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SUMMARY 

Dendritic cell (DC) based vaccines rely on the quality of DC maturation to induce antigen 

presentation, co-stimulation, lymph node migration and the release of heterodimeric IL-

12p70 in case of T helper type-1 cell (Th1) polarization. In contrast, DCs that cannot 

secrete IL-12p70 (e.g. after cytokine cocktail maturation) readily induce Th1 cells when 

injected into mice and humans. Since it was also previously suggested that DCs are 

capable of activating other DCs in a bystander fashion, we tested here for the DC source 

of IL-12p70 for Th1 polarization in a murine DC vaccination model. Migration of the 

injected murine bone marrow-derived DCs (BM-DCs) was essential for antigen delivery 

to the lymph node. However, they contributed only partially to antigen presentation, and 

induced a non-polarized Th0 state of the cognate T cells producing IL-2 but no IFN-. 

Instead, endogenous dermal migratory XCR1+ cDC1s underwent re-programming by the 

injected BM-DCs to acquire bystander antigen presentation and IL-12 release for Th1 

polarization in the lymph node. Genetic deficiency of migratory DCs and specifically of 

XCR1+ migratory DCs completely abolished Th1 priming. The kinetic of cell interactions 

in the draining lymph nodes appeared step-wise as i) injected DCs with cognate T cells, 

ii) injected DCs with bystander XCR1+ DCs, and iii) bystander XCR1+ DCs with T cells. 

The transcriptome of the bystander DCs showed a down-regulation of Treg and Th2/Th9 

inducing genes, and up-regulation of genes required for Th1 instruction. Together, these 

data show that injected mature lymph node migratory BM-DCs direct T cell priming and 

bystander DC activation, but not Th1 polarization which is mediated by endogenous IL-

12p70+ XCR1+ migratory bystander DCs. Our results are of importance for clinical DC-

based vaccinations against tumors where endogenous DCs may be functionally impaired 

by chemotherapy. 
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ZUSAMMENFASSUNG 

Auf Dendritische Zellen (DCs) basierende Vakzinen hängen von der Qualität der DC-

Reifung ab, um Antigenpräsentation, Kostimulation, Lymphknotenmigration und, im Faller 

einer T-Helfer-1 (Th1) Polarisierung, die Freisetzung von IL-12 zu induzieren. Die 

Herstellung des heterodimeren IL-12p70 durch injizierte DC wurde klassisch als 

Schlüsselfaktor beschrieben, der für die Erzeugung einer polarisierten Th1 

Immunreaktion erforderlich ist. Dennoch induzieren DCs, die IL-12 nicht ausscheiden 

können (z. B. nach Reifung des Cytokin-Cocktails), Th1 polarisierte Immunantwortenin 

Mäusen und Menschen. Da zuvor auch beschrieben wurde, dass DCs in der Lage sind, 

andere DCs auf Bystander-Weise zu aktivieren, haben wir hier die DC-Quelle der IL-12 

Produktion für die Th1-Polarisation in einem murinen DC-Vakzinemodell untersucht. Die 

Migration der injizierten, aus murinem Knochenmark generierten DCs (BM-DCs) war für 

den Antigentransport in den Lymphknoten wesentlich. Sie trugen jedoch nur teilweise zur 

Antigenpräsentation bei und induzierten nur einen nicht polarisierten Th0-Zustand der T-

Zellen, die IL-2 produzierten, aber kein IFN-. Stattdessen deuten die Daten daraufhin, 

dass endogene dermale migrierende XCR1+ DCs als Bystander-DCs zur 

Antigenpräsentation beitragen und IL-12 für die Th1 Polarisation bereitstellten. Die 

genetische Ablation von migrierenden DCs und speziell von XCR1+ migrierenden DCs 

hebt das Th1 Priming vollständig auf, Die Kinetik der Wechselwirkungen in den 

drainierenden Lymphknoten erfolgt schrittweise, indem i) injizierte DCs mit verwandten 

T-Zellen, ii) injizierte DCs mit Bystander XCR1+ DCs und iii) Bystander XCR1+ DCs mit 

T-Zellen in Kontakt treten. Das Transkriptom der Bystander-DCs zeigte eine 

Herunterregulierung von Treg- und Th2/Th9-induzierenden Genen und eine 

Hochregulierung der für die Th1- Induktion erforderlichen Gene. Zusammen zeigen diese 

Daten, dass injizierte reife migrierende BM-DCs das T-Zell-Priming und die Bystander-

DC-Aktivierung steuern, nicht jedoch die Th1-Polarisation, die durch endogene IL-12p70+ 

XCR1+ Bystander-DCs vermittelt wird. Unsere Ergebnisse sind von Bedeutung für 

klinische Studien mit Vakzine-DCs, bei denen endogene DCs durch eine Chemotherapie 

funktionell beeinträchtigt werden können.  
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1 INTRODUCTION 

 1.1 Innate immune response  

The innate immune response acts as the first line of defense protecting us from invading 

pathogens. It consists of cellular and biochemical defense mechanisms that can detect 

and destroy microbial invaders within minutes or hours. This is done using a limited 

number of secreted proteins and cell-associated receptors that are encoded by intact 

genes inherited through the germline to detect infection and to distinguish between 

pathogens and host tissues. These receptors are called pattern recognition receptors 

(PRRs). They can recognize structures exclusively present on and shared by microbes, 

which are called pathogen-associated molecular patterns (PAMPs), and endogenous 

danger-associated molecular patterns (DAMPs) which are molecules released by 

stressed cells undergoing necrosis. These act as danger signals promoting and 

exacerbating the inflammatory response. They are often essential structures for survival 

of the microbes, thus limiting the capacity of microbes to evade detection by mutating or 

losing expression of these molecules. PRRs include receptors present on the cell surface 

and in endosomes such as Toll-like receptors (TLRs), recognizing a wide variety of 

ligands, including bacterial cell wall components and microbial nucleic acids. Also, 

cytoplasmic pattern recognition receptors that recognize microbial molecules such as the 

RIG-like receptors (RLRs), which recognize viral RNA, and the NOD-like receptors 

(NLRs), which activate the inflammasome and are involved in the response against 

several pathogens, inflammatory diseases, cancer, metabolic and autoimmune disorders 

(Takeuchi and Akira, 2010). 

The principal components of innate immunity are (1) anatomic barriers including physical 

and chemical barriers, such as cilia, and mucus membranes. Also epithelial cells 

secreting antimicrobial peptides such as defensins that directly lyse bacterial cell 

membranes, or enzymes such as lysozyme that can digest bacterial cell wall; (2) 

phagocytes such as neutrophils, macrophages, dendritic cells, natural killer (NK) cells, 

and lymphocytes with invariant antigen receptors that act directly by engulfing and 

digesting invading microorganisms; (3) blood proteins, including members of the 

complement system that targets pathogens both for lysis and for phagocytosis by cells of 

the innate immune system; and (4) cytokines that regulate and coordinate many of the 

activities of the innate immune system (Turvey and Broide, 2010). Such cytokines include: 
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TNF and IL-1 that activate endothelial cells, stimulate chemokine production, and 

increase neutrophil production by the bone marrow (BM). IL-1 and TNF induce IL-6 

production, and all three cytokines mediate systemic effects, including fever and acute-

phase protein synthesis by the liver (Heinrich et al., 1990). IL-12 and IL-18 stimulate 

production of the macrophage activating cytokine IFN- by NK cells and T cells (Tominaga 

et al., 2000). These cytokines function in innate immune responses to different classes of 

microbes and modify adaptive immune responses that follow the innate immune 

response. Adaptive immunity can recognize a much broader range of substances and, 

unlike innate immunity, displays memory of antigen encounter and specialization of 

effector mechanisms. 

 

 1.2 Adaptive immune response 

Almost all types of infections require the concerted action of both innate and adaptive 

immunity.  There are two types of adaptive immune responses, which are humoral 

immunity and cell-mediated immunity. Both are mediated by different components of the 

immune system and cooperate in eliminating different types of microbes (Bonilla and 

Oettgen, 2010).  

The humoral immune response serves to protect the extracellular spaces, where 

antibodies produced by B cells destroy extracellular microorganisms and their products 

and prevent the spread of intracellular infections. Antibodies can bind to pathogens and 

prevent them from entering and infecting cells, thus they are said to neutralize the 

pathogen; they also bind bacterial toxins to prevent their action or their entry to the cell. 

Another function they serve is opsonization which is the uptake of the pathogens by 

phagocytes. This happens by binding to Fc receptors on phagocytes through their 

constant regions (C regions). Finally, they can activate proteins of the classical pathway 

of the complement system when they are bound to pathogens. This enhances the 

opsonization process by other complement proteins placed on the surface of pathogens, 

recruit phagocytes to the infection site, and activate the so-called membrane-attack 

complex, which directly lyse certain pathogens by inducing pore-formation on their 

surface. The humoral immunity chooses which effector mechanism to use based on the 

heavy-chain isotype of the produced antibodies (Lu et al., 2018). 
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Cell-mediated immunity is initiated upon encounter of naive T cells with a specific antigen 

on the surface of antigen-presenting cells (APCs) in the T-cell zones of secondary 

lymphoid organs (SLOs). In most cases, APCs responsible for activating naive T cells 

and inducing their clonal expansion, are dendritic cells that express the co-stimulatory 

molecules B7-1/CD80, and B7-2/CD86 (Freeman et al., 1993). This activates T cells and 

make them produce IL-2 (Freeman et al., 1993), which is an important cytokine 

modulating early proliferation and differentiation of T cells (Ross and Cantrell, 2018). After 

recognizing a specific antigen and receiving co-stimulatory signals, the T cells are in a 

stage termed Th0, previously observed in mouse T cell clones, where IL-2 production by 

the T cells can be measured but no fully polarized Th cytokine restriction is observed 

(Firestein et al., 1989; Openshaw et al., 1995). T cells are classified based on the 

expression of two surface markers, which are CD4 and CD8 (Miceli and Parnes, 1991). 

CD8 cytotoxic T cells (CTLs) kill target cells upon the recognition of the specific foreign 

antigen, which their T cell receptor (TCR) can bind to, presented on the major histo-

compability class I molecule (MHC I) of virus or bacteria-infected cells. They also 

recognize tumor cells expressing tumor-induced neoantigens on MHC I molecules (Zhang 

and Bevan, 2011). CD4 T cells enhance the effector functions of CTLs but also of the 

innate immune response and are thus called helper T cells. They can recognize foreign 

antigens presented on MHC class II molecules which are resent exclusively on 

professional APCs such as dendritic cells (Zhu and Paul, 2008). Additionally, a distinct 

subset of CD4 T cells, termed regulatory T cells (Tregs), can serve to help control and 

limit immune responses by suppressing immunogenic T-cell activity (Vignali et al., 2008; 

Zhu and Paul, 2008).  

 

 1.3 Dendritic cells 

DCs are BM‐derived or embryo-derived cells that are found in blood and lymphoid organs 

(Banchereau and Steinman, 1998; Wang et al., 2012). They were originally identified by 

Ralph Steinman and Zanvil Cohn in mouse spleen based on their unique stellate 

morphology, which distinguished them from macrophages (Steinman and Cohn, 1973). 

Subsequently, they were found to be the most potent stimulators of naive T cells in mixed 

lymphocyte reactions, this set the foundation for decades of research that showed the 

importance of DCs in initiating and propagating adaptive immune responses (Steinman 

et al., 1983). Their main function is to bridge the innate and adaptive immune systems. In 
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this sense they act as central regulators of the entire immune response, responsible for 

both sensing the nature of the threats faced and activating the precise combination of 

effector mechanisms to eliminate such threats. DCs are innate immune cells because 

they recognize and respond to PAMPs and DAMPs, thus shaping the acute inflammatory 

response. The way they bridge to the adaptive immunity is by processing extracellular 

and intracellular proteins and present them as peptide antigens in the context of MHC 

molecules to prime naive T cells. Also, they are considered as critical modulators of both 

thymic and peripheral immune tolerance. This was demonstrated in several transgenic 

mouse models, where eliminating DCs was sufficient to break immune tolerance and 

induce autoimmune pathologies (Audiger et al., 2017; Hasegawa and Matsumoto, 2018).  

Based on the different cytokines and transcription factors that drive the development of 

DCs and on the surface markers they express; DCs are a heterogenous mixture of cells 

that share a common origin but differ in their development and function (Dudziak et al., 

2007; Guilliams et al., 2016; Merad et al., 2013). Upon completing their differentiation, 

they are all characterized by the expression of the integrin CD11c and MHC II molecules. 

These are considered as universal markers for DC identification, though their expression 

level varies depending on the subset. DCs that were originally identified by Steinman in 

the spleen are termed conventional DCs (cDCs) as they were the first DCs identified 

(Steinman and Cohn, 1973). Later a population of cells that morphologically resemble 

plasma cells but produce large amounts of IFN- upon viral stimulation were identified 

and are thus termed plasmacytoid DCs (pDCs) (Colonna et al., 2004). Another subset 

arises from monocytes under inflammatory conditions and is termed monocyte derived 

DCs (MoDCs) (Lutz et al., 2017).  

 

 1.4 Dendritic cell lineage and development 

cDCs arise from hematopoietic lineages that are different from other immune cells. The 

first early committed progenitors defined in mice and human are common lymphoid 

progenitors (CLPs) and common myeloid progenitors (CMPs) (Akashi et al., 2000; Kondo 

et al., 1997). The identification of progenitors of certain immune cells from other 

hematopoietic lineages relied mainly on adoptive transfer studies of irradiated animals 

that carry elevated levels of circulating cytokines. Many groups are now validating such 

studies using genetic fate-mapping of these clonogenic progenitors in the steady state. 
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The adoptive transfer of CLPs and CMPs into irradiated animals mainly produced cDCs 

and pDCs (Traver et al., 2000). Similar potential was also found for human CLPs and 

CMPs cultured in vitro. The maintenance of cDC developmental potential from 

hematopoietic progenitors was strictly linked to the expression of the tyrosine kinase 

receptor Fms-like tyrosine kinase 3 (Flt3), the ability of the progenitors to respond to its 

ligand, Flt3L, and the downstream signaling factor STAT3 (Naik et al., 2005). Flt3L or Flt3 

deficient mice showed a dramatic loss of pDCs and cDCs in the spleen and lymph nodes 

(LNs), and in peripheral tissue (McKenna et al., 2000). Later it was shown that CLPs and 

CMPs are heterogenous for Flt3 expression and only Flt3+ fractions were capable of 

generating DCs (Karsunky et al., 2003). Most of the steady-state cDCs however are of 

myeloid origin as it was shown that CMPs vastly outnumber CLPs. CMPs are defined by 

being (CD117+) cKithi, CD34+, CD16/32+, Sca1− . They give rise to monocyte and DC 

committed precursors (MDPs) (Fig 1) that lose their capacity to differentiate to 

granulocytes (Fogg et al., 2006). MDP failure to give rise to granulocytes depends on 

expression of the transcription factor interferon (IFN) regulatory factor 8 (IRF8) (Becker 

et al., 2012). These progenitors are Lin−, Sca−, Kithi, Flt3+, (M-CSFR+) CD115+, 

CX3CR1+ and lack lymphoid, megakaryocyte, and granulocyte development potential but 

can differentiate to monocytes, macrophages and DCs. MDPs give rise to the common 

dendritic progenitor (CDP) (Fig 1) which remain CD115+ (M-CSFR+), CD135+ (Flt3+), and 

express high levels of IRF8 which is critical for their survival and continued development. 

CDPs lack monocyte differentiation capacity and subsequently move towards a pDC or 

cDC fate (Liu et al., 2009; Onai et al., 2007). A CDP-derived clonogenic pre-DC population 

that gives rise to cDCs was identified first in lymphoid tissues, and later found in blood, 

which populates lymphoid organs via the circulation and gives rise to cDCs in both 

lymphoid and nonlymphoid tissues. This population differentiates in the BM and can be 

classified into four different subsets along their development axis based on the expression 

of the surface markers Ly6C which is a GPI-linked surface protein and Siglec H which is 

a CD33-related siglec family member or alternatively CD117 and transcription factor 

Zbtb46 expression. Siglec H+ Ly6C- pre-DCs are the developmentally earliest cells 

differentiating from CDPs. If they are Siglec H+ andLy6C+ they lose their potential to 

develop into pDCs and leave the BM giving rise eventually to cDCs (Fig 1) (Schlitzer et 

al., 2015). If they stay in the BM, they develop into pre-pDCs which are Flt3+ but lack M-

CSFR expression and eventually give rise to mature IFNα-secreting pDCs (Fig 1) that 
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depend on the helix-loop-helix transcription factor E2-2 (also known as TCF4) for their 

development (Cisse et al., 2008; Onai et al., 2013). pDCs leave the BM to go to the 

lymphoid organs and peripheral blood upon completing development (O'Keeffe et al., 

2003). cDC precursors that leave the BM travel through the blood and enter SLOs and 

other tissue, differentiate under yet-unknown cues into two subsets: pre-cDC1 which are 

Siglec H- and Ly6C- and give rise to conventional type 1 DCs (cDC1) characterized by 

CD8α or CD103 and the chemokine XC receptor (XCR1) expression, and pre-cDC2 which 

are Siglec H- Ly6C+ and are dedicated precursors to conventional type 2 DCs (cDC2) 

characterized by CD4 and CD11b expression (Fig 1)  (Merad et al., 2013). This allows an 

additional level of tissue-specific regulation of DCs that enables organ- and niche-specific 

functional adaptation. cDC subsets will be described in more details in a subsequent 

chapter. cDCs are generally short-lived and are constantly being replaced by precursors 

from the BM every 3 to 6 days in a Flt3L-dependent manner (Guilliams et al., 2016; Merad 

et al., 2013). The transcription factors Ikaros (Wu et al., 1997), PU.1, Gfi1 (Rathinam et 

al., 2005) and CbfB (Satpathy et al., 2014) were also shown to control the development 

of DC lineages. PU.1 drives Flt3 expression at later stages of DC development and is 

involved in expression of IRF8 as early as the CMP or MDP (Carotta et al., 2010). 

Recently, the transcription factor Bcl11a was shown to also drive Flt3 expression and is 

required for all DC subsets development (Ippolito et al., 2014). Bcl11a is required for IL-

7 receptor expression which is not only required for T and B cell development but also for 

DC development (Vogt et al., 2009).  

MDPs can also differentiate to common monocyte progenitors (cMoPs) characterized by 

being Lin-, CD117+ (c-Kit+), CD115+ (M-CSFR+), CD135- (Flt3-), Ly6C+, which strictly 

derive monocytes. Under inflammatory conditions monocytes can give rise to monocyte 

derived DCs (MoDCs) which can be developed using IL-4 and Granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (Fig 1) (Sallusto and Lanzavecchia, 1994) and lack 

the expression of the transcription factor ZBTB46 and is characterized by histone H4K16 

acetylation that does not take place in monocytes and macrophages (Lutz et al., 2017; 

Nicholas et al., 2015). In addition to cDCs and MoDCs, Langerhans cells (LCs) are 

another subset of DCs that has been described as the prototypical DC. They are sentinel 

tissue-resident DCs that populate the epidermal skin layer and migrate to skin-draining 

LNs to activate naive T cells upon activation. Unlike cDCs, LC development is 

independent of Flt3L but requires (M-CSFR+) engagement though not by Csf1, but rather 
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its alternative ligand IL-34 and arise from embryonic monocytic precursor cells (Fig 1) 

(Wang et al., 2012). This caused an intense debate about whether LCs are true DCs or 

are more closely related to tissue-resident macrophages (Lutz et al., 2017). 

 

Figure 1: The development and defining markers for the different DC subsets including cDC1s, cDC2s, pDCs, LCs, and MoDCs 

 

1.5 DC migration 

DCs have been called professional antigen-presenting cells because of their potent ability 

to prime naive T cells. Much of this ability stems from their unique migratory pattern. 

Unlike most innate sentinel cells, upon encountering a viral or bacterial pathogen, 

activated DCs leave the infected area and migrate towards the draining LNs. As naive T 

cells can only access SLOs, they rely on this sentinel function of DCs for responding to 

the presence of an infection. The migratory pattern of DCs from peripheral tissues to and 

within SLOs has been well studied for decades, but a coherent set of rules for how these 

migratory journeys impact the most important roles for DCs, T cell priming and 

differentiation, is only now becoming clear (Calabro et al., 2016). 

DCs are strategically positioned at ports entering the organs such as the splenic marginal 

zone and at different physical body barriers such as the skin or mucosa. Efficient 

directional migration of cDCs toward T cell zones within lymphoid organs or towards 
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distant draining LNs is required to ensure efficient stimulation of naive T cells. Peripheral 

cDC migration via afferent lymphatics depends on the chemokine receptor CCR7 and 

utilize CCL19 and CCL21 which are the same migratory cues that T cells use to enter the 

LN (Forster et al., 1999; Teijeira et al., 2014). Immobilized CCL21 on lymphatic 

endothelium plays a critical role in facilitating the chemotaxis and arrest of migrating 

tissue DCs to enter the afferent lymphatics (Tal et al., 2011). Complementary roles in cDC 

migration have been suggested for other chemokine receptors such as CXCR4 and its 

ligand CXCL12, but CCR7 seems to be the major player (Kabashima et al., 2007). Intra-

tissue migration of lymphoid organ-resident cDCs, although seemingly also CCR7 

dependent, remains less well understood. It is important to note that Ccr7-/- mice have an 

abnormal development and compartmentalization of immune cells within the LN (Ohl et 

al., 2003). Other chemokines have been described for the migration of DCs within 

lymphoid and non-lymphoid tissues. For example, splenic CD11b+ cDC2s are recruited 

to the bridging channels of the marginal zone by the chemotactic receptor EBI2 (Gatto et 

al., 2013), while the CCR6-CCL20 axis controls the migration of DCs toward the mucosal 

surfaces within the Peyer’s patch (Cook et al., 2000). XCR1 expression on cross-

presenting DCs has been shown to orchestrate their intra-tissue positioning in the thymus 

(Lei et al., 2011) and more recently , their recruitment to CD8+ T cells expressing the 

XCR1 ligand XCL1 during viral immune response (Brewitz et al., 2017). On the other 

hand, the egress of monocytes from the BM under inflammatory conditions and the 

subsequent arrival into the skin dermis where they can be converted into MoDCs is 

mediated by CCR2 together with the help of CCR5 (Nagao et al., 2012). While the 

migration of DCs from peripheral tissues to draining LNs are extensively studied, the 

molecular cues required for the immigration of DCs from the BM and from blood to 

lymphoid and non-lymphoid tissues is unfortunately still poorly understood. 

 

 1.6 Dendritic cell subsets 

1.6.1 CD103+ and CD8+ dendritic cells 

cDC1s can be found in both the spleen and LNs but also as tissue-resident DCs that 

migrate to draining LNs upon receiving a pathogen or a danger signal, and they also 

migrate under steady-state conditions to deliver self-antigens for tolerance induction. Both 

subsets are defined by their unique expression of XCR1 but are distinguished from each 

other by the expression of CD11c and MHC II molecules and by the integrin marker 
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CD103 (ITGAE) and CD8+ expression. Lymphoid resident cDC1s are CD8high CD11chigh 

CD103low and MHC IIint, while migratory cDC1s are CD8αlow CD11cint CD103high and MHC 

IIhigh. CD8α+ lymphoid resident DCs express the CD8α transcript and protein, but not 

CD8αβ, which is most commonly expressed by CD8+ T cells (Shortman and Heath, 2010). 

