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1. Introduction 

1.1. The autonomic nervous system (ANS) 

 

The nervous system communicates with the rest of the vertebrate body by sending 

electrical impulses from the central nervous system (CNS) through neurons to the 

peripheral nervous system (PNS), muscles and glands. Communication between neurons 

occurs via one of two key mechanisms; either the secretion of chemical messengers called 

neurotransmitters at chemical synapses, or the direct transmission of intercellular signals 

through gap junctions at electrical synapses.   

The autonomic nervous system (ANS) is the branch of the PNS that controls the body’s 

involuntary actions and visceral functions. Traditionally, the ANS is classified into the 

sympathetic nervous system (SNS) and the parasympathetic nervous system (PSNS). For 

both the SNS and PNS, signals through the inter-neuronal connections are communicated 

via the use of acetylcholine (ACh) as a neurotransmitter. Moreover, the postganglionic 

neurons in the PNS (as well as those of the SNS that innervate the sweat glands and the 

piloerector muscles) also transmit their signals to effector organs by the means of release 

of ACh, which binds to ACh receptors on these target organs. All other postganglionic 

neurons of the SNS, however, mediate their messages through the neurotransmitter 

noradrenaline (NA).1-3 

 

 

1.2. The cholinergic transmission  

 

ACh undergoes certain biosynthesis, storage and release processes in the cholinergic 

nervous system. The biosynthesis of ACh occurs in the terminal part of the cholinergic 

neuronal axon and is catalyzed by the enzyme choline acetyltransferase (ChAT), which 

links choline and acetyl coenzyme A. A prerequisite step for this synthesis is the uptake of 

choline from the synaptic cleft by a high affinity uptake system located on the synaptic 

terminals of these neurons. The synthesized ACh is stored inside vesicles in the 

presynaptic neuron.4,5  
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When a nerve impulse travels down the presynaptic neuron, voltage-dependent Ca2+ 

channels open. Elevation of intracellular Ca2+ levels inside the terminal bulb induces the 

release of ACh from its vesicles into the synaptic cleft. The binding of ACh to its 

complementary acetylcholine receptors (AChR)  on the postsynaptic neuron or effector 

organ propagates further necessary cellular.4, 5 

Finally, degradation of the ACh occurs, where ACh in cholinergic synapses is hydrolyzed 

by acetylcholinesterase (AChE) into choline and acetate. This is eventually followed by 

recycling of the choline precursor, where almost 50% of choline derived from the ACh 

hydrolysis is recovered by the choline high-affinity transporter (CHT).5 The overall events 

occurring at the cholinergic synapse is illustrated in Figure 1.1. 

 

 

Figure 1.1: A schematic illustration of the cholinergic transmission. 

The  agonistic effect of ACh in the ANS are mediated through two types of receptors, the 

nicotinic acetylcholine receptors (nAChR) and the muscarinic acetylcholine receptors 

(mAChR), based on their abilities to be stimulated the natural alkaloidal agonists nicotine 

and muscarine, respectively.  
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mAChRs belong to the members of the superfamily of G protein-coupled receptors 

(GPCRs), which mediate slow metabolic responses through secondary messenger 

cascades. Meanwhile, nAChRs are considered ligand-gated ion channels, which mediate 

rapid signal transmission.2, 6 The resultant neuromodulatory effect of ACh release in the 

ANS can be either excitatory or inhibitory based on the type of receptor stimulated on the 

postsynaptic cell.7 

Drugs are able to modulate the cholinergic nervous system by directly binding to mAChRs 

or nAChRs, or indirectly by affecting the levels of ACh in the nervous system, for instance 

by inhibiting the AChE enzyme. Commonly, drugs affecting the parasympathetic system 

are found to bind to muscarinic receptors either as agonists (parasympathomimetics) or as 

antagonists (parasympatholytics).8, 9  

 

 

1.3. G-protein coupled receptors (GPCRs) 

 

G-protein coupled receptors (GPCRs) are the largest and most versatile group of 

membrane receptors in eukaryotes, where approximately 4% of the human exons encode 

for GPCRs. GPCR ligands constitute a diverse range of molecules such as biogenic 

amines, peptide and non-peptide neurotransmitters, hormones, growth factors, and lipids. 

Consequently, GPCRs are involved in wide spectrum of physiological functions such as 

vision, taste, olfaction, sympathetic and parasympathetic nervous functions, metabolism 

and immune regulation. Moreover, GPCRs are significant therapeutic targets in many 

pathological conditions including diabetes, neurodegeneration, cardiovascular disease, 

and psychiatric disorders. One-third to one-half of all marketed drugs function by the means 

of interaction with GPCRs.1 

Despite the diversity of GPCR ligands, a common structural architecture is shared by all 

GPCRs and has been conserved over the years of evolution.  Each GPCR consists of a 

core of seven transmembrane-spanning α-helical segments (TM1-TM7). These helices are 

linked by three intracellular coils (IC1-IC3) and three extracellular coils (EC1-EC3), with an 

intracellular C-terminal domain and an extracellular N-terminal domain. The extracellular 

coils form portions of the pockets onto which signaling molecules bind in order to interact 
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with the GPCR. Two cysteine residues are located in EC1 and EC2 (found in most GPCRs) 

and form disulfide bonds, a property which is crucial for the packing and stabilization of 

limited number conformations of the heptahelical structure.1, 10, 11 

In spite of these similarities, individual GPCRs demonstrate unique combinations of signal 

transduction activities that involve several G-proteins. G-proteins, also known as guanine 

nucleotide-binding proteins, are distinctive proteins that act as molecular mediators in 

transmitting signals to the cell interior. The G-proteins that associate with GPCRs 

are heterotrimeric, having three distinct subunits; an alpha subunit (α), a beta subunit (β), 

and a gamma subunit (γ). Two of these subunits, the α- and β-subunits, are attached to the 

plasma membrane. The α-subunit binds either GTP or GDP depending on whether the G-

protein is active or inactive, respectively. In the absence of a signal, GDP attaches to the 

α-subunit, and the entire G-protein-GDP complex binds to an adjacent GPCR. Upon ligand 

binding, a conformational change of the GPCR takes place. The activated GPCR in turn 

activates the G-protein by catalyzing the exchange of the bound GDP on the α-subunit for 

GTP. Consequently, the G-protein subunits dissociate into two parts; the GTP-bound α-

subunit and a βγ dimer. These parts do not remain bound to the GPCR but rather they 

travel to interact with effector proteins such as enzymes and ion channels. The resultant 

effect involves changes in the concentration of intracellular signaling molecules such as 

cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), 

inositol phosphates, diacylglycerol, arachidonic acid, and cytosolic ions, which in turn 

affects diverse cellular functions. Following ligand dissociation from the GPCR, and when 

the GTP is hydrolyzed back to GDP on the α-subunit using the GTPase activity of the G-

protein, the three subunits re-assemble to form of an inactive heterotrimer, and the whole 

G-protein re-associates with the currently inactive GPCR, resulting in completion of the 

GPCR activation cycle, as shown in Figure 1.2.1, 12, 13 The family of G-proteins includes the 

Gs, Gi/o, Gq/11, G12/13.14 

https://en.wikipedia.org/wiki/G%CE%B1s
https://en.wikipedia.org/wiki/G%CE%B1i
https://en.wikipedia.org/wiki/G%CE%B1q
https://en.wikipedia.org/wiki/G12/G13_alpha_subunits
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Figure 1.2 : A diagrammatic illustration of the GPCR activation cycle. 

 

Based on sequence and structural similarities, GPCRs are classified into five main families; 

Rhodopsin (class A), Secretin (class B), Glutamate (class C), Adhesion and Frizzled/Taste, 

with each family demonstrating unique ligand binding properties. The largest class is class 

A, which accounts for approximately 85% of the GPCR genes.  Muscarinic acetylcholine 

receptors belong to this class of GPCRs as well as the β-adrenergic receptors and the 

dopamine D3 receptor.1, 11, 15 

 

 

1.4. The muscarinic acetylcholine receptor (mAChR) 

 

Based on the facts that the mAChR is a prototypical class A GPCR and that the cholinergic 

system has a high importance as previously discussed, the mAChR represents an 

important target for research. 
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1.4.1. Muscarinic acetylcholine receptors description, subtype classification, 

localization and involvement in physiological functions 

 

mAChRs demonstrate a high level of sequence homology among their five subtypes at the 

so-called orthosteric binding site, while having a more variable domain at the extracellular 

region where it constitutes an allosteric binding site. Five metabotropic mAChRs subtypes 

are designated as M1-M5. The subtypes M1, M3 and M5 exhibit coupling to Gq/11, whereas 

the subtypes M2 and M4 preferentially signal through the Gi/o-proteins.6, 7, 16, 17  

 

The odd-numbered receptors (M1, M3, and M5), coupling to Gq/11, activate phospholipase C 

(PLC) leading to the dissociation of phosphatidyl-4,5-bisphosphates (PIP2) into two 

components; inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 mediates Ca2+ 

release from the endoplasmic reticulum inside the cell, whereas DAG is responsible for 

activation of protein kinase C. The even-numbered receptors (M2 and M4), coupling to the 

Gi/o-proteins, inhibit adenylyl cyclase (AC) activity. These receptors also activate G-protein-

gated potassium channels, which leads to hyperpolarization of the membrane in excitable 

cells.  However, such categorization of final effect is not exclusive. For instance, M1-type 

receptors can also cause adenylyl cyclase inhibition.6, 18 

The mAChRs regulate heart rate, smooth muscle contraction, glandular secretion and 

various fundamental functions of the CNS. M1, M4 and M5 receptors are mainly located in 

the CNS, being involved in complex responses such as memory, arousal and attention. M1 

receptors are also found on gastric parietal cells, exocrine glands and the autonomic 

ganglia. M2 receptors are primarily localized in the heart, where their activation lowers the 

heart rate. M3 receptors are found on smooth muscles in many areas in the body, where 

their activation produces responses on a variety of organs such as the bronchial tissue, the 

bladder and exocrine glands.6, 16, 19 

Some mAChRs ligands designed through the field of research are selective for certain 

receptor subtypes and are often used as pharmacological tools for elucidating the function 

of the individual mAChRs. However, their specificity is not exclusive, for instance the M2 

receptor may be linked to Gi/o, Gq/11 or Gs.6, 20 

https://en.wikipedia.org/wiki/G%CE%B1s
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1.4.2. Therapeutic targeting of muscarinic acetylcholine receptors in disease: 

potential alleviation of pathological conditions 

 

The cholinergic manifestations of several diseases signify that mAChRs hold great potential 

as therapeutic targets. It has been reported that some M1 receptor-selective agonists have 

the potential to remedy the symptoms of Alzheimer’s disease and related cognitive 

disorders. Other findings suggest that ligands acting on M1 and M4 could exhibit 

antipsychotic activity. A correlation between mAChR and major depressive disorder was 

reported, where the use of muscarinic antagonists such as scopolamine decreased the 

levels of anxiety and alleviated depression. Muscarinic agonists may possibly be 

considered as therapeutic means to alleviate mania in cases with bipolar disorder. 

Moreover, the M4 receptor, associated with the modulation of dopaminergic activity, could 

be targeted by selective antagonists to correct the imbalance in the level of dopamine in 

the brain that underlies the dyskinesia affiliated with Parkinson’s disease. Studies propose 

that M5 receptor antagonists could be useful for the treatment of drug abuse and substance 

dependence. It is also proposed that the stimulation of M3 receptors could be useful for the 

treatment of type 2 diabetes. Furthermore, research proof suggests that mAChR-

dependent signaling pathways and ligands can modulate cell proliferation and cancer 

progression, where mAChR antagonists could inhibit cell proliferation.16, 17,  21, 22  

Among the clinically important ligands is pirenzepine, acting as an M1-selective antagonist. 

Pirenzepine is known to inhibit gastric secretion, salivary and urinary function. The alkaloid 

atropine, a non-selective mAChR antagonist, is used in the treatment of myopia, but has 

undesired ocular and systemic side effects, therefore pirenzepine M1-specific antagonist 

may alleviate side effects while remaining effective at decreasing the progression of 

myopia. Another alkaloid, scopolamine, is described to have antiemetic effect. Pirenzepine 

was also reported to counteract hypersalivation by its selective antagonistic activity on the 

M4 receptor, which is stimulated by another known drug called clozapine. Clozapine is the 

only antipsychotic useful for treatment-resistant schizophrenia. Clozapine is a centrally-

acting muscarinic antagonist at the M1, M2, M3, and M5 receptors, clozapine is a full agonist 

at the M4 subtype. Peripherally-acting charged antagonists include tiotropium bromide, a 

drug which is used in COPD, as well as N-butyl scopolamine bromide which is used as an 

https://en.wikipedia.org/wiki/Muscarinic
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M1
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M2
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M3
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M5
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M4
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antispasmodic drug. 16, 23, 24-32 Unfortunately, unavailability of subtype-selective ligands, 

lack of drugs deficient of side effects, as well as inconclusive physiological characterization 

of the role of each individual mAChR, are witnessed.16 

 

Figure 1.3: The structures of some muscarinic ligands in therapy. 

 

 

1.4.3. Binding to the mAChR 

 

Receptor ligands are classified based on the way they affect the receptor function or the 

location of their binding site, differentiating between orthosteric and allosteric ligands. More 

recent ligand design approaches describe a dualsteric means of binding, where one ligand 

has affinity to both the orthosteric and the allosteric site.16, 33  

The published X-ray structures of class A GPCRs illustrate the topographically different 

locations of the orthosteric and allosteric binding sites.34, 35  

Structural data have been reported for M2 receptor in its active conformation, binding the 

agonist iperoxo, as well as in its inactive conformation, accomodating the antagonist 
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quinuclidinyl benzilate, QNB.36 The M3 receptor structure has also been reported in the 

inactive conformation, where the antagonist tiotropium bound.37 

 

 

1.4.3.1. The orthosteric site 

 

ACh binds to its orthosteric binding site of the mAChR as the endogenous agonist. 

Moreover, conventional agonists, antagonists and inverse agonists are typically able to 

occupy the same site as ACh based on structural similarities.  The orthosteric binding site 

exhibits 20-50% sequence congruence within class A of GPCRs, with particularly high 

conservation among the individual subtypes of the mAChRs. Consequently, such property 

appears to be the underlying reason for the challenge to design selective orthosteric 

agonists and antagonists.33  

ACh/agonist-binding mode on orthosteric site (orthosteric activation) 

Crystal structure suggests that ACh binds to mAChRs in a narrow cleft enclosed by the 

ring-like arrangement of the seven transmembrane helices (the orthosteric binding site), 

about 10-15 Å away from the membrane surface. 

Mutagenesis studies of the M3 receptor suggest that the positively charged ammonium 

group of ACh forms an ionic bond with a highly conserved aspartate residue Asp147. 

Moreover, the efficient binding of ACh to the mAChR rely on the interactions between ACh 

and six other conserved amino acids; namely four tyrosine and two threonine residues. The 

asparagine residue Asn507 does not contribute to the binding of ACh to the orthosteric site, 

even though it is well-located for interaction with the bound ACh and proved to be 

conserved in all mAChR subtypes.38 Figures 1.4 illustrates the detailed binding interactions 

between ACh and the M3 receptor. Such interactions are expected between most 

orthosteric agonists and mAChRs. 
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Figure 1.4 : The binding interaction of ACh and the residues in the orthosteric site of the M3 receptor. 

Studies done on the M2 receptors suggested that the binding of ACh starts in its gauche 

form of the N-C1-C2-O dihedral angle. Subsequently, ACh goes through a conformational 

change from the gauche to the trans conformer when the ACh-bound M2 receptor is 

activated and is bound to a G-protein, as shown in Figure 1.5.39  

 
Figure 1.5: A diagrammatic illustration of the conformations of ACh involved in the mAChR activation. 

 

On top of the list of agonists is iperoxo, which is a highly potent agonist for mAChRs. It is 

characterized by a Δ2-isoxazoline ring system which highly enhances its binding affinity to 

the orthosteric site by a factor of 100 compared to ACh.33, 40 The binding of iperoxo to the 



INTRODUCTION 

11 
 

orthosteric binding site is shown in Figure 1.6a, where the interactions with the receptor 

result in a closed shape of the orthosteric site (solvent-inaccessible).16 

The three-dimensional conformational transition upon activation involves a cytoplasmic 

outwards movement of the transmembrane helical bundle and a corresponding inwards 

displacement of the extracellular domains, as illustrated in Figure 1.6b.40 Moreover, it is 

also reported that the orthosteric site contracts to a smaller size to better fit the generally 

small agonist structure such as iperoxo and ACh, leading to better complementarity and 

justifying their agonistic action.16  

In presence of an orthosteric agonist, the agonist-bound mAChR exists in a dymanic 

equilibrium (of different receptor conformations) between the active and the inactive 

conformations, suggesting that the receptor is “floppy” since the agonist can have multiple 

binding modes. A small alteration in the structure of the agonist can intensely affect the 

binding affinity for the active or the inactive receptor configuration.41  

 

Figure 1.6: The M2 receptor, a: The orthosteric binding site of the M2 receptor showing the bound iperoxo, b: 

the conformation change of the transmembrane structure (particularly TM6) of the M2 receptor upon transition 

from the inactive state (blue) to the active state (orange), c: the orthosteric binding site of the M2 receptor 

showing the bound QNB. (modified from:36). Reprinted by permission of Macmillan Publishers Ltd.; Copyright 

© 2013. 
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Antagonist-binding mode on orthosteric site (orthosteric inhibition) 

The asparagine residue Asn507 in TM6 participates in the improvement of the binding 

affinities of most antagonists (as proven by mutagenesis studies). The results 

demonstrated that the binding affinities of antagonists such as atropine-like agents 

(atropine, N-methyl atropine, scopolamine, and N-methyl scopolamine) and pirenzepine 

were diminished by factors ranging from 235 to 28,000 upon mutation, indicating that this 

conserved Asn residue provides a critical hydrogen bonding interaction in the binding mode 

of some mAChR antagonists.38 Interaction through this Asn residue is considered a unique 

property of the mAChR family.16 

As a first example to demonstrate the binding interactions of a competitive antagonist, N-

methyl scopolamine (NMS), to the binding pocket of a M3 receptor demonstrated ionic 

bonding between its quaternary nitrogen and Asp147 residue, similar to that reported for 

an agonist. Moreover, hydrogen bonding was found between Asn507 and NMS as is typical 

with most antagonists.42 A second example of the antagonist quinuclidinyl benzilate (QNB), 

which was co-crystallized in the orthosteric binding site of M2 receptor, is shown in Figure 

1.6c.36 Asn405 was shown to form hydrogen bonds with QNB, with limited interaction with 

Asn507, unlike most antagonists.39 

Most of the well-known drugs of therapy (previously discussed) are considered orthosteric 

ligands (whether agonists or antagonists). Designing ligands that bind to the the orthosteric 

site provides high levels of binding affinity, however almost no subtype-selectivity. 

Interestingly, a tyrosine lid (made of the residues Tyr403, Tyr104 and Tyr426) was found to 

isolate the orthosteric site from the extracellular region. On the other side of that lid is the 

extracellular vestibule, which acts as the allosteric region and is formed of non-conserved 

amino acid residues. This opens a door to the utilization of this subtype-distinct allosteric 

region as means to design subtype-selective ligands.16  

It is worthwhile to note that the orthosteric ligand has to pass the allosteric site on its journey 

to and from the orthosteric site. Consequently, it is proposed that orthosteric ligands may 

interact with residues of the allosteric site throughout their movement to and from the 
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orthosteric site, and hence they may regulate the topography of the orthosteric site by 

themselves.43  

 

 

1.4.3.2. The allosteric site 

Classical allosterism 

Allosterism is typically described as the process by which the interaction of a chemical or 

protein at one location on a protein or macromolecular complex (the allosteric site) 

influences the binding or function of the same or another chemical or protein at a 

topographically distinct site.44 The most commonly described allosterism is known as 

classical allostery, where the target of the allosteric modulation is a ligand concomitantly 

binding to an adjacent orthosteric site to the allosteric modulator.35, 44 

 

Ligand-binding mode on the allosteric site 

The non-conserved allosteric site is located between the extracellular coils EC2 and EC3. 

The loop EC2 of the M2 receptor contains the crucial EDGE amino acid sequence (Glu172-

Asp173-Gly174-Glu175) as well as Trp422 and Tyr177, whereas the essential residue 

Thr423 is on EC3.16, 43  

 

Principles and pharmacological properties of allosteric modulators 

Allosteric modulators induce conformational changes in the mAChR, consequently changes 

in the binding affinity of the orthosteric ligand may be observed as well as a possibility for 

the direct effect on the receptor signaling (intrinsic efficacy).16, 44  

Cooperativity: allosteric-orthosteric interaction 

The joint effect between concomitantly-bound allosteric and orthosteric ligands on a 

mAChR is bilateral and in the same direction; a phenomenon referred to as cooperativity.33, 

44 

Negative allosteric modulators (NAMs) are ligands that bind to the allosteric binding site 

and inhibit receptor function by decreasing the binding affinity of an orthosteric agonist 
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(negative binding cooperativity) and/or decreasing the efficacy of the agonist (negative 

activation cooperativity).33  

Positive allosteric modulators (PAMs) are ligands that bind to the allosteric site and increase 

the overall binding of the concomitantly-bound orthosteric ligand. PAMs can only mediate 

their effect in the presence an orthosteric ligand and present an advantage of having no 

off-target effects. 33 An example of a PAM is the ligand LY2119620, which binds to the 

allosteric binding site of M2 receptors in presence of an orthosteric agonist such as iperoxo. 

Upon binding, this PAM tends to stabilize the favourable configuration of the active 

receptor.16 This is shown in the Figure 1.7 below.  

          

Figure 1.7: The structure of the M2 receptor with the allosteric modulator LY2119620 (magenta) binding to its 

extracellular vestibule, and with a concomitantly bound iperoxo molecule (yellow) in the orthosteric binding 

site. (modified from:36). Reprinted by permission of Macmillan Publishers Ltd.; Copyright © 2013. 

 

Silent or neutral allosteric modulators (SAMs) are ligands that bind to the allosteric site but 

have no effect on the affinity or efficacy of an orthosteric agonist (neutral cooperativity). 

They act as competitors at this binding site inducing a rightward shift of the dose-response 

curve of the concomitantly used allosteric modulators and can be regarded as antagonists 

of other allosteric modulators.33  

Allosteric ligands which have the ability to activate the receptor in the absence of orthosteric 

agonists are referred to as allosteric agonists, ago-allosteric modulators or ago-

potentiators. A number of PAMs were reported to be allosteric agonists as well, even though 

their agonistic activity is only seen at higher concentrations than those required for PAM 

activity.33  
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Characteristics of allosteric modulators providing the advantages of their use 

 Saturability. This means that, above a certain concentration of the modulator, all the 

receptor allosteric sites are occupied and no further activity is witnessed for the allosteric 

ligand. This saturability phenomenon is governed by the cooperativity between 

orthosteric and allosteric sites.16  

 Partner dependency (probe dependence). This means that the magnitude and direction 

of the allosteric effect changes according to the orthosteric ligand concomitantly-bound 

for a certain receptor and allosteric modulator.16 This is because a receptor which is 

bound by either an allosteric or an orthosteric ligand can be considered as a new entity 

that has changed in structure from the original receptor form and, as a consequence, 

has a different signaling action.33  

 Signal bias (biased agonism). This feature is also referred to as stimulus bias or 

functional selectivity.33, 45 This property refers to the ability of allosteric ligands to 

stabilize certain receptor conformations so that only some signaling behaviour is 

mediated at the expense of others, as portrayed in Figure 1.8.16 This is because the 

flexible allosteric vestibule controls the extent of receptor movement and thereby 

governs the G-protein recruitment within a certain receptor subtype. For instance, the 

vestibule of the M2 receptor should adopt a more spacious conformation to achieve Gs 

coupling over Gi/o coupling.40 The therapeutic value of signal bias is the ability to design 

ligands that selectively promote signaling pathways involved in alleviation of 

physiological conditions, without promoting those that produce unwanted side effects.45  

 mAChR subtype selectivity. This feature can be achieved either by targeting a less 

conserved allosteric site on the receptor or through selective cooperativity with the 

orthosteric ligand.16  

 

The difference between the monovalent orthosteric and allosteric ligands binding is 

illustrated in Figure 1.9. 
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Figure 1.8: A schematic diagram of signal bias, as mediated by the presence of an allosteric ligand.  

 

 

Figure 1.9: An illustration of the possible binding modes of monovalent ligands, which can bind orthosterically, 

allosterically, or concomitantly bind forming a ternary complex and exhibiting cooperativity. 

 

Allosteric modulators in therapy 

The first known allosteric modulators for therapeutic use were benzodiazepines, which 

have anxiolytic effect mediated by increasing the binding of the neurotransmitter γ-amino 

butyric acid (GABA).33 Moreover other PAMs, such as those selective for M1 and M4 

mAChR subtypes, have been reported for treatment of Alzheimer’s disease and 

schizophrenia, respectively.39 Cinacalcet (Mimpara®) is also a PAM towards Ca2+ at the 
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calcium-sensing receptor (CaSR) used to treat secondary hyperparathyroidism. Upon 

binding to the allosteric binding site, cinacalcet improves the receptor’s sensitivity for 

extracellular Ca2+ and thus reduces the release of the parathyroid hormone (PTH) and bone 

resorption. In addition, a NAM called Maraviroc (Celsentry®) targets the 

human immunodeficiency virus (HIV), impairing its uptake into human host. This drug 

functions by allosterically binding to the CCR5 receptor (chemokine receptor 5) on the host 

cell, thus preventing this receptor from attaching to the envelope glycoprotein gp120 of the 

HIV. Furthermore, plerixafor (Mozobil®), acts as a SAM at the chemokine receptor CXCR4. 

This immunostimulatory ligand triggers the release stem cells into the blood for autogenic 

stem cell transplantation.33 In conclusion, the clinical success of allosteric modulators 

suggest the research of such approach to attain improved therapeutic drugs.  

 

Figure 1.10: Structures of therapeutically useful allosteric modulators. 

 

 

1.4.3.3. Dualsteric ligands 

 

In a more advanced drug design approach, focus is on leading-edge dualsteric ligands 

targeting individual mAChR subtypes. Dualsteric ligands have two pharmacophoric 
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moieties, linked together as one molecular skeleton, to bind both the allosteric and 

orthosteric binding site on the same receptor, as shown in Figure 1.11.16, 33, 34 

 

Figure 1.11: A schematic diagram of the dualsteric ligand approach, showing its 3 components: the 

orthosteric moiety, the allosteric moiety and the linker. 

 

The dualsteric ligand approach was initially described as the “message-address” concept 

by R. Schwyzer.46 Fundamentally, the “message” segment of the dualsteric ligand is 

responsible for receptor activation and hence binds with high affinity to the orthosteric 

binding site. The “address” segment of the dualsteric hybrid targets the uniquely non-

conserved allosteric site of the receptor (subtype selectivity). The allosteric address portion 

of the dualsteric hybrid may further fine-tune the signaling behavior (signaling selectivity). 

An illustration of the “message-address” concept is shown in Figure 1.12. The linker 

segment in the middle of the dualsteric hybrid should have the appropriate length required 

for the successful binding of both the orthosteric and the allosteric moieties, without 

unnecessary length that may attribute to steric hindrance. The linker can be chemically 

made out of repeated segments of alkane groups, polyethyleneglycol or polyglycines, with 

the required flexibility/rigidity adjusted accordingly. The bridging functional groups may or 

may not be able to influence the receptor interactions and activation.33, 47-50  

Since the dualsteric binding mode is mediated through one hybrid molecule, it is clearly 

differentiated from the standard ternary complex, which is formed using two distinct ligands 

binding to the allosteric and the orthosteric site concomitantly, as shown in Figure 1.13. In 

addition, the dualsteric binding mode is distinguishable from a multiple binding mode, where 

one small ligand oscillates between a purely allosteric and a purely orthosteric binding 

mode. Such flip-flop binding is restricted with dualsteric ligands because of their large size 

relatively high binding affinity.43  
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Figure 1.12: An illustration of the “message-address” concept. 
 

