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1 Introduction

1.1 Microarray technology

Almost all cells in the human organism contain identical sets of chromosomes and thus also
the same set of genes. Nevertheless this identical set gives rise to a huge variety of cells types
fulfilling the most diverse functions. The majority of functionality in a cell is based on the
activity of proteins, whereas the ’Central Dogma of Molecular Biology’ identifies the DNA
as the carrier of genetic information [1]. To translate this information into functionality (i.e.
proteins) a transfer of information from DNA to an intermediate molecule, namely the mRNA,
is carried out within the cell. After transport into the cell’s cytoplasm the mRNA is translated
into the corresponding protein. In general the presence and abundance of a particular mRNA
regulates the presence and abundance of the encoded protein.

By measuring the abundance of mRNA molecules inferences on the activity of the encoding
gene(s) can be made. DNA microarray technology [2, 3] allows to asses expression levels
in a particular state of the cell for several ten-thousands of genes in a single experiment. To
this end, the mRNA is extracted from cells and reversely transcribed to cDNA. During this
process the cDNA is labeled by incorporation of labeled nucleotides. In the advent of the
microarray technology, it was common to use radioactively labeled NTPs, whereas nowadays
it is standard practice to use fluorescently labeled nucleotides [4]. In a consequent step, the
cDNA is hybridized to a microarray.

The microarray itself consists of a solid support (glass-slide, nylon-membrane, silicon-chips
or membrane-slides), on which single-stranded DNA fragments of different sequence have
been immobilized at distinct, fixed locations. In case of expression profiling the length of
the spotted DNA fragments can vary from as few as 10 bases (oligonucleotides) up to several
thousand (cDNA) and are therefore referred to as oligo-microarrays and cDNA-microarrays
respectively. The latter are commonly created by a robot depositing the DNA-fragments at
specified locations. Oligo-arrays can be either spotted or the oligonucleotides can be synthe-
sized directly on the chip by photolithographic means [5]. One prominent example of these
are chips from Affymetrix [6].

Figure 1.1 provides an overview of the workflow of a typical microarray experiment: In short,
mRNA is extracted from the samples of the experimental conditions and reversely transcribed
into cDNA. The labeling can occur simultaneously with the reverse transcription (direct la-
belling) or in a subsequent step (indirect labeling). The labeled targets are combined and
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1 Introduction

Figure 1.1: Workflow of a typical microarray experiment. mRNA is extracted from the sample(s)
the experimental conditions that are to be compared and reversely transcribed into cDNA. The la-
belling can occur in the same step as the reverse transcription (direct labelling) or in a subsequent
step as shown here (indirect labeling). The labeled targets or combined and hybridized to a microar-
ray. After some postprocessing steps the arrays are scanned and the resulting images (commonly in
tiff or bmp format) are processed to extract quantitative information on the genes’ expression level
for subsequent data analysis. This figure is reproduced from [7].

hybridized to a microarray. After some postprocessing steps the arrays are scanned and the
resulting images are processed to extract quantitative information on the genes’ expression
levels for subsequent data analysis.

The quantified expression data can be represented as a matrix in which the rows depict the
genes and the columns the individual hybridizations, the cells contain the corresponding ex-
pression intensities (a scheme of such a data-matrix from a simplified microarray experiment
in provided in Table 3.1 on page 68). These intensities (in their non-preprocessed state) are
commonly referred to as ’raw data’. This raw data as such, is not suitable for immediate anal-
ysis, since the amount of variation having accumulated in the data at the various experimental
steps can be so predominant that the biological signals of interest are obscured. Technical vari-
ation can be introduced at almost every step in the production of a microarray, examples of
which include the amount of DNA in each spot, spot shape, dye bias (i.e. decay rates and dif-
ferent labeling efficiencies), inhomogeneous slide surfaces, edge-effects, cross-hybridization
and scanning parameters. This demonstrates the need for a normalization step prior to identi-
fication of regulated genes [8, 9, 10].

Besides the variety in normalization methods a wealth of procedures for subsequent analysis of
the data is available . Clustering algorithms were among the first to be applied to microarray
data. In general, clustering methods group genes or experiments such that the expression
profiles within the groups are more alike than expression profiles across the groups. Among
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1.2 Ontology

the frequently used clustering techniques are hierarchical [11, 12], k-Means [13], and self-
organizing maps (SOMs) [14, 15]): where the former ones provide a series of nested clusters
as results, whereas the latter generally find partitions with no nesting. However these methods
require parameters (i.e. number of expected clusters for k-Means and map topology for SOM)
and alterations in these can have significant impact on the results.

Another important aspect in microarray data analysis is classification. Here the samples are to
be assigned to groups based on their expression profiles. To this end classification methods aim
at identifying a small set of genes that can reliably be used as a predictor and furthermore can
be generalized beyond the sample analyzed. Examples of methods applied for classification of
microarray data include: discriminant analysis [16], tree-based algorithms (classification and
regression trees [17]), nearest-neighbour [18], neural networks [19, 20] and support vector
machines (SVM, [21]).

Apart from clustering and classification techniques, microarray data has been successfully an-
alyzed with projection methods. In general these methods aim to find ’summary variables’
which can be used to display high-dimensional data in a small number of dimensions. Promi-
nent examples of which are principal component analysis (PCA, [22]), multidimensional scal-
ing (MDS, [23]) and Correspondence Analysis (CA, [24, 25]). PCA and MDS allow to project
either the rows or the columns of the data matrix in a lower dimensional subspace, whereas
CA allows for visualization of rows and columns in the same plot. For more details on CA
please refer to 2.2.1.

1.2 Ontology

Ontology originates from the field of philosophy, as being the study of what is, of the kinds
of objects, their structures, properties and relations in every area of reality. In other words
ontology focuses on the nature of organisation of reality. This is often contrasted with Epis-
temology as a branch of philosophy which analyzes the nature and source of knowledge [26].
Ontology as a field of research can be traced back to Aristotle who defined ontology as the
science of being as such. Aristotle developed 10 (top-level) ’Categories’ (namely Substance,
Quantity, Quality, Relation, Place, Time, Situation, Condition, Action and Affection) which,
from his point of view, are sufficient to describe anything that can be known about something.

Nowadays, especially in the context of computer science, an ontology is perceived in a nar-
rower sense: commonly it refers to a working model of entities and their interactions in par-
ticular domain of knowledge or practise, such as molecular biology or bioinformatics.

While ontologies are already extensively used in areas like artificial intelligence research,
lately their usefulness is being recognized by other fields as well. One of the first com-
putational ontology to be constructed was Cyc, which was developed to describe ’everyday
common-sense knowledge’ [27]. Another prominent example are the efforts to create a ’se-
mantic web’. That is, to make the information that is captured in the internet accessible for
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computers and thereby significantly increasing the efficiency of software agents that are aimed
at the retrieval of information. This example already demonstrates one of the strengths of an
ontology: it renders the therein captured knowledge accessible to humans as well as to com-
puters. Moreover it allows for consistent terminology in a specific field, to ensure that e.g.
different laboratories use the same concepts with the same meaning to capture knowledge.
The success of an ontology heavily depends on the involvement of the associated community,
since it has to be agreed upon and ultimately be used by the community.

Ontologies are being used in biology to an ever increasing extent. Nowadays, the most
prominent example of which is the gene product centered Gene Ontology (GO), which is
discussed in detail in 2.1.2. Besides this, numerous other ontologies are created in the bio-
medical field. Examples of which include, the Sequence Ontology (capturing information on
biological sequences [28]), STAR/mmCIF (structure of macromolecules [29]), MGED On-
tology (to capture information about a microarray-experiment [30]) and Galen (clinical in-
formation, including human anatomy [31]). Finally the ’open medical ontologies’ (OBO,
’http://obo.sourceforge.net’), is an umbrella address for bio-medical ontologies that all com-
mit to some shared requirements for the ontology.

The aim of an ontology is to describe what entities and interactions are relevant in a certain
field of knowledge. In context of knowledge sharing, Gruber defines an ontology as ’the
specification of conceptualisations, used to help programs and humans share knowledge’ [32].

The main components of an ontology are concepts, relations, instances and axioms. A concept
represents a set of entities within a domain, for instance ’Enzyme’ is a concept in the domain
of molecular biology. Concepts can be divided into two classes:

1. primitive concepts: these have only necessary conditions describing the properties of
the concept. All entities belonging to this concept share these properties, but not all
entities possessing these properties belong to this concept. E.g. proteins are composed
of individual amino acids connected via peptide bonds, whereas not every molecule
composed of amino acids will qualify as a protein (e.g. molecules of less than 100
amino acids are referred to as peptides).

2. defined concepts:are those where the conditions are not only necessary but also suffi-
cient. As with primitive concepts all entities of this concept share the properties, more-
over if an entity has the defined properties it belongs to this concept. E.g. eukaryotic
cells, all eukaryotic cells have a nucleus and if in turn a cell has a nucleus, it is an
eukaryotic cell.

Relations describing the potential interactions between the concepts can be categorized in two
broad groups:

1. Taxonomiesorganize concepts into sub- / super-concept tree structures. The most fre-
quently used forms are:
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• Specialisation relationships commonly known as ’is a kind of’ relationship. E.g. a
Ligaseis a kind of anEnzymewhich is a kind of aProtein.

• Partitive relationships describe concepts which are part of other concepts. E.g. the
Centromereis part of theChromosomewhich is part of theNucleus.

2. Associativerelationships which relate concepts across tree-structures. Some common
examples are:

• Nominative relationships describe the names of concepts

• Locative relationships describe the location of the concept with respect to another

• Associative relationships that represent, for example, the functions, processes a
concept has or is involved in, as well as other properties of the concept

Finally, axioms can be used to put constrains on classes or instances, for instance chains of
less than 100 amino acids connected via peptide bonds are categorized as peptides, rather than
proteins.

1.3 Current methods to analyze microarray data in context
of annotation data

In context of microarray data one can roughly divide the available annotation data into con-
cepts describing genes and their functionality and those used for the description of the exper-
imental setting. It is only in the recent years that experimental annotations are being recog-
nized as essential information for the comprehensive description of a microarray study. This
is documented by the fact that the major microarray data repositories (such as GEO and Ar-
rayExpress) require the submission of experimental descriptions along with each microarray
data set. Nevertheless the format, in which this information is submitted and stored, varies to a
great extend between the repositories. In case of GEO, this information was originally stored
in the SOFT (Simple Omnibus Format in Text) format, which allows the use of free text. Cur-
rently the experimental annotations are stored using a XML-based schema, which is named
MINiML (MIAME Notation in Markup Language). Here certain tag-value pairs are defined,
some of which are mandatory to be uploaded along with a data set in order to be in com-
pliance with the ’Minimal Information about Microarray Experiments’ (MIAME) -standard.
However only for some of these values constraints are provided, e.g. for the tag <Web-Link>
a ’valid URL’ has to be provided. For the majority of tags however, no constraints are defined,
rendering the annotations in a freetext-like format and thus resulting in large problems when
computer-based extraction and analysis of the experimental annotations is desired.

This problem has been recognized by the Microarray Gene Expression Data (MGED) Society
and lead to the development of the MGED Ontology (MO). Up to January 2006 experimental
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annotations submitted to ArrayExpress were stored, in compliance with MIAME standards,
in the Microarray Gene Expression Model (MAGE-OM) which is based on the related XML
format MAGE-ML. This format provides a common syntax for the exchange of data but lacks
important ontological characteristics such as an explicit terminology (i.e. controlled vocab-
ulary) with unambiguous definitions for each term as well as the semantic relationships be-
tween terms. Storing information about the experimental setup of a microarray experiment
in a computer-accessible format is the first step to integrate this data into the statistical anal-
ysis. Up to now, there are no published methods available which fully exploit this source of
information. Nevertheless, annotations describing the experimental settings can be stored by
our ’in-house-software’ M-CHiPS. Even though, not being structured as an ontology, the in-
formation is captured by controlled vocabularies rendering it accessible for statistical analysis
[33].

While experimental annotations are inevitable to, for instance, reliably identify technical ar-
tifacts in the data, the majority of available annotation data is focused on gene (protein)-
properties. This data describe a huge variety of gene-centered features including, sequence
properties, chromosomal location, homology, transcription factor binding sites, methylation
status, relevance in disease, pathway-membership and functional properties - just to name a
few. Tools that focus on analysis of individual properties, like sequence information (e.g.
prediction of transcription factor binding sites), identification of homologies or prediction of
3-dimensional protein structures are readily available. Nevertheless in the recent years it has
become more and more apparent, especially due to the success of high-throughput technolo-
gies such as microarrays, that the functional interpretation of this data is a major bottleneck.
Inevitably, the ultimate goal of each experiment is to generate data in order to validate pre-
defined hypothesis or to develop new ones. In context of microarrays, a wealth of methods
is available to extract significantly regulated genes, which commonly are then represented in
spreadsheet-like lists. Based on these, functional properties of the genes have to be gathered
(if not already provided in the local database) and common functional properties have to be
identified. While this might prove feasible for smaller number of genes in few experimen-
tal conditions, the list of regulated genes in a typical microarray experiment can easily be
comprised of up to several hundreds of genes. These numbers render a non-computer based
analysis not only tedious and time-consuming, but also prone to errors.

This bottleneck in data analysis has lead to the development of various tools to analyze mi-
croarray data in context of gene annotations. A large number of available methods make use
of the Gene Ontology project (explained in detail in 2.1) - a listing of available tools can be
found at [34]. The vast majority of these tools focuses on the identification of significantly
over- or under-represented annotation terms from a set of regulated genes. Thus the analysis
is a two step process, in which initially a set of regulated genes has to be calculated and sub-
sequently submitted to a tool that calculates a list of significant annotations. The variety of
methods for this task ranges from systems like DAVID [35], which is based on a database in-
tegrating annotations from Gene Ontology, KEGG and PFAM protein domains to, web-based
tools like FatiGO [36]. DAVID however is restricted to a specific level of the ontology and the
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1.3 Current methods to analyze microarray data in context of annotation data

resulting annotations are presented in a list labeled with the percentages of regulated genes.
Tools like FatiGO on the other hand are easy to use and do not require any software download
and installation but have other limitations. In case of FatiGO the analysis is restricted to one
of the main categories in the Gene Ontology and the resulting terms are only represented as
lists. Moreover only two sets of genes can be compared per analysis.

In summary, none of the currently available tools allows for a highly integrated visualization
of the data, such that associations among genes, experiments and gene annotations can be
deduced from a single plot.
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2 Integration of gene annotation data

The term ’gene annotation data’ can be perceived as any information that characterizes a
property of a gene, some examples of which are provided in Table 2.1. Even though not
representing an exhaustive overview, it demonstrates the wealth of available gene annotation
data along with the heterogeneity of sources.

Despite the amount of available annotation data, not all of it is of immediate relevance for
the functional interpretation of microarray data. Here the researcher commonly ends up with
a list of regulated/interesting genes, which can be comprised of several hundreds of genes.
The subsequent step in the analysis is time-consuming and labour-intensive: This list of regu-
lated genes has to be associated to functional annotation data (e.g. a pathway or a biological
objective like ’mitosis’), in order to deduce a biological conclusion.

To this end heterogeneous annotation data sources are combined by querying the correspond-
ing databases, sometimes even on a gene-by-gene basis. Commonly this information is added
to the extracted list of genes in a spreadsheet like format as well. In this approach the annota-
tion data is entered as free text, not making use of any provided IDs or a controlled vocabulary.
Moreover the use of free text increases the probability of errors like misspelling and thus could
lead to incorrect analysis. The extraction of properties that are common to a set of genes is
consequently done by eye, leaving this not only a cumbersome task but also prone to errors.

Having clarified the problem, two central requirements for the source of annotations arise:
First of all, the information should allow to draw relevant biological conclusions from mi-
croarray data sets. Here annotations on aliases, clone information or sequence information are
not the optimal choice. In this context, information on functionality, pathway membership or
transcription factor binding sites are more promising. As a second requirement for annota-
tion data, the data structure should allow for machine-processing of the annotations as well as
human-readability. Only two larger sets of the annotation sources listed in Table 2.1 meet this
second criterion, namely the Gene Ontology and the KEGG database. KEGG is a powerful
source to associate subsets of genes or even complete experimental conditions to pathways,
but is not optimal when trying to increase the level of abstraction. This, however, often is in-
evitable in order to identify ’general themes’ that account for the observed differences between
experimental conditions.

The structure of the Gene Ontology, on the other hand, allows to analyze annotation data at
any level of abstraction: from as general concepts as ’signal transducer activity’ down to
specific annotations such as ’thyrotropin releasing hormone and secretagogue-like receptors

8



Gene annotation data on: Reference to Source / Database

Sequence (genomic,mRNA) EMBL [37], Genbank [38], DDBJ
[39], dbEST [40], dbSTS [41], Ref-
Seq [42], Ensembl [43]

Localization (cellular / tissue / organ
- level)

GO [44], Human Protein Atlas [45]

Expression patterns GEO [46], ArrayExpress [47]
Functionality GO [44], BRENDA [48]
Transcription factor binding sites TRANSFAC [49], DBTBS [50]
Interaction partners (genomic & pro-
teomic level)

CTD [51], BIND [52], STRING [53]

Proteins SWISSPROT [54], PROSITE [55]
Post-translational modifications DSDBASE [56], PhosphoBase [57],

RESID [58]
Pathway-membership KEGG [59], EMP [60]
Relevance as disease target GeneDis [61], KMDB [62]
Protein 3-d structure PDB [63], SWISS-Model [64], Mod-

Base [65]
CpG-island & status of methylation MethDB [66, 67]

Table 2.1: Various types of gene-annotation data and their sources.This non-comprehensive listing
on gene-annotation data demonstrates not only the wealth of information that being available, but
also demonstrate the heterogeneity in data structures. Not all kinds of annotations are, however,
of immediate relevance for the functional interpretation of high-throughput data set like microarray
data.
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2 Integration of gene annotation data

Gene Ontology Overview

total annotation terms 19977
biological process 10745
cellular component 1799
molecular function 7433

different organisms 30

overall annotated gene products≈ 1 600 000
annotated by electronic means≈1 450 000

curated annotations ≈ 150 000

Table 2.2: Overview of the basic statistics from the Gene Ontology.The provided numbers represent
the status of the Gene Ontology Project in August 2006.

activity’. Being structured as an ontology it allows computer-based processing of the captured
information, for more details on the structure and their benefits please refer to 2.1.2. Moreover
in the recent years GO has developed to ade factostandard for the annotation of gene prod-
ucts. This is not only demonstrated by the rapid increase of publications making use of GO
(more than 900 as of August 2006) or tools that have been developed to exploit the ontology
(for a selection of these please refer to [34]), but also by the tremendous growth of available
annotation terms as well as annotated gene products for a wide range of species. A snapshot
(as of August 2006) of these numbers is provided in Table 2.2.

Up to now the GO has been mainly used in the analysis of microarray data, but due to the ever
growing popularity and information content, it is also being used in a broader context, such as
gene function prediction [68] or construction and analysis of cellular pathways. Moreover the
Gene Ontology is currently used in computer science to, for instance, test description logic to
build consistent ontologies [69, 70, 71].

2.1 Gene Ontology

2.1.1 Overview

The Gene Ontology was initiated in 1998 by members of the labs associated with the three
model organism databases, namely theSaccharomycesGenome Database (SGD), theDrosophila
genome database Flybase and the Mouse Genome Informatics Databases (MGD). The GO
Consortium is comprised of members of these labs and was joined in 2000 by theArabidopsis
Information Resource (TAIR) and theCaenorhabditis elegansgroup, completing the group of
fully sequenced model organisms.
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2.1 Gene Ontology

With complete genomic sequences at hand it is very appealing to compare the genomes of the
different organisms. Comparative analysis between model organisms shows that especially
for genes involved in biological core processes such as DNA replication or translation, a high
degree of conservation can be expected [72]. One opportunity that arises from this finding,
is the possibility to transfer biological annotations between organisms based on, for instance,
sequence homology. While there are methods for sequence comparison available [73, 74],
the transfer of the annotation data poses a problem due to the incompatibility of annotations
terms between the different databases. This incompatibility arises not only from the different
terms being used, but also from the differing definition of the terms (if some unambiguous
definitions are provided at all).