CD103+ cDC1s that reside in the dermis also express the C-type lectin langerin (CD207) 

which is involved in the formation of the intracytoplasmic Birbeck granules (Kissenpfennig 

et al., 2005). 

cDC1s represent 20–40% of spleen and LN cDCs. In contrast, they constitute most of the 

thymic cDC population and are generated locally from early thymocyte progenitors. They 

express distinct lectin and TLRs compared to CD11b+ cDC2s. Lectin receptors include 

CD205, and Clec9A, and langerin which are expressed mostly by cDC1s (Jiang et al., 

1995), in contrast to DC immunoreceptor 2 (DCIR2) expressed exclusively by CD11b+ 

DCs. These receptors have been exploited for targeted delivery of antigens to specific 

DC subsets. They also lack macrophage markers such as CD11b, CD115, CD172a, 

F4/80, and CX3CR1 (Ginhoux et al., 2009). Until now cDC1s are considered the best-

characterized cDC subset, both by their phenotype and their gene expression signature, 

and they also appear to be an evolutionary conserved subset. They are distinguished by 

being the most efficient cross-presenters of foreign antigens such as viral and tumor 

antigens on MHC I molecules to CD8+ T cells, though unlike in mice, CD11b+ DCs were 

shown to also possess cross-presentation capacity in humans (Segura et al., 2013).  

TLR stimulation on CD8a+ and CD103+ cDC1s induces prominent secretion of the 

bioactive IL12p70 (Reis e Sousa et al., 1997). It is worth noting that in contrast to 

macrophages, IL-12 production by CD8α+ and CD103+ cDC1s requires c-Rel (Grumont 

et al., 2001). Their development is orchestrated by the same set of transcription factors: 

IRF8; which is required for the development of all cDCs from their BM precursors as 

discussed before, inhibitor of DNA binding 2 (Id2), basic leucine zipper ATF-like 3 

transcription factor (BATF3), and the nuclear factor interleukin 3 regulated (NFIL3). 

Knockout models of either of these genes results in a severe developmental defect of 

CD8α+ and CD103+ cDC1s, but not CD11b+ cDC2s. The hierarchy and sequential 

involvement of these specific transcription factors within the CD8α and CD103 cDC 

lineage is emerging (Murphy et al., 2016). While IRF8 seems obligatory for the 

development of Id2-expressing DC precursors, BATF3 is induced at later stages of CD8α 

and CD103 cDC1 maturation (Hildner et al., 2008). Indeed, cDC1 development can be 
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observed in BATF3-deficient mice infected with intracellular pathogens or treated with IL-

12, this appears to be dependent on compensatory BATF and BATF2 expression 

(Tussiwand et al., 2012). Additionally, short-term development of cDC1s was observed in 

the absence of Id2, NFIL3, and BATF3, which collectively suggests that IRF8 is the 

master regulator of CD8a and CD103 cDC1 development (Seillet et al., 2013). 

 

1.6.2 CD11b+ dendritic cells 

CD11b+ cDCs (cDC2s) are the most abundant cDCs in lymphoid organs except for the 

thymus, representing 50-60 % of spleen and LN cDCs, and can also be found as 

migratory cells in nonlymphoid tissue. They are separated by the differential expression 

of CD11c and MHC II as described for CD8α and CD103 cDC1s. However, in contrast to 

CD8 and CD103 DC1s, the population currently defined as CD11b+ cDC2s is 

heterogeneous and remains less well characterized. Like cDC1s, cDC2s proliferate in situ 

in response to Flt3L, and are reduced in Flt3-and Flt3L-deficient mice, though to a lesser 

extent compared to cDC2s. They can be identified by expression of surface markers 

CD11b, DCIR2 (by staining with the antibody 33D1), CD301b (MGL2), CD4 or signal 

regulatory protein-α (SIRPα), depending on the tissue investigated (Suzuki et al., 2004). 

The transcription factors controlling general CD11b+ cDC2 development include RelB 

(Briseño et al., 2017), NOTCH2 (Lewis et al., 2011), RBP-J (Caton et al., 2007), IRF2 

(Ichikawa et al., 2004), and IRF4 (Suzuki et al., 2004). It is worth noting that IRF4 also 

controls functional aspects of CD11b+ DCs, such as their MHC presentation capacity 

(Vander Lugt et al., 2014) and migration (Bajana et al., 2012; Gao et al., 2013). However, 

deficiencies of IRF4 and NOTCH2 only partially impair this compartment and this 

impairment is variable in different tissues (Bajana et al., 2012; Lewis et al., 2011). Given 

the heterogeneity of this subset, it is not surprising that assigning specific functions to 

cDC2s is still a daunting task, and in most of the cases, CD11b+ DCs are still defined by 

absence of cDC1 associated-functions. For instance, their inability to cross-present and 

produce specific cytokines, such as IL-12 compared to cDC1s. It was observed though 

that cDC2s are superior in the induction of CD4+ T cell immunity compared to cDC1s, 

potentially due to their superior of MHC-II presentation capacity (Dudziak et al., 2007; 

Lewis et al., 2011). They are also characterized by a distinct cytokine secretion profile, 

such as IL-6 (Persson et al., 2013) and IL-23 (Schlitzer et al., 2013b). Also, splenic cDC2s 

were shown to be major producers of proinflammatory chemokines such as CCL3, CCL4, 
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and CCL5 (Proietto et al., 2004) after TLR ligand exposure. The in vivo relevance of these 

activities is yet to be determined. 

cDC2s in the spleen can be sub-classified based on the differential expression of the 

endothelial cell–specific adhesion molecule (ESAM). ESAMhiCD11b+ DCs seem to 

depend of Notch2 expression and are defined by higher CD4, CD11c, and Flt3 levels and 

lower Csf-1R, Csf-3R, and CCR2 levels than do ESAMloCD11b+ DCs. 

ESAMhiCD11b+ splenic DCs derive from DC-restricted precursors and are dependent on 

Notch2 signaling (Lewis et al., 2011), whereas ESAMloCD11b+DCs are thought to derive 

from circulating monocytes and are dependent on Kruppel Like Factor 4 (Klf4) signaling 

(Tussiwand et al., 2015).  

 

1.6.3 CD8- CD11b- (DN) dendritic cells 

Another DC subset that remains poorly characterized are CD8- CD11b- (DN) DCs 

(Iwasaki and Kelsall, 2001; Proietto et al., 2004). They constitute around one-third of all 

DCs in Peyer’s patch, around 30% in the mesenteric LN and only a minor and indistinct 

population in the spleen (9%) and peripheral lymph nodes (13%) (Iwasaki and Kelsall, 

2001). Among splenic cDCs, they were shown to express moderate amounts of CCR6 

(Iwasaki and Kelsall, 2000) and, under inflammatory conditions they upregulate the 

chemokines CCL3, CCL4, and CCL5 (Proietto et al., 2004). They responded specifically 

to R848 (a TLR-7 agonist) and CpG (a TLR-9 agonist) among a panel of tested TLR 

stimuli (Proietto et al., 2004). In vitro stimulation of DN DCs was shown to induce DEC-

205 expression, but they remain negative for the CD8 and CD11b markers indicating that 

this subset does not represent an immature stage of cDC1s or cDC2s (Iwasaki and 

Kelsall, 2001). In human DCs, CD141+ DCs correspond to mouse CD8+ cDC1s and 

CD1c+ DCs correspond to mouse CD11b+ cDC2s. A CD141- cDC1- DC subset is also 

identified in human peripheral blood mononuclear cells (PBMCs) (Villani et al., 2017). 

More recently, they were also shown to be significantly higher in squamous cell tonsillar 

cancer biopsies compared to their counterparts in benign tonsils (Abolhalaj et al., 2018) 

 

1.6.4 Plasmacytoid dendritic cells 

pDCs are blood-circulating DCs that are found only as a small population throughout the 

periphery and in lymphoid organs. They characteristically have a highly developed 

secretory compartment and are recognized by the expression of CD45R (B220), Ly6C, 
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and the transmembrane glycoprotein PDCA-1 (CD317) in mice and CD123, 

CD303/BDCA2, and CD304/BDCA4 in humans. They have a distinct morphology but they 

share many cDC characteristics such as Flt3L dependency (Kingston et al., 2009), and 

an ability to prime T cells though in a more restricted manner (Sapoznikov et al., 2007). 

Also, their transcription profile overlaps with cDCs but is quite distinct (Robbins et al., 

2008). They selectively express Toll-like receptor 7 (TLR7) and TLR9, and as such their 

most important function is thought to be producing large quantities of type 1 IFNs in 

response to single-stranded viral RNA and DNA, a direct consequence of their 

constitutive IRF7 expression (Honda et al., 2005). E2-2 transcription factor that is required 

for their development mediates that by direct suppression of Id2 expression that is 

required for CD8 and CD103 cDC1 development (Ghosh et al., 2010). This has been 

confirmed by early deletion of E2-2, which leads to a complete absence of pDCs both in 

human and mouse (Cisse et al., 2008). While excision of the E2-2 gene in mature pDCs 

initiated an alternative cDC transcription program shifting them towards CD8 

development (Ghosh et al., 2010). Such ‘‘converted’’ CD8+ pDCs bear D-J 

rearrangement indicative of their pDC past and are discriminated from CD8+ cDC1s by 

expression of CX3CR1 among other markers (Bar-On et al., 2010), though the 

contribution of these ‘‘ex-pDCs’’ to the immune response is yet to be shown. pDCs have 

the potential to act as APCs, since they express MHC II and co-stimulatory molecules; 

but their ability to phagocytose dead cells and present cell-associated antigen is yet to be 

clearly established, also their ability to cross-present exogenous antigen on MHC class I. 

Single-cell RNA-sequencing analysis of blood DCs coupled with functional 

characterization indicates that human pre-DCs contaminated the classically defined pDC 

gate and this contamination can be responsible for the previous misrepresentation of 

pDCs’ “T cell-activating” property (Villani et al., 2017). In tumors, pDCs seem to correlate 

with poor prognosis of both breast and ovarian cancers (Conrad et al., 2012), but they 

are also studied as potential therapeutic targets to elicit IFN-α release and antigen 

presentation by cDCs (Kranz et al., 2016; Treilleux et al., 2004).  

 

1.6.5 Langerhans cells 

LCs are described as the prototypical DCs that were first discovered in the 19th century 

and gained special attention after splenic DC discovery. They are a unique population of 

mononuclear phagocytes that are restricted to the epidermal skin layer. They were shown 
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to express high levels of MHC II and could stimulate an MLR after in vitro culture with T 

cells. Moreover, studying LCs was the first clue to understanding the distinct functional 

stages of DC maturation (Schuler and Steinman, 1985). They constitute 3–5% of 

epidermal cells, with approximately 700 LCs/mm2 (Merad et al., 2008) and are different 

from other tissue cDCs by having unique ontogeny and homeostatic properties (Ginhoux 

and Merad, 2010). As described earlier, LCs arise from fetal liver-derived monocytes 

(Wang et al., 2012), and self-renew under physiological steady-state conditions without 

replacement by blood-borne precursors (Merad et al., 2002). LCs are characterized by 

high levels of Langerin expression similar to dermal cDC1s, but they are differentiated 

from dermal cDC1s by the lack of expression of CD103, XCR1, and DEC-205 (Ginhoux 

et al., 2007). 

Murine LCs also express a specific epithelial cell adhesion molecule (EpCAM). The 

deletion of this molecule was shown to reduce mobilization of LCs and inhibit their 

tolerance induction capacity in a contact hypersensitivity mouse model (Gaiser et al., 

2012). They play important roles both in immunity and tolerance induction upon mobilizing 

to the skin draining lymph nodes. They secrete IL-6 which is essential for protecting mice 

against Candida albicans infection by promoting Th17 cell responses (Igyarto et al., 

2011). They were also shown to suppress protective immunity during Leishmania major 

infection (Kautz-Neu et al., 2011). In human LCs expression of high levels of CD1a was 

described (Ito et al., 1999). CD1c is a member of the group 1 CD1 proteins (CD1a, CD1b, 

and CD1c). This group of proteins has been shown to have the capacity to present lipid 

antigens to T cells (Hunger et al., 2004). 

 

1.6.6 Monocyte-derived DCs (MoDCs) 

MoDCs arise as a consequence of inflammation or infection and can be found in lymphoid 

and non-lymphoid organs (Serbina et al., 2003). They are derived from the monocyte 

influx induced by inflammation and as such termed ‘‘monocyte-derived DCs’’ (MoDCs) or 

‘‘inflammatory DCs’’ (iDCs) (Segura and Amigorena, 2013). The study of BM culture-

derived MoDCs using IL-4 and GM-CSF has yielded many of our insights into DC biology 

over the past decades. MoDCs are characterized by being more versatile and can 

perform functions of different DC subsets. In tissues, they can perform typical DC 

functions such as antigen presentation to effector T cells, pathogen clearance, migration 

to SLOs and cytokine production. Since they are of monocytic origin they express CD64, 
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the Fc-gamma receptor 1 (FcgRI) but also Ly6C and typical DC markers including CD11c, 

high levels of MHC II and CD11b (Lutz et al., 2017; Min et al., 2018). Though their gene 

expression profiles differ considerably from cDCs (Xu et al., 2007), they are still very 

useful in many DC studies owing to their powerful antigen presentation capacity and 

robust cytokine production. TIP DCs that appear during pathogen-associated 

inflammation (Serbina et al., 2003) have been considered the prototypic MoDCs. 

However, their pronounced proinflammatory signature and their Csf2-independent 

development might suggest that they are activated effector monocytes rather than cDC-

like cells (Greter et al., 2012). In vivo MoDCs are also DC-SIGN (CD209a)-positive DCs 

as described by (Cheong et al., 2010) where they appeared in LNs after TLR ligand 

challenge. MoDCs also appear to be more closely related to CD11b+ cDC2s. Thus, 

understanding MoDCs in vivo will probably contribute to our understanding of the 

heterogeneous CD11b+ cDC compartment. MoDCs were shown to be recruited from 

blood into lymph nodes and are differentiated from monocytes by LPS and live or dead 

gram-negative bacteria. Their mobilization requires TLR4 and its CD14 co-receptor and 

Trif. In vivo MoDCs were shown to be as capable as cDCs of antigen presentation. This 

included cross-presentation of proteins and live gram-negative bacteria on MHC I similar 

to cDC1s. After their full differentiation they required L-selectin and CCR7 for their 

migration to the T cell areas (Cheong et al., 2010). 

 

1.7 Spatiotemporal organization of DCs in LNs 

After CCR7-dependent migration from tissues, migratory DCs end up at the subcapsular 

sinus (SCS) of the LN and cross the SCS floor in a CCR7-independent manner (Braun et 

al., 2011). Migratory cDC1s and cDC2s then enter the interfollicular zone (IFZ) and home 

to the different areas of the LN (Schumann et al., 2010). An early study observed 

segregation of cDC1s and cDC2s, cDC1s were located in the deep T cell zone (TCZ) and 

cDC2s were in the T cell–B cell border (Ingulli et al., 2002). A langerin reporter mouse 

model that marks both CD103+ cDC1s and LCs migrating from the skin showed that both 

populations migrate into the deep TCZ (Kissenpfennig et al., 2005). On the other hand, 

CD11b+ migratory DCs localized to the outer paracortex (Gerner et al., 2015; 

Krishnaswamy et al., 2017). Studies using mice with knock-in photoconvertible 

fluorescent proteins to track DC migration dynamics showed that migratory cDC1s arrive 

to the skin draining LNs within 1 day after immunization but require another 24 hours to 
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reach the deep TCZ, where they are mixed with LN-resident cDC1s (Braun et al., 2011; 

Tomura et al., 2014).  

This result was also similar when imaging LNs by intravital microscopy following adoptive 

transfer of either BM-derived or splenic DCs. These transferred cells were located in the 

T cell–B cell border, proximal to HEVs, and therefore this might serve as a zone for DC 

scanning by incoming naive T cells from the circulation (Bajenoff et al., 2003; Mempel et 

al., 2004; Miller et al., 2004). Also, in lung-draining LNs; migratory cDC2s localize to the 

T cell–B cell border, while migratory cDC1s were located in the deep TCZ (Krishnaswamy 

et al., 2017). Therefore, it appears that this distribution pattern of cDC1s and cDC2s is 

conserved across a variety of tissues both at steady state and upon immunization. This 

was also mirrored in an elegant study that was conducted in human LNs; where cDC2s 

are found at the T cell–B cell border, and cDC1s at the TCZ (Granot et al., 2017). 

Studies indicate that both LN-resident cDC1s and cDC2s can acquire antigen through 

sampling of lymph after footpad or intra-auricular injection (Gerner et al., 2015). Whether 

this occurs at cortical conduits in the outer TCZ or lymphatic sinuses at the cortico-

medullary junction which is adjacent to peripheral follicles is still unknown. It was 

previously shown that LN-resident CD11b+ DCs sample small antigens that are 

transported to LN conduits after injection in the outer LN T cell–B cell border (Sixt et al., 

2005). On the other hand, another study identified the same subset sitting at lymphatic 

sinuses on the medullary side of the LN, and they can capture large particulate antigens 

from lymph (Gerner et al., 2015). It is still unclear whether these are two separate subsets 

or the same migrating to different locations in the lymph node.  

Apart from its importance in mediating the migration of DCs from tissues towards the 

draining LN, CCR7 is also important for DCs to locate the TCZ (Ato et al., 2002; Braun et 

al., 2011). The TCZ of both LNs and the spleen are areas high in CCL19 and/or CCL21 

(Ato et al., 2002; Luther et al., 2000). and since cDC1s show higher expression of CCR7 

than cDC2s, they follow the CCL19 and CCL21 gradient and preferentially localize to the 

deep TCZ (Krishnaswamy et al., 2017). XCR1 selective expression by cDC1s potentially 

helps in establishing this niche since CD8+ T cells secrete its ligand XCL1 during early 

activation (Brewitz et al., 2017). 

On the other hand, cDC2s express higher levels of CXCR5 compared to CCR7 which 

causes them to be positioned at the T cell–B cell border after migration to the LN 

(Krishnaswamy et al., 2017). The chemotactic receptor Epstein–Barr virus induced gene 
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2 (EBI2) was recently shown to guide cDC2s to oxysterols at the T cell–B cell border in 

the spleen (Li et al., 2016) while cDC1s express enzymes that degrade oxysterols and 

therefore create a T cell area relatively devoid of EBI2 ligands (Lu et al., 2017). Also, 

selective expression of sphingosine-1-phosphate (S1P) receptor 3 (S1PR3) by cDC2s 

was observed and potentially results in sustained responsiveness to S1P gradients. S1P 

is concentrated in cortical sinusoids in the paracortex, which largely overlaps with the T 

cell–B cell border and the region with highest concentration of migratory cDC2s 

(Grigorova et al., 2010). 

 

 1.8 Dendritic cell control of T cell response 

(CD11c)-DTR mice showed that lack of CD11c+ cells led to the loss of CD8 T cell priming 

to cell-associated antigens and to intracellular pathogens such as Listeria 

monocytogenes and malaria (Jung et al., 2002). Later, Zbtb46-DTR mice lacking only 

cDCs resulted in a complete inability to prime CD8 or CD4 T cells against soluble antigen 

(Meredith et al., 2012) and a failure to prime CD4 T cells against Mtb (Samstein et al., 

2013). Additionally, cDC-specific deletion of MHCII expressing cells using Zbtb46-cre led 

to a complete reduction in CD4 T cell priming to soluble antigen (Loschko et al., 2016). 

Furthermore, antigen targeting to specific DC subsets indicated the functional 

specialization of each subset, with cDC1s preferentially priming CD8 T cells and the only 

subset efficiently carrying out cross-presentation of exogenous antigens on MHC class I, 

while cDC2s were more efficient in priming CD4 T cells (Dudziak et al., 2007). Depleting 

cDC1s using the Xcr1-DTRvenus strain also abrogated CD8 T cell priming against soluble 

and cell-associated antigen as well as against Listeria infection (Yamazaki et al., 2013). 

CD4 T cells could still be primed against soluble antigen in these mice. Future work with 

specific depletion of cDC2s is needed to confirm their unique role in priming CD4 T cells.  

  

1.8.1 Control of type 1 immune response 

Immune responses that are induced against intracellular pathogens and require IFN- 

activated macrophages and cytotoxic CD8 T cells for their clearance are termed type 1 

immune responses. In the early phases of the response, NK cells and innate lymphoid 

cells type 1 (ILC1s) are the major source of IFN- while antigen-specific Th1 and CD8 T 

cells produce this cytokine at later stages. The bioactive IL-12p70 is the major cytokine 
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required for activation of type 1 responses, as it drives NK cells and ILC1s to produce 

IFN-, and is responsible for polarizing naive T cells to type 1 helper (Th1) T cell 

(Macatonia et al., 1995). Over the years, many studies proved that cDC1s are the major 

non-redundant source of IL-12 and is responsible for mounting type 1 responses by T 

cells. Using the Karma mouse strain where cDC1s are specifically depleted completely 

abolishes IL-12 production in response to soluble Toxoplasma antigen and a significant 

reduction in IFN- levels (Alexandre et al., 2016). Also, Batf3-/- mice showed reduced IFN-

  production from NK cells during Toxoplasma infection, which indicates that IL-12 from 

cDC1s is critical for NK cell activation and reduced IFN- production (Askenase et al., 

2015). Additionally, using Itgax-DTR mice where all CD11c cells can be conditionally 

depleted (Neuenhahn et al., 2006), Batf3-/- mice (Edelson et al., 2011), Ly75-DTR 

(Fukaya et al., 2012), and Xcr1-DTRvenus (Yamazaki et al., 2013) mice where cDC1s 

are specifically depleted all showed reduced CD8 T cell responses in Listeria infection 

models. Interestingly, many of these models showed reduced Listeria burden in the 

spleen and in Batf3-/- mice increased resistance to the infection was even observed. This 

is because cDC1 infection by Listeria in the splenic marginal zone is important for them 

to spread and proliferate in the lymphoid areas of the spleen (Neuenhahn et al., 2006). 

Another role the cDC1s play in promoting the survival and activation of NK cells depend 

on their trans-presentation of IL-15. cDC1s express the non-signaling receptor chain IL-

15R and binds IL-15, then it presents it to the full IL-15αβ receptor on NK cells (Burkett 

et al., 2004; Mortier et al., 2008).  

