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VIII. Summary 

T cell infiltration into the intestine occurs after priming and activation in the 

mesenteric lymph nodes and Peyer’s patches and subsequent trafficking via the blood 

circulation. We hypothesized that additionally to the vascular trafficking route, a 

fraction of T cells in the Peyer’s patches directly migrate into the adjacent lamina propria 

of the small intestine. To test this hypothesis, we employed a mouse model of acute 

Graft-versus-Host Disease to study the direct T cell migration from the Peyer’s patches 

to the adjacent lamina propria.  

First, we analyzed the border of Peyer’s patches on histological sections and found that 

the Peyer’s patch is not enclosed by a capsule or basement membrane. Thus, the tissue 

architecture allows for direct access to the surrounding tissue. With whole-mount light 

sheet fluorescence microscopy we quantified a three-dimensional gradient of T cells 

around Peyer’s patches on day 2.5 and day 3 after transplantation. This gradient 

evened out at day 4 and day 6 when high numbers of T cells started to evenly infiltrate 

the intestine from the blood circulation. We confirmed that gradient-forming T cells 

around Peyer’s patches resided within the tissue parenchyma of the lamina propria and 

not inside lymphatic vessels.  

To positively prove that the recently activated donor T cells around Peyer’s patches 

have egressed directly from that patch, we established a protocol for intravital 

photoconversion of T cells inside Peyer’s patches. 12 h after photoconversion inside a 

single Peyer’s patch, photoconverted T cells resided only around this particular 

Peyer’s patch and not elsewhere in the small intestine. This indicated that the T cells 

did not infiltrate via the blood but migrated to the adjacent lamina propria of the small 

intestine. Dynamic intravital two-photon microscopy revealed that these T cells next to 

the Peyer’s patch migrated in a random pattern. This suggested that these cells did not 

follow a positive chemoattractive gradient once they had reached the lamina propria. 

Laser-capture microdissection combined with RNA sequencing of the mucosa near the 

Peyer’s patch identified a wide range of migration-promoting factors. These included 

chemokines, co-stimulatory receptors and migration-associated intracellular 

molecules, which are candidates to promote this direct migration from Peyer’s patches. 

Altogether, we demonstrate for the first time that additionally to the vascular 

trafficking route, a fraction of T cells migrates directly from the Peyer’s patch to the 

surrounding mucosa. This mechanism implies so far unrecognized regional 

specification of Peyer’s-patch-primed T cells. Our findings may impact treatment 

strategies to avoid intestinal inflammation or foster immunity after oral vaccination. 
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IX. Zusammenfassung 

T-Zell Infiltration in den Darm erfolgt nach Primen und Aktivierung in den mesenterialen 

Lymphknoten und Peyerschen Plaques durch Rezirkulation über die Blutbahn. Wir 

stellten die Hypothese auf, dass zusätzlich zur vaskulären Route ein Teil der T-Zellen im 

Peyerschen Plaque direkt in die angrenzende Lamina propria des Dünndarms wandert. Um 

diese Hypothese zu testen, setzten wir ein Mausmodell für eine akute Graft-versus-Host 

Reaktion ein, um die direkte Migration von T Zellen aus den Peyerschen Plaques in die 

angrenzende Lamina propria zu untersuchen.  

Zuerst analysierten wir die Randzonen um die Peyerschen Plaques mit histologischen 

Schnitten und konnten bestätigen, dass der Peyersche Plaque von keiner Kapsel oder 

Basalmembran umschlossen ist, sodass die Gewebearchitektur den direkten Zugang des 

umliegenden Gewebes zulässt. Mithilfe der Lichtblatt-Fluoreszenzmikroskopie von 

Dünndarm-Komplettpräparaten quantifizierten wir einen dreidimensionalen T-Zell 

Gradienten um Peyersche Plaques an den Tagen 2,5 und 3 nach allogener 

Stammzelltransplantation. Dieser Gradient verschwand zwischen an Tag 4 und Tag 6, als 

eine hohe Anzahl an T-Zellen begann, den Darm gleichmäßig über die Blutbahn zu 

infiltrieren. Wir bestätigten, dass die Gradienten-bildenden T-Zellen im Gewebe der 

Lamina propria und nicht in lymphatischen Gefäßen saßen, um zirkulierende Zellen von 

der Gradientenbildung auszuschließen. 

Um direkt zu beweisen, dass die T-Zellen um dem Peyerschen Plaque unmittelbar aus 

diesem Plaque ausgewandert sind, haben wir ein Protokoll für intravitale 

Photokonversion von T-Zellen im Peyerschen Plaque etabliert. 12 h nach der 

Photokonversion in einem einzelnen Peyerschen Plaque befanden sich die T-Zellen nur 

um diesen bestimmten Plaque herum. Dies zeigt, dass die T-Zellen das Gewebe nicht über 

die Blutbahn infiltrierten, sondern direkt in die angrenzende Lamina propria des 

Dünndarms gewandert waren. Dynamische intravitale Zweiphotonenmikrokopie 

offenbarte, dass diese T-Zellen um den Peyerschen Plaque nach zufälligem Schema 

wanderten. Dies legte nahe, dass diese T-Zellen keinem positiven Chemokingradienten 

folgten, sobald sie die Lamina propria erreicht hatten. Laser-Mikrodissektion kombiniert 

mit RNA-Sequenzierung der Mukosa nahe des Peyerschen Plaques identifizierte eine 

große Auswahl an migrationsfördernden Faktoren. Hierunter waren Chemokine, 

kostimulatorische Rezeptoren und intrazelluläre migrationsassoziierte Moleküle, welche 

Kandidaten sind, diese direkte Migration aus den Peyerschen Plaques zu fördern.  

In dieser Arbeit zeigen wir erstmalig, dass zusätzlich zur vaskulären Route ein Teil der 

T-Zellen direkt vom Peyerschen Plaque in die umliegende Mukosa wandert. Dieser 

Mechanismus impliziert bislang unerkannte regionale Spezialisierung von T Zellen, 
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welche in Peyerschen Plaques aktiviert wurden. Diese neuen Befunde können zukünftige 

Behandlungsstrategien gegen intestinale Entzündungserkrankungen oder für 

Immunreaktionen nach oraler Impfung beeinflussen. 
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1 Introduction 

 The intestinal immune system 

The organs of the immune system are divided into lymphopoietic or primary lymphoid 

organs (bone marrow and thymus) and secondary lymphoid organs, where immune 

responses unravel. The secondary lymphoid organs include the spleen, lymph nodes, 

and mucosa-associated lymphoid tissues (MALT) in the gastrointestinal tract, the nasal 

and respiratory tract, the urogenital tract and other mucosa. The MALT of the intestine 

consist of the multifollicular Peyer’s patches, isolated lymphoid follicles, and 

cryptopatches. Furthermore, the intestinal lamina propria harboring lamina propria 

lymphocytes represents the largest reservoir of T cells in the body together with the 

intraepithelial lymphocytes in the intestinal epithelium (Mowat and Agace, 2014). The 

mucosal surfaces mount up to an estimated total size of 400 m² (Murphy and Weaver, 

2016), and are separated from the outside only by a single layer of epithelial cells 

covered by mucus. Therefore, this delicate tissue requires extensive immunological 

surveillance to ensure proper barrier function. Furthermore, these surfaces play a major 

role in educating the immune system to distinguish between harmful and innocuous 

antigens of the environment that need to be tolerated by the immune system, such as 

food antigens or the commensal microbiota (Kuhn and Stappenbeck, 2013; Qiu et al., 

2016). 

 Lymphoid organs in the small intestine 

Peyer’s patches are visible with the naked eye and are embedded in the mucosa on the 

antimesenterial side of the small intestine. In man, there are about 60 Peyer’s patches in 

newborn and up to 240 at puberty (Cornes, 1965), and their frequency and size increases 

from duodenum to ileum. In mice, there are 6-12 Peyer’s patches that are distributed 

throughout the intestine (Pospischil, 1989; Reboldi and Cyster, 2016), and are regarded 

to be distributed evenly, although personal observation suggested that some locations 

along the murine intestine were more likely to have Peyer’s patches than others. Each 

Peyer’s patch consists on average of 100 follicles in man (Cornes, 1965) and 3-12 in mice. 

These B cell follicles, which lie below the dome region covered by the follicle-associated 

epithelium containing microfold cells (M-cells), are surrounded by the T cell zones, also 

called interfollicular regions (Figure 1-1) (Jung et al., 2010). M cells are not covered by 

mucus and serve as sampling shuttles of the luminal contents for presentation to T and 

B cells by antigen-presenting cells in the Peyer’s patches. In contrast to lymph nodes, 
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Peyer’s patches lack afferent lymphatic vessels, but bear efferent lymphatic sinuses 

towards the serosal side (Schmidt et al., 2013). 

 
Figure 1-1   Organization of a Peyer's patch. Each dome region contains one B cell follicle covered by an area of 

dendritic cells (DC). The B cell follicles are surrounded by T cell areas, which are suffused by the efferent lymphatic 

sinus. Antigens are transported into the Peyer’s patch through the M cells inside the follicle-associated epithelium.  

Isolated lymphoid follicles (ILF) are single B cell follicles inside the mucosal tissue of the 

small intestine, which contain mostly B cells, and T cells at low frequencies. They do not 

contain clear T cell zones like the Peyer’s patch (Hamada et al., 2002), and are a site of 

T-cell-independent B cell responses against pattern-carrying antigens (Tsuji et al., 2008). 

Mice have an estimated 1000-1500 ILF in their small intestine, and humans are believed 

to have around 30,000 ILF (Mowat and Agace, 2014). Like Peyer’s patches, the frequency 

of ILFs increases from duodenum to ileum in man. ILF may arise from cryptopatches, 

which are progenitor cell-rich accumulations of immune cells near the crypts of the 

small and large intestine (Pabst et al., 2005). Unlike ILF, cryptopatches are less organized 

accumulations of fewer numbers of immune cells.  

Together, the intestinal lymphoid structures combine to an efficient sampling and 

surveillance system in mucosal immunity. 

 Immune cell populations in the lamina propria 

Outside of organized lymphatic structures in the intestine, the lamina propria and 

epithelial layer harbor a high number of interspersed immune cells (Figure 1-2). These 

consist of T cells, B cells, type 1-3 innate lymphoid cells and myeloid cells, which are 

mostly macrophages, but contain also dendritic cells, eosinophils and mast cells (Gross 

et al., 2015; Mowat and Agace, 2014).  

Lamina propria B cells are mostly IgA-secreting plasma cells. They produce large 

amounts of IgA that is transported across the epithelium and integrated into the mucus 

layer. The commensal microbiota are largely non-motile and cannot penetrate the 

mucus layer, whereas pathogenic bacteria attempting to penetrate this barrier are then  
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Figure 1-2   Immune cell populations in the intestine. Conventional T cells (αβTCR co-expressing CD4 or CD8αβ) are 

located in the lamina propria of the small intestine. They also populate the epithelium, where additionally 

unconventional T cell subsets (CD8αα co-expressing αβTCR or γδTCR) are situated. M cells and Goblet cells both 

transport antigens to antigen-presenting cells in the intestine, which are mostly macrophages but also dendritic cells. 

Plasma cells in the lamina propria produce IgA, which is transported across the epithelium to protect the mucosal 

surface from invading pathogens. Modified from Brucklacher-Waldert et al., 2014. (Brucklacher-Waldert et al., 2014) 

opsonized with IgA antibodies (Hansson, 2012). Intruders can thus easily be detected by 

the complement system or phagocytes upon entry to the mucosa. The T cells inside the 

intestine are much more diverse than in the average lymphoid organ.  

In the lamina propria, 2/3 of the T cells express CD4 and 1/3 expresses CD8αβ. Both are 

similar in phenotype to T cells in other organs, and have a memory phenotype. They are 

thought to develop from conventional T cells primed in the secondary lymphoid organs 

(Mowat and Agace, 2014). Apart from the dominating αβTCR T cells in the lamina 

propria, γδ T cells are also reported, from flow cytometric experiments, to reside in the 

intestinal lamina propria (Kadivar et al., 2016). 

In combination, these cell types interact inside the lamina propria to enforce the mucosal 

barrier function and to communicate on the commensal microbiota or potential threats 

to intestinal integrity. 

 Immune cells in the intestinal epithelium 

T cells are the only type of immune cells that also populates the intestinal epithelium, 

and their frequency in the intestinal epithelium is high (10-15% of epithelial cells) 

(Mowat and Agace, 2014). There, they represent the first line of defense against 

intruders. Apart from the intraepithelial T cells, myeloid cells in the lamina propria have 

direct access to the lumen by reaching across the basal membrane and the epithelium 

with long protrusions, but their cell bodies remain in the lamina propria and the antigens 
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presented are shuttled by goblet cells in healthy tissue (McDole et al., 2012). Eosinophils 

are even reported to exit the tissue into the lumen and attack helminths (Hällgren et al., 

1989).  

Intraepithelial lymphocytes include the conventional αβTCR T cells carrying either CD4 

or CD8αβ, but consist to a large extent of unconventional T cells. These include αβTCR 

T cells or γδTCR T cells carrying no co-receptor or the CD8αα homodimer. These 

unconventional T cell subsets originate from the thymus and are positively selected on 

self-antigens (Leishman et al., 2002). They are currently believed to exit the thymus in a 

CD4-CD8- double-negative state and undergo further differentiation in the intestine 

(Cheroutre et al., 2011). Intraepithelial lymphocytes usually express CD69 on their 

surface and depend on the integrin αE (CD103) to localize to the epithelial layer 

expressing E-cadherin (Cheroutre et al., 2011). Recently, the migration of this cell type 

inside the epithelium and to the lamina propria has been associated with G-protein 

coupled receptor 55 (GPR55), a receptor for lysophosphatidyl inositols. Engagement of 

this receptor inhibits the migration of γδ T cells in the intestine (Sumida et al., 2017). 

Their positioning at the very surface of the intestinal barrier make intraepithelial 

lymphocytes important actors of mucosal surveillance and tolerance. 

 Intestinal immune tolerance 

The intestine is a major site of immune tolerance induction and maintenance (Harrison 

and Powrie, 2013). Tolerogenic antigen-presenting cells secreting transforming growth 

factor β (TGFβ), IL-10 and retinoic acid induce a regulatory phenotype in T cells 

(induced regulatory T cells, iTregs) that express Foxp3 and secrete IL-10 (Coombes et al., 

2007; Sun et al., 2007). Together with natural Tregs (nTregs) from the thymus, they 

provide a tolerogenic milieu towards the intestinal microbiota and food antigens locally 

and systemically. 

Apart from the interactions between the cells of the immune system, the immune cell 

populations in the intestine are greatly influenced by cell contacts and soluble mediators 

from stromal cells including epithelial and endothelial cells, fibroblasts and pericytes 

(Nowarski et al., 2017). Regulation by the enteric nervous system adds another layer of 

complexity to the regulation of intestinal immunity (Yoo and Mazmanian, 2017).  

In summary, the intestinal immune system in its diversity and complexity can efficiently 

protect this delicate barrier from damage. Intestinal lymphoid structures such as the 

Peyer’s patches are important inductive sites of mucosal immune responses. T cells play 

a major role in the first-line protection of this large surface, immune tolerance and long-

term memory.  



.                                            INTRODUCTION 

5 

  

 T cell migration and trafficking 

T cells are an important arm of the adaptive immunity, and serve the individual by 

getting educated in the thymus to afterwards selectively protect against an antigen that 

a particular T cell is specific for. As a collective, T cells effectively patrol the body to 

eradicate threats to the health of the individual, such as invading pathogens or other 

harmful substances. However, in order for one single naïve T cell clone to find its 

cognate antigen, it has to efficiently patrol strategically positioned hubs of antigen 

presentation: the secondary lymphoid organs including the lymph nodes. Regarding the 

minute size of a T cell in comparison to the vast body surfaces of skin, lung and 

intestine, it is remarkable how efficiently antigen-specific T cells find their antigen 

(Beilhack and Rockson, 2003). After detecting its cognate antigen, the T cell can interact 

with other cell types to receive additional information about the type of immune 

response required. As antigen-specific responder cells, T cells can help other immune 

cells to effectively exert their effector functions, or directly attack the threat upon MHC-

mediated cognate antigen recognition. The phenomenon of immune cell trafficking will 

be introduced in more detail during this chapter. 

 Use of the terms trafficking, homing and migration 

T cells need to travel through the body in different situations and by different 

modalities. In case of motion through blood and lymph vessels, this is called trafficking. 

In this thesis, the term trafficking will be used as opposed to migration inside a tissue, 

which partly uses similar mechanisms and molecules but does not involve the 

intravascular route. A specialized kind of trafficking comprises vascular trafficking to 

the primary and secondary lymphoid organs, and is termed homing. Nevertheless, the 

term ‘homing receptors’ has been coined also for trafficking to peripheral tissues other 

than secondary lymphoid organs and will be used here accordingly.  

 Vascular trafficking and homing receptors 

Immune cells and cells outside the immune system, such as endothelial or epithelial 

cells, produce guidance cues aimed at recruiting or repelling immune cells. For 

recruitment of lymphocytes from the blood, this includes the homing receptors of the 

three classes of selectins, integrins and chemokines, which in their combination provide 

an ‘address’ for the immune cells to enter different tissues. To extravasate into a tissue, 

immune cells perform three steps: rolling, tight adherence and transmigration (Figure 

1-3). T cells can make the first contact with the vessel wall with the help of selectins 

binding to glycoproteins on the endothelium, such as L-selectin on naïve T cells to 

peripheral node addressin (PNAd) on the Glycosylation-dependent cell adhesion  
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Figure 1-3   Leukocyte extravasation. Leukocytes are captured at the vascular surface and roll along the endothelium 

using selectins. With the help of chemokines, integrins acquire their high-affinity conformation and lead to arrest of 

the cell on the endothelium. Subsequently, the leukocyte can enter the tissue between two endothelial cells or directly 

through it via the transcellular route. Image modified from Ley et al., 2007. (Ley et al., 2007) 

molecule-1 (GlyCAM-1) or CD34 expressed by endothelial cells of lymph nodes 

(Streeter et al., 1988). This event triggers rolling of the T cell along the vessel wall, and 

the speed of rolling depends on the molecule engaged in this process (Jung et al., 1996; 

Zarbock and Ley, 2009). Much of the early work on leukocyte rolling was performed 

using neutrophils, but this mechanism is common for all leukocytes. Next, chemokines 

transcytosed and presented on the luminal surface of endothelial cells (Middleton et al., 

1997) are detected, if the cells carry the appropriate receptors. For T cells, the major 

homing receptor for recruitment of naïve and central memory cells into lymph nodes at 

steady state is the C-C Motif Chemokine Receptor type 7 (CCR7) recognizing the C-C 

Motif Chemokine Ligand 19 (CCL19) and CCL21 (Förster et al., 1999; Gunn et al., 1998). 

CCL19 and CCL21 are presented on the endothelium of the T cell zones (Baekkevold et 

al., 2001), and detection with CCR7 on T cells induces inside-out signaling towards 

integrins inside the lymphocyte. On naïve T cells, this is typically the Lymphocyte 

function-associated antigen 1 (LFA-1), which then acquires an extended, high-affinity 

conformation (Shamri et al., 2005). Binding of the high-affinity form of LFA-1 to the 

Intracellular Adhesion Molecule 1 (ICAM-1) induces firm arrest of the cell on the vessel 

wall and enables transmigration of the cells into the tissue.  

The access of T cells to different tissues is regulated by selectins, chemokines and 

integrins expressed in different tissues, and the sets of receptors differ between steady-

state and inflammation. On the T cell side, the priming site and differentiation state 

determine the set of homing receptors that the cell expresses. Naïve T cells express 

L-Selectin (CD62L), CCR7, CXCR4 and LFA-1, which grant them access to the secondary 

lymphoid organs (Fu et al., 2016), although CXCR4 plays only a minor role in lymph 
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node homing compared to CCR7 (Okada et al., 2002). This way, the T cells can carry out 

their prime task of searching the lymph nodes for antigen.  

Once a T cell becomes activated, the effector cell downregulates L-Selectin and CCR7, 

and starts to express homing receptors which enable the specific entry into the target 

site (von Andrian and Mempel, 2003). This depends on the region that the lymph node 

drains: in skin-draining lymph nodes, T cells upregulate P-Selectin glycoprotein 

ligand 1 (PSGL-1, CD162), CCR4, CCR10, the Cutaneous Lymphoid Cell Antigen 4 

(CLA4) and Integrin α4β7; liver-draining lymph nodes induce CCR1, CCR5 and Integrin 

α4β1 (Fu et al., 2016); and the mesenteric lymph nodes and Peyer’s patches induce 

expression of CCR9 and α4β7 (Beilhack et al., 2008; Hammerschmidt et al., 2008). The 

different homing receptors are induced as a response to local additional information 

provided by fibroblastic reticular cells and dendritic cells. For instance, fibroblastic 

reticular cells produce the Vitamin-A-metabolite retinoic acid to induce CCR9 and α4β7 

expression in gut-homing T cells (Iwata et al., 2004), and dendritic cells in skin-draining 

lymph nodes produce Vitamin D to induce CCR10 expression after priming 

(Sigmundsdottir et al., 2007). Equipped with the homing receptors specific for the target 

tissue, the T cells can specifically extravasate into the target organ where the ligands are 

expressed. 