One major goal for the GO Consortium therefore was ’to develop cross-species biological
vocabularies that are used by multiple databases to annotate genes and gene products in a
consistent way’ [75]. One key prerequisite that will allow interoperability between databases
(or research groups) is the use of controlled vocabulary. This means that the terms allowed to
describe properties of gene products are restricted to those concepts available in the ontology.
Moreover to ensure a consistent usage of these concepts between research-groups or even
different fields of research an unambiguous definition has to be provided for each concept. An
additional aim for GO is to keep the concepts (terms) of the ontology as organism-unspecific
as possible, allowing for an applicability across species .

2.1.2 The structure of GO

The GO originally has been divided into three main ontologies focusing on different properties
of the gene products:

1. Molecular Function: describes what a gene product does at a biochemical level, with-
out specifying localisation or the broader context of the function. E.g. ’ligase’ or ’ sugar-
transporter’ are valid concepts of Molecular Function ontology.

2. Biological Process:describes the broader biological context the individual gene prod-
ucts contribute to. A biological process could be perceived as the results of an (ordered)
sequence of molecular functions. E.g. ’mitosis’ or ’ cell differentiation’ are valid con-
cepts of Biological Process ontology.

3. Cellular Component: describes the cellular localisation of gene products. This ontol-
ogy encompasses concepts like ’membrane’ as well as ’chaperone complex’.

Although an ontology tries to capture all existing information in a certain field of research, GO
limits itself to these three aspects of gene properties. According to the consortium this subset
(of ontologies) has been chosen to ’initially focus on three precise terms that are of immediate
and exceptional utility and that span our various organismal domains’ [75].
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Figure 2.1: Schematic example of a directed acyclic graph (DAG).Every vertex (depicted as circles)
is connected to at least one other vertex, without any directed cycles. In contrast to hierarchies a
DAG allows for each vertex having more than one parental vertex, here vertex three and seven are
examples of this. The vertex having no parental vertex is called the root of the graph (here vertex 0).
Those vertices having no children vertices are called leaves of the graph (here vertices 6-8 ).

The concepts in the ontology are structured as a directed acyclic graph (DAG), which is a
directed graph with no directed circles. In other words, for every vertexV there is no non-
empty directed path starting and ending inV. In contrast to hierarchies DAGs allow for each
vertex having multiple parents, an example of which is provided in Figure 2.1.

In an ontology not only the concepts but also the relations connecting them are defined. Orig-
inally two types of relations have been defined in the GO, namely the ’is a’ and ’part of’
relations. The former is applicable if a concept is an instance of its father (e.g., ’fructose-
transporter-activity’ is a ’transporter-activity’), the latter is appropriate if the child represents
a component of the father (e.g. ’mitochondrium’ is part of ’cytoplasm’).

Each term (concept) in the ontology has a unique identifier, by which it is accessible. This
ID consists of ’GO:’ followed by seven digits, e.g. ’GO:0006260’ is the ID for the concept of
’DNA replication’. This accessibility by unique IDs fulfills a further requirement for interop-
erability between databases and research groups.

The complete ontology is available for download from [76]. Just recently a subset of the GO
called ’GO slim’ became available for download. These terms are selected to focus on more
general biological processes, omitting concepts describing very specific and detailed aspects
of gene products.

2.1.3 Annotation of gene products

The annotation of gene products with concepts is independent from the development and def-
inition of the concepts of the ontology. A central requirement to consistently annotate gene
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2.1 Gene Ontology

Evidence Code meaning

IMP inferred from mutant phenotype
IGI inferred from genetic interaction
IPI inferred from physical interaction
ISS inferred from sequence similarity
IDA inferred from direct assay
IEP inferred from expression pattern
IEA inferred from electronic annotation
TAS traceable author statement
NAS non-traceable author statement
ND no biological data available

RCA inferred from reviewed computational analysis
IC inferred by curator

Table 2.3: Evidence codes for annotation of gene products. Each annotation of a gene product has
to be provided with an evidence code, corresponding to the source of information the annotation is
based on. All available codes and their meaning are listed here.

products are the definitions provided with each concept. Since the annotation of gene products
is done and maintained to a large extend by the corresponding databases (e.g. SGD forS. cere-
visiae), the strict application of definitions, which sometimes is referred to as ’commitment to
the ontology’, is crucial.

For each annotation several pieces of information are mandatory: firstly a reference to the
source (publication, database or computational analysis), secondly information on what kind
of evidence the annotation is based has to be provided. This is done by choosing the appro-
priate term from a small controlled vocabulary (Table 2.3). Detailed definitions of these codes
are given in the GO website [77] to ensure consistent usage of the codes.

The annotation of a gene product to one of the three ontologies is independent of its annotation
to the other ontologies. Nevertheless, as it already has been noticed by the GO Consortium
[75] that relationships between the ontologies exist, especially between ’Molecular Function’
and ’Biological Process’. Recently tools have been developed that exploit these relationships
and thereby assist the annotation process [78].

2.1.4 Exploiting the ’true path rule’ - i.e. how to associate genes to GO
terms

One property of the GO is the so called ’true path rule’. This states that the parental vertices
of each individual vertex in the ontology have to be true for this vertex as well [75], i.e. all
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2 Integration of gene annotation data

parental concepts of any concept have to describe valid properties of the associated gene prod-
uct(s). In the annotation process the curator tries to capture the complete knowledge that is
available for any given gene product, such that gene products are annotated with the most spe-
cific concept possible. Even though this ensures that all information about the gene product is
captured, in many cases this leads to sparsely ’populated’ concepts. E.g. ’glutamate-cysteine
ligase activity’ is only associated to a single gene product inS. cerevisiaeand thereby ren-
dering the term next to unusable for functional interpretation in a larger context than a single
gene.

The flat files distributed by the GO consortium contain only these ’most-specific gene annota-
tions’. Amongst other information an association between a GO-accession ID (e.g. GO:006536,
for ’glutamate metabolism’ ) and an appropriate organism specific gene-identifier are pro-
vided. By using only this most specific association one would loose valuable information (i.e.
all the parental concepts being true for the associated gene product). Therefore I decided to
’blow up’ these flat files by annotating each gene with each parental term of its initial concept
as well. These father-child associations can be extracted directly by the SQL query provided
in 7.1. The increased amount of storage/memory used by these ’blown up’ annotations don’t
pose a problem. As a result the concept of ’glutamate metabolism’ is associated with 40
different gene products, compared to a single gene in the provided flat-file.

These expanded annotations exhibit improvements over the distributed flat files in two main
aspects: Firstly, they increase the number of associated gene products for many of the concepts
and thereby providing a better statistical basis for any conclusions drawn from the concepts.
Moreover only by these expanded associations more general terms become applicable at all
(as shown for ’glutamate metabolism’). Secondly it allows to perform an analysis at any given
level of abstraction or specificity (i.e. distance from root concept in the ontology) without
loosing any information (i.e. associated gene products).

2.2 Integration of gene annotation data in Correspondence
Analysis

2.2.1 Correspondence Analysis

Correspondence Analysis (CA) is a exploratory method to analyze two-way as well as multi-
way tables. CA can project the information captured in a data matrix into a lower dimensional
subspace, commonly 2- or 3-dimensional, with minimal loss of information. In contrast to
Principal Component Analysis (PCA), CA can represent row and column variables in the same
space, allowing to identify associations not only among rows or columns, but also between
them.

The following paragraph gives a concise overview of the calculations performed in a CA: Let
N denote the original data matrix, being composed ofI rows (here genes) andJ columns (here
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2.2 Integration of gene annotation data in Correspondence Analysis

hybridizations). The grand total of N is represented byn. The correspondence matrixP is
derived from dividing the elements ofN by the grand total:pi j = ni j /n. The row masses
of P are defined asr i = ∑ j pi j , i = 1, ..., I and analogously the column masses are defined
asc j = ∑i pi j , j = 1, ...,J. Based on this matrixS is computed bysi j = (pi j − r ic j)/

√
r ic j .

S is submitted to singular value decomposition:S= UΛVT . Λ is a diagonal matrix with
its diagonal elements being the singular values ofS. These are sorted in descending order
and denoted byλk. The resulting row-coordinates in the new subspace are calculated by:
fik = λkuik/

√
r i . The column coordinate(s) are calculated by:g jk = λkv jk/

√
c j . More details

on CA are provided in [79, 80].

2.2.2 Interpretation of Correspondence Analysis plots

Based on the original data matrix CA calculates theχ2- statistics as a measure of association
between rows and columns, whereas higher values indicate an existing association. In the
biplot the points are depicted as such that the sum of their distance to the centroid equals the
total interia of the matrix, which in turn is theχ2 divided by the grand total of the matrix (n).
The greater the distance between a point and the centroid, the higher is its row contribution to
theχ2- statistic, which means that the larger the distance, the larger is the difference between
that point’s profile and the average profile. In turn, if two rows exhibit a similar profile, they
will be plotted in close vicinity to each other.

Along with points representing the rows of the data matrix, CA visualizes the columns using
the same criterion. Commonly the row points are plotted along with the columns in the same
plot, i.e. a symmetric map where rows and columns are scaled in principal coordinates, as
opposed to an asymmetric map where rows are scaled in principal coordinates and columns
in standard coordinates (orvice versa). This implies that in case of symmetric maps the dis-
tance between row and column points as such, can not be used as a measure of association.
To facilitate interpretation of association among rows (genes) and columns (hybridizations),
the standard coordinates for each hybridization (or experimental condition) are plotted. These
coordinates equal a row profile with all its mass concentrated in a single column (i.e. hy-
bridization). These are artificial points that exhibit the strongest possible association of a row
to column, such that a combined display of these artificial points with ’real’ data would result
in a shrinkage of the real data to small area around the centroid. To circumvent this, lines are
drawn from the centroid to these standard coordinates which indicate the direction and thus
can be used as a guide lines to evaluate associations among rows and columns.

Figure 2.2 gives a CA plot of an artificial data set to demonstrate the interpretation. Here genes
are depicted as black dots, hybridizations as colored squares:

• Genes and hybridizations which have a similar profile are plotted in close vicinity to
each other. E.g. the three genes on the upper left hand side of the plot are both upregu-
lated in ’blue’.
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2 Integration of gene annotation data

Figure 2.2: CA plot of an artificial data set. Genes are depicted as black dots, hybridizations as
colored squares. Genes having similar expression profiles are plotted in close vicinity to each other.
If no significant change in the intensities is present, the genes are plotted near the center of the map
(i.e. the centroid). Genes being upregulated in the ’blue’ condition are plotted in the direction of the
blue squares. Genes being downregulated in blue (and up in red and green) they are plotted on the
opposite site of the centroid.

• Genes being particularly upregulated in one experimental conditions are plotted in the
direction of this condition.

• Genes being particularly down-regulated in an experimental condition are plotted on the
opposite site of the centroid of that experimental condition. The gene in the lower right
corner in the plot is down-regulated in blue and is thus plotted on the opposite site of
the centroid as the ’blue’ condition.

• Genes which do not exhibit any significant change in their expression intensities over the
experimental conditions are plotted near the center of plot (i.e. the centroid) - regardless
of the intensity level. In turn, this means that genes that show a significant change in
their expression profile are plotted at larger distances to the centroid, such that the genes
being plotted at the margins are the most differential ones.

One should keep in mind, however, that a projection of high dimensional data in a two-
dimensional subspace is always accompanied with loss of information (except for cases of
J <= 3, where all of the variance can be captured by two-dimensional maps). Thus it is
advisable to check the percentage of variance that is explained by the first two dimensions.
Moreover, since the percentages only are summary values for each dimension, the quality of
display for individual data points should be assessed as well the before the selection of genes
as candidate genes (see 2.2.3).
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2.2.3 Visualizing the quality of display in CA

In order to analyze high-dimensional data (such as microarray data) CA projects the data in
a lower dimensional plane such that the loss of information is minimal. For a more detailed
description on CA please refer to 2.2.1. This projection implies that some data points are
displayed well, whilst others are not. The overall information content of a particular two
dimensional plot can be assessed by the percentage of the total variance captured by the two
first principal axes. This does not provide any information on the quality of display for each
individual data point. This, however, is valuable information, especially when staring to build
biological hypothesis on the positioning of individual genes. Here one should ensure that the
gene’s position in the two dimensional plot is capturing a sufficient amount of that gene’s total
variance. To this end I implemented the display of this information in CA, by calculating the
percentage of variance that is explained by the first two principal axis for each data point (i.e.
gene).

The different levels of quality are categorized into three groups: genes of high quality (more
than 80% of their total variance explained), genes of low quality (less than 30% of their total
variance explained) and genes of medium display quality in between the previously defined
borders. The categorization is color-coded in the analysis plot, providing a grey-scale and
color mode. Whereas the grey-scale is useful when generating overview plots with large
numbers of displayed genes, while it is rather unfeasible to distinguish shades of grey on
smaller numbers of genes and thus the color-mode is preferable.

Figure 2.3 shows the dataset described in 2.4.1 additionally displaying the gene-by-gene qual-
ity information. In this setting the majority of annotations being plotted near the margins of
the plot is of high quality. This is not surprising since more than 90% of the total variance in
the dataset is explained by the first two axis. Some spots of minor quality of display can be
found near the centroid of the map.

The importance of displaying this information becomes more apparent, when data sets with
larger number of genes and, more importantly, larger numbers of experimental conditions are
analyzed. Figure 2.4 provides an example of a microarray study analyzing the developmental
process inDrosophila melanogaster[81]. In this analysis 14551 genes are displayed with
8 corresponding experimental conditions (i.e. developmental stages of Drosophila). In this
more complex setting two important points become apparent: First, compared to the previ-
ously shown data set, the overall number of the low-quality genes has increased dramatically.
Secondly the position of these low-quality genes is not restricted to a small area around the
centroid, but these can also be found near the margins of the plot and thus being potential
candidates for further analysis. These two points clearly demonstrate that the necessity to as-
sess the quality of display for each gene individually, before subsequent analysis or even the
development of a biological hypothesis based on the gene’s position in the CA plot.
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Figure 2.3: Quality of display for individual genes. CA can project the data points on a two di-
mensional plane such that the loss of information is minimal, nevertheless it is inevitable to have
information on the quality of display for individual data points. To this end the genes are catego-
rized into three groups: genes of high quality (more than 80% of total variance explained), genes
of low quality (less than 30% of the total variance explained) and genes of medium display quality
in between the previously defined borders. In Fig.(a) high quality is depicted by black, medium by
grey and low quality by light grey. In Fig. (b) the categories are depicted by different colors: high
quality genes are represented by green points, medium by grey and low quality by red points. The
data-set shown here is described in 2.4.1.
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Figure 2.4: Quality of display - Drosophila melanogasterdata-set. In these Figures the quality of
display for individual genes is coded in grey-scale (a) and three different colors (b). In Fig.(a) high
quality is depicted by black, medium by grey and low quality by light grey. In Fig. (b) the categories
are depicted by different colors: high quality genes are represented by green points, medium by
grey and low quality by red points. The data-set analyzes the developmental stages of Drosophila
melanogaster. The developmental process is reflected by the positioning of the experimental con-
ditions in a u-shape, which the embryonic stage being placed on the left site of the centroid (i.e.
colored in red) and the adult fly on the opposite site (i.e. colored in purple).
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2 Integration of gene annotation data

2.2.4 Gene annotation data in CA

In CA it is common practise to diminish the influence of identified outliers but plotting them
without mass (i.e. as supplementary points). Besides this application the addition of supple-
mentary variables to the analysis [82, 83] is a well known method to enhance the interpretabil-
ity of a CA plot. Moreover [84, 85, 86] have already shown the applicability of CA to analyze
Boolean matrices.

2.2.4.1 Boolean implementation

The association of gene products with annotations can be considered a Boolean variable: an-
notations for a specific gene product are either available or not. Accordingly, in this imple-
mentation, each annotation is represented by a 0/1-vector (the length of which is given by the
number of features on the array), being 1 for each gene that is associated to the particular
annotation (refer to Table 3.1 for an example of the encoding). These annotations vectors are
added as supplementary columns to the data-matrix. Since annotations are implemented sup-
plementary (here as supplementary columns), they do not contribute to the computation of the
principal axes (i.e. are plotted without mass [83, 87].

In the resulting plot (Fig. 2.5) the annotations (depicted as cyan squares) are predominant over
all other aspects of the plot. In case of Boolean vectors the individual elements can only be one
of two values. This results in maximal relative changes, which are displayed by CA. Thus the
annotations will be positioned in the outer margins of the plot. Compared to these ’artifical’
Boolean vectors the relative changes derived from the ’natural’ transcription intensities are
rather small and thus the corresponding points are concentrated in the center of the plot. As
can be seen in Fig. 2.5 the genes (grey dots) as well as the experimental conditions (colored
full squares) occupy only a rather small area in the center of the plot.

To assess the usefulness of integration of GO annotations, the displayed annotations are an-
alyzed in context of the experimental setting (for an in depth analysis refer to 2.4.1). Here
only two annotations (labeled with corresponding GO-IDs in 2.5) will be mentioned exem-
plarily : ’carbohydrate transporter activity’ (GO:0015144) and ’tricarboxylic acid cycle’
(GO:0006099). The first dimension of this CA plot distinguishes between experimental con-
dition(s) in whichS. cerevisiaewas grown in media containing glucose (left-hand side of the
plot) andS. cerevisiaegrown in media with no glucose (right-hand side). Since the selected an-
notations (GO:0015144, GO:0006099) are projected on opposite sides of the centroid (along
the first dimension), they can be considered as candidates for characterizing the difference
between these two main groups of experimental settings (i.e. glucose vs. non-glucose).

With the annotation ’carbohydrate transporter activity’ being placed on the left-hand side of
the plot, it is considered as being associated with conditions ofS. cerevisiaebeing grown in
the presence of glucose. This makes immediate sense, since glucose (if available) is used as
the major carbon source for yeast and thus needs to be transported in the cell [88]. In absence
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Figure 2.5: CA with GO annotations coded as Boolean columns.GO annotations are added to the
data matrix as supplementary columns and are displayed as cyan squares. Genes are marked as grey
dots, experiments as full squares, color coded according to the experimental conditions they belong
to (see legend in upper right corners). Numbers adjacent to the annotations (if provided) reflect the
GO-IDs (truncated of ’GO:’ and leading zeros). Representations for each condition are depicted in
standard coordinates as colored empty squares terminating the lines in the plot (e.g. the green square
terminating the green line denotes the standard coordinate of the condition with 0.1% glucose).
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of glucose, not only different carbon sources have to be used, but also a distinct set of path-
ways, like the tricarboxylic acid cycle (i.e. GO:0006099), is being activated for the utilization
of non-glucose energy sources. Moreover it is known [89] that the TCA-cycle is repressed
in the presence of glucose, being in concordance with the positioning of the corresponding
annotation in Figure 2.5.

Even though the resulting biplots are not optimal in the display of the combined information
(due to the predominance of the annotation in the plot), these results already demonstrate the
usefulness of combining gene annotation and transcription data. In Figure 2.5 GO annota-
tions plotted in the outer margins of the plot already provide a ’functional overview’ of the
biological processes being relevant in the experimental settings under investigation.

2.2.4.2 Intensity based implementation

In contrast to the Boolean approach (2.2.4.1), in which the genes have been perceived as being
’attributes of the annotations’, annotations can be considered as ’attributes of the genes’ as
well. Whilst in the Boolean approach the annotations are represented by a column-vector, here
they are represented by a row-vector, having a length equivalent to the number of experimental
conditions.

When representing annotations as row-vectors a Boolean encoding of the association between
genes and GO annotations is not possible and since there commonly exist more than one gene
per GO annotation, this information has to be integrated. Here Kurt Fellenberg developed
the idea to calculate ’representatives’ for each available annotation, based on the annotated
genes (i.e. their expression intensities). For each annotation, this representative expression
profile is calculated by the row-wise sum of the annotated genes: letxi j be the normalized
expression intensities for genei = 1..n, in condition j = 1..m; Ak ⊂ {1..n} denote the set of
genes annotated to GO term k.∑ik∈Ak

xik j is used as a representative gene profile for term
k. These vectors are added as supplementary rows to the data-matrix (for an example of the
encoding please refer to Table 3.1). As with supplementary columns, supplementary rows do
not contribute to the computation of the principal axes [83]. Summation of the expression
intensities of the annotated genes places the corresponding annotation in the center of gravity
of these genes, e.g. the position of annotation GO:0006099 in Fig. 2.18 represents the center
of gravity (centroid) of the annotated genes (tagged by red circles).