 
 
 

 

Figure 1.13: Three-dimensional models illustrating the difference in the binding mode between a monovalent 

orthosteric ligand, concomitantly-bound allosteric and orthosteric ligands (forming a ternary complex with the 

receptor), as well as dualsteric ligands. (modified from:16).  Reprinted by permission of Macmillan Publishers 

Ltd.; Copyright © 2014. 

Furthermore, dualsteric ligands exhibit dynamic ligand binding, meaning that the dualsteric 

hybrid can interchange between two binding modes; a pure dualsteric mode binding with 

both the orthosteric and allosteric binding sites and a purely allosteric binding mode 

occupying the allosteric binding site only, as shown in Figure 1.14. The shifting of this 

binding mode equilibrium towards one mode over the other occurs based on the ratio of 
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binding affinities of the orthosteric and allosteric moieties to their binding sites. The 

orthosteric segment of the dualsteric ligand should provide high binding affinity to embark 

a more favourable dualsteric binding mode.48 Depending on the extent of dualsteric and 

allosteric binding, partial agonism can be designed.34, 41, 50 Moreover, dynamic ligand 

binding was described to be the underlying reason for a phenomenon called protean 

agonism. Protean agonism refers to a feature of some dualsteric ligands which are able to 

act as agonists on receptors with low inherent activity, meanwhile acting as inverse agonists 

on inherently active receptor macromolecules.51 

 

Figure 1.14: Dynamic ligand binding. A dualsteric ligand can demonstrate two binding modes: a dualsteric 

binding mode (cooperativity is observed) and a purely allosteric binding mode (cooperativity is observed in 

case of the presence of an orthosteric ligand).  

 

The first dualsteric compounds 

Successful examples of dualsteric hybrids consist of the superagonist iperoxo and the 

antagonistic allosteric phthalimido- or naphthalimidopropylamino molecules (derived from 
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the previously known W84 ligand) linked by a hexamethonium chain, as shown in Figure 

1.15.33, 34, 47 The hybrids provide both subtype selectivity (M2-selectivity) as well as signal 

bias (functional selectivity), because these dualsteric hybrids prefer Gs recruitment over Gi/o 

(as opposed to the functional preference of the orthosteric iperoxo alone).33, 40, 52-54 

Molecular switches have been reported for dualsteric ligands, where the M2-selective 

dualsteric agonists were reported to convert to antagonistic activity merely by the 

introduction of a double bond into the Δ2-isoxazoline ring of the iperoxo.33, 41  

 

Figure 1.15: Structures of M2-selective dualsteric ligands that are made up of iperoxo (orthosteric), 

phthalimido- or naphthalimidopropylamino (allosteric) and a six-carbon alkane linker. 

 

Moreover, E. Heller et al. described the design of a M2-selective dualsteric hybrid composed 

of AFDX-384 as an orthosteric moiety and phthalimidopropylamino as an allosteric 

moiety.55 The rationale behind the use of AFDX-384 as an orthosteric antagonist was its 

feature of preferring the M2 receptor subtype by being able to interact with some conserved 

residues present in the allosteric site,43 while the phthalimidopropylamino part was used as 

a PAM.54 In addition, M1-selective dualsteric hybrids have been described. These ligands 

involved the use of the M1 antagonist pirenzepine as the orthosteric moiety linked to one of 

several fluorescent allosteric moieties, as exemplied by the hybrid Bo(15)PZ, as shown in 

Figure 1.16.56  

The expansion in the field of research of the dualsteric approach is highly demanded by the 

significant therapeutic potential of dualsteric hybrids selectively targeting mAChR subtypes, 

as well as the possibility for unraveling the molecular transduction pathways mediated by 

these receptors. 
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Figure 1.16: Structures of AFDX-384, the W84-building block, AFDX-type hybrid and Bo(15)PZ. 
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2. Aim of the work 

 

GPCRs are significant therapeutic targets in many physiological conditions, where between 

one-third and one-half of all marketed drugs work by the means of acting on GPCRs. The 

cholinergic manifestations of several diseases signifies that muscarinic receptors 

(mAChRs) hold great potential as therapeutic targets, demanding treatment by the means 

of ligands of mAChR. 

In the more advanced dualsteric drug design approach, allosteric and orthosteric moieties 

can be combined within one molecule to exploit the high affinity of ligand-binding to the 

orthosteric site and the structural diversity of the allosteric site to target an individual 

mAChR subtype, resulting in leading-edge dualsteric ligands. These mAChR subtype-

selective dualsteric ligands provide the means to avoid the undesired side effects of non-

selective orthosteric drugs, selectively promote signaling pathways involved in alleviation 

of pathological conditions, as well as aid in the elucidation of the physiological and 

pathological role of individual mAChR subtypes and highlight the molecular transduction 

mechanisms involved. These advantages essentially dictated the aim of this work to be the 

research and synthesis of dualsteric ligands targeting mAChR subtypes. 

Firstly, a project attempting re-tracing the synthesis of the M2-prefering AFDX-384 molecule 

was done (Figure 2.1), in an aim to open the gateway for future synthesis and inspection of 

AFDX-type dualsteric hybrids. 
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Figure 2.1: Structure of AFDX-384 and AFDX-type hybrids. 

 

Secondly, dualsteric ligands involving variable orthosteric and allosteric moieties have been 

synthesized to constitute a second project, fruitfully resulting in the hybrid shown in Figure 

2.2. Within each group of dualsteric hybrids, various linker lengths have been used in 

synthesis. 
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Pirenzepine-containing dualsteric hybrids were synthesized using the N-desmethyl 

pirenzepine as the orthosteric moiety and either a phthalimido- or 1,8-

naphthalimidopropylamino moiety to bind the allosteric site, each hybrid with a different 

alkane chain length as the middle linker. Individually, pirenzepine is known as an orthosteric 

M1-selective antagonist, while the phthalimide or naphthalimide “W84-derived” part is 

known to allosterically bind the M2 receptor subtype as NAMs (producing antagonist/inverse 

agonist action).25, 33  

Moreover, several clozapine-containing dualsteric hybrids were synthesized. Generally, 

clozapine is known to act as an orthosteric antagonist at the M1, M2, M3 and M5 receptors, 

and as an agonist at the M4 subtype.23 N-Desmethyl clozapine was reported to possess 

M1-selectivity as allosteric agonist.57 N-Desmethyl clozapine was involved as part of some 

of the synthesized dualsteric hybrids linked to either a phthalimido- or 1,8-

naphthalimidopropylamino moiety with variable linker lengths. Furthermore, other dualsteric 

ligands were synthesized by adjoining N-desmethyl clozapine through different chain 

lengths to the non-selective super-agonistic iperoxo, to produce potentially M1-selective 

hybrids. Similarly, additional dualsteric hybrids were synthesized involving N-desmethyl 

clozapine and the endogenous agonist acetylcholine. 

The synthesized dualsteric ligands would eventually be pharmacologically tested using the 

appropriate FRET assays. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M1
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M2
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M3
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M5
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M4
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3. Results and discussion  

3.1. Chapter 1: Synthesis of AFDX-384 

 

The synthesis of the compound AFDX-384 was pursued in order to make it available as a 

reference compound for the biological testing and for the possible derivatization of 

dualsteric hybrids that are similar to it. AFDX-384 (5,11-dihydro-11-[[[2-[2-

[(dipropylamino)methyl]-1-piperidinyl]ethyl]amino]carbonyl]-6H-pyrido[2,3-b][1,4] 

benzodiazepine-6-one) can be synthesized by combining its precursor units IV, 2-[2-

[(dipropylamino)methyl]-1-piperidinyl]ethanamine, and VIII, the chloro acyl derivative of 

benzopyridodiazepine, as shown in Scheme 3.1. This final synthetic step was reported for 

a similar AFDX-type compound by E. Heller et al.55 The synthesis of each of those 

intermediates is discussed below in brief.  

 

Scheme 3.1: The final synthesis step of AFDX-384 from its precusor molecules IV and VIII; a: Hünig’s base, 

THF, microwave.55 
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Firstly, the synthesis of the initial molecule IV was achieved over several steps, as 

illustrated in Scheme 3.2. E. Heller reported the synthesis of a similar piperidinyl 

compound.55 In short, 2-piperidine methanol was used as starting material, where it 

underwent a chlorination reaction using thionyl chloride. The resultant chlorinated 

intermediate, I, was subjected to a nucleophilic substitution reaction using dipropylamine 

to obtain the subsequent intermediate II. Bromo acetonitrile was used in the following step 

to produce the nitrile molecule III by means of the microwave. In the end, the nitrile III was 

reduced by means of LiAlH4 and AlCl3 to attain the desired piperidine derivative IV.55  

 

Scheme 3.2: The synthetic scheme for the intermediate piperidine derivative IV; 55 a: SOCl2, CHCl3, reflux 

for 1.5 hrs, b: dipropylamine, CH2Cl2, reflux for 3.5 hrs, c: K2CO3, EtOH, bromoacetonitrile, microwave 

(gradient of heating: 2 mins. to 78 °C, holding time: 2 hrs at 78 °C), d: LiAlH4, AlCl3, THF, reflux for 5 hrs. 

 

Secondly, the synthesis of benzopyridodiazepine carbonyl chloride VIII was planned in 2 

sequential steps: starting with the synthesis of the tricyclic benzopyridodiazepine ring 

system VII, followed by chloro acylation of the diazepine nitrogen.55 

The conversion of  3-amino-2-chloropyridine and ethyl 2-aminobenzoate using KOtBu in 

the microwave resulted in a product whose 1H NMR spectrum in CDCl3 showed signals that 

were slightly different from those of the reported tricyclic compound VII.55 Upon 

measurement of NMR in DMSO, an NH2 signal was seen at δH = 6.47 ppm with an 
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integration corresponding to 2 protons. This indicated that, instead of formation of the 

tricyclic ring, the ester of ethyl 2-aminobenzoate seem to have reacted with the amino group 

of 3-amino-2-chloropyridine resulting in the amide V, as shown in Scheme 3.3. The NMR 

spectra of both V and VII are shown in Figure 3.1 and 3.2, respectively (the atoms of the 

compounds are enumerated according to the same numbering pattern for the sake of 

comparisons of structures and the corresponding NMR signals).  

 

Scheme 3.3: The synthesis of compounds V, VI, VII and IX; a and c: KOtBu, dioxane, microwave, b and d: 

Hünig’s base, dioxane, 20% phosgene in toluene, microwave, e: ethylene glycol, reflux for overnight, f: 

dioxane, 20% phosgene in toluene, reflux overnight. 
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Figure 3.1: 1H NMR (400 MHz) spectrum for compound V in DMSO-d6. 

 

Figure 3.2: 1H NMR (400 MHz) spectrum for compound VII in DMSO-d6.55 
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The conversion with phosgene, which was performed in the assumption that the tricyclic 

system was formed and which had to be converted to VIII, gave a quinazolidine-2,4-dione 

VI, as shown in Scheme 3.3. The formation of compound VI was verified by NMR (Figure 

3.3), where the introduced C=O appears at δC = 151.0 ppm, however all signals appear at 

different chemical shifts to those of compound VIII as reported by E. Heller et al.55 A 

comparative analysis of the 1H and 13C NMR data of the described V, VI, VII and VIII is 

shown in Table 3.1. 

 

 

Figure 3.3: 1H NMR (400 MHz) spectrum for compound VIII in CDCl3. 
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In order to confirm the structure V and VI, X-ray crystallography analysis was performed. 

The compound V was crystallized using methanol and toluene in a mixed solvent 

recrystallization technique, while the compound VI was crystallized from chloroform. 

Crystallography results indicative for the corresponding structures are shown below (for the 

experimental details, see Supplementary information): 

 Compound V: the central amide group adopts an almost planar orientation (O=C—

N—H torsion angle = 174°). The C12— C7—C6=O1 torsion angle is 145.9 (2)° and 

an intramolecular N—H···O hydrogen bond closes an S(6) ring. The aromatic rings 

are essentially coplanar [dihedral angle = 2.28 (9)°] (molecular structure shown in 

Figure 3.4a). In the crystal, molecules are linked by N—H···O and N—H···N 

hydrogen bonds to generate 100 sheets (Figure 3.4b and Table 3.2).58 

 

Figure 3.4: X-ray crystallography results for compound V, a: the molecular structure of V, with 

displacement ellipsoids drawn at the 50% probability level, b: a view along the c axis of the packing 

of V. Hydrogen bonds are shown as dashed lines.58 

 

D—H···A D—H H···A D···A D—H···A 

N3—H3A···O1 0.86 2.10 2.7734 (19) 135 
     N2—H2···O1i 0.88 2.07 2.882 (2) 152 

N3—H3B···N1ii 0.86 2.42 3.087 (2) 134 

Table 3.2: Hydrogen bond geometry for compound V (Å, º). Symmetry codes: (i) x, y−1, z; (ii) x, −y+3/2,  

z−1/2.58 
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 Compound VI: the compound was crystallized as a chloroform monosolvate. The 

pyridine ring (N1/C1–C5) is nearly perpendicular to the planar quinazoline ring 

(N2/N3/C6–C13; r.m.s.d. (root mean square deviation) = 0.04 Å), making a dihedral 

angle of 84.28 (9)° (molecular structure shown in Figure 3.5a). In the crystal, 

molecules are linked by pairs of N—H···O hydrogen bonds forming inversion 

dimers, with an R2
2 (8) ring motif. The chloroform solvate molecules are linked to 

the organic molecule by C— H···N hydrogen bonds, and the dimers are linked by 

C—H···O hydrogen bonds, forming ribbons propagating along the a-axis direction 

(Figure 3.5b and Table 3.3).59 

 

Figure 3.5: X-ray crystallography results for compound VI (crystallized as chloroform monosolvate), 

a: the molecular structure of the solvated compound VI CHCl3, with the atom labelling and 

displacement ellipsoids drawn at the 50% probability level, b: A view along the c axis of the crystal 

packing of the solvated compound VI CHCl3. The hydrogen bonds are shown as dashed lines.59 

 

D—H···A D—H H···A D···A D—H···A 

N3—H3···O1i              0.88     1.91 2.791 (3)      175 

C14—H14···N1ii              1.00     2.39 3.200 (3)      137 

C3—H3A···O2iii              0.95     2.48 3.123 (3)      125 

Table 3.3: Hydrogen bond geometry for the solvated compound VI CHCl3 (Å, º). Symmetry codes: (i) 

−x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x+1, y, z.59 

 

Ring closure of the amide V was attempted using KOtBu and dioxane by the means of 

microwave-assistance at 100 °C. Upon TLC reaction monitoring using EtOAc as eluent, no 

conversion was observed. In order to facilitate ring closure, the temperature was raised by 

using ethylene glycol according to literature.60 After the workup and crystallization of the 
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product from methanol and toluene, the NMR spectra were in accordance with compound 

VII. The compound was obtained, however, in a low yield of 20%. X-ray crystallography 

analysis was performed for compound VII and the results are shown below (for the 

experimental details, see Supplementary information): 

 

 Compound VII: the seven-membered ring adopts a boat conformation and the 

dihedral angle between the planes of the aromatic rings is 41.51(9)° (molecular 

structure shown in Figure 3.6a). In the crystal, molecules are linked into chains of 

alternating inversion dimers formed by pairs of N—H⋯O hydrogen bonds and pairs 

of N—H⋯ N hydrogen bonds. In both cases, R2
2 (8) loops are generated (Figure 

3.6b and Table 3.4).61 

 

Figure 3.6: X-ray crystallography results for compound VII, a: the molecular structure of VII, with 

the atom labelling and displacement ellipsoids drawn at the 50% probability level, b: Unit-cell packing 

of VII showing two inverted molecules linked by hydrogen bonds indicated as dotted lines.61 

 
 

D—H···A D—H H···A D···A D—H···A 

N2—H2···O1i 0.87 (2) 1.98 (2) 2.840 (2) 175 (2) 

N3—H3···N1ii 0.93 (2) 2.28 (2) 3.200 (2) 168.7 (19) 

Table 3.4: Hydrogen bond geometry for compound VII (Å, º). Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) 

x, y−1, z; (iii) x+1, y, z.61 

 

The compound VII was subjected to the phosgene reaction for 2 hrs in the microwave, 

where no product was formed. The prolongation of time with the replacement of the use of 
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microwave with reflux overnight resulted in a small spot closely below the spot of VII upon 

TLC monitoring of the reaction (using a mixture of EtOAc/CH2Cl2 2:1 as eluent). This 

product IX was purified by silica gel column chromatography using a solvent system 

consisting of EtOAc/CH2Cl2/MeOH 20:10:0.5 since the introduction of the more polar 

methanol into the mobile phase was necessary. Upon inspection of the NMR spectra of IX, 

the introduction of the extra C=O from phosgene could be confirmed, appearing at δC = 

153.9 ppm. However, the product seems to have converted to the carbamate analogue 

rather than remaining as an acyl chloride, where the methyl group appears at δH = 3.65 

ppm and δC = 53.1 ppm in the 1H and 13C NMR spectra, respectively (Figure 3.7) The NMR 

data is also displayed in the comparative analysis in Table 3.1. This is attributed to the use 

of methanol in the purification, which should be refrained in future trials.  

 

Figure 3.7: 1H NMR (400 MHz) spectrum for compound IX in DMSO-d6. *: Minor impurities as indicated and 

confirmed by two-dimensional NMR spectroscopy. 

 

Another paper by H. Zare et al. reports the use of triphosgene 

(bis(trichloromethyl)carbonate) as a faster and simpler method to produce chloro acylated 

products in good yields with easy purification and an overall safer handling of the 
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procedure.62 The technique described involves grinding compound VII with triphosgene 

and NaOH as a base for 5 min. This alternative reaction was tried out with very small 

amounts and hence initial yields were low, but it is considered a prospect for future 

optimization, possibly with use of its alternative solvent method,63 to attain the target chloro 

acyl compound VIII and hence complete the AFDX-384 synthesis scheme. 

 

 

3.2. Chapter 2: Synthesis of dualsteric hybrids 

3.2.1. Chemistry 

3.2.1.1. Synthesis of phthalimide/1,8-naphthalimide-pirenzepine hybrids 13-19 

 

The hybrid compounds 13-19 were synthesized by linking the corresponding phthalimide 

or 1,8-naphthalimide intermediate (2-5 or 8-10, respectively) to N-desmethyl pirenzepine 

12. Each of these two entities were synthesized by means of several steps, as shown in 

Scheme 3.4. Three different reaction conditions were carried out and evaluated during the 

optimization process of the final step of the synthesis of these final compounds. 
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Scheme 3.4: Overall synthesis of phthalimide/1,8-naphthalimide-pirenzepine hybrids. 
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3.2.1.1.A. Synthesis of phthalimido/1,8-naphthalimido monoquaternary bromides 

2-5 and 7-10 

 

The synthesis of the phthalimido/1,8-naphthalimido bromide intermediates is essential for 

the consequent synthesis of the desired dualsteric hybrids. The phthalimide or 

naphthalimide “W84-derived” part is known to allosterically bind the M2 receptor subtype as 

NAMs (producing antagonist/inverse agonist action).33 The synthesis of these 

intermediates involves 2 steps, starting with the synthesis of the required initial imides 

followed by attaching bromide linkers with the appropriate length to these imides, creating 

quaternary amine compounds according to literature.64  

Schmitz et al. reported the synthesis of the two imides, namely phthalimidopropylamine 1 

and 1,8-naphthalimido-2,2-dimethylpropylamine 6, which were used to synthesize the 

corresponding monoquaternary bromide intermediates.64 As shown in Scheme 3.5, an 

equimolar mixture of the appropriate anhydride (either phthalic anhydride or 1,8-naphthalic 

anhydride) and the corresponding diamine derivative (N1,N1-dimethylpropane-1,3-diamine 

or N1,N1,2,2-tetramethylpropane-1,3-diamine) as well as a catalytic amount p-

toluenesulfonic acid and weflon-tablets (PTFE with 10% graphite) in absolute toluene were 

heated in the microwave at 115 °C by using a Dean-Stark water separator (ramp: 30 °C/min, 

800W). Upon completion of the reaction (approximately requires less than 1 hr; silica gel 

TLC monitoring was done using a mixture of EtOAc/petroleum ether 1:1 as eluent), the 

solvent was evaporated under reduced pressure followed by washing of the product with 

petroleum ether and crystallization from methanol. The imides 1 and 6 were obtained in 

approximately 90% yield as pale white and light brown crystals, respectively.  
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Scheme 3.5: Synthesis of phthalimido/1,8-naphthalimido monoquaternary bromide intermediates; a: p-

toluenesulfonic acid, abs. toluene, Dean-Stark water separator, microwaves at 115 °C for 1 hr, b: microwaves 

at 80 °C for 3 hrs. 

 

Subsequently, the desired phthalimido/1,8-naphthalimido monoquaternary bromides 2- 5 

and 7-10 were synthesized from the imides 1 and 6, as shown in Scheme 3.5 as well.64 In 

brief, the corresponding imide  was dissolved in a fifteen-fold excess of the suitable alkyl 

dibromide and heated in the microwave at 80 °C (ramp: 20 °C/min, 800W) for 3 hrs. The 
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products precipitated after cooling were washed with hot diethyl ether several times and 

obtained pure in 68% to 94% yields, respectively.  

It is to be noted that the intermediates 2, 3 and 8 were used only for the synthesis of 

pirenzepine-containing hybrids, while the intermediate 7 was only for the synthesis of 

clozapine-containing hybrids (later described in section 3.2.1.2.). The other bromide 

intermediates (4, 5, 9 and 10) were used to synthesize final compounds of both pirenzepine-

containing and clozapine-containing dualsteric hybrids. 

 

 

3.2.1.1.B. Synthesis of N-desmethyl pirenzepine 12 

 

The essential tricyclic ring system to achieve the synthesis of the desired dualsteric ligands, 

which is to be coupled to the aforementioned phthalimido/1,8-naphthalimido bromide 

intermediates, is the well-known N-desmethyl pirenzepine 12. This key entity is derived 

from the high affinity M1-selective orthosteric antagonist pirenzepine. Such heterogeneity 

in binding to mAChRs is the reason behind the incorporation of N-desmethyl pirenzepine 

12 in dualsteric subtype-targeting hybrids.43, 56 This molecule is synthesized via 2 

consecutive steps, the first of which is the synthesis of the chloroacetyl 

benzopyridodiazepine 11 according to literature,56 followed by N-alkylation using piperazine 

to attain 12 according to a modification of a procedure for similar compounds in literature.56 

In a concise description, the chloroacetyl intermediate 11 was obtained by the means of 

refluxing chloroacetyl chloride as a reagent with the benzopyridodiazepine VII (see 

Chapter 1) as starting material in presence of a base, as shown in Scheme 3.6.56 
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Scheme 3.6: Synthesis of N-desmethyl pirenzepine 12; a: dioxane, Et3N, reflux for 8 hrs, b: acetonitrile, 

KI/K2CO3, microwaves at 80 °C for 2 hrs. 

 

The target N-desmethyl pirenzepine 12 was synthesized by using a large excess of 

piperazine (ratio of 1:20) to ensure N-alkylation of the chloroacetyl intermediate 11 and 

hence avoiding dimeric side products. Catalytic amount of KI was used as well as K2CO3 

as base in the reaction, and the mixture in acetonitrile was heated under microwaves at 80 

°C (ramp: 20 °C/min, 800W). The obtained product was extracted and further purified by 

silica gel chromatography (CHCl3/MeOH/NH3 100:10:1) to give the desired compound 12 

in 72% yield.56 
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3.2.1.1.C. Synthesis of phthalimide/1,8-naphthalimide-pirenzepine hybrids 13-19 

 

The final step of the hybrids’ synthesis is the connection of one of the phthalimido/1,8-

naphthalimido bromide intermediates 2-5 or 8-10 (with the variable alkyl chain length) with  

N-desmethyl pirenzepine 12 (Scheme 3.7). The syntheses of the dualsteric hybrids was 

attempted using 3 different reaction conditions. Despite the success of synthesis with the 

initial trial, different methods and conditions were applied to optimize yields, reduce side 

products and hence easier purification of the products. The 3 reaction methods I, II and III 

were examined. 

 

Scheme 3.7: Final step of the synthesis of phthalimide/1,8-naphthalimide-pirenzepine hybrids using 3 

different reaction conditions; I: K2CO3/KI, acetonitrile, microwaves at 80 °C for 7 hrs, II: acetonitrile (without 

base or catalytst), microwaves at 80 °C for 7 hrs, III: acetonitrile (without base or catalytst), stirring at 35 °C 

for 7 days. 
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All 3 reaction methods involve the use of 1 equivalent of the corresponding intermediate 2-

5 or 8-10 and 1.1 equivalent of N-desmethyl pirenzepine 12, along with the use of dry 

acetonitrile as a solvent. This slight excess of 12 ensure the complete consumption of the 

bromo quaternary ammonium intermediate and hence facilitate purification of the final 

hybrid as the sole quaternary charged compound in the medium. Silica gel TLC monitoring 

was done using 0.2 M aqueous KNO3/MeOH 2:3 as eluent for determine reaction 

completion. The 3 methods were applied to all combinations of starting products, as shown 

in Table 3.5. 

Reaction I was characterized by the use of base (K2CO3) and catalyst (KI), and was 

facilitated by the means of microwaves at 80 °C for 7 hrs (ramp: 20 °C/min, 800W). 

However, the yield of the reaction was poor. The second synthesis trial (reaction method 

II) constitutes removal of the base and catalyst while maintaining the microwave heating 

condition. This resulted in improvement of yield. The highest yield for the final hybrid 

synthesis was achieved using reaction method III, where, besides the absence of the base 

and catalyst, only stirring under low temperature (35 °C). TLC monitoring showed that this 

method required a longer period (7 days) for reaction completion, but resulted in less side 

products. 

Yield analysis of the 3 reaction conditions is summarized in Table 3.5. Final compounds 

13, 14 and 15 are the only hybrids ultimately synthesized using reaction method II in this 

work, while all the rest of the dualsteric ligands in this project were synthesized using the 

optimal method III, having variations only in the reaction durations. 

 

RXN CPD NO. BASE CATALYST TEMP. DURATION MICROWAVE YIELD 

I 
13,14,15 
(n=2,3,4) 

K2CO3 KI 80 °C  7 hrs YES (800 W) 10-12% 

II 
13,14,15 
(n=2,3,4) 

- - 80 °C 7 hrs YES (800 W) 30-35% 

III 
16  

(n=5) 
- - 35 °C 7 days - 45% 

 

Table 3.5: Comparison between the 3 examined reaction conditions I, II and III for the final step of the 

synthesis of selected phthalimide/1,8-naphthalimide-pirenzepine hybrids and their corresponding yields. CPD 

NO.: compound number. TEMP.: temperature. 
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Several purification techniques were carried out in the process of attaining the highest purity 

of the synthesized hybrids, as shown in Table 3.6. Each purification trial was monitored by 

HLPC (a gradient method using a solvent system of 0.1% formic acid in water and 0.1% 

formic acid in methanol). 

Initially, the phthalimide–pirenzepine hybrids 13, 14 and 15 were subjected to purification 

using basic ALOX column chromatography (using a mixture of CHCl3/MeOH/NH3 100:10:1 

as eluent system), and resulted in minor purity levels only (in the range of 60%). Due to the 

small remaining amount of compound 13, only compound 14 and 15 were subjected to the 

second purification step using C18 reverse phase silica gel flash chromatography. The 

purification run was done using a linear gradient of water: solvent A and methanol: solvent 

B (B% from 0% to 100% in 60 min) followed by a plateau phase (100% methanol for 30 

min), yielding pure product as the last fraction. Drastic improvement of purity was revealed 

by the subsequent HPLC chromatography of 14 and 15, indicating that the ideal method of 

purification for these dualsteric hybrids was found, as shown in Table 3.6.  