Control of viral infections rely on CD8+ cytotoxic lymphocytes (CTLs), their activation 

requires the engagement of nucleic acid sensors by APCs leading to the production of 

type 1 interferons and IL-12. Both CD103+ DCs migratory as well as CD8α+ lymphoid-

resident DCs were shown to be capable of cross-presenting viral antigens and activating 

CD8+T cells (Waithman et al., 2013). Also, during a viral response, CD4 T cell help 

provided to CD8 T cells appears to be mediated through ‘‘licensing” of cDC1s. Analysis 

of immune responses suggests that CD4 T cells are primed by DCs earlier than CD8 T 

cells, this is followed by a three-way clustering of 1) CD4 T cells with; 2) cDC1s in order 

to license them, then with; 3) CD8 T cells which then get primed by the cDC1s that cross-

present the viral antigen to the CD8 T cells (Eickhoff et al., 2015; Hor et al., 2015). 
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1.8.2 Control of type 2 immune response 

Type 2 responses are mounted against multicellular parasites at barrier surfaces in order 

to aid in their expulsion. Several cytokines have been described that induce this response 

including IL-4 that polarizes naive T cells to Th2 cells(Le Gros et al., 1990), and IL-25 and 

IL-33 that activate innate lymphoid cells type 2 (ILC2s) and push them towards production 

of effector cytokines such as IL-4, IL-5, and IL-13 (Sonnenberg and Artis, 2015). Depletion 

of CD11c+ cells in Itgax-DTR mice abrogated type 2 responses to inhaled house dust mite 

(HDM) allergen (Hammad et al., 2010) and an FcεRI expressing CD11c+ MHCII+ cell 

population was shown to be the major subset responsible for the response. This was 

confirmed to be the cDC2 subset by a study which showed that conditional deletion of Irf4 

with Itgax-Cre (Gao et al., 2013) diminished Th2 priming in response to papain, which is 

a model allergen inducing Th2 response, and Nippostrongylus infection. Also, depletion 

of a subset of cDC2s, that depend on Klf4 for their development, using Klf4f/f Itgax-Cre 

strain increased susceptibility to Schistosoma mansoni infection and diminished allergic 

inflammation after intranasal HDM challenge (Tussiwand et al., 2015). The production of 

cytokines by DCs was not established in any of these models, so whether they control 

type 2 responses by this mechanism or some other is yet to be determined. Other studies 

suggested that ILC2s might be the source of cytokines acting to induce type 2 responses 

(Halim et al., 2014). It is possible that ILC2s and DCs cooperate in Th2 priming, though 

this is yet to be studied. Of note, in humans, Langerhans cells induce the secretion of Th2 

cell cytokines in mixed-leukocyte reactions more efficiently than other skin DC subsets 

do (Klechevsky et al., 2008; Segura et al., 2012). This suggests that different skin DC 

subsets can carry out the priming of Th2 cells in mice and humans depending on the 

context. 

1.8.3 Control of Th17 immune response 

Th17 immune responses is mainly carried out at barrier surfaces such as the lungs and 

intestines to control infections by extracellular bacteria and fungi. Cytokines including IL-

23 and IL-6, and TGF- are required for this response and IL-6, and TGF- initiate T 

helper 17 (Th17) cell polarization (Bettelli et al., 2006). On the other hand, IL-23 increases 

the survival and expansion of committed Th17 cells (Veldhoen et al., 2006). This cytokine 

is also critical for innate responses activating ILC3s to produce IL-22. This promotes 
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production of bactericidal lectins such as RegIII- from small intestinal epithelial cells 

(Kinnebrew et al., 2012; Sonnenberg and Artis, 2015). Citrobacter rodentium is a famous 

mouse pathogen used to study Th17 immune responses. It requires IL-23 and IL-22 for 

its clearance (Zheng et al., 2008); (Basu et al., 2012); (Mundy et al., 2005). Notch2-

dependent cDC2s were shown to be the critical source of IL-23 in defense against this 

pathogen (Satpathy et al., 2013) as demonstrated by conditional knockout of Notch2-

dependent cDC2s. Studies have also implicated cDC2s in various other Th17 immune 

responses. The depletion of CD103+ CD11b+ intestinal cDC2s, using Notch2f/f Itgax-cre, 

Irf4f/f Itgax-cre, or CD207-DTA mice, showed fewer small intestinal Th17 cells at steady 

state (Lewis et al., 2011); (Schlitzer et al., 2013a); (Welty et al., 2013). This was also the 

case for Th17 cells in the small intestine lamina propria and mesenteric LNs at steady 

state and less Th17 polarized cells after immunization with antigen plus CD40 and LPS 

(Persson et al., 2013). Another study also showed that cDC2s must produce IL-23 to 

activate IL-17 secretion from dermal -TCR T cells during cutaneous Candida albicans 

infection (Kashem et al., 2015). In conclusion, the depletion of cDC2s was clearly 

responsible for defects in Th17 responses to several pathogens, such as Citrobacter 

(Satpathy et al., 2013), Streptococcus (Linehan et al., 2015), and Candida (Kashem et 

al., 2015); (Trautwein-Weidner et al., 2015). On the other hand, Th17 responses were 

intact in mice lacking cDC1s which again underscores the functional specialization of 

different cDC subsets and the non-redundant roles they play in host defense.  

 

1.8.4 Interleukin-12 and its role in type 1 immune responses 

Interleukin 12 (IL-12) belongs to type I cytokines and has a four α-helical bundle structure. 

IL-12 acts in a form of a heterodimeric protein (IL-12-p70; IL-12-p35/p40) consisting of 

two covalently linked p35 and p40 subunits.  Following the discovery of IL-12, three other 

members (IL-23, IL-27, and IL-35) have been added to the IL-12 family and shown to play 

critical roles in Th1 cell functions. IL-12 is a ligand of a receptor composed of two amino 

acid chains, IL-12R-β1 and IL-12R-β2. IL-12 receptor (e.g., The IL-12R-β1 chain is 

expressed in a constitutive manner in B cells (Pistoia et al., 2009), while IL-12R-β2 is 

expressed in an inducible manner in a variety of immune cells, including NK cells, T, and 

B lymphocytes. Ligand-bound IL-12R-β2 becomes phosphorylated on tyrosines, which 

provides harboring sites for two kinases, JAK2 and TYK2. Among the STAT family of 
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transcription factors, STAT4 is considered the most specific mediator of cellular 

responses elicited by IL-12 (Thierfelder et al., 1996). In human T cells, both IFN-α and IL-

12 activate STAT4, yet IFN-α cannot substitute for the loss of IL-12 function in vivo, as 

judged by the fact that loss of IL-12R expression in humans results in a failure to induce 

protective Th1-mediated immune responses (Jong et al., 1998), (Altare et al., 1998). In 

addition to forming heterodimers with p35, both mouse and human p40 are secreted in 

large excess as free p40 monomers and can also form homodimers (p402), which exhibit 

biological activities antagonistic to heterodimeric IL-12p70 (Gillessen et al., 1995),(Ling 

et al., 1995). The production of immunosuppressive IL-12p40 homodimers was also 

induced in DCs and macrophages exposed to ultraviolet radiation (Schmitt and Ullrich, 

2000). Surprisingly, Jana et al. found that IL-12p70, p402 (the p40 homodimer) and p40 

(the p40 monomer) all induced the production of TNF-α in BV-2 microglial cells and in 

mouse primary microglia and peritoneal macrophages. 

IL-12p70 is released in response to intracellular bacterial and parasitic infections and 

though the relative roles of IL-12p70 and IFN- in Th1-cell priming is to a significant extent 

pathogen-dependent, in most infections IL-12p70 regulates the magnitude of the IFN- 

response at the initiation of infection, thus potentiating natural resistance, favoring Th1-

cell development, and inhibiting Th2 responses. Treatment of animals with IL-12p70, 

either alone or as a vaccine adjuvant, has been shown to prevent diseases caused by 

many of the same infectious agents, by stimulating innate resistance or promoting specific 

reactivity. 

Additionally, IL-12p70 plays a major role in tumor control and rejection (Eisenring et al., 

2010; Segal et al., 2002). Recombinant human IL-12p70 has been studied as a single 

agent for systemic treatment of various types of cancer in patients. A strong CTL response 

was observed in patients with advanced melanoma after IL-12p70 administration. The 

number of tumor-specific CTL increased in the circulation, and influx of specific memory 

CD8+ T cells into metastasized lesions was demonstrated (Lasek et al., 2014). 

 

 1.9 Bone marrow-derived dendritic cells 

Inaba and colleagues were the first to successfully generate large quantities of DC from 

mouse BM precursors supplied with GM-CSF (Inaba et al., 1992). About 5 × 106 DC at 

70% purity could be obtained per mouse after 6 days of culture. These monocyte-derived 
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cultured DC exhibited characteristic morphology and phenotype of DC, including the 

presence of small cytoplasmic protrusions and the expression of CD11c, high levels of 

MHC molecules and costimulatory molecules, and have a strong ability to initiate mixed 

leukocyte reaction (MLR). This method was further improved by our lab to generate higher 

yields and purities of DCs (Lutz et al., 1999). The major modifications include: the 

avoidance of any active depletion of BM cell subsets, reduction of GM-CSF concentration, 

a lower seeding density of BM cells and a prolonged culture period. With the modified 

method, a higher yield of 1–3×108 immature and mature DC per mouse at nearly 95% 

purity can be achieved (Lutz et al., 1999). Further maturation of DC could be induced by 

high doses of LPS or TNFα, where 50–70% of the non-adherent fraction represented 

mature DC expressing high levels of CD86 and CD40. Such matured BM-derived 

dendritic cells (BM-DCs) closely resemble the inflammation induced MoDCs (Inaba et al., 

1990; Lutz et al., 2017). 

Surprisingly, abrogation of GM-CSF or its receptor in mice did not affect MoDC generation 

and activation of CD8+ T cell responses. Conversely, deficiency of M-CSFR impaired 

inflammatory MoDC recruitment and CD80/CD86 surface expression (Greter et al., 2012). 

Thus, the role of GM-CSF in the generation of inflammatory MoDCs in vivo is yet to be 

determined.  

BM-DCs can also be generated using GM-CSF BM cultures supplemented with IL-4 both 

from mouse BM or peripheral blood monocytes (Schreurs et al., 1999), (León et al., 2004). 

Compared with DC differentiated in the presence of GM-CSF alone, additional 

supplementation of IL-4 significantly enhanced DC differentiation, leading to an 

intermediate degree of maturation (Labeur et al., 1999), and induced DC growth and 

maturation. IL-4 was also proposed to inhibit macrophage colony formation (Hiasa et al., 

2009).  

BM-DCs supplemented with IL-15 together with GM-CSF have similar phenotype and 

functions to that of GM-CSF/IL-4-induced DC (Pulendran et al., 2004). Notably, the 

cultured IL-15 DC displayed superior Th1 polarization and cytotoxic T lymphocyte (CTL) 

induction ability. They appear to also acquire cytotoxic capabilities upon LPS activation 

and exhibit direct tumoricidal function via expression of iNOS (Pulendran et al., 

2004);(Hanke et al., 2014).  

Unlike cDCs which show a specific and restricted functional profile; BM-DCs appear more 

versatile in their functions and have been shown to present and cross-present 
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equivalently well (Cheong et al., 2010). We and others have shown that they can be 

instructed by pathogens or inflammatory signals to induce Th1, Th2, and Th17 responses 

depending on the quality and magnitude of the stimulation. BM-DCs that were stimulated 

with TNF or Variant surface glycoprotein (VSG) from Trypanosoma induced an 

inflammatory response that correlates with Th2 polarizing capacity. This signature was 

changed significantly with a different quality and quantity of gene responses after LPS 

treatment of BM-DCs and they were shifted towards a Th1 inducing profile (Pletinckx et 

al., 2011). On the other hand, the use of high doses of cholera toxin induced a Th17-

polarizing BM-DC secreting Th17 characteristic cytokines such as IL-1β, IL-6 and IL-23 

(Silva-Vilches et al., 2017).  

 

1.10 Dendritic cell vaccination 

Due to the efficient protocols to generate large amounts of human MoDCs, the large body 

of evidences from studies using BM-DCs that show their strong anti-tumor activities in 

mouse models, and their possibility to direct both CD4 and CD8 T cell responses, they 

were the prime candidates for adoptive DC vaccine trials in tumor patients (Nestle et al., 

1998). Currently, peripheral blood mononuclear cells (PBMCs) are the most common 

source of cells for vaccine preparation (Reichardt et al., 2004). Since DCs circulate in 

peripheral blood with low frequency, they are usually differentiated from monocyte 

precursors that comprise up to 10% of PBMCs. PBMCs are usually obtained by 

leukapheresis and enriched for monocytes by their adherence to plastic and CD14 

selection. Differentiation of monocytes into immature DCs is then achieved by culture with 

cytokines, most often granulocyte/macrophage colony stimulating factor (GM-CSF) and 

IL-4. Alternative cytokine cocktails, including GM-CSF/IL-15 (Anguille et al., 2009) and 

IFN-β/IL-3 (Trakatelli et al., 2006), have also been used to optimize vaccine preparation, 

although these are not as well studied in the clinic. DC maturation is typically achieved by 

a standard cytokine consisting of GM-CSF, IL-4, IL-1β, IL-6, TNF-α and prostaglandin 

(PGE)-2 (Jonuleit et al., 1997), or from Toll-like receptor (TLR) ligands such as dsRNA or 

CpG motifs. Several dosing forms have been used in clinical trials including intradermal, 

intramuscular, intravenous or intratumoral. (Anguille et al., 2009; Jonuleit et al., 1997; 

Reichardt et al., 2004; Ridgway, 2003; Trakatelli et al., 2006). The most characteristic 

feature of DC vaccination is their very high tolerability by most of the patients and a low 

toxicity profile (Mitchell et al., 2015b),(Krishnadas et al., 2015). However, the clinical 
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picture so far of most DC vaccine clinical trial do not show a very high response rate. Only 

one vaccine DC has gained an FDA approval so far which is Sipuleucel-T, and it has 

shown sufficient efficacy in a Phase III clinical trials (Kantoff et al., 2010). The 

immunosuppressive milieu of tumors is one of the major contributing factors to the low 

responsiveness to DC vaccination and many studies try to combine DC vaccines with 

agents that counter the immunosuppression. This included PD-L1 combination, which 

showed high IL-12 production capacity by DCs and better T cell responses. Also, a 

reduction in tumor size was observed in a breast cancer model (Ge et al., 2013). Other 

studies combined DC vaccines with IL-10 blocking antibodies, which shows better NK 

responses, increased tumor shrinkage, and increased survival in a murine breast cancer 

model (Rossowska et al., 2015). Another strategy that was used is the repeated injection 

of DCs or pre-injection of the DC injection site with TNF. This was shown to dramatically 

enhance the migration of injected DCs (MartIn-Fontecha et al., 2003). Also, pretreatment 

of the injection site with tetanus/diphtheria toxoid was shown to dramatically improve the 

vaccine efficacy (Mitchell et al., 2015a). The use of low doses of GM-CSF was also shown 

to be beneficial (Parmiani et al., 2007).  

 

1.11 In vitro GM-CSF DCs as a source of IL-12 

The introduction so far shows that the induction of Th1 responses by DCs relies on three 

distinct stimuli coming from DCs. The combination of signal 1 by MHC peptide complexes 

ligating the TCR with signal 2 by CD80/CD86 co-stimulation will lead to T cell activation 

and proliferation, reaching the Th0 stage, previously observed in mouse T cell clones, 

(Openshaw et al., 1995). A major signal 3 for the induction of Th1 responses has been 

identified as the heterodimeric IL-12p70 cytokine (Fig 2) (Macatonia et al., 1995). IL-12 

production by DCs can be induced by different pathogen signals but not pro-inflammatory 

cytokines (Reis e Sousa et al., 1997). 
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Figure 2: The three-signal theory of T cell priming by DCs. A single DC primes the naive T cell towards Th1 cell type by providing 3 

signals: 1) Peptide presented on MHC II, 2) Co-stimulation by the CD80/CD86 molecules, 3) IL-12p70 required for Th1 polarization 

 

Surprisingly, in the DC vaccination setup, several findings question the common believe 

that injected vaccine MoDCs do provide all signals 1, 2 and 3 for Th1 priming, which is 

the classical model of DC priming of T cells (Kapsenberg, 2003). 

Several DC vaccination studies in tumor patients use the cytokine cocktail consisting of 

IL-1/TNF/IL-6/PGE2 (Jonuleit et al., 1997) for maturation of MoDCs, (Bol et al., 2016); 

(Gross et al., 2017). Although tumor therapy with this cocktail matured MoDCs has proven 

to be successful in melanoma patients and is in fact the most common used approach, 

MoDCs generated with this cocktail unexpectedly are unable to produce IL-12 (Lee et al., 

2002). Despite readily being able to induce Th1 responses in these patients (Gross et al., 

2017); this cocktail was compared to synthetic double stranded RNA (poly I:C), soluble 

CD40 ligand trimer as maturation cues. And while all maturation stimuli induce a mature 

dendritic cell phenotype, the IL-1/TNF/IL-6/PGE2 cocktail was the most efficient despite 

the lack of induction of IL-12p70.  

In another study that used BM-DCs from IL-12-deficient mice for vaccination against 

Leishmania major infection indicated that the development of Th1 responses relied on an 

undetermined source of IL-12 production by the recipient mice, not the injected DCs 

(Ramirez-Pineda et al., 2004), The immunization of mice with a single dose of BM-DCs 

that were pulsed with Leishmania major Ag and activated with CpG ex vivo was enough 

to confer a very high level of protection against a normally lethal challenge with L. major. 

Unexpectedly though, the level of IL-12 released by BM-DCs did not correlate with their 
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capacity to mediate protection against leishmaniasis, since they did not express high 

amounts of IL-12. The LmAg-induced reduction of the IL-12 production by CpG-activated 

BM-DCs was a consistent finding.  This was supported by the finding that the protective 

efficacy of Ag-loaded BM-DCs from Il12a-/- or Il12b-/- mice was virtually identical with that 

of BM-DCs obtained from WT mice, excluding also a role of the related cytokine IL-23, 

which shares the p40 subunit with IL-12. Rather, IL-12-deficient mice with CpG-activated 

BMDC delivering LmAg did not result in protection, demonstrating that IL-12 released by 

recipient cells is required. Interestingly, the same group previously showed that when Ag-

pulsed Langerhans cells from IL-12-deficient mice were as the source of DC, they 

completely failed to mediate protection against L. major as opposed to those from WT 

mice (Berberich et al., 2003). This underscores the importance of the type of DC used for 

vaccination approaches.  

Additionally, previous data from our group showed that injected BM-DCs reaching the 

draining lymph node lack IL-12 production among other cytokines, and they rather induce 

cytokine production by host endogenous DCs. LPS + CD40-matured BM-DCs that were 

secondarily matured with TNF in vitro activated their cytokine production. However, upon 

reaching the lymph nodes they were negative for intracellular TNF, IL-6, IL-12p40, IL-10 

cytokines (Voigtlander et al., 2006). On the other hand, endogenous DC population 

stained positive for all these cytokines with higher levels for TNF, IL-6, and IL-12p40 after 

LPS + CD40-matured BM-DC injection as compared with TNF-matured BM-DC injection. 

In this study GM-CSF without IL-4 was used for differentiating the BM-DCs. IL-4 in these 

GM-CSF cultures promotes the Langerhans cell-like phenotype (Menges et al., 2005). 

And since no IL-4 was used in the GM-CSF cultures here, this data is in agreement with 

the reports from the Leishmania major model (Berberich et al., 2003; Ramirez-Pineda et 

al., 2004). Such a model of BM-DCs being incapable of cytokine production upon 

migrating to the lymph nodes and rather induce cytokine production from other DCs is in 

agreement with data from Luft and colleagues (Luft et al., 2004), that showed that CCR7 

dependent migration of MoDCs and their ability to produce IL-12 are mutually exclusive 

events. 

 

1.12 DC-DC cross talk for propagation of the immune response 

Emerging evidences from the literature indicated that dendritic cells from different subsets 

communicated with each other and one DC can possibly induce the activation of another 
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DC in a bystander fashion under certain pathological conditions (Brewitz et al., 2017; De 

Koker et al., 2017; Plantinga et al., 2013). One study showed that communication of pDCs 

with XCR1+ cDC1s is required to induce optimal CTL responses in a vaccinia virus setup 

(Brewitz et al., 2017). Also, the production of IL-12 by MoDCs under CpG vaccination 

conditions required the coordinated action of cDCs and MoDCs (De Koker et al., 2017). 

Also in a house dust allergy model, it was shown that MoDCs were mainly responsible 

for proinflammatory cytokine production in the lungs while CD11b+ migratory cDC2s were 

responsible for antigen presentation and inducing Th2 responses in the LN, suggesting 

the requirement of their concerted actions (Plantinga et al., 2013). 

The possibility of BM-DCs communicating with other endogenous DCs in the draining 

lymph nodes is suggested by the studies described in the previous section. However, 

there are no concrete evidences for which endogenous DC subset is being activated by 

BM-DCs in a bystander fashion and carry out the IL-12 production and Th1 priming 

function. Nothing is also known about the possible molecular patterns involved in this 

presumed crosstalk. 

One possible mechanism for this communication between DCs is via the interaction of 

the tumor necrosis factor receptor family member 9 (TNFRSF9 or 4-1BB) with its ligand 

TNFSF9 or 4-1BBL. 4-1BB was first thought to only be an important mediator of survival 

signaling, particularly in CD8+ T cells. Later however it was shown that they are more 

broadly expressed on regulatory T cells (Tregs) (Gavin et al., 2002), (McHugh et al., 

2002), follicular dendritic cells (DCs) (Pauly et al., 2002), DCs (Futagawa et al., 2002), 

(Wilcox et al., 2002a), differentiating myeloid‐lineage cells (Lee et al., 2008), monocytes 

((Langstein et al., 1998), immunoglobulin E (IgE)‐stimulated mast cells (Nishimoto et al., 

2005), eosinophils (Heinisch et al., 2001), neutrophils (Heinisch et al., 2000), (Lee et al., 

2005)), activated natural killer T cells (NKTs) (Vinay et al., 2004), and activated NK cells 

(Melero et al., 1998), (Wilcox et al., 2002b). 4‐1BBL is strictly induced on activated APCs 

(Futagawa et al., 2002), (Goodwin et al., 1993) and is also expressed on myeloid 

progenitors and hematopoietic stem cells (Lee et al., 2008), (Jiang et al., 2008a), (Jiang 

et al., 2008b). Its expression appears to be tightly regulated in vivo, such that its 

expression during an ongoing immune response in vivo is difficult to detect at the protein 

level (Lin et al., 2009). However, during chronic and inflammatory conditions 4‐1BBL is 

more readily detectable at the mRNA or protein level (Tan et al., 2000), (Lin et al., 2009), 
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(Seko et al., 2001), (Mack et al., 2008). On macrophages, 4‐1BBL message is induced 

by LPS in a Toll‐like receptor 4 (TLR4), nuclear factor kappaB (NF‐κB)‐dependent manner 

(Futagawa et al., 2002), (Goodwin et al., 1993), (Kang et al., 2007). Its expression is rapid 

and transient, with peak mRNA expression on macrophages at 4h and returning to 

baseline by 12h (Kang et al., 2007)). 4‐1BBL is also upregulated on B cells and DCs by 

CD40 signaling (DeBenedette et al., 1997), (Diehl et al., 2002). The interaction of 4-1BBL 

on mature DC with 4-1BB on co-cultured immature DCs has been shown to induce IL-12 

production by the immature DCs (Futagawa et al., 2002). Additionally, a more recent 

study showed that upon injecting lentiviral vectors (LV) expressing 4-1BBL and influenza 

nucleoprotein (NP) separately; they conferred superior CD8 T cell activation capacity than 

LV co-expressing 4-1BBL and NP, i.e. to target CD8 T cells that recognize the influenza 

antigen and receive further activation signals from the 4-1BBL. This suggested that 4-

1BBL is more effective when expressed in trans, acting on adjacent DCs and thus 

activating them in a bystander fashion (Macdonald et al., 2014).  
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1.13 Aim of the study 

In this study we aimed to clarify the cellular sources of IL-12p70 production after 

subcutaneous BM-DC vaccine injection in the skin draining lymph node, and to study the 

possibility of bystander activation of different endogenous DC subsets upon interacting 

with the injected BM-DCs. We generated a chimeric situation by injection of different 

gene-modified BM-DCs into different strains of gene-modified recipient mice. This allowed 

us to identify the separate functional contributions of injected versus endogenous DCs for 

Th1 polarization.  

