For example, while
categorizers and specialists in our experiments seem to negatively effect the ability to
discover senses from tags, data produced by describers and generalists has demonstrated
a potential to improve performance on this task. On a more specific level, we can observe

6https://en.wikipedia.org/w/index.php?title=Swing&oldid=495762681
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Table 6.8: Examples of detected senses produced by hierarchical clustering with the
optimal distance criterion threshold for the tag swing based on different
partitions of included users of the Delicious dataset. Bold sense labels were
successfully matched with the corresponding Wikipedia senses based on
Wikipedia disambiguation pages.

folksonomy subsets sense label sense tags

Top 10% Describers (trr)

opensource video opensource tools blog software
programming tutorial tips howto reference web programming
framework development gui java ui framework library
swt swt
game game
dance dance
golf golf

Top 10% Specialists (ten)

ui icon ui font
gui gui
tutorial tutorial tutorials
reference reference blog cool
border border
trash trash
xml development java xml programming
test test
examples examples
mvc mvc
focus focus
cursor cursor
patterns patterns

All users

gui gui tutorial java tips library ui programming development
instructions callaway instructions cart carts pga clubs balls golf
equipment equipment accessories discount used
courses courses

that the best performance globally can be found for one of the smallest partitions, i.e.,
the one induced by 10% of describers. Their annotations (though technically consisting
of much less data) seem to provide a better basis for discovering tag senses than the
total amount of annotations in the system. One possible explanation lies in the intrinsic
behavior of these users: Because their goal is to annotate resources with many descriptive
keywords, it may not be surprising that they come closer to what Wikipedia editors do
when “describing” word senses.

In order to verify the results on the Delicious dataset, we repeated our analyses on
our second dataset (BibSonomy). The observations are consistent across our datasets, as
can be seen in Figure 6.7

Discussion of implications: Understanding the ways in which tagging pragmatics
influence tasks such as word sense discovery is appealing for several reasons. For
example, using this kind knowledge, very large datasets could be reduced to smaller
datasets, which exhibit better performance on such tasks. Also, system engineers
could provide incentives to stimulate a particular style of tagging (e.g. through tag
recommender systems), which may help to foster the emergence of more precise semantic
structures.
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Figure 6.6: Results for the Delicious dataset. The x-axis of each plot corresponds to
the percentage of included users, ordered by the different metrics (different
lines). The further to the right, the larger are the corresponding folkson-
omy partitions. The y-axis corresponds to precision / recall as defined in
Section 6.4.1. For the case of precision, higher values indicate a higher
“correctness” of the discovered senses; for recall, higher values indicate a
better “coverage” of Wikipedia senses. The solid line represents the ran-
dom baseline. Most experimental cases stay close or below the baseline, i.e.,
they are not particularly well suited for disambiguation; An exception are
small partitions consisting of describers (according to trr) and generalists
(according to ten / mqdc).
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Figure 6.7: Results for the BibSonomy dataset. The x-axis of each plot corresponds to
the percentage of included users, ordered by the different metrics (different
lines). The further to the right, the larger are the corresponding folkson-
omy partitions. The y-axis corresponds to precision / recall as defined in
Section 6.4.1. For the case of precision, higher values indicate a higher
“correctness” of the discovered senses; for recall, higher values indicate a
better “coverage” of Wikipedia senses. The solid line represents the random
baseline. Most experimental cases stay close or below the baseline, i.e., they
are not particularly well suited for disambiguation; An exception are small
partitions consisting of describers (according to trr).

6.4.3 Conclusion

The overall objective of this section was to look for a signal - We wanted to explore (i)
whether there is a link between pragmatics and tag sense discovery and (ii) if there is, how it
might be explained. Our results provide further evidence that in social annotation systems,
knowledge acquisition tasks such as tag sense discovery can not be viewed in isolation
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from pragmatic factors, i.e., different kinds of users and user behavior. Our experiments
demonstrate that tagging pragmatics can have an influence on the performance of tag
sense discovery tasks. Our work also offers explanations, identifying the particular types
of behavior (such as extreme describers or extreme generalists) that outperform other types
of behaviors (such as categorizers or specialists). These findings represent an important
stepping stone for future, more elaborate tag sense discovery methods that leverage
pragmatic factors for improving performance. They also illuminate a way for engineers
of social annotation systems to direct or influence user behavior in one or the other
way to make their tagging data more amenable to a variety of knowledge acquisition
tasks. In conclusion, our work further emphasizes the social-computational nature of
social annotation systems, in which semantics emerge out of a combination of social
user behavior with algorithmic computation.

6.5 Learning Tag Embeddings

In computational settings, tags are often represented by sparse, high-dimensional vec-
tors [28, 29, 48, 122, 176, 205]. These vector descriptions are based on the co-occurrence
of tags as described in Section 3.2.2.1. However, although we have shown in the previous
section that tagging data contain meaningful semantics, the correlation of semantic relat-
edness scores from those vectors with human intuition still leaves room for improvement.
One possible reason for this could be the high dimensionality of those representations.
What is commonly known as the curse of dimensionality (cf. Section 3.2.1.2), impacts the
measurement of vector similarity, since with increasing dimension of the feature space,
the distance distribution between points approximates a uniform distribution, i.e., the
distances between all vectors tend to become equal. Additionally, the high number of
dimensions renders many learning algorithms computationally expensive, since they
have to fit a large number of parameters. All prior studies rely on high dimensional
tagging vectors or reduce the vector space arbitrarily by limiting the dimensionality
of the space by a fixed number, e.g., to the top 10 000 tags [28, 122, 176], which in
turn decreases the fit of the resulting relatedness scores to human intuition. Another
option to decrease the dimensionality of those vector representations is to apply word
embedding algorithms.

In this section, we propose to apply word embedding algorithms on tagging data to
obtain a dense representation of tags in a low-dimensional vector space. We contribute
a thorough exploration of three well-known embedding algorithms on tagging data,
with regard to their general applicability and their optimal parameter choices. We
first analyze the parameters of each algorithm, before we optimize these settings to
produce the best possible word embeddings from tagging data. Then we compare
the embeddings of each algorithm with each other as well as with traditional sparse
representations by evaluating them on human intuition. We show that all produced
embeddings outperform high-dimensional vector representations. We discuss the results
in the light of other approaches to measure semantic relatedness and show that we reach
competitive results, on par with recent work on extracting semantic information.
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The contents of this section have been previously published in [174].

6.5.1 Applicability of Embedding Algorithms on Tagging Data

This section describes the different embedding algorithms that we explored. We already
introduced each algorithm in Section 3.2.1.2. In the following, we will thus focus on
the applicability and the hyperparameters of each algorithm. This includes a short
summary, an enumeration of its parameters for each model and a short discussion how
the model can be applied to tagging data.

6.5.1.1 Word2Vec

The most well-known embedding algorithm used in this work is the Word2Vec algo-
rithm [156]. Word2Vec is actually comprised of two algorithms, SkipGram and CBOW
(Cumulative Bag of Words).7 Word2Vec trains a shallow neural network on sequences
of words to predict a word from its context, i.e., from its neigboring words in a given
context window. We use the implementation provided in version 3.6.0 of the Gensim
framework [194], which is publicly available as a Python package8.

Parameterization Word2Vec takes two parameters. The first parameter is the window
size, which determines the amount of neighboring words in a sequence considered as
context from which a word will be predicted. The second parameter denotes the number
of negative samples that are used in the Noise Contrastive Emulation step of Word2Vec to
approximate the gradient in the optimization step. 9 The last parameter is a minimum
occurrence count of words to be considered as sufficiently meaningful in a context. We
only make use of the first two parameters, as we already filtered our datasets in a
preparation step.

Applicability The Word2Vec algorithm normally processes sequential data. However,
the sequence of tags normally does not hold any meaning, so this could possibly pose a
problem if the window size is chosen too small. In order to be able to apply Word2Vec on
tagging data, we grouped the tag assignments into posts and fed the random succession
of tags as sentences into the algorithm.

6.5.1.2 GloVe

GloVe is an unsupervised learning algorithm for obtaining vector representations for
words on aggregated global word-word co-occurrence statistics in a given corpus [184].

7In the course of this work, every time we refer to Word2Vec, we talk about the CBOW algorithm, as is
recommended by [156] for bigger datasets.

8https://pypi.org/project/gensim/
9For a more detailled explanation, see http://ruder.io/word-embeddings-softmax/index.html#

noisecontrastiveestimation
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6 Capturing Semantics in Social Tagging Data

Its main objective was to capture semantic relations such as king−man+woman ≈ queen.
We use the C implementation provided by Pennington, Socher, and Manning.10

Parameterization The main parameters of the GloVe algorithm are xmax and α. xmax
denotes an influence cutoff for frequent tags while α determines the importance of
infrequent tags. According to [184], GloVe worked best for xmax = 100 and α = 0.75. We
will choose these as initial values in our experiments.

Applicability Since GloVe depends on co-occurrence counts of words in a corpus,
it is very easy to apply on tagging data. For this, we construct the tag-tag-context
co-occurrence matrix and can then directly feed it into the algorithm.

6.5.1.3 LINE

The goal of the LINE embedding algorithm is to create graph embeddings where the
first- and second-order proximity of nodes are preserved [227]. As introduced in
Section 3.2.2.2, the first-order proximity in a network is the local pairwise proximity of
two nodes, i.e., the weight of an edge connecting these two nodes. The second-order
proximity of two nodes (i, j) in a network is then the similarity between their first-order
neighborhoods. To produce the LINE embeddings, we use a implementation in C by Tang
et al.11

Parameterization LINE takes two different parameters: The amount of edge samples
per step and the amount of negative samples per edge. To decrease complexity of solving
the proposed model in [227], the authors employed a noise contrastive estimation
approach as proposed by [156] using negative sampling. Furthermore, to avoid high
edge weights to outweigh lower weights by letting the gradient explode or vanish, LINE
employs a sampling process of edges and then ignoring their weight instead of actually
using the edge weights in its objective function.

Applicability Similar to GloVe, this algorithm processes a network with weighted
edges, such as a co-occurrence network. Thus, we only have to construct the co-
occurrence network from the tagging data and apply LINE on that network.

6.5.1.4 Common Parameters

While each of the following algorithms can be tuned with a set of different parameters,
there are some parameters common to all algorithms. First, the embedding dimension
determines the size of the produced vectors. A higher embedding dimension allows for
more degrees of freedom in the expressiveness of the vector, i.e., it can encode more
information about word relations. Standard ranges for low dimensions are between 25
and 300.
10https://github.com/stanfordnlp/GloVe
11https://github.com/tangjianpku/LINE
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6.5 Learning Tag Embeddings

Table 6.9: Spearman correlation values for the co-occurrence baseline. For all evaluation
datasets, we give the total number of pairs in the original dataset and the
number of matched pairs, i.e., where both words were present in the tagging
corpus.

WS-353 (353) MTurk (287) MEN (3000) Bib100 (100)

BibSonomy 0.384 (158) 0.548 (62) 0.433 (463) 0.626 (100)
Delicious 0.450 (202) 0.505 (103) 0.574 (1376) 0.636 (94)
CiteULike 0.186 (139) 0.469 (53) 0.423 (404) 0.270 (87)

Secondly, the initial learning rate of an algorithm determines its convergence speed.
Fine-tuning that parameter is crucial to receive optimal results, because if chosen badly,
the learning process either converges very slowly or might be unable to converge at all.

6.5.2 Experimental Setup

In the following, we describe the baseline and the initial parameter settings for each
algorithm. We perform all experiments on the preprocessed tagging datasets introduced
in Section 4.1, concretely on Delicious, BibSonomy and CiteULike.

Baseline: Tag-Tag-Context Co-Occurrence Vectors As a baseline, we produced high
dimensional co-occurrence counting vectors from all three tagging datasets. As de-
scribed in Section 3.2, we counted co-occurrence of tags in a tag-tag-context, i.e., the
context of a tag was given as the other tags annotated to a given resource by a certain
user (cf. Equation (3.17)). Since there is no option to vary the dimension of the tag-
tag-context co-occurrence vectors except truncating the vocabulary, we only report the
values for a truncated vocabulary of 10,000 tags, which is in line with [48].

From Table 6.9, we can see that vectors built on Delicious data mostly produce the
best results and can always match most of the evaluation vocabulary, compared to the
other two tagging datasets. At least the second fact is not surprising, as Delicious is by
far the biggest tagging dataset. At the same time, the size of Delicious also intuitively
accounts for a lower signal-to-noise ratio in the top 10,000 tags. We can thus expect
more clear-cut results compared to the BibSonomy and CiteULike datasets.

Parameter Settings for each Algorithm For each of the following algorithms, we
conducted the experiments as follows: As initial parameter setting, we used the standard
settings that come with the implementation of each algorithm. The corresponding values
are given in Table 6.10. We then varied the initial learning rate for each algorithm in
the range of 0.01 to 0.1 in steps of 0.01. After that, we varied the embedding dimension
on the set of {10,30,50,80,100,120,150,200}. For Word2Vec and LINE, we now varied
the number of negative samples on the set of {2,5,8,12,15,20}. For GloVe, we varied
xmax ∈ {25,50, . . . ,200} and α ∈ {0.5,0.55, . . . ,1} simultaneously. Finally, for Word2Vec,
we varied the context window size between {1,3,5,8,10,13,16,20}, while for LINE,
we varied the number of samples per step on {1,10,100,1000,10000} · 106. To rule
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Table 6.10: Initial parameter values for each algorithm. If a parameter is not applicable
for an algorithm, it is marked with a dash.

Algorithm learning rate dimension samples per step negative samples (xmax ,α) window size

LINE 0.025 100 100 · 106 5 - -
GloVe 0.05 100 - - (100, 0.75) -
Word2vec 0.025 100 - 5 - 5

Table 6.11: Best parameter values for each algorithm for the MEN dataset on Delicious
data.

Algorithm learning rate dimension samples per step negative samples (xmax ,α) window size

LINE 0.1 100 100 · 106 15 - -
GloVe 0.1 120 - - (100, 0.75) -
Word2vec 0.1 100 - 20 - 5

out influence of a random embedding initialization, each experiment was performed
10 times and the mean result was reported. After each experiment, we chose the
best performing parameter settings on the respective tagging datasets across the four
evaluation datasets and used them for all other experiments.

6.5.3 Results

We will now present the evaluation results. We trained each algorithm on the tagging
data from Delicious, CiteULike and BibSonomy (cf. Section 4.1) and evaluated them on
the WS-353, MEN, MTurk, and Bib100 datasets (cf. Section 4.4) using the Spearman cor-
relation coefficient (see Section 3.2.4). For space reasons, we only report the evaluation
results on MEN. For each algorithm, Table 6.11 gives the parameter settings which pro-
duced the highest-scoring embeddings. In Figure Figure 6.8, Figure 6.9, and Figure 6.10,
we report both the evaluation results of the embeddings for a given parameter as well as
the corresponding baselines produced by the high-dimensional vector representations
given in Table 6.9. Figure 6.11 finally shows a comparison of the evaluation results for
the best configurations of each algorithm.

Word2Vec Although Word2Vec is meant to be applied on sequential data, as opposed
to the bag-of-words nature when assigning tags, the generated embeddings yielded
better correlation scores with human intuition than their high-dimensional counterparts.
However, we did not shuffle the tag sequence in posts, which is left to future work.
Figure 6.8a shows that fine-tuning the initial learning rate exhibits a great effect on the
quality of word embeddings from BibSonomy, with general peak performance at α = 0.1,
while Delicious data seem unaffected. Increasing the embedding dimension only improves
the embeddings’ semantic content up to a certain point, which is mostly reached at
around a very low number of dimensions between 30 and 50 (Figure 6.8b). Anything
above that does not notably add to the performance of the embeddings. The number
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Figure 6.8: Evaluation results for embeddings generated by Word2Vec on MEN. For
CiteULike and BibSonomy, tuning the learning rate notably improves results.
The embedding dimension seems to be the best for all tagging dataset at
100; afterwards the quality of BibSonomy embeddings decreases again. As
reported in [156], a number of around 10 negative samples seems sufficient
for small datasets such as BibSonomy, while a lesser number of samples fits
for bigger datasets.

of negative samples seems to be sufficient at around 10 samples and even earlier for
Delicious and CiteULike (Figure 6.8c). The influence of the context window size on
the semantic content of the generated embeddings was negligible (Figure 6.8d). In
the end, we obtained our best results for Word2Vec on Delicious tagging data with a
correlation score of 0.7 with MEN, which is already a major improvement upon the
baseline correlation of 0.577 (cf. Table 6.9).

GloVe GloVe generates embeddings from co-occurrence data. As mentioned in Sec-
tion 6.5.1.2, GloVe is parameterized by the learning rate, the dimension of the generated
embeddings as well as by the weighting parameters xmax and α, which regulate the
importance of low-frequency co-occurrences in the training process. While the learning
rate does not seem to have great effect on embeddings generated from Delicious data,
fine-tuning influences the semantic content of CiteULike and BibSonomy embeddings
notably (Figure 6.9a). Mostly, peak performance is reached at an embedding dimension
around 100 or even earlier, except for Delicious (Figure 6.9b). Furthermore, BibSonomy
is quite sensitive to poor choices of xmax and α, i.e., if both are chosen too high, perfor-
mance suffers greatly (Figure 6.9c). However, Delicious and CiteULike seem unaffected
by those parameters, at least in our experimental ranges (Figures 6.9d and 6.9e). The
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Figure 6.9: Evaluation results for embeddings generated by GloVe on the MEN dataset.
The initial learning rate only influences the smaller tagging datasets, while
Delicious profits most from increasing dimension. BibSonomy is influenced
by a high cutoff xmax the most.

GloVe embeddings trained on Delicious achieve the best result on MEN with a score of
0.76 correlation, compared with a score of 0.7 by Word2Vec. Most notably, the GloVe
embeddings capture human intuition significantly better than the tag-tag co-occurrence
vectors by Cattuto et al., which only achieve a correlation of 0.577. Thus, we can out-
perform the original result bei almost 20% correlation score. In fact, GloVe is the only
algorithm that consistenly achieves better correlation scores than the co-occurrence
counting baseline in all tagging datasets across all evaluation datasets.

LINE LINE generates vertex embeddings from graph data, preserving the first- and
second-order proximity between vertices. Its parameters are the initial learning rate,
the embedding dimension, the number of negative samples per edge and the number
of samples per training step. Its results are given in Figure 6.10. While influence of
the initial learning rate is visible, it is not as great as with GloVe. Also, the embedding
dimension gives similar results above 50 and only lets performance suffer if chosen too
small. Interestingly enough, the number of negative samples seems to have almost no
effect on the generated embeddings across all tagging datasets. In contrast, choosing the
number of samples per step exerts great influence on the resulting embeddings. The best
correlation with MEN we can achieve with LINE on Delicious tagging data is slightly
below 0.7 (cf. Figure 6.10d), slightly lower than that of Word2Vec.
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Figure 6.10: Evaluation results for embeddings generated by LINE on the MEN dataset.
While the initial learning rate, the embedding dimension and the amount
of samples per step exert a notable influence on the evaluation result,
increasing the number of negative samples per edge only slightly improves
results.

6.5.4 Discussion

Across all algorithms, fine-tuning the initial learning rate greatly improves results for
embeddings based on BibSonomy, especially with GloVe. The effect of the embedding
dimension is much less pronounced across all three embedding algorithms. Peak eval-
uation performance is often reached with an embedding dimension between 50 and
100 and stays quite stable with increasing dimension. Varying the number of negative
samples influences evaluation results of BibSonomy, but only at a very high number of
20 negative samples. In contrast, Delicious and CiteULike only show small performance
changes already with 3 to 5 samples. Finally, GloVe’s weighting factors xmax and α nega-
tively influence results on BibSonomy, while barely affecting evaluation performance
on Delicious and CiteULike, due to BibSonomy being our smallest tagging dataset with
rarely any co-occurrences above a high xmax.

In Figure 6.11 we finally compared the best achieved scores from each algorithm on the
different tagging data. We can see that all investigated embedding algorithms produce
usable and high-quality embeddings from tagging data. Concretely, Although in [48] it
was found that tagging data contain high-quality semantic information, the standard
high-dimensional vector representation proposed there does not seem to capture this
information very well, when evaluated on human judgment (see Table 6.9). In contrast,
the generated embeddings seem better suited to capture that information, as they almost
always outperform the tag-tag-context based co-occurrence count vectors (Figure 6.11).
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Figure 6.11: Evaluation results for embeddings generated by the best parameter set-
tings across the different tagging datasets. GloVe mostly produces the best
embeddings and is the only algorithm to always outperform the baseline.
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6.6 Summary

Furthermore, the best result achievable on WS-353 in this work is from Delicious data
using the GloVe algorithm of around 0.7 (cf. Figure 6.11b), which is on par with with
other well-known works, such as ESA [81], achieving correlation around 0.748, or the
work done by Singer et al. on Wikipedia navigation [210] with the highest correlation at
0.76, but generally achieving scores around 0.71 (cf. also Section 7.2.2).

6.5.5 Conclusion

In this section, we explored embedding methods and their applicability on tagging data.
We conducted parameter studies for three well-known embedding algorithms in order
to achieve the best possible embeddings based on tagging data regarding their fit to
human intuition of semantic relatedness.

Our results indicate that i) tagging data provide a viable source to generate high-
quality semantic embeddings, even on par with current state-of-the-art methods and ii)
that in order to achieve competitive results, it is necessary to choose correct parameters
for each algorithm instead of the standard parameters. Overall we bridged the gap
between the fact that tagging data yield considerable semantic content and the current
state-of-the-art methods to produce high-quality and low-dimensional word embeddings.
We expect our results to be of special interest for folksonomy engineers and others
working with semantics of tagging data.

Future work includes investigation of the influence of different vector representations
on tagging-based real-world applications, such as tag recommendations in social tagging
systems, tag sense discovery and ontology learning algorithms.

6.6 Summary

In this chapter, we explored new ways to represent and evaluate semantics from social
tagging data as well as the impact on existing research. Additionally, we investigated
the influence of tagging pragmatics on another type of semantic information.

We first argued that evaluation directly on human intuition of semantic relatedness
yields more valid results than evaluation on WordNet. Since that impacts the results of
existing research, we repeated experiments from [48] and [122] that were evaluated using
WordNet. We found that in general, their results still hold in a qualitative way. However,
we also found some differences between the results that we obtained and what they
reported. In addition to this, we showed that user pragmatics also influence the tag sense
discovery process in folksonomies. Finally, we explored the applicability of word and
graph embedding algorithms on tagging data and how this impacts the representation
of semantic information in tagging data. We found that tagging embeddings can in
general better capture the semantic information in tagging data.

With these results, we advanced the standard way of representing social tags as vectors
and connected it to the current state-of-the-art in semantics. We could also show that
social tagging semantics yield even competitive correlation scores with human intuition,
thus again supporting the claim that tagging data contain considerable amounts of
semantic information. Open problems are for example finding a evaluation routine that
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on the one hand can closely resemble human intuition, but also is less limited in the
covered vocabulary. Another issue is that although we saw in Section 6.2 that resource
context of tags yields by far the most valuable semantics, we cannot straightforward
apply the tagging algorithms on it as in Section 6.5, since e.g., GloVe depends on a
quadratic co-occurence matrix instead of a variant of the term-document matrix, as
defined by the resource context. Finally, it would be interesting to apply the learned
tag embeddings to different applied tasks, such as tag sense disambiguation [176] or
taxonomy construction [27], A next step would then be to even develop new embedding-
based techniques to perform these tasks.
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Chapter 7

Extracting Semantic Relatedness from
Social Media Navigation

7.1 Introduction

In Chapter 5 we showed that there is strong evidence for a semantic component in human
navigation behavior, both on Wikipedia and BibSonomy. Similarly to how humans
express their thoughts by putting words into semantically meaningful sequences, we
assume that they navigate information networks by following a semantically meaningful
trail of webpages. We thus assume that we can extract the information contained in
these sequences. Specifically, we look at navigation information from Wikipedia and
BibSonomy.