In addition to the priming site, each T cell differentiation state is associated with 

characteristic homing receptors. Effector and central memory T cells differ by their 

expression of L-Selectin and CCR7 (Sallusto et al., 1999), which enable central memory T 

cells to enter the lymph nodes and Peyer’s patches whereas the effector memory T cells 

are excluded from the secondary lymphoid organs. Tissue-resident CD8+ cells often 

express CD69 and CD103, the Integrin αE, which can for instance pair with β7 to induce 

T cells resident in the intestinal epithelium (Annunziato et al., 2006; Gorfu et al., 2009; 

Higgins et al., 1998). CD4+ T cells that have differentiated into specialized effector T 

helper lineages carry distinctive receptor sets: Type 1 T helper cells (Th1) carry the 

receptors CXCR3 recognizing CXCL9-11, CXCR6 recognizing CXCL16, and CCR5 

recognizing CCL3-5. IN contrast, Th17 cells are characterized by CCR4 and prominently 

CCR6 which binds to CCL20. The Th2 and Th9 subsets express even different sets of 

receptors, which are reviewed in Fu et al., 2016. 

Important intestine-specific migrational cues in the steady state are CCL25 and CCL28 

expressed by the epithelial cells in the small and large intestine, respectively (Habtezion 

et al., 2016). They are recognized by CCR9 on T cells and CCR10 on B cells, whereas 

T cells are directed to the colon via G Protein-Coupled Receptor 15 (GPR15), an orphan 

receptor homologous to chemokine receptors (Kim et al., 2013; Nguyen et al., 2015). 
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Furthermore, the postcapillary venules of the intestine express the Mucosal-associated 

cell adhesion molecule 1 (MAdCAM-1), which can be bound by lymphocytes expressing 

α4β7.  

Upon inflammation, the endothelial cells inside the tissue upregulate further 

recruitment factors. They increase their expression of E-and P-selectin, upregulate 

CXCL8 and CXCL16 to recruit neutrophils, or the early Th1 inflammatory cytokines 

CCL3-5 and CXCL9-11 (Bouazzaoui et al., 2009). Through inflammatory mediators, 

immune cells can be recruited to tissues that they would not access during steady-state 

conditions and are then able to initiate an immune reaction.  

In summary, T cells can specifically traffic to secondary lymphoid organs and 

peripheral tissues using specific homing receptors depending on their current 

phenotype and differentiation status. After tight adherence to the vessel wall, T cells are 

able to transmigrate on the basolateral side of the endothelium or even through the cell 

body of endothelial cells into the tissue, where they will migrate to find their cognate 

antigen (Muller, 2011). 

 Modes of T cell migration 

Once inside the tissue, T cells can perform different modes of migration, classified by 

their adherence to the substrate, their search strategies and interactions with other cell 

types. Which mode of migration a cell displays depends on its cell type-intrinsic 

features, its differentiation status, the mechanic properties of the environment and the 

receptors and chemotactic cues that the cell detects and the environment expresses 

(Mrass et al., 2010).  

1.2.3.1 Necessity of substrate interactions for migration  

To achieve forward motion, cells protrude a lamellipodium or pseudopodium at the 

leading edge of the direction of motion (Figure 1-4 A). With the help of biochemical 

interactions with the substrate, usually via integrins or chemokine receptors, the cell 

generates the traction force to push forward. Contraction of the uropod at the tailing 

edge completes the motion cycle, and requires loosening of the interactions made with 

the substrate. These mechanisms requires an intrinsic cell polarity, and are regulated by 

cell-type-intrinsic actin polymerization rates, cell membrane and nucleus rigidity. The 

described mode of migration is termed haptokinesis referring to the haptic interaction of 

the cell with the substrate (Krummel et al., 2016).  
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Figure 1-4   Migration cycle and modes. A Haptokinetic movement involves four steps: it requires cell polarization (1), 

and is initiated by protrusion of a lamellipodium (2). Tight adhesion is necessary (3) to generate forward motion 

during contraction (4). Modified from Reig et al., 2014. B Mesenchymal cells and T cells in 2D migrate adhesion-

mediated, whereas T cells in a confined 3D environment migrate integrin-independently in an amoeboid fashion. 

Modified from Paluch et al., 2016. (Reig et al., 2014) (Paluch et al., 2016) 

Haptokinesis is realized by interactions of integrins with components of the 

extracellular matrix, such as collagen and fibronectin. This mode of migration is used 

mostly by mesenchymal cells. In contrast, immune cells including T cells rather migrate 

in an amoeboid fashion (Figure 1-4 B). Especially in a confined 3D environment, T cells 

do not firmly adhere to the substrate. They mediate forward motion through squeezing 

and pushing inside the dense environment, where integrins play a less important role 

than for mesenchymal cells (Jacobelli et al., 2009; Lammermann et al., 2008). Additionally 

to integrins, chemokines bound to extracellular glucosaminoglycans can also induce 

haptotactic movement of T cells (Woolf et al., 2007). Integrin-independent migration can 

be faster because overly strong adhesion to the substrate decreases cell speed (Liu et al., 

2015; Toyjanova et al., 2015), but in environments with limited contact points, integrins 

provide additional traction forces that speed up T cells. For instance, T cells perform 

jumps when contacting dendritic cells in the lymph nodes (Katakai et al., 2013), and in 

many settings, T cell migration velocities are reduced after inhibition of integrin contacts 

(Katakai and Kinashi, 2016). Recently, the role of chemokines and integrins was studied 

in greater detail for naïve T cells, yielding that sensing of soluble chemokines induced 

retrograde actin flow. The cells were only able to translate this actin flow into migration 

speed in the presence of the integrin ligand ICAM-1. This experimentally substantiated 

that chemokines stimulate cell migration speed, whereas integrins enable the traction 

forces for efficient forward motion (Hons et al., 2018). 

Likely, the large variety of possible contacts via different integrins and chemokine 

receptors are redundant at promoting efficient movement of T cells in vivo. Furthermore, 

the different requirements for traction forces depend on the mechanical and spatial 

properties of different tissues, and the different modes of migration may in part explain 

the differences observed in the importance for adhesion for T cell migration. 
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To conclude, T cells generally migrate using amoeboid migration. Stronger adhesion 

and haptokinesis is important for mesenchymal cell migration, but can also apply to T 

cells in steady-state and inflammatory situations. 

1.2.3.2 T cell search strategies 

The search strategies that T cells employ differ slightly between the differentiation states 

and whether the T cell is in the lymphoid organs or at effector sites. The common goal in 

both situations is to find the cognate antigen in complex environments – whether it is 

presented to a naïve T cell in a lymph node, or an effector cell that seeks to eliminate its 

target. However, these situations differ in the assumptions on the likelihood of success: 

A naïve T cell is much less likely to find its cognate antigen than a T cell that has been 

positively selected in an immune reaction. Next, after successfully localizing the antigen, 

the persistence and type of interaction with the cell carrying the antigen differs vastly in 

the two circumstances.  

Naïve T cells enter the lymph node via the high endothelial venules in the T cell zone 

and migrate on the network of fibroblastic reticular cells, which express CCL19 and 

CCL21 and carry immobilized CCL21 on their surface. CCR7 on naïve T cells and 

activated dendritic cells sequesters these two cell types on this network (Bajénoff et al., 

2006; Cyster, 1999; Katakai et al., 2004; Sixt et al., 2005). This increases the likelihood of a 

productive encounter: cognate antigen recognition. Naïve T cells migrate randomly in 

lymph nodes (Miller et al., 2002), and scan the antigen presenting cells for only short 

times. Such behavior has been interpreted to equalize the possibility of antigen detection 

for a wide variety of clones bearing cells specific for an antigen at very low frequencies 

(Figure 1-5 A) (Krummel et al., 2016). Once a T cell encounters its antigen, it starts to 

swarm around the antigen-presenting cell, before it switches to prolonged interactions 

(Mempel et al., 2004). After this encounter, the search strategy of the T cell differs (Figure 

1-5 B). Now, the likelihood that this cell is needed for the immune response is high, and 

the likelihood of antigen encounter in the vicinity increases dramatically. During 

encounters with antigen-presenting cells, the T cells change their transcriptional 

program. They upregulate chemokine receptors that enable them to detect and aim for 

the antigen-presenting cells, and can preferentially interact with them in comparison to 

the non-specific naïve T cells also present. Dendritic cells that have interacted with CD4+ 

T cells secrete CCL3/4 and attract CCR5-expressing CD8+ T cells (Castellino et al., 2006). 

CD4+ T cells secrete XCL1 after activation to recruit dendritic cells to provide help for 

CD8+ T cells (Eickhoff et al., 2015). T cells destined to give help to B cells upregulate 

CXCR5 and migrate towards CXCL13 produced by follicular dendritic cells, where they 

interact with B cells (Campbell et al., 2001). This ‘informed motion’ pattern is also 
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inherent to memory cells inside lymph nodes, which locate near B cell follicles 

(Kastenmuller et al., 2013). However, in this thesis we focus on recently activated 

effector T cells, which is why migration patterns of memory T cells will not be described 

in more detail. 

 
Figure 1-5   T cell migration inside tissues. A Naïve T cells migrate randomly to equalize chance for all different T cell 

clones to encounter antigen-presenting cells. B Activated T cells follow chemotactic cues from antigen-presenting cells 

and preferably interact with them in comparison to naïve T cells. C Effector T cells in peripheral inflamed tissues often 

migrate on the extracellular matrix in a haptokinetic fashion and are able to follow chemotactic cues towards 

inflammatory sites or antigen-presenting cells. Image taken from Krummel et al., 2016. 

After scanning a lymph node for antigen, T cells must also find their way out of the 

lymph node. Currently, it is assumed that T cell exit is achieved by random encounter 

with cortical lymphatic vessels that densely suffuse the T cell zone (Cyster and Schwab, 

2012; Grigorova et al., 2010; Grigorova et al., 2009). The requirement for T cells to 

transmigrate and exit via these portals is expression of the receptor for the small lipid 

sphingosine-1-phosphate (S1P). T cells carry the isoform Sphingosine-1-phosphate 

receptor 1 (S1PR1), which induces transmigration of the T cell upon probing of the 

lymphatic sinus (Matloubian et al., 2004). However, more recent studies have pointed 

towards a gradient of S1P inside lymph nodes, which may nevertheless attract T cells 

towards the lymphatics (Fang et al., 2016). Whether this mechanism only plays a role for 

T cells close to the medullary region of the lymph node, or whether these gradients also 

attract T cells towards the lymphatics inside the T cell area, has not been conclusively 

answered yet. 

The concentration of S1P is high in lymph and blood, so that the receptor S1PR1 is 

constantly down-modulated by desensitization in circulating T cells. Upon lymph node 
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entry, naïve T cells recycle the receptor to the cell surface and exit the lymph node after 

6-12 h (Tomura et al., 2008). In presence of interferon gamma, T cells upregulate CD69, 

which intracellularly sequesters S1PR1 and targets it for degradation (Shiow et al., 

2006).Thus, T cells remain longer in lymph nodes bearing an ongoing immune reaction. 

Cognate antigen recognition additionally represses the transcription of S1PR1 for three 

days (Matloubian et al., 2004). This leaves time for proliferation and selection of highly 

specific clones.  

The decision whether a T cell leaves the lymph node depends on the fine-tuning of the 

two opposing signals of CCR7-mediated retention and S1PR1-initiated egress. 

Modulation of these two receptors delicately balances the decision of staying inside or 

leaving the lymph node (Pham et al., 2008).   

Once an activated T cell has entered the site of inflammation, it faces a different 

structural environment. Depending on the organ, the sometimes stiff environment rich 

in extracellular fibers such as collagen promotes haptokinesis (Figure 1-5 C) (Overstreet 

et al., 2013). T cells sensitive for chemokines such as CXCL9-11 can perform chemotaxis 

towards antigen-presenting cells in the tissue, enhancing the probability of antigen 

encounter (Krummel et al., 2016). Furthermore, danger signals such as extracellular 

release of ATP from necrotic cells can attract neutrophils (Chen et al., 2006), and may 

have also effects on other cell types. β-defensins activate CCR2 to induce chemotaxis 

(Röhrl et al., 2010). The often cited Lévy-walk was so far only observed in the brain for 

T cells, but not in other non-lymphatic tissues (Harris et al., 2012). 

To conclude, naïve T cells largely migrate randomly inside secondary lymphoid organs 

in search for their cognate antigen. Once they become activated, they upregulate 

chemokine receptors and integrins that make them sensitive to migratory cues 

produced in the immediate environment. On one hand, this enables them to leave the 

lymphoid tissue after a few rounds of proliferation. On the other hand, it renders them 

more efficient in detecting antigen-presenting cells and arms them for efficient target 

organ infiltration. 

 Measuring T cell migration 

T cell migration can be measured in different meaningful ways (reviewed in Beltman et 

al., 2009). One of the most intuitive measurements of cell migration is the migration 

speed, defined by the distance that a cell travels in a certain amount of time. The mean 

and degree of fluctuation is dependent on the cell type. For instance, fibroblasts migrate 

very consistently with an average speed of less than 1 µm/min (Lo et al., 2000), dendritic 

cells migrate slightly faster at 2-6 µm/min in vivo (Lindquist et al., 2004; Ng et al., 2008), 
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B cells move at a steady pace of 6-11 µm/min (Coelho et al., 2013; Okada et al., 2005), and 

T cells characteristically move at a speed of 10-12 µm/min (Miller et al., 2002). The 

migration of T cells differs from that of the previously mentioned cell types because the 

T cell migration speed fluctuates frequently, with peak velocities of up to 25 µm/min 

(Katakai et al., 2013; Miller et al., 2002). The stiffness of the substrate that the cells 

migrate in and the presence or absence of migration-stimulating factors such as 

chemokines influences the speed of cell migration. For example, naïve T cells migrate 

faster in lymph nodes with a speed of 15 µm/min due to the presence of CCL19 and 

CCL21 (Worbs et al., 2007) whereas T cells in tumors migrate at a much reduced speed 

of 5-8 µm/min (Boissonnas et al., 2007). The overall speed of a cell is furthermore 

affected by how often and for how long the T cells pause in the tissue to interact with 

other cells. This can be quantified as arrest rate, which is commonly measured as the 

percentage of time that individual T cells migrate slower than 2-3 µm/min (Boissonnas 

et al., 2007). 

Apart from the speed, directionality is an important feature of cell motility. It measures 

how straight and thus efficiently a cell moves and approaches its potential target. The 

most easily comprehensible measure for this is the turning angle, which is the angle 

between the direction that a cell moves before and after turning (Figure 1-6 C). Small 

turning angles indicate ballistic migration in almost a straight line, and large turning 

angles indicate random movement with frequent changes of direction. To some extent, 

this parameter is influenced by cell intrinsic mechanisms (Gérard et al., 2014). 

 
Figure 1-6   Measurement of T cell migration. A Plotting the mean squared displacement (MSD) against time, directed, 

random and confined migration can be discriminated. B Migration speed is the distance that a cell has traveled within 

a given time. C Turning angles measure the angle between the directions of movement in one step compared to the 

next step. D Confinement ratio is calculated from the total distance a cell has traveled divided by the direct line from 

start to end (net distance).  

Another very meaningful measurement of directionality is the confinement ratio, which 

is calculated by the net distance that the cell has reached at a certain time point (shortest 

distance from start to end) divided by the distance of the total track that a cell has 
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migrated along up to this time point (Figure 1-6 D). The ratio can lie between 0 and 1: in 

highly confined cells, this number is small because the cells migrate and turn without 

reaching far from the start point. In directionally migrating cells, the values approach 1 

because the distance traveled is similar to the net distance reached after this time 

(Beltman et al., 2009).  

The overall propensity to migrate, independent of whether it is random or directional, 

can be measured by the mean squared displacement (Beauchemin et al., 2007). Highly 

motile cells have a higher mean squared displacement than cells whole migration tracks 

cover less area in the same amount of time. Plotting the mean squared displacement 

against the square root of time, the curve gives information about the migration mode, 

that is, whether the cell moves randomly, directed or super-diffusively, or is constrained 

in space (Figure 1-6 A) (Krummel et al., 2016). Furthermore, the persistence time can be 

deviated from the plot, which is the period that a cell intrinsically migrates in one 

direction before turning (Fürth, 1920). This is cell type-specific and depends on 

intracellular factors such as actin polymerization rate and polarity (Bosgraaf and Van 

Haastert, 2009; Li et al., 2008; Maiuri et al., 2015). 

Although in vivo analyses of T cell migration are undoubtedly more representative for a 

physiological situation than migration in a two-dimensional in vitro scenario, there are a 

few caveats when analyzing cell migration in in vivo microscopy data. First, sufficient 

and uninterrupted perfusion of the tissue of interest by blood and lymph is pivotal to 

maintain physiological conditions. Second, the imaging parameters can greatly skew the 

following migration analysis: The time steps between the acquisition frames should be 

shorter or equal to the cell-intrinsic persistence time, whereas the overall track duration 

should be significantly longer than the persistence time. Also, the size of the acquired 

volume should be chosen wisely, because the anisotropic shape influences the 

conclusions drawn from the data (Textor et al., 2011). Therefore, the finite image volume 

should be large enough in the direction that the cells are expected to travel in order not 

to miss a potential directionality. Third, the analysis of cell tracks needs to ensure the 

comparability of two different sets of data in terms of time step interval, overall track 

duration and size of image window. Because some migration parameters depend on 

each other, such as track duration and displacement, quality checkups or normalization 

need to ensure that this is comparable for the sets of data analyzed.   

Most of the cell track analyses focus on cell populations or complete cell tracks. This 

method risks not to pick up directional movement of cells that switch between 

directional and non-directional movement. Alternatively, staggered cell track analyses 

can be performed; this more detailed analysis is able to represent also directional 
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movements within cell tracks of cells that switch between directional and random 

migration (Mokhtari et al., 2013). 

In summary, T cell migration analysis is a powerful tool to derive information about 

their sensitivity to environmental stimuli, and to infer their differentiation status and 

current effector mechanism.  

 Microscopy techniques and their applicability 

Microscopy techniques are useful and valuable to study the interaction of immune cells 

inside organs, because apart from the information about the cells of interest, they give 

information about their localization in respect to other cell types, organs and 

extracellular structures. This information is lost upon extraction of the cells from the 

tissue. Different types of microscopy are more suitable for certain questions asked. 

Large-scale imaging of whole small animals such as mice can be accomplished with 

positron-emission tomography or bioluminescence imaging. It is possible to non-

invasively image living anesthetized animals to for instance repetitively monitor 

metabolic parameters using tracers, or to observe over a time course of weeks and 

months the trafficking of cell populations expressing luciferase that produces 

bioluminescence.  

To gain higher resolution, organs can be extracted and imaged in whole-mount light 

sheet fluorescence microscopy. For this technique, organs are fixed, permeabilized and 

can be stained with antibodies coupled to fluorescent dyes. Afterwards, the tissue is 

made transparent by replacing the water inside the cells with a solution that matches 

the refractive index of the tissue, thus light can pass through the organ without being 

scattered. The organs can then be acquired in a microscope by illuminating optical 

sections of the organ with a sheet of light and acquisition in a rectangular angle. This 

technique enables subcellular resolution in a comparably large volume, which can be 

reconstructed to a three-dimensional model afterwards (Brede et al., 2012). 

Unfortunately, todate this technique is limited to transparent organisms for in vivo 

imaging, and murine or human tissues cannot be observed with this technique yet in 

vivo.  

Light of long wavelengths is scattered less in living tissues, which make it suitable for 

imaging live opaque tissue. The scattering modality inside biological specimens is called 

Mie scattering, which decreases linearly with longer wavelengths (Johnsen and Widder, 

1999). Two-photon microscopy employs long wavelengths of light for fluorophore 

excitation and is based on the principle of two-photon absorption by fluorescent dyes 

(Göppert-Mayer, 1931). Instead of classical one-photon excitation at the suitable 
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wavelength, the same fluorophore can be excited with two photons of approximately 

twice the wavelength (Figure 1-7). This greatly enhances the efficiency of fluorophore 

excitation inside scattering tissues and makes two-photon microscopy a useful 

technique to observe biological processes in live tissues.  

 
Figure 1-7   Advantages of two-photon microscopy. A Excitation wavelengths in two-photon microscopy are half the 

wavelengths of one-photon microscopy. B In one photon microscopy, fluorochromes are excited along the light path, 

whereas in two-photon microscopy, the high photon density required to elicit emission is only reached in the focal 

spot. 

The resolution of two-photon microscopy is higher than in light sheet fluorescence 

microscopy, because it is inherently confocal: Sufficient excitation photon densities are 

only reached at the confocal spot. Although in deep tissues, the resolution is not as good 

as in confocal microscopy, two-photon excitation can be combined with a pinhole setup 

to get true confocal images. This is particularly efficient close to the tissue surface, where 

strong fluorescence emission can be detected.  More recently, there are efforts to 

combine two-photon excitation with light sheet microscopy, a promising approach to 

image fast processes in living organisms (Lavagnino et al., 2016). 

To sum up, bioluminescence imaging is suitable for repetitive and whole-body imaging 

of small animals, and gives a good overview of localization of cell populations within a 

whole organism. For more detailed analysis of single cells, light-sheet fluorescence 

microscopy is a useful tool to analyze the localization of single cells inside whole organs. 

To observe biological processes dynamically in vivo, two-photon microscopy is the 

superior technique enabling visualization of deep live tissue areas. 