Figure 2.6 shows the same data set as in Figure 2.5 (Boolean implementation), besides that
the representatives of the annotations are added as supplementary rows and are depicted as
blue dots. In other words the positions of the genes, as well as the experimental conditions
are identical to those in Fig. 2.5. One obvious difference between the plots is the spread
of the annotations around the centroid. In the intensity-based approach the annotations are
more tightly clustered around the centroid. This can be also seen on the different scale that is
necessary to display the annotations: In the Boolean encoding 4 units of the first dimension
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Figure 2.6: CA with GO annotations coded as ’sum of genes’ rows.Annotations are added as
supplementary rows (after summing up the profiles of the annotated genes) to the data matrix and
are depicted as solid blue circles. Genes are marked as grey dots, experiments as full squares, color
coded according to the experimental conditions they belong to (see legend in upper right corners).
Representations for each condition are depicted in standard coordinates as colored empty squares
terminating the lines in the plot (e.g. the green square terminating the green line denotes the standard
coordinate of the condition with 0.1% glucose).
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compared to ~1.3 units in the intensity-based coding have to be displayed to account for the
spread of the annotations.

Moreover, this implementation allows to detect more characteristics in the data: For instance
the clearly distinguishable cluster of annotations in the lower left corner of Fig. 2.6, is not
distinguishable in the Boolean implementation (Fig.2.5) and thus probably would have been
missed. The annotations comprised in the cluster are listed in Table 2.7 and mainly describe
the biological process of transportation of sugar (i.e. glucose) into the cell. This clearly is
a prerequisite for the utilization of glucose as an energy source and thus the cluster provides
valuable information about the regulated processes.For an in-depth interpretation of the re-
sults refer to 2.4.1 or [90].

2.2.4.3 How to assign genes to a single, best-fitting GO term

The motivation to assign a gene to a single, unique GO term is mainly based on two objectives:
The first one being, that this reduction could be used as an annotation filter, reducing the
number of displayed annotations and thereby enhancing the interpretability of the CA-plot
(for detailed discussion of annotation filters please refer to 2.3). The second one is based on
the intention to analyze the annotations not only as supplementary information, but to give
them mass in the analysis (i.e. calculate the principal axes based on the annotations rather
than the genes). Here one has to ensure that each gene is accounted for the same number of
times in the data-matrix (e.g. a doubling of the complete data-matrix would be valid), which
holds not true in the provided files.

This is due to two reasons, one of which is the different number of annotations being initially
provided per gene. Genes that have been studied thoroughly are associated to a higher number
of annotations than others. The second reason being, that these annotations reside at varying
levels of the ontology, which leads to large discrepancies when exploiting the ’true-path-rule’
(see 2.1.4). For instance gene products being annotated with ’dihydropyridine-sensitive cal-
cium channel activity’ (GO:0015270) would be annotated with nine parental terms (this an-
notation has a distance of 9 (vertices) from the root-vertex of the ontology), whereas gene
products being annotated with ’chaperone regulator activity’ (GO:0030188) would be anno-
tated to only 3 parental terms. Thus genes annotated with the former annotation would be
represented three times more in the data matrix compared to those of the latter annotation.
More generally speaking, the larger the distance of the annotation term to the root-vertex, the
higher the number of representations of the annotated gene products. An immediate solu-
tion for the latter reason would be to only use the annotation-files as distributed by the GO
consortium (http://www.geneontology.org/GO.current.annotations.shtml). In these, the gene
products are only annotated with the most specific annotation term, reflecting the current state
of knowledge.

This approach however, besides not fully solving the problem, poses another difficulty: as
already mentioned in 2.1.4, the utilization of the most specific annotation terms available, will
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often result in terms being associated to only one or two genes. This low number is insufficient
to base any statistically sound conclusions on it. Moreover since the concepts are commonly
very specific - to capture all available information - they are not useful for analyzing the data
from a more abstract point of view. However, this generalization is of particular importance
for the functional interpretation of microarray data, since complex phenotypes often are not
appropriately summarized by these specific concepts. Furthermore researches are commonly
interested in broader biological process /objectives that are effected in the chosen experimental
setting.

In order to represent each feature the same number of times two options arise: Firstly, one
could determine the highest number of occurrences for a gene and then represent each gene
as many times (this would be equivalent of multiplying the whole matrix with this factor).
Secondly, Stefan Winter developed the idea to reduce the number of annotations for a each
gene to a single one. I decided to follow the second approach mainly for three reasons. First,
multiplying the data matrix with the largest factor, will blow up the matrix to an extent that
makes it computationally unfeasible. Additionally a multiplication would not solve the prob-
lem how to distribute the genes to their associated annotation term. If a gene is annotated
with a small number of concepts, the high number of repetitions of this gene would be con-
centrated to these few annotations and outweigh the influence of a gene being annotated with
larger numbers of concepts. Finally, a reduction in the number of displayed annotations will
increase the interpretability of the plot, by circumventing a massive overlay of annotation, as
seen in Figure 2.6.

The assignment of gene products to single annotation term is a reduction of information. It
is obvious that an arbitrary selection of unique assignments will most likely not reduce the
information in a sensible way. Hence it would be preferable to base these unique assignment
on a criterion which can identify annotations that are of potential importance in the selected
experimental setting. The comparison of different types of measures that could be used to
achieve this goal and the selection of the best suitable is discussed in depth in 2.3.2.

As a result use the mean of all pairwise Speaman’s correlation coefficients of the annotated
genes of a concept to calculate as a measure, based on which the unique assignment of genes
to a concept can be done.

The most straightforward approach in selection of the best-fitting association is an iterative
process, which is sketched in Figure 2.4 on the next page. In the initial step a filter score (in
this case mean of pairwise correlation coefficients, 3rd column of Table 2.4) for all annotations
is calculated. At this stage, a gene can be annotated with multiple GO terms, as can be seen
in the first column of the same Table. Here gene ’a’ is annotated with the IDs ’23’ , ’54’
and ’346’ (first, second and last row). In a second step the annotation with the highest filter
score is selected, in this case annotation ’23’ and the gene products being annotated with this
term are now uniquely associated to this annotation. In other words, the genes ’a b c d e’ are
subtracted from all other annotations. For example, in case of gene ’a’, it would be subtracted
from annotations ’54’ and ’346’.
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Gene products Annotation - ID Filter score

a b c d e 23 0.98
a c u z k 54 0.95
i o l j t 6423 0.91
s j f d b 53547 0.89

l o w m e 45375 0.86
f i a u c l k 346 0.85

Table 2.4: Unique assignment of gene products to the best fitting GO term.The left-hand column
lists the gene products associated to a specific annotation-ID (listed in the middle column). The
individual genes are here exemplarily denoted by lower-case characters, i.e. the genes ’a, b ,c, d and
e’ are annotated with the annotation having ID 23 (first row). The last column represents the chosen
filter-criterion, based on which the association is done.

The subsequent step is the recalculation of the filter score. This is necessary since the set
of annotated genes has changed for some annotations due to the removal of the genes being
associated to the annotation having the largest score value. For example in Table 2.4, after the
removal of the first row, the score for all of the remaining annotations (except ’6423’) has to be
recalculated, because each annotation’s set of genes has been altered (i.e. reduced). Again the
annotation having highest score is selected and if the score is above a user defined threshold
the gene products are uniquely associated to this annotation and the procedure starts from the
beginning. If the score is below the threshold, the process terminates. The overall work flow
is sketched in Figure 2.7.

This unique assignment has been applied to theS. cerevisiaedataset described in 2.4.1. Here
only genes that have a maximal normalized intensity value equal to or larger than 10 in any
experimental condition (intensity filter) were submitted to analysis, resulting in a total of 2898
genes. Based on this set of genes 1814 GO annotations are comprised of two or more genes.
After the unique assignment of genes to GOs (with a threshold of 0.7) this set of annotations
was reduced to 118 annotations with a total of 257 different genes - a comprehensive list of
resulting annotations is given in 7.6.

Figure 2.8(a) shows the positions of the original set of annotations (depicted as grey crosses)
as supplementary rows and the unique set (blue dots) with mass. Besides having been reduced
in numbers and thus enhancing the clarity of the plot the average distance to the centroid of
the unique annotations tends to be larger as compared to the original set. To demonstrate the
change in the position between unique and original set Figure 2.8(b) shows only those anno-
tations being present in both sets. For reasons of clarity the change of position is highlighted
by a line connecting the annotation from both sets for a small subset of annotations.
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Figure 2.7: Work flow for unique assignment of gene products to annotations. In the initial step the
selection score is calculated, from which the annotation with the largest score is chosen. The gene
products annotated with this term are uniquely associated to it, by subtracting (i.e. deleting) them
from all remaining annotations. The selected annotation is removed from the set and (in combination
with the annotated genes) stored. The scores values of the annotations whose set of annotated genes
has been altered, is recalculated in the subsequent step. From this point on, again the annotation
with the highest score is selected and if the score is above a user-defined threshold, the next unique
assignment is created.
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Figure 2.8: Unique assignment of genes to GOs.In all plots the annotations based on the unique
assignment of genes are depicted as blue dots. In Figures a-b the grey crosses represent the original
set of annotations, whereas in (c) they represent the unique set of GOs plotted as supplementary rows
in contrast to GOs with mass (blue dots). The unique assignment results in 118 distinct annotations,
these are plotted (with mass) in (a), where all the original annotations are plotted as supplementary
rows. Figure (b) shows the same set, with the original set now being reduced to those annotations
being present in the unique set as well. Figure (c) shows the difference in position when plotting the
unique set of GOs with mass (blue dots) and as supplementary rows (grey circles). For clarity genes
and experimental conditions are not plotted.
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2.2 Integration of gene annotation data in Correspondence Analysis

2.2.4.4 Data as supplementary points vs. points with mass

The display of additional information in correspondence analysis is commonly done by adding
this data as supplementary points. These data points, in contrast to data points ’with mass’,
are not relevant in the selection of the optimal subspace, in which the data is going to be pro-
jected. In other words, commonly the subspace is calculated based on the expression profiles
of the filtered genes such that these are displayed in an optimal way. In order to display the
annotations in an optimal way these can be plotted with mass as well.

Here I analyzed theS. cerevisiaeGlucose-data set described in detail in 2.4.1. Initially, to
account for multiple occurrences of genes in the annotation files, genes were assigned to a
single, best-fitting annotation (as described in 2.2.4.3), resulting in 118 different annotations
(listed in Table 7.2) associated to 257 distinct genes. Otherwise the data set is identical to the
one presented in Figure 2.6.

Figure 2.8(c) shows the resulting CA plot when this unique set of annotations is plotted with
mass (depicted as blue dots). In accordance with 2.2.4.2, each annotation is represented by a
row-profile which corresponds to the row-wise sum of the expression-profiles of the annotated
genes. In order to asses the impact on the annotation’s position, when plotting them with mass,
the positions of the same annotations without mass are depicted by grey crosses in the same
plot. Here no major difference in the resulting positions is visible. Even though none of the
absolute positions are identical, the distances and the ordering between them, i.e. their relative
positions with respect to each other, has not changed for the majority of annotations. Here the
positions of the annotations with mass are shifted towards larger positive values along the first
dimension.

2.2.4.5 Representation of a single gene by multiple features

The algorithms discussed here are integrated in the M-CHiPS analysis system [33]. This uses
a database for the storage of the transcription data along with various data for experimental-
and gene-annotations. To be able to analyze this data the individual spots are are associated to
unique numerical ids. Since in the M-CHiPS-system the most basic point of reference that is
used, is the location of the spotted material in the original microwell plates, each position in
the plate can be identified (and accessed) via an unique id. This non-gene centered approach
allows for easy access of transcription intensities and also could be used to relatively easy
retrieve positional information (with respect to the position in the plates) and identify technical
bias of the transcription intensities that could arrive from, for instance, dried out wells in the
outer regions of the spotting-plate. Nevertheless it is not possible to immediately identify
spots/features on the array that represent the same gene. This mainly is due to two reasons:
First of all the exact same material (e.g. PCR-product or oligo) is contained in multiple wells
of the spotting plates. Or, secondly, the same gene could be represented by different PCR
products or oligos. E.g. some spots may represent the complete sequence of the gene, whilst
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2 Integration of gene annotation data

others only part of the gene, or some spots may even represent non-overlapping sequences of
the same gene.

For conventional analysis, this does not pose a major problem, since these genes will then
represented by multiple points in the analysis. Ideally these points should be plotted in close
vicinity to each other, i.e. exhibiting similar expression profiles. If this being the case, they
even can serve to increase the confidence in the observed profile. If a grouping or categoriza-
tion based on genes is applied however, this multiplicity turns out to be problematic.

As defined in 2.2.4.2 for each annotation a representative row profile is calculated by summing
up the expression profiles of the annotated genes, more precisely it is the sum of annotated
features. Since the annotation data naturally is gene-centered data, the summation based on
the features is not optimal. Given the situation that a gene is represented by multiple features
on the array multiple expression profiles of the same gene will contribute to the representative.
Speaking in terms of CA, this gene will have a higher mass than the others. Due to this the
position of the representative in the plot can be unduly strong shifted to the ’overrepresented’
gene. This effect is especially profound if the overrepresented gene’s profile strongly differs
from the profiles of the other annotated genes.

To eliminate this effect, the transcription profiles of the genes being represented by multiple
features can be summarized as well. A prerequisite for this is to have an identifier available in
the database, which allows the identification of these candidates. Commonly the identifier that
is used to create the association of the features to GO annotations can be utilized, in case of
S. cerevisiaethis would be the systematic name (e.g. ’YPR173C’) or in case ofhomo sapiens
the RefSeq-IDs could be used (e.g. ’NM_002746’).

Having identified multiple representations of the same gene on the array I summarize the
gene-wise median of the expression profiles. Figure 2.9 shows the difference in position of
annotations, when plotting them with a) not accounting for multiplicity (depicted by purple
dots) and b) calculating the median (depicted by blue dots).

2.3 Filtering of GO annotation terms

In case of theS. cerevisiaedata set (2.4.1) 98.9% of the genes on the yeast-array could be as-
signed to at least one GO annotation. While in the original association file the most descriptive
annotation (having the greatest depth in the tree) is recorded, I also assigned all father-nodes
to the corresponding gene (see 2.1.4), resulting in a data set of 156674 tuples containing 3138
different annotations. These numbers alone strongly suggest the use of some filter-criteria as
well as the fact that only very few of these annotations are descriptive for a condition and/or a
gene-cluster and are thus worth to be judged by eye.

In an initial analysis of microarray data in context of gene-annotations however, it is not ad-
visably to drastically reduce the amount of available information by only selecting a small
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Figure 2.9: CA plot showing the difference in taking mean of doubles to the original position.The
plotted dataset is described in 2.5.4.2. Here the focus is on the change in position if genes that are
represented by multiple clones on the array are accounted for as a.) individual rows (purple circles)
or b.) are summarized by calculating the gene-wise median (blue circles). Points representing the
same TF are connected via a black line. The rest of the figure follows the outline of the previews
ones, i.e. genes are represented by grey dots, experimental conditions by colored squares.
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2 Integration of gene annotation data

Figure 2.10: No filter for GO annotations applied. Here the same data as in Fig. 2.6 is plotted,
except that no annotation filter has been applied. This means, in this plot all available annotations
for this set of genes are shown, summing up to 2797 different annotations.

subset of annotations. The number of available annotations is mainly dependent on two vari-
ables: The first one being the knowledge about the organism that is captured by the ontology
and the second one being the number of genes spotted on the array, or more specifically, the
genes submitted to the analysis. In general an analysis without any kind of annotation filter
is not advisable either. To demonstrate this, the same data set as in Fig. 2.6 is plotted, now
displaying all annotations that could be associated to the genes on the array (Fig. 2.10).

The number of displayed annotations sums up to 2797, transforming the center of the plot to
blue mass, due to the massive overlay of annotations. Noticeably the number of annotations
being displayed near the margins of the plot is larger, as compared to Fig. 2.6 on page 23,
potentially rendering the former plot ’more interesting’. Here one has to realize that the ma-
jority of the annotations placed in the outer regions are associated to small numbers of genes,
commonly between one and three. If the development of biological hypothesis about the ex-
perimental setting is indented, one has to be cautious to base any conclusion on the position
of annotations being associated to low numbers of genes. With these low numbers it is hard
to statistically validate, whether there the calculated position for the annotation is relevant in
the experimental context, or the small number of genes exhibits these similar profile by mere
chance.

From this follows that filtering of annotations is inevitable, not only to limit the analysis to
annotations comprised of a minimal number of genes, in order to increase the confidence in
the observed relations, but also to reduce the overall number of annotations down to a level
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that is feasible to be analyzed by eye.

2.3.1 Based on ontological characteristics

The measures that can be used to decrease the number of annotations can be roughly divided
in two groups: criteria based on features of the annotated genes (see 2.3.2) and characteristics
of the underlying ontology, which will be discussed in this section.

The structure of the ontology, i.e. the separation into three main sub-trees (namely ’Molecular
Function’, Biological Process’ and ’Cellular Component’) offers the most intuitive starting
point for filtering of annotations. By removing one of these sub-trees the number of anno-
tations can be reduced not only very effectively, but also in a sensible way, since in some
experimental settings the main focus of the analysis might be on the localisation of the gene
products (i.e. only the children from the term ’cellular component’ will be analyzed), whilst
in other settings this is of only minor importance, and thus only the two other sub-trees are
submitted to the analysis.

Another way to restrict the numbers of annotations, is to provide a user defined list of terms
that are considered interesting in the given context. Here two ways are possible, one that
could be referred to as ’opt-out’, where a list of annotations not to be displayed in the analysis
is provided and another method, ’opt-in’, in which a list of annotations which have to be
displayed is provided. In the practical situations the latter approach will be the most common
one. While this approach commonly generates very well interpretable plots, with low number
of annotations, it highly depends on the knowledge and diligence of the scientist assembling
this list. Moreover the probability of discovering completely novel relationships between
annotations and experimental conditions is rather low, since in these unexpected annotations
will very likely not be part of the assembled list. Hence this way should not solely be used to
reduce the number of annotations, but rather as a way of positively filtering the annotations,
i.e. the user defined set of annotations is always added to the analysis, even though they might
not fulfill other filter-criteria.

A further criterion is the level of specificity (or the other way round, level of generalization)
an annotation should have in the ontology, in order to be displayed in analysis. This level is
roughly reflected by the distance of a term to the root node of the ontology. In general it holds
true that the higher the distance, the more specific, i.e. the more information is captured by
the term. It should be realized however, that the distance measure can not be used to quantify
the amount of information. So it is not valid to state that a term with a distance of four from
the root node carries half the amount of information compared to a node of distance eight.
In some cases the information content that is captured by concepts at the same level of the
ontology can differ drastically, for example: ’glutathione dehydrogenase (ascorbate) activity’
(GO:0045174) and ’enzyme activator activity’ (GO:0008047) both have a distance of four to
the root node, but the specificity (i.e. information content) of the terms clearly is not the same.
One major factor for the specificity of terms, or in other words, the depth of the ontology in
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Figure 2.11: Ordering of evidence codes based on quality of annotation.Here a proposed ordering
of the evidence codes is given. With TAS providing the most trustworthy annotations and at the
other end of the scale IEA, being the most unreliable form of annotation.

specific areas largely depends on the amount of knowledge that is available in this field. If for
a specific area a lot of research has been conducted, the depth of this subsection will be larger
and the annotations tend to be more complex.

