# Untersuchungen zur Wirkungsweise nanoskaliger Fließregulierungsmittel in der Tablettierung

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg



vorgelegt von Margit Jaser aus Bobingen

Würzburg 2006

eingereicht bei der Fakultät für Chemie und Pharmazie am:

1. Gutachter der Dissertation:

2. Gutachter der Dissertation:

- 1. Prüfer:
- 2. Prüfer:
- 3. Prüfer:

des öffentlichen Promotionskolloquiums

Datum des öffentlichen Promotionskolloquiums:

Datum der Aushändigung der Doktorurkunde:

Meinen Eltern

#### Danksagung

Die vorliegende Arbeit entstand auf Anregung und Anleitung von Prof. Dr. Ingfried Zimmermann am Lehrstuhl für Pharmazeutische Technologie der Bayerischen Julius-Maximilians-Universität Würzburg.

Danken möchte ich allen, die während der drei Jahre am Lehrstuhl meinen Weg kreuzten und auf unterschiedlichste Weise einen Beitrag zum Gelingen dieser Arbeit leisteten.

Besonderer Dank gilt:

- meinem Doktorvater Herrn Prof. Zimmermann für die Stellung des interessanten Themas und seine Unterstützung während der Promotion. Vor allem möchte ich ihm danken für die mir überlassene Freiheit in der Gestaltung der Arbeit. Konstruktive Diskussionen und das jederzeit offene Ohr für große und kleine Probleme waren eine große Hilfe.
- allen meinen Kolleginnen und Kollegen im Arbeitskreis für die stets freundliche und kollegiale Atmosphäre.
- der Firma Cerestar und der Degussa AG für die Überlassung der Maisstärke und der Nanomaterialien.
- der Heumann PCS GmbH für das zur Verfügung gestellte Ibuprofen.
- Herrn Dr. Bernd Reyer für die Lösung von Computerproblemen jeglicher Art, vor allem für das "Retten" des PMA-Programms.
- Herrn Dr. Holger Böse und Herrn Peter Löschke vom Fraunhofer-Institut für Silikatforschung Würzburg für die Möglichkeit zur Messung am He-Pycnometer sowie für die freundliche Einführung und Hilfestellung.
- Herrn Prof. Georg Krohne, Herrn Dr. Rainer Wolf und Frau Elisabeth Meyer-Natus vom Theodor-Boveri-Institut für Biologie der Universität Würzburg für die Einführung ins Rasterelektronenmikroskop sowie die Unterstützung bei den REM-Aufnahmen.
- den Mitarbeitern der Korsch AG für die "Fern"-Hilfe bei allen Fragen rund um die Tablettenpresse.
- den Mitarbeitern der Werkstatt f
  ür die jederzeit schnelle Hilfe bei technischen Problemen im Praktikum und besonders Herrn Georg Walter f
  ür konstruktionstechnische und bauliche Ma
  ßnahmen an der Tablettenpresse.

Im privaten Bereich möchte ich meiner Familie danken, vor allem meinen Eltern, die mir ermöglicht haben, dorthin zu kommen, wo ich heute stehe. Meinen Geschwistern und ihren Familien sowie allen Freunden sei gedankt für ihre Unterstützung und ihr Verständnis, mit dem sie mich begleitet haben. Besonderer Dank gilt auch Barbara, die mir das alltägliche Leben sehr erleichtert hat.

Last but not least möchte ich meinem Freund Henning danken für seine fortwährende Motivation und Geduld, vor allem in den letzten Monaten der Arbeit.

### Publikationen

- I. **Jaser M., Zimmermann I.** *Tableting properties of binary mixtures of excipients and nanoscalic glidants: The influence of mixing time.* Proc. 1<sup>st</sup> European Congress on Life Science Process Technology, Nuremberg (Germany).
- II. **Jaser M., Zimmermann I.** The significance of mixing time for corn starch mixtures with nanoscalic glidants in respect of Ph. Eur. Requirements. Proc. 5<sup>th</sup> World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Geneva (Switzerland).

| 1       | Einleitung                                                                                     | 1  |
|---------|------------------------------------------------------------------------------------------------|----|
| 2       | Theorie und Stand der Forschung                                                                | 3  |
| 2.1     | Fließfähigkeit von Pulvern                                                                     | 3  |
| 2.1.1   | Definition der Fließfähigkeit                                                                  | 3  |
| 2.1.2   | Methoden zur Bestimmung der Fließfähigkeit                                                     | 3  |
| 2.1.3   | Einfluss von Gravitationskräften auf Haftkräfte                                                | 6  |
| 2.2     | Interpartikuläre Haftkräfte in Schüttgütern                                                    | 7  |
| 2.2.1   | Van der Waals Kräfte                                                                           | 8  |
| 2.2.2   | Elektrostatische Kräfte                                                                        | 9  |
| 2.2.3   | Wasserstoffbrückenbindungen                                                                    | 10 |
| 2.2.4   | Vergleich der interpartikulären Kräfte                                                         | 11 |
| 2.3     | Einfluss von Oberflächenrauigkeiten auf<br>interpartikuläre Haftkräfte                         | 12 |
| 2.3.1   | Rauigkeitsmodell nach Rumpf (Verringerung der Zugspannung in Granulatkörnern                   | 12 |
| 2.3.2   | Modifiziertes Rauigkeitsmodell nach Rumpf (Verbesserung der<br>Fließeigenschaften von Pulvern) | 13 |
| 2.3.3   | Wirkungsweise von nanoskaligen Fließregulierungsmitteln                                        | 14 |
| 2.3.3.1 | Oberflächenbelegung durch Nanomaterialien                                                      | 14 |
| 2.3.3.2 | Drei-Punkt-Modell nach Meyer                                                                   | 15 |
| 2.4     | Tablettierung                                                                                  | 18 |
| 2.4.1   | Kompressibilität                                                                               | 18 |
| 2.4.1.1 | Porosität                                                                                      | 18 |
| 2.4.1.2 | Porositäts-Pressdruck-Gleichungen                                                              | 19 |
| 2.4.2   | Kompaktibilität                                                                                | 23 |
| 2.4.2.1 | Bindungsbildung innerhalb der Tablette                                                         | 23 |
| 2.4.2.2 | Modelle zur Beschreibung der mechanischen Festigkeit                                           | 26 |
| 2.4.2.3 | Einfluss von Fließregulierungsmitteln                                                          | 30 |
| 3       | Arbeitshypothese                                                                               | 34 |
| 4       | Materialien und Methoden                                                                       | 36 |
| 4.1     | Materialien                                                                                    | 36 |
| 4.1.1   | Schüttgut Maisstärke Cerestar <sup>®</sup> GL 03406                                            | 36 |
| 4.1.2   | Nanoskalige Fließregulierungsmittel                                                            | 37 |
| 4.1.2.1 | Aerosil <sup>®</sup> 200                                                                       | 38 |
| 4.1.2.2 | Aerosil <sup>®</sup> R 805                                                                     | 39 |
| 4.1.2.3 | Printex <sup>®</sup> 95                                                                        | 40 |
| 4.1.2.4 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                                    | 41 |

i

4.1.3 Wirkstoff Ibuprofen 41 4.1.4 Sonstige Materialien 43 4.1.4.1 Magnesiumstearat 43 43 4.1.4.2 Aceton 4.1.4.3 Kaliumcarbonat 43 4.2 44 Methoden 4.2.1 Herstellung und Konditionierung der binären Mischungen 44 4.2.1.1 Binäre Mischungen aus Maisstärke und Fließregulierungsmittel 44 4.2.1.2 Binäre Mischungen aus Maisstärke und Ibuprofen 44 4.2.1.3 Ternäre Mischungen aus Maisstärke, Ibuprofen und Fließregulierungsmittel 44 4.2.2 Charakterisierung der Substanzen und Mischungen 45 45 4.2.2.1 Bestimmung der wahren Dichte mittels Helium-Pycnometrie 4.2.2.2 Schütt- und Stampfdichte 46 4.2.2.3 Kompressibilität 46 4.2.2.4 Oberflächenbestimmung nach BET 46 4.2.2.5 Luftstrahlsieb Alpine 47 4.2.3 Rasterelektronenmikroskopie 47 4.2.4 Tablettenpresse EK 0, Korsch 47 4.2.4.1 Aufbau und Funktionsprinzip 47 4.2.4.2 Instrumentierung 47 4.2.4.2.1 Kraftmessung mittels Dehnmessstreifen 48 4.2.4.2.2 Induktive Wegmessung 49 4.2.4.3 Kalibrierung 49 4.2.4.3.1 Durchführung und Auswertung der Kalibrierung 49 4.2.4.3.2 Ergebnisse 52 4.2.5 Herstellung der Tabletten 53 4.2.6 Prüfung der Tabletten 54 4.2.6.1 Elektronischer Dickenmesser 54 4.2.6.2 Bruchkrafttester Schleuniger 8M 54 55 4.2.6.3 Berechnung der Bruchfestigkeit 4.2.6.4 Prüfung auf Massenkonstanz bei Füllschuhbetrieb 55 4.2.6.5 55 Prüfung auf Zerfall 4.2.6.6 56 Prüfung auf Abrieb Statistische Auswertung der Messreihen 56 4.3

| ٠ | ٠ | ٠ |  |
|---|---|---|--|
| 1 | 1 | 1 |  |
| I | I | L |  |
|   |   |   |  |

| 5       | Ergebnisse und Diskussion                                                                                  | 57 |
|---------|------------------------------------------------------------------------------------------------------------|----|
| 5.1     | Charakterisierung der Einzelsubstanzen (Trägermaterialien)                                                 | 57 |
| 5.1.1   | Partikelgröße des Ibuprofens                                                                               | 57 |
| 5.1.2   | Spezifische Oberfläche des Ibuprofens                                                                      | 57 |
| 5.1.3   | Rasterelektronische Aufnahmen des Ibuprofens                                                               | 57 |
| 5.1.4   | Schütt- und Stampfdichte                                                                                   | 58 |
| 5.2     | Wahre Dichte der Mischungen                                                                                | 59 |
| 5.2.1   | Binäre Mischungen aus Maisstärke und Nanomaterial                                                          | 59 |
| 5.2.2   | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                                              | 60 |
| 5.2.3   | Veränderung der Dichte in Abhängigkeit von Oberflächenbelegung<br>und chemischer Natur der Nanomaterialien | 61 |
| 5.3     | Rasterelektronenmikroskopische Aufnahmen der ternären<br>Mischungen                                        | 62 |
| 5.3.1   | Belegung der Maisstärke                                                                                    | 62 |
| 5.3.1.1 | Aerosil <sup>®</sup> 200                                                                                   | 62 |
| 5.3.1.2 | Aerosil <sup>®</sup> R 805                                                                                 | 63 |
| 5.3.1.3 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                                                | 65 |
| 5.3.1.4 | Printex <sup>®</sup> 95                                                                                    | 66 |
| 5.3.2   | Belegung des Ibuprofens                                                                                    | 67 |
| 5.3.2.1 | Aerosil <sup>®</sup> 200                                                                                   | 68 |
| 5.3.2.2 | Aerosil <sup>®</sup> R 805                                                                                 | 70 |
| 5.3.2.3 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                                                | 71 |
| 5.3.2.4 | Printex <sup>®</sup> 95                                                                                    | 72 |
| 5.3.3   | Vergleich der Belegungen                                                                                   | 73 |
| 5.4     | Fließverhalten der Mischungen                                                                              | 76 |
| 5.4.1   | Schütt-/Stampfdichte                                                                                       | 76 |
| 5.4.1.1 | Binäre Mischungen aus Maisstärke und Nanomaterial                                                          | 76 |
| 5.4.1.2 | Binäre Mischungen aus Maisstärke und Ibuprofen                                                             | 78 |
| 5.4.1.3 | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                                              | 79 |
| 5.4.2   | Kompressibilität                                                                                           | 80 |
| 5.4.2.1 | Binäre Mischungen aus Maisstärke und Nanomaterial                                                          | 80 |
| 5.4.2.2 | Binäre Mischungen aus Maisstärke und Ibuprofen                                                             | 81 |
| 5.4.2.3 | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                                              | 82 |
| 5.4.3   | Einfluss der Mischzeit bei binären Mischungen ohne Nanomaterial                                            | 83 |
| 5.4.4   | Einfluss der Oberflächenbelegung                                                                           | 84 |
| 5.4.5   | Korrelation mit Oberflächenbelegung                                                                        | 87 |
| 5.4.6   | Korrelation mit Zugspannung                                                                                | 88 |

| 5.5         | Parameter zur Charakterisierung der Pulvermischungen<br>während des Pressvorgangs | 90  |
|-------------|-----------------------------------------------------------------------------------|-----|
| 5.5.1       | Heckel-Diagramme                                                                  | 90  |
| 5.5.2       | Relative Dichte D <sub>0</sub>                                                    | 91  |
| 5.5.2.1     | Binäre Mischungen aus Maisstärke und Nanomaterial                                 | 92  |
| 5.5.2.2     | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                     | 93  |
| 5.5.2.3     | Einfluss der Oberflächenbelegung                                                  | 94  |
| 5.5.2.4     | Korrelation mit Schüttdichte                                                      | 94  |
| 5.5.3       | Relative Dichte D <sub>b</sub>                                                    | 96  |
| 5.5.3.1     | Binäre Mischungen aus Maisstärke und Nanomaterial                                 | 96  |
| 5.5.3.2     | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                     | 97  |
| 5.5.3.3     | Einfluss der Oberflächenbelegung                                                  | 98  |
| 5.5.3.4     | Korrelation mit Hausner-Faktor                                                    | 98  |
| 5.5.4       | Fließdruck P <sub>y</sub>                                                         | 99  |
| 5.6         | Charakterisierung der Tabletten                                                   | 102 |
| 5.6.1       | Bruchfestigkeit der Tabletten bei 150 MPa                                         | 102 |
| 5.6.1.1     | Binäre Mischungen aus Maisstärke und Nanomaterial                                 | 102 |
| 5.6.1.2     | Binäre Mischungen aus Maisstärke und Ibuprofen                                    | 103 |
| 5.6.1.3     | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                     | 104 |
| 5.6.1.4     | Einfluss des Wirkstoffes                                                          | 105 |
| 5.6.1.5     | Einfluss der chemischen Natur des Nanomaterials                                   | 105 |
| 5.6.1.6     | Einfluss der Oberflächenbelegung                                                  | 107 |
| 5.6.1.7     | Einfluss der relativen Dichte                                                     | 108 |
| 5.6.2       | Verlauf nach Leuenberger                                                          | 109 |
| 5.6.2.1     | Abhängigkeit der Bruchfestigkeit vom Pressdruck                                   | 109 |
| 5.6.2.2     | Abhängigkeit der Kompaktierfähigkeit von der Oberflächenbelegung                  | 110 |
| 5.6.2.2.1   | Binäre Mischungen aus Maisstärke und Nanomaterial                                 | 110 |
| 5.6.2.2.2   | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                     | 113 |
| 5.6.2.2.2.1 | Aerosil <sup>®</sup> 200                                                          | 113 |
| 5.6.2.2.2.2 | Aerosil <sup>®</sup> R 805                                                        | 114 |
| 5.6.2.2.2.3 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                       | 116 |
| 5.6.2.2.2.4 | Printex <sup>®</sup> 95                                                           | 117 |
| 5.6.2.3     | Maximale Bruchfestigkeit $\sigma_{max}$ und Kompressibilitätsparameter $\gamma$   | 119 |
| 5.7         | Arzneibuchprüfungen                                                               | 121 |
| 5.7.1       | Gleichförmigkeit der Masse                                                        | 121 |
| 5.7.1.1     | Binäre Mischungen aus Maisstärke und Nanomaterial                                 | 121 |
| 5.7.1.2     | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                     | 122 |
| 5.7.1.3     | Einfluss der Oberflächenbelegung                                                  | 123 |

| 5.7.1.4          | Korrelation Tablettenmasse – Schüttdichte                                                                                          | 124        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5.7.1.5          | Korrelation Abweichung des Tablettengewichts – Schüttdichte                                                                        | 125        |
| 5.7.2            | Abrieb: Binäre Mischungen aus Maisstärke und Aerosilen                                                                             | 127        |
| 5.7.3            | Zerfall: Binäre Mischungen aus Maisstärke und Aerosilen                                                                            | 128        |
| 5.7.4            | Einfluss des Zumischens von Mg-Stearat                                                                                             | 129        |
| 5.7.4.1          | Tablettenmasse bei konstanter Fülltiefeneinstellung                                                                                | 130        |
| 5.7.4.2          | Friabilität                                                                                                                        | 131        |
| 5.7.4.3          | Zerfall                                                                                                                            | 132        |
| 5.7.4.4          | Bruchfestigkeit                                                                                                                    | 133        |
| 5.8              | Potenz hochdisperser Fließregulierungsmittel                                                                                       | 134        |
| 5.8.1            | Binäre Mischungen aus Maisstärke und Nanomaterial                                                                                  | 135        |
| 5.8.2            | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                                                                      | 138        |
| 5.8.3            | Vergleichende Bewertung                                                                                                            | 140        |
| 6                | Zusammenfassung                                                                                                                    | 141        |
| 7                | Summary                                                                                                                            | 147        |
| 8                | Literaturverzeichnis                                                                                                               | 152        |
| 9                | Anhang                                                                                                                             | 163        |
| 9.1              | Berechnung des Füllungsgrades der Mischungen aus<br>Maisstärke und Ibuprofen                                                       | 163        |
| 9.2              | Berechnung der theoretischen maximalen<br>Oberflächenbelegung der Maisstärke-/Ibuprofen-Mischungen<br>mit Aerosil <sup>®</sup> 200 | 163        |
| 9.2.1            | Mischung aus 0.2% Aerosil 200 und Maisstärke                                                                                       | 163        |
| 9.2.2            | 50%ige Mischung aus Ibuprofen, Maisstärke und 0.2% ${\sf Aerosil}^{	extsf{B}}$ 200                                                 | 164        |
| 9.3              | Berechung der tatsächlichen Steghöhe und des tatsächlichen Volumens der facettierten Tabletten                                     | 165        |
| 9.3.1            | Berechnung der tatsächlichen Steghöhe                                                                                              | 165        |
| 9.3.2            | Berechnung des tatsächlichen Volumens der Tablette                                                                                 | 167        |
| 9.3.3            | Beispielrechnung zur Bestimmung der relativen Dichte aus den Pressdaten                                                            | 168        |
| 9.4              | Rohdaten                                                                                                                           | 170        |
| 9.4.1            | Wahre Dichte der Mischungen                                                                                                        | 170        |
| 9.4.1.1          | Maisstärke                                                                                                                         | 170        |
| 9.4.1.2          | Pinära Misahungan aug Majastärka und Nanomatorial                                                                                  | 170        |
|                  | Binare Mischungen aus Maisstarke und Nahomatenai                                                                                   |            |
| 9.4.1.3          | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                                                                      | 171        |
| 9.4.1.3<br>9.4.2 | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial<br>Schütt-/Stampfdichten                                             | 171<br>171 |

| 9.4.2.2   | Ibuprofen                                                                             | 171 |
|-----------|---------------------------------------------------------------------------------------|-----|
| 9.4.2.3   | Binäre Mischungen aus Maisstärke und Ibuprofen                                        | 172 |
| 9.4.2.4   | Binäre Mischungen aus Maisstärke und Nanomaterial                                     | 173 |
| 9.4.2.5   | Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial                         | 177 |
| 9.4.3     | Pressdaten                                                                            | 181 |
| 9.4.3.1   | Tablettenparameter der binären Mischungen aus Maisstärke und Aerosil <sup>®</sup> 200 | 181 |
| 9.4.3.1.1 | Mischung 1                                                                            | 181 |
| 9.4.3.1.2 | Mischung 2                                                                            | 188 |
| 9.4.3.1.3 | Mischung 3                                                                            | 190 |
| 9.4.4     | Arzneibuchprüfungen                                                                   | 193 |
| 9.4.4.1   | Gleichförmigkeit der Masse                                                            | 193 |
| 9.4.4.1.1 | Binäre Mischungen aus Maisstärke und Aerosil <sup>®</sup> 200                         | 193 |
| 9.4.4.1.2 | Ternäre Mischungen aus Maisstärke, Ibuprofen und Aerosil $^{ m 	extsf{@}}$ 200        | 197 |
| 9.4.4.2   | Friabilität: Binäre Mischungen aus Maisstärke und Nanomaterial                        | 200 |
| 9.4.4.3   | Zerfallszeit: Binäre Mischungen aus Maisstärke und Nanomaterial                       | 201 |
| 9.4.5     | EK 0 – Daten                                                                          | 201 |
| 9.5       | Heckel-Analyse                                                                        | 207 |
| 9.5.1     | Vergleich der Heckel-Diagramme bei 50 und 150 MPa Pressdruck                          | 207 |
| 9.5.2     | Vergleich des Fließdrucks $P_{y}$ bei 50 und 150 MPa Pressdruck                       | 208 |

# Liste der Abkürzungen und Formelzeichen

| A                               | Achsenabschnitt des Heckel-Diagramms [-] bzw.                             |
|---------------------------------|---------------------------------------------------------------------------|
|                                 | Hamakerkonstante [J] (8•10 <sup>-19</sup> [J])                            |
| Aq                              | Querschnittsfläche einer zylindrischen Tablette [m <sup>2</sup> ]         |
| AW                              | Abweichung der Tablettenmassen vom Mittelwert [%]                         |
| В                               | Startpunkt des Heckel-Diagramms bei P=0                                   |
| BFI                             | Brittle fracture Index [-]                                                |
| BI                              | Bonding Index [-]                                                         |
| С                               | Kompressibilität, Ausmaß der Verdichtung [-]                              |
| D                               | relative Dichte [-]                                                       |
| $D_{\alpha}$                    | relative Dichte hei P=0 [-]                                               |
|                                 | relative Dichte bei Gesamtverdichtung des Pulvers [-]                     |
|                                 | Anteil an relativer Dichte durch Partikelumordnung [-]                    |
|                                 | Partikeldurchmesser (2r) [m]                                              |
|                                 | Fallikeidululillessei (ZI) [III]<br>komplavar E. Madul [CDa]              |
|                                 | Komplexer E-Mouur [GPa]                                                   |
| E <sub>1</sub> , E <sub>2</sub> | E-MOULI VON PARIKELT UND PARIKELZ, DZW. VON TADIELLE UND                  |
| -                               |                                                                           |
| F                               | Haftkraft [N]                                                             |
| F <sub>B</sub>                  | diametrale Bruchkraft einer Tablette [N]                                  |
| F <sub>BW</sub>                 | Bruchkraft nach einer Woche Lagerung [N]                                  |
| F <sub>c</sub>                  | Kraft, mit der zwei Teilchen zusammengepresst werden [N]                  |
| F <sub>gem</sub>                | gemessene Presskraft an Referenzmessdose [kN]                             |
| F <sub>κ</sub>                  | Haftkraft der Flüssigkeitsbrücke [N]                                      |
| F <sub>max</sub>                | max. Presskraft EK 0 [kN]                                                 |
| F <sub>vdW</sub>                | van der Waals Kraft [N]                                                   |
| G                               | Gewichtskraft [N]                                                         |
| Н                               | Indentationshärte [MPa]                                                   |
| H <sub>dvp</sub>                | dvnamische Indentationshärte [MPa]                                        |
| HF                              | Hausner-Faktor [-]                                                        |
| Hmay                            | maximale Deformationshärte bei $o_r = 1$ und $P \rightarrow \infty$ [MPa] |
|                                 | maximale Indentationshärte bei $P \rightarrow \infty \epsilon = 0$ [MPa]  |
| M                               | Messhereich des Verstärkers [m\//\]                                       |
| M.                              | Masse von 20 Tabletten nach der Abriebsprüfung [ɑ]                        |
| M_                              | Tablettengewicht nach der Pressung [mg]                                   |
| M                               | Masse von 20 Tabletten vor der Abriehsprüfung [d]                         |
|                                 | Tablettengewicht nach einer Weshe Lagerung [mg]                           |
|                                 | Anzahl an Kantaktan ng Einhait Quarashnittafiasha []                      |
| IN N                            | Alizani ali Kontakten pio Elinetti Querschnittsilache [-]                 |
|                                 | nicht-bindende Kontakte [-]                                               |
| N+                              | bindende Kontakte [-]                                                     |
|                                 | Gesamtanzani an Kontakten [-]                                             |
| P                               | Pressdruck [MPa]                                                          |
| PD                              | Pressdruck [MPa]                                                          |
| PK <sub>max</sub>               | maximale Presskraft [kN]                                                  |
| PKos                            | Presskraft Oberstempel [kN]                                               |
| PK <sub>US</sub>                | Presskraft Unterstempel [kN]                                              |
| P <sub>max</sub>                | maximaler Pressdruck [MPa]                                                |
| Py                              | Fließdruck "Yield Pressure" [MPa]                                         |
| Q <sub>1,2</sub>                | Ladung 1,2 [C]                                                            |
| Q <sub>3,i</sub>                | Durchgangssumme [-]                                                       |
| R <sub>(1,2)</sub>              | Radius eines (Maisstärke)partikels (Indizes 1.2: Partikel 1.2) [m]        |
|                                 |                                                                           |

| $R_0$               | Ausgangswiderstand $[\Omega]$                                    |
|---------------------|------------------------------------------------------------------|
| R <sub>h</sub>      | harmonisches Mittel der Krümmungsradien zweier Partikeln [m]     |
| ΔR                  | Widerstandsänderung [Ω]                                          |
| S                   | Schnittebene                                                     |
| SI                  | Strain Index [-]                                                 |
| U                   | Kontaktpotenzial [V]                                             |
| U <sub>gem</sub>    | gemessene Ausgangsspannung am Messverstärker [V]                 |
| V <sub>0</sub>      | initiales Volumen des Pulverbetts [cm <sup>3</sup> ]             |
| V <sub>0,S</sub>    | Schüttvolumen [cm <sup>3</sup> ]                                 |
| V <sub>10</sub>     | Volumen nach 10 Stampfbewegungen [cm <sup>3</sup> ]              |
| V <sub>1250</sub>   | Volumen nach 1250 Stampfbewegungen [cm³] (=V <sub>Stampf</sub> ) |
| V <sub>500</sub>    | Volumen nach 500 Stampfbewegungen [cm <sup>3</sup> ]             |
| V <sub>FS</sub>     | Feststoffvolumen (wahres Volumen) [cm <sup>3</sup> ]             |
| V <sub>ges</sub>    | Gesamtvolumen [cm <sup>3</sup> ]                                 |
| V <sub>H</sub>      | Hohlraumvolumen [cm <sup>3</sup> ]                               |
| VL                  | Volumen der Flüssigkeitsbrücke [m <sup>3</sup> ]                 |
| V <sub>S1</sub>     | Volumen Partikel 1 [m <sup>3</sup> ]                             |
| V <sub>Schein</sub> | scheinbares Volumen [cm <sup>3</sup> ]                           |
| V <sub>Stampf</sub> | Stampfvolumen [cm <sup>3</sup> ]                                 |
| WE                  | Elektronenaustrittsarbeit [J]                                    |
| Y                   | Empfindlichkeit der Messstelle [mV/V]                            |
|                     |                                                                  |

| а                   | Konstante [-]                                                          |
|---------------------|------------------------------------------------------------------------|
| a <sub>1</sub>      | Konstante [-]                                                          |
| a <sub>2</sub>      | Konstante [-]                                                          |
| a <sub>c</sub>      | Sehnenradius der Kontaktfläche zweier Partikeln [m]                    |
| a <sub>H</sub>      | Trennungsabstand zwischen zwei Teilchen [m]                            |
| aα                  | Fläche einer Bindungseinheit [m <sup>2</sup> ]                         |
| b                   | Konstante [-]                                                          |
| d                   | Zeit-Plastizität                                                       |
| d <sub>P</sub>      | Tablettendurchmesser nach der Pressung [mm]                            |
| dw                  | Tablettendurchmesser nach einer Woche Lagerung [mm]                    |
| е                   | Druck-Plastizität bzw. Elementarladung [C] (1.6•10 <sup>-19</sup> [C]) |
| f                   | Schnittpunkt mit y-Achse (beinhaltet Zeit- und Druck-                  |
|                     | Plastizität)                                                           |
| f <sub>c</sub>      | Schüttgutfestigkeit [Pa]                                               |
| g                   | Gravitationskonstante [m/s <sup>2</sup> ] (9.81 [m/s <sup>2</sup> ])   |
| h <sub>κ</sub>      | Höhe des Schüttkegels [cm]                                             |
| h <sub>P</sub>      | Tablettendicke nach der Pressung [mm]                                  |
| hw                  | Tablettendicke nach einer Woche Lagerung [mm]                          |
| k                   | Heckel-Konstante [MPa <sup>-1</sup> ]                                  |
| k <sub>1</sub>      | Druck 1 [Pa]                                                           |
| k <sub>2</sub>      | Druck 2 [Pa]                                                           |
| l <sub>o</sub>      | Ausgangslänge [m]                                                      |
| m                   | Masse [g]                                                              |
| р                   | Wahrscheinlichkeit                                                     |
| pc                  | Perkolationsschwelle                                                   |
| r                   | durchschnittlicher Partikelradius [m]                                  |
| r <sub>K</sub>      | Radius des Schüttkegels [cm]                                           |
| r <sub>r</sub>      | Radius einer Rauigkeit [m]                                             |
| r <sub>r, min</sub> | Rauigkeitsradius, der die minimale van-der-Waals-Anziehungs-           |
|                     | kraft zwischen zwei Partikeln bewirkt [m]                              |
| t                   | Zeit [s]                                                               |
| t <sub>max</sub>    | Zeit des maximalen Pressdrucks [s]                                     |
| x                   | Massenanteil Substanz A                                                |
| (1-x)               | Massenanteil Substanz B [-]                                            |
| x <sub>g</sub>      | Abstand zwischen zwei Rauigkeiten im Modell nach Meyer [m]             |
| X <sub>OS</sub>     | Oberstempelweg [mm]                                                    |
| X <sub>US</sub>     | Unterstempelweg [mm]                                                   |
| У                   | Abstand zweier Maisstärkepartikeln im Modell nach Meyer [m]            |
| ΔΙ                  | absolute Längenänderung [µm]                                           |

| α                               | halber Innenwinkel eines gleichseitigen Dreiecks [°]              |
|---------------------------------|-------------------------------------------------------------------|
| α <sub>B</sub>                  | Böschungswinkel [°]                                               |
| β                               | Brückenwinkel [°]                                                 |
| γ                               | Presssuszeptibilität [MPa <sup>-1</sup> ]                         |
| YΑ                              | Presssuszeptibilität der Substanz A [MPa <sup>-1</sup> ]          |
| γ <sub>B</sub>                  | Presssuszeptibilität der Substanz B [MPa <sup>-1</sup> ]          |
| YFL                             | Oberflächenspannung der Flüssigkeit [N/m]                         |
| Yн2O                            | Oberflächenspannung von Wasser [N/m] (72 [mN/m])                  |
| YMischung                       | Presssuszeptibilität einer binären Mischung aus                   |
|                                 | Komponente A und B [MPa <sup>-1</sup> ]                           |
| δ                               | Randwinkel [°]                                                    |
| 3                               | Dielektrizitätskonstante des Mediums [C/Vm]                       |
| 3                               | Porosität [-] bzw. Dehnung [-]                                    |
| ε <sub>0</sub>                  | Influenzkonstante $\varepsilon_0$ =8.855·10 <sup>-12</sup> [C/Vm] |
| λ                               | Proportionalitätskonstante [MPa]                                  |
| v <sub>1</sub> , v <sub>2</sub> | Poisson-Verhältnis von Partikel 1 und Partikel 2, bzw. von        |
|                                 | Tablette und Indenter                                             |
| $\rho_{FS}$                     | Feststoffdichte [g/cm <sup>3</sup> ]                              |
| ρ <sub>r</sub>                  | relative Dichte [-]                                               |
| ρ <sub>schein</sub>             | scheinbare Dichte [g/cm <sup>3</sup> ]                            |
| <b>ρ</b> <sub>Schütt</sub>      | Schüttdichte [g/ml]                                               |
| <b>ρ</b> <sub>Schütt</sub>      | Stampfdichte [g/ml]                                               |
| σι                              | Verfestigungsspannung [Pa]                                        |
| $\sigma_t$                      | diametrale Bruchfestigkeit [MPa]                                  |
| $\sigma_{t(Mischung)}$          | diametrale Bruchfestigkeit der Mischung [MPa]                     |
| $\sigma_{tmax}$                 | maximale diametrale Bruchfestigkeit bei P→∞, ε=0 [MPa]            |
| $\sigma_{tmax(A)}$              | maximale diametrale Bruchfestigkeit der Substanz A [MPa]          |
| $\sigma_{tmax(B)}$              | maximale diametrale Bruchfestigkeit der Substanz B [MPa]          |
| $\sigma_{tmax(Mischung)}$       | maximale diametrale Bruchfestigkeit der Mischung [MPa]            |
| $\sigma_{tO}$                   | diametrale Bruchfestigkeit einer Tablette mit Loch in der         |
|                                 | Mitte [MPa]                                                       |
| φ                               | Flächenladungsdichte [e/µm <sup>2</sup> ]                         |
| Φ1,2                            | Flächenladung Körper 1,2 [e/µm²]                                  |
| ω                               | Rotationswinkel der Ebene [°]                                     |
| ħω                              | Lifshitz-van-der-Waals-Konstante [eV]                             |
|                                 |                                                                   |

#### 1 Einleitung

Das (zumeist ungenügende) Fließverhalten von Schüttgütern hat schon seit langem das Interesse von Industrie und Forschung geweckt und bemüht bis heute zahlreiche Arbeitsgruppen mit der Aufklärung der genauen Zusammenhänge.

Die Relevanz der Fließfähigkeit von Pulvern für die Pharmazeutische Industrie zeigt sich in den Anforderungen des europäischen Arzneibuchs wie etwa die Gleichförmigkeit der Masse oder Gleichförmigkeit des Gehalts einzeldosierter fester Arzneiformen [1,2]. Gerade für diese Zubereitungen ist ein gutes Fließvermögen der Ausgangsprodukte von essentieller Bedeutung, erfolgt doch die Dosierung bei Prozessen wie z. B. der Kapselbefüllung und der Tablettierung volumetrisch [3].