In summary, T cell trafficking and migration is a specific and efficient mechanism 

tailored to the type of tissue (secondary lymphoid organ or effector tissue), situation 

(steady state or inflammation), and T cell differentiation. The versatility and flexibility of 

this system enables efficient distribution of an effective T cell mediated immune 

response to maintain bodily integrity and health. 
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 Acute Graft-versus-Host Disease 

Acute Graft-versus-Host Disease (aGvHD) occurs as a complication in 30-80% of all 

patients undergoing allogenic hematopoietic stem cell transplantation (Gooley et al., 

2010; MacMillan et al., 2002). Next to disease relapse, it is the major cause or morbidity 

and mortality after this most successful curative therapy for blood-borne diseases such 

as leukemia. aGvHD is characterized by skin rashes, nausea and heavy diarrhea, lung 

obstruction and liver pathologies such as bilirubinaemia (Ferrara et al., 2009). In contrast 

to chronic GvHD, aGVHD occurs early after transplantation, which in a clinical setting 

means within the first 100 days after transplantation. Pathophysiologically, aGvHD is a 

T cell mediated reaction and dominated by Th1 polarization and cytotoxicity, whereas 

the mechanism of cGvHD is rather antibody-mediated and affects additionally the eyes, 

salivary glands, more frequently the lung than in aGvHD, and is characterized by 

fibrosis rather than cell death.  

 MHC mismatch and alloreactivity against tumors 

Allogenic hematopoietic cell transplantation is a successful treatment against blood-

borne malignancies. After chemotherapy or irradiation, allogenic (allo is greek for 

‘other’) donor cells from a healthy donor bone marrow cells are infused into the patient 

and replace the recipient’s immune system. The transplant is always contaminated with 

few mature T cells (5 x 104 per kg body weight is considered the threshold for induction 

of GvHD), which are not selected in the patient’s thymus. Through allorecognition the 

donor T cells can be effective surveyors eradicating remnant tumor cells. Some T cells 

can directly recognize host major histocompatibility complexes (MHC) independently 

of the peptide presented. This occurs at a much higher frequency than normal cognate 

MHC-peptide recognition. In a major mismatch setting, an estimated 5-10% of allogenic 

T cells become alloreactive (Suchin et al., 2001). Additionally, in fully MHC-matched 

transplantations, donor T cells may recognize presented host peptides, which is called 

minor mismatch and occurs in 40% of MHC-matched transplants (Ferrara et al., 2009). 

Common antigens recognized by allogenic T cells are the minor histocompatibility 

antigens such as HA-1 or y-chromosomal proteins in sex-mismatched transplantations 

(Bleakley and Riddell, 2004).  

Allorecognition of MHC molecules or presented peptides is central to residual tumor 

surveillance and the mechanism with which this therapy is so successful. However, 

these allogenic T cells can also become reactive to non-malignant tissues of the recipient 

and cause GvHD. Thus, clinicians need to establish a fine balance between enough 
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alloreactivity to fight against the tumor, and enough tolerance or immune suppression 

to prevent GvHD destroying healthy host tissues. 

 Clinical relevance of GvHD 

GvHD is the cause of death in 20-30% of all patients undergoing hematopoietic cell 

transplantation (Gooley et al., 2010). Without immunosuppressive treatment, 100% of 

allogenic transplant recipients develop GvHD. The severity of GvHD is graded into four 

categories, but differences exist between different scoring criteria (Glucksberg, 

Minnesota, Consensus or International Bone Marrow Transplant Registry, IBMTR) 

(Glucksberg et al., 1974; Przepiorka et al., 1995). Based on these differences, different 

incidences of GvHD are registered in different transplantation centers. According to the 

Glucksberg criteria, mild grade I GvHD includes only the skin, this is often the first 

obvious symptom of GvHD. Moderate Grade II GvHD includes moderate skin and mild 

to moderate liver and intestinal damage. Grade III GvHD is characterized by severe 

damage in all three target organs, and grade IV is very severe GvHD. Severe and very 

severe GvHD have poor survival prognoses with 25% and 5%, respectively. Intestinal 

grading of GvHD is performed clinically according to the volume of diarrhea and 

morphologically according to crypt- and epithelial cell apoptosis, immune cell infiltrates 

and villus blunting (Washington and Jagasia, 2009). The first-line treatment against 

GvHD is, and has been for a long time now, steroids aiming at limiting alloreactive T 

cell expansion. Unfortunately, around 50% of the patients develop steroid-refractory 

GvHD and require alternative treatments, which are to date limited in success and lead 

to mortality rates of 70-80% (Hill et al., 2018). 

In summary, GvHD frequently complicates allogenic hematopoietic cell transplantation. 

It poses a major hindrance to therapy success and causes severe morbidity and 

mortality. Because a high percentage of patients become resistant to the standard 

therapy, it is important to develop new strategies to more efficiently tailor the immune 

response for patients to benefit from this treatment. 

 GvHD pathophysiology and target organs 

GvHD pathophysiology occurs in three stages: tissue destruction due to the 

conditioning regimen (phase I), activation of antigen-presenting cells and subsequent 

alloreactive T cell expansion (phase II), and finally tissue destruction and cytokine storm 

(phase III) (Ferrara et al., 2009). Despite expression of allo-antigens in all host tissues, not 

all host tissues are affected by GvHD to the same extent. In aGvHD, the skin, intestine, 

liver and lung are target organs, whereas others such as the kidney or the heart are not 

affected. Factors that may contribute to allo-immune responses against these organs are 



.                                            INTRODUCTION 

19 

  

their high cellular turnover rates, which leads to more extensive damage than in organs 

with a higher percentage of non-dividing cells. This affects the extent of tissue damage 

in phase I. Secondly, the skin, intestine, lung and the liver via the portal vein are 

exposed to a large variety of microbiota and fungi, which make them rich in 

immunostimulatory molecules recognized by the innate immune system. This affects 

the activation of antigen-presenting cells in phase II. Third, intestine, liver and skin are 

organs rich in resident immune cell populations, which partly survive the conditioning 

regimen and therefore provide a large reservoir for cells producing large amounts of 

cytokines (phase III).  

Additionally to the three classical aGVHD target organs gut, liver and skin, other organs 

can also be affected: The lung, mouth, eye and vaginal mucosa can be attacked in acute 

and chronic GvHD (Teshima et al., 2016). There are also reports of central nervous 

system infiltrates (Hartrampf et al., 2013; Ruggiu et al., 2017). 

 Cytokines and chemokines in aGvHD 

During GvHD, the damage resulting from the conditioning regimen induces production 

of IFNγ, which activates macrophages to produce large amounts of TNFα and IL-12 

(Nestel et al., 1992). This affects endothelial cells to increase the vascular permeability, 

and polarizes T cells to a Th1 phenotype, which subsequently produce IL-2 and IFNγ. 

This in turn renders macrophages more sensitive to LPS and creates a vicious cycle 

leading to a fulminant immune reaction. However, IFNγ in GvHD is a double-edged 

sword since it is not only not required for the development of GvHD, but it has been 

shown in multiple studies to play a partly protective role (Yang et al., 1998). This is likely 

due to pro-apoptotic properties, partly during the contraction phase of an immune 

response. Nevertheless, IFNγ is an important mediator particularly of gastrointestinal 

GvHD, as discussed below. 

IFNγ induces the expression of further inflammatory mediators including the cytokines 

CXCL9-11. This recruits alloreactive CXCR3+ T cells into the target organs, where they 

subsequently produce CCL2-5 (Bouazzaoui et al., 2009). Furthermore, CXCL16 recruits 

CXCR6+ T cells, and XCL1 is produced, mostly in the intestine. Under steady state 

conditions, intestinal T cells may produce XCL1 to recruit cross-presenting dendritic 

cells, which might be important to in turn maintain intraepithelial lymphocytes (Ohta et 

al., 2016). 

The classical gut-homing chemokine is CCL25 produced by intestinal epithelial cells. 

Although its ligand CCR9 is upregulated on alloreactive T cells infiltrating the intestine, 

deletion of CCR9 does not ameliorate GvHD (Schreder et al., 2015). The CCR9 
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antagonist CCX282 has shown some positive trends in treatment of Crohn’s disease, but 

the phase III clinical trial did not substantiate this trend (Wendt and Keshav, 2015). In 

contrast, blockade or deletion of the gut homing integrin α4β7 in GvHD ameliorated 

GvHD (Gorfu et al., 2009; Schreder et al., 2015). Furthermore, a phase 1 and 2 clinical trial 

showed efficacy of the CCR5 blocker Maraviroc (Moy et al., 2017). 

In summary, the strong IFNγ response induces strong T cell activation alongside with 

early inflammatory chemokines attracting alloreactive T cells to the target tissues. 

Attempts to interfere with this process are in development, but not yet broadly applied. 

 The intestine as an early GvHD target organ 

Due to the extensive damage from the conditioning regimen in the intestinal tract and 

the large amount of microbiota at this surface, gastrointestinal GvHD develops 

frequently. Translocation of microbes from the lumen further fuels systemic GvHD, and 

intestinal GvHD symptoms quickly become life-threatening when diarrhea leads to 

extensive water loss and hampers proper nutrient uptake. These factors can contribute 

to the early infiltration of T cells into the intestine in the mouse model employed. The 

intestine is infiltrated before other organs are affected (Beilhack et al., 2005). 

Intestinal GvHD is induced in the mesenteric lymph nodes and the Peyer’s patches, 

where the primed T cells upregulate the homing receptors α4β7 and subsequently 

infiltrate the small intestine and colon. Although early reports demonstrated a pivotal 

role of Peyer’s patches in GvHD (Murai et al., 2003), the mesenteric lymph nodes also 

significantly contribute to intestinal homing T cells in GvHD. Later, it became evident 

that also other peripheral lymph nodes and even the spleen can give rise to gut homing 

T cells in GvHD, particularly in combination with a stronger conditioning regimen 

(Beilhack et al., 2008; Masopust et al., 2010).  

Currently there are many attempts at characterizing and manipulating the microbiota to 

ameliorate GvHD. High diversity and the occurrence of bacterial species such as 

Lactobacillus or Blautia producing short-chain fatty acids have been associated with 

better GvHD outcomes (Jenq et al., 2015; Shallis et al., 2018). In contrast, low diversity, 

Clostridium difficile and dominating enterococci have a worse prognosis. Despite a 

protective role of certain bacterial species, prophylactic antibiotics are effective in 

reducing GvHD after transplantation (Beelen et al., 1992). The efficacy of this treatment 

seems to depend on the degree of depletion of selective bacterial species, since some 

broad-spectrum antibiotics can also exacerbate GvHD via expansion of mucus-

degrading commensals (Shono et al., 2016). Fecal transplantations are a promising 
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approach to overcome the sparse microbial diversity after antibiotic treatment (DeFilipp 

et al., 2018). 

Since early infiltration of T cells into the intestine leads to increased GvHD in other 

target organs, it is desirable to interfere in this process as early as possible. Depletion of 

allogenic T cells would impede surveillance of residual tumor cells, therefore blocking 

T cell entry into the GvHD target organs is a promising alternative strategy. However, 

since infiltration of allogenic T cells is mediated by more than four different redundant 

homing molecules, a complete block of intestinal T cell homing is challenging (Beilhack 

et al., 2008). We hypothesize that additionally to vascular recruitment of T cells, direct 

migration from the Peyer’s patches may be a route of T cell infiltration that possibly 

underlies completely different regulatory mechanisms than vascular trafficking. 

In summary, the microbe-rich environment contributes to activation of T cells in the 

Peyer’s patches and mesenteric lymph nodes and to early infiltration of the intestine as 

compared to other target organs. However, the peripheral lymph nodes and the spleen 

also contribute to intestinal T cell homing. Manipulation of the intestinal microbiota 

may be a promising strategy to ameliorate gut GvHD pathology. However, to 

completely block intestinal infiltration, we propose that direct access from the Peyer’s 

patches to the surrounding tissue may be a heretofore unknown source of intestine-

infiltrating T cells.  

 GvHD mouse model  

Immune cell populations are comparably easy to extract from tissues, because 

particularly most types of lymphocytes sustain only weak cell contacts with neighboring 

cells. This enables easy and rapid extraction of these cells for detailed analyses in vitro. 

However, there are many biological processes that are to date too complex to be 

reproduced fully in vitro, which is why it is important to study these processes in a 

living organism. 

There are a number of different well-established mouse models for GvHD (Schroeder 

and DiPersio, 2011). In our study, we employed the C57BL/6 to BALB/c model, where 

bone marrow cells and T cells from B6 (H-2Kb) are transplanted into fully MHC-

mismatched BALB/c recipients (H-2Kd). Both CD4+ and CD8+ T cells contribute to GvHD 

pathology in this model by producing IFNγ or by directly lysing target cells via 

perforin, granzyme and Fas ligand (Graubert et al., 1997; Maeda et al., 2005; Via et al., 

1996). In our study, we use this model to study the wave of intestinal infiltration by 

activated T cells after synchronized expansion of the population in different activation 

sites. This model was very useful because the time course of infiltration was quite well 
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characterized at the beginning of this thesis. The strong orchestrated infiltration wave 

proved to enable detailed and reproducible observation of different infiltration steps 

while enabling time-efficient experiments. These characteristics made the model suitable 

to study the infiltration of T cells from Peyer’s patches to the lamina propria. 

 Knowledge gap 

Peyer’s patches are embedded inside the target organ, which T cells are induced to 

migrate into after activation: the intestinal mucosa. To date, this is thought to occur via 

T cell egress via the lymphatics, recirculation through blood vessels and extravasation 

into the lamina propria of the small intestine. It is not known whether the location and 

architecture of Peyer’s patch inside the target organ allows for direct infiltration from 

priming site to effector site without lymphatic and circulatory trafficking. Furthermore, 

it is unclear whether T cells can migrate from the Peyer’s patch directly to the 

surrounding tissue. 
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2 Specific Aims 

The overall aim of this thesis was to determine whether allogenic T cells can migrate 

from the Peyer’s patches directly to the adjacent lamina propria of the small intestine. The 

specific aims to test this hypothesis were to 

1. Study whether border of Peyer’s patches is permissive for direct cell migration. 

2. Test whether a T cell gradient establishes around the Peyer’s patch. 

3. Prove direct T cell migration from Peyer’s patch to the adjacent lamina propria. 

4. Determine the driving forces of direct migration by analyzing 

a. the migration mode of egressed cells. 

b. the role of S1P for egress. 

c. a screen for other migration-promoting factors. 

 
Figure 2-1   Hypothesis. To reach from Peyer’s patches as T cell priming site to the target organ small intestine, T cells 

egress via the lymphatics and enter the small intestinal lamina propria from blood circulation. We hypothesize that a 

fraction of T cells accesses the lamina propria surrounding the Peyer’s patch by migrating directly from the Peyer’s 

patch without vascular trafficking.  
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3 Materials and Methods 

 Materials 

Material Catalog # Company 

Chemical reagents 

Acetone 33201 Sigma-Aldrich 

Albumin from chicken egg white A5378 Sigma-Aldrich 

Avidin/Biotin blocking kit SP-2001 Vector Laboratories 

Benzyl alcohol 4478.2 Carl Roth 

Benzyl Benzoate B6630 Sigma-Aldrich 

Entellan new 1.07961 Merck 

Cresyl violet 7651.2 Carl Roth  

Ethanol absolute 2246 Chemsolute  

Liquid blocker super PAP pen N71310 Science services 

0.9% NaCl, sterile  Fresenius 

n-Hexane 1.04367 Merck 

O.C.T. Tissue tek 4583 Sakura 

Paraformaldehyde P6148 Sigma-Aldrich 

TritonX-100 2051.3 Carl Roth 

Trypan blue  A0668,0025 Applichem 

Vectashield embedding medium H-1200 Vector Laboratories 

Dispensables 

General 

Syringe, 1 ml insulin 
(30Gx×1/2″ (0,3mm × 12mm), 
Omnican® 100 

9151141 Braun 

Syringe, 1 ml 26GA×3/8″  
(0,45 × 10 mm), BD Plastipak™ 

300015 Becton Dickinson 

Flat bottom glass containers 
(Rollrandgläser) 

RR02 Hartenstein 

Microscopy cover slips 21×26 01 01092 Marienfeld 

SuperFrost® Plus Objektträger 03-0060 R. Langenbrinck 

Syringe, 5 ml BD Discardit™ II 300850 Becton Dickinson 

Accu-jet® pro 26300 Brandt 

Cell strainer, 100 µm  130-110-917 Miltenyi Biotec 
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Material Catalog # Company 

(MACS® Smart Strainers) 

Cell strainer, 70 µm 
EASYstrainer™ 

542070 Greiner Bio-one 

serological pipettes, disposable 760180, 607180, 
606180 

Greiner Bio-one 

MembraneSlides PEN 2.0 µm 11505189 Leica 

Micropipettes 042760930, 
642752433, 
942741768, 
342733754, 
042720454, 
942711302 

VWR 

Microtubes 1.5 ml 72.706 Sarstedt 

Pasteur pipettes 2600111 NeoLab 

Scalpel blades, feather #10, sterile BB510 B. Braun 

Tube 50 ml 227261 Greiner Bio-one 

Tube 15 ml 188271 Greiner Bio-one 

U-bottom 96-well plates 83.3922.500 Sarstedt 

Kits 

Cell counting chamber 
(Neubauer) 

ZK03 Hartenstein 

Cell Trace™ Violet Cell 
Proliferation Kit 

C34557 Thermo Fisher Scientific 

LIVE/DEAD™ Fixable Violet 
Dead Cell Stain Kit, for 405 nm 
excitation 

L34955 Thermo Fisher Scientific 

PBS without Ca2+/Mg2+ P04-36500 Pan Biotech 

RNeasy MicroKit 74004 Qiagen  

T cell enrichment kit (CD11b-, 
CD16/32-, CD45R- and Ter-119-, 
Dynabeads Untouched Mouse T 
cells Kit) 

11413D Thermo Fisher  

Zombie Aqua Fixable Viability Kit 423101 Biolegend 

Operation equipment 

Eye ointment (Bepanthen®)  Bayer 

Analgetic (Novalgin®)  Sanofi 
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Material Catalog # Company 

Razors 704028 Body products, Relax Pharma u. 
Kosmetik GmbH 

Sterile Dissecting swab (Setpack® 
Size 2) 

12780 Lohmann & Rauscher 

Sterile Gauze swab (Gazin® 

5×5 cm) 
13695 Lohmann& Rauscher 

Sterile Cotton swab (Rotilabo®) EH12.1 Carl Roth 

Operation towel 800430 BARRIER, Mölnlicke healthcare 

70% Ethanol T931.3 Carl Roth 

Quickpad® 70% 2-Propanol  Holtsch Medizinprodukte 
GmbH 

Povidone iodine (Braunol® 7,5% 
solution) 

3864065 BRAUN 

Suture, 6-0 with beveled needle V301G Ethicon 

Cell culture 

RPMI Medium1640 21875-034 Gibco® 

Penicillin, Streptamycin 15140-122 Gibco® 

L-Glutamine 25030081 Gibco® 

Fetal bovine serum 10270-106 Gibco® 

Recombinant human IL-2 589106 Biolegend 

Equipment 

Centrifuge (Megafuge 40R)  Thermo Fisher Scientific 

CO2 incubators 150i Thermo Fisher Scientific 

Collimator, 405 nm, f= 4,02 mm, 
numerical aperture=0,6 SMA 
Fiber Collimation 

F671SMA-405 THORLABS 

Cryostat CM1950 Leica 

Glass fibre, 1500 µm, NA=0,5  Prizmatix 

heating mats (20 × 30 cm) 76085 Trixie heimtierbedarf GmbH 

High-Power UV LED lamp, fibre-
coupled 

Silver LED-405 nm Prizmatix 

Hot bead sterilizer FST250 18000-45 Fine Science Tools  

Infrared lamp BF 27 Beurer 

Laboratory stand with bosshead 
and ring clamp 

 VWR 
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Material Catalog # Company 

Laminar flow hood Hera safe KS 18 Thermo Fisher Scientific 

   

Orbital shaker PSU-10i Grant Instruments 

Powermeter PM100 discontinued Thorlabs 

Rectal probe for mice RET-3 Physitemp 

Rhodent thermometer  BIO-TK8851 Bioseb Lab 

Surgery tools: 2 fine forceps, 1 
pair of small scissors, 1 pair of 
large scissors, 2 thread holders, 1 
needle holder 

 Karl hammacher GmbH and 
megro 

Tubing Tygon  Cole-Parmer GmbH 

Tubing pump ISMATEC Reglo 
Analog MS 2/12 

ISM795C Cole-Parmer GmbH 

Thermometer (Dual Thermo 
Max/Min) 

E609790 Amarell Electronic 

UV protection glasses F18P1L051001 Laservision 

Water bath WNB 14 Memmert 

X-Ray irradiation source CP-160 Faxitron 

FACS Canto II equipped with 405 
nm, 488 nm and 633 nm lasers 
and a high-throughput sampler 
(HTS) 

 Becton Dickinson 

Filter sets for FACS 488 channel: 
735 LP+780/60, 655LP+760LP, 
610LP, 556LP+585/42, 
520LP+530/30, 488/10; 405 
channel: 502 LP+510/50, 450/50; 
633 laser: 735LP+780/60, 685LP, 
660/20 

 Becton Dickinson 

FACS Attune equipped with 405 
nm, 488 nm, 561 nm and 633 nm 
lasers and a high-throughput 
sampler 

 ThermoFisher Scientific 

Filter sets for 405 nm laser: Pacific 
blue: 440/50; 488 laser: FITC 
530/30, PerCP-Cy5.5 695/40; 561 
laser: PE 574/26, PE-Cy7 870/60; 
633 laser: APC 670/14, APC-Cy7 
870/60.  