 

The study attempts to answer 3 main questions:  

1- Which DC subset is the source of IL-12p70 needed for Th1 induction during BM-DC 

vaccination? 

2- Are BM-DCs communicating with endogenous DCs to induce bystander DCs in the 

draining lymph nodes? 

3- If so, how and when are they communicating and what signals are communicated to 

the bystander DCs? 
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2 MATERIALS AND METHODS 

2.1 Reagents 

2.1.1   Chemical reagents 

Product                                      Purchased from 

 

Agarose Roth (Karlsruhe, Germany) 

Ammonium Chloride (10% solution) Applichem (Darmstadt, Germany) 

β-mercaptoethanol Sigma-Aldrich (Deisenhofen, Germany) 

Brefeldin A (from Penicillium 

brefeldianu) 

Sigma-Aldrich (Deisenhofen, Germany) 

BSA Roth (Karlsruhe, Germany) 

Complete Freund’s Adjuvant (CFA) Sigma-Aldrich (Deisenhofen, Germany) 

CellTrace™ Violet Cell Proliferation 

Dye 

Invitrogen (Darmstadt, Germany) 

CFSE (carboxyfluorescein diacetate 

succinimidyl ester) 

Invitrogen (Darmstadt, Germany) 

Chloroform Applichem (Darmstadt, Germany) 

Complete Freund’s Adjuvant (CFA) Sigma-Aldrich (Deisenhofen, Germany) 

CpG ODN Sigma-Aldrich (Deisenhofen, Germany) 

DEPC (diethyl pyrocarbonate) Roth (Karlsruhe, Germany) 

DMSO (dimethyl sulfoxide) Sigma-Aldrich (Deisenhofen, Germany) 

Diphtheria Toxin Sigma-Aldrich (Deisenhofen, Germany) 

dNTPs Fermentas (St. Leon-Rot, Germany) 

EDTA Applichem (Darmstadt, Germany) 

eFluor™ 670 Cell Proliferation Dye Invitrogen (Darmstadt, Germany) 

Ethanol Applichem (Darmstadt, Germany) 

Ethidium Bromide Roth (Karlsruhe, Germany) 

Fetal Calf Serum (FCS) PAA Laboratories (Pasching, 

Austria)   

Fluoromount-G Serva Electrophoresis (Germany) 

Formaldehyde (37%) Roth (Karlsruhe, Germany) 

Hydrogen Peroxide (30%) Applichem (Darmstadt, Germany) 

IC Fixation buffer Affymetrix eBioscience 

Ionomycin calcium salt (from 

Streptomyces) 

Sigma-Aldrich (Deisenhofen, Germany) 

Isopropanol Applichem (Darmstadt, Germany) 

L-Glutamine PAA Laboratories (Pasching, Austria) 

L-Lysine Sigma-Aldrich (Deisenhofen, Germany) 

LPS (E. coli 0127:B8) 
Sigma-Aldrich (Deisenhofen, Germany) 
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Methanol 
Applichem (Darmstadt, Germany) 

Paraformaldehyde 
Sigma-Aldrich (Deisenhofen, Germany) 

Penicillin/Streptomycin PAA Laboratories (Pasching, Austria) 

PMA (Phorbol 12-myristate 13-acetate) Sigma-Aldrich (Deisenhofen, Germany) 

Sodium azide (NaN3) Roth (Karlsruhe, Germany) 

Sodium (meta)periodate Sigma-Aldrich (Deisenhofen, Germany) 

Sodium phosphate dibasic Sigma-Aldrich (Deisenhofen, Germany) 

Sodium phosphate monobasic Sigma-Aldrich (Deisenhofen, Germany) 

Sucrose ≥99.5% Sigma-Aldrich (Deisenhofen, Germany) 

TRIzol (Darmstadt, Germany) Sigma-Aldrich 

Tris Applichem 

Tissue-tek  Sakura 

Triton X-100 Sigma-Aldrich (Deisenhofen, Germany) 

Trypan blue Sigma-Aldrich (Deisenhofen, Germany) 
Table 1. List of chemical reagents used throughout experimental set-up 

 

2.1.2   Primary Antibodies 

  2.1.2.1 Primary antibodies directed against surface or intracellular markers 

Antigen Clone Dilution Fluorochrome Purchased from 

CD4 GK 1.5 1:150 APC Biolegend 

CD4 GK 1.5 1:150 FITC Biolegend 

CD8 53-6.7 1:150 Pacific Blue Biolegend 

CD11b M1/70 1:300 PerCP-Cy5.5 Biolegend 

CD11c N418 1:100 APC Biolegend 

CD11c N418 1:100 PE-Cy7 Biolegend 

CD27 LG3A10 1:100 Pacific Blue Biolegend 

CD45R (B220) RA3-6B2 1:200 APC Biolegend 

CD64 X54-5/7.1 1:100 PE Biolegend 

CD70 FR70 1:100 PE Biolegend 

CD90.1 (Thy1.1) OX-7 1:150 PerCP-Cy5.5 Biolegend 

CD90.1 (Thy1.1) HIS51 1:500 biotinylated BD biosciences 

CD103 2E7 1:100 PerCP-Cy5.5 Biolegend 

CD103 2E7 1:100 biotinylated Biolegend 
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CD137 (4-1BB) 17B5 1::100 PE BD biosciences 

CD137L (4-1BBL) TKS-1 1:100 PE BD biosciences 

F4/80 BM8 1:100 FITC Biolegend 

I-A/I-E (MHC II) M5A/114.15.2 1:600 Alexa Fluor 700 Biolegend 

Ly-6C HK1.4 1:200 Brilliant Violet 

510™ 

Biolegend 

XCR1 ZET 1:100 APC Biolegend 
   Table 2. List of antibodies directed against surface markers, intracellular markers or transcription factors 

  2.1.2.2 Primary antibodies directed against cytokines 

Antigen Clone Dilution Fluorochrome Purchased from 

IFN- XMG1.2 1:100 PE Biolegend 

IL-2 JES6-5H4 1:200 PE Biolegend 

IL-12p35 4D10p35 1:100 PE eBioscience 

IL-12p40 C11.5 1:00 PE BD biosciences 

IL-12p70 R2-9A5 1:100 unconjugated Bio X Cell 

IL-13 85BRD 1:300 PE BD biosciences 
     Table 3. List of antibodies directed against cytokines 

  

  2.1.2.3 Secondary antibodies or conjugates 

      

Antigen Host Dilution Fluorochrome Purchased from 

anti-rat IgG,  light 

chain 

Goat 1:200 PE BD biosciences 

Streptavidin  x 1:500 PE-Cy7 Biolegend 

Streptavidin x 1:300 Brilliant Violet 

510™ 

Biolegend 

Streptavidin x 1:500 Cy3 Biolegend 
     Table 4. List of secondary antibodies or conjugates 
 

2.2 Buffers, media and solutions 

For preparation of buffers and solutions, ultrapure Milli-Q water was obtained from Milli-

Q water purification systems (Millipore, Schwalbach/Ts, Germany) 
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Buffers Composition 

PBS (phosphate buffered saline) 
0.2g KCl 

8.0 g NaCl 

KH2PO4 1.15 g 

1.15 g Na2HPO4 

Fill up to 1l Milli-Q water 

RPMI 1640 complete medium 
500ml RPMI 1640 (PAA 

Paching Austria) 

10% heat-inactivated 

sterile filtered FCS(PAA) 

100U/ml penicillin(PAA) 

100μg/ml streptomycin 

(PAA) 

2mM L-glutamine (PAA) 

50mM -mercaptoethanol (Sigma-Aldrich) 

DC preparation buffer 
45ml PBS 

5ml FCS 

100μg EDTA (0.5 M) 

FACS buffer 
500ml PBS 

0.1% BSA (Roth) 

0.1% NaN3 (Roth) 

Fixation buffer (2% FA) 
35ml PBS 

2ml Formaldehyde (37%) (Roth) 

Perm buffer 
PBS  

0.1% BSA (Roth) 

0.1% NaN3 (Roth) 

0.5% Saponin (Sigma-Aldrich) 

HL1 complete medium 
500ml HL1 (Lonza, Verviers Belgium) 

100U/ml penicillin (PAA) 

100µg/ml streptomycin (PAA) 

2mM L-glutamine (PAA) 

50mM-mercaptoethanol (Sigma-Aldrich) 

MACS Buffer 
PBS 

0.5% FCS (PAA) 

2mM EDTA (Applichem) 

PLP fixation buffer 
1% paraformaldehyde  

0.075M L-Lysin 

0.01M Sodium (meta)periodate 

Di-basic buffer 
7.098g Sodium phosphate dibasic 

50ml ddH2O 
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Mono-basic buffer 
6g Sodium phosphate dibasic 

50ml ddH2O 

Phosphate buffer 
75% Di-basic buffer 

25% Mono-basic buffer 

Tris-acetate-EDTA 
242g Tris 

57.1ml Acetic acid 

100ml (0.5M) EDTA 

Fill up to 1l DEPC-treated water 
       Table 5. List of secondary antibodies or conjugates 
 

2.3 Mice 

C57BL/6 were purchased from Charles River (Sulzfeld, Germany) and bred in house, OT-

II mice were kindly provided by Francis Carbone, Melbourne, Australia and were crossed 

with congenic C57BL/6 Thy1.1 mice. Il12a-/- (Mattner et al., 1996) and Yet40 reporter 

mice (Reinhardt et al., 2006) were kindly provided by Gottfried Alber. Ccr7-/- mice (Forster 

et al., 1999) were obtained from Martin Lipp and Reinhold Förster. Yet40.Ccr7-/- and 

Il12a.Ccr7-/- mice were bred in house. Xcr1-DTR-venus mice (Yamazaki et al., 2013) were 

kindly provided by Wolfgang Kastenmüller, and MHCII-/- mice (Madsen et al., 1999) were 

provided by Andreas Beilhack. All genetically-modified mice were on a C57BL/6 

background. All mice were bred in our own animal facilities at Würzburg, kept under 

specific pathogen-free conditions, and used at an age of 6 to 12 weeks. All animal 

experiments were performed according to the German animal protection law as well as 

after approval and under control of the local authorities. 

 

2.4 Primary cell techniques  

2.4.1 Handling of cells  

All procedures were performed under sterile conditions in class II biological safety 

cabinets (Thermo Scientific, Langenselbold, Germany) and using sterile plastic and glass 

ware. Cells were incubated in an incubator set at 37°C with 7 % CO2 atmosphere. Before 

use, culture medium was prewarmed to 37°C in a water bath. Centrifugation was 

performed at 1200 rpm for 5 minutes at RT unless indicated. 

2.4.2 Counting cells  

To determine cell concentration, 5 to 10 µl of a cell suspension was diluted in a trypan 

blue solution (Sigma-Aldrich, Deisenhofen, Germany) for visualization of non-viable cells 
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and counted by using a Neubauer counting chamber (Hartenstein, Wuerzburg, Germany) 

and an Axiostar plus microscope (with A-Plan objective 10x/0.25 Ph1, Carl Zeiss 

MicroImaging, Goettingen, Germany). Cell concentration was determined using the 

following formula: [(number live cells large quadrant 1 + number live cells opposing large 

quadrant 2) / 2] *dilution *104 = cells/ml 

2.4.3 Generation of GM‐CSF cell supernatant  

Culture supernatant for BM-DC generation was obtained from a murine GM-CSF 

transfected X63-Ag8.653 myeloma cell line kindly provided by B. Stockinger (London, 

UK). The GM-CSF transfected cell line was thawed according to standard procedure and 

left for 2 days in a T75 cell culture flask (Greiner Bio-One, Frickenhausen, Germany). 

Then, 107 cells were harvested and transferred to a T182 cell culture flask (Greiner Bio-

One) in ca. 90ml complete RPMI 1640 (PAA, Pasching, Austria). After 3-4 days, cell line 

reached cell growth confluence of ca. 90% in T182 cell culture flask after which culture 

supernatant was harvested and centrifuged at 1000rpm for 10 minutes. Harvested culture 

supernatant was sterile-filtered and frozen at -20°C until usage in generation of BM-DCs. 

2.4.4 Isolation of bone marrow (BM) cells  

BM-DC were generated as previously described (Lutz et al., 1999). Briefly, hind limbs 

were removed from 6 to 12-week-old mice and bones were relieved from surrounding 

muscle tissue by rubbing with unsterile paper tissues. Then, intact bones were soaked 

for 1-2min in sterile 10cm petri dishes (#664102, Greiner Bio-One, Frickenhausen, 

Germany) filled with an ethanol-propanol solution (Terralin® liquid, Schülke & Mayr, 

Norderstedt, Germany) for disinfection. Remaining alcohol was evaporated by air. A 

minimal fraction of both ends of the tibiae or femurs was cut by scissors and bone marrow 

was flushed out with a PBS-filled sterile 10ml tuberculin syringe (Pentaferte, Campli, Italy) 

using a Neoject® 27G or 0.40mm diameter needle (Dispomed Witt, Gelnhausen, 

Germany). Bone marrow was washed once by centrifugation at 1000rpm for 10 minutes 

and clusters of the BM cell suspension was disrupted by vigorous pipetting. About 5 to 7 

x 107 BM cells could be obtained from one mouse. 

2.4.5 Generation of GM‐CSF derived BM‐DCs   

At day 0, BM cells were seeded at 3 x 106 in sterile 10cm petri dishes (#664102, Greiner 

Bio-One, Frickenhausen, Germany) containing 10 ml complete RPMI 1640 medium 
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supplemented with 10% culture supernatant from a murine GM-CSF transfected X63-

Ag8.653 myeloma cell line. At day 3, another 10 ml complete RPMI 1640 medium 

containing 10% GM-CSF culture supernatant was added to the plates. At day 6, BM cells 

were fed by gently removing 10ml old RPMI 1640 medium and adding 10ml fresh 

complete RPMI 1640 medium containing 10% GM-CSF culture supernatant. The non-

attached cells were harvested and used at day 8. Procedure typically yields 60-80% 

CD11chigh expressing cells as determined by flow cytometry. 

2.4.6 Generation of single cell suspension from spleen and lymph nodes  

Skin-draining lymph nodes (popliteal, inguinal, and cervical) and spleens were isolated 

from 6-12-week-old mice under sterile conditions and transferred in 5cm petri dishes 

(Greiner Bio-One, Frickenhausen, Germany) containing ice-cold sterile PBS. Organs 

were cut into small pieces using forceps and digested for 20 min at RT with 1 mg/ml 

DNase I (Roche) and 1 mg/ml collagenase IV (Worthington) in DC preparation buffer. A 

single cell suspension was obtained by mashing spleen/ Lymph nodes with tuberculin 

syringe. Then, cell suspension was filtered through a 0.70μm nylon cell strainer (BD 

Biosciences, Heidelberg, Germany) positioned on a 5cm petri plate. Cells were then 

washed by centrifugation at 1000rpm for 5 minutes at 25°C. For spleen cell suspension, 

an erythrocyte lysis was performed by resuspending cell pellet in a 1:1 solution of PBS 

and 1.67% ammonium chloride (NH4Cl) buffer followed by incubation for 3 minutes in 

37°C pre-warmed water bath. To remove ammonium chloride, splenocytes were washed 

by centrifugation at 1000rpm for 5 minutes at 1200rpm at 4°C prior to determination of 

cell count number as described in previous section.  

2.5 Standard immunological/molecular techniques 

2.5.1 Flow cytometry 

2.5.1.1 Surface staining  

Cells were stained in FACS buffer containing ice-cold PBS supplemented with 0.1% BSA 

and 0.1% sodium azide. To avoid unspecific antibody binding, cells were incubated with 

supernatant derived from the 2.4G2 hybridoma cell line (anti-Fc-gamma-RII/III; ATCC, 

Wesel, Germany). Typically, 5 x 105
 
to 106 cells were stained in 50μl FACS buffer 

supplemented with antibodies directed against surface markers in a particular dilution 

(see table) for 20-30 minutes at 4°C in the dark. To remove unbound antibodies, cells 
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were washed by centrifugation at 1200rpm for 5 minutes at 4°C. Samples were stored in 

100μl of a 1:1 solution containing 1 part FACS buffer and 1 part 2% Formaldehyde until 

samples were acquired at a FACS LSR II flow cytometer (BD Biosciences, Heidelberg, 

Germany) provided with BD FACSDIVA™ Software (BD Biosciences) and data were 

analyzed with FlowJo software (TreeStar, Ashland, USA).  

2.5.1.2 Intracellular cytokine staining  

For intracellular cytokine detection, cells were stained for surface markers as described 

prior to fixation in a 2% formaldehyde solution during 20-30 minutes at 4°C in the dark. 

Then, cells were washed with FACS buffer by centrifugation on 1200rpm for 5 minutes at 

4°C followed by permeabilization in Perm Buffer for 30 minutes at 4°C in the dark. Staining 

of intracellular cytokines was performed using antibodies diluted in 50 μl Perm buffer for 

30 minutes at 4°C in the dark followed by washing with Perm buffer to remove unbound 

antibodies and analysis on flow cytometer.  

2.5.2 BM-DC labelling 

Day 8 BM-DCs were labeled with either CFSE for in vitro studies, eFluor™ 670 Cell 

Proliferation Dye for injection into YET40 mice, or with CellTrace™ Violet Cell 

Proliferation Dye for other in vivo experiments. For CFSE labelling, cells were labelled by 

adjusting to 2*107 cells/ml in PBS followed by CFSE addition in a final concentration of 

3µM. Cells were labelled at room temperature for 10 min in a light-protected environment 

followed by extensive washing. For eFluor™ 670 labelling, cells were resuspended at 107 

cells/ml and were resuspended in 10 ml PBS + 3.5 l of eFluor™ 670. Cells were 

incubated in the dark for 15 minutes, 3 ml of complete RPMI 1640 (PAA, Pasching, 

Austria) was added to stop the reaction. Cells were then centrifuged at 1000rpm for 10 

minutes and the cell pellet, which was blue indicative of successful staining, was 

resuspended in PBS at 4* 107 cells/ml to be injected. For CTV labelling, cells were 

pelleted and resuspend at 1*107 cells/ml in CTV stain solution (CTV 1:1000 in PBS). Cells 

were incubated for 6 minutes at room temperature, followed by adding 0.5 ml of FCS and 

10 ml of complete RPMI 1640 (PAA, Pasching, Austria). Cells were incubated again in a 

water bath prewarmed to 37°C. Cells were then centrifuged at 1000rpm for 10 minutes 

and the cell pellet, which was blue indicative of successful staining, was resuspended in 

PBS at 4* 107 cells/ml to be injected. 
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2.6 Specialized immunological techniques  

2.6.1 BM-DC maturation  

For in vitro experiments, BM-DCs were harvested at day 8 and re-plated at a density of 

106 cells per ml in a 24-well plate (non-tissue culture treated; Greiner Bio-One, 

Frickenhausen, Germany). For maturation analysis by surface marker expression or 

cytokine production, BM-DC were cultured for 20-24 hours (unless otherwise indicated) 

in the presence of 0.5 µg/ml LPS (Sigma-Aldrich, Deisenhofen, Germany) or 5 nmol/ml 

CpG (Sigma-Aldrich, Deisenhofen, Germany). As a control cells were left untreated for 

the same period. For s.c. injections BM-DCs were harvested at day 8 and centrifuged at 

at 1000rpm for 10 minutes and the cell pellet was resuspended in the same 50 ml Falcon 

tube (Greiner Bio-One, Frickenhausen, Germany) in 5 ml of complete RPMI 1640 (PAA, 

Pasching, Austria) and 0.5 µg/ml LPS (Sigma-Aldrich, Deisenhofen, Germany) or 5 

nmol/ml CpG (Sigma-Aldrich, Deisenhofen, Germany) were added. In case of additional 

injection of OT-II Thy1.1+ cells, the BM-DCs were incubated with OVA-peptide327-339 in 

addition to LPS or CpG. Cells were incubated at 37°C for 4 hours and were placed in a 

tilted position and shaken every 1 hour to prevent their attachment to the plastic. 45 ml of 

PBS were added to the cells and they were centrifuged at at 1000rpm for 10 minutes. 

This process was repeated twice to remove any remaining attached LPS. Cells were then 

labelled as described in the previous section. 

2.6.2 BM-DC vaccination 

LPS or CpG matured BM-DCs were injected into the footpad or into the flanks of mice. 

Popliteal or Inguinal lymph nodes were collected at the given time points, respectively. In 

case of adoptive OT-II.Thy1.1+ T cell transfer, single cell suspensions of lymph nodes 

(pooled skin-draining and mesenteric lymph nodes) and spleens from OT-II.Thy1.1+ mice 

were prepared as described above. Cells were labeled with CellTrace™ Violet Cell 

Proliferation dye (Sigma-Aldrich, Deisenhofen, Germany) and 1x107 cells were injected 

into the lateral tail vein of recipient mice. The cells were allowed to circulate in the mice 

for one day. On the next day, the OVA-peptide327-339 loaded, LPS or CpG matured BM-

DCs were injected into the footpad or into the flanks of mice, 2x106 cells were injected on 

each side. Popliteal or Inguinal lymph nodes were collected at the given time points, 

respectively. 
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2.6.3 Yet40 immunization by Complete Freund’s adjuvant  

Yet40 mice were injected s.c. on both flanks with 100µg of Complete Freund’s adjuvant 

(CFA; Sigma-Aldrich, Deisenhofen, Germany) further enriched with 5mg/ml 

Mycobacterium tuberculosis H37RA (Difco Laboratories, Detroit, USA) by using 

Sterican® 23G or 0.60mm diameter needles (Braun, Melsungen, Germany) and a 1ml 

Injekt®-F syringe (Braun). Inguinal, cervical lymph nodes, and spleens were collected 

24h after the injection and analyzed by flow cytometry. 

2.6.4 Ex vivo stimulation and cytokine staining of cells from lymph nodes and 

spleen 

Single cell suspensions from skin-draining lymph nodes or from spleen were prepared as 

described above and resuspended at a density of 2x106 cells per ml in HL1 complete 

medium (Lonza, Verviers Belgium), this medium does not contain FCS to avoid unspecific 

T cell reactivation. Intracellular cytokine detection was performed by restimulation with 

0.01µg/ml PMA (Sigma-Aldrich, Deisenhofen, Germany) and 1µg/ml ionomycin calcium 

salt (Sigma-Aldrich) in the presence of 5µg/ml Brefeldin A (from Penicillium brefeldianu, 

Sigma-Aldrich) followed by standard intracellular staining procedures as described in flow 

cytometry section.  

 2.6.5 Depletion of XCR1+ DCs in Xcr1-DTR-venus mice 

Xcr1-DTR-venus mice have a human diphtheria toxin (DT) receptor (DTR) transduced 

into the Xcr1 gene locus, followed by a fluorescent protein, venus, under the control of 

the Xcr1 gene promoter (Yamazaki et al., 2013). Upon injecting DT, targeted deletion of 

Xcr1 expressing cells is achieved. In our experimental setup, transgenic mice were 

treated with 0.5 µg diphtheria toxin (DT) i.p. (Sigma-Aldrich, Deisenhofen, Germany) on 

the same day when OT-II.Thy1.1+ cells were injected i.v. (day -1). On the following day 

the same dose was injected together with 106 of OVA-peptide327-339 loaded, LPS matured 

BM-DCs (day 0). On day 3 and day 5 0.25 µg of DT was injected. Popliteal lymph nodes 

were collected on day6 for subsequent experiments.  