Extracting semantic information from human navigation is attractive in several ways.
First and foremost, users do not have to actively and consciously contribute complex
information. As Hargittai and Walejko found, content in the web is actively contributed
by about 1% of the total number of consuming users [95]. In contrast to that, navigating
a website such as Wikipedia or BibSonomy does not require users to actively contribute
content. Still, the way how and where users navigate, also contains latent information
about their interests and thoughts. Another great advantage of such navigational paths
by humans, compared to actively contributed information, is that it can be captured in
a very simple way. The only prerequisite is that there is a group of users that navigate
a system. Furthermore, many existing methods only work well if the system at hand
provides high quality content that can be leveraged for calculating semantic relatedness.

Secondly, webpages in Wikipedia often describe singular concepts, while on BibSon-
omy, they mostly describe an entity from the folksonomy structure (cf. Section 3.1.2 and
Section 3.1.1.2). We thus do not have to tackle issues that are usually encountered in
unstructured text such as polysemy, i.e., a word has different meanings, depending on its
context. Third, we do not have to filter navigational data as thoroughly as unstructured
text. For example, page names cannot misspelled and there are rarely such things as
“stopword pages”. Finally, as we will see in the course of this chapter, we need only a
fraction of the data to obtain meaningful and valid results when measuring semantic
relatedness.
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Despite the advantages of human navigation over natural language text, there are
also certain drawbacks. For example, users navigate with different intentions. In Sec-
tion 3.3.2.1, already described that users navigate Wikipedia with different intentions,
such as information need or boredom. While in the first case, navigation can be short
and less resourceful, since a user stops navigating after having retrieved the desired in-
formation, users in the second case do not necessarily show a single topical interest. This
could in turn blur the information contained in navigation. Second, although there are
rarely “stopword pages”, most systems still provide functionalities to support users in
navigation, which however do not carry stable semantic information. Examples of these
pages are the landing pages of Wikipedia and BibSonomy, which contain information
about recent events or recently posted publications, yet do not show the same content
over a long period of time. Third, as navigation data can contain sensitive information, it
is hard to obtain large collections of real-world navigation data. Concretely, navigation
on the public Wikipedia also contains traces of users navigating to their own user page.
Even after discarding information about the logged-in user in the requests, this behavior
still allows to make a good guess about the navigating users identity. The same holds
for navigation in BibSonomy, where Doerfel et al. showed that users mostly navigate on
their own resources [64].

In this chapter, we will extract the semantic information contained in navigation
on Wikipedia and BibSonomy. We propose several methods to model the semantic
information as vectors, similar to the vector space model described in Section 3.2.1.1.
These methods are applied on game and unconstrained navigation data on Wikipedia
and unconstrained navigation on BibSonomy. To account for the lack of “real” human
navigation data, we propose to generate random walks on both systems, which we will
parameterize with different navigational priors. We find that navigation on Wikipedia
contains a high amount of semantic information, regardless of the respective setting.
On the other hand, we were unable to obtain semantically meaningful tag vectors from
BibSonomy navigation data.

We split our analyses into two parts as follows: Analogously to Chapter 5, we first
focus on navigation in Wikipedia. Here, we begin with introducing two distributional
methods to extract semantic information from navigation on Wikipedia. We first ap-
ply them on navigation in a game setting and validate our results on data from the
WikiGame and Wikispeedia (cf. Section 4.2.1). After this, we apply the same methods
to unconstrained navigation on Wikipedia. Here we explore data from the Indiana click
dataset [151] (WikiClickIU) as well as navigation collected on the Wikipedia servers
(ClickStream, cf. Section 4.2.2). In order to overcome data sparsity of navigational infor-
mation, we lastly simulate human navigation behavior by performing random walks
on the Wikipedia graph. At the end of that section on Wikipedia navigation, we relate
the results to each other. After having thoroughly analyzed the semantic information in
Wikipedia navigation, we focus on navigation in the social tagging system BibSonomy (cf.
Section 3.3.2.2). The structure of the second part of this chapter is similar to the first
part on Wikipedia navigation. First, we propose two distributional semantic information
extraction methods, before we investigate how we can use them to extract semantic
information from unconstrained BibSonomy navigation. After this, we experiment with
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generating random walks on BibSonomy from several navigation hypotheses which we
already used in Section 5.3. Finally, we summarize the findings of this chapter.

The content of this chapter is based on several publications. The analysis of semantics
in game navigation has been presented in [210]. We extend that work by also performing
the experiments on data from Wikispeedia. The subsequent extension to unconstrained
navigation was performed in [175]. Lastly, the idea to perform random walks to simulate
human navigation was introduced in [55]. However, we extend this work by perform-
ing random walks that are paramterized by the navigational hypotheses proposed in
Section 5.2.1.

The transfer of the Wikipedia based methodology to extract semantic relatedness from
navigational paths on to the BibSonomy social tagging system was described in [172].
All random walk experiments on BibSonomy have however been conducted especially
for this thesis and have not been published before.

7.2 Wikipedia

When navigating a set of articles on Wikipedia, users typically need to tap into their
intuitions about real-world concepts and the perceived relationships between them in
order to progress towards their set of targeted articles. Humans tend to find rather
intuitive than short paths, while in contrast, an automatic algorithm would try to find a
shortest path between two concepts that may not be as semantically rich and intuitive
as a navigational path conducted by a human. In this section, we want to tap into the
semantic richness of human navigational paths on Wikipedia.

Especially for game navigation collected in the Wikipedia navigation game Wik-
ispeedia, West, Pineau, and Precup introduced a semantic distance measure for Wikipedia
concepts [249] based on navigation game paths. While this work serves as the inspiration
for this chapter, their proposed semantic distance measure suffers from some design
choices. Their semantic distance measure d(a,g) can only compute distances between
concepts a, which have to occur on a path p with a goal g, and that goal g. This means
that d(a,g) is not defined if (i) a has never been visited in any game with target g or if (ii)
g was never the goal of a game. This goal and path dependency of that measure however
strongly limits its ability to measure the semantic distance between arbitrary concepts
in Wikipedia.

In Section 7.2.1, we will first introduce two approaches to extract semantic information
from human navigation on Wikipedia that are both path and goal independent. This
enables us to measure the semantic similarity between any two concepts in Wikipedia,
even if they never co-occurred in the same navigation game. We evaluate both measures
in game settings, but are also able to evaluate them in unconstrained settings, i.e., without
a predefined goal. Concretely, we use the same navigation datasets that we already
analyzed in Section 5.2. We find that using our model, we can extract high quality
semantic information from human navigational paths on Wikipedia, in both game
and unconstrained settings alike. However, as the semantic information cannot be
extracted as precisely as on game data when using co-occurrence counting, we need to
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modify the extraction method. Finally, we investigate different sets of random walks
based on different navigational hypotheses to generate human-like navigation with
regard to their extractable semantic information. The reason for this is that both game
and unconstrained navigation datasets are in some way limited, either their general
setting, their size or the dataset design. For example, the ClickStream data only contain
accumulated page-to-page transitions over the course of a whole month, and all user
and longer path information was discarded entirely.

7.2.1 Methods

To extract semantic information from navigation on Wikipedia, we assume that nav-
igational paths exhibit a similar structure as unstructured text. Based on this, we
introduce two distributional methods to represent pages as co-occurrence based vectors.
Both methods are inspired by context based word characterizations as used for text [230]
(cf. Section 3.2.1.2). The first variant counts the co-occurrences of pages in a path if they
occur near each other. The second variant only notes if two pages co-occurred in a path
once or not at all.

7.2.1.1 Count-based Navigational Semantic Relatedness

The first method to generate distributional semantic vector representations of enti-
ties from social media data is to count co-occurrences of those entities in a certain
context window. Similar methods to represent entities by their context have already
been presented for social tagging data [48] and natural language text [156, 184, 230].
Analogously to this intuition, navigational paths exhibit sequential structures, similar to
sentences in natural language text. Thus, the pages in a path can be seen as semantically
coherent, i.e., we interpret a navigational path as a type of semantic context, as explained
in Section 3.2.2.2.

However, as noted in [247], the semantic coherence is only present for pages not far
from each other. Because of this, we further limit the considered context of a page
pi in a path p = (p1, . . . ,pi , . . . ,pn) ∈ P to only a window of size w in front of it, to only
capture meaningful relations. As we do this for every page pi , i = 1 . . .n, we call this
a sliding window. We illustrated this intuition in Figure 7.1a. To construct the vector
representation vi of a page pi based on the sliding window context, all co-occurrences of
pages inside such a window are counted symmetrically. This means that we not only
count the forward co-occurrence of (pi,k ,pi+1,k) in pk , but also the reverse occurrence of
(pi+1,k ,pi,k), although this actual navigation step does not necessarily exist.

Analogously to Section 3.2.1.2, the entries coocc(pi ,pj) of the vector vi for a page pi
are based on the navigational context of human navigation with a maximum context
window size of w. Formally, this can be expressed as follows:

coocc(pi ,pj )w :=
∣∣∣∣{p ∈ P|pi and pj are at most w clicks away from each other in p

}∣∣∣∣
(7.1)
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Asteroid 0 1 1 0 0
C. F. Gauß 1 0 1 1 0
Germany 1 1 0 1 1

Franks 0 1 1 0 1
Ireland 0 0 1 1 0

(b) The resulting co-occurrence matrix

Figure 7.1: A sketch of the sliding window approach and the resulting co-occurrence
matrix. The blue/red numbers in the matrix correspond to the co-occurrences
depicted by the extra edges inside the blue/red windows.

Here, P := {p1, . . . ,pm} is the set of navigational paths pk := (p1,k , . . . ,pn,k) of pages pi,k
in the social media system Wikipedia, as introduced in Section 3.1.2. The resulting
co-occurrence matrix for Figure 7.1a can be seen in Figure 7.1b.

7.2.1.2 Binary Navigational Semantic Relatedness

A problem of the method presented in the previous subsection is that frequently occur-
ring concepts (such as United States of America in the WikiGame dataset) outweigh less
frequently occurring concepts. To counter this, the co-occurrence counting approach
is modified such that we do not count the actual co-occurrences, but only note that
either two concepts were seen inside a context window or not. This approach is called
binarization and is defined as follows:

cooccbin(pi ,pj )w := 1

({
p ∈ P|pi and pj are at most w clicks away from each other in p

})
(7.2)

Here, 1(M) is the indicator function, which is 1 if |M | > 0 and 0 otherwise. The difference
to Equation (7.1) here is that we do not compute the cardinality of the set of all paths
where pi and pj co-occurred, only if that set is empty or not. Another way to express
Equation (7.2) is thus

cooccbin(pi ,pj)w :=

1 coocc(pi ,pj )w > 0

0 otherwise
(7.3)

Figure 7.2 illustrates the actual difference to the co-occurrence counting method: While
the counting method would assign a co-occurrence weight of 2 to the transition C. F.
Gauß - Germany, the binarization variant only notes that this transition already occurred,
so any other occurrence would not influence the result anymore.
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Asteroid C. F. Gauß Germany

C. F. Gauß Germany Franks

(a) Binarization does not count the edge C. F. Gauß -
Germany twice.

A
st

er
oi

d

C
.F

.G
au

ß

G
er

m
an

y

Fr
an

ks

Asteroid 0 1 1 0
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(b) The resulting binarized matrix

Figure 7.2: A sketch of the binarization approach and the resulting co-occurrence matrix.
The red numbers in the matrix correspond to the counted co-occurrences,
while the blue numbers denote the binarized result. The black numbers are
common to both methods.

7.2.1.3 Evaluation on Human Intuition

To evaluate semantic relatedness, we compare our results to two semantic relatedness
dataset, specifically the WS-353 and MEN datasets that were introduced in Section 4.4.3
and Section 4.4.5, respectively. For this, we use the Spearman ranking correlation
coefficient ρ to compare the semantic relatedness scores from our model – produced
by comparing the model’s vectors using the cosine measure (see Section 3.2.3.2) – with
those from human intuition as described in Section 3.2.4. Spearman correlation scores
using binarized vectors are denoted by ρbin.

As Wikipedia articles usually denote semantic concepts instead of single words, we
had to map the vocabulary of the evaluation datasets to Wikipedia pages. While for
WS-353 we were able to build on previous work by Milne and Witten, who published
WikiSimilarity-353, a hand-mapped version of WS-353 to Wikipedia articles, we had to
match the MEN dataset ourselves. Still, we also had to refurbish the WS-353 mappings.

We will now describe the manual mapping process of MEN and WS-353 to Wikipedia
pages. Concretely, we entered each word of the WS-353 and MEN vocabularies as a
search query in the Wikipedia search. If we did not find a direct match, we manually
disambiguated the results and chose the most probable Wikipedia article. For example,
the Wikipedia search for the query hair returned an article about the musical Hair1 as
well as another article about Human hair. The corresponding entry in MEN however was
set in relation to wig, so we manually mapped the word hair to the more general article
Human hair.2

1https://en.wikipedia.org/wiki/Hair_(musical)
2At the date of submission, this is now not valid anymore, since the Wikipedia search directly returns the

article for Hair for the query hair.
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7.2.2 Game Navigation

In this section, we extract semantics from two different navigation games on Wikipedia,
namely the WikiGame and Wikispeedia. As described in Section 3.3.2.1, the first
served only recreational purposes, while the latter has been specifically created to
collect navigational data from humans in order to infer semantic distances between
concepts [249]. Both Wikispeedia and WikiGame have been the focus of several works
analyzing human navigation patterns [20, 207, 228, 246, 247, 249] or have been used to
extract semantic relatedness from human navigation [249].

In Section 5.2 we showed that navigation in Wikispeedia was largely determined by a
semantic component, while that component only had a lesser influence on navigation in
the WikiGame. From these results, it could be expected that Wikispeedia is better suited
as a basis to extract semantic relatedness than the WikiGame. In the following, we will
however argue that i) the semantic component of human navigation (where the existence
has been shown in Section 5.2) can be extracted very well from both datasets (WikiGame
and Wikispeedia) and makes a notable difference than compared to the semantics of the
pure link network and ii) that there exist specific subsets of navigational paths more
suitable than others to extract semantic relatedness from.

7.2.2.1 Contribution of Game Navigation to Semantic Relatedness

To show the usefulness of human navigational paths for calculating semantic relatedness
we conduct our experimental steps as described in Section 7.2.1.1. For this, we not only
use sliding windows of varying size w but also the principle that all concepts pi in a path
p can co-occur with all other present concepts pj in the same path. We denote this as a
“none” window size. One can think of the “none” window size as a size that is always
exactly as long as the path. Table 7.1 presents the evaluation results for varying window
sizes. We report the semantic relatedness scores when evaluated on the WS-353 and
MEN datasets (stated in columns WS-353 and MEN) as well as the matchable number of
pairs per evaluation dataset (shown right next to the corresponding relatedness score).
The exact evaluation procedure is described in Section 3.2.4.1.

A first observation is that the method of letting all concepts in a path co-occur with
all other concepts in the path denoted as “none” performs worse than some specific
sliding window sizes denoted in the table. This strengthens our assumption that the
distance between two concepts in a path is crucial for calculating precise semantic
relatedness scores as pointed out in Section 7.2.1.1. Furthermore, we can see that the
best accuracy can be achieved using a window size of w = 3 or w = 4. Hence, letting
the surrounding two or three concepts (w − 1) given a concept in a path co-occur with
the concept seems to be the most precise co-occurrence representation for determining
the semantic relatedness between concepts in our corpus of human navigational paths.
Interestingly, this observation correlates with the distance often applied in graph based
methods for word sense disambiguation, as reported in [164].

To investigate the usefulness of our approach of reporting results obtained from
evaluating the scores of all possible evaluation pairs for a specific window size or corpus,
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Table 7.1: Semantic relatedness calculated on human navigational paths. Our corpus
consists of all available paths in WikiGame and Wikispeedia where different
window sizes (2 ≤ k ≤ 5) as well as the principle that all concepts in a path
co-occur with all other concepts in the path denoted by “none” were evaluated
against the WS-353 and the MEN datasets by calculating the Spearman rank
correlation coefficient between the produced rankings of each method and
the ones of WS-353/MEN.

k WS-353 (353) MEN (3000)

none 0.649 (299) 0.513 (2159)
2 0.638 (236) 0.573 (1364)
3 0.709 (276) 0.649 (1810)
4 0.718 (287) 0.618 (1992)
5 0.690 (294) 0.587 (2072)

(a) WikiGame

k WS-353 (353) MEN (3000)

none 0.704 (48) 0.560 (208)
2 0.521 (48) 0.390 (190)
3 0.715 (48) 0.572 (208)
4 0.722 (48) 0.570 (208)
5 0.723 (48) 0.567 (208)

(b) Wikispeedia

we also repeat the experiments by using all word pairs in the evaluation dataset and
setting the relatedness scores to zero if we can not cover a pair as this is frequently done
in related work (see the last column in Table 7.2). However, this method introduces high
negative bias to the results as we observe that not surprisingly, those window sizes or
corpora perform better that can simply cover more WS-353 pairs. We also calculate sta-
tistical significance tests between the dependent Spearman rank correlation coefficients
produced by different window sizes. While the results indicate no statistically significant
differences between window sizes 3 to 5, it is clearly visible that we would prefer a
window size of 4 over “none” at a significance level of p < 0.05 (see Equation (3.29) for
the computation of this p-value). Summarized, this evaluation represents a pessimistic
evaluation compared to our optimistic one which only evaluates against possible word
pairs, as it is hard to judge whether better accuracy is based on more precise calculations
of semantic relatedness or simply more well defined term pairs. To further strengthen
our evaluation approach we limit the evaluation in Table 7.1 to those pairs available
throughout all window sizes (236 pairs) (see fifth column in Table 7.2) and we can
observe the exact same trend as our optimistic evaluation approach showed. Finally,
we also sample 100 random pairs 100 times and average the results again showing in
the fourth column of Table 7.2 that the best accuracy can be achieved using a window
size of w = 3 or w = 4 and making a strong point for our evaluation approach. This
agrees with similar observations by [110] when evaluating against different subsets of
evaluation pairs that the trend of accuracy always stays the same. Also, [251] pick up
on this point as they directly show that as they only include well-defined term pairs to
their evaluation, they can achieve the appropriate results.

As the goal of this section is not to achieve the best possible semantic relatedness
scores in comparison to related work techniques, but rather to identify whether and if
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Table 7.2: Spearman correlation scores with human intuition calculated in a similar
fashion as for Table 7.1. This time, we report a variety of different evalua-
tion approaches: (a) “possible pairs” reports the same results as in Table 7.1
and represent our optimistic evaluation, (b) “100 pairs” reports accuracy
by sampling 100 word pairs 100 times and averaging the results, (c) corre-
sponds to the accuracy by using only those word pairs that can successfully
be determined for all windows sizes and (d) “all pairs” fills in zero semantic
relatedness scores for word pairs for which no score can be calculated and rep-
resents the pessimistic evaluation. The observations illustrate the usefulness
of our proposed “possible pairs” method.

WS-353 MEN
w possible 100 236 all possible 100 1364 all

none 0.649 0.630 0.632 0.548 0.513 0.511 0.438 0.390
2 0.638 0.633 0.638 0.560 0.573 0.568 0.573 0.507
3 0.709 0.692 0.694 0.586 0.649 0.643 0.591 0.483
4 0.718 0.697 0.695 0.584 0.618 0.621 0.555 0.457
5 0.690 0.690 0.692 0.590 0.587 0.583 0.519 0.434

(a) Spearman correlations for WikiGame data

WS-353 MEN
w possible 30 46 all possible 100 190 all

none 0.704 0.558 0.665 0.169 0.559 0.566 0.468 0.118
2 0.521 0.387 0.521 0.187 0.390 0.391 0.390 0.143
3 0.715 0.556 0.678 0.169 0.572 0.566 0.486 0.118
4 0.722 0.558 0.686 0.169 0.570 0.570 0.479 0.118
5 0.723 0.542 0.687 0.169 0.567 0.565 0.468 0.118

(b) Spearman correlations for Wikispeedia data

so, human navigational paths can contribute to this task and to find the most appropri-
ate window size and path corpus, we only report results obtained from applying our
optimistic evaluation procedure which evaluates the scores of all possible evaluation
pairs for a specific corpus. We will also only cover a very small number of pairs later
on for our sampling strategies which makes the other evaluation methods not appli-
cable, i.e., only using the same intersection of pairs for all methods would limit the
gold standard tremendously (max. 30 pairs) and using all pairs by filling in zeros for
missing word pairs would have high negative influences on methods that can only cover
a small amount of pairs due to lack of data. This choice is based on abovementioned
investigations and observations and gives us a logic way to evaluate our work. Due to
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tractability, we focus on window size w = 3 for the rest of this section.3

Table 7.2 demonstrates that human navigational paths contain information relevant
for calculating semantic relatedness between concepts by exhibiting high quality relat-
edness evaluated against WS-353 and MEN. We investigate the additional benefit of the
paths at hand to several baseline corpora next.

7.2.2.2 Benefit of Human Game Navigation over the Link Network

As our human navigational paths of Wikipedia games are basically subsets of the
underlying topological link network, we need to investigate whether the observed effects
are based on human intuitions and patterns while navigating or if automatic extractions
of paths from the link network can produce similar or even better results. By doing so
we can also investigate which role the rich topological link network plays for calculating
semantic relatedness on paths. Due to the larger coverage of the Wikipedia link network
in the WikiGame, all experiments in this section will only be performed on WikiGame
data.

Navigation Baselines In the following, we will briefly describe our navigation base-
lines which we use to show that human navigation holds more semantic information
than artifical navigation.

• Topological neighbor paths: A rather simple baseline for comparison consists
of artificial sub-paths taken from Wikipedia’s link network limited to concepts
available in our WikiGame dataset (see Section 4.2). Given Wikipedia’s topological
link graph (limited to WikiGame pages) Wwg = (Vwg ,Ewg ) with vertices Vwg and

directed edges Ewg =
{
(pi ,pj )|pi ,pj ∈ Vwg

}
, we generate all possible paths of length

3, where every page still lies in Vwg . This gives us the following set of paths

Ptb =
{
(pi ,pj ,pk)|(pi ,pj ), (pj ,pk) ∈ Ewg ∩Vwg ×Vwg

}
(7.4)

The reason for choosing paths with the length 3 for this topological baseline
corpus is that we focus on a window size of w = 3, i.e., a concept co-occurs with
the neighboring w − 1 = 2 concepts in a path, throughout this section. Hence, with
this corpus of artificial paths we can calculate all possible co-occurrences between
concepts in a window of size w = 3. This enables us to investigate the influence of
the degree of concepts on the results.4

• Permuted WikiGame paths: To understand how important the underlying link
structure is for the task of calculating semantic relatedness on navigational paths

3Note that a window size of w = 4 is just by a small, statistically insignificant margin more precise than a
window size of w = 3 and the reason for only reporting results for w = 3 is based on faster runtime and
better possibilities for interpreting the results or looking into fingerprints. Nevertheless, we have also
conducted further experiments by using a windows size of w = 4 which exhibit similar patterns.

4Note that again the extracted corpus of paths is a weighted subset of the plain Wikipedia link structure
where the weight is influenced by the degree of each page (e.g., a page with a degree of 8 is more likely
to get higher co-occurrence counts than a page with an degree of 2.)
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and also to explore how much impact the sequence of concepts in a human nav-
igational path has, we create so-called permuted paths. In these paths, we are
still leaving the position of a concept in a path intact, but swap it with a page
on the same position of another path and by doing so we detach the page with
preceding and succeeding pages of the path. For a given path p1 = (p1, . . . ,pn) ∈ P,
we randomly choose another path p2 = (p′1, . . . ,p

′
m) and randomly swap a page pi

in p1 with the corresponding page p′i at the same position i in p2. We receive
two new paths p′1 = (p1, . . . ,p

′
i , . . . ,pn) and p′2 = (p′1, . . . ,pi , . . . ,p

′
m) where we lose the

semantic information around the newly inserted page. Again, we preserve as
much structural information as possible of our game paths while randomizing
the semantic related information. It is important to note in this scenario, pages
might not be linked from their predecessor or to their successor on the underlying
Wikipedia topology. These newly created paths are called Ppermuted and contain
exactly as many paths as P.

