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Zusammenfassung

Diese Dissertation handelt von einem neuen so genannten sequentiellen quadratischen Hamilton (SQH)
iterativen Schema um Optimalsteuerungsprobleme mit Differentialmodellen und Kostenfunktionalen, die
von glatt bis zu unstetig und nicht-konvex reichen, zu lösen. Dieses Schema basiert auf dem Pontrya-
gin Maximumprinzip (PMP), welches notwendige Optimalitätsbedingungen für eine optimale Lösung zur
Verfügung stellt.

In diesem Rahmen wird eine Hamiltonfunktion definiert, die ihr Minimum punktweise an der optimalen
Lösung des entsprechenden Optimalsteuerungsproblems annimmt. In diesem SQH Schema wird diese Ha-
miltonfunktion durch einen quadratischen Strafterm erweitert, der aus der aktuellen Steuerungsfunktion
und der Steuerungsfunktion aus der vorherigen Iteration besteht. Das Herzstück des SQH Schemas ist die
punktweise Minimierung dieser erweiterten Hamiltonfunktion um eine Aktualisierung der Steuerungsfunk-
tion zu bestimmen. Da das PMP keine Differenzierbarkeit in Bezug auf das Steuerungsfunktionsargument
verlangt, kann das SQH Schema dazu benutzt werden, Optimalsteuerungsprobleme mit sowohl glatten als
auch nicht-konvexen oder sogar unstetigen Kostenfunktionalen zu lösen.

Das Hauptergebnis dieser Dissertation ist die Formulierung eines robusten und effizienten SQH Schemas
und eines Rahmens, in dem die Konvergenzanalyse des SQH Schemas ausgeführt werden kann. In diesem
Rahmen bedeutet Konvergenz des Schemas, dass die berechnete Lösung die PMP Bedingung erfüllt.

Die steuernden Differentialmodelle der betrachteten Optimalsteuerungsprobleme sind gewöhnliche Dif-
ferentialgleichungen (ODEs) und partielle Differentialgleichungen (PDEs). Im PDE Fall werden elliptische
und parabolische Gleichungen, sowie die Fokker-Planck (FP) Gleichung betrachtet. Für sowohl den ODE
als auch den PDE Fall werden Annahmen formuliert, für die bewiesen werden kann, dass eine Lösung eines
Optimalsteuerungsproblems das PMP erfüllen muss. Die erhaltenen Resultate sind für die Diskussion der
Konvergenzanalyse des SQH Schemas essentiell. Diese Analyse hat zwei Teile. Der erste ist die Wohlge-
stelltheit des Schemas, was bedeutet, dass alle Schritte des Schemas ausgeführt werden können und ein
Ergebnis in endlicher Zeit liefern. Der zweite Teil ist die PMP Konsistenz der Lösung. Das bedeutet, dass
die Lösung des SQH Schemas die PMP Bedingungen erfüllt.

Im ODE Fall werden die folgenden Resultate erhalten, die die Wohlgestelltheit des Schemas und die
PMP Konsistenz der entsprechenden Lösung darlegen. Lemma 7 legt die Existenz eines punktweisen Mi-
nimums der erweiterten Hamiltonfunktion dar. Lemma 11 beweist die Existenz eines Gewichtes des qua-
dratischen Strafterms, sodass die Minimierung der entsprechenden erweiterten Hamiltonfunktion zu einer
Kontrollaktualisierung führt, die den Wert des Kostenfunktionals verringert. Lemma 12 legt dar, dass das
SQH Schema stehen bleibt falls eine Iterierte PMP optimal ist. Satz 13 beweist die Kostenfunktional ver-
ringernden Eigenschaften der SQH Steuerungsfunktionsaktualisierung. Das Hauptresultat ist in Satz 14
gegeben, welches die punktweise Konvergenz des SQH Schemas gegen eine PMP konsistente Lösung dar-
legt. Das SQH-Verfahren wird in diesem ODE Rahmen auf zwei Optimalsteuerungsprobleme angewendet.
Das erste ist ein optimales Quantensteuerungsproblem, bei dem gezeigt wird, dass das SQH-Verfahren
viel schneller zu einer optimalen Lösung konvergiert als ein globalisiertes Newton-Verfahren. Das zwei-
te Optimalsteuerungsproblem ist ein optimales Tumorbehandlungsproblem mit einem System gekoppelter
hochgradig nicht-linearer Zustandsgleichungen, die das Tumorwachstum beschreiben. Es wird gezeigt, dass
der Rahmen, in dem die Konvergenz des SQH Schemas bewiesen wird, auf diesen hochgradig nicht-linearen
Fall anwendbar ist.
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Als nächstes wird der Fall von PDE Optimalsteuerungsprobleme betrachtet. Zunächst wird ein allge-
meiner Rahmen diskutiert, in dem eine Lösung des entsprechenden Optimalsteuerungsproblem die PMP
Bedingungen erfüllt. In diesem Fall werden viele theoretische Abschätzungen in Satz 59 und Satz 64 be-
wiesen, die insbesondere die essentielle Beschränktheit von Zustands- und Adjungiertenvariablen beweisen.
Die Schritte für die Konvergenzanalyse des SQH Schemas sind analog zu denen des ODE Falls und füh-
ren zu Satz 27, der die PMP Konsistenz der Lösung, erhalten durch das SQH Schemas, darlegt. Dieser
Rahmen wird auf verschiedene elliptische und parabolische Optimalsteuerungsprobleme angewendet, die
lineare und bilineare Steuerungsmechanismen beinhalten, genauso wie nicht-lineare Zustandsgleichungen.
Darüber hinaus wird das SQH-Verfahren zum Lösen eines zustandsbeschränkten Optimalsteuerungspro-
blems in einer erweiterten Formulieren diskutiert. Es wird in Satz 30 gezeigt, dass wenn man das Gewicht
des Erweiterungsterms, der die Verletzung der Zustandsbeschränkung bestraft, erhöht, das Maß dieser
Zustandsbeschränkungsverletzung durch die entsprechende Lösung gegen null konvergiert. Weiterhin wird
ein Optimalsteuerungsproblem mit einem nicht-glatten L1-Zielverfolgungsterm und einer nicht-glatten
Zustandsgleichung untersucht. Für diesen Zweck wird eine adjungierte Gleichung definiert und das SQH-
Verfahren wird benutzt um das entsprechende Optimalsteuerungsproblem zu lösen.

Der letzte Teil dieser Dissertation ist einer Klasse von FP Modellen gewidmet, die auf bestimmte sto-
chastische Prozesse bezogen sind. Die Diskussion beginnt mit dem Fokus auf Random Walks bei dem auch
Sprünge mit enthalten sind. Dieser Rahmen erlaubt die Herleitung eines diskreten FP Modells, das einem
kontinuierlichen FP Modell mit Sprüngen und Randbedingungen entspricht, die sich zwischen absorbierend
bis komplett reflektierend bewegen. Diese Diskussion erlaubt die Betrachtung der Driftsteuerung, die aus
einer anisotropen Wahrscheinlichkeit für die Schritte des Random Walks resultiert. Danach werden zwei
Drift-Diffusionsprozesse und die entsprechenden FP Modelle mit zwei verschiedenen Steuerungsstrategi-
en für ein Optimalsteuerungsproblem mit Erwartungswertfunktional betrachtet. In der ersten Strategie
hängen die Steuerungsfunktionen von der Zeit ab und in der zweiten hängen die Steuerungsfunktionen
von Ort und Zeit ab. In beiden Fällen wird eine Lösung zum entsprechendem Optimalsteuerungsproblem
mit den PMP Bedingungen charakterisiert, dargestellt in Satz 48 und Satz 49. Die Wohlgestelltheit des
SQH Schemas ist in beiden Fällen gezeigt und weitere Bedingungen, die die Konvergenz des SQH Schemas
zu einer PMP konsistenten Lösung sicherstellen, werden diskutiert. Der Fall einer Ort und Zeit abhän-
gigen Steuerungsstrategie führt auf eine spezielle Struktur der entsprechenden PMP Bedingungen, die in
einem weiteren Lösungsverfahren ausgenutzt werden, dem sogenannten direkten Hamiltonfunktionsverfah-
ren (DH).



Summary

This thesis deals with a new so-called sequential quadratic Hamiltonian (SQH) iterative scheme to solve
optimal control problems with differential models and cost functionals ranging from smooth to discontin-
uous and non-convex. This scheme is based on the Pontryagin maximum principle (PMP) that provides
necessary optimality conditions for an optimal solution.

In this framework, a Hamiltonian function is defined that attains its minimum pointwise at the optimal
solution of the corresponding optimal control problem. In the SQH scheme, this Hamiltonian function is
augmented by a quadratic penalty term consisting of the current control function and the control function
from the previous iteration. The heart of the SQH scheme is to minimize this augmented Hamiltonian
function pointwise in order to determine a control update. Since the PMP does not require any differ-
entiability with respect to the control argument, the SQH scheme can be used to solve optimal control
problems with both smooth and non-convex or even discontinuous cost functionals.

The main achievement of the thesis is the formulation of a robust and efficient SQH scheme and a
framework in which the convergence analysis of the SQH scheme can be carried out. In this framework,
convergence of the scheme means that the calculated solution fulfills the PMP condition.

The governing differential models of the considered optimal control problems are ordinary differential
equations (ODEs) and partial differential equations (PDEs). In the PDE case, elliptic and parabolic
equations as well as the Fokker-Planck (FP) equation are considered. For both the ODE and the PDE
cases, assumptions are formulated for which it can be proved that a solution to an optimal control problem
has to fulfill the PMP. The obtained results are essential for the discussion of the convergence analysis of
the SQH scheme. This analysis has two parts. The first one is the well-posedness of the scheme which
means that all steps of the scheme can be carried out and provide a result in finite time. The second part
part is the PMP consistency of the solution. This means that the solution of the SQH scheme fulfills the
PMP conditions.

In the ODE case, the following results are obtained that state well-posedness of the SQH scheme and
the PMP consistency of the corresponding solution. Lemma 7 states the existence of a pointwise minimum
of the augmented Hamiltonian. Lemma 11 proves the existence of a weight of the quadratic penalty term
such that the minimization of the corresponding augmented Hamiltonian results in a control updated that
reduces the value of the cost functional. Lemma 12 states that the SQH scheme stops if an iterate is PMP
optimal. Theorem 13 proves the cost functional reducing properties of the SQH control updates. The main
result is given in Theorem 14, which states the pointwise convergence of the SQH scheme towards a PMP
consistent solution. In this ODE framework, the SQH method is applied to two optimal control problems.
The first one is an optimal quantum control problem where it is shown that the SQH method converges
much faster to an optimal solution than a globalized Newton method. The second optimal control problem
is an optimal tumor treatment problem with a system of coupled highly non-linear state equations that
describe the tumor growth. It is shown that the framework in which the convergence of the SQH scheme
is proved is applicable for this highly non-linear case.

Next, the case of PDE control problems is considered. First a general framework is discussed in which
a solution to the corresponding optimal control problem fulfills the PMP conditions. In this case, many
theoretical estimates are presented in Theorem 59 and Theorem 64 to prove in particular the essential
boundedness of the state and adjoint variables. The steps for the convergence analysis of the SQH scheme
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are analogous to that of the ODE case and result in Theorem 27 that states the PMP consistency of
the solution obtained with the SQH scheme. This framework is applied to different elliptic and parabolic
optimal control problems, including linear and bilinear control mechanisms, as well as non-linear state
equations. Moreover, the SQH method is discussed for solving a state-constrained optimal control problem
in an augmented formulation. In this case, it is shown in Theorem 30 that for increasing the weight of
the augmentation term, which penalizes the violation of the state constraint, the measure of this state
constraint violation by the corresponding solution converges to zero. Furthermore, an optimal control
problem with a non-smooth L1-tracking term and a non-smooth state equation is investigated. For this
purpose, an adjoint equation is defined and the SQH method is used to solve the corresponding optimal
control problem.

The final part of this thesis is devoted to a class of FP models related to specific stochastic processes.
The discussion starts with a focus on random walks where also jumps are included. This framework allows
a derivation of a discrete FP model corresponding to a continuous FP model with jumps and boundary
conditions ranging from absorbing to totally reflecting. This discussion allows the consideration of the
drift-control resulting from an anisotropic probability of the steps of the random walk. Thereafter, in
the PMP framework, two drift-diffusion processes and the corresponding FP models with two different
control strategies for an optimal control problem with an expectation functional are considered. In the
first strategy, the controls depend on time and in the second one, the controls depend on space and time.
In both cases a solution to the corresponding optimal control problem is characterized with the PMP
conditions, stated in Theorem 48 and Theorem 49. The well-posedness of the SQH scheme is shown in
both cases and further conditions are discussed that ensure the convergence of the SQH scheme to a PMP
consistent solution. The case of a space and time dependent control strategy results in a special structure
of the corresponding PMP conditions that is exploited in another solution method, the so-called direct
Hamiltonian (DH) method.



Chapter 1

Introduction

One central topic of optimal control theory is the investigation of necessary optimality conditions that a
solution to an optimal control problem hast to fulfill. In this thesis, we consider (among others) optimal
control problems having the following structure

min
y,u

J (y, u) :=

ˆ

Z
(h (y) + g (u)) dx

such that c (y, u) = 0 and u ∈ Uad

(1.1)

where the state y and the control u can depend on time or space variables or both depending on the
differential model c (y, u) = 0. The function h determines the objective of the state y at each point
of the domain Z and g determines the cost of the control u at each point of Z. The task is to find a
control in the admissible set Uad such that the cost functional J is minimized subject to the governing
differential model c (y, u) = 0. Such an optimal control is called a solution to (1.1). For this purpose,
necessary conditions that such a control has to fulfill are exploited for designing efficient numerical solution
algorithms. For example, a common approach for the first-order characterization of a solution to optimal
control problems is the Lagrange approach [48, 55, 95, 54] where first and second order methods are
used for the numerical calculation of a solution [96, 19]. However, in this framework the calculation of a
subdifferential is necessary, and the existence of a subdifferential requires some smoothness of the problem
like directionally differentiability or convexity of the reduced cost functional [96, 82, 58, 10].

In this thesis, we focus on the Pontryagin maximum principle (PMP) [67, 81, 16, 77, 42, 28, 92, 93,
41, 35, 80, 95] that provides an alternative characterization of a solution to an optimal control problem.
In this framework, a Hamiltonian function is defined that attains its minimum pointwise at the optimum
with respect to all possible values of the control. Thus a derivative of the cost functional with respect to
the control argument is in general not necessary in order to characterize a solution. This is the starting
point for our considerations in this thesis where we use the minimum of a Hamiltonian function instead of
a gradient or elements of a subdifferential in order to obtain a PMP consistent scheme. This allows us to
consider not only optimal control problems with smooth but also with non-convex and even discontinuous
cost functionals without the need of regularization techniques as in [70, 53, 56, 57].

In this thesis, we consider different cost functionals where the cost of the controls can be continuous
and convex or just lower semi-continuous [3]. If the corresponding cost functional is weakly lower semi-
continuous, then the existence of an optimal solution can be obtained with variational techniques, see [95]
for instance. However, difficulties arise in the case of cost functions that are only lower semi-continuous
as the following discussion illustrates.

Consider the lower semi-continuous function

g : R→ R, z 7→ g (z) :=

{

1 if z 6= 0

0 if z = 0
,

13
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which is associated with the so-called L0-norm
´

Ω g (u (x)) dx of a function u : Ω → R on the open set
Ω ⊆ Rn, n ∈ N. We choose Ω = (0, 1) and

u (x) :=

{

1 if x ∈
[
1
2 + k, 1 + k

)

0 if x ∈
(
0 + k, 12 + k

) , k ∈ N0

for x ∈ R. Then we choose a sequence um (x) := u (mx), m ∈ N for x ∈ Ω. According to [7, Proposition
1] or [59, A property of the mean value], we have that the sequence (um)m∈N weakly converges to the
mean value of u on Ω, which is 1

2 representing the weak limit denoted with ū. Then we have, since

ū is a constant function on Ω, that
´ 1
0 g (ū (x)) dx = 1. Furthermore, we have by a direct calculation

that
´ 1
0 g (um (x)) dx = 1

2 . This means that we have a sequence (um)m∈N weakly converging to ū which
contradicts the condition of weakly lower semi-continuity as follows

1

2
= lim inf

m→∞

ˆ 1

0
g (um (x)) dx <

ˆ 1

0
g (ū (x)) dx = 1.

Consequently in the case of a so-called L0-cost functional, the proof of existence of an optimal solution is
not possible with a direct variational technique.

We remark that for g being lower semi-continuous, the existence of a minimizer can be proven on a
compact admissible set, see [21, Theorem A.2]. However, in order to characterize this solution with the
PMP condition, the technique of needle variation is required in this thesis. The values of a function and of
its needle variation differ at most on a ball centered at an arbitrary point of the domain where the values
of the needle variation are set to a constant value from an admissible set of values on this ball. In order to
apply the technique of needle variation, it is necessary that all needle variations of all admissible controls,
that means the needle variation of any admissible control at any point of the domain and any radius of
the ball, are included in the admissible set. Thus the compactness of the admissible set contradicts the
accommodation of all needle variations of all admissible controls.

Since the focus of our work is the PMP characterization of optimal controls and their computation
by our PMP-based optimization solver, we consider bounded convex and closed admissible control sets in
Lebesgue spaces (which are not compact) and assume existence of optimal controls in these sets.

However, notice that our approach covers all cases where continuous and convex cost functionals
appear, and in these cases, we prove existence of optimal solutions in the sets mentioned above. On the
other hand, our work provides a framework to address control problems that are beyond the continuous
and convex cases, for which a PMP characterization is possible and the related optimization procedure
constructs a minimizing sequence that converges to a point satisfying the PMP condition.

Next, we give an overview of existing work about numerical schemes based on the PMP and show how
our presented scheme is related to them. In particular, we refer to the work [17, 40, 85, 88, 97] and further
[27, 62, 63, 69, 73, 87] where in both cases a Hamiltonian function is pointwise minimized in order to
calculate the next iterate of the control function. We consider two major variants in the class of schemes
using the PMP. The first one, the so-called successive iteration scheme, originates in [62, 63] where the
Hamiltonian function from the PMP is pointwise minimized. For any pointwise update of the control, the
state variable from the previous iteration is used. This strategy results in an efficient calculation method
because the number of solving the state equation is kept small. However, this method is not robust
with respect to its convergence behavior since the minimization of the Hamiltonian is independent of the
control-to-state map and thus does not consider the variation of the state with respect to the control.
Furthermore, there is a lack of convergence theory for this class of PMP based schemes. The second major
variant of PMP based methods originates in [85, 88] where the Hamiltonian function is augmented with
a quadratic penalization term consisting of the difference between the current control value and the one
from the previous iteration. Furthermore, the minimization of the augmented Hamiltonian depends on
the control-to-state map since with any pointwise update of the control the state variable is updated. For
this class of schemes, there is convergence theory available, see [17]. The theory says that for smooth
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cost functionals the corresponding scheme converges to an optimal solution that fulfills the variational
inequality corresponding to the optimality condition of the Lagrange approach. However, in this latter
framework it is required to update the state after each pointwise update of the control. Consequently, this
class suffers from a large computational effort for minimizing the augmented Hamiltonian. In the present
thesis, we develop a new scheme that combines the advantages of both methods mentioned above.

In our method, that we call sequential quadratic Hamiltonian (SQH) method, an augmented Hamilto-
nian is considered and is pointwise minimized where the state variable from the last iteration is used and a
quadratic penalization term consisting of the difference between the current control value and the one from
the previous iteration is included. This ensures that the update of the control is sufficiently small such that
the state variable of the previous iteration is still a good approximation for the currently updated control
while by fixing the state variable the minimization process avoids to be too computationally expensive. In
this setting, we provide a framework that allows to prove convergence of this scheme to a PMP consistent
solution, which means that the obtained solution fulfills the PMP conditions for optimality. Besides the
theoretical investigation of the convergence of the SQH scheme, we also show that the results from the
corresponding algorithm can be numerically checked for optimality with the PMP and thus validate the
proposed framework.

In Chapter 2, we consider optimal control problems governed by ordinary differential equations (ODEs).
We set up a general framework in which we prove the PMP characterization of an optimal solution and
the convergence of our SQH scheme. The characterization with the PMP follows essentially the reasoning
in [81]. The corresponding result is Theorem 5. Next, we prove the well-posedness of our scheme and
its convergence to a PMP consistent solution. The main result of this chapter is Theorem 14, which
states the convergence of the SQH method to a PMP consistent control. For this purpose, we formulate
an assumption in (2.32) that ensures a sufficient descent of the augmented Hamiltonian in each sweep
of the SQH method such that the iterates converge pointwise to a solution that is PMP optimal. This
condition replaces the requirement of differentiability of the augmented Hamiltonian with respect to the
control argument. It is shown that all requirements of this theorem are fulfilled for several cost functionals
including smooth L2- and non-smooth L1-functionals for which we prove existence of optimal controls.
Next, we demonstrate the applicability of our framework, defined in Section 2.1, with two cases and show
that all our requirements are fulfilled to obtain convergence of our SQH method. The first case is an optimal
quantum control problem with a bilinear control mechanism. The second case is an optimal tumor control
problem where the tumor growth is modeled with highly non-linear coupled state equations. Both optimal
control problems have non-smooth cost functionals. We show existence of an optimal solution and prove
that both cases are included in our theoretical framework such that we have the PMP characterization of
an optimal solution and the convergence of the SQH method. For the quantum optimal control problem,
we choose L2-cost and L1-cost terms where we compare the numerical performance of the SQH method
with the performance of a globalized Newton method. In this experiment, the SQH scheme converges much
faster than the globalized Newton method where the output of both methods are PMP optimal. Then we
replace the L1-cost term by an L0-cost term and show that the L0-cost term appears advantageous with
respect to the total convergence time of the SQH method. In the second application, we consider a model
for optimal tumor treatment consisting of anti-angiogenesis and irradiation. In this section, we apply the
SQH method to an optimal control problem with a system of coupled highly non-linear state equations
that model the dynamics of tumor growth. We verify that this optimal control problem is covered by our
theoretical framework such that also in this case convergence of our SQH method is proved and verified
by our numerical PMP test.

In Chapter 3, we extend the framework of Chapter 2 to optimal control problems governed by elliptic
and parabolic partial differential equations (PDEs). With the same procedure as in the previous chapter
we show how to characterize a solution to an optimal control problem with the PMP and perform the
convergence analysis of the SQH method in the PDE case. For this purpose, we define a general framework
that holds for both the elliptic and the parabolic cases and prove convergence of our SQH method to a
PMP consistent solution. For this analysis, we prove L∞-estimates for the solution of the governing state
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model and for the corresponding adjoint equation. The discussion about the PMP characterization of
solutions to our PDE control problems results in Theorem 25. The convergence analysis is analogous to
the ODE case, although more involved, and the convergence to a PMP consistent solution is proved in
Theorem 27. Notice that, for the case of a differentiable control cost, we also prove in Theorem 29 that
the SQH iterates converge to the solution of the variational inequality characterizing an optimal control
in the Lagrange framework.

Next, we demonstrate the applicability of this framework to seven different PDE optimal control
problems. In particular in the parabolic case, we consider a linear and a bilinear control mechanism. In
the elliptic case, we have a linear and a bilinear control mechanism and in addition we consider a non-linear
state equation with distributed control. We show that in these cases the requirements of our framework
are fulfilled. Furthermore, we consider a state-constrained optimal control problem and an optimal control
problem with an L1-tracking term with a non-smooth state equation and show how to apply the SQH
method in these cases. In these problems, we have non-convex and discontinuous cost functionals. We
discuss the PMP optimality of solutions to the considered optimal control problems (assuming they exist)
and demonstrate how to obtain these solutions by the SQH method. We observe the convergence of
the SQH method to PMP consistent solutions. Furthermore, we investigate the performance of the SQH
method compared with a projected gradient method (pGM) and a projected non-linear conjugated gradient
(pNCG) method in the case of smooth cost functionals, showing that the SQH method is much faster than
the pGM and almost comparable with the pNCG method. In addition, we investigate the numerical
complexity of the SQH method that is linear in these cases.

We remark that our PMP framework is also appropriate to solve mixed-integer PDE control problems
and we demonstrate the applicability of the SQH method to optimal control problems where the values of
the control are in a discrete set. This demonstrates that the numerical treatment of mixed-integer problems,
like in [52], is also in the scope of our framework, since the minimum of the augmented Hamiltonian in
this case is given by an array search.

In the case of state-constrained optimal control problems, we formulate an alternative optimal control
problem where the state constraint is replaced by an augmented objective. This means that we add a
penalization term to the objective that restricts the violation of the bounds of the constraint. The solution
to the augmented optimal control problem is characterized by the PMP and it is shown that the SQH
method converges to a PMP consistent solution. In this case, in Theorem 30, we prove that increasing
the penalization parameter decreases the discrepancy between the state bounds and the state. In the case
of an L1-tracking term, a solution to the corresponding optimal control problem cannot be characterized
by the PMP within our framework. However, we demonstrate how to define an adjoint equation in this
case and we observe that the solution of the SQH method results in a reduction of the cost functional and
fulfills the PMP test.

In Chapter 4, we focus on a drift-controlled Fokker-Planck (FP) equation. The FP equation models
the evolution of the probability density function of stochastic processes. We start our investigation by
considering a random walk with jumps and different boundary conditions ranging from absorbing to totally
reflecting. This results in different discrete FP models from which we derive continuous FP equations.
This discussion illustrates the macroscopic model parameters of the Fokker-Planck equation by the model
parameters of a microscopic random walk. In particular, this investigation allows a discussion of the drift-
control mechanism that results from an anisotropic probability for the steps of the random walk. Next,
we formulate continuous FP optimal control problems with two different control mechanisms. In the first
one, the controls are time dependent and the space dependency is explicitly given by a bilinear control
structure. In the second one, the drift is a space and time depended optimal control. We characterize
in both cases a solution to the optimal control problems with the PMP, resulting in Theorem 48 and
Theorem 49. Furthermore, we show that the SQH method is well-defined and discuss the convergence of
the scheme. We validate our results with Monte-Carlo simulations.

In the Appendix, we provide technical results that we use for our discussion and proofs in this thesis.
Specifically, we discuss the measurability of functions that are pointwise determined as the result of an
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argmin-function, which is the basic procedure in the SQH method. Furthermore, we prove L∞-results for
elliptic and parabolic PDEs. In addition, we discuss that the adjoint variable corresponding to our FP
optimal control problem is bounded in the L2-norm by the L2-norm of the corresponding controls. Then,
we discuss a sufficient PMP based condition for an optimal solution. This condition is given in (5.34) and
is a growth condition with respect to the control argument of the Hamiltonian. In Corollary 69, we focus
on the special case where the optimal control problem consists of an L2-tracking term and a distributed
control mechanism. We show that any pair of a state and a control variable that fulfills the corresponding
necessary PMP optimality conditions is a solution to this optimal control problem. Then we discuss the
general assumptions made in Section 2.1 with respect to replacing single assumptions by alternatives, in
particular the weakening of these assumptions, in the case that we only aim at characterizing a solution
with the PMP. In Section 5.6, we describe the numerical codes that implement the SQH scheme in the
numerical experiments.

The results presented in this thesis are partly based on the following publications:

• [21]: Tim Breitenbach and Alfio Borzì, "A sequential quadratic Hamiltonian method for solving
parabolic optimal control problems with discontinuous cost functionals", Journal of Dynamical and
Control Systems (2018), pp. 1–33.

• [20]: Tim Breitenbach, Mario Annunziato and Alfio Borzì, "On the Optimal Control of a Random
Walk with Jumps and Barriers", Methodology and Computing in Applied Probability 20, 1 (2018),
pp. 435–462.

• [47]: Melina-Lorén Kienle Garrido, Tim Breitenbach, Kurt Chudej and Alfio Borzì, "Modeling and
Numerical Solution of a Cancer Therapy Optimal Control Problem", Applied Mathematics 9 (2018),
pp. 985–1004.

• [25]: Tim Breitenbach, Mario Annunziato and Alfio Borzì, "On the optimal control of random walks",
IFAC-PapersOnLine 49, 8 (2016), pp. 248–253.

• [22]: Tim Breitenbach and Alfio Borzì, "On the SQH scheme to solve non-smooth PDE optimal
control problems”, Journal of Numerical Functional Analysis and Optimization (2019), pp. 1–43,
2019.

• [24]: Tim Breitenbach and Alfio Borzì, "A sequential quadratic Hamiltonian scheme for solving non-
smooth quantum control problems with sparsity”, submitted to the Journal of Computational and
Applied Mathematics, 2019.

• [23]: Tim Breitenbach and Alfio Borzì, "The Pontryagin maximum principle for solving Fokker-
Planck optimal control problems”, submitted to the Journal of Computational Optimization and
Applications, 2019.
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Chapter 2

An SQH framework for ODE optimal

control problems

In this chapter, we discuss the characterization of solutions to optimal control problems governed by
ordinary differential equations (ODEs) in the framework of the Pontryagin maximum principle (PMP)
and their computation by a sequential quadratic Hamiltonian (SQH) method. The applicability of the
SQH method for solving a quantum optimal control problem with a bilinear control mechanism and for
solving an optimal tumor treatment problem with a highly non-linear ODE model both with non-smooth
L1-cost functionals is demonstrated. The existence of optimal solutions, their characterization with the
PMP conditions for optimality and the convergence of the SQH method to a PMP consistent solution are
proved.

2.1 The formulation of ODE optimal control problems

Consider the following initial value problem

y′ (t) = f (t, y (t) , u (t)) for t ∈ (0, T )

y (0) = y0
(2.1)

on the interval [0, T ], T > 0 with y : R→ Rn, t 7→ y (t), the time derivative y′ := d
dty and y0 ∈ Rn, n ∈ N,

the initial value of the state. The control function u : R→ Rm, t 7→ u (t), m ∈ N can be chosen from the
following admissible set of controls

Uad := U1
ad × ...× Um

ad

with U j
ad :=

{

u ∈ L2 (0, T ) | u (t) ∈ Kj
U a.e.

}

, Kj
U a compact set in R, j ∈ {1, ...,m} and KU := K1

U × ...×
Km

U . We assume that (2.1) is uniquely solvable in the sense of [90, Definition C.2.1] on the interval [0, T ]
for any u ∈ Uad. Therefore there exists a function y : [0, T ]→ Rn, t 7→ y (t) that is absolutely continuous
on [0, T ] and fulfills the following integral equation

y (t) = y0 +

ˆ t

0
f
(
t̃, y
(
t̃
)
, u
(
t̃
))
dt̃ (2.2)

for any t ∈ [0, T ] and any chosen u ∈ Uad, see [90, Definition C.2.1]. We call such a function a global
solution to (2.1). The definition of absolute continuity [90, page 471] also implies that any component
function yi : [0, T ]→ R, i ∈ {1, ..., n} is absolutely continuous. Furthermore, we define the set I ⊆ Rn as
the convex hull [10, Section 3.1] of the union of all images from each solution y to (2.1) for any u ∈ Uad,
given by

I := conv {y ([0, T ]) ⊆ Rn| y solves (2.1) for u ∈ Uad} .

19
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Our purpose is to investigate the following optimal control problem

min
y,u

J (y, u) :=

ˆ T

0
(h (y (t)) + g (u (t))) dt+ F (y (T ))

y′ = f (t, y (t) , u (t)) for t ∈ (0, T )

y (0) = y0

u ∈ Uad

(2.3)

where we have g : KU → R, u 7→ g (u) a lower semi-continuous function. This means that for any sequence
(zk)k∈N ⊆ KU converging to z ∈ KU it holds that lim infk→∞ g (zk) ≥ g (z). Furthermore, we require that
g is bounded from below. Additionally, we assume that the functions h : I → R, y 7→ h (y) and F : I → R,
y 7→ F (y) are bounded from below.

Next, we discuss the existence of solutions to (2.3). If the cost functional of the optimal control problem
is weakly lower semi-continuous, then the existence of a minimizer can be proven with the variational
technique, see [95]. An example is a continuous and convex cost functional where the right hand-side
of the ODE implements a linear or bilinear control mechanism, as in Section 2.5. In this section, the
variational technique is applied to the case of optimal control problems governed by a highly non-linear
system of ODEs with a bilinear control mechanism and a convex and continuous cost functional with
L2-L1-costs of the control. However, our requirement for g being lower semi-continuous may result in cost
functionals that are not weakly lower semi-continuous, as discussed in the Introduction. In this case, we
assume that (2.3) is well defined and admits a solution.

In the following, we formulate further requirements that we underlie for our analysis. For this purpose,
we need first and second derivatives of h, F , f with respect to y in the finite dimension framework as
in [4, VII, VII.4] where we denote with Dy the first and with Dyy the second derivative with respect to
the variable y. This notation also holds throughout the chapter. The L∞-norm for any vector valued
function ζ̃ : R → Rñ, ñ ∈ N is defined by ‖ζ̃‖L∞ := maxi=1,...,ñ ‖ζ̃i‖L∞(0,T ) where ζ̃i : R → R is the i-th

component of ζ̃ and ‖ · ‖L∞(0,T ) is the L∞-norm for a real valued function, see [5, X.4] for a definition.
Next we remark that integration over a vector valued function is componentwise defined and we have that
‖
´ t
0 ζ̃
(
t̃
)
dt̃‖L∞ ≤

´ t
0 ‖ζ̃

(
t̃
)
‖L∞dt̃ for any t ∈ [0, T ], see [5, X Theorem 2.11]. The Lp-norm is defined

as follows ‖ζ̃‖Lp :=
(
∑n

i=1 ‖ζ̃i‖
p
Lp(0,T )

) 1
p

where ‖ζ̃i‖Lp(0,T ) :=
(
´ T
0 |ζ̃i (t) |pdt

) 1
p

is the Lp-norm for a real

valued function, see [5, X.4] for a definition with p ∈ (0,∞). The assumptions are given as follows.

A.1) The functions h : I → R, y 7→ h (y), F : I → R, y 7→ F (y) and f : I → Rn, y 7→ f (t, y, u) are twice
continuously differentiable for every u ∈ KU and for any t ∈ [0, T ].

A.2) The functions f : [0, T ] × I × KU → Rn, (t, y, u) 7→ f (t, y, u), Dyf : [0, T ] × I × KU → Rn×n,
(t, y, u) 7→ Dyf (t, y, u) and Dyyf : [0, T ] × I × KU → Rn×n×n, (t, y, u) 7→ Dyyf (t, y, u) are Borel
measurable on [0, T ]× I ×KU .

A.3) For almost all t0 ∈ (0, T ) and for any y solving (2.1) where u ∈ Uad and any ũ ∈ Uad there exists an
open set E (t0) ⊆ (0, T ) containing t0 such that

´

E(t0)
fi (t, y (t) , ũ (t)) dt <∞ for all i ∈ {1, ..., n}.

A.4) The function f : I ×KU → Rn, (y, u) 7→ f (t, y, u) is continuous for all t ∈ [0, T ].

A.5) There exists a constant L > 0 such that the functions fi : KU → R, u 7→ fi (t, y, u),
∂
∂yl
fi : KU → R,

u 7→ ∂
∂yl
fi (t, y, u) for l, i ∈ {1, ..., n} are Lipschitz continuous with |fi (t, y, u1) − fi (t, y, u2) | ≤

L
∑m

j=1 | (u1)j − (u2)j | and | ∂
∂yl
fi (t, y, u1) − ∂

∂yl
fi (t, y, u2) | ≤ L

∑m
j=1 | (u1)j − (u2)j | for any fixed

y ∈ I and t ∈ [0, T ]. That means the Lipschitz constant L is independent of all t ∈ [0, T ], all u ∈ KU

and all y ∈ I.
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A.6) There exists a constant c > 0 such that ‖ ∂
∂yl
fi (·, y, u) ‖L∞ ≤ c, ‖ ∂

∂yl
h (y) ‖L∞ ≤ c, ‖ ∂

∂yl
F (y) ‖L∞ ≤ c,

‖ ∂2

∂yl∂yℓ
fi (·, y, u) ‖L∞ ≤ c, ‖ ∂2

∂yl∂yℓ
h (y) ‖L∞ ≤ c and ‖ ∂2

∂yl∂yℓ
F (y) ‖L∞ ≤ c for all i, l, ℓ ∈ {1, ..., n} and

all y ∈ I and all u ∈ KU .

Since h is twice continuously differentiable the functions ∂
∂yl
h◦y : [0, T ]→ R, t 7→ ∂

∂yl
h (y (t)), l ∈ {1, ..., n}

and ∂2

∂yl∂yℓ
h ◦ y : [0, T ]→ R, t 7→ ∂2

∂yl∂yℓ
h (y (t)), l, i ∈ {1, ..., n}, are Lebesgue measurable for any Lebesgue

measurable function y. This can be seen with a similar proof to Lemma 51 as continuous function are
Borel measurable [36, Examples 2.1.2] and the function y : [0, T ]→ Rn is Lebesgue measurable since any
component function yi is Lebesgue measurable [36, Example 2.6.5] due to its continuity [36, page 42].
Then the composite functions are also measurable [36, Proposition 2.6.1]. Analogously the vector-valued
function (t, y, u) : [0, T ]→ R1×n×m, t 7→ (t, y (t) , u (t)) is Lebesgue measurable as any component function
is Lebesgue measurable [36, Example 2.6.5].

Remark 1. As the Assumption A.2) might be considered to be quite technical we remark that if the
functions (t, y, u) 7→ f (t, y, u), (t, y, u) 7→ Dyf (t, y, u) and (t, y, u) 7→ Dyyf (t, y, u) are continuous on
[0, T ] × I ×KU , then Assumption A.2) is fulfilled [36, Examples 2.1.2]. By the continuity of (t, y, u) 7→
f (t, y, u) also Assumption A.4) is then fulfilled.

In order to check Assumption A.5) and Assumption A.6), we usually face the problem that the es-
timations depend on the state variable y. Therefore the usual way of checking Assumption A.5) and
Assumption A.6) is to use the argument that continuous functions take their minimum and maximum
on a compact set [3, III Corollary 3.8]. For this purpose, the boundedness and closedness of KU can be
obtained by construction of the admissible set. The boundedness of I can be proved as follows. The
existence of a constant K > 0 such that ‖y‖L∞ < K for all (y, u) fulfilling (2.1) with u ∈ Uad is sufficient.
For example, for f (u) = u, f (y, u) = y + u or f (y, u) = uy, Gronwall’s Lemma, see Lemma 57 in the
appendix, guarantees the required boundedness for u (t) ∈ KU for almost all t ∈ (0, T ) with KU bounded
analogous to (2.55). However, any argument that ensures a solution that is bounded by a fixed constant for
all u ∈ Uad is useful for this purpose. We show an example for this in Section 2.5 where the boundedness
of the state is shown with an argument different from Gronwall’s Lemma.

We remark that the triple (t, y, u) in the assumptions above reduces to the tuple (y, u) if the right
hand-side does not explicitly depend on t.

In the rest of this chapter, we write hy (y) := (Dyh (y))
T for the transposed of the first derivative of

h with respect to y, fy (t, y, u) := Dyf (t, y, u) the first partial derivative of f with respect to y for any
t ∈ [0, T ]. We remark that the possibly explicit time dependency of f is often neglected for the rest of this
chapter, especially in proofs, in order to save notational effort.

2.2 The characterization by the Pontryagin maximum principle

In the next step, we characterize a solution to (2.3) by the PMP that provides necessary characteristics
that a solution to (2.3) has to fulfill. For this purpose, we define the Hamiltonian function H : R× Rn ×
KU × Rn → R as follows

H (t, y, u, p) := h (y) + g (u) + pT f (t, y, u) (2.4)

where (·)T is the transposed of a vector in Rn. The adjoint equation for (2.3) is given by

−p′ (t) = hy (y (t)) + fy (t, y (t) , u (t))
T p (t) (2.5)

with the terminal condition p (T ) = (DyF (y (T )))T , p : R→ Rn, t 7→ p (t) and p′ := d
dtp the derivative with

respect to t where (y, u) solves the initial value problem (2.1) with u ∈ Uad. There exists a unique solution
to the linear inhomogeneous differential equation (2.5) for the interval [0, T ] according to Theorem 55 in
the Appendix. In addition from Theorem 55 we have that any solution p to (2.5) is absolutely continuous
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and thus the L∞-norm ‖p‖L∞ is well defined as continuous functions take their maximum value [3, III
Corollary 3.8] on a compact set.

The arguments that are used for the characterization of a solution to (2.3) are analogous to [81, Section
4] or [21, Section 3]. Crucial for our proof that a solution to (2.3) fulfills the PMP is the needle variation
of a function u∗ ∈ Uad that is given by

uk (t) :=

{

u t ∈ Sk (t0) ∩ [0, T ]

u∗ (t) t ∈ [0, T ] \Sk (t0)
(2.6)

where u ∈ KU , Sk (t0) an interval centered at t0 ∈ [0, T ] whose measure, denoted by |Sk (t0) |, goes to zero
for k to infinity. Furthermore, the intermediate adjoint equation is given by

−p̃′ = h̃ (y1, y2) + f̃ (y1, y2, u1)
T p̃ (2.7)

with

p̃ (T ) = F̃ (y1, y2) :=

(
ˆ 1

0
DyF (y2 (T ) + θ (y1 (T )− y2 (T ))) dθ

)T

,

f̃ (y1, y2, u1) :=

ˆ 1

0
fy (y2 + θ (y1 − y2) , u1) dθ

where the integration is also componentwise and

h̃ (y1, y2) :=

ˆ 1

0
hy (y2 + θ (y1 − y2)) dθ.

According to Lemma 56 the functions F̃ , f̃ and h̃ are well defined and there exists a unique absolutely
continuous solution to (2.7) on the interval [0, T ].

Next, we prove a convergence property of the intermediate adjoint equation. In the following, the
notation var1← var2 means that the variable var1 is replaced by var2 in the corresponding equation.

Lemma 2. Let u∗ ∈ L2 (0, T ) and y∗ be the solution to the initial value problem (2.1) for u← u∗ and p∗

be the solution to (2.5) for y ← y∗ and u← u∗. Let uk be defined in (2.6), yk be the solution to (2.1) for
u← uk and pk the solution to (2.7) for y1 ← yk, y2 ← y∗ and u1 ← uk. Then

lim
k→∞

‖yk − y∗‖L∞ = 0

and
lim
k→∞

‖pk − p∗‖L∞ = 0

for almost all t0 ∈ (0, T ).

Proof. As y∗ and yk solve (2.1), a subtraction provides

yk − y∗ =
ˆ t

0
f (yk, uk)− f (y∗, u∗) dt̃ =

ˆ t

0
f (yk, uk)− f (y∗, uk) + f (y∗, uk)− f (y∗, u∗) dt̃

=

ˆ t

0

ˆ 1

0
fy (y

∗ + θ (yk − y∗) , uk) dθ (yk − y∗) + f (y∗, uk)− f (y∗, u∗) dt̃
(2.8)

where we use the fundamental theorem of calculus [4, VI 4.13] for θ 7→ f (y∗ + θ (yk − y∗) , uk) since
y 7→ fy (y, u) is continuous for every u ∈ KU due to Assumption A.1), see [78, Chapter 5 Theorem 6] and
that the composite function of continuous functions is continuous [3, III Theorem 1.8]. From (2.8), we
obtain that

(yk)i − (y∗)i =
ˆ t

0

n∑

l=1

ˆ 1

0

∂

∂yl
fi (y, uk) |y=y∗+θ(yk−y∗)dθ ((yk)l − (y∗)l) + fi (y

∗, uk)− fi (y∗, u∗) dt
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and thus

| (yk)i − (y∗)i | ≤
ˆ t

0

n∑

l=1

ˆ 1

0
| ∂
∂yl

fi (y, uk) |y=y∗+θ(yk−y∗)|dθ (| (yk)l − (y∗)l |) + |fi (y∗, uk)− fi (y∗, u∗) |dt.

Consequently from Assumption A.5) and Assumption A.6) we obtain

n∑

i=1

| (yk)i − (y∗)i | ≤
ˆ t

0

n∑

i=1

(

c

n∑

l=1

| (yk)l − (y∗)l |+ L

n∑

l=1

| (uk)l − (u∗)l |
)

dt

which gives the following

n∑

i=1

| (yk)i − (y∗)i | ≤
ˆ t

0
nc

n∑

i=1

| (yk)i − (y∗)i |dt+ nL‖uk − u∗‖L1 .

By Lemma 57, we have that

n∑

i=1

| (yk)i − (y∗)i | ≤
(
nL+ n2LcT encT

)
‖uk − u∗‖L1 (2.9)

which holds for all t ∈ [0, T ]. Next, by the definition of the needle variation (2.6), we have that

‖uk − u∗‖L1 =
n∑

i=1

ˆ T

0
| (uk)i − (u∗)i |dt =

n∑

i=1

ˆ

Sk(t0)∩[0,T ]
|ui − (u∗)i |dt. (2.10)

From (2.10) and [15, Theorem 5.6.2] we obtain

lim
k→∞

‖uk − u∗‖L1 = 0 (2.11)

for almost all t0 ∈ (0, T ). From (2.9) and (2.11), we have for all i ∈ {1, ..., n} that

lim
k→∞

| (yk)i (t)− (y∗)i (t) | = 0 (2.12)

for each t ∈ [0, T ] for almost all t0 ∈ (0, T ). This implies that limk→∞ ‖yk − y∗‖L∞ = 0 for almost all
t0 ∈ (0, T ).

In the next step, we consider the difference of the solution pk to (2.7) and the solution p∗ to (2.5),
which is transformed into an initial value problem by τ := T − t, as follows

pk − p∗

=

ˆ t

0
h̃ (yk, y

∗) + f̃ (yk, y
∗, uk)

T pk − hy (y∗)− fy (y∗, u∗)T p∗dt̃

=

ˆ t

0

ˆ 1

0
hy (y

∗ + θ (yk − y∗))− hy (y∗) dθ +
ˆ 1

0
fy (y

∗ + θ (yk − y∗) , uk)T pk − fy (y∗, u∗)T p∗dθdt̃

=

ˆ t

0

ˆ 1

0
hy (y

∗ + θ (yk − y∗))− hy (y∗) dθdt̃+
ˆ t

0

ˆ 1

0
fy (y

∗ + θ (yk − y∗) , uk)T (pk − p∗) dθdt̃

+

ˆ t

0

ˆ 1

0

(

fy (y
∗ + θ (yk − y∗) , uk)T − fy (y∗ + θ (yk − y∗) , u∗)T

)

p∗dθdt̃

+

ˆ t

0

ˆ 1

0

(

fy (y
∗ + θ (yk − y∗) , u∗)T − fy (y∗, u∗)T

)

p∗dθdt̃.

(2.13)
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For each component i ∈ {1, ..., n} of (2.13), we obtain

(pk)i − (p∗)i

=

ˆ t

0

ˆ 1

0

∂

∂yi
h (y) |y=y∗+θ(yk−y∗) −

∂

∂yi
h (y) |y=y∗dθdt̃

+

ˆ t

0

ˆ 1

0

n∑

l=1

∂

∂yi
fl (y, u

∗) |y=y∗+θ(yk−y∗) ((pk)l − (p∗)l) dθdt̃

+

ˆ t

0

ˆ 1

0

n∑

l=1

(
∂

∂yi
fl (y, uk) |y=y∗+θ(yk−y∗) −

∂

∂yi
fl (y, u

∗) |y∗+θ(yk−y∗)

)

(p∗)l dθdt̃

+

ˆ t

0

ˆ 1

0

n∑

l=1

(
∂

∂yi
fl (y, u

∗) |y=y∗+θ(yk−y∗) −
∂

∂yi
fl (y, u

∗) |y=y∗

)

(p∗)l dθdt̃

and consequently

| (pk)i − (p∗)i |

≤
ˆ t

0

ˆ 1

0
| ∂
∂yi

h (y) |y=y∗+θ(yk−y∗) −
∂

∂yi
h (y) |y=y∗ |dθdt̃

+

ˆ t

0

ˆ 1

0

n∑

l=1

| ∂
∂yi

fl (y, u
∗) |y=y∗+θ(yk−y∗)| (| (pk)l − (p∗)l |) dθdt̃

+

ˆ t

0

ˆ 1

0

n∑

l=1

|
(
∂

∂yi
fl (y, uk) |y=y∗+θ(yk−y∗) −

∂

∂yi
fl (y, u

∗) |y∗+θ(yk−y∗)

)

| (| (p∗)l |) dθdt̃

+

ˆ t

0

ˆ 1

0

n∑

l=1

(

| ∂
∂yi

fl (y, u
∗) |y=y∗+θ(yk−y∗) −

∂

∂yi
fl (y, u

∗) |y=y∗ |
)

(| (p∗)l |) dθdt̃.

(2.14)

Now we prepare the application of the dominated convergence theorem [36, Theorem 2.4.5]. The functions
(θ, t) 7→ ∂

∂yi
h (y) |y=y∗(t)+θ(yk(t)−y∗(t)), (θ, t) 7→ ∂

∂yi
h (y) |y=y∗(t), (θ, t) 7→ ∂

∂yi
fl (y, u

∗) |y=y∗(t)+θ(yk(t)−y∗(t))

and (θ, t) 7→ ∂
∂yi
fl (y, u

∗) |y=y∗(t) are measurable as discussed in the proofs of Theorem 55, Lemma 56 and

Lemma 52. According to Assumption A.1) the functions y 7→ ∂
∂yi
h (y), i = 1, ..., n, are continuous and

thus bounded on a compact set [3, III Corollary 3.8]. Also as y∗ is continuous there exists a compact set
B∗ ⊆ Rn such that the image y∗ ([0, T ]) ⊆ B∗, see [3, III Theorem 3.6] and [3, Theorem 3.2]. Because
of the uniform pointwise convergence of yk for almost all t0 ∈ (0, T ), see (2.9) and (2.12), there exists a
compact ball B ⊆ Rn with B∗ ⊆ B such that the image (y∗ + θ (yk − y∗)) ([0, T ]) ⊆ B. Therefore the
functions

(θ, t) 7→ | ∂
∂yi

h (y) |y=y∗(t)+θ(yk(t)−y∗(t)) −
∂

∂yi
h (y) |y=y∗(t)|

for all i ∈ {1, ..., n} are bounded. The functions

(θ, t) 7→ | ∂
∂yi

fl (y, u
∗) |y=y∗(t)+θ(yk(t)−y∗(t)) −

∂

∂yi
fl (y, u

∗) |y=y∗(t)|,

i, l ∈ {1, ..., n}, are bounded by Assumption A.6). For any fixed (θ, t) ∈ [0, 1]×[0, T ], we have the pointwise
limit

lim
k→∞

(

| ∂
∂yi

h (y) |y=y∗(t)+θ(yk(t)−y∗(t)) −
∂

∂yi
h (y) |y=y∗(t)|

)

= 0

and

lim
k→∞

(

| ∂
∂yi

fl (y, u
∗) |y=y∗(t)+θ(yk(t)−y∗(t)) −

∂

∂yi
fl (y, u

∗) |y=y∗(t)|
)

= 0
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due to the continuity of y 7→ ∂
∂yi
h (y) and y 7→ ∂

∂yi
fl (y, u

∗) for all i, l ∈ {1, ..., n} and almost all t0 ∈ (0, T ),
see [3, III Theorem 1.4]. Furthermore, we have that

| ∂
∂yi

fl (y, uk) |y=y∗+θ(yk−y∗) −
∂

∂yi
fl (y, u

∗) |y=y∗+θ(yk−y∗)| ≤ L
n∑

l=1

| (uk)l − (u∗)l |

by Assumption A.5). We define the functions

ξki :=

ˆ T

0

ˆ 1

0
| ∂
∂yi

h (y) |y=y∗+θ(yk−y∗) −
∂

∂yi
h (y) |y=y∗ |dθdt

and

ψk
i :=

ˆ T

0

ˆ 1

0

n∑

l=1

(

| ∂
∂yi

fl (y, u
∗) |y=y∗+θ(yk−y∗) −

∂

∂yi
fl (y, u

∗) |y=y∗ |
)

(| (p∗)l |) dθdt.

Then we have by summing (2.14) over i that

n∑

i=1

| (pk)i − (p∗)i |

≤
n∑

i=1

(

ξki + ψk
i

)

+ nL

(

max
t∈[0,T ]

n∑

l=1

| (p∗)l (t) |
)

‖uk − u∗‖L1 + cn

ˆ t

0

n∑

i=1

(| (pk)l − (p∗)l |) dt̃

and consequently by Lemma 57, we have that

n∑

i=1

| (pk)i − (p∗)i | ≤
(
1 + cnT ecnT

)
Φk

for almost all t0 ∈ (0, T ) with the definition

Φk :=
n∑

i=1

(

ξki + ψk
i

)

+ nL

(

max
t∈[0,T ]

n∑

l=1

| (p∗)l (t) |
)

‖uk − u∗‖L1

where we remark that the fixed function p∗ is a continuous function and thus bounded on [0, T ], see [3, III
Corollary 3.8]. By the dominated convergence theorem [36, Theorem 2.4.5], the calculation rules for the
limit [3, II Theorem 2.2] and (2.11), we have that

lim
k→∞

| (pk)i (t)− (p∗)i (t) | = 0

for all i ∈ {1, ..., n} and all t ∈ [0, T ] and almost all t0 ∈ (0, T ). This implies that limk→∞ ‖pk−p∗‖L∞ = 0
for almost all t0 ∈ (0, T ).

Now, we can go on with the proof that a solution to (2.3) fulfills the PMP. For this purpose, we need
the following lemma.

Lemma 3. Let (y1, u1) and (y2, u2) solve the initial value problem (2.1). Then, it holds that

J (y1, u1)− J (y2, u2) =

ˆ T

0
H (t, y2, u1, p̃)−H (t, y2, u2, p̃) dt

where p̃ solves (2.7).
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Proof. Because of the continuity of fy and hy in the state argument, we apply the fundamental theorem
of calculus [4, VI 4.13] and thus we obtain pointwise

f (y1, u1)− f (y2, u1) = f (y2 + θ (y1 − y2) , u1) |θ=1 − f (y2 + θ (y1 − y2) , u1) |θ=0

=

ˆ 1

0

d

dθ
f (y2 + θ (y1 − y2) , u1) dθ =

ˆ 1

0
fy (y2 + θ (y1 − y2) , u1) (y1 − y2) dθ

= f̃ (y1, y2, u1) (y1 − y2)

with the chain rule [4, VII Theorem 3.3]. Analogously, we have

h (y1)− h (y2) = h̃ (y1, y2)
T (y1 − y2)

and
F (y1 (T ))− F (y2 (T )) = F̃ (y1, y2)

T (y1 (T )− y2 (T )) .
Next, we obtain

J (y1, u1)− J (y2, u2) =

ˆ T

0
h (y1) + g (u1)− h (y2)− g (u2) dt+ F (y1 (T ))− F (y2 (T ))

=

ˆ T

0
h (y2) + g (u1)− h (y2) + h (y1)− h (y2)− g (u2) + p̃T f (y2, u1)− p̃T f (y2, u1) dt

+

ˆ T

0
p̃T f (y2, u2)− p̃T f (y2, u2) dt+ F (y1 (T ))− F (y2 (T ))

=

ˆ T

0
H (y2, u1, p̃)−H (y2, u2, p̃) + h (y1)− h (y2) dt

+

ˆ T

0
p̃T (f (y2, u2)− f (y1, u1) + f (y1, u1)− f (y2, u1)) dt+ F (y1 (T ))− F (y2 (T ))

=

ˆ T

0
H (y2, u1, p̃)−H (y2, u2, p̃) + (y1 − y2)T

(

h̃ (y1, y2) + f̃ (y1, y2, u1)
T p̃
)

dt

+

ˆ T

0
p̃T (f (y2, u2)− f (y1, u1)) dt+ F (y1 (T ))− F (y2 (T ))

=

ˆ T

0
H (y2, u1, p̃)−H (y2, u2, p̃)− (y1 − y2)T p̃′ − p̃T

(
y′1 − y′2

)
dt+ F̃ (y1, y2) (y1 (T )− y2 (T ))

=

ˆ T

0
H (y2, u1, p̃)−H (y2, u1, p̃) dt

+ y2 (T )
T F̃ (y1, y2)− y1 (T )T F̃ (y1, y2) + F̃ (y1, y2)

T (y1 (T )− y2 (T ))

where we use the partial integration [36, Corollary 6.3.9] in the third to last line.

The next lemma is given as follows and relates the differences of the cost functionals to the difference
of Hamiltonian functions.

Lemma 4. Let u∗ ∈ Uad and u ∈ KU . Furthermore let uk be defined as in (2.6) for all k ∈ N and yk be
the solution to (2.1) for u← uk. Then, the following holds

lim
k→∞

1

|Sk (t0) |
(J (yk, uk)− J (y∗, u∗)) = H (t0, y

∗, u, p∗)−H (t0, y
∗, u∗, p∗)

for almost all t0 ∈ (0, T ) where y∗ is the solution to (2.1) for u← u∗ and p∗ is the corresponding solution
to (2.5) for y ← y∗ and u← u∗.
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Proof. With Lemma 3, we have

J (yk, uk)− J (y∗, u∗)

=

ˆ T

0
H (y∗, uk, pk)−H (y∗, u∗, pk) dt =

ˆ

Sk(t0)∩[0,T ]
H (y∗, u, pk)−H (y∗, u∗, pk) dt

=

ˆ

Sk(t0)∩[0,T ]
H (y∗, u, p∗)−H (y∗, u∗, p∗) + (pk − p∗)T f (y∗, u) + (p∗ − pk)T (f (y∗, u∗)) dt

(2.15)

where pk is the solution to (2.7) with u1 ← uk, y1 ← yk and y2 ← y∗. We multiply both sides of (2.15)
with 1

|Sk(t0)| and apply the limit for k on both sides. Then we obtain

lim
k→∞

1

|Sk (t0) |
(J (yk, uk)− J (y∗, u∗)) = H (y∗, u, p∗)−H (y∗, u∗, p∗)

because with Lemma 2 and Assumption A.3), for k sufficiently large and thus Sk (t0) is sufficiently small,
we have that

lim
k→∞

1

|Sk (t0) |
|
ˆ

Sk(t0)∩[0,T ]
(pk − p∗)T f (y∗, u) dt|

≤ lim
k→∞

(

‖p− p∗‖L∞
1

|Sk (t0) |

ˆ

Sk(t0)∩[0,T ]

n∑

i=1

|fi (y∗, u) |dt
)

= 0

and analogously

lim
k→∞

1

|Sk (t0) |
|
ˆ

Sk(t0)∩[0,T ]
(p∗ − pk)T f (y∗, u∗) dt| = 0

for almost all t0 ∈ (0, T ) considering the limit rules [3, II Remark 2.1 (a)], [3, II Theorem 2.4], [3, Theorem
1.10] and the mean value theorem [15, Theorem 5.6.2]. We remark that the union of countably many null
sets is a null set, see [5, IX Remark 2.5 (b)].

Now, we have the following theorem that characterizes a solution to (2.3).

Theorem 5. Let (ȳ, ū) be a solution to (2.3). Then it holds that

H (t, ȳ, ū, p̄) = min
w∈KU

H (t, ȳ, w, p̄) (2.16)

for almost all t ∈ (0, T ) where p̄ is a solution to (2.5) with y ← ȳ and u← ū.

Proof. As we have that J (ỹ, ũ) ≥ J (ȳ, ū) for all (ỹ, ũ) solving (2.1) with ũ ∈ Uad, we especially have that
J (yk, uk) ≥ J (ȳ, ū) for any solution (yk, uk) to (2.1) as uk ∈ Uad. This can be seen as follows. The sum and
the product of measurable functions is measurable, see [36, Proposition 2.1.7]. The needle variation (2.6)
can be written as uk = u∗χ[0,T ]\Sk(t0) + uχSk(t0)∩[0,T ]. Since the characteristic function χA is measurable
if and only if A is measurable, see [36, Example 2.1.2] the needle variation is Lebesgue measurable, as
[0, T ] \Sk (t0) and Sk (t0) ∩ [0, T ] are Lebesgue measurable, see [36, Theorem 1.3.6]. Furthermore it is
pointwise uk ∈ KU and thus we have by

m∑

j=1

ˆ T

0

(

(uk)j (t)
)2
dt =

m∑

j=1

ˆ

[0,T ]\Sk(t0)

(

(u∗)j (t)
)2
dt+

ˆ

Sk(t0)∩[0,T ]
u2jdt

≤
m∑

j=1

(
ˆ T

0

(

(u∗)j (t)
)2
dt+ u2j |Sk (t0) |

)
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the L2-integrability since u∗ ∈ Uad and uj are real numbers for all j ∈ {1, ...,m}. Then we have from
J (yk, uk)− J (ȳ, ū) ≥ 0 that 1

|Sk(t0)| (J (yk, uk)− J (ȳ, ū)) ≥ 0 and consequently

0 ≤ lim
k→∞

1

|Sk (t0) |
(J (yk, uk)− J (ȳ, ū)) = H (t0, ȳ, u, p̄)−H (t0, ȳ, ū, p̄)

see [3, II Theorem 2.7] and Lemma 4 for almost all t0 ∈ (0, T ). From this we conclude, by renaming t0
into t, that H (t, ȳ, ū, p̄) ≤ H (t, ȳ, u, p̄) for almost all t ∈ (0, T ) and all u ∈ KU which is equivalent to

H (t, ȳ, ū, p̄) = min
w∈KU

H (t, ȳ, w, p̄) .

2.3 Convergence analysis of the SQH scheme

In this section, we discuss the sequential quadratic Hamiltonian (SQH) scheme for optimal control problems
governed by ODEs in the framework of Section 2.1. This section is based on [22, Section 4] and [22, Section
3]. As already discussed in the introduction, the SQH scheme represents an advancement of the schemes
proposed in [62, 63] and [85, 88] in the context of ODE control problems. This procedure is characterized
by two important features. First, a quadratic pointwise penalization of the control’s updates. Second, the
computation of the state variable after the control’s update at all points has been completed.

In the SQH method, the Hamiltonian (2.4) is augmented with the term ǫ (u (t)− v (t))2 where

(u (t)− v (t))2 :=
m∑

j=1

(uj (t)− vj (t))2 .

Thus we define the following augmented Hamiltonian

Kǫ (t, y, u, v, p) := H (t, y, u, p) + ǫ (u (t)− v (t))2 (2.17)

where Kǫ : R× Rn ×KU ×KU × Rn → R, ǫ > 0. We use the notation

Kǫ (t, y, u, v, p) := Kǫ (t, y (t) , u (t) , v (t) , p (t))

whenever an argument of Kǫ is a function instead of a number.
Specifically, the quadratic term ǫ (u (t)− v (t))2 aims at penalizing local control updates that differ too

much from the current control value. This in turn prevents the corresponding state y to take values at t
that differ too much from the current value, see Lemma 4. Therefore we can reasonably pursue to update
the state variable after the control has been updated at all grid points.

The basic idea in developing the SQH scheme is to minimize Kǫ over KU at each point t ∈ [0, T ] in
some given order, for instance lexicographically. For this purpose, there are several ways to calculate the
elements of KU which minimize Kǫ at the corresponding grid points. First of all, one can discretize KU

and choose the corresponding minimizing value of Kǫ by array search in the resulting discretized set and
assign this value to the control. Second, one can apply a secant method in the set KU to find a minimum
of the augmented Hamiltonian up to a given tolerance. Third, one can use an analytical formula for a
minimum in KU , if available. From these comments, we notice that the first approach can also be used if
the set KU is a discrete set, and in this case an application can be mixed-integer optimal control problems
without the need for relaxation as in [52] for instance.

The main difference of our scheme with respect to the algorithm in [85, 88] and similar to [62], is
that, in the minimization process, we use Kǫ

(
t, yk, u, uk, pk

)
instead of Kǫ

(
t, yk+1, u, uk, pk

)
. In fact in

[17, 85, 88] an update of the state y is computed after each local pointwise update of the control, whereas
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in the SQH scheme the state yk of the previous iteration is used while minimizing Kǫ. This approach
provides a great computational advantage since the update of the state variable is a very costly procedure
in large-size problems. Furthermore, the implementation of the minimization of Kǫ becomes much easier
since it involves only the control function.

Notice that the weight ǫ plays an essential role to attain convergence of the proposed scheme while
penalizing large control updates. Our SQH scheme is given in detail in the following algorithm. The
strategy for the adaptive changing of ǫ is based on that given in [85]. The scheme is implemented by the
following algorithm.

Algorithm 2.1 (SQH method)

1. Choose ǫ > 0, κ > 0, σ > 1, ζ ∈ (0, 1), η ∈ (0,∞), u0 ∈ Uad, compute y0 by (2.1) for u← u0 and p0

by (2.5) for y ← y0 and u← u0, set k ← 0

2. Set
u (t) = argmin

w∈KU

Kǫ

(

t, yk, w, uk, pk
)

for all t ∈ [0, T ]

3. Calculate y by (2.1) for u and τ :=
∑m

j=1 ‖uj −
(
uk
)

j
‖2L2(0,T )

4. If J (y, u)− J
(
yk, uk

)
> −ητ : Choose ǫ← σǫ

Else:
Choose ǫ ← ζǫ, yk+1 ← y, uk+1 ← u, calculate pk+1 by (2.5) for y ← yk+1 and u ← uk+1, set
k ← k + 1

5. If τ < κ: STOP and return uk

Else go to 2.