Yet another approach for the selection of annotations is, not only to define single annotations
that should be integrated in the analysis, but also incorporate their parental- (or child-) terms
as well. This can be fairly easily done by the query in 7.1. Extracting the parental notes is
commonly used when very specific information about the gene product is available and the
dataset is to be analyzed with respect to some broader concepts. Extraction of child-terms is
applied when some general ideas about the effected mechanism (for instance pathways) exists,
but with insufficient detail. This specification implies that this information is provided in the
gene annotation files.

Additionally the evidence codes, that are provided with each annotation of a gene product
provide valuable information for filtering. These codes represent the quality/reliability of
the given annotation. Hence annotations based on ’traceable author statement’ (TAS) can be
considered to be more reliable as compared to ’inferred from electronic annotation’ (IEA),
to compare the two most extreme codes. Restricting the displayed annotations to those with
TAS-code will increase the reliability of annotations significantly, but on the other hand the
number of annotations that are displayed are so small (an again with only low numbers of
annotated genes as well), that the generation of new hypothesis will become difficult. Fig.
2.11 provides a proposed rough ordering of the evidence codes based on the underlying quality
of annotation, and could be used to define a compromise between reliability of annotation and
sufficient numbers of annotation and genes in the analysis. Please note that the evidence
codes in the corresponding user-interface (Fig. 7.2 on page 100) are listed in descending order
of quality.
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2.3 Filtering of GO annotation terms

2.3.2 Based on gene characteristics

One fairly obvious but nevertheless crucial filter is the number of annotated gene products
per annotation term. By this the minimal and maximal numbers of annotated genes can be
defined, in order to qualify it for the display in the CA plot. The upper boundary (i.e. maximal
number of genes) is suitable to discard annotations that are not very likely to provide any
functional information for the experimental setting. That is, terms annotated with very high
numbers of genes (e.g. a couple of hundreds) commonly refer to very general concepts like
’development’ or ’ response to stimulus’. These terms carry only little useful information for
the functional interpretation and thus are futile to be displayed in the CA map. Moreover, as
described in 2.2.1 on page 14, in CA points being closest to the margins of the plot, are the
most ’interesting’ ones (i.e. highest difference to average profile). However, in the majority of
cases, annotations with large number of genes will be positioned near the centroid of the map
- marking them as non-interesting for further analysis.

Yet another gene-characteristic could be used for filtering: one can argue that annotations,
whose annotated genes show a homogeneous expression profile are of particular interest/relevance
in the given experimental context and thus should be further analyzed. One measure that ac-
counts for this characteristic is the correlation coefficient. The application of this and subse-
quent testing is described in detail in 2.3.3.2.

2.3.3 Receiver Operating Characteristic curves to evaluate filter
performance

Having multiple filters for the annotations at hand, one needs to evaluate their performance, in
order to find a set of standard parameters (or even a combination of different filter measure),
that could be applied to the data. A standard methodology to evaluate performance of classi-
fiers are ROC curves. ROC curves have been developed in the 1950 when trying to identify
true signals in the highly noisy radio signals. Nowadays it has become a common method
in the medical field to evaluate the performance of different cut-off values in diagnostic tests
[91, 92].

ROC-curves allow to assess the accuracy of predictions, e.g. in medical tests, a threshold has
to be chosen above (or below) which the patient is considered diseased. In ideal situations
the two populations (i.e. diseased and healthy) could be distinguished at a certain threshold
(or range of thresholds). In real-life situations this commonly is not the case, since there is
an overlap between both populations at a certain value-range of cut-offs (Fig. 2.12). In the
most simple case ROC curves assess the accuracy of a binary predictor. For clarity all possible
outcomes for such a binary predictor are listed in 2.5. Some cases will be correctly identified
as positives (True Positive, TP), whereas other positive cases will falsely classified negative
(False Negative, FN) - due to the overlap of populations (Fig. 2.12). Accordingly, cases being
negative, can be classified as negative (True Negative, TN) or positive (False Positive, FP). In
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Figure 2.12: Distribution of populations in a binary system. Given the situation that patients have
to be classified as diseased or normal based on a test. In the ideal situation there would be a cut-off
value (or a range of values) that clearly separates both populations. In real-life situations however it
is common to observe an overlap of both populations in a certain cut-off range. Figure reproduced
from [93]

case of binary predictors the effects on true (or false) positives and true (or false) negative are
commonly reported separately. This accounts for the fact, that the consequences of missing a
positive (i.e. false negative) might have different impact than classifying a negative as positive
(i.e. false positive).

Thus the values can reported as false positive and false negative rates. Whereas the false
positive rate (FPR) is calculated byFPR= FP

FP+TN and the false negative rate (FNR) byFNR=
FN

FN+TP. The rates of the correctly classified samples can be obtained accordingly: the true
positive rate (TPR) byTPR= 1−FPR, or TPR= TP

TP+FN and the true negative rate (TNR) by
TNR= 1−FNR, or TNR= TN

TN+FP.

In literature the TPR is often referred to assensitivity, i.e. the probability that a case with its
true class being positive will be correctly identified as positive out off all cases being classified
positive [94]. Whereas the TNR is often referred to as thespecificity, i.e. the probability that a
case with its true class being negative will be correctly identified as negative out off all cases
being classified negative. As already mentioned this is easily calculated for a binary predic-
tor, but becomes is not possible for a continuous predictor as for instance, the homogeneity
criterion (i.e. correlation coefficient) for the GO annotations. To assess the performance of a
continuous predictor, it has to be transformed to binary form by analysing the results at differ-
ent thresholds. The performance is commonly evaluated based on the resulting sensitivity and
specificity. This can be done by calculating and displaying these values for individual thresh-
olds separately. This however, becomes less and less informative with increasing numbers of
analyzed thresholds. ROC curves allow the overall performance of a classifier by representing
the results in a 2 dimensional plot (Fig. 2.13).

Typically ROC curves display the trade off between false negative and false positive rates
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Figure 2.13: ROC curve with artificial data. The solid line depicts a ROC curve derived from artifi-
cial data. The dashed line represents the ROC curve for a random classifier, whereas the dash-dotted
line is derived from a classifier which performs worse than random. In these cases it is advisable to
inverse the prediction of the classifier, which (in this case) would result in the solid line.

for different cut-off values. The resulting curve always goes through two points (0,0) and
(1,1). Whereas (0,0) represents the state where no case is classified as being positive and (1,1)
represents the cut-off at which every possible case is considered as being positive. This means
that on the one hand the classifier identifies all true positive cases correctly, but on the other
hand all true negative cases are incorrectly classified. This means the sensitivity is 1 (all true
positive cases are classified positive) and the specificity 0 because all true negative cases have
been classified as positive. Since the x-axis displays 1-specificity this case will result in the
coordinates (1,1).

A random classifier would generate a curve close to the diagonal connecting (0,0) and (1,1)
(e.g. dashed line in Fig. 2.13). In some cases the resulting curve of a classifier is beneath
the diagonal, this indicates that the performance is worse than random (dash-dotted line in the
same Figure). Here an inversion of the prediction will result in an above average classifier.

The quality of a predictor can be assessed from the curve. The perfect predictor would be
represented by a single point in the plot, namely (1,0). According to this, the steeper the
slope, the better the predictor. This behaviour can be summarized by calculating the area
under the curve (AUC). For an ideal classifier the AUC will be 1 (having 100% sensitivity and
100% specificity), for a random classifier the AUC is 0.5 (dashed line in Fig. 2.13). Any ROC
analysis is based on a set of samples for which the true state is known, sometimes refereed
to as the ’golden standard’, the definition of this for the gene annotations is described in the
following section(2.3.3.1).
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True Predicted class
class p n total

P True Positive (TP) False Negative (FN) TP+FN
N False Positive (FP) True Negative (TN) FP+TN

Total TP+FP FN+TN

Table 2.5: Comprehensive overview of outcomes for a binary predictor.When using a (binary)
classifier for the prediction of classes the following results are possible: Cases that are correctly
identified as positives (True Positive, TP), whereas other positive cases will falsely classified neg-
ative (False Negative, FN). Accordingly, cases being negative, can be classified as negative (True
Negative, TN) or positive (False Positive, FP).

2.3.3.1 Definition of ’standard annotations’

In order to perform a ROC analysis it is necessary to have a ’golden standard’, i.e. to have
cases for which the true class is known (see Table 2.5). In case of the GO annotations, a set of
’standard annotations’ has been defined for theS. cerevisiaedata set (2.4.1).

As explained in 2.3.3.2 the homogeneity of the expression profiles of the annotated genes can
be used as a filter criterion. Based on this, a set of 65 annotations has been manually selected
and classified into two groups, namely ’homogeneous’ (i.e. positive) and ’non-homogeneous’
profiles (i.e. negative). In Figure 2.14 examples of the expression profiles for these different
groups are provided. In the selection of the standard annotations care was taken not to over-
represent annotations with small numbers of annotated genes in the positive groups.

2.3.3.2 Identification of optimal measure of homogeneity

As a measure for similarity in expression I used the absolute values of all pairwise correlation
coefficients (R) of the genes associated to one GO-Annotation. To calculate R the condition-
medians of repeated hybridizations for one experimental condition have been used. Since I
consider an annotation containing anti-correlated genes to be descriptive as well, I work with
the absolute values of R. The pairwise R for each annotation were condensed to one number
by calculating the minimum, median, 75percentile and percentage of genes with R > 0.8 .

The overall goal for the annotation filter is to reduce the number of displayed annotations to a
set which is feasible to analyze/interpret manually. One possible criteria on which annotations
can be selected is the homogeneity of the expression-profiles of the annotated genes. This
filter combined with an appropriate gene-filter (e.g. one that selects for differentially expressed
genes) will very likely select annotations that are relevant in the given experimental context. A
further benefit of a homogeneity filter is that annotations being too unspecific will very likely
be filtered out, due to the comparably large number of annotated genes.
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Figure 2.14: Examples for the ’Golden Standard’ in ROC analysis.Figure (a)-(c) show examples
of annotations that have been categorized as having homogeneous expression-profiles (i.e. they are
classified as positive). Whilst the classification for(a) is obvious, the increasing number of genes
in (b) and (c) make make it more and more difficult to make a clear call. (d) shows an example of
an annotation that has been classified as non-homogeneous (i.e negative). The x-axis represents the
different experimental conditions, whereas the y-axis depicts the normalized intensities.
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To evaluate the homogeneity of expression profiles correlation coefficients are a useful method.
Here, the most common one is Pearson’s Correlation Coefficient, which basically represents
the quality of a least squares fit to the data. However the following assumptions have to be
met to apply this correlation coefficient:

• linear relationship between x and y

• continuous random variables

• both variables must be normally distributed

• x and y must be independent of each other.

In the case of microarray data the intensity distribution commonly is heavily skewed to the
right [95, 96], thus not meeting the assumption of an normal distribution. Moreover in the
case of GO annotations it is questionable if the genes annotated to the same GO term can be
considered as being independent of each other.

To circumvent these problems non-parametric correlation coefficients can be used to compute
a measure for the strength of association between the annotated genes. The most prominent
non-parametric coefficient is ’Spearman’s Rank Correlation Coefficient’ , which is defined by:

ρ = 1−6∑ d2

N(N2−1)

, where d represents the difference in statistical ranks of the two variables (i.e. genes) and
N is the number of pairs of values. The independence from the assumption of normality
distribution is achieved by calculating the correlation not on the raw numbers (i.e. intensities)
but on the ranks. Another correlation coefficient that is based on the ranks, is the one from
Kendall (τ), which is defined by:

τ =
2p

1
2n(n−1)

−1

, where n represents the number of pairs and p the sum over all items. In the following the
performance of both coefficients based on the previously defined ’golden standard’ has been
compared.

Since the correlation coefficient measures the association between two variables (i.e. here two
genes), multiple values are generated for a annotation having more than two genes. To be
able to apply an annotation filter a single descriptive value for each of the annotations has to
be provided. Again there are multiple ways (e.g. mean, median, minimal, percentiles, etc.)
by which to ’summarize’ the pairwise correlation coefficients of the genes. Since there is
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Area under curve (AUC)
mean median minimal 75 percentile

Kendall’sτ 0.80 0.76 0.19 0.71
Spearman’sρ 0.78 0.78 0.19 0.71

Table 2.6: Area under curve for different correlation coefficients. Here the performance of the
different correlation coefficients and the different ways to summarize them is evaluated based on the
’area under curve’. This area is calculated based on the trapezoid method.

no best choice that could be deducted from theoretical considerations, the different ways for
summarizing have been compared by ROC analysis as well.

To assess the performance of the filters quantitatively the corresponding AUCs have been
calculated and are given in Table 2.6. One obvious fact is that taking the minimal coefficient
out off all pairwise will result in a poor classification. The remaining methods are in the
same range whilst mean and median slightly outperform the 75 percentile. For clarity the
ROC curves of taking the mean and median of both Rs are plotted in Figure 2.15. Here, the
performance of both Rs summarized by the mean differs only marginally, with both showing
adequate performance.

While the AUC is providing a measure for the performance of the classifier over the complete
range of filter values, the value range commonly used for correlation coefficients is between
0.6 and 1. Thus the performance of the different summarizing methods at fixed cut-offs has
been plotted in Figure 2.16.

Again the performance of both correlation coefficients is highly similar, the overall highest
sensitivity, however, is accomplished when using Spearman’sρ. Moreover at high cut-off val-
ues Spearman’sρ outperforms Kendall’sτ in terms of sensitivity while showing the specificity.
Thus, the mean of all pairwiseρ’s is being used in all subsequent analysis as the measure for
homogeneity of the annotated gene-profiles.

2.4 Biological validation of algorithms

Whilst the development of new methodology to analyze high-throughput data could be entirely
restricted to theoretical considerations and testing on artificial data, it is crucial to evaluate the
performance in the context of ’real’ biological data. To this end I applied the integration of
annotation data to various datasets, two of which are analyzed here exemplarily. The initial
evaluation will be done on data from the model organismSaccharomyces cerevisiaein an
experimental setup which investigates well known pathways (2.4.1). In a subsequent step,
the method is applied to a more complex organism and experimental setting, by analyzing
different tumor samples fromhomo sapiens(2.4.2),these are results are also available from
[90].
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Figure 2.15: ROC analysis of correlation coefficients.Here the corresponding ROC curves for the
different Rs are shown. Whereas the in one setting the pairwise Rs have been summarized by calcu-
lating the mean (blue and red line), in the other by the median (cyan and dark green line). The light
green diagonal in the plot depicts the curve for a random classifier.

Figure 2.16: Performance of filter parameters at fixed cut-off values. Here specificity and 1-
sensitivity values are plotted for practically relevant thresholds for correlation coefficients (e.g 0.6 -
0.9).
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2.4 Biological validation of algorithms

Prior to any analysis shown in the following a general filtering of annotations was performed:
the root term (Gene Ontology) and the three main category terms (biological process, cellular
component and molecular function) were deleted, as well as the annotation ’unknown’ from
each category. Since these terms do not carry any useful information for functional interpre-
tation of gene-clusters or experimental conditions plotting these would be futile.

2.4.1 Saccharomyces cerevisiae - glucose data set

2.4.1.1 Experimental setup

To demonstrate the applicability of this approach I analyze a dataset of the model-organism
Saccharomyces cerevisiaefocusing on the well-studied glucose pathway [88]. The relevant
data is publicly available from [97].

In this experiment, the arrays consist of 6103 yeast-genes [98]. Mapping of the genes to GO
terms was carried out using the systematic gene-name (e.g.: YBR166C) and the common name
(TYR1) in the association file provided by SGD. A total of 3060 distinct GO annotations was
found, which annotate 5506 (90.22%) genes on the array. In Figures 2.5 and 2.6 only genes
that have a maximal normalized intensity value equal to or larger than 10 in any experimental
condition (intensity filter), resulting in a total of 2898 genes, were submitted to analysis.

In this experimental settingSaccharomyces cerevisiaehad been grown in media containing
different amounts of glucose (0%, 0.01%, 0.1%, 1%). For each of these conditions, RNA
had been isolated, processed and hybridized to microarrays [98]. The data had been normal-
ized and filtered [99, 87] such that the data-matrix being submitted to CA holds normalized
transcription intensities, rows depicting the genes, columns the experimental conditions. Con-
ditions are represented by the gene-wise median of repeatedly performed hybridizations. The
gene annotations were filtered such that only GO terms containing a minimum of 5 genes are
displayed in analysis.

2.4.1.2 Intensity based coding

The resulting CA plot of this dataset is provided in Figure 2.5 on page 21. The experimental
conditions are ordered in a clockwise orientation following increasing levels of glucose. The
condition with no glucose is the only one on the right hand side of the centroid, in other words
the x-axis (1st principal axis, which accounts for the largest variance in the data set) explains
the separation of glucose from non-glucose conditions. This implies, that the difference in
expression profiles between glucose vs. non-glucose states is larger than the changes due to
varying concentrations of glucose. This is in agreement with current knowledge, since in the
absence of glucose as an energy source, different carbon sources have to be accessed for the
utilization of energy, resulting in major changes of activated pathways.
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2 Integration of gene annotation data

GO accession (Main Category) GO term

GO:0008643 (P) carbohydrate transport
GO:0015749 (P) monosaccharide transport
GO:0008645 (P) hexose transport
GO:0015144 (F) carbohydrate transporter activity
GO:0015145 (F) monosaccharide transporter activity
GO:0015149 (F) hexose transporter activity
GO:0015578 (F) mannose transporter activity
GO:0005353 (F) fructose transporter activity
GO:0005355 (F) glucose transporter activity

Table 2.7: GO annotations forming the cluster in Fig. 2.6.Cluster members are listed with their
corresponding GO accession id, main category (P= Biological Process, F= Molecular Function) and
GO term. These annotations are linked to a set of 13 genes, all of which belong to more than one
annotation of the cluster (Table 2.8).

With the experimental conditions being placed at sensible positions, the subsequent step is to
analyze the displayed annotations. Here the majority (depicted as blue dots) is concentrated
around the centroid of the map. In this setting, however, a distinct cluster of annotations can
be observed, which was not detectable in the Boolean approach (Fig. 2.6 on page 23). This
cluster consists of 9 different annotations, whose GO accessions and corresponding terms are
listed in Table 2.7. The annotations are linked to a set of 13 genes, all of which belong to more
than one annotation of the cluster (Table 2.8). All annotations describe, at different levels of
detail, the activation of carbohydrate-transport into the cell.

The position of the cluster indicates negative association with the control condition (no glucose
in medium) and positive association with the remaining conditions with stronger association,
i.e. up-regulation, in response to low glucose signals (0.01% and 0.1% glucose). Indicating
that at low levels of glucose higher concentrations of transporters have to be present in the
membrane, to efficiently uptake glucose in the cell. This is consistent with prior findings
identifying HXT1 to HXT7 as key enzymes for the uptake of glucose with HXT2, HXT6 and
HXT7 being important for growth on 0.1% glucose [88].

As a subsequent step the stringency of the gene-filter is further increased to validate the posi-
tions of the annotations based on the most reliable genes in the data set. Therefore genes were
filtered out, whose transcription intensities remain below 30 and/or show a minmax-separation
(a quality filter that assesses how well repeatedly measured genes are separated under two dif-
ferent conditions [99]) of less than 0.3. In resulting two figures (2.17 and 2.18) based on this
gene-set, the y-coordinates of the data-points were multiplied by -1 (i.e. mirrored at the x-axis)
for better interpretability.

From Figure 2.17 it is obvious that the reduction in gene numbers also resulted in a reduction
of displayed annotations. Nevertheless the previously identified annotation cluster (describing
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2.4 Biological validation of algorithms

Figure 2.17: CA-Map with stringent gene filter (444 genes remaining).GO annotations are added
to the data-matrix as supplementary rows and are depicted as solid blue circles. GO IDs have been
truncated as in the previous figures (see also legend in upper right corner). For better readability,
annotations forming the transporter cluster are listed in the adjacent box. In this plot≈93% of the
total variance in the data-set is explained by shown two first principal axis.
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2 Integration of gene annotation data

Genes GO identifiers (truncated of ’GO:’ and trailing zeros)

YPL026C (SKS1) 8643, 8645, 15749
YDL194W (SNF3) 5355, 15144, 15145, 15149
YPL244C (HUT1) 8643, 15144
YGL225W (GOG5) 8643, 15144
YHR094C (HXT1) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749
YMR011W (HXT2) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749
YDR345C (HXT3) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749
YHR092C (HXT4) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749
YHR096C (HXT5) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749
YDR343C (HXT6) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749
YDR342C (HXT7) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749
YJL214W (HXT8) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749

YJR158W (HXT16) 5353, 5355, 8643, 8645, 15144, 15145, 15149, 15578, 15749

Table 2.8: Genes annotated to GO terms in transporter cluster (Fig. 2.6).The first column is
comprised of the systematic gene name and the common name is given in brackets. The second
column lists the GO annotations of the genes. Genes marked in bold fulfill stringent gene filter
criteria and their corresponding annotations are displayed in Fig. 2.17.

the transportation of glucose into the cell) is still distinguishable with this reduced set of genes.
The annotations comprised in the cluster remain constant (as shown in Table2.7 ). Only the
number of distinct genes is reduced to six (marked bold in Table 2.8).