Consequently, purification of other dualsteric ligands, such as compound 17, 18 and 19, 

was achieved successfully by subjecting them to flash chromatography runs using C18 

reverse phase silica gel columns. The substantial degree of purity of 17, 18 and 19 was 

comparable to the respectable percentage of purity of the crystallized compound 16 from 

the same series. Therefore, crystallization from the reaction medium (acetonitrile) or, 

whenever crystallization was not attainable or hindered, C18 reverse phase silica gel flash 

chromatography (using H2O/MeOH solvent system) were the 2 purification methods of 

choice for purification of all dualsteric hybrids. 
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PURIFICATION METHOD CPD NO. PURITY 

BASIC ALOX CHROM. 
13 

 (n=2) 
64% 

BASIC ALOX + RP SiO2 FLASH CHROM. 
14,15  

(n=3,4) 
98-99% 

RP SiO2 FLASH CHROM. 
17,18,19  
(n=3,4,5) 

93-96% 

CRYSTALLIZATION 
16  

(n=5) 
94% 

Table 3.6: Comparison between the different purification techniques used for phthalimide/1,8-naphthalimide-

pirenzepine hybrids and their resultant percentages of purity as revealed by HPLC analysis. Basic ALOX 

column chromatography used a mixture of CHCl3/MeOH/NH3 100:10:1 as eluent system, reverse phase silica 

gel flash chromatography used H2O/MeOH as eluent system, and crystallization was achieved from the 

acetonitrile reaction mixture. CPD NO.: compound number. RP: reverse phase. SiO2: silica gel. CHROM.: 

chromatography. 

 

The compounds 13, 14 and 15, which were subjected to basic ALOX chromatography, were 

exposed to the ammonia in the mobile phase used. This ammonia appeared during the LC-

MS runs for these compounds, where base peaks corresponding to m/z = [M-Br+NH4] 2+ 

were seen in their mass spectra (ESI), as shown in Table 3.7. Meanwhile, the other hybrids, 

purified without ammonia, showed the expected base peaks corresponding to m/z = [M-

Br+H] 2+ in their mass spectra (ESI).  
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CPD 
NO. 

AMMONIA 
USED 

M. 
M/Z BASE 

PEAK 
CORRESPONDS TO 

13 
(n=2) 

✔ 704.67 321.60 [M-Br+NH4] 2+ 

14  
(n=3) 

✔ 718.70 328.70 [M-Br+NH4] 2+ 

15 
(n=4) 

✔ 732.71 335.65 [M-Br+NH4] 2+ 

16  
(n=5) 

✖ 746.75 333.75 [M-Br+H] 2+ 

17  
(n=3) 

✖ 796.81 358.70 [M-Br+H] 2+ 

18 
(n=4) 

✖ 810.84 365.75 [M-Br+H] 2+ 

19 
(n=5) 

✖ 824.87 372.75 [M-Br+H] 2+ 

Table 3.7: Comparison between m/z base peaks in the ESI mass spectra of phthalimide/1,8-naphthalimide-

pirenzepine hybrids and their correlation to the use of ammonia during purification. CPD NO.: compound 

number. M.: molecular weight. RP: reverse phase. SiO2: silica gel. CHROM.: chromatography. 

 

The NMR spectrum of compound 15, the phthalimide–pirenzepine analogue with a 6-

carbon spacer length, is the representative example discussed (Figure 3.8). The indicator 

for the successful linkage of the 2 precursor entities, 4 and 12, is the disappearance of the 

resonance signal corresponding to CH2-Br (terminal methylene in the intermediate 4 at δH 

= 3.41 – 3.32 ppm) and the presence of the more upfield i-methylene group in compound 

15 (δH = 2.18 ppm). The presence of the pirenzepine part of the molecule is manifested in 

the spectra of the hybrid 15 through the presence of the piperazine methylene groups 

appearing at δH = 2.55 – 2.26 ppm and δC = 53.6, 54.1 ppm. In addition, the resonance 

signal for CH2-C=O methylene group (between piperazine and the benzopyridodiazepine 

ring) appears at δH = 3.36 – 3.27 ppm. It is of interest to note that this methylene signal 

appears overlapping with the CD3OD solvent signal and has been confirmed by two-

dimensional NMR spectroscopy through HMQC and HMBC measurements (see Appendix). 

Three distinct carbonyl signals are exhibited in the 13C NMR spectrum, accounting for CH2-

C=O, the NH-C=O of the benzopyridodiazepine ring and the 2 carbonyl groups of the 

phthalimide ring. The double methyl groups on the quaternary ammonium nitrogen 

resonate as a pronounced singlet at at δH = 3.10 ppm and δC = 51.1 ppm. All the other 

signals in both the 1H and 13C NMR spectra are in agreement with the elucidated 

characteristics of compound 15. 
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Figure 3.8: 1H NMR spectrum for compound 15 (400 MHz, CD3OD). 

 

 

 

3.2.1.2. Synthesis of phthalimide/1,8-naphthalimide-clozapine hybrids 21-25 

 

The hybrid compounds 21-25 were synthesized by linking the corresponding formerly 

described intermediates (4, 5, 7, 9 or 10, respectively) to N-desmethyl clozapine 20. Before 

linkage can be made, the synthesis of the entity N-desmethyl clozapine 20 was achieved 

using clozapine as starting material, as shown in Scheme 3.8. The general procedure of 

synthesis and purification methods for these clozapine-containing hybrids were based on 

the optimally found methods discussed in the synthesis of the aforementioned pirenzepine-

containing hybrids. The same default strategy was adopted for all other dualsteric hybrids 

as well. 
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Scheme 3.8: Overall synthesis of phthalimide/1,8-naphthalimide-clozapine hybrids. 
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3.2.1.2.A. Synthesis of N-desmethyl clozapine 20 

 

N-Desmethyl clozapine 20 was synthesized from clozapine as its precursor molecule. 

Clozapine is known to act as an orthosteric antagonist at the M1, M2, M3 and M5 receptors, 

and as an agonist at the M4 subtype.23 N-Desmethyl clozapine was reported to possess 

M1-selectivity as allosteric agonist.57 The starting material clozapine was extracted from 

purchased Clozapex® tablets (100 mg clozapine per tablet).  

The compound 20 was a result of a one-step synthesis by the means of N-demethylation 

of the piperazine of clozapine (Scheme 3.9). In brief, an ice-cold solution of clozapine in 

1,2-dichloroethane was subjected to the dropwise addition of an excess of α-chloroethyl 

chloroformate. Upon addition of this reagent, the solution turns from bright yellow to 

fluorescent red. Following the subsequent reflux overnight and solvent evaporation under 

reduced pressure, the resultant carbamate intermediate is hydrolyzed heating under reflux 

in methanol overnight to attain the secondary amine molecule 20 in 60% yield.65 

 

Scheme 3.9: Synthesis of N-desmethyl clozapine 20; a: 1,2-dichloroethane, α-chloroethyl chloroformate, 

reflux overnight, followed by addition of methanol, reflux overnight. 

 

 

3.2.1.2.B. Synthesis of phthalimide/1,8-naphthalimide-clozapine hybrids 21-25 

  

The last step of the synthesis of these final compounds is the linking of the previously 

synthesized phthalimido/1,8-naphthalimido bromide intermediates 4, 5, 7, 9 and 10, 

respectively, to N-desmethyl clozapine 20 using the aforementioned reaction method III, 

as shown in Scheme 3.10. The synthesis required 5 days for completion (silica gel TLC 

https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M1
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M2
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M3
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M5
https://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M4
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monitoring was done using 0.2 M aqueous KNO3/MeOH 2:3 as eluent). These final hybrids 

were purified either by crystallization from the reaction mixture or by RP silica gel flash 

chromatography (using the same gradient run method affirmed for the aforemention 

pirenzepine-containing hybrids by means of H2O/MeOH solvent system). 

 

 

Scheme 3.10: Final step of the synthesis of phthalimide/1,8-naphthalimide-clozapine hybrids; III: acetonitrile, 

stirring at 35 °C for 5 days. 

 

The 1H NMR spectrum of compound 24 (Figure 3.9) exhibits the absence of the resonance 

signal corresponding to CH2-Br (terminal methylene in the intermediate 9 at δH = 3.51 – 

3.41 ppm in CD3OD) and the presence of the more upfield i-methylene group (CH2-N) in 

compound 24 (δH = 3.45 – 3.23 ppm in DMSO-d6). Some of the characteristic features of 

the clozapine part in the 13C NMR spectrum are the C=N signal (δC = 162.2 ppm), the C-
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C=N signal (δC = 154.3 ppm) and the C-Cl signal (δC = 142.4 ppm). The assignment of the 

signals in the 13C NMR spectrum of 24 is confirmed by two-dimensional NMR spectroscopy 

through HMBC measurement (see Appendix). In addition, the resonance signals that 

distinguish the naphthalimide part, such as the methyl C(CH3)2 signal (δH = 1.25  ppm, δC = 

25.5 ppm), appear in both 1H and 13C NMR spectra. 

 

Figure 3.9: 1H NMR spectrum for compound 24 (400 MHz, DMSO-d6). 

 

 

 

3.2.1.3. Synthesis of iperoxo-clozapine hybrids 30-32 

 

The third group of final compounds constitutes the hybrids 30-32 which are composed of 

the iperoxo monoquaternary bromides 27-29 respectively, and N-desmethyl clozapine 20. 

Iperoxo is a non-selective super-agonist of mAchRs, whose high binding affinity makes it a 

good candidate for incorporation in dualsteric hybrids.33 Beside the previously described 

synthesis of 20, the iperoxo bromide intermediates were also synthesized over several 

steps according to literature,66-68 as shown in Scheme 3.11. 
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Scheme 3.11: Overall synthesis of iperoxo-clozapine hybrids; a: dimethylammonium hydrochloride, 

aqueous formaldehyde solution, copper sulfate pentahydrate as catalyst, 80 °C for 4 hrs, b: isopentyl nitrite, 

1-bromo-3-chloropropane, sodium nitrite, DMSO, stirring at room temperature for 3 hrs, c: sodium hydride, 

THF, reflux for 8 hrs, d: acetonitrile, KI/K2CO3, microwaves at 80 °C for 5 hrs, III: acetonitrile, stirring at 35 

°C for 4 days. 
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3.2.1.3.A. Synthesis of iperoxo monoquaternary bromides 27-29 

 

The synthesis of the key iperoxo intermediates 27-29, with the different carbon chain 

lengths, involves 2 important steps: Initially, the synthesis of the crucial iperoxo base, 

followed by the attachment of the appropriate linker chain. 

Kloeckner et al. described the 2-step synthesis of the iperoxo base 26 (N-desmethyl  

iperoxo) through the synthesis of its 2 precursor molecules namely 4-dimethylamino-but-2-

yn-1-ol 26a and 3-nitro-Δ2-isoxazoline 26b.66 Firstly, 26a was synthesized via a Mannich 

reaction using a basic aqueous solution of dimethylammonium hydrochloride (pH=9), 40% 

formaldehyde aqueous solution, 2-propin-1-ol and an aqueous solution of copper sulfate 

pentahydrate as a catalyst. The pH of the solution was then adjusted to 8 using 2 M sodium 

hydroxide solution, heated at 80 °C for 4 hrs and treated with 25% aqueous ammonia 

solution. After work-up, 26a was obtained as a yellow oil in 65% yield. Secondly, 26b was 

synthesized by conversion of 1-bromo-3-chloropropane with sodium nitrite and isopentyl 

nitrite in DMSO. The mixture was then stirred at room temperature for 24 hrs and extracted 

with dichloromethane to obtain 26b as yellow oil in 45% yield. The iperoxo base 26 was 

formed using the precursors 26a and 26b by means of sodium hydride and was obtained 

as orange oil in 62% yield. 

Finally, the needed iperoxo monoquaternary bromides 27- 29 were synthesized from the 

iperoxo base 26 (Scheme 3.11), based on slight modification of the reported literature.67, 68 

In short, an acetonitrile mixture containing 26, 15 equivalents of the appropriate alkyl 

dibromide and a catalytic amount of 1:1 mixture of KI/K2CO3 were heated in the microwave 

80 °C (ramp: 20 °C/min, 800W) for about 5 hrs. Following cooling of the mixture, filtration 

was done and the attained filtrate was evaporated under reduced pressure to obtain an oily 

residue, from which the target product was precipitated using diethyl ether and acquired by 

vacuum filtration. The pure iperoxo spacer compounds 27, 28 and 29 were successfully 

synthesized in yields ranging from 57% to 79%. 
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3.2.1.3.B. Synthesis of iperoxo-clozapine hybrids 30-32 

 

The synthesis of the iperoxo-clozapine dualsteric hybrids 30-32 was concluded by the 

coupling of the iperoxo bromide intermediates 27- 29, respectively, to N-desmethyl 

clozapine 20 by the same strategy approved in this project using reaction method III (as 

shown in Scheme 3.11) and a small variation of the reaction time (4 days, based on TLC 

monitoring). These final compounds were purified either by crystallization from the reaction 

mixture or by RP silica gel flash chromatography (by means of H2O/MeOH solvent system). 

The NMR data of compound 30 is the representative example of iperoxo-clozapine hybrids 

discussed (Figure 3.10). The iperoxo entity exhibits the clear resonance signals for the 2-

butynyl carbon fragment, with 2 methylene groups C≡C-CH2-N+ and O-CH2-C≡C at δH = 

4.91 ppm and δH = 4.44 – 4.35 ppm, respectively, in the 1H NMR spectrum. The ethyne 

carbons appear as 2 quaternary carbon signals at δC = 76.6 ppm and 87.7 ppm in the 13C 

NMR spectrum. Moreover, the 2 methylene groups of the Δ2-isoxazoline ring appear in both 

spectra and have been confirmed via two-dimensional NMR spectroscopy (see Appendix). 
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Figure 3.10: 1H NMR spectrum for compound 30 (400 MHz, CD3OD). 

 

 

 

3.2.1.4. Synthesis of acetylcholine-clozapine hybrids 35 and 36 

 

The acetylcholine-clozapine hybrids 35 and 36 are dualsteric compounds made up of the 

acetylcholine monoquaternary bromides 33 and 34, respectively, linked to N-desmethyl 

clozapine 20. Acetylcholine, being an endogenous orthosteric agonist, has high binding 

affinity to mAchRs.69 This makes it of great use in dualsteric muscarinic hybrids. The 

synthesis of the 2 acetylcholine bromide intermediates was the initial step for the synthesis 

of the hybrids according to literature,70 as shown in Scheme 3.12. 
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Scheme 3.12: Overall synthesis of acetylcholine-clozapine hybrids; a: acetonitrile, reflux for 3 hrs, III: 

acetonitrile, stirring at 35 °C for 3 days. 

 

 

3.2.1.4.A. Synthesis of acetylcholine monoquaternary bromides 33 and 34 

 

Uppal et al. detailed the synthesis of acetylcholine intermediates.70 Concisely, the synthesis 

entailed the use of N,N-dimethyl-2-aminoethylacetate and a fifteen-fold excess of the 

required alkyl dibromide (either 1,6-dibromohexane or 1,8-dibromoctane) in acetonitrile as 

solvent whilst heating under reflux for 3 hrs (Scheme 3.12). Following cooling, the pure 

product was precipitated using diethyl ether and obtained by vacuum filtration as a white 

solid. The monoquaternary compounds 33 and 34 were attained in 70% and 81% yields, 

respectively. 
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3.2.1.4.B. Synthesis of acetylcholine-clozapine hybrids 35 and 36 

 

Using reaction method III, the synthesis of acetylcholine-clozapine hybrids required the 

shortest reaction time among all synthesized hybrid groups (0.2 M aqueous KNO3/MeOH 

2:3 as eluent for silica gel TLC monitoring), needing 3 days only (Scheme 3.12). Hybrid 35 

was purified by RP silica gel flash chromatography (by means of H2O/MeOH solvent 

system), while hybrid 36 was crystallization from the reaction mixture. 

Out of the 2 acetylcholine-clozapine hybrids, compound 35 is the elective 6-carbon 

analogue used to exemplify the NMR evidence of the correct synthesis (Figure 3.11). The 

acetylcholine segment is depicted in the spectra of 35 by the appearance of the methyl 

singlet of CH3-C=O at δH = 2.11 ppm and δC = 20.7 ppm, with its carbonyl signal at δC = 

171.61 ppm in the 13C NMR spectrum. Both methylene groups of the same segment are 

accounted for, where O-CH2-CH2-N+ appears at δH = 4.53 ppm, δC = 58.7 ppm, and O-CH2-

CH2-N+ appears at δH = 3.76 – 3.68 ppm, δC = 63.7 ppm, and are confirmed by two-

dimensional NMR measurements (see Appendix). 
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Figure 3.11: 1H NMR spectrum for compound 35 (400 MHz, CD3OD). 
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3.2.2. Pharmacology 

 

Due to the vast availability of drugs and molecules acting on GPCRs, tools and 

pharmacological methods to test these resultant interactions have been widely developed. 

Fluorescence resonance energy transfer (FRET), also called Förster resonance energy 

transfer, is an imaging technique that allows visualization of ligand – receptor interaction 

since this type of microscopy depends on the ability to detect fluorescent signals from the 

interactions of labeled molecules in cells. FRET is a distance-dependent process by which 

energy is transferred from an excited molecular fluorophore (the donor) to another 

fluorophore (the acceptor) by means of intermolecular long-range interaction. FRET assays 

can be considered a reliable measurement of the vicinity of labelled proteins at distances 

between 10-100 Å, being particularly most accurate when the donor and acceptor are 

positioned within the Förster radius (the distance at which half the excitation energy of the 

donor is transferred to the acceptor, typically 3-6 nm).71 FRET assays utilize these 

genetically-encoded proteins being attached on the target GPCR. One or both of these 

proteins is required to be fluorescent. Upon ligand binding, the receptor undergoes 

conformational change and hence resulting in a change the measured fluorescence. The 

results are recorded as the appearance of the fluorescence of the acceptor or the 

quenching of the fluorescence of the donor.71, 72 FRET is well suited to report both protein-

protein interactions (intermolecular FRET) and conformational changes (intramolecular 

FRET).73, 74 

The commonly used biosensors are cyan fluorescent protein (CFP) on the C-terminus, and 

either yellow fluorescent protein (YFP) or a six-amino acid short sequence (CCPGCC) 

involving tetracysteine that is able to bind a fluorophore called fluoresceine arsenical hairpin 

binder (FlAsH) on the third loop of the GPCR.74-76 The latterly mentioned biosensor has the 

advantage of having a small size and hence less disruption of the protein mobility during 

the assay.76 

Dualsteric or bitopic ligands are compounds that have affinity to more than one binding site 

on GPCRs, such as the orthosteric and allosteric regions, and provide a very strong 

foundation for the design of new drugs.75 The synthesized dualsteric hybrids of this project 
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are being tested using FRET assays as means to the inspection of the optimal linker length 

of the molecule, which allows the ideal conformational change of the GPCR, as well as the 

nature of the orthosteric and allosteric moieties. In addition to the elucidation of the 

conformational changes upon binding of the dualsteric hybrids, it has to be confirmed that 

these hybrids are able to bind in dualsteric and purely allosteric manners by means of FRET 

experiments. The GPCRs involved in these studies, which are in progress, are M1 or M2 

muscarinic receptors accordingly. 
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4. A. Summary 

 

GPCRs, particularly muscarinic receptors (mAChRs), are significant therapeutic targets in 

many physiological conditions. The significance of dualsteric hybrids selectively targeting 

mAChR subtypes is their great advantage in avoiding undesired side effects. This is 

attained by exploitation of the high affinity of ligand-binding to the orthosteric site and the 

structural diversity of the allosteric site to target an individual mAChR subtype, as well as 

offering signal bias to avoiding undesired transduction pathways. Furthermore, dualsteric 

targeting of mAChR subtypes helps in the elucidation of the physiological role of each 

individual mAChR subtype. 

The first project was the attempt of synthesis of the M2-preferring ligand AFDX-384. AFDX-

384 is known to preferentially bind to the M2 receptor subtype as an orthosteric antagonist, 

with partial interaction with residues in the allosteric site. This project aimed to re-trace the 

synthesis route of AFDX-384, to open the door to its upscaling and the future synthesis of 

AFDX-type dualsteric ligands. The multi-step synthesis of AFDX-384 is achieved through 

the synthesis of its 2 precursors, the chloro acyl derivative VIII and the piperidinyl derivative 

IV, as shown in Figure 4.1. 

 

Figure 4.1: The synthesis of AFDX-384 from its precursor molecules IV and VIII. 
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Upscaled synthesis of the piperidinyl derivative IV was attained. Synthesis of the chloro 

acyl compound VIII was attempted. Several trials to synthesize the benzopyridodiazepine 

nucleus as well as its chloro-acylation resulted in the production of the novel crystal 

structures V and VI (Figure 4.2). X-ray crystallography was also done for crystallized 

molecules of the closed-ring benzopyridodiazepine VII that was previously synthesized. 

Chloro-acylation reactions of compound VII using phosgene seem to be attainable when 

done using reflux overnight. However, the use of methanol to aid in elution during silica gel 

column chromatography converted the expected product to the carbamate analogue IX. 

Hence, further attempts in purification should refrain from the use of methanol. The use of 

triphosgene instead of phosgene demonstrates a cleaner route for further upscaled 

synthesis. 

 

Figure 4.2: The structures of compounds V, VI and VII (for which X-ray crystallography has been made), as 

well as the carbamate product IX. 

 

The second project was the synthesis of dualsteric ligands involving variable orthosteric 

and allosteric moieties. Four different types of hybrids have been created over multiple 

steps. Dualsteric ligands have been synthesized using either a phthalimido- or 1,8-

naphthalimidopropylamino moiety as the allosteric-binding group, coupled to either N-

desmethyl pirenzepine or N-desmethyl clozapine using variable chain lengths. 

Furthermore, the synthesis of the dualsteric ligands involving N-desmethyl clozapine linked 
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to either the super-agonist iperoxo or acetylcholine, and being connected using variable 

alkane chain lengths (Figure 4.3). 

Several reaction conditions have been investigated throughout the analysis of the optimal 

condition to conduct the critical final step of synthesis of these dualsteric hybrids, which 

involves the linking of the two segments of the hybrid together. The optimal method, which 

produced the least side products and highest yield, was to connect the two intermediates 

of the compound in absence of base, catalyst or microwaves while stirring at 35 °C for 

several days using acetonitrile as solvent (silica gel TLC monitoring, 0.2 M aqueous 

KNO3/MeOH 2:3). The ideal purification methods for the final compounds were found to be 

either crystallization from the reaction medium or using C18 reverse phase silica gel flash 

chromatography (using H2O/MeOH solvent system). All the hybrids will be subjected to 

pharmacological testing using the appropriate FRET assays. 
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4. B. Zusammenfassung 

 
G-Protein-gekoppelte Rezeptoren (GPCRs), besonders die Familie der muscarinischen 

Rezeptoren, stellen wichtige therapeutische Zielstrukturen für die Behandlung einer 

Vielzahl an Erkrankungen dar. Die Besonderheit dualsterischer Hybridliganden, die selektiv 

an den muskarinischen Acetylcholinrezeptor (mAChR) binden liegt darin begründet, dass 

so ungewünschte Nebenwirkungen vermieden werden können. Dies wird durch die 

Ausnutzung der hohen Bindungsaffinität an die orthostere Stelle sowie die strukturelle 

Vielfältigkeit der allosteren Bindestelle erreicht, wodurch bestimmte mAChR-Subtypen 

adressiert und eine funktionelle Selektivität erreicht werden kann, die unerwünschte 

Signaltransduktionswege umgeht. Desweiteren kann die dualstere Adressierung der 

mAChR-Subtypen dazu beitragen, die physiologische Funktion eines jeden Rezeptors zu 

bestimmen und aufzuklären. 

Das Ziel des ersten Teilprojektes war die Synthese des bevorzugt an M2 bindenden 

Liganden AFDX-384. Von diesem ist bekannt, als orthosterer Agonist bevorzugt an den M2-

Rezeptorsubtyp zu binden und zum Teil Interaktionen in der allosteren Bindestelle 

einzugehen. Hierbei sollte die Darstellungsroute von AFDX-384 nachvollzogen werden, um 

eine Synthese in größerem Maßstab zu entwickeln und die Herstellung weiterer dualsterer 

Liganden vom AFDX-Typ zu ermöglichen. Die mehrstufige Synthese von AFDX-384 geht 

von zwei Vorstufen aus, dem Chloracyl VIII sowie dem Piperidinylderivat IV (Abbildung 

4.4).

Abbildung 4.4: Synthese von AFDX-384 ausgehend von den Vorstufen IV und VIII. 
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Zunächst wurde das Upscaling der Synthese von IV erreicht und die Darstellung von VIII 

versucht. Mehrere Versuche, den Benzopyridodiazepin-Kern sowie das entsprechende 

chloracetylierte Derivat zu erhalten, führten zur Bildung der neuen Strukturen V und VI 

(Abbildung 4.5). Das zuvor synthetisierte, ringgeschlossene Benzopyridodiazepin VII 

wurde mittels Röntgenkristallstrukturanalyse charakterisiert. Die Chloracylierung von VII 

schien mittels Phosgens und unter Rückfluss über Nacht möglich zu sein. Allerdings wurde 

das Reaktionsprodukt durch den Einfluss von Methanol, das während der 

chromatographischen Reinigung als Fließmittel verwendet wurde, in das Carbamat-

Analogon IX überführt. Daher sollten künftige Reinigungsschritte ohne die Zuhilfenahme 

von Methanol erfolgen. Durch den Einsatz von Triphosgen anstelle von Phosgen wird eine 

eindeutigere, direktere Syntheseroute zum weiteren Upscaling erreicht.  

 

 
 
Abbildung 4.5: Strukturen der Verbindungen V, VI und VII (für diese wurden Röntgen-

Kristallstruzkturanalysen durchgeführt) sowie des Carbamates IX. 

 
Im Rahmen des zweiten Teilprojektes wurden dualstere Liganden hergestellt, die variable 

orthostere und allostere Molekülteile besitzen. Durch mehrstufige Syntheseverfahren 

konnten vier verschiedene Typen von Hybriden hergestellt werden. Dualstere Liganden 

wurden dadurch erhalten, dass entweder Phthalimido- oder 1,8- 

Naphthalimidopropylamino-Gruppen als allostere Bindegruppe durch einen flexiblen und 
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verschieden langen Linker mit N-Demethylpirenzepin oder N-Demethylclozapin verknüpft 

wurden. Außerdem wurden dualstere Liganden hergestellt, in denen N-Demethylclozapin 

durch einen variablen Linker entweder an den Superagonisten Iperoxo oder an Acetylcholin 

geknüpft ist (Abbildung 4.6). 

Der kritischste Schritt der Synthese ist die Verknüpfung der beiden Linkersegmente am 

Ende des Herstellungsweges. Hierfür wurden mehrere Reaktionsbedingungen untersucht, 

um die Kopplung optimal zu ermöglichen. Die beste Methode, bei der die wenigsten 

Nebenprodukte und die größten Ausbeuten erzielt wurden besteht darin, die beiden letzten 

Zwischenstufen in Abwesenheit einer Base, Katalysatoren oder Mikrowellenstrahlung in 

Acetonitril zu lösen und bei 35 °C mehrere Tage zu rühren (Reaktionskontrolle: 

Dünnschichtchromatographie an Kieselgel, Fließmittel: 0,2 M wässrige KNO3/MeOH 2:3). 