2.6.6 Detection of IL-12p40-YFP by immunofluorescence staining 

For detection of IL-12p40-YFP by BM-DCs, day 8 BM-DCs that were further matured with 

LPS or left untreated, as described before, were used for Cytospins. Briefly, d 200ul of 

each cell suspension were added to a Cytospin slide chamber. The cytospins were 

centrifuged at 600rpm for 10 minutes using a Cytospin Universal centrifuge (Hettich, 
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Tuttlingen, Germany). Cytospins were fixed with 4% Paraformaldehyde (Sigma-Aldrich, 

Deisenhofen, Germany) for 15 minutes, washed twice with PBS. This was followed by 

blocking using 5% BSA for 30 minutes, the excess liquid was tipped off the slide. CD11c-

APC (N418, Biolegend) was diluted in 1% BSA and the cytospins were stained overnight. 

Next day, slides were washed 3 times with PBS and drop of Fluoromount-G (Serva 

Electrophoresis) was added per slide. Samples were stored at 4 °C until images were 

acquired using LSM 780 confocal microscope (Carl Zeiss Microimaging). For imaging of 

lymph nodes, popliteal lymph nodes were fixed using the PLP fixation protocol. Briefly, 

fresh lymph nodes were directly immersed in PLP fixation buffer and were left to rotate at 

4 °C overnight. Next day, they were washed with phosphate buffer three times for 5 

minutes and passed through a Sucrose gradient. First using 10% Sucrose, followed by 

20% then 30%. Lymph nodes were then washed once with phosphate buffer then placed 

in tissue-tek (Sakura) and kept at -80 °C till staining. Endogenous avidin and biotin in 

lymph node sections were blocked using Avidin/Biotin Blocking Kit (Vector Labs) and 

sections were stained with antibodies diluted in 2% FCS/PBS. Imaging was performed 

using LSM 780 (Carl Zeiss Microimaging). Quantitative image analysis was done using 

the Imaris software tools. The different labeled cells were localized using Imaris spot 

function and the relative distance was calculated using Excel software calculating the 

minimal distance in the X and Y planes.  

2.7 RNA sequencing of lymph node DC subsets 

Mice were injected with LPS/BM-DCs into the footpad and the popliteal and inguinal 

lymph nodes were collected after 48h. T and B cells were depleted by Dynabeads™ Biotin 

Binder (Invitrogen™) using Biotin-B220, CD3, and CD4 according to the manufacturer’s 

protocol. The negatively selected cells were sorted for different migratory DC subsets 

using a BD FACS Aria III (precision: single-cell; nozzle: 100 μm). 100 cells for every 

population for in total 3 replicates were sorted into individual wells of a 96-well plate 

(Brand) filled with 4 µl lysis buffer (Takara). Cells were spun down, immediately chilled to 

4°C and stored at −80°C. All the following experimental steps were performed using the 

SMART-Seq® v4 Ultra® Low Input RNA Kit (Takara) with a quarter of the recommended 

reagent volumes. The PCR amplification was performed according to the manual using 

21 cycles. Libraries were quantified by QubitTM 3.0 Fluometer (ThermoFisher) and 

quality was checked using 2100 Bioanalyzer with High Sensitivity DNA kit (Agilent). 0.5 
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ng of each library was subjected to a tagmentation-based protocol (Nextera XT, Illumina) 

using a quarter of the recommended reagent volumes, 10 min for tagmentation at 55°C 

and 1 min extension time during PCR for multiplexing. After PCR, the libraries were 

purified using AMPure XP beads and eluted in 15 µl of resuspension buffer. Libraries 

were pooled and sequenced in paired-end mode on the NextSeq500 sequencer (IIIumina) 

using the Mid Output 2×75 cycle kit. 

2.8 RNA sequencing data analysis  

Base calling was done by the internal software of the NextSeq 500 sequencer "NextSeq 

Control/RTA v2” and bcl2fastq2 Conversion Software v.2 was used to demultiplex the 

pooled libraries and to convert the bcl files generated by the sequencer to standard fastq 

files for downstream analysis. The generated raw reads were processed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) for assessing read quality, 

number of duplicates and presence of adapter sequences. After this, the Illumina Nextera 

adaptors were cleaved using cutadapt (Martin, 2011) (version 1.16) and resulting reads 

were further trimmed keeping a quality drop value below a mean of Q20. Further, the 

processed sequences were mapped to the mouse genome using the short-read aligner 

STAR (Dobin et al., 2013) (version-2.5.2b) with genome and annotation files retrieved 

from GENCODE (July 2017, GRCh38.p5, M16). For all the studied samples, the 

proportion of reads uniquely mapped to the mouse reference genome ranged between 

83% and 87% in total. The sequences aligning to specific genes were quantified using 

bedtools (Quinlan and Hall, 2010) subcommand intersect (version 2.15.0). Next, the 

differentially expressed genes were identified using DESeq2 (Love et al., 2014) (version 

1.18.1). Only the genes having a Benjamini-Hochberg corrected p-value below 0.05 were 

classified as significantly differentially expressed (DEGs). The data were visualized as 

MA plot using DESeq2’s function plotMA. The RNA-Seq data presented in this work has 

been deposited at the NCBI Gene Expression Omnibus (Edgar et al., 2002) and can be 

accessed through GEO series accession number GSE124677. For pathway analysis, the 

enrichment scores for pathways up or downregulated by endogenous migratory XCR1+ 

DCs was calculated using GOrilla analysis tool (Gene Ontology enRIchment anaLysis 

and visuaLizAtion tool). The data were plotted as FDR q-value after Benjamini and 

Hochberg correction of p-values. The threshold of significance was set at FDR q-value 

(0.05). 
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2.9 Quantitative real-time PCR 

cDNA libraries generated by the SMART-Seq® v4 Ultra® Low Input RNA Kit from the 

sorted endogenous migratory DC subsets were used. Quantitative real-time PCR was 

performed on cDNA using iTaq™ Universal SYBR® Green Supermix (Bio-Rad). 

Reactions were run on a real-time quantitative PCR system (Roche, LightCycler® 96) 

and 18S was used as housekeeping gene. Relative expression differences were 

calculated using the ΔΔCt method (Livak and Schmittgen, 2001). Primer sequences were 

as follows: 

Primer Sequence (5’ to 3’) 

18S Fwd GTAACCCGTTGAACCCCATT 

18S Rev CGCTACTACCGATTGGATGG 

Il12a Fwd AGCTCCTCTCAGTGCCGGTC 

Il12a Rev GGTCTTCAGCAGGTTTCGGG 

Il12b Fwd AGCAGTAGCAGTTCCCCTGA 

Il12b Rev AGTCCCTTTGGTCCAGTGTG 

Table 6. List of primer sequences used for Real-Time PCR. 
All primer sequences were synthesized by Sigma-Aldrich (Deisenhofen, Germany) and oligo’s were desalted and removed from 

truncated sequences by the manufacturer. (Fwd = forward primer, Rev = reverse primer) 

 

2.10 Statistical analysis 

Statistical analyses were performed using Prism 6.0 software (GraphPad Prism). The 

unpaired, two-tailed Student’s t-test was used, if data sets of two independent groups 

were normally distributed. The Wilcoxon signed-rank test was performed to analyze the 

relative distances between cells in lymph node sections generated from the Imaris 

software tool.  
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3 RESULTS 

3.1 XCR1+ CD103+ migratory DCs are the major source of IL-12 

production in draining lymph nodes in a DC vaccination setup 

 

3.1.1 YFP production by Yet40 mice is equivalent to IL-12p40 by in vitro generated 

BM-DCs 

We first wanted to test whether the production of YFP from the Yet 40 mice was a reliable 

measure of IL-12p40 production by DCs. To test that, we generated BM-DCs from Yet40 

mice using 10% GM-CSF and the cells were treated at day 8 with 100ng/ml LPS and left 

in culture for another 24h or left without stimulation as a control. Likewise, cells that were 

generated from C57BL/6 mice were stimulated with the same dose of LPS or left 

untreated. Following that the cells were stained for CD11c as a classical marker for DCs 

and MHC II as a marker for their maturation (Fig 3A). YFP was detected in the FITC 

channel without any further staining and the C57BL/6 cells were stained for IL-12p40 

production intracellularly. The cells were analyzed by flow cytometry and the production 

of YFP by the Yet40-BM-DCs was observed after 24h LPS-stimulation compared to 

untreated controls (Fig. 3B), which was of comparable levels to the IL-12p40 production 

by the C57BL/6 WT cells (Fig. 3C). The YFP production was also observed only after LPS 

treatment using immunofluorescence microscopy (Fig 3D). Thus, we decided to use the 

Yet40 mice for the analysis of endogenous IL-1240 production by the different DC subsets 

in the draining LNs and in spleen. 

 

3.1.2 Endogenous migratory dendritic cells are the major producers of IL-12p40 in 

the draining lymph nodes at steady state 

Next, we analyzed the popliteal, inguinal, auxiliary, cervical skin draining lymph nodes 

and the gut-draining mesenteric lymph node for production of IL-12p40. Using the same 

gating strategy, we found that only the CD11cint MHC IIhigh cells which are the migratory 

DCs were positive for YFP production at steady-state conditions in the skin draining and 

in mesenteric lymph nodes. The CD11chigh MHC IIint resident DCs, CD11cint MHC IIlow 

macrophages, CD11c- MHC IIhigh B cells, and the cells negative for both markers which 
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Figure 3 : YFP production by Yet40 mice is comparable to p40 intracellular staining. A. Representative flow cytometry plots of 

generated BM-DCs on day 8 from C57BL/6 or from Yet40 mice. Gated on live cells followed by doublet exclusion, then gated on 

CD11c+ MHC IIhigh DCs B,C. Representative flow cytometry plots (left) and graphs comparing % of cells producing (right) IL-12p40-

YFP (B) or IL-12p40 intracellularly (right) (C) by BM-DCs treated for 24h + or - LPS 0.5µg/ml. D. Confocal microscopy images of 

CD11c+ (blue) untreated BM-DCs (left) or LPS treated DCs (right) to detect YFP production (green).  Data are representative of three 

independent experiments. ***P < 0.0001, **p < 0.001, *p < 0.05. 

are the T cells and other cells in the lymph nodes were all negative for YFP production 

(Fig 4A). To confirm that these are indeed migratory cells, the same populations were 

analyzed in a Yet40.Ccr7-/- mouse. In such mice, only a minor population of CD11cint MHC 

IIhigh population was present. This population showed a small fraction of IL-12p40-YFP 

positive cells (Fig 4B). Interestingly, in the spleen the same CD11cint MHC IIhigh population 
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was also positive for YFP production in YFP.Ccr7+/+ mice and it was still present in the 

Yet40.Ccr7-/- mice (Fig 4C), indicating that this subset is not of migratory origin.  

 

Figure 4 : YFP production at steady-state in skin draining LNs and in spleen A. Representative flow cytometry plots of inguinal lymph 

node (left) and mesenteric lymph node (right) subpopulations gated based on their expression of CD11c and MHC II in a Yet40 

reporter mouse. Right side of the black arrows are histogram plots of IL-12p40-YFP production by each subpopulation. B, C. 

Representative flow cytometry plots of inguinal lymph node B. or spleen C. subpopulations gated based on their expression of CD11c 

and MHC II in a Yet40 reporter mouse or a Yet40.Ccr7-/- mouse. Right side of the black arrows are plots showing % of cells producing 

IL-12p40-YFP from the CD11cint MHC IIhigh subpopulation 

  

3.1.3 XCR1+ CD103+ Langerin+ dermal DCs are the major subset producing steady-

state IL-12p40-YFP in draining lymph nodes 

Migratory DCs subsets in the skin draining lymph nodes are comprised of three subsets: 

1) Langerin+ CD103- CD11b- Langerhans cells that migrate from the epidermis. 2) 

Langerin+ CD103+ CD11b- dermal cDC1s (dDCs) and 3) Langerin- CD103- CD11b+ 

dermal cDC2s. We checked for the production of IL-12p40-YFP by the three different 
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subsets. The Langerin+ CD103+ XCR1+ CD11b- dermal DCs were the major YFP 

producers (Fig 5A), in line with what Reinhardt and colleagues found out (Reinhardt et 

al., 2006). That was also the case in the mesenteric lymph nodes, while the CD103 

CD11b double positive population that was mainly implicated in tolerogenic functions did 

not produce any YFP (Fig 5B). In the spleen the CD11cint MHC IIhigh YFP producing 

population that we identified were of the CD8+ CD11b- subset (Fig5 3C). 

 

Figure 5 : YFP production by different DC subsets in LNs and in spleen A, B, C. Representative flow cytometry plots of inguinal lymph 

node A. mesenteric lymph node B. and spleen C. subpopulations gated based on their expression of CD11c and MHC II in a Yet40 

reporter mouse (Left panels). CD11cint MHC IIhigh cells were sub-gated based on CD103 (CD8a for spleen) and CD11b expression 

(Middle panels). Histogram plots of IL-12p40-YFP production by subpopulations based on CD103 (CD8a for spleen) and CD11b 

expression are shown (right panel) 

 

3.1.4 CFA injection augments IL-12p40-YFP production by CD103+ dDCs in the skin 

draining lymph nodes 

Since IL-12 is the most important cytokine for polarizing T cells towards a T helper 1 

response (Macatonia et al., 1995), we tested for IL-12p40-YFP production in vivo upon 

CFA injection which skews the T cell response towards a Th1 phenotype (Shibaki and 

Katz, 2002). The different DC subsets from the draining inguinal LN were analyzed 24h  
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Figure 6 : CD103+ migratory dDCs are the major IL-12p40-YFP producers after CFA injection A. Representative flow cytometry plots 

of inguinal lymph nodes subpopulations gated based on their expression of CD11c and MHC II (left) and graphs showing % of CD11cint 

MHC IIhigh migratory DCs and CD11chigh MHC IIint LN resident DCs in a Yet40 reporter mouse before and 24h after 50 µl CFA s.c. 

injection. B,C,D,E. Representative flow cytometry plots (left) and bar graphs (right) of % of cells producing IL-12p40-YFP from CD103+ 

mig dDCs B. LCs C. CD11b+ mig DCs D. in inguinal or cervical LNs, and CD11c+ MHC IIhigh DCs in spleen E. before and after 50 µl 

CFA s.c. injection. Data are representative of three independent experiments. **p < 0.001, *p < 0.05. 

 

after CFA injection s.c. in the flank of the mouse, and cervical LNs were used as a non-

draining LN control. The spleen subsets were also analyzed for any systemic response. 
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We observed an increase in CD11cint MHC IIhigh migratory DC population indicating their 

increased mobilization from the skin in response to CFA injection, this was not observed 

by resident DCs and not in cervical LNs (Fig 6A). The CD11cint MHC IIhigh Langerin+ 

CD103+ migratory dDCs were the major subset that increased YFP production after CFA 

injection (Fig 6B). This was only the case in the inguinal lymph node in comparison to the 

non-draining cervical LN (Fig 6B). The Langerin+ CD103- migratory LCs and Langerin- 

CD103- CD11b- migratory dDCs showed no such increase both in inguinal and cervical 

LNs (Fig 6C, D). Interestingly, in the spleen we noticed that the % of IL-12p40-YFP 

producing population was reduced (Fig 6E), this might indicate that this CCR7-

independent population in the spleen is rather tolerogenic and is reduced under 

inflammatory conditions. 

 

3.1.5 LPS-matured BM-DC injection enhances IL-12p40-YFP production by CD103+ 

dDCs in a time dependent fashion 

The fact that CD103+ dDCs were the major producers of IL-12p40 after CFA injection 

prompted us to test for IL-12p40 production after BM-DC injection where they are 

assumed to provide all the three signals required for Th1 induction; including IL-12 

production (Elster et al., 2016). BM-DCs that were stimulated with LPS for 4h and labeled 

with eFluor670 to distinguish them from endogenous DC subsets (Fig 7A) were injected 

s.c. in the flank and the YFP production was analyzed after 24h, 48h, or 72h from draining 

inguinal LNs. The spleen was analyzed also for any systemic response. LN cellularity was 

significantly increase compared to CFA injection (Fig 7B) and all migratory DC subsets 

increased in their migration compared to CFA (Fig 7C, D, E). YFP production was 

significantly increased only from CD103+ migratory dDCs over the three time points, and 

the production peaked at 72h (Fig 7B). The CD11b+ migratory and resident DCs did not 

increase their YFP production in contrast to stimulation of LN cells with LPS in vitro, 

indicating no direct effect of LPS attached to the injected BM-DCs on the endogenous DC 

subset of the recipient mice (Fig 7C). The Langerin+ CD103- LCs also showed no 

significant increase in YFP production (Fig 7D). Interestingly, unlike what we previously 

observed (Voigtlander et al., 2006), YFP production was observed from the injected BM-

DCs over the indicated time points (Fig 8A). One possible explanation is that the YFP 

half-life is longer than IL-12p40 (Lorang et al., 2001), and thus the YFP signal observed  
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Figure 7 : CD103+ migratory dDCs are the major IL-12p40-YFP producers after LPS-matured BM-DC injection A. Inguinal LNs, 

cervical LNs and spleen were analyzed after LPS (0.5 µg/ml)-matured, eFlour670 labeled.BM-DC s.c. flank injection B. Graph showing 

inguinal LN cell count before or 24h after CFA injection compared to 24h, 48h, 72h, after LPS.BM-DC injection C,D,E. Graphs showing 

absolute counts of migratory CD11c+ MHC IIhigh DCs (left panels) and % of IL-12p40-YFP producing cells from CD11b+ mig dDCs C. 

CD103+ mig dDCs D. and DN mig DCs E. (right panels) after s.c. injection of WT.LPS/DC into Yet40 recipient mice (24, 48, 72h 

timepoints). Data are representative of three independent experiments. ***P < 0.0001, **p < 0.001, *p < 0.05. 

 

from BM-DCs is residual from the LPS stimulation before injection. The injected-BM-DCs 

did not reach the cervical LNs (Fig 8B), nor did they reach the spleen (Fig 8C) since no 
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eFluor670-labeled cells were observed. This indicates that the migration of the injected 

BM-DCs is limited to the draining LN nearest to the injection site. 

 

Figure 8 : Injected BM-DCs producing residual IL-12p40-YFP are restricted to the draining LN closest to the injection site A. 

Representative flow cytometry plots of inguinal lymph node subpopulations gated on CD11c and MHC II in a Yet40 reporter mouse 

(Left), CD11cint MHC IIhigh migDCs are either endogenous (eFluor670-) or injected BM-DCs (eFluor670+) (middle), Graph showing % 

of IL-12p40 YFP producing cells in the eFluor670+ BM-DC injected gate 24h, 48h, 72h, after s.c. flank injection in inguinal LN (right). 

B, C. Representative flow cytometry plots of inguinal lymph node subpopulations gated on CD11c and MHC II in a Yet40 reporter 

(left) then sub gated on either: CD11cint MHC IIhigh migDCs in (B) control cervical LN or CD11c+ MHC IIhigh DCs in (C) spleen for 

eFluor670+ cells (right). Data are representative of three independent experiments. ns= non-significant. 

  

3.1.6 Monocyte-derived DCs do not produce IL-12p40-YFP after LPS-BM-DC 

injection 

Previous studies have suggested that the major source of IL-12 production after CpG-

adjuvanted vaccine injection are monocyte-derived DCs (MoDCs) that migrate to lymph 

nodes in a CCR2-dependent fashion (De Koker et al., 2017). Using the same setup 

described in Fig 8A, we analyzed the CD11cint MHC IIhigh migratory and CD11chigh MHC 

IIint resident DC subsets in the skin draining LNs for the development of MoDCs and for 

their production of IL-12p40-YFP.  MoDCs were defined as CD11cint MHC IIhigh CD11b+ 

CD103- CD64+ and they down-regulate Ly6C expression (Zigmond et al., 2012) (Fig 9A).  
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Figure 9 : moDCs are not the source of IL-12p40-YFP after LPS-matured BM-DC injection A. Gating strategy for MoDCs in inguinal 

LN where CD11c+ MHC IIhigh eFluor670- endogenous migDCs (left) were sub gated based on CD103 and CD11b (middle). MoDCs 

are CD11b+ CD103- CD64+ and Ly6C- and appear only after LPS. BM-DC s.c. injection (right) B. Graph showing % of IL-12p40 YFP+ 

cells within the MoDCs in inguinal LN compared to cervical LN at steady state compared to 24h, 48h, 72h after LPS. BM-DC injection 

(left) and flow cytometry showing IL-12p40 YFP+ cells within the MoDC gate (right). C. Gating strategy of CD11c+ MHC IIint Ly6C+ 

CD64+ monocytes that appear after s.c. BM-DC injection (left), and graph showing their % in inguinal LN compared to cervical LN at 

steady state compared to 24h, 48h, 72h after LPS. BM-DC injection. Data are representative of two independent experiments. 

 

They appeared in the CD11cint MHC IIhigh migratory compartment in the 24h and 48h time 

points post-BM-DC injection and started disappearing in the 72h time point (Fig 9B). No 

IL-12p40-YFP production was observed by MoDCs (Fig 9B), indicating the difference in 

the source of IL-12 in our BM-DC injection setup from CpG immunizations. Also, within 

the CD11chigh MHC IIint resident gate, a monocytic population that was CD11b+ CD103- 

CD64+ Ly6C+ appeared in the inguinal LNs next to the injection site, and not in the non-

draining cervical LNs. The presence of this population peaked at 48h then declined again 

at 72h but no IL-12p40-YFP production was observed (Fig 9C). 
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3.1.7 Increased production of IL-12p40-YFP by XCR1+ CD103+ dDCs is similar for 

LPS- or CPG- matured BM-DCs 

Residual LPS remaining on the surface of the injected BM-DCs might be responsible for 

the increased IL-12p40-YFP production by XCR1+ CD103+ dDCs (Schwarz et al., 2014). 

 

 

 

Figure 10 CpG matured BM-DCs induce IL-12p40 YFP production by CD103+ migratory dDCs similar to LPS matured BM-DCs A. 

Graph showing inguinal LN cell count at steady state, 72h after CpG.BM-DC s.c. injection, or 72h after LPS.BM-DC s.c. injection 

B,C,D. Graphs showing absolute counts of migratory CD11c+ MHC IIhigh DCs (left panels) and % of IL-12p40-YFP producing cells 

from CD11b+ mig dDCs C. CD103+ mig dDCs D. and DN mig DCs E. (right panels) after s.c. injection of LPS.BM-DC or CpG.BM-DC 

into Yet40 recipient mice (72h). Data are representative of three independent experiments. ***P < 0.0001, **p < 0.001, *p < 0.05. 

 



 
54 

 
 

To rule out that this is the only possibility in our system, we tested the YFP production at 

72h by endogenous DC lymph node subsets after the injection of eFluor670-labeled CpG-

matured BM-DCs. Unlike the surface Toll-like receptor 4 that recognizes LPS, CpG acts 

on the intracellular Toll-like receptor 9 thus test for the surface LPS problem. Similar to 

LPS-BM-DC injection, LN cellularity significantly increased in a similar fashion as the 72h 

timepoint after LPS-BM-DC injection (Fig 10A). The migration of all CD11cint MHCIIhigh 

DC subsets was increased, while IL-12p40-YFP production was significantly induced only 

by the CD103+ migratory dDCs (Fig 10B, C, D). This indicates that LPS attached to the 

injected BM-DCs is not the only mechanism that induces IL-12p40-YFP production by 

CD103+ migratory dDCs. 