We remark that Step 2 in Algorithm 2.1 can also be formulated as: Choose u ∈ KU such that

Kǫ

(

t, yk, u, uk, pk
)

≤ Kǫ

(

t, yk, w, uk, pk
)

for all w ∈ KU and all t ∈ [0, T ].
In the following we explain the different steps of Algorithm 2.1. After choosing the problem’s parame-

ters and an initial guess for the control, we determine u such that the augmented Hamiltonian is minimized
for a given state, adjoint, current control and ǫ. If the resulting control u and the corresponding y do not
minimize the cost functional more than −ητ with respect to the former values yk and uk, we increase ǫ
and perform the minimization of the resulting Kǫ again. Else, we accept the new control function as well
as the corresponding state, calculate the adjoint and decrease ǫ such that greater variations of the control
value become more likely and thus accelerate the determination of an optimal control. If the convergence
criterion τ < κ is not fulfilled, then in the SQH scheme the minimization procedure is repeated. If the
convergence criterion is fulfilled, then the algorithm stops and returns the last calculated control uk.

Remark 6. The concept of augmenting the Hamiltonian, where the state variable from the previous iter-
ation is used for the calculation of an update for the control function, is valuable to solve time discrete
optimal control problems that are used for the training of neuronal networks as in [66, Section 3 to 4
and C] for instance. In this reference, they report the need of an update resulting from minimizing the
Hamiltonian that differs not too drastically from the previous control variable.

Next, we prove that for given t, y, v, p and ǫ there exists a u ∈ KU that minimizes Kǫ (t, y, u, v, p).
Thus, Step 2 of Algorithm 2.1 is well posed. Later, we prove that there exists an ǫ sufficiently large
such that the condition for sufficient decrease of the cost functional’s value is satisfied and ‖uk − uk−1‖2L2
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decreases such that the convergence criterion is eventually satisfied. Hence, Step 4 in Algorithm 2.1 is well
defined.

Concerning Step 2, we have the following.

Lemma 7. The function Kǫ : Rm → R, w 7→ Kǫ (t, y, w, v, p) attains a minimum for any (t, y, v, p) ∈
[0, T ]× I ×KU × Rn and any ǫ ∈ R.

Proof. We have that

w 7→ Kǫ (t, y, w, v, p) = h (y) + g (w) + pT f (t, y, w) + ǫ (w − v)2

is bounded from below. This can be seen as follows. We just consider the terms depending on w since
the others are constants with respect to the minimization in w. Since w 7→ fi (t, y, w), i ∈ {1, ..., n},
is continuous for any fixed t and y due to Assumption A.4) and KU is compact, we have that the set
{fi (t, y, w) ∈ R| w ∈ KU}, i ∈ {1, ..., n}, is compact, see [3, III Theorem 3.6], and thus bounded, see [3,
III Theorem 3.2]. Consequently for any fixed p ∈ Rn, the function

w 7→ pT f (t, y, w) =
n∑

i=1

pifi (t, y, w)

is bounded from below by a constant. The function w 7→ ǫ (w − v)2 = ǫ
∑m

j=1 (wj − vj)2 is continuous
and thus it is bounded with an analogous reasoning as above for any ǫ ∈ R. We remark that for the
special case that we just consider ǫ ≥ 0 the term ǫ (w − v)2 is bounded from below by zero. The function
w 7→ g (w) is bounded from below by our requirement.

Thus there is a lower bound for w 7→ Kǫ (t, y, w, v, p) and a biggest lower bound

d := inf
w∈KU

Kǫ (t, y, w, v, p) := inf {Kǫ (t, y, w, v, p) ∈ R| w ∈ KU}

exists since any subset of R bounded from below has an infimum, see [3, I Theorem 10.4, Theorem 10.1].
Consequently for any given number ǫ̃l > 0, monotonically decreasing for increasing l ∈ N, there is a ul
with

d ≤ Kǫ (t, y, ul, v, p) ≤ d+ ǫ̃l. (2.18)

If this was not the case, that means if there was an l̃ such that d + ǫ̃l̃ < Kǫ (t, y, w, v, p) for all w ∈ KU ,
then it would contradict d being the biggest lower bound which would be at least d+ ǫ̃l̃ in this case.

By applying the limit on both sides of (2.18), we have for the minimizing sequence (ul)l∈N ⊆ KU that

inf
w∈KU

Kǫ (t, y, w, v, p) = lim
l→∞

Kǫ (t, y, ul, v, p) ,

see [3, Theorem 2.9]. As KU is compact, there is an index set K ⊆ N such that for the corresponding
subsequence (uk)k∈K it holds limk→∞ uk = u with u ∈ KU . Furthermore, we have with [3, II Theorem
5.7] and [43, Theorem 3.127] the following

inf
w∈KU

Kǫ (t, y, w, v, p) = lim
k→∞

Kǫ (t, y, uk, v, p) = lim inf
k→∞

Kǫ (t, y, uk, v, p)

= lim inf
k→∞

(

h (y) + g (uk) + pT f (t, y, uk) + ǫ (uk − v)2
)

≥ h (y) + g (u) + pT f (t, y, u) + ǫ (u− v)2 = Kǫ (t, y, u, v, p)

(2.19)

because of the lower semi-continuity of g and the continuity of f , see Assumption A.4) and [3, III Theorem
1.4].
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The issue if u, obtained in Step 2 of Algorithm 2.1, is Lebesgue measurable is discussed in Section 5.1
where we see that for all cases considered in this thesis this is certainly the case.

For the following analysis, we need some auxiliary results which are given and proved in the following.
In the next lemma, we show that the adjoint variable is bounded by a constant for all (y, u) solving (2.1)
with u ∈ Uad. Furthermore it is made an extensive use of Gronwall’s inequality that is denoted in Lemma
57 in the Appendix.

Lemma 8. For the solution p to (2.5) there exists a constant C1 > 0 such that ‖p‖L∞ < C1 for all (y, u)
solving (2.1) with u ∈ Uad.

Proof. By the transformation τ := T − t, p̂ (τ) := p (T − τ), ŷ (τ) := y (T − τ) and

f̂y (ŷ, û) := fy (y (T − τ) , u (T − τ))

we obtain an initial value problem

p̂′ = hy (ŷ) + f̂y (ŷ, û) p̂,

p̂ (0) = (DyF (ŷ (0)))T with p̂′ (τ) := ∂
∂τ p̂ (τ) =

∂
∂τ p (T − τ) = −p′ from (2.5). Its solution fulfills

p̂ (τ) = (DyF (ŷ (0)))T +

ˆ τ

0
hy (ŷ (τ̃)) + f̂y (ŷ (τ̃) , û (τ̃))

T p̂ (τ̃) dτ̃ ,

see the proof of Theorem 55. Consequently for each component i ∈ {1, ..., n}, we obtain

p̂i (τ) =
∂

∂yi
F (y) |y=ŷ(0) +

ˆ τ

0

∂

∂yi
h (y) |y=ŷ(τ̃) +

n∑

l=1

∂

∂yi
f̂l (y, û (τ̃)) |y=ŷ(τ)p̂l (τ̃) dτ̃

and thus by taking the absolute value we have the following

|p̂i (τ) | ≤ |
∂

∂yi
F (y) |y=ŷ(0)|+

ˆ τ

0
| ∂
∂yi

h (y) |y=ŷ(τ̃)|+
n∑

l=1

| ∂
∂yi

f̂l (y, û (τ̃)) |y=ŷ(τ)||p̂l (τ̃) |dτ̃ . (2.20)

Adding up both sides of (2.20) provides

n∑

i=1

|p̂i (τ) | ≤
n∑

i=1

(

| ∂
∂yi

F (y) |y=ŷ(0)|+
ˆ τ

0
| ∂
∂yi

h (y) |y=ŷ(τ̃)|+
n∑

l=1

| ∂
∂yi

f̂l (y, û (τ̃)) |y=ŷ(τ)||p̂l (τ̃) |dτ̃
)

.

Due to Assumption A.6), we have that

n∑

i=1

|p̂i (τ) | ≤ C̃ + nc

ˆ τ

0
|p̂l (τ̃) |dτ̃

where C̃ := nc+ cnT . With Gronwall’s inequality, see Lemma 57 in the Appendix, we obtain that

n∑

i=1

|p̂i (τ) | ≤ C̃ + C̃nc

ˆ T

0
exp (ncT ) dτ̃ = C̃ (1 + ncT exp (ncT ))

where the right hand-side is independent of t and thus p̂ is bounded since each component is bounded by
C1 := C̃ (1 + ncT exp (ncT )). By backsubstitution we have that also p is bounded.

In the next lemma, we have a boundedness result for two different solutions to the initial value problem
(2.1).
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Lemma 9. There exists a constant C2 > 0 such that for any two solutions (y1, u1) and (y2, u2) to the
initial value problem (2.1) with y1 (0) = y2 (0) = y0 with u1, u2 ∈ Uad, it holds

| (y1)i (t)− (y2)i (t) | ≤ C2‖u1 − u2‖L1

for all t ∈ [0, T ] and all i ∈ {1, ..., n}.
Proof. We have that

y1 (t)− y2 (t) =
ˆ t

0
f
(
y1
(
t̃
)
, u1

(
t̃
))
− f

(
y2
(
t̃
)
, u2

(
t̃
))
dt̃

and thus for all i ∈ {1, ..., n} it holds by taking the absolute value that

| (y1)i (t)− (y2)i (t) |

≤
ˆ t

0
|fi (y1 (t) , u1 (t))− fi (y1 (t) , u2 (t)) |+ |fi (y1 (t) , u2 (t))− fi (y2 (t) , u2 (t)) |dt̃

≤
ˆ T

0
L

m∑

j=1

| (u1)j (t)− (u2)j (t) |dt

+

ˆ t

0

n∑

l=1

ˆ 1

0
| ∂
∂yl

fi
(
y, u2

(
t̃
))
|y=y2(t̃)+θ(y1(t̃)−y2(t̃))|dθ

(
| (y1)l

(
t̃
)
− (y2)l

(
t̃
)
|
)
dt̃

≤ L‖u1 − u2‖L1 + c

ˆ t

0

n∑

l=1

(
| (y1)l

(
t̃
)
− (y2)l

(
t̃
)
|
)
dt̃

(2.21)

due to Assumption A.5), Assumption A.6) and with the application of the fundamental theorem of calculus
[4, VI 4.13]. By summing both sides of (2.21) over i, we obtain

n∑

i=1

| (y1)i (t)− (y2)i (t) | ≤ nL‖u1 − u2‖L1 + cn

ˆ t

0

n∑

l=1

(
| (y1)l

(
t̃
)
− (y2)l

(
t̃
)
|
)
dt̃

With the Gronwall’s inequality, see Lemma 57 in the Appendix, we obtain that

n∑

i=1

| (y1)i (t)− (y2)i (t) | ≤
(
nL+ n2LcT exp (cnT )

)
‖u1 − u2‖L1

where C2 := nL+ n2LcT exp (cnT ).

In the next lemma, we have a boundedness result for two different solutions to the adjoint equation
(2.5).

Lemma 10. There exists a constant C3 > 0 such that for any two solutions (p1, y1, u1) and (p2, y2, u2) to
(2.5) with u1, u2 ∈ Uad the following holds

| (p1)i (t)− (p2)i (t) | ≤ C3‖u1 − u2‖L1

for all t ∈ [0, T ] and all i ∈ {1, ..., n}.
Proof. Analogously to the proof of Lemma 8, we have the initial value problem

(p̂1)i (τ)− (p̂2)i (τ)

=
∂

∂yi
F (y) |y=ŷ1(0) −

∂

∂yi
F (y) |y=ŷ2(0) +

∂

∂yi
h (y) |y=ŷ1(τ̃) −

∂

∂yi
h (y) |y=ŷ2(τ̃)dτ̃

+

ˆ τ

0

n∑

l=1

∂

∂yi
f̂l (y, û1 (τ̃)) |y=ŷ1(τ) (p̂1)l (τ̃)−

n∑

l=1

∂

∂yi
f̂l (y, û2 (τ̃)) |y=ŷ2(τ) (p̂2)l (τ̃) dτ̃
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for the difference of each component i ∈ {1, ..., n} of p̂1 and p̂2 which gives by adding and subtracting
corresponding terms the following

(p̂1)i (τ)− (p̂2)i (τ)

=
∂

∂yi
F (y) |y=ŷ1(0) −

∂

∂yi
F (y) |y=ŷ2(0) +

ˆ τ

0

∂

∂yi
h (y) |y=ŷ1(τ̃) −

∂

∂yi
h (y) |y=ŷ2(τ̃)dτ̃

+

ˆ τ

0

n∑

l=1

∂

∂yi
f̂l (y, û1 (τ̃)) |y=ŷ1(τ) ((p̂1)l (τ̃)− (p̂2)l (τ̃)) dτ̃

+

ˆ τ

0

n∑

l=1

(
∂

∂yi
f̂l (y, û1 (τ̃)) |y=ŷ1(τ) −

∂

∂yi
f̂l (y, û1 (τ̃)) |y=ŷ2(τ)

)

(p̂2)l (τ̃) dτ̃

+

ˆ τ

0

n∑

l=1

(
∂

∂yi
f̂l (y, û1 (τ̃)) |y=ŷ2(τ) −

∂

∂yi
f̂l (y, û2 (τ̃)) |y=ŷ2(τ)

)

(p̂2)l (τ̃) dτ̃ .

Consequently, by taking the absolute value, we have that

| (p̂1)i (τ)− (p̂2)i (τ) |

≤ | ∂
∂yi

F (y) |y=ŷ1(0) −
∂

∂yi
F (y) |y=ŷ2(0)|+

ˆ τ

0
| ∂
∂yi

h (y) |y=ŷ1(τ̃) −
∂

∂yi
h (y) |y=ŷ2(τ̃)|dτ̃

+

ˆ τ

0

n∑

l=1

| ∂
∂yi

f̂l (y, û1 (τ̃)) |y=ŷ1(τ)| (| (p̂1)l (τ̃)− (p̂2)l (τ̃) |) dτ̃

+

ˆ τ

0

n∑

l=1

(

| ∂
∂yi

f̂l (y, û1 (τ̃)) |y=ŷ1(τ) −
∂

∂yi
f̂l (y, û1 (τ̃)) |y=ŷ2(τ)|

)

| (p̂2)l (τ̃) |dτ̃

+

ˆ τ

0

n∑

l=1

(

| ∂
∂yi

f̂l (y, û1 (τ̃)) |y=ŷ2(τ) −
∂

∂yi
f̂l (y, û2 (τ̃)) |y=ŷ2(τ)|

)

| (p̂2)l (τ̃) |dτ̃ .

and thus

| (p̂1)i (τ)− (p̂2)i (τ) |

≤
ˆ 1

0

n∑

ℓ=1

| ∂
∂yℓ

∂

∂yi
F (y) |y=ŷ2(0)+θ(ŷ1(0)−ŷ2(0))|dθ (| (ŷ1)ℓ (0)− (ŷ2)ℓ (0) |)

+

ˆ τ

0

ˆ 1

0

n∑

ℓ=1

| ∂
∂yℓ

∂

∂yi
h (y) |y=ŷ2(τ̃)+θ(ŷ1(τ̃)−ŷ2(τ̃))|dθ (| (ŷ1)ℓ (τ̃)− (ŷ2)ℓ (τ̃) |) dτ̃

+

ˆ τ

0

n∑

l=1

| ∂
∂yi

f̂l (y, û1 (τ̃)) |y=ŷ1(τ)| (| (p̂1)l (τ̃)− (p̂2)l (τ̃) |) dτ̃

+

ˆ τ

0

n∑

l=1

(
ˆ 1

0

n∑

ℓ=1

| ∂
∂yℓ

∂

∂yi
f̂l (y, û1 (τ̃)) |y=ŷ1(τ)+θ(ŷ1(τ)−ŷ2(τ))|dθ (| (ŷ1)ℓ (τ̃)− (ŷ2)ℓ (τ̃) |)

)

| (p̂2)l (τ̃) |dτ̃

+

ˆ τ

0

n∑

l=1

(

| ∂
∂yi

f̂l (y, û1 (τ̃)) |y=ŷ2(τ) −
∂

∂yi
f̂l (y, û2 (τ̃)) |y=ŷ2(τ)|

)

| (p̂2)l (τ̃) |dτ̃ .

with the application of the fundamental theorem of calculus [4, VI 4.13], the triangle inequality for the
Riemann integral [4, VI Theorem 4.3] and the Lebesgue integral [5, X Remark 2.1 e)]. With Lemma 8 to
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estimate | (p̂2)l (τ̃) | for all l ∈ {1, ..., n}, Assumption A.6) and Assumption A.5), we obtain

| (p̂1)i (τ)− (p̂2)i (τ) |

≤ c
n∑

ℓ=1

| (ŷ1)ℓ (0)− (ŷ2)ℓ (0) |+ c

ˆ τ

0

n∑

ℓ=1

| (ŷ1)ℓ (τ̃)− (ŷ2)ℓ (τ̃) |dτ̃ + c

ˆ τ

0

n∑

l=1

(| (p̂1)l (τ̃)− (p̂2)l (τ̃) |) dτ̃

+ C1cn

ˆ τ

0

n∑

ℓ=1

| (ŷ1)ℓ (τ̃)− (ŷ2)ℓ (τ̃) |dτ̃ + C1L

ˆ τ

0

m∑

j=1

| (û1)j (τ̃)− (û2)j (τ̃) |dτ̃

and thus by Lemma 9 to estimate | (y1)ℓ (τ̃)−(y2)ℓ (τ̃) | for all ℓ ∈ {1, ..., n} and the transformation formula
[5, X Examples 6.6 b)], we have the following

| (p̂1)i (τ)− (p̂2)i (τ) |

≤ cnC2‖u1 − u2‖L1 + cnTC2‖u1 − u2‖L1 + c

ˆ τ

0

n∑

l=1

(| (p̂1)l (τ̃)− (p̂2)l (τ̃) |) dτ̃

+ C1cn
2TC2‖u1 − u2‖L1 + C1L‖u1 − u2‖L1 .

(2.22)

By summing up both sides of (2.22) over all i ∈ {1, ..., n} we obtain the following

n∑

i=1

| (p̂1)i (τ)− (p̂2)i (τ) | ≤ C̃‖u1 − u2‖L1 + cn

ˆ τ

0

n∑

i=1

(| (p̂1)i (τ̃)− (p̂2)i (τ̃) |) dτ̃

where C̃ := cn2C2+cn
2TC2+C1cn

3TC2+C1nL. By Gronwall’s inequality, see Lemma 57 in the Appendix,
we have the following

n∑

i=1

| (p̂1)i (τ)− (p̂2)i (τ) | ≤ C̃
(
1 + cnT ecnT

)
‖u1 − u2‖L1

where C3 := C̃
(
1 + cnT ecnT

)
. Thus we have the statement of the lemma after a backsubstitution to p1

and p2 for each component.

Next, we state a lemma concerning the minimizing property of the SQH iterates. Specifically, if in
one iterate no sufficient decrease of J is achieved, then it is possible to improve the descent by choosing a
larger ǫ in Kǫ. A similar result can be found in [85, 17]. This lemma proves that, by increasing ǫ in Step
4 of Algorithm 2.1 (ǫ← σǫ), an ǫ is obtained such that the condition for sufficient decrease is satisfied. A
similar result is proved in [17].

Lemma 11. Let (y, u) and
(
yk, uk

)
be generated by the SQH method, k ∈ N0. Then, there is a θ ≥ 0

independent of ǫ such that for the ǫ > 0 currently chosen by the SQH method and with corresponding
δu := u− uk the following holds

J (y, u)− J
(

yk, uk
)

≤ − (ǫ− θ) ‖δu‖2L2 .

In particular, J (y, u)− J
(
yk, uk

)
≤ 0 for ǫ ≥ θ.

Proof. We define δy := y − yk, δp := p− pk and δu2 :=
∑m

j=1

(

(δu)j

)2
where (δu)j is the j-th component

of the vector function δu. We also remark that we do not note the functional dependency on t for
notational reasons. We use from Algorithm 2.1 that u is determined such that Kǫ

(
t, yk, u, uk, pk

)
≤

Kǫ

(
t, yk, w, uk, pk

)
for all w ∈ KU and thus especially

Kǫ

(

t, yk, u, uk, pk
)

≤ Kǫ

(

t, yk, uk, uk, pk
)

= H
(

t, yk, uk, pk
)
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for all t ∈ [0, T ]. Then we have with (2.4) that

J (y, u)− J
(

yk, uk
)

=

ˆ T

0
h (y) + g (u)− h

(

yk
)

− g
(

uk
)

dt+ F (y (T ))− F
(

yk (T )
)

=

ˆ T

0
H (y, u, p)− pT f (y, u)−H

(

yk, uk, pk
)

+
(

pk
)T

f
(

yk, uk
)

dt+ F (y (T ))− F
(

yk (T )
)

=

ˆ T

0
H (y, u, p)−H

(

yk, u, pk
)

+ ǫδu2 +H
(

yk, u, pk
)

−H
(

yk, uk, pk
)

− ǫδu2dt

+

ˆ T

0
−pT f (y, u) +

(

pk
)T

f
(

yk, uk
)

dt+ F (y (T ))− F
(

yk (T )
)

≤
ˆ T

0
H (y, u, p)−H

(

yk, u, pk
)

− ǫδu2 − pT f (y, u) +
(

pk
)T

f
(

yk, uk
)

dt+ F̃
(

y, yk
)T

δy (T )

(2.23)

where we apply the fundamental theorem of calculus [4, VI 4.13] in the last line with

F̃
(

y, yk
)

:=

(
ˆ 1

0
DyF

(

yk (T ) + θ
(

y (T )− yk (T )
))

dθ

)T

.

Furthermore, we have with the Taylor series, see [4, VII Corollary 5.5, Theorem 5.8], with the symmetry
of the second derivative [4, VII Theorem 5.2] that

H (y, u, p)−H
(

yk, u, pk
)

= H (y, u, p)−H (y − δy, u, p− δp)

= DyH (y, u, p) δy +DpH (y, u, p) δp− 1

2
δyTDyyH (y, u, p) δy − δpTDypH (y, u, p) δy

+R2 (H, y, p; δy, δp)

= Dyh (y) δy + pTDyf (y, u) δy + f (y, u)T δp− 1

2
δyTDyyh (y) δy −

1

2
pT δyTDyyf (y, u) δy

− δpTDyf (y, u) δy +R2 (H, y, p; δy, δp)

(2.24)

where Dy·, Dp· is the first derivative and Dyy·, Dyp· is the second derivative with respect to the corre-
sponding variable, see [4, VII, VII.4] for details. In addition, we have with (2.5) and [36, Corollary 6.3.9]
that
ˆ T

0
Dyh (y) δy + pTDyf (y, u) δydt =

ˆ T

0
−
(
p′
)T
δydt

=

ˆ T

0
pT f (y, u)− pT f

(

yk, uk
)

dt−DyF (y (T )) δy (T )

(2.25)

since δy (0) = 0 and thus starting from (2.23) using (2.24) with (2.25) we obtain

J (y, u)− J
(

yk, uk
)

≤
ˆ T

0
−ǫδu2 +

(

pk
)T

f
(

yk, uk
)

+R2 (H, y, p; δy, δp) dt+
(

F̃
(

y, yk
)

−DyF (y (T ))
)

δy (T )

+

ˆ T

0
−pT f

(

yk, uk
)

+ f (y, u)T δp− 1

2
δyTDyyh (y) δy −

1

2
pT δyTDyyf (y, u) δy − δpTDyf (y, u) δydt

=

ˆ T

0
−ǫδu2 + δpT

(

f (y, u)− f
(

yk, uk
))

− 1

2
δyTDyyh (y) δy −

1

2
pT δyTDyyf (y, u) δydt

+

ˆ T

0
−δpTDyf (y, u) δy +R2 (H, y, p; δy, δp) dt+

(

F̃
(

y, yk
)T
−DyF (y (T ))

)

δy (T ) .

(2.26)



36 CHAPTER 2. AN SQH FRAMEWORK FOR ODE OPTIMAL CONTROL PROBLEMS

Further, we have with

f (y, u)− f
(

yk, uk
)

= f (y, u)− f
(

y, uk
)

+ f
(

y, uk
)

− f
(

yk, uk
)

and from (2.26) the following

J (y, u)− J
(

yk, uk
)

≤
ˆ T

0
−ǫδu2 + δpT

(

f (y, u)− f
(

y, uk
)

+ f
(

y, uk
)

− f
(

yk, uk
))

− 1

2
δyTDyyh (y) δydt

+

ˆ T

0
−1

2
pT δyTDyyf (y, u) δydt− δpTDyf (y, u) δy +R2 (H, y, p; δy, δp) dt

+

(
ˆ 1

0
DyF

(

yk (T ) + θδy (T )
)

−DyF (y (T )) dθ

)

δy (T ) .

(2.27)

Consequently by the fundamental theorem of calculus [4, VI 4.13] we obtain from (2.27) the following

J (y, u)− J
(

yk, uk
)

≤ −ǫ‖δu‖2L2 +

ˆ T

0

n∑

i=1

δpi

(

fi (y, u)− fi
(

y, uk
))

+
n∑

i=1

n∑

l=1

δpi

ˆ 1

0

∂

∂yl
fi

(

y, uk
)

|y=yk+θδydθδyldt

+

ˆ T

0
−1

2

n∑

i=1

n∑

l=1

δyl
∂2

∂yl∂yi
h (y) δyi −

1

2

n∑

i=1

n∑

l=1

n∑

ℓ=1

piδyl
∂2

∂yl∂yℓ
fiδyℓ −

n∑

i=1

n∑

l=1

δpi
∂

∂yl
fi (y, u) δyldt

+

ˆ T

0
R2 (H, y, p; δy, δp) dt

+

n∑

i=1

n∑

l=1

δyl (T )

ˆ 1

0

ˆ 1

0

∂

∂yl∂yi
F
(

y (T ) + θ̂ ((θ − 1) δy (T ))
)

dθ̂ (1− θ) dθδyi (T )

(2.28)

where we use that it holds
ˆ 1

0
DyF

(

yk (T ) + θδy (T )
)

−DyF (y (T )) dθ

=

ˆ 1

0

ˆ 1

0
DyyF

(

y (T ) + θ̂
(

yk (T ) + θδy (T )− y (T )
))

dθ̂ (θ − 1) δy (T ) dθ

=

ˆ 1

0

ˆ 1

0
DyyF

(

y (T ) + θ̂ ((θ − 1) δy (T ))
)

dθ̂ (θ − 1) δy (T ) dθ

also due to the fundamental theorem of calculus [4, VI 4.13].
Now by Assumptions A.5) and A.6), Lemma 8, Lemma 9 and Lemma 10, we obtain from (2.28) the

following

J (y, u)− J
(

yk, uk
)

≤ −ǫ‖δu‖2L2 + nLC3‖δu‖2L1 + n2TcC3C2‖δu‖2L1 +
1

2
n2TcC2

2‖δu‖2L1 +
1

2
n3TcC1C

2
2‖δu‖2L1

+ n2TcC3C2‖δu‖2L1 + n2cC2
2‖δu‖2L1 +

ˆ T

0
R2 (H, y, p; δy, δp) dt

(2.29)

where we use the triangle inequality for the Riemann integral [4, VI Theorem 4.3] and the Lebesgue
integral [5, X Remark 2.1 e)]. Next, by [1, Theorem 2.14], we have that there is a constant c̃ > 0 such that
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‖δu‖L1 ≤ c̃‖δu‖L2 . Furthermore the Taylor remainder R2 (H, y, p; δy, δp) is estimated by the remainder
formula [4, VII Theorem 5.8] and the boundedness of the second derivatives analogously to the calculation
which are done for the second derivatives for (2.29). Consequently from (2.29), we obtain the existence of
a constant θ > 0 such that

J (y, u)− J
(

yk, uk
)

≤ −ǫ‖δu‖2L2 + θ‖δu‖2L2

which proofs the claim.

Next, we prove a lemma stating that Algorithm 2.1 stops when uk, k ∈ N0 is a solution to (2.16).

Lemma 12. Let yk and uk be generated by Algorithm 2.1, k ∈ N0. If the iterate uk is optimal, then
Algorithm 2.1 stops, returning uk.

Proof. If uk, k ∈ N0, is optimal, then we have, according to Theorem 5, that

H
(

t, yk, uk, pk
)

= min
w∈KU

H
(

t, yk, w, pk
)

for almost all t ∈ (0, T ) and thus

Kǫ

(

t, yk, uk, uk, pk
)

= H
(

t, yk, uk, pk
)

≤ H
(

t, yk, w, pk
)

≤ H
(

t, yk, w, pk
)

+ ǫ
(

w − uk (t)
)2

= Kǫ

(

t, yk, w, uk, pk
)

for all w ∈ KU and for almost all t ∈ (0, T ). That means that an optimal solution is always among those
candidates being selected by our algorithm. On the other hand, once having an optimal solution uk, we

have to exclude that there is a t̃ ∈ [0, T ] where uk is optimal and a ũ with
(
ũ
(
t̃
)
− uk

(
t̃
))2

> 0 such that
Kǫ

(
t̃, yk, ũ, uk, pk

)
≤ Kǫ

(
t̃, yk, uk, uk, pk

)
in order to ensure that Algorithm 2.1 stays in its determined

optimal solution uk.

Suppose Kǫ

(
t̃, yk, ũ, uk, pk

)
≤ Kǫ

(
t̃, yk, uk, uk, pk

)
. First, we have, because of the optimality of uk,

that H
(
t̃, yk, uk, pk

)
≤ H

(
t̃, yk, w, pk

)
for all w ∈ KU , especially for w = ũ

(
t̃
)
. Then, we conclude from

Kǫ

(

t̃, yk, ũ, uk, pk
)

≤ Kǫ

(

t̃, yk, uk, uk, pk
)

and the optimality of uk that

H
(

t̃, yk, uk, pk
)

+ ǫ
(

ũ
(
t̃
)
− uk

(
t̃
))2
≤ H

(

t̃, yk, ũ, pk
)

+ ǫ
(

ũ
(
t̃
)
− uk

(
t̃
))2

= Kǫ

(

t̃, yk, ũ, uk, pk
)

≤ Kǫ

(

t̃, yk, uk, uk, pk
)

= H
(

t̃, yk, uk, pk
)

and consequently ǫ
(
ũ
(
t̃
)
− uk

(
t̃
))2 ≤ 0. Algorithm 2.1 has updated the initial guess u0 at most k times

where ǫ is decreased by ǫ ← ζǫ. Thus, we have that ǫ > 0 and therefore
(
ũ
(
t̃
)
− uk

(
t̃
))2 ≤ 0, which

means that ũ = uk almost everywhere since the calculation holds for any t̃ ∈ [0, T ] where uk is optimal.
Thus δu = 0 in the L2 (0, T ) sense and Algorithm 2.1 stops and returns uk.

The following theorem states that the iteration over the Steps 2 to 4 in Algorithm 2.1 (no stopping
criterion) generates sequences

(
uk
)

k∈N0
and

(
yk
)

k∈N0
such that the cost functional J

(
yk, uk

)
monotonically

decreases with limk→∞ ‖uk+1−uk‖L2 = 0. A similar result is proved in [17]. In the next two theorems we
analyze the convergence properties of these sequences

(
uk
)

k∈N0
and

(
yk
)

k∈N0
. Considering Lemma 12, we

assume for the rest of this section that no element of the sequence
(
uk
)

k∈N0
is optimal.
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Theorem 13. Let the sequence
(
yk
)

k∈N0
and

(
uk
)

k∈N0
be generated as in Algorithm 2.1 (loop over Step

2 to Step 4). Then, the sequence of cost functional values J
(
yk, uk

)
monotonically decreases with

lim
k→∞

(

J
(

yk+1, uk+1
)

− J
(

yk, uk
))

= 0

and

lim
k→∞

‖uk+1 − uk‖L2 = 0.

Proof. Due to Lemma 11, we have that Algorithm 2.1 determines ǫ > θ in finitely many steps and we obtain
an update of the control that reduces the value of the cost functional by at least − (ǫ− θ) ‖uk+1 − uk‖2L2 .
This is seen as follows.

If the update is rejected because J (y, u)−J
(
yk, uk

)
> −η‖u−uk‖2L2 , then ǫ is further increased until

ǫ− θ ≥ η and thus

J (y, u)− J
(

yk, uk
)

≤ − (ǫ− θ) ‖u− uk‖2L2 ≤ −η‖u− uk‖2L2 . (2.30)

Therefore there is an update after at least finitely many increases of ǫ in Step 4 of Algorithm 2.1 and
we have that uk+1 ← u with the corresponding u. Then we always have J

(
yk+1, uk+1

)
≤ J

(
yk, uk

)
and

thus the sequence of iterates J
(
yk, uk

)
monotonically decreases.

As the cost functional is bounded from below, we have for any ρ > 0 the existence of a k ∈ N0 such
that

−ρη ≤ J
(

yk+1, uk+1
)

− J
(

yk, uk
)

≤ 0 (2.31)

because any sequence bounded from below converges and any converging sequence is a Cauchy sequence,
see [3, II Theorem 4.1, Theorem 6.1] for details, whose definition is used in (2.31).

Finally, as (2.30) also holds for uk+1 instead of u, we obtain from (2.30) and (2.31) the following

ρη ≥ −
(

J
(

yk+1, uk+1
)

− J
(

yk, uk
))

≥ η‖uk+1 − uk‖2L2 ≥ 0

for k sufficiently large and thus 0 ≤ ‖uk+1 − uk‖2L2 ≤ ρ for k sufficiently large. As ρ > 0 can be chosen
arbitrarily small, we have limk→∞ ‖uk+1 − uk‖L2 = 0.

From Theorem 13, we obtain that Algorithm 2.1 is well defined for κ > 0. This means that there is
an iteration number k̄ ∈ N0 such that ‖uk̄+1− uk̄‖L2 < κ and consequently Algorithm 2.1 stops in finitely
many steps; see Step 4 in Algorithm 2.1 and Lemma 11.

Notice that u determined in Algorithm 2.1 Step 2 is measurable and, due to the pointwise bounds, we
have u ∈ Uad. Thus especially

(
uk
)

k∈N0
⊆ Uad.

So far we have proven that Algorithm 2.1 is well defined, that means stops in finite time and generates
iterates uk, k ∈ N0, that minimize the cost functional as long as no iterate is optimal in the sense of
Theorem 5. The content of the next theorem is to prove the convergence of the iterates uk to a limit that
fulfills (2.16) at least up to a tolerance that can be chosen arbitrarily small. This limit is called a PMP
consistent solution of the SQH method. For this purpose, we state a further assumption to guarantee
convergence of the SQH method to a PMP consistent solution. Instead of a differentiability assumption
of the Hamiltonian with respect to the control argument, we have the following inequality to prove a
convergence theorem for the SQH method. We discuss our theoretical result represented by the following
theorem that states the convergence of the SQH method to the PMP solution, characterized by (2.16),
without any differentiability assumptions on the Hamiltonian function with respect to the control argument
u. Therefore this result can be applied to optimal control problems with discontinuous and non-convex
cost functionals. In our discussion, the assumption of differentiability of H with respect to the control is
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replaced by the requirement that for any iterate uk, k ∈ N0 and for any ǫ chosen by Algorithm 2.1 there
exists an r ≥ ǫ such that

Kǫ

(

t, yk, uk+1, uk, pk
)

+ r
(

w − uk+1 (t)
)2
≤ Kǫ

(

t, yk, w, uk, pk
)

(2.32)

is fulfilled for all w ∈ KU and for all t ∈ [0, T ]. This condition ensures sufficient descent of the cost
functional. In addition (2.32) implicates that uk+1 (t) is the global minimum of the function w 7→
Kǫ

(
t, yk, w, uk, pk

)
. If this was not the case and if there was another control function ũ such that for

one t̃ ∈ [0, T ] it held uk+1
(
t̃
)
6= ũ

(
t̃
)

and Kǫ

(
t̃, yk, uk+1, uk, pk

)
= Kǫ

(
t̃, yk, ũ, uk, pk

)
, then from (2.32)

for w = ũ
(
t̃
)
, we would have that r

(
ũ
(
t̃
)
− uk+1

(
t̃
))2 ≤ 0 and thus ũ

(
t̃
)
= uk+1

(
t̃
)

in contradiction to
uk+1

(
t̃
)
6= ũ

(
t̃
)

since r > 0 because ǫ > 0.

A further implication of (2.32) is that if u in Step 2 of Algorithm 2.1 is determined such that it equals
uk and thus uk+1 = uk, then we have that

(
yk, uk, pk

)
is already optimal in the sense of (2.16), which

means that

H
(

t, yk, uk, pk
)

= min
w∈KU

H
(

t, yk, w, pk
)

for almost every t ∈ (0, T ) since we have from (2.32) the following

H
(

t, yk, uk, pk
)

+ ǫ
(

uk (t)− uk (t)
)2

+ r
(

w − uk (t)
)2
≤ H

(

t, yk, uk, w, pk
)

+ ǫ
(

w − uk (t)
)2

for all w ∈ KU and for all t ∈ [0, T ] from which the PMP optimality condition (2.16) follows because ǫ ≥ r
and uk+1 = uk. Regarding Theorem 13, this means that if (2.32) holds, an update of an iterate uk strictly
decreases the cost functional value with respect to this iterate or uk is already PMP optimal if the update
provides the same cost functional value as uk.

In Example 17, we show that (2.32) is fulfilled for an L2-cost functional and in Example 18, we verify
(2.32) for an L1-cost functional. Certain discontinuous functionals are discussed later in the thesis as an
L0-cost functional or an L1- like cost functional. First we prove the following theorem that states the PMP
consistency of the result of our SQH method. For this purpose we extract subsequences from the sequence
of iterates. In order to denote the elements of this subsequence we use an infinite index set, denoted for
instance with K, that is a subset of N0, which is denoted with K ⊆ N0.

Theorem 14. Let the sequence (un)n∈N0
be generated as in Algorithm 2.1 (loop over Step 2 to Step 4)

and let (2.32) hold. Then for any subsequence
(
uk
)

k∈K , k ∈ K ⊆ N0, with the property

lim
K∋k→∞

uk (t) = ū (t)

for almost all t ∈ (0, T ), it holds that ū ∈ Uad and

H (t, ȳ, ū, p̄) = min
w∈KU

H (t, ȳ, w, p̄)

for almost all t ∈ (0, T ) where ȳ solves (2.1) with u← ū and p̄ is the corresponding adjoint variable solving
(2.5) for y ← ȳ and u← ū.

Furthermore, for almost each t ∈ (0, T ) and any µ > 0, there exists a k̄ ∈ N and an index set K1 ⊆ N0

and a k̄ ∈ K1 such that

H
(

t, yk+1, uk+1, pk+1
)

≤ H
(

t, yk+1, w, pk+1
)

+ µ (2.33)

for all w ∈ KU and for all k ≥ k̄ with k ∈ K1.
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Proof. The iterates un, n ∈ N0 are measurable, see Section 5.1. Thus ū is measurable, see [5, X Theorem
1.14]. Since uk (t) ∈ KU for almost all t ∈ (0, T ) we have that ū (t) ∈ KU for almost all t ∈ (0, T ), see [3,
II Theorem 2.7]. Since KU is bounded we have that ū ∈ Uad because ū is integrable.

Next we construct a subsequence having all the properties that we need for the proof. Because of the
boundedness of

|ukj (t)− ūj (t) | ≤ 2 max
j=1,...,m

max
uj∈Kj

U

|uj |

for almost all t ∈ (0, T ), k ∈ K and all j ∈ {1, ...,m}, we have by the dominated convergence theorem [36,
Theorem 2.4.5] that

lim
k→∞

‖uk − ū‖L1 = 0.

Due to Lemma 9 and Lemma 10, we have limk→∞ yk (t) = ȳ (t) and limk→∞ pk (t) = p̄ (t) for almost all
t ∈ (0, T ). According to Theorem 13, we have for the sequence (un)n∈N0

that it holds limn→∞ ‖un+1 −
un‖L2 = 0. Consequently we have for any subsequence and thus for the sequence

(
uk
)

k∈K that

lim
k→∞

‖uk+1 − uk‖L2 = 0

since uk+1 is the following element of uk in the sequence (un)n∈N0
. Then by [6, Proposition 3.6, Remark

3.7], there exists a subsequence with the index set K1 ⊆ K such that

lim
K1∋k→∞

(

uk+1 (t)− uk (t)
)

= 0

for almost all t ∈ (0, T ) where all the other convergence properties above remain since any subsequence of
a converging sequence also converges, see [3, II Theorem 1.15]. From this we can also conclude that

lim
K1∋k→∞

uk+1 (t) = lim
K1∋k→∞

(

uk+1 (t)− uk (t)
)

+ lim
K1∋k→∞

uk (t) = ū (t) (2.34)

for almost all t ∈ (0, T ) where we use the calculation rules for the limit [3, II Theorem 2.2]. Analo-
gously we have with Lemma 9, Lemma 10 and [1, Theorem 2.14], that limK1∋k→∞

(
yk+1 (t)− yk (t)

)
= 0,

limK1∋k→∞
(
pk+1 (t)− pk (t)

)
= 0 and thus

lim
K1∋k→∞

yk+1 (t) = ȳ (t)

and
lim

K1∋k→∞
pk+1 (t) = p̄ (t)

for almost all t ∈ (0, T ).
As the control uk, k ∈ K1, is an element of (un)n∈N0

, it is determined by Algorithm 2.1 such that due
to (2.32) the following holds

Kǫ

(

t, yk, uk+1, uk, pk
)

+ r
(

w − uk+1 (t)
)2
≤ Kǫ

(

t, yk, w, uk, pk
)

with r ≥ ǫ for all w ∈ KU , for all k ∈ K1 and all t ∈ [0, T ] which gives by inserting the definition of Kǫ

the following

H
(

t, yk, uk+1, pk
)

+ ǫ
(

uk+1 (t)− uk (t)
)2

+ r
(

w − uk+1 (t)
)2

≤ H
(

t, yk, w, pk
)

+ ǫ
(

w − uk (t)
)2

(2.35)

for all w ∈ KU , for all k ∈ K1 and all t ∈ [0, T ].
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Now, we consider (2.35) where it also holds due to our assumption r ≥ ǫ that

H
(

t, yk, uk+1, pk
)

+ ǫ
(

uk+1 (t)− uk (t)
)2

+ ǫ
(

w − uk+1 (t)
)2
≤ H

(

t, yk, w, pk
)

+ ǫ
(

w − uk (t)
)2

and thus by inserting

(

w − uk+1 (t)
)2

=
(

w − uk (t)
)2

+
(

uk (t)− uk+1 (t)
)2

+ 2
(

w − uk (t)
)T (

uk (t)− uk+1 (t)
)

we obtain

H
(

t, yk, uk+1, pk
)

+ 2ǫ
(

uk+1 (t)− uk (t)
)2

+ 2ǫ
(

w − uk (t)
)T (

uk (t)− uk+1 (t)
)

≤ H
(

t, yk, w, pk
) (2.36)

for all w ∈ KU , for all k ∈ K1 and all t ∈ (0, T ). Then, by using the definition of the Hamiltonian, (2.36)
becomes the following

h
(

yk (t)
)

+ g
(

uk+1 (t)
)

+
(

pk
)T

(t) f
(

t, yk, uk+1
)

+ 2ǫ
(

uk+1 (t)− uk (t)
)2

+ 2ǫ
(

w − uk (t)
)T (

uk (t)− uk+1 (t)
)

≤ h
(

yk (t)
)

+ g (w) +
(

pk
)T

(t) f
(

t, yk, w
) (2.37)

for all w ∈ KU , for all k ∈ K1 and all t ∈ (0, T ). Next, we have that ǫ is bounded from below by 0 and
from above by σ (η + θ) due to (2.30) and the definition of Step 4 in Algorithm 2.1. The boundedness
of ǫ guarantees that the corresponding terms in (2.37) go to zero for k to infinity, see [3, Theorem 2.4,
Theorem 6.1] since uk (t)−uk+1 (t) converges pointwise to zero for k ∈ K1 and

(
w − uk (t)

)
is also bounded

as w, uk ∈ KU for all k ∈ K1. This connection is exploited in the next step. Now, as g is lower semi-
continuous, we apply the lim inf on both sides of (2.37) where k ∈ K1 and recall that whenever a lim
exists the corresponding lim inf equals the lim, see [3, Theorem 5.7] and recall the calculation rules for a
sum of lim inf [43, Theorem 3.127]. Further, we set uk+1 (t) =: ak+1 → ā := ū (t) for k →∞ and for fixed
t. Then we have

lim inf
K1∋k→∞

g
(

uk+1 (t)
)

= lim inf
K1∋k→∞

g
(

ak+1
)

≥ g (ā) = g (ū (t))

for almost all t ∈ (0, T ) according to (2.34).We obtain for the left-hand side of (2.37) the following

lim inf
K1∋k→∞

(

h
(

yk (t)
)

+ g
(

uk+1 (t)
)

+
(

pk
)T

(t) f
(

t, yk, uk+1
)

+ 2ǫ
(

uk+1 (t)− uk (t)
)2

+2ǫ
(

w − uk (t)
)T (

uk (t)− uk+1 (t)
))

≥ h (ȳ (t)) + g (ū (t)) + p̄T (t) f (t, ȳ, ū) = H (t, ȳ, ū, p̄)

where we use the continuity of f according to Assumption A.4). For the right-hand side of (2.37), we have

lim inf
K1∋k→∞

(

h
(

yk (t)
)

+ g (w) + pk (t) f
(

t, yk, w
))

= lim
K1∋k→∞

(

h
(

yk (t)
)

+ g (w) +
(

pk
)T

(t) f
(

t, yk, w
))

= h (ȳ (t)) + g (w) + p̄T (t) f (t, ȳ, w) = H (t, ȳ, w, p̄)

where we also use the continuity for f , see Assumption A.4) and recall that differentiable functions are
continuous, see [78, 1 The Rules of Differentiation]. Consequently, we obtain the optimality condition

H (t, ȳ, ū, p̄) ≤ H (t, ȳ, w, p̄)
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for all w ∈ KU and almost all t ∈ (0, T ).

In order to prove (2.33), we consider (2.35) inserting the assumption r ≥ ǫ and obtain

H
(

t, yk+1, uk+1, pk+1
)

≤ H
(

t, yk+1, w, pk+1
)

+

∣
∣
∣
∣

(

pk
)T

(t) f
(

t, yk, uk+1
)

−
(

pk+1
)T

(t) f
(

t, yk+1, uk+1
)
∣
∣
∣
∣

+

∣
∣
∣
∣

(

pk
)T

(t) f
(

t, yk, w
)

−
(

pk+1
)T

(t) f
(

t, yk+1, w
)
∣
∣
∣
∣

+ ǫ

∣
∣
∣
∣

((

w − uk (t)
)2
−
(

uk+1 (t)− uk (t)
)2
−
(

w − uk+1 (t)
)2
)∣
∣
∣
∣

(2.38)

by adding and subtracting corresponding terms. Now, for almost all t ∈ (0, T ), by continuity, especially
Assumption A.4), and k ∈ K1, it follows the result (2.33) if k is sufficiently large such that the last three
terms in (2.38) are smaller than the given µ using the boundedness of ǫ and [3, II Theorem 2.4].

Remark. If Algorithm 2.1 determines a u in Step 2 with u = un and consequently un+1 = u, then by (2.32)
and the discussion following it, we have that un already fulfills the PMP optimality condition (2.16). On
the other hand, considering just a loop over Step 2 to Step 4, we have that, by Lemma 12, the iterates
following un generated by Algorithm 2.1 equal un up to a set of measure zero since the union of countably
many null sets is a null set, see [5, IX Remark 2.5 (b)]. This means that the iterates of the SQH method
generate a constant sequence in the L2 (0, T )-sense with the limit un. Since this also means pointwise
convergence of the iterates almost everywhere, the requirements of Theorem 14 are fulfilled and the PMP
optimality of un is consistent with the statement of Theorem 14.

Remark 15. We have that Theorem 14 holds in a similar formulation for any subsequence
(
uk
)

k∈K , K ⊆ N,

of (un)n∈N0
with the property that limK∋k→∞ ‖uk− ū‖L2 = 0 with ū ∈ Uad where we drop the assumption

limK∋k→∞ uk (t) = ū (t) for almost all t ∈ (0, T ), see Theorem 27.

Remark 16. If we consider (2.33) on a set of a finite number of elements FN ( [0, T ] of the interval [0, T ]
and a fixed µ > 0, then there is a k̄ ∈ N such that (2.33) holds for all t ∈ FN . This can be seen by applying
the calculation following (2.38) for each t ∈ FN and then choosing the largest k̄.

From the proof of Theorem 14 and Remark 16, we obtain the following corollary. As shown in the
proof of Theorem 14, there exists a subsequence within the sequence of iterates (un)n∈N0

such that the
pointwise convergence

lim
k→∞

(

uk+1 (t)− uk (t)
)

= 0, lim
k→∞

(

yk+1 (t)− yk (t)
)

= 0 and lim
k→∞

(

pk+1 (t)− pk (t)
)

= 0,

k ∈ K ⊆ N0 holds for almost all t ∈ (0, T ). We denote with Ω̃ ⊆ [0, T ] the subset of [0, T ] on which the
pointwise convergence above holds everywhere. That means the set Ω̃ equals [0, T ] up to a set of measure
zero. Then the corollary is given as follows.

Corollary. Let the sequence (un)n∈N0
be generated as in Algorithm 2.1 (loop over Step 2 to Step 4), let

(2.32) hold and let f be bounded as follows ‖f (·, y, u) ‖ ≤ c̃, c̃ > 0, for all y ∈ I and u ∈ KU . For any set
of a finite number of elements FN ( [0, T ] and any µ̃ > 0, there exists an iterate uñ, ñ ∈ N0, fulfilling

H
(
t, yñ, uñ, pñ

)
≤ H

(
t, yñ, w, pñ

)
+ µ̃

for all w ∈ KU and for any t ∈ FN .
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Proof. From (2.38) by adding and subtracting corresponding terms and not explicitly noting the time
dependence to save notational effort, we obtain the following

H
(

yk+1, uk+1, pk+1
)

≤ H
(

yk+1, w, pk+1
)

+ |
(

pk − pk+1
)T

f
(

yk, uk+1
)

+
(

pk+1
)T (

f
(

yk, uk+1
)

− f
(

yk+1, uk+1
))

|

+ |
(

pk − pk+1
)T

f
(

yk, w
)

+
(

pk+1
)T (

f
(

yk, w
)

− f
(

yk+1, w
))

|

+ ǫ|
(

−2wuk +
(

uk
)2

+ 2wuk+1 −
(

uk+1
)2
−
(

uk+1 − uk
)2
)

|

≤ 2c̃
n∑

i=1

|pki − pk+1
i |+ 2c2

n∑

i=1

|yki − yk+1
i |

+ ǫ
(

2w|uk+1 − uk|+ |uk + uk+1||uk − uk+1|+ |uk+1 − uk|2
)

for any t ∈ Ω̃ where we use the fundamental theorem of calculus [4, VI 4.13] and the chain rule [4, VII
Theorem 3.3]. Consequently from the inequality above, due to the pointwise convergence mentioned just
before this corollary and the boundedness of KU , for any t ∈ FN , there is a k̂t ∈ K such that

H
(

yk̂t+1, uk̂t+1, pk̂t+1
)

≤ H
(

yk̂t+1, w, pk̂t+1
)

+ µ̃

is fulfilled for all w ∈ KU . Since there are only finitely many elements in FN , we can take choose

ñ := max
{

k̂t| t ∈ FN

}

+ 1 to obtain the desired statement.

With the following two examples, we show how to verify (2.32), which is the central assumption for
the proof of the convergence result Theorem 14.

Example 17. Consider a one dimensional linear optimal control problem on [0, T ] for ua ≤ u ≤ ub,
ua < ub, with the cost functional

J (y, u) :=
1

2
‖y − yd‖2L2 +

α

2
‖u‖2L2 ,

α > 0, and the constraint y′ = u with an initial value. The corresponding Hamiltonian is given by
H (t, y, u, p) := 1

2 (y − yd)
2 + α

2u
2 + pu. Then the augmented Hamiltonian is given by

Kǫ (t, y, u, v, p) :=
1

2
(y − yd)2 +

α

2
u2 + pu+ ǫ (u− v)2 .

In Algorithm 2.1, we have Kǫ

(
t, yk, uk+1, uk, pk

)
with

Kǫ

(

t, yk, uk+1, uk, pk
)

≤ Kǫ

(

t, yk, w, uk, pk
)

(2.39)

for all w ∈ KU . Next, we show that (2.32) holds. For the example, we assume w 6= uk+1 because in the
case w = uk+1, we have that (2.32) is fulfilled with equality. Next, we show that (2.32) also holds for
w 6= uk+1.

If for the minimum uk+1 of the function w 7→ Kǫ

(
t, yk, w, uk, pk

)
it holds that ua < uk+1 < ub, then

we have by ∂
∂uKǫ

(
t, yk, u, uk, pk

)
|u=uk+1 = 0, see [4, VII Theorem 3.13], that

pk = −αuk+1 − 2ǫ
(

uk+1 − uk
)

. (2.40)
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From (2.39) we obtain the following

α

2

(

uk+1
)2

+ pkuk+1 + ǫ
(

uk+1 − uk
)2

+ r
(

uk+1 − w
)2
≤ α

2
w2 + pkw + ǫ

(

w − uk
)2

(2.41)

and with (2.40) it consequently holds that

− α

2

(

uk+1
)2
− ǫ
(

uk+1
)2

+ ǫ
(

uk
)2

+ r
(

uk+1 − w
)2

≤ α

2
w2 − α

2
wuk+1 − 2ǫwuk+1 + 2ǫukw + ǫw2 − 2ǫwuk + ǫ

(

uk
)2
.

This is equivalent to

r
(

uk+1 − w
)2
≤
(α

2
+ ǫ
)(

uk+1 − w
)2

which is fulfilled for r ≤ α
2 + ǫ. Finally, if we set r = α

2 + ǫ, then r ≥ ǫ in the case of ua < uk+1 < ub.

From (2.40), we have that the minimum of the function w 7→ Kǫ

(
t, yk, w, uk, pk

)
is given by 2ǫuk−pk

α+2ǫ .

If uk+1 = ub, then we have uk+1 ≤ 2ǫuk−pk

α+2ǫ and thus

pk ≤ 2ǫuk − (α+ 2ǫ)uk+1 (2.42)

and if uk+1 = ua, then we have uk+1 ≥ 2ǫuk−pk

α+2ǫ and thus

pk ≥ 2ǫuk − (α+ 2ǫ)uk+1. (2.43)

From (2.41), we obtain

α

2

(

uk+1
)2

+ pk
(

uk+1 − w
)

+ ǫ
(

uk+1 − uk
)2

+ r
(

uk+1 − w
)2
≤ α

2
w2 + ǫ

(

w − uk
)2
. (2.44)

Noticing the sign of
(
uk+1 − w

)
, we increase the left hand-side of (2.44) by inserting the estimation for

pk, (2.42) and (2.43), in both cases. If (2.44) is still fulfilled for r ≥ ǫ, then (2.41) is fulfilled in particular.
Inequality (2.44) is fulfilled for r ≤ α

2 + ǫ and thus setting r := α
2 + ǫ, (2.32) is satisfied with r ≥ ǫ.

Notice that Example 17 also holds for a bilinear case where the term pu in the augmented Hamiltonian
is replaced by pyu and thus pk is replaced by pkyk in the calculations. See also the following example that
is performed with a bilinear control problem.

Example 18. In this example, we consider a one dimensional bilinear optimal control problem on [0, T ]
for ua ≤ u ≤ ub, ua < 0 < ub, with the cost functional

J (y, u) :=
1

2
‖y − yd‖2L2 +

α

2
‖u‖2L2 + β‖u‖L1 ,

α, β ≥ 0, and the constraint y′ = uy with an initial value. The corresponding Hamiltonian is given by
H (t, y, u, p) := 1

2 (y − yd)
2 + α

2u
2 + β|u|+ puy. Then the augmented Hamiltonian is given by

Kǫ (t, y, u, v, p) :=
1

2
(y − yd)2 +

α

2
u2 + β|u|+ puy + ǫ (u− v)2 .

In Algorithm 2.1, we have Kǫ

(
t, yk, uk+1, uk, pk

)
with Kǫ

(
t, yk, uk+1, uk, pk

)
≤ Kǫ

(
t, yk, w, uk, pk

)
for

all w ∈ KU . Now, we show that (2.32) holds. In the following we consider each case 0 < uk+1 ≤ ub,
ua ≤ uk+1 < 0 and uk+1 = 0 separately.

We start with the case that 0 < uk+1 < ub. In this case, analogous like in Example 17, we have

αuk+1 + β + pkyk + 2ǫ
(

uk+1 − uk
)

= 0,
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thus
pkyk = −αuk+1 − β − 2ǫ

(

uk+1 − uk
)

(2.45)

and

uk+1 =
2ǫuk − β − pkyk

α+ 2ǫ
. (2.46)

We insert (2.45) into (2.32) and obtain that

α

2

(

uk+1
)2

+ βuk+1 + pkykuk+1 + ǫ
(

uk+1 − uk
)2

+ r
(

w − uk+1
)2

≤ α

2
w2 + β|w|+ pkykw + ǫ

(

w − uk
)2

(2.47)

which equivalently gives by inserting (2.45) the following

r
(

w − uk+1
)

≤
(

ǫ+
α

2

)(

w − uk+1
)2

+ β (|w| − w) (2.48)

similar as in Example 17. For r = ǫ + α
2 ≥ ǫ, we have that (2.48) is fulfilled since if w > 0, then it is

β (w − w) = 0 and if w < 0, then we have that β (−w − w) ≥ 0.

In the case that uk+1 = ub, we have from (2.46) that uk+1 ≤ 2ǫuk−β−pkyk

α+2ǫ . Consequently we have that

pkyk ≤ 2ǫuk − β − (α+ 2ǫ)uk+1.

Since w − uk+1 = w − ub ≤ 0 and pkyk is replaced by an expression that is greater, the expression
(
w − uk+1

)
pkyk is replaced by a term that is smaller. However, it is the same as discussed for (2.47)

where pkyk is replaced by (2.45). Therefore we obtain again (2.48), which holds for r = ǫ + α
2 , and thus

(2.47) holds in particular.
The case ua < uk+1 < 0 is analogous to the case 0 < uk+1 < ub where we have β (|w|+ w) ≥ 0 instead

of β (|w| − w) ≥ 0. Furthermore the same reasoning as in the case uk+1 = ub holds for the case that

uk+1 = ua where uk+1 ≥ 2ǫuk+β−pkyk

α+2ǫ and thus

pkyk ≥ 2ǫuk + β − (α+ 2ǫ)uk+1.

In contrast to the case above where uk+1 = ub, we have that w−uk+1 = w−ua ≥ 0 and consequently the
expression

(
w − uk+1

)
pkyk is again replaced by a term that is smaller and the argumentation is analogous.

Next, we have the case where uk+1 = 0. The fact that uk+1 = 0 means that

Kǫ

(

t, yk, 0, uk,pk
)

≤ Kǫ

(

t, yk, w, uk, pk
)

(2.49)

for all w ∈ KU . Now, we perform a preliminary discussion that shows that the minimum

w1 =
2ǫuk − β − pkyk

α+ 2ǫ

of the parabola

w 7→ Kǫ

(

t, yk, w, uk, pk
)

=
α

2
w2 + βw + pkykw + ǫ

(

w − uk
)2

(2.50)

with the property (2.49) is not positive, that means w1 ≤ 0 and that the minimum

w2 =
2ǫuk + β − pkyk

α+ 2ǫ

of the parabola

w 7→ Kǫ

(

t, yk, w, uk, pk
)

=
α

2
w2 − βw + pkykw + ǫ

(

w − uk
)2

(2.51)
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with the property (2.49) is not negative, that means w2 ≥ 0.

According to (2.49), the situation corresponding to (2.50) can be translated into ax2 + bx+ c ≥ c for
all x > 0 with a > 0 and the situation corresponding to (2.51) can be translated into ax2 + bx+ c ≥ c for
all x < 0 with a > 0. We start with the case associated with (2.51). Then we have for the minimum x̃

that it holds x̃ ≤ 0. This can be seen es follows. The inequality ax2+ bx+ c ≥ c for all x > 0 is equivalent
to ax+ b ≥ 0 for all x > 0. The minimum of the function x 7→ ax2 + bx+ c is characterized by the root x̃
of the first derivative such that it holds 2ax̃+ b = 0. If we now assumed that x̃ > 0, then it would follow
that b < 0 in order to fulfill this equality. In addition we have that ax + b ≥ 0 holds for all x > 0, that
means in particular it has to hold ax̃ + b ≥ 0, and 2ax̃ + b = 0 at the same time. Inserting the equation
into the inequality provides the contradiction b

2 ≥ 0 to b < 0 as discussed before. Analogous for the case
(2.51) where it holds that ax2 + bx+ c ≥ c for all x < 0 with a > 0. Then we have that the minimum is
not negative.

Inserting the definition of Kǫ, Inequality (2.49) is given by

ǫ
(

uk
)2
≤
(α

2
+ ǫ
)

w2 + β|w|+ pkykw − 2ǫukw + ǫ
(

uk
)2
.

Now we conclude from the preliminary discussion in the situation (2.50) with w > 0 for the corresponding
function, which is given by

w 7→
(α

2
+ ǫ
)

w2 +
(

β + pkyk − 2ǫuk
)

w + ǫ
(

uk
)2

with its minimum w1 =
2ǫuk−β−pkyk

α+2ǫ , that it holds

2ǫuk − β − pkyk
α+ 2ǫ

≤ 0.

Consequently, we have that

pkyk ≥ 2ǫuk − β. (2.52)

Analogous in the situation (2.51) with w < 0 for the function

w 7→
(α

2
+ ǫ
)

w2 +
(

−β + pkyk − 2ǫuk
)

w + ǫ
(

uk
)2

we have that pkyk ≤ 2ǫuk + β.

Specifically, we have to show that Kǫ

(
t, yk, 0, uk,pk

)
+ rw2 ≤ Kǫ

(
t, yk, w, uk, pk

)
, or equivalently that

ǫ
(

uk
)2

+ rw2 ≤ α

2
w2 + β|w|+ pkykw + ǫ

(

w − uk
)2

(2.53)

is fulfilled for an r ≥ ǫ in order to show (2.32). For the case that w > 0, we have with an analogous
consideration as above in the present example using (2.52) the following

rw2 ≤
(α

2
+ ǫ
)

w2 + βw + 2ǫukw − βw − 2ǫukw

which is true for r = ǫ+ α
2 and thus (2.53) is true in particular. Analogous the case where w < 0.

Finally, we conclude that in all cases we can choose r = ǫ + α
2 and thus (2.32) is fulfilled for the

considered L1-cost functional.

Notice that Example 18 also holds in the case of a linear control framework where y′ = u. For this
purpose, the term pkyk is replaced by pk. Further, we remark that the calculation in Example 18 also
holds in the case of α = 0, that means a pure L1-functional.
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2.4 Optimal quantum control

In this section, which is based on [24], we apply the SQH method to an optimal quantum control problem
both with an L1-cost term and with an L0-cost term of the control. We start with the L1-cost term and
similar to [32], we consider the problem given by

min
y,u

J (y, u) :=
1

2

n∑

i=1

(yi (T )− (yd)i)
2 +

α

2
‖u‖2L2(0,T ) + β‖u‖L1(0,T )

s.t. y′ = (A+ uB) y, t ∈ (0, T )

y (0) = y0

u ∈ Uad

(2.54)

where A,B ∈ Rn×n are skew-symmetric matrices, KU = [u, u] with u = −60, u = 60 and Uad ⊆ L2 (0, T ).
According to our framework from Section 2.1 we have that h (y) = 0, g (u) := α

2u
2 + β|u|, which is lower

semi-continuous, F (y (T )) := 1
2

∑n
i=1 (yi (T )− (yd)i)

2, f (y, u) := (A+ uB) y and u : [0, T ] → KU . A
proof of existence of a solution to (2.54) can be found in [32] where the reasoning is similar to the proof
of Lemma 21.