Als bestes Reinigungsverfahren stellten sich entweder die Kristallisation aus dem 

Reaktionsmedium oder die Verwendung einer Flash-Chromatographie-Apparatur an C18-

Kieselgel dar (Eluent: H2O/MeOH). Alle synthetisierten Hybridmoleküle werden noch einer 

pharmakologischen Charakterisierung unter Anwendung geeigneter FRET-Testsysteme 

unterzogen. 
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5. Experimental 

A. General specifications 

A.1. Instruments 

 

NMR Spectroscopy 

The 1H (400.13 MHz) and 13C (100.61 MHz) NMR spectra were recorded on a Bruker 

Avance 400 Ultra ShieldTM spectrometer (Bruker Biospin, Ettlingen, Germany) instrument 

using tetramethylsilan as internal standard δ = 0 ppm. Residual undeuterated solvent 

signals were used as reference (1H, 13C): DMSO-d6 at 2.50 ppm, 39.5 ppm; CD3OD = 3.31 

ppm, 49.0 ppm; CDCl3 = 7.26 ppm, 77.2 ppm. Coupling constants (J-values) are given in 

Hertz. All the signals of the final compounds were confirmed using two-dimensional NMR 

experiments (COSY, HMQC and HMBC). The multiplicities of the resonance signal are 

represented with the following symbols: s = singlet, br = broad, d = doublet, dd = doublet of 

doublet, ddd = doublet of doublet of doublet, t = triplet, m = multiplet.  

Infrared Spectroscopy 

All infrared measurements for the final compounds were conducted on Jasco FT-IR-6100 

Spectrometer of Jasco Laborund Datentechnik GmbH (Groß-Umstadt, Deutschland) at 

room temperature, and underwent ATR correction. 

Mass Spectroscopy 

The molecular weights of all final compounds were acquired on a Shimadzu LC/MS-2020 

instrument (Hilden, Germany) using Electrospray ionization (ESI), DGU-20A3R degassing 

unit, a LC20AB liquid chromatograph and a SPDA-20A UV-VIS detector. 

Purity 

The peak purity of the final compounds were confirmed on an analytical Shimadzu HPLC 

instrument (Hilden, Germany) equipped with a DGU-20A3R degassing unit, a LC20AB 

liquid chromatograph, and a SPD20A UV/Vis detector. The stationary phase was a Synergi 

fusion-RP (150 x 4.6 mm, 4 µm) column (Phenomenex, Aschaffenburg, Germany). The 
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following gradient elution was conducted: solvent A: water with 0.1% formic acid, solvent 

B: MeOH with 0.1% formic acid. Solvent A from 0% to 100% in 13 mins., then 100% A 

maintained for 5 mins., followed by a decrease of A from 100% to 5% in 1 mins., and finally 

maintaining 5% of A for 4 mins. The flow rate was adjusted to 1.0 mL/min. UV detection 

was performed at 254 nm. 

Melting point 

All melting points of the final compounds were measured using Coesfield MPM-H2-melting 

point instrument (Dortmund, Deutschland). 

Microwave 

All microwave reactions were done a MLS-Ethos-CFR-Microwave (Leutkirch, Germany). 

Each microwave reaction condition is mentioned with each appropriate condition. 

 

A.2. Chromatography methods 

 

Column chromatography 

For silica gel column chromatography, silica gel 60 (SiO2, 0.063-0.2 mm) was purchased 

from Merck (Darmstadt, Deutschland). For basic ALOX column chromatography, 

CHROMABOND® Alox B was purchased from Machery-Nagel (Düren, Deutschland) (high 

purity basic aluminium oxide, pore volume: 0.90 mL/g, particle size: 60 - 150 µm, pH: 9.5 ± 

0.5). 

Flash chromatography 

Flash column chromatography was performed on an Interchim Puri-Flash 430 instrument 

using a PuriFlash column C18/HP (reverse phase silica gel) and connected to an Interchim 

Flash ELSD as well as UV detector (Montluçon, France).  
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Thin layer chromatography 

Thin layer chromatography (TLC) for conducted for reaction monitoring silica gel 60 F254 

(Merck, Darmstadt, Germany) or basic ALOX UV254 (Machery-Nagel, Düren, Deutschland). 

Non UV-active compounds were viewed in an I2 chamber. 

 

A.3. Chemicals 

 

All starting materials, reagents and solvents (technical and HPLC grade) were purchased 

from Sigma Aldrich, Schnelldorf, Germany. Dry solvents used in synthesis were distilled 

over molecular sieve with 4 Å pore size. Only distilled water was used during synthesis or 

work-up. Millipore water was used for HPLC and LC/MS runs. 

 

B. Chapter 1: Synthesis of the intermediates of AFDX-384 

 

The intermediate compounds I-IV synthesized during the course of the attempt of 

synthesis of AFDX-384 were based on previously reported procedures.55  

Synthesis and spectral data of 2-amino-N-(2-chloropyridin-3yl)benzamide V, 3-(2-

chloropyridin-3-yl)quinazoline-2,4(1H,3H)-dione VI and 5,11-dihydropyrido-[2,3-

b][1,4]benzodiazepin-6-one VII are discussed below.58, 59, 61  
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5.1. 2-Amino-N-(2-chloropyridin-3-yl)benzamide V 

 

V 

(C12H10ClN3O, MW: 247.68 g/mol) 

3-Amino-2-chloropyridine (2.57 g, 20.0 mmol), ethyl 2-aminobenzoate (3.39 g, 20.5 mmol) 

and KOtBu (7.29 g, 65.0 mmol) were suspended in dry 1,4-dioxane (100 mL) under argon. 

The mixture was heated by microwaves (gradient of heating: 2 min to 60 °C; holding time: 

10 min at 60 °C; gradient of heating: 3 min from 60-100 °C; holding time: 2.5 h at 100 °C). 

After cooling to 25 °C, the solution was treated with an aqueous solution of 1 M NaH2PO4 

(60 mL) and stirred for 30 min. After phase separation, the organic phase was dried using 

anhydrous Na2SO4. The dioxane was evaporated under reduced pressure and the residue 

was treated with 50 mL water. The solid obtained was filtered, dried and purified by silica 

chromatography (ethyl acetate/petroleum ether 1:1) to obtain V (1.16 g, 23% yield).58 

Compound V: pale-yellow solid; mp = 204 °C; Rf = 0.78 (silica gel, ethyl acetate/petroleum 

ether 1:1).58  

IR (ATR), ṽ [cm-1]: 3433 (NH), 3330, 3286 (NH2), 3073 (CH), 1644 (C=O amide), 1616, 

1578, 1569, 1503, 1486, 1391, 802, 743, 735.58 

1H NMR (400 MHz, DMSO-d6, δ [ppm]): 9.89 (br, 1H, NH), 8.29 (dd, J = 4.7, 1.8 Hz, 1H, H-

6pyrid.), 8.07 (dd, J = 7.9, 1.8 Hz, 1H, H-4pyrid.), 7.74 (dd, J = 8.1,1.5 Hz, 1H, H-6benz.), 7.49 

(dd, J = 7.9, 4.7 Hz, 1H, H-5pyrid.), 7.24 (ddd, J = 8.4,7.1, 1.5 Hz, 1H, H-4benz.), 6.79 (dd, J = 

8.4, 1.2 Hz, 1H, H-3benz.), 6.62 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H, H-5benz.), 6.47 (br, 2H, NH2).58 
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13C NMR (100 MHz, DMSO-d6, δ [ppm]): 168.3 (C=O), 150.7 (C-2), 146.7 (C-Cl), 146.7 (C-

6pyrid.), 137.0 (C-4pyrid.), 133.2 (C-4), 132.8 (C-3pyrid.), 129.3 (C-6), 123.9 (C-5pyrid.), 117.2 (C-

3), 115.4 (C-5), 113.9 (C-1).58  

MS (ESI), m/z: 248.20 [M+H]+ .58 

 

 

5.2. 3-(2-Chloropyridin-3-yl)quinazoline-2,4(1H,3H)-dione VI 

 

VI 

(C13H18ClN3O2, MW: 273.68 g/mol) 

Compound V (4.22 g, 20.0 mmol) and Hünig’s base (7.0 mL, 40.0 mmol) were dissolved in 

dry 1,4-dioxane (150 mL) under argon. A solution of 20% phosgene in toluene (18.5 mL, 

35.0 mmol) was added dropwise over 30 min. The solution was heated using microwaves 

(gradient of heating: 3 min to 85 °C; holding time: 2 hrs at to 85 °C). After cooling to 85 °C, 

the mixture was quenched with 1 M NaH2PO4 (100 mL) and stirred for 1 hr at room 

temperature. After phase separation, the organic phase was dried using anhydrous 

Na2SO4. The dioxane was evaporated and the solid obtained was filtered by suction and 

dried over P4O10, giving a white solid. The product VI was crystallized from chloroform (4.68 

g, 86% yield).59 

Compound VI: colourless block-like crystals; mp = 237 °C.59 

IR (ATR), ṽ [cm-1]: 3348 (NH), 3072 (CH), 1680 (C=O), 1730 (C=O), 1580, 734.59 
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1H NMR (400 MHz, CDCl3, δ [ppm]): 10.52 (br,1H, NH), 8.56 (dd, J = 4.8, 1.8 Hz, 1H, H-

6pyrid.), 8.15 (dd, J = 7.9, 1.1 Hz, 1H, H-5quinaz.), 7.76 (dd, J = 7.8, 1.8 Hz, 1H, H-4pyrid.), 7.61 

(ddd, J = 8.1, 7.0, 1.1 Hz, 1H, H-7quinaz.), 7.46 (dd, J = 7.8, 4.8 Hz, 1H, H-5pyrid.), 7.27 (ddd, 

J = 7.9, 7.0, 1.0 Hz, 1H, H-6quinaz.), 7.02 (dd, J = 8.1, 1.0 Hz, 1H, H-8quinaz.).59  

13C NMR (100 MHz, CDCl3, δ [ppm]): 161.6 (4-C=O), 151.0 (2-C=O), 150.4 (C-Cl), 149.9 

(C-6pyrid.), 139.6 (C-4pyrid.), 138.9 (C-8aquinaz.), 135.9 (C-7quinaz.), 129.9 (C-3pyrid.), 128.7 (C-

5quinaz.), 124.0 (C-6quinaz.), 123.4 (C-5pyrid.), 115.7 (C-8quinaz.), 114.3 (C-4aquinaz.).59  

MS (ESI), m/z: 274.60 [M+H]+ .59 

 

 

5.3. Synthesis of 5,11-dihydro-6H-pyrido [2,3-b][1,4] benzodiazepine-6-one VII 

 

VII 

(C12H9N3O, MW: 211.22 g/mol) 

Compound V (100 mg, 0.40 mmol) was dissolved in 100 mL of ethylene glycol and heated 

under reflux overnight. During the workup of the reaction, the product was extracted in 

toluene, followed by evaporation of the solvent under reduced pressure and finally 

crystallization of the product from methanol and toluene to obtain VII (17 mg, 20% yield).60 

Compound VII: colourless crystals; Rf = 0.54 (silica gel, EtOAc).  

The spectroscopic data for this compound are in accordance with the literature.55 
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5.4. Methyl-6-oxo-5,6-dihydro-11H-benzo[e]pyrido[3,2-b][1,4]diazepine-11-

carboxylate IX 

 

IX 

(C14H11N3O3, MW: 269.26 g/mol) 

Compound V (50 mg, 0.20 mmol) and Hünig’s base (0.1 mL, 0.40 mmol) were dissolved in 

dry 1,4-dioxane (150 mL) under argon. A solution of 20% phosgene in toluene (0.2 mL, 

0.35 mmol) was added dropwise over a period of 30 min. The solution was heated under 

reflux overnight. After cooling to room temperature, the mixture was quenched with 1 M 

NaH2PO4 (100 mL) and stirred for 1 hr. After phase separation, the organic phase was dried 

using anhydrous Na2SO4. The solvent was then evaporated under reduced pressure and 

the residue was purified by silica gel chromatography (EtOAc/CH2Cl2/MeOH 20:10:0.5) to 

give IX (15 mg, 28% yield). (Modified from literature:55). 

Compound IX: pale white powder; Rf = 0.31 (silica gel, EtOAc/CH2Cl2/MeOH 20:10:0.5).  

1H NMR (400 MHz, DMSO-d6, δ [ppm]): 10.85 (s, 1H, NH), 8.27 (dd, J = 4.6, 1.7 Hz, 1H, 

H-2), 7.77 (dd, J = 7.8, 1.3 Hz, 1H, H-7), 7.71 – 7.63 (m, 2H, H-4, H-9), 7.52 (dd, J = 8.1, 

0.8 Hz, 1H, H-10), 7.50 – 7.44 (m, 1H, H-8), 7.41 (dd, J = 8.0, 4.6 Hz, 1H, H-3), 3.65 (s, 3H, 

OCH3). 

13C NMR (100 MHz, DMSO-d6, δ [ppm]): 166.2 (6-C=O), 153.4 (12-C=O), 145.1 (C-11a), 

144.8 (C-2), 140.4 (C-10a), 133.2 (C-9), 131.1 (C-4a), 130.8 (C-4), 130.7 (C-7), 129.7 (C-

6a), 128.3 (C-8), 128.0 (C-10), 124.4 (C-3), 53.3 (OCH3). 
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C. Chapter 2: Synthesis of dualsteric hybrids 

 

The procedures reported in literature were used for the synthesis of 

phthalimidopropylamine 1,64 1,8-naphthalimidopropylamine 6,64 and the iperoxo base 26.66 

 

5.5. Synthesis of phthalimide/1,8-naphthalimide-pirenzepine hybrids 13-19 

5.5.1. General procedure A for the synthesis of phthalimido/1,8-napthalimido 

monoquaternary bromides 2-5 and 7-10  

 

The corresponding imide (1 equiv.), either phthalimidopropylamine 1 or 1,8-

naphthalimidopropylamine 6,  was dissolved in an excess of the corresponding alkyl 

dibromide (15 equiv.) and stirred in the microwave at 80 °C (ramp: 20 °C/min, 800W). The 

reaction was generally found to be completed after approximately 3 hrs (silica gel TLC 

monitoring, CHCl3/MeOH/NH3 100:10:1). After cooling to room temperature, the obtained 

precipitate was filtered off and washed with hot diethyl ether.64  

 

 

5.5.1.1. 4-Bromo-N-(3-(1,3-dioxoisoindolin-2-yl)propyl)-N,N-dimethylbutan-1-

aminium bromide 2 

 

2 

(C17H24Br2N2O2, MW: 448.19 g/mol) 

Phthalimidopropylamine 1 (1.00 g, 4.31 mmol) and 1,4-dibromobutane (7.7 mL, 64.65 

mmol) were used as reactants to give 2 (1.64 g, 85% yield). 
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Compound 2: white solid; Rf = 0.26 (silica gel, CHCl3/MeOH/NH3 100:10:1).  

The spectroscopic data for this compound are in accordance with the literature.77 

 

 

5.5.1.2. 5-Bromo-N-(3-(1,3-dioxoisoindolin-2-yl)propyl)-N,N-dimethylpentan-1-

aminium bromide 3 

 

3 

(C18H26Br2N2O2, MW: 462.23 g/mol) 

Phthalimidopropylamine 1 (1.00 g, 4.31 mmol) and 1,5-dibromopentane (8.8 mL, 64.65 

mmol) were used as reactants to give 3 (1.43 g, 72% yield). 

Compound 3: white solid; Rf = 0.30 (silica gel, CHCl3/MeOH/NH3 100:10:1).  

1H NMR (400 MHz, CD3OD, δ [ppm]): 7.89 – 7.84 (m, 2H, arom.), 7.84 – 7.79 (m, 2H, 

arom.), 3.81 (t, J = 6.5 Hz, 2H, Nphth-CH2), 3.52 – 3.43 (m, 4H, CH2-N+, +N-CH2), 3.41 – 

3.33 (m, 2H, CH2-Br), 3.12 (s, 6H, +N(CH3)2), 2.26 – 2.14 (m, 2H, Nphth-CH2-CH2), 1.98 – 

1.87 (m, 2H, +N-CH2-CH2), 1.85 – 1.74 (m, 2H, +N-CH2-(CH2)2-CH2), 1.58 – 1.46 (m, 2H, 

+N-CH2-CH2-CH2). 

13C NMR (100 MHz, CD3OD, δ [ppm]): 169.8 (2C, C=O), 135.5 (2C, CHarom.), 133.3 (2C, 

Carom.), 124.2 (2C, CHarom.), 65.3 (CH2-Br), 63.0 (CH2-N+), 51.4 (2C, +N(CH3)2), 35.8 (Nphth-

CH2), 33.9 (+N-CH2), 33.2 (+N-CH2-CH2), 25.9 (+N-CH2-CH2-CH2), 23.3 (Nphth-CH2-CH2), 

22.8 (+N-CH2-(CH2)2-CH2). 
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5.5.1.3. 6-Bromo-N-(3-(1,3-dioxoisoindolin-2-yl)propyl)-N,N-dimethylhexan-1-

aminium bromide 4 

 

4 

(C19H28Br2N2O2, MW: 474.05 g/mol) 

Phthalimidopropylamine 1 (1.00 g, 4.31 mmol) and 1,6-dibromohexane (9.9 mL, 64.65 

mmol) were used as reactants to give 4 (1.39 g, 68% yield). 

Compound 4: white solid; Rf = 0.29 (silica gel, CHCl3/MeOH/NH3 100:10:1).  

The spectroscopic data for this compound are in accordance with the literature.78, 79 

 

 

5.5.1.4. 7-Bromo-N-(3-(1,3-dioxoisoindolin-2-yl)propyl)-N,N-dimethylheptan-1-

aminium bromide 5 

 

5 

(C20H30Br2N2O2, MW: 490.28 g/mol) 

Phthalimidopropylamine 1 (1.00 g, 4.31 mmol) and 1,7-dibromoheptane (11.0 mL, 64.65 

mmol) were used as reactants to give 5 (1.92 g, 91% yield). 



EXPERIMENTAL 

80 
 

Compound 5: white solid; Rf = 0.32 (silica gel, CHCl3/MeOH/NH3 100:10:1).  

The spectroscopic data for this compound are in accordance with the literature.80 

 

 

5.5.1.5. 4-Bromo-N-(3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-

dimethylpropyl)-N,N-dimethylbutan-1-aminium bromide 7 

 

7 

(C23H30Br2N2O2, MW: 526.31 g/mol) 

1,8-Naphthalimidopropylamine 6 (1.00 g, 3.23 mmol) and 1,4-dibromobutane (5.8 mL, 

48.45 mmol) were used as reactants to give 7 (1.24 g, 73% yield). 

Compound 7: beige solid; Rf = 0.24 (silica gel, CHCl3/MeOH/NH3 100:10:1). 

The spectroscopic data for this compound are in accordance with the literature.79 
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5.5.1.6. 5-Bromo-N-(3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-

dimethylpropyl)-N,N-dimethylpentan-1-aminium bromide 8 

 

8 

(C24H32Br2N2O2, MW: 540.34 g/mol) 

1,8-Naphthalimidopropylamine 6 (1.00 g, 3.23 mmol) and 1,5-dibromopentane (6.6 mL, 

48.45 mmol) were used as reactants to give 8 (1.41 g, 81% yield). 

Compound 8: beige solid; Rf = 0.26 (silica gel, CHCl3/MeOH/NH3 100:10:1).      

1H NMR (400 MHz, CD3OD, δ [ppm]): 8.60 (dd, J = 7.3, 1.0 Hz, 2H, arom.), 8.40 (dd, J = 

8.4, 1.0 Hz, 2H, arom.), 7.89 – 7.81 (m, 2H, arom.), 4.32 (s, 2H, Nnaphth-CH2), 3.54 (s, 2H, 

CH2-N+), 3.52 – 3.44 (m, 4H, +N-CH2, CH2-Br), 3.29 (s, 6H, +N(CH3)2), 2.00 – 1.88 (m, 4H, 

+N-CH2-CH2, +N-CH2-(CH2)2-CH2), 1.57 – 1.49 (m, 2H, +N-CH2-CH2-CH2), 1.35 (s, 6H, 

C(CH3)2). 

13C NMR (100 MHz, CD3OD, δ [ppm]): 166.8 (2C, C=O), 135.8 (2C, CHarom.), 133.2 (Carom.), 

132.6 (2C, CHarom.), 129.4 (Carom.), 128.3 (2C, CHarom.), 123.6 (2C, Carom.), 69.8, 66.9, 53.2 

(2C, +N(CH3)2), 50.1, 40.5 (C(CH3)2), 34.0, 33.1, 27.8, 26.5 (2C, C(CH3)2), 23.1. 
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5.5.1.7. 6-Bromo-N-(3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-

dimethylpropyl)-N,N-dimethylhexan-1-aminium bromide 9 

 

9 

(C25H34Br2N2O2, MW: 554.37 g/mol) 

1,8-Naphthalimidopropylamine 6 (1.00 g, 3.23 mmol) and 1,6-dibromohexane (7.5 mL, 

48.45 mmol) were used as reactants to give 9 (1.68 g, 94% yield). 

Compound 9: beige solid; Rf = 0.28 (silica gel, CHCl3/MeOH/NH3 100:10:1).            

The spectroscopic data for this compound are in accordance with the literature.53  

 

 

5.5.1.8. 7-Bromo-N-(3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-

dimethylpropyl)-N,N-dimethylheptan-1-aminium bromide 10 

 

10 

(C26H36Br2N2O2, MW: 568.39 g/mol) 
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1,8-Naphthalimidopropylamine 6 (1.00 g, 3.23 mmol) and 1,7-dibromoheptane (8.3 mL, 

48.45 mmol) were used as reactants to give 10 (1.40 g, 76% yield). 

Compound 10: beige solid; Rf = 0.25 (silica gel, CHCl3/MeOH/NH3 100:10:1). 

The spectroscopic data for this compound are in accordance with the literature.80 

 

 

5.5.2. 11-(2-Chloroacetyl)-5,11-dihydro-6H-benzo[e]pyrido[3,2-b][1,4]diazepin-6-

one 11 

 

11 

(C14H10ClN3O2, MW: 287.70 g/mol) 

A suspension of the benzopyridodiazepine VII (see Chapter 1) (2.56 g, 12.13 mmol) in 

dioxane (50 mL) was refluxed for 15 min and then allowed to cool to room temperature 

before adding Et3N (2.1 mL, 14.62 mmol). Chloroacetyl chloride (1.2 mL, 14.62 mmol) was 

added dropwise, under stirring, to this solution during a period of 30 min. The mixture was 

then refluxed for 8 hrs. After the mixture was cooled, the precipitate was removed by 

filtration on a celite pad and washed with dioxane. The crude filtrate was evaporated and 

purified by silica gel column chromatography (EtOAc/hexane 3:7 to 7:3) to give 11 (2.25 g, 

64.5% yield).56  

Compound 11: pale white solid; Rf = 0.37 (silica gel, EtOAc/hexane 7:3).  

 The spectroscopic data for this compound are in accordance with the literature.56 
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5.5.3. 11-(2-(Piperazin-1-yl)acetyl)-5,11-dihydro-6H-benzo[e]pyrido[3,2-

b][1,4]diazepin-6-one 12 

 

12 

(C18H19N5O2, MW: 337.38 g/mol) 

To a solution of the chloroacetyl intermediate 11 (0.76 g, 2.64 mmol) in acetonitrile (100 

mL), 20-fold excess amount of piperazine (4.55 g, 52.83 mmol) was added. To this solution, 

catalytic amount of a 1:1 mixture of KI/K2CO3 was added. The mixture was then stirred in 

the microwave for 2 hrs at 80 °C (ramp: 20 °C/min, 800W). The solvent was evaporated 

under reduced pressure, after which the residue was allowed to attain room temperature. 

To this residue, distilled water (50 mL) and CHCl3 (50 mL) were added. The mixture was 

shaken and the phases were separated in a separating funnel. The aqueous phase was 

then washed with CHCl3 (3 X 50 mL), combining all the organic phases which were then 

washed with distilled water, dried over Na2SO4 and evaporated under reduced pressure. 

The residue was purified by silica gel chromatography after dissolution in minimum amount 

of the mobile phase (CHCl3/MeOH/NH3 100:10:1) to give N-desmethyl pirenzepine 12 (0.64 

g, 72% yield). This molecule is synthesized according to a modification of a procedure for 

similar compounds in literature.56 

Compound 12: pale white solid; Rf = 0.21 (silica gel, CHCl3/MeOH/NH3 100:10:1). 

The spectroscopic data for this compound are in accordance with the literature.67 
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5.5.4. General procedure B for the synthesis of phthalimide-pirenzepine hybrids 

13-15  

 

To a stirred acetonitrile solution of the corresponding intermediate 2, 3 or 4 (1 equiv.), N-

desmethyl pirenzepine 12 (1.1 equiv.) was added and dissolved. The reaction was stirred 

in the microwave for 7 hrs at 80 °C (ramp: 20 °C/min, 800W), after which the solvent was 

evaporated under reduced pressure (silica gel TLC monitoring, 0.2 M aqueous 

KNO3/MeOH 2:3). The residue was purified using basic ALOX column chromatography, 

with or without further purification using C18 reverse phase silica gel flash chromatography 

using a linear gradient of water: solvent A and methanol: solvent B (B% from 0% to 100% 

in 60 min) followed by a plateau phase (100% methanol for 30 min) yielding the pure product 

13, 14 or 15, respectively, as the last fraction using UV detection. 

 

 

5.5.4.1. N-(3-(1,3-Dioxoisoindolin-2-yl)propyl)-N,N-dimethyl-4-(4-(2-oxo-2-(6-oxo-

5,6-dihydro-11H-benzo[e]pyrido[3,2-b][1,4]diazepin-11-yl)ethyl)piperazin-

1-yl)butan-1-aminium bromide 13 

 

13, (n = 2) 

(C35H42BrN7O4, MW: 704.66 g/mol) 



EXPERIMENTAL 

86 
 

The intermediate 2 (142 mg, 0.27 mmol) and N-desmethyl pirenzepine 12 (100 mg, 0.30 

mmol) were used as reactants, and the product was purified using only basic ALOX column 

chromatography (CHCl3/MeOH/NH3 100:10:1) to give 13 (66 mg, 35% yield). 

Compound 13: pale white solid; Rf = 0.40 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3368, 3033, 2959, 2839, 1770, 1647, 1597, 1458, 1402, 1359, 1262. 

1H NMR (400 MHz, CD3OD, δ [ppm]): 8.31 (s, 1H, H-2pirenz-arom.), 7.97 – 7.79 (m, 3H, H-

10pirenz-arom. (1H), phth. (2H)), 7.71 – 7.64 (m, 1H, H-8pirenz-arom.), 7.61 – 7.43 (m, 6H, , H-

3pirenz-arom. (1H), H-4pirenz-arom. (1H), H-7pirenz-arom. (1H), H-9pirenz-arom. (1H), phth. (2H)), 3.66 (d, 

J = 14.4 Hz, 1H, CH2-C=O), 3.59 – 3.39 (m, 6H, Nphth-CH2, CH2-N+, +N-CH2), 3.30 – 3.05 

(m, 9H, CH2-C=O (1H), N(CH2CH2)2N (8H)), 3.16 (s, 6H, +N(CH3)2), 2.52 (br, 2H, +N-CH2-

(CH2)2-CH2), 2.11 (br, 2H, Nphth-CH2-CH2), 1.93 (br, 2H, +N-CH2-CH2), 1.83 (br, 2H, +N-CH2-

CH2-CH2). 

13C NMR (100 MHz, CD3OD, δ [ppm]): 170.7 (2C, Nphth-C=O), 169.8 (NH-C=O), 168.9 (CH2-

C=O), 146.1, 141.6, 135.5, 134.3, 133.4, 133.0 (2C, Cphth.), 132.6, 132.2, 132.0, 130.8, 

129.7 (2C, CHphth.), 128.8, 126.0 (2C, CHphth.), 124.3, 64.8, 63.3, 60.8 (CH2-C=O), 57.0 (2C, 

N(CH2CH2)2N-CH2-C=O), 52.9 (2C, N(CH2CH2)2N-CH2-C=O), 51.7 (2C, +N(CH3)2), 50.5, 

37.4, 24.2, 22.0, 21.1. 