 ThermoFisher Scientific 
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Material Catalog # Company 

Laser capture microdissection 
microscope 

AS-LMD and 
LMD6000B 

Leica 

Illumina NextSeq500  Illumina 

2-Photonenmikroskop DM6000 
CFS, equipped with Objective HC 
Fluotar L 25x/1.0 Imm mot Corr, 2 
PMTs: Hamamatsu R9624, 2 HyD-
RLD 2 detectors, Chameleon 
Vision II TiSa laser, Beam 
splitters: RSP 620 + BP440/20 + 
675/50, RSP 455, RSP 560 + 525/50 
+ 585/40, RSP 495+ BP 440/20 

 Leica 

Software 

Imspector Version 380 LaVision Biotec 

Leica Application Suite X Version 3.1.5.16308 Leica 

ZEN pro Version 11.0 Zeiss 

Imaris Versions 7.7.2 to 9 Bitplane 

Matlab Version R2016a Mathworks 

INGENUITY Pathway Analysis Version 01-08 Quiagen 

Fiji Is Just ImageJ Version 1.52e Wayne Rasband, NIH, USA 

FigureJ Version 1.10b Jerome Mutterer, CNRS, France; 
Edda Zinck HTW, Germany 

Ingenuity Pathway Analysis (IPA) Version 45868156 Quiagen 

Graphpad Prism Version 6 GraphPad Software 

Office Version 2010 to 
2016 

Microsoft 

Mice 

B6;129S-Gt(ROSA)26Sortm1.1(CAG-

COX8A/Dendra2)Dcc/J 
018397 Jackson Laboratories 

B6;129S4-
Gt(ROSA)26Sortm1(rtTA*M2)Jae 

Col1a1tm7(tetO-HIST1H2BJ/GFP)Jae/J 

016836 Jackson Laboratories 

B6.Cg-Tg(CAG-
DsRed*MST)1Nagy/J 

006051 Jackson Laboratories 

B6.TyrC-/- Tg(Itgax-
DTR/OVA/EGFP)1Garbi/J 

- Bred in the Beilhack Laboratory 
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Material Catalog # Company 

C57BL/6. Tg(CAG-luc,-

GFP)L2G85Chco Ptprca/J 
- Bred in the Beilhack Laboratory 

C57BL/6. Tg(CAG-luc,-

GFP)L2G85Chco Thy1a/J 
- Bred in the Beilhack Laboratory 

BALB/c (BALB/cAnNCrl) Strain Code 028 Charles River 

C57BL/6 (C57BL/6NCrl) Strain Code 027 Charles River 

 Antibodies 
Table 3-1   Antibodies 

Reactivity Coupled to Host species Clone/order ID Manufacturer 

Primary antibodies 

CD3 - Armenian hamster 145-2C11 BD Pharmingen 

CD4 AF488 Rat RM4-5 Biolegend 

CD4 PerCP-Cy5.5 Rat RM4-5 Biolegend 

CD4 APC-Cy7 Rat RM4-5 Biolegend 

CD8 APC Rat 53-6.7 Biolegend 

CD8 PE-Cy7 Rat 53-6.7 Biolegend 

CD44 PerCP-Cy5.5 Rat IM7 Biolegend 

CD90.1 APC Mouse HIS51 eBioscience 

CD45.1 AF647 Mouse A20 Biolegend 

CD45.1 AF700 Mouse A20 Biolegend 

MAdCAM-1 Biotin Rat MECA-367 Biolegend 

Lyve-1 eFluor660 Rat ALY-7 eBioscience 

Laminin - Rat AL-4 Biolegend 

Secondary antibodies/ reagents 

Rat IgG Cy3 Donkey F(ab’)2 712-166-153 Dianova 

(Biotin) AF546 Streptavidin S11225 Invitrogen 

     

 Preparation of reagents 

- Anesthetic: 2 ml of Ursotamin® (100 mg/ml, Serumwerk) and 2 ml of Xylavet® 

(20mg/ml, CP-pharma) were added to 21 ml DPBS. 10 µl per g body weight was 

injected to reach desired concentrations (Ketamin 80 mg/kg, Xylazin 16 mg/kg). 

- Analgetics: Metamizol (Novalgin®): 266 µl of Novalgin® were added to 100 ml of 

drinking water (1.33 mg/ml). Additionally, mice received 200 mg/kg of Novalgin 

injection solution. 10 µl of Novalgin injection solution was injected per g body 

weight, prepared from 8 µl of Novalgin mixed with 192 µl of NaCl, 

subcutaneously at recovery from anesthesia.  
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- Erythrocyte lysis buffer: 89.9 g NH4Cl, 10 g KHCO3 and 0.37 g EDTA were 

dissolved in 1L of deionized water. 

- Trypan blue solution: 1 g of trypan blue was dissolved in 100 ml of PBS. To 

receive the working solution, the Stock was diluted 1:10 in PBS to mix at equal 

volumes or diluted 9:10 with cell suspension. 

- Enrichment buffer: 0.5 g BSA and 0.375 g EDTA were dissolved in 500 ml DPBS 

and sterile-filtered. 

- Dissociation buffer: per mouse, 70 ml was prepared. 55.836 mg of EDTA was 

dissolved in 66.5 ml HBSS without Ca2+/ Mg2+. 3.5 ml FCS was added to 

receive HBSS with 5% FCS, 2 mM EDTA. 

- Proliferation medium: RPMI medium1640 with 10% FCS, 1% PenStrep solution, 

30 ng/ml anti-CD3 antibody, 50 IU/ml IL-2. 

 Methods 

This study was carried out in accordance with the recommendations and regulations of 

the Regierung von Unterfranken. The procedures were approved under the protocol 

numbers 55.2-2531.01-82/14 and 55.2 2532-2-48. 

 Transplantation 

 
Figure 3-1   Transplantation scheme. BALB/c recipients were irradiated with 8 Gray and transplanted with 5×106 B6 

wild type bone marrow cells and 1.2×106 T cells. The T cells were congenically marked and/or carry a transgene 

depending on type of subsequent analysis. 

3.2.1.1 Donor T cell enrichment 

T cells were isolated from the spleen of donor mice at the age of 8-14 weeks. Splenocyte 

suspensions were enriched for T cells using the Dynabeads Untouched Mouse T Cells 

Kit according to the manufacturer’s protocol, counted by trypan blue exclusion and 
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adjusted to a density of 12×106 cells per ml in PBS. Typical T cell yields lay between 15 

and 30% of the splenocyte input with a final T cell purity of 85-95%. 

3.2.1.2 Donor bone marrow isolation 

Bone marrow cells were isolated from hind legs (femura and tibiae) of 8-12 week old 

C57BL/6 mice. Cell numbers were determined by trypan blue exclusion, and the cell 

concentration was adjusted to 50 × 106 cells per ml. Typical bone marrow cell yields 

were 1 – 1.5 × 108 cells per mouse. 

3.2.1.3 Transplantation 

BALB/c mice at the age of 8-14 week were myeloablatively irradiated (8 Gray), and 1.2 

×106 donor T cells were intravenously injected via the retro-orbital venous plexus 

together with 5 × 106 bone marrow cells (Figure 3-1) in a total volume of 200 µl PBS. The 

T cells were isolated from mice expressing the CD45.1 allele for LSFM processing, or 

CD90.1 for cryosections. Dendra2+ cells were transplanted for photoconversion studies, 

and Luciferase-expressing T cells for bioluminescence imaging. The drinking water was 

supplied with Baytril (Enrofloxacin, 0.05%) for 7 days after transplantation to avoid 

infections. GvHD was scored clinically according to Table 3-2 and Table 3-3 daily. 
Table 3-2   Clinical score to assess GvHD severity. 

  Score 0 Score 1 Score 2 

Weight loss < 10% >10% <20% 
Score 2+: >20% longer than 2 

days 

Posture normal Hunchback at rest Hunchback limits mobility 

Behavior normal Reduced slightly to moderately absent, only after provocation 

Ruffled fur normal slightly to moderately Strong, no grooming 

Skin normal Dandruff on paws and tail Strong fur defects 

Eyes normal 
Conjunctivitis of one eye or 

slightly of both eyes 

Strong conjunctivitis of both 

eyes 

Licking and scratching 

of inflamed skin 
none <1x/min >1x/min 

Stool normal Slight diarrhea, anus swollen Strong diarrhea, melena 

Anemia normal 
Paleness visible on skin without 

fur  
Paleness visible on whole body 
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Table 3-3   Criteria to define the humane endpoint. 

 Intestinal 

aGvHD 
Skin aGvHD Anemia 

Weight loss 1-2+ 0-1 1-2+ 

Posture  2 0-1 2 

Behavior 1-2 0 1-2 

Ruffled fur 1-2 2 0-1 

Skin 0 2 0 

Eyes 0-1 1-2 0-1 

Licking and scratching of inflamed skin 0 2 0 

Stool 1-2 0 0 

Anemia 0 0 1-2 

Score sum 6-11 7-10 5-10 

Humane endpoint ≥ 8 

 In vitro photoconversion 

A few drops of peripheral blood was isolated from a Dendra2+ mouse and erythrocytes 

were lysed in 4 ml of Erythrocyte lysis buffer for 10 min. The cells were pelleted at 330×g 

for 5 min at 4 °C and washed with 3 ml of PBS. After another centrifugation step at 

330×g for 5 min at 4 °C, the cells were resuspended in the remaining supernatant. 10 µl 

of the cell suspension was transferred onto a glass slide and covered with a cover slip. 

The cells were imaged and photoconverted in a confocal microscope. Individual cells 

were scanned using the 405 laser at 4% power in 34 Z sections using a 63×/1.2W 

immersion objective with a voxel size of 0.09 µm × 0.09 µm × 0.52 µm (X×Y×Z) and a 

pixel dwell time of 5.06 µs. Photoconversion was validated by imaging the same cell 

before and after conversion. 

 In vivo photoconversion 

The operation for photoconversion is described in detail in (Jarick et al., 2018). Briefly, 

mice were anesthetized with 100 µg/kg Ketamine and 20 µg/kg Xylazine and remained 



.                                            MATERIALS AND METHODS 

33 

  

on heating pads during anesthesia. After 10 min, anesthetic depth was ensured to be 

stadium III.2 (surgical tolerance) by pinching the hind paw. If anesthesia was 

insufficient, further anesthetic was provided retro-orbitally. Not more than 20-50 µl was 

injected at a time, because the fast pharmacodynamics of intravenously delivered 

anesthetics can quickly lead to over-dosage. 

The shaved and sterilized abdomen was opened with a 1.5 cm incision in the skin and 

peritoneum, and one or more Peyer’s patches were gently externalized for 

photoconversion using PBS-soaked cotton swabs. The intestine is extremely sensitive to 

mechanical stress, because this can cause a postoperative ileus (Luckey et al., 2003). In 

this condition, tissue-resident macrophages become activated and the neuronal activity 

of the enteric nervous system is disturbed. As a result, the intestinal muscles are 

paralyzed and no longer perform a propulsive movement. Gas and fluids accumulate in 

the lumen and cause abdominal pain, in mice this situation can become lethal. 

Therefore, the intestines were handled very carefully. UV illumination was applied 

using a sterile tin foil stencil, exposing the Peyer’s patch through a hole with the 

diameter of approximately 2 mm for 2 min at maximum power. A collimator was 

connected to the UV lamp via a glass fiber and fixed on a laboratory stand. UV 

protection glasses were worn whenever the lamp was in operation. 

The abdomen was closed with interrupted suture of both the peritoneum and the skin, 

and mice were provided with one dose of subcutaneous analgesia as well as in the 

drinking water until the final analysis 12 h later. 

A clean recovery cage was placed under an infrared lamp or on a heating pad, and the 

temperature of the recovering animals was monitored not to rise above 37 °C using a 

thermometer with a rectal probe. 

 Isolation of T cells for flow-cytometric analyses 

At different time points after photoconversion (0 h, 4 h, 12 h, 24 h), mice were sacrificed 

and the blood, mesenteric lymph nodes, Peyer’s patches and small intestine 

were harvested as described in Jarick et al., 2018. One spleen was isolated for control 

stainings.  

Briefly, up to 700 µl of peripheral blood was collected from the vena cava inferior with 

an insulin syringe (Figure 3-2) and lysed in 30 ml of Erythrocyte lysis buffer for 15 min 

at room temperature. 
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Figure 3-2   Collection of blood from the vena cava. 

To isolate T cells from Peyer’s patches, the patches were excised from the intestine 

generously and trimmed afterwards. Peyer’s patches surrounded by intestinal tissue 

were spread out on PBS-moistened paper towels, and all surrounding tissue was 

precisely cut off using a scalpel.  

Mesenteric lymph nodes and Peyer’s patches were thoroughly minced through a PBS-

pre-wet 70 µm strainer using the sterile plunger of a 5 ml syringe, and rinsed through 

with 5 ml of ice-cold PBS. Cells were pelleted at 330×g for 5 min at 4 °C, and the 

supernatant was removed. Lymph node cells were resuspended in the residual volume 

and directly transferred completely onto a 96-well plate for staining. Cells from the 

Peyer’s patch were washed once with 5 ml of ice-cold PBS, centrifuged and then 

transferred onto the 96-well plate in the residual volume. 

 Intestine 

Cells were isolated from the intestine using a protocol modified from Geem and 

colleagues (Geem et al., 2012). The small intestinal tube was opened longitudinally and 

vigorously dragged through 300 ml PBS to remove fecal contents. It was cut into 2 cm 

segments and transferred into a 50 ml tube containing 30 ml of dissociation buffer. The 

tube was horizontally fixed on an orbital shaker set to 250 rpm for 20 min at 37 °C. The 

solution was passed through a 100 µm strainer into a 50 ml tube. The incubation and 

filter step were repeated with another 30 ml of dissociation buffer. The first dissociation 

fraction was centrifuged at 330×g for 5 min at 4 °C and the pellet was washed in 30 ml of 

PBS. The two filtered cell suspensions were united and the PBS washing step was 

repeated. In initial experiments, the lamina propria fraction was additionally processed 

according to (Geem et al., 2012), but all donor T cells were found in the epithelial wash 

fraction. Although histological analyses clearly show that most donor T cells are located 

in the lamina propria, these highly migratory cells may be only loosely attached to the 
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extracellular matrix and are thus easily washed out during the separation of the 

epithelium from the lamina propria. 

 
Figure 3-3   Donor T cells are isolated from the epithelial wash fraction. 

 Spleen 

A 70 µm cell strainer on a 50 ml Falcon was pre-wet with 2 ml of Erythrocyte lysis 

buffer. The organ was placed on the strainer, incised crosswise a few times, minced with 

the plunger of a 5 ml syringe and passed through the strainer by rinsing with 8 ml of 

Erythrocyte lysis buffer. Erythrocytes lysis was stopped after 2 min by adding 10 ml of 

PBS through the strainer. Cells were pelleted for 5 min at 330×g at 4 °C and resuspended 

in 5 ml of PBS.  

 Flow cytometry 

Up to 1 × 106 cells were stained per well. Cells were resuspended in 100 µl blocking 

buffer and incubated for 5 min at 4 °C. 100 µl of antibody mix was added, and cells were 

stained for 30 min at 4 °C in the dark. Cells were pelleted at 330×g for 5 min at 4 °C and 

resuspended in 200 µl of PBS. 

Fluorescence signal was acquired at 1,000 – 3,000 events per second, and washing wells 

were measured between different sample groups to exclude cross-contamination. The 

Dendra2 signal is extremely bright, especially in the FITC/GFP channel, and care was 

taken not to saturate any PMT. Supplementary Table 1 contains a representative 
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compensation matrix. Donor T cells were identified by gating on lymphocytes - live cells 

- singlets - Dendra2-green and/or Dendra2-red positive cells (Supplementary Figure 3). 

 Proliferation assay 

Splenocytes were isolated from Dendra2+ mice as described in section 3.2.6. Half of the 

cells were photoconverted in a black 24-well dish for 2 min with a rotating motion of the 

glass fiber and without the collimator. 5 × 106 cells per ml were stained with 1 µl of cell 

trace violet (CTV) for 6 min at room temperature. 500 µl of FBS and 5 ml of RPMI were 

added successively, and samples were incubated at 37 °C in a water bath for 5 min. The 

samples were centrifuged pelleted at 330×g for 5 min at room temperature and 

resuspended in 5 ml of PBS. Cells were seeded on a 96 well round bottom plate at 

200,000 cells per well in 200 µl of proliferation medium and left to proliferate for three to 

four days. 

 Cyotoxicity assay 

Lymph node and spleen cells were isolated from untreated B6:Dendra2+ mice, and the 

containing T cells were stimulated in a mixed lymphocyte reaction with allogenic 

BALB/c splenocytes to generate cytotoxic T cells. The BALB/c splenocytes were either 

T-cell-depleted or irradiated with 30 Gray. 8 × 106 B6:Dendra2 responder cells were 

incubated for 4-5 days in culture with 4 × 106 BALB/c splenocytes in 2 ml RPMI with 

10% FCS, 1% PenStrep and 1 mM sodium pyruvate in 24-well plates. Cytotoxic killing 

was performed in round-bottom 96-well plates with 50,000 Luciferase+ MOPC-

315.BMP.FUGLW target cells and 50,000 to 5 × 106 MLR effector cells containing 

cytotoxic T cells. Target cells only were used as a negative control, and 0.1% Triton-X-

100 lysed all cells in the positive control. Bioluminescence from the target cells indicated 

target cell numbers, and percentage of specific lysis was calculated from the formula 

(experimental signal - background signal) / (maximal signal - background signal) × 100. 

 Immunofluorescence microscopy of histological sections 

Organs were harvested, embedded in O.C.T Tissue-Tek medium and frozen on dry ice. 

The samples were sectioned at a thickness of 5 µm in a cryostat onto microscopy slides. 

After thawing, the sections were dried for 5 min and fixed for 7 min in acetone at room 

temperature, and circumscribed with a hydrophobic PAP pen to restrict added liquids 

to the sample area. The sections were washed three times for 2 min at room temperature 

in a cuvette, then blocked with 150 µl 2% normal rat serum in PBS. If necessary, the 

samples were additionally blocked with avidin in the first blocking step and after 

another three washing steps with biotin. The samples were washed three times with 
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PBS and the primary antibodies were added in 150 µl blocking solution, and incubated 

for 1 h at room temperature in the dark. Three washing steps preceded incubation with 

the secondary antibodies or streptavidin incubation for 30 min at room temperature in 

the dark. The sections were washed five times, embedded in Vectashield mounting 

medium with DAPI, and sealed with a cover slip and entellan. Images were acquired on 

a confocal microscope using the 20× Objective with a zoom of 0.6 and a tiling function to 

record large areas with a high resolution.  

 Light-sheet fluorescence microscopy 

Mice were intracardially perfused with 40 ml of ice-cold PBS to remove all red blood 

cells, and subsequently with 40 ml of ice-cold 4% paraformaldehyde in PBS to fix the 

tissues. The tissues were excised and fixed for 2 h at 4 °C in 4% paraformaldehyde. After 

three washing steps in PBS at 4 °C, the tissues were blocked and permeabilized in 2% 

FBS and 0.01% TritonX-100 in PBS at 4 °C overnight. All following incubations were 

carried out at 4 °C. The primary antibodies were added in 800 µl of PBS at a dilution of 

1:100, except for α-MAdCAM-1 coupled to biotin, which was incubated at a dilution of 

1:200. The samples were incubated in flat-bottom glass containers on an orbital shaker 

for 24 h, and after three 30 min washing steps in PBS, Streptavidin incubation was 

performed for another 24 h on the shaker. After three more washing steps in PBS, the 

samples were dehydrated in ascending concentrations of ethanol in water (30%, 50%, 

70%, 80%, 90%) for 1.5 h at room temperature, and incubated in 100% ethanol overnight 

at 4 °C. Final dehydration with n-hexane was performed for 2h at room temperature, 

which was afterwards gradually replaced with the clearing solution BABB (2 parts 

benzyl alcohol: 1 part benzyl benzoate). This solution has a refractive index of 1.56, 

which matches that of soft tissues. Because this abolishes light scattering at water/ tissue 

interfaces with different refractive indices inside the tissue, it makes them transparent. 

Clearing solution was added three times for 30 min, and air contact of the samples was 

strictly avoided to prevent a tissue-darkening reaction. The images were acquired in a 

home-built light sheet microscope equipped with a 20× objective (Stegner et al., 2017). 

The principle of light sheet microscopy is illumination of one plane inside the sample 

and acquisition from a rectangular angle (Figure 3-4). The whole-mount sample is 

optically sectioned, and the slices are afterwards reconstructed to a three-dimensional 

image.  
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Figure 3-4   Geometrical setup for light sheet microscopy. The excitation light is focused to a thin light sheet using a 5× 

objective. The cleared and thus transparent sample is positioned inside the sample chamber filled with clearing 

solution. One optical section of the sample is illuminated by the light sheet. The 20× detection objective is arranged 

perpendicular to the light sheet. It projects the fluorescence emitted from the sample towards a photomultiplier tube 

(not displayed). Graph under creative commons license from Zeiss, modified. 

 Intravital cell migration 

Mice were anesthetized and an intestinal loop was exposed as described in the 

photoconversion operation procedure (3.2.2). Instead of wetted gauze and operation 

towels, cling foil was used to avoid lint sources in the microscope. The mouse was 

anesthetized using isoflurane or with Ketamine+ Xylazine injection anesthetic and 

positioned on a heating pad. The intestinal loop was positioned under a glass cover slip 

using two custom-made holders. The tissue was kept moist using sterile 0.9% NaCl 

solution, and pressure on the tissue was minimized to preserve physiological blood 

flow. Good perfusion was checked immediately after mounting the sample under the 

objective by inspection through the ocular. Fluorophores were excited at a wavelength 

of 840 nm- 880 nm. The excitation light intensity was increased as the square of 

penetration depth between 5 - 30% of full laser power. Images were acquired every 30 

seconds in a field of view of 495 × 495 µm with a resolution of 256 × 256 pixels and a 

distance of 3 µm between two Z-planes.  