• Swapped WikiGame paths: The purpose behind this method is to keep the
link structure of Wikipedia intact but to swap out parts of a supposedly mean-
ingful path with parts of another path. Our method works as described in
the following: For a given path p1 = (p1, . . . ,pi−1,pmid ,pi+1, . . . ,pn), we select an-
other path p2 = (p′1, . . . ,p

′
i−1,p

′
mid ,p

′
i+1, . . . ,p

′
m), with maybe a different length, but

with the property that the middle pages pmid and p′mid are the same page. We
cut both paths in half and exchange the back part of p with the one of q in
such a way that we receive the new paths p′1 = (p1, . . . ,pi−1,pmid ,p

′
i+1, . . . ,p

′
m), and

p′2 = (p′1, . . . ,p
′
i−1,p

′
mid ,pi+1, . . . ,pn), The newly generated paths are called Pswap and

contain exactly as many paths as P.

Results Table 7.3 presents the results using a window size of w = 3 with all available
WikiGame paths and our baseline corpora as described above. In column #paths one
can see the number of paths available for each corpus and in column length the total
accumulated length of all paths in the corpus. Finally, in columns WS-353 and MEN
we can see the final Spearman rank correlation to the respective evaluation datasets as
well as the number of matchable pairs. Further insights from these investigations are
discussed next.

Wikipedia topology alone is useful: We know from other semantic analysis methods
that the Wikipedia topology alone provides useful information [251]. For confirmation,
we evaluated the scores obtained from our Permuted Wikigame paths corpus. The corre-
sponding results confirm that we lose semantic preciseness when ignoring the original
link and navigation structure. Keeping the original structure intact, but swapping parts
of the paths – see Swapped WikiGame paths and the corresponding description above
– we can see that the original navigation by a user has a high impact on the achieved
accuracy, but that we can still achieve reasonable results by leaving the underlying link
structure and partly navigational patterns intact.

Human navigation paths improve results: A first observation is that the WikiGame
path results outperform the baselines by a relevant margin – for example, it outperforms
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Table 7.3: Comparison of semantic relatedness calculations using a window size of w = 3
evaluated against WS-353 and MEN on all WikiGame paths with several
baseline corpora. We report Spearman correlation scores for co-occurrence
counting (ρ) and binarization (ρbin) semantic information extraction.

WS-353 (#pairs) MEN (#pairs)
Corpus #paths ρ ρbin ρ ρbin

P 1,799,015 0.709 (276) 0.707 0.649 (1810) 0.644
Ptopo 6,042,578,644 0.659 (308) 0.485 0.594 (2399) 0.393
Ppermuted 1,799,015 0.381 (292) 0.406 0.090 (2111) 0.101
Pswap 1,799,015 0.668 (273) 0.697 0.633 (1705) 0.636

the best baseline method Swapped WikiGame paths by 0.041 on WS-353 (0.709 vs. 0.668).
The same holds true for evaluation on MEN. Especially the evaluation results of the
binarized semantic relatedness extraction method on the swapped paths support this, as
with binarization, the effects of frequently occurring transitions are canceled out, that
might otherwise impact semantic information. Although the binarization results of the
swapped paths are higher than those of the co-occurrence counting results, they are still
outperformed by the binarized evaluation of human navigational paths. When looking
at the Topological neighbor paths corpus, we can also see that Wikipedia’s inherent link
structure already can be used as a powerful resource for calculating semantic relatedness
using our methodology.

In order to see how the number of co-occurrences between concepts influences the
semantic relatedness, we especially pay attention to the binarization results of the
topological neighbor paths, which directly represents the plain link structure. We can
now see that the accuracy evaluated against WS-353 drops by a significant amount
(from 0.659 to 0.485) indicating that the number of co-occurrences between concepts
effects our method. However, in all other settings except on the original paths and the
topological neighbor paths, the performance of the baselines is actually increased. This
means that although we destroyed the inherent structure of the game paths, binarization
can still capture more semantic relatedness information than co-occurrence counting
on “broken” paths. Still, on the original navigation data, binarization can actually be
detrimental to the semantic relatedness extraction process. We can also see the same
patterns when evaluating the path baselines on the MEN dataset, even with similar
drops and gains in performance.

With this initial exploration, we can conclude that human dynamic navigational paths
on Wikipedia can contribute to computing semantic relatedness, but they are based on
an already powerful network topology. The weighting provided by users’ choice during
navigation exhibits the most precise information for determining semantic relatedness
between concepts. Next, we want to identify what kind of navigational paths are most
useful for that task.
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Table 7.4: Semantics in successful and unsuccessful game paths. ρ and ρbin denote
the Spearman correlation score with WS-353 or MEN of the co-occurrence
counting and binarized vector representations. All results are computed using
a window size of w = 3.

WS-353 (#pairs) MEN (#pairs)
Corpus #paths length ρ ρbin ρ ρbin

All Paths 1 799 015 5.98 0.709 (276) 0.707 0.649 (1810) 0.644
Unsuccessful 1 145 934 5.80 0.703 (270) 0.702 0.620 (1688) 0.646
Successful 653 081 6.30 0.631 (230) 0.667 0.592 (1323) 0.627

(a) WikiGame

WS-353 (#pairs) MEN (#pairs)
Corpus #paths length ρ ρbin ρ ρbin

All Paths 76 193 5.81 0.715 (47) 0.676 0.572 (208) 0.632
Unsuccessful 24 875 4.68 0.628 (47) 0.621 0.497 (199) 0.569
Successful 51 318 6.36 0.719 (47) 0.683 0.578 (208) 0.639

(b) Wikispeedia

7.2.2.3 Path Selection to Improve Fit to Human Intuition

Human navigational paths in a game setting can be characterized along many dimen-
sions. For example, there exist successful paths where users were able to successfully
reach the specified target pages, while on unsuccessful paths users could not reach their
goal. Other path characteristics may mostly move along high degree (vs. low degree)
pages. Figure 7.3 shows the distribution of path lengths in all paths (black line), only in
successful paths (red line) and only in unsuccessful paths (blue line). Only looking at
such path length distributions, we can already see that such distinct path types exhibit
different features. We want to explore these differences and investigate their usefulness
for the task of calculating semantic relatedness, e.g., investigate whether a subset of only
successful paths is more useful than a subset of only unsuccessful paths.

This gives rise to a number of interesting questions related to different navigational
paths, such as (a) Are all navigational paths equally useful for computing semantic related-
ness? and (b) If some navigational paths are more useful, what are the characteristics of these
paths and how can they be exploited?

To analyze these and other questions, we begin our investigations on the WikiGame
by taking the corpora of all successful and unsuccessful paths. Similar to Section 7.2.2.2,
we use a window size of w = 3 for our co-occurrence calculation and evaluate the
relatedness scores against WS-353 and MEN; the results can be seen in Table 7.4a. From
that table, we see that a smaller subset of our corpus of all WikiGame paths P can still
perform remarkably well (compare with Table 7.3). Somewhat surprisingly, we see that a
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corpus of unsuccessful paths performs better than a corpus of successful paths. A possible
explanation for this behavior is that unsuccessful paths contain the behavior of mostly
inexperienced users who try to follow pages whose meanings are very close and hence,
remain on a narrow semantic field which may also lose them the game. On the other
hand, successful players might navigate through more distant concepts or very central
concepts like “United States” which are common strategies for winning a game. Further
investigations are necessary in order to explain this behavior in detail, which is not in
the scope of this section.

Results on Wikispeedia show a very different result. Here, the number of successful
paths is almost double the number of unsuccessful paths, in contrast to the WikiGame
data. At the same time, the semantic information generated by successful paths is slightly
better than that of the whole path corpus, which also stands in direct contradiction to
the results obtained on the WikiGame. In other words, we notice that on Wikispeedia,
unsuccessful paths contribute less to the final result than in WikiGame. A possible
explanation for this might be that unsuccessful users that do not even reach their goal,
also do not minimize the semantic distance toward their target [203]. Additionally, these
users often change direction somewhere mid-game, which can be compared to the path
swapping experiments on WikiGame and which also resulted in lower scores there (cf.
Table 7.3). As to why this seemingly doesn’t affect unsucessful games on the WikiGame,
we can only speculate, as we have no explicit information about backtracking5 there.

Regardless of the exact explanation of this behavior, the results suggest that subsets
of paths with specific characteristics yield different results. This leads to the idea of
investigating whether smaller sets of paths according to specific path characteristics
can perform similarly or even more precise in regard to our relatedness calculations
on the whole set of paths. In the following section, we will explore this by conducting
different path selection experiments. As before, we restrict ourselves to navigation on
WikiGame data, since in this case, the selection of smaller subsets of Wikispeedia paths
would result in very few selected paths, from which we do not expect valid results.

Characteristics of Paths We introduce several measures m : P→R
+
0 to characterize

any path p in our corpus of paths P. Each distinct measure makes use of a path
characteristic, depending on the visited pages, which actually characterize the path. The
resulting measures will be subsequently used in Section 7.2.2.3 to create path selections.
In the following, we will elaborate each of the different measures in greater detail. Let
p ∈ P be an arbitrary path represented by the sequence of pages (p1, . . . ,pn).

• Length: We use the length of a path p, i.e., the number of concepts visited in a
path, as a first characteristic:

mlength(p) = len(p). (7.5)

Our motivation for taking the length of a path as a characteristic is the notion that
longer paths potentially contain more information because of more co-occurrences

5Clicking the back button in the browser
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Figure 7.3: Illustration of the distribution of path lengths in all human navigation
paths (black dotted line), only in successful paths (red solid line) and in
unsuccessful paths (blue dashed line).

between concepts of the paths. Furthermore, we could observe in Figure 7.3
different path length characteristics for different types of WikiGame paths, which
is interesting to investigate in greater detail.

• In- and outdegree: For a path p, we determine the in- and outdegree for each
concept pi in p derived from Wikipedia’s complete topological link network. The
path itself is characterized by the average in- or outdegree of all the contained
concepts. The idea behind this characteristic is to differentiate hubs and strongly
connected concepts from dead ends and rather weakly connected concepts. The
measure is calculated as (moutdegree(p) is defined analogously):

mindegree(p) =
1

len(p)

n∑
k=1

indegree(pk). (7.6)

• Ratio: This measure represents a ratio of in- and outdegree for each page in a
corpus of paths smoothed by the square root of the indegree (see [228]). This
characteristic is motivated by the notion that a page with e.g., 200 inlinks and 100
outlinks should be more general than a page with two inlinks and one outlink.
This means that we include the semantic generality of a page into the measure,
since if a node has a higher indegree than another, it is more general than another
[120]. If the outdegree for a page is zero, we set the ratio to zero as well. ratio(p) is
calculated in the following way for a page p:

ratio(p) =
indegree(p)
outdegree(p)

·
√
indegree(p). (7.7)
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Thus, the value of a path p is determined by

mratio(p) =
1

len(p)

n∑
k=1

ratio(pk). (7.8)

• TF-IDF: Interpreting a path as a document and the concepts present in a path as
terms, we use the well known tf-idf scores (cf. [201]) of each page in a path as a
further characteristic. The idea behind this characteristic is that we can identify
paths that include many concepts that are very important for the individual path
compared to all other paths in the corresponding corpus. Hence, for each path p,
we again take the mean of all tf-idf values in the path:

mtf idf (p) =
1

len(p)

n∑
k=1

tf idf (pk). (7.9)

Path selection strategies Based on the characteristics described above, we now select
smaller sets of paths Pm according to the abovementioned path characteristics m. We
investigate whether the relative performance of reduced corpora of paths Pm, based
on the accuracy of our relatedness scores, increases or decreases, compared to the
performance of our complete set of paths P, in analogy to Section 6.3.3 and Section 6.4.

For each characteristic, we calculate ten subsets of increasing size where the tenth
subset corresponds to the set of all available WikiGame paths. The sizes of our subsets
are calculated by the number of visited pages inside the subset. If we consider the
amount of all visited pages page_sum =

∑
p∈P

len(p), a path selection of e.g., 10% does not

necessarily contain 0.1 · |P|, but rather 0.1 · page_sum. More formally, we can express it
as follows: Consider an ordered list Lm = (p1, . . . ,pn) of paths, generated by a measure m.
A selected subset Pxm of size x for measure m can be expressed as:

P
x
m =

pk |k = max

s|
s∑
j=1

len(pj ) ≤
x

100
· page_sum


 . (7.10)

Thus, a potential path selection with very long paths consists of fewer actual paths than a
selection with mostly short paths, but both sets contain roughly the same amount of visited
pages. This renders the selection process more fair than just pure path counting as it
enables us to fairly compare two corpora of the same size selected based on different path
characteristics. Each selection process generated subsets consist of x = {10,20, . . . ,90}%
of all visited pages. By proceeding with this selection process, the first subset, i.e., the
10% subset, consists of paths with the lowest measures for a corresponding characteristic,
e.g., paths with the lowest mean indegree. Furthermore, we also revert the ordered list
Lm in order to get a ranking Lrevm = (pn, . . . ,p1) where the small subsets contain paths
with higher measures for a specific characteristic, e.g., paths with the highest mean
indegree. After the generation of the path ordering lists and the path selection process
described above, we run our semantic evaluation for each of these subsets.
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Furthermore, we create a baseline for each individual split to learn whether the
distinct accuracy results are genuinely dependent on the corresponding path selection
process based on several characteristics. We shuffle the corpus of paths independently
and randomly ten times in order to remove the original ordering in the complete set
of paths. For each of these ten independent shuffles, we extract subsets according to
the selection process described above. We end up with ten selections for each subset
containing x = {10,20, . . . ,90}% of the visited pages. Finally, we perform our semantic
analysis and evaluate the results accordingly for each selection and subset. We average
the results for each subset based on the sum of selections for the corresponding subset
and report the results in the following section; we will refer to this baseline as random
baseline.

Results In Figure 7.4 we present the results obtained from our individual subcorpora
of navigational Wikipedia game paths using our selection strategies defined above based
on characteristics of paths, or to be precise: characteristics of concepts inside paths
averaged for each path. Figure 7.4a and Figure 7.4c illustrate selections where we
can achieve a better correlation score evaluated against WS-353 than using random
selections of all WikiGame paths, i.e., random baseline (black line, �), while Figure 7.4b
and Figure 7.4d show selections performing worse. The horizontal black line with a
Spearman rank correlation of 0.709 shows the results achieved when taking a corpus
of all WikiGame paths (see also Table 7.1). For all selections we use a window size of
w = 3 for our co-occurrence and subsequent semantic relatedness calculations. Our key
findings are discussed next.

Intelligent path selection improves semantic relatedness. A first observation when
looking at Figure 7.4a and Figure 7.4c is that smaller random path selections do not
lead to a similar or better accuracy (black line, �), but that we indeed can find smaller
corpora of navigational paths – selected on several characteristics – that perform equally
or better than the complete corpus of WikiGame paths (that reaches an accuracy of 0.709
on WS-353). By incrementally adding paths with the lowest average indegree of their
concepts, we can achieve the highest Spearman rank correlation with a sub-corpus of
only 30% of all WikiGame paths (red line, +) on WS-353 (cf Figure 7.4a). The respective
accuracy of 0.760 outperforms the accuracy of the whole WikiGame corpus by about 5%
while covering less than a third of all visited pages in the complete corpus. The same
thing holds for a minimum of 40% of high tf-idf paths, when evaluating on MEN (see
Figure 7.4c), where we reach a maximum correlation score of 0.725 compared to the
baseline of all paths of 0.649. Please note that in this case, we evaluate on 1810 instead
of 276 word pairs, so this improvement is significant at p < 0.05. 6

Contrarily, we can see in Figure 7.4b that a reverse accumulation of paths, beginning
with those having a high average indegree (red line, +), leads to much worse accuracy
on WS-353 compared with the random baseline and as well as with the accuracy of

6Obviously, a difference of 0.1 in Spearman correlation scores is easier to achieve with only few word
pairs. For example, a simple swap of two items in a list of three items causes a greater disturbance in
the score, as with a thousand items. Thus, an improvement of 0.1 in correlation score is more significant
on many pairs than on fewer pairs. See also Section 3.2.4 for this.
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(a) WS-353: paths above the random baseline
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(b) WS-353: paths below the random baseline
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(c) MEN: paths above the random baseline
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(d) MEN: paths below the random baseline

Figure 7.4: Semantic relatedness calculated on different path selections. Larger values on
the y-axis correspond to higher Spearman rank correlation with the WS-353
dataset. The black horizontal line depicts the result for the entire set of paths.
The figures on the left show selection results with better-than-random perfor-
mance while the figures on the right show results with worse-than-random
performance. In Figure 7.4a, we can see that a small subset of only 30% low
indegree paths produces more precise semantics than the whole path corpus
P would (scoring a rank correlation of 0.760 to the WS-353 dataset). On
MEN, a subset of 30% high tfidf paths reaches a peak performance of 0.724
correlation. Paths characterized by low in- and outdegree always perform
better than a random baseline, while their counterparts, starting from high
degrees, perform significantly worse. Similar patterns can be observed when
selecting paths according to their tf-idf values.
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Figure 7.5: Semantic “fingerprints” for the concepts Vodka, Brandy and Bread limited
to co-occurring concepts where at least one of all vectors exhibits a co-
occurrence count of fifteen to the corresponding concept. All counts are
normalized by the L2 norm of the vector and fingerprints for a 30% low
indegree selection (solid lines) and the full set of paths (dashed lines) are
shown. The 30 % low indegree selection exhibits more fine-grained and
precise semantics than the set of all paths.

the complete corpus. Figure 7.4d shows the same behavior of the characteristic subsets
when evaluated on MEN. A possible explanation for this is that low indegree pages
represent concepts that do not seem to be hubs nor exceptionally abstract concepts in
comparison to high indegree pages. Also, high indegree concepts may have much more
co-occurrence counts with several other concepts while low indegree concepts may only
have co-occurrence connections to a few very specific concepts (even when looking at a
window size of w = 3). Furthermore, a similar thing holds for high tf-idf paths: Each of
the pages in a path are very special for this specific path and thus carry extra meaning.
Thus, they also co-occur with only few specific concepts. Hence, the co-occurrence
vectors may be sparser, but more precise and this may enable us to calculate more
accurate semantic relatedness scores. If we look deeper into the paths included in our
selection corpora we can see that paths with the highest average indegree all include the
concept United_States which is on the one hand, the most central concept in Wikipedia’s
topological link network, and on the other hand, also by far the most often navigated
concept in our WikiGame paths. Additionally, the tf-idf value of United_States is thus
very low, which leads to the page not being selected in high tf-idf paths. Hence, this
concept co-occurs with many others and is no suitable descriptor for determining the
semantic relatedness between concepts while paths with the lowest average indegree
contain more variety and also more descriptive co-occurrences. To summarize: Small
selections of low indegree and high tf-idf paths exhibit more fine-grained and precise semantics
than the set of all paths.

To give an example we illustrate in Figure 7.5 the concept co-occurrence vectors for
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the concepts Vodka, Brandy and Bread on the one hand, using our best overall performing
corpus of 30% low indegree paths (solid lines,©) and on the other hand, deriving the
information from the all path corpus (dashed lines, �). For visualization purposes the
vectors are reduced in dimensionality by only representing co-occurrences to concepts
where at least one vector exhibits a count of larger than 15. Furthermore, all counts are
normalized by the L2 norm of the complete vector. In Figure 7.5 we can see that the
concepts Alcoholic beverage, Distilled beverage and Ethanol exhibit similar peaks for the
concepts Vodka (blue solid line,©) and Brandy (orange solid line,©) for the corpus of
30% low indegree paths, while having only few differing peaks, e.g., at Wine or Good
(economics). We can observe that these common peaks contribute a lot to the high cosine
similarity of 0.8043 that we can compute with this subset for the corresponding concept
pair. In contrast, we can see that there are only a few similar normalized co-occurrences
for the concepts Vodka (red dashed line, �) and Brandy (violet dashed line, �) using the
corpus of all paths and that the concept Russia exhibits a large diversity regarding the
co-occurrence patterns for both concepts negatively influencing the relatedness score
resulting in only 0.4205. The co-occurrence vectors for the concept Bread show for
both corpora – i.e., 30% low indegree paths (green solid line,©) and all paths (brown
dashed line, �) – no common peaks to both other concepts resulting in extremely low
relatedness scores. We can see from this, that our selection of low indegree paths exhibits
much more fine-grained patterns for the concept pair Vodka and Brandy reaching also
a higher relatedness score than our corpus of all paths by still keeping low scores for
concept pairs, that are not semantically related.

Other degree based selection strategies and corpus based characteristics can also
improve accuracy. Similar observations as above can be seen by selecting according to
the average outdegree of paths starting with the lowest value depicted in Figure 7.4a
and Figure 7.4c (pink line, N). Smaller selections can outperform the corpus of all
paths, but we can not achieve as good results as with our 30% selection of low indegree
paths. Again, the opposite occurs for the reverse selection of paths starting with those
having a high outdegree shown in Figure 7.4b and Figure 7.4d (pink line, N) – i.e., all
selections perform worse than the baseline and the complete corpus. Selections based
on the average ratio of paths (green line, ) not surprisingly show similar patterns as the
selection according to in- and out-degree, but indicate that a selection according to the
average indegree of paths can achieve higher accuracy than using a combined measure.
Selection strategies based on the tf-idf values of pages inside paths indicate that we can
strongly outperform the baseline and the target accuracy of a corpus of all paths for
several sub-corpora incrementally adding paths with a high average tf-idf value shown
in Figure 7.4a (blue line,

�
). In Figure 7.4c, we can even see that high tf-idf paths

outperform the baseline and all other path selection subsets by far. Contrary, selecting
paths with low tf-idf scores never reaches the accuracy of the random baseline as we
can see in Figure 7.4b and Figure 7.4d (blue line,

�
). Low average tf-idf valued paths

exhibit similar patterns than those with a low average indegree. The difference though is
that this measure is only corpus dependent and ignores characteristics of the underlying
topological link network and this may exhibit advantages for specific scenarios. Finally,
we can see from both illustrations in Figure 7.4 that a selection according to the length
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of paths (orange line, ©) produces just three sub-corpora of paths – i.e., 70% to 90%
selections of longest paths – that can slightly outperform the corpus of all paths.

A combination of successful and unsuccessful paths produces more precise se-
mantics than using unsuccessful paths only. Our initial experiments showed that a
corpus of unsuccessful paths outperforms a corpus of successful paths in regard to the
accuracy of our semantic relatedness scores (see Table 7.4). Now that we know that a
path corpus with lower indegree paths works better one possible reason for the better
performance of unsuccessful paths might be that the average indegree of unsuccessful
paths is lower as the average indegree of successful paths as we have investigated. How-
ever, with the observation that there are more intelligent ways of selecting a corpus of
paths accordingly (e.g., by selecting low indegree paths), the question arises if we can
furthermore improve the preciseness of semantic relatedness calculation by performing
a similar selection just on the corpus of unsuccessful paths. To this end, we use our best
performing characteristic measure – namely the indegree – and select in the typical way
sub-corpora of unsuccessful paths starting with those having the lowest mean indegree.
We do the same selection for successful paths to be able to compare both subsets. Again,
we accumulate the number of paths in a selection towards the total number of visited
pages of the corpus of all paths; we end up with more selections for unsuccessful paths
than for successful paths as we have a larger fraction of unsuccessful paths.

In Figure 7.6a we identify that we can outperform the horizontal black solid line
indicating the accuracy obtained from a corpus of all WikiGame paths on WS-353. The
best results can be achieved by using a 20% split of only unsuccessful paths (blue solid
line). While this accuracy of 0.733 outperforms the whole set of all paths, we still get a
better result by selecting the whole corpus in a similar fashion as depicted in Figure 7.4a,
where we could reach an accuracy of 0.760. When we now look deeper into the subsets
of low indegree based selections calculated for the complete dataset, we see that around
25% of the paths inside the best performing 30% low indegree sub-corpus (selected
on all paths) are successful paths (see Figure 7.6b). While unsuccessful paths tend to
exhibit characteristics that make them more useful for computing semantic relatedness,
we find that overall a combination of successful and unsuccessful paths produces the
best results. The results also suggest that other characteristics such as the indegree and
not success are better suited for selecting good subsets when performed on the whole
set of paths.