Mangelnde Fließfähigkeit ist auf die Wirkung von interpartikulären Haftkräften zurückzuführen, die ubiquitär vorhanden sind. Jedoch sollten sie nicht als generell negativ betrachtet werden, schließlich sind durch sie viele Vorgänge in der Natur erst möglich. Man denke an die Fähigkeit von Fliegen, Spinnen oder gar Geckos, quasi schwerelos über Wände und Decken zu laufen. Sie machen sich dabei die van-der-Waals-Wechselwirkungen mit den Oberflächenmolekülen der Wand zunutze, die die Haftung ermöglichen [4,5]. Welche große Wirkung diese an sich schwachen Kräfte haben können, zeigt auch die Entstehung unseres Sonnensystems [6]: Staubteilchen lagerten sich aufgrund von van-der-Waals-Kräften zu bis zu 10 cm großen Gebilden zusammen. Kollisionen dieser Agglomerate führten unter Ausbildung chemischer Bindungen zum Anwachsen bis auf Felsbrockengröße. Diese schließlich zogen sich aufgrund ihrer Massen gegenseitig an und bildeten unsere heutigen Planeten.

Aerosil<sup>®</sup> 200 z. B. sollen Fließregulierungsmittel, wie den Adhäsionsund Kohäsionsproblemen in der Pulvertechnologie Abhilfe schaffen. Der prinzipielle Wirkmechanismus dieser Stoffe, deren Partikelgröße im Nanometerbereich liegt, konnte in Arbeiten der letzten Jahre aufgeklärt werden [7,8]. Die Gruppe der Substanzen, die als Fließregulierungsmittel wirksam sind. haben einzige als Gemeinsamkeit die Primärpartikelgröße, ansonsten ist sie sehr heterogen in Bezug auf ihre chemischen und physikalischen Eigenschaften. Weitergehende Forschung ist nötig, bis allgemein gültige Aussagen über die Wirkungsweise getroffen werden können und alle relevanten Parameter identifiziert sind, die für einen systematischen Einsatz dieser Substanzen bzw. für die gezielte Herstellung optimal fließregulierender Materialien nötig sind.

Gerade im Bereich der Tablettierung liegen sehr wenige wissenschaftliche Daten vor, die den Einfluss von Fließregulierungsmitteln zum Inhalt haben. Wahrscheinlich aufgrund des geringen Mengenanteils von unter einem bis wenigen Prozent dieser Substanzen in den Formulierungen wird ihnen kaum Beachtung geschenkt. Die vorliegende Arbeit soll diesen

1

Punkt aufgreifen und den Einfluss von verschiedenen nanoskaligen Substanzen, die fließregulierend wirken, auf die Direkttablettierung von Pulvern untersuchen. Damit soll diese Arbeit einen Beitrag dazu leisten, weiter Licht ins Dunkel der interpartikulären Haftkräfte zu bringen.

## 2 Theorie und Stand der Forschung

#### 2.1 Fließfähigkeit von Pulvern

Eine gute Fließfähigkeit ist für pharmazeutische Schüttgüter von essentieller Bedeutung. Der Großteil an Pulvern wird für die Herstellung von Tabletten und Kapseln verwendet, den am häufigsten verwendeten festen Arzneiformen. Da hierbei die Dosierung volumetrisch erfolgt, bedingt ein ungleichmäßig fließendes Pulver zahlreiche Probleme wie z. B. starke Schwankungen im Tablettengewicht, Dosierungsungenauigkeiten oder verminderte mechanische Festigkeit durch Lufteinschlüsse während des Tablettiervorgangs [9].

#### 2.1.1 Definition der Fließfähigkeit

Ist keine mechanische Hilfe nötig, um ein Pulver zum gleichmäßigen Fließen zu bringen, ist es als "frei fließend" zu betrachten. Jenike [10] hat den Begriff der Fließfähigkeit ff<sub>c</sub> definiert als den Quotienten aus Verfestigungsspannung zur damit erreichten Schüttgutfestigkeit:

$$ff_c = \frac{\sigma_I}{f_c} \qquad \qquad \text{GI. 2.1}$$

mit σ<sub>1</sub> Verfestigungsspannung [Pa] f<sub>c</sub> Schüttgutfestigkeit [Pa]

Danach können Pulver in die folgenden Fließfähigkeitsklassen eingeteilt werden:

| ff <sub>c</sub> -Wert | Pulvereigenschaft               |
|-----------------------|---------------------------------|
| <1.6                  | sehr kohäsiv bis nicht fließend |
| 1.6 - 4               | kohäsiv                         |
| 4 - 10                | leicht fließend                 |
| >10                   | frei fließend                   |

Tabelle 2.1: Einteilung der Fließfähigkeitsklassen nach Jenike [11].

#### 2.1.2 Methoden zur Bestimmung der Fließfähigkeit

Es existieren zahlreiche Methoden, die zur Ermittlung der Fließeigenschaften von trockenen Schüttgütern herangezogen werden. Dabei ergibt sich ein breites Spektrum sowohl was den apparativen Aufwand als auch die Empfindlichkeit der Messmethodik anbelangt. Aufgrund

3

der Vielzahl der Methoden ist eine erschöpfende Beschreibung in diesem Rahmen nicht möglich, so dass die folgenden Ausführungen lediglich als eine Auswahl zu betrachten sind. Zur Bestimmung des Fließverhaltens führt das Europäische Arzneibuch den Böschungsbzw. den Abrutschwinkel und die Fließgeschwindigkeit auf [12,13]. Bei all diesen Methoden handelt es sich um Konventionsmethoden, denen es an Präzision fehlt und deshalb eher zur schnellen Übersicht über die Fließfähigkeit von Pulvern herangezogen werden sollten. Beim Böschungswinkel werden die Höhe und der Radius des Schüttkegels, die sich beim Auslaufen des Untersuchungsgutes aus einem Trichter ergeben, bestimmt. Er berechnet sich nach Gleichung 2.1.

$$\tan \alpha_{\rm B} = \frac{h_{\rm K}}{r_{\rm K}}$$
 GI. 2.1

| α <sub>B</sub> | Böschungswinkel [°]          |
|----------------|------------------------------|
| h <sub>κ</sub> | Höhe des Schüttkegels [cm]   |
| r <sub>K</sub> | Radius des Schüttkegels [cm] |

Eine Modifizierung dieser Methode stellt die Bestimmung des Abrutschwinkels [13,14] dar. Der Böschungswinkel charakterisiert den Übergang vom fließenden zum ruhenden Pulver und wird maßgeblich durch die Gleitreibung des Pulvers bestimmt. Der Abrutschwinkel hingegen geht aus dem ruhenden Pulver hervor: das Pulverbett wird geneigt und der Winkel bestimmt, bei dem das Fließen einsetzt. Damit wird die Kohäsion durch interpartikuläre Haftreibung hervorgerufen.

Ebenfalls im Arzneibuch aufgeführt ist die Bestimmung der Schütt- und Stampfdichte, den sog. "Bulk"-Dichten [15,16]. Dabei wird eine definierte Menge Pulver erschütterungsfrei in einen Messzylinder eingefüllt und das Volumen abgelesen. Durch Stampfbewegungen wird das Pulver in einen höheren Ordnungszustand gebracht, was in einer dichteren Packung und einem geringeren Volumen resultiert. Die Schüttdichte ergibt sich aus der eingesetzten Masse und dem Einfüllvolumen vor dem Stampfen, die Stampfdichte aus der Masse und dem Volumen bei dichterer Packung nach den Gleichungen 2.2 und 2.3.

$$\rho_{schütt} = \frac{m}{V_{0,s}}$$
Gl. 2.2

$$\rho_{Stampf} = \frac{m}{V_{Stampf}}$$
GI. 2.3

 $\begin{array}{lll} \rho_{Schütt} & Schüttdichte [g/cm^3] \\ \rho_{Stampf} & Stampfdichte [g/cm^3] \\ m & Pulvermasse [g] \\ V_{0,S} & Schüttvolumen [cm^3] \\ V_{Stampf} & Stampfvolumen [cm^3] \end{array}$ 

Neben der Methode der konstanten Pulvermenge existiert noch die Möglichkeit des konstanten Volumens [16]. Vorteil davon ist die höhere Genauigkeit durch präzises Wiegen im Gegensatz zum weniger genau ablesbaren Messzylinder.

Hausner [17] stellte fest, dass das Verhältnis von Stampf- zu Schüttdichte von Metallpulvern größer wird, je weiter die Partikelform von der Kugelform abweicht. Der Hausner-Faktor HF (GI. 2.4) findet auch heute noch breite Verwendung zur Beurteilung der Fließfähigkeit bzw. Kompressibilität von Pulvern [18-20]. Idealerweise sollte er den Wert eins annehmen, je weniger er davon abweicht, desto besser ist das Fließverhalten des Pulvers.

$$HF = \frac{\rho_{stampf}}{\rho_{schütt}}$$
Gl. 2.4

Eine empfindlichere Methodik zur Bestimmung der Fließfähigkeit von Partikelkollektiven stellt der modifizierte Auslauftrichter nach *Kretzler* [22,23] dar, der aus dem Pulverrheometer [24-26] entwickelt wurde. Die Messung von ausgeflossener Pulvermasse pro Zeit und Drehmoment des Rührers lassen Rückschlüsse auf die im Pulver vorhandenen Haftkräfte zu, da diese für die Bildung sog. "Schüttgutbrücken" verantwortlich sind.

Ebenfalls der Zerstörung von Pulverbrücken bedient sich die "Avalanche"-Methode [27,28]. Das Pulverbett bewegt sich in einem langsam rotierenden Zylinder abhängig von seiner Kohäsivität bis zu einem gewissen Neigungswinkel unverändert mit. Wird ein bestimmter Winkel überschritten, kommt es zum lawinenartigen Zusammenbruch der Struktur. Messparameter ist die Zeit zwischen den einzelnen Zusammenbrüchen. Das Messprinzip des "Warren Spring-Bradford cohesion testers" (WSBCT) [29] beruht ebenfalls auf der Messung von Drehmomenten. Allerdings wird hierbei nicht der Zusammenbruch von Schüttgutbrücken bestimmt, sondern das Drehmoment, bei dem sich das Messstück, ein Ring mit eingesetzten Paddelstreben, ähnlich der Speichen eines Rades, im Pulver zu drehen beginnt. Ab diesem Punkt ist die Kohäsion des Pulvers überwunden.

Einen neuen Ansatz zur Bestimmung der Fließfähigkeit liefert die Quecksilberporosimetrie [30]. Während der Quecksilberintrusion kommt es bei niedrigen Drücken bis 1 bar zu Umordnungsvorgängen der Partikeln im Pulverbett, bevor das Befüllen der Poren stattfindet. Das Quecksilbervolumen in Abhängigkeit vom Druck kann durch eine lineare Gleichung beschrieben werden. Über die Arbeit (intrudiertes Hg-Volumen über den Druck), die für die Pulverumordnung aufgewandt werden muss, kann auf das Fließverhalten geschlossen werden.

Methoden wie die "impact separation method" [31] oder auch die Vibrationsmethode [32-34] gehen nicht von interpartikulären Haftkräften im Haufwerk aus, sondern beschreiben die Abtrennung von Partikeln von Oberflächen entsprechend des Kugel-Platte-Modells (vgl.

Abschnitt 2.3.2). Da der Kontakt Partikel - glatte Oberfläche eher einen Spezialfall in der Handhabung kohäsiver Pulver darstellt (pneumatisches Fördern in Silos), sind Methoden, die die Wechselwirkungen von Partikeln im Kollektiv beschreiben, vorzuziehen.

Die gängigste Methode wurde in der 1960iger Jahren von Jenike [10,11,35] eingeführt und stellt auch heute noch den Standard zur Bestimmung der Fließfähigkeit ff<sub>c</sub> (vgl. Abschnitt 2.1.1) von Pulvern dar. Mittels der "Jenike-Scherzelle" kann über die eingebrachte Normalspannung, mit der das Pulver verdichtet wird und der Schubspannung, die nötig ist, um das verfestigte Schüttgut wieder zum Fließen zu bringen, auf die innere Kohäsion geschlossen werden. Vorteile für die industrielle Praxis bringt die "Ring-Scherzelle" [11,36], die neben kürzeren Messdauern auch Messungen bei niedrigen Verfestigungsspannungen von 400-500 Pa ermöglicht.

Im Unterschied zum Jenike-Tester kann mit dem Zugspannungstester nach *Schweiger* [7,37] mit unverdichteten Pulverproben gearbeitet werden. Dabei wird die Kraft bestimmt, die nötig ist, um zwei Pulverschichten vertikal voneinander zu trennen. Ausgehend von einer hexagonalen Anordnung gleich großer, kugelförmiger Teilchen können daraus die wirksamen interpartikulären Kräfte berechnet werden.

Mit der Einführung der Rasterkraftmikroskopie (Atomic force microscopy, AFM) [38,39] ist es möglich geworden, Haftkräfte zwischen Einzelpartikeln zu bestimmen. Mit Hilfe der "colloidal probe technique" lassen sich die Messspitzen gezielt mit unterschiedlichen Materialien beladen, so dass nahezu alle Stoffe der Kraftmessung zugänglich sind [40-42].

#### 2.1.3 Einfluss von Gravitationskräften auf Haftkräfte

Für das Fließen von Pulvern sind nicht allein die wirksamen interpartikulären Haftkräfte ausschlaggebend, sondern deren Verhältnis zur Gewichtskraft der Partikel. Für ein ideal kugelförmiges Partikel gilt folgender Zusammenhang für seine Gewichtskraft (Gl. 2.5):

$$G = \left(\frac{4}{3}\pi r^3\right)\rho_{FS}g$$
 GI. 2.5

Ein Pulver beginnt dann frei zu fließen, wenn seine Gewichtskraft die interpartikuläre Haftkraft übersteigt. Da die Gewichtskraft mit der dritten Potenz des Partikelradius zunimmt, die Haftkraft jedoch nur linear (vgl. Abschnitt 2.2), wird das Verhältnis für kleiner werdende

Partikel größer [43]. Teilchen mit einer Größe größer als ca. 1 mm verhalten sich nicht mehr kohäsiv [44].

#### 2.2 Interpartikuläre Haftkräfte in Schüttgütern

In Abschnitt 2.1.3 wurde der Einfluss der Gewichtskraft auf das Fließverhalten von Pulvern beschrieben. Im Folgenden soll nun auf die unterschiedliche Natur von interpartikulären Haftkräften eingegangen werden, die von Bedeutung für das Adhäsions-bzw. Kohäsionsverhalten von Partikeln im Haufwerk sind.

Abbildung 2.1 [43] stellt den Verlauf der unterschiedlichen Kraftarten in Abhängigkeit von der Partikelgröße für einen kugelförmigen Partikel mit dem Abstand a<sub>H</sub> von einer Platte dar. Für Teilchen bis ca. 100 µm bewirken Flüssigkeitsbrücken die stärksten Kräfte, gefolgt von den van-der-Waals-Wechselwirkungen. Alle Haftkräfte sind groß im Vergleich zur Gewichtskraft der Teilchen. Außer im Falle des elektrischen Isolators, dessen Haftkraft mit der zweiten Potenz des Kugeldurchmessers ansteigt, nehmen die Haftkräfte linear mit der Partikelgröße zu.



Abbildung 2.1: Haftkraft F und Gewichtskraft G [ $\mu$ N] (Kugel-Platte-Modell) in Abhängigkeit vom Kugeldurchmesser D<sub>K</sub> (Trennungsabstand  $a_{H}$ =4·10<sup>-10</sup> [m], Brückenwinkel  $\beta$ =20 [°], Oberflächenspannung  $\gamma_{H2O}$ =72 [mN/m], Flächenladungsdichte  $\phi$ =100 [ $e/\mu$ m<sup>2</sup>], Kontaktpotential U [V], Hamakerkonstante A=8·10<sup>-19</sup> [J]).

#### 2.2.1 Van-der-Waals-Kräfte

Das Gesamtwechselwirkungspotential zwischen zwei Molekülen setzt sich aus den abstoßenden und anziehenden Kräften zusammen [44]. Die Abstoßungskräfte ergeben sich aus der Born`schen Abstoßung der Elektronenwolken zweier Partikeln [45]. Damit folgt für den möglichen Abstand zweier Teilchen ein Minimum von 0.4 nm [46]. Für diesen Abstand erreicht die anziehende Kraft ihren Maximalwert.

Van-der-Waals-Kräfte sind auf Dipolmomente durch Elektronenverschiebungen zwischen nach außen hin neutralen Atomen und Molekülen zurückzuführen. Je nach der Art des Dipols sind drei unterschiedliche Anteile am Wechselwirkungspotential möglich:

- Debye-Anteil
- Keesom-Anteil
- London-Anteil

Die Debye-Wechselwirkung tritt zwischen einem permanenten und einem induzierten Dipol auf, Kessom-Kräfte zwischen zwei permanenten Dipolen (freie Rotation) und die London-Kräfte zwischen zwei induzierten Dipolen [44]. Alle nehmen für Teilchenabstände unter 100 nm mit der sechsten Potenz des Abstandes ab.

Zur Berechnung der wirksamen van-der-Waals-Kräfte existieren zwei Ansätze. Die mikroskopische Theorie nach Hamaker [46,47] geht von paarweisen Wechselwirkungen zwischen Atomen und Molekülen aus. Aufgrund der Additivität der Wechselwirkungen lässt sich die Gesamtanziehung durch Aufsummierung der Einzelanteile berechnen. Die makroskopischen Materialeigenschaften werden durch die so genannte Hamakerkonstante A beschrieben. Für Feststoffe liegt sie im Bereich von 10<sup>-20</sup> bis 10<sup>-18</sup> J [47].

Der makroskopische Ansatz nach Lifshitz [48] nutzt zur Bestimmung der Wechselwirkungen zwischen Körpern deren spektroskopische Eigenschaften. In den Abbildungen 2.2 und 2.3 mit den dazu gehörigen Gleichungen 2.6-2.9 sind die zugrunde liegenden Zusammenhänge zur Berechnung der van-der-Waals-Kräfte nach beiden Theorien für das Kugel-Kugel- bzw. das Kugel-Platte-Modell aufgeführt [43,49,50].

Kugel-Kugel-Geometrie

ан

Hamaker-Theorie

Lifshitz-Theorie

Abbildung 2.2: Kugel-Kugel-Geometrie zur Ermittlung der van-der-Waals-Kraft  $F_{vdW}$ .



Abbildung 2.3: Kugel-Platte-Geometrie zur Ermittlung der van-der-Waals-Kraft  $F_{vdW}$ .

ан

| F <sub>vdW</sub>     | /an-der-Waals-Kraft [N]                        |
|----------------------|------------------------------------------------|
| A I                  | Hamakerkonstante [J]                           |
| R <sub>(1,2)</sub> I | Partikelradius (Indizes 1,2: Partikel 1,2) [m] |
| a <sub>H</sub>       | Frennungsabstand [m]                           |
| ħω I                 | _ifshitz-van-der-Waals-Konstante [eV]          |

Der Ansatz nach Lifshitz ist zwar physikalisch genauer, jedoch mathematisch sehr aufwendig und auf reale Systeme nur schwer übertragbar. Deshalb wird im Allgemeinen der Ansatz nach Hamaker bevorzugt.

#### 2.2.2 Elektrostatische Kräfte

Elektrostatische Kräfte kommen aufgrund von gegenpoligen Ladungen zustande und können je nach Ladung der betreffenden Partikeln - positiv oder negativ - anziehend oder abstoßend sein [43,49]. Pulverteilchen sind in der Regel nach außen elektrisch neutral, dennoch können Elektronenübergänge und damit Aufladungen in Folge von Reibung oder Zerkleinerung auftreten. Diese Überschussladungen treten vor allem bei Nichtleitern auf, während Leiter überwiegend über Kontaktpotentiale wechselwirken, die durch unterschiedliche Elektronenaustrittsarbeiten  $W_E$  hervorgerufen werden. Dabei treten vom Festkörper mit kleinerem  $W_E$  Elektronen zum Körper mit größerem  $W_E$  über. Die maximale Ladungsdichte der Überschussladungen liegt bei 100 e/µm<sup>2</sup> [49].

Die Haftkraft zwischen zwei Teilchen mit punktförmigen Ladungen  $Q_1$  und  $Q_2$  kann nach dem Coulomb-Gesetz berechnet werden (Gl. 2.10) [51].

$$F = \frac{Q_1 Q_2}{4\pi\varepsilon\varepsilon_0 a_H^2}$$
Gl. 2.10

| Q <sub>1,2</sub>      | Ladung 1,2 [C]                                                   |
|-----------------------|------------------------------------------------------------------|
| 3                     | Dielektrizitätskonstante des Mediums [C/Vm]                      |
| <b>ε</b> <sub>0</sub> | Influenzkonstante ε <sub>0</sub> =8.855·10 <sup>-12</sup> [C/Vm] |
| a <sub>H</sub>        | Abstand zwischen beiden Ladungen [m]                             |

#### 2.2.3 Wasserstoffbrückenbindungen

Selbst trocken erscheinende Pulver tragen in normaler Umgebungsfeuchte einen adsorbierten Feuchtigkeitsfilm auf ihrer Oberfläche. In der Regel ist diese Adsorptionsschicht sehr dünn und das Wasser nimmt noch nicht seine normale Struktur an, d. h. die Adsorptionsschicht ist nicht frei beweglich, so dass diese Pulver dennoch als trocken betrachtet werden können [3]. Die Dicke der Adsorptionsschicht ist abhängig von der Polarität der Partikeloberfläche und der Umgebungsfeuchte. Polare Stoffe können z.B. über freie OH-Gruppen Wassermoleküle in Form von Wasserstoffbrücken binden [52]. Bei Luftfeuchten niedrigen bis mittleren relativen (0 < r. H. < 60%) bleiben die Adsorptionsschichten relativ unbeweglich, erst ab Feuchten von ca. 70% tritt Kapillarkondensation unter Ausbildung von Flüssigkeitsbrücken ein [181]. H-Brücken besitzen mit ca. 200 pm eine deutlich kürzere Reichweite als van-der-Waals-Kräfte [53,81,168], jedoch ist die Bindung stärker (Bindungsenergie 10-40 kJ/mol, van-der-Waals-Kräfte: 1-8 kJ/mol) [54,81].

In Pulvern, die bei moderaten Luftfeuchtigkeiten gelagert werden, stellen demzufolge die van-der-Waals-Wechselwirkungen den überwiegenden Anteil an den interpartikulären Haftkräften. H-Brücken-Bindungen gewinnen an Relevanz, wenn die Partikeln durch den Einfluss von äußerer Krafteinwirkung, wie sie z. B. in der Tablettierung auftritt, in einen sehr engen Kontakt gebracht werden. Abb. 2.4 [52] verdeutlicht die Zusammenhänge.



Abb. 2.4a zeigt zwei sphärische Partikeln mit einer polaren Oberfläche. Unter Pressdruckeinfluss werden die Teilchen in einen engen Kontakt gebracht, so dass die kurzen Abstände, die zur Ausbildung von H-Brücken nötig sind, erreicht werden. Zudem tritt

plastische Verformung ein, die eine größere Kontaktfläche und damit stärkere Wechselwirkungen zur Folge hat (Abb. 2.4b). Tragen die Partikeln Wasser-Adsorptionslayer an ihrer Oberfläche, können diese in zusammenhängende Layer übergehen (Abb. 2.4c) und starke interpartikuläre Kräfte bewirken.

#### 2.2.4 Vergleich der interpartikulären Kräfte

Wie die vorangegangenen Abschnitte gezeigt haben, sind die wirksamen Haftkräfte nicht allein von der Größe der Teilchen abhängig, sondern in einem großen Maße auch vom Partikelabstand. Die Haftkraft als Funktion vom Trennungsabstand a<sub>H</sub> für alle Kraftarten im Vergleich zeigt Abbildung 2.5 (Kugel-Platte-Modell) [43].



Abbildung 2.5: Einfluss des Trennungsabstandes  $a_H$  auf die Haftkraft F im Kugel-Platte-Modell (Brückenwinkel  $\beta$ =20 bzw.  $\beta$ =2.5 [°], Oberflächenspannung  $\gamma_{H2O}$ =72 [mN/m], Flächenladungsdichte  $\phi$ =100 [e/µm<sup>2</sup>], Kontaktpotential U [V], Hamakerkonstante A=8·10<sup>-19</sup> [J]).

Flüssigkeitsbrücken bedingen die stärksten wirksamen Kräfte. Ausgeprägte Brücken (Kapillarkräfte) treten allerdings in trockenen Schüttgütern aufgrund mangelnder Feuchtigkeit nicht auf. Unter normalen Umgebungsbedingungen (relative Luftfeuchte bis 50%) kann lediglich Kapillarkondensation auftreten. Diese Brücken weisen kleine Brückenwinkel (~ 2.5°) auf und zeigen starke Abhängigkeit vom Partikelabstand. Bereits ein Trennungsabstand von wenig über 1 nm führt zum Abreißen der Brücke.

Van-der-Waals-Kräfte haben im Vergleich zu Kapillar- oder Coulomb-Kräften eine kurze Reichweite von etwa 100 nm. Innerhalb dieses Abstandsbereiches jedoch sind die Wechselwirkungen sehr stark und liegen bis zu zwei Zehnerpotenzen höher als die elektrostatischen Kräfte. Damit stellen die van-der-Waals-Kräfte in trockenen Pulvern die stärksten Wechselwirkungen.

#### 2.3 Einfluss von Oberflächenrauigkeiten auf interpartikuläre Haftkräfte

#### 2.3.1 Rauigkeitsmodell nach Rumpf (Verringerung der Zugspannung in Granulatkörnern)

Bei seinen Untersuchungen zu den wirksamen Haftkräften in Schüttgütern fand Rumpf in seinen Experimenten stets geringere tatsächliche Haftkräfte als theoretisch berechnet [49]. Grund für die Diskrepanz zwischen Theorie und Praxis sind den Partikeloberflächen anhaftende Rauigkeiten, die den Partikelabstand erhöhen und somit die Kontaktfläche verringern [55,56]. Da van-der-Waals-Kräfte nur eine kurze Reichweite (ca. 100 nm) besitzen, führt diese Abstandsvergrößerung zu deutlichen Haftkraftverminderungen.

Rumpf geht in seinem Modell von einer halbkugelförmigen Rauigkeit mit dem Radius r<sub>r</sub> auf einem Partikel (Radius R) aus, die den Abstand des Partikels zu einem anderen entlang einer geraden Verbindungslinie vergrößert. In Abb. 2.6 ist dies als Kugel-Platte-Modell dargestellt. Die wirksame van-der-Waals-Kraft setzt sich aus der Wechselwirkung Rauigkeit– Platte sowie aus der anziehenden Kraft zwischen dem Partikel und der Platte zusammen und kann mit der Näherung nach Derjaguin [57] nach Gleichung 2.11 berechnet werden.



$$F_{vdW} = -\frac{A}{6} \left[ \frac{r_r}{a_H^2} + \frac{R}{(a_H + r_r)^2} \right]$$
 GI. 2.11

Abbildung 2.6: Kugel-Platte-Modell nach Rumpf zur Beschreibung der van-der-Waals-Kraft eines Partikels mit halbkugelförmiger Oberflächenrauigkeit.

Ausgehend von diesem Modell erfolgt der Ansatz zur Fließregulierung durch Nanomaterialien. Bedingt durch ihre geringe Partikelgröße werden diese im Verlauf des Mischvorgangs an die glatte Oberfläche von größeren Pulverpartikeln adsorbiert und wirken als Oberflächenrauigkeiten (vgl. Abschnitt 2.3.3).

#### 2.3.2 Modifiziertes Rauigkeitsmodell nach Rumpf (Verbesserung der Fließeigenschaften von Pulvern)

Da die an die Oberfläche der Maisstärke adsorbierten Nanomaterial-Agglomerate nicht halbkugel- sondern annähernd kugelförmig sind, wird das Modell modifiziert und die halbkugelförmige Rauigkeit durch eine kugelförmige ersetzt (vgl. Abb. 2.7). Damit vergrößert sich der Abstand der großen Kugel zur Platte um den Radius r<sub>r</sub> und die resultierende vander-Waals-Kraft ergibt sich aus Gleichung 2.12.



$$F_{vdW} = -\frac{A}{6} \left[ \frac{r_r}{a_H^2} + \frac{R}{(a_H + 2r_r)^2} \right] \quad \text{GI. 2.12}$$

Abbildung 2.7: Modifiziertes Kugel-Platte-Modell nach Rumpf zur Beschreibung der vander-Waals-Kraft eines Partikels mit kugelförmiger Oberflächenrauigkeit.

Mit zunehmendem Rauigkeitsradius verringert sich die effektive van-der-Waals-Kraft proportional zur Abstandsvergrößerung des großen Partikels zur Platte. Die anziehende Wechselwirkung der Rauigkeit mit der Platte ist ebenfalls vorhanden, jedoch bis zu einem bestimmten Rauigkeitsradius so gering, dass die Haftkraftverminderung des großen Partikels den dominierenden Faktor darstellt (vgl. Abb. 2.8).



Abbildung 2.8: Van-der-Waals-Kraft in Abhängigkeit vom Rauigkeitsradius  $r_r$  für das modifizierte Kugel-Platte-Modell nach Rumpf für verschieden große Trägerpartikel (Hamakerkonstante A=8·10<sup>-19</sup> [J], Trennungsabstand  $a_H$ =4·10<sup>-10</sup> [m]).

Die Haftkraft sinkt bis zu einem charakteristischen Rauigkeitsradius r<sub>r,min</sub> auf ein Minimum ab. Die Lage und das Ausmaß des Minimums sind abhängig von der Größe der Trägerkugel. Überschreitet die Rauigkeit diese Größe, treten die Wechselwirkungskräfte der Rauigkeit und der Platte ins Gewicht und Gesamthaftkraft steigt wieder an.

#### 2.3.3 Wirkungsweise von nanoskaligen Fließregulierungsmitteln

#### 2.3.3.1 Oberflächenbelegung durch Nanomaterialien

Hinweise auf eine Adsorption von Fließregulierungsmitteln an die Oberfläche größerer Pulverpartikeln während des Mischvorgangs finden sich in der Literatur (vgl. Abschnitt 2.4.2.3), allerdings konnte bis zu den Arbeiten von Meyer [7,58] der Wirkmechanismus nicht eindeutig aufgeklärt werden. Meyer zeigt in rasterelektronischen Aufnahmen die veränderte Belegung der Oberfläche von Maisstärkekörnern in Abhängigkeit von der Mischzeit mit nanoskaligen Fließregulierungsmitteln auf (Abbildungen 2.09-2.14 [7]). Die Fließverbesserer liegen in Form von Agglomeraten und Aggregaten vor. Im Verlauf des Mischens kommt es neben der Adsorption an die Oberfläche der Maisstärke außerdem zu einer Zerkleinerung der Agglomerate, indem die viel größeren Maisstärkekörner als "Mahlkugeln" ähnlich wie in einer Kugelmühle agieren.



Abbildung 2.09: Cerestar® GL 03406 ohne Aerosil<sup>®</sup> 200, x10000.



Maisstärke Abbildung 2.10: Aerosil® 200-Agglomerate nach min 1 Mischzeit, x10000.



Abbildung 2.11: Aerosil® 200-Agglomerate nach 10 min Mischzeit, x10000.



Abbildung 2.12: Aerosil® 200-Agglomerate nach 360 min Mischzeit, x10000.



Abbildung 2.13: Aerosil® Mischzeit, x10000.



200- Abbildung 2.14: Aerosil® 200-Agglomerate nach 1440 min Agglomerate nach 4320 min Mischzeit, x10000.

Bei sehr langen Mischzeiten (ab ca. 1 Tag = 1440 Minuten) sind die Aerosil<sup>®</sup>-Agglomerate so dicht angeordnet, dass sich ein nahezu geschlossener Film von Nanomaterial auf der Maisstärke ergibt.

Mit der steigenden Oberflächenbelegung geht eine Absenkung der Zugspannung einher, verbunden mit einer makroskopisch verbesserten Fließfähigkeit (vgl. Abbildung 2.15). Die adsorbierten Aerosil<sup>®</sup>-Agglomerate wirken als Oberflächenrauigkeiten. Sie erhöhen den Abstand der Maisstärkekörner zueinander und vermindern damit die wirksamen interpartikulären Haftkräfte. Bei einer hohen Oberflächenbelegung im Bereich des geschlossenen Films ist ein Wiederanstieg der Zugspannung zu bemerken. Einzel-Agglomerate sind nicht mehr zu identifizieren, das Nanomaterial hat seine Abstandshalterwirkung eingebüßt. Es liegen nun Maisstärkepartikel vor, deren Radius um die Dicke der Aerosil<sup>®</sup>-Schicht vergrößert ist.



Abbildung 2.15 [59]: Zugspannungsverlauf von 0.2% Aerosil<sup>®</sup> 200 in Maisstärke abhängig von der Mischzeit.

#### 2.3.3.2 Drei-Punkt-Modell nach Meyer

Im Allgemeinen beruhen die theoretischen Betrachtungen zur Abstandsvergrößerung von Partikeln mittels Oberflächenrauigkeiten auf der idealisierten Annahme einer einzigen Rauigkeit mittig im Kontaktbereich [49]. Dieser Zustand ist weder stabil noch liegt er in realen Schüttgütern vor – die steigende Oberflächenbelegung mit zunehmender Mischzeit führt zu Mehrpunkt-Kontakten – so dass das Drei-Punkt-Modell nach Meyer [7] den Einfluss von Rauigkeitsradius und –abstand auf die Abstandsvergrößerung zweier Maisstärkekugeln realitätsgetreuer darstellt (vgl. Abbildung 2.16).

Der Abstand der beiden Rauigkeiten beträgt  $2x_1$ , der zwischen den beiden Maisstärkepartikeln  $2y_1$ . Für die Ermittlung von  $x_1$  bzw.  $y_1$  gelten folgende Gleichungen:

$$y_1 = \sqrt{(R + r_r)^2 - (r_r + x_1)^2} - R$$
 Gl. 2.13

$$x_1 = \sqrt{(R + r_r)^2 - (R + y_1)^2} - r_r$$
 Gl. 2.14

Da sich die Strecke der Seitenhalbierenden von der Ecke des Dreiecks bis zum Schnittpunkt aller Seitenhalbierenden aus  $x_0 + r$  ergibt, kann  $y_1$  aus dem auf der Schnittebene senkrecht stehenden Dreieck mit den Seitenlängen (R +  $r_r$ ), ( $x_0 + r_r$ ) und (R +  $y_1$ ) berechnet werden (vgl. Gl. 2.15-2.17).

$$y_1 = \sqrt{(R + r_r)^2 - (x_0 + r_r)^2} - R$$
 GI. 2.15

Mit  $X_0 = \frac{X_1 + r_r}{\cos \alpha} - r$  und  $\alpha = 30^\circ = \frac{1}{2}\sqrt{3}$  folgt:

$$y_1 = \sqrt{(R + r_r)^2 - \frac{4}{3}(x_1 + r_r)^2} - R$$
 GI. 2.16

$$x_{1} = \frac{1}{2}\sqrt{3}\sqrt{(R + r_{r})^{2} - (R + y_{1})^{2}} - r_{r}$$
 GI. 2.17



Abbildung 2.16:

a) Aufsicht des unteren Maisstärkepartikels.

b) Schnitt durch zwei Maisstärkepartikel entlang der Schnittebene S.



| r <sub>r</sub>                                | Radius einer Rauigkeit [m]                                |
|-----------------------------------------------|-----------------------------------------------------------|
| R                                             | Radius eines Maisstärkepartikels [m]                      |
| $x_{q} = 2x_{1}$                              | Abstand zwischen zwei Rauigkeiten [m]                     |
| $y = 2y_1$                                    | Abstand zwischen zwei Maisstärkepartikeln [m]             |
| S                                             | Schnittebene                                              |
| α                                             | halber Innenwinkel des gleichseitigen Dreiecks [°]        |
| <b>x</b> <sub>0</sub> + <b>r</b> <sub>r</sub> | Strecke der Seitenhalbierenden bis zum Schnittpunkt aller |
|                                               | Seitenhalbierenden [m]                                    |

Aus den Gleichungen 2.16 und 2.17 leitet sich ab, dass der Abstand zwischen zwei Maisstärkepartikeln sowohl vom Abstand  $x_g$  der Rauigkeiten als auch von deren Radius  $r_r$  abhängt.