 
3.1.8 IL-12p35 subunit and IL-12p70 was not detectable by flow cytometry  

IL-12p40-YFP production was observed at steady state from CD103+ XCR1+ migratory 

dDCs, CD103 CD11b double positive migratory DCs in skin-draining and mesenteric LNs 

respectively, and from CD11cint MHCIIhigh CD8+ DCs in the spleen. And as mentioned  

 

Figure 11 : Flow cytometry staining of IL-12p35 and IL-12p70 proved difficult A. Representative flow cytometry plot of day 8 BM-DCs 

sub gated on CD11c+ MHC IIhigh mature DCs. Right side of the black arrow is a histogram plot of IL-12p35 production (clone 4D10p35) 

by WT LPS. BM-DCs compared to Il12a-/- LPS.BM-DCs. B. Histogram plot for IL-12p70 production (clone R2-9A5) gated on CD11c+ 

MHC IIhigh LPS-matured BM-DCs C. Histogram plot of IL-12p70 production (clone R2-9A5) by WT LPS. BM-DCs compared to Il12a-/- 

LPS.BM-DCs.  

 

before, studies have shown that the p40 molecule can form homodimers that acts as an 

IL-12 antagonist (Gillessen et al., 1995). The p35 subunit (Il12a) of the Th1 functional IL-

12p70 molecule proved difficult to detect by flow cytometry from in vitro LPS-matured BM-
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DCs (Fig 11A). And while the staining with the IL-12p70 (rat-IgG2b clone R2-9A5) 

antibody appeared to be positive on LPS-matured BM-DCs (Fig 11B), the same positive 

population appeared in LPS-matured BM-DCs from Il12a-/- mice (Fig 11C). This indicated 

that this antibody was nonspecifically binding to the IL-12p40 molecule. Therefore, we 

decided to switch to a system where we can study the dynamics of Th1 induction by a 

transgenic T cell population and monitor the dependency of such a response on IL-12 

production from either the injected BM-DCs or the endogenous migratory and resident 

DC subsets.  

 

3.2 XCR1+ CD103+ migratory DCs and not vaccine DC are the source of 

IL-12 for Th1 polarization and partly for antigen presentation 

3.2.1 LPS-matured antigen-loaded BM-DCs induce Th1 responses by CD4+ T cells 

in draining lymph nodes and in spleen 

To study the dynamics of IL-12p70 requirement for Th1 induction after BM-DC injections, 

we first injected T cells intravenously into C57BL/6 WT mice that have a transgenic TCR 

which only recognizes the OVA peptide from chicken egg white presented on MHC II 

molecules on APCs (Barnden et al., 1998). The OT-II cells also carried the congenic 

Thy1.1 (CD90.1) marker to be traceable in C57BL/6 WT mice with Thy1.2 background. 

Next day, OVA-loaded, LPS-matured BM-DCs (OVA-LPS/BM-DC) were injected s.c. in 

the flank or in the footpad and the inguinal or popliteal LNs were collected respectively as 

the closest draining LNs on day 6. Spleens were also collected to analyze the systemic T 

cell response (Fig 12A). Th1 polarization was tested by analyzing the lymphoblast gate 

for the presence of CD4+ OT-II. Thy1.1 T cells. These cells were analyzed for the 

production of IL-2, IFN- and IL-13 by intracellular staining (Fig 12B). We first observed 

that an effective T cell response required the injection of at least 106 BM-DCs per flank. 

Injecting 2*105 BM-DCs caused a significant increase in LN cellularity but were not 

enough to induce antigen specific T cell expansion (Fig 12C) as indicated by CD4+ OT-II. 

Thy1.1 T at day 6 which was similar to injecting T cells and no BM-DCs and by their 

minimal IL-2 production (Fig 12C). This was also the case after double injections of 2*105 

BM-DCs (Fig 12C). Upon injecting 106 BM-DCs per flank, we noticed a significant 

increase in LN cellularity and in CD4+ OT-II. Thy1.1 expansion in the skin draining LNs 
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after 6 days when compared to injecting OT-II. Thy1.1 cells only, where the injected 

population dies out at day 6 (Fig 12C). 

 

 

Figure 12 : LPS-OVA/BM-DCs induce CD4+ OT-II Thy1.1+ T cell expansion in draining lymph node A. OT-II+.Thy1.1+ T cell priming 

analyzed in popliteal or inguinal LNs and in spleen after 6 days of OVA (10 µM)-loaded, LPS (0.5 µg/ml)-matured BM-DC (OVA-

LPS/DC) s.c. footpad or flank injection. B. Gating strategy of CD4+ OT-II Thy1.1+ T cells, gated on live blasts followed by doublet 

exclusion, then gated on CD4+ Thy1.1+ T cells, IL-2 producing CD4+ Thy1.1+ T cells are shown on the right. C. Graphs comparing 

lymph node cell counts (left), frequency of injected OT-II+.Thy1.1+CD4+ T cells (middle) and percentage of IL-2 producing cells (right) 

after s.c. injection of 106 OVA-LPS/DC single injection (grey bars), 2*105 OVA-LPS/DC single injection (red bars), or 2*105 OVA-

LPS/DC double injection, compared to T cell injection alone (black bars) into C57BL/6.WT recipient mice. Data are representative of 

three independent experiments analyzing at least 5 mice per group. ***P < 0.0001, **p < 0.001, *p < 0.05. 

 

The proliferation of these cells was also traced by CTV dilution and they showed a 

significant increase in proliferation when compared to CTV labeled CD4- injected cells. 

This indicates their expansion in an antigen-dependent manner (Fig 13A). IL-2 and IFN-

 production was analyzed by intracellular flow cytometry and only the CTV negative 

population of CD4+ OT-II. Thy1.1 T cells were producing both cytokines, indicating their 

polarization to a Th1 profile (Fig 13B). Also, only a minor population was producing IL-13 

indicating no shift towards Th2 T cell response (Fig 13B). 
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Figure 13 : Proliferation and cytokine production by CD4+ OT-II Thy1.1+ T cells after LPS-OVA/BM-DC injection A. Representative 

flow cytometry plot of OT-II+.Thy1.1+CD4+ T cells in popliteal LN (left), and histogram of their proliferation based on CellTrace™ Violet 

(CTV) dye dilution by CD4+ OT-II Thy1.1+ T cells (red line) compared to other CTV-labeled cells (blue line) (right). B. Representative 

flow cytometry plots of IFN-, IL-2, or IL-13 producing OT-II+.Thy1.1+CD4+ T cells versus CTV labeling  

 

Surprisingly, we also observed a significant population of proliferating CD4+ OT-II. Thy1.1 

T cells in the spleen even though no injected BM-DCs arrive in the spleen as indicated in 

Fig 9C, indicated by their CTV dilution profile (Fig 14A). This population expanded equally 

as CD4+ OT-II. Thy1.1 T cells in the draining lymph nodes (Fig 14B) and showed more 

Th1 polarization indicated by their significantly increased IL-2 and IFN- production 

compared to the CD4+ OT-II. Thy1.1+ T cell population in the draining lymph node (Fig 

14C). No substantial levels of IL-13 producing cells were observed (Fig 14C). Additionally, 

these cells showed a higher level of proliferation as indicated by the % of CTV-ve cells and 

higher ratio of effector T cells/ naive T cells based on expression of the adhesion 

molecules CD44 and CD62L (Fig 14D). The cellular source responsible for antigen 

presentation to induce such robust Th1 response by the CD4+ OT-II. Thy1.1 T cells in the 

spleen is yet to be determined.  
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Figure 14 : CD4+ OT-II Thy1.1+ T cell expansion and cytokine production in the spleen A. Representative flow cytometry plot of OT-

II+.Thy1.1+CD4+ T cells in the spleen (left), histogram of their proliferation based on CellTrace™ Violet (CTV) dye dilution by CD4+ OT-

II Thy1.1+ T cells (red line) compared to other CTV-labeled cells (blue line) (middle), and graph comparing the % of proliferating CD4+ 

OT-II Thy1.1+ T cells in the popliteal LN to the spleen (right). B,C. Graphs showing the percentage of CD4+ OT-II Thy1.1+ T cells (B) 

and of IFN-, IL-2, or IL-13 producing OT-II+.Thy1.1+CD4+ T cells (C) in the popliteal or inguinal LN (grey bars) compared to the spleen 

(red bars). D. Representative flow cytometry plot of CD62L+ CD44low naive T cells and CD62- CD44low effector T cells within the OT-

II+.Thy1.1+CD4+ T cell gate (left), and graph comparing the ratio of naive to effector T cells in the LNs (black bar) to the spleen (red 

bar) (right) Data are representative of three independent experiments analyzing at least 5 mice per group. **p < 0.001, *p < 0.05. 
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3.2.2 Migration of antigen-loaded BM-DCs is required for T cell expansion 

The arrival of injected BM-DCs was directly related with IL-12p40-YFP production and no 

increase in YFP production was observed in the distant LNs where no BM-DCs arrived. 

Therefore, we tested whether the migratory capacity of injected BM-DCs is 

.  

 

Figure 15 : Injected BM-DC migration is required for antigen-dependent T cell expansion and polarization A. OT-II+.Thy1.1+ T cell 

priming analyzed in popliteal or inguinal LNs and in spleen after 6 days of WT.OVA-LPS/DC or Ccr7-/-.OVA-LPS/DC s.c. footpad or 

flank injection into C57BL/6.WT recipient mice . B. Graphs comparing lymph node cell counts and frequency of injected OT-

II+.Thy1.1+CD4+ T cells in inguinal or popliteal LNs after s.c. injection of WT.OVA-LPS/DC (grey bars) or Ccr7-/-.OVA-LPS/DC (orange 

bars) compared to T cell injection alone (black bars) . C. Same as (B) but showing only frequency of injected OT-II+.Thy1.1+CD4+ T 

cells in spleen. Data are representative of three independent experiments analyzing at least 5 mice per group. ***P < 0.0001, 

**p < 0.001, *p < 0.05. 
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mandatory for antigen presentation or if they can hand over antigens to other migratory 

subsets in the skin. Using BM-DCs generated from Ccr7-/- mice that cannot migrate to the 

draining lymph node and remains trapped in the injection site, we used the setup 

described in Fig 12A to test for OT-II. Thy1.1 T cell response (Fig 15A). On day 6, the LN 

cellularity was significantly increased compared to no BM-DC injection and to a 

comparable level to injecting WT BM-DCs (Fig 15B). This can be attributed to the local 

inflammation at the injection site. On the other hand, no expansion of OT-II Thy1.1 T cells 

was observed similar to no BM-DC injection, indicating that antigen presentation by 

injected BM-DCs takes place only when they reach the draining LN (Fig 15B). We also 

observed no OT-II Thy1.1 T cells in the spleens (Fig 15C), which indicates that the 

response does not disseminate systemically unless the T cells get primed first in the 

draining LN.  

 

3.2.3 IL-12p70 production by injected BM-DCs is not required for a Th1 response 

As mentioned, DCs in clinical trials that are matured in the presence of IL-1β/TNFα/IL-

6/PGE2-containing cytokine cocktail show desirable anti-tumor TH1 responses despite 

the fact that they have a reduced ability to produce IL-12p70 (Lee et al., 2002; Schuler-

Thurner et al., 2002). Therefore, we decided to test whether IL-12 lacking BM-DCs would 

be capable of inducing a proper Th1 response in our system. To this end, again we used 

the same setup described previously in Fig12A but injected Il12a-/- BM-DCs instead of 

WT BM-DCs to check for IL-12 requirement (Fig 16A). Surprisingly, the exogenous IL-12 

production was not needed for Th1 induction. As shown with WT BM-DC injections, the 

LN cellularity and the CD4+ OT-II. Thy1.1 T cell expansion was of comparable levels on 

day 6 (Fig 16B). Also, there was no significant reduction in IL-2 and IFN- production and 

no increase in IL-13 production compared to WT BM-DCs injection (Fig 16C). The robust 

Th1 response previously observed in the spleen also remained unchanged with 

significantly higher levels of IL-2 and IFN- cytokine production compared to LNs (Fig 

16D). 
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Figure 16 : IL-12p70 production by endogenous recipient DCs is required for required for antigen-dependent T cell expansion and 

Th1 polarization A. OT-II
+

.Thy1.1
+

 T cell priming analyzed in popliteal or inguinal LNs and in spleen after 6 days of WT.OVA-LPS/DC 

or Il12a
-/-

.OVA-LPS/DC s.c. footpad or flank injection into C57BL/6.WT recipient mice . B. Graphs comparing lymph node cell counts 

and frequency of injected OT-II
+

.Thy1.1
+

CD4
+

 T cells in inguinal or popliteal LNs after s.c. injection of WT.OVA-LPS/DC (grey bars) 

or Il12a
-/-

.OVA-LPS/DC (blue bars) compared to T cell injection alone (black bars). C,D. Graphs comparing percentage of OT-

II
+

.Thy1.1
+

CD4
+

 IFN-, IL-2, or IL-13 producing cells in LNs (C) or spleen (D) after s.c. injection of WT.OVA-LPS/DC (grey bars) or 

Il12a
-/-

.OVA-LPS/DC (blue bars). Data are representative of three independent experiments analyzing at least 5 mice per group. 

***P < 0.0001, **p < 0.001, *p < 0.05. 

 

3.2.4 Endogenous IL-12p70 production is required for Th1 polarization 

Since IL-12 production by the injected BM-DCs was not required for Th1 polarization, we 

proceeded by switching to a system lacking IL-12 production by the endogenous recipient 
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mice. We used the same setup from Fig 12A but using Il12a-/- mice as recipients. The 

injected BM-DCs were generated from either WT mice or from Il12a-/- mice (Fig 17A). On 

day 6, the LN cellularity was significantly increased because of BM-

 

 

Figure 17 : IL-12p70 production by endogenous recipient DCs is required for required for antigen-dependent T cell expansion and 

Th1 polarization A. OT-II+.Thy1.1+ T cell priming analyzed in popliteal or inguinal LNs and in spleen after 6 days of WT.OVA-LPS/DC 

s.c. injection into C57BL/6.WT recipient mice, WT.OVA-LPS/DC or Il12a-/-.OVA-LPS/DC s.c. injection into Il12a-/- recipient mice. B. 

Graphs comparing lymph node cell counts and frequency of injected OT-II+.Thy1.1+CD4+ T cells in inguinal or popliteal LNs after s.c. 

injection of WT.OVA-LPS/DC (grey bars) into C57BL/6.WT recipient mice, WT.OVA-LPS/DC (red bars) or Il12a-/-.OVA-LPS/DC (green 

bars) s.c. injection into Il12a-/- recipient mice compared to T cell injection alone (black bars). C,D. Graphs comparing percentage of 

OT-II+.Thy1.1+CD4+ IFN-, IL-2, or IL-13 producing cells in LNs (C) or spleen (D) after the same injections described in (B). Data are 

representative of three independent experiments analyzing at least 5 mice per group. ***P < 0.0001, **p < 0.001, *p < 0.05. 
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DC injection similar to WT recipients, and this was the case regardless of whether the 

BM-DCs were generated from WT or Il12-/- mice. However, the expansion of CD4+ OT-II. 

Thy1.1 T cells was significantly reduced only in Il12-/- recipients compared to WT 

recipients (Fig 17B), indicating the requirement of endogenous IL-12 for T cell expansion. 

The CD4+ OT-II. Thy1.1 T cells showed a reduced polarization towards a Th1 response, 

indicated by a significantly reduced IFN- production, the similar levels of IL-2 production, 

and a non-significant increased tendency for IL-13 production as seen by intracellular 

staining (Fig 17C). However, this reduction in Th1 response was not observed in the 

spleens of Il12-/- recipients. This was indicated by no significant reduction of IL-2 or IFN-

 production similar to spleens of WT recipient mice (Fig 17D). This suggests that the yet 

unexplained Th1 response in the spleen is most likely propagated in an IL-12 independent 

manner.  

 

3.2.5 A migratory CCR7+ DC provides the third signal for a Th1 response 

Since IL-12 production from endogenous cells of the recipient mice were required for an 

optimum Th1 polarization, we wanted to pin down which cellular subset is producing it. 

We first tested whether the endogenous subset is of migratory or of lymph node-resident 

origin. Using the same setup from Fig12A, Il12a.Ccr7-/- recipient mice that lack both IL-12 

production and endogenous migratory capacity towards the draining LNs were injected 

with BM-DCs generated from Il12a-/- animals (Fig 18A). 

In this setup, the LN cellularity was significantly increased as observed before. 

Interestingly though, CD4+ OT-II. Thy1.1 T cells expanded in a similar fashion as WT 

recipients (Fig 18B). Even though Il12a-/- recipient mice showed a reduction in CD4+ OT-

II. Thy1.1 T cells before (see Fig 17B). Nevertheless, the CD4+ OT-II. Thy1.1 T cells were 

incapable of adopting any T cell polarization phenotype. This is indicated by a complete 

abolishment of IFN- and IL-13 production and a minor fraction of IL-2 producing cells 

(Fig 18C). Also, only a minor population of CD4+ OT-II. Thy1.1 T cells was present in the 

spleens of Il12a.Ccr7-/- mice with significantly reduced IL-2 and IFN- production 

compared to Il12a-/- recipient mice (Fig 18D). However, this reduction was less 

significantly pronounced in the spleen compared to the LN, with significant IFN- 

production observed in the spleen (Fig 18D). 
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3.2.6 Endogenous migratory CCR7+ cells substantially contribute to antigen 

presentation 

One possible explanation for the observed reduction in IFN- and IL-2 production in 

Il12a.Ccr7-/- recipient mice compared to mice lacking Il12a only is that endogenous 

migratory DCs are required for antigen presentation also. We used MHC class II-/- 

recipient mice and injected WT BM-DCs to study this (Fig 18A). Due to a general lack of 

CD4+ T cells in these mice, the LN cellularity was significantly reduced compared to all 
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Figure 18 : An endogenous migratory CCR7+ DC contributes to antigen presentation and provides the third signal for a Th1 response 

A. OT-II
+

.Thy1.1
+

 T cell priming analyzed in popliteal or inguinal LNs and in spleen after 6 days of Il12a
-/-

.OVA-LPS/DC into Il12a
-/-

.Ccr7
-/-

 recipient mice or WT.OVA-LPS/DC into MHC II
-/-

 recipient mice compared to WT.OVA-LPS/DC into Il12a
-/-

recipient mice. B. 

Graphs comparing lymph node cell counts and frequency of injected OT-II
+

.Thy1.1
+

CD4
+

 T cells in inguinal or popliteal LNs after s.c. 

injection of WT.OVA-LPS/DC into MHC II
-/-

 recipient mice (purple bars) or Il12a
-/-

.OVA-LPS/DC into Il12a
-/-

.Ccr7
-/-

 recipient mice (pink 

bars) compared to WT.OVA-LPS/DC into Il12a
-/-

recipient mice (red bar) and to T cell injection alone (black bars). C,D. Graphs 

comparing percentage of OT-II
+

.Thy1.1
+

CD4
+

 IFN-, IL-2, or IL-13 producing cells in LNs (C) or spleen (D) after the same injections 

described in (B). Data are representative of three independent experiments analyzing at least 5 mice per group. ***P < 0.0001, 

**p < 0.001, *p < 0.05. 

 

the previous setups at d6, and the CD4+ OT-II. Thy1.1+ T cell expansion was equally 

reduced as in Il12a-/- recipient mice (Fig 18B), no IFN- and IL-13 production was 

observed and only a minor fraction of cells produced IL-2 similar to Il12a.Ccr7-/- recipient 

mice (Fig 18C). Similarly, the population of CD4+ OT-II. Thy1.1 T cells present in the 

spleen showed significantly reduced IFN- production compared to Il12a-/- recipient mice 

(Fig 18D). Unexpectedly, a significant percentage of cells were producing IL-2 in this case 

(Fig 18D). These results suggest that endogenous migratory DCs substantially contribute 

to antigen presentation. Considering the results shown in Fig 16B, that T cell priming 

strictly depends on BM-DCs migrating to the lymph nodes and transfer of antigen in the 

skin can be excluded, our data suggest that transfer of antigen or MHC II/peptide 

complexes from BM-DCs to endogenous migratory bystander DCs occurs in the lymph 

node. This is in agreement with data showing that antigen transfer to an endogenous DC 

subset is required to enhance T cell response during DC vaccination (Kleindienst and 

Brocker, 2003). This antigen transfer substantially contributes to Th0 priming and is 

essentially required for Th1 polarization. 

 

3.2.7 XCR1+ CD103+ dDCs provide the third signal for Th1 induction after BM-DC 

injection in the draining lymph node 

So far, all the evidences point to XCR1+ CD103+ dDCs as the major producer of IL-12 for 

Th1 polarization in the BM-DC injection setup. This is based on YFP production by the 

Yet40 mice and by the exclusive requirement of IL-12 from an endogenous Ccr7-

dependent migratory DC source. To conclusively show that, we used Xcr1-Venus-DTR 

mice, where the XCR1+ CD103+ dDC subset can be conditionally depleted upon 

diphtheria toxin (DTX) injection (Yamazaki et al., 2013) (Fig 19A). We confirmed the 

depletion of this subset specifically in the draining lymph nodes and in the spleen after 
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DTX injection. In these mice, there was a slight reduction in LN cellularity 6 days after 

BM-DC injection while the CD4+ OT-II. Thy1.1 T cells expanded in a similar fashion as 

WT mice (Fig 19B). The production of IL-2 however was significantly reduced indicating 

an impairment in T cell priming and IFN- and IL-13 were not detected suggesting the 

dependency of T cells on XCR1+ CD103+ dDCs for Th1 polarization (Fig 19C). 

Interestingly, in the spleens of these mice the expanded CD4+ OT-II. Thy1.1 T cells 

showed a strong Th1 polarization profile indicated by robust production of IL-2, IFN- and 

no IL-13 This suggested that Th1 polarization in the spleen was not dependent on the 

XCR1+ CD8+ DC subset unlike the situation in the lymph node. 
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Figure 19 : XCR1+ CD103+ dDCs provide the third signal for Th1 induction after BM-DC injection only in the lymph node A. OT-

II+.Thy1.1+ T cell priming analyzed in popliteal or inguinal LNs and in spleen after 6 days of Il12a-/-.OVA-LPS/DC into Xcr1-DTR-venus 

recipient mice compared to WT.OVA-LPS/DC into C57BL/6.WT recipient mice. B. Graphs comparing lymph node cell counts and 

frequency of injected OT-II+.Thy1.1+CD4+ T cells in inguinal or popliteal LNs after s.c. injection of Il12a-/-.OVA-LPS/DC into Xcr1-DTR-

venus recipient mice (dark red bars) compared to WT.OVA-LPS/DC into C57BL/6.WT recipient mice (grey bar) and to T cell injection 

alone (black bars). C,D. Graphs comparing percentage of OT-II+.Thy1.1+CD4+ IFN-, IL-2, or IL-13 producing cells in LNs (C) or spleen 

(D) after the same injections described in (B). Data are representative of three independent experiments analyzing at least 5 mice per 

group. ***P < 0.0001, **p < 0.001, *p < 0.05. 