MS (ESI), m/z: 321.60 [M-Br+NH4] 2+ 

HPLC purity: 64% 
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5.5.4.2. N-(3-(1,3-Dioxoisoindolin-2-yl)propyl)-N,N-dimethyl-5-(4-(2-oxo-2-(6-oxo-

5,6-dihydro-11H-benzo[e]pyrido[3,2-b][1,4]diazepin-11-yl)ethyl)piperazin-

1-yl)pentan-1-aminium bromide 14 

 

14, (n = 3) 

(C36H44BrN7O4, MW: 718.68 g/mol) 

The intermediate 3 (145 mg, 0.27 mmol) and N-desmethyl pirenzepine 12 (100 mg, 0.30 

mmol) were used as reactants and, and the product was purified using basic ALOX column 

chromatography (CHCl3/MeOH/NH3 100:10:1), with further purification using C18 reverse 

phase silica gel flash chromatography (H2O/MeOH solvent system) to give 14 (62 mg, 32% 

yield). 

Compound 14: pale white solid; Rf = 0.42 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3362, 2945, 2821, 1734, 1648, 1558, 1457, 1362, 1267. 

1H NMR (400 MHz, CD3OD, δ [ppm]): 8.27 (s, 1H, H-2pirenz-arom.), 7.88 (d, J = 5.6 Hz, 1H, H-

10pirenz-arom.), 7.72 – 7.61 (m, 3H, H-4pirenz-arom. (1H), phth. (2H)), 7.58 – 7.47 (m, 2H, H-8pirenz-

arom., H-9pirenz-arom.), 7.47 – 7.41 (m, 3H, H-7pirenz-arom. (1H), phth. (2H)), 7.40 – 7.34 (m, 1H, 

H-3pirenz-arom.), 3.64 – 3.40 (m, 6H, Nphth-CH2, CH2-N+, +N-CH2), 3.37 – 3.26 (m, 2H, CH2-

C=O), 3.10 (s, 6H, +N(CH3)2), 2.34 (br, 8H, N(CH2CH2)2N), 2.17 (br, 2H, +N-CH2-(CH2)3-

CH2), 2.05 (br, 2H, Nphth-CH2-CH2), 1.80 (br, 2H, +N-CH2-CH2), 1.60 – 1.49 (m, 2H, +N-CH2-

(CH2)2-CH2), 1.41 – 1.31 (m, 2H, +N-CH2-CH2-CH2). 
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13C NMR (100 MHz, CD3OD, δ [ppm]): 176.1 (2C, Nphth-C=O), 173.4 (NH-C=O), 171.5 (CH2-

C=O), 145.7, 140.8, 136.1, 134.0, 132.7 (2C, Cphth.), 131.8, 131.6, 130.8, 130.4, 129.7 (2C, 

CHphth.), 129.4, 128.5 (2C, CHphth.), 125.7, 125.7, 65.4 (CH2-C=O), 63.6, 58.9 (2C, 

N(CH2CH2)2N-CH2-C=O), 53.6 (2C, N(CH2CH2)2N-CH2-C=O), 53.3, 51.0 (2C, +N(CH3)2), 

37.2 (2C), 26.7, 25.2, 24.0, 23.2. 

MS (ESI), m/z: 328.70 [M-Br+NH4] 2+ 

HPLC purity: 98% 

 

 

5.5.4.3. N-(3-(1,3-Dioxoisoindolin-2-yl)propyl)-N,N-dimethyl-6-(4-(2-oxo-2-(6-oxo-

5,6-dihydro-11H-benzo[e]pyrido[3,2-b][1,4]diazepin-11-yl)ethyl)piperazin-

1-yl)hexan-1-aminium bromide 15 

 

15, (n = 4) 

(C37H46BrN7O4, MW: 732.71 g/mol) 

The intermediate 4 (107 mg, 0.27 mmol) and N-desmethyl pirenzepine 12 (100 mg, 0.30 

mmol) were used as reactants, and the product was purified using basic ALOX column 

chromatography (CHCl3/MeOH/NH3 100:10:1), with further purification using C18 reverse 

phase silica gel flash chromatography (H2O/MeOH solvent system) to give 15 (58 mg, 30% 

yield). 
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Compound 15: pale white solid; Rf = 0.44 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3402, 2935, 2823, 1656, 1561, 1459, 1367, 1263. 

1H NMR (400 MHz, CD3OD, δ [ppm]): 8.28 (s, 1H, H-2pirenz-arom.), 7.88 (d, J = 7.1 Hz, 1H, H-

10pirenz-arom.), 7.73 – 7.62 (m, 3H, H-4pirenz-arom. (1H), phth. (2H)), 7.57 – 7.47 (m, 2H, H-8pirenz-

arom., H-9pirenz-arom.), 7.46 – 7.41 (m, 3H, H-7pirenz-arom. (1H), phth. (2H)), 7.41 – 7.34 (m, 1H, 

H-3pirenz-arom.), 3.60 – 3.48 (m, 4H, Nphth-CH2, CH2-N+), 3.45 (t, J = 5.9 Hz, 2H, +N-CH2), 3.36 

– 3.27 (m, 2H, CH2-C=O), 3.10 (s, 6H, +N(CH3)2), 2.35 (br, 8H, N(CH2CH2)2N), 2.18 (br, 2H, 

+N-CH2-(CH2)4-CH2), 2.05 (br, 2H, Nphth-CH2-CH2), 1.79 (br, 2H, +N-CH2-CH2), 1.51 (br, 2H, 

+N-CH2-CH2-CH2), 1.39 (br, 4H, +N-CH2-(CH2)2-CH2, +N-CH2-(CH2)3-CH2).  

13C NMR (100 MHz, CD3OD, δ [ppm]): 176.0 (2C, Nphth-C=O), 173.4 (NH-C=O), 171.4 (CH2-

C=O), 148.2, 145.8, 141.7, 140.7, 136.2 (2C, Cphth.), 134.3, 132.7, 132.0, 131.7, 130.8 (2C, 

CHphth.), 129.5, 129.3 (2C, CHphth.), 128.5, 125.8, 65.7 (CH2-C=O), 63.6, 61.9, 59.1 (2C, 

N(CH2CH2)2N-CH2-C=O), 53.6 (2C, N(CH2CH2)2N-CH2-C=O), 53.2, 51.1 (2C, +N(CH3)2), 

37.4 (2C), 27.9, 27.1, 24.1, 23.4. 

MS (ESI), m/z: 335.65 [M-Br+NH4] 2+ 

HPLC purity: 99% 
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5.5.5. General procedure C for the synthesis of phthalimide/1,8-naphthalimide-

pirenzepine hybrids 16-19 

 

To a stirred acetonitrile solution of the corresponding intermediate 5, 8, 9 or 10 (1 equiv.), 

N-desmethyl pirenzepine 12 (1.1 equiv.) was added and dissolved. The reaction was stirred 

at 35 °C under inert conditions for 7 days (silica gel TLC monitoring, 0.2 M aqueous 

KNO3/MeOH 2:3). The product either directly crystallized from the reaction mixture during 

the reaction time and was hence obtained by vacuum filtration followed by washing with 

cold acetonitrile, or, in case of no crystallization, the product was obtained by evaporation 

of the solvent under reduced pressure followed by purification using C18 reverse phase 

silica gel flash chromatography using a linear gradient of water: solvent A and methanol: 

solvent B (B% from 0% to 100% in 60 min) followed by a plateau phase (100% methanol 

for 30 min) yielding the pure product 16, 17, 18 or 19, respectively, as the last fraction using 

UV detection. 

 

 

5.5.5.1. N-(3-(1,3-Dioxoisoindolin-2-yl)propyl)-N,N-dimethyl-7-(4-(2-oxo-2-(6-oxo-

5,6-dihydro-11H-benzo[e]pyrido[3,2-b][1,4]diazepin-11-yl)ethyl)piperazin-

1-yl)heptan-1-aminium bromide 16 

 

16, (n = 5) 

(C38H48BrN7O4, MW: 746.75 g/mol) 
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The intermediate 5 (114 mg, 0.28 mmol) and N-desmethyl pirenzepine 12 (103 mg, 0.31 

mmol) were used as reactants, and the crystallized product was filtered under vacuum and 

washed with cold acetonitrile to give 16 (93 mg, 45% yield). 

Compound 16: pale white solid; mp = 123 °C; Rf = 0.46 (silica gel, 0.2 M aqueous 

KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3421, 2980, 2681, 2606, 1769, 1707, 1651, 1456, 1394, 1350, 1264. 

1H NMR (400 MHz, CDCl3, δ [ppm]): 8.17 (d, J = 5.9 Hz, 2H, H-2pirenz-arom., H-4pirenz-arom.), 

7.82 – 7.62 (m, 5H, H-10pirenz-arom. (1H), phth. (4H)), 7.60 – 7.50 (m, 2H, H-7pirenz-arom., H-

8pirenz-arom.), 7.40 – 7.32 (m, 1H, H-9pirenz-arom.), 7.29 – 7.23 (m, 1H, H-3pirenz-arom.), 3.92 (d, J 

= 13.7 Hz, 1H, CH2-C=O), 3.82 (br, 2H, Nphth-CH2), 3.58 (br, 4H, CH2-N+, +N-CH2), 3.49 (br, 

4H, N(CH2CH2)2N-CH2-C=O), 3.30 (s, 6H, +N(CH3)2), 3.27 – 3.03 (m, 5H, N(CH2CH2)2N-

CH2-C=O (4H), CH2-C=O (1H)), 2.96 – 2.56 (m, 4H, +N-CH2-CH2, +N-CH2-(CH2)5-CH2), 2.26 

(br, 2H, Nphth-CH2-CH2), 2.09 – 1.72 (s, 4H, +N-CH2-(CH2)3-CH2, +N-CH2-(CH2)4-CH2), 1.39 

(br, 4H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2). 

13C NMR (100 MHz, CDCl3, δ [ppm]): 168.4 (2C, Nphth-C=O), 166.9 (CH2-C=O), 161.0 (NH-

C=O), 147.8, 144.1, 140.3, 134.5 (2C, CHphth.), 132.9, 131.9 (2C, Cphth.), 131.5, 131.4, 

131.1, 129.6, 128.4, 128.3, 123.9, 123.6 (2C, CHphth.), 64.8, 62.2, 60.6 (CH2-C=O), 56.5 

(2C, N(CH2CH2)2N-CH2-C=O), 51.5 (2C, +N(CH3)2), 50.8 (2C, N(CH2CH2)2N-CH2-C=O), 

49.8, 49.0, 35.1, 27.2, 25.2, 22.8, 22.7, 22.2. 

MS (ESI), m/z: 333.75 [M-Br+H] 2+ 

HPLC purity: 94% 
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5.5.5.2. N-(3-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-dimethylpropyl)-

N,N-dimethyl-5-(4-(2-oxo-2-(6-oxo-5,6-dihydro-11H-benzo[e]pyrido[3,2-

b][1,4]diazepin-11-yl)ethyl)piperazin-1-yl)pentan-1-aminium bromide 17 

 

17, (n = 3) 

(C42H50BrN7O4, MW: 796.81 g/mol) 

The intermediate 8 (145 mg, 0.27 mmol) and N-desmethyl pirenzepine 12 (100 mg, 0.30 

mmol) were used as reactants, and the product was purified using C18 reverse phase silica 

gel flash chromatography (H2O/MeOH solvent system) to give 17 (66 mg, 31% yield). 

Compound 17: beige solid; Rf = 0.39 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3363, 2980, 1737, 1653, 1587, 1507, 1457, 1374, 1338, 1233. 

1H NMR (400 MHz, CDCl3, δ [ppm]): 8.58 – 8.47 (m, 2H, naphth.), 8.28 – 8.16 (m, 2H, 

naphth.), 8.12 (d, J = 4.8 Hz, 1H, H-2pirenz-arom.), 8.02 (d, J = 7.9 Hz, 1H, H-4pirenz-arom.), 7.83 

(d, J = 7.7 Hz, 1H, H-10pirenz-arom.), 7.79 – 7.66 (m, 2H, naphth.), 7.59 – 7.47 (m, 2H, H-

7pirenz-arom., H-8pirenz-arom.), 7.35 – 7.28 (m, 1H, H-9pirenz-arom.), 7.22 (dd, J = 7.9, 4.8 Hz, 1H, 

H-3pirenz-arom.), 4.32 (s, 2H, Nnaphth-CH2), 3.73 (d, J = 15.1 Hz, 1H, CH2-C=O), 3.67 – 3.60 

(m, 2H, +N-CH2), 3.57 (s, 2H, CH2-N+), 3.51 (s, 6H, +N(CH3)2), 2.96 (d, J = 15.1 Hz, 1H, 

CH2-C=O), 2.50 – 2.19 (m, 6H, N(CH2CH2)2N-CH2-C=O (4H), +N-CH2-(CH2)3-CH2 (2H)), 

2.19 – 1.96 (m, 4H, N(CH2CH2)2N-CH2-C=O), 1.90 (br, 2H, +N-CH2-CH2), 1.49 (br, 2H, +N-

CH2-(CH2)2-CH2), 1.39 – 1.31 (m, 2H, +N-CH2-CH2-CH2), 1.31 (s, 6H, C(CH3)2). 
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13C NMR (100 MHz, CDCl3, δ [ppm]): 170.3 (CH2-C=O), 168.3 (NH-C=O), 165.3 (2C, 

Nnaphth-C=O), 143.9, 140.5, 134.7 (2C, CHnaphth.), 132.5, 132.0 (2C, CHnaphth.), 131.7 (2C, 

CHpirenz-arom.), 131.1, 129.8, 128.2 (2C, CHpirenz-arom.), 127.3 (2C, CHnaphth.), 124.7, 122.2 (2C, 

Cnaphth.), 72.4, 68.5, 61.8 (CH2-C=O), 60.0, 57.6 (2C, N(CH2CH2)2N-CH2-C=O), 53.0 (2C, 

+N(CH3)2), 52.7 (2C, N(CH2CH2)2N-CH2-C=O), 48.4, 39.3 (C(CH3)2), 26.6 (2C, C(CH3)2), 

25.1, 24.4, 22.6. 

MS (ESI), m/z: 358.70 [M-Br+H] 2+ 

HPLC purity: 93% 

 

 

5.5.5.3. N-(3-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-dimethylpropyl)-

N,N-dimethyl-6-(4-(2-oxo-2-(6-oxo-5,6-dihydro-11H-benzo[e]pyrido[3,2-

b][1,4]diazepin-11-yl)ethyl)piperazin-1-yl)hexan-1-aminium bromide 18 

 

18, (n = 4) 

(C43H52BrN7O4, MW: 810.84 g/mol) 

The intermediate 9 (149 mg, 0.27 mmol) and N-desmethyl pirenzepine 12 (100 mg, 0.30 

mmol) were used as reactants, and the product was purified using C18 reverse phase silica 

gel flash chromatography (H2O/MeOH solvent system) to give 18 (69 mg, 31% yield). 

Compound 18: beige solid; Rf = 0.43 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3).  
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IR (ATR), ṽ [cm-1]: 3362, 2926, 2853, 1737, 1654, 1587, 1457, 1375, 1338, 1234. 

1H NMR (400 MHz, CDCl3, δ [ppm]): 8.62 – 8.50 (m, 2H, naphth.), 8.30 – 8.18 (m, 2H, 

naphth.), 8.12 (d, J = 4.7 Hz, 1H, H-2pirenz-arom.), 8.02 (d, J = 7.9 Hz, 1H, H-4pirenz-arom.), 7.82 

(d, J = 7.6 Hz, 1H, H-10pirenz-arom.), 7.80 – 7.68 (m, 2H, naphth.), 7.59 – 7.43 (m, 2H, H-

7pirenz-arom., H-8pirenz-arom.), 7.36 – 7.29 (m, J = 6.9 Hz, 1H, H-9pirenz-arom.), 7.21 (dd, J = 7.9, 

4.7 Hz, 1H, H-3pirenz-arom.), 4.33 (s, 2H, Nnaphth-CH2), 3.72 (d, J = 14.1 Hz, 1H, CH2-C=O), 

3.68 – 3.62 (m, 2H, +N-CH2), 3.60 (s, 2H, CH2-N+), 3.53 (s, 6H, +N(CH3)2), 3.00 (d, J = 14.1 

Hz, 1H, CH2-C=O), 2.54 – 2.22 (m, 6H, N(CH2CH2)2N-CH2-C=O (4H), +N-CH2-(CH2)4-CH2 

(2H)), 2.21 – 1.94 (m, 4H, N(CH2CH2)2N-CH2-C=O), 1.78 (br, 2H, +N-CH2-CH2), 1.50 – 1.20 

(m, 6H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2, +N-CH2-(CH2)3-CH2), 1.33 (s, 6H, C(CH3)2). 

13C NMR (100 MHz, CDCl3, δ [ppm]): 170.3 (CH2-C=O), 167.8 (NH-C=O), 165.4 (2C, 

Nnaphth-C=O), 143.6, 140.7, 134.7 (2C, CHnaphth.), 132.6, 132.0 (2C, CHnaphth.), 131.7 (2C, 

CHpirenz-arom.), 131.0, 130.0, 128.2 (2C, CHpirenz-arom.), 127.3 (2C, CHnaphth.), 123.8, 122.2 (2C, 

Cnaphth.), 72.3, 68.7, 61.4 (CH2-C=O), 59.1, 57.8 (2C, N(CH2CH2)2N-CH2-C=O), 53.2 (2C, 

+N(CH3)2), 52.7 (2C, N(CH2CH2)2N-CH2-C=O), 48.6, 39.4 (C(CH3)2), 29.8, 26.6 (2C, 

C(CH3)2), 25.2, 22.3. 

MS (ESI), m/z: 365.75 [M-Br+H] 2+ 

HPLC purity: 95% 
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5.5.5.4. N-(3-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-dimethylpropyl)-

N,N-dimethyl-7-(4-(2-oxo-2-(6-oxo-5,6-dihydro-11H-benzo[e]pyrido[3,2-

b][1,4]diazepin-11-yl)ethyl)piperazin-1-yl)heptan-1-aminium bromide 19 

 

19, (n = 5) 

(C44H54BrN7O4, MW: 824.87 g/mol) 

The intermediate 10 (130 mg, 0.23 mmol) and N-desmethyl pirenzepine 12 (85 mg, 0.25 

mmol) were used as reactants, and the product was purified using C18 reverse phase silica 

gel flash chromatography (H2O/MeOH solvent system) to give 19 (65 mg, 34% yield). 

Compound 19: beige solid; Rf = 0.45 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3362, 2922, 2851, 1735, 1655, 1587, 1507, 1458, 1377, 1338, 1235. 

1H NMR (400 MHz, CDCl3, δ [ppm]): 8.58 – 8.50 (m, 2H, naphth.), 8.28 – 8.18 (m, 2H, 

naphth.), 8.10 (d, J = 4.7 Hz, 1H, H-2pirenz-arom.), 7.97 (d, J = 7.9 Hz, 1H, H-4pirenz-arom.), 7.82 

(d, J = 7.6 Hz, 1H, H-10pirenz-arom.), 7.79 – 7.71 (m, 2H, naphth.), 7.57 – 7.42 (m, 2H, H-

7pirenz-arom., H-8pirenz-arom.), 7.34 – 7.27 (m, 1H, H-9pirenz-arom.), 7.19 (dd, J = 7.9, 4.7 Hz, 1H, 

H-3pirenz-arom.), 4.31 (s, 2H, Nnaphth-CH2), 3.78 – 3.69 (m, 2H, +N-CH2), 3.66 – 3.59 (m, 1H, 

CH2-C=O), 3.54 (s, 2H, CH2-N+), 3.49 (s, 6H, +N(CH3)2), 3.08 (d, J = 14.3 Hz, 1H, CH2-

C=O), 2.47 – 2.18 (m, 6H, N(CH2CH2)2N-CH2-C=O (4H), +N-CH2-(CH2)5-CH2 (2H)), 2.11 

(br, 4H, N(CH2CH2)2N-CH2-C=O), 1.80 (br, 2H, +N-CH2-CH2), 1.34 (br, 8H, +N-CH2-CH2-

CH2, +N-CH2-(CH2)2-CH2, +N-CH2-(CH2)3-CH2, +N-CH2-(CH2)4-CH2), 1.31 (s, 6H, C(CH3)2). 
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13C NMR (100 MHz, CDCl3, δ [ppm]): 170.2 (CH2-C=O), 168.5 (NH-C=O), 165.3 (2C, 

Nnaphth-C=O), 143.8, 140.8, 134.7 (2C, CHnaphth.), 132.4, 132.0 (2C, CHnaphth.), 131.7 (2C, 

CHpirenz-arom.), 130.9, 129.1, 128.2 (2C, CHpirenz-arom.), 127.3 (2C, CHnaphth.), 124.0, 122.2 (2C, 

Cnaphth.), 72.2, 68.5, 61.2 (CH2-C=O), 59.7, 58.1 (2C, N(CH2CH2)2N-CH2-C=O), 53.0 (2C, 

+N(CH3)2), 52.9 (2C, N(CH2CH2)2N-CH2-C=O), 48.5, 39.3 (C(CH3)2), 31.0, 26.9, 26.59 (2C, 

C(CH3)2), 25.9, 22.9. 

MS (ESI), m/z: 372.75 [M-Br+H] 2+ 

HPLC purity: 96% 
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5.6. Synthesis of phthalimide/1,8-naphthalimide-clozapine hybrids 21-25 

5.6.1. 8-Chloro-11-(piperazin-1-yl)-5H-dibenzo[b,e][1,4]diazepine 20 

 

 

20 

(C17H17ClN4, MW: 312.80 g/mol) 

Prior to the synthesis of N-desmethyl clozapine 20, the starting material clozapine was 

extracted from purchased Clozapex® tablets (100 mg clozapine per tablet). The extraction 

technique involved crushing of 20 of the pale yellow uncoated tablets and adding the ground 

powder to a mixture of equal volumes (100 mL) of dichloromethane and distilled water. After 

shaking and phase separation, the dichloromethane phase was collected and the aqueous 

phase was washed with dichloromethane (3 x 100 mL). The combined organic solutions 

were washed with distilled water, dried with Na2SO4 and evaporated to obtain pure 

clozapine. The structure and purity of clozapine was confirmed using NMR spectroscopy, 

HPLC and LC-MS.  

To a solution of clozapine (1.78 g, 5.45 mmol) in 1,2-dichloroethane (100 mL), 3-fold excess 

of α-chloroethyl chloroformate (1.8 mL, 16.34 mmol) was added dropwise (over 15 min) at 

0 °C. The solution was then refluxed overnight. The solvent was evaporated under reduced 

pressure, after 100 mL of methanol was added to residue and refluxed at 50 °C overnight. 

The solvent was re-evaporated under reduced pressure and the residue was purified by 

silica gel chromatography (CHCl3/MeOH/NH3 100:10:1) to give the N-desmethyl clozapine 

20 (1.02 g, 60% yield).65  
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Compound 20: bright yellow solid; Rf = 0.41 (silica gel, CHCl3/MeOH/NH3 100:10:1). 

1H NMR (400 MHz, CDCl3, δ [ppm]): 7.32 – 7.20 (m, 2H, H-3arom., H-1arom.), 7.05 (d, J = 1.7 

Hz, 1H, H-9arom.), 7.03 – 6.96  (m, 1H, H-2arom.), 6.85 – 6.73  (m, 2H, H-7arom., H-4arom.), 6.59 

(d, J = 8.3 Hz, 1H, H-6arom.), 5.00 (s, 1H, NH-5), 3.40 (s, 4H, NH(CH2CH2)2N), 2.89 (s, 4H, 

NH(CH2CH2)2N), 2.15 (s, 1H, NH(CH2CH2)2N). 

13C NMR (100 MHz, CDCl3, δ [ppm]): 163.2 (C=N), 152.8 (C-11aarom. (C-C=N)), 141.9 (C-

8arom. (C-Cl)), 140.6 (C-5aarom.), 132.0 (C-3arom.), 130.3 (C-1arom.), 129.0 (C-9aarom.), 126.8 

(C-9arom.), 123.5 (C-4aarom.), 123.1 (C-2arom., C-7arom.), 120.1 (C-4arom., C-6arom.), 48.7 (2C, 

NH(CH2CH2)2N), 46.0 (2C, NH(CH2CH2)2N). 

 

 

5.6.2. General procedure D for the synthesis of phthalimide/1,8-naphthalimide-

clozapine hybrids 21-25 

 

To a stirred acetonitrile solution of the corresponding intermediate 4, 5, 7, 9 or 10 (1 equiv.), 

N-desmethyl clozapine 20 (1.1 equiv.) was added and dissolved. The reaction was stirred 

at 35 °C under inert conditions for 5 days (silica gel TLC monitoring, 0.2 M aqueous 

KNO3/MeOH 2:3). The product either directly crystallized from the reaction mixture during 

the reaction time and was hence obtained by vacuum filtration followed by washing with 

cold acetonitrile, or, in case of no crystallization, the product was obtained by evaporation 

of the solvent under reduced pressure followed by purification using C18 reverse phase 

silica gel flash chromatography using a linear gradient of water: solvent A and methanol: 

solvent B (B% from 0% to 100% in 60 min) followed by a plateau phase (100% methanol 

for 30 min) yielding the pure product 21, 22, 23, 24 or 25, respectively, as the last fraction 

using UV detection. 
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5.6.2.1. 6-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)-N-(3-

(1,3-dioxoisoindolin-2-yl)propyl)-N,N-dimethylhexan-1-aminium bromide 

21 

 

21, (n = 4) 

(C36H44BrClN6O2, MW: 708.14 g/mol) 

The intermediate 4 (202 mg, 0.51 mmol) and N-desmethyl clozapine 20 (175 mg, 0.56 

mmol) were used as reactants, and the crystallized product was filtered under vacuum and 

washed with cold acetonitrile to give 21 (228 mg, 63% yield). 

Compound 21: dull yellow solid; mp = 185 °C; Rf = 0.38 (silica gel, 0.2 M aqueous 

KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3265, 2971, 1771, 1716, 1615, 1558, 1457, 1396, 1362. 

1H NMR (400 MHz, DMSO-d6, δ [ppm]): 7.92 – 7.82 (m, 4H, phth.), 7.37 (t, J = 7.7 Hz, 1H, 

H-3cloz-arom.), 7.30 (d, J = 7.5 Hz, 1H, H-7cloz-arom.), 7.12 (d, J = 7.9 Hz, 1H, H-6cloz-arom.), 7.02 

(t, J = 7.5 Hz, 1H, H-2cloz-arom.), 6.98 – 6.88 (m, 3H, H-1cloz-arom., H-4cloz-arom., H-9cloz-arom.), 

3.92 (br, 1H, NH), 3.66 (t, J = 6.2 Hz, 2H, Nphth-CH2), 3.55 (br, 2H, CH2-N+), 3.41 – 3.20 (m, 

8H, N(CH2CH2)2N), 3.27 (br, 2H, +N-CH2), 3.15 (br, 2H, +N-CH2-(CH2)4-CH2), 3.01 (s, 6H, 

+N(CH3)2), 2.06 (br, 2H, Nphth-CH2-CH2), 1.73 (br, 2H, +N-CH2-(CH2)3-CH2), 1.65 (br, 2H, 

+N-CH2-CH2), 1.32 (br, 4H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2). 

13C NMR (100 MHz, DMSO-d6, δ [ppm]): 168.0 (2C, C=O), 162.3 (C=N), 154.3 (C-C=N), 

142.4 (C-Cl), 141.1, 134.5 (2C, CHphth.), 132.6 (2C, Cphth.), 131.7, 129.9, 126.7, 125.8, 
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123.4, 123.1 (2C, CHphth.), 122.6, 122.1, 120.9, 120.5, 63.0, 60.8, 55.4, 50.5 (4C, 

N(CH2CH2)2N), 50.0 (2C, +N(CH3)2), 34.7, 25.4, 25.1, 22.8, 21.6, 21.4. 