7.2.2.4 Conclusion

In this section, we investigated human navigational paths on Wikipedia with regard
to the contained semantics. We could not only show that these paths can represent
a viable source for calculating semantic relatedness between concepts in information
networks, but also that semantic relatedness calculated based on human navigational
data may be more precise than semantic relatedness computed from Wikipedia’s link
structure alone. Additionally, we find that not all navigational paths are equally useful.
Intelligent selection of navigational paths based on path characteristics can improve
accuracy.
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Figure 7.6: Effect of successful / unsuccessful paths: (a) shows successful (red solid line)
and unsuccessful paths (blue solid line) selected according to their average
indegree starting with low indegree paths and their respective Spearman
rank correlation evaluated against WS-353. (b) shows the percentage of
successful (red solid line) and unsuccessful paths (blue solid line) for our
best performing selection of 30% low indegree paths (see Figure 7.4a). While
path selection based on unsuccessful paths performs better than a selection
of successful paths, we can see that overall a combination of successful and
unsuccesful paths produces the most accurate results.

If we compare our results to those obtained by previous works evaluated on the same
full gold standard (see results from some well-known methods in Table 7.3) we can
observe that we can match the accuracy of existing methods (our best score ends up at
0.76). Yet, there are obstacles in comparing the results to other methods directly. The
main evaluation process of most of the related work remains a black box. Only slight
adoptions to the Wikipedia dump used – e.g., by removing low degree concepts as ESA
does – can already change the outcome tremendously. As the goal in this section was not
to achieve the best performing method but rather detect signals in the data and show
the usefulness of our approach we did not directly try to compare us with other works
due to abovementioned reasons.

A main limitation of the results obtained in this section is that we focus on human
navigational paths derived in game settings. The game design itself may affect the
structure of the paths and the resulting semantic relatedness scores. Some possible
constraints of the game are: (a) a random choice of start and target pages – hence, users
also do target based navigation instead of pure exploration navigation, (b) users have a
time constraint while navigating or (c) users tend to evolve strategies in order to win
a game that may be counterproductive in terms of specifying semantic relatedness.
Contrary, one could argue that real navigation more focuses on the goal of getting as
much information as possible. One could also argue that such real human navigational
data can even be more useful as humans may take more time for checking the current
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page and the next link would be chosen more accurately. They may also navigate on
a more semantically narrow path. Nevertheless, the human navigational game paths
present an abstraction of real user navigation in information networks and provide
a further signal that such data can indeed be very useful for calculating semantic
relatedness.

7.2.3 Unconstrained Navigation

When users visit the public Wikipedia page, they do so because they want to find
information [209]. While these users do not necessarily a have a predefined goal in mind,
they might have a rough idea in mind what they are looking for. According to Singer
et al., users mostly visit Wikipedia for shallow information needs, such as obtaining
an overview of some topic or simply for quick fact-checking, but some users also are
looking for deeper insights and make heavy use of Wikipedia’s semantic hyperlink
structure. The resulting navigational paths are especially interesting, since we assume
that users are more likely to click on links that they find interesting when exploring
information that they do not have to visit because of navigational constraints.

In Section 7.2.2 we have shown that game navigation on Wikipedia can yield consider-
able semantic information. A big drawback here is that game navigation is not directly
collected from Wikipedia, but recorded in the context of games, which might induce
unnatural navigation patterns. In a game setting, users have to navigate towards a goal
that is defined by the navigation game. However, the existence of an external goal stands
in direct contrast to the exploring or browsing behavior in an unconstrained setting.
Consequntly, we now want to investigate if unconstrained navigation is a similarly good
source of semantic information as game navigation.

As we have shown in Section 5.2, unconstrained navigation on Wikipedia is to some
extent explained by a semantic component, although it played a lesser tole than in
game navigation. However, there are also certain issues that we have to keep in mind.
Unconstrained navigation on Wikipedia can almost only be collected on the public
Wikipedia. Due to privacy reasons, the published navigation snapshot, the ClickStream
dataset (see Section 4.2.2.1), only consists of page-to-page transitions, accumulated across
all user sessions in a whole month. This also means that there are no navigational paths,
which could have an impact on the extractable semantic information. While we also
investigate the WikiClickIU dataset (see Section 4.2.2.2) which contains slightly more
navigation information so we can reconstruct navigational paths, it suffers from a very
limited size. Thus, the question arises if unconstrained navigation contains enough useful
information to receive high quality vector representations.

Concretely, we first want to make the semantic information contained in uncon-
strained navigation visible. For this, we use the methods introduced in Section 7.2.1 to
encode that information in co-occurrence based vector. Again, we evaluate the vectors on
human intuition. Second, we want to know if the constructed page vectors of a similar or
even higher quality than those constructed from game navigation. Here we show that the
binarization method (Section 7.2.1.2), is more useful to model the semantic information in
unconstrained navigation than co-occurrence counting (Section 7.2.1.1). Finally, we also
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investigate if the semantics in unconstrained navigation differ significantly from several
heuristic baselines constructed from the plain Wikipedia link network. To validate our
results, we perform the semantic information extraction experiments on two datasets
containing unconstrained navigation, namely the ClickStream and WikiClickIU datasets
(see Section 4.2.2).

We find that unconstrained navigation in the ClickStream data contains significantly
more semantic information than the general link network. Compared to game navigation,
we do not obtain a clear result which of both yields the more useful semantics. Overall,
we can say that unconstrained navigation on Wikipedia is well suited for extracting
semantics.

7.2.3.1 Contribution of Unconstrained Navigation to Semantic Relatedness

In the following, we apply both the co-occurrence counting and binarization methods on
navigational data in unconstrained settings, namely the ClickStream dataset, which col-
lected page transitions on the public Wikipedia site [255], and the smaller WikiClickIU
dataset, which captured navigation from inside the network of the University of Indiana
[151].

Experimental Setup. As baseline we use navigation data from the navigation game
WikiGame, which has been thoroughly investigated in Section 7.2.2. For a description
of those datasets, refer to Section 4.2. We compare the constructed vectors using the
cosine measure and use the evaluation methodology proposed in Section 3.2.4. As
evaluation datasets, we use WS-353 and MEN, which are described in Section 4.4. The
reported results are denominated by ρ#pairs

dataset, which describes the Spearman correlation
score obtained on a certain number of pairs of the denoted evaluation dataset. The
number of pairs in this case is only given for comparative reasons, since two different
datasets also mostly match a different number of word pairs, but almost always share a
certain number of matchable pairs. Consequently, the given number of pairs denotes this
maximum common subset of evaluation pairs for a set of word vector models. Finally,
since the ClickStream data only contain page transition data instead of navigational
paths, we set the window size w = 2 throughout all our experiments to make the results
comparable.

Results. We will now describe the results shown in Table 7.5.
In Table 7.5a, we can see that the model of semantic information in both unconstrained

navigation datasets does not fit human intuition as good as the model of game semantics, when
using the co-occurrence counting approach (Section 7.2.1.1). Especially on the smallest
common subset of matched evaluation pairs (ρ107

ws ), ClickStream data yield the worst
results, not far behind results from WikiClickIU. Also in the direct comparison of
ClickStream and WikiGame (ρ224

ws ), semantics from unconstrained navigation with a
Spearman correlation of 0.506 lags far behind game navigation semantics, where we
achieved a rather high correlation with human intuition of 0.688. Only on the maximally

176



7.2 Wikipedia

matchable pairs (ρmaxws ) can we see that ClickStream produces better semantics than Wi-
kiClickIU, however still worse than those that we can extract from WikiGame. On MEN
(Table 7.5b), we see roughly the same picture for the co-occurrence counting models,
although on the smallest common subset of matchable MEN pairs (ρ468

men), ClickStream
now shows higher correlation with human intuition than game navigation.

On the other hand, by modelling the semantic information using the binarization approach
(Section 7.2.1.2), we can capture the semantic information in unconstrained navigation in
the ClickStream data much better. While on WS-353 (Table 7.5a), ClickStream navigation
still yields inferior evaluation results to game navigation, the difference is now smaller
than when modelling the contained semantic information with co-occurrence counting.
For example, while the evaluation scores of the co-occurrence counting models of
ClickStream and WikiGame had a difference of 0.688− 0.506 = 0.182 on their common
evaluation pairs (ρ224

ws ), the binarization models now only differ slightly in performance
with an absolute difference of 0.722 − 0.706 = 0.016. The same holds for any other
comparison of ClickStream and WikiGame. However, while WikiClickIU scores improve
a bit, they do not profit from the different modelling approach as ClickStream does.

On MEN, we receive the most interesting results when modelling the semantic in-
formation using the binarization approach. While the WikiClickIU based semantics
do not show much improvement (ρ468

men) and even a decrease in their evaluation score
(ρmaxmen), ClickStream based semantic information can now be modeled in a way that fits
much better to human intuition of semantic relatedness. Indeed, binarization models
can exploit the semantic information contained in ClickStream navigation even better
than the information contained in WikiGame.

Discussion. We now discuss the results presented above.
The first observation is that binarization can often model the semantic information

contained in navigation better than co-occurrence counting. The score improvements are
caused by large entries in the co-occurrence counting vectors that in turn eradicate the
impact of less represented information. Concretely, dominant features affect the cosine
calculation both in the scalar product as well as the length calculation much stronger
than weaker features. This then skews the modelled vectors and the resulting similarity
values extremely. Binarization changes the co-occurrence vectors in such a way that
the impact of previously extremely dominant features is decreased by a large margin,
while the impact of lesser important features is raised relatively, thus taking all features
into account more fairly. We briefly explain how the binarization approach concretely
affects concept relatedness. We chose four concept pairs of WS-353: (nature, natural
environment), (water, liquid), (money, bank) and (psychology, mind). The first two concept
pairs had their similarity value changed by a large margin when applying binarization,
while those of the other two pairs remained almost unaffected. The co-occurrence
vectors of the first two pairs contained large, singular peaks in their co-occurrence value
distribution, while the vectors of the second two pairs yield a more flat distribution.
Such a peak easily becomes the dominant factor in a cosine calculation, thus almost
nullifying the impact of the other context, which results in a low (and biased) similarity
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Figure 7.7: Transition count distributions for the ClickStream, WikiClickIU, and
WikiGame datasets. For each dataset, we sampled the same stratified amount
of transition counts to make the curves comparable. We plotted the amount
of transitions in descending order for each dataset. While all distributions fol-
low a power law distribution, ClickStream and WikiGame exhibit a steeper
slope than WikiClickIU. Both axes are logarithmically scaled. ClickStream
has no transitions that occur less than 10 times by design [255].

value. Binarization erases these peaks and thus decreases the peak dominance, while
increasing the impact of the remaining context.

Our second (and main) observation is that sufficient amounts of unconstrained navigation
contain valuable semantic information, even when only considering page-to-page transitions.
One question that we wanted to answer in this section was if unconstrained navigation
does contain a rational amount of semantic information. While we already knew that
game navigation can be used as a source of semantic relatedness (cf. Section 7.2.2), this
was a sensible assumption. However, the game navigation datasets that we investigated
there contained complete navigational paths, on which we could show that semantic
information is contained mainly in path subsets of length 3 (cf. Table 7.1). However,
due to privacy reasons, the ClickStream data only contain accumulated, direct page-to-
page transitions. This means that we can only work on path subsets of length 2, i.e.,
transitions. Additionally, results obtained from modelling these transitions using the co-
occurrence counting method defined in Section 7.2.1.1 yielded rather mediocre results,
especially in relation to game navigation. However, we attribute this to the different sizes
of the datasets, especially to the transition count distributions. In Figure 7.7, we can see
that while all three transition count distributions follow a power law distribution, the
ClickStream distribution is far steeper than that of WikiClickIU. This implicates that the
most frequently used transitions in ClickStream also exert a far greater impact on the co-
occurrence counting vectors than they could in WikiClickIU. Consequently, the impact
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of the frequent transitions in ClickStream is reduced much stronger when modelling
the same data using binarization than those in WikiClickIU, which in turn explains
the discrepancy in evaluation performance gains. As the slope of the transition count
distribution of WikiGame is roughly the same as that of ClickStream, although with a
lower y offset, this also explains why the semantic content of WikiGame navigation can
still benefit from being modelled with binarization, however not as strong as that from
ClickStream.

7.2.3.2 Benefit of Human Unconstrained Navigation over the Link Network

As another experiment, we compare results on ClickStream against four baselines
constructed from the Wikipedia link network and ClickStream. Our goal is to show that
user navigation in the form of the selection of source pages as well as corresponding
links in ClickStream contains more semantic information than the underlying link
network alone. We will first explain the construction procedure of the four baselines.
The evaluation results regarding semantic relatedness extraction from the sampling
baselines are discussed afterwards.

Experimental Setup. We build four baseline datasets based on WikiLink and Click-
Stream:

(i) full WikiLink network: The most simple baseline interprets each link in the Wik-
iLink network as a single request. This represents the plain information provided
by the static link network.

(ii) restricted WikiLink network: Now we want to know if the selection users make
by (not) visiting certain Wikipedia pages contains semantic information. Thus,
we build the restricted baseline by removing all requests from the binary dataset
whose source page is not observed as a source page in ClickStream.

Additionally, we assume that (not) using certain outlinks from a source page also
contains semantic information. Thus, we build two sampled datasets based on the
restricted baseline.

(iii) random sampling: For the random sampling baseline, we randomly sample outlinks
(not individual requests) without replacement from the restricted dataset set until
we have the same number of overall observed outlinks as in ClickStream.

(iv) distribution sampling: For the distribution sampling approach, we do the same but
also keep the number of outlinks for each source page the same as in ClickStream.
We generated 10 samplings for each variant, calculated the semantic relatedness
performance for each and took the mean of the correlation values.

Results. In Table 7.6, we see that source selection (restricted) only shows a small
improvement but is based on a considerably smaller dataset (240.1M vs. 494.2M links
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Table 7.5: Performance comparison of our datasets on common evaluation pairs. In each
column, we give the correlation values ρxds for the denoted evaluation dataset
ds and the denoted number of common pairs x. The n/a values are given
when we only compared ClickStream and WikiGame on a greater number of
pairs than those matchable together with WikiClickIU. “Counting” denotes
the co-occurrence counting method described Section 7.2.1.1 and “’binary’ the
binarization approach, as explained in Section 7.2.1.2. It is important to note
that the scores are all obtained using a window size of w = 2 to make them
more comparable, since ClickStream only contains page-to-page transitions
instead of longer paths.

Dataset ρ224
ws ρ107

ws ρmaxws pairs

ClickStream (counting) 0.506 0.388 0.527 288
ClickStream (binary) 0.706 0.543 0.709 288

WikiGame (counting) 0.688 0.500 0.638 236
WikiGame (binary) 0.722 0.563 0.728 236

WikiClickIU (counting) n/a 0.398 0.419 120
WikiClickIU (binary) n/a 0.454 0.458 120

(a) Results on WS-353

Dataset ρ1305
MEN ρ468

MEN ρmaxMEN pairs

ClickStream (counting) 0.399 0.445 0.370 2906
ClickStream (binary) 0.712 0.494 0.640 2906

WikiGame (counting) 0.581 0.412 0.575 1396
WikiGame (binary) 0.644 0.461 0.639 1396

WikiClickIU (counting) n/a 0.268 0.225 568
WikiClickIU (binary) n/a 0.278 0.214 568

(b) Results on MEN

Table 7.6: Sampling results on baseline datasets based on WikiLink and ClickStream.
All results are obtained using binarization vectors.

Dataset ρWS−353 pairs ρMEN pairs

full WikiLink network 0.625 270 0.548 2137
restricted WikiLink network 0.629 269 0.553 2131
random sampling 0.272 65.8 0.091 362.5
distribution sampling 0.431 156.4 0.384 1011.4

ClickStream (binary) 0.709 288 0.640 2906
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and 29M vs. 1.4M source pages) when compared to the binary WikiLink dataset7. At
the same time, we see, that selecting the right amount of links at each source has a
strong effect on semantic relatedness (random vs. distribution sampling). And finally,
we observe that selecting the correct sources as well as the correct links (ClickStream
(binary)) results in the best performance for extracting semantic relatedness. Thus, we
showed overall that indeed user behaviour and not merely the underlying link structure is
an important factor for being able to extract semantic relatedness from unconstrained
navigation data.

7.2.3.3 Conclusion

The central question of section was if unconstrained navigation on Wikipedia can be
used as a source of high quality semantic information. We could show that this is indeed
the case, however only if we are able to extract that information in a suitable way.

We compared the evaluation performance of different models to represent semantic
information, namely co-occurrence counting and binarization, on two semantic related-
ness datasets, WS-353 and MEN. Then we compared these evaluation scores to those
obtained from extracting semantic information from game navigation, as well to several
baselines based on the static Wikipedia link network.

In this section, we investigated on extracting semantic relatedness from unconstrained
navigation on Wikipedia as opposed to game navigation. For this, we applied both the
co-occurrence counting and the binarization methods presented in Sections 7.2.1.1 and
7.2.1.2 on two large sets of unconstrained navigation on Wikipedia and compared results
with those when applying the same methods on game navigation in the WikiGame.

We found that unconstrained navigation contains a great deal of semantic information
by first constructing word vectors and then evaluating them on two standard evaluation
datasets. Furthermore, we verified that the transition information from ClickStream
data contains a significantly increased amount of semantic intuition compared to the
plain link network and adapted baselines. Finally we could show that in certain cases,
the vectors constructed by the binarization approach were of even higher quality than
those constructed from game navigation.

7.2.4 Random Walks on the Wikipedia Graph

In the preceding two sections, we could show that Wikipedia navigation contains
a great amount of semantic information, both in a game (cf. Section 7.2.2) and in
an unconstrained setting (cf. Section 7.2.3), although there exist differences in the
generating navigation behavior (cf. Section 5.2).

Despite easily collectible and available in great amounts with a lot of side information
(cf Section 4.2.1), game navigation is heavily biased by the game setting that the data is
collected in. When extracting semantic relatedness from navigation, it is more intuitive

7The restriction of WikiLink to ClickStream source pages (restricted) should actually contain the same
number of matchable evaluation pairs. We attribute this difference to the ever changing nature of
Wikipedia.
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to exploit unconstrained navigation, i.e., organic navigation on the Wikipedia graph,
as it lacks the game bias and represents the natural behavior of people [209]. On the
other hand, datasets with unconstrained navigation are only publicly available in a
heavily anonymized form, mostly due to privacy reasons (cf. Section 4.2.2). Additionally,
available data are either very sparse (such as the WikiClickIU data, cf. Section 4.2.2.2)
or represented only by aggregated transition counts, as in the ClickStream dataset
(cf. Section 4.2.2.1). While both datasets directly represent natural human navigation
on Wikipedia, they still either lacks statistical mass or extensive context information.
Consequently, we attempt to answer the question if we can generate random walks to at
least alleviate the lack of context in the ClickStream dataset, so we can still extract useful and
high-quality semantic information from the generated random walks. If we can do that, then
the issue of insufficient statistical mass obviously is of no concern anymore.

While we cannot correctly reconstruct the actual navigation paths by different users
from only transition information, it is still possible to utilize this information in order
to simulate human-like navigation by employing different random walk strategies. This
has already been attempted in several works: West and Leskovec also explored different
strategies to parameterize automatic navigation, i.e., controlled random walks [246].
Similarly, Trattner et al. also proposed different strategies to reach a given target node
[228], based on decentralized search [119]. However, the goal of both studies was to
find the shortest path between two given pages instead of generating additional context
to better extract semantic information from navigational paths. In this section, we also
explore different strategies to parameterize the random walk generation process, such that we
can approximate the semantic content of human information.

In the previous sections, we have extracted semantic information from datasets of
human navigation on Wikipedia using two different methods. In this section however,
we will attempt to overcome design limitations of both datasets, such as the restriction
of ClickStream to only page-to-page transitions. Concretely, we exploit the navigational
information to augment existing datasets so that we can extract more meaningful
semantic information from them by extending the potential context for each page.
We achieve this by generating random walks on the Wikipedia link graph and analyzing
their semantic content. We first perform a qualitative evaluation of this approach by
simulating uniform random walks, i.e., completely random navigation according to
the link network. After this, we explore different strategies to generate biased context
from the underlying link network, using navigation hypotheses from Section 5.2.1 to
parameterize the random walk process as a simulation of human navigation behavior.

In the following, we first describe our framework for generating random walks on the
Wikipedia link graph and look for suitable hyperparameters. Although this drastically
reduces the set of usable page concepts, it is in line with the intuition that a great part
of pages is visited rarely and does thus not contribute much to the context of more often
visited pages. As a next step, we explore the influence of different navigation hypotheses
on the semantics of random walks. For this, we make use of the navigational hypotheses
used to characterize navigation as presented and discussed in Section 5.2.1.
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7.2.4.1 Contribution of Random Walks to Semantic Relatedness

We first analyze the general feasibility of random walks to contain semantic information.
After this, we will determine a sufficient minimum number of random walks per node
as well as a suitable walk length to stabilize results. We also experiment with different
restrictions of the underlying link network by determining the Page Rank of a node and
investigate the influence of this restriction on the scores of generated random walks.

Random Walk Generation We will now describe how we generate our random walks.
Given a navigation hypothesis H (e.g., as described in Section 5.2.1) and a correspond-
ing page graph G = (V ,E) (cf. Section 3.1.2), it is then possible to perform random
walks across G using the transition probabilities from H to generate pseudo-human
navigational paths. In order to capture information about most of the nodes, a fixed
number c of random walks is executed for every node in the graph. To restrict the
generated paths to a maximum length of lmax the random walk is stopped when the
path length reaches lmax. In each experiment, the next edge to follow in an unfinished
path is chosen according to a probability distribution over the weights of the outgoing
edges of the current node. Possible distributions are partially based on the navigation
hypotheses defined in Section 5.2.1 and are shortly reiterated for convenience later on.
Since the investigated graphs are directed it is worth pointing out that only nodes with
an out-degree outdeg(p) > 0 are used to start random walks, effectively eliminating the
possibility of paths with a length of len(p) = 0.

In order to extract semantic information from these paths, we again use the co-
occurrence counting and binarization methods described in Section 7.2.1.1 and Sec-
tion 7.2.1.2. In all experiments, we apply the evaluation scenario as presented in
Section 3.2.4 and report the Spearman correlation results with human intuition on
WS-353 and MEN (cf. Section 4.4) for co-occurrence counting and binarization as ρ and
ρbin, respectively.

Determining Suitable Hyperparameters In the following, we first conduct parame-
ter studies to determine a mostly well-performing setting for the random walk length
and minimum page count, before we experiment with a reduction of the underlying link
corpus according to the PageRank of the nodes.

Influence of Number of Walks per Node and Walk Length In the first experiment,
we attempt to determine a fitting number of walks started from each node to accumulate
enough information to generate meaningful concept vector representations. For this,
we again fix the window size to w = 3, since we now again work on navigational paths
instead of transitions, and increase the number of walks c for each node in steps of 5
from 1 until 30. The random walks are performed on the Wikipedia link graph from
February 2015 (see Section 4.2.3).

Table 7.7 shows that co-occurrence counting largely exhibits the same performance
for increasing number of walks, while binary co-occurrence counting instead decreases
in performance with increasing c. With the exception of c = 1, no apparent dependency
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Table 7.7: Spearman correlations achieved with co-occurrence counting and binarization
by varying the number of walks started on each node in the network. The
window size was set to w = 3. ρ denotes the Spearman correlation score when
evaluating the co-occurrence counting model. ρbin gives the evaluation score
for the binarization model.
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walks/node: 1 5 10 15 20 25 30

WS-353
(306)

ρ 0,660 0,681 0,685 0,658 0,667 0,671 0,668
ρbin 0,673 0,648 0,616 0,621 0,612 0,612 0,612

MEN
(2943)

ρ 0,643 0,568 0,559 0,520 0,522 0,538 0,510
ρbin 0,660 0,509 0,465 0,435 0,428 0,430 0,423

(c) Scores

between the number of walks and the model performance can be observed. We attribute
the reason for the slightly different evaluation scores on WS-353 to the randomness
in the walk generation process and accept a certain tolerance in these values, as these
differences are not statistically significant. On MEN, the difference between 5 and 10
minimum walks per node is not statistically significant either, but the difference between
10 and 15 walks per node is.