Next, we check the Assumptions A.1) to A.6). The functions y 7→ 0, y (T ) 7→ 1
2

∑n
i=1 (yi (T )− (yd)i)

2

and y 7→ (A+ uB) y are quadratic or linear, respectively and thus Assumption A.1) is fulfilled. By Remark
1, Assumption A.2) and Assumption A.4) are fulfilled. Assumption A.3) is fulfilled since u ∈ L2 (0, T ) and
the unique solution y of the state equation is absolutely continuous, see [90, C.4]. For the remaining two
assumptions, we use the boundedness of the state to show them. By Gronwall’s inequality, see Lemma
57, we have that each component of y is bounded as follows. We have by the definition of a solution (2.2)
that

yi (t) = yi (0) +

ˆ t

0

n∑

l=1

(
Ail + u

(
t̃
)
Bil

)
yl
(
t̃
)
dt̃

and by taking the absolute value and summing up over all i ∈ {1, ..., n} we obtain

n∑

i=1

|yi (t) | ≤
n∑

i=1

|yi (0) |+
n∑

i=1

ˆ t

0

n∑

l=1

|
(
Ail + u

(
t̃
)
Bil

)
||yl
(
t̃
)
|dt̃. (2.55)

Consequently by the boundedness of u we have from (2.55) the following

n∑

i=1

|yi (t) | ≤ c1 + c2

ˆ T

0

n∑

i=1

|yl
(
t̃
)
|dt̃

for two constants c1, c2 > 0 which provides the desired boundedness result for each component of y, see
Lemma 57. Then Assumption A.5) and Assumption A.6) immediately hold. Thus, in the view of Example
18, the theoretical results from Section 2.2 and Section 2.3 are applicable.

In order to validate a numerical solution (y, u, p) from the SQH method for optimality, we define the
number

△H (t) :=

(

H (t, y, u, p)− min
w∈KU

H (t, y, w, p)

)

.

The number N ι
% is the part of the grid points in % at which the inequality 0 ≤ △H ≤ 10−ι, ι ∈ N, is

fulfilled. The parameter for Algorithm 2.1 are chosen as follows. We have κ = 10−15, ζ = 0.8, σ = 2,
η = 10−9, the initial guess ǫ = 0.005 and the control u0 = 0.
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In our experiment, we consider T = 0.008, α = 2−9 and

A = 2π · 483 ·











0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0











, B = 2π











0 0 0 0 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0











,

y0 =
1√
2











0
0
1
0
0
1











, yd =
1√
2











0
1
0
0
1
0











.

We discretize the interval [0, T ] equidistantly with a step size △t = 10−5. The state equation and the
adjoint equation are solved with a modified Crank-Nicholson scheme [34, Supplementary material, (129)].
The augmented Hamiltonian is given by

Kǫ (t, y, u, v, p) :=
α

2
u2 + β|u|+ pT ((A+ uB) y) + ǫ (u− v)2 . (2.56)

By a case study, we have that its pointwise minimum is given by

u = argmin
ũ∈{u1,u2}

Kǫ (t, y, ũ, v, p)

where

u1 = min

(

max

(

0,
2ǫv − pTBy − β

2ǫ+ α

)

, u

)

and

u2 = min

(

max

(

u,
2ǫv − pTBy − β

2ǫ+ α

)

, 0

)

with a similar calculation as that one starting on page 166 in the Appendix. In Figure 2.1, we show the
control for different β where we see that the control becomes sparser the higher β is. In Table 2.1 we give
the corresponding numerical optimality check, which validates Theorem 14 in the view of Example 18 and
give the CPU time for the calculation.

We remark that this numerical experiment with identical △t as above can be performed with the
LONE code [33, 32] that is based on a globalized semi-smooth Newton method. The figures corresponding
to the experiment depicted in Figure 2.1 look identical, however the calculation time for β = 1, β = 3 and
β = 5 ranges between 13 and 46 seconds. The reason for this is that the gradient method that globalizes
the semi-smooth Newton method takes a long time until it is sufficiently close to the solution where the
semi-smooth Newton method converges. Analogous, as for the solution from the SQH method, we perform
the same numerical test with the solution from the LONE code to check for optimality. We have that for
β = 1, N2

% = 99.75%, N15
% = 86.64%, for β = 3, N2

% = 99.88%, N15
% = 78.53%, for β = 5, N2

% = 99.88%,
N15

% = 82.90% and for β = 7, N2
% = 100%, N15

% = 100% which supports the statement that the solutions
from both methods are identical, compare with Table 2.1.
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Figure 2.1: Optimal controls for different β.

β
N2

%

%

N3
%

%

N4
%

%

N5
%

%

N8
%

%

N15
%

% CPU time/s # iteration # update

1 100 99.50 93.63 93.01 93.01 85.89 0.76 55 28

3 100 100 100 99.88 96.13 79.40 0.66 47 25

5 100 100 98.25 96.50 95.51 83.02 0.56 40 18

7 100 100 100 100 100 100 0.02 1 0

Table 2.1: Numerical optimality and CPU time in seconds required for the calculation for different β. The
number of total iterations of Algorithm 2.1 is denoted by # iteration and the number of updates on the
initial guess is denoted by # update.

Next, we consider an optimal control problem that is similar to (2.54) where the L1-norm is replaced
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by the so called L0-norm. We have

min
y,u

J (y, u) :=
1

2

n∑

i=1

(yi (T )− (yd)i)
2 +

(α

2
‖u‖2L2(0,T ) + β‖u‖L0(0,T )

)

s.t. y′ = (A+ uB) y, t ∈ (0, T )

y (0) = y0

u ∈ Uad

(2.57)

where

‖u‖L0(0,T ) :=

ˆ T

0
|u (t) |0dt, |u (t) |0 :=

{

0 if u (t) = 0

1 else

and KU := [u, u] with u < 0 < u. We assume that there exists a solution to (2.57). The corresponding
augmented Hamiltonian is given by

Kǫ (t, y, u, v, p) :=
α

2
u2 + β|u|0 + pT ((A+ uB) y) + ǫ (u− v)2 .

As | · |0 is lower semi-continuous, we can apply the theoretical results from Section 2.2 and Section 2.3
with an analogous consideration as above if we can show that for any iterate uk, k ∈ N0 and for any ǫ

chosen by Algorithm 2.1 there exists an r ≥ ǫ such that

Kǫ

(

t, yk, uk+1, uk, pk
)

+ r
(

w − uk+1 (t)
)2
≤ Kǫ

(

t, yk, w, uk, pk
)

(2.58)

is fulfilled for all w ∈ KU and for all t ∈ [0, T ]. In fact, we can show this if we make a further assumption
denoted in the following lemma.

Lemma 19. We consider the optimal control problem given by (2.57). Let α > 0 and β ≥ 0 be given.
If for all iterations uk, k ∈ N0, generated by Algorithm 2.1 it holds pointwise that either uk = 0 or there
exists a constant θ̃ > 0 with |uk| > θ̃ > 0,

−α
2
θ̃2 + β ≤ 0 (2.59)

and θ̃ ≤ min (|u|, |u|), then there exists a constant d > 0 such that (2.58) is fulfilled if |u|, |u| ≤ d.

Proof. First we investigate the connection between pk, uk and uk+1 pointwise. An analogous consideration
as in Example 17 or Example 18 where we use that uk+1 minimizes w 7→ Kǫ

(
t, yk, w, v, pk

)
and thus

0 = ∂
∂wKǫ

(
t, yk, w, v, pk

)
if 0 < uk+1 < u or u < uk+1 < 0, provides the following

(

pk
)T

Byk = −αuk+1 − 2ǫ
(

uk+1 − uk
)

. (2.60)

Furthermore if uk+1 = u, then
(

pk
)T

Byk ≤ 2ǫuk − (α+ 2ǫ)u (2.61)

and if uk+1 = u, then
(
pk
)T
Byk ≥ 2ǫuk − (α+ 2ǫ)u.

In the case that uk+1 = 0, we have for the value û = 2ǫuk−pk

α+2ǫ where ũ 7→ K
(
t, yk, ũ, uk, pk

)
would

take its minimum if û 6= 0, that Kǫ

(
t, yk, 0, uk, pk

)
≤ K

(

t, yk, 2ǫu
k−pk

α+2ǫ , uk, pk
)

which is with b := α + 2ǫ
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equivalent to

ǫ
(

uk
)2
≤ α

2

(

2ǫuk −
(
pk
)T
Byk

α+ 2ǫ

)2

+ β + pk
2ǫuk −

(
pk
)T
Byk

α+ 2ǫ
+ ǫ

(

2ǫuk −
(
pk
)T
Byk

α+ 2ǫ
− uk

)2

=
α

2b2

(

4ǫ2
(

uk
)2
− 4ǫuk

(

pk
)T

Byk +

((

pk
)T

Byk
)2
)

+ β +
2

b
ǫuk

(

pk
)T

Byk

− 1

b

((

pk
)T

Byk
)2

+
ǫ

b2

(((

pk
)T

Byk
)2

+ 2αuk
(

pk
)T

Byk + α2
(

uk
)2
)

= ǫ
(

uk
)2
− 1

2b

((

pk
)T

Byk
)2

+
2ǫuk

b

(

pk
)T

Byk − 2ǫ2

b

(

uk
)2

+ β

and this in turn is equivalent to

0 ≤ −1

2

((

pk
)T

Byk
)2

+ 2ǫuk
(

pk
)T

Byk − 2ǫ2
(

uk
)2

+ bβ. (2.62)

From (2.62) we obtain that it holds

2ǫuk −
√

2 (α+ 2ǫ)β ≤
(

pk
)T

Byk ≤ 2ǫuk +
√

2 (α+ 2ǫ)β. (2.63)

If 2ǫuk−pk

α+2ǫ ≥ u, then we have Kǫ

(
t, yk, 0, uk, pk

)
≤ K

(
t, yk, u, uk, pk

)
which is equivalent to

0 ≤ −
(α

2
+ ǫ
)

u+
α

2
u2 + β +

(

pk
)T

Byku+ ǫu2 − 2ǫuuk

and in turn
(

pk
)T

Byk ≥ 2ǫuk −
(α

2
+ ǫ
)

u− β

u
. (2.64)

Analogous we have for 2ǫuk−pk

α+2ǫ ≤ u that Kǫ

(
t, yk, 0, uk, pk

)
≤ K

(
t, yk, u, uk, pk

)
and thus

(

pk
)T

Byk ≤ 2ǫuk −
(α

2
+ ǫ
)

u− β

u
.

Next we show that for r = ǫ the condition (2.58) holds for all w ∈ KU and t ∈ [0, T ]. We start with
the case that uk+1 = u. Then we have from

Kǫ

(

t, yk, u, uk, pk
)

+ r (w − u (t))2 ≤ Kǫ

(

t, yk, w, uk, pk
)

that

α

2
u2 +

(

pk
)T

Byk (u− w) + ǫ
(

u− uk
)2

+ ǫ (w − u)2 ≤ α

2
w2 + |w|0 + ǫ

(

w − uk
)2
. (2.65)

As u− w ≥ 0, the left hand-side of (2.65) increases if we estimate
(
pk
)T
Byk with (2.61). If

α

2
u2 +

(

2ǫuk − (α+ 2ǫ)u
)

(u− w) + ǫ
(

u− uk
)2

+ ǫ (w − u)2 ≤ α

2
w2 + |w|0 + ǫ

(

w − uk
)2

(2.66)

holds, then (2.58) holds in particular. A direct calculation from (2.66) shows that 0 ≤ α
2 (w − u)2 if w 6= 0

which is true and that 0 ≤ α
2u

2 − β if w = 0 which is also true as |u| ≥ θ̃. An analogous calculation holds
for the case that uk+1 = u.
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Also analogous for the case that 0 < uk+1 < u or u < uk+1 < 0 we have the following. By (2.60), we
obtain from

Kǫ

(

t, yk, uk+1, uk, pk
)

+ r
(

w − uk+1 (t)
)2
≤ Kǫ

(

t, yk, w, uk, pk
)

with r = ǫ that

−α
2

(

uk+1
)2

+ β ≤ α

2
w2 + β|w|0 − αuk+1w

which is true in the case w 6= 0 and if w = 0 then it is true by our assumption as |uk+1| > θ̃ with
−α

2 θ̃
2 + β ≤ 0.

Finally, we consider the case that uk+1 = 0. Then from

Kǫ

(

t, yk, 0, uk, pk
)

+ rw2 ≤ Kǫ

(

t, yk, w, uk, pk
)

for r = ǫ we obtain the following

0 ≤ α

2
w2 + β|w|0 +

(

pk
)T

Bykw − 2ǫukw (2.67)

which is true for w = 0. If w > 0 there are two sub cases. Either

2ǫuk −
√

2 (α+ 2ǫ)β ≤
(

pk
)T

Byk,

see (2.63) or

2ǫuk −
(α

2
+ ǫ
)

u− β

u
≤
(

pk
)T

Byk,

see (2.64). In the first case we have that 0 ≤ α
2w

2 + β −
√

2 (α+ 2ǫ)βw which is true if

w ≤
√

2 (α+ 2ǫ)β −
√

2 (α+ 2ǫ)β − 2αβ

α
=

√

2 (α+ 2ǫ)β −
√
4ǫβ

α
.

The function

ǫ 7→
√

2 (α+ 2ǫ)β −
√
4ǫβ

α
=

2β
√

2 (α+ 2ǫ)β +
√
4ǫβ

is monotonically decreasing. We have that ǫ is bounded from above by σ (η + θ) due to (2.30) and the
definition of Step 4 in Algorithm 2.1 and thus this function takes a minimum with the value 2β√

2(α+2ǫ)β+
√
4ǫβ

where we denote this upper bound of ǫ by ǫ. In the second case we have from (2.67) that

Kǫ

(

t, yk, 0, uk, pk
)

+ rw2 ≤ Kǫ

(

t, yk, w, uk, pk
)

with r = ǫ which is true if

w ≤
α
2u+ ǫu+ β

u −
√
(
α
2u+ ǫu+ β

u

)2
− 2αβ

α
=

2β

α
2u+ ǫu+ β

u +

√
(
α
2u+ ǫu+ β

u

)2
− 2αβ

.

We remark that if
(
α
2u+ ǫu+ β

u

)2
− 2αβ < 0, then this case has no restriction to w. Analogously to the

case above, we have that the smallest value is taken at ǫ with the value

2β

α
2u+ ǫu+ β

u +

√
(
α
2u+ ǫu+ β

u

)2
− 2αβ

.
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Both cases are fulfilled if we choose

w ≤ d := min







2β
√

2 (α+ 2ǫ)β +
√
4ǫβ

,
2β

α
2u+ ǫu+ β

u +

√
(
α
2u+ ǫu+ β

u

)2
− 2αβ






.

Analogously for w < 0 where we have that w ≥ −d. Consequently the statement of the lemma is proved
if KU ⊆ [−d, d].

For the numerical discussion we take the same example as above for (2.54), that means we solve (2.57)
with the same T , u, u, A, B, y0 and yd and the same parameters for the SQH method κ = 10−15, ζ = 0.8,
σ = 2, η = 10−9, the initial guess ǫ = 0.005 and the control u0 = 0. The pointwise minimum of the
augmented Hamilton is given by

u = argmin
ũ∈{0,u1,u2}

Kǫ (t, y, ũ, v, p)

where

u1 = min

(

max

(

0,
2ǫv − pTBy
α+ 2ǫ

)

, u

)

and

u2 = min

(

max

(

u,
2ǫv − pTBy
α+ 2ǫ

)

, 0

)

.

We have that u determined in Step 2 of Algorithm 2.1 is Lebesgue measurable, see the discussion in the
Appendix starting on page 166.

We discretize [0, T ] with subintervals of size △t = 10−5 for our experiment where we solve (2.57) for
fixed α̃ and β̃ that are multiplied by a constant κ > 0 such that α = κα̃ and β = κβ̃. This simultaneous
alteration of α and β is motivated by (2.59) where α is supposed to become not too small compared with
β. We choose α̃ = 5 · 10−3 and β̃ = 20. In Figure 2.2 we show the results of the SQH method for different
α and β and in Table 2.2 we give the corresponding numerical optimality and the calculation time. This
experiment demonstrates that for appropriately chosen α and β a fast convergence is achieved while still
sparse solutions are provided. Furthermore, we see that the assumption from Lemma 19 that each iterate
of Algorithm 2.1 is pointwise bounded away from zero by a constant, if not zero, seems to be justified and
reasonable.
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Figure 2.2: Optimal controls for different α and β.

κ
N2

%

%

N3
%

%

N4
%

%

N5
%

%

N8
%

%

N15
%

% CPU time/s # iteration # update

2 87.39 87.39 87.39 87.39 87.39 87.39 0.40 26 19

5 85.14 85.14 85.14 85.14 85.14 85.14 0.34 22 16

12 85.02 85.02 85.02 85.02 85.02 85.02 0.05 3 2

14 100 100 100 100 100 100 0.02 1 0

Table 2.2: Numerical optimality and CPU time in seconds required for the calculation of a solution to
(2.57) for different κ where α = κ · 5 · 10−3 and β = κ · 20. The number of total iterations of Algorithm
2.1 is denoted by # iteration and the number of updates on the initial guess is denoted by # update.

In the next experiment, we demonstrate that both optimal control problems (2.54) and (2.57) provide
the same controls that steer the quantum system to a state with an identical distance to the desired state.
For this purpose, we compare the solution to (2.54) with the one to (2.57) where the weights of the controls’
cost terms are chosen such that each state has the same distance to the desired final state according to
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1
2

∑n
i=1 (yi (T )− (yd)i)

2 = 0.0267 for a discretization △t = 10−7. This provides solutions for both optimal
control problems (2.54) and (2.57) that steer the quantum control system equally close to the desired
state what we use as our reference in this experiment. We choose α = 0 and β = 1 in (2.54) (referred
to as L1-problem with L1-solution) and α = 1.47 · 10−2 and β = 42 in (2.57) (referred to as L0-problem
with L0-solution). The rest of the parameters is set as discussed before. In this experiment, we compare
the L1-solution with the L0-solution. For this purpose, we plot the corresponding solutions in one figure
and consider their numerical optimality and CPU time that is needed for the calculation. In Figure 2.3
and Table 2.3 we can see the results for different discretizations. We have that the solutions equal each
other. However, the calculation time for the solution to (2.57) is only almost about a third of the time
that is needed for the calculation of the solution to (2.54) in the cases with a very fine discretization (from
△t = 10−7). Consequently from a numerical point of view it can be advantageous to use an L0-problem
for the calculation of sparse solutions since the SQH method converges faster while providing identical
results compared to the ones from the corresponding L1-problem which includes to obtain each a state
whose distance to the desired state is the same.

We remark that instead of solving a pure L1-problem we can increase the weight of the L2-cost term
α and decrease the weight of the L1-cost term such that 1

2

∑n
i=1 (yi (T )− (yd)i)

2 = 0.0267 is still fulfilled
and the solutions have a bang-bang structure to obtain a faster convergence for the L1-problem. Although
this provides an improvement for the L1-problem, the L0-problem can be solved much faster.
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(c) Discretization △t = 10−8.
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(d) Discretization △t = 10−9.

Figure 2.3: Optimal controls for different discretizations where the time is on the abscissa and the value
of the control is on the ordinate.
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△t CPU-time/s
N2

%

%

N15
%

% # iteration # update

10−5 L1 0.87 100 93.13 59 36
L0 0.70 84.89 84.89 49 27

10−6 L1 17.1 100 93.24 116 84
L0 7.4 82.83 82.81 51 35

10−7 L1 116.7 100 93.11 78 62
L0 42.8 90.78 90.76 29 22

10−8 L1 1274.8 100 93.07 85 68
L0 427.2 91.07 91.06 29 22

10−9 L1 13841.8 100 93.07 93 75
L0 4261.5 91.07 91.06 29 22

Table 2.3: Comparison of the computation time and the numerical optimality of the solution to the L1-
problem with the solution to the L0-problem. The number of total iterations of Algorithm 2.1 is denoted
by # iteration and the number of updates on the initial guess is denoted by # update.

2.5 Optimal tumor therapy

In this section, we investigate a non-linear model of ODEs modeling tumor growth and check that the
corresponding optimal control problem fulfills the Assumptions A.1) to A.6). This section is based on [47].
We start our discussion by illustrating some modeling issues.

We investigate a mathematical model for cancer development and treatment resulting from a combina-
tion of two complementary mathematical models. Both models consider the dynamics between the tumor
volume p and the carrying capacity q. One of the most commonly used models for tumor growth is based
on the Gompertzian growth law as follows

ṗ = p (a− ξ log (p)) , a > ξ > 0.

While the proliferation rate a of the cells is constant, the death rate ξ log(p) increases with a growing
tumor volume p. The value q is given by

q = exp

(
a

ξ

)

.

The carrying capacity is a measure of how much tissue of the tumor is sufficiently vascularized such that
its cells are well supplied with nutrients and oxygen. Using this normalized carrying capacity, we obtain
the following relation for the tumor growth and the carrying capacity

ṗ = ξp
(
a
ξ − ln (p)

)

= ξp
[

ln
(

exp
(
a
ξ

))

− ln (p)
]

= −ξp ln
(
p
q

)

. (2.68)

For p < q the tumor grows (ṗ > 0) until p = q. For p > q, the tumor shrinks (ṗ < 0) again until p = q is
reached. See [3, IV Theorem 2.5] for the connection of the derivative of a function and its growth behavior.

Next, we switch from a constant carrying capacity to a time-varying carrying capacity q. While the
equation for the tumor growth (2.68) stays the same, we have to develop an expression for the dynamics
of the carrying capacity. The basic idea is a combination of stimulatory (TS) and inhibitory (TI) effects
as follows

q̇ = TS (p, q)− TI (p, q) .

A modeling issue is the choice of TS and TI . For this reason, we consider the model proposed in [51] as
follows

q̇ = bp− dp 2
3 q (2.69)
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with the birth rate b > 0 and the death rate d > 0. This is a well-recognized mathematical model for
time-varying carrying capacity. However, it couples the tumor volume variable to the carrying capacity.

On the other hand, a model of time-varying carrying capacity that does not involve the tumor volume
explicitly is described in [44]. This model is computationally convenient since p does not appear in the
equation. We have

q̇ = bq
2
3 − dq 4

3 . (2.70)

Based on validation with real data [44, 51], both models appear promising in the quest of an accurate
description of tumor growth. For this reason, we consider a combination of the two models (2.69) and
(2.70) as follows

q̇ = κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

where κ ∈ (0, 1). Together with the equation for the tumor growth (2.68), we obtain the following
differential system that models the evolution of the tumor volume and of the carrying capacity of the
vasculature. We have

ṗ = −ξp ln
(
p
q

)

q̇ = κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

.
(2.71)

Next, we introduce two control mechanisms in (2.71) that represent the treatment of cancer by anti-
angiogenesis and radiotherapy, respectively [86].

In our case angiogenesis is a process where a growing tumor develops its own blood vessels, which
provide the tumor with oxygen and nutrients. The anti-angiogenesis therapy is an indirect treatment
since it does not fight the tumor cells directly but influences the tumor’s micro-environment, in particular
the vasculature. The lack of oxygen and nutrients will force the tumor to shrink.

To model this treatment, we introduce a control u that takes its values in

KU := [0, u] ,

u > 0, and represents the dose of the anti-angiogenic medicine. With the anti-angiogenic elimination
parameter γ > 0, we can augment the equation for q in (2.71) as follows

q̇ = κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

− γqu.

Hence, our model for an anti-angiogenetic mono-therapy is given by

ṗ = −ξp ln
(
p
q

)

, q̇ = κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

− γqu. (2.72)

The anti-angiogenic treatment influences the carrying capacity of the vasculature q, but as q appears in
the equation for p, it also influences the tumor volume p.

Radiotherapy is a treatment that uses ionizing radiation to kill cancer cells. To model this treatment,
we introduce the control w, which represents the dose of radiation and takes its values in

KW := [0, w] ,

w > 0. Following a model described in [98], the damage that is done to the tumor by radiation is modeled
as follows

−p (t)
(

α+ β

ˆ t

0
w (s) e−ρ(t−s)ds

)

w (t) (2.73)
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with the radiosensitive parameters α, β > 0 depending on the treated tissue and the tissue repair rate
ρ > 0. To simplify the expression above, we introduce the function

r (t) :=

ˆ t

0
w (s) e−ρ(t−s)ds.

This is the solution to a linear ODE given by

ṙ = −ρr + w, r (0) = 0

which is obtained by the Leibniz rule for parameter integrals [4, VII Corollary 6.8]. Hence, from (2.73)
the term that quantifies the damage done to the tumor can be written as follows

− (α+ βr) pw.

Now, we have to take into account that the radiation has also a damaging effect on the healthy tissues.
Specifically, the damage on the carrying capacity of the vasculature q is given by

− (ς + δr) qw.

Notice that the radiosensitive parameters ς, δ > 0 have different values, because malignant and healthy
tissues have different characteristics.

Summarizing, our controlled model of cancer’s development and treatment is given by

ṗ = −ξp ln
(
p
q

)

− (α+ βr) pw

q̇ = κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

− γqu− (ς + δr) qw

ṙ = −ρr + w

. (2.74)

This model is completely specified by giving the values of the parameters appearing in it. These values
are specified in Table 2.4, see [11] and [44].

Description Value Unit

ξ Parameter for tumor growth 0.084 [day−1]

b Tumor-induced stimulation parameter 5.85 [day−1]

d Tumor-induced inhibition parameter 0.00873 [mm−2day−1]

γ Antiangiogenic elimination parameter 0.15 [ kg
mg(dose) ]day−1

α Radiosensitive parameter for tumor 0.7 [Gy−1]

β Radiosensitive parameter for tumor 0.14 [Gy−2]

ς Radiosensitive parameter for healthy tissue 0.136 [Gy−1]

δ Radiosensitive parameter for healthy tissue 0.086 [Gy−2]

θ Healthy tissue parameter 0.5 [day−1]

ρ Tumor repair rate ln(2)
0.02 [day−1]

Table 2.4: Model parameters.
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Usually, in the context of optimal control of cancer development models, the objective of the control
is to minimize the volume of the tumor at final time, that means p(T ). See [86] for a detailed discussion
of this setting.

Now, while we keep this objective, we introduce additional terms that include a reduction of the tumor
volume p along the time evolution and L2- and L1-norms of the controls u and w. With respect to the
side effects of anti-angiogenetic medicine and radiotherapy, it is reasonable to have penalty terms for the
corresponding controls.

We define our optimal control problem with anti-angiogenesis and radiotherapy as follows

min
p,q,r,u,w

J ((p, q, r) , (u,w))

:=
σ̃

2

ˆ T

0
p2 (t) dt+

ϑ

2
p2 (T ) +

νu

2
‖u‖2L2(0,T ) + µu‖u‖L1(0,T ) +

νw

2
‖w‖2L2(0,T ) + µw‖w‖L1(0,T )

(2.75)

subject to

ṗ (t) = −ξp (t) ln
(
p(t)
q(t)

)

− (α+ βr (t)) pw (t)

q̇ (t) = κ
(

bq
2
3 (t)− dq 4

3 (t)
)

+ (1− κ)
(

bp (t)− dp 2
3 (t) q (t)

)

− γq (t)u (t)− (ς + δr (t)) q (t)w (t)

ṙ (t) = −ρr (t) + w (t)

(2.76)

with the initial conditions

p(0) = p0 > 0, q(0) = q0 > 0, r(0) = 0

and the functions u,w ∈ L2 (0, T ) take their values in KU and KW , respectively. The admissible sets of
controls are defined by

Uad :=
{
u ∈ L2 (0, T ) | u (t) ∈ KU a.e.

}
, Wad :=

{
w ∈ L2 (0, T ) | w (t) ∈ KW a.e.

}
. (2.77)

The parameters σ̃, ϑ, νu, µu, νw, µw ≥ 0 can be chosen differently to obtain different settings. In the
following we drop the arguments of the function in order to simplify notation.

In the next step, we analyze the system of ODEs (2.76) with respect to the existence of a unique global
solution and its boundedness. Subsequently we discuss the existence of a solution to (2.75) subject to
(2.76).

For the investigation of (2.76) with respect to a unique global solution we define the set

I :=
{
(p, q, r) ∈ R3| p ≤ p ≤ p, q ≤ q ≤ q, 0 ≤ r ≤ r

}

where

p := min

(

p0, q exp

(

−(α+ βr)w

ξ

))

> 0,

p := max

(

b

d
p

1
3
0 ,

(
b

d

) 3
2

, q0, p0

)

,

q := min

((
b

d

) 3
2

, q0

)

exp
((

γu+ (ς + δr)w + (1− κ) dp
2
3

)

T
)

> 0,

q := max

(

b

d
p

1
3
0 ,

(
b

d

) 3
2

, q0

)

and r := w
ρ .

In the following lemma we prove existence of a unique global solution to (2.76).
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Lemma 20. There exists a unique global solution (p, q, q) : [0, T ] → R, t 7→ (p (t) , q (t) , r (t)) to (2.76)
in the sense of (2.2) for any u ∈ Uad and w ∈ Wad. Furthermore, the solution stays in I and thus any
component of the solution (p, q, r) is bounded by a constant that holds for all u ∈ Uad and w ∈Wad, defined
in (2.77).

Proof. According to [90, Proposition C.3.6] there exists a unique global solution (p, q, r) : [0, T ] → R3,
t 7→ (p (t) , q (t) , r (t)) to (2.76) if we prove that for the corresponding fixed initial values p0, q0 > 0,
r (0) = 0, the local solution stays in I on its maximum existence interval. For the proof, we define the
right hand-side of (2.76) by the function f : [0, T ]× (0,∞)2 ×R→ R3, (t, p, q, r) 7→ f (t, p, q, r) as follows

f (t, p, q, r) :=







−ξp ln
(
p
q

)

− (α+ βr) pw

κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

− γqu− (ς + δr) qw

−ρr + w







(2.78)

for any fixed controls u ∈ Uad and w ∈ Wad. In the following we prove that the global solution (p, q, r) :
[0, T ] → R3, t 7→ (p (t) , q (t) , r (t)) to (2.76) exists and stays in I for any chosen control u ∈ Uad and
w ∈Wad in the right hand-side f .

We have that the function f (·, p, q, r) : [0, T ]→ R3 is measurable for each fixed (p, q, r) ∈ (0,∞)2×R,
the function f (t, ·) : (0,∞)2 × R → R3 is continuous for each fixed t ∈ [0, T ]. The function f (t, ·) :
(0,∞)2 × R → R3 is locally Lipschitz continuous for any (p, q, r) ∈ (0,∞)2 × R, which means that there
is a ̺ > 0 with a ball B̺ (p, q, r) centered at (p, q, r) such that the function f (t, ·) : B̺ (p, q, r) → R3 is
Lipschitz continuous with a Lipschitz constant L̃ > 0 possibly depending on (p, q, r) for each t ∈ [0, T ], due
to the continuous differentiability of f (t, ·) in an environment of (p, q, r) and the pointwise boundedness
of the controls u,w. Since each component t 7→ fi (t, p0, q0, 0), i ∈ {1, 2, 3} is integrable on [0, T ], since
the controls are integrable, we have that there exists a unique local solution for any initial value (p0, q0, 0)
with a maximum existence interval

[
0, t̂
)
, t̂ > 0, see [90, Theorem 54].

Now we show that the local solution stays in I on its maximum existence interval
[
0, t̂
)
, t̂ > 0. We

start to investigate f3. Since −ρr + w is a linear inhomogeneous equation, we have, according to [90,
page 487], that there is a global and unique solution on [0, T ]. According to [3, IV Theorem 2.5 (i)], the
function r grows if and only if −ρr + w ≥ 0 which is equivalent to r ≤ w

ρ . That means the biggest value

for r is w
ρ and since r (0) = 0 and w ≥ 0, we have that 0 ≤ r (t) ≤ w

ρ for all [0, T ].

The same reasoning holds for the first equation f1. However, before we discuss this, we remark that
there is an interval

[
0, t̃
)
⊆
[
0, t̂
)
, t̃ > 0 where the functions p (t) , q (t) > 0, t ∈

[
0, t̃
)
, for the following

reason. Since for the initial values it holds that p0, q0 > 0, we have by the continuity of p and q that for
example for min(p0,q0)

2 , there is a distance t̃ > 0 from zero such that it holds p (t) , q (t) > 0 for all t ∈
[
0, t̃
)
.

The following discussion holds for the interval
[
0, t̃
)

where we have that p, q > 0.

For p0 > 0, the function p decrease if and only if −ξp ln
(
p
q

)

− (α+ βr) pw ≤ 0. Since p, q > 0, we

have that

ln

(
p

q

)

≥ −(α+ βr)w

ξ

from which it follows that

p ≥ q exp
(

−(α+ βr)w

ξ

)

≥ q exp
(

−(α+ βr)w

ξ

)

.

That means if p is smaller than q exp
(

− (α+βr)w
ξ

)

> 0, the function p always increases and thus

p > min

(

p0, q exp

(

−(α+ βr)w

ξ

))

> 0. (2.79)
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In the other direction, the function p can at most increase if p ≤ q. If it holds that p > q, then p can only
decrease and thus p ≤ p0.

Now we are able to estimate p depending on q and consequently we investigate f2 next. We have that

bq
2
3 − dq 4

3 = q
2
3

(

b− dq 2
3

)

≥ 0, equivalently b− dq 2
3 ≥ 0 since q

2
3 ≥ 0 for all q ∈ R, for

q ≤
(
b

d

) 3
2

.

For the second term we have that bp− dp 2
3 q ≥ 0 for q ≤ b

dp
1
3 since p > 0. From the investigation of f1, we

have that p ≤ q or p ≤ p0 and thus we have that the biggest value that can be chosen for p is max (p0, q).

Thus we have q ≤ b
dp

1
3 = b

dq
1
3 or q ≤ b

dp
1
3 = b

dp
1
3
0 . For the growth of q, we must at least have that one of

the two terms, bq
2
3 − dq 4

3 or bp − dp 2
3 q, is greater than zero. According to our calculation, we have that

for q > max

(

b
dp

1
3
0 ,
(
b
d

) 3
2

)

both terms are negative and cause a decreasing of q. Thus max

(

b
dp

1
3
0 ,
(
b
d

) 3
2

)

is

the biggest value for q that we can observe if q0 ≤ max

(

b
dp

1
3
0 ,
(
b
d

) 3
2

)

and if q0 > max

(

b
dp

1
3
0 ,
(
b
d

) 3
2

)

, then

q0 is the biggest value that we can observe for q. Therefore we have that

q = max

(

b

d
p

1
3
0 ,

(
b

d

) 3
2

, q0

)

.

Since if p ≤ q, then p grows until p = q or if p > q, then p only decreases, we obtain

p = max

(

b

d
p

1
3
0 ,

(
b

d

) 3
2

, q0, p0

)

.

Now, we estimate the lower bound for q. For this purpose, we show that the term bq
2
3 − dq 4

3 is non-
negative if q is below a certain threshold such that we can focus just on the terms where q is linearly

included. We have that the term bq
2
3 − dq 4

3 is non-negative if q ≤
(
b
d

) 3
2 . For the second term, we have

that bp− dp 2
3 q ≥ −dp 2

3 q. That means if q ≤
(
b
d

) 3
2 , then we have the following estimation. It holds

q (t̄) = q0 +

ˆ t̄

0
κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

− γqu− (ς + δr) qwdt

≥ q0 +
ˆ t̄

0
−γqu− (ς + δr) qw − (1− κ) dp

2
3 qdt

≥ q0 +
ˆ t̄

0

(

−γu− (ς + δr)w − (1− κ) dp
2
3

)

qdt

≥ q0 −
ˆ t̄

0
K̄qdt

(2.80)

where t̄ ∈
[
0, t̃
)

and K̄ :=
(

γu+ (ς + δr)w + (1− κ) dp
2
3

)

. If we choose ǫ > 0 such that q0 − ǫ > 0, then

the function q̃ (t) = min

(
(
b
d

) 3
2 , (q0 − ǫ)

)

exp
(
−K̄t

)
fulfills the following integral equation

q̃ (t̄) = min

((
b

d

) 3
2

, (q0 − ǫ)
)

−
ˆ t̄

0
K̄q̃ (t) dt (2.81)



2.5. OPTIMAL TUMOR THERAPY 63

where it holds that

min

((
b

d

) 3
2

, (q0 − ǫ)
)

−
ˆ t̄

0
K̄q̃ (t) dt < q0 −

ˆ t̄

0
K̄q̃ (t) dt (2.82)

since if
(
b
d

) 3
2 ≥ (q0 − ǫ), then

min

((
b

d

) 3
2

, (q0 − ǫ)
)

= q0 − ǫ < q0

and if
(
b
d

) 3
2 < (q0 − ǫ), then

min

((
b

d

) 3
2

, (q0 − ǫ)
)

=

(
b

d

) 3
2

< q0 − ǫ < q0.

From (2.81) and (2.82), we obtain the following

q̃ (t̄) < q0 −
ˆ t̄

0
K̄q̃ (t) dt (2.83)

Furthermore we have

q̃ (0) = min

((
b

d

) 3
2

, (q0 − ǫ)
)

≤ q0 − ǫ < q0 = q (0)

and consequently we can apply [65, Theorem 5.1.1] to (2.80) and (2.83) and obtain

q (t̄) > q̃ (t̄) = min

((
b

d

) 3
2

, (q0 − ǫ)
)

exp (−Kt̄)

for all t̄ ∈
[
0, t̃
)
. Because the argument holds for all ǫ > 0 sufficiently small, we have that q (t̄) ≥

min

(
(
b
d

) 3
2 , q0

)

exp (−Kt̄) for all t̄ ∈
[
0, t̃
)
. Since

min

((
b

d

) 3
2

, q0

)

exp
(
−K̄t

)
≥ min

((
b

d

) 3
2

, q0

)

exp
(
−K̄T

)
> 0

for all t ∈ [0, T ] we have that q (t) > 0 not only for all t ∈
[
0, t̃
)

but also for all t ∈
[
0, t̂
)
. This means that

q (t) is bounded from below by

q := min

((
b

d

) 3
2

, q0

)

exp
((

γu+ (ς + δr)w + (1− κ) dp
2
3

)

T
)

for all t ∈
[
0, t̂
)
. From q, the lower bound of q and (2.79), we have the lower bound of p which is given by

p := min

(

p0, q exp

(

−(α+ βr)w

ξ

))

.

Consequently the calculation above holds also on the maximum existence interval
[
0, t̂
]

since q holds for all
t ∈ [0, T ]. This means that our local solution stays in I. Concluding, by [90, Proposition C.3.6], we have
that there exists a global solution (p, q, r) : [0, T ]→ R3, t 7→ (p (t) , q (t) , r (t)) to (2.76). Furthermore, this
solution stays in I and is essentially bounded by a constant that holds for all u ∈ Uad and all w ∈ Wad,
given by max (p, q, r).
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Next, the existence of an optimal solution to (2.75) subject to (2.76) is proved in the following lemma.

Lemma 21. There exists a solution u ∈ Uad and w ∈Wad to (2.75) subject to (2.76), where Uad and Wad

are defined in (2.77).

Proof. The existence of an optimal solution to (2.75) subject to (2.76) can be shown as follows. We know
that any solution x = (p, q, r) to (2.76) for

u ∈ Uad =
{
u ∈ L2 (0, T ) |0 ≤ u (t) ≤ u a.e.

}
, w ∈Wad =

{
w ∈ L2 (0, T ) |0 ≤ u (t) ≤ w a.e.

}

is an element of

X = {x ∈
(
L2(0, T )

)3 |x = (p, q, r) , 0 ≤ p ≤ p̄, 0 ≤ q ≤ q̄, 0 ≤ r ≤ w

ρ
}

where Uad, Wad, X are convex, bounded and closed.
Then we choose a sequence (un, wn)n∈N ⊆ Uad ×Wad with corresponding solution (xn)n∈N ⊆ X to

(2.76) for (uk, wk) instead of (u,w), which minimizes the cost functional J . Such a minimizing sequence
always exists as follows. The cost functional J is bounded from below and thus the infimum

d := inf
(u,w)∈Uad×Wad

J (x (u,w) , u, w) := inf {(u,w) ∈ Uad ×Wad| J (x (u,w) , u, w)}

exists, see [3, I Theorem 10.4, Theorem 10.1], where x (u,w) is the solution to (2.76) corresponding to
(u,w) ∈ Uad ×Wad. Consequently for any given number ǫn > 0, monotonically decreasing for increasing
n ∈ N, there is a un with

d ≤ J (x (un, wn) , un, wn) ≤ d+ ǫn.

If this was not the case, that means if there was an ñ such that d + ǫñ < J (x (u,w) , u, w) for all
(u,w) ∈ Uad ×Wad, then it would contradict d being the biggest lower bound which would be at least
d+ ǫñ in this case.

By applying the limit on both sides of the last inequlity, we have for the minimizing sequence
(un, wn)n∈N ⊆ Uad ×Wad that

inf
(u,w)∈Uad×Wad

J (x (u,w) , u, w) = lim
n→∞

J (x (un, wn) , un, wn) ,

see [3, Theorem 2.9]. Since the set Uad ×Wad is weakly sequentially compact, see [95, Theorem 2.11] and
due to the reflexivity of L2 (0, T ) spaces [95, Section 2.4], there exists an index set K1 ⊆ N such that for
the corresponding subsequence it holds that (uk, wk) ⇀ (u∗, w∗) for K1 ∋ k → ∞ and the weak limit
(u∗, w∗) ∈ Uad ×Wad exists.

In the next step, we show that there is an index set K2 ⊆ K1 such that the corresponding subsequence
of solutions (xk)k∈K2

with xk = (pk, qk, rk) ⊆ X to (2.76) for (uk, wk) instead of (u,w), k ∈ K2 converges
uniformly pointwise to x∗ which is the corresponding solution to (2.76) for (u∗, w∗) instead of (u,w). We
have that (xk)k∈K1

⊆ X and thus (xk)k∈K1
is a bounded sequence in X. Since in addition each component

fi, i ∈ {1, 2, 3}, of the right hand-side f defined in (2.78) is continuous as a function fi (t, ·) : I → R,
(p, q, r) 7→ f (t, p, q, r) for any fixed t ∈ [0, T ] and thus is bounded on I, see [3, III Corollary 3.8], we
have that the function fi (t, p (t) , q (t) , r (t)) : [0, T ] → R is bounded because of the pointwise bounded
controls and that (p (t) , q (t) , r (t)) ∈ I for any t ∈ [0, T ], see the discussion above. This means that the
derivative of p, q, r with respect to t is essentially pointwise bounded. Consequently the sequence (xk)k∈K1

is a bounded sequence in
(
H1 (0, T )

)3
. From this it follows, that there exists an index set K2 ⊆ K1 such

that xk ⇀ x∗ and ẋk ⇀
d
dtx

∗ in
(
H1 (0, T )

)3
for K2 ∋ k → ∞, see [95, Theorem 2.11]. This can be seen

by taking the following continuous linear functionals on
(
H1 (0, T )

)3
. For xk ⇀ x∗ take the L2-scalar

product for instance and for ẋk ⇀
d
dtx

∗ take the L2-scalar product for ẋk instead of xk. Moreover, due
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to the compact embedding of
(
H1 (0, T )

)3
into the space of the continuous functions (C (0, T ))3 with the

maximum norm, denoted with C, see [26, Theorem 8.8], we have the existence of an index set K3 ⊆ K2

such that we have the strong convergence for the corresponding subsequence xk → x∗ for K3 ∋ k → ∞
with x∗ ∈ C, since C is a Banach space equipped with the maximum norm, see [75, page 65].

Next we prove that for the limit u∗ and w∗ with corresponding x∗ the constraint (2.76) is fulfilled. We
have that

0 =

ˆ T

0

(

ṗk + ξpk ln
(
pk
qk

)

+ (α+ βrk) pkwk

)

ϕdt

for all ϕ ∈ C∞
c (0, T ), the space of arbitrarily often differentiable functions with compact support, since

uk, wk with corresponding xk fulfill (2.76). According to the definition of weak convergence, we have that
for the following continuous linear functional on H1 (0, T ) it holds

lim
K3∋k→∞

ˆ T

0
ṗkϕdt =

ˆ T

0

d

dt
p∗ϕdt.

Since the continuous part of the equation is bounded, we have that

lim
K3∋k→∞

ˆ T

0
ξpk ln

(
pk
qk

)

ϕdt =

ˆ T

0
lim

K3∋k→∞
ξpk ln

(
pk
qk

)

ϕdt =

ˆ T

0
ξp∗ ln

(
p∗

q∗

)

ϕdt

by the dominated convergence theorem [36, Theorem 2.4.5]. Next, we have that

lim
K3∋k→∞

ˆ T

0
(α+ βrk) pkwkϕdt

= lim
K3∋k→∞

(
ˆ T

0
((α+ βrk) pk − (α+ βr∗) p∗)wkϕdt+

ˆ T

0
(α+ βr∗) p∗wkϕdt

)

.

As (α+ βrk) pk − (α+ βr∗) p∗ is bounded we have by the dominated convergence theorem [36, Theorem
2.4.5] that

lim
K3∋k→∞

ˆ T

0
((α+ βrk) pk − (α+ βr∗) p∗)wkϕdt

=

ˆ T

0
ϕ lim
K3∋k→∞

(((α+ βrk) pk − (α+ βr∗) p∗)wk)dt = 0

since wk is bounded for any k ∈ N, see [3, II Theorem 2.4 (i)]. Because wk is weakly converging in L2 (0, T ),

we have that the continuous linear functional
´ T
0 (α+ βr∗) p∗ · ϕdt on L2 (0, T ) converges as follows

lim
K3∋k→∞

ˆ T

0
(α+ βr∗) p∗wkϕdt =

ˆ T

0
(α+ βr∗) p∗w∗ϕdt.

Summarizing, we obtain that

0 =

ˆ T

0

(
d

dt
p∗ + ξp∗ ln

(
p∗

q∗

)

+ (α+ βr∗) p∗w∗
)

ϕdt

for all ϕ ∈ C∞
c (0, T ). Then it holds that

d

dt
p∗ = −ξp∗ ln

(
p∗

q∗

)

− (α+ βr∗) p∗w∗

due to the fundamental lemma of calculus of variation, see [49, Chapter 1 Lemma 3], which means that
the first equation of (2.76) is fulfilled for (x∗, u∗, w∗). Analogously we argue for the equations for q and r,
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that means for the second and the third equation of the right hand-side of (2.76). Consequently, we have
shown that our weak limits (x∗, u∗, w∗) fulfill the constraint (2.76).

In the final step we have to see that this weak limit is a minimizer sought. Our objective J : C ×
Uad ×Wad → R, (x, u, w) 7→ J(x, u, w) is convex and continuous as a map from C × Uad ×Wad to R for
the following reason. The convexity follows from the non-negativity of p, the convexity of norms and the
Jensen inequality, see [72, Proposition 824]. The continuity follows from the composition of continuous
functions [3, III Theorem 1.8] as follows. First we the composition of the norm and the square of a function
which are both continuous maps. Second we have that

‖p1 − p2‖L2(0,T )

=

√
ˆ T

0
(p1 (t)− p2 (t))2 dt ≤

√
T | max

t∈[0,T ]
(p1 (t)− p2 (t)) |

≤
√
T max

t∈[0,T ]
|p1 (t)− p2 (t) | =

√
T‖p1 − p2‖L∞(0,T )

and

|p21 (T )− p22 (T ) |
= | (p1 (T ) + p2 (T )) (p1 (T )− p2 (T )) | ≤ 2p (p1 (T )− p2 (T ))
≤ 2p max

t∈[0,T ]
|p1 (t)− p2 (t) | = 2p‖p1 − p2‖L∞(0,T )

for any two solutions p1, p2 of (2.76) which proves the continuity as a map from C to R of the terms of the
functional J which include p. Consequently the functional J : C × Uad ×Wad → R, (x, u, w) 7→ J(x, u, w)
is weakly lower semi-continuous, see [95, Theorem 2.12]. Since the sequence (xk)k∈K3

converges strongly
in C, it follows that the sequence (xk)k∈K3

also converges weakly in C with xk ⇀ x∗ for K3 ∋ k → ∞,
see [95, Subsection 3.4.3]. This means we write (xk, uk, wk) ⇀ (x∗, u∗, w∗). Thus, since the subsequence
is still a minimizing sequence, we have that

inf
(u,w)∈Uad×Wad

J (x (u,w) , u, w) = lim
K3∋k→∞

J (xk, uk, wk) = lim inf
K3∋k→∞

J (xk, uk, wk) ≥ J (x∗, u∗, w∗)

where the first equality sign is true due to the discussion above and for the second equality sign we recall
that whenever a lim exists the corresponding lim inf equals lim, see [3, Theorem 5.7]. This proves that
(x∗, u∗, w∗) is a minimizer sought.

Next, we show that our Assumptions A.1) to A.6) are fulfilled. For this purpose, we define the right
hand-side of (2.76) by

f (y, u, w) :=







−ξp ln
(
p
q

)

− (α+ βr) pw

κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

− γqu− (ς + δr) qw

−ρr + w







with y := (p, q, r). We have that A.1) is fulfilled for f (y, u, w), h (p) := σ̃
2p

2, F (p) := ϑ
2p

2 (T ). Since
the function (y, u, w) 7→ f (y, u, w), (y, u, w) 7→ Dyf (y, u, w), (y, u, w) 7→ Dyf (y, u, w) are continuous on
I×KU ×KW , we have that A.2) and A.4) are fulfilled, see Remark 1. Since I is bounded, as shown in the
proof of Lemma 20, we have that A.3) and A.5) hold. Due to the twice continuous differentiability of h
and F , we have that also A.6) holds. Because the control mechanism in the present model is bilinear, we
can adopt the calculation from Example 18 to show that (2.32) holds. Therefore the theoretical framework
of Section 2.2 and Section 2.3 holds for the presented optimal control problem (2.75) subject to (2.76).
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According to Section 2.2 the Hamiltonian is given by

H (t, p, q, r, λ1, λ2, λ3, u, w)

= σ̃
2p

2 + νu
2 u

2 + νw
2 w

2 + µu|u|+ µw|w| − λ1
(

ξp ln
(
p
q

)

+ (α+ βr) pw
)

+ λ2

(

κ
(

bq
2
3 − dq 4

3

)

+ (1− κ)
(

bp− dp 2
3 q
)

− γqu− (ς + δr) qw
)

+ λ3 (−ρr + w)

and the corresponding adjoint equations are given by

λ̇1 = −σ̃p+ λ1

(

ξ ln
(
p
q

)

+ ξ + (α+ βr)w
)

− λ2 (1− κ)
(

b− 2
3dp

− 1
3 q
)

λ̇2 = −λ1ξ
p

q
− λ2

(

κ
(
2
3bq

− 1
3 − 4

3dq
1
3

)

+ (1− κ)
(

−dp 2
3

)

− γu− (ς + δr)w
)

λ̇3 = λ1βpw + λ2δqw + λ3ρ

(2.84)

with the terminal conditions

λ1 (T ) = ϑp (T )

λ2 (T ) = 0

λ3 (T ) = 0

where p, q, r,u and w fulfill (2.76). We remark, since our optimal control problem fulfills the Assumptions
A.1) to A.6), the adjoint equation (2.84) has a unique global solution on [0, T ], see Theorem 55.

For our SQH method, the augmented Hamiltonian is defined as follows

Kǫ (t, p, q, r, λ, u, w, û, ŵ) := H (t, p, q, r, λ1, λ2, λ3, u, w) + ǫ
(

(u (t)− û (t))2 + (w (t)− ŵ (t))2
)

where ǫ > 0 and Kǫ : R
+
0 × R3 × R3 ×KU ×KW ×KU ×KW → R. The pointwise minimum is given by

u (t) = min

(

u,max

(

0,
−µu + λ2 (t) γq (t) + 2ǫû (t)

νu + 2ǫ

))

w (t) = min

(

w,max

(

0,
−µw + λ1 (t) (α+ βr (t)) p (t) + λ2 (t) (ς + δr (t)) q (t)− λ3 (t) + 2ǫŵ (t)

νw + 2ǫ

))

where the calculation is analogous as the one starting on page 166 in the Appendix.

For our numerical illustration, we choose the model constants from Table 2.4 and the following con-
stants. We have κ = 0.5, µu = µw = 104 and νu = νw = 5 · 103, σ̃ = 1

5 , ϑ = 1, T = 7, p0 = 8000,
q0 = 10000 and r0 = 0 for the optimal control problem. For the SQH method, we choose κ = 10−7,
σ = 50, ζ = 0.15, η = 10−7 and the initial guess ǫ = 1

10 and the initial guess for the controls u0 = w0 = 0.
Our step size dt = 7

1000 and we use an explicit Euler scheme to solve the state and adjoint equation.
Algorithm 2.1 converges after 15 sweeps of Step 2 to Step 4 in 0.06 seconds. The results are depicted in
Figure 2.4 where about p (T ) = 180, q (T ) = 5200 and the inequality

0 ≤
(

H (t, p, q, r, λ1, λ2, λ3, u, w)− min
w∈KU

H (t, p, q, r, λ1, λ2, λ3, u, w)

)

≤ 10−15

is fulfilled for 78% of the grid points where p, q, r, λ1, λ2, λ3, u and w are the return values of the SQH
method. This result validates the convergence of Algorithm 2.1 to a solution to (2.75) that is optimal in
the PMP sense (2.16).
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Figure 2.4: Results from the optimal control problem (2.75) calculated by the SQH method.



Chapter 3

An SQH framework for PDE optimal

control problems

In this chapter, similar to [21, 22], we discuss optimal control problems that are governed by partial
differential equations (PDEs), specifically elliptic and parabolic PDEs. We characterize an optimal solution
with the Pontryagin maximum principle (PMP) and perform the convergence analysis of the sequential
quadratic Hamiltonian (SQH) method with which we solve the PDE control problems in this chapter. In
order to give an overview over the considered problems we shortly list them below.

P.1) miny,u J (y, u) :=
´

Q
1
2 (y (x, t)− yd (x, t))

2 + g1 (u (x, t)) dxdt

subject to (y′ (·, t) , v) +D (∇y (·, t) ,∇v) = (u (·, t) , v), y (·, 0) = y0, u ∈ Uad;

P.2) miny,u J (y, u) :=
´

Ω
1
2 (y (x)− yd (x))

2 + g1 (u (x)) dx subject to (∇y,∇v) = (u, v), u ∈ Uad;

P.3) miny,u J (y, u) :=
´

Ω
1
2 (y (x)− yd (x))

2+g1 (u (x)) dx subject to (∇y,∇v)+(uy, v) =
(

f̃ , v
)

, u ∈ Uad;

P.4) miny,u J (y, u) :=
´

Q
1
2 (y (x, t)− yd (x, t))

2 + g1 (u (x, t)) dxdt

subject to (y′ (·, t) , v) +D (∇y (·, t) ,∇v) + (u (·, t) y (·, t) , v) = (f (·, t) , v), y (·, 0) = y0, u ∈ Uad;

P.5) miny,u J (y, u) :=
´

Ω
1
2 (y (x)− yd (x))

2+g1 (u (x)) dx subject to (∇y,∇v)+
(
y3, v

)
= (u, v), u ∈ Uad;

P.6) miny,u J (y, u) :=
´

Ω
1
2 (y (x)− yd (x)) + g1 (u (x)) dx subject to (∇y,∇v) = (u, v), y ≤ ξ, u ∈ Uad;

P.7) miny,u J (y, u) :=
´

Ω |y (x)− yd (x) |+ g2 (u (x)) dx
subject to (∇y,∇v) + (max (y, 0) , v) = (u, v), u ∈ Uad;

where, in all cases, we choose homogeneous Dirichlet boundary conditions and we take

g1 (z) :=

{

|z| if |z| > s

0 else
, s > 0 and g2 (z) := ln (1 + |z|) (3.1)

with z ∈ R. In the following, we use the notation var1 ← var2 which means that the variable var1 is
replaced by var2 in the corresponding equation. Furthermore the Lp-norm for a vector valued function ζ̃

with n components is defined by ‖ζ̃‖pLp(Zi)
:=
∑n

l=1 ‖ζ̃l‖
p
Lp(Zi)

, ‖ζ̃l‖Lp(Zi) :=
(
´

Zi
|ζ̃l (z) |pdz

) 1
p
, see [5, X.4]

for a definition with p ∈ (0,∞).

69
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3.1 Parabolic and elliptic optimal control problems

In this section, we formulate classes of elliptic and parabolic optimal control problems. In order to
distinguish between the elliptic and the parabolic case, we introduce the index i ∈ {e, p}, where e refers
to the elliptic case and p to the parabolic case. We denote Ze := Ω ⊆ Rn, n ∈ N and Zp := Ω × (0, T ),
T > 0 where Ω is an open and bounded domain. Further, we define a vector of controls u := (u1, ..., um)
where each uj , j ∈ {1, ...,m}, m ∈ N, is an element of the following admissible set of controls

U
j
ad =

{

uj ∈ Lq (Zi) | uj (z) ∈ Kj
U a.e. in Zi

}

with Kj
U ⊆ R compact, q ≥ 2 and Uad := U1

ad × ...× Um
ad, KU := K1

U × ...×Km
U .

For our cases, we define
Uad := {Lq (Ω) | u (x) ∈ KU a.e. in Ω}

in the elliptic case where q ≥ max
(
2, n2 + 1

)
and KU ( R is a compact set, specified later. Analogous we

define
Uad := {Lq (Q) | u (x, t) ∈ KU a.e. in Q}

in the parabolic case where Q := Ω × (0, T ) and we have that q > n
2 + 1 for n ≥ 2 and q ≥ 2 for n = 2.

Also in this case KU ( R is a compact set, specified later.
Next, we formulate our PDE constraint (governing model) in weak form as in [45, page 296] for the

elliptic case and as in [45, page 351/352] for the parabolic case.
Consider the bilinear form for the parabolic case as follows: B : H×H×[0, T ]→ R, (y, v; t) 7→ B (y, v; t)

where the function space H, a set of functions mapping Zi to R, has to be chosen accordingly. Then, the
weak formulation of a parabolic equation is given by

(
y′ (·, t) , v

)
+B (y, v; t) =

ˆ

Ω
f (x, t, y, u) v (x) dx (3.2)

for almost every t ∈ [0, T ] and all v ∈ H where (·, ·) is the L2 (Ω) scalar product, y′ := ∂
∂ty and f :

Rn × R+
0 × R×KU → R. Notice that f (z, y, u) := f (z, y (z) , u (z)), z ∈ Zi, whenever an argument of f

is a function instead of a number. We implicitly assume for the rest of this chapter that if functions do
not depend on time, we refer to the elliptic case and if we consider an elliptic equation, then functions do
not depend on time t. This implies in the elliptic case that (y′ (·, t) , v) = 0 for all v ∈ H. We require that
(3.2) is well defined and that there is a unique solution y : Zi → R, z 7→ y (z) to (3.2), that means that y
fulfills (3.2) for almost all t ∈ [0, T ] and all v ∈ H.

Now, in view of this requirement, we consider P.1) to P.7) and define H := H1
0 (Ω) and y0 ∈ H1

0 (Ω) ∩
L∞ (Ω) in the parabolic case where we also assume a smooth boundary for Ω. For P.1), we have the
bilinear form B1 (y, v; t) := D (∇y (·, t) , v) and the right-hand side f1 = u where the model of P.1) has
a unique solution y ∈ L2

(
0, T,H2 (Ω)

)
∩ L∞ (0, T ;H1

0 (Ω)
)
, see [45, 7.1 Theorem 5]. For the governing

model of P.2), we have the bilinear form B2 (y, v) := (∇y,∇v) and the right-hand side f2 = u where
the constraint of P.2) has a unique solution y ∈ H1

0 (Ω), see [45, 6.2 Theorem 1] and [1, Theorem 2.14].
Analogously for P.3) with B3 := B1 and f3 := f̃ − uy and for P.4) with B4 := B2 and f4 := f3, we have
a unique solution for the corresponding constraint where we require that KU ⊆ R+

0 and f̃ ∈ Lq (Zi). In
P.5), the constraint for B5 := B1 and f5 := u − y3 has a unique solution y ∈ H1

0 (Ω), see [29]. The case
P.6) is analogous to P.2) where we additionally require that y ≤ ξ, ξ ∈ R. The constraint of P.7) for
B6 := B1 and f6 := u−max (y, 0) has a unique solution y ∈ H1

0 (Ω), see [31].
In the next step, we formulate our general optimal control problem as follows

min
y,u

J (y, u) :=

ˆ

Zi

h (y (z)) + g (u (z)) dz

s.t.

ˆ

Ω
y′ (x, t) v (x) dx+B (y, v; t) =

ˆ

Ω
f (x, t, y (x, t) , u (x, t)) v (x) dx

u ∈ Uad

(3.3)
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where z := (x, t) for the parabolic case and z := x for the elliptic case. We assume J to be bounded from
below and require that (3.3) is well posed. In particular, we assume g : KU → R, z 7→ g (z) to be bounded
from below and lower semi-continuous analogous to Section 2.1.

We remark that, analogous to Chapter 2, in the case of an L2-L1-functional, existence of an optimal
solution to (3.3), denoted with (ȳ, ū), can be proved. This case is included in our framework presented
in this section. Notice that the scope of our SQH scheme and the corresponding framework is beyond
this case. For the purpose of this thesis, we assume the existence of an optimal solution to (3.3) in order
to focus on its characterization in the PMP framework and the convergence analysis of the SQH scheme
under the assumptions listed below.

Before we define the corresponding PMP necessary optimality conditions that a solution to (3.3) must
fulfill, we introduce the adjoint bilinear form B∗ : H × H × [0, T ] → R, (p, v, t) 7→ B∗ (p, v; t), where we
require that

B∗ (p, v; t) = B (v, p; t) (3.4)

holds for almost every t ∈ [0, T ] and all v ∈ H. The adjoint equation for (3.3) is, analogous to [81, Theorem
2.1], defined as follows

−
(
p′ (·, t) , v

)
+B∗ (p, v; t) =

ˆ

Ω

(
∂

∂y
h (y) |y=y(x,t) +

∂

∂y
f (x, t, y, u) |y=y(x,t)p (x, t)

)

v (x) dx (3.5)

with p (·, T ) = 0 where y is the solution to (3.2) and p′ := ∂
∂tp. We require that there exists a unique

solution p : Zi → R, z 7→ p (z) such that (3.5) holds for almost all t ∈ [0, T ] and all v ∈ H. We remark that
for P.1) to P.5) it is shown in Section 3.2 that the corresponding adjoint equations are uniquely solvable.

Crucial for the PMP and later for the SQH method is the Hamiltonian H : Zi × R ×KU × R → R,
(z, y, u, p) 7→ H (z, y, u, p) that is given by

H (z, y, u, p) := h (y) + g (u) + pf (z, y, u) . (3.6)

Now, we can formulate the necessary optimality conditions given by the PMP. If p̄ is the solution to (3.5)
where ȳ is inserted for y, we write y ← ȳ, and ū is inserted for u, we write u← ū, then we have that

H (z, ȳ, ū, p̄) = min
w∈KU

H (z, ȳ, w, p̄) (3.7)

for almost all z ∈ Zi. Notice that we use the notation H (z, y, u, p) := H (z, y (z) , u (z) , p (z)) whenever
an argument of H is a function instead of a number.

We additionally assume that a solution to (3.3) fulfills the PMP (3.7). For the analysis of the SQH
method, we make the following assumptions, that are used in the corresponding proofs. For this purpose,
we define the set I ⊆ R as the convex hull [10, Section 3.1] of the union of all images from each solution
y to (3.2) for any u ∈ Uad, given by

I := conv {y (Zi) ⊆ R| y solves (3.2) for u ∈ Uad} .

The assumptions are given as follows.

A.1) The functions h : I → R, v 7→ h (v) and f : I → R, v 7→ f (z, v, u) are supposed to be twice
continuously differentiable for all u ∈ KU and for almost all z ∈ Ki.

Furthermore, we require the existence of a constant c > 0 such that the following holds

A.2) ‖δy‖L2(Zi) ≤ c‖δu‖L2(Zi), ‖δp‖L2(Zi) ≤ c‖δu‖L2(Zi);

A.3) The function f : KU → R, u 7→ f (z, y, u) is Lipschitz continuous with |f (z, y, u1) − f (z, y, u2) | ≤
c
∑m

j=1 | (u1)j − (u2)j | for any fixed y ∈ I and z ∈ Zi. That means the Lipschitz constant c is
independent of all z ∈ Zi, all u ∈ KU and all y ∈ I;
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A.4) ‖p‖L∞(Zi) ≤ c for any solution (y, u) to (3.2) for u ∈ Uad;

A.5) ‖ ∂
∂yf (·, y, u) ‖L∞(Zi) ≤ c, ‖ ∂2

∂y2
f (·, y, u) ‖L∞(Zi) ≤ c, ‖ ∂2

∂y2
h (y) ‖L∞(Zi) ≤ c for all y ∈ I and u ∈ KU ;

where δy := y1 − y2, δu := u1 − u2, δp := p1 − p2 and ‖δu‖2L2(Zi)
:=
∑m

j=1 ‖δuj‖2L2(Zi)
where (yℓ, uℓ),

ℓ = 1, 2, are solutions to (3.2) and (yℓ, uℓ, pℓ) are solutions to (3.5) . Additionally we require the following.

A.6) The function f : I ×KU → R, (y, u) 7→ f (z, y, u) is continuous for all z ∈ Zi.

We remark that the Assumptions A.1) to A.6) are fulfilled by P.1) to P.5), see Section 3.4. The cases P.6)
and P.7) are not covered by our PMP characterization that is similar to [81]. Nevertheless, we show how
to apply the SQH method to these problems.

We can show that optimal solutions to our problems P.1) to P.5) can be characterized by the PMP
with an analogous calculation as in [81]. The next section is devoted to this purpose.