Abbildung 2.17 zeigt, dass bis zu einem Abstand der Nano-Agglomerate von ca. 0.1 µm dieser keinen Einfluss auf die Distanz der großen Trägerpartikel hat. Enge Abstände der Rauigkeiten werden bei hohen Bedeckungsgraden der Maisstärkepartikeln erreicht. Sie sind über einen weiten Abstandsbereich konstant. Bei größeren Abständen als 100 nm nimmt mit zunehmendem Agglomeratabstand die Entfernung der Maisstärkepartikel immer weiter ab, bis sich berühren.



Abbildung 2.17:

Abhängigkeit des Abstandes der Trägerpartikeln vom Abstand bzw. Bedeckungsgrad der Fließregulierungsmittel-Agglomerate.

Die Bedeckungsgrad-Achse trägt keine Graduierung, sie dient lediglich zur Darstellung des qualitativen Verlaufs.



Abbildung 2.18:

Abhängigkeit der van-der-Waals-Kräfte zwischen zwei Maisstärkepartikeln ( $R_1=R_2=11\mu$ m) vom Abstand zweier adsorbierter Fließregulierungsmittelteilchen unterschiedlicher Größe bzw. vom Bedeckungsgrad mit Fließregulierungsmittelagglomeraten. (Hamakerkonstante A=8•10<sup>-19</sup> [J], Trennungsabstand a<sub>H</sub>=4•10<sup>-10</sup> [m]).

Die Bedeckungsgrad-Achse trägt keine Graduierung, sie dient lediglich zur Darstellung des qualitativen Verlaufs.

$$F_{vdW} = -\frac{A}{6} \left[ \frac{R_1 r_r}{a_H^2 (R_1 + r_r)} + \frac{R_1 R_2}{y^2 (R_1 + R_2)} \right]$$
Gl. 2.18

Ist dies der Fall, steigt auch die van-der-Waals-Kraft  $F_{vdW}$  sprunghaft an (vgl. Abb. 2.18, Gl. 2.18). Die Abstände zwischen den Maisstärkepartikeln bzw. Höhe der Kraft sind neben der Oberflächenbelegung zudem noch vom Radius der Agglomerate abhängig. Durch hohe Oberflächenbelegungen (enge Partikelabstände) werden die wirksamen Kräfte konstant gehalten. Demnach stellt die Oberflächenbelegung die bestimmende Größe in der Herabsetzung interpartikulärer Haftkräfte dar [7,182].

#### 2.4 Tablettierung

#### 2.4.1 Kompressibilität

#### 2.4.1.1 Porosität

Während des Pressvorgangs erfährt das Pulverbett in der Matrize mit zunehmendem Pressdruck eine Volumenabnahme. Dabei können verschiedene charakteristische Phasen unterschieden werden. Die initiale Pulverpackung ergibt sich durch die Matrizenbefüllung. Um dem zunehmenden Druck auszuweichen, kommt es zunächst zur Umordnung der Teilchen innerhalb des Pulverbetts, freie Hohlräume werden besetzt. Sind alle Hohlräume belegt und steigt der Druck weiter an, können die Partikeln aufgrund der Begrenzung durch die Matrizenwand nicht mehr ausweichen und verformen sich zunächst elastisch, dann plastisch bzw. brechen. Das Vermögen eines Pulvers, unter Druck sein Volumen zu reduzieren, wird als Kompressibilität bezeichnet [52]. Verbunden mit der Volumenabnahme ist eine Abnahme der Porosität bzw. eine Zunahme der relativen Dichte D. Die Porosität  $\epsilon$  ergibt sich aus dem Volumen V<sub>H</sub> [ml] aller vorhandenen Hohlräume bezogen auf das Gesamtvolumen V<sub>ges</sub> [ml] (Gl. 2.19), [44].

$$\varepsilon = \frac{V_H}{V_{ges}}$$
 GI. 2.19

Das Gesamtvolumen (im Folgenden scheinbares Volumen V<sub>Schein</sub> genannt) ist im Fall einer gefüllten Matrize durch die Abmessungen der Pulversäule in der Matrize bedingt, im Fall einer zylindrischen Tablette durch die Höhe und Dicke der Tablette. Das scheinbare Volumen setzt sich zusammen aus dem Hohlraumvolumen und dem Volumen der Pulverpartikeln V<sub>FS</sub> (Gl. 2.20).

$$V_{Schein} = V_{H} + V_{FS}$$
 GI. 2.20

Somit ergibt sich für die Porosität

$$\varepsilon = \frac{V_{Schein} - V_{FS}}{V_{Schein}}$$
 GI. 2.21

bzw. unter Ersatz der Volumina durch die jeweiligen Dichten Gl. 2.22 [52,60].

$$\varepsilon = 1 - \frac{\rho_{Schein}}{\rho_{FS}} = 1 - D$$
 Gl. 2.22

D relative Dichte [-]

#### 2.4.1.2 Porositäts- / Pressdruck-Gleichungen

Es existieren zahlreiche mathematische Funktionen, die versuchen, den Zusammenhang zwischen Porosität bzw. relativer Dichte und anliegendem Pressdruck zu beschreiben. Heckel beschreibt die Verdichtung von Metallpulvern durch eine Gleichung, in der die Änderung der relativen Dichte D in einer logarithmischen Abhängigkeit vom anliegenden Pressdruck P steht [61,62].

$$ln\frac{1}{1-D} = kP + A \qquad \qquad \text{Gl. 2.23}$$

| D | relative Dichte [-]                   |
|---|---------------------------------------|
| k | Heckel-Konstante [MPa <sup>-1</sup> ] |
| Р | Pressdruck [MPa]                      |
| A | Achsenabschnitt [-]                   |

k ist die sogenannte Heckel-Konstante. Sie kann durch Regression des linearen Teiles des Heckel-Diagramms ermittelt werden (vgl. Abbildung 2.19). A ist der Schnittpunkt der Ausgleichsgerade mit der Ordinate. Dieser Punkt stellt die Verdichtung des Pulvers aufgrund von Vorgängen dar, die vor der plastischen Verformung stattgefunden haben. Dazu gehören a) die Verdichtung durch Matrizenbefüllung und b) die Verdichtung aufgrund von Partikelumordnungsvorgängen. Die Umordnung der Teilchen findet bei sehr niedrigen Pressdrücken statt und ist gekennzeichnet durch einen nichtlinearen Kurvenverlauf und einen steilen Anstieg der relativen Dichte.



Abbildung 2.19 "In-die"-Heckel-Diagramm [63]

Die relative Dichte  $D_0$  (Anfangspunkt B des Heckel-Diagramms) ergibt sich durch die Matrizenbefüllung, d.h. bei einem anliegenden Druck P von 0, und kann ausgedrückt werden als

$$B = \ln \frac{1}{1 - D_0}$$
 GI. 2.24

Aus A lässt sich die relative Dichte D<sub>A</sub> nach folgender Gleichung bestimmen:

$$A = ln \frac{1}{1 - D_A}$$
 Gl. 2.25

Die relative Dichte  $D_A$  beschreibt die Gesamtverdichtung des Pulvers vor Beginn der plastischen Verformung. Durch Differenzbildung kann das Ausmaß der Verdichtung aufgrund von Partikelumordnungsvorgängen bestimmt werden (relative Dichte  $D_b$ ), Gl. 2.26.

$$D_b = D_A - D_0 \qquad \qquad \text{Gl. 2.26}$$

Der reziproke Wert von k ergibt den sog. Fließdruck (Yield Pressure). Je nach Art der gewählten Auswertemethode spricht man vom "apparent" Yield Pressure ("in-die"-Methode, P<sub>y</sub>, "at pressure", Abb. 2.19) bzw. "mean" Yield Pressure ("out-of-die"-Methode, "ejected tablet") [52,64]. Bei der "in-die"-Evaluation wird die Höhe des Pulverbetts durch die Abstände der beiden Stempel im Verlauf einer Pressung bestimmt und die Porosität zu jedem
Zeitpunkt des Pressverlaufs dem entsprechenden Druck zugeordnet, während bei der out-ofdie-Methode die Porosität der fertigen Tablette am jeweiligen Pressdruckmaximum bestimmt wird. Für diese Art der Ermittlung von k ist es nötig, Tabletten bei mehreren Pressdrücken herzustellen, während für die "in-die"-Methode ein Druck ausreichend ist. Abhängig von der gewählten Methode ergeben sich unterschiedliche Werte für das gleiche Material. Grund hierfür ist der Anteil der elastischen Rückdehnung, der bei der "out-of-die"-Methode nicht mehr enthalten ist [52].

Eine Schwierigkeit bei der Ermittlung von k stellt die Bestimmung des linearen Bereichs dar [52]. Bei der Linearisierung über einen konstanten Pressdruckbereich ist es in jedem Fall nötig, das Bestimmtheitsmaß r<sup>2</sup> mit anzugeben. Besser ist die Einteilung in verschiedene Druckbereiche und Ermittlung der jeweiligen k-Werte. Beginnend mit dem Bereich mit der niedrigsten Steigung können dann unter Beachtung des Korrelationskoeffizienten sukzessiv Datenpunkte mit eingeschlossen werden.

Cooper und Eaton teilen den Verdichtungsprozess in zwei Abschnitte ein [65]. Zunächst erfolgt die Besetzung der Hohlräume, die mindestens die Größe der Pulverteilchen aufweisen, d.h., die Originalpartikeln werden verschoben und neu geordnet. Im zweiten Schritt werden die Hohlräume besetzt, die kleiner als die Teilchen sind. Dies wird durch Verformungsvorgänge (elastische/plastische Deformation) oder Bruch der Partikeln ermöglicht. Die zugrunde liegende Gleichung lautet wie folgt:

$$\frac{1/D_0 - 1/D}{1/D_0 - 1} = a_1 \exp\left(-\frac{k_1}{P}\right) + a_2 \exp\left(-\frac{k_2}{P}\right)$$
Gl. 2.27

 $D_0$  und D sind die entsprechenden relativen Dichten [-] bei P=0 bzw. dem jeweils anliegenden Druck P [MPa], a<sub>1</sub> und a<sub>2</sub> stellen dimensionslose Konstanten dar, die den Anteil der theoretischen Verdichtung bei unendlich hohem Druck angeben: bei a<sub>1</sub> durch Füllen von Hohlräumen mit der gleichen Größe wie die Partikeln; bei a<sub>2</sub> werden die Poren gefüllt, die kleiner sind. a<sub>1</sub> und a<sub>2</sub> ergeben in der Summe eins, wenn die Verdichtung nur durch diese beiden Vorgänge stattfindet. Ist die Summe kleiner 1, treten zusätzliche Prozesse auf, bevor die vollständige Verdichtung eingetreten ist. k<sub>1</sub>und k<sub>2</sub> sind die Drücke, bei denen die eben beschriebenen Prozesse mit der größten Wahrscheinlichkeit auftreten [65,66].

Die Cooper-Eaton-Gleichung besitzt Gültigkeit für harte Materialien wie Metall- und Keramikpulver. Pharmazeutische Hilfs- und Wirkstoffe sind jedoch i. d. R. weich. Bei solchen Materialien ergibt sich das Problem, dass die beiden Verdichtungsphasen oft nicht eindeutig bestimmbar sind. Auch weicht die Summe der Konstanten a<sub>1</sub> und a<sub>2</sub> häufig deutlich von eins ab, so dass bei pharmazeutischen Pulvern mehrere Mechanismen gleichzeitig zum Tragen kommen zu scheinen [66-68].

Kawakita [69] stellt die Verdichtung ebenfalls in Abhängigkeit des anliegenden Pressdrucks P (vgl. Gl. 2.28) dar.

$$C = \frac{V_0 - V}{V_0} = \frac{abP}{1 + bP}$$
 Gl. 2.28

 $V_0$  ist das initiale Volumen des Pulverbetts [cm<sup>3</sup>], V sein Volumen [cm<sup>3</sup>] unter dem Druck P. a und b sind Konstanten. C [-] beschreibt das Ausmaß der Verdichtung. Gl. 2.28 kann linear dargestellt werden in Form von Gl. 2.29.

$$\frac{P}{C} = \frac{P}{a} + \frac{1}{ab}$$
 Gl. 2.29

1/ab ist der Schnittpunkt der Ausgleichsgerade des linearen Bereiches mit der Ordinate. a ist ein Maß für die maximal mögliche Verdichtung und kann über die Geradensteigung ermittelt werden. b beschreibt die Bereitschaft des Pulvers zur Volumenreduktion.

Einen neuen Ansatz zur Beschreibung des Verdichtungsverhaltens von pharmazeutischen Pulvern liefert Picker [70,71]. In diesem Modell sind die Tablettierparameter Zeit, Kraft und Weg dreidimensional in Form einer verdrehten Ebene in einem Plot vereint. Der Weg wird in Form der Heckel-Beziehung In (1/(1-D) dargestellt, die Kraft als Druck. Die Zeit bleibt als Zeit bestehen. Der Zusammenhang der einzelnen Parameter kann durch Gl. 2.30 beschrieben werden

$$y = \ln\left(\frac{1}{1-D}\right) = \left(\left(t - t_{\max}\right)\left(d + \omega * P_{\max} - P\right)\right) + \left(e * P\right) + \left(f + d * t_{\max}\right) - \omega \qquad \text{GI. 2.30}$$

| t                | Zeit [s]                           |
|------------------|------------------------------------|
| t <sub>max</sub> | Zeit des maximalen Pressdrucks [s] |
| P <sub>max</sub> | maximaler Pressdruck [MPa]         |
| ω                | Rotationswinkel der Ebene [°]      |
| d                | Zeit-Plastizität                   |
| е                | Druck-Plastizität                  |
| f                | Schnittpunkt mit der y-Achse       |
|                  |                                    |

Materialien, die sich schnell verformen, weisen hohe d-Werte auf, langsam deformierende und Stoffe mit hoher elastischer Rückdehnung niedrige. e beschreibt die Verdichtungs-Druck-Beziehung. Materialien, die wenig Druck zur Verdichtung benötigen, zeigen hohe Werte für e. In f sind die Einflüsse sowohl von d als auch von e enthalten. Stoffe, die sich schnell und leicht verformen lassen, zeigen niedrige f-Werte.

#### 2.4.2 Kompaktibilität

Für die pharmazeutische Industrie ist jedoch nicht primär die Volumenreduktion eines Pulvers oder Granulats von Bedeutung, sondern das Vermögen, einen stabilen Pressling zu bilden. Die Fähigkeit zur Ausbildung eines festen Komprimats wird im Allgemeinen als Kompaktibilität bezeichnet [72].

#### 2.4.2.1 Bindungsbildung innerhalb der Tablette

Der Prozess der Bindungsbildung ist sehr komplex. Unter Einfluss hoher Pressdrücke werden die Pulverpartikeln in einen sehr engen Kontakt gebracht. Dabei können sich so genannte "Flächen wahren Kontakts" ausbilden [73,74], an denen die Teilchen durch starke Bindungen zusammengehalten werden. Hiestand erklärt die Bindungsbildung auf der Grundlage des "contacting sphere model" (CSM) auf Basis des harmonischen Mittels der Krümmungsradien der sich berührenden Teilchen, R<sub>h</sub> [m] [55,75]. Durch plastische Verformung vergrößert sich die Kontaktfläche. Abhängig vom Ausmaß der elastischen Rückdehnung nach Druckentlastung bleiben mehr oder weniger große Flächen wahren Kontaktes zurück [45,76,77], die letztendlich die Festigkeit bestimmen. Für die Abschätzung von R<sub>h</sub> kann das Hertz`sche Elastizitätsgesetz herangezogen werden. Damit ergibt sich für den Sehnenradius  $a_c$  [-] der wahren Kontaktfläche zweier verpresster Teilchen folgende Gleichung [75]:

$$a_{c}^{3} = \frac{3F_{c}R_{h}}{8E}$$
 GI. 2.31

mit  $F_C$ =Kraft [N], mit der die Teilchen verpresst werden. E` ergibt sich aus dem Poisson-Verhältnis v und dem Elastistitätsmodul E [GPa] (Gl. 2.32). Die Indizes 1 und 2 stehen für die Partikel 1 bzw. 2.

$$\frac{1}{E} = \frac{\left(1 - \upsilon_1^2\right)}{E_1} + \frac{\left(1 - \upsilon_2^2\right)}{E_2}$$
Gl. 2.32

Die Erklärung einer grundsätzlichen Schwächung des Tablettengefüges und eine damit verbundene Abnahme der Tablettenfestigkeit während der elastischen Rückdehnung ist allerdings nicht ausreichend, wie Hiestand in seinen Arbeiten [76,78] ausführt. In der Rückdehnungsphase können abhängig von den mechanischen Eigenschaften der Pulverpartikeln zwei Prozesse auftreten:

1. "Spröd-Mechanismus": Während der Dekompression und Freisetzung der elastisch gespeicherten Energie kommt es zu einer Stress-Aufkonzentrierung an den Enden der

Kontakte. Entsprechend den Gesetzen der Bruchmechanik kommt es zur Ausbreitung des "Bruchs" und zur Verkleinerung der Kontaktfläche.

2. "Duktiler" Mechanismus: Die Freisetzung elastisch gespeicherter Energie führt zur plastischen Verformung der Kontaktregion, der so genannten "Isthmus"-Bildung. Folge davon ist eine hohe Festigkeit der Tablette.

Nach Rumpf [79] können fünf Bindungstypen unterschieden werden:

1. Feststoffbrücken (durch Sinterung, Schmelzen, Kristallisation, erhärtende Bindemittel)

- 2. Bindung über bewegliche Flüssigkeitsbrücken (Kapillarkräfte, Oberflächenspannung)
- 3. nicht frei bewegliche Flüssigkeitslayer (viskose Bindemittel, Adsorptionslayer)
- 4. Anziehung zwischen festen Partikeln (van-der-Waals-, elektrostatische Kräfte, Wasserstoffbrückenbindungen)
- 5. Formschlüssige Bindungen (Verhaken unregelmäßig geformter Partikeln)

Im Falle der Tablettierung trockener Pulver können die relevanten Bindungsarten auf die Punkte 1., 4. und 5. eingeschränkt werden [80], vor allem molekulare Kräfte (van-der-Waals-Kräfte sowie H-Brücken bei polaren Stoffen) spielen eine entscheidende Rolle bei der Bindungsbildung [74,81,82].

Hüttenrauch et al. [83,84] beschreiben einen energetischen Ansatz zum Bindungsmechanismus. Danach wird ein Teil der Energie, die durch den Druck eingebracht wird, in den Kristallen in Form von Gitterdefekten gespeichert. Die Folge davon ist eine Amorphisierung der Oberfläche verbunden mit einer hohen Reaktivität. Durch die Ausbildung interpartikulärer Bindungen in Form von Sinter-ähnlichen Prozessen kann ein Teil der Energie abgebaut werden.

Auch Hiestand [45,73,75,77,78] greift den Punkt der Energien auf. Generell gilt, dass die Bindungsbildung stets ein exothermer Prozess ist, d. h., bei der Bindungsbildung wird die freie Oberflächenenergie vermindert.

Die oben beschriebenen Überlegungen zur Bindungsbildung beziehen sich primär nur auf zwei Partikeln. Da innerhalb des Tablettengefüges jedoch jeder Partikel mit anderen in Kontakt steht, ist es für die Ermittlung der Gesamtstärke der Tablette nötig, die Anzahl der Partikelkontakte mit einzubeziehen [73,78]. Nach Rumpf [85] kann die Anzahl an Partikelkontakten über die relative Dichte  $\rho_r$  (D) abgeschätzt werden (Gl. 2.33):

$$Nr^2 = \frac{4.5\rho_r}{\pi}$$
Gl. 2.33

relative Dichte [-]

 $\rho_r$ 

Ν

r

Anzahl an Kontakten pro Einheit Querschnittsfläche [-] durchschnittlicher Partikelradius [m] GI 2.33 gilt nur für relative Dichten  $\leq$  0.74. Für den Bereich 0.74  $\leq \rho_r <$  1 gilt GI. 2.34 [76]

$$Nr^{2} = \frac{(1.71\rho_{r} + 0.067)}{(2 - \rho_{r})}$$
 Gl. 2.34

Ein weiterer Ansatz zur Ermittlung des Bindungsmechanismus von Materialien wird über die Veränderung der spezifischen Tablettenoberfläche (=Oberfläche der Poren in der Tablette) mit dem Pressdruck beschrieben [86-89]. Hierbei liegt die Annahme zugrunde, dass die zur Bindung beitragende Fläche der Porenfläche proportional ist. Generell tritt mit steigendem Pressdruck eine Zunahme der Oberfläche ein, da die Poren durch die dichtere Partikelpackung kleiner werden und entsprechend ihre Oberfläche relativ zum Porenvolumen größer. Zudem nimmt die Anzahl an Partikelkontakten zu. Verbunden damit ist eine Zunahme der Tablettenfestigkeit zu beobachten. Stoffe, die Fragmentierung zeigen, können von plastischen Materialien unterschieden werden, da sich mit dem Pressdruck sowohl die spezifische Oberfläche als auch die Bruchfestigkeit ändert (Zerkleinerung der Teilchen), während bei plastischen Substanzen sich die Oberfläche trotz Pressdruck- und Tablettenfestigkeitszunahme kaum ändert. Für kristalline Lactose wird von den Autoren ein linearer Zusammenhang zwischen der Porenoberfläche und der Tablettenfestigkeit beschrieben. Juppo [90] untersucht die Eigenschaften von aus Lactose hergestellten Granulaten und stellt fest, dass zwar die Bruchfestigkeit der Tabletten mit steigendem Pressdruck zunimmt, die Porenoberfläche jedoch nicht. Sie erklärt die Diskrepanz zu den durch Direkttablettierung hergestellten Presslingen über die initiale Porengröße: Die Poren zwischen den Granulatkörnen sind größer als die Poren zwischen Pulverpartikeln, dementsprechend fällt die Änderung der Oberfläche geringer aus. Adolfsson et al. [91] berücksichtigen neben der spezifischen Tablettenoberfläche zusätzlich über den mittleren Porenradius den Abstand der Partikeln in der Tablette. Die Autoren stellen fest, dass unter Berücksichtigung dieser beiden Parameter die Art der vorherrschenden Bindung beschrieben werden kann. Stoffe mit einer hohen Bruchfestigkeit jedoch mit nur einer geringen Zunahme der Oberfläche (entsprechend einer hohen Oberflächenspezifischen Festigkeit) bilden starke interpartikuläre Bindungen (Feststoffbrücken, ionische Bindungen) aus (NaCl, KCl). Weniger feste Presslinge mit hoher Oberflächenzunahme weisen schwächere interpartikuläre Bindungen auf, die über größere Abstände wirken (kristalline Lactose, Sucrose). Die Oberflächenzunahme ist auf die Partikelzerkleinerung zurückzuführen. Die wirksamen interpartikulären Kräfte kommen jedoch durch van-der-Waals-Kräfte zustande, die weniger stark sind als Feststoffbrücken. Der Abstand der Partikeln innerhalb der Tablette ist relevanter für diese Art der Bindung als für o. g. Feststoffbrücken, da bedingt durch die Natur der Bindung bei Feststoffbrücken kurze Abstände Voraussetzung sind.

#### 2.4.2.2 Modelle zur Beschreibung der mechanischen Festigkeit

Als Messgrößen für die Tablettenfestigkeit werden hauptsächlich die Härte H (Indentationshärte) [MPa] und die diametrale Bruchfestigkeit  $\sigma_t$  [MPa] herangezogen.

Die Stärke der Tablette ergibt sich aus der Summe aller Anziehungskräfte zum Zeitpunkt des Bruchs. Zum Bruch der Tablette kommt es, wenn die Gesamtanziehung innerhalb der Tablette ein Minimum erreicht hat oder wenn lokal eine Belastung auftritt, die für eine Bruchausbreitung ausreicht [73].

Die Härte H ist ein Maß für die Plastizität des Materials. Sie entspricht dem durchschnittlichen Druck in der Kontaktfläche zwischen Tablette und Indenter während der plastischen Verformung [72,75].

Wie für die Kompressibilität bestehen auch für die Kompaktibilität zahlreiche mathematische Ansätze, die die Tablettenfestigkeit abhängig von Änderungen der in den Verdichtungsprozess involvierten Parameter beschreiben.

Ryshkewitch und Duckworth [92] führen die Bruchfestigkeit  $\sigma_t$  auf das Ausmaß der Änderung der Porosität beim Verpressen zurück (Gl. 2.35).

$$\sigma_t = \sigma_{t_{max}} * exp(-b\epsilon)$$
 GI. 2.35

 $\begin{array}{ll} \sigma_t & & \text{Bruchfestigkeit [MPa]} \\ \sigma_{\text{tmax}} & & \text{maximale Bruchfestigkeit bei $\epsilon$=0 [MPa]} \\ \epsilon & & \text{Porosität [-]} \\ b & & \text{Konstante [-]} \end{array}$ 

Durch die Verdichtung geraten die Teilchen in einen engeren Kontakt resultierend in einer Erhöhung der Anziehungskräfte und damit verbunden einer Steigerung der Tablettenfestigkeit.

Higuchi et al. (Gl. 2.36) [93] und Shotton et al. (Gl. 2.37) [94] stellen die Bruchfestigkeit  $\sigma_t$  in einen logarithmischen Zusammenhang zum Pressdruck P:

$$\sigma_t = a * \ln P + b \qquad \qquad \text{GI. 2.36}$$

$$\log P = a * \sigma_t + b \qquad \qquad \text{Gl. 2.37}$$

a Konstante [-] b Konstante [-]

All diese Gleichungen berücksichtigen entweder die Porosität oder den anliegenden Pressdruck. Leuenberger [74,95,96] fügt in seinem Ansatz die Parameter Kompressibilität (ausgedrückt durch Porosität bzw. relative Dichte) und Kompaktibilität (ausgedrückt durch

die Bruchfestigkeit oder Härte) zusammen. Er geht davon aus, dass in der Querschnittsfläche  $A_q$  einer zylindrischen Tablette bindende und nicht-bindende Kontaktpunkte enthalten sind (vgl. Gl. 2.38).

$$A = (N_{+} + N_{-})a_{a} = N_{0}a_{a}$$
 Gl. 2.38

Nur die bindenden Kontakte leisten einen Beitrag zur Festigkeit der Tablette. Damit ist die Härte proportional der Anzahl bindender Kontakte (Gl. 2.39).

$$H = \lambda N_{+} = \lambda (N_{0} - N_{-})$$
GI. 2.39

H Indentationshärte [MPa]

λ Proportionalitätskonstante [MPa]

Für  $\rho_r \rightarrow 1$  gilt: N<sub>-</sub> $\rightarrow 0$ . Damit sind alle möglichen Kontakte N<sub>0</sub> zugleich bindende. Die entsprechende Härte ist die maximal mögliche Härte H<sub>max</sub> (Gl. 2.40).

$$H_{max} = \lambda N_{+max} = \lambda N_0$$
 GI. 2.40

Die Änderung dN<sub>-</sub>/N<sub>-</sub> der nicht-bindenden Punkte ist eine Funktion des Pressdrucks P und der Änderung d $p_r$  der relativen Dichte (Gl. 2.41).

$$\frac{dN_{-}}{N} = -\gamma d\rho_{r} P \qquad \qquad \text{GI. 2.41}$$

γ Proportionalitätskonstante (Presssuszeptibilität) [MPa<sup>-1</sup>]

Unter der Annahme, dass bei einer relativen Dichte  $\rho_r=0$  nur nicht-bindende Kontakte bestehen, gilt für N.:

$$N_{-} = N_{0} \exp(-\gamma \rho_{r} P)$$
 GI. 2.42

Für H erhält man damit

$$H = \lambda [N_0 - N_0 \exp(-\gamma \rho_r P)]$$
 GI. 2.43

bzw.

$$H = \lambda N_0 [1 - exp(-\gamma \rho_r P)]$$
GI. 2.44

Durch Einsetzen von Gl. 2.40 in Gl. 2.44 ergibt sich die Leuenberger-Gleichung für die Indentationshärte (Gl. 2.45):

$$H = H_{max} [1 - exp(-\gamma \rho_r P)]$$
GI. 2.45

Die Presssuszeptibilität  $\gamma$  ist ein Maß für die Kompressibilität. Sie gibt an, wie schnell die maximale Härte H<sub>max</sub> erreicht wird. H<sub>max</sub> ist materialspezifisch und beschreibt die Kompaktibilität.

Die diametrale Bruchfestigkeit  $\sigma_t$  verhält sich in dem gleichen Maße wie die Härte (Gl. 2.46) [60,72,74]:

$$\sigma_t = \sigma_{t \max} \left[ 1 - exp(-\gamma \rho_r P) \right]$$
GI. 2.46

O. a. gegebene Zusammenhänge lassen sich auch auf binäre Mischungen übertragen (Gl. 2.47):

$$\sigma_{t(Mischung)} = \sigma_{t \max(Mischung)} \left[ 1 - \exp(-\gamma_{Mischung} \rho_r P) \right]$$
Gl. 2.47

Die maximale Bruchfestigkeit einer Pulvermischung  $\sigma_{tmax(Mischung)}$  setzt sich aus den jeweiligen  $\sigma_{tmax}$  der Einzelkomponenten zusammen (Gl. 2.48) [72, 105]:

$$\sigma_{t \max(Mischung)} = \sigma_{t \max(A)}^{x} \sigma_{t \max(B)}^{1-x}$$
Gl. 2.48

| $\sigma_{tmax(A)}$ | maximale Bruchfestigkeit der Substanz A [MPa] |
|--------------------|-----------------------------------------------|
| $\sigma_{tmax(B)}$ | maximale Bruchfestigkeit der Substanz B [MPa] |
| x                  | Massenanteil der Substanz A [-]               |
| (1-x)              | Massenanteil der Substanz B [-]               |

Die Presssuszeptibilität der Mischung  $\gamma_{Mischung}$  ergibt sich ebenfalls aus den  $\gamma$ -Werten der eingesetzten Substanzen und deren Massenanteilen (Gl. 2.49).

$$\gamma_{Mischung} = x\gamma_A + (1-x)\gamma_B$$
 Gl. 2.49

 $\begin{array}{ll} \gamma_A & & \mbox{Presssuszeptibilität Substanz A } [MPa^{-1}] \\ \gamma_B & & \mbox{Presssuszeptibilität Substanz B } [MPa^{-1}] \end{array}$ 

Leuenberger führt außerdem die Perkolationstheorie in die theoretische Behandlung der Tablettierung ein. Grundlage dieses Ansatzes ist die Betrachtung des untersuchten Systems als Gitter mit Gitterplätzen [97]. Diese Gitterplätze können entweder frei oder besetzt sein, z.B. durch Atome, Moleküle, Partikeln, etc. Nebeneinander liegende Partikeln ("Site"-Perkolation) bzw. über Bindungen wechselwirkende nebeneinander liegende Teilchen ("Bond"-Perkolation) bilden ein Cluster. Mit einer bestimmten Wahrscheinlichkeit p werden die Gitterplätze besetzt. Sind genug Gitterplätze besetzt, dass sich ein durchgängiges Cluster bildet, wird die Eigenschaft des Systems dadurch bestimmt. Dies ist ab einem Schwellenwert, der so genannten Perkolationsschwelle  $p_c$  erreicht.

Die Perkolationstheorie lässt sich auf viele Bereiche der Wissenschaft anwenden [98]. In der Pharmazie kann zum Beispiel das Gelbildungsverhalten von Polymeren mit Hilfe der Perkolationstheorie beschrieben werden [99] oder das Verhalten von Öltropfen in Wasser, wo ab einer bestimmten Konzentration an lipophiler Phase die Umkehr von einem O/W- in ein W/O-System stattfindet [100].

Auch Vorgänge in der Tablettierung können durch die Perkolationstheorie beschrieben werden. So kann z. B. für die relative Dichte im Verlauf des Pressvorgangs eine Perkolationsschwelle bestimmt werden, ab der sich charakteristische Eigenschaften wie z. B. Bruchfestigkeit, Härte oder Zerfallszeit verändern [101,102,103]. Bei binären Mischungen von Substanzen mit unterschiedlichem Kompaktierverhalten stellt der Massenanteil der entsprechenden Substanz den kritischen Faktor für die Perkolation dar und bestimmt die Eigenschaften des Systems [104,105].

Hiestand et al. [45,106] führen drei dimensionslose Parameter auf Grundlage der beiden Messgrößen Härte und Bruchfestigkeit zur Beschreibung der Bindungsfähigkeit von pharmazeutischen Pulvern ein:

a) Bonding Index (BI)

$$BI = \frac{\sigma_t}{H_{dyn}}$$
 GI. 2.50

H<sub>dyn</sub> Indentationshärte unter dynamischen Messbedingungen [MPa]

Die Messung der Indentationshärte erfolgt so schnell, dass viscoelastische Effekte vernachlässigt werden können. Der Bonding Index ist ein Maß für die Fläche wahren Kontaktes, die nach der Dekompressionsphase erhalten bleibt. BI-Werte liegen im Bereich von 0.001 bis 0.04 [73] und nehmen den größten Wert an, wenn Isthmus-Bildung auftritt, d.h., wenn während der Rückdehnungsphase weiterhin plastische Verformung auftritt. Tabletten mit einem hohen BI sind in der Lage, Scherkräfte bedingt durch die Matrizenwandspannung und Ausstoßkräfte ohne makroskopische Defekte zu überstehen.

b) Strain Index (SI)

$$SI = \frac{H_{dyn}}{E}$$
 GI. 2.51

Der SI beinhaltet die plastischen und elastischen Eigenschaften des Materials. Er ist ein Maß für die Dehnungsbelastung, die während der elastischen Rückdehnung auftritt. Die im komplexen E-Modul enthaltenen Module  $E_1$  bzw.  $E_2$  sind die E-Module von Tablette bzw. Indenterkugel (vgl. Gl. 2.32).