Therefore we decided to set the number of walks to c = 10 for all further experiments,
as this represents an equilibrium between sufficiently much generated information per
node as well as mostly a sufficiently good performance.

PageRank Network Reduction With this experiment we want to study how the net-
work size affects the performance of the different semantic vector construction ap-
proaches. There are many ways to reduce a network in size but the most intuitive is to
only keep the most relevant nodes of a network. To do so, we use the same Wikipedia net-
work as in the previous experiment and compute a ranking for all nodes using Pagerank
with 20 iterations. The ranking is then used to create a series of pruned networks using
only the top k percent nodes and corresponding edges. Statistics about the obtained
networks can be found in Table 7.8 and Table 7.9.

As before we perform a series of random walks on the different networks and evaluate
the performance of the two models. Figure 7.8 shows the Spearman correlations for the
different networks and approaches. Our results show that the network reduction does
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Table 7.8: Overview of all link networks that we use to generate random walks.

dataset |V | |E| ∅outdeg.

WikiLink-10% 480 150 71 026 160 147,92
WikiLink-20% 960 300 153 751 696 160,11
WikiLink-30% 1 440 450 199 933 460 138,80
WikiLink-40% 1 920 599 231 956 454 120,77
WikiLink-50% 2 400 747 255 128 647 106,27
WikiLink-60% 2 880 883 271 895 395 94,38
WikiLink-70% 3 360 965 285 566 885 84,97
WikiLink-80% 3 841 059 297 133 727 77,36
WikiLink-90% 4 321 158 308 033 742 71,28
WikiLink-full 4 801 501 315 049 408 65,61

Table 7.9: Basic statistics for all random walk datasets generated from Wikipedia link
networks. An average path length of less than 21 means that some walks
ended with a leaf node, before the max path length could be reached.

dataset #paths ∅len ∅page freq

Walks-10% 4 800 410 20,90 208,94
Walks-20% 9 601 410 20,92 209,15
Walks-30% 14 402 200 20,92 209,18
Walks-40% 19 202 710 20,92 209,17
Walks-50% 24 001 980 20,92 209,13
Walks-60% 28 800 120 20,91 209,08
Walks-70% 33 595 690 20,91 209,03
Walks-80% 38 389 140 20,91 208,98
Walks-90% 43 178 910 20,91 208,94
Walks-full 47 975 930 20,91 208,92

not negatively affect the model performance for co-occurrence counting and that they
perform better than the binarization semantics. However, network size reduction actu-
ally has a detrimental effect on the co-occurrence counting scores. The binary counting
approach generally performs significantly worse but definitely profits from the network
reduction. Overall, a network reduction on the top 50% most relevant nodes according
to their PageRank yields a rational trade-off between sufficiently good results across both
evaluation datasets and both co-occurrence counting and binarization methods, and
simultaneously offering a large enough amount of nodes to not only include high-degree
nodes, which (as we already noted in Section 7.2.2.3) do not necessarily yield good
semantics in navigational paths.

7.2.4.2 Benefit of Biased Random Walks over Uniform Random Walks

In the following, we explore whether biased random walks contain better semantic
information than unbiased random walks. Until this point, we investigated uniformly
random navigation on the Wikipedia link network, i.e., the next page in a walk is
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WS-353 (276) MEN (1878)
top ρ ρbin ρ ρbin

10% 0,676 0,675 0,691 0,701
20% 0,677 0,678 0,695 0,707
30% 0,679 0,669 0,693 0,701
40% 0,688 0,665 0,693 0,703
50% 0,681 0,664 0,695 0,704

60% 0,684 0,651 0,692 0,700
70% 0,687 0,651 0,695 0,699
80% 0,679 0,645 0,693 0,695
90% 0,685 0,643 0,691 0,695
all 0,681 0,628 0,690 0,683

(a) Explicit Correlation Scores
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Figure 7.8: Spearman correlations on WS-353 for networks pruned to the top k-percent
nodes according to Pagerank. We set the window size w := 3. All scores were
evaluated on the same set of evaluation data, thus the score at 100% of nodes
differs from the score for a min path count of 20 given at Table 7.7.

randomly chosen among the possible outlinks. In order to investigate in how far different
navigation strategies exhibit an influence on the extractable semantic information, we
will now restrict potential navigation to the networks of WikiGame and ClickStream.
We can see in Table 7.10, that the most navigation in these datasets is performed on
the top 50% most relevant PageRank nodes, which is also the subset with the best
correlation results across both evaluation datasets and both the co-occurrence counting
and binarization methods (cf. Figure 7.8). Because of this and since we then can compare
our scores to actual human behavior, we conduct all experiments on the WikiGame and
ClickStream subnetworks.

The different navigation strategies with which we will experiment are partially pa-
rameterized by the navigational hypotheses presented in Section 5.2.1, which we will
conveniently reiterate in the following. As baseline strategy we use the uniform structural
hypothesis.

• The uniform structural random walk hypothesis generates uniformly random naviga-
tion with respect to the possible links, i.e., users randomly click any link, but still
follow the network structure.

We will obviously not focus on the self-navigation hypothesis as a parameterization of
random walks, since no node would occur in any context of other nodes and thus there
would be no semantic relations which we could extract.

We also experimented with more elaborate random walk parameterizations, such as:
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Table 7.10: Overlap of the Wikipedia page subsets according to their importance with
respect to PageRank with the WikiGame and ClickStream datasets. We
furthermore calculated the overlap ClickStream n>µ with all pages in the
ClickStream data where the transition count n was greater than the mean µ
of all ClickStream transition counts, with µ ≈ 80.

Top WikiGame ClickStream ClickStream n>µ

10% 50.4% 18.7% 30.2%
20% 64.3% 30.7% 43.4%
30% 73.8% 42.3% 55.3%
40% 80.8% 54.3% 67.2%
50% 86.5% 66.4% 77.8%

60% 90.4% 77.0% 85.8%
70% 93.0% 85.6% 91.4%
80% 94.5% 92.2% 95.2%
90% 95.6% 96.3% 97.6%
100% 97.6% 99.7% 99.7%

• the degree-based hypothesis, which can be used as an outdegree- or indegree-based
hypothesis: The next page would be chosen according to the in- or outdegree of
the following page. We consider two variants of the degree-based hypothesis: we
either choose a node with a probability directly or indirectly proportional to its
degree.

• the human-like hypothesis, where the next page is chosen according to the click prob-
ability distribution exhibited by the actual navigation data from the WikiGame or
the ClickStream datasets,

• and finally the semantic hypothesis, where the article text from each page was trans-
formed into a TF-IDF vector with sublinear TF scaling. To reduce the amount of
features, we applied a Sparse Random Projection approach [136], which, according
to the Johnson-Lindenstrauss-Lemma, allows us to reduce the vector dimensional-
ity with a guaranteed error on the mutual vector distances of less than 10%. [1]
The visitation probability of the next page is then proportional to the semantic
relatedness of this page to the current page according to the cosine similarity of
the corresponding TF-IDF vectors.

First, we describe the experimental setup. That is, we explain our parameter choices.
Second, we present evaluation results and discuss them. We find that while uniform
random walks produce semantically useful navigational paths, we increase the semantic
quality of those paths by introducing specific biases. Still, not all biases produce useful
navigational paths.
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Experimental Setup For the random walk generation the length of a random walk is
fixed to l = 20 transitions, e.g. a walk contains a maximum of 21 nodes. The number
of walks per node was set to 10, as mentioned in Section 7.2.4.1. We thus ensure that
there is enough context for each node when experimenting with differently sized context
windows. A reduction of the network size is not necessary, since navigation on the
WikiGame and ClickStream networks happens mostly on the top 50% most relevant
PageRank nodes (see Table 7.10). At each step, we first randomly chose the next node
connected by a hyperlink to the currently last node in a walk. During a random walk
it is possible to reach a node with no neighbours. If that happens, the path cannot be
extended anymore, but is still kept in the set of generated paths.

We perform random walks for all the navigation strategies described in the previous
subsection and subsequently generate vectors using the cooccurrence counting and
binarization methods using window sizes between 2 and 5. Each set of vectors is finally
evaluated on the WS-353 and MEN datasets.

Results and Discussion First, we analyze the semantic relatedness scores produced
by walks on the WikiGame data and then proceed to investigate the effects of different
random walk strategies on the ClickStream network. Please note that the results on
WikiGame do not actually represent game navigation, as they are not goal-oriented,
which is a central feature of navigation in a game setting.

Generally, artificial navigation based on the actual transition counts gathered across
all games in the WikiGame performs best of all random walks (5, pink line). However,
human navigation almost always generates the best semantic information (D, gray line).
In Figure 7.9, we can see that degree-based navigation directly proportional to the
degree of the target node yields the worst results way below the baseline of uniform
navigation (blue and orange line, × and ◦). If however we revert that notion so that the
probability of the next node being chosen is indirectly proportional to the degree (red and
purple lines, + and ^), the generated random walks yield approximately as much semantic
information as the human-like random paths. When modelling the semantic information
in these walks with co-occurrence counting, they are even able to slightly outperform
human navigation on a window size of 2, as can be seen in Figure 7.9a and Figure 7.9c.
This fits well with the observation that paths with a low mean indegree in the WikiGame
yield the best extractable semantics (see Figure 7.4). Especially the evaluation of the
count-based vectors based on the random walks also shows that we can transport the
optimal window size of 3 or 4 for the extractable semantic information both on WS-353
and MEN. On the binary vectors, we unfortunately cannot reproduce or mirror these
results as in the co-occurrence counting vectors. There, we observe a steady decline
in performance of all hypothesis-based walks. While this decline can also be seen in
human navigation (gray line, D) all random paths yield consistently weaker semantic
information than the human navigation baseline. This indicates that human navigation
seems to contain factors that cannot be captured by the simple random walk experiments
that we performed, but in some cases, we can approximate its semantic content. A rather
surprising observation is that the semantic hypothesis (brown line, 4) always produces
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(a) Count-Coocc results for WS-353.
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(b) Binarization results for WS-353.
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(c) Count-Coocc results for MEN.
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(d) Binarization results for MEN.

Figure 7.9: Semantic evaluation results for random walks on the WikiGame graph pa-
rameterized by different navigation hypotheses. The x axis denotes the
window size applied in the semantic information model, while the y axis
denotes the Spearman correlation score. We can see that the indegree and
outdegree hypotheses consistently generate insufficient semantic informa-
tion, while the other three hypotheses are able to approximate the semantics
in random walks generated from human navigation behavior, at least with
regard to its semantic content. However, human navigation itself almost
always outperforms all random walks.
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inferior results, being almost outperformed by all other hypotheses.
For random walks on the ClickStream graph, Figure 7.10 shows that the context

provided by only taking simple transitions (i.e., w = 2) into account is not sufficient
to fully cover the information contained in the ClickStream random walks, although
we have shown in Section 7.2.3 that this information also contains notable amounts of
semantic relatedness and can be best extracted using the binarized vector construction
approach. What is interesting however is that even although we only have information
about simple transitions from one page to another and no information about any longer
paths taken, we see that the best extractable semantics are achieved with a window size of 3
to 4, but along random walks with no direct human influence (see for example Figure 7.10c).
Although the random walks parameterized by human behavior (pink line, 5) often have
a slight edge on either uniform (green line, �) or inverse degree-based random walks
(red and purple lines, + and ^), the contained semantic information in the generated
random walks is not so much better than that of the more artificial hypotheses. A rather
surpring fact is that the semantic hypothesis arguably produces the worst random walks
for semantic extraction (brown line, 4). Only with the co-occurrence count vectors on
MEN we see a good correlation score at window size 2. This could indicate that walking
to nearby pages that are semantically similar also improves the semantic information
contained in the resulting paths. Why however this doesn’t replicate with WS-353
correlation we don’t know.

Again, as already observed with the random walks on the WikiGame network and on
game navigation in Section 7.2.2.3, navigation by high degree (blue and orange lines, ◦
and ×) yields less usable semantic information than navigation by low degree, meaning
that more specific concepts, i.e., with fewer in- and outlinks, exhibit a greater influence
on the granularity of the semantics contained in the generated random walks. Addi-
tionally, the uniform hypothesis again yields very good results and often outperforms
all other hypotheses, when evaluated with WS-353, indicating that more complex (but
still simple) parameterizations do not necessarily result in higher semantic information.
In contrast to the binarization results shown in Figure 7.9, the binarization vectors on
ClickStream navigation do not always exhibit worse performance. Although they cannot
improve upon the results of the co-occurrence counting models, they do not generate
much worse semantic information. Again, we attribute this to the slope of the transition
count distributions of the walk datasets. Most notably however, we cannot reproduce
random walks that are able to beat those scores on a window size of w = 2, as we see in
Figure 7.10b and Figure 7.10d.

The first question that we wanted to address in this section was if we can generate
random walks to make up for the lack of context in the ClickStream dataset. We can
see in Figure 7.10 that this is indeed the case, when comparing the evaluation scores of
our vector models on window size of w = 3. Compared to w = 2, which actually is the
same as direct page-to-page transitions, we can achieve a great score improvement of at
most 0.22 Spearman correlation score (Figure 7.10c). Regarding the question how well
we can approximate human navigation with paramterized random walks, our results
indicate that on the one hand, we are indeed able to approximate the semantic content in
human navigation in some cases by generating random walks according to rather simple
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(a) Count-Coocc results for WS-353.
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(b) Binarization results for WS-353.
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(c) Count-Coocc results for MEN.
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(d) Binarization results for MEN.

Figure 7.10: Semantic evaluation results for random walks on the ClickStream graph
parameterized by different navigation hypotheses. The x axis denotes the
window size applied in the semantic information extraction model, while
the y axis denotes the evaluation Spearman correlation score. In most cases,
the human-like generated navigational paths generate the best semantic
information (pink line, 5). Additionally, we can see that window sizes of
length 3 already capture a great deal of semantic information. The raw path
baseline (gray line, D) here is provided by the scores obtained from page-
to-page transitions, i.e., paths of length 2, as given in Table 7.5. Because of
this, the baseline scores seem very weak.
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hypotheses. On the other hand, it can be seen especially in Figures 7.9b, 7.9d, 7.10b,
and 7.10d, that modelling the semantics in random walks using binarization cannot
improve scores as much as if we use it to model human navigation itself. In contrast,
this is another indicator for our result from Section 7.2.3, that binarization is useful to
capture human navigation, especially in the ClickStream dataset.

7.2.4.3 Conclusion

In this section, we generated random walks on several Wikipedia graph networks to
make up for lacking datasets with a big enough amount of human navigation and
sufficient side information. For this, we compared different approaches to perform
random walks on different networks of Wikipedia articles in order to extract semantic
relatedness. In that regard, we first studied a suitable parameter setting for the generated
random walks to contain sufficient semantic information, before we generated random
walks using some of the navigation hypotheses presented in Chapter 5.

Our results show that it is possible to generate random walks using simpler hypotheses
instead of human behavior, so that the generated walks can be used to extract semantic
relatedness, in some cases even on par with that from real-world human navigation.
We confirmed this on two Wikipedia datasets with human navigation, where one is
game-based while the other has no navigational constraints, by evaluating the contained
semantic relatedness in the generated random walks with two state-of-the-art methods
on two large and well-known semantic relatedness evaluation datasets, namely WS-353
and MEN. As we showed in Section 5.2, that humans on Wikipedia tend to follow both
reverted indegree and outdegree hypotheses, both in game and unconstrained settings,
we can use these hypotheses as a reasonably good proxy for human navigation and thus
only need access to the link network itself to receive page vectors which exhibit semantic
quality on par with those generated from human navigation. A result that is not so much
in line with the results in Section 5.2 is that the semantic hypothesis produces the least
useful paths for semantic extraction. We attribute this to the fact that two pages that
are semantically similar to a third page do not necessarily have to share any semantic
information with each other. However, our results also showed that human navigation,
where available, still often outperformed random navigation. This indicates that human
navigation still contains behavioral factors that cannot be modeled using simple random
walk hypotheses and leaves room for exciting future work.

7.2.5 Summary and Discussion

Wikipedia is a big interlinked collection of knowledge that users navigate to find
information [209]. Since both Wikipedia articles [81] as well as the link network of
Wikipedia [251] already contain a lot of semantic information, we now searched for
ways to extract semantic information from the usage of these resources, concretely from
human navigation on Wikipedia.
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7.2.5.1 Summary

To model that semantic information as vectors like in the vector space model from
Section 3.2.1.1, we proposed two approaches that are based on co-occurrences of pages
in a navigational path.

We started our investigations with a deep analysis of semantics extracted from game
navigation on the two datasets WikiGame and Wikispeedia (cf. Section 4.2.1). Here we
found that not only human navigation in a game setting contains an elevated amount
of semantic information compared to the plain link network, but also that there exist
subsets of navigational paths that are more suited to extract that semantic information
from. Next, we wanted to transfer the semantic extraction methodology to unconstrained
navigation, i.e., human navigation on Wikipedia without external restrictions as they
are encountered in the game setting. Again, we performed our studies on two datasets,
namely ClickStream and WikiClickIU (cf. Section 4.2.2). Our results showed that
this unconstrained navigation also contained a robust amount of semantic information,
however only after modifying the way we modeled that information as vectors, i.e., when
using binarization as the modeling technique. Still, we were able to show that both game
and unconstrained navigation contain large amounts of semantic information. A big
drawback of all navigation datasets that we had access to were their limitations, either
their amount or their design. For example, ClickStream only contains accumulated
page-to-page transitions instead of full navigational paths like the WikiGame dataset.
In Section 7.2.4, we sought to overcome this limitation by generating random walks that
we parameterized using the navigation hypotheses from Section 5.3.1. Our results
showed that our artificially generated paths contained semantic information that in
some cases was even on par with human navigation. Additionally, we also could show
that artificially extending the ClickStream transitions to longer paths improved the
extractable semantic information by a large margin. Despite that, we were unable to
consistently surpass the semantic information contained in human navigational paths.

7.2.5.2 Discussion of the Results

We want to include a brief discussion of the relations between the results obtained in
this chapter.

Game Navigation vs Unconstrained Navigation. Despite the fundamental differ-
ences of game and unconstrained navigation on Wikipedia, in external restrictions
as well as the in the way we extract semantic information, both are a good option to
extract semantic relatedness. However, since unconstrained navigation is more focussed
on retrieving information about concrete instances of abstract concepts, compared to
game navigation (cf. Table 3.2), the constructed vector representations might be useful
for different applications. For example, while we could use game navigation vectors
to construct abstract taxonomies of concepts, we could use unconstrained navigation
vectors to improve Wikipedia’s search system. In fact, West, Paranjape, and Leskovec
used logs of unconstrained navigation to recommend missing links in Wikipedia [248].
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Automatic vs Human Navigation. To overcome potential limitiations in data collec-
tion and dataset design, we showed that we can generate random walks on Wikipedia
that contain an increased amount of semantic information. Still, our results showed
that human navigation is superior to automatic walkers, even if we parameterize the
walk generation with human transition counts. While one does not have access to longer
paths on Wikipedia though, the random walks provide an interesting alternative to still
conduct experiments on human-like paths.

Co-Occurrence Count vs Binary Vectors. We showed that both methods are able to
extract meaningful semantic information from human navigation, although each works
better than the other in different settings. We also identified potential reasons for that,
concretely the slope of the Zipfian transition distribution (cf. Figure 7.7). What we did
not investigate was a mixture of both representations. Although the highly frequently
used transitions impact the co-occurrence count model strongly, we assume that the
most useful semantic information lies in less used transitions, which in turn are ignored
by the binarized model. We expect that for example a logarithmic model or a model
with a maximum frequency cutoff would be able to perform well in both navigation
settings.

Further considerations. All of these results indicate that there are more factors in
human navigation on Wikipedia that need to be explored in order to increase the
extracted amount of semantic information. For example, as the WikiGame navigation
first showed, we are able to extract meaningful semantics from human navigation.
An exciting indicator however also lies in the exploration of unconstrained human
navigation on the public Wikipedia. Through the sheer mass of traffic there, we could
obtain high quality semantic information which we expect would be very finely grained.
Additionally, we could focus more on navigation of different user types there, for
example shallow information seekers, deep divers, or random surfers, as were identified
by Singer et al. [209]. It would also be interesting if the navigation behavior of these
user types still adheres to the patterns observed by West and Leskovec [247]. Again,
we could then use these more complex navigation types to generate random walks to
become more independent of actual user behavior, which is always a limiting factor, for
example due to privacy reasons, as navigation on Wikipedia also includes navigation on
one’s own pages. Lastly, we could also utilize the vast potential of neural networks to
learn latent features of user navigation or navigational semantics.

7.3 BibSonomy

In the previous section, we have investigated different types of human and pseudo-
human navigation on the Wikipedia graph in detail in order to extract semantic re-
latedness from it. We could show that, as the hypothesis-based analysis in Chapter 5
suggested, navigation on the Wikipedia link graph contains considerable amounts of
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semantic information. We also proposed and validated several methods to extract this
information.

Since we could already show in Section 5.3 that BibSonomy navigation is to a large
factor driven by semantic information. In this section, we want to transfer the previ-
ously proposed methodology for Wikipedia to the BibSonomy graph (see Section 4.2.5).
However, there still are obstacles that need to be overcome. First, the page state space of
Wikipedia is limited. A user can only navigate to any other existing page. In BibSonomy,
the number of visitable pages is nearly endless, since most of them are generated at
runtime. This could lead to a large number of rarely visited pages which do not con-
tribute much information to navigation. Second, BibSonomy users tend to navigate
largely on their own pages (cf. Section 5.3.2.2) and revisit the same page very often [64].
This can have severe influence on the usefulness of the extracted semantic information.
Finally, we seek semantic information about tags instead of the actual pages, as opposed
to Wikipedia, where we equated a semantic entity with the page where it is described.
Although there are tag pages in BibSonomy which describe that tag through a folkson-
omy subset, we also would obtain representations of users, resources and mixes thereof.
We discuss these and other issues in the remaining section.

Our general goal is to model the semantic information about tags that is contained in
human navigation on BibSonomy, as we have shown in Section 5.3. For this, we introduce
two adaptations of the semantic information extraction models that we applied on
Wikipedia (cf. Section 7.2.1). We subsequently apply them on the human navigational
paths dataset on BibSonomy, which we already introduced in Section 4.2.4.2.

In this section, we first describe the method to model semantic information from
human navigation on BibSonomy as well as the evaluation procedure and the applied
datasets. After this, we perform several experiments to optimize the extraction perfor-
mance, which include limiting the tag cloud or selecting only specific tags to characterize
pages (Section 7.3.2). Finally, in Section 7.3.3 we attempt to simulate human navigation
behavior by performing random walks biased by the navigation hypotheses presented
in Section 5.3.1. We hope to see, like we have shown for Wikipedia navigation in Sec-
tion 7.2.4, that there are some hypotheses that are more useful to simulate navigation
with high semantic content than others. Lastly, we discuss our results.

7.3.1 Preliminaries

Before we describe our experiments to extract semantic information from navigation on
BibSonomy, we will in the following describe the general modelling and evaluation pro-
cedures that we applied. We start with the definition of our content-based navigational
semantic relatedness measure that we apply on BibSonomy navigation. After this, we
state which datasets we used and point to the applied evaluation procedure.

7.3.1.1 Content-based Navigational Semantic Relatedness

Every BibSonomy page describes a subset of the folksonomy, as described in Sec-
tion 3.1.1.2. We thus also assume that we can model the semantic information rep-
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(a) Multi-tag-co-occurrence builds on the
co-occurrences generated by the count-
based navigational semantic related-
ness, but counts the co-occurrences of
words characterizing a page rather than
the page co-occurrence themselves.

ti1 ti2 ti3 tj1 tj2
ti1 0 0 0 hij hij
ti2 0 0 0 hij hij
ti3 0 0 0 hij hij
tj1 hij hij hij 0 0
tj2 hij hij hij 0 0

(b) The resulting word co-occurrence matrix. We only
count tag co-occurrences between the tag clouds of
both pages, but not inside the tag cloud of a single
page.