 Image Analysis 

Light sheet and 2-PM images were analyzed using the IMARIS software.  

3.2.13.1 T cell gradient quantification 

For the T cell gradient quantification, the T cells were segmented from the images based 

on pixel intensity in the stained- and autofluorescence channel, as well as shape 

characteristics (Figure 3-5). The T cell channel was smoothed (1 µm) and the 

background was subtracted using a rolling ball diameter of 6 µm. The threshold was 

manually set depending on the sample, and the spots were selected upon the number of 
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voxels (e.g. 100-1500), the sphericity (e.g. 0.747), the minimal max-Intensity in the T cell 

channel (e.g. >350) and the maximal med-intensity in the autofluorescence channel (e.g. 

<300). The Peyer’s patch was detected using the intensity values of the CD45.1 or the 

CD45.1 and MAdCAM-1 stainings. The channels were smoothed to 20 µm without 

background subtraction. A distance transformation map was produced where each 

voxel of a newly created channel was set to the value of its smallest distance to the 

Peyer’s patch surface.  

 
Figure 3-5   Analysis of T cell gradient. Light sheet fluorescence microscopy image of a Peyer’s patch and the 

surrounding intestinal tissue. The autofluorescence signal of the tissue (left) is used to measure the volume of the 

tissue. The Peyer’s patch surface is generated from the T cell signal, sometimes taking into the account the signal from 

the high endothelial venules (middle). The T cells were segmented and are displayed in color-code respective to their 

distance from the Peyer’s patch surface (right), as measured from a distance transformation map generated from the 

Peyer’s patch. 

Subsequently, the median value of this transformation channel was exported for each 

segmented T cell, yielding the distance of the center of each T cell to the Peyer’s patch 

surface. The volume of the tissue was measured from surfaces generated from the 

autofluorescence signal and the transformation channel. The tissue volume surface was 

generated and the transformation channel was masked by this surface, setting all values 

outside to zero. Then, two new surfaces were generated with the thresholds of 50-200 

(area 1, close to the Peyer’s patch) and above 200 (area 2, far from the Peyer’s patch). The 

T cells were then quantified in these volumes, and additionally in another complete 
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Z stack that was acquired with a lateral distance of 2 FOV away from the Peyer’s patch 

(ca. 1000 µm, area 3, periphery). 

3.2.13.2 Quantification of converted T cells around Peyer’s patches 

A vessel on the border of the Peyer’s patch was identified and all cells further away in 

the tissue were counted manually. Cell accumulations that obviously belonged to the 

Peyer’s patch were omitted. All green cells that only had the low background level of 

red fluorescence were counted as green cells, whereas all cells that had varying higher 

levels of red fluorescent signal were counted as red cells. 

3.2.13.3 T cell migration analysis 

The T cells were tracked using the spots function of the program IMARIS. Where 

photoconverted cells were tracked, a subtraction channel (Ch4) was generated by 

subtracting the unconverted signal from the converted signal in a ratio, that the value of 

photoconverted signal in cells negative for photoconverted signal was zero. This lead to 

reduction of background fluorescence in the photoconverted channel due to bleed 

through and autofluorescence. The photoconverted cells were then detected in the 

photoconverted channel with background subtraction using the rolling ball method 

with a diameter of 12 µm. The spots were then selected based on their signal in the 

subtraction channel (Ch4). For tracking, the maximal distance between two time points 

to be accepted for tracking was set to 20-25 µm, with a maximal gap of two and a spot 

distance to the xyz borders of more than zero. Afterwards, each track was manually 

corrected and all gaps were filled.  

The tracks were then corrected for drift or shaking artefacts using the drift correction 

function. One to four non-motile spots in the tissue, such as a collagen bifurcation or an 

autofluorescent spot was tracked over the time of the acquisition and the image with all 

contained objects was corrected for translational drift. Care was taken to include 

correction spots from differently moving areas in the field of view in cases where the 

tissue was moving unevenly. 

The tracks were then exported to an Excel file and subsequently analyzed for their 

migration characteristics by Dr. Zeinab Mokhtari using Matlab. 

Results are represented as box plots (Figure 3-6), indicating several descriptive values of 

the data. 
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Figure 3-6   Data presentation of migration analysis. Each dot represents one cell track. The median is indicated by a 

red line, and the confidence interval (CI) is displayed by the height of the indent of the boxplot. The box encloses the 

values that lie in the central 50% of the data, and the whiskers reach to 2.5% from the edge of the dataset (central 95%). 

Outliers are indicated by a plus. 

 RNAseq analysis 

The experimental procedures for the RNAseq analysis were carried out by Lukas 

Scheller and supervised by myself. Extended experimental details are expected to be 

stated in the medical thesis of Lukas Scheller. Briefly, BALB/c mice were transplanted 

with 5 ×106 bone marrow cells and 1.2 × 106 T cells from B6. On day 4, Peyer’s patches 

with surrounding tissue were embedded in tissue-tek, cryosectioned onto RNase-free 

slides covered with a polyethylene naphtalate membrane and stained with cresyl violet. 

Areas of mucosa near the Peyer’s patch (approximately within 500 µm from the edge) 

and far away from the Peyer’s patch (>1000 µm from the edge) were excised with a 

laser-capture microdissection microscope and the RNA was isolated using the RNeasy 

Micro Kit. Further sample processing was performed by the laboratory of the Core Unit 

Systemmedizin of the University of Würzburg, including the library preparation 

(SMARTer Stranded Total RNAseq-Pico Input Kit v2), running of the sequencing flow 

cell (Illumina) and bioinformatic processing of the readouts (using STAR software 

V2.5.2b) yielding a table with the raw reads and the fold changes and adjusted p-values 

of selected comparisons. The raw reads from these tables were uploaded to 

heatmapper.ca (Babicki et al., 2016) to generate heatmaps clustered by complete linkage 

and the distance measurement ‘Kendall’s Tau’. This method uses pairwise comparisons 

of the genes between the samples to be compared, and then orders the genes by their 

difference. The data was scaled by rows to visualize the change in gene expression over 

the different samples, yielding the Z-score. Afterwards, some of the major clusters were 

selected for display and the genes were manually reordered within the cluster according 

to their function. 
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4 Results 

 The Peyer’s patch is not enclosed by a capsule or basement membrane 

The aim of this thesis was to investigate whether T cells can migrate directly from the 

Peyer’s patch to the adjacent lamina propria. The complex tissue microenvironment 

greatly influences the migration behavior of cells: the architecture may support this 

migration by a loose extracellular matrix and adhesion molecules, or hinder it by 

compact capsular structures such as in the lymph node. Therefore, we stained sections 

of Peyer’s patches with and antibody against laminin, an integral component of 

basement membranes, to see whether the Peyer’s patch is separated from the lamina 

propria by a capsule or a basement membrane. Laminin staining revealed a dense border 

towards the serosal side of the Peyer’s patch, but no enclosing basement membrane 

towards the lamina propria (Figure 4-1). This means that in terms of basement 

membranes, the edge of the Peyer’s patch leaves room for direct exit routes to the 

surrounding tissue, which is in favor of our hypothesis of direct T cell migration.  

 
Figure 4-1   Peyer's patches are not enclosed by a capsule or membrane. A Confocal immunofluorescence microscopy 

of a section of a Peyer’s patch and the surrounding intestinal tissue 4 days after transplantation. B Magnification of the 

left Peyer’s patch edge. The arrow indicates potential migration routes from the Peyer’s patch to the adjacent lamina 

propria. C Magnification of the Peyer’s patch edge near a T cell zone in immediate proximity to the underlying crypts 

of adjacent villi. Arrows indicate potential migrational access routes. Scale bar 100 µm.  
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 T cells form a gradient around the Peyer’s patch in GvHD 

 Introduction to transplantation model 

To study the egress wave of T cells from the Peyer’s patches, we employed a GvHD 

transplantation model. In this study, BALB/c mice were transplanted with T cells and 

bone marrow from B6 mice or from mice which had been backcrossed two to seven 

generations from 129.S to B6. The B6 and the 129.S strains share the same MHC 

haplotype H2-Kb, but to confirm that the GvHD models are comparable, we performed 

survival experiments. As expected, the bone marrow controls were successfully 

reconstituted and survived for the 30 day observation period of the experiment. The 

irradiation controls died due to anemia resulting from the myeloablative treatment. 

Both B6 and 129;B6 donor cells caused acute GvHD, which was lethal within 8 days, 

there was no significant difference between the survival or the weight change of these 

two groups (Figure 4-2 A). Ex vivo bioluminescence imaging during the initiation phase 

of GvHD revealed infiltration of luciferase+ donor T cells into the secondary lymphoid 

organs on day 2.5 after transplantation (Figure 3-1 B). The spleen, mesenteric lymph 

nodes and Peyer’s patches and some colonic cryptopatches showed signal on day 2.5, 

which increased up to day 3 due to cell proliferation. On day 4, the first T cells entered 

the small intestine. Intestinal tissue near the Peyer’s patch emitted stronger signal than 

areas further away. This indicated that the ideal time point to study the egress from the 

Peyer’s patches to the adjacent tissue was between day 3 and day 4. On day 4, the first T 

cells were detected in areas far away from the Peyer’s patch, which have likely 

infiltrated the tissue from circulation. To focus on the cells that did not come from 

circulation, we therefore focused the analysis of T cells around the Peyer’s patches on 

early time points before day 4 after transplantation. 

 T cell gradient around Peyer’s patch 

To investigate the T cell distribution around Peyer’s patches in more detail, we 

employed light sheet fluorescence microscopy (LSFM) to quantify the T cell density 

around the Peyer’s patches during the initiation phase of GvHD. On day 2.5 and day 3 

after transplantation, the first T cells were detected close to the Peyer’s patches (Figure 

4-3 A, A’, B). On day 4, the time point when the first activated T cells circulate in the 

blood, the infiltration near the Peyer’s patch but also further away increased more 

(Figure 4-3 A’’). On day 6 after transplantation, alloreactive T cells had massively 

infiltrated the intestine in all locations (Figure 4-3 A’’’).  
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Figure 4-2   GvHD model B6� BALB/c. A Survival, weight changes and clinical score of BALB/c (H2-Kd) recipients 

transplanted with bone marrow and T cells of congenic B6 wt (H2-Kb) strain (red) and B6;129S.Dendra2 mixed 

background (both H2-Kb) (green) are comparable. The mice succumbed to GvHD on day 8 after transplantation, 

irradiation controls survived until day 12 to 15, whereas all bone marrow controls survived. After the irradiation-

induced weight loss, only the GvHD groups lost further weight and had an increased clinical score until the humane 

endpoint was reached. n=5 animals/group, Log-rank (Mantel-Cox) test and paired Student’s t-test. Data from B6 

donors courtesy of Musga Qureischi. B Bioluminescence images of congenic B6 T cells in explanted organs of recipient 

mice on day 2.5 to day 4 after transplantation. Luciferase-expressing T cells were detected in the secondary lymphoid 

organs, where they proliferate on day 2.5 and day 3 after transplantation. First T cells infiltrated the small intestine on 

day 4 after transplantation.  

The T cells formed a gradient around the Peyer’s patch early during the initiation phase 

on day 2.5 and 3, which evened out on day 4 to day 6 after transplantation (Figure 4-3 

C). This gradient supported the hypothesis that recently activated alloreactive T cells 

directly migrate from Peyer’s patch to the adjacent intestinal lamina propria. 

This gradient supported the hypothesis that the T cells directly migrate out of the 

Peyer’s patch to the adjacent lamina propria. 
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Figure 4-3   Recently activated alloreactive T cells form a gradient around the Peyer's patch early after allogenic 

hematopoietic cell transplantation. A Light sheet fluorescence microscopy of Peyer’s patches after aGvHD induction. 

Donor T cells accumulated around a Peyer’s patch as soon as after day 2. Fluorescence data of T cells and high 

endothelial venules are displayed alongside with the segmented tissue surface. B Higher magnification of tissue block 

shown in A’. Fluorescence data of high endothelial venules and T cells are displayed with segmented T cells. C Donor 

T cell densities around Peyer’s patches as quantified from LSFM data. T cells formed a gradient around the Peyer’s 

patch on day 2.5 and 3, some samples still displayed a gradient on day 4. On day 6, the gradient had evened out. One 

triplet of points connected by a line indicates the densities around one Peyer’s patch. Scale bars 100 µm. 
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 T cells are in the extracellular matrix and not inside lymphatic vessels 

We hypothesized that the T cells directly migrate from the Peyer’s patch to the 

surrounding lamina propria. Because the intestine is densely suffused by a network of 

blood and lymph vessels (Figure 4-4), there was a chance that the T cells quantified 

around the Peyer’s patches may reside inside those vessels. 

 
Figure 4-4   Lymph vessels densely suffuse the small intestine. Lyve-1 (red) staining of lymphatics in a Peyer’s patch 

and the surrounding intestinal loop. The tissue volume is displayed from the autofluorescence signal in green at the 

base of the intestinal loop. Scale bar: 500 µm. 

Localization of recently activated donor T cells within lymphatic vessels appeared as a 

possible explanation of the observed T cells gradient around Peyer’s patches as this 

could represent trafficking T cells within these vessels en route to distant target sites. To 

exclude that the quantified T cells resided inside those vessels, we co-stained T cells 

around the Peyer’s patch with Lyve-1, a marker for lymphatic vasculature, and 

MAdCAM-1, a marker for high endothelial venules in the Peyer’s patches. The analysis 

revealed that the T cells were situated outside the vasculature and hence inside the 

mucosal tissue (Figure 4-5, white arrows). Only single donor T cells outside the Peyer’s 

patch were detected inside lymphatic vessels (yellow arrow). These results confirmed 

that the T cells forming the gradient around the Peyer’s patch were located inside the 

mucosal tissue. 
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Figure 4-5   T cells around the Peyer's patch are not located inside lymphatic vessels. LSFM image of lymphatics (blue) 

and high endothelial venules (green) alongside with segmented T cells (red) at the border of a Peyer’s patch 4 days 

after transplantation. White arrows indicate T cells outside of lymphatic vessels, the yellow arrow indicates a cell 

sticking to the inside of a lymphatic vessel wall. 

 T cells egress from the Peyer’s patch directly into the adjacent lamina 

propria 

The T cell gradient around the Peyer’s patch confirmed the underlying hypothesis of 

direct egress to the surrounding tissue, but other mechanisms may also lead to this 

phenomenon (see chapter 5 Discussion). To positively prove that the T cells around the 

Peyer’s patch originate directly from that patch, we established a protocol using 

photoconversion of the Peyer’s patch-residing T cells. 

 Photoconversion technique and setup 

The technique was validated in detail and published (Jarick et al., 2018). We 

transplanted T cells expressing the photoconvertible protein Dendra2, and 

photoconverted five to seven Peyer’s patches at the end of the initiation phase of GvHD 

(between day 3 and day 4, depending on the subsequent analysis) (Figure 4-6). 
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Figure 4-6   Photoconversion timeline and setup. A BALB/c recipient mice were transplanted with 5×106 bone marrow 

cells and 1.2×106 T cells from B6 to induce GvHD. 12 h before the time point of analysis, the Peyer’s patches were 

photoconverted by exposing them to UV light for 2 min during laparotomy. B Total UV power output of the 

conversion lamp and UV power output through the Peyer’s patch stencil. C Externalization of Peyer’s patch during 

laparotomy. D UV light exposure of Peyer’s patch shielded by aluminum stencil.  

 T cells are efficiently photoconverted 

Directly after photoconversion, the photoconverted cells were quantified in different 

organs to validate the photoconversion efficiency. Using flow cytometry, the donor 

lymphocyte population was analyzed (Figure 4-7 A). Photoconverted Peyer’s patches 

contained a high purity of photoconverted T cells (on average 89.3%), whereas no 

photoconverted cells were detected in the blood or intestine (Figure 4-7 B, C). Only 

single converted cells were found in the mesenteric lymph nodes immediately after 

photoconversion. Furthermore, the photoconversion can be clearly detected using two-

photon microscopy (Figure 4-7 D), despite the spotty appearance of the Dendra2 protein 

expressed in the mitochondria (inset). 
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Figure 4-7   T cells are efficiently photoconverted in vivo. A Gating strategy to identify total donor T cells. B Flow 

cytometric analysis of Peyer’s patches, mesenteric lymph nodes, peripheral blood and small intestine before and after 

photoconversion on day 4 after transplantation (top panels). Two-photon microscopy images of Dendra2+ donor T 

cells in a Peyer’s patch with and without photoconversion (bottom). Inset: confocal micrograph of an individually 

photoconverted Dendra2+ cell in vitro before and after photoconversion. Dendra2 expression is localized to the 

mitochondria. C Photoconversion efficiency of the Peyer’s patches reaches an average of 89.3%, one dot represents 5-7 

pooled Peyer’s patch of one mouse, untreated n=4 (untr), converted n=11 (conv).  

 T cells proliferate after photoconversion 

Using ultraviolet light for the photoconversion may potentially be harmful to cells. Due 

to its high energy content, it may damage the DNA via fusion of adjacent pyrimidine 

base pairs, or indirectly damage cellular molecules via oxidative stress. This hinders 

replication and cell division, and may eventually lead to apoptosis of the damaged cell 

(Rastogi et al., 2010). 
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Figure 4-8   T cells proliferate after photoconversion. A, B Proliferation of T cells stimulated in culture with and 

without prior photoconversion. Converted cells, unconverted cells and cells which were co-incubated in one well 

proliferated to the same extent. Unstimulated cells were kept in culture for the respective time, and unstained cells 

were stimulated but not stained with the cell division tracer. Unpaired non-parametric Mann-Whitney test. n=3 mice, 

displayed here are 3 technical replicates from one mouse. C The photoconverted red form of the protein was diluted 

by half with every cell division cycle. Photoconverted unstimulated cells remained positive during the four days in 

culture (black). D CD8+ cells proliferated more vigorously in this setting and had divided 2-6 times, whereas the 

majority of the CD4+ T cells had divided 1-4 times. E CD44 expression as a marker of T cell activation was not altered 

after photoconversion. Photoconverted and unconverted cells expressed the same level of CD44 in the stimulated or 

unstimulated condition. 

The viability and expansion of the donor T cells is crucial for the development of GvHD. 

Since it is highly undesirable for the photoconversion to diminish T cell viability or 

expansion in these experiments, we tested whether T cell proliferation was altered after 

photoconversion. T cells isolated from the spleen of Dendra2+ mice were photoconverted 
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and stimulated with IL-2 and an antibody against CD3 in vitro. Unconverted, converted, 

and mixed cells proliferated to the same extent (Figure 4-8 A, B). This indicates that the 

dose of ultraviolet light needed to induce strong photoconversion was not sufficient to 

damage the cells such that they would induce senescence.  

The red, converted form of Dendra2 remained detectable in high amounts in 

photoconverted cells that were kept in culture for 4 days without stimulation (Figure 4-8 

C). With every cell division, the amount of red protein was diluted by half, whereas the 

green protein was continuously synthesized anew. This lead to a shift from red over 

orange and yellow to green fluorescence of the cells. In this in vitro setting, both CD4+ 

and CD8+ T cells proliferated. CD8+ T cells completed more division cycles (2-6 

divisions) than CD4+ T cells (1-4 divisions), which had divided less vigorously within 

the 4 days of incubation (Figure 4-8 D). Furthermore, photoconversion did not alter the 

activation state of the T cells as measured by expression of the activation marker CD44, 

which is upregulated on antigen-experienced cells (Figure 4-8 E). In summary, 

photoconversion did not impact cell proliferation or activation and therefore was 

considered suitable for the study of T cell homing and migration behavior in the 

inflammatory setting of GvHD. 

 T cells traffic, migrate and kill after photoconversion 

The rationale to establish the photoconversion technique was to visualize direct T cell 

migration from the Peyer’s patch to the surrounding tissue. To be able to prove this 

convincingly, it is important to verify that the photoconverted cells were still able to 

traffic properly via the lymphatic and blood circulation, and that for instance a block in 

lymphatic trafficking would not skew the migration profile of the T cells leaving the 

Peyer’s patch. Therefore, we tested whether the photoconverted cells were still able to 

traffic from the Peyer’s patches through the mesenteric lymph nodes and the peripheral 

blood to the intestine. Flow cytometric analysis of these organs at different time points 

after photoconversion revealed trafficking converted T cells at all tested sites. The 

majority of the T cells in the Peyer’s patches remained positive for the red fluorescent 

protein within the 24 h observed (Figure 4-9 A). The first converted cells appeared 

within 4 h in the mesenteric lymph nodes and the blood (Figure 4-9 B, C), and 

accumulated over time as more and more cells left the photoconverted Peyer’s patches. 