Due to the reduction of displayed annotations a further annotation (’plasma membrane’ -
GO:0005886) becomes apparent, being associated with condition containing 0.1% glucose
in the medium, i.e. being located in the same direction as the ’transporter-cluster’. This an-
notation is a member of the ’cellular localization’ ontology and thus describes the positioning
of the annotated gene product in the cell. Since the genes encoding for the transporter pro-
teins are among those annotated to this term, the positioning of this annotation makes sense,
since the localization of transporter proteins in the plasma membrane is inevitable to enable
transport of glucose into the cell and thus is also in agreement with the literature [89].

2.4.1.3 Application of Spearman-filter

Through the reduction in number of genes the number of displayed annotations was reduced as
well, but still resulting in too large numbers to be thoroughly analyzed by eye. Thus annotation
filters as described in 2.3.3.2 were applied. In the resulting plot (Fig. 2.18) annotation terms
with less than three annotated genes and a mean Spearman correlation coefficient of less than
0.8 were discarded, leaving a total of 15 annotations to be displayed, further enhancing the
clarity of the plot.
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2.4 Biological validation of algorithms

Figure 2.18: CA-Map with filtered set of GO annotations. To filter out GO terms annotating inho-
mogeneously transcribed gene sets, the mean of Spearmans correlation coefficient was applied. The
plot follows the layout of the previous figures, see legend in upper right corner. Annotations forming
the cluster left of the centroid are listed in Table 2.9. Genes annotated as ’tricarboxylic acid cycle’
(GO:0006099) are encircled red. Note that this annotation represents the center of gravity of the
corresponding genes.
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2 Integration of gene annotation data

GO identifier (Main Category) GO term

GO:0000027 (P) ribosomal large subunit assembly and maintenance
GO:0000028 (P) ribosomal small subunit assembly and maintenance
GO:0042257 (P) ribosomal subunit assembly
GO:0005840 (C) ribosome
GO:0005830 (C) cytosolic ribosome (sensu Eukarya)
GO:0005842 (C) cytosolic large ribosomal subunit (sensu Eukarya)
GO:0005843 (C) cytosolic small ribosomal subunit (sensu Eukarya)
GO:0030529 (C) ribonucleoprotein complex
GO:0004553 (F) hydrolase activity, hydrolyzing O-glycosyl compounds
GO:0015926 (F) glucosidase activity
GO:0006096 (P) glycolysis
GO:0006099 (P) tricarboxylic acid cycle
GO:0006445 (P) regulation of translation
GO:0006450 (P) regulation of translational fidelity
GO:0008652 (P) amino acid biosynthesis

Table 2.9: GO annotations displayed in Fig. 2.18,are listed with their corresponding GO-accession,
main category (P= Biological Process, F= Molecular Function) and GO term. The annotation marked
in bold is positively associated to the control condition. Remaining annotations are negatively asso-
ciated to the control condition.

Here, the annotation ’tricarboxylic acid cycle’ (GO:0006099, lower right quarter of the plot)
is associated with the control condition, suggesting that the annotated genes are repressed in
the presence of glucose. Examplariy for this annotation, the corresponding genes are encircled
red in the plot. Please note that the position of the annotation is the center of gravity of the
annotated genes.

The genes are comprised of YKL085W (MDH1, malate dehydrogenase), YDR148C (KGD2,
2-oxoglutarate dehydrogenase), YLR304C (ACO1, aconitase), YNR001C (CIT1, citrate syn-
thase) and YIL125W (KGD1, alpha-ketoglutarate dehydrogenase). All of which are known
to be involved in the TCA cycle. For example MDH1, catalyzes interconversion of malate
and oxaloacetate [100], whereas KDG1 and KGD2 are components of the mitochondrial
alpha-ketoglutarate dehydrogenase complex, which catalyze a step in the tricarboxylic acid
(TCA) cycle, namely the oxidative decarboxylation of alpha-ketoglutarate to succinyl-CoA
[101, 102]. Whereas CIT1, catalyzes the condensation of acetyl coenzyme A and oxaloac-
etate to form citrate and also being the rate-limiting enzyme of the TCA cycle [103, 104].

In the opposite direction of the centroid, a cluster of annotations can be found, whose members
are listed in Table 2.9. In the presence of glucose in the media, it is used as the primary energy
source forS. cerevisiae, such that pathways utilizing this source are expected to be upregu-
lated. The activation of these pathways is described by the association of the corresponding
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2.4 Biological validation of algorithms

GO annotations, like ’glycolysis’, ’glucosidase activity’ and ’hydrolase activity, hydrolyzing
O-glycosyl compounds’ with the glucose containing conditions.

Out of the total of 10 genes being annotated with the term ’glycolysis’, some are discussed
examplarily : YCR012W (PGK1), which is a 3-phosphoglycerate kinase, catalyzing the trans-
fer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate
to ADP to produce ATP and thus is a key enzyme in glycolysis and gluconeogenesis [105,
106]. Furthermore the gene YKL060C (FBA1) is annotated thereto as well, which is a
fructose 1,6-bisphosphate aldolase, a cytosolic enzyme required for glycolysis and gluco-
neogenesis. FBA1 catalyzes the conversion of fructose 1,6 bisphosphate into two 3-carbon
products, namely glyceraldehyde-3-phosphate and dihydroxyacetone phosphate [107, 108,
109]. Finally YMR205C (PFK2), beta-subunit of heterooctameric phosphofructokinase, is
involved in glycolysis which is indispensable for anaerobic growth and activated by fructose-
2,6-bisphosphate and AMP. Mutation in this gene inhibits glucose induction of cell cycle-
related genes [110, 111, 112].

Moreover apart from annotations describing energy metabolism the reminder of annotations is
mainly comprised of terms referring to the ribosome . Their positions in the CA-map indicate
up-regulation of the corresponding genes at 0.1% and 1% glucose, consistent with [88]. In
the presence of sufficient amounts of glucose, yeast cells invest energy in the production of
ribosomes to enable rapid growth and reproduction. This is also reflected by the up-regulation
of genes responsible for ’amino acid biosynthesis’ (GO:0008652), which is essential for pro-
longed growth.

2.4.2 Homo sapiens

Whilst the usefulness of the integration of annotations in CA for biological interpretation has
been shown for lower eukaryotes (2.4.1), performance in a more complex organism as well
as a more complex experimental set-up remains to be demonstrated. To this end I analyzed
microarray data studying different subtypes of human cancer [113].

RNA from human ductal adenocarcinomas, cystic tumors and normal pancreas tissue was
extracted, labeled and hybridized to a cDNA microarray. The resulting data has been processed
analogous to the previousS. cerevisiaedata set. Annotations were added as supplementary
rows to the data matrix (intensity based implementation, 2.2.4.2) and filtered by Spearman’s
correlation coefficient such that the number of displayed annotations was reduced to 35 (Fig.
2.19).

The separation of normal tissue from cancer samples is clearly visible along the x-axis, whereas
the potential new tumor entity [113] separates from ductal and cystic tumors along the y-axis.
Three clusters of annotations can be distinguished: annotations associated to normal tissue
(A), associated to ductal and cystic (B) and generally tumor associated (C). The complete list
of displayed annotations is given in Table 7.1.
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2 Integration of gene annotation data

Figure 2.19: CA-Map of human pancreatic cancer study.Comparison of ductal adenocarcinomas
(pink), cystic tumors (green) and normal tissue (yellow). A potential new tumor entity is colored
cyan. The plot follows the layout of the previous figures: see legend in lower left corner. GO
annotations are grouped in 3 different clusters named A, B and C. A comprehensive listing of all
displayed annotations is provided in Table 7.1.
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Amongst others, the annotations ’mismatch repair’ (GO:0006298) and ’maintenance of fi-
delity during DNA-dependent DNA replication’ (GO:0045005) are contained in the normal-
associated cluster A. The genes annotated to them are MSH2, MSH3 and MLH1. These are
DNA mismatch repair enzymes. It is known that mutations in the MSH2 cosegregate with sus-
ceptibility to different types of cancer [114, 115]. Moreover, high frequencies of functional
inactivation of MLH1 by hypermethylation of the promoter region were found in colorectal
cancers [116]. Additionally it has been reported that a loss of function of these repair enzymes
could be associated with invasive bladder cancer [117] and that these genes could be potential
prognostic factors in colorectal cancers [118, 119].

Annotations in cluster B should be evaluated cautiously. Even though there are several dif-
ferent features (i.e. clones) associated to each of the annotations, effectively there is only 1
gene per annotation, since the distinct annotated clones contain identical genes. Nevertheless,
these annotations describe a mechanism, namely DNA methlyation, which just recently has
been recognized as playing an important role in the regulation of gene expression. Moreover
it already has been shown that abnormal methylation patterns in the promotor regions of genes
can lead to the over-/under- expression of the corresponding gene. Various cases of abnormal
methylation patterns have been identified in several tumor types [120, 121, 122, 123]. The
steadily growing importance of this area of research is clearly demonstrated by the demand
for a ’human epigenome project’ [124].

In the tumor associated-cluster C, the annotation ’traversing start control point of mitotic cell
cycle’ (GO:0007089) can be found. The comprised genes are CDK10 (represented by 3 differ-
ent clones), CDC2 (alias CDK1) and CDC25C. It is well known that cyclin dependant kinases
play a crucial role in controlling the cell cycle [125], with CDK10 having a potential role in
regulating the G2/M phase [126]. The progression through the cell cycle, is a highly regulated
ordered series of events. Alteration in the genetic control of the cell cycle can lead to unre-
strained cell proliferation. The corresponding mutations occur mainly in two classes of genes:
proto-oncogenes and tumor-suppressor genes.

Activation of CDK is regulated through dephosphorylation by members of the Cdc25 phos-
phatase family. Cdc25A plays an important role at the G1/S-phase transition, Cdc25B un-
dergoes activation during S-phase and Cdc25C activates CDK1-cyclin B during entry into
mitosis. Deregulation or overexpression of Cdc25 allows for unscheduled activation of CDK-
cyclins and can be associated with tumour formation. Cdc25A and Cdc25B are potential
human oncogenes [127]. Cdc25B is overexpressed in 32% of primary breast cancers. Tran-
scription of Cdc25A and Cdc25B genes is activated by c-Myc, an oncogene found to be fre-
quently mutated in human cancers [128]. Raf, a kinase downstream of the frequently mutated
Ras oncogene, is able to bind, activate and deregulate Cdc25 protein [129].
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2 Integration of gene annotation data

2.5 Analysis of transcription factors in CA

GO annotations provide information on regulated functional process, localization of gene
products or broader biological objectives - this information is useful to identify general as-
pects of the experimental condition(s), however it lacks the specificity to identify potential
key regulatory elements. One group of genes that are frequently found to exhibit this role of
key regulatory genes (proteins) are transcription factors (TFs). In short, transcription factors
are proteins that bind to defined DNA sequence-motifs, which commonly are located in the
promoter or enhancer region of a gene and thereby regulate its transcription.

2.5.1 Transfac

TRANSFAC is a database storing information on ’eukaryotic transcription regulating se-
quence elements and the transcription factors binding to and acting through them’ [130]. The
’main’ information can be considered as being the TFs themselves and the sequence motifs
they bind to, both of which are stored in separate tables (namely ’Factor’ and ’Site’ respec-
tively). These are connected by a many-to-many relation, since the majority of TFs bind to
more than a single site. Besides the actual nucleotide-sequence of the site, information on
the corresponding gene, genomic location and a short description of the regulated gene are
given in the ’site’ table. The table ’Factor’ provides information on the actual TFs, namely
the encoding gene, homologs, organism and known interacting factors. Additionally the Table
’matrix’ stores information on the nucleotide distribution of the binding sites, thus enabling re-
construction of, for instance, a consensus sequence. The ’gene’ table provides information on
the regulated genes. The analysis presented here is based on TRANSFAC version 9.3, which
is comprised of 16819 distinct sites, 7668 distinct factors and 11910 distinct gene entries.

2.5.2 Integration of transcription factors in CA

The most straightforward approach in the identification of relevant TFs in microarray studies
would be to analyze the TF’s expression profiles to find significant regulation. This strategy
might not be optimal for several reasons: First of which, the changes in concentration at the
mRNA level of the TF might be so small that they are not necessarily identified as significant
by microarray analysis, yet have an impact on the expression levels of the target genes. More-
over, it is known that major control mechanisms for the activity of TFs are not based on a
change in the mRNA level, but are the result of modifications such as phosphorylation [131],
acetylation [132] or ligand binding just to name a few - in other words any postranslational
modifications can have an influence on the activity of the TF. These levels of control can’t be
assessed with a microarray experiment when analyzing the expression level of the TF. Thus I
decided to focus the analysis on the behaviour of the TF’s target genes.
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2.5 Analysis of transcription factors in CA

The presence of a TF binding site can be considered as a property of a gene, which would
allow for representing the TFs in a CA as supplementary columns as well as rows. In case of
the GO annotations the coding of annotation data as supplementary rows has proven superior
to supplementary columns and thus the TFs are integrated analogously. In short, for each TF a
representative row-profile is calculated, by the row-wise summation of the expression profiles
of the genes having a binding-site of this TF: letxi j be the normalized expression intensities
for genei = 1..n, in condition j = 1..m; Ak ⊂ {1..n} denote the set of genes with a binding
site for TF k.∑ik∈Ak

xik j is used as a representative gene profile for TF k. These vectors are
added as supplementary rows to the data-matrix (for an example of the encoding please refer
to Table 3.1). As with supplementary columns, supplementary rows do not contribute to the
computation of the principal axes [83]. The biological validation of this method is described
in 2.5.4.1.

2.5.3 Incorporation of ChIP-chip data

Chromatin immunoprecipitation (ChIP) is a method which allows to analyze whether a par-
ticular protein binds to a specific DNA sequencein vivo. In 2000 Ren et al. [133] combined
the ChIP- and microarray-methodology and developed a method for the systematic analysis
of protein-DNA interactions. In this approach, the protein of interest (for instance a TF) is
immunoprecipitated along with the genomic fragments it is bound to. These fragments are
isolated, labeled and hybridized to a microarray (e.g. tiling-arrays). The resulting data iden-
tifies the genomic sequences of the binding sites and thereby downstream target genes being
potentially regulated by that particular TF. Slight modifications in the ChIP protocol allow to
answer different biological questions: if, for instance, polymerases are used for the precipita-
tion areas of active transcription in the genome can be identified.

The TRANSFAC database (version 9.3) provides a table (’fragment’) in which the results of
some ChIP-chip experiments are stored: Besides basic information like, the analyzed TF and
the corresponding binding sequence, data on the corresponding publications and most impor-
tantly on effected genes are provided. Based on this TFs have been matched to the human
array described in 2.5.4.2. In Figure 2.22 the TFs derived from TRANSFAC (purple dots) are
plotted along with those derived from ChIP-chip experiments (blue dots), a comprehensive
listing of these is given in Table 2.13.

Noticeably, all TFs from ChIP-chip data are plotted on the left-hand side of the centroid, with
Sp1 (T00759) and RelA (T00594) being closest to the margins of the plot, i.e. being the most
differential ones. It is known that Sp1 binds to GC box promoter elements and is activated
by, for instance, insulin [134]. The transcription of genes like calmodulin and collagen type I
alpha I [135] are regulated by Sp1. RelA (alias p65) is a subunit of the NFkappa-b complex and
it has been reported that RelA is constitutively activated in human pancreatic adenocarcinomas
cells [136]. Moreover the inhibition of RelA functionality can result in inhibition of tumor cell
growth in vitro andin vivo [137].
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Thus it is surprising to find RelA being located in the direction of the ’normal phenotype’ in
Figure 2.22. One should note however that the number of associated genes per TF ranges from
103 to 4890 (see Table 2.13), these numbers are very high and it is questionable if all these
genes are under regulatory control of a single TF.

2.5.4 Biological validation

Analogous to the GO annotations, the biological validation of the method is a crucial step and
thus initial validation of the integration of TFs was based on transcription-data from the model
organismSaccharomyces cerevisiae. As a subsequent step, to assess the performance in more
complex settings, I evaluated the method in context of human microarray data studying the
treatment effects on different malignant cell lines.

2.5.4.1 Saccharomyces cerevisiae

The data set used in this analysis, is described in detail in 2.4.1 and has been preprocessed
analogously. In short,S. cerevisiaehad been grown in media containing different amounts
of glucose (0%, 0.01%, 0.1%, 1%) [98]. The data has been filtered such that, genes were
filtered out, whose transcription intensities remain below 10 and/or show a minmax-separation
(a quality filter that assesses how well repeatedly measured genes are separated under two
different conditions [99]) of less than 0.05 . This results in a total of 1580 genes displayed in
the plot. The transcription factors have been filtered such that only those with a minimum of 4
associated genes were submitted to analysis, resulting in 10 different TFs, as shown in Figure
2.20.

In this CA map the predominant variance is between glucose and non-glucose conditions sep-
arated along the first principal component, i.e. the non-glucose condition is positioned on the
right-hand site of the plot while the rest is found on the opposite site. The glucose containing
conditions are ordered in a clockwise orientation of ascending glucose concentration along the
second principal component. Here the TFs are depicted as purple circles and for some of the
most interesting ones, i.e. those being closest to the margins of the plot, their corresponding
TRANSFAC accession numbers are given in the Figure. A comprehensive listing of all plot-
ted TFs is provided in Table 2.11. Two TFs are associated with the non-glucose condition,
namely ’T03538’ and ’T03227’. The most differential one of those, which corresponds to the
transcription factor CAT8, will be discussed in the following.

CAT8 encodes a zinc-finger cluster protein that mediates derepression of a number of genes
during the diauxic shift, which is the transition between fermentative and nonfermentative
metabolism [138]. Genomic studies have shown that least 30 genes, encoding proteins in-
volved in gluconeogenesis, ethanol utilization, and the glyoxylate cycle, being regulated by
Cat8p [139, 140].
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Figure 2.20: CA plot of glucose data-set with transcription factors. TFs are added to the data-
matrix as supplementary rows and are depicted as solid purple circles (see also legend in upper right
corner). For some of the most prominent TFs the corresponding TRANSFAC-IDs are provided in
an adjacent box ( the IDs have been truncated of ’T’ and trailing zeros). A comprehensive listing
of annotations with their corresponding association can be found in Table 2.11. For TF ’3227’ the
annotated genes are marked with blue circles exemplarily, please note that the position of the TF is
the center of gravity of these annotated genes. In this plot≈94% of the total variance in the data set
is explained by the two first principal axis.
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Under experimental conditions where glucose is available in abundance, expression of CAT8
is repressed by the DNA binding protein Mig1p, which recruits the repressor complex Ssn6p-
Tup1p and binds to a site in the CAT8 promoter [138, 141]. When the concentration of glucose
in the medium decreases, Mig1p is phosphorylated and transported to the cytoplasm, relieving
repression of Cat8p and likely recruiting a transcription activator of CAT8 expression as well
[142]. Cat8p functions to derepress the transcription of target genes by binding to the carbon
source-responsive element (CSRE) upstream of these genes [141, 143]. While glucose regu-
lates transcription of CAT8, it also appears to regulate Cat8p activity; Cat8p is phosphorylated
in derepressed cells and addition of glucose triggers dephosphorylation [141].