3.2 The characterization by the Pontryagin maximum principle

In this section, we formulate a class of optimal control problems, including P.1) to P.5), where a solution
to the corresponding optimal control problem (3.3) fulfills the necessary equation (3.7). For this purpose,
we choose H = H1

0 (Ω). The argumentation in the present section is similar to the one in Section 2.2.
Therefore, we recall the definition of the needle variation of a function u∗ ∈ Uad that is given by

uk (z) :=

{

u z ∈ Sk (z0) ∩ Zi

u∗ (z) z ∈ Zi\Sk (z0)
(3.8)

where u ∈ KU and Sk (z0) is a ball centered at z0 ∈ Zi whose measure, denoted by |Sk (z0) |, goes to zero
for k to infinity.

We remark that the function uk ∈ Uad for all k ∈ N, for all z ∈ Zi and u∗ ∈ Uad. This can be seen as
follows. The function uk = u∗χZi\Sk(z0)+uχSk(z0) is measurable for all k ∈ N and z0 ∈ Zi because the sum
and the product of measurable functions is measurable, see [36, Proposition 2.1.7] and the characteristic
function χA is measurable if and only if A is measurable, see [36, Example 2.1.2]. Consequently the needle
variation is measurable. The integrability is seen by

m∑

j=1

ˆ

Zi

(

(uk)j (z)
)q
dz =

m∑

j=1

ˆ

Zi\Sk(z0)

(

(u∗)j (z)
)q
dz +

ˆ

Sk(z0)∩Zi

u
q
jdz

≤
m∑

j=1

(
ˆ

Zi

(

(u∗)j (z)
)q
dz + u

q
j |Sk (z0) |

) (3.9)

where we have the Lq-integrability since u∗ ∈ Uad and uj are real numbers for all j ∈ {1, ...,m}. As the
image of the needle variation is in KU almost everywhere the needle variation it holds uk ∈ Lq (Zi).

Also in the PDE case we define the intermediate adjoint equation, analogous to [81, (22)] which is
needed for the PMP characterization, by

−
(
p̃′ (·, t) , v

)
+B∗ (p̃, v; t) =

ˆ

Ω

(

h̃ (y1, y2) + f̃ (x, t, y1, y2, u1) p (x, t)
)

v (x) dx (3.10)

with p̃ (·, T ) = 0 where y1 is the solution to (3.2) for u ← u1, y2 is the solution to (3.2) for u ← u2 and
p̃′ := ∂

∂t p̃ with

f̃ (x, t, y1, y2, u1) :=

ˆ 1

0

∂

∂y
f (x, t, y, u1) |y=y2+θ(y1−y2)dθ
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and

h̃ (y1, y2) :=

ˆ 1

0

∂

∂y
h (y) |y=y2+θ(y1−y2)dθ.

Also, we require that there exists a unique solution p̃ : Zi → R, z 7→ p (z) such that (3.10) holds for almost
all t ∈ [0, T ] and all v ∈ H. This implicitly includes that f̃ and h̃ are well defined for any solution y1, y2
to (3.2) for u1, u2 ∈ Uad.

In the next step, we have to the following lemma, analogous to Lemma 3, which is used for the PMP
characterization of a solution to (3.3).

Lemma 22. Let (y1, u1) and (y2, u2) solve (3.2). Then, it holds that

J (y1, u1)− J (y2, u2) =

ˆ

Zi

H (z, y2, u1, p̃)−H (z, y2, u2, p̃) dz

where p̃ solves (3.10).

Proof. Because of the continuity of ∂
∂yf and ∂

∂yh in the state argument, we apply the fundamental theorem
of calculus [4, VI 4.13] and thus we obtain pointwise

f (z, y1, u1)− f (z, y2, u1) = f (z, y2 + θ (y1 − y2) , u1) |θ=1 − f (z, y2 + θ (y1 − y2) , u1) |θ=0

=

ˆ 1

0

∂

∂y
f (z, y, u1) |y=y2+θ(y1−y2) (y1 − y2) dθ = f̃ (z, y1, y2, u1) (y1 − y2)

with the chain rule [4, VII Theorem 3.3]. Analogously, we have

h (y1)− h (y2) = h̃ (y1, y2) (y1 − y2) .

Next, we obtain

J (y1, u1)− J (y2, u2) =

ˆ

Zi

h (y1) + g (u1)− h (y2)− g (u2) dz

=

ˆ

Zi

h (y2) + g (u1)− h (y2) + h (y1)− h (y2)− g (u2) + p̃f (z, y2, u1)− p̃f (z, y2, u1) dz

+

ˆ

Zi

p̃f (z, y2, u2)− p̃f (z, y2, u2) dz

=

ˆ

Zi

H (z, y2, u1, p̃)−H (z, y2, u2, p̃) + h (y1)− h (y2) dz

+

ˆ

Zi

p̃ (f (z, y2, u2)− f (z, y1, u1) + f (z, y1, u1)− f (z, y2, u1)) dz

=

ˆ

Zi

H (z, y2, u1, p̃)−H (z, y2, u2, p̃) +
(

h̃ (y1, y2) + p̃f̃ (z, y1, y2, u1)
)

(y1 − y2) dz

+

ˆ

Zi

p̃ (f (z, y2, u2)− f (z, y1, u1)) dz

=

ˆ

Zi

H (z, y2, u1, p̃)−H (z, y2, u2, p̃) dz +

ˆ T

0
−p̃′ (y1 − y2) +B∗ [p̃, y1 − y2; t] dt

−
ˆ T

0
p̃y′1 +B [y1, p̃; t]− p̃y′2 −B [y2, p̃; t] dt

=

ˆ

Zi

H (z, y2, u1, p̃)−H (z, y2, u1, p̃) dz

where we use the partial integration [95, Theorem 3.11] in the third to last line and (3.4).
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Lemma 23. Let u∗ ∈ Uad and u ∈ KU . Furthermore let uk be defined as in (3.8) for all k ∈ N and yk
be the solution to (3.2) for u ← uk. Let y∗ be the solution to (3.2) for u ← u∗, p∗ be the corresponding
solution to (3.5) for y ← y∗ and u ← u∗ and pk be the solution to (3.10) with u1 ← uk, y1 ← yk and
y2 ← y∗. If

lim
k→∞

‖pk − p∗‖L∞(Zi)

and f is bounded on Zi × I ×KU , then the following holds

lim
k→∞

1

|Sk (z0) |
(J (yk, uk)− J (y∗, u∗)) = H (z, y∗, u, p∗)−H (z, y∗, u∗, p∗)

for almost all z0 ∈ Zi.

Proof. With Lemma 22, we have

J (yk, uk)− J (y∗, u∗) =
ˆ

Zi

H (z, y∗, uk, pk)−H (z, y∗, u∗, pk) dz

=

ˆ

Sk(z0)∩Zi

H (z, y∗, u, pk)−H (z, y∗, u∗, pk) dz

=

ˆ

Sk(z0)∩Zi

H (z, y∗, u, p∗)−H (z, y∗, u∗, p∗) + (pk − p∗) f (z, y∗, u) + (p∗ − pk) (f (z, y∗, u∗)) dz.

(3.11)

We multiply both sides of (3.11) with 1
|Sk(z0)| and apply the limit for k to both sides. Then we obtain

lim
k→∞

1

|Sk (z0) |
(J (yk, uk)− J (y∗, u∗)) = H (z, y∗, u, p∗)−H (z, y∗, u∗, p∗)

because with our two requirements that it holds limk→∞ ‖pk − p∗‖L∞(Zi) and that f is bounded on Zi ×
I ×KU , we have that

lim
k→∞

1

|Sk (t0) |
|
ˆ

Sk(t0)∩Zi

(pk − p∗) f (y∗, u) dz|

≤ lim
k→∞

(

‖pk − p∗‖L∞
1

|Sk (z0) |

ˆ

Sk(z0)∩Zi

|fi (z, y∗, u) |dz
)

= 0

and analogously

lim
k→∞

1

|Sk (z0) |
|
ˆ

Sk(z0)∩Zi

(p∗ − pk) f (z, y∗, u∗) dz| = 0

for almost all z0 ∈ Zi considering the limit rules [3, II Remark 2.1 (a)], [3, II Theorem 2.4], [3, Theorem
1.10] and the mean value theorem [15, Theorem 5.6.2]. We remark that the union of countably many null
sets is a null set, see [5, IX Remark 2.5 (b)].

Remark 24. For the proof of Lemma 23 it is sufficient that z 7→ f (z, y (z) , u (z)) is locally integrable for
all y solving (3.2) and any u ∈ Uad. However, using the boundedness of f on Zi× I×KU is reasonable for
our purpose since it is fulfilled for P.1) to P.5) as Zi, I and KU are bounded. Especially the boundedness
of I is shown below.

Now, we have the following theorem that characterizes a solution to (3.3).

Theorem 25. Let (ȳ, ū) be a solution to (3.3). Then under the assumptions of Lemma 23 it holds that

H (z, ȳ, ū, p̄) = min
w∈KU

H (z, ȳ, w, p̄) (3.12)

for almost all z ∈ Zi where p̄ is a solution to (3.5) with y ← ȳ and u← ū.
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Proof. As we have that J (ỹ, ũ) ≥ J (ȳ, ū) for all (ỹ, ũ) solving (3.3) with ũ ∈ Uad, we especially have that

J (yk, uk) ≥ J (ȳ, ū) (3.13)

for any solution (yk, uk) to (3.2) as uk ∈ Uad. This can be seen as follows. The sum and the product of
measurable functions is measurable, see [36, Proposition 2.1.7]. The needle variation (3.8) can be written
as uk = u∗χZi\Sk(z0) + uχSk(z0)∩Zi

. Since the characteristic function χA is measurable if and only if A
is measurable, see [36, Example 2.1.2] the needle variation is Lebesgue measurable, since Zi\Sk (z0) and
Sk (z0) ∩ Zi are Lebesgue measurable, see [36, Theorem 1.3.6]. Furthermore it holds pointwise uk ∈ KU

almost everywhere and thus we have by

m∑

j=1

ˆ

Zi

(

(uk)j (z)
)q
dz =

m∑

j=1

ˆ

Zi\Sk(z0)

(

(u∗)j (z)
)q
dz +

ˆ

Sk(z0)∩Zi

u
q
jdz

≤
m∑

j=1

(
ˆ

Zi

(

(u∗)j (z)
)q
dz + u

q
j |Sk (z0) |

)

the Lq-integrability since u∗ ∈ Uad and uj are real numbers for all j ∈ {1, ...,m}. Then we have from
(3.13) that it holds J (yk, uk)− J (ȳ, ū) ≥ 0 and consequently 1

|Sk(z0)| (J (yk, uk)− J (ȳ, ū)) ≥ 0. Thus we
obtain

0 ≤ lim
k→∞

1

|Sk (z0) |
(J (yk, uk)− J (ȳ, ū)) = H (z0, ȳ, u, p̄)−H (z0, ȳ, ū, p̄) , (3.14)

see Lemma 23 and [3, II Theorem 2.7] for almost all z0 ∈ Zi. From (3.14) and by renaming z0 into z, we
conclude that H (z, ȳ, ū, p̄) ≤ H (z, ȳ, u, p̄) for almost all z ∈ Zi and all u ∈ KU which is equivalent to

H (z, ȳ, ū, p̄) = min
w∈KU

H (z, ȳ, w, p̄) .

For the last part of this section we denote with uk the needle variation defined in (3.8) and yk the
solution to (3.2) for u ← uk as well as p∗ the solution to (3.5) with y ← y∗ and u ← u∗ where y∗ is the
solution to (3.2) for u ← u∗ ∈ Uad. Furthermore we denote with pk the solution to (3.10) with u1 ← uk,
y1 ← yk and y2 ← y∗. Summarizing if we can show that (3.5) and (3.10) are uniquely solvable and
limk→∞ ‖pk − p∗‖L∞(Zi) = 0 for almost all z0 ∈ Zi, then we have that Theorem 25 holds for a solution to
an optimal control problem of the class (3.3).

We remark that a general proof of the PMP characterization of solutions to an optimal control problem
constraint by semi-linear parabolic PDEs can be found in [81].

Next, we specify our cases. We use that KU ⊆ R is a compact set and for the bilinear cases, that
means P.3) and P.4) in addition KU ⊆ R+

0 . Furthermore, we have that

Uad = {u ∈ Lq (Zi) | u (z) ∈ KU}

and q = 2 for n = 1 and for n ≥ 2 we have q > n
2 + 1 in the parabolic case. In the elliptic case we have

q = 2 for n = 1 and q ≥ n
2 + 1 for n ≥ 2. Then we require that yd ∈ Lq (Zi). For P.1) to P.5), we start

to argue that I is bounded. This is in fact the case considering Theorem 64, Theorem 65, Remark 61,
Theorem 59 and Theorem 60.

Next, we define the following terms. If we write the “linear case”, we refer to P.1) and P.2). If we write
the “bilinear case”, we mean P.3) and P.4) and if we write the “non-linear case”, we refer to P.5). Now we
formulate the corresponding adjoint equations according to (3.5) where we always have that p (·, T ) = 0.
In the following of the section, we have that D > 0 for the parabolic case and D = 1 in the elliptic case.
For the linear case, we have

−
(
p′ (·, t) , v

)
+D (∇p (·, t) ,∇v) =

ˆ

Ω
(y (x, t)− yd (x, t)) v (x) dx. (3.15)
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For the bilinear case, we have

−
(
p′ (·, t) , v

)
+D (∇p (·, t) ,∇v) =

ˆ

Ω
((y (x, t)− yd (x, t))− u (x, t) p (x, t)) v (x) dx (3.16)

and for the non-linear case, we have

(∇p,∇v) =
ˆ

Ω

(
(y (x)− yd (x))− 3y2 (x) p (x)

)
v (x) dx. (3.17)

Next, we formulate the intermediate adjoint equations according to (3.10) where p̃ (·, T ) = 0. For the
linear case, we have

−
(
p̃′ (·, t) , v

)
+D (∇p̃ (·, t) ,∇v) =

ˆ

Ω

(
1

2
(y1 (x, t) + y2 (x, t))− yd (x, t)

)

v (x) dx. (3.18)

For the bilinear case, we have that

−
(
p̃′ (·, t) , v

)
+D (∇p̃ (·, t) ,∇v) =

ˆ

Ω

(
1

2
(y1 (x, t) + y2 (x, t))− yd (x, t)− u1 (x, t) p (x, t)

)

v (x) dx

(3.19)
and for the non-linear case we have

(∇p̃,∇v) =
ˆ

Ω

(
1

2
(y1 (x) + y2 (x))− yd (x)−

(
y21 (x) + y1 (x) y2 (x) + y22 (x)

)
p̃ (x)

)

v (x) dx (3.20)

where it holds that

0 ≤
ˆ 1

0
3 (y2 (x) + θ (y1 (x)− y2 (x)))2 dθ = y21 (x) + y1 (x) y2 (x) + y22 (x) .

Since y, y1, y2 ∈ L∞ (Zi) for P.1) to P.5), see discussion above starting on page 75, and with [1, Theo-
rem 2.14], we have that (3.15) and (3.18) admit a unique solution in H1

0 (Ω) for the elliptic case or in
L2
(
0, T,H2 (Ω)

)
∩ L∞ (0, T ;H1

0 (Ω)
)

in the parabolic case, respectively, with analogous arguments as in
the discussion about the linear case for the state equation (3.2), see Section 3.1. The other cases, that
means (3.16), (3.17), (3.19) and (3.20), can be discussed as the bilinear case for the state equation (3.2)
since u, u1, y

2 ≥ 0 and y21 (x) + y1 (x) y2 (x) + y22 (x) ≥ 0 where we also have a unique solution in H1
0 (Ω)

for the elliptic case or in L2
(
0, T,H2 (Ω)

)
∩ L∞ (0, T ;H1

0 (Ω)
)

in the parabolic case, respectively.

For the same reason, the corresponding results Theorem 64, Theorem 65, Remark 61, Theorem 59 and
Theorem 60 also hold for (3.15) to (3.20) and thus we have the corresponding boundedness results for the
adjoint and intermediate adjoint variable.

Since |u− u∗|q is integrable on every ball that is contained in Zi, we have that

lim
k→∞

‖uk − u∗‖qLq(Zi)
= lim

k→∞

ˆ

Zi

|uk (z)− u∗ (z) |qdz = lim
k→∞

ˆ

Sk(z0)∩Zi

|u− u∗ (z) |qdz

= lim
k→∞

Sk (z0)
1

Sk (z0)

ˆ

Sk(z0)∩Zi

|u− u∗ (z) |qdz

= lim
k→∞

Sk (z0) lim
k→∞

1

Sk (z0)

ˆ

Sk(z0)∩Zi

|u− u∗ (z) |qdz

= 0 · |u− u∗ (z0) |q = 0

for almost all z0 ∈ Zi according to the mean value theorem [15, Theorem 5.6.2] and the limit rules [3, II
Theorem 2.4].
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Next we prove the condition
lim
k→∞

‖pk − p∗‖L∞(Zi) = 0

for almost all z0 ∈ Zi for P.1) to P.5). We start proving that in the linear, in the bilinear and in the
non-linear case we have that

lim
k→∞

‖yk − y∗‖L∞(Zi) = 0

for almost all z0 ∈ Zi. This is proved by subtracting the corresponding state equation (3.2) for u ← u∗

from (3.2) for u← uk. In the linear case we have
(

(yk − y∗)
′

, v
)

+D (∇ (yk − y∗) ,∇v) = (uk − u∗, v)

where we obtain with Theorem 59 in the elliptic case or Theorem 64 in the parabolic case that limk→∞ ‖yk−
y∗‖L∞(Zi) = 0 for almost all z0 ∈ Zi. For the bilinear case, we that

(

(yk − y∗)
′

, v
)

+D (∇ (yk − y∗) ,∇v) + (ukyk − u∗y∗, v) = 0

which is equivalently given by
(

(yk − y∗)
′

, v
)

+D (∇ (yk − y∗) ,∇v) + (uk (yk − y∗) , v) = (y∗ (u∗ − uk) , v)

where we have according to Theorem 60 in the elliptic or Theorem 65 in the parabolic case with f̃ ← u∗−uk
that limk→∞ ‖yk − y∗‖L∞(Zi) = 0 for almost all z0 ∈ Zi. In the non-linear case we have that

(∇ (yk − y∗) ,∇v) +
(

y3k − (y∗)3 , v
)

= (uk − u∗, v)

which is equivalently given by

(∇ (yk − y∗) ,∇v) +
(
ˆ 1

0
3 (y∗ + θ (yk − y∗))2 dθ (yk − y∗) , v

)

= (uk − u∗, v)

using the fundamental theorem of calculus [4, VI 4.13] for θ 7→ (y∗ + θ (yk − y∗))3. Since

ˆ 1

0
3 (y∗ + θ (yk − y∗))2 dθ ≥ 0,

we have by Remark 61 for y ← yk − y∗ that limk→∞ ‖yk − y∗‖L∞(Ω) = 0 for almost all z0 ∈ Zi in the
non-linear case.

In the next step, we prove for the linear, the bilinear and the non-linear case that limk→∞ ‖pk −
p∗‖L∞(Zi) = 0 for almost all z0 ∈ Zi where we have that p̃← pk. In the linear case, we have that

−
(

(pk − p∗)
′

, v
)

+D (∇ (pk − p∗) ,∇v) =
(
1

2
(yk − y∗) , v

)

where we have with the same argumentation as above that limk→∞ ‖pk − p∗‖L∞(Zi) = 0 for almost all
z0 ∈ Zi where we use that limk→∞ ‖yk − y∗‖L∞(Zi) = 0 for almost all z0 ∈ Zi and [1, Theorem 2.14]. In
the bilinear case, we have that

−
(

(pk − p∗)
′

, v
)

+D (∇ (pk − p∗) ,∇v) =
(
1

2
(yk − y∗)− ukpk + u∗p∗

)

which is equivalently given by

−
(

(pk − p∗)
′

, v
)

+D (∇ (pk − p∗) ,∇v) + (uk (pk − p∗) , v) =
(
1

2
(yk − y∗) + p∗ (u∗ − uk) , v

)

.
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By using the triangle inequality [36, Proposition 3.3.3], we have with an analogous discussion as for the
difference of the state equations that limk→∞ ‖pk − p∗‖L∞(Zi) = 0 for almost all z0 ∈ Zi in the bilinear
case. In the non-linear case, we have

(∇ (pk − p∗) ,∇v)

=

(
1

2
(yk − y∗)−

ˆ 1

0
3 (y∗ + θ (yk − y∗))2 dθpk + 3 (y∗)2 p∗, v

)

=

(
1

2
(yk − y∗)−

ˆ 1

0
3 (y∗ + θ (yk − y∗))2 dθ (pk − p∗)−

ˆ 1

0
3 (y∗ + θ (yk − y∗))2 dθp∗ + 3 (y∗)2 p∗, v

)

=

(
1

2
(yk − y∗)−

ˆ 1

0
3 (y∗ + θ (yk − y∗))2 dθ (pk − p∗)−

ˆ 1

0
3 (y∗ + θ (yk − y∗))2 − 3 (y∗)2 dθp∗, v

)

=

(
1

2
(yk − y∗)−

ˆ 1

0
3 (y∗ + θ (yk − y∗))2 dθ (pk − p∗)−

ˆ 1

0
6y∗θ (yk − y∗) + 3θ2 (yk − y∗)2 dθp∗, v

)

which equivalently gives

(∇ (pk − p∗) ,∇v) +
(
ˆ 1

0
3 (y∗ + θ (yk − y∗))2 dθ (pk − p∗) , v

)

=

((
1

2
+ 3y∗

)

(yk − y∗) + (yk − y∗)2 , v
)

.

(3.21)

With the triangle inequality [36, Proposition 3.3.3] and that since yk−y∗ ∈ L∞ (Zi) the function yk−y∗ ∈
L2q (Zi), we obtain from (3.21) that limk→∞ ‖pk − p∗‖L∞(Zi) = 0 for almost all z0 ∈ Zi in the non-linear
case with Remark 61 and [1, Theorem 2.14].

3.3 Convergence analysis of the SQH scheme

In this section, we discuss convergence of the SQH scheme in the PDE case to a PMP solution. For this
purpose, we define the following augmented Hamiltonian

Kǫ (z, y, u, v, p) := H (z, y, u, p) + ǫ (u (z)− v (z))2 (3.22)

where Kǫ : Zi × R×KU ×KU × R→ R with ǫ > 0 and

(u (z)− v (z))2 :=
m∑

j=1

(uj (z)− vj (z))2 .

We use the notation Kǫ (z, y, u, v, p) := Kǫ (z, y (z) , u (z) , v (z) , p (z)) whenever an argument of Kǫ is a
function instead of a number.

The SQH scheme is implemented as follows.



3.3. CONVERGENCE ANALYSIS OF THE SQH SCHEME 79

Algorithm 3.1 (SQH method)

1. Choose ǫ > 0, κ > 0, σ > 1, ζ ∈ (0, 1), η ∈ (0,∞), u0 ∈ Uad, compute y0 by (3.2) for u← u0 and p0

by (3.5) for y ← y0 and u← u0, set k ← 0

2. Choose u ∈ KU such that

Kǫ

(

z, yk, u, uk, pk
)

≤ Kǫ

(

z, yk, w, uk, pk
)

for all w ∈ KU and all z ∈ Zi

3. Calculate y by (3.2) for u and τ := ‖u− uk‖2L2(Zi)

4. If J (y, u)− J
(
yk, uk

)
> −ητ : Choose ǫ← σǫ

Else:
Choose ǫ ← ζǫ, yk+1 ← y, uk+1 ← u, calculate pk+1 by (3.5) for y ← yk+1 and u ← uk+1, set
k ← k + 1

5. If τ < κ: STOP and return uk

Else go to 2.

The controls u obtained in Step 2 of Algorithm 3.1 are measurable for all the problems considered in
this thesis. For a detailed discussion about the measurability of u, obtained in Step 2 of Algorithm 3.1,
see the Appendix page 166 and the following pages.

The description of the single steps of Algorithm 3.1 is as in Section 2.3 for the ODE case. In particular,
Lemma 7, which says that Kǫ attains a minimum, holds analogously in this case. Also the next lemma
has an equivalent in the ODE case, which is Lemma 11. However, since the assumptions in the present
chapter differ from Chapter 2 the proof is different and that is why we present it here.

Lemma 26. Let (y, u) and
(
yk, uk

)
be generated by Algorithm 3.1, k ∈ N0, denote δu := u − uk. Then

there is a θ > 0 independent of ǫ such that for the ǫ > 0 currently chosen by Algorithm 3.1, the following
holds

J (y, u)− J
(

yk, uk
)

≤ − (ǫ− θ) ‖δu‖2L2(Zi)
.

In particular, J (y, u)− J
(
yk, uk

)
≤ 0 for ǫ ≥ θ.

Proof. We define (δu)2 :=
∑m

j=1 (δuj (z))
2, δy := y (z)−yk (z) and δp := p (z)−pk (z) where p is calculated

by (3.5) for y and u. Furthermore, to save notational effort, we note H := H (z, y, u, p) or Hk :=
H
(
z, yk, uk, pk

)
and drop the functional dependency of the functions y, yk, u, uk, p and pk as well as we

write f := f (z, y, u), fk := f
(
z, yk, uk

)
, hk := h

(
yk
)

and h := h (y) for all k ∈ N0. We use from Algorithm
3.1 that u is determined such that

Kǫ

(

z, yk, u, uk, pk
)

≤ Kǫ

(

z, yk, w, uk, pk
)

for all w ∈ KU and thus it holds in particular that

Kǫ

(

z, yk, u, uk, pk
)

≤ Kǫ

(

z, yk, uk, uk, pk
)

= H
(

z, yk, uk, pk
)
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for all z ∈ Zi. We start the proof as follows

J (y, u)− J
(

yk, uk
)

=

ˆ

Zi

h (y) + g (u)− h
(

yk
)

− g
(

uk
)

dz =

ˆ

Zi

H − pf −Hk + pkfkdz

=

ˆ

Zi

H −H
(

z, yk, u, pk
)

+H
(

z, yk, u, pk
)

+ ǫ (δu)2 −Hk − ǫ (δu)2 dz

−
ˆ

Zi

δpfdz −
ˆ T

0

(

(δy)′ , pk
)

+B
(

δy, pk; t
)

dt

≤
ˆ

Zi

H −H
(

z, yk, u, pk
)

− ǫ (δu)2 dz −
ˆ

Zi

δpfdz −
ˆ T

0

(

(δy)′ , pk
)

+B
(

δy, pk; t
)

dt.

(3.23)

Next, we estimate the term

|
ˆ

Zi

H −H
(

z, yk, u, pk
)

dz −
ˆ

Zi

δpfdz −
ˆ T

0

(

(δy)′ , pk
)

+B
(

δy, pk; t
)

dt|.

For this purpose, we first consider

ˆ T

0

(
δy′, δp

)
+B (δy, δp; t) dt =

ˆ

Zi

(

f (z, y, u)− f
(

z, yk, uk
))

δpdz

which can be estimated as follows

|
ˆ T

0

(
δy′, δp

)
+B (δy, δp; t) dt| ≤

ˆ

Zi

|f (z, y, u)− f
(

z, yk, uk
)

||δp|dz

=

ˆ

Zi

|f (z, y, u)− f
(

z, yk, u
)

+ f
(

z, yk, u
)

− f
(

z, yk, uk
)

||δp|dz

≤
ˆ

Zi

ˆ 1

0
| ∂
∂y
f (z, y, u) |y=yk+θ(y−yk)|dθ|δy||δp|+ c

m∑

j=1

|δuj ||δp|dz

≤ c‖δy‖L2(Zi)‖δp‖L2 + c‖δu‖L2(Zi)‖δp‖L2(Zi)

≤
(
c3 + c2

)
‖δu‖2L2(Zi)

(3.24)

using the fundamental theorem of calculus [4, VI 4.13] for θ 7→ f
(
z, yk + θ

(
y − yk

)
, uk
)

and Assumption
A.2), Assumption A.3), Assumption A.5) and the Cauchy-Schwarz inequality [2, Lemma 2.2]. Using the
Taylor formula [4, VII Theorem 5.8] and with the symmetry of the second derivative [4, VII Theorem 5.2],
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we obtain by (3.24) the following

|
ˆ

Zi

H −H
(

z, yk, u, pk
)

dz −
ˆ

Zi

δpfdz −
ˆ T

0

(

(δy)′ , pk
)

+B
(

δy, pk; t
)

dt|

= |
ˆ

Zi

H −H (z, y − δy, u, p− δp) dz −
ˆ

Zi

δpfdz −
ˆ T

0

(

(δy)′ , pk
)

+B
(

δy, pk; t
)

dt|

= |
ˆ

Zi

∂

∂y
Hδy +

∂

∂p
H∂pdz − 1

2

ˆ

Zi

∂2

∂y2
H (δy)2 + 2

∂2

∂y∂p
Hδyδpdz +

ˆ

Zi

R2 (H, y, p; δy, δp) dz

−
ˆ

Zi

δpfdz −
ˆ T

0

(

(δy)′ , pk
)

+B
(

δy, pk; t
)

dt|

= |
ˆ

Zi

∂

∂y
hδy + p

∂

∂y
fδy + fδpdz − 1

2

ˆ

Zi

(
∂2

∂y2
h+ p

∂2

∂y2
f

)

(δy)2 + 2
∂

∂y
fδyδpdz

+

ˆ

Zi

R2 (H, y, p; δy, δp) dz −
ˆ

Zi

δpfdz −
ˆ T

0

(

(δy)′ , pk
)

+B
(

δy, pk; t
)

dt|

= |
ˆ T

0
−
(
(p)′ , δy

)
+B∗ (p, δy; t) dt−

ˆ T

0

(

(δy)′ , pk
)

+B
(

δy, pk; t
)

dt

− 1

2

ˆ

Zi

(
∂2

∂y2
h+ p

∂2

∂y2
f

)

(δy)2 + 2
∂

∂y
fδyδpdz +

ˆ

Zi

R2 (H, y, p; δy, δp) dz|

≤
(

c2 +
9

2
c3 +

3

2
c4
)

‖δu‖2L2(Zi)

(3.25)

where we use the partial integration rule [95, Theorem 3.11], the Cauchy-Schwarz inequality [2, Lemma
2.2] in the last inequality for the term

´

Zi
2 ∂
∂yfδyδpdz and that the Taylor remainder R2 (H, y, p; δy, δp) is

estimated by the remainder formula [4, VII Theorem 5.8] and the boundedness of the second derivatives
analogously to the calculation which are done for the second derivatives in (3.25). Combining (3.23) and
(3.25), we obtain

J (y, u)− J
(

yk, uk
)

≤
ˆ

Zi

H −H
(

z, yk, u, pk
)

− ǫ (δu)2 dz −
ˆ

Zi

δpfdz −
ˆ T

0

(

δy′, pk
)

+B
(

δy, pk
)

dt

≤ |
ˆ

Zi

H −H
(

z, yk, u, pk
)

dz −
ˆ

Zi

δpfdz −
ˆ T

0

(

δy′, pk
)

+B
(

δy, pk
)

dt| −
ˆ

Zi

ǫ (δu)2 dz

≤
(

c2 +
9

2
c3 +

3

2
c4
)

‖δu‖2L2(Zi)
−
ˆ

Zi

ǫ (δu)2 dz = (θ − ǫ) ‖δu‖2L2(Zi)

where θ := c2 + 9
2c

3 + 3
2c

4.

For the investigation of the sequence
(
yk
)

k∈N0
and

(
uk
)

k∈N0
generated by the iterated Steps 2 to 4 of

Algorithm 3.1 (no stopping criterion), Lemma 12, which says that Algorithm 3.1 stops if an iterate uk is
optimal in the sense of (3.7), and Theorem 13, stating a minimizing property of the sequence

(
uk
)

k∈N0
,

hold in the corresponding form as well in the PDE case.
Next, also in the present case, we have the requirement that for any iterate uk, k ∈ N0 and for any ǫ

chosen by Algorithm 3.1 there exists an r ≥ ǫ such that

Kǫ

(

z, yk, uk+1, uk, pk
)

+ r
(

w − uk+1 (z)
)2
≤ Kǫ

(

z, yk, w, uk, pk
)

(3.26)

is fulfilled for all w ∈ KU and for all z ∈ Zi. We show in Lemma 28 that this condition is always satisfied
for P.1) to P.5) with some further assumptions.
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The next theorem has also an equivalent in Section 2.3, which is Theorem 14. Due to some differences
in the requirements in the PDE case compared to the ODE case we give the proof of the following theorem.

Theorem 27. Let the sequence (un)n∈N0
be generated as in Algorithm 3.1 (loop over Step 2 to Step 4)

and let (3.26) hold. Then for any subsequence
(
uk
)

k∈K , K ⊆ N0 with the property

lim
k→∞

‖uk − ū‖L2(Zi) = 0

it holds that ū ∈ Uad and
H (z, ȳ, ū, p̄) = min

w∈KU

H (z, ȳ, w, p̄)

for almost all z ∈ Zi where ȳ solves (3.2) with u ← ū and p̄ is the corresponding adjoint variable solving
(3.5) for y ← ȳ and u← ū.

Furthermore, for almost each z ∈ Zi and any µ > 0, there exists an index set K̃ ⊆ K and a k̄ ∈ K̃
such that

H
(

z, yk+1, uk+1, pk+1
)

≤ H
(

z, yk+1, w, pk+1
)

+ µ (3.27)

for all w ∈ KU and for all k ≥ k̄ with k ∈ K̃.

Proof. We construct a subsequence having all the properties that we need for the proof. By [6, Proposition
3.6, Remark 3.7], we have that there exists an index set K1 ⊆ K such that

lim
K1∋k→∞

uk (z) = ū (z) , lim
K1∋k→∞

yk (z) = ȳ (z) and lim
K1∋k→∞

pk (z) = p̄ (z)

for almost all z ∈ Zi due to limk→∞ ‖uk − ū‖L2(Zi) = 0, Assumption A.2) and since any subsequence of a
converging sequence also converges, see [3, II Theorem 1.15].

The iterates uk, k ∈ K1 are measurable, see the discussion below Algorithm 3.1. Thus ū is measurable,
see [5, X Theorem 1.14]. Since uk (z) ∈ KU for almost all z ∈ Zi we have that ū (z) ∈ KU for almost all
z ∈ Zi, see [3, II Theorem 2.7]. Since KU is bounded we have that ū ∈ Uad because ū is integrable.

Because Theorem 13 holds analogously for the PDE case from which we have

lim
n→∞

‖un+1 − un‖L2(Zi) = 0,

we have
lim

K1∋k→∞
‖uk+1 − uk‖L2(Zi) = 0

since uk+1 is the following element of uk in the sequence (un)n∈N0
. Consequently by [6, Proposition 3.6,

Remark 3.7], we have a subsequence K2 ⊆ K1 such that

lim
K2∋k→∞

uk+1 (z)− uk (z) = 0

for almost all z ∈ Zi where all the other properties above remain since any subsequence of a converging
sequence also converges, see [3, II Theorem 1.15]. From this we can also conclude that

lim
K2∋k→∞

uk+1 (z) = lim
K2∋k→∞

(

uk+1 (z)− uk (z)
)

+ lim
K2∋k→∞

uk (z) = ū (z) (3.28)

for almost all z ∈ Zi where we use the calculation rules for the limit [3, II Theorem 2.2]. Analogous
we have with Assumption A.2) another index set K3 ⊆ K2 such that limK3∋k→∞ yk+1 (z) − yk (z) = 0,
limK3∋k→∞ pk+1 (z)− pk (z) = 0 and thus

lim
K3∋k→∞

yk+1 (z) = ȳ (z) and lim
K3∋k→∞

pk+1 (z) = p̄ (z)



3.3. CONVERGENCE ANALYSIS OF THE SQH SCHEME 83

for almost all z ∈ Zi.
As the control uk, k ∈ K3 is an element of (un)n∈N0

, the control uk is determined by Algorithm 3.1
such that due to (3.26) the following holds

Kǫ

(

z, yk, uk+1, uk, pk
)

+ r
(

w − uk+1 (z)
)2
≤ Kǫ

(

z, yk, w, uk, pk
)

for all w ∈ KU , for all k ∈ N0 and all z ∈ Zi which is equivalent to

H
(

z, yk, uk+1, pk
)

+ ǫ
(

uk+1 (z)− uk (z)
)2

+ r
(

w − uk+1 (z)
)2
≤ H

(

z, yk, w, pk
)

+ ǫ
(

w − uk (z)
)2
.

(3.29)

Now, we consider (3.29) where it also holds due to our assumption r ≥ ǫ that

H
(

z, yk, uk+1, pk
)

+ ǫ
(

uk+1 (z)− uk (z)
)2

+ ǫ
(

w − uk+1 (z)
)2
≤ H

(

z, yk, w, pk
)

+ ǫ
(

w − uk (z)
)2

and thus by inserting

(

w − uk+1 (z)
)2

=
(

w − uk (z)
)2

+
(

uk (t)− uk+1 (z)
)2

+ 2
(

w − uk (z)
)T (

uk (z)− uk+1 (z)
)

we obtain

H
(

z, yk, uk+1, pk
)

+ 2ǫ
(

uk+1 (z)− uk (z)
)2

+ 2ǫ
(

w − uk (z)
)T (

uk (z)− uk+1 (z)
)

≤ H
(

z, yk, w, pk
)

(3.30)
for all w ∈ KU , for all k ∈ N0 and all z ∈ Zi. Then (3.30) is equivalent to

h
(

yk (z)
)

+ g
(

uk+1 (z)
)

+ pk (z) f
(

z, yk, uk+1
)

+ 2ǫ
(

uk+1 (z)− uk (z)
)2

+ 2ǫ
(

w − uk (z)
)T (

uk (z)− uk+1 (z)
)

≤ h
(

yk (z)
)

+ g (w) + pk (z) f
(

z, yk, w
) (3.31)

for all w ∈ KU , for all k ∈ N0 and all z ∈ Zi. Next, we have that ǫ is bounded from below by 0 and
from above by σ (η + θ) analogous to the proof of Theorem 14. The boundedness of ǫ guarantees that the
corresponding terms go to zero for k to infinity, see [3, Theorem 2.4, Theorem 6.1] since uk (z)− uk+1 (z)
converges pointwise for k ∈ K3 and

(
w − uk (z)

)
is also bounded as w, uk ∈ KU for all k ∈ N0. This

connection is exploited in the next step. Since g is lower semi-continuous, we apply the lim inf on both
sides of the last inequality (3.31) with k ∈ K3 and recall that whenever a lim exists the corresponding
lim inf equals lim, see [3, Theorem 5.7] and the calculation rules for a sum of lim inf [43, Theorem 3.127].
Further, we set uk+1 (z) =: ak+1 → ā := ū (z) for K3 ∋ k →∞ and we have

lim inf
K3∋k→∞

g
(

uk+1 (z)
)

= lim inf
K3∋k→∞

g
(

ak+1
)

≥ g (ā) = g (ū (z))

for almost all z ∈ Zi. We obtain for the left-hand side of (3.31) the following

lim inf
K3∋k→∞

(

h
(

yk (z)
)

+ g
(

uk+1 (z)
)

+ pk (z) f
(

z, yk, uk+1
)

+ 2ǫ
(

uk+1 (z)− uk (z)
)2

+2ǫ
(

w − uk (z)
)T (

uk (z)− uk+1 (z)
))

≥ h (ȳ (z)) + g (ū (z)) + p̄ (z) f (z, ȳ, ū) = H (z, ȳ, ū, p̄)

where we use the continuity of f according to Assumption A.6). For the right-hand side of (3.31), we have

lim inf
K3∋k→∞

(

h
(

yk (z)
)

+ g (w) + pk (z) f
(

z, yk, w
))

= lim
K3∋k→∞

(

h
(

yk (z)
)

+ g (w) + pk (z) f
(

z, yk, w
))

= h (ȳ (z)) + g (w) + p̄ (z) f (z, ȳ, w) = H (z, ȳ, w, p̄)
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where we also use the continuity for f , see Assumption A.6) and recall that differentiable functions are
continuous, see [78, 1 The Rules of Differentiation]. Consequently, we obtain the optimality condition

H (z, ȳ, ū, p̄) ≤ H (z, ȳ, w, p̄)

for all w ∈ KU and almost all z ∈ Zi.
In order to prove (3.27), we consider (3.29) inserting the assumption r ≥ ǫ and obtain

H
(

z, yk+1, uk+1, pk+1
)

≤ H
(

z, yk+1, w, pk+1
)

+
∣
∣
∣pk (z) f

(

z, yk, uk+1
)

− pk+1 (z) f
(

z, yk+1, uk+1
)∣
∣
∣

+
∣
∣
∣pk (z) f

(

z, yk, w
)

− pk+1 (z) f
(

z, yk+1, w
)∣
∣
∣

+ ǫ

∣
∣
∣
∣

((

w − uk (z)
)2
−
(

uk+1 (z)− uk (z)
)2
−
(

w − uk+1 (z)
)2
)∣
∣
∣
∣

(3.32)

by adding and subtracting corresponding terms. Now, by continuity, especially Assumption A.6) and
k ∈ K̃ := K3 it follows the result (3.27) where the last three terms in (3.32) are smaller than any given
µ > 0 if k is sufficiently large using the boundedness of ǫ and [3, Theorem 2.4, Theorem 6.1].

We remark that an analogous result corresponding to the corollary on page 42 also holds in this case
and states the existence of an iterate within the sequence of iterates of Algorithm 3.1 which fulfills the
PMP optimality condition for any given tolerance.

In the next lemma, we see that for a further assumption (3.26) is fulfilled. We remark that Example
17 and Example 18 also hold in the present PDE case with an analogous calculation which shows that
(3.26) is fulfilled for L2- and L1-cost functionals.

Lemma 28. We consider an augmented Hamiltonian given by

Kǫ (z, y, u, v, p) :=
α

2
u2 + g (u) + pf (z, y) + ǫ (u− v)2

where we only include the terms depending on u and ua ≤ u ≤ ub, ua < 0 < ub, with α > 0,

g (u) := β

{

|u| |u| > s

0 |u| ≤ s
,

s, β > 0. If for all iterations uk, k ∈ N0, generated by Algorithm 3.1, it either holds that |uk| ≤ s or
|uk| > θ > s with α

2 (s− θ)2 − βs ≥ 0, then (3.26) is fulfilled.

Proof. In Algorithm 3.1, we have Kǫ

(
z, yk, uk+1, uk, pk

)
with Kǫ

(
z, yk, uk+1, uk, pk

)
≤ Kǫ

(
z, yk, w, uk, pk

)

for all w ∈ KU . We show that (3.26) is fulfilled for all w ∈ KU . We assume w 6= uk+1 because in the case
w = uk+1, we have that

Kǫ

(

z, yk, uk+1, uk, pk
)

≤ Kǫ

(

z, yk, w, uk, pk
)

(3.33)

is fulfilled with equality. For uk+1, we have three cases, s < uk+1 ≤ ub, |uk+1| ≤ s, ub < uk+1 < s where
each is discussed in the following.

If s < uk+1 < ub, then we have, analogous to Example 17 or Example 18, that

pkf
(

yk
)

= 2ǫuk − 2ǫuk+1 − αuk+1 − β (3.34)

and

uk+1 =
2ǫuk − pkf

(
yk
)
− β

α+ 2ǫ
. (3.35)
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Then we have from (3.33) that

α

2

(

uk+1
)2

+ βuk+1 + pkf
(

yk
)

uk+1 + ǫ
(

uk+1 − uk
)2

+ r
(

w − uk+1
)2

≤ α

2
w2 + g (w) + pkf

(

yk
)

w + ǫ
(

w − uk
)2

which is equivalent to

r
(

w − uk+1
)2
≤
(α

2
+ ǫ
)(

w − uk+1
)2

+ g (w)− βw

inserting (3.34). Now if we choose r = ǫ, we have

0 ≤ α

2

(

w − uk+1
)2

+ g (w)− βw. (3.36)

If w > s, we have that g (w)−βw = βw−βw = 0. If w ≤ 0, we have that −βw ≥ 0 if additionally w ≥ −s
or we have that −βw−βw ≥ 0 if additionally w < −s. If 0 < w ≤ s, we have that

(
w − uk+1

)2 ≥ (s− θ)2.
Due to our requirement that α

2 (s− θ)− βs ≥ 0, we have that (3.36) is fulfilled. Similar to Example 17 or
Example 18 the same arguments hold for the case that uk+1 = ub.

If ua < uk+1 < −s, the discussion results also in (3.36) except that we have g (w) + βw instead of
g (w)− βw. If w ≥ 0, we have that βw+ βw ≥ 0 if w > s or we have that βw ≥ 0 if in addition w ≤ s. If
w < −s, we have that g (w)+βw = −βw+βw = 0. If −s ≤ w < 0, we have that g (w)+βw = βw ≥ −βs
and

(
w − uk+1

)2 ≥ (θ − s)2. Due to our requirement that α
2 (s− θ)2 − βs ≥ 0, we have that (3.36) is

fulfilled. Analogous to the case where uk+1 = ub in Example 17 or Example 18, the discussion holds for
the case uk+1 = ua.

If −s < uk+1 < s, then we obtain with the same calculations that

0 ≤ α

2

(

w − uk+1
)2

+ g (w) (3.37)

which is always true as g (w) ≥ 0 for all w ∈ KU . The cases uk+1 = s or uk+1 = −s result also in
(3.37) with analogous arguments as above or in Example 17 or Example 18. Concluding, for all values of
uk+1 ∈ KU , we have shown that (3.26) is fulfilled.

We conclude this section with a convergence result for the case that g is continuously differentiable. For
this purpose, we restrict ourselves to the case of KU ⊆ [ua, ub] ⊆ R, ua, ub ∈ R. However, we remark
that with similar arguments the same holds for any bounded set KU ⊆ Rm, m ∈ N. Furthermore the
discussion also holds in the framework of ODEs described in Chapter 2. We consider an optimal control
problem given by (3.3) with the Hamiltonian function given by (3.6) and the augmented Hamiltonian
function given by (3.22) where g is continuously differentiable with respect to the control argument u. We
set f (·, y, u) = u in order to focus on the main arguments. We remark that the following proof can be
done analogously if (y, u) 7→ ∂

∂uf (z, y, u) is continuous for any fixed z ∈ Z.

With our simplifications the reduced gradient of the corresponding optimal control problem is given by

∇J (u) =
∂

∂u
g (u) + p (3.38)

with J (ū) := J (y (ū) , ū) where y is the solution to (3.2) and p is the solution to (3.5). We investigate the
sequence (un)n∈N0

that is generated in a loop over Step 2 to Step 4 in Algorithm 3.1, referred to as the
SQH method. We show that the variational inequality

∇J (ū) (z) (w (z)− ū (z)) ≥ 0 (3.39)
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is fulfilled for all w ∈ Uad and almost all z ∈ Zi where ū is the limit of a subsequence
(
uk
)

k∈K , K ⊆ N0

with the property
lim
k→∞

‖uk − ū‖L2(Zi) = 0.

From (3.39) by integration, see [5, X Corollary 2.16], we have that ū satisfies the optimality condition
ˆ

Zi

∇J (ū) (z) (w (z)− ū (z)) dz ≥ 0

for all w ∈ Uad, see [95, Lemma 2.21].
In order to prove this fact, we use the Euclidean projection PKU

: R→ KU , see [12, Proposition 2.1.3
(Projection Theorem)]. Now, with an analogous calculation as in [17, Theorem 3.2], we prove the following
theorem where some technical parts are similar to the proof of Theorem 27.

Theorem 29. Assume that g is continuously differentiable with respect to u and there is a lower bound
ǫ0 > 0 for ǫ. Then for each accumulation point ū of the sequence (un)n∈N0

generated in the SQH method
(loop over Step 2 to Step 4) with the property

lim
k̃→∞

‖uk̃ − ū‖L2(Zi) = 0,

k̃ ∈ K̃ ⊆ N, there is a subsequence
(
uk
)

k∈K , K ⊆ K̃, such that

lim
k→∞

‖uk − PKU

(

uk − 1

2ǫ
∇J

(

uk
))

‖L2(Zi) = 0

where ū fulfills the following optimality condition

∇J (ū) (z) (w (z)− ū (z)) ≥ 0

for all w ∈ Uad and almost all z ∈ Zi.

Proof. We remark that ǫ > 0 for each iterate uk̃, k̃ ∈ K̃. As uk̃+1 minimizes w 7→ Kǫ

(

z, yk̃, w, uk̃, pk̃
)

for

all z ∈ Z with uk̃+1 ∈ KU , we have that

∂

∂uk̃+1
Kǫ

(

z, yk̃, uk̃+1, uk̃, pk̃
)(

w − uk̃+1
)

=

(

2ǫ
(

uk̃+1 − uk̃
)

+
∂

∂uk̃+1
H
(

z, yk̃, uk̃+1, pk
))(

w − uk̃+1
)

≥ 0

for all w ∈ KU and for all z ∈ Z, see [95, Lemma 2.21]. Equivalently, we can write

uk̃+1 = PKU

(

uk̃ − 1

2ǫ

∂

∂uk̃+1
H
(

z, yk̃, uk̃+1, pk̃
))

(3.40)

see [12, Proposition 2.1.3 (Projection Theorem)]. Additionally, we have

∇J
(

uk̃
)

=
∂

∂uk̃
H
(

·, yk̃, uk̃, pk̃
)

compare (3.6) with (3.38). Starting from (3.40) and adding and subtracting equal terms, we have

uk̃ − PKU

(

uk̃ − 1

2ǫ
∇J

(

uk̃
))

= uk̃ − uk̃+1 + PKU

(

uk̃ − 1

2ǫ

∂

∂uk̃+1
H
(

·, yk̃, uk̃+1, pk̃
))

− PKU

(

uk̃ − 1

2ǫ

∂

∂uk̃
H
(

·, yk̃, uk̃, pk̃
))

.
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Thus, using the triangle inequality, the projection theorem [12, Proposition 2.1.3 (Projection Theorem)]
and ǫ > ǫ0, we obtain

‖uk̃ − PKU

(

uk̃ − 1

2ǫ
∇J

(

uk̃
))

‖L2(Zi)

≤ ‖uk̃ − uk̃+1‖L2(Zi)

+
1

2ǫ0
‖ ∂

∂uk̃+1
H
(

·, yk̃, uk̃+1, pk̃
)

− ∂

∂uk̃
H
(

·, yk̃, uk̃, pk̃
)

‖L2(Zi)

≤ ‖uk̃ − uk̃+1‖L2(Zi) +
1

2ǫ0

(

α‖uk̃+1 − uk̃‖L2(Zi) + γ‖ ∂

∂uk̃+1
g
(

uk̃+1
)

− ∂

∂uk̃
g
(

uk̃
)

‖L2(Zi)

)

.

(3.41)

Now, we have the following estimates

‖yk̃ − ȳ‖L2(Zi) ≤ c‖uk̃ − ū‖L2(Zi) and ‖pk̃ − p̄‖L2(Zi) ≤ c‖uk̃ − ū‖L2(Zi), c > 0, (3.42)

see Assumption A.2), where ȳ is the solution to (3.2) for ū instead of u and p̄ is the solution to (3.5)
for ȳ instead of y and for ū instead of u. By our assumption, there exists a subsequence within the
sequence (un)n∈N0

that strongly converges to ū in L2 (Zi). Using [6, Proposition 3.6, Remark 3.7], (3.42)
and since any subsequence of a converging sequence also converges, see [3, II Theorem 1.15], we obtain a
subsequence,

(
uk
)

k∈K , K1 ⊆ K̃, with the following pointwise convergence

lim
k→∞

uk (z) = ū (z) , lim
k→∞

yk (z) = ȳ (z) and lim
k→∞

pk (z) = p̄ (z)

for almost all z ∈ Z and k ∈ K1. Consequently, we have

lim
K1∋k→∞

∇J
(

uk
)

= lim
K1∋k→∞

(

αuk + γ
∂

∂u
g (u) |u=uk + pk

)

= αū+ γ
∂

∂u
g (u) |u=ū + p̄ = ∇J (ū) (3.43)

for almost every z ∈ Z.

For the next step, we need some preparations. Because Theorem 13 holds analogously for the PDE
case from which we have limn→∞ ‖un+1 − un‖L2(Zi) = 0, we have

lim
K1∋k→∞

‖uk+1 − uk‖L2(Zi) = 0

since uk+1 is the following element of uk in the sequence (un)n∈N0
. Consequently by [6, Proposition 3.6,

Remark 3.7], we have an index set K2 ⊆ K1 such that limK2∋k→∞ uk+1 (z) − uk (z) = 0 for almost all
z ∈ Zi where all the other properties above remain since any subsequence of a converging sequence also
converges, see [3, II Theorem 1.15]. From this we can also conclude that

lim
K2∋k→∞

uk+1 (z) = lim
K2∋k→∞

(

uk+1 (z)− uk (z)
)

+ lim
K2∋k→∞

uk (z) = ū (z) (3.44)

for almost all z ∈ Zi where we use the calculation rules for the limit [3, II Theorem 2.2].

If we take the limit on both sides of (3.41), considering the pointwise converging subsequence
(
uk
)

k∈K2
,

we obtain

lim
K2∋k→∞

‖uk − PKU

(

uk − 1

2ǫ
∇J

(

uk
))

‖L2(Zi) = 0 (3.45)

where we use that limK2∋k→∞ ‖uk+1 − uk‖L2(Zi) = 0 with the same reasoning as in the beginning of the
paragraph above for the first and second term and for the last term the dominated convergence theorem
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[6, Proposition 2.17]. The dominated convergence theorem can be applied to the measurable functions
g ◦ un , n ∈ N0, see [6, 2.2 Measurable and Borel functions] because the pointwise limit

lim
K2∋k→∞

∂

∂u
g (u) |u=uk(z) = lim

K2∋k→∞
∂

∂u
g (u) |u=uk+1(z) =

∂

∂u
g (u) |u=ū(z)

holds due to the continuity of ∂
∂ug (u) and the pointwise convergence of uk, k ∈ K2 and because the

integrability of g ◦ uk, k ∈ K2 holds since [3, III.3 Theorem 3.6] with the bounded image of uk ensures an
upper bound for g ◦ uk that holds for all k ∈ K2.

Next, we prove that ∇J (ū) (z) (w (z)− ū (z)) ≥ 0 for all w ∈ Uad for almost all z ∈ Z. For this
purpose, we start with

vk := PKU

(

uk − 1

2ǫ
∇J

(

uk
))

for almost every z ∈ Z. This is equivalent to
(

vk − uk + 1

2ǫ
∇J

(

uk
))(

w − vk
)

≥ 0

for all w ∈ Uad for almost all z ∈ Z, see [12, Proposition 2.1.3 (Projection Theorem)]. Then we have

(

vk − uk
)(

w − vk
)

+
1

2ǫ
∇J

(

uk
)(

w − vk
)

≥ 0.

Adding and subtracting uk, we obtain

2ǫ
(

vk − uk
)(

w − vk
)

+∇J
(

uk
)(

w − uk
)

+∇J
(

uk
)(

uk − vk
)

≥ 0. (3.46)

From (3.45) there exists a subsequence K ⊆ K2 with

lim
K∋k→∞

uk − vk = 0,

see [6, Proposition 3.6, Remark 3.7]. Due to |w − vk| ≤ 2max (|ua|, |ub|) and the upper bound σ (η + θ)
for ǫ because of (2.30) and Step 4 of the SQH method and the fact that converging sequences are bounded
[3, II Theorem 1.10] combined with (3.45) and (3.43), we obtain by taking the limit in (3.46) for k ∈ K
the following

∇J (ū) (w − ū) ≥ 0

for all w ∈ Uad for almost all z ∈ Z, see [3, II Theorem 2.4] and [3, II Theorem 2.7].

3.4 Numerical experiments

In this section, we present results of numerical experiments with the SQH method applied to the different
control problems P.1) to P.7). The purpose of these experiments is to validate the theoretical results
and the computational performance of the SQH scheme for PDE constraint optimal control problems. In
particular, we demonstrate that by decreasing the tolerance in the SQH stopping criterion, the fulfillment
of the PMP optimality condition by the returned solution improves as expected. Furthermore, we plot the
optimal solutions to the given problems and show the convergence history of the SQH scheme in terms of
reduction of the value of the cost functional.

We remark that the analysis of the SQH method in Section 3.3 is performed at a functional level
and independently of the discretization used. However, for the numerical realization of our optimization
scheme, we consider the following finite differences setting [60]. We take a space-time cylinder Q =
Ω× (0, T ) in the parabolic case with Ω = (a, b)n and define the following space-time grid

Qh,△t := {(xi1...in , tm) , | xi1...in ∈ Ωh, tm = m△t, m ∈ {1, ..., Nt}}
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where

Ωh = {(a+ i1h, . . . , a+ inh) ∈ Rn, ij ∈ {1, ..., N − 1} , j ∈ {1, ..., n}} .

In the elliptic case we use the domain Ωh. The space and time mesh-sizes are given by h := b−a
N , △t := T

Nt
.

We assume that the grid points (xi1...in , tm) and tm = m△t are ordered lexicographically.

In order to compute the state and adjoint variables, we approximate (3.2) and (3.5) using the implicit
Euler scheme and finite differences in the parabolic case. For the elliptic case, we use a 5-point finite-
difference discretization of the Laplacian. For the computation of the integrals appearing in J , we use the
rectangle rule, see for example [91].

In the case of elliptic problems, we choose the domain Ω = (0, 1)× (0, 1) and use a mesh size △x = 1
50

if not otherwise stated. In the parabolic cases, we have Q = (0, 1) × (0, 1) with a step size △x = 1
50 and

△t = 1
100 . Alterations from this are noted at the corresponding site.

To solve linear problems (or subproblems), we use the MATLAB backslash operator. Non-linear
problems as P.5) and P.7) are solved by a Gauss-Seidel-Picard iteration [18] with a tolerance on the
discrete L2-norm of the residuum of 10−8. Specifically, for P.5) the state variable is updated pointwise
within a loop over the interior points of the domain with

y (i, j) =
1

4

(
y (i+ 1, j) + y (i− 1, j) + y (i, j + 1) + y (i, j − 1) + h2

(
u (i− 1, j − 1)− y3 (i, j)

))
.

For P.7) we use

y (i, j) =
y (i+ 1, j) + y (i− 1, j) + y (i, j + 1) + y (i, j − 1)

4
+ u (i− 1, j − 1) ·

{ △x2

4+△x2 if y (i, j) ≥ 0
△x2

4 else
.

The minimization of the augmented Hamiltonian in Step 2 of Algorithm 3.1 can be performed by a
secant method or by an analytical formula that solves the one-dimensional (since u is scalar valued in our
cases) minimization problem.

In the attempt to provide an overall view and comparison of the SQH performance with all test cases,
we present results concerning PMP optimality of the SQH solution in Table 3.1. In this table, Nup denotes
the total number of updates that are made by the SQH method to the initial guess of the control on the
given grid starting with the same initial guess of the control and “iter” is the number of total sweeps, which
means Step 2 to Step 5 in Algorithm 3.1.

To measure PMP optimality, we define the function

△H (z) := H (z, y, u, p)− min
w∈KU

H (z, y, w, p)

where y, u and p are the return values from the SQH method upon convergence. As a measure of optimality,
we report the number N l

% that is the percentage of the grid points at which the inequality

0 ≤ △H ≤ 10−l,

l ∈ N, is fulfilled. This is to verify the PMP optimality (3.7) up to a tolerance of the solution returned by
the SQH method, at least on a subset of grid points. Corresponding to this solution, in Table 3.1, we also
give the value maxz∈Zi

△H (z) for illustration.

Table 3.1 provides an overview for the optimality results of the SQH method for the optimal control
problems P.1) to P.7). In most cases, PMP optimality of over 90% is achieved with very stringent tolerance
(l = 8, 12). We remark that in the case P.6), we solve an augmented problem, see Subsection 3.4.6 for
details.

The results of Table 3.1 correspond to the following choice of parameters: σ = 50, ζ = 3
20 , η = 10−9,

κ = 10−8, u0 = 0 and the initial guess ǫ = 1
150 .
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Nup iter maxz∈Zi
△H (z)

N2
%

%

N4
%

%

N6
%

%

N8
%

%

N12
%

%

P.1) 40 58 2.74 · 10−3 100 99.8776 99.8776 99.8776 99.8776

P.2) 26 40 3.42 · 10−3 100 99.3336 99.2503 99.1670 99.1670

P.3) 436 645 2.88 · 10−3 100 90.9204 90.8372 90.8372 90.8372

P.4) 173 255 3.11 · 10−5 100 100 97.2245 96.8776 96.8776

P.5) 235 348 7.75 · 10−3 100 97.0012 91.5452 90.9621 90.9621

P.6) 864 1281 2.05 · 10−2 93.7526 87.4636 83.7151 83.3819 83.2153

P.7) 283 419 3.00 · 10−1 76.2371 75.3393 75.3393 75.3393 75.3393

Table 3.1: Numerical investigation of optimality of the SQH solution to the problems P.1) to P.7) with
κ = 10−8.

3.4.1 Application to a linear parabolic case

In this subsection, we discuss a parabolic optimal control problem that is governed by the heat equation.
The weak formulation of the heat equation is given as follows. For each t ∈ (0, T ), T > 0, the resulting
initial-boundary value problem is given by: Find y ∈ L2

(
0, T ;H1

0 (Ω)
)

and y′ ∈ L2
(
0, T ;H−1 (Ω)

)
, that

means, y ∈ W (0, T ) :=
{
y ∈ L2

(
0, T ;H1

0 (Ω)
)
| y′ ∈ L2

(
0, T ;H−1 (Ω)

)}
, see [95, Chapter 3], such that

the following is satisfied

(
y′ (·, t) , v

)
+D (∇y (·, t) ,∇v) = (u (·, t) , v) in Q

y (·, 0) = y0 on Ω× {t = 0} (3.47)

y = 0 on ∂Ω

for all v ∈ H1
0 (Ω) where Ω has a smooth boundary. In this setting, y : Q→ R denotes the state variable

and u : Q → R denotes the control. We denote with (·, ·) the scalar product in L2 (Ω), D > 0 is the
diffusion coefficient, y′ := ∂

∂ty (x, t) and ∇ denotes the L2 (Ω) gradient. Next, we discuss the following
parabolic optimal control problem

min
y,u

J (y, u)

s.t.
(
y′, v

)
+D (∇y,∇v) = (u, v) in Q

y (·, 0) = y0 on Ω× {t = 0} (3.48)

y = 0 on ∂Ω

u ∈ Uad

where the cost functional J is given by

J (y, u) := Jc (y, u) + γ

ˆ

Q
g (u (x, t)) dxdt. (3.49)

In this functional, Jc represents a smooth functional objective as it appears in many control problems
[19, 95]. We have

Jc (y, u) :=
1

2
||y − yd||2L2(Q) +

α

2
||u||2L2(Q), α ≥ 0. (3.50)

In this case, the functional Jc models the task of driving the state y to track a desired state trajectory
yd ∈ Lq (Q), q > n

2 + 1 if n ≥ 2 and q ≥ 2 if n = 1, while keeping small the L2(Q)-cost of the control.
In addition to Jc, we have a possibly discontinuous cost functional given by

G (u) := γ

ˆ

Q
g (u (x, t)) dxdt, γ ≥ 0 (3.51)
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where g : R→ R is a non-negative and lower semi-continuous function.
In particular, we consider the case where

g (u) =

{

|u| if |u| > s

0 otherwise
, s > 0. (3.52)

With this construction, we obtain a cost of the control that is zero if its value is below a given threshold
and it measures an L1 cost otherwise.

The admissible set of controls is defined as follows

Uad := {u ∈ Lq (Q) | u (x, t) ∈ KU} (3.53)

where KU is a compact subset of R.
To show that the control cost G is discontinuous as a map from Uad to R, consider constant controls

and choose ū ≡ s and uǫ = ū+ ǫ with ǫ > 0. We have that ‖uǫ − ū‖Lp(Q) → 0 for ǫ→ 0 for every p ≥ 1.
On the other hand, we have a discontinuity as the following demonstrates

|
ˆ

Q
(g (uǫ)− g (ū))dxdt| = |

ˆ

Q
(s+ ǫ)dxdt| =

ˆ

Q
(s+ ǫ)dxdt > sQ > 0

for any fixed s > 0.
In the case where G is a convex and continuous cost functional, existence of an optimal control is

guaranteed [95]. However, in the case of discontinuous cost functionals the issue of existence of an optimal
control is more delicate. For this reason, as mentioned in Section 3.1, we assume the existence of a solution
to (3.48) in Uad and focus on the numerical treatment of the problem. Notice that any solution to (3.48)
can be characterized with the PMP as discussed in Section 3.2.

We recall that the corresponding adjoint problem according to (3.5) is given by

(
−p′ (·, t) , v

)
+D (∇p (·, t) ,∇v) = (y (·, t)− yd (·, t) , v) in Q

p (·, T ) = 0 on Ω× {T = 0}
p = 0 on ∂Ω.