 

3.2.8 CpG maturation of BM-DCs induce Th1 polarization similar to LPS-BM-DCs 

The activation of bystander DCs by injected BM-DCs for IL-p production and 

contribution to antigen presentation suggests their interaction in the draining lymph  
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Figure 20: Presentation of surface bound antigen is not the cause of bystander DC activation. A. Representative flow cytometry plots 

for CFSE
-

 donor DCs (Activators) and CFSE
+

 bystander activated DCs (Targets) and the % of IL-12p40 producing cells upon using 

LPS (top), or CpG (bottom)-matured activators. Graphs showing the % of IL-12p40
+

 cells from untreated, LPS or CpG-matured 

activator DCs and their respective bystander activated target DCs in three independent experiments. B. Graphs comparing lymph 

node cell counts and frequency of injected OT-II
+

.Thy1.1
+

CD4
+

 T cells in inguinal or popliteal LNs after s.c. injection of WT.OVA-

LPS/DC (grey bars) or WT.OVA-CpG/DC (white bars) compared to T cell injection alone (black bars). C,D. Graphs comparing 

percentage of OT-II
+

.Thy1.1
+

CD4
+

 IFN-, IL-2, or IL-13 producing cells in LNs (C) or spleen (D) after s.c. injection of WT.OVA-LPS/DC 

(grey bars) or WT.OVA-LPS/DC (white bars). Data are representative of three independent experiments analyzing at least 5 mice per 

group. ****P < 0.00001 ***P < 0.0001, **p < 0.001, *p < 0.05. 

 

nodes. One possibility of DC-DC interaction leading to bystander activation is that LPS 

bound to TLR4 on the migrated BM-DCs is 'presented' to other DCs in the lymph node. 

Previous in vitro data from our lab indicated that LPS-matured BM-DCs can activate co-

cultured immature BM-DCs to secrete IL-12p40, while CpG matured BM-DCs were 

unable to show this effect (Fig 20A, B). These data suggest that LPS remains bound to 

surface TLR4 and can be 'presented' to bystander DCs, while CpG seems to be efficiently 

internalized by DEC-205/CD205 (Lahoud et al., 2012) to bind TLR9 within intracellular 

vesicles. We showed in (Fig 10C) that CpG matured BM-DCs induce bystander IL-12p40 

production similar to LPS matured BM-DCs. We next wanted to test whether CpG 

matured BM-DCs can also induce Th1 polarization in vivo. The use of CpG-matured, 

OVA-loaded BM-DCs (OVA-CpG/DC) provoked a similar lymph node swelling, OT-

II+.Thy1.1+ CD4+ T cell expansion (Fig 20C) and IFN- frequencies as observed after 

OVA-LPS/DC injection, while the frequency of IL-2+ OT-II cells was slightly reduced, and 

substantial amounts of IL-13 was observed (Fig 20D). These data indicate that injected 

BM-DCs possess additional mechanisms of bystander DC activation beyond the 

'presentation' of surface bound pathogen. Similar to OVA-LPS/DC injections, the robust 

Th1 response previously observed in the spleen also remained unchanged with 

significantly higher levels of IL-2, IFN- and negligible IL-13 production compared to LNs 

(Fig 20E). 

 

3.2.9 CD27-CD70 interactions might be involved in IL-12 independent Th1 priming  

BM-DCs generated from Il12a-/- mice induced similar Th1 polarization as WT BM-DCs. 

Also, IL12a-/- recipient mice showed a significant reduction in Th1 polarization however 

there was a residual Th1 polarization that was not present in Il12a.Ccr7-/-, MHC II-/-, and 
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Xcr1.venus-DTR mice. This prompted us to check for possible IL-12 independent Th1 

priming pathways. One of the reported pathways that are involved in providing the third 

signal for T cells is the interaction of the TNF receptor family member CD27 on T cells 

and its ligand on APCs namely the CD70 molecule (Sanchez and Kedl, 2012; Soares et 

al., 2007).  

 

Figure 21 : CD27-CD70 interactions might be involved in IL-12 independent Th1 priming.  A. Flow cytometry plot of day 8 C57BL/6.WT 

BM-DCs before and after 6h of LPS treatment showing CD11c+ MHC IIint immature DCs (black), CD11c+ MHC IIhigh spontaneously 

matured DCs (red) in no LPS cultures and CD11c+ MHC IIhigh LPS matured DCs (green). B. Representative histogram (left) and graph 

of three independent experiments (right) of CD70 median FI in the populations described in (A). C. Graphs from inguinal LNs of 

C57BL/6.WT mice of CD70 median FI in CD103+, CD11b+, DN migratory DCs, or LN resident DCs at steady-state or 24h, 48h, or 72h 

after LPS. BM-DC injection. Data are representative of three independent experiments. *p < 0.05. 

 

First, we tested the expression of CD70 on generated BM-DCs that were stimulated for 

6h with LPS or left untreated as a control. We found an upregulation of CD70 on both the 

CD11chigh MHC IIhigh fully LPS-matured DCs and on the CD11chigh MHC IIint 

spontaneously-matured DCs (Fig 21A, B). On the other hand, within the CD11chigh MHC 

IIint lymph node resident DCs and the CD11cint MHC IIhigh migratory DCs; the XCR1+ 

CD103+ dDC subset expressed the highest levels of CD70 after LPS-BM-DC injection. 

This peaked 48h after injection and was decreased at the 72h time point (Fig 21C). These 

data may point to a role of CD70 on XCR1+ DCs for Th1 priming.  
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3.3 Vaccine DC communication with XCR1+ CD103+ migratory DCs 

induce their bystander activation and shifts them to a Th1 polarizing 

profile 

3.3.1 Kinetics of BM-DC entry and T cell expansion in the skin draining LN 

The fact that endogenous XCR1+ CD103+ dDC were the main subset responsible for 

providing signal three for Th1 polarization entails that the injected BM-DCs communicate 

with the endogenous DCs during the T cell priming process. We first wanted to study the 

dynamics of entry of the injected DCs and the kinetics of expansion of CD4+ OT-II. Thy1.1 

T cells in the draining lymph node. To this end OT-II. Thy1.1 T cells were injected i.v. and 

CTV-labeled LPS-BM-DCs generated from Il12a-/- mice were injected next day into the 

footpads of the mice. The popliteal LNs were collected and analyzed for the percentage 

of injected BM-DC and CD4+ OT-II. Thy1.1 T cells at 24h, 48h, and 72h time points 

respectively (Fig 22A). The entry of CTV-labeled LPS-BM-DCs following their injection 

peaked at 48h (Fig 22B), while expansion of T cells started at 48h and reached its peak 

levels at 72h (Fig 22C). This was evident also using confocal microscopy of popliteal LNs 

of Yet40 mice upon quantifying CTV-labeled BM-DCs and OT-II. Thy1.1+ T cells over the 

different timepoints in the T cell area of the lymph node. On the other hand, the number 

of IL-12p40+ cells remained constant, showing only a trend of higher frequencies at 48h 

(Fig 22D, 22E). We noticed that injected CTV-labeled BM-DCs were located in the T cell 

area and distinct clusters of OT-II. Thy1.1 cells were observed at the 24h time point (Fig 

22D, 22E). This is in line with what was previously observed by (Mempel et al., 2004) 

where during this period, T cells form long-lasting stable conjugates with DCs. At 48h and 

72h more CTV-labeled BM-DCs entered the LNs and OT-II. Thy1.1 T cell expansion was 

observed peaking at 72h. However, less clustering of BM-DCs with T cells was evident 

indicating the more motile, proliferative phase of the expanding T cells (Fig 22D, 22E).  

 

3.3.2 YFP+ endogenous DCs show patterns of communication with injected BM-

DCs at later time points  

We next wanted to study whether there are specific interactions between the injected-

BM-DCs and endogenous DCs of the recipient mice, presumably with the XCR1+ 

migratory DCs that were shown to provide the third signal for Th1 proliferation in a 
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bystander fashion. Using the same setup described in Fig 22A, we analyzed the relative 

distance of YFP+ endogenous DCs to the injected BM-DCs 24h, 48h, and 72h after their 

 

Figure 22 : Kinetics of BM-DC entry into the draining lymph node and T cell expansion. A. Popliteal LNs were analyzed by FACS and 

confocal microscopy. OT-II.Thy1.1+ cells were injected i.v., next day OVA (10 µM)-loaded, LPS (0.5 µg/ml)-matured CTV-lalebeld 

Il12a-/-.BM-DCs (CTV-OVA-LPS.DC) were injected s.c. into the footpad of Yet 40 recipients, mice were collected after 24h, 48h, or 

72h. B. Flow cytometry plot (left) and graph of three independent experiments (right) of percentage of CTV-OVA-LPS.DC in the LN 

24h, 48h, and 72h after injection. C. Flow cytometry plot (left) and graph of three independent experiments (right) of percentage of 

CD4+ OT-II.Thy1.1+ cells in the LN 24h, 48h, and 72h after injection. D. Representative immunofluorescence microscopy images of 

whole popliteal lymph nodes sections (upper row) and magnification of the T cell area after of OT-II+.Thy1.1+ T cell injection (red) + 

CTV labeled Il12a-/-.OVA-LPS/DC s.c. injection (yellow) into IL-12p40-YFP mice (green cells) (24, 48, or 72h after injection) E. Graphs 

showing number of OT-II+.Thy1.1+ T cells, CTV-labeled OVA-LPS/DC, and YFP+ endogenous Cs/popliteal lymph node cut 24, 48, 72h 

after DC injection. Data are representative of two independent experiments analyzing at least 4 mice per group. ***P < 0.0001, 

**p < 0.001, *p < 0.05.  
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injection within the T cell area of popliteal draining lymph nodes. As a comparison, the 

relative distance between total XCR1+ endogenous dDCs and injected-BM-DCs which 

includes the presumably bystander-activated CD103+ XCR1+ DCs and the tolerance 

inducing ones (Muzaki et al., 2016). Also, the relative distance of the unrelated CD11b+ 

DCs to injected-BM-DCs was used as a YFP- XCR1- endogenous DC control subset. The 

relative distance between CD11b+ and total XCR1+ endogenous DCs to injected DCs 

showed a tendency to increase at the 48h and 72h time points when compared to the 24h 

time point (Fig 23A). This is attributed to their random movement in the lymph node that 

gets enlarged at the 48h and 72h time point. On the other hand, the relative distance 

between YFP+ endogenous DCs and injected BM-DCs was significantly reduced at both 

48h and 72h time points compared to 24h (Fig 23A). This strongly points to a specific 

interaction between the YFP+ XCR1+ endogenous DCs with the injected BM-DCs that is 

initiated during the T cell proliferation phase.  

 

3.3.3 Cognate T cells and YFP+ endogenous DCs show patterns of communication 

at later time points 

If the YFP+ endogenous DCs are indeed receiving signals from the injected BM-DCs at 

later time points, we expected them to provide the third signal to T cells in a bystander 

fashion also at later time points during the T cell expansion phase. This was already 

indicated by the fact that IL-12p40-YFP peaked at the 72h (Fig 7C), indicating its 

requirement later in the expansion phase. To confirm that, we measured the relative 

distance of OT-II. Thy1.1+ T cells to YFP+ endogenous DCs and used the relative distance 

between OT-II. Thy1.1+ T cells and injected BM-DCs as a control representing cognate 

antigen recognition. The relative distance between T cells and BM-DCs showed a 

tendency to increase after 48h, which increased significantly at 72h, compared to the 24h 

time point (Fig 23B). This is due to the increase in LN size indicated before. On the other 

hand, the relative distance between T cells and YFP+ endogenous DCs was significantly 

reduced after 48h and 72h as compared to the 24h time point (Fig 23B). From these 

findings we concluded that a time-dependent three-way communication i) between the 

injected BM-DCs and cognate T cells, ii) the BM-DCs with YFP+ XCR1+ endogenous 

bystander cDC1s, and iii) YFP+ XCR1+ endogenous bystander cDC1s with the primed 

Th0 cells for further polarization into Th1 cells.  
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Figure 23 : YFP+ XCR1+ DCs interact with injected DCs and antigen-specific T cells at later time points. A. Graphs showing the 

relative distance of CD11b+ cells, XCR1+ cells, and YFP+ cells to CTV-labeled OVA-LPS/DC in the peripheral lymph nodes 24, 48, or 

72h after DC injection B. Graphs showing the relative distance of OT-II+.Thy1.1+ T cells to CTV-labeled OVA-LPS/DC or to YFP+ 

endogenous DCs in the peripheral lymph nodes 24, 48, or 72h after DC injection. Green arrow indicates the distance shift at 48h and 

72h compared to 24h. Data are representative of two independent experiments analyzing at least 4 mice per group. ***P < 0.0001, 

**p < 0.001, *p < 0.05. 

 

3.3.4 4-1BB and 4-1BBL interactions as a candidate signal driving DC-DC 

communication  

As mentioned earlier, one of the possible signals promoting DC-DC crosstalk is the 

interaction between the TNF receptor family member 4-1BB and its ligand 4-1BBL 

(Futagawa et al., 2002). We showed previously that both molecules are expressed on 

matured BM-DCs. This was confirmed on day 8 BM-DCs that were treated with LPS for 

6h compared to unstimulated control. 
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Figure 24 : 4-1BB and 4-1BBL interactions as a candidate signal driving bystander DC activation . A. Graphs of three independent 

experiments of 4-1BBL (left) or 4-1BB (right) median FI showing CD11c+ MHC IIint immature DCs (black), CD11c+ MHC IIhigh 

spontaneously matured DCs (red) in no LPS cultures and CD11c+ MHC IIhigh matured DCs after 6h LPS treatment (green). B,C. 

Graphs from inguinal LNs of C57BL/6.WT mice of 4-1BBL (B) or 4-1BB (C) median FI in CD103+, CD11b+, DN migratory DCs, or LN 

resident DCs at steady-state or 24h, 48h, or 72h after LPS. BM-DC injection. Data are representative of three independent 

experiments. 

 

A percentage of 4-1BB and 4-1BBL positive BM-DCs was observed on untreated control 

cells and 4-1BB was upregulated on the CD11chigh MHC IIint spontaneously-matured DCs 

and upon LPS treatment. Such upregulation was not observed by 4-1BBL (Fig 24A). 

Unfortunately, no 4-1BB positive population was detected within CD11chigh MHC IIint 

lymph node resident DCs and the CD11cint MHC IIhigh migratory DCs. And this did not 

change after LPS-BM-DC injection 24h, 48h,72h following the injection (Fig 24B). This 

was also the case when analyzing 4-1BBL within the lymph node DC subsets (Fig 24C). 
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3.3.5 Distinct transcriptional shifts are observed in migratory DC populations after 

LPS-BM-DC injection 

Apart from 4-1BB and 4-1BBL interactions as a possible signal for communication 

between injected BM-DCs and the different endogenous migratory DC subset, we wanted 

to test for the global transcriptional shifts that occur within these subsets and identify other 

possible interaction partners. We made use of next-generation sequencing technologies 
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Figure 25 : Sorting strategy for cDCs and MoDCs RNA sequencing. A. Gating strategy for migratory cDC1s, cDC2s and DN DCs in 

popliteal and inguinal LNs. CD11c+ MHC IIhigh Lin- (CD4- CD8- B220-) CTV- endogenous migDCs were sub gated based on XCR1 and 

CD11b into XCR1+ CD11b- cDC1s, CD11b+ XCR1- cDC2s, and XCR1- CD11b- DNs. B. Gating strategy for MoDCs from CD11c+ MHC 

IIhigh Lin- (CD4- CD8- B220-) CTV- endogenous migDCs. MoDCs were CD11b+ F4/80- CD64+ and Ly6C- and appear only after LPS. 

BM-DC s.c. injection (right). 

 

to study these changes. Briefly, we sorted CD11cint MHCIIhigh migratory XCR1+ CD11b- 

dDCs, CD11b+ XCR1- dDCs, and CD11b- XCR1- DCs (DN) at steady-state and 48h after 

injecting CTV-labeled LPS.BM-DC (Fig 25A). Also, CD11b+ CD64+ Ly6Clow inflammation-

induced MoDCs that we described in (Fig 9C) were also sorted at 48h (Fig 25B). Since 

MoDCs could not be detected in naive mice, we were lacking a direct related control for 

this population. Cells were sorted from pooled popliteal and inguinal LNs that were 

isolated from C57BL/6 mice after footpad injections. We chose the 48h time point based 

on the observed change in the relative distance between injected BM-DCs, endogenous 

YFP+ DCs and cognate Thy1.1+ T cells which started only at 48h, indicating that bystander 

activation of endogenous migratory DCs starts at this time point. RNA sequencing was 

performed on 100 sorted cells from each population. Principle component analysis (PCA) 

segregated the samples into three distinct groups. Each of the three cDC subsets 

clustered differently and shifted to a different direction after their bystander activation. 

MoDCs clustered close to CD11b+ dDCs and appeared further distant from bystander 

activated CD11b+ dDCs indicating a close relation (Fig. 26A). Gene ontology (GO) and 

pathway enrichment analysis for the differentially regulated genes in the XCR1+ dDC 

subset indicated a down-regulation of nucleosome organization, cellular development 

and, cellular differentiation pathways. Interestingly, genes promoting Th2 induction or 

Treg induction by DCs were included in these down-regulated pathways, together with 

genes involved in DC migration and genes that modulates the antigen presentation 

capacity of DCs. (Fig. 26B). We compared the differentially regulated genes from 

activated XCR1+ dDCs to steady-state XCR1+ dDCs, and likewise for CD11b+ dDCs and 

DN DCs. MoDCs were compared to activated CD11b+ dDCs. A total of 112 genes were 

significantly up- or down-regulated in at least one of the comparisons. The clusters of 

genes that were regulated in each comparison were very different for each DC subset 

(Fig. 26C). This may indicate that the enlarged lymph nodes deliver distinct signals to 

individual DC subsets that cannot be explained simply by a general inflammatory situation 

that should activate similar transcriptional responses in each DC subset. Genes such as 
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Figure 26 : Endogenous migratory DC subsets have distinct transcriptional changes after bystander activation by BM-DC injection. 

A. PCA for XCR1+, CD11b+ and XCR1- CD11b- endogenous migratory DCs from popliteal lymph nodes nodes before and 48h after 

immunization, and CD11b+ CD64+ Ly6C-MoDCs compared to CD11b+ DCs after immunization. B. Genes downregulated in XCR1+ 

DCs 48h after immunization according to the GOrilla analysis tool. Only pathways with a Benjamini and Hochberg corrected p-value 

below 0.05 were considered. Green color: down in XCR1+ DCs only; orange color: down in XCR1+ DCs and MoDCs. C. Heatmap plot 

of the 112 genes that are at least 1.5-fold differentially expressed in one comparison (red: upregulated; blue: downregulated). Plotting 

was done using Clustvis web tool, Clustering was performed using Pearson’s correlation and average linkage. D. Heat map showing 

differential expression of selected immune-related genes before and after immunization; heat map was generated as described in C. 

E. qPCR analysis of Il12a and Il12b expression in the all sorted DC subsets before and after immunization N=3±s.e.m.  

 

H2-M2 which is a TAP-independent surface-expressed MHC class Ib molecule (Moore et 

al., 2004), Slamf7 which is a signaling lymphocytic activation molecule family member 

known to activate NK cells in a homotypic fashion (Cruz-Munoz et al., 2009), Vmp1 

involved in autophagy (Zhao et al., 2017), and Tmem79, a transmembrane protein 

involved in the lamellar granules secretory system and skin barrier function (Sasaki et al., 

2013), were specifically up-regulated on XCR1+ bystander dDCs which might be involved 

in cell-cell communication. The bystander DCs also down-regulated genes not related to 

Th1 induction, such as TGF- signaling required for Treg induction or promoting Th2 and 

Th9 immunity (Fig. 26D). Il12a and Il12b did not appear up-regulated by XCR1+ dDCs in 

the RNA-seq analysis. Nevertheless, the up-regulation of Il12a and Il12b on bystander 

activated XCR1+ dDCs was confirmed with real-time PCR and both genes were found to 

be specifically up-regulated on the designated XCR1+ subset and not on any of the other 

bystander activated DC subsets (Fig. 26E). We assume that not all endogenous migratory 

XCR1+ DCs are activated to become bystander DCs since they may carry out their 

tolerogenic functions (Muzaki et al., 2016). This may cause a dilution of transcriptional 

changes serving as bystander signals such as the IL-12 signal and only strongly regulated 

genes become visible. Together, the transcriptional profiling of XCR1+ migratory 

bystander cDC1s is characterized by a down-regulation of genes involved in other 

polarizations than Th1 and the up-regulation of genes such as Il12a and Il12b required 

for IL-12p70-mediated Th1 polarization.  
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4 DISCUSSION 

DCs are the dominant immune cells to induce T cell priming in vivo. Also, the instruction 

of T helper cell responses by DCs providing polarizing signals has become generally 

accepted. Among the Th1 instructing cytokines, IL-12p70 plays a prominent role. Here 

we addressed, whether the priming capacity and polarizing IL-12p70 signals are derived 

from injected vaccine DCs. We employed s.c. injection of BM-DCs into mice as a model 

to test different chimeric situations where injected BM-DCs and recipient mouse strains 

were bearing different genetic deficiencies. Our model is close to clinical studies where 

human MoDC vaccines are tested against tumors, due to the fact that GM-CSF generated 

BM-DCs are monocyte-derived (Lutz et al., 2017).  

Our data revealed that s.c. injected vaccine BM-DCs only partially contribute to antigen 

presentation at an early stage (24h) and they do not contribute to Th1 polarization. A 

major part of antigen presentation for Th0 induction and the entire capacity for Th1 

polarization is mediated by endogenous XCR1+ migratory bystander cDC1s at later time 

points (48-72h). However, BM-DCs migration to the draining lymph node is strictly 

required and bystander activation for IL-12 production seems to occur in the lymph node. 

Our findings argue for a step-wise process of priming naive T cells into an IL-2+ IFN--

Th0 phenotype by the injected DCs, followed by a communication between injected BM-

DCs and XCR1+ bystander cDC1s. Bystander contact includes transfer of antigen and 

initiation of IL-12p70 production. This period is followed by contacts of activated IL-12p70+ 

XCR1+ bystander cDC1s with the Th0 cells to continue antigen presentation and 

conversion into Th1 polarized cells. RNA sequencing allowed the identification of 

transcriptional changes during the conversion of endogenous migratory XCR1+ cDC1s 

into XCR1+ bystander cDC1s. Among those, DC genes known to polarize naive T cells 

into Treg or Th2/Th9 immune responses or to counteract IL-12 production were down-

regulated, while Th1 supporting genes were induced. 

4.1 Impact of the study on dendritic cell vaccination strategies 

The optimization of DC vaccination protocols has focused mainly on enhancing the 

activation of generated DCs (Morse et al., 2005; Tsang et al., 2005), their cytokine 

production profile (Okada et al., 2005), and their migration capacity (Turnis et al., 2010). 

Other studies attempted to combine the vaccine injection with adjusting the 
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immunosuppressive milieu of the tumor microenvironment to a more immunogenic one, 

for example by blocking inhibitory receptors such as PD-1/PD-L1 (Soares et al., 2015).  

In this study, we find that endogenous DCs are critically required to induce polarized Th1 

responses and enhance Th0 priming by vaccine DCs. We were able to identify XCR1+ 

endogenous migratory dDCs (cDC1s) as communication partners that take up the 

message delivered by the injected vaccine DC and are responsible for promoting full-

blown Th1 responses. This opens a new level of complexity when considering new 

strategies for vaccine DC optimization. The requirement of endogenous DCs for optimal 

anti-tumor DC vaccination is of clinical importance since these patients are treated with 

immuno-suppressive chemotherapy and are subjected to -irradiation that will affect 

endogenous DC populations. In contrast, the use of CTLA-4 and PD-1 targeted 

checkpoint inhibitors would not negatively affect endogenous DCs. 