The genes that are associated to CAT8 are exemplarily encircles in blue in Figure 2.20, please
note that the position of the TF is the center of gravity of the corresponding genes. Table 2.10
provides an overview of the corresponding genes.

For example, the gene YLR377C (FBP1) is known to be involved in gluconeogenesis which
is the process whereby glucose is synthesized from non-carbohydrate precursors. Gluconeo-
genesis mediates the conversion of pyruvate to glucose, whereas the opposite pathway, the
formation of pyruvate from glucose, is known as glycolysis. FBP1 catalyzes the reaction from
fructose-1,6-bisphosphate to fructose-6-phosphate [144]. Moreover it is known that the tran-
scriptional regulation is effected through consensus sequences in the FBP1 promoter region
for the repressor Mig1p and the derepressing Cat8p [145, 144]. Both of these enzymes are
TFs and are displayed in Figure 2.20, whereas MIG1 is associated with the glucose containing
conditions, and thus being in agreement with literature [145].

Moreover, on the opposite site of the centroid TFs like ABF1 and GCR1 can be found, indi-
cating an upregulation in the presence of glucose. ABF1 is known to be a a site-specific DNA-
binding protein, that binds to the consensus sequence: 5-TnnCGTnnnnnnTGAT-3 [161]. The
genes that are transcriptionally regulated by ABF1 are involved in diverse cellular processes,
one major of which being carbon source regulation. Examples of genes regulated by ABF1
are ADH1, CDC19, PGK1, ENO1 and ENO2 [162, 163, 164], all being relevant in the process
of glycolysis.

Accession
number

Name Short description Association Number
of
features

T00056 ABF1 Genes regulated by ABF1 are involved in
a diverse range of cellular processes in-
cluding carbon source regulation, nitrogen
utilization, sporulation, meiosis, and ribo-
somal function.

glucose 6 (90)

T00322 GCR1 Transcriptional activator of genes in-
volved in glycolysis. DNA-binding pro-
tein that interacts and functions with the
transcriptional activator Gcr2p

glucose 4 (9)
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Accession
number

Name Short description Association Number
of
features

T00509 MIG1 Essential TF involved in glucose repres-
sion, by repression of HXT2 and HXT4
in presence of glucose. MIG1 is a C2H2
zinc finger protein similar to mammalian
Egr and Wilms tumor proteins.

glucose 6 (-)

T00715 RAP1 Is involved in the transcription activation
of genes encoding for ribosomal proteins
and glycolytic enzymes [165, 166].

glucose 9 (13)

T00725 REB1 RNA polymerase I enhancer binding pro-
tein.

- 5 (26)

T00726 CAR1
repres-
sor

CAR1 is an arginase which is responsible
for arginine degradation, its expression re-
sponds to both induction by arginine and
nitrogen catabolite repression [167, 168]

glucose 6 (20)

T01286 ROX1 Heme-dependent repressor of hypoxic
genes; contains an HMG domain that is re-
sponsible for DNA bending activity [169,
170]

glucose 4 (10)

T03227 CAT8 Is required for positive regulation of
gluconeogenesis, for detailed discussion
please refer to text.

non glu-
cose

9 (5)

T03491 MED8 Subunit of the RNA polymerase II media-
tor complex. It associates with core poly-
merase subunits to form the RNA poly-
merase II holoenzyme and is essential for
transcriptional regulation [171]

low glu-
cose

5 (-)

T03538 RCS1 Involved in iron utilization and home-
ostasis. Mutants exhibit growth defect
on a non-fermenTable (respiratory) carbon
source [172]

no glucose 4 (-)

Table 2.11: Comprehensive listing of transcription factors shown in Figure 2.20.Their correspond-
ing Transfac accession number, name, association to experimental condition, as well as the number
of associated gene in the given filter setting are listed. The number in given in brackets in the last
columns depicts the number of associated genes when using an algorithm for the prediction of TFBS,
as described in .

GCR1 binds to the consensus sequence 5-CTTCC-3 and is known to interact with GCR2
[173, 174], both of which have been shown to be transcriptional activators of glycolytic en-
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SGD ID Gene
name

short description

YKR097W PCK1 phosphoenolpyruvate carboxykinase,
is a key enzyme in gluconeogenesis, which catalyzes an early reac-
tion in carbohydrate biosynthesis. Glucose represses transcription
and accelerates mRNA degradation. PCK1 is regulated by Mcm1p
and Cat8p and located in the cytosol [146, 147, 139]

YNL117W MLS1 malate synthase,
is an enzyme of the glyoxylate cycle, which is involved in the uti-
lization of non-fermenTable carbon sources. Its expression is subject
to carbon catabolite repression and localizes in peroxisomes during
growth in oleic acid medium [148, 149].

YKL217W JEN1 lactate transporter,which is required for uptake of lactate and pyru-
vate. Its expression is derepressed by transcriptional activator Cat8p
under nonfermentative growth conditions, and repressed in the pres-
ence of glucose, fructose and mannose [150, 151, 139]

YLR174W IDP2 isocitrate dehydrogenase;
catalyzes the oxidation of isocitrate to alpha-ketoglutarate. En-
zyme levels are elevated during growth on non-fermenTable carbon
sources and reduced during growth on glucose [152, 153].

YAL054C ACS1 acetyl-CoA synthetase,
catalyzes the formation of acetyl-CoA from acetate and CoA and
is expressed during growth on nonfermenTable carbon sources and
under aerobic conditions [154, 155]

YJR095W SFC1 mitochondrial succinate-fumarate carrier,
transports succinate into and fumarate out of the mitochondrion and
is required for ethanol and acetate utilization [156, 157]

YOL126C MDH2 malate dehydrogenase
is one of the three isozymes that catalyze interconversion of malate
and oxaloacetate. It is involved in gluconeogenesis during growth on
ethanol or acetate as carbon source - interacts with Pck1p and Fbp1p
[158, 159].

YER065C ICL1 isocitrate lyase,
catalyzes a key reaction of the glyoxylate cycle, namely the forma-
tion of succinate and glyoxylate from isocitrate. The expression of
ICL1 is induced by growth on ethanol and repressed by growth on
glucose [160]

YLR377C FBP1 fructose-1,6-bisphosphatase,
is key regulatory enzyme in the gluconeogenesis pathway, for de-
tailed discussion please refer to text.

Table 2.10: Comprehensive list of genes associated to TF CAT8.The concise gene description was
mainly derived from the Saccharomyces Genome Database (SGD).
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zymes inS. cerevisiae[175, 176]. Null and point mutants have decreased levels of most
glycolytic enzymes [177, 178, 179]. The GCR1 mutant of yeast grows at near wild-type rates
on nonfermentable carbon sources but exhibits a severe growth defect when grown in the pres-
ence of glucose, even when nonfermentable carbon sources are available [179], indicating the
importance of this TF in the presence of glucose and thus supporting the positioning of the
factor in the CA plot.

Up to now the TFs displayed in CA were solely based on association data stored in TRANS-
FAC, since this data, even though constantly growing, is yet not abundant, the number of
associated genes per TF are rather low (as can bee seen in Table 2.11 ). This problem becomes
more and more severe the more stringent the corresponding gene filters are selected, resulting
in fewer and fewer genes to be displayed in the analysis. One way to circumvent this problem
is by integration of predicted TF-binding sites. The algorithm used for the prediction is ex-
plained in 7.7. Figure 2.21 shows the same data set as in Fig. 2.20, but here the association of
TFs and genes is based on the predicted binding sites. As before, only TFs with more than 3
associated genes are shown, resulting in a total of 24 TFs. A list of TFs that are now displayed
but have not been listed in Table 2.11 can be found in Table 2.12.

The initial step is to compare the positions of the TFs that are present in both Figures, i.e.
that are based on TRANSFAC annotations compared to those based on predicted conserved
binding sites in the promoter region. It is apparent, that the predicted TFs are more densely
concentrated around the centroid of the map, this is mainly due to the increased number of
annotated genes. With larger numbers of genes per TF chances that genes exhibiting non-
homogeneous expression profiles will be annotated to the same TF are higher, resulting in a
position of the TF closer to the centroid. Nevertheless, for none of the TFs a major change in
position (e.g. swap to the different site of the centroid) could be observed. Exemplarily three
TFs shared between both Figures have been encircled in black (Fig. 2.21), corresponding to
TF ’T03227’ on the right-hand side and ’T00322’ and ’T00715’ on the left-hand side of the
plot.

The proximity of resulting positions of TFs based on TRANSFAC and the predicted BS, not
only indicate the usefulness of the prediction algorithm but also increases confidence levels of
the positioning of the TFs in the plot, by basing it on a larger number of genes. An analysis
solely based on the predicted ones would also describe the major regulated processes in this
experimental setting. Moreover an additional set of factor becomes submitted to analysis
(as listed in Table 2.12), some of which provide an more in-depth picture of the regulated
processes.

One example of which is the TF ’T00321’ (GCN4), its positioning in the upper-left part in-
dicates an association to conditions containing high-levels of glucose in the medium. From
what is known about GCN4, it is one of the key factors for the general control of aminoacid
biosynthesis, by being involved in the derepression of genes from 19 out of the 20 amino acid
biosynthetic pathways [180, 181]. Moreover results indicate that it might contribute to pro-
cesses like purine biosynthesis, organelle biosynthesis, autophagy and glycogen homeostasis
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2 Integration of gene annotation data

Figure 2.21: CA plot with predicted TFs. Here the displayed TFs are based on the prediction algo-
rithms described in 7.7. TFs are added to the data-matrix as supplementary rows and are depicted
as solid purple circles (see also legend in upper right corner). TFs encircled in black are examples
of shared TFs between TRANSFAC and prediction based analysis. A listing of additional displayed
annotations can be found in Table 2.12.
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TRANSFAC
accession

Factor name Number of
associated
features

T00011 ADR1 157
T00321 GCN4 4
T00346 HAP1 16
T00349 HAP2 5
T00350 HAP3 5
T00351 HAP4 5
T00385 HSF1 545
T00487 MATalpha2 294
T00488 MATa1 28
T00500 MCM1 33
T00772 STE12 143
T00778 TAF 23
T00798 TBP 461
T01257 MSN2 18
T01258 MSN4 18
T01286 ROX1 10
T03525 PDR3 10
T03707 XBP1 63

Table 2.12: List of TFs that are displayed in Fig. 2.21 in addition to those listed in Table 2.11.

[182]. An upregulation of this factor, as indicated by the plot, is also supported by the fact,
that in the presence of sufficient amounts of glucose yeast cell invest energy for rapid growth
and reproduction, for both of which an upregulated amino-acid-biosynthesis is inevitable.

2.5.4.2 Homo sapiens

The human gene expression study comprised samples of the keratinocyte cell line HaCaT
which can be genetically and phenotypically divided into five different subtypes. The origi-
nal nontumorigenic HaCaT (Tetra) cell line [183] was transfected with the Ha-ras oncogene
and the cells were injected in mice for tumor growth resulting in benign tumorigenic cells
(HaCaT-A5 and HaCaT-I7), and malignant cells that grow locally invasive (HaCaT-II4) or
metastasize (HaCaT-A5RT3) [184]. The H-Ras expression is different in the transformed cell
lines, low in HaCaT-A5, moderate in HaCaT-I7 and -II4 and very strong in HaCaT-A5RT3.
The normalized expression data were filtered with respect to signal intensity and 7289 genes
were selected for CA by two-way Anova analysis (P value < 0.05) including both parame-
ters, HaCaT variant and treatment. In the resulting CA plot, the grouping of the experimental
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conditions corresponds corresponds very well to the intensity of the Ha-Ras expression of the
respective cell line, e.g. not or weakly expressed (Tetra, A5), moderately expressed (I7, II4)
and strongly expressed (A5RT3, Figure 2.22). In this analysis, a total of 9 different TFs are
displayed in the CA plot and listed in Table 2.13. Three TFs, TP53, NF-IL6-2 and NF-kappaB,
which had the strongest association to any cell line phenotype are discussed in-depth. The TF
most strongly anti-correlated to the parental HaCaT (Tetra) line is NF-IL6-2 (’T00581’), that
is positioned on the opposite site of the centroid between the cell lines I7, II4 and A5RT3. The
common character of these cell lines is the transformation with the oncogene Ha-Ras and the
stronger Ha-Ras expression. Interestingly, NF-IL6-2 (C/EBP) is a known leucine zipper tran-
scription factor CCAAT/enhancer binding protein which is well described to be mediated by
Ha-Ras oncogene in keratinocytes and skin carcinomas [185, 186]. The elevated expression
level of associated target genes like ICAM1, IL1-beta and SAA2 are strongly associated with
tumorigenesis, tumor invasion and cell survival. The second transcription factor NF-kappa
B (’T00590’) was strongly associated to the malignant cell line A5RT3 which harbors the
potential to metastasize. NF-kappa B induces wound-responsive and inflammatory response
genes, and regulates anti-apoptotic processes. Increasing evidence supports the hypothesis
that secondary inflammatory responses could be responsible for the invasive potential of can-
cer cells [187, 188, 189]. The activation of the nuclear factor NF-kappa B was observed in
many cancer diseases like breast and ovarian tumors [190, 191]. In the initial phase of tumori-
genesis in the epidermis, Ras-initiated keratinocytes progress to a cancerous state if NF-kappa
B is blocked [192]. The NF-kappa B inhibition seems to be changed in advanced tumor pro-
gression. For example, in squamous cell carcinoma the activation of NF-kappa B along with
genes involved in proliferation, angiogenesis and metastasis was found to be dependant on
Wnt-signaling in a mouse model [193]. The third described TF is the well known tumor sup-
pressor gene TP53 (’T00671’). In line with the described functionality of the gene, this TF
was shown to be closest related to the parental HaCaT cells and HaCaT-A5 cells representing
the nontumorigenic and one of the benign phenotype. In response to DNA damage or cellular
stress, TP53 signal transduction enhances arrest of cell cycle progression or induces apoptosis
[194]. Although, mutations in TP53 were found in all variants of HaCaT, TP53 independent
mechanism are known to activate relevant downstream targets like p21 which results in cell
cycle arrest and apoptosis [195, 196]. Moreover, the finding supports the early observation,
that in the HaCaT cell line, the Ha-Ras-transformation and TP53 mutations are not sufficient
to induce a malignant phenotype [184, 197]. Further genetic events, like the changes in WNT-
signaling, TGF-signaling and NF-kappa B signaling are necessary to result in malignant and
metastasizing phenotypes.
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Figure 2.22: CA plot of human cancer data set with TFs. The experimental conditions can be
roughly divided into three groups based on their Ha-Ras expression: weak, moderate, strong. This
phenotypical grouping corresponds to the clustering of conditions that can be seen in the plot. Here
TFs have been added to the data-matrix as supplementary rows. TFs derived from TRANSFAC
are depicted as purple colored dots, while TFs derived from ChIP-Chip experiments are depicted as
blue circles. Exemplarily corresponding TRANSFAC accession IDs are provided (being cut of from
trailing zeros and ’T’) for individual TFs. In the following the cell-lines corresponding to the dis-
played conditions will be given in a clockwise orientation, starting with the blue line: HaCaT(Tetra-
DMSO), HaCaT(Tetra), HaCat(A5), HaCat(A5-DMSO), HaCaT(A5RT3), HaCaT(A5RT3-DMSO),
HaCaT(II4-DMSO), HaCaT(I7), HaCaT(I7-DMSO), HaCaT(II4).
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TRANSFAC
accession

Factor name Number of
associated
features

T00029 AP-1 7
T00163 CREB 8
T00261 ER-alpha 7
T00581 NF-IL6-2 5
T00590 NF-kappaB 10
T00593 p50 5
T00594 RelA 5
T00671 p53 15
T00759 Sp1 23
T00368 HNF-1alpha-

A
732

T03286 HNF-6alpha 825
T03828 HNF-4alpha 4890
T00140 c-Myc 451
T00759 Sp1 311
T00163 CREB 103
T00594 RelA 124

Table 2.13: Comprehensive List of TFs display in Fig. 2.22.TFs are listed with their TRANSFAC
accession, name and number of associated features in the chosen filter setting. The last TFs (written
in italics) are derived from ChIPChip-data.
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3 Discussion

3.1 Gene annotation data

In recent years microarrays have become a standard technique to analyze complete transcrip-
tomes, resulting in large amounts of data. Consequently a wealth of methods has been devel-
oped to identify significantly regulated genes. Correspondence Analysis, a projection method,
has already been successfully applied in the visualization of microarray data and extraction of
relevant genes [198, 199]. The ultimate goal of any experiment, however, is to develop new or
validate existing hypothesis. This step currently poses a major bottleneck in microarray data
analysis.

In order to deduce any biological hypothesis from microarray data, functional annotations for
genes have to be gathered and analyzed. Since the majority of available methods presents the
set of regulated genes in long lists, the subsequent functional interpretation is commonly done
by eye in a spread-sheet like data format, rendering this step not only time-consuming but also
prone to errors.

The analysis shown in this thesis are based on an in-house analysis software called M-CHiPS
in which the expression profiles and experimental annotations are stored in an underlying
database. Even though columns that hold gene annotation data exist, these are in general
sparsely populated. Moreover, since no constrains for these columns are defined, the annota-
tion data are stored as free text, interfering with a statistical analysis of gene properties.

In this work Gene Ontology was chosen as the major source of gene annotations for several
reasons: First of all, being structured as an ontology the individual annotation terms (or con-
cepts) are predefined. In other words the concepts available for annotation are based on a set
of controlled vocabularies. Since for each of these concepts an unambiguous definition is pro-
vided, the risk of misinterpretation of the meaning of concepts is minimized and thus allowing
for cross-laboratory annotation process. Moreover, each concept can be accessed by a unique
identifier, which provides the basis for a statistical analysis of gene annotation data.

This annotation data is distributed through flat files from the GO consortium. These files as
such are not optimal for immediate functional interpretation. In the annotation process each
gene product is associated to the term describing its functionality most specifically and it is
this most specific association(s) that are provided in the files. If solely these associations were
used, the information that is stored in the hierarchy of the ontology would be ignored. Thus
I associate each gene to all parental concepts of its original annotation as well, thereby fully
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exploiting the structure of the ontology. Only by expanding the associations in this way, more
general concepts become applicable for the analysis by increasing the number of associated
genes to a statistically relevant level.

There are, however, areas in which GO should be improved: Smith et al. [200] reported ex-
amples of semantic errors in the ontology, which are likely to become more frequent as the
ontology becomes more complex. These errors could result from inappropriate construction
of parts of the ontology or from imprecise definitions of the concepts and their relations. To
ensure semantic consistency of an already complex and still growing ontology, the use of
software solutions is inevitable [201]. Another critical aspect is the varying quality of the
definitions of concepts and relations. Ambiguous or even circular definitions can result in
non-consistent usage of annotations terms - software solutions that address this problem are
being developed [202].

Overall, however, GO has proven to be an excellent source of annotation data, well suitable
for functional interpretation of high-throughput data. At this point it already has become ade
factostandard for the annotation of gene products, which is well documented by more than 900
publications on the development or usage of GO (as of August 2006). With growing numbers
of annotation terms as well as annotated genes, the usefulness of GO will still increase.

In summary, using GO as a source of information for the annotation of microarray data com-
bines the benefits of an extensible human-curated, cross-species database with the capability
to statistically analyze the annotations. This renders it the currently best choice for functional
interpretation of microarray data.

3.2 Comparison of implementations

In the course of this work different ways of integrating functional annotations in CA have
been implemented and compared. In an initial approach the annotations have been coded as
Boolean variables and added to the data matrix as supplementary columns. Here the annotation
vector holds a ’1’ if the annotation is associated to the corresponding gene and a ’0’ if not (an
example of the encoding is given in Table 3.1).

A CA plot based on this encoding is shown in Figure 2.5, in which the annotations are pre-
dominant over all other aspects of the plot. Here the genes and experimental conditions are
restricted to a rather small area around the centroid, leaving the plot not well interpretable.
The reason for this is the Boolean nature of the (annotation-) vector. With only two possible
values for each position the relative changes between the state ’annotated’ and ’not annotated’
will always be maximal. Since CA is sensitive for relative changes, these extreme differences
will result in positions close to the standard coordinates (i.e. the positions with the maximal
association of a column to row - orvice versa). In case of ’normal’ transcription intensities
the relative changes between the experimental conditions will be much smaller. Thus genes
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and hypridizations are plotted closer around the centroid, resulting in the predominance of the
Boolean vectors.