The photoconverted cells also accumulated in the intestinal tissue distant from the 

Peyer’s patches within 24 h (Figure 4-9 D), indicating that the cells were able to enter the 

target organ. 
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Figure 4-9   Photoconversion does not impair key functions of T cells, such a T cells trafficking, migration and killing 

capacity. A-D Photoconverted T cells trafficked from the Peyer’s patch to the mesenteric lymph nodes and via the 

peripheral blood to the small intestine. One dot represents one mouse, unpaired non-parametric Kruskal-Wallis test. E 

Photoconverted and unconverted T cells migrated in the small intestine. G, H Speed and Turning angle as simple 

measurements for cell motility were comparable in green and red cells. One dot represents one cell track. F 

Photoconverted and unconverted T cells performed cytotoxic killing of MOPC tumor cells in culture. One dot 

represents one well, n=2 mice. 
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The converted cells represented approximately 6% of donor cells in the mesenteric 

lymph nodes, 1% in the peripheral blood and 5% in the small intestine 24 h after 

photoconversion. In the intestine, they migrated with comparable migration 

characteristics, as measured by the speed and turning angle as basic measures of their 

ability of migration and directionality (Figure 4-9 E, G, H). Lastly, the cytotoxic potential 

of the T cells after photoconversion was assessed. Splenic B6.Dendra2+ T cells were 

stimulated with allogenic BALB/c stimulator splenocytes in culture, which selects for 

and enriches alloreactive cytotoxic B6.Dendra2+ T lymphocytes. After photoconversion, 

the cytotoxic T lymphocytes (effector cells) were incubated with the BALB/c tumor cell 

line MOPC expressing luciferase (target cells). The killing capacity of photoconverted 

and not converted T cells was measured by the decrease in luciferase signal with 

increasing effector- to target cell ratios. The mean signal of target cells without effector 

cells served as a negative control and was set to 100%, and Triton-X-100-lysed cells were 

used as a positive control. Photoconverted cells showed a trend towards reduced lysis 

(47.9% vs. 28.1% at a 1:100 E:T ratio) , which was however not significant (Figure 4-9 F, 

non-parametric Kruskal-Wallis test). This means that the T cells were still able to lyse 

target tumor cells after photoconversion. In summary, photoconverted T cells were still 

able to traffic via the lymphatics and blood, proliferated and performed effector 

functions. Therefore, photoconversion did not block T cell egress from the Peyer’s 

patches to the lymph. We concluded that the direct egress of T cells from the Peyer’s 

patch to the adjacent lamina propria can be observed using this technique without 

hindering the cells’ lymphatic trafficking route.  
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 T cells egress directly into the adjacent lamina propria  

 
Figure 4-10   T cells egress directly into the adjacent lamina propria. A Stitched two-photon images of explanted Peyer’s 

patches directly after photoconversion (day 3 after transplantation) and 12 h later (day 3.5). Unconverted Peyer’s 

patches were surrounded by only unconverted cells, whereas converted Peyer’s patches were surrounded by both 

unconverted and converted cells. Images of day 3 converted and both day 3.5 images represent Fingolimod-treated 

animals. Scale bar 200 µm. B Quantification of T cells around the Peyer’s patches. Photoconverted T cells were found 

only around previously converted Peyer’s patches. The size of one field of view (FOV) was 500 x 500 µm (x/y). 

Combined total T cell numbers (converted+ unconverted) did not change significantly after photoconversion (not 

displayed). One dot represents one FOV, n=4 mice per group. *** p< 0.001, unpaired non-parametric Kruskal-Wallis 

test. 

Since our established photoconversion technique was suitable to study the migration 

and trafficking of alloreactive T cells in GvHD, we employed this technique to test the 

hypothesis of direct egress of alloreactive T cells from Peyer’s patches into the lamina 

propria. Photoconversion on day 3 of transplanted Dendra2+ T cells was restricted to the 
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Peyer’s patch (Figure 4-10 A). The unconverted Peyer’s patches of the respective mouse 

served as a negative control and harbored only unconverted green cells, whereas the 

converted Peyer’s patch harbored only converted red cells. Except for single cells very 

close to the Peyer’s patch, the scarce cells in the surrounding mucosa remained negative 

for the Dendra2-red signal. 12 h later, a high number of converted cells resided around 

converted Peyer’s patches but not around Peyer’s patches that were not converted 

(Figure 4-10 B). This means that the converted cells were enriched in the lamina propria 

only around converted Peyer’s patches. This result rules out the possibility that the T 

cells only accumulated around the Peyer’s patches due to enhanced vascular trafficking 

to this region. As mentioned in more detail in the discussion, enhanced vascular T cell 

trafficking may occur predominantly near the Peyer’s patches because of early 

upregulation of trafficking molecules such as MAdCAM-1 in the intestinal vasculature 

around Peyer’s patches. If the Dendra2-red cells were found equivalently around 

converted and non-converted Peyer’s patches, this would mean that the cells must have 

reached this site via vascular trafficking. The fact that Dendra2-red cells are not found 

around non-converted Peyer’s patches speaks for the hypothesis that the T cells migrate 

to the area around the respective Peyer’s patch and do not get there via vascular 

trafficking. 

 T cell migrate non-directionally to the adjacent lamina propria  

After confirming the local emigration from the Peyer’s patch to the lamina propria, we 

wanted to explore the migration mechanism of T cell egress. Potentially, the T cells may 

be attracted by a chemotactic gradient leading them out of the Peyer’s patch, which is 

possibly detectable by directional migration from the Peyer’s patch to the lamina propria. 

Alternatively, there might be a loss of sequestration of the T cells inside the Peyer’s 

patch, which is usually accomplished by CCL19/21 expression by fibroblastic reticular 

cells in the T cell zones of the Peyer’s patch. We hypothesized that loss of this 

sequestration would lead to a more diffusive, random migration pattern of the egressing 

T cells. To differentiate between these two options, the T cell migration was analyzed 

adjacent to Peyer’s patches on day 3 and day 4 after transplantation (Figure 4-11 A-A’’).  

The T cell migration speed was lower on day 4 than on day 3, and slightly elevated in 

the lamina propria when compared to the Peyer’s patch (Figure 4-11 C). On day 3 after 

transplantation, the cells migrated with a mean speed of 9.7 µm/min inside the Peyer’s 

patch and 11.2 µm/min in the lamina propria. On day 4, the cells migrated slower at 6.5 

µm/min and 7.2 µm/min in the Peyer’s patch and the lamina propria, respectively. 
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Figure 4-11   Egressing T cells migrate non- directionally in the lamina propria. Intravital two-photon microscopy of 

allogenic Dendra2+ T cells in the lamina propria adjacent to a Peyer’s patch. A Migration tracks within a 30-minute time 

frame are displayed in white. The Peyer’s patch is outlined by a semi-transparent white surface. Scale bar 100 µm. B 

Tracks of T cells egressing from the Peyer’s patch on day 3 or day 3.5, color-coded by the time. The collagen network 

segmented from the second harmonic generation signal is displayed in blue. The T cells often approached the edge of 

the Peyer’s patch highly directedly and then switched to a less straight migration mode. Scale bar 10 µm. C Analysis of 

the cell migration tracks inside and adjacent to Peyer’s patches. Cells migrated faster on day 3 than on day 4. The 

confinement ratio was higher on day 3 vs. day 4, and the turning angle was inverse-proportionally altered. Data for 

day 3 and day 3.5 were pooled. One dot represents one cell track n=5/ 13/ 2/ 2 mice (left to right), outliers are indicated 

by a plus. P-values are generated from Student’s t-test. 

The degree of straightness as measured from the confinement ratio was higher on day 4 

than on day 3. Three days after transplantation, the confinement ratio was slightly lower 

in the lamina propria (0.44, mean) than in the Peyer’s patch (0.47), whereas on day 4, it 

was slightly higher in the lamina propria (0.50 vs. 0.53). The degree of straightness as 

measured by the confinement ratio was confirmed by inversely proportional values of 

turning angles. The turning angles were generally lower on day 4 than on day 3. On day 

3, the cells turned less sharply in the lamina propria, as indicated by higher values of 

turning angles (87.6° vs. 91.5°). Lower turning angles were measured in the lamina 

propria on day 4 when compared to the cells inside the Peyer’s patch (80.2° vs. 84.5°). 
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Among the cells tracked on the border of the Peyer’s patch, a few tracks led from the 

Peyer’s patch directly to the surrounding mucosa (Figure 4-11 B). Although this 

behavior has not yet been quantified, it appears that the cells approached the border of 

the Peyer’s patch in a highly directed fashion. Upon contact with the collagen, which 

was visualized from the second harmonic generation signal, the T cells followed this 

structure and performed less straight migration. These cells directly migrating from the 

Peyer’s patch to the surrounding tissue were most prominent on day 3 and 3.5, despite a 

much higher cell number on day 4 in the lamina propria. 

In summary, the migration patterns between T cells around Peyer’s patches differ more 

between day 4 and day 3 than between the Peyer’s patch and the lamina propria. There 

was no overall directionality within the T cell population after the time point of egress. 

This hints to a mechanism not involving attraction of the T cells into the lamina propria, 

but rather to a loss of sequestration within the Peyer’s patches. Nevertheless, we show 

that the donor T cells left the Peyer’s patch to the adjacent lamina propria around day 3 

after transplantation. 

 T cell egress to the lamina propria does not depend on S1PR1 

Sphingosine-1-phosphate mediates the egress of lymphocytes including T cells from the 

secondary lymphoid organs including Peyer’s patches. Although this attraction is not 

exerted in form of gradients leading the cells towards the lymphatic exit, it plays an 

important role for transmigration into the lymphatics. The current literature assumes 

that the T cells approach the lymphatic vessels either with random motion or due to 

desensitization of CCR7 (Cyster and Schwab, 2012; Grigorova et al., 2009). This loss of 

gradient may potentially be sufficient to allow egress of the T cells towards the 

lymphatics. S1PR1-mediated egress plays a role in the lymph nodes, Peyer’s patches, the 

spleen and the thymus. 

To address whether this widespread mechanism is also involved in the sideways 

migration of the T cells to the adjacent lamina propria, we blocked the S1PR1 by 

treatment with fingolimod, which mimics the receptor’s natural ligand Sphingosine-1-

phosphate (S1P) (Figure 4-12 A). Subsequent down modulation of the receptor leads to 

inhibition of lymphatic egress of the lymphocytes. CD90.1+ donor T cells were 

quantified in the blood, lymph nodes and spleen of fingolimod-treated transplant 

recipient mice to verify that the donor T cells were trapped in the lymph nodes and 

disappeared from circulation (Figure 4-12 B, C). Fingolimod-untreated mice 

transplanted with bone marrow cells only did not have circulating donor T cells.  
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Figure 4-12   Direct T cell egress does not depend on S1P gradient sensing. A Experimental time line of transplantation 

and fingolimod (FTY) treatment. Mice were transplanted with T cells from CD90.1+ or Dendra2+ donors and were 

photoconverted three days later. One group of mice received fingolimod treatment on days 1.5, 2.5 and 3.5 after 

transplantation. The results were obtained on day 3.5 for two-photon imaging or on day 4 for flow cytometry. B 

Gating strategy to identify CD90.1+ donor T cells. C T cell numbers in the peripheral blood, peripheral lymph nodes 

excluding mesenteric lymph nodes and the spleen four days after transplantation with and without fingolimod 

treatment. Bone marrow controls were used as a negative control. Fingolimod treatment abolished circulating 

lymphocytes because they were trapped inside the lymph nodes, where the numbers increased after treatment. n=10 

from two separate experiments, displayed here are the results from experiment 2. D T cell numbers of photoconverted 

around Peyer’s patches were not affected by fingolimod treatment. Data from mice not treated with fingolimod are the 

same as from Figure 4-10. Fingolimod treated mice were observed in multiple experiments but quantified from n= 9 or 

10 FOV of 2 or 3 Peyer’s patch of 2 mice from 1 experiment, Kruskal-Wallis Test. 
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In contrast, mice to which T cells were transplanted to induce GvHD had varying 

numbers of T cells in circulation. This was abrogated by fingolimod treatment, which 

trapped the T cells inside the lymph nodes. There were more T cells in lymph nodes of 

fingolimod treated mice than in the GvHD control (on average 3192 vs. 9275 cells 

measured in flow cytometry), and the T cells disappeared from circulation as expected 

(on average 15876 vs. 1191 cells). The T cell numbers in the spleen were not altered upon 

fingolimod treatment. Hence, the fingolimod treatment effectively blocked the 

lymphatic egress of the T cells from the secondary lymphoid organs in this model. 

On the basis of this finding, we performed photoconversion experiments as in 4.3.5 and 

analyzed whether T cells were still able to leave the Peyer’s patch into the lamina propria 

despite the block of lymphatic egress. There was a comparable number of unconverted 

T cells around Peyer’s patches that were converted or not converted, both in mice with 

and without fingolimod treatment (Figure 4-12 D). There were no converted T cells 

around unconverted Peyer’s patches, but untreated and fingolimod-treated mice both 

had converted T cells around the Peyer’s patches. This indicates that despite fingolimod 

treatment, the T cells are still able to leave the Peyer’s patch to the adjacent lamina 

propria and that the S1PR1 does not play a significant role in this process.  

 RNAseq reveals candidates potentially fostering the egress to the 

lamina propria 

To identify molecules that may be involved in attraction or random migration of the 

T cells to the lamina propria, we screened for molecules upregulated in the lamina propria 

near the Peyer’s patch. We employed laser-capture microdissection of cryosections to 

excise specific regions near the Peyer’s patch (<500 µm) and further away (>1500 µm) in 

the lamina propria of GvHD-bearing mice. Mice transplanted with bone marrow and 

untreated mice were used as controls. The samples were subsequently analyzed with 

RNAseq and mass spectrometry. This strategy allowed us to identify molecules 

upregulated in the tissue and on the T cells according to their location respective to the 

Peyer’s patch.  

The mass spectrometry results were largely inconclusive and yielded no significantly 

changed proteins, likely because the complexity of the sample was too high for the small 

amount of protein gathered with this sampling method. Therefore, an overview of the 

results of the RNAseq only is presented here. 
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 Genes upregulated in GvHD 

First, bioinformatic analysis of transcripts in GvHD vs. the BM control was performed to 

screen for migration-promoting factors upregulated in the tissue during GvHD in 

general. The rationale was that migration promoting factors do not essentially have to 

be enriched near the Peyer’s patch, as long as there is an overall difference between the 

Peyer’s patch and the lamina propria. When comparing the overall mucosa of GvHD 

bearing mice with bone marrow controls, 7261 genes were differentially expressed. 

Significantly upregulated genes were clustered in a heatmap, of which selected genes of 

three clusters are displayed in Table 4-1.  

The top five upregulated genes in GvHD were Pla2g4c (6.71), Socs1 (5.18), Retnlb (5.18), 

Ifng (5.16) and Gsdmcl-ps (5.02). They have very different roles in cell physiology and 

immunity and will be evaluated upon in the discussion.  

As expected, Th1 inflammatory signature genes were upregulated (Tnf, Ifng, Stat1, 

Stat4), which validated that this method was able to represent the overall 

immunological status known for GvHD. Co-stimulatory molecules (Gitr, Ox40, 4-1BB) 

were upregulated as well as activation markers of antigen-presenting cells (Cd40, Baff, 

Tlr-2). Many of the upregulated genes play a role in cell migration. Among those are 

chemokines (Cxcl2, 5, 9-11, CCL 3, 4, 7, 8, 11, 17, 22 and Ccrl2), chemokine receptors 

(Ccr7 and 9, Cxcr6), integrins (Itgβ7, Ceacam12) and the P-selectin ligand Selplg. Also, 

transcripts involved in the cytoskeleton or the remodeling thereof (Tubα3, Tubβ3, 

Coro1α, Rac2) were increased. Furthermore, gene products involved in mucosal 

integrity were upregulated (TWEAK, Reg3β and Reg3γ). Counter-regulatory 

immunological mechanisms were also detected, such as Il10, Ido1+2, Socs1+3. Lastly, 

several genes from the Ly6 family were upregulated, which are not well studied yet and 

of which the function of many proteins remain unknown. However, murine Ly6B, Ly6C 

and Ly6G play a role in neutrophil migration, although these proteins have no 

homologs in humans. 

As can be seen from the heat map in Table 4-1, most of these genes displayed were 

upregulated in the GvHD condition only, both near the Peyer’s patch and further away. 

These genes were expressed at basal levels both in the untreated healthy tissue and in 

the BM controls. The group of genes displayed second in the table was upregulated in 

GvHD as compared to the BM controls, but these genes were also initially expressed at a 

high level in healthy untreated tissue. This cluster comprised mostly MHC molecules 

and those involved in antigen processing for presentation (Tap1, Tap2, Cd74), and some 

Type I inflammatory molecules (Igtp, Irf1, Irgm2).  
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Table 4-1   Heatmap of RNAseq data significantly altered between GvHD and bone marrow control. 
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Some genes were significantly upregulated in the comparison between GvHD and BM 

control, but notably the heatmap revealed that these genes were only upregulated near 

the Peyer’s patch in GvHD and not as much further away into the intestinal mucosa. 

The majority of the genes in this cluster are related to T cell activation and T cell 

mediated inflammatory mechanisms. Genes related to cell migration, trafficking and 

cytotoxicity were also included in this cluster. All of these genes were also expressed at 

a high level in healthy untreated tissue, which will be elaborated on in the discussion. 

These genes that were significantly increased between GvHD and bone marrow control 

but that were only expressed to a high extent near the Peyer’s patch in GvHD mostly 

overlapped with the list of genes that were significantly upregulated in the respective 

statistical comparison. Even so, some of the genes were found only in one or the other 

list.  

In summary, we found genes known to be upregulated in GvHD which validated our 

results. The functions of the upregulated genes were mainly Type I inflammation, 

antigen presentation, T cell activation and T cell trafficking/ homing, and we found an 

array of chemokines and migration-related molecules. 

 Genes upregulated near the Peyer’s patch in GvHD 

To find genes enriched in the recently egressed T cells, the second statistical evaluation 

compared the mucosa near the Peyer’s patch versus the mucosa further away in GvHD 

samples. 143 genes were differentially expressed between the mucosa near the Peyer’s 

patch versus the mucosa distant from the Peyer’s patch (Table 4-2). Many transcripts of 

which the proteins are involved in migration and cytoskeletal rearrangement were 

upregulated (Parvg, Coro1a, Rac2, Dock2), as well as molecules in trafficking and 

migration (Ccl4, Xcr1, Ccr9, Itgb7, Itgal). Furthermore, Ccr7 was significantly 

upregulated in GvHD and the heatmap in Table 4-1 indicated upregulation only near 

the Peyer’s patch. However, CCR7 was not part of the significantly upregulated genes 

of the second analysis of near vs. far to the Peyer’s patch in GvHD, likely because of one 

outlier sample. Of note, most of the chemokines were upregulated both near and far 

from the Peyer’s patch in GvHD, whereas the chemokine receptor transcripts only 

increased near the Peyer’s patch. 
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Table 4-2   Heatmap of RNAseq data significantly altered between areas near the Peyer's patch and further away. 
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Figure 4-13   Subcellular localization and relationships of gene products upregulated near the Peyer's patch in 

GvHD. The intensity of red color indicates higher expression of the molecule near the Peyer’s patch as compared to 

further away. The T cell receptor, associated signaling molecules and co-receptors form a cluster of upregulated 

transcripts. Moreover, a large group of gene products involved in cell trafficking and migration were highly 

expressed near the Peyer’s patch. Furthermore, molecules involved in cytotoxicity were increased. A Activation, P 

Phosphorylation/ Dephosphorylation, PP Protein-Protein binding, L Proteolysis, T Transcription, UB Ubiquitination. 

The graph was generated with the help of the IPA software. 

A major cluster of proteins upregulated near the Peyer’s patch are T cell receptor-

associated genes, as can be seen in Figure 4-13. The CD3 complex (Cd3d, Cd3e, Cd3g), 

as well as downstream signaling molecules (Cd247= CD3 ζ, Zap70, Sh2d2a), co-

receptors and TCR regulators (Cd8a, Lat), and costimulatory molecules (Cd27, 4-1BB, 

Cd2) increased specifically near the Peyer’s patch. Lastly, a couple of genes were 

increased that can be combined by their relation to cytotoxicity (Gzma, Gzmb, Gzmk, 

Nkg7) or because of their known expression in cytotoxic T and NK cells (Cd160). 

Most of the genes mentioned for the comparison near vs. far to the Peyer’s patch were 

also expressed to a high degree in the healthy untreated mucosa (Table 4-2). Only a 

very small number of genes were specifically upregulated near the Peyer’s patch only 

in the GvHD setting and not in the healthy untreated tissue. Of these genes, 4-1BB, 

Cd2 and Galectin are known to play a major role in immune responses.  

In summary, the genes upregulated near the Peyer’s patch in GvHD were dominated 

by T cell activation genes and contained also molecules involved in T cell trafficking, 

migration and cytotoxicity. Some costimulatory molecules were upregulated near the 

Peyer’s patch only in GvHD. 
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Overall, the GvHD vs. bone marrow comparison yielded many genes involved in 

inflammation, antigen presentation and costimulation. These results point to candidate 

chemokines that may be involved in attracting T cells from circulation as well as 

directly from the Peyer’s patch to the surrounding mucosa. In contrast, particularly the 

mucosa near the Peyer’s patch was strongly enriched by T cell associated genes. The 

genes upregulated specifically here point to some chemokine receptors and 

costimulatory details about the T cells that had recently egressed from the Peyer’s 

patch to the lamina propria. 

Taken together, the experiments of this thesis provided evidence for a previously 

unknown migration shortcut from the Peyer’s patch directly into the lamina propria of 

the small intestine. This direct access to the target tissue bypasses lymphatic and 

vascular trafficking of the T cells.  

This study showed that T cells migrate from the Peyer’s patches directly to the 

adjacent lamina propria of the small intestine. They may possibly serve as seeder cells 

attracting further circulating T cells from the blood to the early inflammation site. 
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5 Discussion 

 The Peyer’s patch lacks a capsule 

The tissue around the Peyer’s patch is directly accessible to the cells present in the 

patch. In contrast to lymph nodes, no capsule or basement membrane encapsulates the 

Peyer’s patch. Staining of laminin, which is an integral part of all basement 

membranes, revealed a continuous migration space from the Peyer’s patch to the 

adjacent villi of the lamina propria. Therefore, the extracellular organization allows for 

unhindered passage of migrating cells. 