Zu beachten ist, dass der SI von der Deformationsgeschwindigkeit, der Dichte der Tablette und der Partikelgröße abhängig ist. Als eine Materialkonstante kann er deshalb nur für eine bestimmte relative Dichte eines bestimmten Materials angesehen werden.

c) Brittle fracture Index (BFI)

$$BFI = \frac{\left\lfloor \frac{\sigma_t}{\sigma_{t0}} - 1 \right\rfloor}{2}$$
 GI. 2.52

 $\sigma_{tO}$  Bruchfestigkeit für eine Tablette mit einem Loch in der Mitte [MPa]

Das Loch wirkt als Stresskonzentrator bei Belastung der Tablette. Stress während der Entlastungsphase kann Deckeln oder Laminieren als Folge haben [77]. Je nach Material kann der auftretende Stress durch plastisches Verformen abgebaut werden. Das Vermögen von Stoffen, Belastungsstress abzubauen, beschreibt der BFI. Ab einem BFI-Wert ab 0.8 kommt es zu massiven Einbußen in der Tablettenfestigkeit.

Jedoch sollten die Indizes nie einzeln zur Beurteilung des Bindungsverhaltens herangezogen werden. Ein Stoff, der einen niedrigen BFI-Wert aufweist, bildet trotzdem schwache Tabletten, wenn der BI ebenfalls klein ist. Genauso kann ein relativ hoher SI als irrelevant angesehen werden, wenn der BI hoch und der BFI niedrig ist (Bsp. Avicel).

#### 2.4.2.3 Einfluss von Fließregulierungsmitteln

Die meisten Veröffentlichungen zum Einfluss von Fließregulierungsmitteln in der Tablettierung beziehen sich auf die Pulver- (Granulat-) eigenschaften Fließverhalten, Packungsdichte und Kompressibilität.

Tawashi [107] stellt eine Verminderung des Endvolumens von gestampften Pulvern fest, wenn Aerosil<sup>®</sup> in der Probe enthalten ist. Dabei ist die Konzentration an Fließregulierungsmittel von essentieller Bedeutung. Bei einer Erhöhung der Aerosil<sup>®</sup>-Menge

über die Optimalkonzentration, die neben dem geringsten Volumen zugleich die dichteste Packung bewirkt, steigt das Pulvervolumen wieder an. Für Maisstärke liegt dieses Optimum bei 0.5%.

Lubner et al. [108] und Hollenbach et al. [109] stellen ebenfalls eine Verbesserung der Fließeigenschaften mit steigender Siliciumdioxidkonzentration fest. Die Schüttdichten der Pulvermischungen steigen hierbei bis zu einer Konzentration von 0.5% an, gleichzeitig sinkt die Kompressibilität.

Egermann [110] berücksichtigt als erster die Mischdauer. Er beobachtet, dass bei einer Konzentration von 0.5% Aerosil<sup>®</sup> in Avicel Schütt- und Stampfvolumen weiter absinken, wenn die Mischzeit bis auf 60 Minuten erhöht wird, während längeres Mischen bei einem 0.1% igen Zusatz keine Verbesserung der Fließeigenschaften bedingt. Er erklärt dies mit dem Abbau von großen, nicht am Trägermaterial haftenden Aerosilagglomeraten mit steigender Mischzeit zu kleineren, adsorbierbaren Einheiten. Bei niedrigen Konzentrationen ist der noch adsorbierbare Anteil bereits nach kurzer Mischzeit klein, so dass keine weitere Verbesserung der Fließfähigkeit auftritt.

Neben der Packungsdichte der Pulver werden ebenfalls das Tablettengewicht sowie dessen Streuung beeinflusst. Egermann [111] verzeichnet einen Anstieg der Tablettenmasse von Avicel PH 101-Tabletten bei einem Aerosil<sup>®</sup>-Zusatz von 0.1 bzw. 0.5% sowie eine Abnahme der relativen Standardabweichung. Die Erhöhung der Mischzeit von 10 auf 60 Minuten bei gleicher Fließmittelkonzentration bewirkt ebenfalls eine höhere Tablettenmasse. Die Dosierungsgenauigkeit wird jedoch nicht signifikant beeinflusst. Augsburger et al. [112] beobachten ebenfalls eine Zunahme der Tablettengewichte bei Presslingen aus Gemischen von mikrokristalliner Cellulose und Lactose mit unterschiedlichen Aerosil<sup>®</sup>-Konzentration bis zu einem Optimum von 0.5% ohne eine signifikante Änderung der Streuungen. Bei höheren Fließmittelzusätzen tritt eine Abnahme des Tablettengewichts mit nur geringfügiger Änderung der Streuung ein. Beide Autoren erklären ihre Beobachtungen mit der Adhäsion von Aerosilpartikeln an die Oberfläche der Hilfsstoffe, Augsburger geht hierbei von einem "Coating" aus, bzw. über das Füllen von interpartikulären Hohlräumen durch große Fließmittelteilchen.

In Bezug auf die mechanischen Eigenschaften existieren gegenläufige Ergebnisse. Kedvessy [113] untersucht den Einfluss verschiedener Konzentrationen an Aerosil<sup>®</sup> auf die Bruchfestigkeit von aus Granulat hergestellten Tabletten und stellt fest, dass sich diese nicht wesentlich ändert. Allerdings wurde das Fließregulierungsmittel mitgranuliert und liegt damit nicht an der Oberfläche der Granulatteilchen vor.

Häufig wird der positive Einfluss von Aerosil<sup>®</sup> auf die stark festigkeitsverschlechternden Eigenschaften von Magnesiumstearat auf Tabletten beschrieben [114-117]. Das Schmiermittel bildet bereits bei kurzer Zumischdauer einen Film um die Pulverpartikeln und

stört damit die Bindungsbildung. Elektronenmikroskopische Aufnahmen bestätigen dies [118]. Lerk et al. [114] stellen hierbei fest, dass Siliciumdioxid in der Lage ist, bei gleichzeitigem Mischen mit Mg-Stearat mit diesem um die Hilfsstoffoberfläche zu konkurrieren bzw. bereits an der Oberfläche adsorbiertes Mg-Stearat wieder abzulösen und damit den bindungshemmenden Effekt zu vermindern. Bei ausreichender Aerosil®-Konzentration kann sogar eine Erhöhung der Bruchfestigkeit erzielt werden. Lerk et al. berücksichtigen auch die Mischzeit (0-100 Minuten) sowie den Grad der Agglomerierung des Fließregulierungsmittels. Sie stellen eine Zunahme der Bruchfestigkeit mit zunehmender Mischdauer für alle untersuchten Konzentrationen (0.1-0.4% Aerosil<sup>®</sup>) fest, bei langer Mischzeit und hoher Konzentration (0.3/0.4%; 100 Minuten) sinkt die Festigkeit wieder. Sie erklären dies mit der Bildung einer dicken Aerosil<sup>®</sup>-Schicht um die Partikeln und damit verbunden mit einer mechanischen Barriere, die der Bindungsbildung entgegen wirkt. Eine Desagglomerierung vor dem Zumischen des Aerosils<sup>®</sup> führt bei gleicher Mischzeit zu höheren Bruchfestigkeiten. Auch hier wird als Erklärung auf den Aspekt des Zerkleinerns der Agglomerate während des Mischvorgangs verwiesen. Rahmouni et al. [115] und Chang et al. [116] führen die erhöhte Bruchfestigkeit auf die verbesserte Partikelpackung durch die Fließmittelwirkung verbunden mit einer höheren Anzahl an Partikelkontakten zurück.

Ebenfalls beobachtet wird eine Abnahme der elastischen Rückdehnung. Diese ist abhängig von der Elastizität des Materials und verantwortlich für das Aufbrechen von Bindungen. Durch die engeren Partikelkontakte unter dem Einfluss des Aerosils<sup>®</sup> wird die Ausbildung von starken Bindungen begünstigt, die der elastischen Rückdehnung Stand halten können [115]. Kachrimanis et al. [119], Tobyn et al. [120] und Edge et al. [121] beobachten den gleichen positiven Effekt auf die Bruchfestigkeit bei Tabletten, die aus silizifierter mikrokristalliner Cellulose (SMCC) hergestellt wurden. Das SiO<sub>2</sub> befindet sich an der Oberfläche der Cellulose [121] und ist damit maßgeblich an der Bindungsbildung beteiligt. Die Untersuchungen von Kachrimanis et al. zeigen, dass gleiche Partikelgrößenfraktionen von SMCC ein mehr an adsorbierbaren Wassermolekülen als nicht-silizifierte Cellulose (MCC) bei Lagerung in gleicher relativer Feuchte besitzen. Dies ist auf die Struktur des SiO<sub>2</sub> zurückzuführen. An der Oberfläche befinden sich Silanol- (-Si-OH) und Siloxan-(-Si-O-Si-) Gruppen. Unter Bildung von Wasserstoffbrückenbindungen kann eine große Menge an Wassermolekülen daran gebunden werden, ohne dass eine Verflüssigung eintritt [119]. Die größere Menge an adsorbierten Wassermolekülen führt über eine leichtere Verformbarkeit sowie erleichterte Partikelumordnungsvorgänge zu einer Zunahme der Plastizität, was sich in niedrigeren Werten für den Fließdruck Pv und einer erhöhten mechanischen Festigkeit äußert.

Gegensätzliche Ergebnisse zeigt die Arbeit von Ohta et al. [117]. Zwar bewirkt der Zusatz von Fließregulierungsmittel bei Mg-Stearat-haltigen Tabletten ebenfalls eine Erhöhung,

jedoch führt der alleinige Zusatz ohne Schmiermittel generell zu einer Verschlechterung der mechanischen Festigkeit. Dabei war der Effekt abhängig von der Konzentration und der Oberflächenbelegung. Hydrophobe Materialien bewirkten dabei eine stärkere Absenkung der Festigkeit als die hydrophilen. Der Autor führt dies auf eine verminderte Affinität zwischen Füllstoff und Fließregulierungsmittel zurück.

## 3 Arbeitshypothese

Meyer [7] konnte in ihrer Arbeit zeigen, dass der fließregulierende Effekt von nanoskaligen Aerosilen<sup>®</sup>, Metalloxiden<sup>®</sup> und Printex<sup>®</sup>-Rußen auf der Anlagerung von Agglomeraten dieser Materialien auf der Trägermaterialoberfläche (Maisstärkeoberfläche) beruht. Aus ihrem 3-Punkt-Modell geht hervor, dass adsorbierte Partikel mit einer Größe bis 100 nm in der Lage sind, als Oberflächenrauigkeiten zu fungieren und durch eine Abstandsvergrößerung die wirksamen Haftkräfte zwischen den Trägerpartikeln herabzusetzen. Dabei ist primär die Anzahl der Agglomerate auf der Oberfläche für die Haftkraftreduktion ausschlaggebend. Unabhängig von ihrer physikochemischen Art sind alle Nanomaterialien in der Lage, das Fließverhalten der verbessern. Maisstärke zu Experimentell konnte dies in Zugspannungsmessungen [7,8,59] und in Messungen mit dem Auslauftrichter [23] nachgewiesen werden. Kontrolliert werden kann die Oberflächenbelegung über die Mischzeit. Dabei hat sich gezeigt, dass während des Mischens die Fließregulierungsmittel nicht nur an die Oberfläche gebunden werden, sondern dass zusätzlich ein Mahlvorgang stattfindet, bei dem die Agglomerate durch die mehr als 100-mal so großen Maisstärkekörner zerkleinert werden. Elektronen- und Rasterkraftmikroskopische Analysen konnten dies belegen [7,8,59]. Die Größe der entstehenden Teilchen entspricht dabei der intraagglomerären Stabilität [59]. Eber [8] hat in einem weiteren Schritt aufgezeigt, dass die physikochemischen Eigenschaften der Nanomaterialien lediglich bei trockener Maisstärke, d. h. bei relativen Luftfeuchten bis ca. 38% zu vernachlässigen sind. Bei höheren Feuchten können adsorbierte Wassermoleküle zu starken interpartikulären Wechselwirkungen über H-Brücken bzw. Kapillarkräften führen und damit die Potenz der Fließregulierungsmittel beeinflussen.

Ausgehend von den bisherigen Erkenntnissen sollte sich eine unterschiedliche Oberflächenbelegung auf die Tablettierbarkeit der Pulvermischungen auswirken. Die Matrizenbefüllung erfolgt volumetrisch, damit ist sie abhängig von der Fließfähigkeit des Pulvers. Verbessert sich das Fließverhalten, sollte die Tablettenmasse zunehmen. Gleichzeitig sollte die Kompressibilität verringert werden, d. h., das Ausmaß an Partikelumordnung, die zu Beginn des Pressvorgangs stattfindet, abnehmen.

Ebenfalls ist zu erwarten, dass sich Unterschiede in der mechanischen Festigkeit der Tabletten ergeben. Oberflächenrauigkeiten begünstigen das plastische Fließen, da die Deformation in der Regel in den Rauigkeiten beginnt. Von zentraler Bedeutung sollten die physikochemischen Eigenschaften der Nanomaterialien sein. Eber [8] führt bereits die "Hydrophilisierung" der Maisstärkeoberfläche mit steigender Belegung durch Aerosil<sup>®</sup> 200 an. Da beim Pressvorgang die Partikel in einen sehr engen Kontakt gebracht werden, ist die Voraussetzung gegeben, dass bestehende Wasseradsorptionslayer zweier Partikeln in ein

zusammenhängendes übergehen. Da hydrophile Nanomaterialien in der Lage sind, große Mengen an Feuchtigkeit zu binden, sollten sie gegenüber den hydrophoben Fließregulierungsmitteln zu höheren Tablettenfestigkeiten führen.

Des Weiteren soll überprüft werden, ob sich die bisherigen Erkenntnisse und neuen Ergebnisse auf ternäre wirkstoffhaltige Mischungen übertragen lassen. Viele pharmakologisch aktive Substanzen weisen ein unzureichendes Kompaktionsverhalten auf. Der Einfluss der Oberflächenbelegung sollte sich auch hier bemerkbar machen.

Ziel der Arbeit ist es, die Fließregulierungsmittel anhand charakteristischer Parameter hinsichtlich ihrer Potenz in der Tablettierung zu untersuchen, um einen Beitrag zum gezielten Einsatz dieser Stoffe in der Praxis zu leisten.

# 4 Materialien und Methoden

## 4.1 Materialien

## 4.1.1 Schüttgut Maisstärke Cerestar<sup>®</sup> GL 03406

Die Herstellung von Tabletten ist meist nur unter zusätzlicher Verwendung von verschiedenen Hilfsstoffen möglich. Dabei machen die so genannten Füllstoffe mit 65-89% den mengenmäßig größten Anteil in der Tablettiermischung aus [3]. Als Füllstoffe dienen neben verschiedenen Zuckern, Zuckeralkoholen und Cellulosen die offizinellen Stärken bzw. deren Derivate [3].

Als Schüttgut wurde in dieser Arbeit Maisstärke Cerestar<sup>®</sup> GL 03406 verwendet. Dabei handelt es sich um native Maisstärke. Da der Großteil der Körner eine nahezu kugelförmige Gestalt mit einer glatten Oberfläche ohne anhaftenden Feinanteil zeigt (s. Abb. 4.1) [7], erweist sich die Maisstärke als geeignete Modellsubstanz für die Untersuchung der Belegung mit Nanomaterialien. Vereinzelt sind kantige Partikeln zu erkennen. Diese stammen aus dem Hornendosperm (Abb. 4.2) [7].



Abbildung 4.1: REM-Aufnahme von Maisstärke Cerestar<sup>®</sup> GL 03406, x5000 [7].



Abbildung 4.2: REM-Aufnahme von Maisstärke Cerestar<sup>®</sup> GL 03406, mit kantigen Körnern, x1000 [7].

| Schüttgut                                    | Primärpartikel-<br>durchmesser<br>[µm] | Feststoffdichte<br>[g/cm³] | Porosität<br>[%] | Spezifische<br>Oberfläche<br>[m²/g] | Chargen-<br>bezeichn-<br>ung |
|----------------------------------------------|----------------------------------------|----------------------------|------------------|-------------------------------------|------------------------------|
| Maisstärke Cerestar <sup>®</sup><br>GL 03406 | 22                                     | 1.478                      | 66.3             | 0.422                               | WL-5160                      |

| Tabelle 4.1: Physikalische Kenndaten von Maisstärk | e Cerestar <sup>®</sup> | GL 03406 [7 | 71. |
|----------------------------------------------------|-------------------------|-------------|-----|
|                                                    |                         | 0 = 00.00 L | ·   |

In Bezug auf die Tablettierung spielen die Parameter Teilchengröße und Partikelgrößenverteilung eine große Rolle. Maisstärke Cerestar<sup>®</sup> besitzt eine enge Korngrößenverteilung, wodurch der Einfluss verschieden großer Teilchen auf die Tablettiereigenschaften gering gehalten wird. Auch zählt Stärke zu den plastischen

Materialien, d. h., während des Pressvorgangs findet die Bindungsausbildung durch plastische Verformung des Stoffes statt, nicht aufgrund von Partikelbruch [44,169]. Im Falle eines Bruchs bilden sich neue Oberflächen aus, die zur Bindung beitragen können. Da im Rahmen dieser Arbeit die Bindungsbildung abhängig von der Oberflächenbelegung des Trägermaterials mit Nanomaterialien untersucht werden soll, würde sich ein sprödes Material, bei dem sich neue, unbelegte Oberflächen ausbilden, als ungünstig erweisen. Weitere physikalische Kenndaten sind der Tabelle 4.1 zu entnehmen.

#### 4.1.2 Nanoskalige Fliessregulierungsmittel

Bei den als Fliessregulierungsmitteln verwendeten Substanzen handelt es sich um Stoffe, deren Primärpartikelgrößen im Nanometer-Bereich liegen. Mit Ausnahme der Ruße werden alle verwendeten Nanomaterialien durch Flammenhydrolyse hergestellt. Dazu werden Chlorsilane bzw. entsprechende Metallchloride in der Knallgasflamme unter Bildung von hochdispersen Dioxiden hydrolysiert [122,123]. Durch Variation der Reaktionsbedingungen wie z.B. Flammentemperatur, Wasserstoff- bzw- Sauerstoffanteil oder Verweilzeit in der Flamme können Produkte mit unterschiedlichen Eigenschaften (Primärpartikelgröße, Oberflächenstruktur etc.) hergestellt werden [124].

Industrieruße können nach verschiedenen Verfahren aus Kohlenwasserstoffen, meist aus sog. Rußölen mit einem hohen Anteil an aromatischen Verbindungen produziert werden. Genannt seien das Thermalruß- (thermische Spaltung), das Degussa-Gasruß-, Flammruß- und Furnaceruß-Verfahren (alle thermisch-oxidative Spaltung) [125].

Eine allen Nanomaterialien gemeinsame Eigenschaft ist der Zusammenschluss der Primärpartikeln (Abb. 4.3a) zu größeren Gebilden, den Aggregaten. Diese stellen einen festen Verband von mehreren Primärteilchen dar, in dem die Partikeln über Sinterbrücken miteinander verbunden sind (Abb. 4.3b). Diese Aggregate lassen sich nicht durch z.B. Ultraschallbehandlung zerstören. Lagern sich mehrere Aggregate zu einem losen Verband, der einfach zerteilt werden kann, zusammen, so spricht man von Agglomeraten (Abb. 4.3c; vgl. auch DIN 53 206) [7,8,126].



Abb. 4.3: Differenzierung Primärpartikel (a), Aggregat (b), Agglomerat (c), jeweils farbig unterlegt.

## 4.1.2.1 Aerosil<sup>®</sup> 200

Der Begriff Aerosil<sup>®</sup> stellt einen Oberbegriff dar für alle hochdispersen Siliciumdioxide, die durch Flammenhydrolyse von Chlorsilanen, v.a Siliciumtetrachlorid, gebildet werden. Die Herstellung verläuft nach folgender chemischer Reaktion [123]:

 $SiCl_4 + 2 H_2 + O_2 \rightarrow SiO_2 + 4 HCI$ 

Die dadurch gewonnenen Aerosile<sup>®</sup> verhalten sich hydrophil. An der Oberfläche befinden sich Siloxan- und Silanolgruppen, für die hydrophilen Eigenschaften sind die Silanolgruppen verantwortlich, die über Wasserstoffbrückenbindungen Feuchtigkeit adsorbieren und Wechselwirkungen mit anderen Molekülen eingehen können [127]. Für Aerosil<sup>®</sup> 200 wird eine Silanolgruppendichte von 2.5 bzw. 3 SiOH/nm<sup>2</sup> angegeben [128, 129].

Aerosil<sup>®</sup> 200 besitzt Primärpartikeln mit einer Größe von 12 nm. Aufgrund ihrer Aggregationsund Agglomerationsneigung ergeben sich bäumchenartige Strukturen, wie sie auf Abbildung 4.4 zu erkennen sind [7]. Es sind keine freien Primärteilchen zu sehen. Es kann allerdings keine Unterscheidung zwischen Aggregaten und Agglomeraten getroffen werden.

Aerosil<sup>®</sup> 200 ist die Standardsubstanz in Pharmazeutischer Industrie und Kosmetik [128]. Als Aerosil<sup>®</sup>-Effekte seien beispielhaft die Verbesserung der Dispergierung von Wirkstoffen in Salbengrundlagen, Viskositätserhöhung, Verbesserung der Fließeigenschaften von Pulvern sowie Kompatibilitätssteigerung genannt [128]. Der Elastizitätsmodul von Siliciumdioxid im Zugversuch wird mit 65-75 GPa angegeben [130]. Weitere physikalische Eigenschaften sind Tabelle 4.2 zu entnehmen.



Abbildung 4.4: TEM-Aufnahme Aerosil<sup>®</sup> 200, x100000 [7].

Tabelle 4.2: Physikalische Daten Aerosil<sup>®</sup> 200 [128,130,131].

| Nanomaterial             | Feststoffdichte<br>[g/cm³] | Primärpartikeldurchmesser<br>[nm] | Spezifische<br>Oberfläche<br>[m²/g] | Kontroll-<br>nummer |
|--------------------------|----------------------------|-----------------------------------|-------------------------------------|---------------------|
| Aerosil <sup>®</sup> 200 | 2.2                        | 12                                | 200 ± 25                            | 4021113             |

### 4.1.2.2 Aerosil<sup>®</sup> R 805

Durch Behandlung des hydrophilen Aerosils<sup>®</sup> 200 mit Trimethoxyoctylsilan wird ein Produkt erhalten, das in seiner Primärpartikelgröße mit Aerosil<sup>®</sup> 200 identisch ist, sich aber in den chemischen Eigenschaften wesentlich unterscheidet [132]. Durch die Umsetzung erfolgt eine Hydrophobisierung der Substanz, an Stelle der Silanolgruppen treten Octylreste. Beim Aerosil<sup>®</sup> R 805 sind die Silanolgruppen zu 48% durch Octylreste ersetzt [129]. Entsprechend des englischen Begriffs "repellent" = abstoßend findet sich der Zusatz R in der Namensgebung der hydrophoben Aerosile<sup>®</sup>. Sie finden ihren Einsatz vor allem in der Lackindustrie, z. Β. zur Erhöhung der Korrosionsschutzwirkung oder zur Dispergierungsverbesserung von Pigmenten [133].

Abbildung 4.5 zeigt eine TEM-Aufnahme von Aerosil<sup>®</sup> R 805. Auch hier sind wie beim hydrophilen Pendant die zusammengelagerten Einzelpartikeln deutlich zu erkennen, allerdings ist ebenfalls keine Unterscheidung zwischen Aggregaten und Agglomeraten möglich. Jedoch ist ein größerer Verzweigungsgrad zu sehen.

Der Elastizitätsmodul von Siliciumdioxid im Zugversuch wird mit 65-75 GPa angegeben [130], für weitere Daten siehe Tabelle 4.3. Die geringere spezifische Oberfläche von 150 m<sup>2</sup>/g im Vergleich zum Aerosil<sup>®</sup> 200 gibt einen Hinweis auf eine schwächere Agglomeration.



Abbildung 4.5: TEM-Aufnahme Aerosil<sup>®</sup> R 805, x100000 [7].

Tabelle 4.3: Physikalische Daten Aerosil<sup>®</sup> R 805 [134,135].

| Nanomaterial               | Feststoffdichte<br>[g/cm³] | Primärpartikeldurchmesser<br>[nm] | Spezifische<br>Oberfläche<br>[m²/g] | Kontroll-<br>nummer |
|----------------------------|----------------------------|-----------------------------------|-------------------------------------|---------------------|
| Aerosil <sup>®</sup> R 805 | 2.0                        | 12                                | $150\pm25$                          | 3100235             |

### 4.1.2.3 **Printex<sup>®</sup> 95**

Printex<sup>®</sup> 95 zählt zu den Industrierußen, die mit Hilfe des Furnace-Black-Verfahrens hergestellt werden [125,136]. Dabei bilden flüssige und gasförmige Kohlenwasserstoffe die Basis. Diese werden in eine aus Erdgas und erhitzter Luft erzeugte Flamme eingesprüht. Aufgrund der hohen Temperatur ist eine Auskleidung des Ofens mit keramischen Material (Furnace) nötig. Die Abkühlung des gebildeten Rußes erfolgt mittels Einsprühen von kaltem Wasser.

Ruße bestehen ebenfalls aus aggregierten und agglomerierten Einzelpartikeln (vgl. Abbildung 4.6), der Aggregationsgrad wird hierbei als Struktur bezeichnet. Eine starke Verzweigung bewirkt eine "hohe" Struktur, während ein geringer Verzweigungsgrad als "niedrige" Struktur angegeben wird [136]. Printex<sup>®</sup> 95 hat demnach eine niedrige Struktur. Die Untersuchung der Mikrostruktur von Rußen zeigt, dass die Primärteilchen aus konzentrisch angeordneten und miteinander verwachsenen Graphit-ähnlichen Kristalliten bestehen. Häufig sind hierbei die Schichten gegeneinander versetzt und axial verdreht [136,137].



Abbildung 4.6: TEM-Aufnahme Printex<sup>®</sup> 95, x100000 [7].

Tabelle 4.4: Physikalische Daten Printex<sup>®</sup> 95 [131, 138].

| Nanomaterial            | Feststoffdichte<br>[g/cm³] | Primärpartikeldurchmesser<br>[nm] | Spezifische<br>Oberfläche<br>[m²/g] | Kontroll-<br>nummer |
|-------------------------|----------------------------|-----------------------------------|-------------------------------------|---------------------|
| Printex <sup>®</sup> 95 | 1.8                        | 15                                | 250                                 | 98073108            |

Die Oberflächenchemie der Ruße ergibt sich aus den Eigenschaften der Graphit-ähnlichen Kristallite. Beim Kontakt mit Sauerstoff bilden sich funktionelle Gruppen an der Oberfläche aus. Abhängig davon, bei welchen Temperaturen die Ruße mit Sauerstoff in Kontakt kommen, sind mehr oder weniger Oberflächenoxide zu finden. Die Furnaceruße weisen nativ eine relativ geringe Anzahl an sauren Gruppen auf, wodurch ihre Hydrophilie gering ist. Im Rahmen dieser Arbeit werden sie deshalb zu den hydrophoben Substanzen gezählt [137].

## 4.1.2.4 Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25

Bei Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 handelt es sich um ein Titandioxid, das analog zu den Aerosilen<sup>®</sup> durch Flammenhydrolyse aus Titantetrachlorid hergestellt wird [122].

Wie anhand von Abbildung 4.7 zu erkennen ist, sind die Primärteilchen nicht rund, sondern zeigen abgerundete Ecken. Aufgrund von an der Oberfläche vorhandenen freien Silanolgruppen zählt Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 zu den hydrophilen Nanomaterialien.

Verwendung findet es unter anderem in Sonnenschutzmitteln (UV-Licht streuende Eigenschaften) [139,140], als Katalysatoren [124] und Hitzestabilisatoren in der Silikonkautschukherstellung [122]. Titandioxid verhält sich weniger elastisch als Siliciumdioxid, was sich in einem höheren Wert für den E-Modul äußert (250-300 GPa im Zugversuch) [140]. Eine Übersicht über weitere physikalische Daten gibt Tabelle 4.5.



Abbildung 4.7: TEM-Aufnahme Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25, x100000 [7].

Tabelle 4.5: Physikalische Daten Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 [122,124].

| Nanomaterial                                   | Feststoffdichte<br>[g/cm³] | Primärpartikeldurchmesser<br>[nm] | Spezifische<br>Oberfläche<br>[m²/g] | Kontroll-<br>nummer |
|------------------------------------------------|----------------------------|-----------------------------------|-------------------------------------|---------------------|
| Aeroxide <sup>®</sup> TiO <sub>2</sub><br>P 25 | 3.8                        | 21                                | 50 ± 15                             | P1S1593             |

## 4.1.3 Wirkstoff Ibuprofen

Bei Ibuprofen handelt es sich um ein Phenylpropionsäure-Derivat ((R,S)-2-(4-Isobutylphenyl)propionsäure) mit analgetischen und antiphlogistischen Eigenschaften [141], Abbildung 4.8.

Die Substanz liegt in Form eines weißen Pulvers oder von Kristallen vor, der Schmelzpunkt beträgt 74-76°C. In Wasser ist Ibuprofen unlöslich, in den meisten organischen

Lösungsmitteln ist es gut löslich [141]. Die Feststoffdichte liegt im Bereich von 1.111 bis 1.119 [g/cm<sup>3</sup>] [145,172].

Je nach Lösungsmittel sind verschiedene Kristallformen und Partikelgrößen beim Auskristallisieren möglich, die unterschiedliche Kompressibilität bzw. Kompaktibilität zur Folge haben können [142-144].



Abbildung 4.8: Strukturformel Ibuprofen [141]

In Bezug auf das Verdichtungsverhalten kann Ibuprofen zu den plastischen Materialien gezählt werden [143,145]. Dieser Aspekt ist wie bei der Maisstärke von zentraler Bedeutung, da dadurch beim Pressvorgang keine neuen Oberflächen entstehen, die zwar zur Bindung beitragen, aber nicht durch Nanomaterial belegt sind. Nur wenn die tatsächlich belegte Oberfläche auch an der Bindungsbildung beteiligt ist, kann die entsprechende Tablettenfestigkeit auf den Einfluss des Fließregulierungsmittels zurückgeführt werden. Vielfach beschrieben ist das Verhalten des Stoffes bei hohen Pressdücken. Wird die Presskraft auf >10 kN erhöht, nimmt die Bruchfestigkeit der entstehenden Tabletten ab. Dieses Phänomen kann mit einer steigenden elastischen Rückdehnung mit zunehmendem Druck erklärt werden. Dadurch wird das Netzwerk innerhalb der Tablette geschwächt und die mechanische Festigkeit sinkt. Ebenfalls kann es durch die hohe Druckeinwirkung zum Austritt von Flüssigkeit aus den Kristallen kommen, was wiederum zu einer Bindungsschwächung beiträgt [142,143].

Das in dieser Arbeit verwendete Ibuprofen (Chargenbezeichnung 0508682) wurde von der Firma Heumann PCS, Feucht bezogen. Es handelt sich um die gemahlene Substanz. Die Partikeldaten aus einer früheren analysierten Charge werden wie folgt angegeben (Tabelle 4.6).

| Substanz              | Siebrückstand<br>(Luftstrahlsieb<br>30µm) | Verte<br>Tr | Kontroll-<br>nummer |            |         |
|-----------------------|-------------------------------------------|-------------|---------------------|------------|---------|
|                       | [%]                                       | d(10) [µm]  | d(50) [µm]          | d(90) [µm] |         |
| lbuprofen<br>gemahlen | 1                                         | 6.6         | 21                  | 47         | 0302792 |

Tabelle 4.6: Partikelverteilungsdaten Ibuprofen gemahlen, Heumann PCS [146].

## 4.1.4 Sonstige Materialien

### 4.1.4.1 Magnesiumstearat

Bei Magnesiumstearat handelt es sich um die Magnesiumsalze verschiedener Fettsäuren, vor allem der Stearin- und Palmitinsäure. Das weiße, feine Pulver fühlt sich fettig an und ist in Wasser und Ethanol praktisch unlöslich [147]. In der Tablettierung wird es als Schmierund- Gleitmittel verwendet [3]. In der vorliegenden Arbeit wurde Magnesiumstearat der Firma Synopharm (Chargen-Nr. 0310A026) verwendet.

## 4.1.4.2 Aceton

Aceton wurde zur Herstellung der Magnesiumstearatsuspensionen verwendet. Die klare, farblose Flüssigkeit ist leicht flüchtig und mit Wasser, Ethanol und Ether mischbar [148]. Für die Suspensionen wurde die reinste Qualität (pa) verwendet (Chemikalienausgabe der Universität Würzburg).

### 4.1.4.3 Kaliumcarbonat

Kaliumcarbonat ist ein weißes, körniges, hygroskopisches Pulver, das in Wasser leicht und in Ethanol praktisch unlöslich ist [149].

Mit gesättigten Lösungen von verschiedenen Salzen können unter abgeschlossenen Bedingungen bei konstanter Temperatur definierte Luftfeuchten eingestellt werden. Eine gesättigte Kaliumcarbonatlösung ergibt in einem Temperaturbereich von 0-30°C eine konstante relative Luftfeuchte von 43% [150, 151].

## 4.2 Methoden

## 4.2.1 Herstellung und Konditionierung der Mischungen

## 4.2.1.1 Binäre Mischungen aus Maisstärke und Fließregulierungsmittel

Zur Herstellung der Mischungen werden 0.20 g des Fließregulierungsmittels in einem 500 ml Braunglas vorgelegt, dann wird mit Maisstärke ad 100.0 g aufgefüllt. Hierfür wird die Waage Mettler Toledo PB 3002 DeltaRange<sup>®</sup> verwendet (Mettler-Toledo GmbH, Greifensee). Der Mischvorgang erfolgt mit einem Turbulamischer der Bachofen AG (Typ T2C Nr. 950353, Willy A. Bachofen AG Maschinenfabrik, Basel) bei 42 Umdrehungen pro Minute. Fließregulierungsmittel und Maisstärke ergeben vor dem Mischen einen Füllungsgrad von ca. 0.4 [-]. Damit liegt er unterhalb des geforderten Werts für Turbulamischer von maximal 0.8 [152]. Die Mischzeiten variieren von 1 bis 4320 Minuten (= 3 Tagen).

Für einen Teil der Versuche im Füllschuhbetrieb der Tablettenpresse werden den fertigen Mischungen 0.2% Magnesiumstearat zugesetzt und für eine Minute im Turbulamischer gemischt.

Vor dem Verpressen werden die Pulvermischungen für sieben Tage bei 43% relativer Feuchte und Raumtemperatur (19-25°C) in Exsiccatoren gelagert. Die Feuchte wird mittels einer gesättigten Lösung von Kaliumcarbonat in destilliertem Wasser eingestellt und regelmäßig kontrolliert [150,151].