MS (ESI), m/z: 314.40 [M-Br+H] 2+ 

HPLC purity: 92% 

 

 

5.6.2.2. 7-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)-N-(3-

(1,3-dioxoisoindolin-2-yl)propyl)-N,N-dimethylheptan-1-aminium bromide 

22 

 

22, (n = 5) 

(C37H46BrClN6O2, MW: 722.17 g/mol) 

The intermediate 5 (222 mg, 0.54 mmol) and N-desmethyl clozapine 20 (186 mg, 0.60 

mmol) were used as reactants, and the product was purified using C18 reverse phase silica 

gel flash chromatography (H2O/MeOH solvent system) to give 22 (216 mg, 55% yield). 

Compound 22: dull yellow solid; Rf = 0.42 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3398, 2927, 2670, 1770, 1704, 1604, 1559, 1458, 1396, 1372. 

1H NMR (400 MHz, DMSO-d6, δ [ppm]): 7.93 – 7.84 (m, 4H, phth.), 7.38 (t, J = 7.9 Hz, 1H, 

H-3cloz-arom.), 7.29 (d, J = 7.3 Hz, 1H, H-7cloz-arom.), 7.09 (d, J = 8.0 Hz, 1H, H-6cloz-arom.), 7.02 
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(t, J = 7.4 Hz, 1H, H-3cloz-arom.), 6.95 – 6.89 (m, 3H, H-1cloz-arom., H-4cloz-arom., H-9cloz-arom.), 

3.93 (br, 1H, NH), 3.66 (t, J = 6.3 Hz, 2H, Nphth-CH2), 3.58 – 3.49 (m, 2H, CH2-N+), 3.49 – 

3.20 (m, 8H, N(CH2CH2)2N), 3.25 (br, 2H, +N-CH2), 3.15 (br, 2H, +N-CH2-(CH2)5-CH2), 2.99 

(s, 6H, +N(CH3)2), 2.05 (br, 2H, Nphth-CH2-CH2), 1.76 – 1.56 (m, 4H, +N-CH2-CH2, +N-CH2-

(CH2)4-CH2), 1.38 – 1.20 (m, 6H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2, +N-CH2-(CH2)3-

CH2). 

13C NMR (100 MHz, DMSO-d6, δ [ppm]): 168.0 (2C, C=O), 162.2 (C=N), 154.3 (C-C=N), 

142.4 (C-Cl), 134.5 (2C, CHphth.), 132.6 (2C, Cphth.), 131.7, 129.8, 126.74, 125.7, 123.5, 

123.1 (2C, CHphth.), 122.5, 122.1, 120.9, 120.5, 118.1, 63.1, 60.7, 55.5, 50.5 (4C, 

N(CH2CH2)2N), 50.0 (2C, +N(CH3)2), 43.9, 34.6, 27.9, 25.8, 25.5, 22.9, 21.6. 

MS (ESI), m/z: 321.35 [M-Br+H] 2+ 

HPLC purity: 88% 

 

 

5.6.2.3. 4-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)-N-(3-

(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-dimethylpropyl)-N,N-

dimethylbutan-1-aminium bromide 23 

 

23, (n = 2) 

(C40H46BrClN6O2, MW: 758.20 g/mol) 
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The intermediate 7 (181 mg, 0.34 mmol) and N-desmethyl clozapine 20 (118 mg, 0.38 

mmol) were used as reactants, and the crystallized product was filtered under vacuum and 

washed with cold acetonitrile to give 23 (134 mg, 51% yield). 

Compound 23: dull yellow solid; mp = 155 °C; Rf = 0.44 (silica gel, 0.2 M aqueous 

KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3421, 3235, 2958, 1748, 1704, 1655, 1608, 1458, 1377, 1340, 1234. 

1H NMR (400 MHz, DMSO-d6, δ [ppm]): 8.54 – 8.43 (m, 4H, naphth.), 7.88 (t, J = 7.8 Hz, 

2H, naphth.), 7.38 – 7.32 (m, 1H, H-3cloz-arom.), 7.22 (d, J = 7.3 Hz, 1H, H-7cloz-arom.), 7.09 (d, 

J = 7.8 Hz, 1H, H-6cloz-arom.), 7.01 (t, J = 7.5 Hz, 1H, H-2cloz-arom.), 6.95 – 6.90 (m, 1H, H-9cloz-

arom.), 6.89 – 6.84 (m, 2H, H-1cloz-arom., H-4cloz-arom.), 4.13 (s, 2H, Nnapht-CH2), 3.65 (br, 1H, 

NH), 3.59 (br, 2H, CH2-N+), 3.48 (br, 2H, +N-CH2), 3.47 – 3.23 (m, 8H, N(CH2CH2)2N), 3.43 

(br, 2H, +N-CH2-(CH2)2-CH2), 3.18 (s, 6H, +N(CH3)2), 1.79 (br, 2H, +N-CH2-CH2), 1.57 (br, 

2H, +N-CH2-CH2-CH2), 1.25 (s, 6H, C(CH3)2). 

13C NMR (100 MHz, DMSO-d6, δ [ppm]): 164.7 (2C, C=O), 162.6 (C=N), 154.2 (C-C=N), 

142.3 (C-Cl), 134.4 (2C, CHnaphth.), 132.2, 131.3, 131.1, 131.0 (2C, CHnaphth.), 129.8, 127.5, 

127.4, 127.3 (2C, CHnaphth.), 126.7, 125.8, 125.6, 122.4, 122.3 (2C, Cnaphth.), 120.8, 120.4, 

71.6, 66.7, 61.6, 52.1 (2C, +N(CH3)2), 50.3 (4C, N(CH2CH2)2N), 48.9, 39.2 (C(CH3)2), 25.5 

(2C, C(CH3)2), 20.0 (2C). 

MS (ESI), m/z: 339.35 [M-Br+H] 2+ 

HPLC purity: 96% 
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5.6.2.4. 6-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)-N-(3-

(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-dimethylpropyl)-N,N-

dimethylhexan-1-aminium bromide 24 

 

24, (n = 4) 

(C42H50BrClN6O2, MW: 786.26 g/mol) 

The intermediate 9 (200 mg, 0.36 mmol) and N-desmethyl clozapine 20 (124 mg, 0.40 

mmol) were used as reactants, and the crystallized product was filtered under vacuum and 

washed with cold acetonitrile to give 24 (181 mg, 64% yield). 

Compound 24: dull yellow solid; mp = 231 °C; Rf = 0.39 (silica gel, 0.2 M aqueous 

KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3421, 3285, 2937, 1703, 1656, 1618, 1459, 1376, 1339, 1234. 

1H NMR (400 MHz, DMSO-d6, δ [ppm]): 8.56 – 8.45 (m, 4H, naphth.), 7.90 (t, J = 7.9 Hz, 

2H, naphth.), 7.43 – 7.34 (m, 1H, H-3cloz-arom.), 7.29 (d, J = 7.7 Hz, 1H, H-7cloz-arom.), 7.09 (d, 

J = 7.7 Hz, 1H, H-6cloz-arom.), 7.02 (t, J = 7.9 Hz, 1H, H-2cloz-arom.), 6.94 – 6.87 (m, 3H, H-1cloz-

arom., H-4cloz-arom., H-9cloz-arom.), 4.15 (s, 2H, Nnaphth-CH2), 3.94 (br, 1H, NH), 3.56 (br, 2H, +N-

CH2), 3.48 (s, 2H, CH2-N+), 3.41 (br, 2H, +N-CH2-(CH2)4-CH2), 3-39 – 3.26 (m, 8H, 

N(CH2CH2)2N), 3.18 (s, 6H, +N(CH3)2), 1.75 (br, 4H, +N-CH2-CH2, +N-CH2-(CH2)3-CH2), 1.35 

(br, 4H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2), 1.25 (s, 6H, C(CH3)2). 

13C NMR (100 MHz, DMSO-d6, δ [ppm]): 164.7 (2C, C=O), 162.2 (C=N), 154.3 (C-C=N), 

142.4 (C-Cl), 141.1, 134.4 (2C, CHnaphth.), 132.6, 131.3, 130.9 (2C, CHnaphth.), 129.8, 127.5, 
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127.3 (2C, CHnaphth.), 126.8, 125.8, 123.5, 122.5, 122.3 (2C, Cnaphth.), 122.1, 120.9, 120.5, 

71.7, 67.1, 55.4, 52.0 (2C, +N(CH3)2), 50.5 (4C, N(CH2CH2)2N), 48.9, 39.2 (C(CH3)2), 25.5 

(2C, C(CH3)2), 25.2 (2C), 22.9, 21.9. 

MS (ESI), m/z: 353.40 [M-Br+H] 2+ 

HPLC purity: 97% 

 

 

5.6.2.5. 7-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)-N-(3-

(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-2,2-dimethylpropyl)-N,N-

dimethylheptan-1-aminium bromide 25 

 

25, (n = 5) 

(C43H52BrClN6O2, MW: 800.28 g/mol) 

The intermediate 10 (92 mg, 0.16 mmol) and N-desmethyl clozapine 20 (56 mg, 0.18 mmol) 

were used as reactants, and the product was purified using C18 reverse phase silica gel 

flash chromatography (H2O/MeOH solvent system) to give 25 (74 mg, 57% yield). 

Compound 25: dull yellow solid; Rf = 0.42 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3245, 2927, 2854, 1701, 1655, 1603, 1559, 1458, 1376, 1338, 1235. 
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1H NMR (400 MHz, CDCl3, δ [ppm]): 8.59 (dd, J = 7.3, 0.9 Hz, 2H, naphth.), 8.26 (dd, J = 

8.3, 0.8 Hz, 2H, naphth.), 7.79 (t, J = 7.6 Hz, 2H, naphth.), 7.30 – 7.19 (m, 2H, H-1cloz-arom., 

H-3cloz-arom.), 7.03 (d, J = 2.4 Hz, 1H, H-9cloz-arom.), 7.01 – 6.94 (m, 1H, H-2cloz-arom.), 6.87 (d, 

J = 7.9 Hz, 1H, H-4cloz-arom.), 6.79 (dd, J = 8.3, 2.4 Hz, 1H, H-7cloz-arom.), 6.66 (d, J = 8.3 Hz, 

1H, H-6cloz-arom.), 4.30 (s, 2H, Nnaphth-CH2), 3.71 (br, 2H, +N-CH2), 3.57 – 3.49 (m, 8H, 

N(CH2CH2)2N), 3.52 (s, 2H, CH2-N+), 3.45 (s, 6H, +N(CH3)2), 2.50 (br, 2H, +N-CH2-(CH2)5-

CH2), 2.39 – 2.30 (m, 2H, +N-CH2-(CH2)4-CH2), 1.77 (br, 2H, +N-CH2-CH2), 1.54 – 1.44 (m,  

2H, +N-CH2-(CH2)3-CH2), 1.34 (br, 4H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2), 1.30 (s, 6H, 

C(CH3)2). 

13C NMR (100 MHz, CDCl3, δ [ppm]): 165.4 (2C, C=O), 163.0 (C=N), 153.0 (C-C=N), 142.0 

(C-Cl), 140.7, 134.8 (2C, CHnaphth.), 132.1 (2C, CHnaphth.), 132.0, 131.8, 130.4, 129.0, 128.2, 

127.3, 126.8 (2C, CHnaphth.), 123.5, 123.2, 123.1, 122.2 (2C, Cnaphth.), 120.3, 120.2, 72.2, 

68.3, 58.7, 53.3 (2C, N(CH2CH2)2N-C=N), 53.1 (2C, +N(CH3)2), 50.7, 48.5, 46.6 (2C, 

N(CH2CH2)2N-C=N), 39.3 (C(CH3)2), 29.3, 27.4, 26.7, 26.6 (2C, C(CH3)2), 23.3. 

MS (ESI), m/z: 360.50 [M-Br+H] 2+ 

HPLC purity: 99% 
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5.7. Synthesis of iperoxo-clozapine hybrids 30-32 

5.7.1. General procedure E for the synthesis of iperoxo monoquaternary bromides 

27-29  

 

The iperoxo base 26 (1 equiv.) and an excess amount of the corresponding alkyl dibromide 

(15 equiv.) were dissolved in acetonitrile (10 mL). To this solution, catalytic amount of a 1:1 

mixture of KI/K2CO3 was added. The mixture was then stirred in the microwave at 80 °C 

(ramp: 20 °C/min, 800W). The reaction was generally found to be completed after 

approximately 5 hrs (silica gel TLC monitoring, CHCl3/MeOH/NH3 100:10:1, I2 detection). 

After cooling to room temperature, the mixture was filtered and the filtrate was evaporated 

under reduced pressure to obtain a brown oil. The oil was dissolved in acetonitrile and the 

product was precipitated using diethyl ether to obtain 27, 28 or 29 as pure product. The 

procedure is modified from reported literature of similar compounds.67, 81  

 

 

5.7.1.1. 6-Bromo-N-(4-((4,5-dihydroisoxazol-3-yl)oxy)but-2-yn-1-yl)-N,N-

dimethylhexan-1-aminium bromide 27 

 

27 

(C15H26Br2N2O2, MW: 426.19 g/mol) 

The iperoxo base 26 (180 mg, 1.00 mmol) and 1,6-dibromohexane (2.3 mL, 15.00 mmol) 

were used as reactants to give 27 (339 mg, 79% yield). 

Compound 27: pale yellow solid; Rf = 0.55 (silica gel, CHCl3/MeOH/NH3 100:10:1). 

The spectroscopic data for this compound are in accordance with the literature.67 
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5.7.1.2. 8-Bromo-N-(4-((4,5-dihydroisoxazol-3-yl)oxy)but-2-yn-1-yl)-N,N-

dimethyloctan-1-aminium bromide 28 

 

28 

(C17H30Br2N2O2, MW: 454.25 g/mol) 

The iperoxo base 26 (0.50 g, 2.70 mmol) and 1,8-dibromooctane (7.6 mL, 41.20 mmol) 

were used as reactants to give 28 (0.7 g, 57% yield). 

Compound 28: yellowish-orange solid; Rf = 0.46 (silica gel, CHCl3/MeOH/NH3 100:10:1). 

The spectroscopic data for this compound are in accordance with the literature.67 

 

 

5.7.1.3. 10-Bromo-N-(4-((4,5-dihydroisoxazol-3-yl)oxy)but-2-yn-1-yl)-N,N-

dimethyldecan-1-aminium bromide 29 

 

29 

(C19H34Br2N2O2, MW: 482.30 g/mol) 

The iperoxo base 26 (0.50 g, 2.70 mmol) and 1,10-dibromodecane (12.36 g, 41.20 mmol) 

were used as reactants to give 29 (0.79 g, 61% yield). 



EXPERIMENTAL 

108 
 

Compound 29: yellowish-orange solid; Rf = 0.43 (silica gel, CHCl3/MeOH/NH3 100:10:1). 

1H NMR (400 MHz, CDCl3, δ [ppm]): 4.92 (s, 2H, C≡C-CH2-N+), 4.80 (s, 2H, O-CH2-C≡C), 

4.40 (t, J = 9.6 Hz, 2H, CH2-O-Nisox), 3.65 – 3.55 (m, 2H, CH2-Br), 3.43 (s, 6H, +N(CH3)2), 

3.38 (t, J = 6.8 Hz, 2H, +N-CH2), 2.99 (t, J = 9.6 Hz, 2H, CH2-C=Nisox), 1.87 – 1.65 (m, 4H, 

+N-CH2-CH2, +N-CH2-(CH2)7-CH2), 1.45 – 1.28 (m, 12H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-

CH2, +N-CH2-(CH2)3-CH2, +N-CH2-(CH2)4-CH2, +N-CH2-(CH2)5-CH2, +N-CH2-(CH2)6-CH2). 

13C NMR (100 MHz, CDCl3, δ [ppm]): 166.8 (C=Nisox), 86.5 (O-CH2-C≡C), 76.1 (O-CH2-

C≡C), 70.1 (CH2-O-Nisox), 64.2, 57.4 (O-CH2-C≡C), 54.9 (C≡C-CH2-N+), 50.6 (2C, 

+N(CH3)2), 34.2, 33.0 (CH2-C=Nisox), 32.8, 29.3, 29.3, 29.2, 28.7, 28.1, 26.2, 23.0. 
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5.7.2. General procedure F for the synthesis of iperoxo-clozapine hybrids 30-32 

 

To a stirred acetonitrile solution of the corresponding intermediate 27, 28 or 29 (1 equiv.), 

N-desmethyl clozapine 20 (1.1 equiv.) was added and dissolved. The reaction was stirred 

at 35 °C under inert conditions for 4 days (silica gel TLC monitoring, 0.2 M aqueous 

KNO3/MeOH 2:3). The product either directly crystallized from the reaction mixture during 

the reaction time and was hence obtained by vacuum filtration followed by washing with 

cold acetonitrile, or, in case of no crystallization, the product was obtained by evaporation 

of the solvent under reduced pressure followed by purification using C18 reverse phase 

silica gel flash chromatography using a linear gradient of water: solvent A and methanol: 

solvent B (B% from 0% to 100% in 60 min) followed by a plateau phase (100% methanol 

for 30 min) yielding the pure product 30, 31 or 32, respectively, as the last fraction using 

UV detection. 

 

 

5.7.2.1. 6-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)-N-(4-

((4,5-dihydroisoxazol-3-yl)oxy)but-2-yn-1-yl)-N,N-dimethylhexan-1-

aminium bromide 30 

 

30, (n = 4) 

(C32H42BrClN6O2, MW: 658.08 g/mol) 
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The intermediate 27 (200 mg, 0.47 mmol) and N-desmethyl clozapine 20 (161 mg, 0.52 

mmol) were used as reactants, and the crystallized product was filtered under vacuum and 

washed with cold acetonitrile to give 30 (195 mg, 48% yield). 

Compound 30: yellowish-brown solid; mp = 180 °C; Rf = 0.44 (silica gel, 0.2 M aqueous 

KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3274, 2948, 1734, 1608, 1568, 1461, 1433, 1378, 1337, 1227. 

1H NMR (400 MHz, MeOD, δ [ppm]): 7.42 – 7.33 (m, 2H, H-1cloz-arom., H-3cloz-arom.), 7.08 (td, 

J = 7.7, 1.1 Hz, 1H, H-2cloz-arom.), 7.04 (d, J = 8.0 Hz, 1H, H-4cloz-arom.), 6.99 (d, J = 2.3 Hz, 

1H, H-9cloz-arom.), 6.94 – 6.82 (m, 2H, H-6cloz-arom., H-7cloz-arom.), 4.91 (s, 2H, C≡C-CH2-N+), 

4.44 – 4.35 (m, 4H, O-CH2-C≡C, CH2-O-Nisox), 3.64 – 3.31 (m, 8H, N(CH2CH2)2N), 3.51 – 

3.44 (m, 2H, +N-CH2), 3.27 – 3.20 (m, 2H, +N-CH2-(CH2)4-CH2), 3.20 (s, 6H, +N(CH3)2), 3.03 

(t, J = 9.6 Hz, 2H, CH2-C=Nisox), 1.84 (br, 4H, +N-CH2-CH2, +N-CH2-(CH2)3-CH2), 1.52 (br, 

4H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2). 

13C NMR (100 MHz, MeOD, δ [ppm]): 168.7 (C=Nisox), 164.2 (C=Ncloz), 155.6 (C-C=Ncloz), 

142.5 (C-Cl), 141.9, 134.1, 131.2, 129.7, 127.4, 125.4, 124.3, 123.9, 121.7, 121.5, 87.7 (O-

CH2-C≡C), 76.6 (O-CH2-C≡C), 71.2 (CH2-O-Nisox), 65.2, 58.3 (O-CH2-C≡C), 58.0 (C≡C-

CH2-N+), 55.3, 52.6 (2C, N(CH2CH2)2N-C=Ncloz), 51.3 (2C, +N(CH3)2), 46.1 (2C, 

N(CH2CH2)2N-C=Ncloz), 33.7 (CH2-C=Nisox), 26.9, 26.5, 24.7, 23.4. 

MS (ESI), m/z: 289.35 [M-Br+H] 2+ 

HPLC purity: 99% 
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5.7.2.2. 8-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)-N-(4-

((4,5-dihydroisoxazol-3-yl)oxy)but-2-yn-1-yl)-N,N-dimethyloctan-1-

aminium bromide 31 

 

31, (n = 6) 

(C34H46BrClN6O2, MW: 686.14 g/mol) 

The intermediate 28 (204 mg, 0.45 mmol) and N-desmethyl clozapine 20 (154 mg, 0.49 

mmol) were used as reactants, and the product was purified using C18 reverse phase silica 

gel flash chromatography (H2O/MeOH solvent system) to give 31 (130 mg, 42% yield). 

Compound 31: yellowish-brown solid; Rf = 0.38 (silica gel, 0.2 M aqueous KNO3/MeOH 

2:3). 

IR (ATR), ṽ [cm-1]: 3421, 3242, 2928, 2855, 1604, 1560, 1458, 1430, 1374, 1339, 1235. 

1H NMR (400 MHz, MeOD, δ [ppm]): 7.42 – 7.32 (m, 2H, H-1cloz-arom., H-3cloz-arom.), 7.10 – 

7.02 (m, 2H, H-2cloz-arom., H-4cloz-arom.), 6.98 (d, J = 2.3 Hz, 1H, H-9cloz-arom.), 6.92 – 6.83 (m, 

2H, H-6cloz-arom., H-7cloz-arom.), 4.91 (s, 2H, C≡C-CH2-N+), 4.43 – 4.36 (m, 4H, O-CH2-C≡C, 

CH2-O-Nisox), 3.79 – 3.59 (m, 4H, N(CH2CH2)2N-C=Ncloz), 3.51 – 3.43 (m, 2H, +N-CH2), 3.38 

– 3.32 (m, 4H, N(CH2CH2)2N-C=Ncloz), 3.19 (s, 6H, +N(CH3)2), 3.15 – 3.08 (m, 2H, +N-CH2-

(CH2)6-CH2), 3.03 (t, J = 9.6 Hz, 2H, CH2-C=Nisox), 1.80 (br, 4H, +N-CH2-CH2, +N-CH2-

(CH2)5-CH2), 1.45 (br, 8H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2, +N-CH2-(CH2)3-CH2, +N-

CH2-(CH2)4-CH2). 
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13C NMR (100 MHz, MeOD, δ [ppm]): 168.7 (C=Nisox), 164.3 (C=Ncloz), 155.6 (C-C=Ncloz), 

143.3 (C-Cl), 142.4, 134.0, 131.2, 129.6, 127.4, 125.2, 124.3, 123.6, 121.7, 121.5, 87.7 (O-

CH2-C≡C), 76.6 (O-CH2-C≡C), 71.2 (CH2-O-Nisox), 65.5, 58.4 (O-CH2-C≡C), 58.3 (C≡C-

CH2-N+), 55.2, 52.7 (2C, N(CH2CH2)2N-C=Ncloz), 51.2 (2C, +N(CH3)2), 46.0 (2C, 

N(CH2CH2)2N-C=Ncloz), 33.7 (CH2-C=Nisox), 29.8, 29.7, 27.5, 27.1, 25.2, 23.6. 

MS (ESI), m/z: 303.35 [M-Br+H] 2+ 

HPLC purity: 87% 

 

 

5.7.2.3. 10-(4-(8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11-yl)piperazin-1-yl)-N-(4-

((4,5-dihydroisoxazol-3-yl)oxy)but-2-yn-1-yl)-N,N-dimethyldecan-1-

aminium bromide 32 

 

32, (n = 8) 

(C36H50BrClN6O2, MW: 714.09 g/mol) 

The intermediate 29 (229 mg, 0.48 mmol) and N-desmethyl clozapine 20 (163 mg, 0.52 

mmol) were used as reactants, and the product was purified using C18 reverse phase silica 

gel flash chromatography (H2O/MeOH solvent system) to give 32 (102 mg, 30% yield). 

Compound 32: yellowish-brown solid; Rf = 0.41 (silica gel, 0.2 M aqueous KNO3/MeOH 

2:3). 
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IR (ATR), ṽ [cm-1]: 3280, 2926, 2852, 1603, 1561, 1460, 1375, 1296, 1237. 

1H NMR (400 MHz, MeOD, δ [ppm]): 7.36 – 7.30 (m, 1H, H-3cloz-arom.), 7.28 – 7.24 (m, 1H, 

H-1cloz-arom.), 7.05 – 6.96 (m, 2H, H-2cloz-arom., H-4cloz-arom.), 6.94 (d, J = 2.2 Hz, 1H, H-9cloz-

arom.), 6.87 – 6.76 (m, 2H, H-6cloz-arom., H-7cloz-arom.), 4.35 (s, 2H, C≡C-CH2-N+), 4.24 (s, 2H, 

O-CH2-C≡C), 4.16 (t, J = 8.8 Hz, 2H, CH2-O-Nisox), 3.41 (br, 4H, N(CH2CH2)2N-C=Ncloz), 

2.66 (t, J = 8.8 Hz, 2H, CH2-C=Nisox), 2.54 (br, 4H, N(CH2CH2)2N-C=Ncloz), 2.42 – 2.33 (m, 

2H, +N-CH2), 2.32 – 2.24 (m, 2H, +N-CH2-(CH2)8-CH2), 2.21 (s, 6H, +N(CH3)2), 1.49 (br, 4H, 

+N-CH2-CH2, +N-CH2-(CH2)7-CH2), 1.42 – 1.29 (m, 12H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-

CH2, +N-CH2-(CH2)3-CH2, +N-CH2-(CH2)4-CH2, +N-CH2-(CH2)5-CH2, +N-CH2-(CH2)6-CH2). 

13C NMR (100 MHz, MeOD, δ [ppm]): 169.9 (C=Nisox), 165.3 (C=Ncloz), 155.5 (C-C=Ncloz), 

143.6 (C-Cl), 143.1, 133.4, 131.3, 129.3, 127.2, 124.4, 124.4, 123.8, 121.5, 121.3, 88.1 (O-

CH2-C≡C), 77.3 (O-CH2-C≡C), 69.7 (CH2-O-Nisox), 60.8, 59.8 (O-CH2-C≡C), 59.8 (C≡C-

CH2-N+), 55.1, 54.1 (2C, N(CH2CH2)2N-C=Ncloz), 48.2 (2C, N(CH2CH2)2N-C=Ncloz), 48.1 

(CH2-C=Nisox), 45.4 (2C, +N(CH3)2), 30.6 (2C), 30.5, 28.7, 28.6, 28.6, 28.3, 27.5. 

MS (ESI), m/z: 317.40 [M-Br+H] 2+ 

HPLC purity: 99% 
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5.8. Synthesis of acetylcholine-clozapine hybrids 35 and 36 

5.8.1. General procedure G for the synthesis of acetylcholine monoquaternary 

bromides 33 and 34 

 

To a solution of N,N-dimethyl-2-aminoethylacetate (1 equiv.) and an excess of the 

corresponding alkyl dibromide (15 equiv.) were dissolved in acetonitrile (30 mL) under inert 

atmosphere. The reaction mixture was refluxed for 3 hrs, followed by cooling to room 

temperature and evaporation of solvent to dryness under reduced pressure. The residue 

was then dissolved in acetonitrile and the product was precipitated using diethyl ether. The 

precipitate of pure 33 or 34 was collected.70 

 

 

5.8.1.1. N-(2-Acetoxyethyl)-6-bromo-N,N-dimethylhexan-1-aminium bromide 33 

 

33 

(C12H25Br2NO2, MW: 375.15 g/mol) 

N,N-Dimethyl-2-aminoethylacetate (400 mg, 3.05 mmol) and 1,6-dibromohexane (7.0 mL, 

45.74 mmol) were used as reactants to give 33 (0.80 g, 70% yield). 

Compound 33: white solid. 