Figure 7.11: Illustration of the Multi-Tag-Co-Occurrence method for a window size of 2.
Content-based navigational semantic relatedness builds on counting multi-
word co-occurrences of the pages inside a given window. Furthermore, hij
is a possible weight of the transition between pi and pj , e.g., a transition
count.

resented on that page by its tag cloud, i.e., all tags that are shown there. Since the URL
of a BibSonomy page is less expressive and precise than that of a Wikipedia page, we
think that the respective tag cloud is at least a more verbose description.

The following method is similar to Equation (7.1) in the way that it does not generate
page vectors based on the navigation context, but actual word vectors based on the
content of the context pages.

Based on the count-based navigational semantic relatedness approach to generate
co-occurrences from pages inside a certain window of consecutive navigation, the
content-based navigational semantic relatedness takes the actual page contents into
account and computes co-occurrences between the words on these pages. A sketch of
this method is given in Figure 7.11a, the resulting word co-occurrence matrix is shown
in Figure 7.11b.

The mathematical formulation of the resulting set of word co-occurrences between
two pages pi and pj with their corresponding tag clouds Ti and Tj , i.e., the multiset of all
shown tags, is as follows: Given two pages pi and pj with tag clouds Ti = {ti1, . . . , tin} and

Tj =
{
tj1, . . . , tjm

}
of lengths n and m respectively, we count all elements of the symmetric

cartesian product

Ti ×s Tj := Ti × Tj ∪ Tj × Ti \
{
(t, t)|t ∈ Ti ∪ Tj

}
(7.11)

as cooccurrences. This adaptation, which we call multi-tag cooccurence, is actually a
generalization of the method explained in Section 7.2.1.1, because if we only consider
one tag per page, i.e., both tag clouds Ti and Tj have length |Ti | = n = |Tj | =m = 1, we end
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up with the count-based navigational semantic relatedness.

7.3.1.2 Datasets and Evaluation

We perform all our experiments on navigational paths on BibSonomy, which we in-
troduced in Section 4.2.4.2. To evaluate the vectors that we model from the semantic
information in BibSonomy navigation using the method described above, we compute
the Spearman correlation of the tag similarity scores with human judgment of semantic
relatedness, as described in Section 3.2.4. To represent the human intuition, we use the
WS-353 and Bib100 datasets (cf. Section 4.4.3 and Section 6.2, respectively). We did
not choose to evaluate on MEN, as it has a comparatively low overlap ratio with tags of
BibSonomy of about 12%.

7.3.2 Unconstrained Navigation

Extracting semantic information from navigation on BibSonomy is attractive in some
ways. First, in contrast to Wikipedia, usage of BibSonomy is less consumption focused,
but to a large part also focused on actually using BibSonomy (i.e., posting resources)
[64]. Second, we found in Section 5.3 that BibSonomy usage is influenced by a semantic
component. Next to this, the semantic nature of tagging systems could additionally
influence the semantics of navigation.

Since we could successfully extract semantic information from navigation on Wikipedia,
we also expect that BibSonomy navigation yields sufficiently good semantic information
that we can extract. For this, we perform several experiments on navigational paths
on BibSonomy, including selecting suitable navigation subsets that potentially carry
increased semantic information compared to the whole navigation dataset. In the follow-
ing, we will describe the motivations, setups and progression of each of our experiments,
as well as describe the respective results.

7.3.2.1 Page Co-Occurrence Counting Semantics of BibSonomy Navigation

As a first experiment, we follow the same intuition as we did on Wikipedia and assume
that a page in BibSonomy represents a single concept only. For example, the page
/tag/web denotes the concept web, as all resources shown on that page are annotated
with the corresponding tag.

we applied the count-based co-occurrence counting and binarization methods as
described in Section 7.2.1 to construct context vectors for each page directly on the
generated BibSonomy paths. This means, we calculate context vectors for the pages we
visited and then compare the similarity of the pages using the cosine measure, which is
the same as approach as we applied in Section 7.2.

Since in BibSonomy, pages do not fill the role of a concept description as easily in
Wikipedia (where we only need the title of the page, because a page normally describes
only one concept), we imposed that role of describing a concept on /tag/TAG and
/user/USER/TAG pages, i.e., the concept physics will be represented by e.g., the BibSon-
omy page /tag/physics. There are now two possibilities to map a word onto a */TAG
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page: We either take only the whole word as the query or we interpret it as a part of the
query, e.g., physics can be mapped to /tag/physics and /user/USER/physics (where,
of course, we have to cycle through all users which have used this tag) or, more leniently,
we also allow partial mappings like /tag/metaphysics, which in turn might give us
incorrect results such as e.g., /tag/Samstag when searching for tag, but also allows for
a greater variety of possibly correct mappings. If we found several page matches for a
given word, e.g., /tag/physics and /user/einstein/physics and want to know the
similarity between physics and science, we would compute the similarities between all
page matches of physics and all page matches of science and take the maximum similarity
over all those match pairs.

The results for both the more narrow, stricter case (/tag/xyz is the only tag page
match for word xyz) as well as the broader, more lenient case (/tag/vwxyz also matches
xyz) can be seen in Figure 7.12. While the lenient matching variant produces higher
evaluation scores than the strict variant, we cannot match many words from the evalua-
tion dataset. On those that we can match, we only obtain very weak correlation scores
(see Figure 7.12a). Furthermore, increasing the context window does not result in any
relevant changes in the evaluation score, either (cf. Figure 7.12b). Binarization also
exerts next to no influence on the evaluation results. Finally, the optimistic evaluation
indicates a stronger correlation with human intuition than the pessimistic evaluation,
but only in the strict matching case. In the lenient case, performance drops strongly, as
we obtain almost no correlation (ρ < 0.1) anymore.

Because both cases do not yield meaningful results, we investigated possible reasons
for this. Since we compare only */TAG pages, where a specific tag was requested, and
many of the evaluation words are generally not used often in the audience of BibSonomy,
these pages occur very rarely.8 The corresponding cooccurrence vectors thus were mostly
very sparse, so for most of the WS-353 pairs, we would end up with cosine similarities
of 0 between two */TAG vectors and only a few with similarity values freater than 0.
Figure 7.12a shows the results for both the standard pessimistic evaluation (include all
similarities in the evaluation) as well as for the optimistic evaluation (exclude pairs with
similarity of 0), which we have already described above.

Judging from our results, but more so from the statistics around them, we concluded
that extracting semantic information from BibSonomy navigation using the page co-
occurrence counting method does not yield usable results. While the intuition behind
it sounds rational and has been proven in the context of Wikipedia navigation (cf.
Section 7.2), we are unable to say if the inferior evaluation scores are due to a lack
of navigation data on BibSonomy or due to an imprecise reflection of how semantic
information is encoded in BibSonomy navigation.

7.3.2.2 Leveraging the Tag Cloud of a BibSonomy Page

Because not every visited page was a */TAG page which can be characterized by the
requested tag, we had to somehow induce meaning in other pages like /user/USER. As

8This only holds for evaluation on WS-353.
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approach ρ ρbin pairs

strict 0.134 0.139 24/156
lenient 0.187 0.182 42/190

strict optimistic -0.249 0.220 25
lenient optimistic 0.092 0.023 42

(a) Numerical results for the page co-occurrence counting
method with window size 4.
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(b) Results for the page co-occurrence counting
method with pessimistic evaluation.

Figure 7.12: Results for the page co-occurrence counting method on BibSonomy nav-
igation, as described in Section 7.2.1. Here, we considered the URL of a
page as a description of its content, similar as in Wikipedia. Because we are
interested in tag similarities, we restricted ourselves to /tag/TAG pages. We
computed both the strict and the lenient variants of matching the page’s tag
to a word in our evaluation dataset, as described in Section 7.3.2.1. The strict
approach only allows direct tag matching (/tag/physics for physics), while
the lenient approach also allows broader matching (/tag/astrophysics
for physics). Since many of the resulting vectors are extremely sparse, there
is a high chance that their similarity score is 0. Optimistic matching means
that we consider similarity scores of 0 as lack of data and ignore them in
the Spearman correlation computation, while pessimistic matching consid-
ers those scores as valid information, i.e., that both tags are semantically
dissimilar.

folksonomy navigation strongly depends on the folksonomy metadata, we now leverage
the tag cloud of a page. Simply using all tags on a page is impractical, since user pages
would contribute a huge load of tags, in contrast to resource pages, which usually are
annotated with only a few tags. Because of this, we apply several strategies to mitigate
this imbalance.

Single Most Frequent Tag. As a first step, we only considered the most frequent tag
as a description for a page in BibSonomy, we limit the tag cloud of each page to only
a single tag. As mentioned before, this approach then works exactly as described in
Section 7.2.1.1.

The results from Table 7.11a show that the single most frequent tag of a page’s tag
cloud is not a sufficent representation of the semantic content of that page. This is
hardly surprising, as we can gather from the most frequently occurring tags that are
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Table 7.11: Evaluation results when characterizing a BibSonomy page by its single most
frequently occurring tag. w denotes the window size used in the WikiGame
method. ρ and ρbin are the resulting Spearman correlations for normal and
binarized variants. Only a relatively small number of matchable pairs actu-
ally yields a non-zero cosine score. Also, with increasing window size, we can
match more evaluation pairs, but drop in performance. Additionally, there
were 4468 pages that were characterized with the functional tag imported.

k ρ ρbin pairs

2 0.180 0.203 46/127
3 0.147 0.188 49/127
4 0.118 0.145 51/127
5 0.104 0.134 52/127

(a) Evaluation scores on WS-353.

tag pages

imported 4468
wiki 2190
web 1278
nlp 1232
information 1055
clustering 1038

(b) Most frequent tags that oc-
cur on at least 1000 pages.

shown in Table 7.11. For example, for 4468 pages, the most frequently occurring tag
was imported, which is a functional tag that in most cases does not carry any meaning.
Another thing we can see from Table 7.11a is, that with increasing window size, we can
match more evaluation pairs, but only at the cost of evaluation performance. Applying
binarization improves the fit to human intuition only marginally. We cannot achieve any
scores far above a correlation value of 0.2, indicating that there is little to no correlation
to human intuition.

Set of n Top Tags. We will now use a greater portion of the tag cloud as a description
of the represented concept for each page, because all retrieval pages describe either a
user, a tag or a document, which in turn are always describable by tags. This enables
a more verbose description of the page’s content. Furthermore, since we now not only
consider the co-occurrence of a single tags with another one, but co-occurrences between
two tag sets, we will from now on only use the content-based co-occurrence counting
approach as defined in Section 7.3.1.1.

We assume that a user has mainly a single interest, a tag mostly has a single meaning
and a document describes only a single topic. Although we could naturally exploit the
whole set of tags on a page, we chose to assign a limited number of only the most relevant
tags. We varied n := {1,10,20,50} as possible maximum tag cloud sizes. Subsequently,
each page was characterized by the most frequent n tags of its tag cloud. If there were
less than n tags assigned to a webpage, we used all of the assigned tags.

Figure 7.13a and Figure 7.13b show the results for the varying tag cloud sizes with
window size w varied between 2 and 5 on the WS-353 and Bib100 datasets. First of all,
we can see that limiting the size of the tag cloud to the top 10 most frequently occurring
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tags positively impacts the binarization evaluation scores on WS-353, however less so
on Bib100. While different window sizes only show any impact with a very limited
tag cloud of size 1, they do not play any major role later on. Also, tag co-occurrence
counting as described in Section 7.3.1.1 yields inferior results to binarization, both on
WS-353 and Bib100.

Frequent Tag Weighting Until this point, we used a simple counting approach to
context vector construction (see Section 7.3.1.1). This way, we made no difference if we
combined two popular tags or two rarely used tags in the symmetric cartesian product.
But intuitively, often used tags on a page should receive a higher weight than rarely used
ones to underline their importance. Because of this, we did not just count a cooccurrence,
instead we multiplied both occurrences. Since the TF-IDF measure (cf. Section 3.2.1.1)
is a widespread alternative to the first order cooccurrence and also assigns a weight to
the use of tags, we also calculated the TF-IDF values for all tags. Here, we interpreted
each page as a document.

The results can be seen in Figure 7.13. Judging from Figure 7.13c and Figure 7.13d, it
seems that including the frequency of two tags in their containing pages in our semantic
information model exhibits barely any impact. In contrast to that, the TF-IDF

7.3.2.3 Removing Potentially Noisy Transitions

We have seen above that it is difficult to extract semantic information from the whole
corpus of BibSonomy navigation data. Potential reasons for this could be that the dataset
itself is relatively small, and thus a clear signal for semantics cannot emerge. In the
following, we attempt to filter out rarely occuring transitions as well as transitions that
introduce a lot of noise, e.g., those that pass /user/USER pages which, by design, contain
a lot of general tags.

Core Transitions As the semantics extraction method applied both on WikiGame
and ClickStream yielded very good results, as opposed to the WikiClickIU dataset (see
Section 7.2.3), we compared these three datasets with respect to size vs usage ratio (see
Section 7.2.3). Table 7.12 shows the sizes, usage counts and the size/usage ratio for each
dataset, together with the best achievable result of the application of the binarization
method described in Section 7.2.1.2 when evaluated on WS-353.

As we can see, the WikiClickIU dataset performs very bad compared to both other
datasets. When comparing the features of all three datasets, we can see very quickly that
both WikiGame and ClickStream have a very low size/usage ratio, while WikiClickIU
yields a very high ratio. Moreover, ClickStream consists of transitions which have
been observed at least 10 times. The observation gives rise to the idea that a lower
size/usage ratio might also yield more meaningful results (though we didn’t test this on
the Wikipedia datasets).

Considering this, we limited the BibSonomy request dataset and removed all transi-
tions which occurred less than a predefined threshold to achieve a similar size/usage
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(a) Simple WS-353
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(b) Simple Bib100
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(c) Frequency WS-353
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(d) Frequency Bib100
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(e) TFIDF WS-353
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(f) TFIDF Bib100

Figure 7.13: Results for the tagset weighting experiment. Each picture shows the re-
sulting graphs for varying tagset sizes for the corresponding cooccurrence
calculation method, when evaluating the BibSonomy paths on WS-353 and
Bib100.
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Table 7.12: Comparison of the Wikipedia navigation datasets used in Section 7.2.3,
together with their evaluation scores on WS-353. The size denotes the
number of unique requests, usage describes the total number of requests
made in the dataset. We can see that the lower the size/usage ratio, the
higher are the obtained evaluation scores.

size usage size/usage ratio ρoptimal (pairs)

WikiGame 2.3M 62.5M 0.037 0.728 (236)
ClickStream 14.4M 1 090.2M 0.013 0.709 (288)
WikiClickIU 2.8M 4.0M 0.7 0.458 (120)

ratio or at least a similar effect that fits the idea that low size/usage ratios yield better
results. The different dataset sizes can be seen in Figure 7.14a.

From Figure 7.14, we see that judging from the results on WS-353, the restriction
to core transitions does not help to improve the extracted semantic information. In
contrast, the results on Bib100 suggest that restricting our dataset to transitions with a
minimum occurrence of 10 yields the best results throughout all previous experiments.
However, Figure 7.14a shows that we can keep only 10 594 unique transitions after
filtering, which are however used relatively often, with a relatively low size/usage ratio
of 0.054, which is also comparable to that of the WikiGame. Still, the obtained result of
a Spearman correlation of 0.408 on Bib100 (cf. Figure 7.14c) is still inferior to that of
the folksonomy structure, where we achieved 0.626 on Bib100 (cf. Table 6.7).

Transitions without /user/USER pages Because a /user/USER page is annotated by
a big set of tags (see Table 3.1) which are usually spread across several different topics,
we tried to exclude those pages to see if the /user/USER pages rather introduce a lot of
noise than they are of use. We did so by simply removing all /user/USER pages from
the rendered paths, e.g.,

/tag/web→ /user/hotho→ /user/hotho/web

became

/tag/web→ /user/hotho/web.

After removing all /user/USER requests, there are 245 594 paths left with a mean path
length of 1.747. We applied our method to these paths with the simple cooccurrence
counting method, the tagsize varied between {1,10,20,50} and the window size w varied
between 2 and 5.

The results in Figure 7.15 indicate that excluding /user/USER pages indeed improves
our fit to human intuition. On the other hand, by removing the user pages from our
paths, we lose a lot of transition data, which in turn impacts the validity of our results.

In [48], the authors compared results for calculating semantic similarity based on
resource, user and tag level. Since the results for path semantics improved a bit when
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mcnt size usage s/u paths avg len

1 181 974 479 471 0.380 263 373 2.821
10 10 594 196 285 0.054 88 675 3.214
15 6 164 166 614 0.037 72 306 3.304
20 4 374 150 600 0.029 63 774 3.361

(a) Data of the core transition experiment. The minimum transition
occurrence count mcnt is given with the size/usage ratio (s/u) as well
as the average path length of the resulting paths.
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(b) WS-353
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(c) Bib100

Figure 7.14: Results for the minimum transitions count experiment. The tag cloud
size was fixed to 10, since that yielded the best results for the simple
cooccurrence counting. Although restricting the transitions to a minimum
occurrence count does not improve results on WS-353, we can achieve a
rather high evaluation score on Bib100, when we only consider transitions
with at least 10 occurrences.

excluding /user/USER pages, we could theoretize that the same effect of too many
aggregated topics on a user’s personomy9 shows an effect here (cf. also Section 6.3.2).
Concretely, as the user context tag vectors suffer from a combination of too many
semantic topics (after all, the tags were used to describe the resource, not the user), we
also assume that this also impacts the quality of the extracted semantics from BibSonomy
navigation.

7.3.2.4 Discussion

In this section, we conducted several experiments to extract semantic relatedness infor-
mation from navigational paths on BibSonomy. Since we achieved remarkable results
when extracting such information from navigational paths on Wikipedia, we expected a

9All posts from a specific user, see Section 3.1.1.1
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Figure 7.15: Semantic relatedness results from paths when excluding all /user/USER
pages. Removing the user pages seems to be slightly beneficial for the
evaluation scores, but only on Bib100. On WS-353, the scores based on
content co-occurrence counting decrease to a correlation score of 0, which
indicates no correlation with human judgment at all.

similar outcome on BibSonomy. However, we were unable to achieve a correlation with
human judgment on WS-353 as high as those in Section 7.2.

While we can safely assume that this is due to low coverage of word pairs in WS-
353, we were surprised to see similarly low scores on the Bib100 dataset, which was
specifically constructed for folksonomies (see Section 6.2). A potential explanation
would be that the dataset of navigational paths is too small to derive any meaningful
results. Another issue is that users navigate mostly on their own pages and then mostly
on their /user/USER page [64]. As this page contains all tags of a user, it is not very
fit to provide a clear description of any potential concept on that page. We found
in Section 5.3.2.2 that users in BibSonomy navigate semantically outside their own
resources. Because we assume that sparsity is an issue in the analyses of the whole
transition dataset in this section, we did not evaluate that subset, since it only contains
roughly 42,000 transitions.

In our opinion, the fact that we only have a comparably low number of navigation
data on BibSonomy, compared to the potentially huge link graph, strongly impacts the
quality and validity of our results. As we could see in Figure 7.14, restricting pages to a
minimum occurrence count of 10 already filtered out 170 000 unique transitions.

7.3.2.5 Conclusion

In this section, we extracted semantic information from navigation on BibSonomy. More
concretely, we wanted to model the semantics of tags as influenced by navigation instead
of characterizing the actual pages, as we did in Wikipedia. After defining the semantic
extraction method, we first characterized each page with the most frequent tag on that
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page. After this, we increased the amount of tags that we used as a description of the
page’s content. Additionally, we experimented with different tag selection strategies.
After this, we restricted the transitions to those that occur with a minimum count
and attempted to remove noise by filtering out /user/USER pages. We evaluated all
experiments on the WS-353 and Bib100 datasets. Unfortunately, our results were rather
mediocre compared to those obtainable on folksonomy data (cf. Section 6.3). In the
discussion, we could only assume potential reasons for this. However, we assume that
the main reason is the lack of navigation data, both per transitions as well as for the
covered pages.

7.3.3 Random Walks on the BibSonomy Graph

Because the results of Section 7.2.4 show that random walks with the right bias can
simulate human navigation behavior with regard to the semantic content of navigation,
we assume that the same holds for navigation on BibSonomy. Furthermore, we have
seen in Section 5.3 that navigation on BibSonomy, similar to navigation on Wikipedia, is
influenced by a semantic component. We thus assume that random walks with a certain
bias can at least approximate the semantic content of human navigation.

In this section, we will now conduct several random walk experiments on the BibSon-
omy link graph restricted to those pages which have been visited in the request data
from the previous section. For this, we leverage the hypotheses presented in Section 5.3
about user behavior in BibSonomy. We first describe our experimental setup, including
the priors that we chose to generate pseudo-human navigational paths. After this, we
present and discuss our results.

7.3.3.1 Experimental Setup

Random Navigation Priors In order to generate specifically biased random walks,
we make use of several navigation priors, which are partially based on the navigation
hypotheses presented in Section 5.3.1. They will all be presented in the following.

We first define simple priors, i.e., priors defined by a single idea. The first two priors
(random and folk) can be seen as baselines, while the others are inspired by navigational
hypotheses used to analyze navigation on BibSonomy.

• uniform: The walker navigates completely random. Teleportation is allowed i.e.,
it can also reach pages that are not connected via links.

• folk: This walker is restricted to the raw folksonomy structure, i.e., the walker
cannot follow extra links provided by the BibSonomy webpage. This hypothesis
can be seen as a structural baseline.

• cat: This walker is based on the category-consistent hypothesis. Navigation is
only available to pages in the same category, i.e., from a user page, the walker can
only reach other user pages, but no tag pages.
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• own: Similar to cat, this walker can only navigate on pages of the same user, i.e., it
cannot cross over to another user or userless pages like /tag/TAG pages

• tag_cos/_tfidf: Finally, this walker navigates by semantic incentives. This
means that pages whose co-occurrence count vectors or TF-IDF representations
(for a description of the vector construction, see Section 5.3.1) are highly similar
to the current page representation will be reached with a higher probability than
less semantically correlated pages.

We did not take the original navigation data as a potential parameterization into account,
since the transitions are rather evenly distributed, without clear signs of navigation
preference. This can be especially be seen in Figure 7.14a, as only 5% of all transitions
occur more than 10 times. The actual navigation would then rather look like the uniform
random walker.

Similar to Section 5.3.1, we also use combined priors to model more complex naviga-
tion behavior.

• folk_own: Here we assume that users will follow the folksonomy structure, but
only on their own resources.

• folk_cos_tfidf: This walker follows the folksonomy structure with a semantic
bias, e.g., given a certain tag page, it will now rather visit a user page of a user
more involved in the respectively described topic and which is subsequently
semantically higher related than that of another user who rarely uses that tag.

• own_tag_cos_tfidf: Finally, we restrict the random walker to the resources
owned by the same user, but now bias navigation there in a semantic way.

Random Walk Generation Parameters For the following experiments, we fixed the
parameters of our method to extract semantic relatedness from navigational paths on
BibSonomy as follows: The maximum tag cloud size for each page is set to 10, i.e., we
only look at the 10 most popular tags for each page. The window size varies between 2
and 5. We take the whole navigation dataset into account, i.e., all /user/USER pages and
every page that occurred at least once. For each page, we generated 10 paths of length
20, so that every page occurred at least 10 times.

Generated Walks For each hypothesis as well as random navigation and true nav-
igation, we created 1 820 080 paths. Depending on the hypothesis, the path length
distributions differ, since it is easy to end up in pages with no outlinks (since e.g., they
are rendered but do not provide any links to other pages). Table 7.13 gives some statistics
about the different paths.

We can see that sometimes, only a fraction of all possible pages is visited, especially
on the folksonomy hypothesis. This can mostly be attributed to the fact that a large
portion of pages has no outlinks in the folksonomy and thus no paths can be constructed
for that particular page. In the case of dead ends in semantic navigation, we argue that
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Table 7.13: Statistics about the random paths on BibSonomy generated from the naviga-
tion hypotheses presented in Section 5.3.

Dataset avg. path length Visited pages Paths > 1

uniform 20 182 008 1 820 080
cat 19,192 174 270 1 742 700
folk 11,232 99 424 989 060
folk_cos_tfidf 8,314 73 277 720 980
folk_own 11,134 97 079 970 790
own 19,192 174 270 1 742 700
own_tag_cos_tfidf 19,192 174 270 1 742 700
tag_cos 19,192 174 270 1 742 700
tag_cos_tfidf 19,192 174 270 1 742 700
true paths 2,821 181 974 263 373

this is because we end up on pages with either no tags or with links to only uncorrelated
tags.