In a subsequent approach annotations have been represented as row-vectors: for each annota-
tion a representative row profile is calculated by the rowwise sum of the expression intensities
of the annotated genes. The last rows of Table 3.1 show this encoding exemplarily. Here
an annotation is represented based on ’natural’ expression intensities, such that the resulting
relative changes will be in the same order of magnitude as for the rest of the data. Figure
2.6 gives an example of a CA plot based on this encoding, where neither of the variables is
predominant. Here the majority of annotations is plotted around the centroid of the map. This
concentration is to be expected in such an experimental setting: in general, only few functional
processes are differentially regulated between the experimental conditions, consequently only
few annotations should be positioned near the margins of the plot. Exceptions from this are
settings in which complete developmental cycles of organisms (e.g.Drosophila melanogaster
[203]) are analyzed. In these settings large numbers of genes are temporarily activated.

Having established a suitable encoding, this has been validated for its biological applicability
on two data sets of different complexity: the first one analyzes the functional changes in the
transcriptome ofS. cerevisiaewhen grown in media with different concentrations of glucose
(2.4.1), whereas the second focuses on differences between human tumor types (2.4.2).

In the resulting CA plot of the yeast data set (Figure 2.6 on page 23) a cluster of annotations
describing the transportation of glucose into the cell is clearly distinguishable. This already
points out a major functional difference between the experimental conditions, since in the
absence of glucose the corresponding transporters do not need to be expressed at high lev-
els. After filtering of the annotations further terms describing relevant biological processes
become apparent. These include concepts like ’glucosidase activity’, ’glycolysis’ or ’TCA
cycle’, which describe the different pathways for energy-utilization ofS. cerevisiaebeing al-
ternatively activated, depending on the availability of glucose. These results already indicate
the usefulness of analyzing microarray data in context of GO, by providing researchers with
an immediate characterization of the major pathways being differentially regulated between
these experimental conditions.

To further validate this approach, GO annotations were used in the analysis of a more com-
plex organism and experimental setting, namely a human cancer study. Here different tumor
samples where compared to normal tissue. In the resulting CA plot (Figure 2.19 on page 50)
an upregulation of genes involved in DNA mismatch repair in the normal tissue can be im-
mediately identified. It is well known that their upregulation, or more precisely the lack of
expression in cancerous samples, is one of the key events in the development of cancer. More-
over annotations pointing to mechanisms of enhanced cell proliferation and inflammatory-like
responses are associated with the tumor samples. Unrestrained cell proliferation is a well
known characteristic of tumors and chronic inflammation has been reported as a risk factor in
various cancers [204, 205].

Additionally annotations describing transcriptional regulation due to changes in methylation

67



3 Discussion

Gene Exp. cond.1 Exp. cond. 2 Exp. cond. 3 Exp. cond. 4 Term 1 Term 2 .

A 13 300 23 432 1 0 .
B 457 398 355 932 0 1 .
C 24 458 44 364 1 1 .
D 324 245 98 34 0 0 .
E 478 928 293 99 0 1 .
F 38 485 21 375 1 0 .
. . . . . . . .

Term 1 75 1243 88 1171
Term 2 959 1784 692 1395

. . . . .

Table 3.1: Ways of adding supplementary information to the data matrix. Here a schema of an
artificial data-matrix for a simplified (i.e. only one repetition per exp. condition) microarray ex-
periment is given. The last columns examplarily represent two annotations added as supplementary
columns with the individual cells holding Boolean values. The last rows are examples of the same
two annotations, now being added as supplementary rows to the data matrix. The representative
row-profile is calculated by summing up the expression intensities of the annotated genes.

patterns were associated to the most aggressive types of tumors in this study. Just in the recent
years the methylation status of CpG-islands in the promotor regions of genes has been iden-
tified as an important regulatory mechansim of the transcriptional activity of the associated
gene(s). In subsequent studies it could be shown that aberrant methylation patterns are often
associated with the development and/or occurrence of tumors [120, 121, 122, 123]. Hence
the association of this annotation to the aggressive tumor type indicates potential relevance of
these mechanisms.

In summary, integration of annotation data as supplementary rows in CA, generates well in-
terpreteable plots in which relevant functional processes can be immediately identified. Based
on this the researcher can deduce functional hypothesis in a fast and intuitive way, without the
need for comparing long lists of annotations.

3.3 Applicability of annotation filters

For most of the genomes the numbers of available annotations are already so high that an
unrestricted display will result in a massive overlay of annotations, as demonstrated for theS.
cerevisiaedata set (Figure 2.10 on page 32).

In order to increase the clarity of the plot and display only relevant annotations different fil-
ters have been tested. The first and probably most intuitive way of filtering is based on the
categorization of the GO in three main ontologies, namely ’Molecular Function’, ’Biological

68



3.3 Applicability of annotation filters

Process’ and ’Cellular Component’. In experimental settings where the localization of the
gene products is not of relevance, the number of annotations can be reduced by deselection of
the corresponding category by approximately 9%. This corresponds to the overall percentage
of concepts in the ’Cellular Component’ ontology. Larger reductions of displayed annota-
tions can be achieved by removing one of the remaining ontologies (i.e.≈37% in case of
’Molecular Function’ and≈54% for ’Biological Process’).

The number of associated genes per annotation term can be used as a filter criterion as well.
Here annotations having less than a minimal or more than a maximal threshold will be dis-
carded from the analysis. I recommend to use at least the threshold defining the minimal
number of genes per annotation: If not applied large numbers of annotations will be only
associated to one or two genes. Since the position of these annotations is calculated based
on one or two transcription profiles these annotations tend to be plotted near the margins of
the plot, which normally would indicate relevance in the experimental context. These annota-
tions, however, are generally not suitable for functional interpretation for mainly two reasons:
First of all, annotations with low numbers of associated genes tend to be rather specific and
thus do not have the necessary level of abstraction to provide a functional overview. More
importantly, however, these low numbers are a poor statistical basis to derive any functional
hypothesis from. The filter for the maximal number of genes is useful to discard annotations
describing too general processes like ’response to stimulus’, for which the number of genes can
be up to several hundreds. Since, these annotations are likely to be plotted near the centroid
of the map and thus are marked as ’non-interesting’ they should be filtered out beforehand to
further enhance the clarity of the plot.

The evidence codes provided along with each annotation of a gene product can be used as a
further filter criterion. These codes describe the kind of data (i.e. evidence) the annotation
is based on. Since the evidence mainly varies in the level of confidence of the experimental
data, they could be perceived as a measure of quality for the annotation. Since there is no
unified quality-based ordering of these codes a rough ranking is proposed as shown in Figure
2.11. While the quality-differences between ’traceable author statement’ and ’inferred from
electronic annotation’ are obvious, a ranking of ’inferred from genetic interaction’ and ’in-
ferred from mutant phenotype’ is less intuitive. These corresponding filter option has been
implemented in the user-interface (see Figure 7.2 on page 100) with the codes being listed in
descending order of quality. Each of the codes can be individually (de-)selected allowing to
choose any combination of codes and thus accounting for any possible (user-defined) ranking.
One of the most efficient filters to decrease the number of terms, is to discard annotations that
are ’inferred from electronic annotation’. In case ofhomo sapiensthis results in a reduction of
more than 34% of the available annotations. While this filter setting improves the confidence
for the remaining annotations, it is advisable to perform at least one analysis including all
annotations, to fully exploit the available data. Here one should keep in mind, however, that a
thorough validation of the functional properties is inevitable.

Another filter criterion is based on the structure of the ontology, it accounts for the distance
of an annotation to the root node of the ontology. With this filter the abstraction level of the
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plotted terms can be controlled. Generally speaking, the higher this distance is, the more
detailed the resulting annotations are. One should be aware, however, that the distance itself
can not be used as an absolute measure for information content, in the sense that terms having
a distance of six carry twice the amount of information compared to those at a distance of
three. Even the content of information that is captured by concepts at the same level of the
ontology can differ drastically, for example: ’glutathione dehydrogenase (ascorbate) activity’
(GO:0045174) and ’enzyme activator activity’ (GO:0008047) both have a distance of four to
the root node, but the specificity (i.e. information content) of the terms clearly is not the same.
The level of specificity at a certain depth in the ontology is influenced to a great extent by the
information available in that area. When applying this filter, the heterogeneity of the ontology
should always be kept in mind, especially when used in combination with the ’minimal number
of genes’ filter.

Finally a filter based on the homogeneity of the expression profiles of the annotated genes is
presented. Here correlation coefficients along with different ways two summarize them were
applied and tested. Their performance was assessed by ROC curves based on a predefined
set of ’standard annotations’, the best overall performance was achieved by calculating the
mean of all pairwise Spearman’s correlation coefficients (ρ) of the expression profiles of the
annotated genes. Since Spearman’sρ is based on the ranks, rather than the actual intensities,
it does not assume normal distribution of the data, making it applicable to microarray data
which is known to be heavily right-skewed [95, 96]. In this setup annotations comprised
of anti-correlated genes will be filtered out due to negative coefficients. Since I consider
anti-correlation as potentially interesting as well, I account for this by taking the mean of
the absolute values of the pairwiseρ. One should note, however, in cases where half of the
genes of an annotation are anti-correlated to the other half, this annotation will be plotted
near the centroid of the map, despite high values ofρ. The application of this filter results
in a large decrease of displayed annotations, especially at high thresholds (0.85 - 1). Here
one should be aware that the resulting set of annotations is biased towards annotations with
low numbers of genes, commonly two to four. This is due to the fact that the higher the
number of annotated genes, the higher the probability for an annotated gene having a deviating
expression profile, which consequently results in a lowerρ. As a side effect the annotations
selected by this filter tend to be rather specific in the information content (i.e. high distance
from the root node), such that reasonable thresholds (0.6 - 0.8) in combination with a sensible
’number of genes filter’ give the most promising results. The usefulness of this filter could be
demonstrated in the analysis of yeast as well as human data sets. In both cases the application
of the correlation coefficient filter resulted in well interpretable plots displaying reasonable
numbers of annotations, but only after application of this filter, annotations describing relevant
functional properties became apparent.
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3.4 Integration of transcription factors

The integration of annotation data in CA has proven to generate well interpretable plots in
which the associations of annotations to experimental conditions or clusters of genes can be
used to describe their functional characteristics. Even though this approach is very power-
ful in identifying common properties, these commonly relate to more general concepts and
processes. The identification of key regulatory elements being responsible for the observed
differences in expression is not feasible by this approach.

Here, transcription factors (TFs) represent a group of genes which often act as key regulatory
elements. TFs are proteins that bind to specific DNA sequence motifs and thereby regulate the
transcription activity of a nearby gene. Theoretically the relevance of a TF in an experimental
setting can be assessed by two approaches. One of which focuses on the behavior of the TF
itself, the second one on the changes in the TF’s target genes. The former approach poses
several problems: small changes in the expression level of the TF, which are undetectable by
microarray technology, can still effect the expression of the target genes. More importantly,
however, the functionality of TFs is often dependent on post-translational modifications, such
as phosphorylation, acetylation or the binding of a co-factor. These effects are not detectable
at the mRNA level and thus I decided to assess the relevance of a TF by the transcriptional
changes of it’s target genes.

To this end the TRANSFAC database has been used as a source for the association of tran-
scription factor binding sites (TFBS) to genes. The structure of this association is similar to
those derived from the GO and thus the TFs are integrated analogous: For each TF a repre-
sentative expression profile is calculated based on the annotated genes and added to the data
matrix as supplementary rows. This approach was subsequently validated for its usefulness
on aS. cerevisiaeand a human cancer data set.

In case of the yeast data, which compares experimental conditions with varying concentrations
of glucose, TFs such as CAT8, ABF1 and GCR1 were identified as being differentially regu-
lated. It is known that CAT8 is responsible for the derepression of multiple genes during the
diauxic shift. Target genes include FBP1 and PCK1, both of which are known to be key en-
zymes in the gluconeogenesis pathway [144, 147], such that the observed upregulation in the
’non-glucose’ condition is in agreement with literature. Furthermore ABF1 and GCR1 were
upregulated in glucose containing conditions, this is supported by prior findings, reporting
both TFs as activators of glycolytic enzymes [162, 163, 164, 175, 176].

The analyzed human cancer data, compares HaCaT cell lines that were transfected with the
Ha-Ras oncogene. Here target genes of TFs such as C/EBP and NF-kappa B were identified
as being differentially expressed. C/EBP (NF-IL6-2) is known to be mediated by Ha-Ras
in keratinocytes [185, 186]. Interestingly NF-kappa B is associated to the cell line A5RT3
which harbors the potential to metastasize. This indicates that an initial NF-kappa B inhibition
[192] could be changed in advanced tumor progression. The activation of NF-kappa B can be
observed in many cancer diseases like breast and ovarian tumors [190, 191].
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For a number of TFs, however, only a few validated target genes are available, which is a
non-optimal statistical basis to draw any conclusions from their positioning in a CA plot.
To circumvent this the binding matrices provided in the TRANSFAC database were used to
predict potential binding sites in the upstream regions of genes (7.7). With this approach
the number of associated genes/TF could be increased, at the cost of decreasing the level of
confidence. In case of theS. cerevisiaeintegration of the predicted sites, not only supported
the prior findings (solely based on TRANSFAC data) but also allowed to identify previously
undetected TFs being relevant in the given experimental context. In case of the human data
set, however, the positioning of the TFs based the predicted binding sites was not in every
case in accordance with TRANSFAC data. Moreover, some of the plotted associations of
TFs to experimental conditions could not be explained with current knowledge. Both findings
indicate the need for improvement in case of the human data set. Here a refinement of the
prediction algorithm or the application of quality filters for the predicted prior to visualization
could render this approach applicable.

In 2000 Ren et al. [133] published the Chromatin-immunoprecipitation-chip (ChIP-chip) that
allows to identify DNA-protein interactions on a genome wide scale. With this the target
sequence(s) of a DNA binding protein are identified along with downstream genes, that are
potentially regulated by the corresponding protein. One of the first class of proteins to be
analyzed by this method are transcription factors. I integrated the ChIP-chip data analogous
to the data from TRANSFAC, such that each TF is represented by a summary profiles of
its annotated genes. In this data set all TFs were plotted on one side of the centroid, even
though, from a biological point of view, this association does not make sense for all TFs. This
positioning is very likely due to the very large numbers of genes being associated with each
TF, in this setting up to≈4300 genes/TF. Since the position of the TF represents the centroid
(i.e. weighted average) of the annotated genes, it is plotted in the direction of the majority of
the genes. This is very likely the reason why all TFs, based on ChIP-chip data, can be found
on the left-hand side of the centroid in Figure 2.22, regardless of their biological function.
Since it is questionable, that over 4000 genes are under the control of a single TF I rather
expect a high false-positive rate in the ChIP-chip data. Thus it is advisable to further validate
these gene-TF associations before submitting them to subsequent analysis.

In summary, the presented method provides a mean to visualize microarray data in context of
transcription factor binding sites. The resulting plot allows for an intuitive identification of TFs
being relevant for the transcriptional changes between the chosen experimental conditions.

3.5 Future prospects

As the integration of gene annotation data in CA has proven as a powerful method to identify
relevant functional processes (in case of GO) or even target individual genes as key regulatory
elements (in case of integrated TFs), a subsequent step is to expand this approach to other
data sources as well. Here data stored in KEGG could be of immediate use in identifying
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regulated pathways, even though this will exhibit some overlap with the data provided by GO,
I expect that some processes will be represented more precisely due to the higher resolution
of KEGG. One example of this would be the highly interrelated processes of glycolysis and
gluconeogenesis: in both pathways the majority of reactions is catalyzed by the same set of
genes (either in forward or reverse direction), only for a few thermodynamically irreversible
reactions a different enzyme is utilized. Due to this large overlap, it will be hard to differentiate
the two processes based on GO categories, but could prove feasible based on data from KEGG.

Furthermore, information on genomic localization can help to identify genes being co-regulated
based on their vicinity in the genome or even to identify potential chromosomal deletions.
Besides the mere localization, complete sequences from the upstream regions of genes (or
selected motifs thereof) could be submitted to the analysis. From a medical/pharmaceutical
point of view it is most interesting to integrate data on the disease-relevance of genes. In
general almost every gene annotation data available could be added to a CA plot to facilitate
deduction of biological hypothesis.

Besides the visualization of annotation data as an aid in functional interpretation of microarray
data, integration of external data sources provides a basis for more accurate reconstruction of
regulatory networks as compared to microarray data alone. To this end database structures
and analysis methods should be developed that can store and integrate data on, for instance,
protein levels (i.e. derived from two-dimensional gels or the upcoming protein arrays). To
further facilitate the development of sound network topologies protein-protein interaction data
should be integrated as well.
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DNA microarrays have become a standard technique to assess the mRNA levels for complete
genomes. To identify significantly regulated genes from these large amounts of data a wealth
of methods has been developed. Despite this, the functional interpretation (i.e. deducing bio-
logical hypothesis from the data) still remains a major bottleneck in microarray data analysis.
Most available methods display the set of significant genes in long lists, from which common
functional properties have to be extracted. This is not only a tedious and time-consuming task,
which becomes less and less feasible with increasing numbers of experimental conditions, but
is also prone to errors, since it is commonly done by eye.

In the course of this work methods have been developed and tested, that allow for a computer-
based analysis of functional properties being relevant in the given experimental setting. To
this end the Gene Ontology was chosen as an appropriate source of annotation data, because
it combines human-readability with computer-accessibility of the annotations term and thus
allows for a statistical analysis of functional properties.

Here the gene-annotations are integrated in a Correspondence Analysis which allows to visu-
alize genes, hybridizations and functional categories in a single plot. Due to the increasing
amounts of available annotations and the fact that in most settings only few functional pro-
cesses are differentially regulated, several filter criteria have been developed to reduce the
number of displayed annotations to a set being relevant in the given experimental setting.

The applicability of the presented visualization and filtering have both been validated on
datasets of varying complexity. Starting from the well studied glucose-pathway inS. cere-
visiaeup to the comparison of different tumor types in human. In both settings the method
generated well interpretable plots, which allowed for an immediate identification of the major
functional differences between the experimental conditions [90].

While the integration of annotation data like GO facilitates functional interpretation, it lacks
the capability to identify key regulatory elements. To facilitate such an analysis, the occur-
rence of transcription factor binding sites in upstream regions of genes has been integrated to
the analysis as well. Again this methodology was biologically validated onS. cerevisiaeas
well human cancer data sets. In both settings TFs known to exhibit central roles for the ob-
served transcriptional changes were plotted in marked positions and thus could be immediately
identified [206].

In essence, integration of supplementary information in Correspondence Analysis visualizes
genes, hybridizations and annotation data in a single, well interpretable plot. This allows for
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4 Summary

an intuitive identification of relevant annotations even in complex experimental settings. The
presented approach is not limited to the shown types of data, but is generalizable to account
for the majority of the available annotation data.
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5 Zusammenfassung

DNS-Chips (’Microarrays’) haben sich zu einer der Standardmethoden zur Erstellung von
genomweiten Expressionsstudien entwickelt. Mittlerweile wurden dazu eine Vielzahl von
Methoden zur Identifizierung von differentiell regulierten Genen veröffentlicht. Ungeachtet
dessen stellt die abschliessende funktionelle Interpretation der Ergebnisse einen der Engpässe
in der Analyse von Chip-Daten dar. Die Mehrzahl der Analysemethoden stellt die signifikant
regulierten Gene in Listen dar, aus denen in einem weiteren Schritt gemeinsame funktionelle
Eigenschaften abgeleitet werden müssen. Dies stellt nicht nur eine arbeitsintensive Arbeit
dar, die mit steigender Anzahl an experimentellen Konditionen immer weniger praktikabel
wird, sondern ist auch fehleranfällig, da diese Auswertung im allgemeinen auf dem visuellen
Vergleich von Listen beruht.