### 4.2.1.2 Binäre Mischungen aus Maisstärke und Ibuprofen

Um zu prüfen, inwieweit der Mischvorgang selbst Einfluss auf die Eigenschaften von Maisstärke-/Ibuprofentabletten hat, ist es nötig, Vergleichsmischungen ohne Zusatz von Fließregulierungsmittel für die entsprechenden Mischzeiten herzustellen. Hierzu werden jeweils 50.0 g von Wirk- und Hilfsstoff in ein 500 ml Braunglas eingewogen (Mettler Toledo PB 3002 DeltaRange<sup>®</sup>, Mettler-Toledo GmbH, Greifensee) und entsprechend den vorgegebenen Zeiten im Turbulamischer gemischt. Für Wirkstoff und Hilfsstoff vor dem Mischen ergibt sich ein Füllungsgrad von 0.47 (vgl. Anhang 8.1).

# 4.2.1.3 Ternäre Mischungen aus Maisstärke, Ibuprofen und Fließregulierungsmittel

Für die Wirkstoffhaltigen Mischungen mit Fließregulierungsmittel werden 0.20 g des jeweiligen Nanomaterials im Mischglas vorgelegt, jeweils 49.90 g Ibuprofen und Maisstärke zugewogen (Mettler Toledo PB 3002 DeltaRange<sup>®</sup>, Mettler-Toledo GmbH, Greifensee) und

für die benötigte Zeit gemischt. Das Ibuprofen wird vorher gesiebt (1 mm), um große Agglomerate zu zerstören.

Um die gleiche theoretische Oberflächenbelegung zu erreichen wie bei den reinen Maisstärke-/Aerosilmischungen, wäre eine Zugabe von 0.17 g Nanomaterial ausreichend (vgl. Berechnung Anhang 8.2). Die REM-Aufnahmen ergeben jedoch, dass die Oberfläche des Ibuprofens nicht gleichmäßig glatt ist, sondern sich durch aufgelagerte Kristallamellen Rinnen ausbilden (vgl. 5.1.2), in die Nanomaterial eingelagert werden kann. Die Nanoagglomerate und –aggregate in diesen Absenkungen tragen nicht zur Bindungsbildung bei. Deshalb wird die ursprüngliche Konzentration von 0.2% beibehalten um diese Verluste auszugleichen und vergleichbare Ergebnisse zu erhalten.

#### 4.2.2 Charakterisierung der Substanzen und Mischungen

#### 4.2.2.1 Bestimmung der wahren Dichte mittels He-Pycnometrie

Für die Bestimmung der Feststoffdichte der Mischungen wird ein Helium-Pycnometer Ultrapycnometer 1000 der Quantachrome GmbH, Odelzhausen, verwendet. Grundlage der Messung ist das Boyle-Mariotte`sche Gesetz [153].

In die Probenzelle wird eine ausreichende Menge Pulver eingebracht, so dass ein Probenvolumen von mindestens 0.7-0.8 cm<sup>3</sup> erreicht wird [154]. Bei einem kleineren Volumen würde der Fehler zu groß und die Messung ungenau. Das Pulver wird zuvor auf einer analytischen Waage (Sartorius AC 211 S) auf 0.1 mg genau gewogen. Zunächst wird die Probe 30 Minuten mit Helium gespült. Zur Messung wird das Messgas mit leichtem Überdruck in die Probenkammer eingelassen. Nach Öffnen eines Ventils zu einer zweiten Kammer mit bekanntem Volumen kommt es zum Druckabfall. Über die Volumina von Proben- und Ausgleichskammer und die entsprechenden Drücke kann das Volumen der Probe berechnet und daraus zusammen mit der Masse die Dichte ermittelt werden [153].

Die Kalibrierung des Probenzellenvolumens erfolgt mit Stahlkugeln. Für die vorliegenden Messungen wurde die kleinste Probenzelle verwendet. Die dazugehörige Kalibrierkugel (Micro Calibration Sphere) hat ein exaktes Volumen von 1.0725 cm<sup>3</sup> und eine Masse von 1.0725 g [153,154]. Auf diese Weise wurde das Pycnometer an jedem Messtag kalibriert.

Da die Feststoffdichte für die Berechnung weiterer Kompressionsparameter nötig ist und die gleichen Bedingungen wie bei der Tablettierung vorherrschen sollen, werden auch hier die Pulvermischungen vor der Messung eine Woche bei konstanten Bedingungen gelagert (43% r.H., RT).

Das Ultrapycnometer 1000 erfasst bei jedem Messdurchgang sechs Werte, aus den letzten dreien wird der Mittelwert gebildet [153]. Es wurden jeweils drei Messdurchgänge für jede

Pulvermischung durchgeführt. Die in dieser Arbeit angegebenen Werte sind die Mittelwerte aus diesen drei Durchgängen.

#### 4.2.2.2 Schütt- und Stampfdichte

Das Schütt- bzw. Stampfvolumen gibt Aufschluss über die Fließfähigkeit von Pulvern [3]. Verwendet wurde ein Stampfvolumeter der Firma Englmann, Ludwigshafen. Das Gerät besteht aus einem Aggregat mit 250 Stampfbewegungen pro Minute und einem Aufsatz für einen 250 ml Messzylinder mit 2 ml Graduierung.

Die Durchführung erfolgt nach dem europäischen Arzneibuch [15]. 50,00 g Pulvermischung werden auf der Waage Kern EG 220 abgewogen und locker in den trockenen Messzylinder eingefüllt. Dabei wird darauf geachtet, dass keine Erschütterungen stattfinden, um das Material nicht zu verdichten. Das auf 1 ml abgelesene Volumen ist das Schüttvolumen V<sub>0,S</sub>. Nach 10, 500 und 1250 Stampfbewegungen werden die entsprechenden Volumina V<sub>10</sub>, V<sub>500</sub> und V<sub>1250</sub> [ml] abgelesen. Schütt- und Stampfdichte ergeben sich aus den erhaltenen Werten nach den Gleichungen 2.2 und 2.3 (Abschnitt 2.1.2).

#### 4.2.2.3 Kompressibilität

Aus den Schütt- und Stampfdichten lassen sich weitere Parameter berechnen, die Aufschluss über das Fließverhalten geben.

Zur Beurteilung des Fließverhaltens bzw. der Kompressibilität der Pulvermischungen wird der Hausner-Faktor HF herangezogen (vgl. Abschnitt 2.1.2, Gleichung 2.4), der Quotient aus Stampf- und Schüttdichte. Er sollte idealerweise Werte von nur wenig über eins aufweisen.

#### 4.2.2.4 Oberflächenbestimmung nach BET

Die Bestimmung der spezifischen Oberfläche des Ibuprofens erfolgt nach der BET-Methode mit dem Gerät ASAP 2000 und der Software ASAP 2010 (Micromeritics Instruments Corp., USA) am ZAE (Zentrum für angewandte Energieforschung e. V.) Würzburg.

Die Probe wird für mindestens 12 Stunden bei Raumtemperatur (ca. 27°C) ausgegast. Die Gleichgewichtszeit (Equilibration Time) beträgt 100 s. Bei der erfolgten Messung handelt es sich um eine Ein-Punkt-Messung bei einem Relativdruck von 0.3. Der Fehler liegt bei  $0.02 \text{ m}^2/\text{g}$  [155].

## 4.2.2.5 Luftstrahlsieb Alpine, Augsburg

Die Partikelgrößenanalyse der in der Arbeit verwendeten Ibuprofen-Charge 0508682 erfolgt mit einem Luftstrahlsieb (Typ A 320 LS, Alpine AG, Augsburg).

Je 10.00 g Substanz (Kern EG 220) werden auf Siebe mit den Maschenweiten 36, 63, 125, 200 und 250 µm aufgegeben und für 6 Minuten gesiebt.

## 4.2.3 Rasterelektronenmikroskopie

Die optische Charakterisierung des Ibuprofens und seiner Mischungen erfolgte am Theodor-Boveri-Institut für Biowissenschaften mit dem Rasterelektronenmikroskop Zeiss DSM 962 (Zeiss GmbH, Oberkochen).

Da Ibuprofen bei 74-76°C schmilzt [141], wird eine niedrige Beschleunigungsspannung von 10 kV gewählt.

Die Auswertung der REM-Aufnahmen erfolgte mittels dem Bildanalyseprogramm KS 300<sup>©</sup> (Carl Zeiss Mikroskopie, Göttingen) [7].

## 4.2.4 Tablettenpresse EK 0, Korsch

## 4.2.4.1 Aufbau und Funktionsprinzip

Bei der in der vorliegenden Arbeit verwendeten Tablettenpresse handelt es sich um eine Exzenterpresse vom Typ EK 0 (Korsch Maschinenfabrik, Berlin).

Das Presswerkzeug besteht aus Ober- und Unterstempel und der Matrize. Die Bewegung des Oberstempels erfolgt über eine Exzenterscheibe. Der Unterstempel hat lediglich die Aufgabe, das Füllvolumen nach unten zu begrenzen und die fertige Tablette auszustossen. Die gesamte Kraftübertragung findet über den Oberstempel statt. Exzenterpressen werden überwiegend in Forschung und Entwicklung eingesetzt, da sie durch die geringe Produktionskapazität für die industrielle Herstellung von Arzneimitteln ökonomisch nicht sinnvoll sind.

Verwendet wird ein 9 mm, facettierter Stempelsatz.

### 4.2.4.2 Instrumentierung

Durch Anbringen von Messaufnehmern an geeigneten Stellen ist es möglich, den Pressvorgang zu überwachen und Informationen über das Kompressionsverhalten von Stoffen zu erhalten.

### 4.2.4.2.1 Kraftmessung mittels Dehnmessstreifen

Zur Kraftmessung können verschiedene physikalische Grundlagen herangezogen werden. Die häufigste Art, Kräfte zu messen, ist mittels elektrischer Widerstands-Dehnungsmessstreifen, im Folgenden abgekürzt als DMS. Drei verschiedene Arten sind bekannt:

- Metallische DMS
- Halbleiter DMS
- Dünnfilm-DMS (Aufgedampfte DMS) [157].

Die metallischen DMS bestehen aus einem in eine Folie eingebetteten Widerstandsdraht. Bei Belastung ändert sich die Drahtlänge (Dehnung oder Stauchung) und damit der Widerstand proportional der Belastung entsprechend dem Hooke`schen Gesetz (Gleichung 4.1).

$$\varepsilon = \frac{\Delta l}{l_0} \approx \frac{\Delta R}{R_0}$$
 GI. 4.1

εDehnung [-]ΔIabsolute Längenänderung [µm] $I_0$ Ausgangslänge [m]ΔRWiderstandsänderung [Ω]

 $R_0$  Ausgangswiderstand [ $\Omega$ ]

DMS sind passive Aufnehmer, d. h., sie geben selbst keine elektrische Spannung ab, sondern liefern nach Speisung mit einer Spannungsquelle ein Ausgangssignal, das in eine Spannung umgewandelt werden kann [157].

Bei der in dieser Arbeit verwendeten EK 0 erfolgt die Kraftmessung mit metallischen DMS vom Typ 6/360 DY 11. Damit sind Belastungen bis 30 kN möglich. Abbildung 4.9 zeigt die gesamte Messkette.

Die Dehnmessstreifen sind in einer Wheatstone`schen Brückenschaltung zu einer Vollbrücke angeordnet. Diese wird über eine Hilfsspannung gespeist. Bei fehlender Belastung ist die Brücke im Gleichgewicht, d. h., die Ausgangsspannung beträgt null. Erfolgt eine Belastung (Dehnung oder Stauchung), wird die Brücke verstimmt und eine Ausgangsspannung proportional zur Belastung tritt auf. Da sich die Spannungswerte im mV-Bereich befinden, ist eine Verstärkung nötig. Bei dem Verstärker handelt es sich um einen 5 kHz Trägerfrequenzverstärker vom Typ MC 55, Hottinger Baldwin Messtechnik, Darmstadt. Ein nachgeschalteter Analog-Digital-Wandler wandelt die analogen in digitale Messsignale um, die über die Auswerte-Software PMA 3 ausgegeben werden.



Abbildung 4.9: Messkette zur Ermittlung von Presskräften. Modifiziert aus [157].

#### 4.2.4.2.2 Induktive Wegmessung

Die Wegmessung erfolgt mit zwei LVDT (Linear-Variablen-Differential-Transformator) vom Typ FM 25 DC-C mit einem Messbereich von 0-25 mm und einer Linearität von 0.25%, die an Ober- und Unterkolben montiert sind. Die Genauigkeit beträgt 0.01%.

#### 4.2.4.3 Kalibrierung

#### 4.2.4.3.1 Durchführung und Auswertung der Kalibrierung

Zur Kraftkalibrierung wird eine Referenzmesskette bestehend aus einem Kraftaufnehmer vom Typ C2 (Nennkraft 50 kN, Genauigkeitsklasse 0.1) und einem Messverstärker Scout 55 (Genauigkeitsklasse 0.1), beide Hottinger Baldwin Messtechnik, Darmstadt verwendet.

Die Kalibrierung der Oberstempelkraft erfolgt mit einem planen Oberstempel. Da der Krafteinleitungsknopf des Aufnehmers gewölbt ist, ist die Verwendung eines Druckstücks nötig, um die Kraft vom planen Stempel vollständig auf den Aufnehmer übertragen zu können. Dieses wurde aus Vergütungsstahl C 45 gefertigt.

Zur Durchführung der Oberstempelkraftkalibrierung wird der Oberstempel eingesetzt und der Kraftaufnehmer mit dem aufgesetzten Druckstück auf den Pressenrahmen gelegt. Durch Bewegung des Schwungrades kann die Position des Stempels verändert und damit die

Druckbelastung beim Kontakt mit dem Aufnehmer variiert werden (vgl. Abbildungen 4.10-4.12).

Für die Kalibrierung der Unterstempelpresskraft wurde ein Unterstempel gefertigt, der die Wölbung des Druckeinleitungsknopfes aufweist. Der Kraftaufnehmer wird mit dem Einleitungsknopf auf den Unterstempel aufgesetzt und mit einem Stahl-Stück (C 45) belegt. Die Krafteinwirkung erfolgt auch hier über den Oberstempel (vgl. Abbildung 4.13).

Die Kalibrierung wird quasistatisch nach Belda und Mielck in Anlehnung an DIN 51301 durchgeführt [158].

Vor jedem Messzyklus wird je drei Mal für eine Minute mit der Maximalkraft der Presse (30 kN) belastet (Vorlast). Zwischen den Belastungen erfolgt eine Pause von je drei Minuten. Drei Minuten nach der letzten Vorlast wird ein Nullabgleich vorgenommen und der Messzyklus gestartet.

Durch unterschiedliches Positionieren des Stempels wird bei verschiedenen Kraftlevels belastet (2, 5, 10, 15, 20, 25, 30 kN für den Oberstempel, 2, 5, 10, 15, 20, 25 kN für den Unterstempel). Nach einer Minute beim ausgewählten Level wird die Kraft am Referenzaufnehmer und der EK 0 sowie die Ausgangsspannung an der Presse abgelesen (Messbereich Referenzaufnehmer und Presse: 2 mV/V).

Darauf folgt eine Entlastungsphase von einer Minute. Anschließend wird beim nächst höheren Kraftlevel belastet, bis die Maximalkraft erreicht ist. Dann erfolgt die Belastungskaskade absteigend, um eventuelle Hysterese-Erscheinungen zu erfassen. Während der Belastungsphase wird die Zielkraft innerhalb von 10-30 s erreicht, die Entlastung erfolgt innerhalb von 10 s. Es werden jeweils drei Zyklen an drei aufeinander folgenden Tagen für Ober- und Unterstempel durchgeführt.



Abbildung 4.10: Geräteanordnung zur Kalibrierung. 1-Oberstempelhalter mit Kalibrier-Oberstempel, 2-Kraftaufnehmer C2, 3-Verstärker Scout 55, 4-PMA 3 im Kalibriermodus.



Abbildung 4.11: Oberstempelanordnung im entlasteten Zustand.



Abbildung 4.13: Unterstempelkalibrierung.

Mit den abgelesenen Werten für die Kraft (Referenz und EK 0) und der Brückenausgangsspannung der Presse kann nach Gleichung 4.2 die Brückenempfindlichkeit der Presse berechnet werden [159].

$$Y = F_{\max} * \frac{M_B}{F_{gem} * \frac{10}{U_{gem}}}$$
Gl. 4.2

Y Empfindlichkeit der Messstelle [mV/V]

- $F_{max}$  maximale Presskraft der Maschine [kN] = 30 kN
- M<sub>B</sub> Messbereich des Verstärkers (Presse) [mV/V]
- F<sub>gem</sub> gemessene Presskraft an der Referenzmessdose (C2, Scout 55) [kN]
- 10 maximale Ausgangsspannung des Messverstärkers (Presse) [V]
- U<sub>gem</sub> gemessene Ausgangsspannung am Messverstärker (Presse) [V]



Abbildung 4.12: Oberstempel während Belastung.

Für jeden Kraftlevel wird die Brückenempfindlichkeit berechnet. Mittels einfaktorieller Varianzanalyse wird überprüft, ob die Empfindlichkeiten der einzelnen Messzyklen signifikant unterschiedlich sind und aus sämtlichen berechneten Werten der Mittelwert bestimmt. Mit der neu eingestellten Empfindlichkeit wird ein Messzyklus zur Überprüfung durchgeführt. Zur Kalibrierung der Wegaufnehmer wird ein 10 mm Parallel-Endmass verwendet. Bei eingebautem Unterstempel und einer eingestellten Fülltiefe von 10 mm wird das Endmass auf den Unterstempel gelegt. Es muss bündig mit der Matrizenoberkante abschliessen.

#### 4.2.4.3.2 Ergebnisse

Im Folgenden sind die Ergebnisse der Prüfzyklen mit den neu berechneten Brückenempfindlichkeiten aufgeführt. Für die erste Kalibrierung sind die Regressionsgrafiken für Ober- und Unterstempel beispielhaft dargestellt (vgl. Abbildungen 4.14-4.17), für die folgenden sind jeweils die Regressionsgeradengleichungen angegeben (vgl. Tabellen 4.7 und 4.8). Die Kalibrierung erfolgte in Abständen von sechs Monaten.



◆aufsteigend Abbildung 4.14: Regressionsgerade Oberstempel

aufsteigend



Unterstempel

Abbildung 4.16: Regressionsgerade Unterstempel aufsteigend



Abbildung 4.15: Regressionsgerade Oberstempel absteigend





Abbildung 4.17: Regressionsgerade Unterstempel absteigend

| Kalibrierung | Oberstempel aufsteigend |                | Unterstempel au  | fsteigend |
|--------------|-------------------------|----------------|------------------|-----------|
|              | Geradengleichung        | r <sup>2</sup> | Geradengleichung | r²        |
| 1            | y=0.9991x+0.0189        | 1              | y=0.9956x+0.0418 | 1         |
| 2            | y=1.0019x-0.0447        | 1              | y=0.9948x+0.0978 | 1         |
| 3            | y=1.0019x-0.0447        | 1              | y=0.9997x-0.0237 | 1         |
| 4            | y=1.0005x+0.0014        | 1              | y=0.9954x+0.0312 | 1         |

Tabelle 4.7: Regressionsgleichungen aufsteigend

Tabelle 4.8: Regressionsgleichungen absteigend

| Kalibrierung | Oberstempel absteigend |    | Unterstempel at  | osteigend |
|--------------|------------------------|----|------------------|-----------|
|              | Geradengleichung       | r² | Geradengleichung | r²        |
| 1            | y=0.9999x-0.0285       | 1  | y=0.9923x-0.0285 | 1         |
| 2            | y=0.9998x-0.0151       | 1  | y=0.9959x+0.0760 | 1         |
| 3            | y=0.9998x-0.0151       | 1  | y=0.9998x-0.0178 | 1         |
| 4            | y=0.9981x+0.0229       | 1  | y=0.9915x+0.0674 | 1         |



Abbildung 4.18: Hystereseverlauf Oberstempel

Abbildung 4.19: Hystereseverlauf Unterstempel

Der Hystereseverlauf ergab die in den Abbildungen 4.18 und 4.19 dargestellten Ergebnisse. Wie anhand der Grafiken zu erkennen ist, tritt weder beim Ober- noch beim Unterstempel Hysterese auf. Die Regressionsgleichungen zeigen einen streng linearen Verlauf mit Bestimmtheitsmaßen von 1. Die Steigungen liegen ebenfalls bei nahezu 1.

#### 4.2.5 Herstellung der Tabletten

Für die Herstellung der Tabletten werden jeweils  $200 \pm 1 \text{ mg}$  der Pulvermischungen auf der Waage Kern EG 220 abgewogen und manuell in die Matrize überführt. Da die Tablettenfestigkeit in Abhängigkeit von der Oberflächenbelegung mit Nanomaterial

untersucht werden soll und Schmiermittel die Bindungsbildung innerhalb der Tablette signifikant beeinflussen [118,160], wird eine externe Schmierung gewählt, indem Stempel und Matrize vor jedem Pressvorgang mit einer Suspension aus 2% Magnesiumstearat in Aceton besprüht werden [89,161]. Auf diese Weise werden jeweils 6 Tabletten bei acht verschiedenen Pressdrücken zwischen 50 und 400 (± 3%) [MPa] hergestellt. Die Kompaktionsgeschwindigkeit beträgt 19 Hübe/Minute. Für jede Mischzeit werden drei Mischungen untersucht, wobei für Mischung 1 Tabletten über den gesamten Pressdruckbereich hergestellt werden. Die beiden anderen Mischungen werden nur bei zwei Drücken (150 und 400 [MPa]) verpresst, um die Reproduzierbarkeit des Misch- und Pressvorgangs zu überprüfen. Von den Tabletten werden direkt nach dem Ausstoßen Masse, Dicke und Durchmesser bestimmt, vor weitergehenden Untersuchungen werden sie für sieben Tage bei konstanten Bedingungen (43% r. H., RT) im Exsiccator gelagert.

#### 4.2.6 Prüfung der Tabletten

#### 4.2.6.1 Elektronischer Dickenmesser

Die Dicke der Tabletten wurde mit einer digitalen Dickenmeßuhr (Modell ID-S 1012, Mitutoyo, Japan), ermittelt. Der Meßbereich beträgt 0.01-12.7 mm mit einer Genauigkeit von 0.02 mm [162].

#### 4.2.6.2 Bruchkrafttester Schleuniger 8M

Als Maß für die mechanische Festigkeit der Tabletten wird die diametrale Bruchfestigkeit herangezogen. Für deren Berechnung ist die diametrale Bruchkraft der Tabletten nötig. Diese wird mit dem Schleuniger Tablettenhärtetester 8M (Dr. Schleuniger<sup>®</sup> Pharmatron, Solothurn, Schweiz) bestimmt. Dazu wird die Tablette plan zwischen zwei Druckbacken eingelegt, von denen eine feststehend, die andere beweglich und mit einem Kraftmesser ausgestattet ist. Durch Bewegung der verschiebbaren Druckbacke wird die Tablette bis zum Bruch belastet. Die Kraft am Bruchpunkt entspricht der Bruchkraft der Tablette und kann am Display direkt abgelesen werden [N]. Das Gerät besitzt einen Meßbereich von 6-400 [N] mit einer Genauigkeit von ± 1% vom Endwert [163]. Für die Prüfung wird ein konstanter Kraftanstieg von 1 mm/s gewählt, um viskoelastische Effekte auszuschließen.

Gleichzeitig mit der Kraftmessung ist die Bestimmung des Tablettendurchmessers möglich, ebenfalls über eine in die bewegliche Druckbacke integrierte Messvorrichtung.

Die Kalibrierung des Durchmessers erfolgt mit einem 10 mm Parallel-Endmaß. Die Härte wird mittels eines kalibrierten 5 kg Gewicht eingestellt. Die Kalibrierung der Härte erfolgt in

Abständen von sechs Monaten. An jedem Messtag wird die Durchmesserkalibrierung verifiziert.

#### 4.2.6.3 Berechnung der Bruchfestigkeit

Um vergleichbare Ergebnisse zu erhalten, wird die gemessene Bruchkraft auf die belastete Fläche der Tablette bezogen. Die damit erhaltene Bruchfestigkeit der Tabletten berechnet sich wie folgt (Gleichung 4.3) [164]:

$$\sigma_t = \frac{2F_{BW}}{\pi d_W h_W}$$
Gl. 4.3

 $\begin{array}{ll} \sigma_t & & \text{Bruchfestigkeit [MPa]} \\ \mathsf{F}_{\mathsf{BW}} & & \text{Bruchkraft [N]} \\ \mathsf{d}_W & & \text{Durchmesser der Tablette [mm]} \\ \mathsf{h}_w & & \text{Steghöhe der Tablette [mm]} \end{array}$ 

Da facettierte Stempel verwendet werden, entsprechen die Steghöhen nicht den gemessenen Dicken der Tabletten. Mit den Herstellerangaben zu den Stempelabmessungen wird die tatsächliche Steghöhe berechnet [165]. Auf gleichem Wege wird das Volumen der Tabletten korrigiert, vgl. 8.3.

#### 4.2.6.4 Prüfung auf Massenkonstanz bei Füllschuhbetrieb

Das Verpressen der Mischungen im Füllschuhbetrieb soll Aufschluß darüber geben, inwieweit die Mischzeit für die Arzneibuchvorgaben relevant ist. Für nichtüberzogene Tabletten mit einer Masse zwischen 80 und 250 mg schreibt das Ph.Eur. 5.00 eine Prüfung von 20 Einheiten vor [1]. Davon dürfen maximal zwei Tabletten in ihren Einzelmassen um mehr als 7.5% vom Mittelwert abweichen, keine jedoch um mehr als 15%.

Der Versuch wird für jede Mischzeit dreimal durchgeführt, die Ermittlung der Tablettenmassen erfolgt auf der Waage Kern EG 220.

#### 4.2.6.5 Prüfung auf Zerfall

Die Prüfung der Zerfallszeit wird ebenfalls nach dem Ph.Eur. 5.00 bestimmt [166]. Jeweils sechs Tabletten werden in die Zerfallsapparatur (Zerfallstester Erweka ZT 3, Erweka Heusenstamm) eingebracht und die Zerfallszeiten in Wasser (36-37°C) ermittelt. Geprüft

werden drei mal sechs Tabletten. Die Erfassung der Zeit erfolgt mit einer Stoppuhr (Hanhart).

#### 4.2.6.6 Prüfung auf Abrieb

In enger Verbindung mit der Bruchfestigkeit von Tabletten steht deren Abriebsverhalten. Deshalb wird auch dieses in Abhängigkeit von der Mischzeit untersucht. Dafür schreibt das Ph.Eur. 5.00 eine Apparatur bestehend aus einer Trommel und einem Antriebsaggregat vor, mit der 25 Umdrehungen pro Minute erreicht werden. 20 Tabletten werden entstaubt, gewogen (Kern EG 220), in die Trommel eingebracht und 100 Umdrehungen ausgesetzt. Im Anschluß daran werden zerbrochene Tabletten bzw. Bruchstücke entfernt, die restlichen Tabletten erneut entstaubt und gewogen. Aus den Massen vor bzw. nach der Prüfung wird der prozentuale Massenverlust berechnet. Dieser darf nicht mehr als 1% betragen [167].

### 4.3 Statistische Auswertung der Messreihen

Alle Messdaten werden mit dem Statistikprogramm SPSS Version 11.0 auf Signifikanz untersucht. Zunächst wird mit einer einfaktoriellen Varianzanalyse die Gleichheit der Messreihen überprüft, im Anschluß wird mit dem Scheffe-Test geprüft, welche Mischzeiten sich signifikant unterscheiden.

Die Ermittlung der maximalen Bruchfestigkeiten nach Leuenberger erfolgte mittels nichtlinearer Regression mit dem Programm Microcal Origin Version 7.5.

Soweit nicht anders angegeben, beträgt das Konfidenzintervall 95%.
# 5 Ergebnisse und Diskussion

# 5.1 Charakterisierung der Einzelsubstanzen (Trägermaterialien)

Zunächst werden die Trägerstoffe ohne den Zusatz von Nanomaterialien auf ihre pulvercharakteristischen Eigenschaften Fließverhalten und Partikelgröße sowie ihre Oberflächenbeschaffenheit untersucht.

# 5.1.1 Partikelgröße des Ibuprofens

Native Maisstärke besitzt einen mittleren Partikeldurchmesser von 22  $\mu$ m [7]. Die Größenverteilung des Wirkstoffes wird ebenfalls untersucht. Tabelle 5.1 gibt die Summenverteilung der verwendeten Ibuprofen-Charge an.

| Tabelle 5.1: Partikelgrößenverteilung Ibuprofen Charge 0508682 |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

| Maschenweite<br>[µm] | Durchgangssumme Q <sub>3,i</sub><br>[-] |
|----------------------|-----------------------------------------|
| 36                   | 0.461                                   |
| 63                   | 0.735                                   |
| 125                  | 0.982                                   |
| 200                  | 0.995                                   |
| 250                  | 0.997                                   |

Aus Tabelle 5.1 ist ersichtlich, dass die Wirkstoffpartikel bis zu 10-mal größer sind als die Hilfsstoffteilchen. Ca. die Hälfte der Partikeln befindet sich im Größenbereich der Maisstärke, der Großteil der restlichen Teilchen weist bis zu 125 µm auf.

# 5.1.2 Spezifische Oberfläche des Ibuprofens

Die BET-Oberflächenbestimmung des Ibuprofens ergab eine massenbezogene spezifische Oberfläche von  $0.120 \pm 0.02 \text{ m}^2/\text{g}.$ 

# 5.1.3 Rasterelektronische Aufnahmen des Ibuprofens

Wie die REM-Aufnahmen von Meyer [7] gezeigt haben (vgl. Abschnitt 4.1.1), sind die Maisstärkepartikeln annähernd kugelförmig mit einer glatten Oberfläche. Damit kann die Oberflächenbelegung optimal beobachtet werden. Die Oberflächen des Ibuprofens werden vor dem Mischen ebenfalls elektronenmikroskopisch untersucht. Die Abbildungen 5.1-5.3 zeigen den Wirkstoff in unterschiedlichen Vergrößerungen.



Abbildung 5.1: Ibuprofen, x200.

Abbildung 5.2: Ibuprofen, x2000.

Abbildung 5.3: Ibuprofen, x10000.

Ibuprofen besitzt eine längliche, kantige Struktur (Abb. 5.1) mit mehreren lamellenartig aufeinander gelagerten Kristallschichten. Die Oberfläche ist überwiegend glatt, vereinzelt finden sich Ansammlungen kleiner Auflagerungen (Abb. 5.2 rechts), die möglicherweise Bruchstücke aus dem Mahlprozess sind. Des Weiteren liegen Bereiche vor, die Erhebungen aufweisen (Abb. 5.3). Diese liegen in Form längs geordneter Rillen vor. Da die Oberfläche eine überwiegend glatte Struktur aufweist, lässt sie die Beobachtung der Belegung mit Nanomaterialien zu.

#### 5.1.4 Schütt- und Stampfdichte

Die Schütt- und Stampfdichten sowie der Hausner-Faktor HF der Einzelsubstanzen sind in Tabelle 5.2 aufgelistet. Die angegebenen Werte sind Mittelwerte aus je drei Bestimmungen.

| Tabelle 5.2: Fließeigenschaften der Reinsubsta | ⊺abelle 5.2: Fließeigenschaften der Reinsubstanzen, (n=3). |                        |      |  |  |  |  |
|------------------------------------------------|------------------------------------------------------------|------------------------|------|--|--|--|--|
| Material                                       | Schüttdichte<br>[g/ml]                                     | Stampfdichte<br>[g/ml] |      |  |  |  |  |
| Maisstärke Cerestar <sup>®</sup> GL 03406      | 0.507 ± 0.003                                              | 0.732 ± 0.006          | 1.44 |  |  |  |  |

HF [-] ± 0.011  $0.360 \pm 0.006$ Ibuprofen Heumann<sup>®</sup>  $0.553 \pm 0.004$  $1.53 \pm 0.012$ 

Die gemessenen Werte für die Dichten des Wirksstoffes stimmen gut mit den Literaturangaben überein. Für die Schüttdichte werden Werte zwischen 0.22 und 0.45 [g/ml] angegeben, für die Stampfdichte 0.29 bis 0.57 [g/ml] [142,145]. Wie Tabelle 5.2 weiterhin zu entnehmen ist, besitzt native Maisstärke ein deutlich besseres Fließverhalten als Ibuprofen. Aufgrund der kleineren Partikelgröße und der damit verbundenen höheren wirksamen Haftkräfte wäre jedoch das Gegenteil zu erwarten. Offensichtlich ist hier die Partikelform der ausschlaggebende Faktor. Durch ihre Kugelform können sich die Maisstärkepartikeln in der dichtesten Packung anordnen. Die unregelmäßige Form des Ibuprofens verhindert eine gleichmäßige Anordnung der Teilchen. Vielmehr kann es zum Verhaken der Partikeln kommen, was einem gleichmäßigen Fließen entgegenwirkt. Der hohe Wert für den Hausner-Faktor bestätigt dies. Durch die Stampfbewegungen werden die großen interpartikulären Hohlräume, die sich durch die Verhakungen gebildet haben, zerstört. Zusätzlich ergeben sich durch die längliche Form plane Bereiche. Treffen zwei solcher Flächen aufeinander, bildet sich eine entsprechend ausgedehnte Kontaktfläche aus, resultierend in starken interpartikulären Haftkräften.

# 5.2 Wahre Dichte der Mischungen

Die wahre Dichte von Substanzen ist nicht zwangsläufig eine Materialkonstante. Sie hängt in Maße von der chemischen großem Natur der Stoffe ab sowie von den Umgebungsbedingungen [170]. Polare Materialien wie Maisstärke sind in der Lage, über OH-Gruppen Wassermoleküle zu binden. Abhängig von der relativen Feuchte der Umgebung wird das Wasser in mehreren Schichten mit unterschiedlicher Festigkeit gebunden. Die in dieser Arbeit verwendeten Mischungen werden bei einer relativen Feuchte von 43% konditioniert (vgl. Abschnitt 4.2.2.1). Haftkraftmessungen von Eber [8] ergaben eine kritische rel. Feuchte von ca. 40% für Maisstärke. Ab dieser Luftfeuchtigkeit steigen die zwischen Maisstärketeilchen stark an, was auf die Haftkräfte Bildung von Wassersorptionslayern zurückzuführen ist. Mit der Adsorption von Wasser an die Oberfläche verändert sich sowohl die Masse als auch das Volumen der Partikeln. Allerdings steht die Massenzunahme in keinem proportionalen Zusammenhang zur Volumenzunahme [171]. Die verwendeten Nanomaterialien unterscheiden sich in ihrer Hydrophilie bzw. Hydrophobie. Es ist zu erwarten, dass sich durch die unterschiedliche Oberflächenbelegung Unterschiede im Wasseradsorptionsverhalten ergeben, was sich auf die wahre Dichte auswirkt.