7.3.3.2 Results and Discussion

Now, we will evaluate each path dataset using the multi-tag co-occurrence already used
in the previous section from Section 7.3.1.1. We compare the generated scores to the
WS-353 and Bib100 datasets.

The general picture that we can see in Table 7.14 is that on Bib100, a) human navigation
yields higher semantic scores than uniform navigation, indicating a deterministic com-
ponent in human navigation, and b) the semantic prior generates navigational paths with
the highest semantic content (tag_cos and tag_cos_tfidf). On WS-353, human navi-
gation Interestingly enough, the random walks produced by the pure and folksonomy-
based semantic hypotheses perform the semantically most valuable walks with a cor-
relation scores of 0.450 on Bib100 and 0.256 on WS-353, respectively (tag_cos_tfidf,
folk_cos_tfidf). As opposed to the results in Section 5.3, we find that the semantic
hypothesis on user-consistent navigation (own_tag_cos_tfidf) yields rather bad results,
barely above the structural/random navigation hypothesis (random). We assume that
this is because, although navigation by semantic incentives prefers pages with a high
semantic similarity, a user is mostly only interested in a few, limited topics, while navi-
gation on the whole BibSonomy graph can also lead to different, related topics and thus
introduce more diverse semantic information. Even more important, by using more
complex navigational hypotheses, such as semantic or folksonomic navigation, we can
outperform human navigation significantly. On the other hand, restricted navigation
such as category-consistent and user-consistent navigation yields worse results than
human navigation.

However, comparing all obtained results with those received from taking onl struc-
tural data from BibSonomy into account (cf. Table 6.7), we see that the best results we
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achieved in this section, a correlation of 0.450 on Bib100 using semantic navigation,
is still largely outperformed by all types of conext-based vector representations. This
indicates that we still need either a better method to extract the semantic information
in BibSonomy navigation or more structural information that we can include into our
measure.

7.3.3.3 Conclusion

In this section, we generated random walks on the BibSonomy graph influenced by
different navigation strategies. The results from Section 7.3.2 for extracting semantic
information from human navigation on BibSonomy were less than encouraging due to
the small size of the human navigation dataset. We had thus hoped that by artificially
generating pseudo-human navigational paths, we can at least find a signal that navi-
gation on BibSonomy is also suitable to extract semantic information. Although the
resulting semantic evaluation scores are not very high and leave room for improvement,
we are encouraged by the tendency of the results.

We found that random walks biased by a semantic incentive, that is, navigating
towards semantically related pages, provide a good base to capture navigational semantic
information to a certain extent. Consequently, we assume that since semantic navigation
can also partially explain human navigation on BibSonomy, we only need a sufficient
amount of navigation information on BibSonomy to capture semantics of a decent
quality.

7.4 Summary

In this chapter, we investigated both how to extract semantic information from naviga-
tional paths and the quality of that information, i.e., how well it fits to what humans
would perceive.

We first proposed a set of co-occurrence counting based methods in order to construct
high-dimensional vector representations of words or rather pages in navigational paths.
We applied co-occurrence counting and binarization on navigation from Wikipedia with
highly promising results, both on game and unconstrained human navigation as well as
on random navigation on a set of differently biased link networks. More concretely, we
obtained a relatively high correlation with human intuition of 0.709 on WS-353 with
the WikiGame data, as well as with unconstrained navigation from ClickStream data
on MEN, where we achieved a correlation of 0.64. The results from the random walk
experiments showed that we can at least approximate human-like navigation in terms
of semantic information, yet we are not able to find paths that provide better results.
Methods to determine such paths is left for future work.

Furthermore, we experimented with multi-tag occurrence and its binarization variant
on both unconstrained human navigation and biased random navigation on BibSonomy.
While the extracted semantics from unconstrained BibSonomy navigation did not pro-
duce any good results on WS-353, we could at least find signals for better semantics
when evaluating on the Bib100 dataset from Section 6.2. Overall we assume that, if we
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had more navigation data on BibSonomy, we could also extract semantics of a higher
quality because we then would achieve a more precise representation of human naviga-
tion in social tagging systems. We partially tackled this by generating biased random
navigation on the BibSonomy subgraph that has also been used in the unconstrained
data. Here we could see that semantic navigation, i.e., navigating to semantically more
related pages across the whole folksonomy, yielded more precise semantics than random
and human navigation. This also strengthens our assumption that when analyzing more
navigation data, we could significantly increase the quality of the extracted semantics.

In general, we could show that while navigation on social web systems contains a lot
of latent semantic information (see Chapter 5, in this chapter, we made that informa-
tion visible by constructing different vector space models that capture the contextual
semantics produced by human navigation. We could also show that specifically biased
random walks can generate paths with considerable amounts of semantic information,
superior to completely random navigation and sometimes even human navigation and
thus provides a viable alternative to relying on the cumbersome collection user data
from web logs.
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Table 7.14: Evaluation of all random walks for different window sizes. The scores were
evaluated on WS-353 and Bib100. Best results are marked fat.

ρ ρbin
Hypothesis 2 3 4 5 2 3 4 5

cat 0,238 0,232 0,237 0,234 0,226 0,226 0,222 0,222
folk 0,342 0,305 0,313 0,281 0,255 0,243 0,251 0,254
folk_cos_tfidf 0,348 0,334 0,350 0,338 0,439 0,282 0,280 0,273
folk_own 0,385 0,327 0,333 0,299 0,286 0,253 0,243 0,245
own 0,254 0,256 0,259 0,257 0,217 0,210 0,208 0,206
own_tag_cos_tfidf 0,259 0,246 0,242 0,236 0,209 0,209 0,203 0,205
uniform 0,231 0,224 0,228 0,235 0,235 0,227 0,223 0,222
tag_cos 0,448 0,450 0,452 0,452 0,240 0,228 0,224 0,218
tag_cos_tfidf 0,430 0,433 0,433 0,433 0,229 0,216 0,212 0,210

human navigation 0,309 0,302 0,299 0,297 0,422 0,426 0,416 0,405

(a) Bib100 (all pairs)

ρ ρbin
Hypothesis 2 3 4 5 2 3 4 5

cat 0,118 0,122 0,123 0,129 0,141 0,131 0,126 0,125
folk 0,140 0,191 0,179 0,181 0,184 0,208 0,206 0,194
folk_cos_tfidf 0,165 0,256 0,262 0,249 0,246 0,226 0,219 0,190
folk_own 0,133 0,220 0,190 0,205 0,133 0,172 0,166 0,163
own 0,050 0,039 0,037 0,038 0,149 0,149 0,141 0,137
own_tag_cos_tfidf 0,120 0,130 0,131 0,134 0,126 0,116 0,110 0,110
uniform 0,118 0,124 0,119 0,120 0,148 0,137 0,131 0,127
tag_cos 0,245 0,235 0,236 0,235 0,185 0,166 0,161 0,155
tag_cos_tfidf 0,200 0,201 0,200 0,198 0,160 0,157 0,150 0,147

human navigation 0,078 0,080 0,080 0,071 0,227 0,227 0,227 0,226

(b) WS-353 (266 pairs)
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Chapter 8

Relative Relatedness Learning: Learn-
ing Semantic Relatedness from Hu-
man Feedback

8.1 Introduction

In the previous chapters, several models have been proposed to extract semantic relat-
edness information from social media data. These and many other approaches (e.g., [48,
156, 184]) encode semantic information about the context of words in word vectors (cf.
Section 3.2.1.1). While many of those models are able to represent a good portion of
human intution about semantic relatedness, they are only able to encode information
contained in the underlying corpus. Thus they do not explicitly represent the actual
notion of semantic relatedness as expected and employed by humans.

One line of research focussed on exploiting semantic lexicons to post-process word
embeddings [69, 163, 250]. A semantic lexicon contains type-level information about
words, such as synonymical, hierarchical and paraphrase relations to other words.
Examples of semantic lexicon are WordNet [72] and the Paraphrase Database PPDB
[181]. However, by capturing synonym relations, works relying on those lexicons cannot
capture weaker degrees of semantic relatedness. Information about the strength of the
degree of semantic relatedness is for example contained in semantic relatedness datasets
such as MEN or WS-353, which we introduced in Section 4.4.

As such semantic relatedness datasets provide a very close representation of human
intuition (see Section 6.2), a logical approach to make word vectors approximate this
human intuition is to incorporate the information contained in these datasets into
the word vectors. Often, word embedding datasets are evaluated on such semantic
relatedness datasets using the Spearman rank correlation coefficent, which compares
the relative ordering of word pairs according to their degree of semantic relatedness
(see Section 3.2.4.1). That means that it is more important to qualitatively compare the
strengths of two relations instead of determining an absolute relatedness score.

Consequently, the central topic of this chapter is a learning approach based on the
relative comparison of semantic relatedness scores to improve the quality of word vector
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8 Relative Relatedness Learning: Learning Semantic Relatedness from Human Feedback

Lorem ipsum dolor sit amet, con-
sectetur adipisici elit, sed eiusmod
tempor indidunt ut money la-
bore et dolore magna aliqua.
Lorem ear ipsum dolor sit amet,
consectetur adipisici elit, sed eius-
mod tempor indidunt ut bank
labore et dolore magna aliqua.

bank

ear

money

0.35

bank

ear

money

0.88

sim(money, bank) >
sim(money, ear)

Semantic Relation Extraction

Relative
Relatedness
Learning

Figure 8.1: A rough sketch of how RRL works. Using human background knowledge
about the relative ordering of semantic relations, we retrain a given set of
word embeddings to better reflect this background knowledge.

representations. The relatedness scores used for training are obtained from semantic
relatedness datasets with human intuition such as MEN or WS-353, but can easily be
derived from any set of word pairs together with semantic relatedness scores. This
approach can be applied on any pretrained word embedding dataset, thus making it
universally applicable. We show the effectiveness of our approach in several tasks, such
as measuring semantic relatedness between words, sentiment analysis and question
answering.

The contents of this chapter are an extended version of the work presented in [169]
and [170]. Concretely, we modified the optimization step of the algorithm to apply mini-
batch stochastic gradient descent, added comparison with another learning approach
from literature and an additional setting in which we evaluate RRL.

8.2 The Relative Relatedness Learning (RRL) Algorithm

In this section, we introduce the Relative Relatedness Learning (RRL) algorithm. First,
we motivate RRL by describing how the semantic relatedness of word representations is
usually estimated and how such scores are evaluated. We then gradually develop the
RRL algorithm that we use to improve the semantics in word embeddings. Figure 8.1
shows a rough sketch of how RRL works.
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8.2 The Relative Relatedness Learning (RRL) Algorithm

Table 8.1: Examples of word pairs with human assigned relatedness scores on a scale
ranging from 0 to 1. A higher score indicates stronger semantic relatedness.

Word w1 Word w2 Semantic Relatedness
Score rel(w1,w2)

Money Bank 0.85
Alcohol Chemistry 0.554
Drink Ear 0.131

8.2.1 Motivation

The degree of semantic relatedness between two words is usually estimated as an
arbitrary number on an arbitrary scale. The higher that number for a given pair of words,
the more closely related are these words. For example, in Table 8.1, we can see that Money
and Bank are more closely related to each other than Alcohol and Chemistry, since the
former word pair has a higher relatedness score than the latter pair. Such scores about
semantic relatedness can been gathered directly from humans using crowdsourcing
and thus provide a close, if not the closest reflection of human intuition of semantic
relatedness [43, 75] (see also Section 6.2).

Consequently, these scores are also widely used as an evaluation basis for word
embeddings [18, 81, 184]: The quality of semantic relatedness information in word
representations is usually evaluated on these scores. Using the Spearman rank correla-
tion coefficient (cf. Section 3.2.4.1), it is possible to measure the monotonic correlation
between the human intuition scores and the semantic relatedness scores produced by
word embeddings. This means that it is less important to match the actual semantic
relatedness scores of word pairs, but their relative ordering induced by those scores.

A possible way to improve the relatedness score rankings produced by pretrained
word embeddings is to manipulate the corresponding vector space V with regard to a
set of relative constraints

C :=
{(

(wi ,w
′
i), (wj ,w

′
j )
)
|rel(wi ,w′i) > rel(wj ,w

′
j )
}
. (8.1)

For example, this can be done with a linear projection, i.e., a quadratic matrix

L ∈Rn×n : V → VL (8.2)

between the original vector space V and the manipulated vector space VL := {Lv|v ∈ V },
where all vectors v ∈ V are multiplied with the matrix L. In the following, we propose
an algorithm that aims to find such a projection matrix L satisfies the constraints in C in
VL. Explicitly this means that for two word pairs (wi ,w′i) and (wj ,w′j ) where rel(wi ,w′i) >
rel(wj ,w′j), the inequality cos(Lvi ,Lv′i ) > cos(Lvj ,Lv′j) holds. Using a metric learning

approach, we learn L implicitly by learning a generalized dot product
〈
x,y

〉
M := xTMy

parameterized by a positive definite and symmetric matrix M = LT L. This way, The

215



8 Relative Relatedness Learning: Learning Semantic Relatedness from Human Feedback

generalized cosine measure is thus defined as

cosM(vi ,v
′
i ) :=

〈
vi ,v

′
i

〉
M√

〈vi ,vi〉M
√〈
v′i ,v

′
i

〉
M

(8.3)

To ultimately obtain the desired vector space transformation matrix L, we apply a
Cholesky decomposition to the learned matrix M, which can be used to project the
original embedding vector space V to the manipulated vector space VL.

We again emphasize that our model is independent of the algorithm that the pre-
trained vectors were created with, as it only relies on a set of vectors and a set of semantic
relatedness scores between word pairs.

8.2.2 Optimization Objective

We will now define the optimization objective of the RRL algorithm. It is composed
of two parts: The constraint violation loss, which penalizes violations of relatedness
constraints, and the regularization loss to ensure that the transformation matrix M does
not degenerate.

Constraint Violation Loss. If a constraint ((wi ,w′i), (wj ,w
′
j)) ∈ C is satisfied, that is

if cosM(vi ,v′i ) > cosM(vj ,v′j), it intuitively should have no impact on the optimization
objective. However if the constraint is violated, i.e., cosM(vi ,v′i ) < cosM(vj ,v′j ), we want
to penalize this violation and thus increase the loss function. The loss term for a single
constraint (wi ,w′i), (wj ,w

′
j ) with rel(wi ,w′i) > rel(wj ,w

′
j ) can thus be formulated as follows:

closs(wi ,w′i ,wj ,w′j )(M) =
(
max

{
0,cosM(vj ,v

′
j )− cosM(vi ,v

′
i )
})

(8.4)

By summing up the loss terms for all constraints C, we obtain the following loss function
for our constraints:

clossC(M) =
∑

closs(wi ,w′i ,wj ,w′j )(M) (8.5)

Regularization Loss. We want to keep M as close as possible to the identity matrix
In to prevent overfitting to the constraints and keep most of the original embedding
structure intact. To additionally ensure that we learn a bijective projection, the full
rank of M needs to be preserved. For this, we introduce an additional regularization
loss term rloss(M) based on the Bregman divergence [41]. Bregman divergences are a
generalization of for example the Euclidean distance and possess a lot of interesting
properties. Concretely, due to their formulation, they guarantee strict convexity. Thus
they always approximate a globally optimal point when optimized. The Bregman
divergence Dφ : Ω ×Ω→ R, parameterized with a strictly convex and differentiable
function φ : Ω → R, is defined as the difference between φ(x) and the first Taylor
expansion of φ evaluated at y:

Dφ(x,y) := φ(x)−φ(y)−
〈
∇φ(y),x − y

〉
. (8.6)
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8.3 Experiments and Results

Here, Ω is a closed convex set, such as the convex cone of positive definite matrices
in R

n×n. As mentioned above, it is closely related with the Euclidean distance: when
choosing φ(x) = ‖x‖2, we obtain the squared Euclidean distance Dφ(x,y) = ‖x − y‖2.

For our algorithm, we follow [126] and choose φ(M) := − logdet(M) with positive
definite M as parameterization to ensure that M stays positive definite and does not
degenerate. M must be positive definite, because otherwise

〈
x,y

〉
M would not be a valid

scalar product anymore, which is however crucial for our purposes, as it could not
provide a mathematically valid metric anymore. logdetM denotes the logarithm of M’s
determinant and is always defined, since M is positive definite and thus has full rank,
i.e., detM > 0. We can now formulate the regularization loss term which minimizes the
Bregman matrix divergence Dφ(M,In) between M and In:

rloss(M) :=Dφ(M,In) = tr(M)− logdetM −n (8.7)

Here, tr(M) =
∑
imii is the trace of M, i.e., the sum of all its diagonal elements, while n

is the rank of M.

Optimization Objective. Thus, our optimization objective is to minimize the sum of
Equation (8.5) and Equation (8.7).

loss(M) = clossC(M) + rloss(M) (8.8)

The resulting optimal matrix M then satisfies as many constraints as possible and at the
same time stays close to the identity matrix In, i.e., attempts to keep most of the word
embedding structure intact.

8.2.3 Optimization

To minimize Equation (8.8), we use a projected mini-batch gradient descent approach.
This means that we calculate the gradient of Equation (8.8) for a sample of randomly
selected relative relatedness constraints, perform the gradient descent step and then
project the matrix M ′ :=M −∇loss(M) to the cone of positive definite matrices. This last
step is important, since it ensures that M still defines a valid scalar product and that M
can be decomposed into M = LLT in a Cholesky decomposition. A matrix M ′ can easily
be projected onto the PSD cone by obtaining its eigendecomposition M ′ =UTΣU and
setting all negative eigenvalues on the diagonal of Σ to a small ε > 0.

8.3 Experiments and Results

To demonstrate the performance of RRL, we evaluate its impact on measuring semantic
relatedness and on a question answering task.

8.3.1 Preliminaries

Before we describe the experiments to evaluate RRL and their corresponding results, we
list the used resources and the general evaluation procedure.
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8 Relative Relatedness Learning: Learning Semantic Relatedness from Human Feedback

Resources. We use different pretrained word embedding datasets, namely 1. Delicious
GloVe embeddings from Section 6.5. 2. WikiNav navigational embeddings, like those
from Section 7.2.3. 3. WikiGloVe and ConceptNet embeddings (see Section 4.3). The
latter three datasets were introduced in Section 4.3.

To train RRL in the word relatedness task, we use the WS-353, MEN, Bib100 and
SimLex-999 datasets, which contain human-assigned semantic relatedness scores of
several word-word relations (cf. Section 4.4). It is important to note that while WS-
353, MEN and Bib100 mainly contain semantic relatedness relations, SimLex-999 was
specifically designed to contain information about the semantic similarity of words. This
means that in this case we expect to improve the ability of measuring semantic similarity
with the improved word embeddings.

For the question answering task, we train RRL only on the WikiGloVe and ConceptNet
embeddings, using MEN.

General Evaluation Procedure. For the Word Relatedness tasks, we compare a set
of vectors to human intuition using the Spearman correlation. The exact procedure is
described in Section 3.2.4. Additionally, we show that some evaluation score improve-
ments are indeed statistically significant at p < 0.05, i.e., the improvements are not
caused by artifacts in the training process. To calculate p values, we use Fisher’s z-test.
Equation (3.29) describes how to compute these p values, depending on two correlation
scores ρ1 and ρ2 and the number of samples n, on which those scores were obtained.

8.3.2 Word Relatedness

We evaluate RRL in four settings of a word relatedness task.
First, we explore the general performance of RRL. We do so by training RRL on one

portion of a semantic relatedness dataset and then compare the performance of the
trained vectors and their original versions on the remaining part of the relatedness
dataset. Additionally, we investigate the amount of necessary background information
to achieve a significant increase in evaluation performance. Our goal in this setting is to
show that we can learn semantic relatedness using RRL.

Second, we compare our approach with a strong baseline from literature, namely Retrofitting
(RF) [69]. As already explained in Section 3.2.5.1, Retrofitting uses taxonomic informa-
tion to adjust pretrained word embeddings to improve semantic similarity. In this work,
we use information from the Paraphrase Database PPDB [181] to train Retrofitting. Note
that Retrofitting uses a different source of semantic knowledge to improve for training,
so while it is interesting to see how this impacts results, we also expect improvement by
combining RRL with Retrofitting by training RRL on the retrofitted embeddings. Our
goal is on the one hand to show that RRL is able to produce competitive results, and on
the other hand to look for a potential synergy effect between both methods.

Third, we want to investigate the robustness of word embeddings using RRL. We artifi-
cially generate fake semantic relatedness scores by randomly generating new scores for a
given set of word pairs. To ensure that these scores do not accidentally correlate with the
original human intuition scores, we enforce a very low correlation of p < 0.0005 between
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8.3 Experiments and Results

the random and the original scores. Here we want to show that i) wrong ratings do not
completely collapse the semantics of the trained vectors, which ultimately makes our
approach robust for different users with different intuitions of relatedness, and ii) that
the promising results of the previous experiments are indeed caused by the successful
injection of human intuition into the training process.

Finally, we want to see if the knowledge that we encoded by training RRL on one
semantic relatedness dataset is general enough to positively influence evaluation scores
on other datasets of semantic relatedness. In the first three experiments, we trained
RRL only on a portion of a semantic relatedness dataset, in order to evaluate the trained
model on the remaining part. Now, we train RRL on one complete semantic relatedness
dataset and evaluate the resulting model on a different dataset. For example, we train
on all WS-353 relations, but evaluate the model on on the MEN dataset. By this we
evaluate if the learned knowledge generalizes from one notion of semantic relatedness
(represented by a specific dataset) to another.

8.3.2.1 Integrating Different Levels of Background Knowledge

In this section we investigate how the amount of semantic background information
from human intuition datasets used for training influences the quality of the refined
word embeddings. To this end, we evaluate various training set sizes extracted from
the semantic relatedness datasets introduced above on the different word embedding
datasets.

Experimental Setup. For each semantic relatedness dataset, we first randomly sample
20% of all matchable pairs as test set and use the remaining 80% as training data. From
the training data, we sample training sets of different sizes (10% - 100%). On each
of these subsets of the training data, we train RRL. The resulting trained vectors are
evaluated on the previously sampled test data. We repeat this procedure of sampling
training and test sets and subsequent training of RRL for 25 times. Finally, we report
the mean and the standard deviation of evaluation scores over all 25 repetitions for
each training subset. As a baseline, we also report the Spearman correlation score of
the untrained vectors on the test sets, i.e., when setting M as the identity matrix In in
Equation (8.3).

Results. As can be seen from Figure 8.2 and Figure 8.3, we are generally able to
learn semantic relatedness from human intuition using RRL. However, we need a certain
minimum amount of training data to produce significantly improved results.

On the MEN data set (Figure 8.2), we can always outperform the raw baseline by a
significant margin (p < 0.05) with a minimum amount of 40% sampled training data.
On the ConceptNet embeddings, we can even increase the correlation with MEN to 0.88,
while the ConceptNet embeddings only reach a correlation score 0.856 on the test data.
It is also an interesting observation that our result of 0.88 correlation is also very close
to the interannotator agreement of 0.84 reported in [43], which means that (using a
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(d) ConceptNet

Figure 8.2: Results on different levels of amounts of MEN training data. The dotted lines
show the mean Spearman correlations on the test portion of MEN, using
the retrained word embeddings, together with the standard deviation of the
results (vertical lines at each datapoint). The continuous lines depicts the
Spearman score of the untrained word embeddings. Dashed lines denote
the scores of the retrained word embeddings, this time using randomly
generated relatedness scores.

suitable set of word embeddings) we are able to achieve human-like performance in this
setting.

When training RRL using the WS-353 data set (Figure 8.3), evaluation results are
unfortunately not as clear-cut as when using MEN. However, it can still be seen that by
using RRL, an improvement in correlation score can be achieved on all datasets except
Delicious, where we even observe a slight, but insignificant decrease of our results. Still,
this improvement is very marginal and probably due to the small size of WS-353 and
thus the very small number of items in the test set1.