We cannot exclude that there may be other cell types, such as dense macrophage 

networks or reticular cells that form barriers at the edge of the Peyer’s patch; this 

remains to be investigated. Nevertheless, the open boundary of the Peyer’s patch 

supports the assumption of our main hypothesis that T cells may be able to leave the 

Peyer’s patch directly to the adjacent lamina propria.  

The main function attributed to the mostly fibrous lymph node capsule is that it gives 

mechanical stability to the small organ. In ruminants, the capsule additionally harbors 

smooth muscle cells and can contract (Thornbury et al., 1990). The capsule thus fosters 

lymph flow through this dense tissue, which presents a high hydrodynamic resistance 

and hinders lymph flow (Browse et al., 1984). Many lymph nodes are positioned 

between soft tissues, which may not provide enough pressure onto the lymph nodes to 

propel lymphatic flow. Therefore, the stable capsule can sustain the required pressure 

to transport lymphatics through the nodules towards the venous drainage. In the 

intestine, the pressure to drain the lymphatics may be produced and sustained by the 

muscle layers on the serosal side of the Peyer’s patch, which produce the frequent 

peristaltic movement of the bowels. The architecture of the Peyer’s patch, with 

draining lymph vessels towards the muscular layer of the intestine, may support 

efficient drainage of fluids from the efferent lymphatics. 

Another difference between lymph nodes and the Peyer’s patches is their location 

respective to the tissues they drain. Unlike Lymph nodes, which are positioned mostly 

distant to their draining site, Peyer’s patches are embedded inside the organ they 

survey immunologically. Therefore, in contrast to lymph nodes, in Peyer’s patches the 

direct access to the surrounding tissue can provide a shortcut for immune cells that 

traffic from activation- to effector site.   
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Table 5-1   Comparison of Peyer's patches and lymph nodes and in respect to their lymphatics. 

Taken together, the Peyer’s patch architecture can support efficient lymphatic drainage 

on the muscular side, while allowing access into the soft surrounding mucosal tissue. 

 T cells form a gradient around Peyer’s patches 

T cells form a gradient around the Peyer’s patch early in the phase of intestinal 

infiltration during GvHD. Gradients generally develop by diffusion of particles from a 

point source to the adjacent areas. In this case, the Peyer’s patch is the high-

concentration source densely populated with T cells, and the lamina propria is the space 

the particles diffuse into. The gradient around the Peyer’s patch indicates that the T 

cells migrate out laterally into the adjacent lamina propria.  

We excluded the possibility that the T cells forming the gradient occupy the efferent 

lymphatics of the Peyer’s patches instead of the lamina propria tissue. When we co-

stained the lymphatic vasculature, the vast majority of T cells were located outside of 

the lymphatic vasculature.  

Therefore, we have to reject the currently accepted theory that trafficking through 

lymphatics and blood followed by extravasation is the only access route for T cells to 

enter the small intestine. 

 T cells directly egress from the Peyer’s patch to the lamina propria 

There is a limitation to the previous experiment. The Peyer’s patch is highly 

vascularized and bears many gut-specific homing factors. Hence there is an alternative 

explanation how the cell gradient may form around the Peyer’s patch: At some of the 

later time points after transplantation when the gradient was observed, the very first 

cells already homed via the blood vessels to the intestinal lamina propria (Bäuerlein et 

al., 2013). These circulating cells may preferentially have entered the MAdCAM-1high 

high endothelial venules at the edge of the Peyer’s patches to enter the lamina propria. 

This would mean that the cells forming the gradient did not necessarily emerge 

directly from the Peyer’s patch. They would rather have extravasated from the vessels 

surrounding the Peyer’s patch.  

Organ Peyer’s patch Lymph node Lymph vessel 

Afferent lymphatics no yes not applicable 

Efferent lymphatics yes yes not applicable 

contraction intestinal peristalsis in some animals in large collecting vessels 

capsule no yes no 
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This possibility was ruled out by the photoconversion experiments, which showed that 

cells directly egressed from the Peyer’s patch to the surrounding tissue. When we 

photoconverted T cells in the Peyer’s patches, they migrated in the adjacent lamina 

propria after a few hours. They did not appear in areas more distant to the Peyer’s 

patch nor adjacent to non-photoconverted Peyer’s patches. Lack of converted T cells 

around unconverted Peyer’s patches means that the photoconverted cells near the 

Peyer’s patch did not come from circulation. Furthermore, we observed single T cells 

egressing from the Peyer’s patches directly into the adjacent lamina propria.  

To rule out that imprecise photoconversion also switches cells that had already 

infiltrated the adjacent mucosa at the time point of conversion, we chose conversion 

time points when there were no or only single cells outside the Peyer’s patch. 

Furthermore, in some experiments, only the central spot of the Peyer’s patches was 

converted, and the converted cells were still detected outside the Peyer’s patch 

12 hours later, despite completely unconverted Peyer’s patch edges. The converted 

cells were still able to traffic to and migrate inside the intestine. They also still 

efficiently lysed tumor cells in culture. It can be expected that the cells detected in the 

mucosal tissue around the Peyer’s patch are in the lamina propria and not inside 

lymphatic vessels. Although the lymphatics were not stained in these experiments, the 

results will presumably correlate with those from the light sheet microscope 

acquisitions where the cells were located inside the tissue and not in lymph vessels. 

Furthermore, in intravital migration experiments, the few T cells inside lymphatic or 

blood vessels had a rounded shape and fast flow-like kinetics when compared to the T 

cells in the tissue. These precautionary measures validated that this method yields 

reliable results. 

Both irradiation and photoconversion can be damaging to stromal cell types in the 

border of the Peyer’s patches that were not analyzed in this study. These could be 

macrophages, fibroblastic reticular cells, or other stromal cells. We cannot exclude that 

this opened up new migration spaces and influenced the migration behavior of the T 

cells in these experiments. 

Approximately half of the cells counted around converted Peyer’s patches carried only 

green fluorescent Dendra2 protein. There are two possibilities for the origin of these 

cells. (1) They may have been activated in lymphoid organs other than the converted 

Peyer’s patches during photoconversion and may have entered the tissue by 

extravasation afterwards, or (2) they were activated in the Peyer’s patch but 

photoconversion induced only dim red fluorescence that had diluted out due to cell 

divisions within the 12 h – 24 h until analysis. However, considering the highly 
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efficient photoconversion (Figure 4-7), the first explanation seems more realistic. This 

would mean that close to the Peyer’s patch, approximately half of the cells originated 

directly from the Peyer’s patch, and half of the cells had entered the tissue from the 

circulation. 

In conclusion, a small population of the T cells directly enters the adjacent lamina 

propria from the Peyer’s patch by migration. These cells do not pass through the 

circulatory system to enter the target tissue. This local infiltration path opens up new 

possibilities of intestinal subsegment-specific infiltration of immune cells. If a pathogen 

intrudes through the mucous layer and enters the mucosal tissue, this barrier breach 

does not necessarily occur in all parts of the intestine to the same extent. Different 

microbes inhabit different niches along the intestine (Bashir et al., 2016; Suzuki and 

Nachman, 2016; Zilberstein et al., 2007), and intruders of a certain bacterial species may 

not penetrate to the same extent in the duodenum and the ileum. A rapid and localized 

immune response is more likely to prevent dissemination of the intruders to distant 

body sites. Thus, this localized immune response may avoid spreading of the pathogen 

and infection of other organs or individuals. It is tempting to speculate that in addition 

to resident immune cell populations and fast-recruited neutrophils, this may be 

realized by directly egressing, potentially highly specific T cells directly from the 

Peyer’s patches.  

Most of the homing receptors are expressed rather uniformly throughout the intestine. 

During a local immune reaction, broadly acting inflammatory mediators upregulate 

early homing receptors such as P-selectin (Ley et al., 1995), CXCL8 (Utgaard et al., 1998) 

and ICAM-1 (Dustin et al., 1986; Lane et al., 1989). Some of these alterations occur 

within minutes, such as for CXCL8. In contrast, other homing molecules such as 

ICAM-1 reach their full expression level only 24 h after an inflammatory stimulus 

(Pober et al., 1987). Moreover, there are some differentially expressed chemokines in 

the different parts of the small intestine, such as CCL5, CCL6 and CCL28 (Shang et al., 

2009), but there are no unique molecules directing trafficking only to some parts of the 

small intestine. Thus, it is difficult to guide circulating T cells directly into the segment 

in which a barrier breach has very recently occurred and microbiota threaten the tissue 

integrity. The direct egress from local Peyer’s patches may provide this spatial 

specificity by directly providing a source of T cells able to infiltrate the surrounding 

mucosal tissue before eliciting a major infection. This mechanism would strongly 

couple the detection of antigens in the Peyer’s patches to localized immunity. It would 

provide a difference in antigen recognition and removal between Peyer’s patches and 

mesenteric lymph nodes, which are so far believed to play partly redundant roles in 
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intestinal immunity (Hashizume et al., 2008; Macpherson and Smith, 2006; Spahn et al., 

2002). 

 T cells that have egressed from the Peyer’s patch migrate randomly 

The alloreactive T cells migrated from the Peyer’s patch directly to the adjacent lamina 

propria in a random pattern. The directionality measurements of T cells on day 3 

indicated random motion. In general, T cell migration appears to be random in lymph 

nodes (Miller et al., 2002) and Peyer’s patches. This is because in these lymphoid 

organs, T cells migrate on a three-dimensional network of fibroblastic reticular cells 

and often encounter other cells so they frequently change their direction of motion. 

Hence, when the cell is regarded as an isolated phenomenon, the migration pattern 

presents as random (Beltman et al., 2007; Miller et al., 2002). Since the T cells in the 

lamina propria on day 3 had a confinement ratio comparable to the cells in the Peyer’s 

patch, they also migrated randomly.  

On day 4 after transplantation, the donor T cells had a higher confinement ratio both 

inside and outside of the Peyer’s patches, indicating more directed migration. It may 

seem surprising that the confinement ratio was also higher in the Peyer’s patch on day 

4 as compared to day 3. This might be due to the advanced immune response in the 

Peyer’s patch. Most of the donor T cells inside the Peyer’s patch on day 4 are expected 

to be alloresponsive and activated (Beilhack et al., 2005). On day 3 in contrast, the T 

cells had not divided as much yet and may partly still have been in the process of 

activation. Naïve T cells migrate almost purely random during their search of antigen, 

whereas recently activated T cells perform informed motion (Krummel et al., 2016). For 

instance, recently activated CD8+ T cells upregulate CCR5 and thereafter perform 

chemotaxis towards antigen-presenting cells producing CCL3/4. Moreover, CD4+ T 

cells destined to provide B cell help during an immune reaction upregulate CXCR5 

and perform chemotaxis towards CXCL13 (Campbell et al., 2001) produced by 

follicular dendritic cells in the B cell follicle. These mechanisms may have contributed 

to directional migration of T cells in the Peyer’s patch four days after transplantation. 

Outside of the Peyer’s patch, the donor T cells migrated also much more directed on 

day 4 as compared to day 3. Most of the T cells in the lamina propria followed the 

collagen network on day 4 and they migrated much slower, which may indicate a 

more integrin-mediated migration in contrast to an amoeboid, pushing-and-

squeezing-like behavior on day 3 (Lammermann et al., 2008; Liu et al., 2015; Wolf et al., 

2003). Alternatively, chemokines deposited on heparan sulphate can also induce 

haptokinesis on the extracellular matrix. This guided walk along fibers leads to highly 
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directed motion (Krummel et al., 2016; Matheu et al., 2008). In a 3D environment, 

leukocytes have been observed to migrate slower with haptokinesis as compared to 

amoeboid migration (Toyjanova et al., 2015), although this may only apply to target 

organs and not to secondary lymphoid organs (Katakai et al., 2013; Katakai and 

Kinashi, 2016). Furthermore, increased interactions of highly specific T cells with target 

cells may lead to a higher arrest rate. Thus, haptokinetic migration and higher arrest 

rate may contribute to the overall slower of T cell migration. The migration on the 

collagen network inside the tissue is likely to be guided by a mixture of haptic and 

soluble cues, as it has been analyzed in detail for dendritic cells (Schumann et al., 2010; 

Schwarz et al., 2017). 

The reduced migration speed is in agreement with previous observations of activated 

T cells (Eickhoff et al., 2015; Moreau et al., 2015). Higher arrest rates on antigen-

presenting cells in the Peyer’s patch (Moreau et al., 2015) or on target cells in the lamina 

propria (Boissonnas et al., 2007) may in part explain why the at this time point highly 

antigen-specific T cells migrate overall slower. The time point of slower migration at 

day 4 is much later than in the mentioned literature, where the T cells already slowed 

down 6 h after infection. This may result from differences in the models employed: the 

models from the literature differ to this GvHD model in the type of antigen, have a 

high T cell specificity and larger number of transferred T cells. Furthermore, they may 

not be comparable in terms of antigen availability and numbers of antigen-presenting 

cells. In a minor mismatch GvHD model, slower migration of T cells in the lymph 

nodes was observed 7 days after transplantation (Michonneau et al., 2016).  

There are some alternative explanations for the migration patterns of the T cells. 

Regarding the low directionality of the T cells in the lamina propria on day 3 after 

transplantation, we cannot exclude that the cues promoting directional migration may 

be present in an irregular pattern inside the tissue. Additionally, physical obstacles 

such as other immune cells, extracellular matrix, vasculature or neurons affect the T 

cell migration tracks (Beltman et al., 2007). Circumventing these obstacles could lead to 

seemingly random migration of the T cells although in fact they follow one or more 

directional migration cues. 

Furthermore, we cannot exclude that the lymph flow around the Peyer’s patch was 

partly slowed down during intravital microscopy. The blood flow was always 

ascertained to be fast and perfusing the tissue very well before starting imaging, and 

T cells were observed flowing inside vessels during the acquisitions. However, no 

tracers for lymph flow were used and anesthesia as well as handling of the organs may 

affect the lymph flow rate in the observed Peyer’s patches. This may alter the T cell 
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egress behavior during imaging, because efficient lymphatic egress from lymph nodes 

depends on functional lymph flow (Grigorova et al., 2008). Therefore, especially the T 

cells leaving the Peyer’s patch during imaging may be affected by altered lymph flow, 

whereas the photoconverted cells that were already outside of the Peyer’s patch before 

the start of imaging were completely unaffected by this potential artifact. 

Taken together, these findings add a second T cell entry route to the small intestine. 

The T cells were able to migrate from the Peyer’s patches directly to the adjacent lamina 

propria. This mechanism may foster more rapid and direct T cell infiltration into the 

intestinal tissue. It also provides an efficient mechanism to subregion-restricted 

immune responses in the intestine, such as duodenal ulcers infected with Helicobacter 

pylori (Hobsley and Tovey, 2001), or ulcerative colitis in the terminal ileum (Caprilli, 

2008; Counsell, 1956). This direct migration may enrich for T cell infiltration in areas 

where threats such as bacteria invade the tissue or are sampled into the Peyer’s 

patches via the M-cells. Thus, the immediate entry to the target organ may enable a 

more efficient eradication of pathogens at their primary entry site. 

This immediate and early infiltration also calls for a hypothesis about the function of 

the egressed cells in the lamina propria. In addition to direct effector mechanisms, these 

cells may also serve as seeder cells to attract more cells to the region. Local secretion of 

chemoattractants, defensins or other soluble mediators may be a plausible mechanism 

for this secondary recruitment. They might be secreted directly by the T cells or 

indirectly by other cells in the local intestinal environment. This could be a mechanism 

to direct the systemic immunological attention to these subregions.  

In summary, the T cells migrated non-directionally next to the Peyer’s patch in the 

lamina propria. This mechanism of direct egress can nonetheless lead to efficient 

immunity due to fast recruitment of specific T cells, subregion-restricted immune 

reactions and may initiate secondary recruitment of further blood-borne lymphocytes.  

 The T cell egress to the tissue does not depend on S1PR1 

Egressing T cells did not depend on S1PR1 for direct migration to the adjacent lamina 

propria. Systemic inhibition of S1PR1 did not alter the number of converted T cells 

around converted Peyer’s patches or their migration behavior. The number of 

unconverted Dendra2-green cells around converted Peyer’s patches tended to be 

slightly lower than around unconverted Peyer’s patches. However, fingolimod 

treatment did not eradicate the Dendra2-green T cells around the Peyer’s patches. This 

contradicts the point discussed earlier that the Dendra2-green T cells around the 
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Peyer’s patch have likely entered the tissue from circulation. It rather speaks for the 

fact that some of the Dendra2-green T cells around the Peyer’s patch have egressed 

directly from there, because the vascular T cells were vastly reduced in these 

experiments.  

Alternatively, the Dendra2-green T cells around the Peyer’s patch may have originated 

from the sparse cells left in circulation after fingolimod treatment. This accumulation 

near the directly emigrated cells would emphasize a strong recruitment of vascular T 

cells specifically to this region, since areas further away from the Peyer’s patch were 

not infiltrated to the same extent. 

S1P produced by the lymphatic endothelium promotes T cell egress towards the 

lymphatic sinus of lymphoid organs. At the time when this dogma was not yet so well 

established, one early study investigated the role of S1P for lymphocyte homing by 

measuring accumulation of transferred labeled lymphocytes into secondary lymphoid 

organs (Halin et al., 2005). Using either FTY720 treatment or cells deficient for S1PR1, 

the researchers found that sticking to the high endothelial venules was significantly 

impaired in the lymph nodes but not in the Peyer’s patches. Until today, there are no 

more detailed reports on the effect of S1PR1 on homing into lymph nodes and Peyer’s 

patches, but our results may offer an explanation for this finding. Considering the 

limited space inside a lymph node, blocking lymphocyte egress quickly leads to 

overpopulation and lack of space for incoming cells. In this case, the endothelial 

pockets of the high endothelial venules become jammed with T cells. In consequence, 

they limit entry into the lymph node stroma (Mionnet et al., 2011). This could be a 

mechanism leading to the reduced homing to the peripheral lymph nodes observed by 

Halin et al.. However, if we assume that in contrast to the lymph nodes, the Peyer’s 

patches have a second exit route for T cells into the lamina propria that is independent 

of S1PR1, the unreduced entry into Peyer’s patch could be a result of this T cell efflux 

specific for the Peyer’s patches. This explanation is particularly tempting considering 

that the effects of FTY720 on homing into the LN were independent of S1PR1 

expression on the homing lymphocytes, whereas the recipient mice in their study were 

proficient for the receptor, allowing for efficient overpopulation of lymph nodes before 

adoptive transfer. 

A recent report associated the egress of γδ T cells from the Peyer’s patch with the G-

protein coupled receptor GPR55 (Sumida et al., 2017). Upon blockade of this receptor, 

the authors observed a drop in γδ T cell numbers in the Peyer’s patch that could not be 

explained by increased efflux of cells to the mesenteric lymph nodes. Potentially, these 

cells have exited the Peyer’s patch directly into the adjacent lamina propria to become 
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intraepithelial lymphocytes. This or similar mechanisms may contribute to the direct 

egress of also other immune cell populations from the Peyer’s patch. 

To conclude, the mechanism of direct egress to the tissue differs from lymphatic egress 

from Peyer’s patches because it does not require S1PR1.  

 RNAseq screen reveals migration-promoting factors in the lamina 

propria 

The inflammation during GvHD induces migration-promoting factors in the lamina 

propria. Early inflammatory chemokines and other migration-promoting factors may 

attract the T cells directly from the Peyer’s patch. These cells are highly activated and 

harbor some specific costimulatory molecules that may hint towards an alternative 

activation pathway. The T cell attracting chemokine CCL4 was produced in vicinity of 

these cells and may be a factor recruiting further circulating T cells. 

 Factors potentially attracting T cells from the Peyer’s patch to the 

adjacent mucosa 

The RNAseq results revealed a strong Th1 inflammatory milieu, as it was expected for 

the GvHD setting. The intestinal mucosa may induce inflammatory factors non-

specifically in response to the damage resulting from the conditioning regimen. We 

excluded this possibility by comparing the GvHD mice to BM transplanted mice, 

which also received irradiation. The signature cytokines Ifng and Tnf were 

upregulated, along with an array of genes induced by them (Stat1, Tgtp2, Usp18, Ifit2, 

Nlrc5, Il12rb1, Irf1, Igtp, Irgm2). IFNγ is important for particularly gastrointestinal 

GvHD, although conversely absence of IFNγ aggravates overall GvHD (Coghill et al., 

2011). The authors attribute this effect to the immunoregulatory mechanisms that IFNγ 

also initiates. Many migration-related transcripts were upregulated in the mucosa 

(Coro1a, Dock2, Rac2, CD47, tubulins, chemokines and receptors, S1PR1, Integrins and 

-related proteins, Lgals7, Clec1a, St3gal4, Lrg1, Cd38, and metalloproteinases) 

indicating early infiltration of neutrophils (Hulsdunker et al., 2018) and possibly the T 

cells. Furthermore, several mechanisms that counteract and therefore inhibit the 

aGvHD reaction were detected, such as Treg induction (Il10, Ido1, Ido2, Socs1, Socs3) 

and Th2 polarization (Il4ra, Il13, Arg, Il33). These two polarizations lead to general 

dampening of an immune response through the action of regulatory T cells and to a 

diminished Th1 response, respectively, and counter-regulatory mechanisms are an 

essential part of every ongoing immune reaction. These results convinced us that the 

findings from the RNAseq screen were well representative of the overall 
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immunological situation and that it is possible to derive more detailed information 

from this experiment. 

In the overall mucosa, there were two prominent groups of genes induced: those 

involved in chemoattraction and those in antigen presentation and costimulation. 