1H NMR (400 MHz, CDCl3, δ [ppm]): 4.56 (br, 2H, O-CH2-CH2-N+), 4.06 (br, 2H, O-CH2-

CH2-N+), 3.69 – 3.61 (m, 2H, CH2-Br), 3.45 (s, 6H, +N(CH3)2), 3.40 (t, J = 6.6 Hz, 2H, +N-

CH2), 2.10 (s, 3H, CH3-C=O), 1.91 – 1.75 (m, 4H, +N-CH2-CH2, +N-CH2-(CH2)3-CH2), 1.58 

– 1.47 (m, 2H, +N-CH2-CH2-CH2), 1.47 – 1.37 (m, 2H, +N-CH2-(CH2)2-CH2). 
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13C NMR (100 MHz, CDCl3, δ [ppm]): 170.0 (CH3-C=O), 65.4, 62.5 (O-CH2-CH2-N+), 57.9 

(O-CH2-CH2-N+), 52.0 (2C, +N(CH3)2), 33.7, 32.3, 27.7, 25.5, 22.8, 21.1 (CH3-C=O). 

 

 

5.8.1.2. N-(2-Acetoxyethyl)-8-bromo-N,N-dimethyloctan-1-aminium bromide 34 

 

34 

(C14H29Br2NO2, MW: 403.20 g/mol) 

N,N-Dimethyl-2-aminoethylacetate (400 mg, 3.05 mmol) and 1,8-dibromoctane (8.4 mL, 

45.74 mmol) were used as reactants to give 34 (1.00 g, 81% yield). 

Compound 34: white solid. 

1H NMR (400 MHz, CDCl3, δ [ppm]): 4.55 – 4.53 (m, 2H, O-CH2-CH2-N+), 4.08 – 4.06 (m, 

2H, O-CH2-CH2-N+), 3.63 – 3.59 (m, 2H, CH2-Br), 3.46 (s, 6H, +N(CH3)2), 3.37 (t, J = 6.8 Hz, 

2H, +N-CH2), 2.08 (s, 3H, CH3-C=O), 1.83 – 1.75 (m, 4H, +N-CH2-CH2, +N-CH2-(CH2)5-CH2), 

1.42 – 1.30 (m, 8H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2, +N-CH2-(CH2)3-CH2, +N-CH2-

(CH2)4-CH2). 

13C NMR (100 MHz, CDCl3, δ [ppm]): 170.1 (CH3-C=O), 65.6, 62.5 (O-CH2-CH2-N+), 57.9 

(O-CH2-CH2-N+), 52.0 (2C, +N(CH3)2), 34.2, 32.7, 29.2, 28.6, 28.1, 26.3, 23.0, 21.1 (CH3-

C=O). 
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5.8.2. General procedure H for the synthesis of acetylcholine-clozapine hybrids 

35 and 36 

 

To a stirred acetonitrile solution of the corresponding intermediate 33 or 34 (1.5 equiv.), N-

desmethyl clozapine 20 (1 equiv.) was added and dissolved. The reaction was stirred at 35 

°C under inert conditions for 3 days (silica gel TLC monitoring, 0.2 M aqueous KNO3/MeOH 

2:3). The product either directly crystallized from the reaction mixture during the reaction 

time and was hence obtained by vacuum filtration followed by washing with cold acetonitrile, 

or, in case of no crystallization, the product was obtained by evaporation of the solvent 

under reduced pressure followed by purification using C18 reverse phase silica gel flash 

chromatography using a linear gradient of water: solvent A and methanol: solvent B (B% 

from 0% to 100% in 60 min) followed by a plateau phase (100% methanol for 30 min) 

yielding the pure product 35 or 36, respectively, as the last fraction using UV detection. 
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5.8.2.1. N-(2-Acetoxyethyl)-6-(4-(8-chloro-5H-dibenzo[b,e][1,4]diazepin-11-

yl)piperazin-1-yl)-N,N-dimethylhexan-1-aminium bromide 35 

 

35, (n = 4) 

(C29H41BrClN5O2, MW: 607.03 g/mol) 

The intermediate 33 (207 mg, 0.55 mmol) and N-desmethyl clozapine 20 (115 mg, 0.37 

mmol) were used as reactants, and the product was purified using C18 reverse phase silica 

gel flash chromatography (H2O/MeOH solvent system) to give 35 (115 mg, 51% yield). 

Compound 35: straw yellow solid; Rf = 0.49 (silica gel, 0.2 M aqueous KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 2970, 1734, 1716, 1541, 1507, 1457, 1375, 1219. 

1H NMR (400 MHz, MeOD, δ [ppm]): 7.43 – 7.33 (m, 2H, H-1cloz-arom., H-3cloz-arom.), 7.11 – 

7.02 (m, 2H, H-2cloz-arom., H-4cloz-arom.), 6.99 (d, J = 2.2 Hz, 1H, H-9cloz-arom.), 6.94 – 6.83 (m, 

2H, H-6cloz-arom., H-7cloz-arom.), 4.53 (br, 2H, O-CH2-CH2-N+), 3.76 – 3.68 (m, 2H, O-CH2-CH2-

N+), 3.64 – 3.33 (m, 8H, N(CH2CH2)2N), 3.48 – 3.42 (m, 2H, +N-CH2), 3.28 – 3.20 (m, 2H, 

+N-CH2-(CH2)4-CH2), 3.19 (s, 6H, +N(CH3)2), 2.11 (s, 3H, CH3-C=O), 1.86 (br, 4H, +N-CH2-

CH2, +N-CH2-(CH2)3-CH2), 1.51 (br, 4H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2). 

13C NMR (100 MHz, MeOD, δ [ppm]): 171.6 (CH3-C=O), 164.2 (C=N), 155.6 (C-C=N), 

143.3 (C-Cl), 142.3, 134.1, 131.2, 129.6, 127.4, 125.3, 124.3, 123.5, 121.7, 121.5, 66.4 

(3C, N(CH2CH2)2N-C=N (2C), +N-CH2 (1C)), 63.7 (O-CH2-CH2-N+), 58.7 (O-CH2-CH2-N+), 

58.0 (2C, N(CH2CH2)2N-C=N), 52.6, 52.1 (2C, +N(CH3)2), 26.9, 26.6, 24.6, 23.3, 20.7 (CH3-

C=O). 
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MS (ESI), m/z: 263.85 [M-Br+H] 2+ 

HPLC purity: 99% 

 

 

5.8.2.2. N-(2-Acetoxyethyl)-8-(4-(8-chloro-5H-dibenzo[b,e][1,4]diazepin-11-

yl)piperazin-1-yl)-N,N-dimethyloctan-1-aminium bromide 36 

 

 

36, (n = 6) 

(C31H45BrClN5O2, MW: 635.09 g/mol) 

 

The intermediate 34 (165 mg, 0.41 mmol) and N-desmethyl clozapine 20 (85 mg, 0.27 

mmol) were used as reactants, and the crystallized product was filtered under vacuum and 

washed with cold acetonitrile to give 36 (106 mg, 62% yield). 

Compound 36: straw yellow solid; mp = 190 °C; Rf = 0.45 (silica gel, 0.2 M aqueous 

KNO3/MeOH 2:3). 

IR (ATR), ṽ [cm-1]: 3300, 2974, 2929, 2858, 1737, 1615, 1462, 1380, 1238. 

1H NMR (400 MHz, MeOD, δ [ppm]): 7.45 – 7.32 (m, 2H, H-1cloz-arom., H-3cloz-arom.), 7.12 – 

7.02 (m, 2H, H-2cloz-arom., H-4cloz-arom.), 6.99 (d, J = 2.3 Hz, 1H, H-9cloz-arom.), 6.94 – 6.82 (m, 
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2H, H-6cloz-arom., H-7cloz-arom.), 4.52 (br, 2H, O-CH2-CH2-N+), 3.74 – 3.68 (m, 2H, O-CH2-CH2-

N+), 3.61 – 3.32 (m, 8H, N(CH2CH2)2N), 3.47 – 3.40 (m, 2H, +N-CH2), 3.24 – 3.19 (m, 2H, 

+N-CH2-(CH2)6-CH2), 3.18 (s, 6H, +N(CH3)2), 2.11 (s, 3H, CH3-C=O), 1.82 (br, 4H, +N-CH2-

CH2, +N-CH2-(CH2)5-CH2), 1.45 (br, 8H, +N-CH2-CH2-CH2, +N-CH2-(CH2)2-CH2, +N-CH2-

(CH2)3-CH2, +N-CH2-(CH2)4-CH2). 

13C NMR (100 MHz, MeOD, δ [ppm]): 171.6 (CH3-C=O), 164.2 (C=N), 155.6 (C-C=N), 

143.3 (C-Cl), 142.7, 134.0, 131.2, 129.6, 127.4, 125.3, 124.3, 123.5, 121.7, 121.5, 66.6 

(3C, N(CH2CH2)2N-C=N (2C), +N-CH2 (1C)), 63.5 (O-CH2-CH2-N+), 58.7 (O-CH2-CH2-N+), 

58.2 (2C, N(CH2CH2)2N-C=N), 52.6, 52.0 (2C, +N(CH3)2), 29.8, 29.7, 27.4, 27.1, 24.9, 23.5, 

20.7 (CH3-C=O). 

MS (ESI), m/z: 277.90 [M-Br+H] 2+ 

HPLC purity: 99% 
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[50] Chen, X.; Klöckner, J.; Holze, J.; Zimmermann, C.; Seemann, W. K.; Schrage, R.; Bock, A.; 

Mohr, K.; Tränkle, C.; Holzgrabe, U., Rational design of partial agonists for the muscarinic 

M₁ acetylcholine receptor. J. Med. Chem. 2014, 58 (2), 560-576. 

[51] De Min, A.; Matera, C.; Bock, A.; Holze, J.; Kloeckner, J.; Muth, M.; Traenkle, C.; De Amici, 

M.; Kenakin, T.; Holzgrabe, U.; Dallanoce, C.; Kostenis, E.; Mohr, K.; Schrage, R., A new 

molecular mechanism to engineer protean agonism at a G protein-coupled receptor. Mol. 

Pharmacol. 2017, 91 (4), 348-356. 

[52] Mohr, K.; Tränkle, C.; Holzgrabe, U., Structure/activity relationships of M₂ muscarinic 

allosteric modulators. Recept. Channels 2003, 9 (4), 229-240. 

[53] Muth, M.; Bender, W.; Scharfenstein, O.; Holzgrabe, U.; Balatkova, E.; Tränkle, C.; Mohr, 

K., Systematic development of high affinity bis (ammonio) alkane-type allosteric enhancers 

of muscarinic ligand binding. J. Med. Chem. 2003, 46 (6), 1031-1040. 

[54] Muth, M.; Sennwitz, M.; Mohr, K.; Holzgrabe, U., Muscarinic allosteric enhancers of ligand 

binding: pivotal pharmacophoric elements in hexamethonio-type agents. J. Med. Chem. 

2005, 48 (6), 2212-2217. 

[55] Holzgrabe, U.; Heller, E., A new synthetic route to compounds of the AFDX-type with affinity 

to muscarinic M₂-receptor. Tetrahedron 2003, 59 (6), 781-787. 



REFERENCES 

125 
 

[56] Tahtaoui, C.; Parrot, I.; Klotz, P.; Guillier, F.; Galzi, J.-L.; Hibert, M.; Ilien, B., Fluorescent 

pirenzepine derivatives as potential bitopic ligands of the human M₁ muscarinic receptor. J. 

Med. Chem. 2004, 47 (17), 4300-4315. 

[57] Sur, C.; Mallorga, P. J.; Wittmann, M.; Jacobson, M. A.; Pascarella, D.; Williams, J. B.; 

Brandish, P. E.; Pettibone, D. J.; Scolnick, E. M.; Conn, P. J., N-desmethylclozapine, an 

allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor 

activity. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (23), 13674-13679. 

[58] Riad, N. M.; Zlotos, D.; Holzgrabe, U., 2-Amino-N-(2-chloropyridin-3yl) benzamide. 

IUCrData 2017, 2 (10), x171536. 

[59] Riad, N.; Zlotos, D.; Holzgrabe, U., 3-(2-Chloropyridin-3-yl) quinazoline-2, 4 (1H, 3H)-dione 

chloroform monosolvate. IUCrData 2017, 2 (4), x170580. 

[60] Liegeois, J. F. F.; Bruhwyler, J.; Damas, J.; Nguyen, T. P.; Chleide, E. M.; Mercier, M. G.; 

Rogister, F. A.; Delarge, J. E., New pyridobenzodiazepine derivatives as potential 

antipsychotics: synthesis and neurochemical study. J. Med. Chem. 1993, 36 (15), 2107-

2114. 

[61] Riad, N. M.; Zlotos, D. P.; Holzgrabe, U., Crystal structure of 5, 11-dihydropyrido [2, 3-b][1, 

4] benzodiazepin-6-one. Acta Crystallogr. Sect. E Crystallogr. Commun. 2015, 71 (5), o304-

o305. 

[62] Zare, H.; Ghanbari, M. M.; Jamali, M.; Aboodi, A., A novel and efficient strategy for the 

synthesis of various carbamates using carbamoyl chlorides under solvent-free and grinding 

conditions using microwave irradiation. Chin. Chem. Lett. 2012, 23 (8), 883-886. 

[63] Karimipour, G.; Kowkabi, S.; Naghiha, A., New aminoporphyrins bearing urea derivative 

substituents: synthesis, characterization, antibacterial and antifungal activity. Braz. Arch. 

Biol. Technol. 2015, 58 (3), 431-442. 

[64] Schmitz, J.; Heller, E.; Holzgrabe, U., A fast and efficient track to allosteric modulators of 

muscarinic receptors: microwave-assisted syntheses. Monatsh. Chem. 2007, 138 (2), 171-

174. 



REFERENCES 

126 
 

[65] McRobb, F. M.; Crosby, I. T.; Yuriev, E.; Lane, J. R.; Capuano, B., Homobivalent ligands of 

the atypical antipsychotic clozapine: design, synthesis, and pharmacological evaluation. J. 

Med. Chem. 2012, 55 (4), 1622-1634. 

[66] Kloeckner, J.; Schmitz, J.; Holzgrabe, U., Convergent, short synthesis of the muscarinic 

superagonist iperoxo. Tetrahedron Lett. 2010, 51 (27), 3470-3472. 

[67] Geyer, F. Synthese potentieller dualsterischer Partialagonisten mit Selektivität zum M₁-

Acetylcholinrezeptor. 2016. 

[68] Klöckner, J. V. Design Subtyp-selektiver Agonisten und Antagonisten muskarinischer 

Rezeptoren. 2013. 

[69] Kellar, K. J.; Martino, A. M.; Hall, D. P.; Schwartz, R. D.; Taylor, R. L., High-affinity binding 

of [³H] acetylcholine to muscarinic cholinergic receptors. J. Neurosci. 1985, 5 (6), 1577-

1582. 

[70] Uppal, J. K.; Hazari, P. P.; Chuttani, K.; Allard, M.; Kaushik, N. K.; Mishra, A. K., Design, 

synthesis and biological evaluation of choline based SPECT imaging agent: Ga (III)-DO3A-

EA-Choline. Org. Biomol. Chem. 2011, 9 (5), 1591-1599. 

[71] Sekar, R. B.; Periasamy, A., Fluorescence resonance energy transfer (FRET) microscopy 

imaging of live cell protein localizations. J. Cell Biol. 2003, 160 (5), 629-633. 

[72] Elangovan, M.; Day, R.; Periasamy, A., Nanosecond fluorescence resonance energy 

transfer‐fluorescence lifetime imaging microscopy to localize the protein interactions in a 

single living cell. J. Microsc. 2002, 205 (1), 3-14. 

[73] Vilardaga, J.-P.; Bünemann, M.; Feinstein, T. N.; Lambert, N.; Nikolaev, V. O.; Engelhardt, 

S.; Lohse, M. J.; Hoffmann, C., MINIREVIEW: GPCR and G proteins: drug efficacy and 

activation in live cells. Mol. Endocrinol. 2009, 23 (5), 590-599. 

[74] Lohse, M. J.; Nuber, S.; Hoffmann, C., Fluorescence/bioluminescence resonance energy 

transfer techniques to study G-protein-coupled receptor activation and signaling. 

Pharmacol. Rev. 2012, pr. 110.004309. 

[75] Messerer, R.; Kauk, M.; Volpato, D.; Alonso Canizal, M. C.; Klöckner, J.; Zabel, U.; Nuber, 
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8. Supplementary information 

8.1. Full crystallographic data of compound V 

2-Amino-N-(2-chloropyridin-3yl)benzamide 

Noura M. Riad, Darius P. Zlotos and Ulrike Holzgrabe 

Reprinted from: Riad, N. M.; Zlotos, D.; Holzgrabe, U., 2-Amino-N-(2-chloropyridin-3yl) benzamide. 

IUCrData 2017, 2 (10), x171536. 

 

Crystal data: 

C12H10ClN3O F(000) = 512 

Mr = 247.68 Dx = 1.518 Mg m−3 

Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å 

a = 11.0965 (9) Å Cell parameters from 2859 reflections 

b = 4.7669 (4) Å θ = 2.5–26.6° 

c = 20.6624 (17) Å µ = 0.34 mm−1 

β = 97.556 (3)° T = 100 K 

V = 1083.47 (15) Å3 Block, colourless 

Z = 4 0.57 × 0.39 × 0.21 mm 

 

Data collection: 

Bruker APEXII CCD 2283 independent reflections 

diffractometer 1963 reflections with I > 2σ(I) 

φ and ω scans Rint = 0.044 

Absorption correction: multi-scan θmax = 26.8°, θmin = 1.9° 

(SADABS; Bruker, 2013) h = −13→14 

Tmin = 0.862, Tmax = 0.957 k = −6→5 

11807 measured reflections l = −25→26 
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Refinement: 

Refinement on F2 wR(F2) = 0.091 

Least-squares matrix: full S = 1.07 

R[F2 > 2σ(F2)] = 0.037 2283 reflections 

155 parameters w = 1/[σ2(Fo
2) + (0.0341P)2 + 0.9297P] 

0 restraints where P = (Fo
2 + 2Fc

2)/3 

Primary atom site location: iterative (Δ/σ)max < 0.001 

Hydrogen site location: mixed Δ ρmax = 0.35 e Å−3 

H-atoms parameters constrained Δ ρmin = −0.44 e Å−3 

 

Computer programs: APEX2 and SAINT,1 olex2.solve,2 SHELXL,3 and OLEX2.4 

 

Geometry: 

All e.s.d.’s (estimated standard deviation), except the e.s.d. in the dihedral angle between 

two l.s. planes, are estimated using the full covariance matrix. The cell e.s.d.’s are taken 

into account individually in the estimation of e.s.d.’s in distances, angles and torsion angles; 

correlations between e.s.d.’s in cell parameters are only used when they are defined by 

crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for estimating 

e.s.d.’s involving l.s. planes. 

 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 

 

 x  y  z Uiso*/Ueq 

     

Cl1 0.81489 (4) 0.23796 (9)  0.39806 (2)   0.01471 (13) 

O1 0.70743 (12) 0.9552 (3) 0.22843 (6) 0.0161 (3)  

N3 0.70224 (13) 0.8909 (3) 0.09469 (7) 0.0137 (3)  

H3A 0.7063  1.0033 0.1275 0.016*   
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H3B 0.7206  0.9803 0.0611 0.016*   

N2 0.71512 (13) 0.5248 (3) 0.27552 (7) 0.0113 (3)  

H2 0.7345  0.3474 0.2712 0.014*   

N1 0.65077 (14) 0.5388 (3) 0.44509 (7) 0.0139 (3)  

C8 0.78996 (15) 0.6915 (4) 0.11373 (9) 0.0112 (4)  

C9 0.85353 (16) 0.5653 (4) 0.06707 (9) 0.0141 (4)  

H9 0.8375  0.6234 0.0228 0.017*   

C6 0.74137 (15) 0.7094 (4) 0.22874 (8) 0.0109 (4)  

C2 0.65890 (15) 0.6017 (4) 0.33025 (8) 0.0099 (3)  

C7 0.81176 (15) 0.5917 (4) 0.17868 (8) 0.0110 (4)  

C5 0.56237 (17) 0.7324 (4) 0.44136 (9) 0.0159 (4)  

H5 0.5291  0.7798 0.4800 0.019*   

C11 0.96468 (16) 0.2701 (4) 0.14867 (9) 0.0146 (4)  

H11 1.0256  0.1328 0.1606 0.018*   

C12 0.90038 (15) 0.3850 (4) 0.19498 (9) 0.0126 (4)  

H12 0.9166  0.3225 0.2389 0.015*   

C3 0.56528 (15) 0.7972 (4) 0.32742 (9) 0.0131 (4)  

H3 0.5346  0.8827 0.2871 0.016*   

C4 0.51739 (16) 0.8661 (4) 0.38375 (9) 0.0147 (4)  

H4 0.4548  1.0026 0.3830 0.018*   

C1 0.69709 (15) 0.4811 (4) 0.39114 (9) 0.0113 (4)  

C10 0.93868 (16) 0.3588 (4) 0.08413 (9) 0.0153 (4)  

H10 0.9801  0.2760 0.0515 0.018*   

      

 

 

Atomic displacement parameters (Å2)  

        

 U
11 U

22 U
33 U

12 U
13  U

23 

Cl1 0.0156 (2) 0.0151 (2) 0.0135 (2) 0.00489 (17) 0.00259 (16) 0.00396 (16) 

O1 0.0258 (7) 0.0090 (6) 0.0148 (7) 0.0026 (5) 0.0075 (5)  0.0002 (5) 

N3 0.0171 (8) 0.0138 (8) 0.0102 (8) 0.0010 (6) 0.0021 (6)  0.0025 (6) 

N2 0.0156 (7) 0.0084 (7) 0.0105 (7) 0.0015 (6) 0.0042 (6)  −0.0009 (6) 

N1 0.0171 (8) 0.0144 (8) 0.0111 (8) −0.0010 (6) 0.0046 (6)  −0.0012 (6) 
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C8 0.0105 (8) 0.0097 (8) 0.0133 (9) −0.0038 (7) 0.0017 (7)  −0.0004 (7) 

C9 0.0159 (9) 0.0169 (9) 0.0101 (9) −0.0045 (7) 0.0035 (7)  −0.0009 (7) 

C6 0.0117 (8) 0.0101 (8) 0.0102 (8) −0.0015 (7) −0.0011 (7) −0.0015 (6) 

C2 0.0121 (8) 0.0082 (8) 0.0096 (8) −0.0022 (7) 0.0025 (6)  −0.0017 (6) 

C7 0.0124 (8) 0.0087 (8) 0.0121 (9) −0.0029 (7) 0.0027 (7)  −0.0016 (7) 

C5 0.0181 (9) 0.0170 (9) 0.0142 (9) −0.0006 (8) 0.0078 (7)  −0.0040 (7) 

C11 0.0123 (8) 0.0140 (9) 0.0179 (10) −0.0005 (7) 0.0034 (7)  −0.0005 (7) 

C12 0.0124 (8) 0.0124 (8) 0.0127 (9) −0.0018 (7) 0.0012 (7)  −0.0001 (7) 

C3 0.0121 (8) 0.0133 (9) 0.0135 (9) −0.0017 (7) 0.0002 (7)  0.0005 (7) 

C4 0.0116 (8) 0.0128 (9) 0.0203 (10) 0.0007 (7) 0.0041 (7)  −0.0022 (7) 

C1 0.0115 (8) 0.0097 (8) 0.0125 (9) −0.0006 (7) 0.0005 (7)  −0.0010 (7) 

C10 0.0145 (9) 0.0170 (9) 0.0159 (10) −0.0033 (7) 0.0070 (7)  −0.0042 (7) 

 

 

Geometric parameters (Å, º)  

    

 

Cl1—C1 1.7387 (17) C6—C7 1.486 (2) 

O1—C6 1.230 (2) C2—C3 1.391 (2) 

N3—H3A 0.8605 C2—C1 1.398 (2) 

N3—H3B 0.8612 C7—C12 1.402 (2) 

N3—C8 1.380 (2) C5—H5 0.9500 

N2—H2 0.8800 C5—C4 1.384 (3) 

N2—C6 1.367 (2) C11—H11 0.9500 

N2—C2 1.410 (2) C11—C12 1.380 (3) 

N1—C5 1.342 (2) C11—C10 1.393 (3) 

N1—C1 1.316 (2) C12—H12 0.9500 

C8—C9 1.403 (2) C3—H3 0.9500 

C8—C7 1.414 (2) C3—C4 1.381 (3) 

C9—H9 0.9500 C4—H4 0.9500 

C9—C10 1.378 (3) C10—H10 0.9500 

H3A—N3—H3B 109.4 N1—C5—H5 118.5 

C8—N3—H3A 104.0 N1—C5—C4 122.98 (17) 

C8—N3—H3B 109.8 C4—C5—H5 118.5 
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C6—N2—H2 118.0 C12—C11—H11 120.6 

C6—N2—C2 123.91 (15) C12—C11—C10 118.85 (17) 

C2—N2—H2 118.0 C10—C11—H11 120.6 

C1—N1—C5 117.33 (15) C7—C12—H12 119.2 

N3—C8—C9 119.93 (16) C11—C12—C7 121.53 (17) 

N3—C8—C7 121.89 (16) C11—C12—H12 119.2 

C9—C8—C7 117.98 (16) C2—C3—H3 120.3 

C8—C9—H9 119.3 C4—C3—C2 119.46 (16) 

C10—C9—C8 121.36 (17) C4—C3—H3 120.3 

C10—C9—H9 119.3 C5—C4—H4 120.7 

O1—C6—N2 121.56 (16) C3—C4—C5 118.68 (17) 

O1—C6—C7 122.99 (16) C3—C4—H4 120.7 

N2—C6—C7 115.44 (15) N1—C1—Cl1 116.28 (13) 

C3—C2—N2 123.17 (15) N1—C1—C2 124.78 (16) 

C3—C2—C1 116.73 (16) C2—C1—Cl1 118.94 (13) 

C1—C2—N2 120.10 (15) C9—C10—C11 120.71 (17) 

C8—C7—C6 119.58 (15) C9—C10—H10 119.6 

C12—C7—C8 119.44 (16) C11—C10—H10 119.6 

C12—C7—C6 120.98 (15)   

O1—C6—C7—C8 −33.5 (2) C6—N2—C2—C3 39.1 (2) 

O1—C6—C7—C12 145.85 (17) C6—N2—C2—C1 −140.53 (17) 

N3—C8—C9—C10 −177.76 (16) C6—C7—C12—C11 178.71 (16) 

N3—C8—C7—C6 −1.9 (2) C2—N2—C6—O1 −6.5 (3) 

N3—C8—C7—C12 178.73 (15) C2—N2—C6—C7 174.11 (14) 

N2—C6—C7—C8 145.84 (16) C2—C3—C4—C5 −1.6 (3) 

N2—C6—C7—C12 −34.8 (2) C7—C8—C9—C10 −2.8 (3) 

N2—C2—C3—C4 −178.27 (16) C5—N1—C1—Cl1 177.95 (13) 

N2—C2—C1—Cl1 0.4 (2) C5—N1—C1—C2  −1.6 (3) 

N2—C2—C1—N1 179.89 (16)      C12—C11—C10—C9      2.4 (3) 

N1—C5—C4—C3 0.2 (3) C3—C2—C1—Cl1  −179.30 (13) 

C8—C9—C10—C11 −0.4 (3) C3—C2—C1—N1  0.2 (3) 

C8—C7—C12—C11 −1.9 (3) C1—N1—C5—C4  1.4 (3) 

C9—C8—C7—C6 −176.72 (15) C1—C2—C3—C4  1.4 (2) 

C9—C8—C7—C12 3.9 (2) C10—C11—C12—C7  −1.3 (3) 
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Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A 

N3—H3A···O1 0.86 2.10 2.7734 (19) 135 

     N2—H2···O1i 0.88 2.07 2.882 (2) 152 

N3—H3B···N1ii 0.86 2.42 3.087 (2) 134 

Symmetry codes: (i) x, y−1, z; (ii) x, −y+3/2, z−1/2. 

 

References: 

[1] Bruker APEX2, SAINT and SADABS, Bruker AXS Inc.: Madison, Wisconsin, USA, 2013. 

[2] Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., Acta Cryst. 