8.3.2.2 Comparison and Combination with Retrofitting

To show the usefulness of our approach, we compare ourselves to the Retrofitting
algorithm as a baseline, which has already been presented in Section 3.2.5.1. Retrofitting
takes a set of word embeddings and a set of similarity constraints into account to fine-
tune the embeddings and improve their depiction of semantic similarity, as Retrofitting
replaces a vector by the mean of its synonyms given by the word lexicon. [69]

Experimental Setup. In this experiment, we train RRL as well as Retrofitting on all
four embedding datasets. For RRL, we use WS-353, MEN, Bib100 and SimLex-999

120% of 353 word pairs are only ≈71 pairs
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Figure 8.3: Results on different amounts of WS-353 training data using the pretrained
embeddings. Injecting true user feedback now only leads to a marginal
increase in correlation on the test data for WikiNav, WikiGloVe and Concept-
Net, while on Delicious, the correlation even decreases (diamond, dotted).
Injecting false user feedback to RRL lets performance decrease significantly
and dramatically everywhere except on WikiGloVe (star, dashed). The con-
tinuous line serves as baseline, i.e., the standard cosine score on the test
data.

for training, concretely we use the full amount of the best set of the sampled training
data from the first experiment. To train Retrofitting, we use paraphrase data from the
paraphrase database PPDB. Additionally, we train RRL on top of the retrofitted vectors.
We evaluate each set of vectors on the corresponding test data from the first experiment.

Results. From Table 8.2, we can see several intriguing results. First of all, both
Retrofitting and RRL can increase the fit to human intuition of semantic relatedness on
almost all word vector datasets. While in some settings Retrofitting outperforms RRL,
there are also cases when training vectors with RRL results in higher correlation with
human intuition than when using Retrofitting. The most notable result however is that
combining Retrofitting and RRL almost always yields the highest correlation with human
intuition, but always outperforms the baseline. Only on test sets with very few pairs
(e.g., Bib100 or WS-353 on Delicious and WikiNav), this is not the case and Retrofitting
shows a clear edge. Another interesting result is that on Delicious, RRL outperforms
Retrofitting when training with Bib100 data. We attribute this to the nature of Delicious’
and Bib100’s topic overlap (see also Section 6.3).
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8 Relative Relatedness Learning: Learning Semantic Relatedness from Human Feedback

Table 8.2: Baselines for word embedding fine tuning experiments. All reported values
have been evaluated on the corresponding evaluation dataset splits for each
vector dataset. For Retrofitting (RF), we used the PPDB-XL paraphrase lexicon
as training data.

WS-353 MEN Bib100 SimLex-999

C
on

ce
p

tN
et pairs 67 600 20 200

raw 0,858 0,871 0,727 0,603
RF 0,862 0,874 0,748 0,660
RRL 0,864 0,904 0,734 0,669
RF+RRL 0,874 0,905 0,738 0,724

W
ik

iG
lo

V
e pairs 67 600 20 200

raw 0,598 0,754 0,801 0,335
RF 0,626 0,779 0,881 0,483
RRL 0,636 0,838 0,799 0,428
RF+RRL 0,676 0,842 0,831 0,553

W
ik

iN
av

pairs 33 246 10 76

raw 0,708 0,725 0,733 0,406
RF 0,743 0,751 0,883 0,523
RRL 0,616 0,762 0,717 0,455
RF+RRL 0,694 0,781 0,817 0,525

D
el

ic
io

u
s

pairs 39 275 20 72

raw 0,741 0,731 0,772 0,255
RF 0,844 0,784 0,788 0,399
RRL 0,747 0,750 0,801 0,389
RF+RRL 0,846 0,817 0,849 0,500

8.3.2.3 Robustness of Pretrained Embeddings

Now we inject false user feedback into RRL to see if we can influence the score in not
only a positive, but also a negative direction. We tried to revert the positive effect of
injecting human feedback into a semantic relatedness measure.

Experimental Setup. Here we inject wrong semantic relatedness information into our
learning process. We artificially generate “wrong” semantic relatedness by randomly
generating new scores for a given set of word pairs, which have a very low correlation of
p < 0.0005 to the original scores. The goal is to show that i) wrong ratings do not com-
pletely collapse the relatedness measures, which ultimately makes our approach robust
for different users with different intuitions of relatedness, and ii) that the promising
results of the previous experiments are indeed caused by the successful injection of user
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feedback.

Results. Figures 8.2 and 8.3 show that wrong semantic information exhibits a large
negative influence on the trained vectors (dotted line, star markers). As in the first
experiment, the result decrease on MEN is stronger than on WS-353. We again attribute
this to the smaller size of WS-353. Despite the (expected) score decrease, we were unable
to completely distort the semantic relatedness scores produced from the resulting vectors.
This is most evident in Figure 8.2a, where we almost couldn’t induce a negative bias in
the Delicious embeddings with the MEN dataset. We assume that the score decrease
is mitigated by the inherent semantic content of the embeddings. Overall, this shows
that although we can improve the fit of word vectors to human intuition, as shown in
the first experiment, we need a high semantic quality of both the word vectors and the
latent collected relatedness scores through human feedback.

8.3.2.4 Transporting User Intentions

The previous experiments showed that the integration of a semantic relatedness dataset
into a relatedness measure results in higher agreement of the measure with human
intuition. By this we evaluate if the learned knowledge generalizes from one notion of
semantic relatedness (represented by a specific semantic relatedness dataset) to another.

Experimental Setup. Now, in order to transfer different user intentions across differ-
ent settings, we trained metrics on one complete relatedness dataset and evaluated them
on a different semantic relatedness dataset. For example, training was done using all
WS-353 relations but the metric was evaluated on the MEN dataset. We repeat this for
each combination of word vectors and pairs of word embedding datasets MEN, WS-353,
and SimLex-999.

Results. Results are given in Table 8.3. For each line, its header defines the dataset
on which the metric was trained, while the column header is the dataset on which the
trained metric was then evaluated. In each cell, the first value denotes the Spearman
correlation of the cosine measure with the human relatedness scores in the evaluation
dataset. The second value is the Spearman correlation of the relatedness scores calculated
from the trained metric with the human relatedness scores in the evaluation dataset.
Depending on whether the trained metric increased or decreased correlation with human
intuition, we depict upwards or downwards arrows.

Unfortunately, we cannot say that we are able to transport the semantic information
contained in one semantic relatedness dataset to another. Almost no scores improve
upon the untrained vector baseline score. The only exceptions are when we evaluate a
pretrained set of embeddings on the training set. Even there, the scores on the SimLex-
999 dataset decrease, when we train RRL on WikiNav and WikiGloVe embeddings.
While Delicious and ConceptNet vectors trained on WS-353 can slightly outperform the
baseline, we do not consider this a relevant result since the difference is insignificant.
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Table 8.3: Results for user intention transport experiments. We trained a metric on all
word pairs from the dataset given at the start of each line and evaluated them
on the dataset given in the column header. The first value is the Spearman
correlation for the cosine measure on the evaluation dataset, the second value
is the Spearman value for the trained metric. The arrow denotes if we could
transfer relevant information from one dataset to another or not.

Evaluated on MEN SimLex-999 WS-353
Trained on

raw 0.752 0.336 0.690

MEN 0.811 0.298 0.666
SimLex-999 0.720 0.389 0.670
WS-353 0.753 0.337 0.745

(a) Delicious

Evaluated on MEN SimLex-999 WS-353
Trained on

raw 0.709 0.340 0.729

MEN 0.737 0.222 0.571
SimLex-999 0.655 0.305 0.670
WS-353 0.689 0.330 0.732

(b) WikiNav

Evaluated on MEN SimLex-999 WS-353
Trained on

raw 0.749 0.371 0.609

MEN 0.781 0.175 0.463
SimLex-999 0.570 0.312 0.444
WS-353 0.740 0.368 0.831

(c) WikiGloVe

Evaluated on MEN SimLex-999 WS-353
Trained on

raw 0.863 0.614 0.828

MEN 0.915 0.581 0.803
SimLex-999 0.851 0.728 0.815
WS-353 0.862 0.616 0.920

(d) ConceptNet

8.3.3 Question Answering

As an applied evaluation setting, we train a question answering model based on word
embeddings. Because we could show that word embeddings adapted using RRL exhibit
an increased correlation with human intuition, we also expect them to do better in a task
that utilizes pretrained word embeddings. With this, we want to show the usefulness of
RRL in other settings than measuring semantic word relatedness.

Experimental Setup. We use the DrQA question answering framework provided by
Chen et al. [49], which trains a Machine Reading model on a preprocessed Wikipedia
dump and evaluates it on the Stanford Question Answering Dataset SQuAD [190]. This
dataset consists of over 100,000 question and answer pairs on more than 500 Wikipedia
articles. We compare the performance of the trained question answering model when
using untrained vectors and vectors trained on the MEN dataset.

In this task, we fit the WikiGloVe and ConceptNet embedding datasets on the complete
MEN relatedness scores. The parameter choices for RRL were as follows. The initial
learning rate was set to l = 0.01, the batch size was set to 5000, and we trained each
model for a maximum of 100 epochs. To evaluate how well our embeddings do in the
DrQA question answering task, we train a document reader model for 100 epochs for
each word embedding dataset and their adapted variants. Except for the number of
epochs, we used the default parameter settings of DrQA.
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Table 8.4: Evaluation results for the question answering task using DrQA. We report the
F1 scores when evaluating the trained DrQA model on the SQuAD develop-
ment set with 100 epochs. Delicious and WikiNav have not been evaluated in
this setting, as the vocabulary (tags and Wikipedia article identifier) is not
only semantically, but also structurally different to that of WikiGloVe and
ConceptNet.

raw RRL

WikiGloVe 74.01 72.92
ConceptNet 73.14 74.37

We report the F1 scores of the trained reader model using the official evaluation script
from the authors of SQuAD, evaluated on the SQuAD development set. This is the
standard procedure, as the actual test data are not publicly available.

Results. In Table 8.4, we see that training WikiGloVe with MEN decreases performance
in the question answering setting. In contrast, the re-trained ConceptNet embeddings
improve upon the score of the untrained vectors and even outperform the result of
the untrained WikiGloVe vectors. Consequently, this serves as another signal that
injecting additional semantic information in word embeddings using RRL improves
their usefulness in applications that rely on their semantic quality. However, Chen et al.
report a maximum F1 score of 78.8%, which we cannot reach either way. Even the more
comparable score of 77.3% they achieve when leaving out re-alignment of their word
embeddings is higher than those we obtain. Still, we could show that on ConceptNet,
we at least were able to improve the results.

8.4 Discussion

We now interpret and discuss the results presented in Section 8.3 in the order of the
experiments.

Integrating Different Amounts of User Feedback. Throughout the whole experi-
ment, we observed that using a higher amount of training data always resulted in
improved relatedness scores, if there was a positive effect.

Metrics trained on the MEN dataset yield competitive results, which are even statis-
tically significant at p < 0.05 with at least 50% training data. While this might be due
to its big size, it might also be due to this dataset was created2: Using crowdsourcing,
each human worker was shown two pairs of words and had to determine which of
both pairs is more related. The higher a word pair in MEN is rated, the more often it
was considered more related than the other one that was given. Our approach exploits

2https://staff.fnwi.uva.nl/e.bruni/MEN
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(b) ConceptNet

Figure 8.4: Results for training a measure on only 353 equidistant pairs from MEN. For
both WikiGloVe and ConceptNet, the changes are only marginal and give the
impression that there are not sufficient data to actually train a metric with
significant differences. Yet, when utilizing the full MEN dataset, we achieve
competitive results, as given in Figure 8.2. This supports the argument that
not the content of WS-353 is responsible for the mediocre results shown
in Figure 8.3, but rather the small size of WS-353.

very similar constraints for learning. Keeping this explanation in mind, we are able to
give a recommendation on how to gather human feedback in order to learn semantic
relatedness with our method.

Regarding results on WS-353, we still see that the RRL approach yields improved
correlation scores, however not as much as when training metrics on MEN. We wanted to
confirm our intuition that the comparatively bad perfomance of metrics trained on WS-
353 is mainly due to size reasons and not because WS-353 contains unusable semantic
relatedness information, so we reduced MEN to 353 uniformly distributed word pairs
and performed the same training experiments as described in the previous section. The
results from this experiment are given in Figure 8.4 and confirm our intuition that the
cause of WS-353’s bad performance can be attributed to its size, as the downsampled
MEN dataset shows similarly marginal, but positive improvements as WS-353, although
training on the full MEN dataset achieved remarkable results before.

An interesting pointer for future research lies in the fact that although Delicious and
WikiNav share only a small overlap with WS-353, the impact on the trained metric’s
performance is very different. Here, it is interesting if there are certain subsets of word
pair datasets from which training a metric is easier, even although they are small.

Transporting User Intentions. In this experiment, we attempted to see if the learned
semantic information contained in one semantic relatedness dataset can also be benefi-
cial for the evaluation on another relatedness dataset. However, our results indicate that
this is not the case. Throughout all combinations of training and evaluation dataset, even
across all word embedding datasets, we were unable to significantly increase correlation
to human judgment. The only obvious exceptions are when training and evaluating on
the same dataset. However, on the SimLex-999 dataset, our scores even deteriorated
when using the WikiNav and WikiGloVe embeddings, which indicates that RRL cannot
use these vectors to encode the information contained in SimLex-999. In how far this is
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a signal of a possible (negative) correlation of WikiGloVe, remains a problem for future
work.

Robustness. On all four embedding datasets, evaluation performance decreases no-
tably with the MEN dataset, with the worst performance loss on ConceptNet. We observe
similar responses on WikiGloVe. These results confirm (again) that word embeddings
successfully manage to encode semantic information, and also that we cannot just “un-
learn” it. Furthermore, all embedding sets react the most when used with a measure
trained on MEN. We attribute this to the same reasons as why MEN is seemingly best
suited to learn semantic relations from, i.e., it is constructed in a very similar way
to the form of the constraints that the learning algorithm is parameterized with and
it can provide a sufficient amount of training data to provide clear results. Another
consequence of this is that the promising results of the previous experiments are indeed
caused by the successful injection of semantic side information into the relatedness
measure.

Comparison and Combination with Retrofitting. Table 8.2 shows that on the one
hand, RRL trained with MEN often achieves better results than those of Retrofitting.
On the other hand, RRL and Retrofitting can benefit from each other, as the scores
of vectors trained with both algorithms often achieve the highest evaluation results.
This is a very strong signal, especially since it holds true on 600 word pairs from MEN,
which thus renders the score improvements statistically significant. It also shows that
Retrofitting and RRL address different kinds of semantic relatedness: While Retrofitting
was specifically designed to improve the semantic similarity of vector datasets, RRL can
address the semantic relatedness component.

Question Answering In the question answering task, the results unfortunately are
not as clear-cut as they are in the other experiments. While retraining of ConceptNet
vectors actually improves the question answering scores, they deteriorate on retrained
WikiGloVe vectors. Compared with the significant and large improvements in the word
similarity task, this leads to the impression that semantic relatedness does not play a
very important part in the question answering task. Another explanation could be that
the semantic information obtained when using MEN as training data cannot support
the QA task. However, this investigation is left as future work.

8.5 Conclusion

In this section, we presented the RRL approach to learn semantic relatedness from
human intuition based on word embeddings. After motivating the algorithm design, we
provided a detailled description of the algorithm. We performed several experiments
to show the validity and usefulness of RRL. Concretely, we trained RRL on different
amounts of training information, compared the algorithm to Retrofitting, tested the
robustness of the word embeddings to indirectly obtain a qualitative judgment about the
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validity of our results and finally attempted to transfer the semantic knowledge from
one semantic relatedness dataset to another. Lastly, we evaluated RRL in a question
answering setting.

Our results indicate that RRL can exploit semantic relatedness information from
semantic relatedness datasets to more realistically assess human judgment of semantic
information, regardless of the underlying embedding dataset. As a special result of
our work, we outperformed the current state-of-the-art correlation scores on the MEN
dataset and thus set a new record on measuring semantic relatedness on MEN.
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Chapter 9

Conclusion and Future Perspectives

In this thesis, we investigated semantics in social media data. After determining the
influence of semantics on user behavior in social media systems, we proposed methods
to extract this semantic information from traces of user behavior and finally use human
intuition to fine-tune the resulting semantic representations. Here we could also quantify
the influence of user pragmatics on the extractable semantics in different settings. In this
chapter, we will first summarize the contributions and results from each chapter. Finally,
we point out open challenges and possible perspectives for future work on detecting
signals of semantics in social media data, making these signals visible in the form of
vector representations, and fine-tuning these vector representations for both general
and specific purposes.

9.1 Summary

This thesis starts with an introduction to the topic of Semantics in the Web in Chapter 1.
We start with a motivating example of how semantic technologies can be applied to
make computers “understand” plain text and respond accordingly. Then, we show the
connection to the Semantic Web and finally describe the covered research topics and
contributions of this work. Chapter 2 presents an overview of relevant work and the
state-of-the-art in computational semantics. We talk about the extraction of semantics
from knowledge bases, folksonomies and Wikipedia, learning and adjusting semantic
representations, the mutual influence of semantics and user behavior and potential
applications of semantics. To understand the remainder of this work, we introduced the
theoretical foundations in Chapter 3. Here, we first described important data structures,
before we introduced baseline methods both to extract and learn semantics from knowl-
edge graphs, folksonomy metadata, and Wikipedia. Additionally, we presented two
approaches to evaluate semantic relatedness measures, one based on WordNet and the
other based on human intuition. Finally, we defined measures for user behavior, both
in tagging and navigation contexts. Chapter 4 gives an overview of the used datasets
in this thesis. We extract semantics from text-based datasets, such as tagging data, and
sense distributions from Wikipedia disambiguation pages. Furthermore, we describe
all link-based datasets used to extract semantics. For our learning experiments, we
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9 Conclusion and Future Perspectives

compare ourselves with pretrained word embedding datasets and finally we evaluate all
our relatedness scores on human intuition, which is encoded in ground-truth datasets
with crowd-sourced scores.

Chapters 1 to 4 described the necessary background for this work. All subsequent
chapters, namely chapter 5 to 8, now describe the contributions of this thesis.

In Chapter 5, we analyzed different navigation datasets with human navigation both
in Wikipedia and in BibSonomy. We especially focussed on uncovering a semantic
component in navigation on these networks. We could show that in all link networks,
semantic navigation plays a certain role in human wayfinding; it is however not as
strong as we thought it would be. Nonetheless, our work on BibSonomy could show that
users with different tagging behavior also exhibit different navigation behavior.

Chapter 6 extended the thesis of Benz [26] by first challenging the way that tagging
data were evaluated until this point. We argued that evaluation on the Jiang-Conrath
measure on WordNet would not yield a valid evaluation score, since Jiang-Conrath
does not correlate well with human intuition. Furthermore, although evaluation on
human intuition datasets is a more valid evaluation approach, they need to contain a
fitting vocabulary for a sufficiently interpretable result. We proposed a new evaluation
dataset called Bib100. After that, we discussed the applicability of word embedding
approaches on tagging data to move tagging semantics on the next level. We found
that not only can we show that tagging data indeed contain considerable amounts of
semantic information, but we were also able to extract representations with a higher
quality than the previous representations from [26].

Subsequently, in Chapter 7, we then proposed several semantic relatedness measures
to extract semantic relatedness from human navigation on social media. For this, we
investigated Wikipedia game navigation, unconstrained navigation on Wikipedia and
random walks on Wikipedia subgraphs. Here, we could show that not only Wikipedia
navigation contains a great amount of semantic information, but it can be easily ex-
tracted. Furthermore, we also proposed to construct word embeddings from navigation,
which boosted the quality of vector representations significantly. We extended the
semantic relatedness measures on unconstrained and random navigation on the BibSon-
omy link network. In order to overcome data sparsity, we explored primed random walks
on both navigation datasets and could show that certain primes could even increase the
semantic quality of the navigational vector representations signficantly.

Finally, Chapter 8 covered both an algorithm to learn semantic relatedness from
human intuition and a study on user behavior influence on a word sense disambiguation
algorithm in a social tagging system. We performed experiments with different word
embedding datasets as well as different competing similarity learning algorithms and
could show that our RRL algorithm outperformed the current state-of-the-art. Addition-
ally, we were able to show that the tagging behavior of users indeed influences the word
sense disambiguation process in a social tagging system. This is perfectly in line with
[122] and [173], where it was also shown that tagging behavior influences other topics
in folksonomies as well.
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9.2 Open Problems and Future Perspectives

While this thesis made several contributions to further the state-of-the-art, we left
several interesting research pathways untouched. In the following, we will point out
potential for future work.

Analyzing Semantics in Navigation. In Section 5.2, we have analyzed several data-
sets of human navigation in Wikipedia. With our analyses, we have barely scratched the
surface of what is possible. Potential extensions include the hypothesis-based analysis
of navigation of successful and unsuccesful users. Since we found in Section 7.2.2 that
successful paths yield less precise semantics, we also expect to see different naviga-
tion patterns in either settings. Similar things hold for unconstrained navigation on
Wikipedia. Since Wikimedia Research regularly publishes clickstream data, similar
to the dataset we used (cf. Section 4.2.2.1), it would also be interesting if navigation
behavior is generally consistent through time. Finally, there also exist many options
to exploit the semantic information models we created in Section 7.2. One could for
example use them to recommend pages that are relevant to a currently browsing user’s
interests. Additionally, we could use them to improve the category system of Wikipedia
by clustering pages according to their navigational semantic similarity.

Semantics in Social Tagging Systems. By bridging the gap between tagging seman-
tics and word embeddings, we were not only able to capture more of the semantic
information in tagging data, but we also connected tagging semantics to today’s world
of NLP research. Using these tag embeddings, we could now proceed to apply more
sophisticated methods to e.g., embed posts using CNNs [118], improve the detection
of hierarchical relations in tagging data [198], and finally even improve upon learning
taxonomic relations from tagging data using word embeddings [28].

Learning Semantics. A canonical extension of the RRL algorithm could be to classify
or even measure hierarchical relations between words. Here, we could learn a single
translation matrix that learns an antisymmetric matrix to characterize the inverse nature
of hyponymy and hypernymy. To provide a concrete application for improved word
embeddings and word embeddings in general, we propose to investigate how much
Another idea is to learn translations between word embeddings, not necessarily generated
by different languages. An open problem is to overcome the Out-of-Vocabulary limitation
of semantic models. This could for example be solved by a translation matrix between
two embedding datasets which projects key vectors from one embedding space to the
other and vice versa. A possible application of such a translation algorithm could be
to measure social bias in word embeddings and effectively erasing it. By training word
embeddings both on original and preprocessed text by replacing every gendered form
by only one gender, it is possible to train the translation matrix and then to apply this
matrix on the gendered embeddings.
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List of Notations

1 General Notation

x ∈Rn vector
M ∈Rn×n quadratic matrix

2 Folksonomy Notation

F Folksonomy
Pu Personomy of user u
U,T ,R Users, Tags and Resources in a Folksonomy
Y The set of tag assignments in a Folksonomy
P An unspecified post in a Folksonomy
Pur A post of user u with the resource r
Tur The tags assigned to the post Pur
Tu The tags assigned by user u
Ru All resources that user u posted

3 Semantics Notation

V Vocabulary
cos(x,y) Cosine similarity measure of two vectors x, y
cosM(x,y) Parameterized cosine similarity measure

Evaluation notation

ρ(X,Y ) Spearman rank correlation coefficient of two rankings X and Y
ρn(X,Y ) Spearman rank correlation coefficient restricted to a certain number of

word pairs
ρbin(X,Y ) Spearmanman rank correlation coefficient of rankings generated by vec-

tor binarization
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List of Notations

4 Graph and Navigation Notations

p Page in a social media system
p(u′ ,t′ ,r ′) a page in the social tagging system link graph
p Path of pages, p := (p1, . . . ,pn)
P Set of all navigational paths, P := {p1, . . . ,pm}

G = (V ,E) A graph G with vertices V = {p1, . . . ,pn} and edges E =
{
(pi ,pj )

}
Vu All pages p that “belong” to user u in a Folksonomy

H A navigation hypothesis
P hyponame A transition function that defines the hypothesis Hhyponame
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