In der vorliegenden Arbeit wurden Methoden für eine rechnergestützte Auswertung von funk-
tionellen Geneigenschaften entwickelt und validiert. Hierzu wurde die ’Gene Ontology’ als
Quelle für die Annotationsdaten ausgewählt, da hier die Daten in einem Format gespeichert
sind, das sowohl eine leichte menschliche Interaktion sowie die statistische Analyse der An-
notationen ermöglicht.

Diese Genannotation wurden als Zusatzinformationen in die Korrespondenzanalyse integriert,
welches eine simultane Darstellung von Genen, Hybridisierungen und funktionellen Kate-
gorien in einer Grafik ermöglicht. Aufgrund der ständig wachsenden Anzahl an verfügbaren
Annotationen und der Tatsache, daß zwischen den meisten experimentellen Bedingungen nur
wenige funktionelle Prozesse differentiell reguliert sind, wurden Filter entwickelt, die die An-
zahl der dargestellten Annotationen auf eine im gegebenen experimentellen Kontext relevante
Gruppe reduzieren.

Die Anwendbarkeit der Visualisierung und der Filter wurde auf Datensätzen unterschiedlicher
Komplexität getestet: beginnend mit dem gut verstandenen Glukosestoffwechsel im Modell-
organismusS. cerevisiae,bis hin zum Vergleich unterschiedlicher Tumortypen im Menschen.
In beiden Fällen generierte die Methode gut zu interpretierende Grafiken, in denen die funk-
tionellen Hauptunterschiede durch die dargestellten Annotationengut beschrieben werden
[90].

Während die Integration von Annotationsdaten wie GO die funktionelle Interpretation ver-
einfacht, fehlt die Möglichkeit zur Identifikation einzelner relevanter Schlüsselgene. Um eine
solche Analyse zu ermöglichen, wurden Daten zum Vorkommen von Transskriptionsfaktor-
bindestellen in den 5’-Bereichen von Genen integriert. Auch diese Methode wurde an Daten-
sätzen vonS. cerevisiaeund vergleichenden Studien von humanen Krebszelllinien validiert.
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In beiden Fällen konnten Transkriptionsfaktoren identifiziert werden, die für die beobachteten
transkriptionellen Unterschiede vonentscheidender Bedeutung sind [206].

Zusammenfassend, ermöglicht die Integration von Zusatzinformationen in die Korrespondenz-
analyse eine simultane Visualisierung von Genen, Hybridisierungen und Annotationsdaten
in einer einzigen, gut zu interpretierenden Grafik. Dies erlaubt auch in komplexen experi-
mentellen Bedingungen eine intuitive Identifizierung von relevanten Annotationen. Der hier
vorgestellte Ansatz, ist nicht auf die gezeigten Datenstrukturen beschränkt, sondern kann auf
die Mehrzahl der verfügbaren Annotationsdaten angewendet werden.
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7 Appendix

7.1 SQL query to extract father-child relations in GO

select distinct p.id from graph_path inner join term as t (t.id = graph_path.term2_id) inner
join term as p on (p.id = graph_path.term1_id) where t.acc =’?’;

This query will extract all parental note from the GO term specified by ’?’, given the database
is in the format as described in 7.1. Since the GO accesion (e.g. GO:0000001) is used as
an identfier, this query tends to be slow for large amounts of data, since the used accession
implies that the corresponding column in the database needs to be of the type ’CHAR’ or
’Text’. Retrieval of parental terms can be significantly sped up by an inital extraction of the
internal GO-ID (as provided in the ’term’-Table), which in turn can be used as follows to
retrieve all parental terms:

select distinct term1_id from graph_path where term2_id = ?;

Analogous to the previous query the ’?’ is to be replaced by the corresponding GO ID. Since
this ID, now is of the type ’Integer’ and the respective column is indexed, even large queries
will extract all parental terms in a feasible time frame.

7.2 Experimental procedures for human cancer study

Glass slides used for this study carried 37,530 cDNA clones selected from the Human Uni-
Gene 3.1 clone set (German Resource Center for Genome Research, Berlin, Germany). The
cDNA array is submitted to Gene expression omnibus database GEO including manufacture
protocol (GEO accession GPL3050). HaCaT is a human keratinocyte cell line. The original
spontaneous immortalized, benign HaCaT-Tetra cell line has been Ha-Ras-transformed and
the cells were injected in mice for tumor growth resulting in one additionally benign cell line
HaCaT-A5, in two malignant cell lines HaCaT-I7 and HaCaT-II4, and in one malignant cell
line HaCaT-A5RT3 with the potential to metastasize. HaCaT cells were routinely cultured in
DMEM (Sigma), supplemented with 10% fetal calf serum and antibiotics at 37◦C, 5% CO2
and 95% air. Cells were subcultured once a week at a 1:10 dilution. For the treatment with
the MEK inhibitor U0126 (Promega), cells were seeded at 8x105 per plate in 10 cm culture
dishes and treated with 10µM U0126 or the solvent DMSO for 48 hours and finally collected
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for RNA preparation. Total RNA was prepared using the RNeasy-Midi-Kit (Qiagen) fol-
lowing the manufactures instructions. The isolated RNA was quantified by UV-spectroscopy
and quality controlled using the Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara,
CA). All of the samples yielded high-quality RNA (28S/18S rRNA and E260/E280 ratio larger
than 1.8). Samples were stored at 80◦C until further use. Linear amplification was performed
using the MessageAmpTM aRNA Kit (Ambion) according to the manufactures instructions.
Amplified RNA samples were labeled with Cy3 and a common reference aRNA (Stratagene)
with Cy5. Cy3- and Cy5-labeled samples were purified with Microcon YM-30 columns (Mili-
pore, Bedford, MA, USA), combined and resuspended in 50µl 1x DIG-Easy hybridization
buffer (Roche Diagnostics), containing 10x Denhardt’s solution and 2ng/µl Cot1-DNA (Invit-
rogen). Hybridisations (in duplicate) and washing were done as previously described. The
hybridized arrays were scanned with the GenePix 4000B microarray scanner (Axon Instru-
ments), and analyzed using GenePix Pro 4.1 software. The normalized expression data were
filtered with respect to signal intensity and 7289 genes were selected for analysis in Corre-
spondence Analysis by two-way Anova analysis (P value < 0.05) including both parameters,
HaCaT variant and treatment. The displayed transcription factors for this experimental dataset
are based on the association data from TRANSFAC database. Only these TFs were displayed
which are associated to a minimum of 5 gene hits in the expression set. The TFs are added as
supplementary rows to the data matrix in the same manner like in the yeast dataset analysis.
Preprocessing and most of the statistical analysis were done using R (www.r-project.org) and
Bioconductor (www.bioconductor.org). After quality control, all cDNA microarray data were
normalized using arrayMagic [207].
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7.3 UML schema of the GO database

7.3 UML schema of the GO database

Figure 7.1: UML schema of the GO database. Reproduced from
http://www.godatabase.org/dev/sql/doc/diagrams.html.
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7.4 Snapshots of GUI

Figure 7.2: User interface for filtering of GO annotations. In the first panel any combination of
subsets of the ontology can be selected. The second panel lets the researcher define minimal and
maximal boundaries, for the number of genes being associated to an annotation. In the last panel
in the first row the annotations, more precisely the annotated gene products, can be filtered based
on the evidence codes. Here the codes are roughly ordered by the quality of annotation, i.e. to
top-most code (TAS, ’traceable author statement’) has the highest quality, whereas IEA (’inferred
from electronic annotation’) at the bottom, the lowest. This is not a standard ordering based on some
criterion, but a suggestion from the author. The first panel in the second rows allows the specification
for the threshold of the correlation coefficient below which the annotations should be not displayed.
The last panel allows to select annotations based on their position in the ontology, i.e. their distance
from the root node. The filtering options and their effects on the data are discussed in 2.3 on page 30.
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7.4 Snapshots of GUI

Figure 7.3: Snapshot of results output.Here a snapshot of the format in which the GO terms that
are selected in a CA plot are presented to the users. The first column represents the GO accession
id being truncated of ’GO:’ and trailing zeros. This ID is a link to the GO website, providing
more detailed information on it (e.g. it’s position in the ontology - amoungst other), the second
column gives the name of the term, the third the number of genes being associated to this term in
the current analysis (i.e. after applying gene- and annotations filters) and in the last column spotnos
of the associated genes are provided. Finally all the genes being associated to one of the selected
annotations are listed at the bottom of the page along with all available information on them that is
stored in the database.
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7.5 Comprehensive listing of annotations displayed in
human cancer data set

Cluster GO id GO term
Tumor asso-
ciated

GO:0009611 (P) response to wounding
GO:0009888 (P) histogenesis
GO:0004722 (F) protein serine/threonine phosphatase activity
GO:0004725 (F) protein tyrosine phosphatase activity
GO:0004842 (F) ubiquitin-protein ligase activity
GO:0005001 (F) transmembrane receptor protein tyrosine phos-

phatase activity
GO:0006310 (P) DNA recombination
GO:0006470 (P) protein amino acid dephosphorylation
GO:0008287 (C) protein serine/threonine phosphatase complex
GO:0016879 (F) ligase activity, forming carbon-nitrogen bonds
GO:0016881 (F) acid-D-amino acid ligase activity
GO:0019208 (F) phosphatase regulator activity
GO:0019888 (F) protein phosphatase regulator activity
GO:0045595 (P) regulation of cell differentiation
GO:0004693 (F) cyclin-dependent protein kinase activity
GO:0007089 (P) traversing start control point of mitotic cell cycle
GO:0007172 (P) signal complex formation
GO:0007265 (P) RAS protein signal transduction
GO:0007254 (P) JNK cascade

Ductal / Cys-
tic associated

GO:0006306 (P) DNA methylation
GO:0040029 (P) regulation of gene expression, epigenetic
GO:0012502 (P) induction of programmed cell death
GO:0043067 (P) regulation of programmed cell death
GO:0043068 (P) positive regulation of programmed cell death

Normal asso-
ciated

GO:0003735 (C) structural constituent of ribosome
GO:0005006 (F) epidermal growth factor receptor activity
GO:0005216 (F) ion channel activity
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7.6 Unique assignments of gene products

Cluster GO id GO term
GO:0005261 (F) cation channel activity
GO:0005830 (C) cytosolic ribosome (sensu Eukarya)
GO:0005840 (C) ribosome
GO:0005843 (C) cytosolic small ribosomal subunit (sensu Eukarya)
GO:0006298 (P) mismatch repair
GO:0007173 (P) epidermal growth factor receptor signaling pathway
GO:0016055 (P) Wnt receptor signaling pathway
GO:0045005 (P) maintenance of fidelity during DNA-dependent DNA

replication

Table 7.1: Comprehensive list of GO annotations displayed in Figure 2.19.Annotations are grouped
according to the clusters in Fig. and their corresponding GO-id, main category (P= Biological Pro-
cess, F= Molecular Function) and GO term are given.

7.6 Unique assignments of gene products

GO accession GO term

GO:0006099 tricarboxylic acid cycle
GO:0000022 mitotic spindle elongation
GO:0000027 ribosomal large subunit assembly and maintenance
GO:0000041 transition metal ion transport
GO:0000070 mitotic sister chromatid segregation
GO:0000096 sulfur amino acid metabolism
GO:0000132 establishment of mitotic spindle orientation
GO:0000274 proton-transporting ATP synthase, stator stalk (sensu

Eukaryota)
GO:0000275 proton-transporting ATP synthase complex, catalytic

core F(1) (sensu Eukaryota)
GO:0000329 vacuolar membrane (sensu Fungi)
GO:0000902 cellular morphogenesis
GO:0003924 GTPase activity
GO:0003969 RNA editase activity
GO:0004028 3-chloroallyl aldehyde dehydrogenase activity
GO:0004175 endopeptidase activity
GO:0004478 methionine adenosyltransferase activity
GO:0004672 protein kinase activity
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GO accession GO term

GO:0006099 tricarboxylic acid cycle
GO:0004674 protein serine/threonine kinase activity
GO:0004824 lysine-tRNA ligase activity
GO:0005047 signal recognition particle binding
GO:0005489 electron transporter activity
GO:0005667 transcription factor complex
GO:0005672 transcription factor TFIIA complex
GO:0005740 mitochondrial envelope
GO:0005743 mitochondrial inner membrane
GO:0005746 mitochondrial electron transport chain
GO:0005774 vacuolar membrane
GO:0005816 spindle pole body
GO:0005819 spindle
GO:0005823 central plaque of spindle pole body
GO:0005830 cytosolic ribosome (sensu Eukaryota)
GO:0005843 cytosolic small ribosomal subunit (sensu Eukaryota)
GO:0005854 nascent polypeptide-associated complex
GO:0005887 integral to plasma membrane
GO:0005905 coated pit
GO:0005934 bud tip
GO:0005935 bud neck
GO:0005976 polysaccharide metabolism
GO:0006007 glucose catabolism
GO:0006067 ethanol metabolism
GO:0006071 glycerol metabolism
GO:0006100 tricarboxylic acid cycle intermediate metabolism
GO:0006103 2-oxoglutarate metabolism
GO:0006163 purine nucleotide metabolism
GO:0006260 DNA replication
GO:0006325 establishment and/or maintenance of chromatin archi-

tecture
GO:0006365 35S primary transcript processing
GO:0006417 regulation of protein biosynthesis
GO:0006450 regulation of translational fidelity
GO:0006457 protein folding
GO:0006461 protein complex assembly
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GO accession GO term

GO:0006099 tricarboxylic acid cycle
GO:0006486 protein amino acid glycosylation
GO:0006493 protein amino acid O-linked glycosylation
GO:0006497 protein amino acid lipidation
GO:0006508 proteolysis
GO:0006528 asparagine metabolism
GO:0006536 glutamate metabolism
GO:0006555 methionine metabolism
GO:0006566 threonine metabolism
GO:0006631 fatty acid metabolism
GO:0006643 membrane lipid metabolism
GO:0006696 ergosterol biosynthesis
GO:0006800 oxygen and reactive oxygen species metabolism
GO:0006820 anion transport
GO:0006839 mitochondrial transport
GO:0006869 lipid transport
GO:0006873 cell ion homeostasis
GO:0006885 regulation of pH
GO:0006892 post-Golgi vesicle-mediated transport
GO:0006970 response to osmotic stress
GO:0006972 hyperosmotic response
GO:0006996 organelle organization and biogenesis
GO:0007015 actin filament organization
GO:0007020 microtubule nucleation
GO:0007088 regulation of mitosis
GO:0007163 establishment and/or maintenance of cell polarity
GO:0007568 aging
GO:0008028 monocarboxylic acid transporter activity
GO:0008144 drug binding
GO:0008443 phosphofructokinase activity
GO:0008526 phosphatidylinositol transporter activity
GO:0008553 hydrogen-exporting ATPase activity, phosphorylative

mechanism
GO:0008610 lipid biosynthesis
GO:0009057 macromolecule catabolism
GO:0009063 amino acid catabolism
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GO accession GO term

GO:0006099 tricarboxylic acid cycle
GO:0009064 glutamine family amino acid metabolism
GO:0009072 aromatic amino acid family metabolism
GO:0009084 glutamine family amino acid biosynthesis
GO:0009267 cellular response to starvation
GO:0009310 amine catabolism
GO:0009408 response to heat
GO:0010035 response to inorganic substance
GO:0015893 drug transport
GO:0015926 glucosidase activity
GO:0015934 large ribosomal subunit
GO:0016615 malate dehydrogenase activity
GO:0016616 oxidoreductase activity, acting on the CH-OH group of

donors, NAD or NADP as acceptor
GO:0016757 transferase activity, transferring glycosyl groups
GO:0016773 phosphotransferase activity, alcohol group as acceptor
GO:0016791 phosphoric monoester hydrolase activity
GO:0016811 hydrolase activity, acting on carbon-nitrogen (but not

peptide) bonds, in linear amides
GO:0016820 hydrolase activity, acting on acid anhydrides, catalyzing

transmembrane movement of substances
GO:0016866 intramolecular transferase activity
GO:0017171 serine hydrolase activity
GO:0019202 amino acid kinase activity
GO:0019207 kinase regulator activity
GO:0019725 cell homeostasis
GO:0030001 metal ion transport
GO:0030003 cation homeostasis
GO:0030120 vesicle coat
GO:0030478 actin cap
GO:0030528 transcription regulator activity
GO:0042123 glucanosyltransferase activity
GO:0042625 ATPase activity, coupled to transmembrane movement

of ions
GO:0042645 mitochondrial nucleoid
GO:0045333 cellular respiration
GO:0046037 GMP metabolism
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7.7 Prediction of TF binding sites

GO accession GO term

GO:0006099 tricarboxylic acid cycle
GO:0050794 regulation of cellular process

Table 7.2: Comprehensive listing of uniquely assigned gene products.Here all annotations are pro-
vided which have been selected when assigning each annotated gene product to a single annotation,
as described in 2.2.4.3

7.7 Prediction of TF binding sites

The yeast genome was searched for potential predicted TFBS using the 56 matrices for 44
different TFs designed from Funghi from the TRANSFAC database. 500bp upstream regions
were extracted from all genes in the yeast genome from the version of the genome at UCSC
(sacCer1, http://genome.ucsc.edu). The program Match [208] was used to scan for potential
binding sites. All potential binding sites that fulfilled "minimize false positives" cutoff criteria
that are suggested for each matrix in the TRANSFAC database were used. Altogether 19808
potential TFBS sites were predicted for 5542 yeast genes and 56 different TF matrices giving
15236 unique gene/site combinations.

Furthermore the human genome was scanned for conserved predicted TFBS using the 565
matrices designed for 386 different TFs from Vertebrates from the TRANSFAC database.
10kb upstream regions were extracted from all Refseq genes in the human, mouse and rat
genomes from at UCSC (http://genome.ucsc.edu). The homologene database was used to
determine the orthologous gene pairs and tripples. The pars and triples were aligned using the
program MUSCLE. Each of the sequences was scanned for potential TFBS using the program
Match [208]. All potential binding sites that fulfilled "minimize false positives" cutoff criteria
that are suggested for each matrix in the TRANSFAC database were used. The positions of
the TFBS in the aligned (gapped) sequences were computed and all TFBS kept that appeared
at least in two of the aligned sequences in corresponding positions (+/-5 bp). Both of the
predictions were carried out by Tim Beissbarth.

7.8 Software used

• PostgreSQL (Version 6.5.3 and 7.3.15): A powerful open source relational database
system, which is publically available from ’http://www.postgresql.org/download/’.

• Matlab (Version 6.0) incl. Statistics Toolbox: Interpreted numerical programming envi-
ronment. MathWorks Inc. MA, USA.
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• Perl (Version 5.8.7): free, platform-independant, interpreted programming language,
which is suited for regular expression searches in e.g. text files. The software is available
from ’http://www.perl.com/download.csp’.

• R (Version 2.1.1): a freely available language and environment for statistical computing
and graphics (’http://cran.r-project.org/index.html’).
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Abbreviations

AUC - area under curve

CA - Correspondence Analysis

ChIP-chip - chromatin immunoprecipitation-chip

cond. - condition

DAG - directed acyclic graph

DMSO - di-methyl-sulfoxide

DNA - desoxy-ribonucleicacid

exp. - experiment(al)

FN(R) - false negative (rate)

FP(R) - false positive (rate)

GEO - gene expression omnibus

GO - gene ontology

ID - identifier

KEGG - Kyoto Encyclopedia of Genes and Genomes

M-CHiPS - Multi-Conditional Hybridization Intensity Processing System

MDS - multi dimensional scaling

MGD - mouse genome database

MGED - Microarray Gene Expression Data

MIAME - minimal information about microarray experiments

mRNA - messenger ribonucleicacid

OBO - open biological ontologies

PCA - principal component analysis

ROC - receiver operating characterisics
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Abbreviations

RZPD - German Resource Center for Genome Research

SGD - Saccharomyces Genome Database

SOM - self-organizing maps

SQL - structured querying language

SVM - support vector machines

TAIR - Arabidopsis Information Resource

TCA - tricarboxylic acid

TF(BS) - transcription factor (binding site)

TN(R) - true negative (rate)

TP(R) - true positive (rate)

XML - extended markup language
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