A 2015, 71, 59–75. 

[3] Sheldrick, G. M., Acta Cryst. A 2008, 64, 112–122. 

[4] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., J. Appl. 

Cryst. 2009, 42, 339-341. 
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8.2. Full crystallographic data of compound VI 

3-(2-Chloropyridin-3-yl)quinazoline-2,4(1H,3H)-dione chloroform monosolvate 

Noura M. Riad, Darius P. Zlotos and Ulrike Holzgrabe 

Reprinted from: Riad, N.; Zlotos, D.; Holzgrabe, U., 3-(2-Chloropyridin-3-yl) quinazoline-2, 4 (1H, 

3H)-dione chloroform monosolvate. IUCrData 2017, 2 (4), x170580. 

 

Crystal data: 

C13H8ClN3O2·CHCl3 F(000) = 792 

Mr = 393.04 Dx = 1.646 Mg m−3 

Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å 

a = 5.6382 (11) Å Cell parameters from 3659 reflections 

b = 13.622 (3) Å θ = 2.5–26.4° 

c = 20.662 (4) Å µ = 0.76 mm−1 

β = 92.289 (6)° T = 100 K 

V = 1585.7 (5) Å3 Block, colourless 

Z = 4 0.59 × 0.32 × 0.26 mm 

 

Data collection: 

Bruker APEXII CCD 3370 independent reflections 

diffractometer 2796 reflections with I > 2σ(I) 

φ and ω scans Rint = 0.054 

Absorption correction: multi-scan θmax = 26.8°, θmin = 1.8° 

(SADABS; Bruker, 2013) h = −7→7 

Tmin = 0.656, Tmax = 0.980 k = −17→16 

15463 measured reflections l = −26→26 
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Refinement: 

Refinement on F2 wR(F2) = 0.109 

Least-squares matrix: full S = 1.08 

R[F2 > 2σ(F2)] = 0.040 3370 reflections 

208 parameters w = 1/[σ2(Fo
2) + (0.0529P)2 + 0.6894P] 

0 restraints where P = (Fo
2 + 2Fc

2)/3 

Primary atom site location: structure-invariant (Δ/σ)max = 0.001 

   direct methods Δ ρmax = 0.45 e Å−3 

Secondary atom site location: difference Δ ρmin = −0.49 e Å−3 

   Fourier map Hydrogen site location: inferred from  

H-atoms parameters constrained    neighbouring sites 

 

Computer programs: APEX2 and SAINT,1 olex2.solve,2 SHELXL2014,3 Mercury,4 OLEX2,5 

enCIFer,6 and publCIF.7 

 

Geometry: 

All e.s.d.'s (estimated standard deviation), except the e.s.d. in the dihedral angle between 

two l.s. planes, are estimated using the full covariance matrix. The cell e.s.d.'s are taken 

into account individually in the estimation of e.s.d.'s in distances, angles and torsion 

angles; correlations between e.s.d.'s in cell parameters are only used when they are 

defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used 

for estimating e.s.d.'s involving l.s. planes. 

 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 

 

 x  y  z  Uiso*/Ueq  

         

Cl1 0.12965 (11)  0.78921 (4) 0.58061 (3) 0.02149 (16)  
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Cl2 0.36470 (11)  0.13451 (5) 0.50999 (3) 0.02813 (17)  

Cl3 0.40964 (14) 0.12297 (5) 0.64924 (3) 0.03261 (19)  

Cl4 −0.03576 (12) 0.07201 (5) 0.58295 (4) 0.03620 (19)  

O2 0.1523 (3)  0.60895 (12) 0.73418 (7) 0.0176 (4)  

O1 0.5724 (3)  0.60283 (12) 0.55085 (8) 0.0213 (4)  

N2 0.3498 (3)  0.60913 (13) 0.64027 (9) 0.0136 (4)  

N1 0.4692 (4)  0.87525 (14) 0.64811 (9) 0.0186 (4)  

N3 0.2842 (4)  0.48850 (14) 0.56200 (9) 0.0172 (4)  

H3 0.3204  0.4603  0.5254  0.021*  

C10 −0.2711 (4)  0.36988 (17) 0.66329 (12) 0.0217 (5)  

H10 −0.3989  0.3427  0.6859  0.026*  

C11 −0.1409 (4)  0.44692 (16) 0.69008 (11) 0.0172 (5)  

H11 −0.1781  0.4724  0.7313  0.021*  

C5 0.6601 (4)  0.87655 (17) 0.68915 (11) 0.0191 (5)  

H5 0.7306  0.9381  0.6997  0.023*  

C6 0.4117 (4)  0.56808 (16) 0.58157 (10) 0.0158 (5)  

C4 0.7592 (4)  0.79289 (17) 0.71677 (11) 0.0186 (5)  

H4 0.8932  0.7968  0.7460  0.022*  

C12 0.0464 (4)  0.48717 (16) 0.65602 (10) 0.0139 (4)  

C9 −0.2150 (4)  0.33221 (17) 0.60333 (12) 0.0226 (5)  

H9 −0.3059  0.2795  0.5853  0.027*  

C3 0.6576 (4)  0.70314 (16) 0.70056 (11) 0.0168 (5)  

H3A 0.7219  0.6441  0.7184  0.020*  

C8 −0.0304 (5)  0.36989 (17) 0.56961 (12) 0.0209 (5)  

H8 0.0080  0.3428  0.5290  0.025*  

C7 0.1001 (4)  0.44849 (16) 0.59596 (11) 0.0156 (5)  

C13 0.1806 (4)  0.57113 (16) 0.68188 (10) 0.0137 (4)  

C2 0.4630 (4)  0.70030 (16) 0.65844 (10) 0.0135 (4)  

C1 0.3755 (4)  0.78838 (16) 0.63368 (10) 0.0154 (5)  

C14 0.2739 (4)  0.07115 (17) 0.57913 (11) 0.0181 (5)  

H14 0.3274  0.0014  0.5759  0.022*  
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Atomic displacement parameters (Å2)  

        

 U
11 U

22 U
33 U

12  U
13 U

23 

Cl1 0.0248 (3) 0.0162 (3) 0.0229 (3) 0.0005 (2) −0.0065 (2) 0.0010 (2) 

Cl2 0.0266 (3) 0.0344 (4) 0.0234 (3) −0.0062 (3) 0.0005 (2) 0.0095 (2) 

Cl3 0.0510 (5) 0.0250 (3) 0.0219 (3) −0.0152 (3) 0.0019 (3) −0.0036 (2) 

Cl4 0.0211 (3) 0.0288 (4) 0.0594 (5) −0.0018 (3) 0.0103 (3) 0.0094 (3) 

O2 0.0216 (9) 0.0148 (8) 0.0166 (8) −0.0002 (7) 0.0025 (6) −0.0021 (6) 

O1 0.0281 (10) 0.0146 (8) 0.0218 (9) −0.0078 (7) 0.0100 (7) −0.0063 (6) 

N2 0.0179 (10) 0.0071 (9) 0.0159 (9) −0.0027 (7) 0.0020 (7) −0.0021 (7) 

N1 0.0277 (11) 0.0089 (9) 0.0191 (10) −0.0023 (8) 0.0004 (8)  0.0001 (7) 

N3 0.0237 (11) 0.0113 (9) 0.0168 (9) −0.0052 (8) 0.0040 (8) −0.0045 (7) 

 

 
 

 

 

 

 

C10 0.0199 (13) 0.0121 (12) 0.0331 (14) −0.0036 (10) 0.0026 (10) 0.0036 (9) 

C11 0.0175 (12) 0.0120 (11) 0.0222 (12) 0.0021 (9) 0.0019 (9) 0.0026 (9) 

C5 0.0266 (13) 0.0110 (11) 0.0197 (12) −0.0048 (10) 0.0023 (9) −0.0029 (8) 

C6 0.0203 (12) 0.0096 (11) 0.0175 (11) −0.0009 (9) 0.0018 (9) −0.0006 (8) 

C4 0.0192 (12) 0.0172 (12) 0.0194 (12) −0.0025 (10) −0.0010 (9) −0.0026 (9) 

C12 0.0153 (11) 0.0074 (10) 0.0189 (11) 0.0017 (9) −0.0008 (8) 0.0022 (8) 

C9 0.0228 (13) 0.0104 (11) 0.0344 (14) −0.0053 (10) −0.0006 (10) −0.0018 (10) 

C3 0.0206 (12) 0.0111 (11) 0.0190 (11) 0.0020 (9) 0.0035 (9) −0.0009 (8) 

C8 0.0274 (13) 0.0115 (11) 0.0239 (12) −0.0021 (10) 0.0010 (10) −0.0032 (9) 

C7 0.0183 (12) 0.0081 (10) 0.0203 (11) 0.0006 (9) 0.0003 (9) 0.0014 (8) 

C13 0.0150 (11) 0.0098 (10) 0.0165 (11) 0.0043 (9) 0.0009 (8) 0.0021 (8) 

C2 0.0172 (11) 0.0089 (10) 0.0148 (10) −0.0018 (9) 0.0053 (8) −0.0020 (8) 

C1 0.0197 (12) 0.0113 (11) 0.0152 (11) −0.0011 (9) 0.0009 (8) −0.0004 (8) 

C14 0.0210 (12) 0.0113 (11) 0.0221 (12) −0.0012 (10) 0.0024 (9) −0.0004 (9) 
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Geometric parameters (Å, º) 
 

  

Cl1—C1 1.733 (2) C11—H11 0.9500 

Cl2—C14 1.763 (2) C11—C12 1.404 (3) 

Cl3—C14 1.759 (2) C5—H5 0.9500 

Cl4—C14 1.751 (2) C5—C4 1.383 (3) 

O2—C13 1.214 (3) C4—H4 0.9500 

O1—C6 1.222 (3) C4—C3 1.385 (3) 

N2—C6 1.393 (3) C12—C7 1.392 (3) 

N2—C13 1.408 (3) C12—C13 1.461 (3) 

N2—C2 1.439 (3) C9—H9 0.9500 

N1—C5 1.343 (3) C9—C8 1.375 (4) 

N1—C1 1.325 (3) C3—H3A 0.9500 

N3—H3 0.8800 C3—C2 1.373 (3) 

N3—C6 1.354 (3) C8—H8 0.9500 

N3—C7 1.387 (3) C8—C7 1.397 (3) 

C10—H10 0.9500 C2—C1 1.387 (3) 

C10—C11 1.383 (3) C14—H14 1.0000 

C10—C9 1.389 (3)   

C6—N2—C13 125.71 (19) C8—C9—C10 121.2 (2) 

C6—N2—C2 116.71 (18) C8—C9—H9 119.4 

C13—N2—C2 117.53 (18) C4—C3—H3A 120.3 

C1—N1—C5 117.1 (2) C2—C3—C4 119.3 (2) 

C6—N3—H3 117.9 C2—C3—H3A 120.3 

C6—N3—C7 124.24 (19) C9—C8—H8 120.5 

C7—N3—H3 117.9 C9—C8—C7 119.1 (2) 

C11—C10—H10 120.0 C7—C8—H8 120.5 

C11—C10—C9 120.1 (2) N3—C7—C12 119.7 (2) 

C9—C10—H10 120.0 N3—C7—C8 119.8 (2) 

C10—C11—H11 120.2 C12—C7—C8 120.5 (2) 

C10—C11—C12 119.6 (2) O2—C13—N2 120.3 (2) 

C12—C11—H11 120.2 O2—C13—C12 125.0 (2) 

N1—C5—H5 118.3 N2—C13—C12 114.72 (18) 

N1—C5—C4 123.4 (2) C3—C2—N2 121.6 (2) 
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C4—C5—H5 118.3 C3—C2—C1 118.2 (2) 

O1—C6—N2 120.9 (2) C1—C2—N2 120.2 (2) 

O1—C6—N3 123.4 (2) N1—C1—Cl1 115.99 (17) 

N3—C6—N2 115.66 (19) N1—C1—C2 123.8 (2) 

C5—C4—H4 120.9 C2—C1—Cl1 120.18 (17) 

C5—C4—C3 118.1 (2) Cl2—C14—H14 108.3 

C3—C4—H4 120.9 Cl3—C14—Cl2 109.87 (12) 

C11—C12—C13 120.8 (2) Cl3—C14—H14 108.3 

C7—C12—C11 119.6 (2) Cl4—C14—Cl2 110.84 (13) 

C7—C12—C13 119.6 (2) Cl4—C14—Cl3 111.24 (13) 

C10—C9—H9 119.4 Cl4—C14—H14 108.3 

N2—C2—C1—Cl1 −0.1 (3) C4—C3—C2—C1 0.0 (3) 

N2—C2—C1—N1 179.9 (2) C9—C10—C11—C12 0.6 (4) 

N1—C5—C4—C3 0.8 (4) C9—C8—C7—N3 −178.8 (2) 

C10—C11—C12—C7 −0.5 (3) C9—C8—C7—C12 1.0 (4) 

C10—C11—C12—C13 177.5 (2) C3—C2—C1—Cl1 −179.73 (17) 

C10—C9—C8—C7 −1.0 (4) C3—C2—C1—N1 0.2 (3) 

C11—C10—C9—C8 0.2 (4) C7—N3—C6—O1 −179.5 (2) 

C11—C12—C7—N3 179.6 (2) C7—N3—C6—N2 0.9 (3) 

C11—C12—C7—C8 −0.3 (3) C7—C12—C13—O2 −178.2 (2) 

C11—C12—C13—O2 3.9 (3) C7—C12—C13—N2 3.1 (3) 

C11—C12—C13—N2 −174.84 (19) C13—N2—C6—O1 −175.0 (2) 

C5—N1—C1—Cl1 −179.98 (17) C13—N2—C6—N3 4.6 (3) 

C5—N1—C1—C2 0.1 (3) C13—N2—C2—C3 84.3 (3) 

C5—C4—C3—C2 −0.5 (3) C13—N2—C2—C1 −95.3 (2) 

C6—N2—C13—O2 174.7 (2) C13—C12—C7—N3 1.6 (3) 

C6—N2—C13—C12 −6.5 (3) C13—C12—C7—C8 −178.3 (2) 

C6—N2—C2—C3 −98.0 (3) C2—N2—C6—O1 7.4 (3) 

C6—N2—C2—C1 82.4 (3) C2—N2—C6—N3 −172.91 (19) 

C6—N3—C7—C12 −3.9 (3) C2—N2—C13—O2 −7.8 (3) 

C6—N3—C7—C8 176.0 (2) C2—N2—C13—C12 171.01 (19) 

C4—C3—C2—N2 −179.6 (2) C1—N1—C5—C4 −0.6 (4) 
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Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A 

N3—H3···O1i              0.88     1.91 2.791 (3)      175 

C14—H14···N1ii              1.00     2.39 3.200 (3)      137 

C3—H3A···O2iii              0.95     2.48 3.123 (3)      125 

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x+1, y, z. 
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8.3. Full crystallographic data of compound VII 

Crystal structure of 5,11-dihydropyrido [2,3-b][1,4]benzodiazepin-6-one 

Noura M. Riad, Darius P. Zlotos and Ulrike Holzgrabe 

Reprinted from: Riad, N. M.; Zlotos, D. P.; Holzgrabe, U., Crystal structure of 5, 11-

dihydropyrido [2, 3-b][1, 4] benzodiazepin-6-one. Acta Crystallographica Section E: 

Crystallographic Communications 2015, 71 (5), 304-305. 

 

Crystal data: 

C12H9N3O Z = 2 

Mr = 211.22 F(000) = 220 

Triclinic, P1¯ Dx = 1.494 Mg m−3 

a = 3.7598 (5) Å Mo Kα radiation, λ = 0.71073 Å 

b = 10.2467 (14) Å Cell parameters from 1512 reflections 

c = 12.8768 (17) Å θ = 2.3–26.2° 

α = 104.628 (6)° µ = 0.10 mm−1 

β = 96.616 (5)° T = 100 K 

γ = 98.009 (4)° Plate, colourless 

V = 469.43 (11) Å3 0.35 × 0.26 × 0.06 mm 

 

  Data collection: 

Bruker APEXII CCD 2000 independent reflections 

diffractometer 1467 reflections with I > 2σ(I) 

φ and ω scans Rint = 0.035 

Absorption correction: multi-scan θmax = 26.8°, θmin = 1.7° 

(SADABS; Bruker, 2013) h = −4→4 

Tmin = 0.898, Tmax = 0.959 k = −12→12 

6425 measured reflections l = −16→16 
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  Refinement: 

Refinement on F2 wR(F2) = 0.110 

Least-squares matrix: full S = 1.06 

R[F2 > 2σ(F2)] = 0.041 2000 reflections 

153 parameters w = 1/[σ2(Fo
2) + (0.0437P)2 + 0.2092P] 

0 restraints where P = (Fo
2 + 2Fc

2)/3 

Primary atom site location: iterative (Δ/σ)max < 0.001 

Hydrogen site location: mixed Δ ρmax = 0.23 e Å−3 

H atoms treated by a mixture of independent Δ ρmin = −0.22 e Å−3 

and constrained refinement  

 

The N- and C-bound H atoms were included in calculated positions and refined as riding: 

N2—H = 0.86 Å, C—H and N3 —H = 0.93 Å with Uiso(H) = 1.2Ueq(C). 

Data collection:  APEX2;1 cell refinement: SAINT;1 data reduction: SAINT;1 program(s) 

used to solve  structure: OLEX2.solve;2 program(s) used to refine structure: SHELXL97;3 

molecular graphics: OLEX2;4 software used to prepare material for publication: OLEX2, 

Mercury,5 and enCIFer.6 

Absorption correction: SADABS-2012/1 (Bruker,2012) was used for absorption 

correction. wR2(int) was 0.0475 before and 0.0419 after correction. The ratio of 

minimum to maximum transmission is 0.9367. The λ/2 correction factor is 0.0015. 

 

Geometry: 

All e.s.d.'s (estimated standard deviation), except the e.s.d. in the dihedral angle between 

two l.s. planes, are estimated using the full covariance matrix. The cell e.s.d.'s are taken 

into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; 

correlations between e.s.d.'s in cell parameters are only used when they are defined by 

crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating 

e.s.d.'s involving l.s. planes. 
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 

 

 x y  z Uiso*/Ueq  

       

O1 0.3371 (4) 0.33046 (14) 0.49729 (10) 0.0196 (3)  

N3 0.4460 (4) 0.42582 (15) 0.83790 (13) 0.0152 (4)  

N1 0.3852 (4) 0.64248 (15) 0.93418 (12) 0.0157 (4)  

N2 0.3945 (4) 0.51349 (17) 0.63963 (13) 0.0163 (4)  

C4 0.3379 (5) 0.59565 (19) 0.74023 (14) 0.0143 (4)  

C12 0.3836 (5) 0.55643 (19) 0.83732 (14) 0.0133 (4)  

C1 0.3340 (5) 0.7706 (2) 0.93750 (16) 0.0174 (4)  

H1 0.3431 0.8320  1.0051 0.021*  

C10 0.0818 (5) 0.20571 (19) 0.81375 (15) 0.0148 (4)  

H10 0.1291 0.2203  0.8887 0.018*  

C3 0.2728 (5) 0.72576 (19) 0.74596 (15) 0.0168 (4)  

H3A 0.2314 0.7535  0.6829 0.020*  

C6 0.1477 (5) 0.28402 (18) 0.65494 (14) 0.0137 (4)  

C7 −0.0602 (5) 0.15952 (19) 0.59213 (15) 0.0162 (4)  

H7 −0.1071 0.1434  0.5171 0.019*  

C11 0.2231 (5) 0.30746 (18) 0.76774 (14) 0.0130 (4)  

C5 0.2998 (5) 0.37759 (19) 0.59331 (14) 0.0150 (4)  

C2 0.2691 (5) 0.81567 (19) 0.84655 (15) 0.0170 (4)  

H2A 0.2239 0.9039  0.8521 0.020*  

C8 −0.1979 (5) 0.0597 (2) 0.63858 (16) 0.0177 (4)  

H8 −0.3366 −0.0226  0.5956 0.021*  

C9 −0.1254 (5) 0.08462 (19) 0.75055 (15) 0.0168 (4)  

H9 −0.2180 0.0187  0.7831 0.020*  

H3 0.497 (6) 0.419 (2) 0.9087 (19) 0.027 (6)*  

H2 0.467 (6) 0.557 (2) 0.5943 (19) 0.031 (7)*  
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Atomic displacement parameters (Å2) 

       

 U
11 U

22 U
33 U

12 U
13 U

23 

O1 0.0270 (8) 0.0201 (7) 0.0118 (7) 0.0026 (6) 0.0058 (6) 0.0042 (6) 

N3 0.0192 (9) 0.0143 (8) 0.0113 (8) 0.0023 (7) −0.0008 (7) 0.0036 (7) 

N1 0.0174 (8) 0.0157 (8) 0.0137 (8) 0.0016 (7) 0.0032 (6) 0.0039 (7) 

N2 0.0212 (9) 0.0165 (9) 0.0122 (8) 0.0010 (7) 0.0043 (7) 0.0062 (7) 

C4 0.0119 (9) 0.0174 (10) 0.0125 (9) −0.0007 (8) 0.0012 (7) 0.0041 (8) 

C12 0.0101 (9) 0.0155 (10) 0.0143 (9) −0.0002 (7) 0.0015 (7) 0.0053 (8) 

C1 0.0159 (10) 0.0178 (10) 0.0173 (10) 0.0024 (8) 0.0046 (8) 0.0018 (8) 

C10 0.0158 (9) 0.0184 (10) 0.0128 (9) 0.0052 (8) 0.0031 (7) 0.0072 (8) 

C3 0.0153 (10) 0.0203 (10) 0.0166 (10) 0.0021 (8) 0.0011 (8) 0.0097 (8) 

C6 0.0117 (9) 0.0151 (10) 0.0154 (9) 0.0038 (8) 0.0046 (7) 0.0043 (8) 

C7 0.0150 (10) 0.0192 (10) 0.0145 (9) 0.0047 (8) 0.0005 (7) 0.0044 (8) 

C11 0.0105 (9) 0.0148 (9) 0.0139 (9) 0.0040 (7) 0.0027 (7) 0.0032 (8) 

C5 0.0135 (9) 0.0193 (10) 0.0127 (9) 0.0029 (8) 0.0013 (7) 0.0056 (8) 

C2 0.0160 (10) 0.0163 (10) 0.0209 (10) 0.0047 (8) 0.0045 (8) 0.0071 (9) 

C8 0.0139 (10) 0.0151 (10) 0.0215 (10) 0.0012 (8) 0.0004 (8) 0.0024 (8) 

C9 0.0135 (9) 0.0175 (10) 0.0229 (11) 0.0039 (8) 0.0054 (8) 0.0102 (9) 
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Geometric parameters (Å, º) 
 

 

O1—C5 1.240 (2) C10—C11 1.396 (3) 

N3—C12 1.392 (2) C10—C9 1.372 (3) 

N3—C11 1.406 (2) C3—H3A 0.9300 

N3—H3 0.93 (2) C3—C2 1.390 (3) 

N1—C12 1.332 (2) C6—C7 1.396 (3) 

N1—C1 1.344 (2) C6—C11 1.399 (2) 

N2—C4 1.412 (2) C6—C5 1.487 (3) 

N2—C5 1.347 (2) C7—H7 0.9300 

N2—H2 0.87 (3) C7—C8 1.380 (3) 

 

C4—C12 1.406 (3) C2—H2A 0.9300 

C4—C3 1.374 (3) C8—H8 0.9300 

C1—H1 0.9300 C8—C9 1.387 (3) 

C1—C2 1.372 (3) C9—H9 0.9300 

C10—H10 0.9300   

C12—N3—C11 121.58 (15) C7—C6—C11 119.17 (17) 

C12—N3—H3 110.9 (13) C7—C6—C5 115.70 (16) 

C11—N3—H3 112.7 (13) C11—C6—C5 124.91 (17) 

C12—N1—C1 117.87 (16) C6—C7—H7 119.2 

C4—N2—H2 115.9 (15) C8—C7—C6 121.68 (18) 

C5—N2—C4 130.98 (17) C8—C7—H7 119.2 

C5—N2—H2 112.2 (15) C10—C11—N3 117.55 (16) 

C12—C4—N2 123.05 (17) C10—C11—C6 118.58 (17) 

C3—C4—N2 118.46 (17) C6—C11—N3 123.83 (17) 

C3—C4—C12 118.12 (17) O1—C5—N2 119.17 (17) 

N3—C12—C4 121.47 (16) O1—C5—C6 119.73 (17) 

N1—C12—N3 115.93 (16) N2—C5—C6 121.09 (16) 

N1—C12—C4 122.55 (17) C1—C2—C3 118.16 (18) 

N1—C1—H1 118.2 C1—C2—H2A 120.9 

N1—C1—C2 123.52 (18) C3—C2—H2A 120.9 

C2—C1—H1 118.2 C7—C8—H8 120.7 

              119.4               118.69 (18) 
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C11—C10—H10        C7—C8—C9 

C9—C10—H10              119.4        C9—C8—H8     120.7 

C9—C10—C11    121.27 (17)        C10—C9—C8               120.60 (18) 

C4—C3—H3A              120.2        C10—C9—H9      119.7 

C4—C3—C2    119.64 (17)            C8—C9—H9       119.7 

C2—C3—H3A                  120.2   

N1—C1—C2—C3               −3.0 (3)         C7—C6—C11—C10 −1.0 (3) 

N2—C4—C12—N3               −7.9 (3) C7—C6—C5—O1 −22.0 (3) 

N2—C4—C12—N1             169.29 (18) C7—C6—C5—N2 157.23 (17) 

N2—C4—C3—C2            −170.60 (17) C7—C8—C9—C10 −0.5 (3) 

C4—N2—C5—O1              170.53 (18) C11—N3—C12—N1 132.19 (18) 

C4—N2—C5—C6                −8.7 (3) C11—N3—C12—C4 −50.5 (2) 

C4—C3—C2—C1                  0.4 (3) C11—C10—C9—C8     0.5 (3) 

C12—N3—C11—C10             −129.09 (19) C11—C6—C7—C8     1.0 (3) 

C12—N3—C11—C6                 53.5 (2) C11—C6—C5—O1 152.47 (18) 

C12—N1—C1—C2                  2.1 (3) C11—C6—C5—N2 −28.3 (3) 

C12—C4—C3—C2                  2.7 (3) C5—N2—C4—C12   42.4 (3) 

C1—N1—C12—N3               178.56 (16) C5—N2—C4—C3 −144.7 (2) 

C1—N1—C12—C4                  1.3 (3) C5—C6—C7—C8 175.82 (17) 

C3—C4—C12—N3              179.21 (17) C5—C6—C11—N3     2.0 (3) 

C3—C4—C12—N1                −3.6 (3) C5—C6—C11—C10 −175.34 (17) 

C6—C7—C8—C9                −0.2 (3) C9—C10—C11—N3 −177.23 (16) 

C7—C6—C11—N3             176.35 (17) C9—C10—C11—C6     0.3 (3) 

 

 

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A 

N2—H2···O1i 0.87 (2) 1.98 (2) 2.840 (2) 175 (2) 

N3—H3···N1ii 0.93 (2) 2.28 (2) 3.200 (2) 168.7 (19) 

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2. 

 

 



SUPPLEMENTARY INFORMATION 

 

References: 

[1] Bruker, APEX2, SAINT and SADABS, Bruker AXS Inc.: Madison, Wisconsin, USA, 2013. 

[2] Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., Acta 

Cryst. A 2015, 71, 59–75. 

[3] Sheldrick, G. M., Acta Cryst. A 2008, 64, 112–122. 

[4] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., J. Appl. 

Cryst. 2009, 42, 339-341. 

[5] Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; 

Towler, M.; van de Streek, J., J. Appl. Cryst. 2006, 39, 453–457. 

[6] Allen, F. H.; Johnson, O.; Shields, G. P.; Smith, B. R.; Towler, M., J. Appl. Cryst. 2004, 

37, 335–338. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