## 5.2.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Die Bestimmung der Feststoffdichte der binären Mischungen ergab die in Tabelle 5.3 aufgeführten Ergebnisse. Die Dichtewerte der hydrophilen Nanomaterialien liegen im Bereich von 1.51-1.56 [g/cm<sup>3</sup>], die des Aerosil<sup>®</sup> R 805 und des Printex<sup>®</sup> 95 zwischen 1.49 und 1.52 [g/cm<sup>3</sup>]. Innerhalb der Messreihe nehmen die Dichten mit zunehmender Mischzeit ab. Die wahre Dichte der reinen Maisstärke beträgt  $1.574 \pm 0.004$  [g/cm<sup>3</sup>].

| Mischzeit<br>[min] | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Printex <sup>®</sup> 95 | $Aeroxide^{\$} TiO_2 P 25$ |
|--------------------|--------------------------|----------------------------|-------------------------|----------------------------|
| 1                  | 1.557 ± 0.006            | 1.501 ± 0.004              | 1.502 ± 0.0003          | 1.518 ± 0.006              |
| 10                 | 1.539 ± 0.002            | 1.516 ± 0.004              | 1.502 ± 0.004           | 1.524 ± 0.004              |
| 30                 | 1.547 ± 0.004            | 1.503 ± 0.003              | 1.494 ± 0.003           | 1.511 ± 0.005              |
| 60                 | 1.517 ± 0.003            | 1.500 ± 0.004              | 1.493 ± 0.002           | 1.512 ± 0.004              |
| 180                | 1.528 ± 0.002            | 1.492 ± 0.002              | 1.496 ± 0.002           | 1.511 ± 0.005              |
| 360                | 1.516 ± 0.004            | 1.497 ± 0.004              | 1.493 ± 0.001           | 1.506 ± 0.004              |
| 720                | 1.522 ± 0.005            | 1.493 ± 0.003              | 1.494 ± 0.004           | 1.523 ± 0.001              |
| 1440               | 1.537 ± 0.004            | 1.497 ± 0.001              | 1.497 ± 0.001           | 1.531 ± 0.004              |
| 2880               | 1.561 ± 0.005            | 1.499 ± 0.003              | 1.488 ± 0.004           | 1.517 ± 0.002              |
| 4320               | 1.549 ± 0.004            | 1.520 ± 0.005              | 1.487 ± 0.003           | 1.510 ± 0.002              |

Tabelle 5.3: Wahre Dichten [g/cm<sup>3</sup>] der binären Mischungen aus Maisstärke und den verwendeten hydrophilen und hydrophoben Nanomaterialien mittels He-Pyknometrie (n=3).

# 5.2.2 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

In Tabelle 5.4 sind die für die ternären Mischungen ermittelten Feststoffdichten aufgelistet. Die Dichten sind insgesamt niedriger als die der binären Mischungen. Auch weisen die Mischungen mit den hydrophoben Nanomaterialien etwas höhere Werte auf als die Mischungen mit Aerosil<sup>®</sup> 200 und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25.

Eine generelle Abnahme mit zunehmender Mischzeit innerhalb der Messreihe ist ebenfalls nicht zu verzeichnen. Bei den Mischungen mit Printex<sup>®</sup> 95 kommt es dagegen zu einer deutlichen Zunahme der Dichte bei längerem Mischen.

| Mischzeit<br>[min] | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Printex <sup>®</sup> 95 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 |
|--------------------|--------------------------|----------------------------|-------------------------|---------------------------------------------|
| 1                  | 1.301 ± 0.004            | 1.287 ± 0.003              | 1.312 ± 0.003           | 1.267 ± 0.005                               |
| 10                 | 1.292 ± 0.003            | 1.300 ± 0.002              | 1.302 ± 0.005           | 1.283 ± 0.004                               |
| 30                 | 1.293 ± 0.003            | 1.296 ± 0.003              | 1.302 ± 0.006           | 1.268 ± 0.003                               |
| 60                 | 1.295 ± 0.003            | 1.320 ± 0.001              | 1.317 ± 0.002           | 1.285 ± 0.004                               |
| 180                | 1.291 ± 0.003            | 1.298 ± 0.005              | 1.321 ± 0.004           | 1.274 ± 0.003                               |
| 360                | 1.293 ± 0.002            | 1.307 ± 0.005              | 1.331 ± 0.004           | 1.270 ± 0.004                               |
| 720                | 1.284 ± 0.005            | 1.302 ± 0.003              | 1.338 ± 0.003           | 1.284 ± 0.002                               |
| 1440               | 1.283 ± 0.006            | 1.310 ± 0.003              | 1.317 ± 0.004           | 1.293 ± 0.002                               |
| 2880               | 1.307 ± 0.002            | 1.302 ± 0.003              | 1.335 ± 0.002           | 1.304 ± 0.001                               |
| 4320               | 1.293 ± 0.003            | 1.310 ± 0.003              | 1.348 ± 0.001           | 1.310 ± 0.0003                              |

Tabelle 5.4: Wahre Dichten [g/cm<sup>3</sup>] der ternären Mischungen aus Maisstärke, Ibuprofen und den verwendeten hydrophilen und hydrophoben Nanomaterialien mittels He-Pyknometrie (n=3).

# 5.2.3 Veränderung der Dichte in Abhängigkeit von Oberflächenbelegung und chemischer Natur der Nanomaterialien

Die höheren Dichten der Mischungen mit hydrophilen Substanzen sind auf das verbesserte Wasserbindungsvermögen im Vergleich zu den hydrophoben Materialien zurückzuführen. Aerosil<sup>®</sup> 200 weist gegenüber Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 eine viermal größere Oberfläche auf. Entsprechend befindet sich eine größere Anzahl an Silanolgruppen an der Oberfläche, die Wassermoleküle zu binden vermögen. Die Dichte der reinen Nanomaterialien ist für Aerosil<sup>®</sup> 200 2.2 [g/cm<sup>3</sup>], für Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 3.8 [g/cm<sup>3</sup>]. Die Feststoffdichten der hydrophoben Substanzen liegen mit 2.0 [g/cm<sup>3</sup>] für Aerosil<sup>®</sup> R 805 und 1.8 [g/cm<sup>3</sup>] für das Ruß niedriger, so dass auch der Beitrag der Agglomeratdichte zur Gesamtdichte bei den hydrophoben Materialien geringer ausfällt.

Innerhalb der Messreihe nimmt die Dichte mit zunehmender Mischzeit ab. Während des Mischvorgangs werden die Nanomaterial-Agglomerate zerkleinert [7,8], die Anzahl der adsorbierten Agglomerate nimmt jedoch zu. Dadurch wird das Partikelvolumen insgesamt größer, was in kleineren Werten für die Dichte resultiert.

Bei den ternären Mischungen liegt die Dichte insgesamt niedriger. Dies ergibt sich durch die Dichten der Reinstoffe. Maisstärke besitzt eine Feststoffdichte von 1.574 [g/cm<sup>3</sup>]. Die Diskrepanz zum angegebenen Wert von 1.478 [g/cm<sup>3</sup>] in der Produktspezifikation (vgl. Abschnitt 4.1.1) ergibt sich durch die Konditionierung. Die wahre Dichte von Ibuprofen wird im Bereich zwischen 1.111 und 1.119 [g/cm<sup>3</sup>] angegeben (vgl. Abschnitt 4.1.3). Durch das 50:50 Mischverhältnis von Wirk- und Hilfsstoff liegen die Dichtewerte im Bereich von 1.3 [g/cm<sup>3</sup>]. Auch hier zeigt sich das bessere Wasserbindungsvermögen des Aerosil<sup>®</sup> 200 gegenüber dem Titandioxid in höheren Dichtewerten. Erstaunlich sind die im Vergleich zu den hydrophilen Substanzen höheren Dichten der hydrophoben Nanomaterialien. Offensichtlich ergibt sich durch den Zusatz des ebenfalls hydrophoben Ibuprofens ein Masse-Volumenverhältnis, das zu diesen Werten führt. Bei den Mischungen mit Printex<sup>®</sup> 95 ist ein deutlicher Anstieg der Dichten bei längeren Mischzeiten vorhanden. Dies kann auf die Bildung sehr großer Agglomerate im Laufe des Mischvorgangs zurückgeführt werden (vgl. Abschnitt 5.3.2.4), die zu einer Verkleinerung des Gesamtvolumens und damit zur Erhöhung der Dichte führen.

# 5.3 Rasterelektronenmikroskopische Aufnahmen der ternären Mischungen

Meyer hat mit Hilfe elektronenmikroskopischer Aufnahmen die Veränderung der Oberflächenbelegung der Maisstärke in Abhängigkeit von der Mischzeit nachgewiesen und das Ausmaß der Belegung bestimmt [7]. Dabei hat sich gezeigt, dass die Maisstärke gleichmäßig durch das Nanomaterial bedeckt wird, was auf die annähernde Kugelform zurückzuführen ist. Da Ibuprofen nicht diese Idealform aufweist, sondern eine längliche, kantige Form besitzt (vgl. Abschnitt 5.1.2), ist die Art der Belegung von zentralem Interesse.

# 5.3.1 Belegung der Maisstärke

Um zu prüfen, ob auch in den ternären Mischungen die Belegung der Maisstärke ebenso gleichmäßig erfolgt wie in den binären, werden entsprechende Aufnahmen für die unterschiedlichen Nanomaterialien gemacht.

# 5.3.1.1 Aerosil<sup>®</sup> 200

Die folgenden Abbildungen 5.4 bis 5.13 zeigen die Belegung der Maisstärkeoberfläche mit Aerosil<sup>®</sup> 200 in Abhängigkeit von der Mischzeit.



Abbildung 5.4: Aerosil<sup>®</sup> 200 auf Maisstärke, 1 min, x10000.



Abbildung 5.7: Aerosil<sup>®</sup> 200 auf Maisstärke, 60 min, x10000.



Abbildung 5.5: Aerosil<sup>®</sup> 200 auf Maisstärke, 10 min, x10000.



Abbildung 5.6: Aerosil<sup>®</sup> 200 auf Maisstärke, 30 min, x10000.



Abbildung 5.8: Aerosil<sup>®</sup> 200 auf Maisstärke, 180 min, x10000.



Abbildung 5.9: Aerosil<sup>®</sup> 200 auf Maisstärke, 360 min, x10000.



Abbildung 5.10: Aerosil<sup>®</sup> 200 auf Maisstärke, 720 min, x10000.



Abbildung 5.11: Aerosil<sup>®</sup> 200 auf Maisstärke, 1440 min, x10000.



Abbildung 5.12: Aerosil<sup>®</sup> 200 auf Maisstärke, 2880 min, x10000.



Abbildung 5.13: Aerosil<sup>®</sup> 200 auf Maisstärke, 4320 min, x10000.

Wie auf den Abbildungen 5.4-5.13 zu sehen ist, nimmt die Belegung der Maisstärke ebenfalls mit längerer Mischzeit zu und weist die analoge Gleichmäßigkeit auf. Bei langem Mischen (ab 1440 min) ist die Oberfläche so dicht bedeckt, dass die Agglomerate nicht mehr einzeln vorliegen, sondern die Maisstärkeoberfläche gleichmäßig belegt ist.

#### Aerosil<sup>®</sup> R 805 5.3.1.2

In den Abbildungen 5.14-5.23 sind die verschiedenen Mischzeiten der Maisstärke mit Aerosil<sup>®</sup> R 805 in der ternären Mischung dargestellt.







Maisstärke, 1 min, x10000.

Maisstärke, 10 min, x10000.

Abbildung 5.14: Aerosil<sup>®</sup> R 805 auf Abbildung 5.15: Aerosil<sup>®</sup> R 805 auf Abbildung 5.16: Aerosil<sup>®</sup> R 805 auf Maisstärke, 30 min, x10000.



Abbildung 5.17: Aerosil<sup>®</sup> R 805 auf Maisstärke, 60 min, x10000. Abbildung 5.18: Aerosil<sup>®</sup> R 805 auf Maisstärke, 180 min, x10000.





Abbildung 5.19: Aerosil<sup>®</sup> R 805 auf Maisstärke, 360 min, x10000.



parat 15 720 ------2 µm



Abbildung 5.20: Aerosil® R 805 auf<br/>Maisstärke, 720 min, x10000.Abbildung 5.21: Aerosil® R 805 auf<br/>Maisstärke, 1440 min, x10000.Abbildung 5.22: Aerosil® R 805 auf<br/>Maisstärke, 2880 min, x10000.



—2 µm



Abbildung 5.23: Aerosil<sup>®</sup> R 805 auf Maisstärke, 4320 min, x10000.

Die Belegungsdichte nimmt ebenfalls mit zunehmender Mischzeit zu, erfolgt jedoch insgesamt schneller. Dies ist v. a. bei den niedrigen Mischzeiten zu erkennen (vgl. Abb. 5.4-5.6 und 5.14-5.16).

# 5.3.1.3 Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25

Die Abbildungen 5.24-5.33 zeigen die entsprechenden Maisstärkebelegungen mit dem hydrophilen Titandioxid.



Abbildung 5.24: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 1 min, x10000.



-2 µm-

Abbildung 5.27: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 60 min, x10000.



Abbildung 5.25: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 10 min, x10000.



Abbildung 5.28: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 180 min, x10000.



Abbildung 5.26: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 30 min, x10000.



Abbildung 5.29: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 360 min, x10000.



Abbildung 5.30: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 720 min, x10000.



Abbildung 5.33: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 4320 min, x10000.



Abbildung 5.31: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 1440 min, x10000.



Abbildung 5.32: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Maisstärke, 2880 min, x10000.

Auch mit dem Titandioxid verläuft die Belegung der Maisstärke in der ternären Mischung analog der Belegung in der binären Mischung. Auffallend sind jedoch einige sehr große Agglomerate bei den Mischzeiten 10 min, 30 min und 180 min (Abb. 5.25, 5.26, 5.28). Agglomerate dieser Größe treten bei den binären Mischungen bei den entsprechenden Mischzeiten nicht mehr auf (vgl. [7]).

# 5.3.1.4 **Printex**<sup>®</sup> 95

Die Belegung mit dem Rußprodukt Printex<sup>®</sup> 95 wurde ebenfalls untersucht. Die Abbildungen 5.34-5.43 zeigen die Ergebnisse.



Abbildung 5.34: Printex<sup>®</sup> 95 auf Maisstärke, 1 min, x10000.



Abbildung 5.35: Printex<sup>®</sup> 95 auf Maisstärke, 10 min, x10000.



Abbildung 5.36: Printex<sup>®</sup> 95 auf Maisstärke, 30 min, x10000.



Abbildung 5.37: Printex<sup>®</sup> 95 auf Maisstärke, 60 min, x10000.



Abbildung 5.38: Printex<sup>®</sup> 95 auf Maisstärke, 180 min, x10000.



Abbildung 5.39: Printex<sup>®</sup> 95 auf Maisstärke, 360 min, x10000.



Abbildung 5.40: Printex<sup>®</sup> 95 auf Maisstärke, 720 min, x10000.



Abbildung 5.41: Printex<sup>®</sup> 95 auf Maisstärke, 1440 min, x10000.



Abbildung 5.42: Printex<sup>®</sup> 95 auf Maisstärke, 2880 min, x10000.



Abbildung 5.43: Printex<sup>®</sup> 95 auf Maisstärke, 4320 min, x10000.

Die Belegung verläuft sehr schnell und die Agglomerate weisen bereits bei kurzen Mischzeiten eine geringe Größe auf. Vereinzelt treten sehr große Anlagerungen auf (Abb. 5.41), ansonsten liegt ein geschlossener Film auf der Maisstärkeoberfläche vor.

# 5.3.2 Belegung des Ibuprofens

Von besonderem Interesse ist die Belegung des Wirkstoffes in der Mischung. Verläuft sie ebenso wie bei den Maisstärkepartikeln gleichmäßig? Kann das Modell der Fließregulierung auf andere Partikelformen übertragen werden?

Abbildung 5.44 zeigt beispielhaft ein mit Aerosil<sup>®</sup> 200 belegtes Ibuprofenpartikel nach 2880minütiger Mischzeit bei 2000-facher Vergrößerung.

Auf der Abbildung ist deutlich zu erkennen, dass die Belegung nicht gleichmäßig verläuft. Neben Bereichen, wo die Agglomerate sehr dicht gepackt liegen (durchgezogener Pfeil), finden sich Areale, wo kaum bzw. keine Belegung vorhanden ist (gestrichelter Pfeil). Die dichteste Anordnung erfolgt in Rillen bzw. an Erhebungen und vor allem am Rand der Kristalle. Die fehlende Gleichmäßigkeit macht es nicht möglich, die Oberflächenbelegung quantitativ [7] zu erfassen, so dass die folgenden Aufnahmen den Einfluss der Mischzeit lediglich qualitativ beschreiben.



durchgezogene Markierung: Bereich mit dichter Belegung des Nanomaterials gestrichelte Markierung: keine Belegung vorhanden

Die Belegung des Ibuprofens wurde ebenfalls bei 10000-fachen Vergrößerungen untersucht, um Vergleiche mit den Maisstärkekörnern ziehen zu können. Die folgenden Aufnahmen stellen Ausschnitte aus den dichter belegten Regionen dar, da nur dort die Änderung mit unterschiedlicher Mischzeit deutlich wird.

# 5.3.2.1 Aerosil<sup>®</sup> 200

Die Abbildungen 5.45-5.54 zeigen die steigende Oberflächenbelegung des Ibuprofens mit Aerosil<sup>®</sup> 200 in Abhängigkeit von der Mischzeit.



Abbildung 5.45: Aerosil<sup>®</sup> 200 auf Ibuprofen, 1 min, x10000.



Abbildung 5.46: Aerosil<sup>®</sup> 200 auf Ibuprofen, 10 min, x10000.



Abbildung 5.47: Aerosil<sup>®</sup> 200 auf Ibuprofen, 30 min, x10000.



Abbildung 5.48: Aerosil<sup>®</sup> 200 auf Ibuprofen, 60 min, x10000.



Abbildung 5.49: Aerosil<sup>®</sup> 200 auf Ibuprofen, 180 min, x10000.



Abbildung 5.52: Aerosil<sup>®</sup> 200 auf Ibuprofen, 1440 min, x10000.



Abbildung 5.50: Aerosil<sup>®</sup> 200 auf Ibuprofen, 360 min, x10000.



Abbildung 5.53: Aerosil<sup>®</sup> 200 auf Ibuprofen, 2880 min, x10000.



Abbildung 5.54: Aerosil<sup>®</sup> 200 auf Ibuprofen, 4320 min, x10000.

Wie bei der Maisstärke nimmt auch beim Ibuprofen die Oberflächenbelegung mit steigender Mischzeit zu. Bereits ab 60 Minuten liegen die Agglomerate dicht an dicht gepackt vor (Abb. 5.48). Die Packungsdichte steigt über 180 und 360 Minuten weiter an (Abb. 5.49, 5.50), allerdings sind die Einzelagglomerate immer noch zu erkennen. Ab 720 Minuten ist stellenweise ein Film entstanden, die Agglomerate scheinen miteinander verschmolzen zu sein (Abb. 5.51). Dieser Effekt verstärkt sich, wenn das Mischen noch länger anhält (Abb. 5.52-5.54).

#### Aerosil<sup>®</sup> R 805 5.3.2.2

Der Verlauf der Belegung mit dem hydrophoben Aerosil ist in den folgenden Abbildungen (5.55-5.64) dargestellt.







Abbildung 5.55: Aerosi<sup>®</sup> R 805 auf Ibuprofen, 1 min, x10000. Buprofen, 10 min, x10000. Buprofen, 10 min, x10000. Buprofen, 30 min, x10000. Buprofen, 30 min, x10000.



Abbildung 5.58: Aerosil<sup>®</sup> R 805 auf Abbildung 5.59: Aerosil<sup>®</sup> R 805 auf Abbildung 5.60: Aerosil<sup>®</sup> R 805 auf Ibuprofen, 60 min, x10000.



Ibuprofen, 180 min, x10000.



Ibuprofen, 360 min, x10000.



Ibuprofen, 720 min, x10000.



Ibuprofen, 1440 min, x10000.



Ibuprofen, 2880 min, x10000.



Ibuprofen, 4320 min, x10000.

Beim Aerosil<sup>®</sup> R 805 erfolgt die Belegung schneller, wie bei Maisstärke auch. Bereits nach 10 Minuten liegen Bereiche mit einer nahezu geschlossenen Aerosil<sup>®</sup>-Decke vor (Abb. 5.56). Ab 60 Minuten Mischzeit (Abb. 5.58) sind die Einzelagglomerate nicht mehr voneinander zu unterscheiden und der Film zeigt die abgeplattete Struktur.

#### Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 5.3.2.3







Abbildung 5.72: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Ibuprofen, 1440 min, x10000.



Abbildung 5.73: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Ibuprofen, 2880 min, x10000.



Abbildung 5.67: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Ibuprofen, 30 min, x10000.



Abbildung 5.70: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Ibuprofen, 360 min, x10000.

71



Abbildung 5.74: Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 auf Ibuprofen, 4320 min, x10000.

Die Abbildungen 5.65 bis 5.74 zeigen die Belegung des Ibuprofens mit dem Titandioxid Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25. Es finden sich hier schon zu sehr frühen Mischzeiten Bereiche, in denen sich die Agglomerate zu abgeplatteten "Schuppen" zusammenlagern (Abb. 5.68). Diese Schuppenbildung findet statt, ohne dass die Oberfläche vorher gleichmäßig belegt wurde. Insgesamt ist der Film sehr ungleichmäßig. Es sind immer wieder größere Schuppen zu sehen, die abstehen (Abb. 5.70, 5.71).

# 5.3.2.4 **Printex**<sup>®</sup> 95

Die Belegung mit dem Ruß Printex<sup>®</sup> 95 ist den Abbildungen 5.75-5.84 zu entnehmen.



Abbildung 5.75: Printex<sup>®</sup> 95 auf Ibuprofen, 1 min, x10000.



Abbildung 5.76: Printex<sup>®</sup> 95 auf Ibuprofen, 10 min, x10000.





 Ung Prisent
 2 ymm
 Beschleungungsseannung Arbeitsabstand Vergrößerung Prisent
 Prisent

 ex
 95 auf
 Abbildung 5.79: Printex<sup>®</sup> 95 auf
 3000.

 D0000.
 Ibuprofen, 180 min, x10000.

Abbildung 5.80: Printex<sup>®</sup> 95 auf Ibuprofen, 360 min, x10000.







Abbildung 5.81: Printex<sup>®</sup> 95 auf Ibuprofen, 720 min, x10000.



Abbildung 5.82: Printex<sup>®</sup> 95 auf Ibuprofen, 1440 min, x10000.



Abbildung 5.83: Printex<sup>®</sup> 95 auf Ibuprofen, 2880 min, x10000.



Abbildung 5.84: Printex<sup>®</sup> 95 auf Ibuprofen, 4320 min, x10000.

Bei den Mischungen mit Printex<sup>®</sup> 95 tritt die Schuppenbildung bereits ab 1 Minute (Abb. 5.75) Mischzeit auf. Es finden sich z. T. sehr große Agglomeratauflagerungen (Abb. 5.78-5.80). Auffallend ist auch die Anlagerung der Agglomerate entlang der Erhebungen der Ibuprofenoberfläche (vgl. Abb. 5.3, 5.75, 5.79). Der Film bei langen Mischzeiten erweist sich als extrem ungleichmäßig (Abb. 5.81-5.84).

# 5.3.3 Vergleich der Belegungen

Der Verlauf der Maisstärkebelegung erfolgt bei allen Nanomaterialien analog dem der binären Mischungen. Mit zunehmender Mischzeit steigt die Agglomeratanzahl auf der Oberfläche, die Größe der Adsorbate wird kleiner aufgrund des Mahlvorgangs, der gleichzeitig mit dem Mischen stattfindet. Die Abbildungen 5.85 und 5.86 zeigen beispielhaft die Änderung der Agglomeratanzahl, Agglomeratgröße sowie der belegten Fläche in Abhängigkeit von der Mischzeit für die beiden Aerosile<sup>®</sup>. Die Auswertung erfolgte mit dem Bildanalysesystem Zeiss KS 300<sup>®</sup> (Anzahl ausgewertete Bilder n=4). Aus Gründen der Übersichtlichkeit sind die Mischzeiten auf der Abszisse nichtlinear aufgetragen. Dies gilt für alle folgenden Diagramme, soweit nicht anders angegeben.

Das hydrophobe Aerosil<sup>®</sup> R 805 führt hierbei zu einer schnelleren Oberflächenbelegung, was sich in einer höheren Agglomeratanzahl und belegten Fläche bei gleicher Mischdauer äußert. Die Bindungen innerhalb der Agglomerate sind bei den hydrophoben Stoffen weniger stark, so dass die Zerkleinerung durch das Mischen leichter und schneller möglich ist [7].

der

der

Verglichen mit früher ermittelten Belegungen [7,8] weisen die Maisstärkekörner der ternären Mischungen etwas geringere Agglomeratanzahlen auf. Dies liegt in der Partikelform der Ibuprofenkristalle begründet. Eine optimale Mahlwirkung wird mit sphärischen Partikeln erhalten, bei unregelmäßig geformten Körpern stehen kleinere bzw. insgesamt weniger Kontaktflächen zur Verfügung.

Die Abnahme der Agglomeratanzahl bzw. die Zunahme der Agglomeratgröße ab 720 Minuten ist auf das begrenzte Auflösungsvermögen des Bildanalyseprogramms zurückzuführen. Die Agglomerate liegen so dicht beieinander, dass das Programm keine Einzelagglomerate mehr erkennen kann.



Ein wesentlicher Unterschied des Ibuprofens im Vergleich zur Maisstärke besteht darin, dass keine gleichmäßige Oberflächenbelegung stattfindet. Vielmehr werden bestimmte Areale sehr schnell und ausgeprägt belegt, in anderen Bereichen findet sich kaum ein Agglomerat (vgl. Abb. 5.44). Dies ist wiederum auf die Partikelform der Wirkstoffkristalle zurückzuführen.

Die Randbereiche sowie Erhöhungen und Rillen stellen besonders exponierte Areale dar, so dass dort die Anlagerung mehrerer Agglomerate erfolgt, noch bevor andere Stellen belegt werden.

An den deutlich belegten Stellen ist zu erkennen, dass die beiden Aerosile<sup>®</sup> mit steigender Mischzeit zu einer Zunahme der Oberflächenbedeckung führen, die mit der Maisstärkebelegung vergleichbar ist. Auch hier bewirkt das hydrophobe Material eine stärkere Anlagerung als Aerosil<sup>®</sup> 200 bei gleicher Mischdauer. Obwohl die Agglomerate dicht an dicht gepackt sind, bleibt ihre Individualität und damit ihr Rauigkeitscharakter beim Aerosil<sup>®</sup> 200 bis zu 360 Minuten Mischzeit bestehen, beim Aerosil<sup>®</sup> R 805 bis 30 Minuten (Abb. 5.48-5.50, 5.56, 5.57). Danach treten Bereiche auf, in denen die Einzelagglomerate abgeplattet sind und miteinander verschmolzen zu sein scheinen, (Abb. 5.51-5.54, 5.58-5.64): Die "Filmbildung" tritt ein, wie sie von Meyer [7] beschrieben wurde. Ab diesem Zeitpunkt haben die Agglomerate ihre Abstandshalter-Wirkung verloren, interpartikuläre Haftkräfte werden wirksam und die Fließfähigkeit verschlechtert sich.

Das Titandioxid Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 erreicht bei kurzen Mischzeiten bis 30 Minuten die erwarteten Belegungen. Ab 60 Minuten jedoch bilden sich kleinere, abgegrenzte Areale, wo die Agglomerate abgeplattet und zusammenhängend sind, eine Art "Schuppen". Dabei ist die Ibuprofenoberfläche noch nicht vollständig belegt, wie es bei den Aerosilen<sup>®</sup> der Fall ist, bevor die Filmbildungsphase einsetzt. Es bildet sich bei länger andauerndem Mischen ebenfalls ein Film aus, allerdings ist dieser weniger gleichmäßig als bei den Aerosilen<sup>®</sup> (Abb. 5.70-5.74). Es finden sich immer wieder Bereiche, wo der Film unterbrochen ist und Schuppen herausragen (Abb. 5.70, 5.71).

Printex<sup>®</sup> 95 bewirkt bei der Maisstärke wie das ebenfalls hydrophobe Aerosil<sup>®</sup> R 805 eine schnelle und gleichmäßige Belegung. Dies wäre für das Ibuprofen ebenso zu erwarten, jedoch zeigen die REM-Aufnahmen ein völlig anderes Bild. Die Schuppenbildung beginnt bereits ab 1 Minute Mischzeit (Abb. 5.75). Zusätzlich bilden sich sehr große Agglomerate, die eine abgeplattete Oberfläche aufweisen (Abb. 5.78-5.80). Diese Riesenagglomerate könnten ursprünglich in der Mischung vorhandene Agglomerate sein, die adsorbiert, aber nicht zerkleinert und durch den Kontakt mit anderen Partikeln abgeplattet wurden. Der Durchmesser dieser Teilchen bewegt sich im Bereich von 1-2 μm. Selbst die großen Agglomerate auf der Maisstärke bei Mischzeiten von 1 Minute liegen jedoch im Nanometerbereich, so dass sich die Printex<sup>®</sup>-Auflagerungen offensichtlich im Verlauf des Mischvorgangs erst gebildet haben. Möglicherweise bestehen diese Agglomerate auch aus Teilstücken des "Films", die abgeplatzt sind, abgerundet und an anderer Stelle wieder adsorbiert wurden. Auffallend ist auch, dass sich der Ruß bevorzugt an den Erhebungen auf der Ibuprofenoberfläche anlagert und somit zur Bildung tieferer Rillen führt (Abb. 5.75, 5.76). Die Auflagerung scheint bei längerer Mischzeit in mehreren Schichten zu verlaufen (Abb.

5.79). Insgesamt ist der "Film" noch unregelmäßiger als beim Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 mit deutlich hervortretenden Schuppen.

## 5.4 Fließverhalten der Mischungen

Mit Hilfe der Schütt- und Stampfdichten können Rückschlüsse auf das Fließverhalten bzw. auf die Kompressibilität von Pulvern gezogen werden. Im Folgenden sind diese Parameter für die binären und ternären Gemische aufgeführt. Es soll der Einfluss der Oberflächenbelegung auf die Fließeigenschaften und die Kompressibilität untersucht und die Übertragbarkeit von binären auf ternäre Mischungen überprüft werden.

## 5.4.1 Schütt- /Stampfdichte

Die Schüttdichte wird aus der Masse einer definierten, lose in einen graduierten Messzylinder eingefüllten Menge Pulver und dem von diesem Pulver eingenommenen Volumen bestimmt. Wird die lose eingefüllte Pulvermischung definierten Stampfbewegungen ausgesetzt, können interpartikuläre Haftkräfte überwunden werden und das Pulver geht in einen geordneteren Zustand über. Für die Stampfdichte spielt neben der Partikelgröße vor allem die Partikelform eine entscheidende Rolle. Je sphärischer ein Teilchen ist, eine desto dichtere Packung ist möglich.

Die folgenden Abschnitte zeigen den Verlauf der Schütt- und Stampfdichten für die untersuchten Nanomaterialien abhängig von deren Zumischdauer zur Maisstärke bzw. Maisstärke/Ibuprofen und damit von deren Oberflächenbelegungen. Aufeinander folgende Messungen, die sich signifikant unterscheiden, werden durch eine Markierung (\*) der Datenpunkte gekennzeichnet. Die dazu gehörigen Werte sind in den entsprechenden Tabellen aufgelistet.

## 5.4.1.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Abbildung 5.87 zeigt die Verläufe der Schüttdichten für die binären Mischungen der vier Nanomaterialien mit Maisstärke in Abhängigkeit von der Mischzeit. Tabelle 5.5 gibt die dazugehörigen Messwerte an (Mittelwerte aus drei Messungen, Einzelwerte vgl. Anhang 9.4.2.4). In Tabelle 5.6 sind die dazugehörigen Stampfdichten aufgelistet (ohne Abbildung). Die Schüttdichten aller Mischungen steigen mit zunehmender Mischdauer an. Die Dichten der Mischungen mit den hydrophoben Materialien liegen ab einer Mischzeit von 30 Minuten signifikant höher als die der hydrophilen Substanzen. Printex<sup>®</sup> 95 zeigt bereits ab 1-minütigem Mischen eine signifikant höhere Schüttdichte als die der übrigen Nanomaterialien.

Bei den hydrophilen Nanomaterialien tritt ein Abfall der Dichtewerte bei langen Mischzeiten (ab 24 h bei Aerosil<sup>®</sup> 200, ab 48 h bei Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25) auf.



Abbildung 5.87: Schüttdichte der binären Mischungen aus Maisstärke und Nanomaterial abhängig von der Mischzeit (n=3).