(3.54)

This problem has the same structure as (3.47) after a transformation of the time variable τ := T − t and
noticing that y − yd ∈ Lq (Q), see [1, Theorem 2.14]. Hence, there exists a unique p ∈ L2

(
0, T ;H1

0 (Ω)
)

and p′ ∈ L2
(
0, T ;H−1 (Ω)

)
solving (3.54) for all v ∈ H1

0 (Ω).
Next, we define the Hamiltonian corresponding to (3.48) - (3.50) according to (3.6) as follows

H (x, t, y, u, p) =
1

2
(y − yd)2 +

α

2
u2 + γg (u) + pu (3.55)

where H : Rn × R+
0 × R×KU × R→ R.

Next, we show that our requirements A.1) to A.6) are fulfilled. We have that h (y) = 1
2 (y − yd)

2 and
f (y, u) = u fulfill A.1) and A.6). For A.2), we consider the difference between (3.47) with u ← u1 and
y ← y1 and the same equation (3.47) but with u ← u2 and y ← y2 with δy = y1 − y2 and δu = u1 − u2.
We assume that u1 6= u2 and thus y1 6= y2 due to the unique solvability of (3.47). We obtain

ˆ T

0

ˆ

Ω
δy′ (x, t) v (x) +D∇δy (x, t)∇v (x) dxdt =

ˆ T

0

ˆ

Ω
δu (x, t) v (x) dxdt

from which we have

ˆ T

0

1

2

d

dt
‖δy (·, t) ‖2L2(Ω) +D‖∇δy (·, t) ‖2L2(Ω)dt ≤

ˆ T

0
||δu (·, t) ‖2L2(Ω)‖δy (·, t) ‖2L2(Ω)dt
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according to [45, page 287, Theorem 3] and the Cauchy-Schwarz inequality, see [2, Lemma 2.2]. Next, we
have

1

2

(

‖δy (·, T ) ‖2L2(Ω) − ‖δy (·, 0) ‖2L2(Ω)

)

+D‖∇δy‖2L2(Q) ≤ ĉ
ˆ T

0
||δu (·, t) ‖2L2(Ω)‖∇δy (·, t) ‖2L2(Ω)dt (3.56)

for some ĉ > 0 with the Cauchy-Schwarz inequality, see [2, Lemma 2.2] for the right hand-side

ˆ T

0
||δu (·, t) ‖2L2(Ω)‖∇δy (·, t) ‖2L2(Ω)dt.

Thus, as ‖δy (·, 0) ‖2L2(Ω) = 0, we obtain from (3.56) the following

‖∇δy‖L2(Q) ≤ c̃ (D) ‖δu‖L2(Q)

for some c̃ (D) > 0 since ‖∇δy‖L2(Q) 6= 0. Furthermore, by the Poincaré inequality [2, 6.7], for c̃ > 0 it
holds that

‖δy‖L2(Q) =

√
ˆ T

0
‖δy (·, t) ‖2

L2(Ω)
dt ≤ c̃

√
ˆ T

0
‖∇δy (·, t) ‖2

L2(Ω)
dt = c̃‖∇δy‖L2(Q) ≤ c (D) ‖δu‖L2(Q).

The same calculation holds for the adjoint variable. For this purpose, we replace δy by δp = p1−p2 where
p1 solves (3.54) for y ← y1 and correspondingly p2. Furthermore we replace δu by δy and use the result
‖δy‖L2(Q) ≤ c (D) ‖δu‖L2(Q) in order to obtain

‖δp‖L2(Q) ≤ c (D)2 ‖δu‖L2(Q).

Assumption A.3) is fulfilled immediately and Assumption A.4) is fulfilled due to the boundedness

discussion of the adjoint variable in Section 3.2. Since ∂2

∂y2
h (y) = 1, Assumption A.5) is also fulfilled.

Now, we have checked that our considered case fits to our theoretical framework of Section 3.1. Next we
come to the numerical investigation.

In our numerical experiments, we consider Ω = (a, b) with a = 0, b = 1 and T = 1. The initial guess
for the control and the initial value y0 for the state is the zero function. Furthermore, the parameter in
Algorithm 3.1 are chosen as follows κ = 10−6, ζ = 3

20 , σ = 50 and η = 10−7. The initial value of ǫ equals
3
5 . The numerical parameters are set as follows, N = 100, Nt = 200, D = 1

5 and if not otherwise stated
α = 10−5, γ = 10−1. Furthermore, we have, KU = [0, 10] and

yd (x, t) =

{

5 if x̄ (t)− c ≤ x ≤ x̄ (t) + c

0 else,
(3.57)

where x̄ (t) := x0 +
2
5 (b− a) sin

(
2π t

T

)
, x0 =

b+a
2 and c = 7

100 (b− a). We choose s = 1 in (3.52).
The augmented Hamiltonian

Kǫ (x, t, y, u, v, p) :=
1

2
(y − yd)2 +

α

2
u2 + γg (u) + pu+ ǫ (u− v)2 (3.58)

is minimized as follows. Its minimum can be exactly given by a case study.
If 0 ≤ u ≤ s, we have

Kǫ (x, t, y, u, v, p) =
1

2
(y − yd)2 +

α

2
u2 + pu+ ǫ (u− v)2 . (3.59)

If the minimum u of (3.59) is in 0 < u < s, we have that 0 = ∂
∂uKǫ (x, t, y, u, v, p). If the minimum is

outside of 0 < u < s, then the minimum is at 0 or s. Consequently in the case 0 ≤ u ≤ s the minimum is
analytically given by

u1 := min

(

max

(

0,
2ǫv − p
2ǫ+ α

)

, s

)

.
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Analogous in the case if s < u ≤ 10. We have

Kǫ (x, t, y, u, v, p) :=
1

2
(y − yd)2 +

α

2
u2 + γu+ pu+ ǫ (u− v)2

with its minimum at

u2 := min

(

max

(

s,
2ǫv − (p+ γ)

2ǫ+ α

)

, 10

)

.

Then the minimum of Kǫ defined in (3.58) over KU is given by

u = argmin
w∈KU

Kǫ (x, t, y, w, v, p) = argmin
w∈{u1,u2}

Kǫ (x, t, y, w, v, p)

since a minimum over KU is in 0 ≤ u ≤ s or s < u ≤ 10.

We perform the first set of experiments using Algorithm 3.1 to solve our optimal control problem. The
SQH algorithm converges in 29 iterations and we obtain the state and control functions depicted in Figure
3.1. The plot of the control function shows clearly the action of the discontinuous cost of the control given
by g in (3.52) and the presence of the control’s upper bound at 10.
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Figure 3.1: Optimal solution for the first experimental setting.
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With the second experiment, we present results to investigate how well the solution of the SQH method
satisfies the optimality condition given by the PMP. For this purpose, we have

∆H = H (x, t, ȳ, ū, p̄)− min
w∈KU

H (x, t, ȳ, w, p̄)

and give in Table 3.2 the ratio of numbers of grid points (x, t) ∈ Qh,△t where the optimality condition
(3.7) is satisfied to machine precision. These entries give a measure of optimality of the SQH solution
(ȳ, ū, p̄) and demonstrate an improvement in accuracy of the PMP solution by refinement of κ.

For this purpose, in Table 3.2, we give the ratio of grid points where the following holds

0 ≤ H (x, t, ȳ, ū, p̄)− min
w∈KU

H (x, t, ȳ, w, p̄) ≤ eps

with eps the machine precision given by 2.2 · 10−16 in our case. We see that, independently of the mesh
size, at almost all grid points the PMP condition is fulfilled to machine precision, already for κ = 10−6.
In Table 3.3 we report the values of max(x,t)∈Qh,△t

∆H. The results reported in Table 3.3 demonstrate
how max(x,t)∈Qh,△t

∆H decreases as we refine the mesh size and the value of κ.

Nt ×N
κ

10−1 10−3 10−6 10−11 10−16

100× 200 0 0.9973 0.9988 0.9995 0.9998

200× 400 6.28 · 10−5 0.9966 0.9998 0.9998 0.9998

400× 800 6.70 · 10−4 0.9934 0.9981 0.9998 0.9998

800× 1600 1.59 · 10−3 0.9868 0.9998 0.9998 0.9998

Table 3.2: Ratio of grid points at which the Pontryagin maximum principle is fulfilled to machine precision
to the total number of grid points.

Nt ×N
κ

10−1 10−3 10−6 10−11 10−16

100× 200 3.43 9.00 · 10−3 5.68 · 10−3 1.27 · 10−3 7.29 · 10−4

200× 400 3.42 5.34 · 10−3 5.17 · 10−4 5.17 · 10−4 5.17 · 10−4

400× 800 3.41 1.06 · 10−2 6.89 · 10−3 6.70 · 10−4 6.70 · 10−4

800× 1600 3.41 1.13 · 10−2 3.93 · 10−7 1.82 · 10−10 7.08 · 10−11

Table 3.3: Values of max(x,t)∈Qh,△t
∆H of the SQH solution with different choices of the value of κ.

In the third experiment, we investigate the computational performance of Algorithm 3.1 with respect
to different choices of the optimization parameters. In Table 3.4, we report the total number of iterations
and corresponding CPU times for convergence with different values of α and γ. Notice that a similar
computational effort is required in all cases. Further, we see that the value of the cost functional decreases
if α and γ decrease and this is also true for ‖y − yd‖L2(Q).
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α γ k CPU time/s J ||y − yd||L2(Q)

10−1 10−5 14 0.5 1.64 1.766037

10−3 10−5 43 1.5 1.33 1.621753

10−5 10−5 57 2.0 1.31 1.621513

0 10−5 63 2.2 1.31 1.621513

0 0 62 2.1 1.31 1.621513

10−5 0 57 1.9 1.31 1.621513

10−5 10−3 51 2.0 1.32 1.621521

10−5 10−2 39 1.3 1.34 1.622160

10−5 10−1 29 1.0 1.52 1.661420

Table 3.4: Computational performance of Algorithm 3.1 with respect to different choices of values of the
optimization parameters.

The fourth numerical experiment deals with the complexity of Algorithm 3.1. Let Ngp ∈ N denote the
total number of space-time grid points. We solve the same optimization problem as in Figure 3.1 using
different meshes. The resulting CPU times are reported in Figure 3.2 and detailed in Table 3.5. In Figure
3.2, on the abscissa, we have the number of total grid points Ngp and on the ordinate the CPU time (sec)
required for convergence. Notice that the data points are fitted by a linear model. We remark that this
is reasonable since the complexity of Step 2 of Algorithm 3.1 scales linearly and the state and adjoint
problems can also be solved with linear complexity, see [19].

N
100 × Nt

100 1× 2 2× 2 2× 4 4× 4 4× 8 8× 8 8× 16 16× 16

CPU time/s 0.9 2.6 5.3 12.0 18.3 40.6 96.5 186.9

Table 3.5: Data points for Figure 3.2.

500 000 1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

50

100

150

Figure 3.2: Computational complexity of Algorithm 3.1. The data points (dots) from Table 3.5 are fitted
by a linear model. On the abscissa we have the number of gird points and on the ordinate the corresponding
CPU time is plotted in seconds.

Now in the fifth experiment, we use the same setting like for the investigation of the computational
complexity of our algorithm, but choosing γ = 0. With this choice the discontinuity in the cost of the
control is removed and we can compare our SQH scheme with the projected Hager-Zhang-NCG (pNCG)
method with Wolfe-Powell step-size strategy [19]. Additionally, we perform the comparison with a pro-
jected gradient method with Armijo step-size strategy (pGM). The minimum of the augmented Hamilto-
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nian Kǫ (x, t, y, u, v, p) defined in (3.58) with γ = 0 is given by u = 2ǫv−p
α+2ǫ . Furthermore, in the attempt to

have the same convergence criterion for all methods, we stop the different iterative procedures if the square
of the discrete L2-norm of the difference between two control functions u of two successive iterations is
less than 10−6.

The purpose of this comparison is to address the question of how the SQH scheme performs in the case
of continuous cost functionals with respect to a standard optimization strategy. In Table 3.6, we see that
the pNCG method in most cases outperforms our SQH method. On the other hand, one can see in Table
3.7 that the SQH method performs better than the pGM scheme. We remark that for the SQH method
no step size strategy, like Armijo or Wolfe-Powell, is necessary which makes its implementation easier.

For the case of α = 10−1, we take σ = 2.1 and ζ = 0.9 in Algorithm 3.1 instead of σ = 50 and ζ = 3
20 .

We remark that the convergence performance of Algorithm 3.1 depends on the choice of σ and ζ whose
convenient choice of values may result from numerical experience, as in the setting of different linesearch
methods.

α Ngp = N ×Nt
SQH pNCG

CPU time/s number iteration CPU time/s number iteration

10−1 200× 400 0.7 23 1.6 15

10−1 400× 800 2.8 23 3.6 15

10−1 800× 1600 11.6 23 12.2 15

10−3 200× 400 1.0 33 1.1 8

10−3 400× 800 3.9 33 2.6 8

10−3 800× 1600 18.6 40 8.6 8

10−5 200× 400 1.4 44 1.1 7

10−5 400× 800 6.8 58 2.5 7

10−5 800× 1600 24.5 54 30.1 49

10−7 200× 400 1.7 61 1.0 7

10−7 400× 800 7.2 60 2.4 7

10−7 800× 1600 19.2 42 7.9 7

Table 3.6: Comparison of the SQH scheme with the pNCG method.

α Ngp = N ×Nt
SQH pGM

CPU time/s number iteration CPU time/s number iteration

10−1 200× 400 0.7 23 1.8 40

10−1 400× 800 2.8 23 3.6 40

10−1 800× 1600 11.6 23 12.7 40

10−2 200× 400 0.8 23 8.5 272

10−2 400× 800 2.9 24 23.9 272

10−2 800× 1600 11.9 24 86.6 272

10−3 200× 400 1.0 33 20.3 679

10−3 400× 800 3.9 33 58.6 675

10−3 800× 1600 18.6 40 214.6 675

Table 3.7: Comparison of the SQH scheme with the pGM method.

For further illustration of our optimization framework, we perform the sixth experiment with

g (z) := g1 (z) = |z|
1
2 ,
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which is a lower semi-continuous non-convex function. Moreover, we choose a discrete

KU = {−30,−15,−5, 0, 5, 15, 30}

that models the fact that the control function u may take only a finite set of values. This is intended to
demonstrate the easy applicability of the SQH scheme to this kind of optimal control problems, known as
mixed-integer problems [52]. In this experiment, the desired state is given by

yd (x, t) = 5 sin

(

2π
t

T

)

,

see Figure 3.3.

Figure 3.3: Desired function yd = 5 sin
(
2π t

T

)
.

Further, we take α = 5 · 10−3, γ = 1 · 10−3, N = 200 and Nt = 200. The parameters of Algorithm 3.1
are set as follows. We have σ = 1.1, ζ = 0.5, η = 10−9, κ = 10−6, u0 = 0 and the initial guess for ǫ is
given by 3

5 · 10−7. The results are depicted in Figure 3.4 where we clearly see how the admissible control
values are taken by the control function.

An analogous numerical test of optimality, as the one related to Table 3.2, provides the following result.
We have that the inequality

0 ≤ H (x, t, ȳ, ū, p̄)− min
w∈KU

H (x, t, ȳ, w, p̄) ≤ 10−l

is fulfilled at 100% of the grid points for l = 2 and at 99.29% of the grid points for l = 12 with the returned
values (ȳ, ū, p̄) of the SQH method where the minimum of H over KU is determined with a direct search.

We remark that, for α = 0, the cost functional consists only of the control cost | · | 12 , which promotes
sparse bang-bang solutions. For this reason, the L2 (Q)-cost is included to ensure that the control also
takes intermediate values in KU .
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(a) The state y.
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(b) The control function u as contour plot.

(c) The control function u. (d) The control function u viewed from above.

Figure 3.4: Results with Algorithm 3.1 for the cost functional (3.49) with g (·) := | · | 12 and KU =
{−30,−15,−5, 0, 5, 15, 30}.

To conclude our series of experiments, we choose the following lower semi-continuous step function

g (z) := g2 (z) =







7
2 for |z| > 6

1 for 3 < |z| ≤ 6

0 otherwise

and KU = [−10, 10]. In this case, while the control function may take a continuous set of values, the
cost of the control is piecewise constant. The augmented Hamiltonian is minimized by a secant method.
The problem’s parameters are set N = 200 and Nt = 200, α = 0, β = 10−1, σ = 50, ζ = 3

20 , η = 10−9,
κ = 10−6, u0 = 0 and the initial guess ǫ = 3

5 . The results for this case are depicted in Figure 3.5 where
one can see the stepwise structure of the control.

Besides the reduction of the functional to an observed minimum value, an analogous numerical test of
optimality, as the one related to Table 3.2, provides the following result. We have that the inequality

0 ≤ H (x, t, ȳ, ū, p̄)− min
w∈KU

H (x, t, ȳ, w, p̄) ≤ 10−l

is fulfilled at 100% of the grid points for l = 2 and at 99.53% of the grid points for l = 12 with the returned
values (ȳ, ū, p̄) of the SQH method where the minimum of H over KU is determined with a secant method.
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(a) The state y.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

(b) The control function u as a contour plot.

(c) The control function u. (d) The control function u viewed from above.

Figure 3.5: Results with Algorithm 3.1 for the cost functional (3.49) with g = g2 and KU = [−10, 10].

3.4.2 Application to a linear elliptic case

In this subsection, we consider a linear elliptic optimal control problem, given by P.2), with distributed
control and a discontinuous cost functional.

We choose Ze = Ω := (0, 1)× (0, 1) and consider the following optimal control problem:

Find y ∈ H1
0 (Ω) and u ∈ Uad with KU = [0, 100] such that

min
y,u

J (y, u) :=

ˆ

Ω

1

2
(y (x)− yd (x))2 + g (u (x)) dx

(∇y,∇v) = (u, v)

u ∈ Uad

(3.60)

for all v ∈ H1
0 (Ω) where

g (z) :=

{

β|z| if |z| > 20

0 else
, β = 10−3

and yd (x) := sin (2πx1) cos (2πx2) + 1.
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We have h (y) := 1
2 (y − yd)

2 and f (x, y, u) := u in terms of the general framework of Section 3.1 and
the Hamiltonian is given by

H (x, y, u, p) :=
1

2
(y − yd)2 + g (u) + pu

according to (3.6). Corresponding to (3.5), we have the following adjoint problem

(∇p,∇v) = (y − yd, v)

for all v ∈ H1
0 (Ω) where p ∈ H1

0 (Ω). We remark that ‖δy‖L2(Ω) ≤ c̃‖∇δy‖, ‖δp‖L2(Ω) ≤ c̃‖∇δp‖, c̃ ≥ 0
because of the Poincaré inequality [2, 6.7] and thus ‖δy‖L2(Ω) ≤ c‖δu‖L2(Ω) and ‖δp‖L2(Ω) ≤ c‖δu‖L2(Ω)

because of the Cauchy-Schwarz inequality, see [2, Lemma 2.2] for a constant c > 0.

We have ‖p‖L∞(Ω) ≤ c for any solution (y, u) to the state equation with u ∈ Uad, see Section 3.2.

Furthermore, we have that A.3) and A.6) are fulfilled and since the derivative ∂2

∂y2
h = 1, ∂

∂yf = ∂2

∂y2
f = 0 ,

we see that P.2) fits to our theoretical framework of Section 3.1 for which the analysis of the SQH method
is performed in Section 3.3.

In Figure 3.6, we depict the optimal solution obtained with Algorithm 3.1 for the elliptic optimal
control problem (3.60). In this case, the parameters are as follows. The initial guess for ǫ equals 1

150 and
we have u0 = 0, κ = 10−6, σ = 50, ζ = 3

20 , η = 10−9. The domain Ω is discretized with an equidistant
mesh with size △x = 1

200 .

Although we have not checked that all the requirements of Lemma 28 hold, we observe convergence
of the SQH method to a PMP consistent solution according to Theorem 27. We denote with (ȳ, ū, p̄) the
solution to which Algorithm 3.1 converges. The inequality

H (x, ȳ, ū, p̄)− min
w∈KU

H (x, ȳ, w, p̄) ≤ eps,

eps = 2.2 · 10−16, is fulfilled at 37.39% of the grid points for κ = 10−1, at 86.23% of the grid points for
κ = 10−3, at 99.15% of the grid points for κ = 10−4, at 99.93% of the grid points for κ = 10−6 and at
99.95% of the grid points for κ = 10−8. Further results are given in Table 3.1.
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(a) Convergence history of the cost functional for the up-
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(b) The state y.

(c) The optimal control u.
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(d) The optimal control u as a contour plot.

Figure 3.6: Results for the elliptic optimal control problem P.2).

3.4.3 Application to a bilinear elliptic case

In this subsection, we consider the bilinear elliptic control problem P.3) with KU ⊆ R+
0 that is given by

min
y,u

J (y, u) :=

ˆ

Ω

1

2
(y (x)− yd (x))2 + g (u (x)) dx

(∇y,∇v) + (uy, v) =
(

f̃ , v
)

u ∈ Uad

(3.61)

for all v ∈ H1
0 (Ω), yd ∈ Lq (Ω) and g is specified below. From (3.6), the corresponding Hamiltonian for

(3.61) is given by

H (x, y, u, p) =
1

2
(y − yd)2 + g (u) + pf̃ − uyp. (3.62)

According to (3.5), the adjoint problem is as follows: Find p ∈ H1
0 (Ω) such that

(∇p,∇v) + (up, v) = (y − yd, v) (3.63)
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holds for all v ∈ H1
0 (Ω). Now, we check that Assumptions A.1) to A.6) are fulfilled for our optimal control

problem (3.61). Notice that all solutions to the state equation and (3.63) are essentially bounded by a
constant for all u ∈ Uad, see the discussion starting on page 75.

We have that ‖∇δy‖L2(Ω) ≤ c̃‖δu‖L2(Ω), c̃ ≥ 0 and ‖δy‖L2(Ω) ≤ c‖δu‖L2(Ω) as follows. If we define
δu := u1 − u2 and δy := y1 − y2 , then we obtain from taking the difference of the state equation of (3.61)
for two different pairs (yℓ, uℓ), ℓ ∈ {1, 2} the following

(∇ (y1 − y2) ,∇v) + (u1y1, v)− (u2y2, v) = 0,

equivalently

(∇ (y1 − y2) ,∇v) + (u2 (y1 − y2) , v) = (− (u1 − u2) y1, v) . (3.64)

By choosing v = y1 − y2, we have from (3.64) the following

‖∇ (y1 − y2) ‖2L2(Ω) ≤ ‖y1‖L∞(Ω)‖u1 − u2‖L2(Ω)‖y1 − y2‖L2(Ω) (3.65)

with the Cauchy-Schwarz inequality, see [2, Lemma 2.2] and that u2 ≥ 0 almost everywhere. If we use the
Poincaré inequality [2, 6.7], we obtain ‖δy‖L2(Ω) ≤ c‖δu‖L2(Ω).

To discuss the boundedness of the adjoint, we first subtract (3.63) for (y, u, p) ← (y2, u2, p2) from
(3.63) for (y, u, p)← (y1, u1, p1) and obtain

(∇δp,∇v) + (u2δp, v) = (δy, v)− (p1 (u1 − u2) , v)

where δp := p1 − p2.
Because u2 ≥ 0 almost everywhere and p1 ∈ L∞ (Ω), we have that ‖∇δp‖L2(Ω) ≤ c̃‖δu‖L2(Ω), c̃ > 0 if

we choose v = δp ∈ H1
0 (Ω) and use the Cauchy-Schwarz inequality, see [2, Lemma 2.2] with ‖δy‖L2(Ω) ≤

c‖δu‖L2(Ω). By the Poincaré inequality [2, 6.7] we obtain

‖δp‖L2(Ω) ≤ c‖δu‖L2(Ω)

for a c > 0. Consequently we have checked A.2).

As f = f̃ − uy, we have that A.1), A.5) and A.6) are fulfilled. By the essential boundedness of any
solution to the state equation by a constant for all u ∈ Uad, we have that A.3) is fulfilled. Now we have
checked that our theoretical framework of Section 3.3 fits to our case (3.61).

Next, we choose Ω = (0, 1)× (0, 1) and

g (z) :=

{

β|z| if |z| > 20

0 else
, β = 10−3

and yd (x) := sin (2πx1) cos (2πx2). In Figure 3.7, we depict the solution obtained with Algorithm 3.1
solving (3.61) with f̃ = 10. The parameters are as follows. The initial guess for ǫ equals 1

150 and we
have u0 = 0, κ = 10−6, σ = 50, ζ = 3

20 , η = 10−9, KU = [0, 100]. The domain Ω is discretized with an
equidistant mesh with size △x = 1

200 .
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(d) The optimal control u as a contour plot.

Figure 3.7: Solution to the elliptic bilinear optimal control problem P.3).

Notice that the two peaks of the control appear also at finer discretization, for example △x = 1
500 , and

thus they are not numerical artefacts.

Although we have not checked that all the requirements of Lemma 28 hold, we observe convergence
of the SQH method to a PMP consistent solution according to Theorem 27. We denote with (ȳ, ū, p̄) the
solution obtained with Algorithm 3.1. The inequality

H (x, ȳ, ū, p̄)− min
w∈KU

H (x, ȳ, w, p̄) ≤ eps,

eps = 2.2 · 10−16, is fulfilled at 73.31% of the grid points for κ = 10−1, at 84.28% of the grid points for
κ = 10−3, at 90.80% of the grid points for κ = 10−6, at 94.21% of the grid points for κ = 10−10. See also
Table 3.1 for additional results.
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3.4.4 Application to a bilinear parabolic case

In this subsection, we consider the bilinear parabolic control problem P.4) with KU ⊆ R+
0 and we present

numerical results for the bilinear parabolic control problem P.4). We have

min
y,u

ˆ T

0

ˆ

Ω

1

2
(y (x, t)− yd (x, t))2 + g (u (x, t)) dxdt

s.t.
(
y′ (·, t) , v

)
+D (∇y (·, t) ,∇v) + (u (·, t) y (·, t) , v) =

(

f̃ (·, t) , v
)

in Q for all v ∈ H1
0 (Ω)

u ∈ Uad

for almost all t ∈ (0, T ) with y (x, t) = 0 for x ∈ ∂Ω and y (0, x) = 0 for x ∈ Ω. Further, we have D = 1
5 ,

T = 1, Ω = (0, 1), Q = (0, 1)× (0, 1), KU = [0, 15]

yd (x, t) =

{
1
2 if x̄ (t)− 7

100 ≤ x ≤ x̄ (t) + 7
100

0 else

where x̄ (t) := 1
2 + 2

5 sin (2πt),

g (z) :=

{

β|z| if |z| > 10

0 else
, β = 10−4

and we have that f̃ is a constant function with value 1.
In this case, the Hamiltonian is given by

H (x, t, y, u, p) :=
1

2
(y − yd)2 + g (u) + pf̃ − uyp

and the adjoint problem is given by

−
(
p′ (·, t) , v

)
+D (∇p (·, t) ,∇v) =

ˆ

Ω
((y (x, t)− yd (x, t))− u (x, t) p (x, t)) v (x) dx

for all v ∈ H1
0 (Ω) with p (·, T ) = 0 which has a unique and by a constant essentially bounded solution

p ∈ L2
(
0, T,H2 (Ω)

)
∩ L∞ (0, T ;H1

0 (Ω)
)

for all u ∈ Uad according to Section 3.2. Therefore A.1) to A.6)
are proved as in the elliptic bilinear case in Subsection 3.4.3 where we only consider A.2) closer. With the
same arguments as for the elliptic case in Subsection 3.4.3 we obtain for any t ∈ (0, T ) that

‖δy (·, t) ‖2L2(Ω) ≤ c2‖δu (·, t) ‖2L2(Ω)

for a constant c > 0 which gives by integrating over t the following

ˆ T

0

ˆ

Ω
δy2 (x, t) dxdt ≤ c2

ˆ T

0

ˆ

Ω
δu2 (x, t) dxdt.

By extracting a root on both sides we have that

‖δy‖L2(Q) ≤ c‖δu‖L2(Q).

Analogously we obtain
‖δp‖L2(Q) ≤ c̃‖δu‖L2(Q)

for a constant c̃ > 0 which means that A.2) is fulfilled and thus our theoretical framework of Section 3.1
fits to P.4).
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The parameters for the numerical experiment are as follows. The initial guess for ǫ = 3
5 and for u is the

zero function. The parameters are set as follows σ = 50, ζ = 3
20 , η = 10−12, κ = 10−12. The discretization

is equidistant in time and space with △t = 1
400 and △x = 1

200 . The results are presented in Figure 3.8.
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Figure 3.8: Numerical results for the parabolic bilinear optimal control problem P.4).

Also in the present parabolic case, we have that although the requirements of Lemma 28 are not
checked if they hold, we observe convergence of the SQH method to a PMP consistent solution according
to Theorem 27. We denote with (ȳ, ū, p̄) the solution obtained by Algorithm 3.1. The inequality

H (x, t, ȳ, ū, p̄)− min
w∈KU

H (x, t, ȳ, w, p̄) ≤ eps,

eps = 2.2 · 10−16, is fulfilled at 89.27% of the grid points for κ = 10−4, at 93.64% of the grid points for
κ = 10−6, at 97.06% of the grid points for κ = 10−8, at 97.59% of the grid points for κ = 10−10 and at
98.04% of the grid points for κ = 10−12.
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3.4.5 Application to a non-linear elliptic case

In this subsection, we discuss P.5) that is given by

min
y,u

J (y, u) :=

ˆ

Ω

1

2
(y (x)− yd (x))2 + g (u (x)) dx

(∇y,∇v) +
(
y3, v

)
= (u, v)

u ∈ Uad

(3.66)

where we choose Ω := (0, 1)× (0, 1),

g (z) :=

{

β|z| if |z| > 20

0 else
, β = 10−3,

KU := [−100, 100] and yd (x) := sin (2πx1) cos (2πx2).

We have h (y) := 1
2 (y − yd)

2 and f (x, y, u) := u−y3 in the general setting of Section 3.1 and we define
the following Hamiltonian

H (x, y, u, p) :=
1

2
(y − yd)2 + g (u) + p

(
u− y3

)

according to (3.6). Corresponding to (3.5), we have the following adjoint problem for p ∈ H1
0 (Ω) given by

(∇p,∇v) +
(
3y2p, v

)
= (y − yd, v)

for all v ∈ H1
0 (Ω). Since y4 ≥ 0 and 3y2p2 ≥ 0 we have that

‖δy‖L2(Ω) ≤ c‖δu‖L2(Ω)

and

‖δp‖L2(Ω) ≤ c‖δu‖L2(Ω)

for a constant c > 0 analogous to Subsection 3.4.2 where the linear elliptic case is discussed. We have that
A.1), A.3) and A.6) are fulfilled. Furthermore, we have

‖p‖L∞(Ω) ≤ c

for any solution (y, u) to the state equation with u ∈ Uad, see Section 3.2. Since the derivatives ∂2

∂y2
h = 1,

∂
∂yf = 3y2, ∂

∂yf = 6y are bounded, because y is essentially bounded by a constant for all u ∈ Uad, see
page 75, we have that P.5) fits to our theoretical framework of Section 3.1 for which the analysis of the
SQH method is performed in Section 3.3.

The parameters in Algorithm 3.1 are chosen as follows. The initial guess for ǫ equals 1
150 and we have

u0 = 0, κ = 10−12, σ = 50, ζ = 3
20 , η = 10−9. The domain Ω is discretized with a mesh of size △x = 1

100 .
The non-linear PDE is solved until the L2-norm of its residuum is less than 10−6. The results are shown
in Figure 3.9 where one can see the action of the bounds on the control and of the discontinuous control
costs.
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Figure 3.9: Solution to the non-linear elliptic optimal control problem P.5).

Next, although we have not checked that all the requirements of Lemma 28 hold, we observe convergence
of the SQH method to a PMP consistent solution according to Theorem 27. We denote with (ȳ, ū, p̄) the
solution obtained with Algorithm 3.1. The inequality

H (x, t, ȳ, ū, p̄)− min
w∈KU

H (x, t, ȳ, w, p̄) ≤ 10−7

is fulfilled at 37.68% of the grid points for κ = 10−2, is fulfilled at 79.88% of the grid points for κ = 10−4,
at 94.34% of the grid points for κ = 10−6, at 94.83% of the grid points for κ = 10−8 and at 95.25% of the
grid points for κ = 10−12. Notice that we use the smaller tolerance 10−7 instead of the machine precision
2.2 · 10−16 since the state equation is only solved to a tolerance of 10−6 and not exactly as in the linear
case.
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3.4.6 Application to a state-constrained optimal control problem

In this subsection, we discuss P.6) that is given by

min
y,u

J (y, u) :=

ˆ

Ω
h (y (x)) + g (u (x)) dx

s.t. (∇y,∇v) = (u, v)

y ≤ ξ
u ∈ Uad

(3.67)

for all v ∈ H1
0 (Ω) where h (y) := 1

2 (y − yd)
2,

g (u) :=

{

β|u| if |u| > 20

0 else
, β = 10−3,

KU := [−100, 100], ξ ∈ R and we assume that (3.67) admits a solution denoted with (ȳ, ū).
In this case, PMP optimality involves multipliers that are only implicitly characterized by inequalities,

see for example [28]. For this reason, the computation of solutions to (3.67) is a delicate issue. We follow
the idea of augmented Lagrangian [61, Section 3] and transform the optimal control problem (3.67) into
the following

min
y,u

J (y, u; ξ, γ) :=

ˆ

Ω
hξ (y (x) ; γ) + g (u (x)) dx

s.t. (∇y,∇v) = (u, v)

u ∈ Uad

(3.68)

where hξ (y; γ) := h (y) + γ (max (0, y − ξ))3, γ ≥ 0.
Since we require hξ (y; γ) to be twice continuously differentiable in order to fulfill Assumption A.1),

we choose (max (0, y − ξ))3. The differentiability of (max (0, y − ξ))3 can be shown as follows. First, we
have that

∂

∂y
(max (0, y − ξ))2

=







∂
∂y (y − ξ)

2 if y − ξ > 0
{

0 , h < 0

limh→0
h2

h , h > 0
if y − ξ = 0

∂
∂y0 if y − ξ < 0

=







2 (y − ξ) if y − ξ > 0

0 if y − ξ = 0

0 if y − ξ < 0

= 2max (0, y − ξ)
(3.69)

is differentiable and thus

(max (0, y − ξ))3 =
(

(max (0, y − ξ))2
) 3

2

is differentiable due to the chain rule, see [4, VII Theorem 3.3], where the first derivative is given by

∂

∂y
(max (0, y − ξ))3 =







3 (y − ξ)2 if y − ξ > 0

0 if y − ξ = 0

0 if y − ξ < 0

= 3 (max (0, y − ξ))2

and according to (3.69) the second derivative is given as follows

∂2

∂y2
(max (0, y − ξ))3 = 3

∂

∂y
(max (0, y − ξ))2 = 6max (0, y − ξ) .
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Furthermore the second derivative of (max (0, y − ξ))3 with respect to y is continuous since

lim
y→ξ

6 (y − ξ) = 0.

We assume that (3.68) admits a solution for any γ ≥ 0. Analogously to (3.60), we have that a solution to
(3.68) is characterized by the PMP as follows. The adjoint is given by

(∇p,∇v) =
(

y − yd + 3γ (max (0, y − ξ))2 , v
)

(3.70)

for all v ∈ H1
0 (Ω). Because y ∈ H1

0 (Ω) and thus measurable, see [1, page 60], we have that max (0, y − ξ)
is measurable, see [36, Proposition 2.1.4] and with Lemma 51, we have that (max (0, y − ξ))2 is measurable.
We have that y ∈ L∞ (Ω), see the discussion on page 75, from which it follows that A.5) is fulfilled and
since we require that yd ∈ Lq (Ω), we have that y − yd + 3 (max (0, y − ξ))2 ∈ Lq (Ω). From this it follows
with an analogous discussion as for (3.15) that (3.70) is uniquely solvable in H1

0 (Ω) and A.4) is fulfilled.
For the characterization with the PMP, we need the intermediate adjoint equation according to (3.10)
that is given by

(∇p̃,∇v) =
(
1

2
(y1 + y2)− yd + 3γ

ˆ 1

0
(max (0, y2 + θ (y1 − y2)− ξ))2 dθ, v

)

for all v ∈ H1
0 (Ω) where y1 solves the state equation for u ← u1 and y2 solves the state equation for

u ← u2. Next, we show that the intermediate adjoint is well defined. For this purpose, we have to see
that the function

x 7→
ˆ 1

0
(max (0, y2 (x) + θ (y1 (x)− y2 (x))− ξ))2 dθ

is measurable. We have that according to Lemma 52 the functions (θ, x) 7→ θ, (θ, x) 7→ y1 (x), (θ, x) 7→
y2 (x) are Lebesgue measurable on [0, 1] × Ω. Then we have that (θ, x) 7→ y2 (x) + θ (y1 (x)− y2 (x)) − ξ
is measurable on [0, 1]× Ω, see [36, Proposition 2.1.7] and consequently

(θ, x) 7→ (max (0, y2 (x) + θ (y1 (x)− y2 (x))− ξ))2 ,

see [36, Proposition 2.1.4] and Lemma 51. Then by Tonelli’s Theorem [5, X Theorem 6.7 ii)], we obtain
that

x 7→
ˆ 1

0
(max (0, y2 (x) + θ (y1 (x)− y2 (x))− ξ))2 dθ

is measurable and due to the discussion in Section 3.2 we have y1, y2 ∈ L∞ (Ω) from which it follows that

x 7→
ˆ 1

0
(max (0, y2 (x) + θ (y1 (x)− y2 (x))− ξ))2 dθ ∈ L∞ (Ω) .

Analogous to the adjoint equation, the intermediate equation is uniquely solvable in H1
0 (Ω). To finalize the

PMP characterization we consider the difference of the adjoint equation for y ← y2 and the intermediate
adjoint equation that is given by

(∇ (p̃− p) ,∇v) =
(
1

2
(y1 − y2) + 3γ

ˆ 1

0
(max (0, y2 + θ (y1 − y2)− ξ))2 − (max (0, y2 − ξ))2 dθ, v

)

where

(max (0, y2 + θ (y1 − y2)− ξ))2 − (max (0, y2 − ξ))2

= 2

ˆ 1

0
max (0, y2 + η (θ (y1 − y2))− ξ) dη (θ (y1 − y2))
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with the fundamental theorem of calculus [4, VI 4.13]. With this equations we can conclude that

‖p̃− p‖L∞(Ω) ≤ C‖y1 − y2‖Lq(Ω)

for a constant C > 0 since y1, y2 are bounded by a constant for all u ∈ Uad, see Section 3.2. From
this it follows, analogous to Section 3.2, the PMP characterization of a solution to (3.68). Analogously
we consider the difference of (3.70) for different y1, y2 which are solutions to the state equation for the
corresponding u1, u2 ∈ Uad. We obtain

(∇ (p1 − p2) ,∇v) =
(

y1 − y2 + 3γ
(

(max (0, y1 − ξ))2 − (max (0, y2 − ξ))2
)

, v
)

=

(

y1 − y2 + 6γ

ˆ 1

0
max (0, y2 − θ (y1 − y2)) dθ (y1 − y2) , v

)

which provides A.2) since y1, y2 are essentially bounded by a constant for all u1, u2 ∈ Uad, see discussion
on page 75 and ‖y1−y2‖L2(Ω) ≤ c‖u1−u2‖L2(Ω), c > 0, see Subsection 3.4.2. Consequently, the theoretical
framework of Section 3.3 holds for (3.68).

Henceforth, we use our SQH scheme to solve (3.68) for increasing γ denoted by γ = γk for increasing
k. Let (yk, uk) be a corresponding solution to (3.68) and (ȳ, ū) be a solution to (3.67). We show in
the next theorem that increasing γk improves the solution to (3.68) with respect to the original task of
solving the state-constrained optimal control problem (3.67). Specifically, we have that the measure of the
state violation by the corresponding state yk goes to zero for increasing k. Summarizing, we show that
solving (3.68) with the SQH method provides a solution that fulfills the state constraint up to a tolerance
depending on γk and results in a value J (yk, uk) that is smaller than J (ȳ, ū). In addition if g is a square
function, it can be proven that for increasing γk the sequence (yk, uk) converges to (ȳ, ū), see for example
[61, Lemma 3.6] for details.

Theorem 30. Let limk→∞ γk =∞, let (yk, uk) be a corresponding solution to (3.68) with

Mk := {x ∈ Ω| yk (x) > ξ}

and let (ȳ, ū) be a solution to (3.67). Then, we have that

lim
k→∞

ˆ

Mk

(yk (x)− ξ)3 dx = 0

and

J (yk, uk) =

ˆ

Ω
h (yk (x)) + g (uk (x)) dx ≤ J (ȳ, ū)

for all k ∈ N.

Proof. First, the set Mk is measurable as yk is measurable, see [5, X Theorem 1.9] for details. Thus
integration over Mk is well defined. We have that

J (ȳ, ū) =

ˆ

Ω
h (ȳ (x)) + g (ū (x)) + γ (max (0, ȳ (x)− ξ))3 dx = J (ȳ, ū; ξ, γ)

as ȳ ≤ ξ and thus for an optimal solution (yk, uk) to (3.68) it holds that

J (yk, uk; ξ, γ) ≤ J (ȳ, ū) . (3.71)

By inserting the definition of J (yk, uk; ξ, γ), see (3.68), we have from (3.71) the following

ˆ

Ω
h (yk (x)) + g (uk (x)) + γk (max (0, yk (x)− ξ))3 dx ≤ J (ȳ, ū) . (3.72)
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Now if we assume that there is an ǫ > 0 such that
ˆ

Ω
(max (0, yk (x)− ξ))3 dx =

ˆ

Mk

(yk (x)− ξ)3 dx > ǫ

for all k ∈ N, then we have a contradiction to (3.72) due to the lower boundedness of h and g. Also from
(3.72) we have that

J (ȳ, ū) ≥
ˆ

Ω
h (yk (x)) + g (uk (x)) + γk (max (0, yk (x)− ξ))3 dx ≥

ˆ

Ω
h (yk (x)) + g (uk (x)) dx.

We remark that the arguments of the proof of Theorem 30 are not restricted to the elliptic optimal
control problem (3.67) but also hold in the general framework of Section 3.1. That means that they also
hold for a state-constrained optimal control problem corresponding to (3.3) for h and g bounded from
below.

For our numerical experiment, we choose the initial guess ǫ = 1
150 and we have u0 = 0, σ = 50, ζ = 3

20 ,
η = 10−9, ξ = 3

5 , △x = 1
100 , κ = 10−10, KU = [−100, 100] and yd (x) := sin (2πx1) cos (2πx2). The

minimum of the augmented Hamiltonian

Kǫ (x, y, u, v, p) :=
1

2
(y − yd)2 + γ (max (0, y − ξ))3 + g (u) + pu+ ǫ (u− v)2

in Step 2 of Algorithm 3.1 is determined pointwise with an exact formula as follows. Analogous to the
discussion in Subsection 3.4.1, the candidates at which a minimum of the augmented Hamiltonian is
located are given by

u1 = min

(

max

(

20,
2ǫuk (x)− pk (x)− β

α+ 2ǫ

)

, 100

)

,

u2 = min

(

max

(

−100, 2ǫu
k (x)− pk (x) + β

α+ 2ǫ

)

,−20
)

or

u3 = min

(

max

(

−20, 2ǫu
k (x)− pk (x)
α+ 2ǫ

)

, 20

)

.

Consequently, the update for the control is pointwise given by

u (x) = argmin
w∈{u1,u2,u3}

Kǫ

(

x, yk, w, uk, pk
)

.

In Table 3.8, we show results that validate Theorem 30. We can see that for increasing γ the maximum
of the state variable y converges to the upper bound of the state. Additionally, the measure of the set
Mk where the state variable violates the upper bound becomes smaller when γ increases. According to
Theorem 30 the quantity

´

Mk
(yk (x)− ξ)3 dx converges to zero for increasing γ. In Figure 3.10, we depict

the state and the control for γ = 100000.

γ maxx∈Ω y (x)
´

Mk

(
yk (x)− 3

5

)3
dx |Mk| J

(
y, u; 35

)

1 0.8218 1.7843 · 10−4 0.0461 0.0474

10 0.7125 2.1182 · 10−5 0.0383 0.0480

100 0.6543 1.3580 · 10−6 0.0289 0.0484

1000 0.6237 7.9157 · 10−8 0.0185 0.0487

10000 0.6081 2.9827 · 10−9 0.0137 0.0489

100000 0.6032 1.1971 · 10−10 0.0104 0.0503

Table 3.8: Results that numerically validate Theorem 30 where (y, u) is obtained with the SQH method.
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Figure 3.10: Solution to the optimal control problem (3.68) corresponding to P.6) for γ = 100000.

Similar as for the previous cases, we have the following for the solution to (3.68) with γ = 100000.
The inequality

H (x, t, ȳ, ū, p̄)− min
w∈KU

H (x, t, ȳ, w, p̄) ≤ 2.2 · 10−16

is fulfilled at 6.45% of the grid points for κ = 10−4, at 76.53% of the grid points for κ = 10−8 and at
81.16% of the grid points for κ = 10−12. Consequently we obtain a PMP consistent solution from the
SQH method according to Theorem 27 although we have not checked that all the requirements of Lemma
28 hold.

3.4.7 Application to an elliptic optimal control problem with L
1-tracking term

In this subsection, we consider the non-smooth optimal control problem P.7) that is given by

min
y,u

J (y, u) :=

ˆ

Ω
|y (x)− yd (x) |+ g (u (x)) dx

(∇y,∇v) + (max (0, y) , v) = (u, v)

u ∈ Uad

(3.73)



3.4. NUMERICAL EXPERIMENTS 113

for all v ∈ H1
0 (Ω) where Ω ⊆ Rn, n ∈ N, is open and bounded, yd ∈ L1 (Ω), g : R → R, z 7→ g (z) lower

semi-continuous and non-negative with
´

Ω g (u (x)) dx <∞ for all u ∈ Uad. In the experiment, we choose

g (z) := β ln (1 + |z|) β > 0.

The characterization of a solution to (3.73) with the PMP is in general not possible with the technique
in [81] for the following reason. We define h (y) := |y − yd|. Then, because of the Lipschitz continuity of
h, we have the existence of a function h′ such that

h (y1 (x))− h (y2 (x)) = h (y2 (x) + θ (y1 (x)− y2 (x)))
∣
∣1

θ=0

=

ˆ 1

0
h′ (y)

∣
∣
y=y2(x)+θ(y1(x)−y2(x))

dθ (y1 (x)− y2 (x))

almost everywhere on Ω, see [6, Theorem 7.3], and we define

h̃ (y1, y2) :=

ˆ 1

0
h′ (y)

∣
∣
y=y2(x)+θ(y1(x)−y2(x))

dθ.

In order to apply the technique used in [81, Proposition 4.4], we need the existence of a function p∗ : Ω→ R,
z 7→ p∗ (z) such that

lim
k→∞

‖pk − p∗‖L∞(Ω) = 0

where pk is the solution to the intermediate adjoint equation (3.10). This is usually proved by subtracting
the adjoint equation (3.5) from the intermediate adjoint equation (3.10) where it is necessary to define a
pointwise limit

lim
k→∞

h̃ (yk, y
∗) (x) = h′ (y∗) (x)

almost everywhere on Ω with

lim
k→∞

‖yk − y∗‖L∞(Ω) = 0

pointwise almost everywhere on Ω where yk is the solution to the state equation for u ← uk defined in
(3.8) and y∗ is the solution to the state equation for u← u∗. Since

lim
k→∞

‖yk − y∗‖L∞(Ω) = 0,

we can start our considerations with the k̄ ∈ N such that if y∗ (x) > yd (x), then yk (x) > yd (x) and if
y∗ (x) < yd (x), then yk (x) < yd (x) for almost all x ∈ Ω and all k ≥ k̄. In our case where h (y) = |y− yd|,
we choose pointwise

h′ (y) :=

{

1 if y ≥ yd
−1 else

which gives

h′ (y) |y=y∗+θ(yk−y∗) =







1 if yk > yd and y∗ > yd

1 if yk = yd and y∗ > yd

1 if yk > yd and y∗ = yd

1 if yk = yd and y∗ = yd

−1 if yk < yd and y∗ = yd

−1 if yk = yd and y∗ < yd

−1 if yk < yd and y∗ < yd
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using the estimation that

y∗ + θ (yk − y∗) = (1− θ) y∗ + θyk







> (1− θ) yd + θyd = yd if yk > yd and y∗ > yd

> (1− θ) yd + θyd = yd if yk = yd and y∗ > yd

> (1− θ) yd + θyd = yd if yk > yd and y∗ = yd

= (1− θ) yd + θyd = yd if yk = yd and y∗ = yd

< (1− θ) yd + θyd = yd if yk < yd and y∗ = yd

< (1− θ) yd + θyd = yd if yk = yd and y∗ < yd

< (1− θ) yd + θyd = yd if yk < yd and y∗ < yd

.

Then we pointwise have that

h̃ (yk, y
∗) =







1 if yk > yd and y∗ > yd

1 if yk = yd and y∗ > yd

1 if yk > yd and y∗ = yd

1 if yk = yd and y∗ = yd

−1 if yk < yd and y∗ = yd

−1 if yk = yd and y∗ < yd

−1 if yk < yd and y∗ < yd

such that it pointwise holds

|yk − yd| − |y∗ − yd| = h̃ (yk, y
∗) (yk − y∗)

since we pointwise have

|yk − yd| − |y∗ − yd| =







yk − y∗ if yk > yd and y∗ > yd

0− y∗ + yd = yk − y∗ if yk = yd and y∗ > yd

yk − yd − 0 = yk − y∗ if yk > yd and y∗ = yd

0− 0 = yk − yd if yk = yd and y∗ = yd

− (yk − yd)− 0 = − (yk − y∗) if yk < yd and y∗ = yd

0− (− (y∗ − yd)) = − (yk − y∗) if yk = yd and y∗ < yd

− (yk − yd) + (y∗ − yd) = − (yk − y∗) if yk < yd and y∗ < yd

.

In the case of y (x) = yd (x) on a set M of measure non-zero and limk→∞ yk (x) = y (x) for x ∈ M , then
we do not know if the sign of yk (x) − y (x), x ∈ M , changes along the sequence (yk)k∈N and we cannot
extract a subsequence with constant sign of yk (x)− y (x) as there are uncountable many elements in M .
Consequently, the required limit limk→∞ h̃ (yk, y) (x) does not exist in general and the proof used so far
does not work.

Nevertheless, we apply our SQH method implemented in Algorithm 3.1 to P.7). For this purpose, we
consider the following Hamiltonian

H (x, y, u, p) = |y − yd|+ β ln (1 + |u|) + pu− pmax (0, y)

and the following adjoint equation

ˆ

Ω
∇p (x)∇v (x) + h2 (y (x)) p (x) v (x) dx =

ˆ

Ω
h1 (y (x)) v (x) dx (3.74)
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where

h1 (y (x)) :=

{

1 if y (x) ≥ yd (x)
−1 else

is from the discussion above and

h2 (y (x)) :=

{

1 if y (x) ≥ 0

0 else

can be obtained with a similar investigation such that

max (0, yk)−max (0, y∗)

can be written in terms of

max (0, yk)−max (0, y∗) = h̃2 (yk, y
∗) (yk − y∗)

for a function h̃2. Summarizing, we have that the formal definition of (3.74) is motivated by the case
where our technique of the proof for characterizing a solution to an optimal control problem with the
PMP, as discussed above in this subsection, can be applied due to the available differentiability in this
case. We insert the functions h1 and h2 into the adjoint equation at these sites where in the smooth case
the corresponding available derivatives would be.

The functions h1 and h2 are bounded and measurable, see [36, 2.1 Measurable Functions] and therefore
elements of L∞ (Ω). Thus (3.74) is uniquely solvable, see [45, Theorem 3 on page 301] with

‖p‖L∞(Ω) ≤ c,

c > 0 as h2 ≥ 0, see the discussion starting on page 75.

We consider P.7) with Ω := (0, 1) × (0, 1), yd (x) := sin (2πx1) sin (2πx2) +
8
10 , KU = [−100, 100] and

β = 9 · 10−2. In our finite differences framework, the non-linear equation

−∆y +max (0, y) = u

is solved by a Picard iteration until the L2-norm of its residuum is less than 10−6. The initial guess for
the control equals zero and ǫ equals 1

150 . The parameters are given by σ = 50, ζ = 3
20 , η = 10−9 and

κ = 10−8 where Ω is equidistantly discretized with △x = 1
100 .

Results of this experiment are shown in Figure 3.11. Notice the fast reduction of the value of the
cost functional in the first few iterations. This shows that the SQH method also works well in the case
of a problem with an L1 tracking term and non-smooth PDE constraints with respect to its capability of
improving the initial guess of the control such that the cost functional takes smaller values.

Notice that although it is not proved that (3.7) is necessary for a solution to (3.73) and thus especially
the theoretical framework of Section 3.1 does not have to hold in this case, the numerical optimality of the
solution returned by the SQH is fulfilled even for small tolerances in more than 75% of the grid points,
see Table 3.1.
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Figure 3.11: Results of the non-smooth optimal control problem P.7) for κ = 10−8.



Chapter 4

An SQH framework for Fokker-Planck

control problems

This chapter presents results related to [25, 20] and [23]. We discuss optimal control problems that are
governed by the Fokker-Planck (FP) equation. In particular, we formulate an optimal control problem
with a mean value objective for the state and a mean value cost term for the controls. The functions that
determine the costs are assumed to be bounded from below and lower semi-continuous. Furthermore we
characterize a solution to our optimal control problem with the Pontryagin maximum principle (PMP)
and discuss the convergence analysis of the sequential quadratic Hamiltonian (SQH) method. We start
our discussion by a preliminary investigation of the Fokker-Planck equation from a random walk (RW).

4.1 From Random walk to Fokker-Planck

The FP equation can be used to calculate the distribution of a stochastic process like a RW with infinites-
imal small time steps. For this purpose, we start with introducing a RW in the following subsection and
restrict ourselves to the one dimensional case to focus on the basic ideas. Moreover we consider a RW
with jumps and different boundary conditions and investigate how these frameworks result in different FP
models.

4.1.1 A random walk with reflecting and absorbing barriers

In this subsection, we introduce RW models in a bounded discrete space with different kind of barriers.

A RW consists of evolution paths given by a sequence of random steps at subsequent time instants
on a grid [37]. These paths can be conveniently described as the evolution of the conditional probability
distribution of the state Xn+m (position at the time-step n+m, n,m ∈ N) of the RW and it is governed
by the Chapman-Kolmogorov (CK) equation, see [37],

P (Xm+n = y|X0 = x) =
∑

z∈X
P (Xm+n = y|Xm = z)P (Xm = z|X0 = x) (4.1)

where X is the state space and P (·|·) denotes the conditional probability between two state configurations.

Specifically, consider a family of random variables Zi : Ω→ {j△x| j ∈ Z}, i ∈ N where Ω is the abstract
space of elementary events and △x ∈ R+ is the Euclidean distance between two nearest neighbour states.
We define the random walk as follows

Xn := x0 +

n∑

i=1

Zi ∈ R

117
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for all n ∈ N where x0 ∈ R is the initial value of the random walk. Our state space is given by

X△x
x0

:= {xj ∈ R| xj = x0 + j△x, j ∈ Z} ∩ [a, b]

where a = x0 + ja△x and b = x0 + jb△x with ja, jb ∈ Z and ja < 0 < jb such that the initial point
x0 ∈ X

△x
x0 . We denote the total number of states with N := b−a

△x + 1. The time space is given by

T
△t
t0

:=
{
tn ∈ R+

0 | tn = t0 + n△t, n ∈ N0

}
∩ [0, T ]

where the time horizon T = t0+nT△t, nT ∈ N with the total number of time steps Nt =
T−t0
△t . We denote

with p (x, tn), resp. q (x, tn), the discrete transition probabilities to move from x to x +△x, resp. x to
x−△x. The random variables Zi include the RW of ±△x steps and the jumps. The random variables Zi

are pair wise mutually independent, but spatially and time dependent. The process is called compound
Poisson process as the random variables Zi are composed of a RW characterized by p, q and a RW with
jumps. We have a jump rate λ ≥ 0 such that λ△t represents the probability that a jump occurs in the
time interval △t. To weight the jump length, we utilize a function g : R→ R with compact support, that
means that there is xc ∈ R+

0 such that g (x) = 0 for all |x| > xc. Additionally, we require that xc ≤ b− a
in order to avoid multi-reflections within one jump. Finally, the conditional probability related to the
Poisson jump process is given by

P (Zn = j△x|Xn−1 = x) = λ△t△xg (j△x) for all j ≥ 2 (4.2)

P (Zn = △x|Xn−1 = x) = p (x, tn−1) + λ△t△xg (△x) (4.3)

P (Zn = 0|Xn−1 = x) = 1− p (x, tn−1)− q (x, tn−1)− λ△t△x
∞∑

j=−∞
j 6=0

g (j△x) (4.4)

P (Zi = −△x|Xn−1 = x) = q (x, tn−1) + λ△t△xg (−△x) (4.5)

P (Zi = −j△x|Xn−1 = x) = λ△t△xg (−j△x) for all j ≤ −2 (4.6)

where tn := n△t+ t0 and △t, t0 ∈ R+
0 , n ∈ N0 with the period △t between two steps.

In order to have a well defined transition probability, the following constraints have to be satisfied

0 ≤ p (x, tn) ≤ 1, 0 ≤ q (x, tn) ≤ 1, 0 ≤ λ△t△x
∞∑

j=−∞
g (j△x) ≤ 1

and

0 ≤ p (x, tn) + q (x, tn) + λ△t△x
∞∑

j=−∞
g (j△x) ≤ 1.

From now on whenever clear from the context, we write t instead of tn to simplify the notation.
Next, we turn our attention to the modeling of different barriers at the boundaries a and b.
Our random walk with absorbing barriers is defined as follows

Xn :=







Xn−1 + Zn if a < Xn−1 < b

Xn−1 if Xn−1 ≤ a
Xn−1 if Xn−1 ≥ b

(4.7)

for all n ∈ N. Roughly speaking, the meaning of this absorbing barrier is that if the process steps out of
the domain, then it can never return into the domain.

Our random walk with reflecting barriers is defined as follows

Xn :=







a− Zn − (Xn−1 − a) if (Xn−1 + Zn < a)

b− Zn − (Xn−1 − b) if (Xn−1 + Zn > b)

Xn−1 + Zn else

(4.8)



4.1. FROM RANDOM WALK TO FOKKER-PLANCK 119

for all n ∈ N. This model corresponds to a wall where the process is being reflected such that the total
length of the jump is preserved.

Now, we derive the CK equation for our random walk with absorbing/reflecting barriers. We denote

with f : X△x
x0 ×T

△t
t0
→ R+

0 a discrete function representing the discrete occupation probability ’density’ of
the random walk process at the location x at time t. That is, △xf (x, t) is the probability that the process
is located in x at the time t. For convenience, we extend f to zero for all x beyond an absorbing barrier.

Now, we discuss the evolution model for f . For this purpose, consider all contribution to f (x, t+△t)
from the states at time t.

We start considering a RW model with absorbing barriers. In this case, the evolution of f , similar to
(4.1), is as follows

f (x, t+△t) = p (x−△x, t) f (x−△x, t) + q (x+△x, t) f (x+△x, t)

+λ△t△x
∞∑

j=−∞
j 6=0

(g (j△x) f (x− j△x, t)) (4.9)

+






1− p (x, t)− q (x, t)− λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)






f (x, t)

for a < x < b.

For simplicity, we also refer to (4.9) as the CK equation.

In the following, we discuss the CK equation for f in the case of a combination of absorbing and
reflecting barriers. For this purpose, we introduce two continuous weight functions κa, κb : R+

0 → [0, 1]
that are able to modulate the type of barrier from absorbing κa ≡ κb ≡ 0 to κa ≡ κb ≡ 1. In all other
cases, these functions model a combination of absorbing and reflecting barriers.

With this setting, additional terms appear in the CK equation (4.9) that depend on the position x where
the process takes place. To obtain the corresponding Chapman-Kolmogorov equation for f , we have to add
terms to the right hand-side of (4.9) which start at x̃, are reflected at a reflecting barrier and thus contribute
to x at t +△t. The traveled distance of a process reflected at a is given by j△x = − (x− a) − (x̃− a) ,
equivalently, x̃ = 2a− x− j△x where j < 0. If a process is reflected at b, we have j△x = b− x+ b− x̃,
equivalently, x̃ = 2b − x − j△x where j > 0. After this preparation, we illustrate the evolution equation
for f depending on x.

We distinguish five cases: x = a, x = a+△x, a+△x < x < b−△x, x = b−△x, x = b.

Consider the case x = a. We have

f (a, t+△t) = κa (t)



q (a+△x, t) f (a+△x, t) + λ△t△x
−1∑

j=−∞
(g (j△x) f (a− j△x, t))





+






1− κa (t)






p (a, t) + q (a, t) + λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)












f (a, t) (4.10)

+κa (t)κb (t)λ△t△x
∞∑

j=1

(g (j△x) f (2b− a− j△x, t)) .
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Next, in the case x = a+△x, we have

f (a+△x, t+△t) = (κa (t) q (a, t) + p (a, t)) f (a, t) + q (a+ 2△x, t) f (a+ 2△x, t)

+λ△t△x
∞∑

j=−∞
j 6=0

(g (j△x) f ((a+△x)− j△x, t))

+κa (t)λ△t△x
−1∑

j=−∞
(g (j△x) f (a−△x− j△x, t)) (4.11)

+κb (t)λ△t△x
∞∑

j=1

(g (j△x) f (2b− a−△x− j△x, t))

+






1− p (a+△x, t)− q (a+△x, t)− λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)






f (a+△x, t) .

In the case a+△x < x < b−△x, we have

f (x, t+△t) = p (x−△x, t) f (x−△x, t) + q (x+△x, t) f (x+△x, t)

+λ△t△x
∞∑

j=−∞
j 6=0

(g (j△x) f (x− j△x, t))

+κa (t)λ△t△x
−1∑

j=−∞
(g (j△x) f (2a− x− j△x, t)) (4.12)

+κb (t)λ△t△x
∞∑

j=1

(g (j△x) f (2b− x− j△x, t))

+






1− p (x, t)− q (x, t)− λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)






f (x, t) .

In the case x = b−△x, we have

f (b−△x, t+△t) = p (b− 2△x, t) f (b− 2△x, t) + (κb (t) p (b, t) + q (b, t)) f (b, t)

+λ△t△x
∞∑

j=−∞
j 6=0

(g (j△x) f (x− j△x, t))

+κa (t)λ△t△x
−1∑

j=−∞
(g (j△x) f (2a− b+△x− j△x, t)) (4.13)

+κb (t)λ△t△x
∞∑

j=1

(g (j△x) f (b+△x− j△x, t))

+






1− p (b−△x, t)− q (b−△x, t)− λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)






f (b−△x, t) .
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In the last case x = b, we obtain

f (b, t+△t) = κb (t)



p (b−△x, t) f (b−△x, t) + λ△t△x
∞∑

j=1

(g (j△x) f (b− j△x, t))





+






1− κb (t)






p (b, t) + q (b, t) + λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)












f (b, t) (4.14)

+κb (t)κa (t)λ△t△x
−1∑

j=−∞
(g (j△x) f (2a− b− j△x, t)) .

Remark 31. If both barriers are reflecting and△x
∑N

j=0 f (a+ j△x, 0) = 1, then△x
∑N

j=0 f (a+ j△x, t) =
1 for all t ∈ T

△t
t0

. That is the CK evolution is conservative. In the presence of an absorbing barrier, we

have △x
∑N

j=0 f (a+ j△x, t) ≤ 1, since there is the possibility that the random walk process leaves the
domain.

Our next step is to formulate (4.10) to (4.14) using a matrix representation in the sense that

f (·, t+△t) = P f (·, t)

for all x ∈ X
△x
x0 and P ∈ RN×N .

We define r (x, t) := 1− p (x, t)− q (x, t)− λ△t△x
∑∞

j=−∞
j 6=0

g (j△x) and, for ease of notation, we omit

the time dependence of the transition matrix P = P (t). The first row of P is given by










1− κa (t)
(

p (a, t) + q (a, t) + λ△t△x
∑∞

j=−∞
j 6=0

g (j△x)
)

κa (t) (q (a+△x, t) + λ△t△x (g (−△x)))
...

λ△t△xκa (t) (κb (t) g (b− a) + g (− (b− a)))










T

where (·)T means transpose. The second row is given by










κa (t) q (a, t) + p (a, t) + λ△t△x (g (△x) + κa (t) g (−△x) + κb (t) g (2 (b− a)−△x))
r (a+△x, t) + λ△t△x (κa (t) g (−2△x) + κb (t) g (2 (b− a)− 2△x))

q (a+ 2△x, t) + λ△t△x (g (−△x) + κa (t) g (−3△x) + κb (t) g (2 (b− a)− 3△x))
...

λ△t△x (κa (t) g (− (b− a)−△x) + κb (t) g ((b− a)−△x) + g (− (b− a) +△x))










T

.