Chemoattractant molecules (Cxcl2, Cxcl5, Cxcl9, Cxcl10, Cxcl11, Ccl3, Ccl4, Ccl7, Ccl8, 

Ccl11, Ccl17, Ccl22 and the alarmin Il33) may play a role in attracting the alloreactive 

donor T cells from the Peyer’s patch to the adjacent mucosa, despite dominating 

random migration in the lamina propria. The surprisingly straight cell tracks at the 

border of the Peyer’s patches may hint in this direction. IFNγ induces CCL3-5 and 

CXCL9-11, which play an important role in early recruitment of immune cells to the 

inflamed intestine (Bouazzaoui et al., 2009; Wysocki et al., 2005). CCL17 and CCL22 

bind to CCR4 on T cells and may also attract them from the Peyer’s patch to the 

adjacent lamina propria. Alternatively, the T cells may also access the mucosa due to a 

loss-of-gradient, such as downregulation of CCL21 and CXCL13 as a response to IFNγ 

(Mueller et al., 2007). CXCL2 and CXCL5 attract neutrophils which precedes T cell 

infiltration in time. CCL7 recruits monocytes, which are important for clearance of cell 

debris from the tissue as macrophages, although work from the Beilhack laboratory 

points to intestinal macrophages that are rather tissue-resident (Le et al., manuscript in 

preparation). CCL8 attracts a broad range of immune cells, whereas CCL11 attracts 

eosinophils (Jose et al., 1994). Eosinophils are mostly related to Th2 inflammation and 

therefore play a more dominant role in chronic GvHD (Kalaycioglu and Bolwell, 1994), 

although eosinophils have also been associated with upper gastrointestinal acute 

GvHD (Daneshpouy et al., 2002). The alarmin IL-33 recognizes ST2, which mediates 

Th2 polarization in its membrane bound form or Th1 polarization when soluble 

(Garlanda et al., 2013). Therefore, IL-33 plays diverse but important roles in GvHD. 

Many of these chemokines expressed in the mucosa attract T cells and potentially 

promote the direct migration of the T cells from the Peyer’s patch to the adjacent 

lamina propria.  

Most of these infiltration-related genes were increased specifically in GvHD and were 

not expressed at this high level in the untreated healthy tissue. Therefore, these genes 

represent the inflammatory environment during the alloreaction, and differ from the 

tolerogenic immune-cell rich environment that is naturally present in the steady-state 

intestine. 

Another prominent group of genes induced in the overall mucosa were related to 

antigen-presentation and costimulation. A whole range of classical and non- classical 

MHC I and II molecules were upregulated, which on one hand reflect stressed cells in 
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the case of MHC I upregulation, and increased antigen presentation in the case of 

MHC II. Furthermore, the peptide loading machinery of both MHC classes was highly 

expressed (CD74, Tap1, Tap2). Further antigen presentation in the mucosa can deliver 

confirming survival signals for the infiltrating T cells. The costimulatory molecules 

upregulated in the mucosa were GITR, OX40 and 4-1BB Ligand. GITR on T cells 

enhances CD8+ T cell proliferation whereas it inhibits conventional CD4+ T cell 

proliferation in GvHD (Muriglan et al., 2004). OX40 is expressed on activated T cells 

and 4-1BB Ligand on antigen presenting cells, which binds to 4-1BB on T cells. 4-1BB 

expression was high particularly near the Peyer’s patch in our screen, as discussed 

below. Both OX40 and 4-1BB promote GvHD (Briones et al., 2011). Also coinhibitory 

molecules increased, such as PD1 expressed by T cells that binds the also upregulated 

molecules PD-L1 and PD-L2 on antigen-presenting cells. Btn1a1 belongs to the B7 

family and may function as a validation signal of γδTCR recognition in an innate-like 

fashion, as it has been shown for BTN3A1 (Vantourout et al., 2018). Since different 

costimulatory cues promote different responses in T cells, it is conceivable that these 

mechanisms contribute not only to the activation, but also to the adhesive and 

migratory phenotype of the T cells activated in the Peyer’s patch. Some studies tried to 

differentiate the induction of migratory mechanisms from the proliferation that 

different costimulatory molecules initiate, but the number of reports is still scarce 

(Mirenda et al., 2007; Walker et al., 1999). 

The five most upregulated genes from the RNAseq analysis comparing GvHD with 

bone marrow controls included some molecules intuitive to immunologists and some 

less studied in this field. The top upregulated gene, Pla2g4c, was almost the only 

candidate that was also found upregulated with mass spectrometry, also by a factor of 

more than 5. The Phospholipase A2 Group IV C (Pla2g4c) is involved in eicosanoid 

signaling and may regulate macrophage differentiation. The Suppressor Of Cytokine 

Signaling 1 (Socs1) downregulates chemokine signaling and is part of the anti-

inflammatory counter-regulatory mechanisms initiated during the immune response. 

Restistin-like beta (Retnlb) is highly expressed in colitis and ileitis and seems to play a 

role in mucosal integrity (Hogan et al., 2006). Ifng is the signature cytokine of GvHD 

and induces the overshooting type I immunity, and was an expected upregulated 

gene. The pseudogene gasdermin C-like is on the antisense strand between the genes 

Gasdermin C4 (Gsdmc4) and Family with sequence similarity 49b (Fam49b) 

(Chattaragada et al., 2017) and may be involved in their regulation. Fam49b has 

recently been associated with actin dynamics and T cell activation (Shang et al., 2018). 

This the pseudogene may be expressed due to an open and accessible chromatin 



.                                            DISCUSSION 

77 

  

structure, which resulted from expression of another gene in close proximity. Fam49b 

was not detected which may have been due to technical reasons. 

Most of these antigen-presenting genes upregulated in GvHD were also expressed in 

the healthy untreated mucosa, hinting at the immune-cell rich environment in the 

steady state. After transplantation conditioning, many of the immune cell populations 

are lost. Therefore, the influx of immune cells to the intestine may partly be interpreted 

as replacement of the local immune system, were it not for the alloreactive reaction 

that attacks and destroys the host tissue. 

In summary, there is a group of migration-promoting genes upregulated only in 

GvHD as compared to the bone marrow control and the untreated healthy control. 

Another group of genes involved in antigen presentation and costimulation was 

present in the healthy untreated control, was eradicated by irradiation but reappears 

after GvHD induction. The cytokines and costimulatory molecules are potential 

candidates fostering the migration of T cells into the adjacent mucosa. 

 Factors likely expressed in the T cells near the Peyer’s patch 

When comparing the mucosa near the Peyer’s patch and further away, the area near 

the Peyer’s patch was expected to be enriched for genes expressed by T cells, which 

accumulate in this region due to the direct efflux from the Peyer’s patch. Except for a 

few single exceptions, all genes upregulated specifically near the Peyer’s patch in 

GvHD were also expressed in the healthy untreated mucosa. 

Next to the Peyer’s patch, T cell marker genes (Cd3γ, δ, ε, Cd8a) factors for T cell 

activation (Cd3ζ, Zap70, Lat, Cd27, Cd2, Lck) and migration (Parvinγ, Rac2, Dock2) 

were increased. Furthermore, chemokines that T cells produce were increased near the 

Peyer’s patch (Xcl-1, Ccl4). The integrins αL recognizing ICAM-1 and integrin β7, which 

pairs with integrin α4 for intestinal homing, were also increased near the Peyer’s patch 

and likely represent the T cell population in this location. In the course of his medical 

doctoral thesis, Lukas Scheller confirmed the expression of Cxcl9, Ccl4, Cd27, Cd2, 

Dock2 and Parvinγ in immunofluorescence microscopy, and the sensitivity of 

allogenic T cells from the mesenteric lymph nodes to Cxcl11 and Ccl4 in a transwell 

assay or chemotaxis chamber (all data will be presented in his thesis).  

CD4+ T cell infiltration precedes CD8+ T cell infiltration in this GvHD model and CD4+ 

T cells are good producers of cytokines attracting more T cells. Therefore, we expected 

to find predominantly CD4+ T cells around the Peyer’s patch early during GvHD. 

However, the RNAseq results rather point to a gradient of CD8+ T cells around the 
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Peyer’s patch. The expression of Cd8a and cytotoxic molecules such as granzymes and 

Nkg7 was increased near the Peyer’s patch, and no strictly CD4+ T cell associated genes 

were found. The reason for this may lie in the time point chosen for this analysis. As 

discussed earlier, the first T cells migrate out of the Peyer’s patch three days after 

transplantation, whereas one day later on day 4, the first T cells already enter the 

intestinal tissue via blood circulation. Therefore, at the time point of the RNAseq 

analysis, the population of T cells is likely already a mixture between directly egressed 

cells and those from circulation. Hence, the CD8+ T cell gradient may originate directly 

from egressed cells or may also represent the T cells that have entered from circulation. 

The chemokine receptors expressed near the Peyer’s patch included CXCR6, CCR5, 

CCR7 and CCR9. CXCR6 is expressed on T cells and can be upregulated on 

neutrophils in inflamed tissue and likely represents their infiltration into this tissue 

area (Gaida et al., 2008). The frequency of neutrophils in the Peyer’s patch lies below 

5% (Jung et al., 2010), and although this migration route may also be conceivable for 

other cell types, the Peyer’s patch is not a likely a source of directly migrating 

neutrophils for the adjacent mucosa. Therefore, CXCR6+ neutrophils would probably 

have entered the tissue from circulation. CCR5 is an important early inflammatory 

recruitment receptor on T cells and recognizes CCL3-5, which is secreted primarily by 

T cells, B cells and monocytes after activation. Since CCL4 is expressed particularly 

near the Peyer’s patch, this may be a mechanism how the egressed T cells recruit cells 

from circulation and induce a secondary infiltration at this site.  

CCR7 is constitutively expressed on naïve T cells and downregulated after activation 

in secondary lymphoid organs. Although CCR7 was not significantly upregulated near 

the Peyer’s patch, it showed a strong increase in three out of four replicates. This 

strong expression of CCR7 near the Peyer’s patch was unexpected in the light of the 

hypothesis that activated T cells migrate out of the Peyer’s patch, which would likely 

express CCR7 only at low levels. However, receptor density at the surface is also 

modulated by internalization and does not necessarily have to correlate with 

expression levels. Also, other cell types such as dendritic cells upregulate CCR7 after 

activation to be able to home to the lymphoid organs to present antigen to T cells (Ohl 

et al., 2004). Therefore, antigen-presenting cells may be another source of CCR7 in the 

mucosa. Activated B cells can also upregulate CCR7 after activation, but are not a 

plausible source after irradiation. Furthermore, activated neutrophils can also express 

CCR7 (Beauvillain et al., 2011).  

CCR9 is the classical gut-homing molecule on T cells and B cells, and expression on T 

cells is high in gastrointestinal GvHD (Beilhack et al., 2008). The increased CCR9 
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expression near the Peyer’s patch may be attributed both to the cells migrating from 

the Peyer’s patch as well as those from circulation. 

Surprisingly, we did not find increased expression of the classical gut-homing 

chemokine CCL25, although immunofluorescence stainings of the mucosa around 

Peyer’s patches showed a marked increase of CCL25 from day 2 to day 4 after 

allogenic hematopoietic cell transplantation. The epithelium ad mid-height of the villi, 

and particularly around ileal Peyer’s patches including the follicle-associated 

epithelium expressed marked levels of CCL25 (Annex Figure 7-2). This was counter-

intuitive as in the steady state, CCL25 is expressed mainly in the crypts of the proximal 

intestine (Kunkel et al., 2000; Wurbel et al., 2000). However, the CCL25 gene may be 

transcribed earlier than when it is presented on the cell surface and picked up by 

microscopy, therefore, the RNA analysis at this time point may simply miss a 

difference due to the time point. Therefore, the role of CCL25 for the Peyer’s patch 

egress remains elusive. 

The three costimulatory molecules CD27, CD2 and 4-1BB were transcriptionally 

elevated near the Peyer’s patch. CD27 was expressed near the Peyer’s patch in GvHD 

and throughout the whole mucosa in the healthy untreated tissue. In contrast, both 

CD2 and 4-1BB were expressed only near the Peyer’s patch in GvHD and not in the 

healthy untreated tissue. This means that likely these molecules represent the 

inflammatory stimulus during GvHD and that potentially these cells acquired a 

phenotype different to those that populate the intestine in the steady state. 

CD27 is upregulated on recently activated T cells and recognizes CD70 expressed on 

antigen-presenting cells (Watts, 2005). Ligation of CD27 promotes effector T cell 

survival after activation. Conversely, in GvHD, host-derived CD70 suppresses the 

donor T cell reaction (Leigh et al., 2017). CD70 is also upregulated on activated 

alloreactive T cells and limits the T cell response (O'Neill et al., 2017). In contrast, 

CD70-expressing non-hematopoietic cells in the lamina propria provide survival signals 

to T cells in a Listeria monocytogenes infection model (Laouar et al., 2005). Therefore, 

whether CD27 promotes or dampens the immune response seems to strictly depend 

on the location (Peyer’s patch vs. lamina propria) and the type of inflammation. 

Transcriptional profiling of steady-state intraepithelial lymphocyte and lamina propria 

lymphocyte populations revealed expression of CD27 in the CD8+ lamina propria 

lymphocytes population and 4-1BB expression in CD4+ and CD8+ lamina propria 

lymphocytes (Raine et al., 2014). This speaks for the survival-promoting role of CD27 in 

homeostasis of the tissue-resident cells in the steady state, which may also play a role 

for the recently egressed T cells from the Peyer’s patch.  
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4-1BB, like CD27, belongs to the TNF family and was increased near the Peyer’s patch, 

whereas 4-1BB ligand was upregulated throughout the mucosa in GvHD. 4-1BB is 

expressed on T cells and natural killer cells, whereas the ligand is expressed on 

antigen-presenting cells. 4-1BB is upregulated after T cell activation and preferentially 

acts on CD8+ T cells, but can also activate CD4+T cells (Briones et al., 2011). 4-1BB 

promotes alloreactive T cells in acute GvHD by upregulation of granzyme, perforin, 

IL-2 and IFNγ (Blazar et al., 2001), but dampens the Th2 response in chronic GvHD 

(Nozawa et al., 2001). Furthermore, 4-1BB promotes inflammatory bowel disease 

(Maerten et al., 2004). Since 4-1BB promotes rather a Th1 phenotype, it fits well with 

the GvHD pathology. Unfortunately, not much is known about the induced effector 

mechanisms after 4-1BB stimulation, which may hint to a mechanism of Peyer’s patch 

egress. 

CD2 belongs to the SLAM family of receptors and expressed on T cells and NK cells. It 

binds to CD58 in humans which is the homolog for CD48 in mice. Both 4-1BB and CD2 

were expressed selectively near the Peyer’s patch in GvHD, making them interesting 

molecules for the sideways migration of the T cells. CD2 can activate T cells in absence 

of CD28 by promoting TCR-proximal signaling (Hünig et al., 1987; Leitner et al., 2015; 

Skånland et al., 2014). Many of genes involved in proximal TCR signaling were 

induced, which speaks for the fact that the cells did not only express CD2, but also 

received signals through this receptor, which particularly upregulates receptor-

proximal signaling molecules when compared to CD28 (Skånland et al., 2014). 

Costimulation with CD2 induces strong adhesion of T cells as compared to CD28 

(Parra et al., 1994), which may be beneficial for migrating cells. CD2 is normally 

expressed on all T cells, but in the intestine, the majority of CD8αα IEL lacks CD2 

expression (Van Houten et al., 1993). The authors claimed that these cells were 

hyporesponsive to proliferative stimuli. However this may be due to other 

characteristics of this autoreactive tolerogenic CD8αα population (Qiu et al., 2016) and 

may not necessarily result directly from the lack of CD2. 

The costimulatory molecules upregulated only near the Peyer’s patch in GvHD are 

likely important candidates for initiating this direct migration from the Peyer’s patch. 

It would be interesting to see whether protein levels of the T cells isolated from the 

Peyer’s patch or the surrounding tissue confirm this hypothesis, and whether these 

cells behave differently in terms of chemoattraction or general migratory properties. 

The five most upregulated genes near the Peyer’s patches were Cd247 (Cd3ζ), Cd2, 

Parvg (Parvin γ), Cd27 and Ogdhl (Oxoglutarate Dehydrogenase Like). The first two 

speak for strong activation of the T cells and emphasize the potential role of alternative 
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costimulation for the activation and maintenance of these cells. Parvin γ is a central 

intracellular migratory molecule, and confirms the migratory phenotype of the cells 

near the Peyer’s patch. Ogdhl localizes to the mitochondria, and plays a role in glucose 

and glutamate utilization, which may be linked to an effector phenotype of the 

egressed T cells, which are known to utilize glucose to generate ATP rather than 

oxidative phosphorylation (Nguyen et al., 2018; van der Windt and Pearce, 2012). 

To sum up, the T cells near the Peyer’s patch likely had a highly activated phenotype 

and expressed alternative costimulatory molecules. They produced the chemokines 

XCL-1 and CCL4, which may be involved in secondary recruitment of circulating T 

cells.  

The migratory factors induced in the mucosa and the properties that can likely be 

attributed to the T cells around the Peyer’s patch hint at mechanisms that may attract 

the T cells from the Peyer’s patch to the adjacent lamina propria, despite the random 

migration observed for the egressed T cells. Nevertheless, it still needs to be tested 

individually what the driving source for the direct egress from Peyer’s patch to lamina 

propria is. Furthermore, it will be fundamental to the concept whether these early 

emigrants are able to attract additional specific or unspecific lymphocytes and 

therefore serve as seeder cells. 

 Conclusion 

So far, T cells were considered to enter the small intestine only via extravasation from 

the blood vessels. Our findings add a second T cell entry route to the intestinal lamina 

propria: a fraction of T cells enters the lamina propria directly by migrating from the 

Peyer’s patches. We hypothesize that these cells may be necessary to initiate a fast 

immune response in specific regions of the small intestine. They are key candidates to 

recruit additional circulating T cells to the site of inflammation and thereby lead to a 

secondary strong influx of activated T cells. 

This concept would affect treatment strategies against gastrointestinal GvHD, and may 

provide an answer to the question why it is so difficult to prevent T cell infiltration by 

only blocking extravasation, even via multiple receptors. Furthermore, intestinal 

infections and inflammatory bowel diseases such as ulcerative colitis of Crohn’s 

disease may be influenced by this mechanism in a rather non-profitable way. Antigen-

specific cells may successfully protect against invaders or harmfully cause pathologies 

against commensal bacteria or intestinal antigens. However, this direct migration 

mechanism may also be exploited by smart vaccination strategies targeting the 
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antigens to the Peyer’s patches which may induce a protective local T cell memory 

close to the prime pathogen entry site. Finally, this direct migration may conceivably 

play a role in oral tolerance, where induced regulatory T cells subsequently populate 

the intestinal lamina propria. 

 
Figure 5-1   Proposed model. T cells traffic from the Peyer’s patch to the lamina propria via the lymphatics and enter 

the mucosa from blood vessels. We demonstrated that a small fraction of cells accesses the lamina propria adjacent to 

the Peyer’s patch directly by migration inside the tissue. It remains unclear, which mechanism mediates this direct 

migration. It is unlikely related to S1PR1. Possible candidates fostering direct T cell egress are G-protein coupled 

receptors, such as chemokine receptors, on T cells responding to soluble environmental cues. Alternatively, stromal-

like cells such as tissue-resident macrophages may facilitate the observed T cell migration patterns. 

In light of these findings, clinicians and experimentalists may have to revisit the 

treatments to block or modify cell trafficking to the small intestine. Current strategies 

that insufficiently block intestinal trafficking may improve by addressing both access 

routes to the small intestine. 
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7 Annex 

 
Figure 7-1   Preliminary results of migration patterns with fingolimod treatment. Analysis of the cell migration tracks 

inside and adjacent to Peyer’s patches, with and without Fingolimod treatment. Fingolimod reduced the cell velocity 

both on day 3 and on day 4 inside and outside of the Peyer’s patches. The confinement ration increased with 

fingolimod treatment on day 3 but was slightly reduced inside the Peyer’s patch on day 4. The turning angle was 

antiproportionally altered. Data for day 3 and day 3.5 were pooled. One dot represents one cell track, n=5/ 1/ 13/ 2 

mice for day 3 and 2/ 1/ 2/ 1 mice for day 4, left to right, outliers are indicated by a plus. 

 

Table 7-1   Top five upregulated genes in the GvHD mucosa vs. bone marrow control 

Gene names padj 
log2FoldChange 

 BM+T vs. BM RNAseq 

Pla2g4c 1,72E-116 6,711665312 

Socs1 1,27E-130 5,175840504 

Retnlb 1,02E-29 5,171271567 

Ifng 6,34E-23 5,157368615 

Gsdmcl-ps 1,45E-16 5,023157669 
 

Table 7-2   Top five upregulated genes near the GvHD Peyer's patch 

Gene names padj 
log2FoldChange 

Near PP vs. Far from PP 

Cd247 1,83E-07 3,02049199 

Cd2 0,0052 2,460315261 

Parvg 0,0001 2,441031278 

Cd27 0,0042 2,394772822 

Ogdhl 0,0015 2,390875923 
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Figure 7-2   CCL25 expression around Peyer's patches 4 days after transplantation. A The intestinal epithelium 

around a Peyer’s patch that contains donor T cells (CD90.1, green) expresses CCL25 (red). Cell nuclei were counter-

stained with DAPI (blue). B Detail of CCL25 expression (red) by the follicle-associated epithelium and the 

epithelium of adjacent villi. Cell nuclei were counterstained with DAPI (white). Scale bar: 200 µm. 
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