This study also sheds light on the question why the IL-1β/TNF/IL-6/PGE2 matured 

vaccine DCs are successful in Th1 priming, despite a lack of IL-12 producing capacity 

(Gross et al., 2017; Lee et al., 2002; Schuler-Thurner et al., 2002). The addition of PGE2 

is known to improve the yield and function of human DCs matured with TNF-α, IL-1β, and 

IL-6, and skews them towards a Th1 phenotype (Jonuleit et al., 1997). In vitro experiments 

however showed that this cocktail skewed T cells towards Th2 responses (Kaliński et al., 

1997), and this was attributed to PGE2 blocking the formation of the bioactive IL-12p70 

heterodimer (Kalinski et al., 1998).  This always contradicted the obvious clinical outcome 

of such a maturation protocol. 

The fact that Th1 priming is not dependent on IL-12 secretion by monocyte-derived DC 

immunizations has been reported in pathologies other than tumor; such as in L. major 

challenged mice (Ramirez-Pineda et al., 2004). In our study, IL-12 production strongly 

supported Th1 polarization, and the XCR1+ migratory cDC1s were the mediators of this 

function. These cells appear to take over the Th1 polarization function from the injected 

BM-DCs at a later stage of the T cell response, when the initial antigen presentation phase 

is terminated and T cells enter their proliferative phase (Mempel et al., 2004; Miller et al., 

2004).  

4.2 Steady-state production of IL-12p40 by CD103+ migratory DCs 

Several studies have shown before that CD103+ migratory DCs were capable of 

producing IL-12p40 (Il12b) at steady-state in the skin draining LNs (Reinhardt et al., 
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2006), in mesenteric and hepatic LNs (Everts et al., 2016), and in mediastinal LNs 

(Conejero et al., 2017). This was clearly demonstrated also in our study by FACS, RNA 

sequencing and real time PCR. Two of these reports suggested that this steady-state 

Il12b production serves as a suppressor of Th2 and Th17 derived immune responses in 

a helminth infection model (Everts et al., 2016) and in a house dust mite allergy model 

(Conejero et al., 2017). These studies however only looked at the Il12b subunit using 

Yet40 mice (Reinhardt et al., 2006) and not at the bioactive IL-12p70 molecule (Macatonia 

et al., 1995). Homodimers formed from the Il12b subunit (p40)2 have been reported by 

several groups to have immunosuppressive effects and act as an antagonist to the Th1 

inducing IL-12p70 by binding to the IL-12 receptor and blocking its activity (Gillessen et 

al., 1995; Ling et al., 1995). Another group showed that UV irradiated DCs and 

macrophages failed to produce IL-12p70 and induce Th1 cells but rather produced p40 

homodimers and failed to induce Th1 responses while maintaining Th2 priming 

capabilities (Schmitt and Ullrich, 2000). The fact that CD103+ cDC1s secrete Il12b at the 

steady-state and not the IL-12p70 heterodimer as indicated by our data suggests that 

Il12b is rather required for maintaining the tolerogenic functions of this DC subset 

(Coombes et al., 2007; Idoyaga et al., 2013) rather than preventing Th2 and Th17 

induction as claimed by these studies (Conejero et al., 2017; Everts et al., 2016). The 

expression profile of CD103+ migratory cDC1s in the Immgen database shows a similar 

profile with high levels of Il12b expression specifically by this subset and not by other LN 

resident and migratory DC subsets (Miller et al., 2012), and no expression of the Il12a 

molecule. Upon activation of migratory cDC1s under an immunizing condition, they 

produce Il12a which forms the IL-12p70 required for Th1 priming. It is also possible that 

such Il12b steady-state production maintains migratory cDC1s in a “ready” state for IL-

12p70 production and Th1 priming. Interestingly, we see steady-state production of Il12b 

by CD8+ spleen resident cDC1s which further supports the tolerogenic function of Il12b 

since they were shown to be responsible for iTreg induction in a TGF- dependent 

manner (Yamazaki et al., 2008). 

4.3 Control of immune response by resident XCR1+ compared to 

migratory XCR1+ cDC1s  

While both resident and migratory cDC1s share the expression of XCR1 (Crozat et al., 

2011) and were shown to have a unique cross presenting capability to CD8 T cells 
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(Hildner et al., 2008), the distinction of their functional capabilities is still unclear. In the 

context of viral infection, migratory cDC1s were shown to be required for priming of CD8 

T cells to occur (Allan et al., 2006). The antigen is then transferred to resident cDC1s 

which appear to cross present viral antigens at later stages of the response (Allan et al., 

2006); (Eickhoff et al., 2015). Imaging the viral response in the draining lymph node 

revealed that CD4 T cells and CD8 T cells were initially primed at different time points 

and cDC1s serve as platforms for CD4 T cell augmentation of CD 8 T cell response 

(Brewitz et al., 2017; Eickhoff et al., 2015).  

On the other hand, recent studies showed that the migratory cDC1s and not resident 

cDC1s were uniquely required for promoting tumor immunity. This included their active 

transport of tumor antigens to tumor draining lymph nodes and also their robust ability to 

activate naïve CD8 T cells ex vivo following sorting of the various cDC subsets (Roberts 

et al., 2016; Salmon et al., 2016). Migratory cDC1s appear to transfer a fraction of the 

tumor antigen they are bearing to other migratory and lymph node resident DCs. 

However, despite the transfer, isolation of the draining lymph node and testing the 

different DC subsets ex vivo showed that only migratory cDC1s and not resident cDC1s, 

have the capacity to stimulate naive CD8+ T cells against tumor-associated model 

antigens (Roberts et al., 2016; Salmon et al., 2016). 

In our setup, we find that migratory cDC1s and not resident cDC1s are responsible for 

promoting Th1 responses later in the immune response, which suggests that unlike in 

viral responses, BM-DC immunization promotes an immune response resembling the 

tumor situation in migratory cDC1s. What mechanistically differentiates the antiviral from 

the antitumor response is yet to be determined. 

4.4 Transfer of antigens from vaccine DCs to XCR1+ migratory DCs 

Apart from their requirement for promoting Th1 polarization, we also find that CD103+ 

XCR1+ migratory cDC1s were required for antigen presentation later in the T cell 

response, indicating antigen transfer from the injected BM-DCs. This is not caused by 

handover of antigen to CD103+ XCR1+ migratory cDC1s in the skin such as observed for 

injected apoptotic DCs (Desch et al., 2011; Inaba et al., 1998), since no T cell priming or 

polarization occurred when antigen-loaded Ccr7-/- BM-DC were used for immunization. 

Antigen transfer in the lymph node was reported to occur mainly from migratory DCs to 

CD8+ resident DCs after viral infections (Allan et al., 2006; Eickhoff et al., 2015) or via the 
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conduit system for particulate antigens (Gerner et al., 2015; Sixt et al., 2005). Other 

reports suggest that migratory DCs also, and especially CD103+ XCR1+ migratory cDC1s, 

can capture archived antigens from lymphatic endothelial cells (LEC) in the draining 

lymph nodes when the antigen is cell-associated (Kedl et al., 2017). A similar scenario 

can possibly account for antigen transfer from vaccine DCs to CD103+ XCR1+ migratory 

cDC1s. The requirement for endogenous DCs to support optimal CD4+ T cell responses 

by DC-DC contacts in lymph nodes has been observed before, but the endogenous DC 

subset was not identified and further bystander function for Th1 polarization was not 

investigated (Kleindienst and Brocker, 2003). Several mechanisms of antigen transfer 

between different DC subsets have been suggested, for example: via trogocytosis (cross-

dressing) (Zhang et al., 2008), or via exosomes (Segura et al., 2007), both pathways have 

been implicated in the transfer of peptide-bound MHC molecules and also co-stimulatory 

molecules. MHC I peptide transfer has been show to involve trogocytosis, where direct 

cell to cell contact between the donor and the recipient cells, and not exosome exchange 

was observed (Wakim and Bevan, 2011). Since the study from Kleindienst and 

colleagues showed that direct cell to cell contact is required for antigen transfer; 

trogocytosis is the more probable mode of antigen transfer (Kleindienst and Brocker, 

2003). Our data suggest that migrated BM-DCs transfer antigen and Th1 polarizing 

information specifically to XCR1+ bystander DCs in the lymph node. In contrast to IL-12 

production, the process of antigen transfer may not require transcriptional changes in the 

bystander DCs.  

4.5 IL-12 independent priming by XCR1+ migratory cDC1s 

We observed residual Th1 polarization capacity from XCR1+ migratory cDC1s even when 

they lacked IL-12 production capabilities as indicated by our Il12a-/- recipient experiments. 

The residual Th1 polarization was completely abolished when migratory DCs were absent 

in the Il12a.Ccr7-/-model, and specifically when the XCR1+ migratory cDC1s are lacking 

in Xcr1-venus-DTR mice. Although we were not able to identify the mechanism involved 

in such IL-12 independent priming, CD27-CD70 interactions is still a possible mechanism 

(Soares et al., 2007). CD70 expression was specifically upregulated on migratory cDC1s 

48h after LPS BM-DC injection compared to steady-state by flow cytometry. A study that 

used activating or blocking CD70 antibodies that were specifically targeted to the uptake 

receptor DEC-205 on cDC1s showed that CD70 promotes IL-12 independent IFN- 
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production by CD4 T cells. This effect was not seen on DCIR2 expressing CD11b+ cDC2s 

(Soares et al., 2007). It is possible that following antigen transfer from injected BM-DCs 

to migratory cDC1s, T cells receive IL-12 independent CD27-CD70 signals during 

recognition of the transferred antigen on the migratory cDC1s during the later phase of 

the response (48h). The fact that we see CD70 upregulation only at this timepoint might 

support this hypothesis. CD27-CD70 interactions might explain several models where IL-

12 absence did not abolish IFN- production (Jankovic et al., 2002; Yang et al., 1999), 

such as Il12b-/- mice that still showed substantial IFN- production after Toxoplasma 

gondii infections (Jankovic et al., 2002). This also might explain why patients with genetic 

deficiencies in IL-12 or IL-12 receptor are still able to produce IFN- and avoid infection 

with most intracellular pathogens (Fieschi et al., 2003). Another group showed that OX40, 

which is another TNF receptor family member, can augment the function of CD70 and 

this also is independent of IL-12 production by cDC1s (Sanchez and Kedl, 2012). 

4.6 CCR7 knockout as a model to study migratory DC functions 

Using the Il12a.Ccr7-/- mouse model, we noticed that despite the lack of Th1 priming and 

significantly lower IL-2 production capacity of T cells, there was a significant population 

of proliferating T cells. This can be explained by the abnormal LN structure and the 

perturbations of immune homeostasis observed in these mice (Forster et al., 1999). 

These mice are characterized by the lack of normal distribution of B cell follicles to the 

outer cortex as well as a paracortical T cell–rich area. They rather display an irregular 

distribution of B and T cells within the paracortex. Also, B cell follicles with considerably 

enlarged germinal centers were observed within the paracortex. It is possible that such 

an abnormal organization of the LN structure results in an increased likelihood of the 

“more fit” BM-DCs to meet their antigen specific T cell, where they are capable of 

providing signal 1 and 2 for the initial period of the T cell response. However, since the 

migratory cDC1s are lacking in this model, the response cannot be propagated and is 

blocked at the Th0 phase (Openshaw et al., 1995). The Th0 response is also limited since 

migratory cDC1s are partly required for antigen presentation.  
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4.7 How is the systemic response propagated? 

One finding that we were not able to explain in this study is the robust Th1 polarized 

response observed in the spleen, even though injected BM-DCs do not reach the spleen 

neither do they reach LNs that are far from the injection site, which indicates a confined 

immunization process. Thus, the source of antigen that causes such a response in the 

spleen remains unclear. Interestingly though, this response is not affected by the absence 

of Il12a, unlike the response in the LN, but is almost absent in MHC II-/- mice, which 

indicates that endogenous antigen presentation is initiated in the lymph node and is 

propagated later to the spleen. It is also absent in the spleens of Il12a.Ccr7-/- mice. This 

can be attributed to the fact that CCR7 is also required for a normal spleen structure. In 

these mice, T cells were spread throughout the marginal sinuses and the red pulp in large 

clusters  (Forster et al., 1999), and are incapable of entering the periarteriolar lymphoid 

sheath (PALS) (Sharma et al., 2015). On the other hand, T cell response in the spleens 

of Xcr1-venus-DTR mice showed a robust Th1 polarization, which points out that a subset 

other than CD8α+ resident cDC1s in the spleen is taking over the antigen presentation 

and Th1 priming functions. It is possible that this is mediated by an unknown cellular 

subset that carries the apoptotic remains of the injected DCs from the draining LN through 

the blood stream to be internalized by the splenic marginal zone (Morelli and Larregina, 

2010; Morelli et al., 2003) 

4.8 Bystander activation of XCR1 migratory DCs by vaccine DCs 

While we didn’t identify the molecular interactions responsible for cDC1 communication 

with BM-DCs following immunization, 4-1BB and 4-1BBL interactions are still a likely 

candidate. A recent study reported that bystander activation of one DC to another in trans 

via 4-1BB to 4-1BBL interactions may play a role in the immune response to infection or 

vaccination, and required cell to cell contact (Macdonald et al., 2014). The use of 4-1BB 

(Kwon et al., 2002) or 4-1BBL (DeBenedette et al., 1999) deficient mice would allow 

further studies on the role of this interaction in the context of vaccine DC immunization. 

Another possible candidate that came up from the RNA sequencing dataset is Slamf7, a 

signaling lymphocytic activation molecule (SLAM) family member (Cannons et al., 2011), 

which mediates homotypic interactions with itself on adjacent cell surfaces (Li et al., 

2013). We found that it was specifically upregulated on XCR1+ migratory DCs after 

immunization. A recent report showed Slamf7 as an interacting partner for the integrin 
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CD11b (Chen et al., 2017), which is highly expressed by our injected BM-DCs suggesting 

that Slamf7-CD11b interaction is a possible route of DC-DC communication. 

We provided evidence that direct pathogen 'presentation' of LPS can induce bystander 

BM-DC activation, while CpG matured BM-DCs did not trans-activate other DCs in vitro. 

CpG activation of TLR9 within intracellular vesicles is precedes surface binding of GpG 

to DEC-205 and internalization as shown for splenic CD8+ cDC1s (Lahoud et al., 2012). 

Nevertheless, both LPS-or CpG matured BM-DCs While LPS may remain attached to the 

cell surface and could be "presented" to bystander DCs, this is largely excluded for CpG 

oligonucleotides, which are incorporated to trigger the vesicular TLR9. Since also our BM-

DCs express DEC-205 as detected by the NLDC-145 antibody (Lutz et al., 1999) the lack 

of bystander activation in vitro cannot account for a DEC-205 defect but indicates that 

other bystander mechanisms exist besides trans-activation by pathogen. 

4.9 Functional switch of XCR1 migratory DCs after bystander activation 

Here we compared the transcriptomes of steady state migratory DCs with bystander DCs. 

Steady state migratory DCs appear as a semi-mature stage with up-regulated RelB and 

surface MHC II, CD86, CD40 and CCR7 molecules but lower as compared with pathogen 

or inflammation matured migratory DCs (Azukizawa et al., 2011; Idoyaga et al., 2013; Ohl 

et al., 2004), which further up-regulate MHC and costimulation and also produce pro-

inflammatory cytokines (Ardouin et al., 2016; Voigtlander et al., 2006). The dermal steady 

state migratory cDC1 subset (ssm-cDC1), identified by expression of XCR1, CD103 and 

Langerin, has been characterized transcriptionally and revealed a matured phenotype 

with expression of RelB, IL-12p40 and CCR7 (Ardouin et al., 2016). Functionally, we 

found earlier that the ssm-cDC1s converted naive CD4+ T cells into Foxp3+ iTregs (also 

called pTregs) in a TGF- dependent manner in the skin-draining lymph nodes 

(Azukizawa et al., 2011). This TGF- signature was later confirmed at the transcriptome 

level (Ardouin et al., 2016). Also, integrin v8-dependent activation of latent TGF- 

contributes to iTreg conversion support peripheral tolerance against the self-antigens 

presented by ssm-DCs and thereby prevent auto-immunity (Travis et al., 2007). We found 

that immunogenic bystander cDC1s did not markedly up-regulate typical RNA signatures 

or markers for DC maturation over the tolerogenic ssm-cDC1 comparison. However, the 

transcriptional TGF- signature decreased. This indicates that functionally tolerogenic 

XCR1+ ssm-cDC1s may be re-programmed in the lymph node to become immunogenic 
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bystander DCs. Functional plasticity of ssm-Langerhans cells had been shown before by 

their continued capacity to internalize antigens after migration into the draining lymph 

nodes (Ruedl et al., 2001). Our previous data showed that BM-DCs that were matured 

with the inflammatory stimulus TNF maintained maturation plasticity since they could be 

further stimulated by LPS in vitro to release IL-12p70 or in vivo by endogenous stimuli 

after s.c. injection to polarize for Th1 responses (Voigtlander et al., 2006) instead of 

inducing tolerance by i.v. injection (Menges et al., 2002). Together, the transcriptional 

changes in bystander cDC1s indicate that they down-regulate steady-state functions and 

become activated to induce Th1 responses. The data provide evidence that XCR1+ 

steady state migratory cDC1s can undergo functional re-programming into bystander 

matured DCs by LPS from the migrated BM-DCs or other bystander signals sensed in the 

lymph node that appeared inflamed with increased cellularity. 

Transcriptional profiling of the XCR1+ migratory DCs showed a signature that shifts away 

from their capacity to direct Th2/Th9 and Treg polarization after BM-DC immunization. 

This was specific only for XCR1+ DCs and not observed in other migratory DC subsets. 

Interestingly, genes involved in DC migration were also down-regulated, which may 

indicate that the bystander activated DCs terminated migration to stimulate Th1 induction. 

The RelB binding partner p52 (Nfkb2) was among these genes, which we showed 

previously to be a hallmark of ssm-DCs (Ardouin et al., 2016; Azukizawa et al., 2011; 

Dohler et al., 2017). Among the up-regulated genes is Tmem79 which might be involved 

in exocytosis (Sasaki et al., 2013). The secretion by exocytosis of IL-12 is mediated by 

the SNARE family member VAMP7 (Chiaruttini et al., 2016).   

The significant increase in IL12a and IL12b gene expression by qPCR that we detected 

specifically in XCR1+ migratory DCs after BM-DC immunization was not observed in by 

RNA sequencing, we also detected a non-significant increase in IL-1β and CD80 

expression by RNA sequencing. While the low number of DCs used for sequencing can 

attribute to such a discrepancy, it is also possible that the bystander activation signal was 

diluted by the remaining steady-state XCR1+ migratory cDC1s that still carry out their 

tolerogenic functions. Such a heterogeneity has been observed by single cell sequencing 

among LPS-stimulated spleen cells where the DCs clustered differently when compared 

to the existing marker-based classification (Jaitin et al., 2014). Using our defined 

transcriptional signature for bystander activated XCR1+ migratory cDC1s, it might be 
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possible to distinguish them from their steady-state counterpart and specifically target 

them for enhancing DC vaccination protocols.  

 

In conclusion, our data suggest that Th1 priming by DC vaccination requires endogenous 

bystander DCs for antigen presentation and IL-12p70 production. The time kinetic 

experiments suggest a strict requirement for the injected BM-DCs for Th0 priming 

preceding the bystander DC activation and IL-12 production. Only the CCR7+ migratory 

but not resident fraction of the XCR1+ cDC1 subset acquired bystander function. These 

findings are of translational importance for human DC vaccination studies in immuno-

compromised tumor patients where the bystander DC activity may be impaired. The 

dissemination of the systemic response and the exact molecular mechanisms driving the 

endogenous bystander migratory XCR1+ cDC1 activation are two important points that 

need further studying. 
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8 ABBREVIATIONS   

°C Degrees Celsius 

APC Antigen presenting cell 

BM Bone marrow 

BM-DC Bone marrow-derived dendritic cell 

bp Base pair 

BSA Bovine serum albumin 

cAMP Cyclic adenosine monophosphate 

CCR7 C-C chemokine receptor 7 

CD Cluster of differentiation 

cDC Conventional DC 

cDNA Complementary DNA 

CFA Complete Freund’s adjuvant 

CFSE Carboxyfluorescein diacetate succinimidyl ester 

CO2 Carbon dioxide 

Ct Cycle threshold 

CTL Cytotoxic T lymphocytes 

DC Dendritic cell 

ddH2O Double-distilled water 

DEPC Diethyl pyrocarbonate 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNase Deoxyribonuclease 

dNTPs Deoxynucleotide triphosphate 

DT Diphtheria toxin  

DTR Diphtheria toxin receptor 

EBI2 Epstein-Barr virus induced 2 

EDTA Ethylenediaminetetraacetic acid 

FACS Fluorescence acquired cell sorting 

Fc Fragment crystallisable 

FCS Fetal calf serum 

FITC Fluorescein isothiocyanate 

Flt3-L Fms-like tyrosine kinase 3 ligand 

FSC Forward scatter 

Fwd Forward 

g Gram 

GATA-3 GATA binding protein 3 

GEO Gene Expression Omnibus 

GM-CSF Granulocyte/macrophage colony-stimulating factor 

h Hours 

i.p. intraperitoneal 
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i.v. intravenous 

IFN Interferon 

Ig Immunoglobulin 

IL Interleukin 

IL-12R IL-12 receptor 

LPS Lipopolysaccharide 

MACS Magnetic activated cell sorting 

MFI Mean fluorescence intensity 

MHC Major histocompatibility complex 

min Minutes 

ml Millilitre 

moDC Monocyte-derived dendritic cell 

mRNA Messenger RNA 

neg Negative 

NFκB Nuclear factor κB 

NK Natural killer 

NLR Nod-like receptors 

OVA Ovalbumin 

PAMP Pathogen associated molecular patterns 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

pDC Plasmacytoid DC 

pDC Plasmacytoid dendritic cell 

PD-L1 Programmed cell death-Lignad1 

PE Phycoerythrin 

PerCP Peridinin chlorophyll protein complex 

PGE2 Prostaglandin E2 

PMA Phorbol 12-myristate 13-acetate 

PRR Pattern recognition receptors 

Rev Reverse 

RNA Ribonucleic acid 

RNase Ribonuclease 

rpm Revolutions per minute 

rpm Rounds per minute 

RPMI Roswell Park Memorial Institute (medium) 

RT Room temperature 

RT-PCR Real-time polymerase chain reaction 

RT-PCR Reverse transcription polymerase chain reaction 

s.c. subcutaneous 

SA Streptavidin 

SD Standard deviation 

sec Second 
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SIRPα Signal regulatory protein alpha 

SSC Sideward scatter 

SSC Side scatter 

ssm Steady state migratory 

STAT Signal transducer and activator of transcription 

TCR T cell receptor 

TGF-β Transforming growth factor beta 

Th T helper 

Th1 T helper 1 

Tip DC TNF and iNOS producing DC 

TLR Toll-like receptors 

TLR Toll-like receptor 

TNF Tumor necrosis factor 

Treg Regulatory T cell 

wt Wild type 

YFP Yellow Fluorescent Protein 

μg Microgram 

μl Microliter 

μM Micromolar 
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