Tabelle 5.5: Schüttdichte [g/ml] der binären Mischungen aus Maisstärke und Nanomaterial abhängig von der Mischzeit (n=3).

| Mischzeit [min]                                                                   | 1                                                           | 10                                                          | 30                                                          | 60                                                          | 180                                                         |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Aerosil <sup>®</sup> 200                                                          | 0.490 ± 0.001                                               | 0.568 ± 0.000                                               | $0.598 \pm 0.004$                                           | 0.607 ± 0.004                                               | $0.625 \pm 0.000$                                           |
| Aerosil <sup>®</sup> R 805                                                        | $0.503 \pm 0.006$                                           | $0.579 \pm 0.004$                                           | $0.620 \pm 0.005$                                           | $0.638 \pm 0.005$                                           | 0.641 ± 0.000                                               |
| Printex <sup>®</sup> 95                                                           | 0.566 ± 0.010                                               | 0.647 ± 0.005                                               | 0.676 ± 0.000                                               | $0.685 \pm 0.000$                                           | 0.694 ± 0.000                                               |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                       | $0.472 \pm 0.000$                                           | $0.538 \pm 0.006$                                           | $0.581 \pm 0.000$                                           | $0.617 \pm 0.008$                                           | $0.628 \pm 0.005$                                           |
| Mischzeit [min]                                                                   | 360                                                         | 720                                                         | 1440                                                        | 2880                                                        | 4320                                                        |
|                                                                                   |                                                             |                                                             |                                                             |                                                             |                                                             |
| Aerosil <sup>®</sup> 200                                                          | 0.630 ± 0.005                                               | 0.625 ± 0.000                                               | 0.600 ± 0.004                                               | 0.538 ± 0.000                                               | 0.524 ± 0.003                                               |
| Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805                            | 0.630 ± 0.005<br>0.655 ± 0.005                              | 0.625 ± 0.000<br>0.658 ± 0.000                              | 0.600 ± 0.004<br>0.658 ± 0.000                              | 0.538 ± 0.000<br>0.658 ± 0.000                              | 0.524 ± 0.003<br>0.670 ± 0.005                              |
| Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805<br>Printex <sup>®</sup> 95 | $0.630 \pm 0.005$<br>$0.655 \pm 0.005$<br>$0.704 \pm 0.010$ | $0.625 \pm 0.000$<br>$0.658 \pm 0.000$<br>$0.708 \pm 0.006$ | $0.600 \pm 0.004$<br>$0.658 \pm 0.000$<br>$0.688 \pm 0.006$ | $0.538 \pm 0.000$<br>$0.658 \pm 0.000$<br>$0.708 \pm 0.006$ | $0.524 \pm 0.003$<br>$0.670 \pm 0.005$<br>$0.708 \pm 0.006$ |

Tabelle 5.6: Stampfdichte [g/ml] der binären Mischungen aus Maisstärke und Nanomaterial abhängig von der Mischzeit (n=3).

| Mischzeit [min]                                                                                      | 1                                                             | 10                                                            | 30                                                             | 60                                                             | 180                                                            |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Aerosil <sup>®</sup> 200                                                                             | 0.748 ± 0.014                                                 | 0.820 ± 0.000                                                 | 0.838 ± 0.008                                                  | 0.843 ± 0.008                                                  | 0.862 ± 0.000                                                  |
| Aerosil <sup>®</sup> R 805                                                                           | 0.802 ± 0.007                                                 | 0.847 ± 0.000                                                 | 0.877 ± 0.000                                                  | $0.893 \pm 0.000$                                              | $0.893 \pm 0.000$                                              |
| Printex <sup>®</sup> 95                                                                              | 0.811 ± 0.008                                                 | 0.877 ± 0.000                                                 | 0.893 ± 0.000                                                  | $0.909 \pm 0.000$                                              | 0.926 ± 0.000                                                  |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                                          | 0.781 ± 0.000                                                 | 0.833 ± 0.000                                                 | $0.862 \pm 0.000$                                              | 0.877 ± 0.000                                                  | 0.882 ± 0.009                                                  |
|                                                                                                      |                                                               |                                                               |                                                                |                                                                |                                                                |
| Mischzeit [min]                                                                                      | 360                                                           | 720                                                           | 1440                                                           | 2880                                                           | 4320                                                           |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200                                                          | <b>360</b><br>0.862 ± 0.000                                   | <b>720</b><br>0.862 ± 0.000                                   | <b>1440</b><br>0.857 ± 0.008                                   | <b>2880</b><br>0.824 ± 0.008                                   | <b>4320</b><br>0.798 ± 0.007                                   |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805                            | <b>360</b><br>0.862 ± 0.000<br>0.909 ± 0.000                  | <b>720</b><br>0.862 ± 0.000<br>0.909 ± 0.000                  | <b>1440</b><br>0.857 ± 0.008<br>0.909 ± 0.000                  | <b>2880</b><br>0.824 ± 0.008<br>0.909 ± 0.000                  | <b>4320</b><br>0.798 ± 0.007<br>0.915 ± 0.010                  |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805<br>Printex <sup>®</sup> 95 | <b>360</b><br>0.862 ± 0.000<br>0.909 ± 0.000<br>0.932 ± 0.010 | <b>720</b><br>0.862 ± 0.000<br>0.909 ± 0.000<br>0.943 ± 0.000 | <b>1440</b><br>0.857 ± 0.008<br>0.909 ± 0.000<br>0.943 ± 0.000 | <b>2880</b><br>0.824 ± 0.008<br>0.909 ± 0.000<br>0.943 ± 0.000 | <b>4320</b><br>0.798 ± 0.007<br>0.915 ± 0.010<br>0.943 ± 0.000 |

Signifikanz Stampfdichte:

 $\begin{array}{l} \mbox{Aerosil}^{\$} \ 200: 1 \ \mbox{min} - 10 \ \mbox{min}, 1440 \ \mbox{min} - 2880 \ \mbox{min} \\ \mbox{Aerosil}^{\$} \ \mbox{R 805: 1 min} - 10 \ \mbox{min}, 10 \ \mbox{min} - 30 \ \mbox{min}, 30 \ \mbox{min} - 60 \ \mbox{min}, 180 \ \mbox{min} - 360 \ \mbox{min} \\ \mbox{Printex}^{\$} \ \mbox{95: 1 min} - 10 \ \mbox{min}, 60 \ \mbox{min} - 180 \ \mbox{min} \end{array}$ 

Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25: 1 min – 10 min, 10 min – 30 min

Die Stampfdichten weisen einen den Schüttdichten vergleichbaren Verlauf auf. Auch hier zeigen sich die Abhängigkeit von der Oberflächenbelegung und die Überlegenheit der hydrophoben Nanomaterialien über die hydrophilen, was sich generell in höheren Werten und dem Abfall der Dichten bei langen Mischzeiten des hydrophilen Aerosils<sup>®</sup> 200 äußert. Bei Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 ist dies nicht sehr ausgeprägt, lediglich in der 4320-Mischung sind die Haftkräfte so stark, dass sie nicht durch Erschütterung überwunden werden können.

#### 5.4.1.2 Binäre Mischungen aus Maisstärke und Ibuprofen

Um zu prüfen, ob die Mischzeit primär Einfluss auf das Fließverhalten von Maisstärke-Ibuprofenmischungen hat, werden die Substanzen ohne Nanomaterial für die betreffenden Zeiten gemischt. Die Ergebnisse sind in Abbildung 5.88 bzw. in den Tabellen 5.7 (Schüttdichte) und 5.8 (Stampfdichte) aufgeführt (Rohdaten vgl. Abschnitt 9.4.2.3).

Tabelle 5.7: Schüttdichte [g/ml] der binären Mischungen aus Maisstärke und Ibuprofen abhängig von der Mischzeit (n=3).

| Mischzeit [min]      | 1                 | 10                | 30                | 60                | 180               |
|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Maisstärke+Ibuprofen | $0.414 \pm 0.004$ | $0.410 \pm 0.007$ | $0.412 \pm 0.008$ | $0.412 \pm 0.004$ | $0.412 \pm 0.004$ |
| Mischzeit [min]      | 360               | 720               | 1440              | 2880              | 4320              |
| Maisstärke+Ibuprofen | $0.412 \pm 0.004$ | $0.410 \pm 0.012$ | $0.410 \pm 0.007$ | 0.408 ± 0.101     | $0.412 \pm 0.004$ |

Tabelle 5.8: Stampfdichte [g/ml] der binären Mischungen aus Maisstärke und Ibuprofen abhängig von der Mischzeit (n=3).

| Mischzeit [min]      | 1                 | 10                | 30                | 60            | 180               |
|----------------------|-------------------|-------------------|-------------------|---------------|-------------------|
| Maisstärke+Ibuprofen | $0.728 \pm 0.006$ | $0.725 \pm 0.000$ | $0.732 \pm 0.006$ | 0.725 ± 0.011 | $0.725 \pm 0.000$ |
|                      |                   |                   |                   |               |                   |
| Mischzeit [min]      | 360               | 720               | 1440              | 2880          | 4320              |



Abbildung 5.88: Schütt- und Stampfdichte der binären Mischungen aus Maisstärke und Ibuprofen abhängig von der Mischzeit (n=3). Weder die Schütt- noch die Stampfdichte der reinen Maisstärke-/Wirkstoffmischungen ändert sich zu irgendeiner Mischzeit signifikant.

#### 5.4.1.3 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

Die ternären Mischungen werden ebenfalls auf ihr Fließverhalten untersucht. Abbildung 5.89, Tabelle 5.9 und 5.10 zeigen die Ergebnisse (Stampfdichten ohne Abbildung, Rohdaten im Anhang 9.4.2.5).



Abbildung 5.89: Schüttdichte der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial abhängig von der Mischzeit (n=3).

Tabelle 5.9: Schüttdichte [g/ml] der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial abhängig von der Mischzeit (n=3).

| Mischzeit [min]                                                                                      | 1                                                             | 10                                                            | 30                                                             | 60                                                             | 180                                                            |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Aerosil <sup>®</sup> 200                                                                             | 0.558 ± 0.004                                                 | $0.625 \pm 0.000$                                             | $0.625 \pm 0.000$                                              | $0.630 \pm 0.005$                                              | 0.641 ± 0.000                                                  |
| Aerosil <sup>®</sup> R 805                                                                           | $0.568 \pm 0.000$                                             | $0.579 \pm 0.004$                                             | $0.607 \pm 0.004$                                              | $0.615 \pm 0.004$                                              | $0.638 \pm 0.005$                                              |
| Printex <sup>®</sup> 95                                                                              | $0.556 \pm 0.000$                                             | $0.579 \pm 0.004$                                             | $0.575 \pm 0.007$                                              | $0.543 \pm 0.000$                                              | 0.521 ± 0.000                                                  |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                                          | $0.568 \pm 0.000$                                             | $0.600 \pm 0.004$                                             | $0.622 \pm 0.005$                                              | $0.622 \pm 0.005$                                              | $0.598 \pm 0.004$                                              |
|                                                                                                      |                                                               |                                                               |                                                                |                                                                |                                                                |
| Mischzeit [min]                                                                                      | 360                                                           | 720                                                           | 1440                                                           | 2880                                                           | 4320                                                           |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200                                                          | <b>360</b><br>0.641 ± 0.000                                   | <b>720</b><br>0.633 ± 0.000                                   | <b>1440</b><br>0.600 ± 0.004                                   | <b>2880</b><br>0.562 ± 0.006                                   | <b>4320</b><br>0.521 ± 0.011                                   |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805                            | <b>360</b><br>0.641 ± 0.000<br>0.630 ± 0.005                  | <b>720</b><br>0.633 ± 0.000<br>0.625 ± 0.000                  | <b>1440</b><br>0.600 ± 0.004<br>0.622 ± 0.005                  | <b>2880</b><br>0.562 ± 0.006<br>0.603 ± 0.012                  | <b>4320</b><br>0.521 ± 0.011<br>0.588 ± 0.007                  |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805<br>Printex <sup>®</sup> 95 | <b>360</b><br>0.641 ± 0.000<br>0.630 ± 0.005<br>0.516 ± 0.005 | <b>720</b><br>0.633 ± 0.000<br>0.625 ± 0.000<br>0.505 ± 0.005 | <b>1440</b><br>0.600 ± 0.004<br>0.622 ± 0.005<br>0.500 ± 0.000 | <b>2880</b><br>0.562 ± 0.006<br>0.603 ± 0.012<br>0.489 ± 0.003 | <b>4320</b><br>0.521 ± 0.011<br>0.588 ± 0.007<br>0.476 ± 0.005 |

Auch bei den ternären Mischungen steigen mit zunehmender Mischzeit die Schüttdichten an. Der Anstieg auf den Maximalwert verläuft beim Aerosil<sup>®</sup> 200 schnell, nach 10 Minuten ändert sich die Dichte nicht mehr signifikant. Der signifikante Wiederabfall tritt bei einer Mischzeit von 1440 Minuten ein. Bei den Mischungen mit Aerosil<sup>®</sup> R 805 verläuft der Anstieg langsamer. Zusätzlich ist ebenfalls eine Verschlechterung der Fließfähigkeit bei langen Mischzeiten (ab 2880 Minuten) zu verzeichnen, der Effekt ist allerdings nicht stark ausgeprägt.

| Mischzeit [min]                                                                                      | 1                                                             | 10                                                            | 30                                                             | 60                                                             | 180                                                            |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Aerosil <sup>®</sup> 200                                                                             | 0.806 ± 0.000                                                 | 0.829 ± 0.008                                                 | 0.820 ± 0.000                                                  | 0.820 ± 0.000                                                  | 0.833 ± 0.000                                                  |
| Aerosil <sup>®</sup> R 805                                                                           | 0.777 ± 0.007                                                 | 0.754 ± 0.007                                                 | 0.761 ± 0.007                                                  | $0.769 \pm 0.000$                                              | $0.765 \pm 0.007$                                              |
| Printex <sup>®</sup> 95                                                                              | 0.806 ± 0.000                                                 | 0.833 ± 0.000                                                 | 0.829 ± 0.008                                                  | 0.815 ± 0.008                                                  | 0.794 ± 0.000                                                  |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                                          | $0.802 \pm 0.007$                                             | $0.829 \pm 0.008$                                             | 0.857 ± 0.008                                                  | $0.833 \pm 0.000$                                              | $0.833 \pm 0.000$                                              |
|                                                                                                      |                                                               |                                                               |                                                                |                                                                |                                                                |
| Mischzeit [min]                                                                                      | 360                                                           | 720                                                           | 1440                                                           | 2880                                                           | 4320                                                           |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200                                                          | <b>360</b><br>0.847 ± 0.000                                   | <b>720</b><br>0.838 ± 0.008                                   | <b>1440</b><br>0.833 ± 0.000                                   | <b>2880</b><br>0.824 ± 0.008                                   | <b>4320</b><br>0.794 ± 0.013                                   |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805                            | <b>360</b><br>0.847 ± 0.000<br>0.758 ± 0.000                  | <b>720</b><br>0.838 ± 0.008<br>0.758 ± 0.000                  | <b>1440</b><br>0.833 ± 0.000<br>0.777 ± 0.007                  | <b>2880</b><br>0.824 ± 0.008<br>0.833 ± 0.000                  | <b>4320</b><br>0.794 ± 0.013<br>0.829 ± 0.008                  |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805<br>Printex <sup>®</sup> 95 | <b>360</b><br>0.847 ± 0.000<br>0.758 ± 0.000<br>0.781 ± 0.000 | <b>720</b><br>0.838 ± 0.008<br>0.758 ± 0.000<br>0.781 ± 0.000 | <b>1440</b><br>0.833 ± 0.000<br>0.777 ± 0.007<br>0.773 ± 0.007 | <b>2880</b><br>0.824 ± 0.008<br>0.833 ± 0.000<br>0.769 ± 0.000 | <b>4320</b><br>0.794 ± 0.013<br>0.829 ± 0.008<br>0.758 ± 0.000 |

Tabelle 5.10: Stampfdichte [g/ml] der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial abhängig von der Mischzeit (n=3).

Signifikanz Stampfdichte:

Aerosil<sup>®</sup> R 805: 1440 min – 2880 min Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25: 1 min – 10 min, 10 min – 30 min

Die Absolutwerte liegen unter denen des Aerosil<sup>®</sup> 200. Das Titandioxid zeigt nach einem Anstieg der Schüttdichte bis 60 Minuten einen kontinuierlichen Abfall bei längeren Mischzeiten. Ebenso verhält sich Printex<sup>®</sup> 95, der signifikante Abfall der Dichte tritt hier

bereits ab 60 Minuten Mischdauer ein.

Die Stampfdichten gleichen im Verlauf den Schüttdichten. Bei Mischzeiten bis 60 Minuten bewirkt das Titandioxid z. T. höhere Werte als Aerosil<sup>®</sup> 200. Aerosil<sup>®</sup> R 805 weist die niedrigsten Stampfdichten über einen langen Mischzeitenbereich auf.

# 5.4.2 Kompressibilität

Als Maß für die Verdichtung des Pulvers lässt sich aus den Schütt- und Stampfdichten der Hausner-Faktor (HF) berechnen. Durch das Stampfen kommt es zur Zerstörung der während des Einfüllens entstandenen Hohlräume innerhalb des Pulverbetts. Je besser ein Pulver von vornherein fließt, desto kleiner sind diese Hohlräume und desto weniger weicht die Schüttvon der Stampfdichte ab. Entsprechend geringer ist die Kompressibilität und desto näher liegt der HF am Wert eins.

## 5.4.2.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Abbildung 5.90 zeigt den Verlauf des HF für die binären Mischungen aus Maisstärke und Nanomaterial, die dazugehörigen Werte sind in Tabelle 5.11 aufgeführt (Rohdaten im Anhang 9.4.2.4).

Wie aus Abbildung 5.90 ersichtlich wird, nimmt die Kompressibilität der Mischungen bei allen Nanomaterialien mit steigender Mischzeit ab. Hierbei zeigt das hydrophobe Printex<sup>®</sup> 95 initial die niedrigste Kompressibilität. Auch hier kommt es bei den Mischungen der hydrophilen Materialien zu einem Wiederanstieg bei einer hohen Oberflächenbelegung. Bei Aerosil<sup>®</sup> 200

erfolgt die Verschlechterung der Fließeigenschaften bei einer Mischzeit von 1440 Minuten, bei Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 tritt sie erst ab 2880 Minuten ein. Die binäre Mischung mit dem Titandioxid zeigt bei niedrigen Mischzeiten bis 60 Minuten das schlechteste Fließverhalten.



Abbildung 5.90: Hausner-Faktor der binären Mischungen aus Maisstärke und Nanomaterial abhängig von der Mischzeit (n=3).

Tabelle 5.11: Hausner-Faktoren [-] der binären Mischungen aus Maisstärke und Nanomaterial abhängig von der Mischzeit (n=3).

| Mischzeit [min]                             | 1            | 10           | 30               | 60           | 180          |
|---------------------------------------------|--------------|--------------|------------------|--------------|--------------|
| Aerosil <sup>®</sup> 200                    | 1.53 ± 0.030 | 1.44 ± 0.000 | 1.40 ± 0.004     | 1.39 ± 0.004 | 1.38 ± 0.000 |
| Aerosil <sup>®</sup> R 805                  | 1.59 ± 0.017 | 1.46 ± 0.010 | 1.42 ± 0.010     | 1.40 ± 0.010 | 1.39 ± 0.000 |
| Printex <sup>®</sup> 95                     | 1.43 ± 0.017 | 1.36 ± 0.010 | 1.32 ± 0.000     | 1.33 ± 0.000 | 1.33 ± 0.000 |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 1.66 ± 0.000 | 1.55 ± 0.017 | $1.48 \pm 0.000$ | 1.42 ± 0.018 | 1.41 ± 0.021 |
| Mischzeit [min]                             | 360          | 720          | 1440             | 2880         | 4320         |
| Aerosil <sup>®</sup> 200                    | 1.37 ± 0.010 | 1.38 ± 0.000 | 1.43 ± 0.004     | 1.53 ± 0.015 | 1.52 ± 0.023 |
| Aerosil <sup>®</sup> R 805                  | 1.39 ± 0.011 | 1.38 ± 0.000 | 1.38 ± 0.000     | 1.38 ± 0.000 | 1.37 ± 0.004 |
| Printex <sup>®</sup> 95                     | 1.32 ± 0.032 | 1.33 ± 0.011 | 1.37 ± 0.011     | 1.33 ± 0.011 | 1.33 ± 0.011 |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 1.40 ± 0.010 | 1.39 ± 0.000 | 1.39 ± 0.000     | 1.44 ± 0.010 | 1.44 ± 0.005 |

#### 5.4.2.2 Binäre Mischungen aus Maisstärke und Ibuprofen

Die Schütt- und Stampfdichten der reinen Hilfsstoff-/Wirkstoffmischungen haben sich zu keiner Mischzeit signifikant voneinander unterschieden. Auch die ermittelten Hausner-Faktoren (Abb. 5.91, Tabelle 5.12) unterscheiden sich in keiner Mischzeit signifikant.

Tabelle 5.12: Hausner-Faktoren [-] der binären Mischungen aus Maisstärke und Ibuprofen abhängig von der Mischzeit (n=3).

| Mischzeit [min]                             | 1                | 10               | 30           | 60           | 180          |
|---------------------------------------------|------------------|------------------|--------------|--------------|--------------|
| Aerosil <sup>®</sup> 200                    | 1.76 ± 0.016     | 1.77 ± 0.029     | 1.78 ± 0.043 | 1.76 ± 0.041 | 1.76 ± 0.017 |
| Mischzeit [min]                             | 360              | 720              | 1440         | 2880         | 4320         |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | $1.75 \pm 0.016$ | $1.77 \pm 0.050$ | 1 76 + 0 042 | 1 79 + 0 034 | 1 78 + 0 016 |



#### 5.4.2.3 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

Entsprechend den Schütt- und Stampfdichten der ternären Gemische verhält sich der Hausner-Faktor für die unterschiedlichen Mischzeiten. Die Ergebnisse sind in Abbildung 5.92 und Tabelle 5.13 (Rohdaten vgl. Anhang 9.4.2.5) dargestellt.



Abbildung 5.92: Hausner-Faktor der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial abhängig von der Mischzeit (n=3).

Aus Abb. 5.92 wird wie aus Abb. 5.90 ersichtlich, dass Printex<sup>®</sup> 95 bei den ternären Mischungen das am wenigsten potente Nanomaterial darstellt. Nach einem nur geringfügigen Abfall steigt der HF ab einer Mischzeit von 60 Minuten signifikant an. Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 zeigt einen ähnlichen Verlauf, die Zunahme der Kompressibilität erfolgt hier ab 3h Mischen. Die besten Dichtequotienten weisen die beiden Aerosile<sup>®</sup> auf, wobei das hydrophobe Aerosil<sup>®</sup> R 805 trotz der geringeren Schüttdichte (vgl. Abb. 5.90) ein besseres Stampf-/Schüttdichten-Verhältnis hat als Aerosil<sup>®</sup> 200. Die Wiederzunahme der

Kompressibilität bei langen Mischzeiten ist bei den ternären Mischungen auch beim Aerosil<sup>®</sup> R 805 ausgeprägt.

| Mischzeit [min]                             | 1            | 10           | 30           | 60           | 180              |
|---------------------------------------------|--------------|--------------|--------------|--------------|------------------|
| Aerosil <sup>®</sup> 200                    | 1.45 ± 0.009 | 1.33 ± 0.013 | 1.31 ± 0.000 | 1.30 ± 0.010 | 1.30 ± 0.000     |
| Aerosil <sup>®</sup> R 805                  | 1.37 ± 0.012 | 1.30 ± 0.017 | 1.25 ± 0.010 | 1.25 ± 0.009 | 1.20 ± 0.017     |
| Printex <sup>®</sup> 95                     | 1.45 ± 0.000 | 1.44 ± 0.010 | 1.44 ± 0.008 | 1.50 ± 0.014 | $1.52 \pm 0.000$ |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 1.41 ± 0.013 | 1.38 ± 0.004 | 1.38 ± 0.004 | 1.34 ± 0.010 | 1.39 ± 0.010     |
| Mischzeit [min]                             | 360          | 720          | 1440         | 2880         | 4320             |
| Aerosil <sup>®</sup> 200                    | 1.32 ± 0.000 | 1.32 ± 0.013 | 1.39 ± 0.010 | 1.47 ± 0.008 | 1.52 ± 0.008     |
| Aerosil <sup>®</sup> R 805                  | 1.20 ± 0.009 | 1.21 ± 0.000 | 1.25 ± 0.002 | 1.38 ± 0.029 | 1.41 ± 0.008     |
| Printex <sup>®</sup> 95                     | 1.52 ± 0.016 | 1.55 ± 0.016 | 1.55 ± 0.014 | 1.57 ± 0.009 | 1.59 ± 0.015     |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 1.43 ± 0.014 | 1.48 ± 0.008 | 1.51 ± 0.005 | 1.55 ± 0.008 | 1.55 ± 0.004     |

Tabelle 5.13: Hausner-Faktoren [-] der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial abhängig von der Mischzeit (n=3).

# 5.4.3 Einfluss der Mischzeit bei binären Mischungen ohne Nanomaterial

Durch die unterschiedliche Partikelgröße von Maisstärke und Ibuprofen wäre es möglich, dass die kleineren Maisstärkekörner sich zwischen den Ibuprofenkristallen anordnen bzw. auflagern und ähnlich wie die Nanomaterialien als Abstandshalter fungieren. Denkbar wäre auch eine Art "Kugellagerwirkung", wenn keine Adsorption der Maisstärketeilchen stattfindet, sondern sie sich frei in der Mischung bewegen und primär durch ihre Kugelform ein verbessertes Fließen ermöglichen.

Wäre dies der Fall, so sollte die Dauer des Mischens eine entscheidende Rolle spielen.

Die Schüttdichte der reinen Maisstärke liegt bei 0.51 [g/ml], die des Ibuprofens bei 0.36 [g/ml] (vgl. Abschnitt 5.1.3). Die Schüttdichte der 1-minütigen Maisstärke-/Ibuprofen-Mischung beträgt 0.41 [g/ml] (vgl. 5.4.1.2) und ändert sich mit zunehmender Mischdauer nicht. Der Wert der Mischung von 0.41 [g/ml] liegt zwischen den Werten für die Einzelstoffe.

Die theoretische Schüttdichte für die Mischung lässt sich über die Einzeldichten und die jeweiligen Massenanteile berechnen und ergibt sich zu:

0.5\*0.51 [g/ml] + 0.5\*0.36 [g/ml] = 0.435 [g/ml].

Vergleicht man die experimentell ermittelte Schüttdichte mit der theoretisch berechneten, so ist die theoretisch berechnete sogar etwas höher als die experimentell bestimmte. Somit bedingt die Maisstärke primär keine Verbesserung der Fließfähigkeit. Rasterelektronische Übersichtsaufnahmen (Abb. 5.93-5.95) zeigen, dass sich die Maisstärke zwar zum Teil an das Ibuprofen anlagert, aber es ist ebenfalls kein Unterschied zwischen den Mischzeiten zu erkennen, der auf eine unterschiedliche Mischgüte und ein davon abhängiges Fließverhalten schließen ließe.



Abbildung 5.93: Maisstärke+Ibuprofen, 1 min x200.

Abbildung 5.94: Maisstärke+Ibuprofen, 360 min x200.

Abbildung 5.95: Maisstärke+Ibuprofen, 4320 min x200.

#### 5.4.4 Einfluss der Oberflächenbelegung

Sowohl bei den binären als auch den ternären Mischungen steigt zunächst die Schüttdichte mit zunehmender Mischzeit an, bzw. fällt der Hausner-Faktor ab. Dies ist auf die steigende Oberflächenbelegung der Trägerstoffe mit den Nanomaterialien mit längerem Mischen zurückzuführen. Die dadurch bewirkte Abstandserhöhung bedingt eine Verringerung der interpartikulären Haftkräfte und damit eine makroskopische Verbesserung der Fließfähigkeit.

Bei den binären Mischungen zeigt sich die Überlegenheit der hydrophoben Nanomaterialien gegenüber den hydrophilen. Der Anstieg der Dichten erfolgt schneller (vgl. Abb. 5.87) und die Absolutwerte (vgl. Tab. 5.5) liegen höher. Die größere Potenz der hydrophoben Stoffe ist geringere Agglomeratstabilität aufgrund der chemischen auf die Eigenschaften zurückzuführen [7,59]. Dadurch liegen schneller mehr Agglomerate in einer adsorbierbaren Größe vor. Der Vergleich der Oberflächenbelegungen bestätigt dies [7]. Ein Wiederabfall bei langen Mischzeiten ist nicht zu erkennen. Bedingt durch die chemische Natur können sich bei den hydrophilen Substanzen zusätzlich stärker wirksame Wasserstoff-brückenbindungen ausbilden.

Bei den ternären Mischungen mit fast allen Nanomaterialien (außer Printex<sup>®</sup> 95) liegen die Schüttdichten initial höher als bei den binären (Abb. 5.96-5.99). Durch die Partikelgröße des Ibuprofens ergibt sich eine höhere Masse im Vergleich zur Maisstärke und damit eine höhere Gravitationskraft. Da das Fließverhalten vom Verhältnis der Haftkraft zur Schwerkraft bestimmt wird, ergibt sich für die ternären Mischungen ein günstigeres Verhältnis, resultierend in höheren Werten für die Dichte.

Beim Aerosil<sup>®</sup> 200 verläuft die Schüttdichte der wirkstoffhaltigen Mischung weitestgehend parallel zu jener der reinen Maisstärke-/ Nanomaterialmischung (vgl. Abbildung 5.96), lediglich der Anstieg verläuft etwas steiler. Die Belegung der Maisstärke in den ternären Mischungen erfolgt analog der Belegung in den binären Gemischen (vgl. Abb. 5.4-5.13). Die Anlagerung des Nanomaterials auf den Wirkstoffkristallen zeigt ebenfalls den bekannten Verlauf, im Vergleich zur Maisstärke scheint die Belegung jedoch dichter zu sein. Dies liegt vermutlich darin begründet, dass die Belegung aufgrund der Ibuprofenstruktur nicht gleichmäßig erfolgt (vgl. Abb. 5.44) und damit die Fläche der tatsächlich belegten Stellen kleiner ist.



Abbildung 5.96: Schüttdichte der Mischungen mit Aerosil<sup>®</sup> 200 in Abhängigkeit von der Mischzeit.



Abbildung 5.98: Schüttdichte der Mischungen mit Aeroxide  $^{\ensuremath{\mathbb{B}}}$  TiO\_2 P 25 in Abhängigkeit von der Mischzeit.



Abbildung 5.97: Schüttdichte der Mischungen mit Aerosil<sup>®</sup> R 805 in Abhängigkeit von der Mischzeit.



Abbildung 5.99: Schüttdichte der Mischungen mit Printex<sup>®</sup> 95 in Abhängigkeit von der Mischzeit.

Obwohl die Oberfläche sehr dicht belegt ist, sind die Einzelagglomerate bis zu einer Mischzeit von 360 Minuten zu erkennen (Abb. 5.45-5.50). Damit weist die Oberfläche die benötigte Rauheit auf, um abstandsvergrößernd zu wirken. Ab einer Mischzeit von 720 Minuten finden sich Bereiche, wo die Agglomerate so dicht gepackt liegen, dass sie nicht mehr voneinander zu unterscheiden sind (Abb. 5.51). Zudem sind sie durch die Einwirkung anderer Teilchen während des Mischvorgangs abgeplattet. Ab diesem Zeitpunkt besitzen sie keine Abstandshalterfunktion mehr. Trifft diese Fläche auf eine andere, werden

interpartikuläre Haftkräfte voll wirksam und die Fließfähigkeit sinkt. Dieser Effekt verstärkt sich mit längerem Mischen und tritt auch bei der Maisstärke auf (Filmbildung, vgl. Abb. 5.11-5.13). Makroskopisch äußert sich dies in einer Abnahme der Schüttdichte.

Beim Aerosil<sup>®</sup> R 805 erfolgt der Anstieg der Schüttdichte bei den ternären Mischungen langsamer als bei den binären und lediglich die 1-minütige Mischung weist eine höhere Dichte auf als das binäre 1-Minuten-Gemisch. Auf den REM-Bildern (Abb. 5.55-5.64) ist erkennbar, dass die Belegung des Ibuprofens sehr schnell erfolgt. Bereits ab 60 Minuten Mischzeit (Abb. 5.58) wirkt die Struktur abgeplattet. Im Verlauf der folgenden Mischzeiten ist die vollständige Belegung sehr gleichmäßig und glatt. Die belegte Maisstärke führt bei diesen Mischzeiten noch zu einer Verbesserung der Fließfähigkeit, so dass im Gesamten die Schüttdichte zwar ansteigt, jedoch langsamer und auf niedrigere Werte als bei den gleichen Mischzeiten der binären Mischungen. Bei langen Mischzeiten kann die Maisstärke den negativen Effekt des Ibuprofens nicht mehr kompensieren und als Folge tritt eine Abnahme der Fließfähigkeit ein.

Bei den ternären Mischungen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 tritt bereits ab einer Mischzeit von 180 Minuten ein signifikanter Abfall der Dichten ein. Wie den Abb. 5.65-5.74 zu entnehmen ist, lagert sich das Titandioxid sehr unregelmäßig auf dem Wirkstoff an. Ab 60 Minuten (Abb. 5.68) tritt "Schuppenbildung" auf, d.h. eine Zusammenlagerung von Agglomeraten erfolgt, bevor das Oberflächenareal gleichmäßig und dicht bedeckt ist. Die in der Folge zunehmende Bedeckung ist ebenfalls ungleichmäßig mit Bereichen, innerhalb derer Schuppen abstehen (Abb. 5.70-5.74). Beim Aneinandergleiten der Partikeln während des Fließens können sich diese herausragenden Schuppen ineinander verhaken und damit zu der ausgeprägten Abnahme der Fließfähigkeit führen.

Die Schüttdichten der ternären Mischungen mit Printex<sup>®</sup> 95 zeigen einen noch stärkeren Abfall mit zunehmender Mischdauer (Abb. 5.99), der bereits ab 30 Minuten eintritt. Die Maisstärkeoberfläche der binären [7] und ternären Mischungen wird durch den Ruß sehr gleichmäßig bedeckt. Zu erwarten wäre, dass das hydrophobe Material wie Aerosil<sup>®</sup> R 805 die Ibuprofenoberfläche ebenfalls sehr schnell und sehr gleichmäßig belegt. Die REM-Aufnahmen (Abb. 5.75-5.85) zeigen jedoch das Gegenteil. Die Schuppenbildung, wie sie auch beim Titandioxid auftritt, erfolgt beim Printex<sup>®</sup> 95 bereits ab einer Mischzeit von 1 Minute (Abb. 5.75). Desweiteren finden sich z. T. sehr große Auflagerungen (Abb. 5.78-5.80). Diese "Riesenagglomerate" haben sich offensichtlich erst im Verlauf des Mischens gebildet, da sie Durchmesser von 1-2 µm aufweisen und die Agglomerate des Nanomaterials vor dem Mischen eine Größe von ca. 100 nm besitzen. Der Printex<sup>®</sup> 95-Film bei längeren Mischzeiten ist insgesamt unregelmäßiger als beim Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25. Auch hier kann ein Verhaken der herausragenden Schuppen stattfinden und die Fließfähigkeit herabsetzen. Zudem liegen die "Riesenagglomerate" in einem Größenbereich, in dem das Agglomerate

einen wesentlichen Beitrag zur Haftkraft liefert (vgl. Modell nach Rumpf, Abschnitt 2.3.2, Abb. 2.9).

## 5.4.5 Korrelation mit Oberflächenbelegung

Wie in den vorangegangenen Abschnitten ausführlich dargestellt wurde, ist die Verbesserung des Fließverhaltens binärer Mischungen aus Maisstärke und Nanomaterial auf die steigende Oberflächenbelegung des Trägermaterials mit Agglomeraten des Fließregulierungsmittels zurückzuführen. Um dies zu bestätigen, werden die Schüttdichten der Mischungen mittels Rasterkraftmikroskop binären mit den bestimmten Oberflächenbelegungen (Rohdaten [8]) korreliert. Aufgrund aus der Auflösungsbeschränkung des Rasterkraftmikroskops können nur Mischzeiten bis 720 Minuten untersucht werden.



Abbildung 5.100: Vergleich des Verlaufs der Schüttdichte und der Oberflächenbelegung der binären Mischungen mit Aerosil<sup>®</sup> 200.