For the j-th row, j ∈ {3, ..., N − 2}, and x = a+ j△x, we have the following



































λ△t△x (κa (t) g (− (j − 1)△x) + κb (t) g (2 (b− a)− (j − 1)△x) + g (j△x))
λ△t△x (κa (t) g (− (j − 1)△x−△x) + κb (t) g (2 (b− a)− (j − 1)△x−△x) + g (j△x−△x))

λ△t△x (κa (t) g (− (j − 1)△x− 2△x) + κb (t) g (2 (b− a)− (j − 1)△x− 2△x) + g (j△x− 2△x))
...

p (x−△x, t) + λ△t△x (g (△x) + κa (t) g (−2 (j − 1)△x+△x) + κb (t) g (2 (b− a)− 2 (j − 1)△x+△x))
r (x, t) + λ△t△x (κa (t) g (−2 (j − 1)△x) + κb (t) g (2 (b− a)− 2 (j − 1)△x))

q (x+△x, t) + λ△t△x (g (−△x) + κa (t) g (−2 (j − 1)△x−△x) + κb (t) g (2 (b− a)− 2 (j − 1)△x−△x))
...

λ△t△x (κa (t) g (− (j − 1)△x− (b− a)) + κb (t) g (2 (b− a)− (j − 1)△x− (b− a)) + g ((b− a)− j△x))



































T

.
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The second to last row is given by










λ△t△x (κa (t) g (− (b− a) +△x) + κb (t) g ((b− a) +△x) + g ((b− a)−△x))
...

p (b− 2△x, t) + λ△t△x (g (△x) + κa (t) g (−2 (b− a) + 3△x) + κb (t) g (3△x))
r (b−△x, t) + λ△t△x (κa (t) g (−2 (b− a) + 2△x) + κb (t) g (2△x))

q (b, t) + κb (t) p (b, t) + λ△t△x (g (−△x) + κa (t) g (−2 (b− a) +△x) + κb (t) g (△x))










T

and the last row reads as follows










λ△t△xκb (t) (κa (t) g (− (b− a)) + g (b− a))
...

κb (t) (p (b−△x, t) + λ△t△xg (△x))
1− κb (t)

(

p (b, t) + q (b, t) + λ△t△x
∑∞

j=−∞
j 6=0

g (j△x)
)










T

where b− a = △x (N − 1).

4.1.2 Optimal control of a random walk with jumps

In this subsection, we include controls into the transition matrix P = P (u) in order to first extend and
second validate our modeling framework with numerical experiments later. In the following, we define
a RW optimal control problem. We prove existence of an optimal control and derive the optimality
conditions that characterize it.

For ease of notation, we refer to the case with absorbing boundaries, that is, κa = 0 and κb = 0.
However, notice that our discussion refers to a general transition matrix.

In the case of absorbing barriers, we have f (a, t) = f (b, t) = 0. Therefore the number of states is
given by N = b−a

△x − 1, and t ≥ t0.
We insert the control mechanism in p (x, t) and q (x, t), thus allowing a control mechanism in the drift

and in the diffusion. This fact will become evident when considering of the FP equation in Subsection
4.1.3.

Our control function u enters in the transition probabilities as follows

p (x, t) :=
1

2

(

s (x, t) +
△x
D
u (x, t)

)

(4.15)

and

q (x, t) :=
1

2

(

s (x, t)− △x
D
u (x, t)

)

(4.16)

with a constant

D :=
(△x)2
△t ∈ R+ (4.17)

with given s : X△x
x0 × T

△t
t0
→ R+ and u : X△x

x0 × T
△t
t0
→ R.

Since we wish to provide a detailed discussion of all quantities that enter our computational framework
and, in particular, present these quantities in vector notation, we focus on the case where the control
function depends only on time, i.e. u = u (t) and s is constant. The same discussion can be repeated in
the general case u = u (x, t) and s = s (x, t) with additional notational effort.
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Now, we insert (4.15) and (4.16) into (4.9) and obtain the following

f (x, t+△t) = (s+△xu (t)) f (x−△x, t) + (s−△xu (t)) f (x+△x, t)

+ λ△t△x
∞∑

j=−∞
j 6=0

(g (j△x) f (x− j△x, t)) +






1− s− λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)






f (x, t) .

From 0 ≤ p (x, t) + q (x, t) + λ△t△x∑∞
j=−∞ g (j△x) ≤ 1, we have 0 ≤ s ≤ 1− λ△t△x

∑∞
j=−∞ g (j△x) .

From 0 ≤ p (x, t) ≤ 1, we have − D
△xs ≤ u (t) ≤ D

△x (2− s) and from 0 ≤ q (x, t) ≤ 1, we have

− D
△x (2− s) ≤ u (t) ≤ D

△xs. We conclude that the admissible set of controls is given by

Uad (s) := {u (t) ∈ R| us ≤ u (t) ≤ us}

where

us := −
D

△xs and us :=
D

△xs. (4.18)

Next, we define the two objective functionals Jt (f, u) and Jc (f, u) that model the purpose of the
control and its cost. Let α, β, γ ∈ R+

0 , we have

Jt (f, u) :=
α

2
△x△t





Nt−1∑

n=1

b−△x
∑

x=a+△x

(f (x, tn)− fd (x, tn))2


+
β

2
△x





b−△x
∑

x=a+△x

(f (x, T )− fd (x, T ))2




+
γ

2
△x△t





Nt−1∑

n=0

b−△x
∑

x=a+△x

f (x, tn)u
2 (tn)





(4.19)

where fd : X△x
x0 × T

△t
t0
→ R+

0 with △x
∑b−△x

x=a+△x fd (x, t) ≤ 1 represents a desired trajectory and a target
at final time. The purpose of the first term in the functional models the requirement that the evolving
discrete occupation probability density f follows as close as possible the desired trajectory given by fd.
The second term requires that f reaches a target configuration as close as possible to fd (·, T ). The last
term models the expectation costs of the control.

Further, we consider the following functional Jc, which has the structure of a statistical expectation
functional. We have

Jc (f, u) := α△x△t





Nt−1∑

n=1

b−△x
∑

x=a+△x

f (x, tn) c (x, tn)



+ β△x





b−△x
∑

x=a+△x

f (x, T )Ψ (x)





+
γ

2
△x△t





Nt−1∑

n=0

b−△x
∑

x=a+△x

f (x, tn)u
2 (tn)





(4.20)

where c : X△x
x0 × T

△t
t0
→ R and Ψ : X△x

x0 → R are given discrete functions. The first two terms model the
expectation of a running gain function c and of a pay-off Ψ, while the last term represents the expectation
of the cost of the control.

Our optimal control problems are defined as follows

min
f,u

JΦ (f, u) s.t. f, u fulfill (4.9) and u ∈ Uad (s) (4.21)

for Φ ∈ {t, c}.
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In order to formulate these problems with the matrix-vector setting above, we explicitly refer to our

discrete functions as vectors as follows f :=






f1

...
fNt




 ∈ RNNt , where fn :=






f (a+△x, tn)
...

f (b−△x, tn)




 ∈ RN for

all n ∈ {1, ..., Nt} and u :=






u0

...
uNt−1




 ∈ RNt , where un = u (tn) for all n ∈ {0, ..., Nt − 1}. According to

(4.9) and for a given f0 ≥ 0, where ≥ works componentwise, we have





f1

...
fNt




 =






P
(
u0
)

. . .

P
(
uNt−1

)











f0

...
fNt−1






where the transition matrix P (un) ∈ RN×N , for (4.10) to (4.14) including (4.15), (4.16) and κa = κb = 0,
is given as follows

P (un)

=










r 1
2s−

△x
2D u (tn) + g̃ (−△x) · · ·

1
2s+

△x
2D u (tn) + g̃ (△x) . . .

. . .
. . .

. . .
. . . s+ g̃ (−△x)

...
. . . 1

2s+
△x
2D u (tn) + g̃ (△x) r










with r = 1− s− λ△t△x
∑∞

j=−∞
j 6=0

g (j△x) and g̃ (j△x) = λ△t△xg (j△x) for all j ∈ Z.

Furthermore, we define

F (f, u) :=






f1

...
fNt




−






P
(
u0
)

. . .

P
(
uNt−1

)











f0

...
fNt−1




 ∈ RNtN . (4.22)

With (4.22), the optimal control problem (4.21) is formulated as follows

min
f,u

JΦ (f, u) s.t. F (f, u) = 0 and u ∈ Uad (s) . (4.23)

Although for a given u and f0 the problem F (f, u) = 0 is readily solvable by matrix multiplication of
fn+1 = P (un) fn for all n ∈ {0, ..., Nt − 1}, see (4.22), we prefer to discuss it in the framework of the
implicit function theorem [4], because this approach allows to prove smoothness of the control-to-state
map and thus existence of an optimal control. Furthermore in this way, we obtain the gradient of the
reduced functional.

Next, we prove existence of a solution f = f (u) to F (f, u) = 0 for a given u and the Fréchet
differentiability of f (u) with respect to u, see [4, 78] for details.

The Fréchet derivative of F (f, u) with respect to f is given by

DfF (f, u) =








✶

−P
(
u1
)

✶

−P
(
u2
) . . .

−P
(
uNt−1

)
✶







∈ RNtN×NtN , (4.24)

which is a lower triangular matrix where ✶ ∈ RN×N is the identity. The determinant of DfF (f, u) is
one and thus invertible. Applying the implicit function theorem to F (f, u) = 0, we obtain that the map
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u 7→ f (u) is infinitely differentiable in a certain neighborhood of each fixed u and the Fréchet derivative
Duf (u) of f (u) with respect to u is given by

Duf (u) = − (DfF (f, u))−1DuF (f, u) ∈ RNtN×Nt (4.25)

where DuF (f, u) ∈ RNtN×Nt denotes the Fréchet derivative of F (f, u) with respect to u, which is given
by

DuF (f, u) = −








Du0

Du1

. . .

DuNt−1







∈ RNtN×Nt (4.26)

where

Dun :=
△x
2D










−f (a+ 2△x, tn)
f (a+△x, tn)− f (a+ 3△x, tn)

...
f (b− 3△x, tn)− f (b−△x, tn)

f (b− 2△x, tn)










∈ RN×1

for all n ≥ 0.

Using the mapping u 7→ f (u), we define the reduced objective functional

Ĵ (u) := J (f (u) , u) (4.27)

for any differentiable functional J (f, u). The vector for the adjoint equation (4.31) is denoted with

ζ :=






ζ1

...
ζNt




 ∈ RNtN , ζn ∈ RN for all n ∈ {1, ..., Nt}. We prove the following theorem.

Theorem 32. Let J (f, u) be differentiable with respect to f ∈ RNNt and u ∈ RNt . Then, the optimal
control problem

{

minu Ĵ (u)

u ∈ Uad (s)
(4.28)

with Ĵ (u) defined in (4.27) has a solution where

Uad (s) :=
{
u ∈ RNt | us ≤ un ≤ us, n ∈ {0, ...Nt − 1}

}
(4.29)

with us and us defined in (4.18) and ≤, ≥ are meant componentwise. The reduced gradient is given by

∇uĴ (u) = (DuF (f, u))T ζ +∇uJ (f, u) ∈ RNt (4.30)

where ζ solves

(DfF (f, u))T ζ = −∇fJ (f, u) ∈ RNtN . (4.31)

An optimal solution uopt ∈ RNt of (4.28) is characterized by

(

∇uĴ
(
uopt

))T (
u− uopt

)
≥ 0 (4.32)

for all u ∈ Uad (s) where Uad (s) is defined in (4.29).
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Proof. The set Uad (s) is compact because it is closed and bounded [78] and the function is differentiable
because its a composition of the differentiable function f (u), see the discussion following (4.23) and the
differentiable target functional, see (4.27). Therefore Ĵ is continuous and thus function Ĵ (u) takes its
minimum on Uad (s), see e.g. [78].

The Fréchet derivative DuĴ (u) is given by

DuĴ (u) = DfJ (f, u)Duf +DuJ (f, u)

= DfJ (f, u)
(

− (DfF (f, u))−1DuF (f, u)
)

+DuJ (f, u) (4.33)

where we used (4.25). We define ζT := −DfJ (f, u) (DfF (f, u))−1, equivalently, we have ζTDfF (f, u) =

−DfJ (f, u). We obtain the reduced gradient ∇uĴ (u) from (4.33). We obtain

∇uĴ (u) = (DuF (f, u))T ζ +∇uJ (f, u)

where ζ solves

(DfF (f, u))T ζ = −∇fJ (f, u) .

The set Uad (s) is convex. By [68, page 178] and the differentiability of Ĵ (u), we obtain the necessary
optimality condition (4.32).

Remark 33. Equation (4.31) is equivalent to









ζ1 −
(
P
(
u1
))T

ζ2

...

ζNt−1 −
(
P
(
uT−1

))T
ζNt

ζNt









= −∇fJ (f, u)

which is a backward equation for ζ with the terminal value ζNt = −∇fNtJ (f, u) ∈ RN . The solution to
the forward CK equation F (f, u) = 0 for all time steps is given by






f1

...
fNt




 =






P
(
u0
)
f0

...
P
(
uNt−1

)
fNt−1






for any given f0 ≥ 0. Analogously, we have

∇uĴ (u) = ∇uJ (f, u)−






(Du0)T ζ1

...

(DuNt−1)T ζNt






according to (4.30).

Corollary 34. The optimal control problem (4.28) with J = Jt (f, u) or J = Jc (f, u) has a solution.

Proof. The functionals Jt (f, u) and Jc (f, u) are infinitely differentiable with respect to f and u. Thus,
we apply Theorem 32 and prove the claim.

Further calculation proves the following corollaries. To use a compact notation, we denote with eN ∈
RN a unit vector where each entry is one.
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Corollary 35. The gradient of Jt (f, u) given in (4.19) with respect to f and u is given by

∇fJt (f, u)

= α△x△t













f1 − f1d
...

fNt−1 − fNt−1
d

0
...
0













+ β△x








0
...
0

fNt − fNt

d








+
γ

2
△x△t













u2 (t1) eN
...

u2 (tNt−1) eN
0
...
0













∈ RNtN

and

∇uJt (f, u) = γ△x△t







u0
∑b−△x

x=a+△x f (x, t0)
...

uNt−1
∑b−△x

x=a+△x f (x, tNt−1)






∈ RNt .

Corollary 36. The gradient of Jc (f, u) given in (4.20) with respect to f and u is given by

∇fJc (f, u) = α△x△t













c1

...
cNt−1

0
...
0













+ β△x








0
...
0
Ψ








+
γ

2
△x△t













u2 (t1) eN
...

u2 (tNt−1) eN
0
...
0













∈ RNtN

and

∇uJc (f, u) = γ△x△t







u0
∑b−△x

x=a+△x f (x, t0)
...

uNt−1
∑b−△x

x=a+△x f (x, tNt−1)






∈ RNt

where cn :=






c (a+△x, tn)
...

c (b−△x, tn)




 ∈ RN for all n ≥ 1 and Ψ :=






Ψ(a+△x)
...

Ψ(b−△x)




 ∈ RN .

For the discussion that follows, we remark that, in the case J = Jc (f, u) and the control constraints
are not active, the optimality system represents a sufficient condition for an optimal solution to (4.28).
This result follows from the fact that ζ in (4.31) is independent of f and thus the reduced gradient defined
in (4.30) depends linearly on f . Let u be optimal and such that the control constraints are not active and
f be such that F (f, u) = 0. Then the following holds

∇uĴc (u) = 0, that is

(

−△x
2D

Mζ + γ△x△tMu

)






f0

...
fNt−1




 = 0

where

Mζ =








m1
ζ

m2
ζ

. . .

mNt

ζ







∈ RNt×NNt , mn

ζ =
(
ζn2 ζn3 − ζn1 · · · ζnN − ζnN−2 −ζnN−1

)
∈ R1×N ,
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ζnj := ζ (a+ j△x, tn) with j ∈ {1, ..., N}, N = b−a
△x − 1, for n ∈ {1, ...Nt} and

Mu =






m0
u

. . .

mNt−1
u




 ∈ RNt×NtN , mn

u = u (tn) e
T
N ∈ R2N×N

for all n ∈ {0, ..., Nt − 1} and thus as sufficient condition for optimality −△x
2DMζ + γ△x△tMu = 0. From

that, we express each entry of u by the relation Mu = 1
2γD△tMζ and substitute u in the adjoint equation

(4.31) by the corresponding expressions with ζ. The solution of the nonlinear system arising from the
adjoint equation (4.31) is inserted in Mζ again to obtain a solution for u form Mu = 1

2γD△tMζ .

4.1.3 Derivation of the Fokker-Planck equation

In this subsection, we present two ways of deriving the Fokker-Planck equation from the RW to illustrate
the connection between the controlled CK equation and the controlled FP equation. We have x ∈ X

△x
x0

and t ∈ T
△t
t0

.
First, as in [37], we interpret (4.2) to (4.6) as the conditional probability of discrete jumps of the

process between the lattice points within the interval △t and investigate the limit for △x,△t→ 0 of our
CK equation (4.9) to obtain the FP equation. We define the diffusion σ2 (x, t) and the drift µ (x, t) of the
FP equation as follows

σ2 (x, t) :=
(△x)2
△t (p (x, t) + q (x, t)) , (4.34)

µ (x, t) :=
△x
△t (p (x, t)− q (x, t)) (4.35)

and we have the constant D defined in (4.17). Inserting (4.15) and (4.16) into (4.34) and (4.35), we have
σ2 (x, t) = Ds (x, t) and µ (x, t) = u (x, t). Notice that we identify the diffusion with s (x, t), up to a
constant D, and the drift with the control function u (x, t).

Next, we require that f, σ, µ and g are defined in the continuous case and that f , σ2 are twice differen-
tiable with respect to x, f is once differentiable with respect to t, µ is once differentiable with respect to
x, and the limit lim△x,△t→0 λ△x

∑∞
j=−∞ g (x− yj) (f (yj , t)− f (x, t)) exists for all x, y ∈ R and is equal

to λ
´∞
−∞ g (x− y) (f (y, t)− f (x, t)) dy where yj := x − j△x and yj+1 − yj = −△x, see [78] for details

about the Riemann sum. From (4.34) and (4.35), we obtain

p (x, t) =
△t

2 (△x)2
σ2 (x, t) +

△t
2△xµ (x, t) and q (x, t) =

△t
2 (△x)2

σ2 (x, t)− △t
2△xµ (x, t) (4.36)

and insert (4.36) into (4.9) and perform the limit lim△x,△t→0 with (4.17) as follows

∂f

∂t
(x, t)

= lim
△x,△t→0

f (x, t+△t)− f (x, t)
△t

= lim
△x,△t→0

(
σ2 (x+△x, t) f (x+△x, t)− 2σ2 (x, t) f (x, t) + σ2 (x−△x, t) f (x−△x, t)

2 (△x)2
)

− lim
△x,△t→0

(
µ (x+△x, t) f (x+△x, t)− µ (x−△x, t) f (x−△x, t)

2△x

)

+ lim
△x,△t→0

λ△x
∞∑

j=−∞
g (x− yj) (f (yj , t)− f (x, t))

=
∂2

∂x2

(
σ2 (x, t)

2
f (x, t)

)

− ∂

∂x
(u (x, t) f (x, t))− λ

ˆ −∞

∞
g (x− y) (f (y, t)− f (x, t)) dy.
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Furthermore, we have 0 ≤ p (x, t) + q (x, t) ≤ 1, thus 0 ≤ s (x, t) ≤ 1 independent of the value of △x. To
fulfill σ2 (x, t) = Ds (x, t), we set

D = sup
x,t∈R

σ2 (x, t) .

Therefore, for a given △x and diffusion σ2, the time step △t is given by (4.17). In correspondence
to s (x, t), we obtain a drift u (x, t) in the limit △x → 0 according to (4.15) and (4.16) such that the
condition 0 ≤ p (x, t) ≤ 1 and 0 ≤ q (x, t) ≤ 1 are fulfilled. Using the compact support of g, that means
that g (x− y) = 0 if |x− y| > xc, we finally obtain the following FP equation

∂f

∂t
(x, t) +

∂

∂x
(u (x, t) f (x, t))− ∂2

∂x2

(
σ2 (x, t)

2
f (x, t)

)

− λ
ˆ x+xc

x−xc

g (x− y) (f (y, t)− f (x, t)) dy = 0

(4.37)
with the boundary conditions f (x, t) = 0 for x ≤ a and b ≤ x.

We complete this section deriving the FP equation for a combination of absorbing and reflecting
boundary conditions. This derivation is more involved and requires the introduction of the concept flux
of the probability density.

Another approach from the discrete Chapman-Kolmogorov equation (4.9) to the Fokker-Planck equa-
tion is to consider a flux of probability density between the states which are connected pair wise by tubes in
which the probability density flows according to (4.2) to (4.6). We interpret p (x, t) f (x, t), q (x, t) f (x, t)
and λ△t△xg (j△x) f (x, t), j ∈ Z as microscopic particle flux densities where the ” + ” sign in front of
them means that the flux points in increasing x direction and the "-" sign means that the flux points in
decreasing x direction. We define the particle flux density between x+△x and x at t by

j+ (x, t) :=
△x
△t (p (x, t) f (x, t)− q (x+△x, t) f (x+△x, t))

− λ (△x)2
−1∑

j=−∞
g (j△x)

j+1
∑

j̃=0

f
(
x+△x− j̃△x, t

)
+ λ (△x)2

∞∑

j=1

g (j△x)
j
∑

j̃=−1

f
(
x−△x− j̃△x, t

)
.

(4.38)

The quantity j+ (x, t) considers all incoming or outgoing fluxes as far as they go through x from or to
x+△x. As mentioned before, we have f (b+ j△x, t) = 0 for all j ∈ N0. The particle flux density between
x and x−△x at t is defined by

j− (x, t) :=
△x
△t (p (x−△x, t) f (x−△x, t)− q (x, t) f (x, t))

− λ (△x)2
−1∑

j=−∞
g (j△x)

j
∑

j̃=−1

f
(
x−△x− j̃△x, t

)
+ λ (△x)2

∞∑

j=1

g (j△x)
j+1
∑

j̃=0

f
(
x+△x− j̃△x, t

)
.

(4.39)

The quantity j− (x, t) considers all incoming or outgoing fluxes as far as they go through x from or to
x−△x. As mentioned before f (a− j△x, t) = 0 for all j ∈ N0. The total particle flux density at (x, t) is
defined by

 (x, t) :=
j+ (x, t) + j− (x, t)

2
, (4.40)
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which is an arithmetic mean of j+ (x, t) and j− (x, t). The next definitions are made to reproduce the
discrete Fokker-Planck equation described in Subsection 4.1.1.

The discrete divergence of the flux is defined as follows

∇D
x  (x, t) :=

j+ (x, t)− j− (x, t)

△x . (4.41)

Next, we set the discrete flux equation at (x, t)

f (x, t+△t)− f (x, t)
△t = −∇D

x  (x, t) . (4.42)

If the discrete occupation probability density at (x, t) gets greater when time increases, then ∇D
x  (x, t) < 0

or if the discrete occupation probability density gets smaller when time increases, then ∇D
x  (x, t) > 0.

Remark 37. Inserting (4.38) and (4.39) into (4.42), we have that (4.42) is equivalent to (4.9) using that

−1∑

j=−∞
△xg (j△x)





j+1
∑

j̃=0

f
(
x+△x− j̃△x, t

)
−

j
∑

j̃=−1

f
(
x−△x− j̃△x, t

)





=
−1∑

j=−∞
△xg (j△x)





j
∑

j̃=1

f
(
x− j̃△x, t

)
−

j−1
∑

j̃=0

f
(
x− j̃△x, t

)





= f (x− j△x, t)− f (x, t) ,

∞∑

j=1

△xg (j△x)





j
∑

j̃=−1

f
(
x−△x− j̃△x, t

)
−

j+1
∑

j̃=0

f
(
x+△x− j̃△x, t

)





∞∑

j=1

△xg (j△x)





j−1
∑

j̃=0

f
(
x− j̃△x, t

)
−

j
∑

j̃=1

f
(
x− j̃△x, t

)





f (x, t)− f (x− j△x, t)
and f (x− j△x, t)− f (x, t) = 0 for j = 0.

In the next lemma, we prove that in connection with (4.42) the function f (x, t) is non negative for all

x ∈ X
△x
x0 and t ∈ T

△t
t0

once starting with f (x, t0) ≥ 0 for all x ∈ X
△x
x0 where ≥ works componentwise.

Lemma 38. If f (x, t0) ≥ 0 for all x ∈ X
△x
x0 , then f (x, t) ≥ 0 for all t ∈ T

△t
t0

and x ∈ X
△x
x0 following

(4.42).

Proof. The proof is done by complete induction. We have

f (x, t0 +△t)− f (x, t0)
△t = −∇D

x  (x, t0) ,

or equivalently,

f (x, t0 +△t) = p (x−△x, t0) f (x−△x, t0) + q (x+△x, t0) f (x+△x, t0)

+λ△t△x
∞∑

j=−∞
j 6=0

(g (j△x) f (x− j△x, t0))

+






1− p (x, t0)− q (x, t0)− λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)







︸ ︷︷ ︸

≥0

f (x, t0) ≥ 0.
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Assuming that f (x, t) ≥ 0 for one t ∈ T
△t
t0

, we have

f (x, t+△t) = p (x−△x, t) f (x−△x, t) + q (x+△x, t) f (x+△x, t)

+λ△t△x
∞∑

j=−∞
j 6=0

(g (j△x) f (x− j△x, t))

+






1− p (x, t)− q (x, t)− λ△t△x

∞∑

j=−∞
j 6=0

g (j△x)







︸ ︷︷ ︸

≥0

f (x, t) ≥ 0.

Remark 39. Inserting (4.34) and (4.35) into (4.40), we have

 (x, t) =
µ (x, t)

2
f (x, t)− 1

2

(
σ2 (x+△x, t) f (x+△x, t)− σ2 (x−△x, t) f (x−△x, t)

2△x

)

(4.43)

+
µ (x+△x, t)

4
f (x+△x, t) + µ (x−△x, t)

4
f (x−△x, t) (4.44)

− 1

2
λ△x





−1∑

j=−∞
△xg (j△x)

j+1
∑

j̃=0

f
(
x+△x− j̃△x, t

)



 (4.45)

− 1

2
λ△x





−1∑

j=−∞
△xg (j△x)

j
∑

j̃=−1

f
(
x−△x− j̃△x, t

)



 (4.46)

+
1

2
λ△x





∞∑

j=1

△xg (j△x)
j+1
∑

j̃=0

f
(
x+△x− j̃△x, t

)



 (4.47)

+
1

2
λ△x





∞∑

j=1

△xg (j△x)
j
∑

j̃=−1

f
(
x−△x− j̃△x, t

)



 (4.48)

for all x ∈ X
△x
x0 and t ∈ T

△t
t0

.

If f and σ2 are differentiable with respect to x, µ is continuous and (4.45) to (4.48) are Riemann sums,
see [78], where yj := x− j△x and ỹj̃ := x− j̃△x, then, similarly to [9], we have that

lim
△x→0

 (x, t) = µ (x, t) f (x, t)− ∂

∂x

(
σ2 (x, t)

2
f (x, t)

)

− λ
ˆ ∞

−∞
g (x− y)

ˆ y

x
f (ỹ, t) dỹdy.

We have yj+1 − yj = −△x and ỹj̃−1 − ỹj̃ = △x. According to the definition of the Riemann sum, see

[78], the limit for △x→ 0 of (4.45) is given by −1
2λ
´ 0
∞−g (x− y)

´ y
x f (ỹ, t) dỹdy and of (4.46) is given by

−1
2λ
´ 0
∞−g (x− y)

´ y
x f (ỹ, t) dỹdy. We have ỹj̃+1 − ỹj̃ = −△x and thus the limit of (4.47) for △x→ 0 is

given by 1
2λ
´ −∞
0 −g (x− y)

´ y
x −f (ỹ, t) dỹdy and of (4.48) is given by 1

2λ
´ −∞
0 −g (x− y)

´ y
x −f (ỹ, t) dỹdy.

Now, we give j+ref (x, t) and j−ref (x, t) such that we obtain (4.10) to (4.14) inserting j+ref (x, t) and j−ref (x, t)

into (4.42) for all x ∈ X
△x
x0 and t ∈ T

△t
t0

. For this purpose, we add the contributions from the reflecting
barrier to j+ (x, t) and j− (x, t). For x = a, we have
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j+ref (a, t) :=κa (t)



j+ (a, t)− λκb (t) (△x)2
∞∑

j=1

g (j△x)
j
∑

j̃=0

f
(
2b− a− j̃△x, t

)





and

j−ref (a, t) :=κa (t)



j− (a, t)− λκb (t) (△x)2
∞∑

j=1

g (j△x)
j−1
∑

j̃=0

f
(
2b− a− j̃△x, t

)



 .

For x = a+△x, we obtain

j+ref (a+△x, t) :=j+ (a+△x, t)− κb (t)λ (△x)2
∞∑

j=1



g (j△x)
j
∑

j̃=0

f
(
2b− a−△x− j̃△x, t

)





+ κa (t)λ (△x)2
−1∑

j=−∞



g (j△x)
j−1
∑

j̃=0

f
(
a−△x− j̃△x, t

)





and

j−ref (a+△x, t) :=j− (a+△x, t) + κa (t)
△x
△t q (a, t) f (a, t)

− κb (t)λ (△x)2
∞∑

j=1



g (j△x)
j−1
∑

j̃=0

f
(
2b− a−△x− j̃△x, t

)





+ κa (t)λ (△x)2
−1∑

j=−∞



g (j△x)
j
∑

j̃=0

f
(
a−△x− j̃△x, t

)



 .

If a+△x < x < b−△x, then

j+ref (x, t) := j+ (x, t)− κb (t)λ (△x)2
∞∑

j=1



g (j△x)
j
∑

j̃=0

f
(
2b− x− j̃△x, t

)





+ κa (t)λ (△x)2
−1∑

j=−∞



g (j△x)
j−1
∑

j̃=0

f
(
2a− x− j̃△x, t

)





(4.49)

and

j−ref (x, t) := j− (x, t)− κb (t)λ (△x)2
∞∑

j=1



g (j△x)
j−1
∑

j̃=0

f
(
2b− x− j̃△x, t

)





+ κa (t)λ (△x)2
−1∑

j=−∞



g (j△x)
j
∑

j̃=0

f
(
2a− x− j̃△x, t

)



 .

(4.50)
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For x = b−△x, we have

j+ref (b−△x, t) := j+ (b−△x, t)− κb (t)
△x
△t p (b, t) f (b, t)

− κb (t)λ (△x)2
∞∑

j=1



g (j△x)
j
∑

j̃=0

f
(
b+△x− j̃△x, t

)





+ κa (t)λ (△x)2
−1∑

j=−∞



g (j△x)
j−1
∑

j̃=0

f
(
2a− b+△x− j̃△x, t

)





and

j−ref (b−△x, t) :=j− (b−△x, t)− κb (t)λ (△x)2
∞∑

j=1



g (j△x)
j−1
∑

j̃=0

f
(
b+△x− j̃△x, t

)





+ κa (t)λ (△x)2
−1∑

j=−∞



g (j△x)
j
∑

j̃=0

f
(
2a− b+△x− j̃△x, t

)



 .

For x = b, we obtain

j+ref (b, t) := κb (t)



j+ (b, t) + λκa (t) (△x)2
−1∑

j=−∞



g (j△x)
j−1
∑

j̃=0

f
(
2a− b− j̃△x, t

)









and

j−ref (b, t) :=κb (t)



j− (b, t) + λκa (t) (△x)2
−1∑

j=−∞



g (j△x)
j
∑

j̃=0

f
(
2a− b− j̃△x, t

)







 .

In the limit for △x→ 0, we obtain from (4.40) with (4.49) and (4.50) that

c (x, t) := lim
△x→0

 (x, t)

= µ (x, t) f (x, t)− ∂

∂x

(
σ2 (x, t)

2
f (x, t)

)

− λ
ˆ ∞

−∞
g (x− y)

ˆ y

x
f (ỹ, t) dỹdy (4.51)

+ κa (t)λ

ˆ ∞

x
g (x− y)

ˆ y

x
f (2 (a− x) + ỹ) dỹdy + κb (t)λ

ˆ x

−∞
g (x− y)

ˆ y

x
f (2 (b− x) + ỹ) dỹdy

analogously to Remark 39. Inserting (4.49) and (4.50) into (4.42), we have

∂f

∂t
(x, t) = − ∂

∂x
(µ (x, t) f (x, t)) +

∂2

∂x2

(
σ2 (x, t)

2
f (x, t)

)

+ λ

ˆ ∞

−∞
g (x− y) (f (y, t)− f (x, t)) dy

+ κa (t)λ

ˆ ∞

x
g (x− y) f (2 (a− x) + y) dy + κb (t)λ

ˆ x

−∞
g (x− y) f (2 (b− x) + y) dy

(4.52)

analogously to (4.37).

In the next lemma we have that the loss of probability can be expressed by the flux at the boundary.
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Lemma 40. Considering (4.10) to (4.14) for g = 0, it holds

△x
△t

(
b∑

x=a

f (x, t+△t)−
b∑

x=a

f (x, t)

)

= κa (t)

(
σ2 (a+△x, t) f (a+△x, t)− σ2 (a, t) f (a, t)

2△x − 1

2
(µ (a+△x, t) f (a+△x, t) + µ (a, t) f (a, t))

)

−
(
σ2 (a+△x, t) f (a+△x, t)− σ2 (a, t) f (a, t)

2△x − 1

2
(µ (a+△x, t) f (a+△x, t) + µ (a, t) f (a, t))

)

+
σ2 (b, t) f (b, t)− σ2 (b−△x, t) f (b−△x, t)

2△x − 1

2
(µ (b, t) f (b, t) + µ (b−△x, t) f (b−△x, t))

− κb (t)
(
σ2 (b, t) f (b, t)− σ2 (b−△x, t) f (b−△x, t)

2△x − 1

2
(µ (b, t) f (b, t) + µ (b−△x, t) f (b−△x, t))

)

for x ∈ X
△x
x0 .

Proof. A straightforward calculation gives

△x
△t

(
b∑

x=a

f (x, t+△t)−
b∑

x=a

f (x, t)

)

=
△x
△t (κa (t) q (a+△x, t) f (a+△x, t)− κa (t) p (a, t) f (a, t) + p (a, t) f (a, t)− q (a+△x, t) f (a+△x, t))

+
△x
△t (q (b, t) f (b, t)− p (b−△x, t) f (b−△x, t) + κb (t) p (b−△x, t) f (b−△x, t)− κb (t) q (b, t) f (b, t)) .

By inserting (4.36), we obtain the claim.

Remark 41. If σ2f is differentiable with respect to x, f is differentiable with respect to t and µf is
continuous, then we have

ˆ b

a

∂f (x, t)

∂t
dx

= (1− κa (t))
(

µ (a) f (a)− ∂

∂x

(
σ2 (a, t)

2
f (a, t)

))

+ (κb (t)− 1)

(

µ (b) f (b)− ∂

∂x

(
σ2 (b, t)

2
f (b, t)

))

in the limit △x→ 0 according to Lemma 40.

Remark 42. For κa ≡ κb ≡ 1, we have c (a, t) = c (b, t) = 0. We perform the calculation for x = a.
It is analogous for x = b. The main part is to see that both

´ a
−∞ g (a− y)

´ y
a f (ỹ, t) dỹdy = 0 and

´ a
−∞ g (a− y)

´ y
a f (2 (b− a) + ỹ) dỹdy = 0. With a transformation of variables, see [78] and the compact

support of g, we obtain
´ xc

0 g (z̃)
´ a−z̃
a f (ỹ, t) dỹdz̃ = 0 and

´ xc

0 g (z̃)
´ 2(b−a)+a−z̃
2(b−a)+a f (z) dzdz̃ = 0 because

xc ≤ b− a and f (x, t) = 0 outside the domain by definition.

The discussion above motivates the following definition of the boundary conditions for (4.52) originating
from our microscopic model

c (a, t) := (1− κa (t))
(

µ (a) f (a)− ∂

∂x

(
σ2 (a, t)

2
f (a, t)

)

− λ
ˆ ∞

a
g (a− y)

ˆ y

a
f (ỹ, t) dỹdy

)

and

c (b, t) := (κb (t)− 1)

(

µ (a) f (a)− ∂

∂x

(
σ2 (a, t)

2
f (a, t)

)

+

ˆ b

−∞
g (b− y)

ˆ y

b
f (ỹ, t) dỹdy

)
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where we have zero flux conditions if κa ≡ κb ≡ 1. If κa ≡ 0 or κb ≡ 0, then the corresponding flux
boundary condition is substituted by the zero boundary condition, see (4.37). We introduce boundary
flux operators

Ba (f, t) := jc (a, t) (4.53)

and

Bb (f, t) := jc (b, t) . (4.54)

According to (4.52), (4.53) and (4.54), we summarize the discussion above with the following model
originating from our microscopic model using the compact support of g, that means that g (x− y) = 0 if
|x− y| > xc

∂f

∂t
(x, t) = − ∂

∂x
(µ (x, t) f (x, t)) +

∂2

∂x2

(
σ2 (x, t)

2
f (x, t)

)

+ λ

ˆ x+xc

x−xc

g (x− y) (f (y, t)− f (x, t)) dy

+ κa (t)λ

ˆ x+xc

x
g (x− y) f (2 (a− x) + y) dy + κb (t)λ

ˆ x

x−xc

g (x− y) f (2 (b− x) + y) dy

for x ∈ (a, b),

Ba (f, t) = γa (t)

for x = a and

Bb (f, t) = γb (t)

for x = b where γa, γb : R
+
0 → R are given functions that means given boundary values of Ba and Bb

and f (x, t) = 0 outside the domain for all t ≥ 0.

4.1.4 Numerical experiments

In this subsection, we present results of numerical experiments to validate our control framework. On
the one hand, we show that our control framework is robust with respect to the choice of the parameters
characterizing the RW model and the optimal control settings. Specifically, we consider control problems
corresponding to the two cost functionals Jt with two absorbing barriers and Jc with two reflecting barriers.
On the other hand, we aim at demonstrating that the RW control solution converges to the solution of a
FP control problem.

First, we solve the optimal control problem (4.28) for J = Jt defined in (4.19) with the following RW

setting: △ti = T
(
1
4

)4+i
and △xi =

(
1
2

)4+i√
DT , i ∈ {1, 2, 3}. We choose T = D = 1 and α = β = 1

and γ = 1
10 and s = 1

10 with two absorbing barriers at a = 0 and b = 1. For all t ∈ (0, T ], we choose the
trajectory-target function as follows

fd (x, t) =

{

5 if x̄ (t)− 1
10 ≤ x ≤ x̄ (t) + 1

10

0 else

where x̄ (t) := x0 +
(
b−a
2 − 3

20

)
sin
(
2π t

T

)
and x0 =

b+a
2 . The initial state f0 is given by

f0 (x) =

{
5
2 if b+a

2 − 1
5 ≤ x ≤ b+a

2 + 1
5

0 else
. (4.55)
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We choose a jump rate λ = 1 and the length of the jump distribution is modeled with the following
function

g (x) =

{

10 if − 1
10 ≤ x ≤ 1

10

0 else
. (4.56)

To solve our optimization problems, we use a nonlinear conjugate gradient (NCG) scheme in the variant
proposed by Hager and Zhang [50]. To test the accuracy of the computed reduced gradient, we perform
several gradient tests comparing with a centered difference quotient of the reduced cost functional and
obtain convergence of quadratic order. Specifically, we compare our gradient ∇Ĵ applied to a variation

δu with the value of the finite-difference formula Ĵ(u+θδu)−Ĵ(u−θδu)
2θ for different θ > 0 as θ → 0. In all

experiments, the iterative NCG scheme starts with an initial guess for the control given by u0 = 0 ∈ RNt

and the stopping criterion is given by

√

dt∇uĴ (u)T∇uĴ (u) < 10−8. This stopping criterion can be used

as far as the control is within its bounds, see (4.29), which is always our case.

In the Figure 4.1, we present results of numerical experiments with three different space- and time-step
sizes for the RW model.

Notice that f is set equal to zero at the absorbing barriers for all times and it follows the desired
trajectory given by fd. Furthermore, the control (drift) u behaves as it could be expected. As we refine
the space- and time-step sizes, we see a pointwise convergence of the optimal control solutions.
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(a) Optimal control u (t) for △t1 and △x1.
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(b) Contour plot of the state f (x, t) for △t1 and △x1.
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(c) Optimal control u (t) for △t2 and △x2. (d) Contour plot of the state f (x, t) for △t2 and △x2.
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(e) Optimal control u (t) for △t3 and △x3. (f) Contour plot of the state f (x, t) for △t3 and △x3.

Figure 4.1: Optimal control u (t) and corresponding state f (x, t) with absorbing barriers refining space-
and time-step size.

Another experiment in the same numerical optimization setting as above for △t3 and △x3 is to solve
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the Fokker-Planck equation

∂f (x, t)

∂t
= −u (t) ∂f (x, t)

∂x
+
s

2

∂2f (x, t)

∂x2
(4.57)

arising from the Chapman-Kolmogorov framework shown in Subsection 4.1.3 for g = 0 with a Chang-
Cooper method, see [30] with the optimal control u calculated from the discrete RW model by the Hager-
Zhang-NCG method. In Figure 4.2, we see a contour plot of f . In 4.2a, the state f corresponds to the
optimal control u, both calculated with the Hager-Zhang-NCG method. In 4.2b, the state f is calculated
with the Chang-Cooper method from the continuous equation (4.57). Both figures of the state look the
same since our discrete random walk is a discretization of the Fokker-Planck equation (4.57) according to
Subsection 4.1.3.

(a) Contour plot of the state f (x, t) calculated by the Hager-
Zhang-NCG method from the discrete RW model.

(b) Contour plot of the state f (x, t) calculated by the
Chang-Cooper method from the Fokker-Planck equation
(4.57).

Figure 4.2

Our last numerical experiment considers the target functional Jc defined in (4.20) with reflecting
barriers at a = 0 and b = 1 where D = T = 1 and N = b−a

△x + 1. The discretization is △x3 and △t3. The

diffusion s = 1
10 and the function g is given as in (4.56). Furthermore, α = β = 1, γ = 1

10 and λ = 1. The
initial value u0 = 0 ∈ RN

t and f0 is given as in (4.55). For t ∈ (0, T ], the function c is defined as follows

c (x, t) =

{

0 if x̄ (t)− 1
10 ≤ x ≤ x̄ (t) + 1

10

100 else

where x̄ (t) := x0 +
(
b−a
2 − 7

20

)
sin
(
2π t

T

)
and x0 = b+a

2 . The results of the experiment are presented in
Figure 4.3 where we use a nonlinear conjugate gradient (NCG) scheme in the variant proposed by Hager
and Zhang [50] to calculate our optimization problem.



4.2. THE FORMULATION OF FOKKER-PLANCK OPTIMAL CONTROL PROBLEMS 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-1

-0.5

0

0.5

1

1.5

2

(a) Optimal control u (t). (b) Contour plot of the state f (x, t).

Figure 4.3: Numerical experiment with reflecting barriers at a = 0 and b = 1.

4.2 The formulation of Fokker-Planck optimal control problems

In this section, we formulate optimal control problems governed by the FP equation. Our FP equa-
tion results from the consideration of stochastic Itô models that are continuous-time stochastic processes
described by the following stochastic differential equation (SDE)

dX (t) = b (X (t) , t) dt+ σ (X (t) , t) dW (t)

X (0) = X0
(4.58)

where the state variable X (t) ∈ Ω ⊆ Rn, n ∈ N is subject to deterministic infinitesimal increments driven
by the vector valued drift function b and to random increments proportional to a multi-dimensional Wiener
process dW (t) ∈ Rm, m ∈ N, with stochastically independent components. We denote with Ω ⊆ Rn an
open bounded domain with smooth boundary and measure |Ω|. We assume that there are absorbing
barriers on ∂Ω.

The FP equation associated to (4.58) is given by

∂tf (x, t)−
n∑

i,j=1

∂2xixj
(aij (x, t) f (x, t)) +

n∑

i=1

∂xi
(bi (x, t) f (x, t)) = 0 (4.59)

f (x, 0) = f0 (x) (4.60)

where f denotes the PDF of the process, f0 represents the initial PDF of the initial state of the process X0

and hence f0 (x) ≥ 0 with
´

Ω f0(x)dx = 1. In general σ ∈ Rn×m is a matrix which results in the diffusion
coefficients aij . However, in our discussion, we assume that the diffusion coefficient aij are constants all

with the value σ2

2 > 0 such that we have aij =
σ2

2 . Both the stochastic process (4.58) and the FP equation
(4.59) are considered in the time interval [0, T ] and Ω represents also the domain where f is defined.
We denote with Q := Ω × (0, T ). Corresponding to absorbing barriers, we have homogeneous Dirichlet
boundary conditions for f on ∂Ω, t ∈ [0, T ].

For the intention of this thesis, our starting point is given by the following two stochastic processes.
The first one is given by

dX (t) = (v (t) + w (t) ◦X (t)) dt+ σdW (t) (4.61)
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where ◦ denotes the Hadamard product x ◦w :=






x1w
1

...
xnw

n




 with x =






x1
...
xn




 ∈ Ω and w =






w1

...
wn




 ∈

Rn. Our second SDE model is as follows

dX (t) = u (X(t), t) dt+ σdW (t) . (4.62)

In both models, the drift represents the control function. However, in (4.61), the dependence of the control
on the state X is explicitly given and the controls sought are v, w : [0, T ]→ Rn. We refer to this case as the
open-loop control mechanism since there is no feedback of the actual position of the stochastic process by
space dependency of control functions. Notice that, from the SDE point of view, this mechanism includes
the linear and bilinear control cases that appear in many applications. On the other hand, in (4.62),
the control function u : Q → Rn is intended to define a closed-loop control mechanism for the stochastic
process. In contrast to the open-loop process above, the position of the stochastic process, in addition to
time, is also used to design a control strategy.

For the open-loop problem, the FP equation in its weak formulation is given by
ˆ

Ω

(

f ′ (x, t)ϕ (x) +
σ2

2
∇f (x, t) · ∇ϕ (x) +∇ ((v (t) + x ◦ w (t)) f (x, t))ϕ (x)

)

dx = 0

f (·, 0) = f0

(4.63)

for all ϕ ∈ H1
0 (Ω) and for almost all t ∈ (0, T ) where the dot · denotes the Euclidean scalar product, ∇

denotes the gradient with respect to the Euclidean scalar product in Rn, the divergence of a vector-valued

function y =






y1

...
yn




 is denoted with ∇y :=

∑n
i=1

∂
∂xi
yi and the partial derivative with respect to t is

denoted with f ′ := ∂
∂tf .

The admissible control sets are given as follows

V i
ad :=

{
v ∈ Lq (0, T ) | v (t) ∈ Ki

V a.e. in (0, T )
}

and
W i

ad :=
{
w ∈ Lq (0, T ) | w (t) ∈ Ki

W a.e. in (0, T )
}
,

i ∈ {1, ..., n}, q ≥ 2 where Ki
V , Ki

W are compact subsets of R. Hence we have that

KV := K1
V × ...×Kn

V and KW := K1
W × ...×Kn

W

and
Vad := V 1

ad × ...× V n
ad and w ∈Wad :=W 1

ad × ...×Wn
ad.

We remark that for any function y ∈ (Lq (0, T ))n, we have that ‖y‖qLq(0,T )
:=
∑n

i=1 ‖yi‖
q
Lq(0,T ) and analo-

gously for any function y ∈ (L∞ (0, T ))n, we have that ‖y‖L∞(0,T ) := maxi=1,...,n ‖yi‖L∞(0,T ).

Remark. We remark that (4.63) describes a decoupled stochastic process. This means that this stochastic
process decomposes into n one dimensional stochastic processes that do not depend on each other. While
the discussion in the following is for a general case, this decoupling can be used to accelerate numerical
calculations. Actually, we have to solve n one dimensional equations of the form

f ′i (t, xi)−
σ2

2

∂2

∂x2i
fi (t, xi) +

∂

∂xi
((vi (t) + xiwi (t)) fi (t, xi)) = 0

for i ∈ {1, ..., n}. This is computationally advantageous compared with solving the total FP equation

f ′ (t, x)− σ2

2
∆f (t, x) +∇ ((v (t) + x ◦ w (t)) f (t, x)) = 0
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in the n dimensional space Ω with respect to the scaling of the number of mesh grid points. The solution
of the total FP equation is then assembled by f (t, x) =

∏n
i=1 fi (t, x1) since by putting this approach into

the total FP equation, we obtain

f ′ (t, x)− σ2

2
∆f (t, x) +∇ ((v (t) + x ◦ w (t)) f (t, x))

=
n∑

i=1





(

f ′i (t, xi)−
σ2

2

∂2

∂x2i
fi (t, xi)

) n∏

j=1,j 6=i

fj (t, xj) +
∂

∂xi



(vi (t) + xiwi (t))
n∏

j=1

fj (t, xj)









=
n∑

i=1




∂

∂xi



(vi (t) + xiwi (t))

n∏

j=1

fj (t, xj)



−
(
∂

∂xi
((vi (t) + xiwi (t)) fi (t, xi))

) n∏

j=1,j 6=i

fj (t, xj)





=

n∑

i=1



wi (t)

n∏

j=1

fj (t, xj) + (vi (t) + xiwi (t))
∂

∂xi
fi (t, xi)

n∏

j=1,j 6=i

fj (t, xj)





−
n∑

i=1



wi (t)

n∏

j=1

fj (t, xj) + (vi (t) + xiwi (t))
∂

∂xi
fi (t, xi)

n∏

j=1,j 6=i

fj (t, xj)





= 0

with the product rule [3, IV Theorem 1.6] and using that each fi, i ∈ {1, ..., n}, solves the corresponding
one dimensional equation.

An essential result for our analysis is the following theorem that states a specific boundedness result.
For our purpose, we remark that, since the drift is differentiable with respect to x, we have

∇ ((v (t) + x ◦ w (t)) f (x, t)) =

n∑

i=1

∂

∂xi

((
vi (t) + xiw

i (t)
)
f (x, t)

)

=

n∑

i=1

(
vi (t) + xiw

i (t)
) ∂

∂xi
f (x, t) + wi (t) f (x, t) = (v (t) + x ◦ w (t)) · ∇f (x, t) +

n∑

i=1

wi (t) f (x, t)

(4.64)

with the product rule [2, 4.25]. This fact motivates the proof of the following theorem.

Theorem 43. Consider the following parabolic problem

(
y′, ϕ

)
+ a (∇y,∇ϕ) + (b · ∇y, ϕ) + (cy, ϕ) = (h, ϕ) in Ω× (0, T )

y = 0 on ∂Ω× [0, T ]

y = y0 on Ω× {0}
(4.65)

for all ϕ ∈ H1
0 (Ω) and almost all t ∈ (0, T ) where (·, ·) is the L2 (Ω)-scalar product, a, T > 0, b ∈

(L∞ (Q))n, c ∈ L∞ (Q), y0 ∈ L∞ (Ω) and h ∈ Lq (Q) where q > n
2 + 1 for n ≥ 2 and q ≥ 2 for n = 1

with n the dimension of the bounded domain Ω such that y ∈ L2
(
0, T ;H1

0 (Ω)
)
∩ L∞ (0, T ;L2 (Ω)

)
solves

(4.65). Then, we have that
‖y‖L∞(Q) ≤ C

(
‖h‖Lq(Q) + ‖y0‖L∞(Ω)

)

where C := C
(
Ω, a, T, ‖b‖L∞(Q), ‖c‖L∞(Q)

)
> 0.

Proof. The proof uses Theorem 64. First, we define the bilinear map

B (y, ϕ; t) := a

ˆ

Ω
∇y (x, t) · ∇ϕ (x) + b (x, t) · ∇y (x, t)ϕ (x) + c (x, t) y (x, t)ϕ (x) dx.
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In order to apply Theorem 64, we define an auxiliary problem where the corresponding bilinear map fulfills
the coercivity condition.

For this purpose, we set ŷ := e−ηty for any η ≥ 0 where y solves (4.65). Then, we multiply both sides
of (4.65) with e−ηt and obtain

ˆ

Ω
e−ηty′ (x, t)ϕ (x) dx+ e−ηtB (y (·, t) , ϕ) =

ˆ

Ω
e−ηth (x, t)ϕ (x) dx

from which we obtain, by inserting the definition of ŷ, the following
ˆ

Ω
ŷ′ (x, t)ϕ (x) dx+B (ŷ (·, t) , ϕ; t) +

ˆ

Ω
ηŷ (x, t)ϕ (x) dx =

ˆ

Ω
ĥ (x, t)ϕ (x) dx (4.66)

where ĥ := he−η· ∈ Lq (Q) because of the boundedness of t 7→ e−ηt over [0, T ]. Now, from (4.66), we have
that

ˆ

Ω
−ŷ′ (x, t)ϕ (x) dx+ B̂ (ŷ (·, t) , ϕ) =

ˆ

Ω
ĥ (x, t)ϕ (x) dx, (4.67)

which is uniquely solvable with ŷ = 0 on ∂Ω× [0, T ] and ŷ = e−η0y0 = y0 on Ω× {0} where

B̂ (ŷ, ϕ; t) := B (ŷ (·, t) , ϕ; t) +
ˆ

Ω
ηŷ (x, t)ϕ (x) dx,

see [45, Section 7.1 Thoerem 3] with ŷ ∈ L2
(
0, T ;H1

0 (Ω)
)
∩ L∞ (0, T ;L2 (Ω)

)
since t 7→ e−ηt is bounded

over [0, T ]. Then we have the following result

a‖ŷ (·, t) ‖2H1
0 (Ω)

= a

ˆ

Ω
∇ŷ (x, t) · ∇ŷ (x, t) dx = B̂ (ŷ, ŷ; t)−

ˆ

Ω
b (x, t) · ∇ŷ (x, t) ŷ (x, t) + (c (x, t) + η) ŷ2 (x, t) dx.

(4.68)

From (4.68), we obtain

a‖ŷ (·, t) ‖2H1
0 (Ω) +

ˆ

Ω
ηŷ2 (x, t) dx

= B̂ (ŷ, ŷ; t)−
ˆ

Ω
b (x, t) · ∇ŷ (x, t) ŷ (x, t) + c (x, t) ŷ2 (x, t) dx

≤ B̂ (ŷ, ŷ; t) + ‖b‖L∞(Q)

(

ǫ

ˆ

Ω
∇ŷ (x, t) · ∇ŷ (x, t) dx+

n

4ǫ

ˆ

Ω
ŷ2 (x, t) dx

)

+ ‖c‖L∞(Q)

ˆ

Ω
ŷ2 (x, t) dx

(4.69)

with

|
ˆ

Ω
b (x, t) · ∇ŷ (x, t) ŷ (x, t) dx| ≤ ‖b‖L∞(Q)

n∑

i=1

ˆ

Ω
| ∂
∂xi

ŷi (x, t) ||ŷ (x, t) |dx

≤ ‖b‖L∞(Q)

n∑

i=1

(
ˆ

Ω
ǫ| ∂
∂xi

ŷi (x, t) |2 +
1

4ǫ
|ŷ (x, t) |2

)

dx

= ‖b‖L∞(Q)

ˆ

Ω
ǫ∇ŷ (x, t) · ∇ŷ (x, t) + n

4ǫ
|ŷ (x, t) |2dx

where we use the Cauchy inequality, see [45, page 622], for ǫ > 0.
We assume that ‖b‖L∞(Q) 6= 0 and choose ǫ := a

2‖b‖L∞(Q)
. From (4.69), we have that

a

2
‖ŷ (·, t) ‖2H1

0 (Ω) +

ˆ

Ω
ηŷ2 (x, t) dx ≤ B̂ (ŷ, ŷ; t) +

‖b‖2L∞(Q) + 2a‖c‖L∞(Q)

2a

ˆ

Ω
ŷ2 (x, t) dx
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which gives
a‖ŷ (·, t) ‖2H1

0 (Ω) ≤ B̂ (ŷ, ŷ; t) (4.70)

for η ≥ ‖b‖2
L∞(Q)

+2a‖c‖L∞(Q)

2a .
If ‖b‖L∞(Q) = 0, then from (4.69) we obtain that (4.70) holds for η ≥ ‖c‖L∞(Q).
Consequently, we choose

η ≥
‖b‖2L∞(Q) + 2a‖c‖L∞(Q)

2a
.

Since it holds that B̂ (−k, ϕ; t) ≤ 0 for k ≥ 0 if ϕ ≥ 0 for any t ∈ [0, T ], we can apply Theorem 64 to the
following parabolic problem

(
ŷ′, ϕ

)
+ B̂ (ŷ, ϕ; t) =

(

ĥ, ϕ
)

in Ω× (0, T )

ŷ = 0 on ∂Ω× [0, T ]

ŷ = y0 on Ω× {0}
and obtain

‖ŷ‖L∞(Q) ≤ Ĉ‖ĥ‖L∞(Q) + ‖y0‖L∞(Ω) (4.71)

for a constant Ĉ > 0. Thus, from (4.71) we have

‖y‖L∞(Q) = ‖eη·ŷ‖L∞(Q) ≤ eηT ‖ŷ‖L∞ ≤ eηT Ĉ‖ĥ‖L2(Q) + eηT ‖y0‖L∞(Ω)

≤ ĈeηT ‖h‖L2(Q) + eηT ‖y0‖L∞(Ω)

where C := max
(

ĈeηT , eηT
)

.

The FP equation (4.63) with v ∈ Vad and w ∈Wad, considered as a parabolic equation in the framework
of Theorem 43, is uniquely solvable with f ∈ L2

(
0, T ;H1

0 (Ω)
)

and f ′ ∈ L2
(
0, T ;H−1 (Ω)

)
, see [1, Theorem

2.14], [45, Section 7.1, Theorem 3 and Theorem 4] for f0 ∈ L2 (Ω).
However, in order to obtain the desired regularity, we require f0 ∈ L∞ (Ω) ∩ H1

0 (Ω) such that we
have f ∈ L2

(
0, T ;H2 (Ω)

)
∩ L∞ (0, T ;H1

0 (Ω)
)
, see [45, Section 7.1 Theorem 5] where the proof for the

relevant part of [45, Section 7.1 Theorem 5] is also applicable with our assumptions. From these results
and Theorem 43, we conclude the following. A similar result can be found in [13].

Theorem 44. For the solution to (4.63), it holds

‖f‖L∞(Q) ≤ C‖f0‖L∞(Ω) (4.72)

where C := C
(
Ω, σ, T, ‖v + x ◦ w‖L∞(Q), ‖

∑n
i=1w

i‖L∞(Q)

)
> 0.

Proof. In view of (4.64), we choose b (x, t) = v (t) + x ◦ w (t), c =
∑n

i=1w
i (t) and apply Theorem 43

since in our framework it is assumed that f0 ∈ L∞ (Ω) ∩ H1
0 (Ω). Thus it holds f ∈ L2

(
0, T ;H2 (Ω)

)
∩

L∞ (0, T ;H1
0 (Ω)

)
.

Having completed our discussion on the FP model, we formulate our optimal control problem corre-
sponding to (4.61) as follows

min
f,v,w

J (f, v, w) :=

ˆ T

0

ˆ

Ω
G (v, w) (x, t) f (x, t) dxdt+

ˆ

Ω
F (x) f (x, T ) dx

s.t.

ˆ

Ω

(

f ′ (x, t)ϕ (x) +
σ2

2
∇f (x, t) · ∇ϕ (x) +∇ ((v (t) + x ◦ w (t)) f (x, t))ϕ (x)

)

dx = 0

a.e. in (0, T ) for all ϕ ∈ H1
0 (Ω)

f (·, 0) = f0

v ∈ Vad, w ∈Wad

(4.73)
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with

G (v, w) (x, t) := −A (x, t) + αgs1 (v (t)) + βgs2 (w (t))

where s1, s2 ≥ 0, A ∈ Lq
(
0, T ;W 1,q (Ω)

)
∩L∞ (Q) a non-negative function, q ≥ 2 for n = 1 and q > n

2 +1
for n ≥ 2, α, β ≥ 0. The lower boundedness of the cost functional is ensured by the boundedness of A and
f , see (4.72). The functions that determine the costs of the controls are given by

gs : R
n → R, z 7→ gs (z) :=

n∑

i=1

gis
(
zi
)
.

The functions are assumed to be lower semi-continuous for all z ∈ Rn with zi is the i-th component of z,
gis : R→ R, zi 7→ gis

(
zi
)
, such that G (v, w) ∈ L∞ (Q) and F ∈ L∞ (Ω) ∩H1

0 (Ω).

Remark 45. The existence of a solution to (4.73) can be shown as in [46, 5 Existence of optimal controls].
However, we need to modify the arguments since we multiply the state with functions of the controls.
According to [46, Remark 5.1], the control-to-state map of our FP equation is sequentially continuous
as a map from Vad ×Wad to L2 (Q). This means that any weakly converging sequence of the controls
results in a strongly converging subsequence of the state. Assume that (vk, wk)k∈K , (fk)k∈K , K ⊆ N is a
minimizing sequence for the functional J where (v̄, w̄) is the weak limit of (vk, wk)k∈K and f̄ is the limit
of the sequence (fk)k∈K . If we further assume that the functions gis are convex and Lipschitz continuous,
then the functional

ˆ

Q
f̄G (v, w) (x, t) dxdt

is convex since f̄ ≥ 0 and continuous as a map from Vad ×Wad to R since it holds

ˆ

Q
f̄ |gis

(
ζ1 (t)

)
− gis

(
ζ2 (t)

)
|dxdt ≤ |Ω|LC‖f0‖L∞(Ω)

ˆ T

0
|ζ1 (t)− ζ2 (t) |dt

= L|Ω|C‖f0‖L∞(Ω)‖ζ1 − ζ2‖L1(0,T ) ≤ c‖ζ1 − ζ2‖Lq(0,T )

for any function ζ1, ζ2 ∈ Lq (0, T ), see Theorem 44 and the embedding [1, Theorem 2.14]. Consequently
the functional

´

Q f̄G (v, w) (x, t) dxdt is weakly lower semi-continuous, see [95, Theorem 2.12]. Then we

have that with the calculation rules for a sum of lim inf [43, Theorem 3.127] that the following holds

lim inf
k→∞

ˆ

Q
G (vk, wk) (x, t) fk (x, t) dxdt

= lim inf
k→∞

(
ˆ

Q
G (vk, wk) (x, t) f̄ (x, t) dxdt+

ˆ

Q
G (vk, wk) (x, t)

(
fk − f̄

)
(x, t) dxdt

)

≥ lim inf
k→∞

(
ˆ

Q
G (vk, wk) (x, t) f̄ (x, t) dxdt

)

+ lim inf
k→∞

(
ˆ

Q
G (vk, wk) (x, t)

(
fk − f̄

)
(x, t) dxdt

)

= lim inf
k→∞

(
ˆ

Q
G (vk, wk) (x, t) f̄ (x, t) dxdt

)

+ lim
k→∞

(
ˆ

Q
G (vk, wk) (x, t)

(
fk − f̄

)
(x, t) dxdt

)

≥
ˆ

Q
G (v̄, w̄) (x, t) f̄ (x, t) dxdt

since the lim exists being equal to zero, see

lim
k→∞

|
ˆ

Q
G (vk, wk) (x, t)

(
fk − f̄

)
(x, t) dxdt| ≤ d lim

k→∞
‖fk − f̄‖L2(Q) = 0,

d > 0 due to the boundedness of G and the lim inf equals the lim, see [3, Theorem 5.7].
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Our second FP optimal control problem corresponds to the stochastic process (4.62) and is given by

min
f,u

J (f, u) :=

ˆ T

0

ˆ

Ω
G (u) (x, t) f (x, t) dxdt+

ˆ

Ω
F (x) f (x, T ) dx

s.t.

ˆ

Ω

(

f ′ (x, t)ϕ (x) +
σ2

2
∇f (x, t) · ∇ϕ (x) +∇ · (u (x, t) f (x, t))ϕ (x)

)

dx = 0

a.e. in (0, T ) for all ϕ ∈ H1
0 (Ω)

f (·, 0) = f0

u ∈ Uad

(4.74)

where we choose the following admissible set of controls

Uad := {u ∈ (Lq (Q))n | u (x, t) ∈ KU a.e. on Q}

with umin, umax ∈ R, umin < umax, q ≥ 2 and KU := [umin, umax]
n. For G, it holds the same as in the case

of (4.73) and is specified later.
Notice that, with u ∈ (Lq (Q))n, 2 < q ≤ ∞, the well-posedness of the forward FP problem can be

shown, see [46], and also in this case, an L∞ bound for the PDF, analogous to Theorem 44, can be shown
based on [13, Theorem 3.1]. The discussion of existence of an optimal solution is the same as in the case
(4.73) above.

In the following section, we discuss the PMP characterization of a solution to (4.73) and (4.74).

4.3 The characterization by the Pontryagin maximum principle

Next, we discuss the characterization of a solution to (4.73) in the PMP framework. We define the
Hamiltonian function H : Rn × R× R×KV ×KW × Rn → R as follows

H (x, t, f, v, w, ζ) := G (v, w) f + ζ · (v + x ◦ w) f.

We remark that if f , v, w, ζ are functions, we write short

H (x, t, f, v, w, ζ) := H (x, t, f (x, t) , v (x, t) , w (x, t) , ζ (x, t)) .

Later the place holder ζ ∈ Rn will be filled with the space derivative of the solution to the adjoint equation
that is given by

ˆ

Ω

(

−p′ (x, t)ϕ (x) +
σ2

2
∇p (x, t) · ∇ϕ (x)− (v (t) + x ◦ w (t)) · ∇p (x, t)ϕ (x)

)

dx

=

ˆ

Ω
(G (v, w) (x, t)ϕ (x)) dx

(4.75)

for all ϕ ∈ H1
0 (Ω) with p (·, T ) = F (·). The adjoint equation (4.75) is uniquely solvable. This is shown

as follows. After a time transformation t̃ := T − t and since G (v, w) ∈ Lq (Q), see [1, Theorem 2.14], for
which we consider the boundedness of v, w and the measurability of G, see Lemma 51, for any v ∈ Vad
and w ∈ Wad, we have the existence of a unique solution to (4.75) analogously to (4.63). Furthermore,
by the proof of [45, Section 7.1 Theorem 5], we have that p ∈ L2

(
0, T ;H2 (Ω)

)
∩ L∞ (0, T ;H1

0 (Ω)
)

and
p′ ∈ L2

(
0, T ;L2 (Ω)

)
. Therefore, we have the following theorem.

Theorem 46. For the solution to (4.75), it holds

‖p‖L∞(Q) ≤ C
(
‖G (v, w) ‖Lq(Q) + ‖F‖L∞(Ω)

)

for C := C
(
Ω, σ, T,maxi=1,...,n ‖vi + xiw

i‖L∞(Q)

)
> 0.
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Proof. As F ∈ Lq (Q), due to the pointwise boundedness of v, w and
(
vi (t) + xiw

i (t)
)
∈ L∞ (Q) for

all i ∈ {1, ..., n}, we can apply Theorem 43 to obtain the desired result after a transformation of time
according to t̃ := T − t.

Additionally, we have that p ∈ Lq
(

0, T ;W 1,q
0

)

, see [14].

Notice that in the adjoint FP problem (4.75) the solution of the forward FP problem does not appear.
This is due to the linearity of our cost functional with respect to the state f .

The next step in order to characterize a solution to (4.73) in the PMP framework is the following
lemma that provides a direct relation between the values of cost functional at different triples (f, v, w)
and the values of the corresponding Hamiltonian. We have that (f1, v1, w1) solves (4.63) for f1 instead of
f , we write f ← f1, with v1 instead of v, we write v ← v1 and with w1 instead of w, we write w ← w1.
We remark that the PMP characterization simplifies due to the fact that the cost functional only depends
linearly on the state variable f . A consequence is that we can perform the corresponding proofs without
the definition of an intermediate adjoint as it is done in Chapter 2, Chapter 3 or [81, 21] for instance.

Lemma 47. Let (f1, v1, w1) solve (4.63) for (f, v, w) ← (f1, v1, w1) and let (f2, v2, w2) solve (4.63) for
(f, v, w)← (f2, v2, w2). Then, we have that

J (f1, v1, w1)− J (f2, v2, w2) =

ˆ T

0

ˆ

Ω
H (x, t, f2, v1, w1,∇p1)−H (x, t, f2, v2, w2,∇p1) dxdt

where p1 is given by (4.75) for v ← v1 and w ← w1 and J is defined in (4.73).

Proof. In order to save notational effort, we drop the functions’ dependency with respect to x, t. We have

J (f1, v1, w1)− J (f2, v2, w2)

=

ˆ T

0

ˆ

Ω
G (v1, w1) f1dxdt+

ˆ

Ω
Ff1 (·, T ) dx−

ˆ T

0

ˆ

Ω
G (v2, w2) f2dxdt−

ˆ

Ω
Ff2 (·, T ) dx

=

ˆ T

0

ˆ

Ω
G (v1, w1) f2 +G (v1, w1) (f1 − f2)−G (v2, w2) f2dxdt+

ˆ

Ω
F (f1 − f2) (·, T ) dx

(4.76)

and

ˆ T

0

ˆ

Ω
G (v1, w1) (f1 − f2)

=

ˆ T

0

ˆ

Ω
−p′1 (f1 − f2) +

σ2

2
∇p1 · ∇ (f1 − f2)− (v1 + x ◦ w1) · ∇p1 (f1 − f2) dx

=

ˆ T

0

ˆ

Ω

(
f ′1 − f ′2

)
p1 +

σ2

2
(∇f1 −∇f2) · ∇p1 + (∇ ((v1 + x ◦ w1) f1)−∇ ((v1 + x ◦ w1) f2)) p1dxdt

−
ˆ

Ω
F (f1 − f2) (·, T ) dx

=

ˆ T

0

ˆ

Ω
∇ ((v2 + x ◦ w2) f2) p1 −∇ ((v1 + x ◦ w1) f2) p1dxdt−

ˆ

Ω
F (f1 − f2) (·, T ) dx

(4.77)

by partial integration with respect to t [95, Satz 3.11], partial integration with respect to x , see Lemma
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53 (third line) and with (4.63) (fifth line). Combining (4.76) and (4.77), we obtain

J (f1, v1, w1)− J (f2, v2, w2)

=

ˆ T

0

ˆ

Ω
G (v1, w1) f2 −∇ ((v1 + x ◦ w1) f2) p1 −G (v2, w2) f2 +∇ ((v2 + x ◦ w2) f2) p1dxdt

=

ˆ T

0

ˆ

Ω
G (v1, w1) f2 + ((v1 + x ◦ w1) f2) · ∇p1 −G (v2, w2) f2 − ((v2 + x ◦ w2) f2) · ∇p1dxdt

=

ˆ T

0

ˆ

Ω
H (x, t, f2, v1, w1,∇p1)−H (x, t, f2, v2, w2,∇p1) dxdt.

The next step for the PMP characterization of a solution to (4.73) is to introduce the concept of needle
variation. For this purpose, we define the needle variation for any ṽ ∈ Vad and w̃ ∈ Wad with t0 ∈ (0, T )
and with Sk (t0), a ball centered in t0 and for its measure |Sk (t0) | it holds that limk→∞ |Sk (t0) | = 0, as
follows

vk (t) :=

{

ṽ (t) if t ∈ (0, T ) \Sk (t0)
v if t ∈ Sk (t0) ∩ (0, T )

, wk (t) :=

{

w̃ (t) if t ∈ (0, T ) \Sk (t0)
w if t ∈ Sk (t0) ∩ (0, T )

where v ∈ KV and w ∈ KW .

Now, we can state the PMP characterization of an optimal control to (4.73).

Theorem 48. Let
(
f̄ , v̄, w̄

)
be a solution to (4.73). Then it holds that

ˆ

Ω
H
(
x, t, f̄ , v̄, w̄,∇p̄

)
dx = min

v∈KV ,w∈KW

ˆ

Ω
H
(
x, t, f̄ , v, w,∇p̄

)
dx (4.78)

for almost all t ∈ (0, T ) where p̄ is the solution to (4.75) for v ← v̄ and w ← w̄.

Proof. Since vk ∈ Vad and wk ∈ Wad for all k ∈ N, we have with Lemma 47 that for any k ∈ N the
following holds

0 ≤ 1

|Sk (t0) |
(
J (fk, vk, wk)− J

(
f̄ , v̄, w̄

))

=
1

|Sk (t0) |

(
ˆ T

0

ˆ

Ω
H
(
x, t, f̄ , vk, wk,∇pk

)
−H

(
x, t, f̄ , v̄, w̄,∇pk

)
dxdt

)

=
1

|Sk (t0) |

(
ˆ

Sk(t0)

ˆ

Ω
H
(
x, t, f̄ , v, w,∇p̄

)
−H

(
x, t, f̄ , v̄, w̄,∇p̄

)
dxdt

)

+
1

|Sk (t0) |

(
ˆ

Sk(t0)

ˆ

Ω
(∇pk −∇p̄) · (v + x ◦ w) f̄ + (∇p̄−∇pk) · (v̄ + x ◦ w̄) f̄dxdt

)

=
1

|Sk (t0) |

(
ˆ

Sk(t0)

ˆ

Ω
H
(
x, t, f̄ , v, w,∇p̄

)
−H

(
x, t, f̄ , v̄, w̄,∇p̄

)
dxdt

)

− 1

|Sk (t0) |

(
ˆ

Sk(t0)

ˆ

Ω
(pk − p̄)∇

(
(v + x ◦ w) f̄

)
+ (p̄− pk)∇

(
(v̄ + x ◦ w̄) f̄

)
dxdt

)

(4.79)

for all v ∈ KV and w ∈ KW where (fk, vk, wk) solves (4.63) for (f, v, w)← (fk, vk, wk).

Next, we prove that

lim
k→∞

‖pk − p̄‖L∞(Q) = 0.
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We subtract (4.75) for v ← vk and w ← wk from (4.75) for v ← v̄ and w ← w̄ and obtain

ˆ

Ω
−δp′ (x, t)ϕ (x) +

σ2

2
∇δp (x) · ∇ϕ (x)− (v̄ (t) + x ◦ w̄ (t)) · ∇p̄ (x, t)ϕ (x) dx

+

ˆ

Ω
(vk (t) + x ◦ wk (t)) · ∇pk (x, t)ϕ (x) dx =

ˆ

Ω
(G (v̄, w̄) (x, t)−G (vk, wk) (x, t))ϕ (x) dx

where δp := p̄− pk and thus

ˆ

Ω
−δp′ (x, t)ϕ (x) +

σ2

2
∇δp (x) · ∇ϕ (x)− (vk (t) + x ◦ wk (t)) · ∇δp (x, t)ϕ (x) dx

=

ˆ

Ω
(vk (t) + x ◦ wk (t)− (v̄ (t) + x ◦ w̄ (t))) · ∇p̄ (x, t)ϕ (x) dx

+

ˆ

Ω
(G (v̄, w̄) (x, t)−G (vk, wk) (x, t))ϕ (x) dx.

(4.80)

From (4.80) and Theorem 46, we have that

lim
k→∞

‖pk − p̄‖L∞(Q) = 0

if
lim
k→∞

‖ (vk + (·) ◦ wk − (v̄ + (·) ◦ w̄)) · ∇p̄‖Lq(Q) = 0

and
lim
k→∞

‖G (v̄, w̄)−G (vk, wk) ‖Lq(Q) = 0.

For the first term, we have the following
ˆ

Q
| ((vk (t) + x ◦ wk (t))− (v̄ (t) + x ◦ w̄ (t))) · ∇p̄ (x, t) |qdxdt

≤ c
ˆ T

0

ˆ

Ω

n∑

i=1

| ∂
∂xi

p̄ (x, t) |qdxdt ≤ c
ˆ T

0
‖∇p̄ (·, t) ‖q

L2(Ω)
dt ≤ c‖p̄‖q

Lq(0,T ;W 1,q(Ω))

for a constant c > 0 due to p ∈ Lq
(
0, T ;W 1,q (Ω)

)
, q > n

2 + 1, see [14]. This means that the function

t 7→
ˆ

Ω
| (vk (t) + x ◦ wk (t)− (v̄ (t) + x ◦ w̄ (t))) · ∇p̄ (x, t) |qdx

is measurable, see [5, X Theorem 6.7], Lemma 52 and as the product and sum of Lebesgue measurable
functions is Lebesgue measurable [36, Proposition 2.1.7] and integrable, see [5, Theorem 6.11, Theorem
6.9]. Consequently we can apply the Average Value Theorem [78, Theorem 51] in order to obtain

lim
k→∞

‖ (vk + (·) ◦ wk − (v̄ + (·) ◦ w̄)) · ∇p̄‖Lq(Q)

= lim
k→∞

ˆ

Sk(t0)

ˆ

Ω
| (v (t) + x ◦ w (t)− (v̄ (t) + x ◦ w̄ (t))) · ∇p̄ (x, t) |qdxdt = 0

for almost all t0 ∈ (0, T ). Further, since

‖G (v̄, w̄)−G (vk, wk) ‖L∞(Q) < c

for all v̄ ∈ Vad and w̄ ∈Wad, we analogously have that

lim
k→∞

‖G (v̄, w̄)−G (vk, wk) ‖L2(Q) = lim
k→∞

ˆ

Sk(t0)

ˆ

Ω
|G (v̄, w̄)−G (v, w) |2dxdt = 0
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for almost all t0 ∈ (0, T ).
Now, we have that the last line in (4.79) goes to zero for k →∞ due to

lim
k→∞

‖pk − p̄‖L∞(Q) = 0

and due to the Average Value Theorem [78, Theorem 51]. For the application of the Average Value
Theorem, we need that the function

t 7→
ˆ

Ω
∇
(
(v (t) + x ◦ w (t)) f̄ (x, t)

)
dx

is locally integrable. This is the case because we have the boundedness
ˆ

Q
|∇
(
(v (t) + x ◦ w (t)) f̄ (x, t)

)
|dx

=

ˆ

Q
|
(

n∑

i=1

wi (t) f̄ (x, t)

)

+ (v (t) + x ◦ w (t)) · ∇f̄ (x, t) |dxdt ≤ c‖f̄‖L2(0,T ;H1
0 (Ω))

using the Poincaré inequality [2, 6.7] and the measurability of the function

t 7→
ˆ

Ω
∇
(
(v (t) + x ◦ w (t)) f̄ (x, t)

)
dx

since we have (4.64), [5, X Theorem 6.7], Lemma 52 and as the product and sum of Lebesgue measurable
functions is Lebesgue measurable [36, Proposition 2.1.7]. Because

(x, t) 7→ H
(
x, t, f̄ , v, w,∇p̄

)
−H (x, t, f2, v2, w2,∇p̄)

is measurable on Q, see [36, Proposition 2.1.7] and an element of L1 (Q), we apply Fubini’s Theorem [5,
Theorem 6.11, Theorem 6.9] and obtain

t 7→
ˆ

Ω
H
(
x, t, f̄ , v, w,∇p̄

)
−H

(
x, t, f̄ ,∇f̄ , v̄, w̄,∇p̄

)
dx ∈ L1 (0, T ) .

Thus we conclude with the Average Value Theorem [78, Theorem 51] the following

0 ≤
ˆ

Ω

(
H
(
x, t, f̄ , v, w,∇p̄

)
−H

(
x, t, f̄ , v̄, w̄,∇p̄

))
dx

by taking the limit over k on both sides of the inequality (4.79) for all v ∈ KV and w ∈ KW and for almost
all t ∈ (0, T ), renaming t0 into t.

We conclude this section by characterize the solution to (4.74) where we proceed similar to the case
discussed above.

The adjoint FP problem for (4.74) is given by

ˆ

Ω

(

−p′ (x, t)ϕ (x) +
σ2

2
∇p (x, t) · ∇ϕ (x)− u (x, t) · ∇p (x, t)ϕ (x)

)

dx

=

ˆ

Ω
(G (u) (x, t)ϕ (x)) dx,

p (·, T ) = F (·)

(4.81)

for all ϕ ∈ H1
0 (Ω). The proof of a unique solution to (4.81) can be done analogous to (4.75). Further, since

u ∈ L∞ (Q), we can apply Theorem 43 to obtain an L∞ bound for the solution of the adjoint problem
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that is analogous to that of Theorem 46. Notice that, also in this case, in the adjoint FP problem the
state f does not appear.

The PMP Hamiltonian corresponding to (4.74) is given by

H (x, t, f, u, ζ) := (G (u) + ζ · u) f. (4.82)

Analogous to the discussion for (4.73) we have that a solution to (4.74) is characterized by the PMP as
follows.

Theorem 49. Let
(
f̄ , ū

)
be a solution to (4.74). Then it holds that

H
(
x, t, f̄ , ū,∇p̄

)
= min

u∈KU

H
(
x, t, f̄ , u,∇p̄

)
(4.83)

for almost all (x, t) ∈ Q where p̄ is the solution to (4.81) for u← ū.

Proof. We have that p ∈ Lq
(

0, T ;W 1,q
0

)

due to the regularity of the right hand-side of (4.81), see [14]

and [83, Proposition 8.35]. By [46, Theorem 3.1], we have that f ∈ L2
(
0, T ;H1

0 (Ω)
)
. Then the proofs of

Lemma 47 and Theorem 48 can be done analogously, where the corresponding control terms are replaced by
the control of (4.74). Going step by step through the mentioned proofs, we can apply the same arguments
to the control u.

Now, notice that our FP equation is uniformly parabolic and in this case the PDF is almost everywhere
non-negative. Therefore if it holds

(G (ū) +∇p̄ · ū) = min
u∈KU

(G (u) +∇p̄ · u) (4.84)

for almost all (x, t) ∈ Q and p̄ is the solution to (4.81) for u← ū, then (4.83) is fulfilled.

4.4 Numerical schemes

In this section, starting from the PMP characterization of solutions to our FP control problems (4.73)
and (4.74), we discuss two numerical solution procedures. In the first case, we implement the iterative
sequential quadratic Hamiltonian (SQH) method. For its convergence analysis, we need the following
further assumption on the function G. We have to require that the function G : KV × KW → R,
(v, w) 7→ G (·, ·, v, w) is Lipschitz continuous, that means

|G (·, ·, v1, w1)−G (·, ·, v2, w2) | ≤ L
n∑

i=1

(

| (v1)i − (v2)
i |+ | (w1)

i − (w2)
i |
)

for a Lipschitz constant L > 0 independent of (x, t) ∈ Q. The need for this requirement comes from the
fact that we consider a product of the state and functions of the control in our cost functional, in contrast
to the cases in the chapters before. The consequence is that G is on the right hand-side of our adjoint
equation.

In the second case, which is (4.74), we exploit the special structure of the resulting optimality system
consisting of (4.81) and (4.84) to formulate a non-iterative solution procedure for determining an optimal
control. In fact, this is already known in literature to solve the Hamilton-Jacobi-Bellman equation [99],
however, for clarity of presentation we call this procedure the direct Hamiltonian (DH) method.

Before discussing the implementation of both methods, we illustrate the numerical approximation of
the FP and adjoint FP problems. For this purpose, let us consider the two-dimensional case, n = 2. We
define a sequence of uniform grids {Ωh}h>0 given by

Ωh =
{
(x, y) ∈ R2 : (xi, yj) = (ih, jh) , i, j ∈ {0, ..., Nx}

}
∩ Ω
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where Nx represents the number of grid points in each direction and h is the spatial mesh size. We assume
that Ω is a square and h is chosen such that the boundaries of Ω coincide with the grid points. Let δt = T

Nt

be the time step and Nt denotes the number of time steps. Define

Qh,δt = {(xi, yj , tm) : (xi, yj) ∈ Ωh, tm = mδt, 0 ≤ m ≤ Nt} .

On this grid, φmi,j represents the value of a grid function in Ωh at (xi, yj) and time tm.

For the space discretization of the FP equation, we consider a second-order accurate scheme which
guarantees positivity of the PDF and, in the case of reflecting barriers, it should provide conservation of
the total probability. These are the essential features of the Chang-Cooper (CC) scheme [8, 30, 71].

The first step in the formulation of the CC scheme is to consider the flux form of the FP equation
(4.59) by defining the flux

Fi (x, t) =
2∑

j=1

∂xj
(aij (x, t) f (x, t))− bi (x, t) f (x, t) , i = 1, 2. (4.85)

Thus, the FP equation becomes ∂tf = ∇F . The CC method is a finite-volume scheme where the term
∇F at time tm is approximated as follows

∇F =
1

h

{(

Fm
i+ 1

2
,j
− Fm

i− 1
2
,j

)

+
(

Fm
i,j+ 1

2

− Fm
i,j− 1

2

)}

with Fm
i+ 1

2
,j

and Fm
i,j+ 1

2

the representation of the flux in the i-th and j-th direction, respectively. To

compute these flux terms, Chang and Cooper proposed to use a linear convex combination of values of
f at the cells sharing the same edge. For example, considering the edge between the grid points i, j and
i+ 1, j, we have

fmi+1/2,j =
(

1− δji
)

fmi+1,j + δ
j
i f

m
i,j

where the value of δji is specified below. This approach was motivated in [30] by the need to guarantee
positive solutions that preserve equilibrium configuration.

Now, focusing on our cases with diagonal diffusion, we have

Fm
i+ 1

2
,j
=

[(

1− δji
)

Bm
i+ 1

2
,j
+
σ2

2h

]

fmi+1,j −
[
σ2

2h
− δjiBm

i+ 1
2
,j

]

fmi,j (4.86)

and

Fm
i,j+ 1

2

=

[
(
1− δij

)
Bm

i,j+ 1
2

+
σ2

2h

]

fmi,j+1 −
[
σ2

2h
− δijBm

i,j+ 1
2

]

fmi,j (4.87)

whereBm
i+ 1

2
,j
= −b1(xi+ 1

2
, yj , tm) andBm

i,j+ 1
2

= −b2(xi, yj+ 1
2
, tm), see (4.59). Further, the linear-combination

parameters are given by

δ
j
i =

1

w
j
i

− 1

exp
(

w
j
i

)

− 1
, w

j
i =

2hBm
i+ 1

2
,j

σ2
,

δij =
1

wi
j

− 1

exp
(

wi
j

)

− 1
, wi

j =
2hBm

i,j+ 1
2

σ2
.

(4.88)

This specification completes our illustration of the CC scheme. For the time discretization, we employ a
backward Euler scheme as follows

fmi,j − fm−1
i,j

δt
=

1

h

(

Fm
i+ 1

2
,j
− Fm

i− 1
2
,j

)

+
1

h

(

Fm
i,j+ 1

2

− Fm
i,j− 1

2

)

, m = 1, . . . , Nt. (4.89)
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The numerical analysis of this scheme is presented in [71] where it is proved that the resulting numerical
solution is O

(
δt+ h2

)
accurate.

Now, concerning the adjoint FP equation, it has been proved in [8, 84] that the transpose of (4.89)
provides an O

(
δt+ h2

)
accurate approximation of the adjoint FP equation. This approximation is as

follows

pm−1
i,j = S (pm, um)

:= pmi,j +
δt

h

(

Km
i− 1

2
,j
pmi−1,j −Rm

i+ 1
2
.j
pmi,j −Km

i− 1
2
,j
pmi,j +Rm

i+ 1
2
,j
pmi+1,j

)

+
δt

h

(

Km
i,j− 1

2

pmi,j−1 −Rm
i.j+ 1

2

pmi,j −Km
i,j− 1

2

pmi,j +Rm
i,j+ 1

2

pmi,j+1

)

+ δtG (bm)

(4.90)

where

Km
i+ 1

2
,j
=
(

1− δji
)

Bm
i+ 1

2
,j
+
σ2

h
, Km

i− 1
2
,j
=
(

1− δji−1

)

Bm
i− 1

2
,j
+
σ2

h
,

Km
i,j+ 1

2

=
(
1− δij

)
Bm

i,j+ 1
2

+
σ2

h
, Km

i,j− 1
2

=
(
1− δij−1

)
Bm

i,j− 1
2

+
σ2

h
,

Rm
i+ 1

2
,j
= −δjiBm

i+ 1
2
,j
+
σ2

h
, Rm

i− 1
2
,j
= −δji−1B

m
i− 1

2
,j
+
σ2

h
,

Rm
i,j+ 1

2

= −δijBm
i,j+ 1

2

+
σ2

h
, Rm

i,j− 1
2

= −δij−1B
m
i,j− 1

2

+
σ2

h
.

Now, we discuss our numerical SQH optimization scheme. This scheme results from the combination of
two PMP-based strategies for solving optimal control problems governed by dynamical systems. On the
one hand, we refer to the iterative scheme proposed in [85] and on the other hand, we refer to the method
presented in [62].

The SQH method to solve (4.73) is given by the following scheme where the augmented Hamiltonian
Kǫ : R

n × R× R×KV ×KV ×KW ×KW × Rn → R is defined as follows

Kǫ (x, t, f, v, ṽ, w, w̃, ζ) := H (x, t, f, v, w, ζ) + ǫ
(

(v (t)− ṽ (t))2 + (w (t)− w̃ (t))2
)

where v2 :=
∑n

i=1

(
vi
)2

for any vector v ∈ Rn. The quadratic term, which augments the Hamiltonian
H, aims at penalizing the update of the control. This is supposed to keep the update sufficiently small
that the current state f is still an approximation in correspondence of the new control. The value of the
weight ǫ of the quadratic term is adapted according to the capability of the control to minimizes the cost
functional such that the control updates are chosen as large as possible depending on the strategy for
choosing ǫ.
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Algorithm 4.1 (SQH method)

1. Choose ǫ > 0, κ > 0, σ̂ > 1, ζ ∈ (0, 1), η ∈ (0,∞), v0, w0, compute f0 by (4.63) and p0 by (4.75) for
v ← v0, w ← w0, set k ← 0

2. Choose v ∈ KV and w ∈ KW such that
ˆ

Ω
Kǫ

(

x, t, fk, v, vk, w, wk,∇pk
)

dx ≤
ˆ

Ω
Kǫ

(

x, t, fk, v̂, vk, ŵ, wk,∇pk
)

dx

for all v̂ ∈ KV and ŵ ∈ KW and for all t ∈ [0, T ]

3. Calculate f by (4.63) for v, w and τ1 := ‖v − vk‖2L2(0,T ), τ2 := ‖w − wk‖2L2(0,T )

4. If J (f, v, w)− J
(
fk, vk, wk

)
> −η (τ1 + τ2): Choose ǫ← σ̂ǫ

Else: Choose ǫ ← ζǫ, fk+1 ← f , vk+1 ← v, wk+1 ← w, calculate pk+1 by (4.75) for v ← vk+1 and
w ← wk+1, set k ← k + 1

5. If τ1 + τ2 < κ: STOP and return vk and wk

Else go to 2.

The SQH method determines v (t) and w (t) such that the function

(v̂, ŵ) 7→
ˆ

Ω
Kǫ

(

x, t, fk, v̂, vk, ŵ, wk,∇pk
)

is minimized for all v̂ ∈ KV , ŵ ∈ KW for any t ∈ [0, T ]. We assume that the functions v, w, which are
determined in Step 2 of Algorithm 4.1, are measurable, see the discussion starting on page 166 for details.
Next, we calculate f with v and w and check if the triple (f, v, w) reduces the value of the cost functional
by at least η (τ1 + τ2). If not, ǫ is increased in order to obtain a smaller deviation of the control. If the
triple (f, v, w) reduces the value of the cost functional by at least η (τ1 + τ2), we accept the values (f, v, w)
as our next iterate, decrease ǫ to possibly obtain a larger update for the control in the following sweep and
calculate the adjoint variable. Specifically, we have that fk is a solution to (4.63) for v ← vk, w ← wk

and pk is a solution to (4.75) for v ← vk, w ← wk. We repeat this steps until the convergence criterion is
fulfilled where the algorithm stops and the last accepted control vk, wk is returned.

The SQH method to solve (4.73) is well defined since analogous results as Lemma 7 and Lemma
12 hold with the same arguments. These results guarantee the existence of a minimum of (v̂, ŵ) 7→
´

ΩKǫ

(
x, t, fk, v̂, vk, ŵ, wk,∇pk

)
even for lower semi-continuous functions gis and that Algorithm 4.1 stops

if vk and wk are optimal in the PMP sense (4.78). We remark that the minimization in Step 2 of Algorithm
4.1 is only in t instead of (x, t). However, the scaling of the calculation effort is the same since we have to
integrate Kǫ over the space instead of performing the minimization of Kǫ in (x, t).

The Step 4 of Algorithm 4.1 is well posed. This means that increasing ǫ, at most finitely times, will
end up in an update for the control that minimizes the cost functional value by at least η (τ1 + τ2). The
argument is provided by the following lemma.

Lemma 50. Let (f, v, w) and
(
fk, vk, wk

)
be generated by Algorithm 4.1, k ∈ N0. Then, there is a θk > 0

independent of ǫ in each iteration such that for any ǫ currently chosen by Algorithm 4.1, the following
holds

J (f, v, w)− J
(

fk, vk, wk
)

≤ − (ǫ|Ω| − θk)
(

‖δv‖2L2(0,T ) + ‖δw‖2L2(0,T )

)

with δv := v − vk and δw = w − wk. In particular J (f, v, w)− J
(
fk, vk, wk

)
≤ 0 for ǫ ≥ θk.

Proof. We drop the arguments of the functions for notational effort. We define δf := f − fk, δp := p− pk,
δ∇f := ∇f −∇fk with ∇δf = ∇

(
f − fk

)
= δ∇f and δ∇p := ∇p−∇pk with ∇δp = ∇

(
p− pk

)
= δ∇p.
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Furthermore, we write Hk := H
(
x, t, fk, vk, wk,∇pk

)
, H := H (x, t, f, v, w,∇p), Gk := G

(
x, t, vk, wk

)

and G := G (x, t, v, w). With Lemma 53, we have

J (f, v, w)− J
(

fk, vk, wk
)

=

ˆ

Q
Gf −Gkfkdxdt+

ˆ

Ω
Fδfdx

=

ˆ

Q
H −∇p · ((v + x ◦ w) f)−Hk +∇pk ·

((

vk + x ◦ wk
)

fk
)

dxdt+

ˆ

Ω
Fδfdx

=

ˆ

Q
H −H

(

x, t, fk, v, w,∇pk
)

+H
(

x, t, fk, v, w,∇pk
)

−Hkdxdt

+

ˆ

Q
−∇p · ((v + x ◦ w) f) +∇pk ·

((

vk + x ◦ wk
)

fk
)

dxdt

+

ˆ

Q
ǫ
(

(δv)2 + (δw)2
)

− ǫ
(

(δv)2 + (δw)2
)

dxdt+

ˆ

Ω
Fδfdx

≤
ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

+H −H
(

x, t, fk, v, w,∇pk
)

− δ∇p · ((v + x ◦ w) f) dxdt

+

ˆ

Q
−∇pk · ((v + x ◦ w) f) +∇pk ·

((

vk + x ◦ wk
)

fk
)

dxdt+

ˆ

Ω
Fδfdx

=

ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

+H −H
(

x, t, fk, v, w,∇pk
)

− δ∇p · ((v + x ◦ w) f) dxdt

+

ˆ

Q
−f ′pk − σ2

2
∇f · ∇pk + pk

(

fk
)′

+
σ2

2
∇fk · ∇pkdxdt+

ˆ

Ω
Fδfdx

=

ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

+H −H
(

x, t, fk, v, w,∇pk
)

− δ∇p · ((v + x ◦ w) f) dxdt

−
ˆ

Q
pk (δf)

′

+
σ2

2
∇δf · ∇pkdxdt+

ˆ

Ω
Fδfdx,

(4.91)

since we have by Algorithm 4.1 that

ˆ

Ω
Kǫ

(

x, t, fk, v, vk, w, wk,∇pk
)

dx ≤
ˆ

Ω
Kǫ

(

x, t, fk, v̂, vk, ŵ, wk,∇pk
)

dx

for all v̂ ∈ KV and ŵ ∈ KW and for all t ∈ [0, T ] from which it follows that

ˆ T

0

ˆ

Ω
Kǫ

(

x, t, fk, v, vk, w, wk,∇pk
)

dx ≤
ˆ T

0

ˆ

Ω
Kǫ

(

x, t, fk, v̂, vk, ŵ, wk,∇pk
)

dx

for all v̂ ∈ KV and ŵ ∈ KW , see [5, X Corollary 2.16 ii)] and thus

0 ≥
ˆ T

0

ˆ

Ω
Kǫ

(

x, t, fk, v, vk, w, wk,∇pk
)

−Kǫ

(

x, t, fk, vk, vk, wk, wk,∇pk
)

dx

=

ˆ

Q
H
(

x, t, fk, v, w,∇pk
)

+ ǫ
(

(δv)2 + (δw)2
)

−Hkdxdt.

Now, we estimate the term
´

QH−H
(
x, t, fk, v, w,∇pk

)
dxdt. We have by the Taylor formula [4, Chapter

VII, Theorem 5.8] and with the symmetry of the second derivative [4, Chapter VII, Theorem 5.2] the



4.4. NUMERICAL SCHEMES 155

following

ˆ

Q
H −H

(

x, t, fk, v, w,∇pk
)

dxdt =

ˆ

Q
H −H (x, t, f − δf, v, w,∇p− δ∇p) dxdt

=

ˆ

Q

∂

∂f
Hδf + ∂∇pH · δ∇p−

1

2
(2 (v + x ◦ w) δfδ∇p) dxdt

=

ˆ

Q
(G+∇p · (v + x ◦ w)) δf + (v + x ◦ w) · fδ∇p− (v + x ◦ w) · δfδ∇pdxdt

=

ˆ

Q
−p′δf +

σ2

2
∇p · ∇δf − (v + x ◦ w) · ∇pδf +∇p · (v + x ◦ w) δf + (v + x ◦ w) · fδ∇pdxdt

−
ˆ

Q
(v + x ◦ w) · δfδ∇pdxdt

(4.92)

where

∂∇pH :=






∂
∂r1
H (x, t, f, v, w, r) |r=∇p

...
∂

∂rn
H (x, t, f, v, w, r) |r=∇p




 , r =






r1
...
rn




 ∈ Rn.

We combine (4.91) and (4.92) and obtain by partial integration with respect to t, see [95, Satz 3.11], in
(4.92) the following

J (f, v, w)− J
(

fk, vk, wk
)

≤
ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

+ δf ′pdxdt−
ˆ

Ω
Fδfdx+

ˆ

Q

σ2

2
∇p · ∇δf − (v + x ◦ w) · ∇pδfdxdt

+

ˆ

Q
(v + x ◦ w) · ∇pδf + δ∇p · (v + x ◦ w) f − (v + x ◦ w) · δfδ∇p− δ∇p · (v + xw) fdxdt

+

ˆ

Q
−pkδf ′ − σ2

2
∇pk · ∇δfdxdt+

ˆ

Ω
Fδfdx

=

ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

+ δf ′δp+
σ2

2
∇δp · ∇δf − (v + x ◦ w) · δfδ∇pdxdt

=

ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

+ f ′δp+
σ2

2
∇f · ∇δp+∇ ((v + x ◦ w) f) δp−∇ ((v + x ◦ w) f) δpdxdt

+

ˆ

Q
−
(

fk
)′

δp− σ2

2
∇fk · ∇δp−∇

((

vk + x ◦ wk
)

fk
)

δp+∇
((

vk + x ◦ wk
)

fk
)

δpdxdt

−
ˆ

Q
(v + x ◦ w) · δfδ∇pdxdt

=

ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

−∇ ((v + x ◦ w) f) δp+∇
((

vk + x ◦ wk
)

fk
)

δpdxdt

−
ˆ

Q
(v + x ◦ w) · δfδ∇pdxdt

=

ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

+∇
((

vk + x ◦ wk
)

fk
)

δp−∇
(

(v + x ◦ w) fk
)

δpdxdt

=

ˆ

Q
−ǫ
(

(δv)2 + (δw)2
)

+
(

vk − v + x ◦
(

wk − w
))

· ∇fkδp+
n∑

i=1

((

wk
)i
− (w)i

)

fkδpdxdt.

(4.93)

Next, estimate the terms in the last line of (4.93) by δv and δw. We have by the Cauchy-Schwarz inequality,
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see [2, Lemma 2.2] and the Jensen inequality, see [72, Proposition 824] the following

n∑

i=1

ˆ

Q
|
((

wk
)i
− (w)i

)

fkδp|dxdt ≤ ‖fk‖L∞(Q)

n∑

i=1

‖ (δw)i ‖L2(Q)‖δp‖L2(Q)

= ‖fk‖L∞(Q)

√
√
√
√

(
n∑

i=1

‖ (δw)i ‖L2(Q)

)2

‖δp‖L2(Q)

≤
√
n‖fk‖L∞(Q)

√
√
√
√

(
n∑

i=1

‖ (δw)i ‖2
L2(Q)

)

‖δp‖L2(Q)

≤
√
n‖fk‖L∞(Q)|Ω|‖δw‖L2(0,T )θ̂

k
(
‖δv‖L2(0,T ) + ‖δw‖L2(0,T )

)

≤
√
n‖fk‖L∞(Q)θ̂

k|Ω|
(
1

2
‖δv‖2L2(0,T ) +

3

2
‖δw‖2L2(0,T )

)

≤ 3

2

√
n‖fk‖L∞(Q)θ̂

k|Ω|
(

‖δv‖2L2(0,T ) + ‖δw‖2L2(0,T )

)

(4.94)

where |Ω| is the measure of Ω, ‖fk‖L∞(Q) exists according to Theorem 44 and we use Cauchy’s inequality,
see [45, page 622] and where ‖δp‖L2(Q) is estimated with Lemma 66. With the Jensen inequality, see [72,
Proposition 824], and Lemma 66 we estimate the following

ˆ

Q
|
(

vk − v + x ◦
(

wk − w
))

· ∇fkδp|dxdt

≤
ˆ T

0

n∑

i=1

((

|
(

vk
)i
− vi|+ c|

((

wk
)i
− wi

)

|
))
ˆ

Ω
| ∂
∂xi

fkδp|dxdt

≤
ˆ T

0

(
n∑

i=1

(

|
((

vk
)i
− vi|+ c|

((

wk
)i
− wi

))

|
))

‖ ∂
∂xi

fk (·, t) ‖L2(Ω)‖δp (·, t) ‖L2(Ω)dt

≤
n∑

i=1

ˆ T

0

((

|
((

vk
)i
− vi|+ c|

((

wk
)i
− wi

))

|
))

‖fk (·, t) ‖H1
0 (Ω)‖δp (·, t) ‖L2(Ω)dt

≤ ‖fk‖L∞(0,T ;H1
0 (Ω))

n∑

i=1

(

‖ (δv)i ‖L2(0,T ) + c‖ (δw)i ‖L2(0,T )

)

‖‖δp (·, t) ‖L2(Ω)‖L2(0,T )

≤ θ̄k






√
√
√
√

(
n∑

i=1

‖ (δv)i ‖L2(0,T )

)2

+

√
√
√
√

(
n∑

i=1

‖ (δw)i ‖L2(0,T )

)2





(
‖δv‖L2(0,T ) + ‖δw‖L2(0,T )

)

≤ θ̄k
√
n
(
‖δv‖L2(0,T ) + ‖δw‖L2(0,T )

) (
‖δv‖L2(0,T ) + ‖δw‖L2(0,T )

)

≤ 2
√
nθ̄k

(

‖δv‖2L2(0,T )‖+ ‖δw‖2L2(0,T )

)

(4.95)

where c := maxi=1,...,nmaxx∈Ω |xi|, |Ω| is the measure of Ω, θ̄k := ‖fk‖L∞(0,T ;H1
0 (Ω))θ̂

k max (1, c) and

‖‖δp (·, t) ‖L2(Ω)‖L2(0,T ) =

√
ˆ T

0

ˆ

Ω
δp2 (x, t) dxdt = ‖δp‖L2(Q).

We obtain

J (f, v, w)− J
(

fk, vk, wk
)

≤ − (ǫ|Ω| − θk)
(

‖δv‖2L2((0,T )) + ‖δw‖2L2((0,T ))

)

with θk := max
(
3
2

√
n‖fk‖L∞(Q)θ̂

k|Ω|, 2√nθ̄k
)

where there is an upper bound for ‖fk‖L∞(Q) for all k ∈ N0

due to Theorem 44.
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Notice that in contrast to the analogous results from the previous chapters, Lemma 11 and Lemma 26,
the existing threshold θk in the present case, for which we have a minimization of the cost functional if
exceeded by ǫ, depends on k where in Lemma 11 and Lemma 26 the corresponding constant θ holds for all
k. The reason for this is that the norms ‖fk‖L∞(0,T ;H1

0 (Ω)) and ‖pk‖2
L∞(0,T ;H1

0 (Ω))
exist, see the discussion

of existence of a solution to the state and adjoint equation, but it is not proved if ‖fk‖L∞(0,T ;H1
0 (Ω)) and

‖pk‖2
L∞(0,T ;H1

0 (Ω))
are bounded by a constant that holds for all v ∈ Vad and all w ∈ Wad as it is the case

for ‖fk‖L∞(Q) or ‖pk‖L∞(Q) for instance, see Theorem 44 or Theorem 46. This causes a dependency of

θk on ‖fk‖L∞(0,T ;H1
0 (Ω)) and ‖pk‖2

L∞(0,T ;H1
0 (Ω))

, see (4.95) and (5.32) for details and the lack of an upper

bound for θk in the present formulation.

A consequence of the lack of an upper bound for θk for all k ∈ N0 is that the investigation of the
properties of a sequence generated by a loop over Step 2 to Step 4 of Algorithm 4.1 is more delicate now.
While the cost functional minimizing properties stated in Theorem 13 still hold with the same proof, the
proof of Theorem 14 or analogous Theorem 27, where the pointwise convergence to a PMP consistent
solution is proved, cannot be applied, since they require an upper bound for ǫ that holds for all iterations
of the SQH method. This upper bound for ǫ is given if θk has an upper bound that holds for all iterations
of the SQH method, see below (2.37) for instance. However, if there is an upper bound for θk for all k ∈ N0

and the estimations ‖f − fk‖L2(Q) ≤ C̃‖u − uk‖L2(0,T ), ‖p − pk‖L2(Q) ≤ C̃‖u − uk‖L2(0,T ), C̃ > 0 hold,
then the proof of Theorem 14 or analogous Theorem 27 also hold in the FP case. These estimation can
also be proved with a similar calculation as the one starting on page 91 if we have that ‖fk‖L∞(0,T ;H1

0 (Ω))
and ‖pk‖2

L∞(0,T ;H1
0 (Ω))

are bounded by a constant for all k ∈ N0, for all v ∈ Vad and for all w ∈Wad.

Summarizing the discussion, we have that each sweep of Algorithm 4.1 is well defined and performs
improvements to an initial guess of the control, if it is not already optimal, such that the cost functional
value decreases.

Next, we discuss the numerical solution of (4.74). The SQH scheme corresponding to (4.74) is given
below where a similar discussion holds as in the case above. The augmented Hamiltonian is defined by

Kǫ (x, t, f, u, ũ,∇p) := H (x, t, f, u,∇p) + ǫ (u (x, t)− ũ (x, t))2 (4.96)

where H is given by (4.82).

Algorithm 4.2 (SQH method)

1. Choose ǫ > 0, κ > 0, σ̂ > 1, ζ ∈ (0, 1), η ∈ (0,∞), v0, w0, compute f0 by the state equation of
(4.74) and p0 by (4.81) for v ← v0, w ← w0, set k ← 0

2. Choose u ∈ KU such that

Kǫ

(

x, t, fk, u, uk,∇pk
)

≤ Kǫ

(

x, t, fk, û, uk,∇pk
)

for all û ∈ KU and for all t ∈ [0, T ]

3. Calculate f by the state equation of (4.74) for u and τ := ‖u− uk‖2L2(Q)

4. If J (f, u)− J
(
fk, uk

)
> −ητ : Choose ǫ← σ̂ǫ

Else: Choose ǫ← ζǫ, fk+1 ← f , uk+1 ← u calculate pk+1 by (4.81) for u← uk+1, set k ← k + 1

5. If τ < κ: STOP and return uk

Else go to 2.
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A closer look on the necessary optimality conditions corresponding to (4.74) reveals that we do not
need to compute the solution of the forward FP problem, but it is sufficient to calculate the adjoint FP
equation together with the PMP optimality condition, see (4.84). Therefore a natural approach to solve
this problem is to consider an explicit (backward) time approximation of (4.81) starting from the terminal
condition, and implementing the minimization of v 7→ G (v) +∇p̄ · v, before proceeding to the next time
step. It is known [99] that such an explicit scheme may suffer from instabilities. However, in our setting
and with a sufficiently small time step, the following solution procedure appears stable.

Algorithm 4.3 Direct Hamiltonian method

1. Set pNt = F

2. For m = Nt, ..., 0 do:

(a) Set um := argminv∈KU
G (v) +∇hp

m · v
(b) Set pm−1 := S (pm, um)

Notice that in this algorithm all equalities are meant for all space grid points i, j.
We remark that in the finite-volume CC scheme, and its adjoint, the drift (control) is placed on the

cell edges. In our second setting of (4.74), the first component of the control field u1 is placed on the
vertical edges and normal to it. On the other hand, the second component u2 is placed on the horizontal
edges and normal to it. Thus in this setting the product ∇hp

m · u is approximated as follows

∇hp
m · u|ij = u1

(
xi+1/2, yj , tm

) pmi+1,j − pmi,j
h

+ u2
(
xi, yj+1/2, tm

) pmi,j+1 − pmi,j
h

Notice that this is a second-order approximation of the continuous product ∇hp
m · u.

We remark that in both the SQH and the DH schemes, the pointwise values of the optimal controls are
obtained by solving finite-dimensional optimization problems in the respective compact sets KV ,KW and
KU , respectively. These problems can be solved by many optimization schemes, including direct search.
However, in many cases it is possible to determine the solution by a case study and, if this is the case,
the optimization procedure becomes very fast. To illustrate this advantage of our PMP-based procedure,
we discuss two specific non-smooth cost functionals that are also considered in our numerical experiments
below.

Let us consider the optimal control problem (4.73) with σ2

2 = 1
32 . We choose Ω = (−5, 5) × (−5, 5)

with a uniform space discretization h = 1
10 and on the interval [0, T ] with T = 1, we set the time steps

δt = 1
100 .

In our cost functional, we choose

G (x, t, v, w) = −A (x, t) + αgs1 (v) + βgs2 (w) , F = 0

where α = β = 1
2 · 10−2 and

A (x, t) :=







e
ρ2

|x−xd(t)|
2−ρ2 if |x− xd (t) | < ρ

0 else
(4.97)

with | · | the Euclidean norm according to |y| :=
√

(y1)2 + ...+ (yn)2. We have ρ = 1 and the desired

trajectory xd : R→ R2 is given by the spiral curve

xd (t) =

(
2t
T cos

(
2π t

T

)

2t
T sin

(
2π t

T

)

)

. (4.98)
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The control costs are determined by the function

gs (z) := max
(
0, |z1| − s

)
+max

(
0, |z2| − s

)

where s1 =
3
5 , s2 =

3
10 in G. The admissible values of the controls are given by the intervals K1

V = K2
V =

[vmin, vmax] and K1
W = K2

W = [−wmin, wmax] where vmin = −2, vmax = 2, wmin = −1 and wmax = 1.
The initial condition for the forward FP problem is given by the following Boltzmann-like distribution

f0 (x) = d|x− x0|2e−4|x−x0|2 (4.99)

with x0 = (−2.1,−3.1). The constant d > 0 is set such that
´

Ω f0 (x) dx = 1.
A discussion of existence of a solution to the corresponding optimal control problem can be done

analogous to Remark 45 due to Lemma 67 that states the Lipschitz continuity and the convexity of the
function zi 7→ max

(
0, |zi| − s

)
, i = 1, 2.

The parameters for the SQH Algorithm 4.1 are set as follows. The initial guess ǫ = 10−2 and the initial
values of v and w are zero. Furthermore, we have η = 10−7, σ̂ = 50, ζ = 3

20 and κ = 10−10.
Next, we can discuss how to find the point-wise minimum in Step 2 of the SQH Algorithm 4.1. We

have
ˆ

Ω
Kǫ (x, t, f, v, ṽ, w, w̃,∇p) dx

=

ˆ

Ω
G (v, w) f (x, t) +∇p (x, t) · (v + x ◦ w) f (x, t) + ǫ

(

(v − ṽ (t))2 + (w − w̃ (t))2
)

dx

= G (v, w) a (t) +
2∑

i=1

vibi (t) +
2∑

i=1

wici (t) + ǫ|Ω|
(

n∑

i=1

(
vi − ṽi (t)

)2
+

n∑

i=1

(
wi − w̃i (t)

)2

)

where |Ω| is the measure of Ω, a (t) :=
´

Ω f (x, t) dx and

bi (t) :=

ˆ

Ω

∂

∂xi
p (x, t) f (x, t) dx, ci (t) :=

ˆ

Ω
xi

∂

∂xi
p (x, t) f (x, t) dx, i = {1, 2} .

We remark that due to the zero boundary conditions, which means the homogeneous Dirichlet boundary
conditions, it holds that 0 ≤ a ≤ 1. Since

max (0, |z| − s) =







z − s if z > s

−z − s if z < −s
0 if |z| ≤ s

,

the pointwise minimum of (v, w) 7→
´

ΩKǫ (x, t, f, v, ṽ, w, w̃,∇p) is given by the following case study where
we use the differentiability of (v, w) 7→

´

ΩKǫ (x, t, f, v, ṽ, w, w̃,∇p) in the intervals (vmin,−s), (−s, s),
(s, vmax) for v and analogously for w.

Similar to the discussion starting on page 166, we see that the minimization problem in the given
intervals reduces to the evaluation of the integral of the augmented Hamiltonian on a discrete set of points
as follows

(v (t) , w (t)) = argmin
v̂∈KV ,ŵ∈KW

ˆ

Ω
Kǫ (x, t, f, v̂, ṽ, ŵ, w̃,∇p) dx

= argmin
v̂∈K̃V (t),ŵ∈K̃W (t)

ˆ

Ω
Kǫ (x, t, f, v̂, ṽ, ŵ, w̃,∇p) dx

where
K̃V (t) := K̃1

V (t)× K̃2
V (t) , K̃W := K̃1

W (t)×K2
W (t) ,
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K̃i
V (t) :=

{
vi1 (t) , v

i
2 (t) , v

i
3 (t)

}
, K̃i

W :=
{
wi
1 (t) , w

i
2 (t) , w

i
3 (t)

}
, i = {1, 2} ,

with

vi1 (t) = min

(

max

(

s1,
2ǫ|Ω|ṽi (t)− αa (t)− bi (t)

2|Ω|ǫ

)

, vmax

)

,

vi2 (t) = min

(

max

(

vmin,
2ǫ|Ω|ṽi (t)− αa (t)− bi (t)

2|Ω|ǫ

)

,−s1
)

,

vi3 (t) = min

(

max

(

−s1,
2ǫ|Ω|ṽi (t)− bi (t)

2|Ω|ǫ

)

, s1

)

,

wi
1 (t) = min

(

max

(

s2,
2ǫ|Ω|w̃i (t)− βa (t)− ci (t)

2|Ω|ǫ

)

, wmax

)

,

wi
2 (t) = min

(

max

(

wmin,
2ǫ|Ω|w̃i (t)− βa (t)− ci (t)

2|Ω|ǫ

)

,−s2
)

and

wi
3 (t) = min

(

max

(

−s2,
2ǫ|Ω|w̃i (t)− ci (t)

2|Ω|ǫ

)

, s2

)

for any t ∈ [0, T ] and i = {1, 2} since the minimum is either in the inner of the corresponding intervals
where the derivative with respect to v or w equals zero or on the boundary of the intervals, see [3, IV
Remark 2.2 (b)].

Next, we consider our second optimal control problem (4.74). We choose the same domain Ω and
T = 1, with the same discretization in space, and for the time discretization, we take δt = 1

500 . Now, our
cost functional is given by

G (u (x, t)) = −A (x, t) +
α

2

(
u21 (x, t) + u22 (x, t)

)
+ β (|u1 (x, t) |+ |u2 (x, t) |)

where A is as above and α = 10−5, β = 10−3. The admissible set of values of the control is given by the
interval KU = [umin, umax]

2 with umin = −10, umax = 10. We have σ = 1.
Since KU is compact, we have that the square function z 7→ z2 : [umin, umax] → R is Lipschitz-

continuous as follows

|z21 − z22 | = |z1 + z2||z1 − z2| ≤ 2max (|umin|, |umax|) |z1 − z2|.

The Lipschitz continuity for the absolute value z 7→ |z| : [umin, umax] → R follows from the reversed
triangle inequality, see [3, Corollary 8.11]. The convexity of the square function follows from Jensen’s
inequality, see [72, Proposition 824] and the convexity of the absolute value from the triangle inequality [3,
Theorem 8.10]. Consequently a discussion of existence of a solution to the corresponding optimal control
problem can be done analogous to Remark 45.

The parameters for the SQH method, Algorithm 4.2, are given in this case as follows. We have that
the initial guess for ǫ = 0 and the initial guess of the control u = 0. We have σ̂ = 50, ζ = 3

20 , η = 10−9,
κ = 10−10.

We can also calculate the points where the augmented Hamiltonian (4.96) used in the SQH scheme,
see Algorithm 4.2, can attain (pointwise) its minimum value. The formulas are given by

u = argmin
v∈KU

(G (v) +∇hp · v) f + ǫ (v − ũ)2

= argmin
v1∈{v11 ,v21}, v2∈{v12 ,v22}

(α

2

(
v21 + v22

)
+ β (|v1|+ |v2|) + v1∇1

hp+ v2∇2
hp
)

f + ǫ (v − ũ)2
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where

v1i = min

(

max

(

0,
2ǫũi (x, t)−∇i

hp (x, t) f (x, t)− βf (x, t)
2ǫ+ αf (x, t)

)

, umax

)

and

v2i = min

(

max

(

umin,
2ǫũi (x, t)−∇i

hp (x, t) f (x, t) + βf (x, t)

2ǫ+ αf (x, t)

)

, 0

)

.

Also for the DH method, Algorithm 4.3, we can determine a priori the set of points where the involved
Hamiltonian can take a minimum. Specifically, we have

u = argmin
v∈KU

(G (v) +∇hp · v)

= argmin
v1∈{v11 ,v21}, v2∈{v12 ,v22}

α

2

(
v21 + v22

)
+ β (|v1|+ |v2|) + v1∇1

hp+ v2∇2
hp

where

v1i = min

(

max

(

0,
−∇i

hp (x, t)− β
α

)

, umax

)

and

v2i = min

(

max

(

umin,
−∇i

hp (x, t) + β

α

)

, 0

)

for i = {1, 2}. We show that (4.74) can be solved with both methods in order to control the corresponding
stochastic process.

4.5 Numerical experiments

In this section, we report results of numerical experiments that validate the Fokker-Planck optimization
framework and the ability of the resulting controls to drive the related stochastic processes. Our numerical
experiments are performed with the setting specified in the previous section and in the same order.

Concerning the first goal, we would like to demonstrate that our optimization procedure is able to
provide a solution that satisfies the PMP optimality conditions discussed in the previous sections. For
this purpose, we define a measure of PMP optimality of the numerical solution as follows

△H (t) :=

ˆ

Ω
H (x, t, f, v, w,∇p) dx− min

ṽ∈KV ,w̃∈KW

ˆ

Ω
H (x, t, f, ṽ, w̃,∇p) dx

where f, v, w, p represent the output of Algorithm 4.1. The number N l
%, l ∈ N, gives the percentage of

grid points where 0 ≤ △H (t) ≤ 10−l is fulfilled.

For the first FP control problem (4.73), we obtain the optimal controls shown in Figure 4.4a. We can
see the effect of the thresholds s1 for v and s2 for w. In Figure 4.4b, we plot the convergence history of the
cost functional. The numerical PMP test for the initial guess gives N1

% = 100%, N2
% = 100, N3

% = 32%,
N4

% = 24%, N5
% = 20%, N6

% = 17%, N12
% = 5% and for the result of Algorithm 4.1, the numerical PMP

test gives N1
% = 100%, N2

% = 100%, N3
% = 97%, N4

% = 81%, N5
% = 72%, N6

% = 67% and N12
% = 67%.

These results indicate that the solution obtained with the SQH method is PMP optimal in the sense of
(4.78).
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(a) The time curves of the components of the controls.
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Figure 4.4: Results of the first numerical experiment.

In correspondence to the controls v, w depicted in Figure 4.4a, we perform a Monte-Carlo simulation
with the stochastic process (4.61) driven by these controls, starting from (x1, x2) = (−2.1,−3.1). The
resulting paths are plotted in Figure 4.5 where we see that the mean value of the state f (trajectory with
circles) is steered towards the desired trajectory xd (dashed line) and starts following it when coming close.
Similarly, we see that the stochastic trajectories (solid lines) are close to the mean value of f .
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Figure 4.5: Monte-Carlo simulation (solid lines) with the controls of Figure 4.4a. The circles correspond
to the mean value of f and the dashed line is the desired trajectory xd.

In the next experiment, we consider our second control problem (4.74) to compute optimal control
fields that are used in a Monte-Carlo simulation with (4.62). For comparison, this problem is solved using
both the SQH and the DH scheme. The resulting controls are implemented in the corresponding stochastic
process (4.62) where we consider different initial conditions in Ω. In Figure 4.6, we plot some stochastic
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trajectories obtained in this framework and using the controls resulting from the SQH scheme and DH
scheme. In any case, we can see that the controlled stochastic trajectories are steered towards our desired
trajectory xd.
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(a) Monte Carlo simulation starting at (−3, 3).
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(b) Monte Carlo simulation starting at (−3,−4).

Figure 4.6: Monte-Carlo simulation with the controls obtained with the DH method (left) and with the
SQH method (right).
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Chapter 5

Appendix

In the Appendix we give supplementary results that are used in the thesis or have the purpose to support
the discussion in the thesis.

5.1 General auxiliary results

Let Z ⊆ RN be a set with N ∈ N. The following lemma states that the composition of a Lebesgue
measurable function u : Z → R with a lower semi-continuous function g : R→ R is Lebesgue measurable.
The result can also be found in [21].

Lemma 51. Let u : Z → Rn, n ∈ N be Lebesgue measurable and g : Rn → R be lower semi-continuous.
Then the composition g ◦ u : Z → R is Lebesgue measurable.

Proof. By [36, Example 2.6.3] and [36, Example 2.6.5], we have that u is Lebesgue measurable if and
only if each component function ui : (Z,M) → (Rn,B), i ∈ {1, ..., n} is measurable where (Z,M) is a
measurable space [36, page 8], M is the σ-algebra of the Lebesgue measurable subsets of Z and (Rn,B)
is a measurable space where B is the σ-algebra generated by the collection of open subsets of Rn.

Next, we show that g : (Rn,B) → (R,B) is measurable, that means Borel measurable. We define for
any constant c ∈ R the set

A := {z ∈ Rn| g (z) ≤ c} .
Let (zm)m∈N ⊆ A be a sequence with limm→∞ zm = z̄, then

c ≥ lim inf
m→∞

g (zm) ≥ g (z̄) ,

see [43, Theorem 3.127] for the calculation rules of lim inf. This means that z̄ ∈ A and thus A is closed.
By [36, Proposition 1.1.4] we know that A belongs to B and thus by [36, Proposition 2.1.1 and page 42], we
have that g is Borel measurable. Then with [36, Proposition 2.6.1], we have that g ◦ u : (Z,M)→ (R,B)
is measurable, which means g ◦ u is Lebesgue measurable.

Lemma 52. Let f : Rn → Rl, x 7→ f (x) be a measurable function with n, l ∈ N. Then the function
f̃ : Rn+m → Rl, (x, y) 7→ f̃ (x, y) := f (x) is measurable.

Proof. The function f̃ is measurable if and only if each component function f̃i, i ∈ {1, ..., l} is measurable,
see [5, X Theorem 1.7 ii) ]. The set

{

(x, y) ∈ Rn+m| f̃i (x, y) < t
}

=
{
(x, y) ∈ Rn+m| fi (x) < t

}
= {x ∈ Rn| fi (x) < t} × Rm

is given by Ai × Rm for any t ∈ R where

{x ∈ Rn| fi (x) < t} =: Ai ⊆ Rn

165
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is a measurable set for any i ∈ {1, ..., l} according to [5, X Theorem 1.9]. According to [5, IX Corollary
1.18] we have that A × Rm is a measurable set of Rn+m. Thus the function f̃ is measurable, see [5, X
Theorem 1.7 ii) ], since any component function is measurable, see [5, X Theorem 1.9].

Next we discuss if the control function in Step 2 of Algorithm 2.1 is Lebesgue measurable. The following
discussion also holds for all the other SQH formulations in this thesis. The Lebesgue measurability of
the controls certainly holds in the case if the function (z, u) 7→ Kǫ (z, y (z) , u, v (z) , p (z)) is Lebesgue
measurable in z ∈ Z for each u ∈ KU and continuous in u for each z ∈ Z, see [82, 14.29 Example, 14.37
Theorem]. An example for this case is

K1
ǫ (z, y (z) , u, v (z) , p (z)) := (y (z)− yd (z))2 +

α

2
u2 + β|u|+ p (z)u+ ǫ (u− v (z))2

which is the corresponding augmented Hamiltonian for an optimal control problem with distributed control,
tracking term and an L2- and L1-cost term for the control where yd ∈ L2 (Z) and α, β > 0.

If Kǫ is only lower semi-continuous in u ∈ KU for each z ∈ Z where KU is a compact interval
containing u as the upper and u as the lower bound, then, in general, we cannot guarantee that u is
Lebesgue measurable, see the paragraph following [82, 14.28 Proposition]. However, in the case of

K2
ǫ (z, y (z) , u, v (z) , p (z)) := h (y (z)) +

α

2
u2 + g (u) + p (z) f (z, y (z) , u) + ǫ (u− v (z))2

where α ≥ 0, z 7→ h (y (z)) and z 7→ f (z, y (z) , u) is Lebesgue measurable, the partial derivative fu (z, y) :=
∂
∂uf (z, y, u) of f with respect to u is independent of u and

g (u) :=

{

γ|u| for |u| > s

0 otherwise
, s, γ > 0,

we prove that starting our SQH scheme with an initial guess u0 that is Lebesgue measurable, we obtain
that any u is Lebesgue measurable as follows.

The augmented Hamiltonian K2
ǫ (z, y, u, v, p) is minimized as follows. Its minimum, denoted by u, can

exactly be given by a case study according to [3, IV Remark 2.2 (b)] as follows.

If −s ≤ u ≤ s, we have the minimum at

u1 (z) := min

(

max

(

−s, 2ǫv (z)− p (z) fu (z, y)
2ǫ+ α

)

, s

)

.

If s < u ≤ u, we have the minimum at

u2 (z) := min

(

max

(

s,
2ǫv (z)− (p (z) fu (z, y) + γ)

2ǫ+ α

)

, u

)

.

If u ≤ u < −s, we have the minimum at

u3 (z) := min

(

max

(

u,
2ǫv (z)− (p (z) fu (z, y)− γ)

2ǫ+ α

)

,−s
)

.

Then the minimum of K2
ǫ over KU is given by

u (z) = argmin
w∈KU

K2
ǫ (z, y (z) , w, v (z) , p (z)) = argmin

w∈{u1,u2,u3}
K2

ǫ (z, y (z) , w, v (z) , p (z)) .

Next, we prove that u, as a function, is Lebesgue measurable assuming that the last iterate represented by
v is also Lebesgue measurable. Notice that the adjoint variable p, as a solution of a well-posed equation,



5.1. GENERAL AUXILIARY RESULTS 167

is always Lebesgue measurable in this thesis. Thus, we have that z 7→ u1 (z), z 7→ u2 (z) and z 7→ u3 (z)
are Lebesgue measurable functions, see [36, Proposition 2.1.4, Proposition 2.1.7]. Further, we have that

K1
ǫ (z) := K2

ǫ (z, y (z) , u1 (z) , v (z) , p (z)) , K
2
ǫ (z) := K2

ǫ (z, y (z) , u2 (z) , v (z) , p (z))

and
K3

ǫ (z) := K2
ǫ (z, y (z) , u3 (z) , v (z) , p (z))

are Lebesgue measurable according to Lemma 51 and because the sum and the product of Lebesgue
measurable functions are Lebesgue measurable, see [36, Proposition 2.1.7].

Now, the function z 7→ u (z) is given by

u (z) :=







u1 (z) if K1
ǫ (z) ≤ K2

ǫ (z) and K1
ǫ (z) ≤ K3

ǫ (z)

u2 (z) if K2
ǫ (z) ≤ K3

ǫ (z) and K2
ǫ (z) < K1

ǫ (z)

u3 (z) if K3
ǫ (z) < K2

ǫ (z) and K3
ǫ (z) < K1

ǫ (z)

for the following reason. There are three cases. First, the value of Kǫ for the corresponding control is
strictly the minimum. In this case, the corresponding branch is taken to set the value of u (z). Second, it
is K1

ǫ (z) = K2
ǫ (z) = K3

ǫ (z). In this case, we have u (z) = u1 (z). Third, we have that two values of Ki
ǫ,

i ∈ {1, 2, 3} are equal and are strictly smaller than the third one. Then we have three sub cases. First,
K1

ǫ (z) = K2
ǫ (z), that means K1

ǫ (z) ≤ K2
ǫ (z) and K1

ǫ (z) < K3
ǫ (z) which is covered by the first branch

u (z) = u1 (z). Second, K2
ǫ (z) = K3

ǫ (z), that means that K2
ǫ (z) ≤ K3

ǫ (z) and K2
ǫ (z) < K1

ǫ (z) which is
covered by the second branch u (z) = u2 (z). Third, K1

ǫ (z) = K3
ǫ (z), that means K1

ǫ (z) ≤ K3
ǫ (z) and

K1
ǫ (z) < K2

ǫ (z) which is covered by the first branch u (z) = u1 (z). According to [36, Proposition 2.1.1]
and the following paragraph, u is Lebesgue measurable if and only if the set {z ∈ Z| u (z) > c} is Lebesgue
measurable for any c ∈ R. To show this fact, notice that the following holds

{z ∈ Z| u (z) > c}
=
(
{z ∈ Z| u1 (z) > c} ∩

{
z ∈ Z| K1

ǫ (z) ≤ K2
ǫ (z)

}
∩
{
z ∈ Z| K1

ǫ (z) ≤ K3
ǫ (z)

})

∪
(
{z ∈ Z| u2 (z) > c} ∩

{
z ∈ Z| K2

ǫ (z) ≤ K3
ǫ (z)

}
∩
{
z ∈ Z| K2

ǫ (z) < K1
ǫ (z)

})

∪
(
{z ∈ Z| u3 (z) > c} ∩

{
z ∈ Z| K3

ǫ (z) < K2
ǫ (z)

}
∩
{
z ∈ Z| K3

ǫ (z) < K1
ǫ (z)

})

(5.1)

Thus u is Lebesgue measurable, as the intersection and the union of finitely many Lebesgue measurable
sets are Lebesgue measurable, see [5, IX Theorem 5.1, Remark 1.1], if and only if the single sets are
measurable which in fact they are as follows. We have that the sets {z ∈ Z| ui (z) > c}, i ∈ {1, 2, 3} are
Lebesgue measurable for any c ∈ R as ui is Lebesgue measurable for any i ∈ {1, 2, 3}. Further the sets
{

z ∈ Z| Ki
ǫ (z) ≤ K ĩ

ǫ (z)
}

and
{

z ∈ Q| Ki
ǫ (z) < K ĩ

ǫ (z)
}

, i, ĩ ∈ {1, 2, 3} are Lebesgue measurable, see [36,

Proposition 2.1.3].
In the case of a so-called L0-norm where g is given by

g (u) :=

{

γ if |u| 6= 0

0 otherwise
, γ > 0,

the calculation is analogous. The only difference is in giving the possible minima u1, u2 and u3 what we
do in the following.

If 0 < u ≤ u or u ≤ u < 0, we have the minimum at

u1 (z) := min

(

max

(

0,
2ǫv (z)− p (z) fu (z, y)

2ǫ+ α

)

, u

)

,

u2 (z) := min

(

max

(

u,
2ǫv (z)− p (z) fu (z, y)

2ǫ+ α

)

, 0

)
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or if u = 0, we have the minimum at
u3 (z) := 0.

The next lemma is a version of partial integration that we need for the thesis. In this lemma · denotes
the Euclidean scalar product and ∇ the divergence or the gradient with respect to the Euclidean scalar
product depending on if its argument is a vector-valued or real-valued function.

Lemma 53. Let φ1, ..., φn, f ∈ H1
0 (Ω,R). Then we have that

ˆ

Ω
∇ (φ (x)) f (x) dx = −

ˆ

Ω
φ (x) · ∇f (x) dx

where φ :=






φ1
...
φn




.

Proof. We take a sequence ‖fn−f‖H1
0 (Ω) → 0 for n→∞ with fn ∈ C∞

c (Ω) for all n ∈ N where C∞
c (Ω) is

the space of all arbitrarily differentiable functions on Ω with a compact support. This is always possible,
as H1

0 (Ω) is the closure of C∞
c (Ω), see [26, 9.4]. By the definition of the weak derivative, see [26, 9.1], we

have
ˆ

Ω
∇ (φ (x)) fn (x) dx =

ˆ

Ω

n∑

i=1

(∂xi
φi (x)) fn (x) dx = −

ˆ

Ω
φi (x) ∂xi

fn (x) dx = −
ˆ

Ω
φ (x)∇fn (x) dx.

Now by the Cauchy-Schwarz inequality [2, Lemma 2.2] and the Poincaré inequality [2, 6.7] we have that

lim
n→∞

ˆ

Ω
∇φ (x) (fn (x)− f (x)) dx = 0

and

lim
n→∞

ˆ

Ω
φ (x)∇ (fn (x)− f (x)) dx = 0.

5.2 Ordinary differential equations

We give a result that ensures a unique global solution to an initial value problem of the form (2.1).
According to [90, Theorem 54] and [90, Proposition C.3.8] we have the following theorem where the
symbols are defined as in Chapter 2.

Theorem 54. For any given u ∈ Uad, let f : [0, T ] × Rn × KU → Rn, t 7→ f̃ (t, y) := f (t, y, u (t)) be
measurable for any fixed y ∈ Rn. Furthermore, let a locally integrable function φ1 exist such that

‖f̃ (t, y1)− f̃ (t, y2) ‖ ≤ φ1 (t) ‖y1 − y2‖ (5.2)

holds for a norm defined on Rn, for each t ∈ [0, T ] and any y1, y2 ∈ Rn. If f̃ is locally integrable in t, that
means that for each fixed y0 there exists a locally integrable function φ2 : [0, T ]→ R+ with

‖f̃ (t, y0) ‖ ≤ φ2 (t) (5.3)

for almost all t, then there is a unique absolutely continuous function y : [0, T ]→ Rn fulfilling the integral
equation

y (t) = y0 +

ˆ t

0
f̃
(
t̃, y
(
t̃
))
dt̃.

= y0 +

ˆ t

0
f
(
t̃, y
(
t̃
)
, u
(
t̃
))
dt̃.
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By the virtue of Theorem 54 we now prove that (2.5) is uniquely solvable by the Assumption A.6) of
Chapter 2.

Theorem 55. The adjoint equation (2.5) with p (T ) = (DyF (y (T )))T has a unique absolutely continuous
solution t 7→ p (t) on the interval [0, T ] where y is the solution to the initial value problem (2.1) for the
corresponding u ∈ Uad.

Proof. By the transformation τ := T − t, p̂ (τ) := p (T − τ), ŷ (τ) := y (T − τ), û (τ) := u (T − τ) and
f̂y (τ, ŷ (τ) , û (τ)) := fy (T − τ, y (T − τ) , u (T − τ)) we obtain an initial value problem

p̂′ (τ) = hy (ŷ (τ)) + f̂y (τ, ŷ (τ) , û (τ))
T p̂ (τ) ,

p̂ (0) = (DyF (ŷ (0)))T with p̂′ (τ) := ∂
∂τ p̂ (τ) = ∂

∂τ p (T − τ) = − ∂
∂tp (t) = −p′ (t). Now we have that

ŷ : [0, T ] → Rn, τ 7→ ŷ (τ), p̂ : [0, T ] → Rn, τ 7→ p̂ (τ), û [0, T ] → Rm, τ 7→ û (τ), f̂y : [0, T ] → Rn×n,

τ 7→ f̂y (τ, ŷ (τ) , û (τ)) and ĥy := hy ◦ ŷ : [0, T ]→ Rn×1, τ 7→ ĥy (ŷ (τ)) are still Lebesgue measurable due
to the translation invariance of the Lebesgue measure [5, IX Corollary 5.23] and that continuous functions
are Lebesgue measurable [36, page 42]. Consequently the right hand-side of the adjoint equation

τ 7→ Ξ (τ, p̂) := hy (ŷ (τ)) + f̂y (τ, ŷ (τ) , û (τ))
T p̂

is Lebesgue measurable for each fixed p̂ ∈ Rn, as the product and sum of Lebesgue measurable functions
is Lebesgue measurable [36, Proposition 2.1.7]. We show that the rest of the requirements of Theorem 54
are fulfilled. The Lipschitz continuity (5.2) results from Assumption A.6) as follows. We have

‖Ξ (τ, p̂1)− Ξ (τ, p̂2) ‖ = ‖f̂y (τ, ŷ, û) (p̂1 − p̂2) ‖ ≤ c1
(

max
i=1,...,n

n∑

l=1

| ∂
∂yl

f̂i (τ, ŷ (τ) , û (τ)) |
)

‖p̂1 − p̂2‖

with c1 > 0 by the equivalence of norms of a finite vector space [75, Theorem 4.9] and the formula for
the L1 matrix norm, see [39, page 22 and 23]. As the absolute value of a Lebesgue measurable function
is Lebesgue measurable [36, page 46] and the max (·, ·) of two Lebesgue measurable functions is Lebesgue
measurable [36, Proposition 2.1.4], we have by the Lebesgue measurability of τ 7→ ∂

∂yl
f̂i (τ, ŷ (τ) , û (τ)) for

all i, l ∈ {1, ..., n} and by the Lebesgue measurability of sums [36, Proposition 2.1.7] that (5.2) holds for

φ1 (τ) := c1

(

max
i=1,...,n

n∑

l=1

∂

∂yl
f̂i (τ, ŷ (τ) , û (τ))

)

.

The integrability of φ1 holds due to the boundedness assumption A.6) of ∂
∂yl
f̂i (τ, ŷ, û) for all i, l ∈ {1, ..., n}.

The calculation for (5.3) is similar due to the linearity of Ξ in p̂. For fixed p̂, we have with [39, Definition
1.7] that

‖hy (ŷ (τ)) + f̂y (τ, ŷ (τ) , û (τ))
T p̂‖ ≤ ‖hy (ŷ (τ)) ‖+ ‖f̂y (τ, ŷ (τ) , û (τ))T p̂‖

≤ c2
(

n∑

i=1

| ∂
∂yi

h (ŷ (τ)) |+ max
i=1,...,n

n∑

l=1

| ∂
∂yl

f̂i (τ, ŷ (τ) , û (τ)) |
)

with c2 > 0 where

φ2 (τ) := c2

(
n∑

i=1

| ∂
∂yi

h (ŷ (τ)) |+ max
i=1,...,n

n∑

l=1

| ∂
∂yl

f̂i (τ, ŷ (τ) , û (τ)) |
)

is measurable and integrable with analogous arguments as for (5.2). However, we remark that for the
integrability of τ 7→ | ∂

∂yi
h (ŷ (τ)) | Assumption A.6) is not necessary. The measurability and the integra-

bility follow from [36, Theorem 2.5.4] due to the continuity of ∂
∂yi
h for all i ∈ {1, ..., n}, because of the
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continuity of the solution to (2.1) and that the composite function of continuous functions is continuous [3,
III Theorem 1.8]. Thus the composition is measurable since continuous functions are Lebesgue measurable
[36, page 42] and is bounded on the compact interval [0, T ], see [3, III Corollary 3.8]. By Theorem 54
and the backsubstitution p (t) = p (T − τ) = p̂ (τ) we obtain the unique absolutely continuous solution to
(2.5).

Lemma 56. The intermediate adjoint equation (2.7) with p̃ (T ) = F̃ (y1, y2) has a unique absolutely
continuous solution t 7→ p̃ (t) on the interval [0, T ] where y1, y2 are the solutions to the initial value
problem (2.1) for the corresponding u1, u2 ∈ Uad.

Proof. The proof is basically the same as for Theorem 55. We first have to check that

F̃i (y1, y2) :=

ˆ 1

0

∂

∂yl
F (y) |y=y2(T )+θ(y1(T )−y2(T ))dθ,

f̃il (t, y1, y2, u1) :=

ˆ 1

0

∂

∂yl
fi (t, y, u1 (t)) |y=y2(t)+θ(y1(t)−y2(t))dθ

and

h̃i (y1, y2) :=

ˆ 1

0

∂

∂yl
h (y) |y=y2(t)+θ(y1(t)−y2(t))dθ,

i, l ∈ {1, ..., n} are well defined for any t ∈ [0, T ]. This is the case since the functions

θ 7→ ∂

∂yl
F (y) |y=y2(T )+θ(y1(T )−y2(T )),

θ 7→ ∂

∂yl
fi (t, y, u1 (t)) |y=y2(t)+θ(y1(t)−y2(t))

and

θ 7→ ∂

∂yl
h (y) |y=y2(t)+θ(y1(t)−y2(t))

are continuous and composite functions of continuous functions are continuous [3, III Theorem 1.8], thus
bounded [3, III Corollary 3.8] and integrable [36, Theorem 2.5.4] where we use [10, Proposition 3.4] which
gives that y2 (t) + θ (y1 (t)− y2 (t)) ∈ I for any θ ∈ [0, 1].

Next we have to see that t 7→ h̃ (y1 (t) , y2 (t)) and t 7→ f̃ (t, y1 (t) , y2 (t)) are measurable. According
to Lemma 52, we have that the function (θ, t) 7→ θ, (θ, t) 7→ t, (θ, t) 7→ y1 (t), (θ, t) 7→ y2 (t) and
(θ, t) 7→ u1 (t) is Lebesgue measurable on [0, 1] × [0, T ]. As the sum and the product of measurable
functions is measurable [36, Proposition 2.1.7], applied to each component [36, Example 2.6.5], we have that
(θ, t) 7→ ∂

∂yl
fi (t, y, u1 (t)) |y=y2(t)+θ(y1(t)−y2(t)) and (θ, t) 7→ ∂

∂yl
h (y) |y=y2(t)+θ(y1(t)−y2(t)) are measurable on

[0, 1]× [0, T ].

Next, by [36, Proposition 2.1.4, page 46], Tonelli’s Theorem [5, X Theorem 6.7 ii)] and that the
sum of measurable functions is measurable [36, Proposition 2.1.7], we have that t 7→ h̃i (y1 (t) , y2 (t))
and t 7→ f̃il (t, y1 (t) , y2 (t)) is Lebesgue measurable. We remark that t 7→ h̃ (y1 (t) , y2 (t)) is integrable
for any continuous y1 and y2 since (θ, t) 7→ hy (y2 (t) + θ (y1 (t)− y2 (t))) is continuous [3, III Theorem
1.5, Theorem 1.8], thus bounded [3, III Corollary 3.8] on the compact set [0, 1] × [0, T ] and Lebesgue
integrable. By Fubini’s Theorem [5, X Theorem 6.9], we have that t 7→ h̃i (y1 (t) , y2 (t)). The integrability
of t 7→ f̃il (t, y1 (t) , y2 (t)) follows from the boundedness in Assumption A.6).

For the characterization of a solution to the optimal control problem (2.3) Gronwall’s lemma is exten-
sively used. For this purpose, we write it down from [94, Lemma 2.7].
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Lemma 57. Suppose that ψ : R→ R fulfills

ψ (t) ≤ Λ (t) +

ˆ t

0
Γ
(
t̃
)
ψ
(
t̃
)
dt̃, t ∈ [0, T ]

with Λ (t) ∈ R and Γ (t) ≥ 0. Then it holds

ψ (t) ≤ Λ (t) +

ˆ t

0
Λ
(
t̃
)
Γ
(
t̃
)
exp

(
ˆ t

s
Γ
(
t̂
)
dt̂

)

dt̃

with t ∈ [0, T ].

A further useful result for technical calculations for the used solution concept of ODEs where a solution
is only almost everywhere differentiable is the following formulation of the fundamental theorem of calculus,
see [79, Theorem 6.3.6].

5.3 Partial differential equations

In this section, we provide basic results that are used for the analysis of the PMP and the SQH method in
a partial differential equations (PDEs) framework. We start with a general result and give specific results
in the corresponding subsection about elliptic PDEs or parabolic PDEs, respectively.

The following lemma is used for both elliptic and parabolic PDE analysis. This lemma is proved in
[100, Lemma 4.1.1].

Lemma 58. Let ϕ (t) be a non-negative and non-increasing function on [k0,∞) satisfying

ϕ (m) ≤
(

M

m− k

)α

(ϕ (k))β , ∀m > k ≥ k0

for some constants M > 0, α > 0 and β > 1. Then there exists a d > 0 such that ϕ (m) = 0 for all

m ≥ k0 + d. It is sufficient for this statement to choose d :=M2
β

β−1 (ϕ (k0))
β−1
α .

5.3.1 Elliptic partial differential equations

In this subsection, we prove an L∞-result for elliptic partial differential equations that is essential for this
thesis. Specifically in the PMP framework including the numerical treatment with the SQH method, the
L∞ boundedness of the solution to the corresponding PDE is crucial.

Let Ω ⊆ Rn, n ∈ N be an open set. We provide a results for the elliptic PDEs that is useful for this
purpose. We have the following

B (y, v) = (h, v) in Ω

y = 0 on ∂Ω
(5.4)

for all v ∈ H1
0 (Ω) where B (y, v) : H1

0 (Ω)×H1
0 (Ω)→ R is a bilinear map with the coercivity condition

β‖y‖2H1
0 (Ω) ≤ B (y, y) , β > 0

and

B (−k, v) ≤ 0 for k ≥ 0

if v ≥ 0 and h ∈ Lq (Ω), q ≥ n
2 + 1. We assume that (5.4) has a unique solution y ∈ H1

0 (Ω). Then the
following theorem holds.
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Theorem 59. If there exists a unique solution to (5.4), then the initial value problem (5.4) has an
essentially bounded solution for which it holds

‖y‖L∞(Ω) ≤ C‖h‖Lq(Ω)

where C > 0.

Proof. The proof is based on [100, Theorem 4.2.1] or [22]. We assume that h is not the zero function.
In the case of h = 0, the solution y = 0 solves (5.4) and thus the statement of the theorem is true. We
choose the constant k ≥ 0. We have that y − k ∈ H1 (Ω) due to the linearity of the weak differentiation
operation [45, 5.2 Theorem 1] and that the derivative of the constant function k fulfills the definition of
weak derivative [45, page 243]. Furthermore there is no other weak derivative because of the uniqueness
of the weak derivative [45, page 243] and therefore we have that

(y − k)+ := max (y − k, 0) ∈ H1
0 (Ω) ,

see [38, Chapter 4, Proposition 6]. Then, we choose v = (y − k)+ in (5.4) and obtain the following

B
(
y − k, (y − k)+

)
≤
(
h, (y − k)+

)

where we use that

B
(
y, (y − k)+

)
≥ B

(
y, (y − k)+

)
+B

(
−k, (y − k)+

)
= B

(
y − k, (y − k)+

)

and thus
β‖ (y − k)+ ‖2H1

0 (Ω) ≤
(
h, (y − k)+

)
(5.5)

as (y − k)+ = 0 if y − k ≤ 0 and B
(
y − k, (y − k)+

)
= B

(
(y − k)+ , (y − k)+

)
if y − k > 0 and

β‖ (y − k)+ ‖2H1
0 (Ω) ≤ B

(
(y − k)+ , (y − k)+

)

due to the coercivity assumption for B. We remark that the function (y − k)+ ∈ H1
0 (Ω) is also an element

of Lp (Ω) with ‖ (y − k)+ ‖Lp(Ω) ≤M‖ (y − k)+ ‖H1
0 (Ω), M > 0 where

2 ≤ p







≤ ∞ for n = 1

<∞ for n = 2

≤ 2n
n−2 for n ≥ 3

, (5.6)

see the Sobolev embedding theorem [1, Theorem 4.12], especially [1, Theorem 4.12 Part III]. This implies

‖ (y − k)+ ‖2Lp(Ω) ≤ β̃
ˆ

Ω
h (x) (y − k)+ (x) dx (5.7)

with β̃ > 0. Next, we define
Ak := {x ∈ Ω| y (x) > k}

which is measurable, see [5, X Theorem 1.9] and |Ak (t) | is the measure of Ak (t). Due to (y (x)− k)+ = 0
for x ∈ Ω\Ak, we consequently have from (5.7) the following

‖ (y − k)+ ‖2Lp(Ak)
≤ β̃
ˆ

Ak

h (x) (y − k)+ (x) dx. (5.8)

In the next step, we have the estimate by Hölder’s inequality, see [5, X Theorem 4.2]

‖ (y − k)+ ‖2Lp(Ak)
≤ β̃

(
ˆ

Ak

|h (x) |n2+1dx

) 1
n
2 +1

(
ˆ

Ak

(y − k)
2+n
n

+ (x) dx

) n
2+n
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which can be applied since (y − k)+ ∈ L
n+2
n (Ω). This is true because in the case n = 1 and n = 2, we

have (y − k)+ ∈ Lp, 2 ≤ p < ∞ and in the case n ≥ 3, we have 2n
n−2 ≥ 2+n

n , which is true for all n ≥ 3

since equivalently n2 ≥ −4, and with the Lp-embedding [1, Theorem 2.14] consequently

‖ (y − k)+ ‖2Lp(Ak)
≤ β̃‖h‖

L
n
2 +1(Ω)

(
ˆ

Ak

(y − k)
2+n
n

+ (x) dx

) n
2+n

. (5.9)

We apply Hölder’s inequality again with 1
p̃ + 1

q̃ = 1, thus for a given p̃ we have q̃ = p̃
p̃−1 , and we obtain

the following

‖ (y − k)+ ‖2Lp(Ak)
≤ β̃‖h‖

L
n
2 +1(Ω)

(
ˆ

Ak

1dx

) p̃−1
p̃

n
2+n

(
ˆ

Ak

(y − k)
2+n
n

p̃
+ (x) dx

) n
p̃(2+n)

(5.10)

We choose p = 2+n
n p̃ and conclude from (5.10) for ‖ (y − k)+ ‖L 2+n

n p̃(Ak)
> 0 the following

(
ˆ

Ak

| (y − k)+ (x) | 2+n
n

p̃dx

) n
p̃(2+n)

= ‖ (y − k)+ ‖L 2+n
n p̃(Ak)

≤ β̃‖h‖
L

n
2 +1(Ω)

(
ˆ

Ak

1dx

) p̃−1
p̃

n
2+n

, (5.11)

which is also true in the case ‖ (y − k)+ ‖L 2n
n−2 (Ak)

= 0.

Furthermore, for m > k, we have that Am ⊆ Ak. Additionally it is y > m on Am and thus y ≥ y−k >
m− k on Am due to k ≥ 0. Since y − k = (y − k)+ on Am, we obtain

ˆ

Ak

| (y − k)+ (x) | 2+n
n

p̃dx ≥
ˆ

Am

(y − k)
2+n
n

p̃ (x) dx ≥ (m− k)
2+n
n

p̃
ˆ

Am

1dx. (5.12)

We combine (5.12) with (5.11) and obtain (m− k) |Am|
n

p̃(2+n) ≤ β̃‖h‖
L

n
2 +1(Ω)

|Ak|
p̃−1
p̃

n
2+n and equivalently

|Am| ≤




β̃‖h‖

L
n
2 +1(Ω)

m− k





2+n
n

p̃

|Ak|p̃−1. (5.13)

In order to apply Lemma 58, we need that p̃−1 > 1 and that p fulfills (5.6). For the case n = 1 and n = 2
we can choose any p̃ > 2, for example p̃ = 3. For the case that n ≥ 3, we have to ensure that 2+n

n p̃ ≤ 2n
n−2 ,

which is p̃ ≤ 2n2

n2−4
. Since the expression 2n2

n2−4
> 2 for n ≥ 3 is equivalent to 0 > −8 and thus always true,

we can choose p̃ = 2n2

n2−4
in the case of n ≥ 3. Then we also have that 2+n

n p̃ > 0. By applying Lemma 58,

we obtain that |Am| = 0 for m ≥ β̃‖h‖
L

n
2 +1(Ω)

2
p̃−1
p̃−2 |Ω|

n(p̃−2)
p̃(2+n) where |Ω| is the measure of Ω. This means

that the set where

y > β̃‖h‖
L

n
2 +1(Ω)

2
p̃−1
p̃−2 |Ω|

n(p̃−2)
p̃(2+n)

is of measure zero. With the same arguments, we have for (y + k)− := min (y + k, 0) and Ak :=

{x ∈ Ω| y < −k} that the set where y < −β̃‖h‖
L

n
2 +1(Ω)

2
p̃−1
p̃−2 |Ω|

n(p̃−2)
p̃(2+n) is of measure zero. Consequently, we

obtain that ‖y‖L∞(Ω) ≤ C‖h‖Ln
2 +1(Ω)

with C := β̃2
p̃−1
p̃−2 |Ω|

n(p̃−2)
p̃(2+n) .

For P.3) this result above holds also immediately if we assume KU ⊆ R+
0 because then we have that

−ukv ≤ 0 for v ≥ 0 and we can continue the proof of Theorem 59 from (5.5) to obtain the following
theorem.
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Theorem 60. For the solution y to a bilinear elliptic boundary value problem as in P.3) with KU ⊆ R+
0 ,

we have

‖y‖L∞(Ω) ≤ d‖f̃‖Lq(Ω)

with d > 0 for any right-hand side f̃ ∈ Lq (Ω).

Remark 61. For P.5), we have the following consideration such that the proof of Theorem 59 can be
followed from (5.5) in order to obtain a corresponding boundedness result as in Theorem 59 for P.5). We
have that

(
∇y,∇ (y − k)+

)
≤
(
∇y,∇ (y − k)+

)
+
(
y3, (y − k)+

)

as y3 (y − k)+ ≥ 0 due to (y − k)+ = 0 if y ≤ k ≥ 0. With similar considerations the L∞ (Ω)-result is
proved for (P.7)) as max (0, y) ≥ 0.

5.3.2 Parabolic partial differential equations

In this subsection, which is based on the appendix of [21] we prove an L∞-result that is essential in the
Pontryagin maximum principle framework of this thesis. We take the following framework

(
y′ (·, t) , v

)
+B (y, v; t) = (h (·, t) , v) in Ω× (0, T )

y = 0 on ∂Ω× [0, T ]

y = y0 on Ω× {0}
(5.14)

for all v ∈ H1
0 (Ω)with bounded Ω ⊆ Rn, T > 0 and y′ (·, t) := ∂

∂ty (·, t) where B (y, v; t) : H1
0 (Ω) ×

H1
0 (Ω)× R+

0 → R is a bilinear map with the coercivity condition

β‖y (·, t) ‖2H1
0 (Ω) ≤ B (y, y; t) , β > 0

and

B (−k, v; t) ≤ 0 for k ≥ 0

if v ≥ 0 for any t ∈ [0, T ]. Furthermore, we require that h ∈ Lq (Q), q > n
2 + 1 for n ≥ 2 and q ≥ 2 for

n = 1, y0 ∈ L∞ (Ω) and that (5.14) has a unique solution fulfilling

y ∈ L2
(
0, T ;H1

0 (Ω)
)
∩ L∞ (0, T ;L2 (Ω)

)
and y′ ∈ L2

(
0, T ;H−1 (Ω)

)

such that (5.14) holds for almost all t ∈ (0, T ) and all v ∈ H1
0 (Ω), see [45, Chapter 7] for details. With the

following lemmas, we prepare for the proof of Theorem 64 below. This result and a similar proof can be
found in [76] or [64, Chapter 7 Theorem 7.1, Corollary 7.1]. For the notation, see [1]. We start with the
Gagliardo-Nirenberg theorem which can be found in a more general formulation in [74, Lecture II, (2.2)].

Lemma 62. Let y ∈ H1 (Ω). Then following inequality holds

‖y‖
L
2 n
n+ρ (Ω)

≤ ‖∇y‖
n

n+ρ

L2(Ω)
‖y‖1−

n
n+ρ

L2(Ω)

with ρ ≥ 1.

Lemma 63. Let y ∈ L2
(

0, T ;W 1,2
0 (Ω)

)

∩ L∞ (0, T ;Lρ (Ω)) with ρ ≥ 1. Then y ∈ Lσ (Q) with σ = 2n+ρ
n

and there exists a constant c > 0 with
ˆ

Q
|y (x, t) |σdxdt ≤ c‖y‖

2ρ
n

L∞(0,T ;Lρ(Ω))‖∇y‖
2
L2(Q).
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Proof. By applying Lemma 62 (Gagligardo-Nierenberg) for σ := 2ρ+n
n > 1, we have

(
ˆ

Ω
|y (x, t) |σdx

) 1
σ

≤ C‖∇y (·, t) ‖
2
σ

L2(Ω)
‖y (·, t) ‖(1−

2
σ )

Lρ(Ω)

for all t ∈ [0, T ] and thus equivalently

(
ˆ

Ω
|y (x, t) |σdx

)

≤ Cσ‖∇y (·, t) ‖2L2(Ω)‖y (·, t) ‖
(1− 2

σ )σ
Lρ(Ω) .

By integrating over t, we obtain

ˆ T

0

ˆ

Ω
|y (x, t) |σdxdt ≤ Cσ

ˆ T

0
‖∇y (·, t) ‖2L2(Ω)‖y (·, t) ‖

(1− 2
σ )σ

Lρ(Ω) dt.

Since y ∈ L∞ (0, T ;Lρ (Ω)), we have

ˆ T

0

ˆ

Ω
|y (x, t) |σdxdt ≤ Cσ‖y‖

2ρ
n

L∞(0,T ;Lρ(Ω))

ˆ T

0
‖∇y (·, t) ‖2L2(Ω)dt.

Inserting the definition of σ on the right hand-side of this inequality, we obtain the statement of the lemma
from the identity

ˆ T

0
‖∇y (·, t) ‖2L2(Ω)dt =

ˆ T

0

ˆ

Ω
|∇y (x, t) |2dxdt =

ˆ

Q
|∇y (x, t) |2dxdt = ‖∇y‖2L2(Q)

and c := Cσ.

Theorem 64. Assuming there exists a unique solution to (5.14) fulfilling

y ∈ L2
(
0, T ;H1

0 (Ω)
)
∩ L∞ (0, T ;L2 (Ω)

)
and y′ ∈ L2

(
0, T ;H−1 (Ω)

)
,

then the solution is essentially bounded with

‖y‖L∞(Q) ≤ C‖h‖Lq(Q) + ‖y0‖L∞(Ω)

where C > 0.

Proof. We choose k > ‖y0‖L∞(Ω) ≥ 0. We have that y (·, t) − k ∈ H1 (Ω) for any t ∈ [0, T ] due to the
linearity of the weak differentiation operation [45, 5.2 Theorem 1] and that the derivative of the constant
function k fulfills the definition of weak derivative [45, page 243]. Furthermore there is no other weak
derivative because of the uniqueness of the weak derivative [45, page 243] and therefore it holds that

(y − k)+ (·, t) := max (y (·, t)− k, 0) ∈ H1
0 (Ω)

for almost any t ∈ (0, T ), see [38, Chapter 4, Proposition 6]. Then, we choose v = (y − k)+ (·, t) in (5.14)
and obtain

(
y′ (·, t) , (y − k)+ (·, t)

)
+B

(
y − k, (y − k)+ ; t

)
≤
(
h (·, t) , (y − k)+ (·, t)

)

for almost any t ∈ (0, T ) where we use

B
(
y, (y − k)+ ; t

)
≥ B

(
y, (y − k)+ ; t

)
+B

(
−k, (y − k)+ ; t

)
= B

(
y − k, (y − k)+ ; t

)

for any t ∈ [0, T ] and thus with the coercivity condition

(
(y − k)′+ , (y − k)+

)
+ β‖ (y − k)+ (·, t) ‖2H1

0 (Ω) ≤
(
h (·, t) , (y − k)+ (·, t)

)
(5.15)
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for almost any t ∈ (0, T ). Notice that (y − k)+ (·, t) = 0 if y − k ≤ 0 and therefore

B
(
y − k, (y − k)+ ; t

)
= B

(
(y − k)+ , (y − k)+ ; t

)

and
(
y′ (·, t) , (y − k)+ (·, t)

)
=
(
(y (·, t)− k)′ , (y − k)+ (·, t)

)
=
(
(y − k)′+ (·, t) , (y − k)+ (·, t)

)

due to the bilinearity and also in the case y − k > 0 as (y − k)+ (·, t) = (y (·, t)− k). Next, as (y − k)+ is
measurable, see [36, page 46] and

ˆ T

0
‖ (y − k)+ (·, t) ‖2H1

0 (Ω)dt ≤
ˆ T

0
‖ (y − k) (·, t) ‖2H1

0 (Ω)dt =

ˆ T

0
‖y‖2H1

0 (Ω)dt <∞

and

ˆ T

0

(
(y − k)+ (·, t) , v

)2

H1
0 (Ω)

dt ≤
ˆ T

0
((y − k) (·, t) , v)2H1

0 (Ω) dt =

ˆ T

0
(y (·, t) , v)2H1

0 (Ω) <∞

for all v ∈ H1
0 (Ω), we obtain with [45, 5.9 Theorem 3] the following

(
(y − k)′+ , (y − k)+

)
=

1

2

d

dt
‖ (y − k)+ (·, t) ‖2L2(Ω).

Thus with (5.15) we get

1

2

d

dt
‖ (y − k)+ (·, t) ‖2L2(Ω) + β‖ (y − k)+ (·, t) ‖2H1

0 (Ω) ≤
(
h (·, t) , (y − k)+ (·, t)

)
(5.16)

for almost any t ∈ (0, T ). By taking the absolute value of the right hand-side of (5.16), renaming the
variable t into t̃ and integrating over it from 0 to t, we obtain

1

2
‖ (y − k)+ (·, t) ‖2L2(Ω) + β

ˆ t

0
‖ (y − k)+

(
·, t̃
)
‖2H1

0 (Ω)dt̃ ≤
ˆ t

0

ˆ

Ω
|h
(
x, t̃
)
(y − k)+

(
x, t̃
)
|dxdt̃

≤
ˆ T

0

ˆ

Ω
|h
(
x, t̃
)
(y − k)+

(
x, t̃
)
|dxdt̃

(5.17)

where, because of the definition of k, we have ‖ (y − k)+ (·, 0) ‖2L2(Ω) = 0. From (5.17), it follows that

1

2
‖ (y − k)+ (·, t) ‖2L2(Ω) ≤

ˆ T

0

ˆ

Ω
|h
(
x, t̃
)
(y − k)+

(
x, t̃
)
|dxdt̃, (5.18)

β

ˆ t

0
‖ (y − k)+

(
·, t̃
)
‖2H1

0 (Ω)dt̃ ≤
ˆ T

0

ˆ

Ω
|h
(
x, t̃
)
(y − k)+

(
x, t̃
)
|dxdt̃. (5.19)

By the monotonicity of the square root and taking the supremum over t, we obtain from (5.18) that

√

1

2
‖ (y − k)+ ‖L∞(0,T ;L2(Ω)) ≤

√
ˆ T

0

ˆ

Ω
|h
(
x, t̃
)
(y − k)+

(
x, t̃
)
|dxdt̃.

Further with this inequality and (5.19), we obtain the following

C̃
(

‖ (y − k)+ ‖2L∞(0,T ;L2(Ω)) + ‖∇ (y − k)+ ‖2L2(Q)

)

≤
ˆ T

0

ˆ

Ω
|h (x, t) (y − k)+ (x, t) |dxdt (5.20)
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for C̃ := min
{

1
4 ,

β
2

}

> 0 and renaming t̃ into t. Then we can apply Young’s inequality, see [6, (3.4)] and

obtain

‖ (y − k)+ ‖
4

n+2

L∞(0,T ;L2(Ω))
‖∇ (y − k)+ ‖

2n
n+2

L2(Q)

≤ 2n+ 4

4

(

‖ (y − k)+ ‖
4

n+2

L∞(0,T ;L2(Ω))

) 2n+4
4

+
2n

2n+ 4

(

‖∇ (y − k)+ ‖
2n
n+2

L2(Q)

) 2n+4
2n

≤ 2n+ 4

4

(

‖ (y − k)+ ‖2L∞(0,T ;L2(Ω)) + ‖∇ (y − k)+ ‖2L2(Q)

)

.

This result and (5.20) imply the following

(

4C̃

2n+ 4

)n+2
n (

‖ (y − k)+ ‖
4
n

L∞(0,T ;L2(Ω))
‖∇ (y − k)+ ‖2L2(Q)

)

≤
(
ˆ

Q
|h (x, t) (y − k)+ (x, t) |dxdt

)n+2
n

.

(5.21)
Then, due to y ∈ L2

(
0, T ;H1

0 (Ω)
)
∩ L∞ (0, T ;L2 (Ω)

)
and (y − k)+ (·, t) ∈ H1

0 (Ω) for almost any t ∈
(0, T ), see [38, Chapter 4, Proposition 6], we have that

ˆ

Q
(y − k)2

n+2
n

+ dxdt ≤ c‖ (y − k)+ ‖
4
n

L∞(0,T ;L2(Ω))
‖∇ (y − k)+ ‖2L2(Q) (5.22)

with c > 0 by Lemma 63. Inequality (5.22) and (5.21) imply the following

C̄

ˆ

Q
(y − k)2

n+2
n

+ (x, t) dxdt ≤
(
ˆ

Q
|h (x, t) (y − k)+ (x, t) |dxdt

)n+2
n

dxdt (5.23)

where C̄ := 1
c

(
4C̃

(2n+4)

)n+2
n
> 0. Consequently, we have

C̄

ˆ

Ak

(y − k)2
n+2
n

+ (x, t) dxdt ≤
(
ˆ

Ak

|h (x, t) (y − k)+ (x, t) |dxdt
)n+2

n

dxdt (5.24)

where

Ak := {(x, t) ∈ Q| y (x, t) > k} .

The set Ak is measurable, see [36, Proposition 2.1.1 and page 42]. By estimating the right hand-side of
(5.24) with Hölder’s inequality, see [5, X Theorem 4.2], we obtain

C̄

ˆ

Ak

(y − k)2
n+2
n

+ (x, t) dxdt

≤
((
ˆ

Ak

|h (x, t) |
2n+4
n+4 dxdt

) n+4
2n+4

(
ˆ

Ak

| (y − k)+ (x, t) | 2n+4
n dxdt

) n
2n+4

)n+2
n

=

(
ˆ

Ak

|h (x, t) |
2n+4
n+4 dxdt

)n+4
2n
(
ˆ

Ak

(y − k)2
n+2
n

+ (x, t) dxdt

) 1
2

.

(5.25)

If
´

Ak
(y − k)2

n+2
n

+ (x, t) dxdt > 0, then (5.25) implies

C̄

ˆ

Ak

(y − k)2
n+2
n

+ (x, t) dxdt ≤
(
ˆ

Ak

|h (x, t) |
2n+4
n+4 dxdt

)n+4
n

. (5.26)
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This is also true in the case of
´

Ak
(y − k)2

n+2
n

+ (x, t) dxdt = 0. We use Hölder’s inequality again for the
right hand-side of (5.26), see [5, X Theorem 4.2], and obtain the following

C̄

ˆ

Ak

(y − k)2
n+2
n

+ (x, t) dxdt ≤
(
ˆ

Ak

|h (x, t) |
2n+4
n+4 dxdt

)n+4
n

≤





(
ˆ

Ak

1
q(4+n)

n(q−2)+4(q−1)dxdt

)n(q−2)+4(q−1)
q(4+n)

(
ˆ

Ak

(

|h (x, t) |
2n+4
n+4

)q n+4
2n+4

dxdt

) 2n+4
q(n+4)





n+4
n

=

((
ˆ

Ak

|h (x, t) |qdxdt
) 1

q

) 2n+4
n

|Ak|
n+4
n

− 2n+4
qn ‖h‖

2n+4
n

Lq(Ak)
≤ |Ak|

n+4
n

− 2n+4
qn ‖h‖

2n+4
n

Lq(Q)

(5.27)

where |Ak| is the measure of Ak. Now, if we take m > k, then we have Am ⊆ Ak. Additionally, we have
that y > m on Am and thus y ≥ y− k > m− k on Am since k > ‖y0‖L∞(Ω) ≥ 0. Due to y− k = (y − k)+
on Am, we obtain

ˆ

Ak

(y − k)2
n+2
n

+ (x, t) dxdt

≥
ˆ

Am

(y − k)2
n+2
n

+ (x, t) dxdt =

ˆ

Am

(y − k)2
n+2
n (x, t) dxdt ≥ (h− k)2

n+2
n |Am|.

(5.28)

We combine (5.27) and (5.28) and obtain the following

(m− k)2
n+2
n |Am| ≤ Ĉ‖h‖

2n+4
n

Lq(Q)|Ak|
n+4
n

− 2n+4
qn

with Ĉ := 1
C̄

. Therefore we have

|Am| ≤
(

Ĉ
n

2n+4 ‖h‖Lq(Q)

m− k

) 2n+4
n

|Ak|
n+4
n

− 2n+4
qn . (5.29)

Now, we consider the case that ‖h‖Lq(Q) > 0. We have that 2n+4
n > 0 for n ≥ 1 and n+4

n − 2n+4
qn > 1 since

q > n
2 + 1. Therefore, we apply Lemma 58 and obtain that |Am| = 0 for all m ≥ C‖h‖Lq(Q) + ‖y0‖L∞(Ω),

C := Ĉ
n

2n+4 2
4+2n−4q−nq

4+2n−4q |Q|
2q−n−2
2q+nq where |Q| is the measure of Q. If ‖h‖Lq(Q) = 0, then we have from (5.29)

that Am = 0 for any m > k and any k > ‖y0‖L∞(Q). Therefore in the limit for m→ k and k → ‖y0‖L∞(Ω),
we have that |Am| = 0 for m ≥ ‖y0‖L∞(Ω). If there was a number ǫ > 0 such that the statement did not
hold, then we would choose ǫ > k > 0 in contradiction to the already proved statement. Concluding, this
means that the set Am where the function y is such that

y > C‖h‖Lq(Q) + ‖y0‖L∞(Q)

has measure zero.
In the same way, if we follow the reasoning above for

(y + k)− := min (y + k, 0) and Ak := {(x, t) ∈ Q| y < −k} ,

we obtain that the set Am = {(x, t) ∈ Q| y < −m} where the function y is such that

y < −
(
C‖h‖Lq(Q) + ‖y0‖L∞(Q)

)

has measure zero. Therefore, we obtain ‖y‖L∞(Q) ≤ C‖h‖Lq(Q) + ‖y0‖L∞(Ω).
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For P.4), we have the following theorem similar to Theorem 65 that holds immediately, assuming that
KU ⊆ R+

0 considering step (5.15) since uy (y − k)+ ≥ 0 because (y − k)+ = 0 if y ≤ k ≥ 0.

Theorem 65. For the solution y to a bilinear parabolic boundary value problem as in P.4) with KU ⊆ R+
0 ,

we have
‖y‖L∞(Q) ≤ d‖f̃‖Lq(Q) + ‖y0‖L∞(Ω)

with d > 0 for any right-hand side f̃ ∈ Lq (Q).

5.3.3 Fokker-Planck equation

The following Lemma states that the L2-norm of the adjoint equation (4.75) is bounded by the L2-norm
of the controls. The Lemma is used in the proof of Lemma 50.

Lemma 66. The solution to (4.80), where it holds that δp := pk − p and p is a solution to (4.75) for v, w
and pk is a solution to (4.75) for v ← vk, w ← wk, is bounded by

‖δp‖L2(Q) ≤ θ̂k
(
‖δv‖L2(0,T ) + ‖δw‖L2(0,T )

)

where θ̂k := e(η+1)T
(

θ̃k + 2nL|Ω|
)

T and δv = vk − v, δw = wk − w.

Proof. We start from (4.80) for δp := pk − p and perform a transformation of time τ := T − t where we
still denote τ 7→ δpk (·, T − τ) by t 7→ δpk (·, t). Then, we obtain

ˆ

Ω
δp′ (x, t)ϕ (x) +

σ2

2
(∇δp (x)) · ∇ϕ (x)−

(

vk (t) + x ◦ wk (t)
)

· ∇δp (x, t)ϕ (x) dx

=

ˆ

Ω

(

v (t) + x ◦ w (t)−
(

vk (t) + x ◦ wk (t)
))

· ∇pk (x, t)ϕ (x) dx

+

ˆ

Ω

(

G
(

vk, wk
)

(x, t)−G (v, w) (x, t)
)

ϕ (x) dx.

(5.30)

Next we choose p̂k (·, t) := e−ηtpk (·, t), p̂k+1 := e−ηtpk+1 (·, t) and δp̂ (·, t) := e−ηtδp (·, t), η ≥ 0 and insert
δp̂ for ϕ into (5.30). Then we obtain, with the same reasoning as in the proof of Theorem 43, for η
sufficiently large that

1

2

d

dt
‖δp̂ (·, t) ‖2L2(Ω)

≤ ‖
(

(v (t) + x ◦ w (t))−
(

vk (t) + x ◦ wk (t)
))

· ∇p̂k (·, t) ‖L2(Ω)‖δp̂ (·, t) ‖L2(Ω)

+ ‖G
(

vk, wk
)

(·, t)−G (v, w) (·, t) ‖L2(Ω)‖δp̂ (·, t) ‖L2(Ω)

with the Cauchy-Schwarz inequality, see [2, Lemma 2.2] and with [45, Section 5.9 Theorem 3] for

1

2

d

dt
‖δp̂ (·, t) ‖2L2(Ω) =

ˆ

Ω
δp̂′ (x, t) δp̂ (x, t) dx.

With Cauchy’s inequality, see [45, page 622], we have the following

d

dt
‖δp̂ (·, t) ‖2L2(Ω)

≤ ‖
(

(v (t) + x ◦ w (t))−
(

vk (t) + x ◦ wk (t)
))

· ∇p̂k (·, t) ‖2L2(Ω) + ‖δp̂ (·, t) ‖2L2(Ω)

+ ‖G
(

vk, wk
)

(·, t)−G (v, w) (·, t) ‖2L2(Ω) + ‖δp̂ (·, t) ‖2L2(Ω).

(5.31)
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In order to apply Gronwall’s inequality, see [45, page 624] or Lemma 57 for instance, we perform the
following estimations. For this purpose, we estimate the term

‖
(

(v (t) + x ◦ w (t))−
(

vk (t) + x ◦ wk (t)
))

· ∇p̂k (·, t) ‖2L2(Ω).

We have the following

‖
(

(v (t) + x ◦ w (t))−
(

vk (t) + x ◦ wk (t)
))

· ∇p̂k (·, t) ‖2L2(Ω)

=

ˆ

Ω

(
n∑

i=1

(
(
vi (t) + xiw

i (t)
)
−
((

vk
)i

(t) + xi

(

wk
)i

(t)

))
∂

∂xi
p̂k (x, t)

)2

dx

=

ˆ

Ω

(
n∑

i=1

[(

vi (t)−
(

vk
)i

(t)

)
∂

∂xi
p̂k (x, t) + xi

(

wi (t)−
(

wk
)i

(t)

)
∂

∂xi
p̂k (x, t)

])2

dx

≤ 2

ˆ

Ω

(
n∑

i=1

(

vi (t)−
(

vk
)i

(t)

)
∂

∂xi
p̂k (x, t)

)2

dx

+ 2

ˆ

Ω

(
n∑

i=1

xi

(

wi (t)−
(

wk
)i

(t)

)
∂

∂xi
p̂k (x, t)

)2

dx

≤ 2n
n∑

i=1

ˆ

Ω

(

vi (t)−
(

vk
)i

(t)

)2(
∂

∂xi
p̂k (x, t)

)2

dx

+ 2n
n∑

i=1

ˆ

Ω
x2i

(

wi (t)−
(

wk
)i

(t)

)2(
∂

∂xi
p̂k (x, t)

)2

dx

≤ 2n‖p̂k‖2
L∞(0,T ;H1

0 (Ω))

n∑

i=1

(

vi (t)−
(

vk
)i

(t)

)2

+ 2n‖p̂k‖2
L∞(0,T ;H1

0 (Ω))

(

max
i=1,...,n

max
x∈Ω
|xi|2

) n∑

i=1

(

wi (t)−
(

wk
)i

(t)

)2

≤ θ̃k
(

n∑

i=1

((

vi (t)−
(

vk
)i

(t)

)2

+

(

wi (t)−
(

wk
)i

(t)

)2
))

(5.32)

with the Jensen inequality, see [72, Proposition 824] and

θ̃k := 2n‖pk‖2
L∞(0,T ;H1

0 (Ω)) max

(

1, max
i=1,...,n

max
x∈Ω
|xi|2

)

.

Furthermore, we have with Jensen’s inequality and our Lipschitz assumption for G that

‖G
(

vk, wk
)

(·, t)−G (v, w) (·, t) ‖2L2(Ω) =

ˆ

Ω

(

G
(

vk, wk
)

(·, t)−G (v, w) (x, t)
)2
dx

≤
ˆ

Ω
2nL2

(
n∑

i=1

(((

vk
)i

(t)− vi (t)
)2

+

((

wk
)i

(t)− wi (t)

)2
))

= 2nL|Ω|
(

n∑

i=1

(((

vk
)i

(t)− vi (t)
)2

+

((

wk
)i

(t)− wi (t)

)2
))

(5.33)

where |Ω| is the measure of Ω. Putting (5.32) and (5.33) into (5.31), we obtain with Gronwall’s inequality,
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see [45, page 624] or Lemma 57 for example, the following

‖δp‖2L2(Q) = ‖eη·δp̂‖2L2(Q) ≤ eηT
ˆ T

0

ˆ

Ω
δp̂ (x, t)2 dxdt = eηT

ˆ T

0
‖δp̂ (·, t) ‖2L2(Ω)dt

≤ eηT
ˆ T

0
e2t
ˆ t

0

(

θ̃k + 2nL|Ω|
) n∑

i=1

(((

vk
)i (

t̃
)
− vi

(
t̃
)
)2
)

dt̃dt

+ eηT
ˆ T

0
e2t
ˆ t

0

(

θ̃k + 2nL|Ω|
)
(

n∑

i=1

((

wk
)i (

t̃
)
− wi

(
t̃
)
)2
)

dt̃dt

≤
(

θ̂k
)2 (

‖vk − v‖2L2(0,T ) + ‖wk − w‖2L2(0,T )

)

≤
(

θ̂k
)2 (

‖vk − v‖2L2(0,T ) + 2‖vk − v‖L2(0,T )‖wk − w‖L2(0,T ) + ‖wk − w‖2L2(0,T )

)

=
(

θ̂k
)2 (

‖vk − v‖L2(0,T ) + ‖wk − w‖L2(0,T )

)2

since δp̂k (0) = F (T )− F (T ) = 0 where
(

θ̂k
)2

:= e(η+2)T
(

θ̃k + 2nL|Ω|
)

T .

The following lemma states that the function z 7→ max (0, |z| − s), s > 0 is Lipschitz continuous and
convex.

Lemma 67. The function z 7→ max (0, |z| − s) : R → R, s > 0, is Lipschitz continuous with Lipschitz
constant equal one and is convex.

Proof. We start proving the Lipschitz continuity where the Lipschitz constant equals one by a case study.
For this purpose, we need the reversed triangle inequality, see [3, Corollary 8.11]. We have to see that

|max (0, |z1| − s)−max (0, |z2| − s) | ≤ |z1 − z2|.

If |z1| ≥ s and |z2| ≥ s, then we have

||z1| − s− |z2|+ s| = ||z1| − |z2|| ≤ |z1 − z2|.

If |z1| < s, equivalently −|z1| > −s and |z2| ≥ s, then we have that

|0− |z2|+ s| = ||z2| − s| ≤ ||z2| − |z1|| = ||z1| − |z2|| ≤ |z1 − z2|.

If |z1| ≥ s and |z2| < s, equivalently −|z2| > −s then we have

||z1| − s| ≤ ||z1| − |z2|| ≤ |z1 − z2|.

If |z1| < s and |z2| < s, then we have that

|0− 0| = 0 ≤ |z1 − z2|.

The convexity can be seen as follows. We have to prove that

max (0, | (1− λ) z1 + λz2| − s) ≤ (1− λ)max (0, |z1| − s) + λmax (0, |z2| − s)

for all λ ∈ [0, 1]. We have that

max (0, | (1− λ) z1 + λz2| − s) ≤ max (0, (1− λ) |z1|+ λ|z2| − s)
= max (0, (1− λ) (|z1| − s) + λ (|z2| − s))
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for all λ ∈ [0, 1] since replacing a number in one of the two arguments of max by a bigger one, the result
of max also is greater or equal. This argument is also used for the following where we prove the convexity
by a case study.

If we have that |z1| ≥ s and |z2| ≥ s, then we have that

max (0, (1− λ) (|z1| − s) + λ (|z2| − s)) = (1− λ) (|z1| − s) + λ (|z2| − s)
= (1− λ)max (0, |z1| − s) + λmax (0, |z2| − s) .

If we have that |z1| < s and |z2| ≥ s, then we have that

max (0, (1− λ) (|z1| − s) + λ (|z2| − s)) ≤ max (0, λ (|z2| − s)) = λ (|z2| − s)
= (1− λ)max (0, |z1| − s) + λmax (0, |z2| − s) .

If |z1| ≥ s and |z2| < s, then we have that

max (0, (1− λ) (|z1| − s) + λ (|z2| − s)) ≤ max (0, (1− λ) (|z1| − s)) = (1− λ) (|z1| − s)
= (1− λ)max (0, |z1| − s) + λmax (0, |z2| − s) .

If |z1| < s and |z2| < s, then we have that

max (0, (1− λ) (|z1| − s) + λ (|z2| − s)) = 0 = (1− λ)max (0, |z1| − s) + λmax (0, |z2| − s) .

5.4 PMP sufficient conditions for an optimal solution

In this section, we refer to Chapter 3. The the results also hold for Chapter 2 or Chapter 4 with analogous
arguments.

We show that the condition

H (z, ȳ, ū, p̄) + r (w − ū)2 ≤ H (z, ȳ, w, p̄) (5.34)

for a triple (ȳ, ū, p̄) and the constant r ≥ 0 sufficiently large serves as a sufficient condition for a solution
to (3.3). The idea for the present formulation (5.34) can be found in [89].

Theorem 68. Let Assumptions A.1) to A.6) from Chapter 3 be fulfilled. Let (ȳ, ū) solve the state equation
(3.2) and p̄ solve the corresponding adjoint equation (3.5) for ȳ instead of y and ū instead of u. Assume
that

| ∂
∂ȳ
f (z, ȳ, u)− ∂

∂ȳ
f (z, ȳ, ū) | ≤ c̃

m∑

j=1

|uj − ūj |

holds for almost all z ∈ Zi where c̃ > 0 is a constant. Let (ȳ, ū, p̄) fulfill

H (z, ȳ, ū, p̄) + r (w − ū)2 ≤ H (z, ȳ, w, p̄) (5.35)

for all w ∈ KU and for almost all z ∈ Zi with r ≥ c̃c√m+ 5
2c

3 + 1
2c

4 where c, m are given in Section 3.1.
Then (ȳ, ū) is a solution to (3.2), that is, J (y, u) ≥ J (ȳ, ū) for all (y, u) solving (3.2) with u ∈ Uad.

Proof. Notice that the notation is analogous to the one of the proof of Lemma 26 with δy := y − ȳ and
δu := u− ū where we do not show the functions dependency on z. We have
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J (y, u)− J (ȳ, ū) =

ˆ

Zi

h (y) + g (u)− h (ȳ)− g (ū) dz

=

ˆ

Zi

H (z, y, u, p̄)− p̄f (z, y, u)−H (z, ȳ, ū, p̄) + p̄f (z, ȳ, ū) dz

=

ˆ

Zi

H (z, ȳ, u, p̄) +
∂

∂y
H (z, ȳ, u, p̄) δy +

1

2

(
∂2

∂ȳ2
H (z, ȳ, u, p̄) (δy)2

)

dz +

ˆ

Zi

R2 (H, ȳ; δy) dz

−
ˆ

Zi

H (z, ȳ, ū, p̄) dz −
ˆ T

0

(
δy′ (·, t) , p̄ (·, t)

)
+B (δy, p̄; t) dt

≥ r
ˆ

Zi

δu2dz +
∂

∂ȳ
h (ȳ) δy + p̄

∂

∂ȳ
f (ȳ, u) δy +

1

2

(
∂2

∂ȳ2
h (ȳ) (δy)2 + p̄

∂2

∂ȳ2
f (ȳ, u) (δy)2

)

+

ˆ

Zi

R2 (H, ȳ; δy) dz −
ˆ T

0

(
δy′ (·, t) , p̄ (·, t)

)
+B (δy, p̄; t) dt

= r

ˆ

Zi

δu2dz + p̄
∂

∂ȳ
f (ȳ, u) δy − p̄ ∂

∂ȳ
f (ȳ, ū) δy +

1

2

(
∂2

∂ȳ2
h (ȳ) (δy)2 + p̄

∂2

∂ȳ2
f (ȳ, u) (δy)2

)

+

ˆ

Zi

R2 (H, ȳ; δy) dz −
ˆ T

0

(
δy′ (·, t) , p̄ (·, t)

)
+B (δy, p̄; t) dt

+

ˆ T

0
−
(
p̄′ (·, t) , δy (·, t) ,

)
+B∗ (p̄, δy; t) dt

≥ r‖δu‖2L2(Zi)
− c̃c
√
m‖δu‖2L2(Zi)

− 1

2

(
c+ c2

)
c2‖δu‖2L2(Zi)

−
(
c+ c2

)
c2‖δu‖L2(Zi)

(5.36)

for all u ∈ Uad where we use the partial integration rule [95, Theorem 3.11], the Cauchy-Schwarz inequality
[2, Lemma 2.2] in the last inequality and the estimation for R2 (H, ȳ; δy) as in the proof of Lemma 26, the
equality

ˆ T

0
B∗ (p̄, δy; t)−B (δy, p̄; t) dt =

ˆ T

0
B (δy, p̄; t)−B (δy, p̄; t) dt = 0

and the following estimation

ˆ

Zi

∂

∂ȳ
f (ȳ, u) δy − ∂

∂ȳ
f (ȳ, ū) δydx ≥ −

ˆ

Zi

c̃

m∑

j=1

|uj − ūj ||δy|dx

≥ −c̃
m∑

j=1

‖δuj‖L2(Zi)‖δy‖L2(Zi) ≥ −c̃c‖δu‖L2(Zi)

√
√
√
√
√





m∑

j=1

‖δuj‖L2(Zi)





2

≥ −c̃c
√
m‖δu‖L2(Zi)

√
√
√
√

m∑

j=1

‖δuj‖2L2(Zi)
= −c̃c

√
m‖δu‖2L2(Zi)

with the Cauchy-Schwarz inequality [2, Lemma 2.2] and the Jensen inequality, see [72, Proposition 824].

If we consider an optimal control problem corresponding to Example 17 or Example 18, which holds in
the ODE as well as in the PDE case, and do the same calculation for ǫ = 0, then we obtain that (5.34) holds
for any r ∈

[
0, α2

]
. Consequently, we know that if α is sufficiently large such that r can be chosen larger

than c̃c
√
m+ 5

2c
3 + 1

2c
4, then any triple (ȳ, ū, p̄) which is PMP optimal, that means fulfills (3.7) (r = 0 in

(5.34)) is a solution to the considered optimal control problem according to Theorem 68 supposing that the
other assumptions of Theorem 68 are fulfilled as well. Further we have the following corollary for a special
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case which includes optimal control problems with a distributed control, that means a linear control-to-
state map, and a quadratic function h, which means that ∂2

∂y2
h (ȳ) ≥ 0, and R2 (H, ȳ; δy) = 0 in (5.36).

The proof of the following corollary is analogous to the one of Theorem 68 inserting the corresponding
further assumptions.

Corollary 69. Let Assumptions A.1) to A.6) from Chapter 3 be fulfilled. Let (ȳ, ū) solve the state equation
(3.2) and p̄ solve the corresponding adjoint equation (3.5) for ȳ instead of y and ū instead of u. If the

function f does not depend on y and h is a quadratic function with ∂2

∂y2
h ≥ 0, then we can choose r = 0

in (5.35) and thus the necessary condition

H (z, ȳ, ū, p̄) = min
w∈KU

H (z, ȳ, w, p̄) (5.37)

is sufficient for (ȳ, ū) to be a solution to (3.3).

5.5 Discussion of the Assumptions A.1) to A.6) from Chapter 2

The Assumptions A.1) to A.6) guarantee that a solution to (2.3) can be characterized with the PMP, see
Theorem 5 and the convergence analysis of the SQH can be performed, which means that the iterates of
the SQH scheme converge to a PMP consistent solution, see Theorem 14.

However, for just the characterization with the PMP less assumptions are required to perform the
corresponding proofs. The requirements formulated in Assumption A.1) can be weakened. It is sufficient
if the functions h : I → R, y 7→ h (y), F : I → R, y 7→ F (y) and f : I → Rn, y 7→ f (t, y, u) are
once continuously differentiable for every u ∈ KU and for any t ∈ [0, T ]. Furthermore, it is made use
of the condition that ‖ ∂

∂yl
fi (·, y, u) ‖L∞ ≤ c for all l, i ∈ {1, ..., n}, see the proof of Lemma 2 where also

Assumption A.5) is needed. The local integrability of f , see Assumption A.3), is needed in the proof of
Lemma 4. The measurability of the corresponding functions, see Assumption A.2), is obligatory to have
a well-defined integrals.

If we have that ‖ ∂
∂yl
fi (·, y, u) ‖L∞ = 0 for all l, i ∈ {1, ..., n}, all y ∈ I and all u ∈ KU , then we can do

without the assumption that ‖ ∂
∂yl
h (y) ‖L∞ ≤ c and ‖ ∂

∂yl
F (y) ‖L∞ ≤ c for all l ∈ {1, ..., n} and all y ∈ I

which is needed for the boundedness result of the adjoint variable in Lemma 8. This result in turn is only
needed if ‖ ∂

∂yl
fi (·, y, u) ‖L∞ > 0 for one l, i ∈ {1, ..., n}, one y ∈ I or one u ∈ KU as we can see in the

proof of Lemma 10 where the boundedness of the difference of two adjoint variables is shown. In any case,
we need ‖ ∂2

∂yl∂yℓ
h (y) ‖L∞ ≤ c and ‖ ∂2

∂yl∂yℓ
F (y) ‖L∞ ≤ c for all l, ℓ ∈ {1, ..., n} and all y ∈ I. For Lemma

11, we only need that the adjoint variable is bounded if ‖ ∂2

∂yl∂yℓ
fi (·, y, u) ‖L∞ > 0 for one i, l, ℓ ∈ {1, ..., n},

one y ∈ I or one u ∈ KU .

The compactness of KU is needed twice in this thesis. First it is needed to ensure that the subproblem
where we minimize Kǫ in Step 2 in Algorithm 2.1 has a solution, see the proof of Lemma 7. That means
that if the function Kǫ : Rm → R, w 7→ Kǫ (t, y, w, v, p) has a global minimum, for example because it
is quadratic, then we can do without the requirement that KU has to be compact for Lemma 7. For
Theorem 14, only the boundedness of KU is needed to ensure pointwise convergence of the augmented
Hamiltonian. However, the boundedness or compactness of KU is not needed for the characterization of
an optimal control with the PMP.

5.6 Description of the provided MATLAB files

In this section, we describe the provided MATLAB files that are used for the implementations of the SQH
method for the corresponding numerical experiments. All the files necessary for the calculations of an
experiment are zipped together in a zip-file. To start the calculations execute the corresponding main file
with MATLAB.
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In the file SQH_QC_L1.zip we have the codes for the L1-experiment of Figure 2.1. The main file
is the PMP_QC.m. In the LONE.zip is the LONE Code for the comparison between the implemented
globalized Newton method with the SQH method in Section 2.4. The file L1SKRYN.m has to be executed
and in the file Test2GL.m we can set the problems parameters. In the file SQH_OC_L0.zip we have the
codes for the L0-experiment of Figure 2.2. The main file is the PMP_OC_L0.m.

In the file SQH_therapy.zip we have the codes for the experiment where the results are depicted in
Figure 2.4. The main file is SQH_therapy.m

The codes of the file SQH_P1.zip are set for the experiment shown in Figure 3.1. The main file is
SQH_P1.m. In the folder gradient methods, we give the implemented projected gradient and projected
nonlinear conjugated gradient method to obtain the results in Table 3.6 and Table 3.7.

Further with the file SQH_integer.zip the Figure 3.4 is created. The main file is SQH_integer.m. In
order to obtain the results shown in Figure 3.5, we use the codes of the file SQH_stepCost.zip. The main
file is SQH_stepCost.m.

In the file SQH_P2.zip we have the code that is set such that we get the results depicted in Figure
3.6. The main file is SQH_P2.m.

The code of SQH_P3.zip calculates the results of Figure 3.7. The main file is SQH_P3.m.
In the file SQH_P4.zip we have the code for the results depicted in Figure 3.8. The main file is

SQH_P4.m.
The results of Figure 3.9 are obtained with the code of the file SQH_P5.zip. The main file is

SQH_P5.m.
The code of SQH_P6.zip is set such that it calculates the results shown in Figure 3.10. The main file

is SQH_P6.m.
In the file SQH_P7.zip we have the codes to obtain the results depicted in Figure 3.11. The main file

is SQH_P7.m.
The file optRWkonNCGe.zip contains one file that is used for the experiment depicted in Figure 4.1.
In the file optRWkonNCGcc.zip we have the files that are used for the experiment shown in Figure

4.2. The main file is optRWkonNCGcc.m.
The file optRWJc.zip contains one file that is used to perform the calculations whose results are

depicted in Figure 4.3.
In the file SQH_FP.zip we have the codes to obtain the results depicted in Figure 4.4. The main file

is SQH_FP.m. With the file TEST_CONTROLLED_MC_2D.m we perform the corresponding Monte-
Carlo simulation and plot the result into the figure with the mean value obtained by the execution of
SQH_PF.m, see Figure 4.5. The diffusion of the random walk is set in the file model.m.

In the file SQH_FP_u.zip, we have the codes that implement the SQH method for the results de-
picted in Figure 4.6. The output of the main file SQH_FP_u.m is a .mat-file containing the optimal
control vector field. The file TEST_CONTROLLED_MC_2D.m performs a random walk with this
control vector field, resulting in Figure 4.6. The starting point for the random walk is set in the file
TEST_CONTROLLED_MC_2D.m and the diffusion is set in the file model.m.

The description for the DH method is analogous to SQH_PF_u.zip where the codes can be found in
DH.zip and the main file is DH.m.
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