Abbildung 5.101: Vergleich des Verlaufs der Schüttdichte und der Oberflächenbelegung der binären Mischungen mit Aerosil<sup>®</sup> R 805.

| Tabelle 5 14: Korrelationskoeffizient r.n. | ach Pearson für die Parameter | Oberflächenhelegung - Schüttdichte |
|--------------------------------------------|-------------------------------|------------------------------------|
| Tabelle 5.14. Rollelationskoemzient i na   |                               | Obernachenbelegung - Schuttuichte  |

|   | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | Printex <sup>®</sup> 95 |
|---|--------------------------|----------------------------|---------------------------------------------|-------------------------|
| r | 0.894                    | 0.950                      | 0.963                                       | 0.975                   |

Die Abbildungen 5.100 und 5.101 zeigen exemplarisch die Verläufe der Oberflächenbelegungen und der Schüttdichten für die Aerosile<sup>®</sup>. In Tabelle 5.14 sind die Korrelationskoeffizienten für alle untersuchten Fließregulierungsmittel angegeben. Wie man den Grafiken und der Tabelle entnehmen kann, korrelieren die beiden Parameter sehr gut miteinander. Dies verstärkt die Annahme, dass die Veränderung der Schüttdichte auf das

unterschiedliche Ausmaß der Adsorption der Nanomaterialien an die Maisstärkeoberfläche zurückzuführen ist.

### 5.4.6 Korrelation mit Zugspannung

Mit dem Zugspannungstester nach *Schweiger* [7,37] können die interpartikulären Haftkräfte zwischen den Pulverteilchen bestimmt und damit auf deren Fließfähigkeit geschlossen werden. Um zu prüfen, ob die Ermittlung der Schüttdichte eine vergleichbare Aussage über die Fließfähigkeit von Pulvern macht, werden die Ergebnisse beider Methoden für die binären Mischungen miteinander korreliert (Zugspannungsdaten aus [8]).



Abbildung 5.102: Vergleich des Verlaufs der Schüttdichte und der Zugspannung der binären Mischungen mit Aerosil<sup>®</sup> 200.

Abbildung 5.103: Vergleich des Verlaufs der Schüttdichte und der Zugspannung der binären Mischungen mit Aerosil<sup>®</sup> R 805.

Die Abbildungen 5.102 bis 5.105 zeigen die Verläufe der Schüttdichten und der Zugspannungen für alle untersuchten Nanomaterialien. Tabelle 5.15 gibt die dazugehörigen Korrelationskoeffizienten (Pearson) an.

|   | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | Printex <sup>®</sup> 95 |
|---|--------------------------|----------------------------|---------------------------------------------|-------------------------|
| r | -0.810                   | -0.870                     | -0.845                                      | -0.077                  |





Abbildung 5.104: Vergleich des Verlaufs der Schüttdichte und der Zugspannung der binären Mischungen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25.

Abbildung 5.105: Vergleich des Verlaufs der Schüttdichte und der Zugspannung der binären Mischungen mit Printex<sup>®</sup> 95.

Die Schüttdichten der Pulvermischungen nehmen mit der Mischzeit zu, während gleichzeitig die Zugspannungen abnehmen. Der negative Zusammenhang wird durch das Vorzeichen ausgedrückt. Für die beiden Aerosile<sup>®</sup> und das Titandioxid ergeben sich Koeffizienten >0.8 und damit gute Korrelationen. Bei der Zugspannungskurve wird sehr früh bei allen drei Nanomaterialien die Plateauphase erreicht, in der keine Änderung mehr eintritt. Die Schüttdichte jedoch verändert sich z. T. noch signifikant. Die Ursache für diese Unterschiede liegt möglicherweise in der verschiedenartigen Probenvorbereitung. Printex<sup>®</sup> 95 weist eine niedrige Korrelation von nur 0.07 auf. Wie auf Abb. 5.103 zu sehen ist, steigt die Zuspannungskurve nach einem initialen Abfall langsam wieder an - wenn auch nicht signifikant - während die Schüttdichte kontinuierlich zunimmt.

Streng genommen darf der Begriff der "Fließfähigkeit" nur für Daten verwendet werden, die mittels der Scherzellmethode nach Jenike erstellt wurden. Die o. a. Zugspannungswerte wurden z. T. mit Scherzelldaten korreliert und ergaben gute Übereinstimmungen [7,23]. Die überwiegend gute Übereinstimmung der Stampfvolumeterdaten mit den Zugspannungen lässt auch bei dieser Messmethodik die Übertragung zu den Begriffen "Fließverhalten" und "Fließfähigkeit" zu.

# 5.5 Parameter zur Charakterisierung der Pulvermischungen während des Pressvorgangs

Im Folgenden soll das Verdichtungsverhalten der binären und ternären Mischungen während des Pressvorgangs untersucht und geprüft werden, ob sich dahingehend abhängig von der Oberflächenbelegung Unterschiede ergeben. Als Grundlage dient hierfür die Heckel-Gleichung (vgl. Abschnitt 2.4.1.2 Gl. 2.24).

## 5.5.1 Heckel-Diagramme

Die Abbildungen 5.106 und 5.107 zeigen exemplarisch den "in-die"-Verlauf nach Heckel für die binären Mischungen der Aerosile<sup>®</sup>. Aus Gründen der Übersichtlichkeit werden jeweils nur vier Mischzeiten aufgeführt. Auch wird die Darstellung bei einem niedrigen Druck (50 MPa) gewählt, da damit Partikelumordnungsvorgänge, die im unteren Druckbereich (0-ca. 8 MPa) auftreten, am deutlichsten hervorgehoben werden können. Der qualitative Verlauf bei höheren Pressdrücken bleibt gleich (siehe Anhang 9.5.1).

Die Diagramme unterscheiden sich in mehreren charakteristischen Punkten. Die Anfangspunkte (entsprechend den rel. Dichten  $D_0$ ) werden mit zunehmender Mischzeit für beide Aerosile<sup>®</sup> zu höheren Werten hin verschoben. Beim hydrophilen Nanomaterial tritt ein Wiederabfall bei der 3d-Mischung auf. Die Heckel-Daten der ausgewählten Mischzeiten entsprechen charakteristischen Mischdauern im Zugspannungsverlauf (vgl. Abb. 2.15). Bei der 1 min-Mischung ist die Zugspannung noch hoch, der Startpunkt des Heckel-Diagramms niedrig entsprechend einer geringen relativen Dichte. Die 180 min-Mischung befindet sich innerhalb des Zugspannungsverlaufs in der Plateauphase bei sehr niedrigen Zuspannungen und einer guten Fließfähigkeit. Die korrespondierende relative Dichte  $D_0$  im Heckel-Verlauf ist hoch. Die 720 min-Mischung zeigt in der Zugspannungskurve das Ende der Plateauphase an und weist bereits einen leichten Wiederanstieg der Haftkräfte auf. Im Heckel-Diagramm ist kein wesentlicher Unterschied der 12h- zur 3h-Mischung zu verzeichnen. Deutlich ausgeprägt ist das schlechte Fließverhalten der 4320 min-Mischung, das sich sowohl in hohen Zugspannungswerten als auch in niedrigen Werten für  $D_0$  zeigt.

Des Weiteren verändern sich die Steigungen des linearen Teils (Pressdruck ca. zwischen 8 und 50 MPa) bei den Mischungen mit Aerosil<sup>®</sup> 200. Eine größere Steigung kennzeichnet eine höhere Plastizität.

Die Dekompressionsphase (rückläufiger Teil der Kurve) zeigt keine wesentlichen Unterschiede in den Nanomaterialien und den einzelnen Mischzeiten. Eine große Abweichung von der Horizontalen bedeutet einen hohen Anteil an elastischer Rückdehnung. Dieser Effekt ist jedoch bei den untersuchten Mischungen wenig ausgeprägt, lediglich zwischen 5 und 0 MPa ist eine Abweichung von der Horizontalen zu verzeichnen.

Auf die einzelnen Heckel-Parameter wird in den folgenden Abschnitten genau eingegangen. Sie werden sowohl für die binären als auch für die ternären Mischungen berechnet und mit den bisherigen Ergebnissen verglichen.



#### 5.5.2 **Relative Dichte D**<sub>0</sub>

Die relative Dichte D<sub>0</sub> [-] ergibt sich aus der Matrizenbefüllung und kennzeichnet das Fließverhalten des Pulvers. Im Heckel-Diagramm kann sie aus dem Startpunkt der Kurve bestimmt werden, jenem Punkt, an dem der Pressdruck gerade noch 0 ist.

und

#### 5.5.2.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Den Verlauf der rel. Dichte  $D_0$  für die binären Mischungen aus Maisstärke und Nanomaterialien stellt Abbildung 5.108 dar. Die dazugehörigen Werte finden sich in Tab. 5.16.



Abbildung 5.108: Rel. Dichte  $D_0$  [-] der binären Mischungen aus Maisstärke und Nanomaterial in Abhängigkeit von der Mischzeit (n=3).

Tabelle 5.16: Rel. Dichte  $D_0$  [-] der binären Mischungen aus Maisstärke und Nanomaterial in Abhängigkeit von der Mischzeit (n=3).

| Mischzeit [min]                                       | 1                                                           | 10                                                          | 30                                                          | 60                                                          | 180                                                         |
|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Aerosil <sup>®</sup> 200                              | 0.481 ± 0.009                                               | $0.490 \pm 0.002$                                           | $0.502 \pm 0.004$                                           | 0.507 ± 0.005                                               | 0.513 ± 0.003                                               |
| Aerosil <sup>®</sup> R 805                            | 0.472 ± 0.012                                               | $0.489 \pm 0.008$                                           | 0.522 ± 0.001                                               | 0.518 ± 0.006                                               | $0.526 \pm 0.004$                                           |
| Printex <sup>®</sup> 95                               | $0.486 \pm 0.006$                                           | 0.510 ± 0.003                                               | $0.522 \pm 0.002$                                           | 0.516 ± 0.003                                               | 0.526 ± 0.005                                               |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25           | $0.442 \pm 0.004$                                           | $0.456 \pm 0.002$                                           | $0.468 \pm 0.002$                                           | $0.467 \pm 0.005$                                           | $0.470 \pm 0.003$                                           |
| Mischzeit [min]                                       | 360                                                         | 720                                                         | 1440                                                        | 2880                                                        | 4320                                                        |
| Aerosil <sup>®</sup> 200                              | 0 540 + 0 004                                               | 0 540 . 0 004                                               |                                                             |                                                             |                                                             |
|                                                       | $0.510 \pm 0.001$                                           | $0.510 \pm 0.004$                                           | $0.479 \pm 0.011$                                           | 0.453 ± 0.014                                               | $0.466 \pm 0.004$                                           |
| Aerosil <sup>®</sup> R 805                            | $0.510 \pm 0.001$<br>$0.515 \pm 0.002$                      | $0.510 \pm 0.004$<br>$0.527 \pm 0.001$                      | $0.479 \pm 0.011$<br>$0.516 \pm 0.008$                      | $0.453 \pm 0.014$<br>$0.530 \pm 0.002$                      | $0.466 \pm 0.004$<br>$0.531 \pm 0.004$                      |
| Aerosil <sup>®</sup> R 805<br>Printex <sup>®</sup> 95 | $0.510 \pm 0.001$<br>$0.515 \pm 0.002$<br>$0.529 \pm 0.003$ | $0.510 \pm 0.004$<br>$0.527 \pm 0.001$<br>$0.537 \pm 0.004$ | $0.479 \pm 0.011$<br>$0.516 \pm 0.008$<br>$0.532 \pm 0.003$ | $0.453 \pm 0.014$<br>$0.530 \pm 0.002$<br>$0.538 \pm 0.002$ | $0.466 \pm 0.004$<br>$0.531 \pm 0.004$<br>$0.538 \pm 0.002$ |

Die Dichte des Pulverbetts Matrize steigt bei allen verwendeten in der Fließregulierungsmitteln mit zunehmender Mischzeit an. Die Mischungen des Aerosil<sup>®</sup> 200 zeigen ab 1440 min Mischzeit den signifikanten Wiederabfall der Dichte. Bei solch langen Mischdauern tritt ebenfalls ein Wiederanstieg der Zugspannung ein [7,8], mit dem die Verschlechterung der Fließfähigkeit einhergeht. Die hydrophoben Nanomaterialien bewirken insgesamt höhere rel. Dichten als die hydrophilen Stoffe ohne eine charakteristische Verschlechterung der Fließfähigkeit bei langen Mischdauern.
# 5.5.2.2 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

Die Heckel-Analyse der ternären Mischungen ergab folgende Verläufe für die rel. Dichte D<sub>0</sub>.



Abbildung 5.109: Rel. Dichte  $D_0$  [-] der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial in Abhängigkeit von der Mischzeit (n=3).

| Tabelle | 5.17:    | Rel.  | Dichte   | D <sub>0</sub> [-] | der   | ternären | Mischungen | aus | Maisstärke, | Ibuprofen | und | Nanomaterial | in |
|---------|----------|-------|----------|--------------------|-------|----------|------------|-----|-------------|-----------|-----|--------------|----|
| Abhäng  | igkeit v | von d | er Misch | nzeit (r           | า=3). |          |            |     |             |           |     |              |    |

| Mischzeit [min]                             | 1                 | 10                | 30                | 60                | 180               |
|---------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Aerosil <sup>®</sup> 200                    | 0.577 ± 0.005     | 0.583 ± 0.002     | 0.583 ± 0.002     | $0.589 \pm 0.006$ | 0.582 ± 0.003     |
| Aerosil <sup>®</sup> R 805                  | $0.579 \pm 0.005$ | 0.584 ± 0.004     | 0.582 ± 0.006     | $0.582 \pm 0.005$ | 0.588 ± 0.005     |
| Printex <sup>®</sup> 95                     | 0.573 ± 0.002     | $0.585 \pm 0.004$ | $0.584 \pm 0.004$ | $0.573 \pm 0.005$ | $0.556 \pm 0.006$ |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | $0.580 \pm 0.009$ | $0.590 \pm 0.004$ | $0.591 \pm 0.007$ | $0.584 \pm 0.004$ | 0.576 ± 0.011     |
| Mischzeit [min]                             | 360               | 720               | 1440              | 2880              | 4320              |
| Aerosil <sup>®</sup> 200                    | 0.584 ± 0.009     | 0.584 ± 0.004     | 0.579 ± 0.002     | 0.561 ± 0.005     | 0.559 ± 0.003     |
| Aerosil <sup>®</sup> R 805                  | 0.584 ± 0.004     | 0.579 ± 0.001     | $0.575 \pm 0.009$ | 0.574 ± 0.010     | 0.561 ± 0.007     |
| <b>—</b> • • • ® <b>–</b> –                 |                   |                   |                   |                   |                   |
| Printex <sup>®</sup> 95                     | $0.556 \pm 0.008$ | 0.541 ± 0.007     | 0.541 ± 0.005     | $0.536 \pm 0.002$ | 0.534 ± 0.007     |

Initial steigt bei den ternären Mischungen die rel. Dichte  $D_0$  an. Aerosil<sup>®</sup> 200 bedingt auch in den ternären Mischungen den charakteristischen Verlauf und führt zur Abnahme der rel. Dichte bei langen Mischzeiten. Die Verschlechterung der Fließfähigkeit tritt im Gegensatz zu den binären Mischungen hier auch beim Aerosil<sup>®</sup> R 805 auf. Printex<sup>®</sup> 95 und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 führen ab 60 Minuten zu einer kontinuierlichen Abnahme von D<sub>0</sub>.

#### 5.5.2.3 Einfluss der Oberflächenbelegung

Beim Einfüllen des Pulvers in die Matrize ist der Einfluss der Oberflächenbelegung deutlich sichtbar. Das verbesserte Fließverhalten aufgrund der steigenden Adsorbatwirkung führt bei den binären Mischungen (Abb. 5.108) zu einer Erhöhung der Dichtewerte. Die Überlegenheit Substanzen gegenüber den hydrophilen Stoffen der hvdrophoben sowie die Fließfähigkeitsverschlechterung des Aerosil<sup>®</sup> 200 bei Mischzeiten ab einem Tag ist ebenfalls zu erkennen. Bei den ternären Mischungen (Abb. 5.109) zeigen die beiden Aerosile<sup>®</sup> einen den reinen Maisstärke-Mischungen vergleichbaren Verlauf. Es kommt lediglich bei langen Mischdauern mit dem hydrophoben Material zu einem leichten Abfall der Dichte. Das Titandioxid und das Rußprodukt bewirken beide ab 60 Minuten Mischzeit eine kontinuierliche Abnahme der Fließfähigkeit, was auf die sehr unregelmäßige Oberflächenbelegung des Ibuprofens zurückzuführen ist. Generell gelten für die rel. Dichte D<sub>0</sub> die gleichen Voraussetzungen wie für die Schüttdichte: Das Pulver wird ohne Erschütterung locker in die Matrize eingefüllt. Die entsprechende Packungsdichte ergibt sich durch die Fließeigenschaften des Pulvers. Damit sind die Änderungen von D<sub>0</sub> mit steigender Mischzeit auf die in den Abschnitten 5.3.2.3, 5.3.2.4 und 5.4.4 dargestellten Ergebnissen und Ausführungen zu erklären.

#### 5.5.2.4 Korrelation mit Schüttdichte

Wenn die Heckel-Dichte  $D_0$  der Schüttdichte entspricht, sollten die beiden Parameter miteinander korrelieren. Ob dies der Fall ist, wird in diesem Abschnitt geprüft.







Abbildung 5.111: Vergleich des Verlaufs der rel. Dichte  $D_0$  und der Schüttdichte der binären Mischungen mit Aerosil<sup>®</sup> R 805.

| Tabelle 5.18: Korrelationskoeffizient r nach Pearson für | <sup>·</sup> die Parameter rel | . Dichte D <sub>0</sub> – | Schüttdichte der | binären |
|----------------------------------------------------------|--------------------------------|---------------------------|------------------|---------|
| Mischungen aus Maisstärke und Nanomaterial.              |                                |                           |                  |         |

|   | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | Printex <sup>®</sup> 95 |
|---|--------------------------|----------------------------|---------------------------------------------|-------------------------|
| r | 0.785                    | 0.931                      | 0.947                                       | 0.959                   |

In den Abbildungen 5.110 und 5.111 sind beispielhaft die Verläufe für  $D_0$  und die Schüttdichte der binären Mischungen mit den Aerosilen<sup>®</sup> dargestellt. Tabelle 5.18 gibt die Korrelationskoeffizienten für die betreffenden Verläufe für die Mischungen mit allen untersuchten Fließregulierungsmitteln an. Die Korrelationen liegen für Aerosil<sup>®</sup> R 805, Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 und Printex<sup>®</sup> 95 bei über 90%, lediglich Aerosil<sup>®</sup> 200 weist eine etwas geringere Korrelation von 79% auf. Sie ist dennoch als gut zu verzeichnen. Damit führen die beiden Methoden Tablettierung und Stampfvolumeter zu vergleichbaren Ergebnissen.

Auch für die ternären Mischungen wird die Korrelation überprüft und ist beispielhaft in den Abbildungen 5.112 und 5.113 sowie in Tabelle 5.19 aufgeführt.



Abbildung 5.112: Vergleich des Verlaufs der rel. Dichte  $D_0$  und der Schüttdichte der ternären Mischungen mit Aerosil<sup>®</sup> 200.



Abbildung 5.113: Vergleich des Verlaufs der rel. Dichte  $D_0$  und der Schüttdichte der ternären Mischungen mit Aerosil^{^{\rm I\!R}} R 805.

Tabelle 5.19: Korrelationskoeffizient r nach Pearson für die Parameter rel. Dichte D<sub>0</sub> – Schüttdichte der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial.

|   | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | Printex <sup>®</sup> 95 |
|---|--------------------------|----------------------------|---------------------------------------------|-------------------------|
| r | 0.879                    | 0.334                      | 0.930                                       | 0.986                   |

Auch die ternären Mischungen weisen weitestgehend gute bis sehr gute Korrelationen auf, wie anhand der Koeffizienten aus Tabelle 5.19 zu entnehmen ist. Das hydrophobe Aerosil<sup>®</sup> R 805 korreliert allerdings nur zu 33%. Die mangelnde Korrelation ist auf die D<sub>0</sub>-Werte bei den niedrigen Mischzeiten 1-30 Minuten zurückzuführen, die tendenziell etwas zu hoch sind (vgl. Abb. 5.113). Da jedoch der übrige Verlauf gut mit dem der Schüttdichte übereinstimmt, kann die unzureichende Korrelation als Ausnahme gewertet werden.

## 5.5.3 Relative Dichte D<sub>b</sub>

Bei der relativen Dichte  $D_b$  handelt es sich um einen Kompressiblitätsparameter. Sie stellt das Maß an Verdichtung dar, das durch Partikelumordnungsvorgänge bei niedrigen Pressdrücken bewirkt wird. Bestimmen lässt sich  $D_b$  aus dem Achsenabschnitt der Ausgleichsgerade und der rel. Dichte  $D_0$  (vgl. Abschnitt 2.4.1.2).

Wenn das Fließverhalten der Pulvermischungen mit steigender Oberflächenbelegung ansteigt, sollten die Partikeln bereits während der Matrizenbefüllung eine dichtere Packung einnehmen und somit der zu verdichtende Volumenanteil geringer werden. Ob dies zutrifft, wird im Folgenden überprüft.

### 5.5.3.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Die Verläufe von  $D_b$  für die binären Mischungen aus Maisstärke und Nanomaterial sind in Abbildung 5.114 dargestellt.



Abbildung 5.114: Rel. Dichte  $D_b$  [-] der binären Mischungen aus Maisstärke und Nanomaterial in Abhängigkeit von der Mischzeit (n=3).

| Tabelle 5.20: Rel. Dicht | te D <sub>b</sub> [-] der binärer | n Mischungen aus | Maisstärke und | Nanomaterial in | Abhängigkeit von |
|--------------------------|-----------------------------------|------------------|----------------|-----------------|------------------|
| der Mischzeit (n=3).     |                                   |                  |                |                 |                  |

| Mischzeit [min]                             | 1             | 10            | 30            | 60            | 180           |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|
| Aerosil <sup>®</sup> 200                    | 0.0322±0.0078 | 0.0146±0.0042 | 0.0083±0.0060 | 0.0075±0.0061 | 0.0030±0.0026 |
| Aerosil <sup>®</sup> R 805                  | 0.0330±0.0120 | 0.0209±0.0048 | 0.0097±0.0070 | 0.0074±0.0047 | 0.0072±0.0029 |
| Printex <sup>®</sup> 95                     | 0.0214±0.0038 | 0.0068±0.0015 | 0.0080±0.0033 | 0.0117±0.0041 | 0.0044±0.0035 |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 0.0372±0.0061 | 0.0329±0.0034 | 0.0248±0.0021 | 0.0263±0.0015 | 0.0209±0.0018 |
| Mischzeit [min]                             | 360           | 720           | 1440          | 2880          | 4320          |
| Aerosil <sup>®</sup> 200                    | 0.0055±0.0012 | 0.0029±0.0030 | 0.0185±0.0035 | 0.0289±0.0154 | 0.0224±0.0102 |
| Aerosil <sup>®</sup> R 805                  | 0.0126±0.0010 | 0.0046±0.0005 | 0.0097±0.0042 | 0.0015±0.0008 | 0.0015±0.0009 |
| Printex <sup>®</sup> 95                     | 0.0068±0.0034 | 0.0032±0.0015 | 0.0054±0.0038 | 0.0091±0.0014 | 0.0023±0.0012 |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 0.0179±0.0063 | 0.0194±0.0007 | 0.0106±0.0017 | 0.0121±0.0034 | 0.0137±0.0062 |

Mit zunehmender Mischzeit und damit steigender Oberflächenbelegung sinkt die rel. Dichte  $D_b$  ab. Printex<sup>®</sup> 95 weist initial die niedrigsten Werte auf. Das hydrophile Aerosil<sup>®</sup> 200 zeigt einen Wiederanstieg von  $D_b$  ab 1440 Minuten Mischzeit. Die Wiederzunahme der Kompressibilität ist beim ebenfalls hydrophilen Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 nur schwach ausgeprägt, es weist aber von allen Nanomaterialien die höchsten  $D_b$ -Werte auf.

#### 5.5.3.2 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

Die ternären Mischungen wurden ebenfalls auf den Kompressibilitätsparameter  $D_b$  untersucht, die Ergebnisse zeigen die Abbildung 5.115 und Tabelle 5.21.



Abbildung 5.115: Rel. Dichte  $D_b$  [-] der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial in Abhängigkeit von der Mischzeit (n=3).

Tabelle 5.21: Rel. Dichte  $D_b$  [-] der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial in Abhängigkeit von der Mischzeit (n=3).

| Mischzeit [min]                                                                                      | 1                                                             | 10                                                            | 30                                                             | 60                                                             | 180                                                            |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Aerosil <sup>®</sup> 200                                                                             | 0.0678±0.0062                                                 | 0.0575±0.0027                                                 | 0.0550±0.0027                                                  | 0.0480±0.0058                                                  | 0.0512±0.0032                                                  |
| Aerosil <sup>®</sup> R 805                                                                           | 0.0709±0.0068                                                 | 0.0510±0.0079                                                 | 0.0496±0.0058                                                  | 0.0401±0.0039                                                  | 0.0397±0.0032                                                  |
| Printex <sup>®</sup> 95                                                                              | 0.0725±0.0037                                                 | 0.0636±0.0013                                                 | 0.0672±0.0044                                                  | 0.0737±0.0041                                                  | 0.0867±0.0052                                                  |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                                          | 0.0880±0.0058                                                 | 0.0626±0.0055                                                 | 0.0665±0.0063                                                  | $0.0665 \pm 0.0034$                                            | 0.0818±0.0112                                                  |
|                                                                                                      |                                                               |                                                               |                                                                |                                                                |                                                                |
| Mischzeit [min]                                                                                      | 360                                                           | 720                                                           | 1440                                                           | 2880                                                           | 4320                                                           |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200                                                          | <b>360</b><br>0.0511±0.0092                                   | <b>720</b><br>0.0513±0.0042                                   | <b>1440</b><br>0.0556±0.0032                                   | <b>2880</b><br>0.0720±0.0068                                   | <b>4320</b><br>0.0755±0.0062                                   |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805                            | <b>360</b><br>0.0511±0.0092<br>0.0415±0.0063                  | <b>720</b><br>0.0513±0.0042<br>0.0480±0.0015                  | <b>1440</b><br>0.0556±0.0032<br>0.0510±0.0046                  | <b>2880</b><br>0.0720±0.0068<br>0.0558±0.0099                  | <b>4320</b><br>0.0755±0.0062<br>0.0615±0.0046                  |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805<br>Printex <sup>®</sup> 95 | <b>360</b><br>0.0511±0.0092<br>0.0415±0.0063<br>0.0791±0.0070 | <b>720</b><br>0.0513±0.0042<br>0.0480±0.0015<br>0.0925±0.0077 | <b>1440</b><br>0.0556±0.0032<br>0.0510±0.0046<br>0.1043±0.0011 | <b>2880</b><br>0.0720±0.0068<br>0.0558±0.0099<br>0.1045±0.0068 | <b>4320</b><br>0.0755±0.0062<br>0.0615±0.0046<br>0.0972±0.0050 |

Bei den ternären Mischungen zeigen die beiden Aerosile<sup>®</sup> den erwarteten Verlauf. Bei beiden fällt die Kurve zunächst ab, Aerosil<sup>®</sup> 200 weist einen steilen Anstieg bei langen Mischdauern auf, beim Aerosil<sup>®</sup> R 805 nehmen die Dichtewerte ab 720 min ebenfalls wieder zu, jedoch nicht so ausgeprägt wie beim hydrophilen Fließregulierungsmittel. Beim Titandioxid sowie dem Rußprodukt tritt sehr schnell die Zunahme von D<sub>b</sub> ein, ab 180 Minuten Mischzeit

(Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25) bzw. noch früher ab 60 Minuten (Printex<sup>®</sup> 95). Über den restlichen Mischzeitenbereich findet eine kontinuierliche Zunahme bei den Mischungen mit den beiden Substanzen statt.

#### 5.5.3.3 Einfluss der Oberflächenbelegung

Bei der Pulververdichtung unter Einfluss von niedrigen Pressdrücken spielt die initiale Pulverpackung eine wesentliche Rolle. Je dichter die Teilchen angeordnet sind, desto weniger Hohlraum ist vorhanden, der entfernt werden muss. Damit wirkt sich eine gute Fließfähigkeit positiv auf die Kompressibilität aus. Entsprechend nimmt, wie anhand der Abb. 5.114 und 5.115 zu sehen ist, die rel. Dichte D<sub>b</sub> mit zunehmender Oberflächenbelegung ab. Bei den binären Mischungen kommt es zu einem Wiederanstieg von D<sub>b</sub> bei langen Mischzeiten der Maisstärke mit hydrophilen Nanomaterialien. Auch hier wirkt sich die Ausbildung eines Fließregulierungsmittel-Films in Verbindung mit der Ausbildung von H-Brücken in einer Zunahme der interpartikulären Haftkräfte und einem damit verbundenem Anstieg der Kompressibilität aus. Bei den ternären Mischungen zeigen erneut die beiden Substanzen Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 und Printex<sup>®</sup> 95 ein von den binären Mischungen abweichendes Verhalten. Bereits nach kurzen Mischzeiten von 60 bzw. 180 Minuten beginnt der kontinuierlich Anstieg von D<sub>b</sub>. Erklärt werden kann dies mit der besonderen Belegung der Ibuprofenoberfläche, wie es in den Abschnitten 5.3.2.3, 5.3.2.4 und 5.4.4 ausführlich dargelegt ist.

#### 5.5.3.4 Korrelation mit Hausner-Faktor

Wie die relative Dichte  $D_0$  der Schüttdichte entspricht, so stellt die Dichte  $D_b$  wie der Hausner-Faktor HF einen Kompressibilitätsparameter dar. Demnach sollten auch diesen beiden Faktoren korrelieren.

Die Abbildungen 5.116 bis 5.119 zeigen exemplarisch den Vergleich der Verläufe für HF und D<sub>b</sub> für die binären und ternären Mischungen mit den beiden Aerosilen<sup>®</sup>, in Tabelle 5.22 sind die dazugehörigen Korrelationskoeffizienten aufgeführt.

|        |                          |                            | 5 5 5                                       |                         |
|--------|--------------------------|----------------------------|---------------------------------------------|-------------------------|
| r      | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | Printex <sup>®</sup> 95 |
| binär  | 0.957                    | 0.942                      | 0.810                                       | 0.717                   |
| ternär | 0.956                    | 0.836                      | 0.885                                       | 0.922                   |

Tabelle 5.22: Korrelationskoeffizient r nach Pearson für die Parameter rel. Dichte D<sub>b</sub> – HF.



Abbildung 5.116: Vergleich des Verlaufs der rel. Dichte  $D_b$  und des Hausner-Faktors HF der binären Mischungen mit Aerosil<sup>®</sup> 200.



Abbildung 5.118: Vergleich des Verlaufs der rel. Dichte  $D_b$  und des Hausner-Faktors HF der ternären Mischungen mit Aerosil<sup>®</sup> 200.



Abbildung 5.117: Vergleich des Verlaufs der rel. Dichte  $D_b$  und des Hausner-Faktors HF der binären Mischungen mit Aerosil<sup>®</sup> R 805.



Abbildung 5.119: Vergleich des Verlaufs der rel. Dichte  $D_{\rm b}$  und des Hausner-Faktors HF der ternären Mischungen mit Aerosil^® R 805.

Aus den Abbildungen 5.116-5.119 ist ersichtlich, dass sich die Verläufe der beiden Kompressibilitätsparameter rel. Dichte  $D_b$  und Hausner-Faktor HF entsprechen. Die Korrelationskoeffizienten (Tab. 5.22) bestätigen dies.

## 5.5.4 Fließdruck P<sub>y</sub>

Unter dem Fließdruck P<sub>y</sub> versteht man den reziproken Wert der Steigung des linearen Bereiches des Heckel-Diagramms. Er gibt an, wie groß der Widerstand ist, den ein Pulver dem zunehmenden Druck entgegenbringt. Plastische Stoffe weisen einen kleinen Wert für den Fließdruck auf (entsprechend einem großen Wert für die Steigung), spröde Substanzen zeichnen sich durch höhere Werte aufgrund von geringen Steigungen aus.

Abbildung 5.120 (Einzelwerte siehe Tabelle 5.23) zeigt die Fließdrücke für alle Mischzeiten der binären Mischungen aus Maisstärke und Fließregulierungsmitteln. Bei allen Mischungen beginnt der lineare Bereich bei ca. 8 MPa. Werte bis 50 MPa konnten eingeschlossen werden. Wieder sind hier die Daten für einen Druck von maximal 50 MPa gezeigt, im Anhang (vgl. 9.5.2) wird aufgezeigt, dass der qualitative Verlauf bei höheren Drücken gleich bleibt. Es ergeben sich bei höheren Drücken etwas niedrigere Werte für P<sub>y</sub>, was darauf zurückzuführen ist, dass mehr Datenpunkte einbezogen werden.



Abbildung 5.120: Fließdruck  $P_y$  der binären Mischungen aus Maisstärke und Fließregulierungsmitteln in Abhängigkeit von der Mischzeit (n=3).

Tabelle 5.23: Fließdruck Py [MPa] der binären Mischungen aus Maisstärke und Nanomaterial (n=3).

| Mischzeit [min]                             | 1            | 10           | 30           | 60           | 180          |
|---------------------------------------------|--------------|--------------|--------------|--------------|--------------|
| Aerosil <sup>®</sup> 200                    | 90.4 ± 1.69  | 73.7 ± 1.37  | 71.6 ± 1.30  | 68.2 ± 0.27  | 67.0 ± 1.31  |
| Aerosil <sup>®</sup> R 805                  | 66.7 ± 0.44  | 67.4 ± 1.59  | 71.2 ± 5.44  | 68.2 ± 1.74  | 69.9 ± 0.49  |
| Printex <sup>®</sup> 95                     | 87.2 ± 5.34  | 91.2 ± 1.94  | 88.3 ± 1.63  | 90.9 ± 1.44  | 95.6 ± 1.88  |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 106.9 ± 4.03 | 112.8 ± 2.98 | 109.1 ± 2.79 | 111.6 ± 2.92 | 108.3 ± 1.78 |
| Mischzeit [min]                             | 360          | 720          | 1440         | 2880         | 4320         |
| Aerosil <sup>®</sup> 200                    | 72.5 ± 0.53  | 64.9 ± 2.36  | 72.3 ± 1.66  | 68.8 ± 0.99  | 65.4 ± 1.46  |
| Aerosil <sup>®</sup> R 805                  | 70.9 ± 0.50  | 69.9 ± 0.84  | 73.7 ± 0.31  | 67.0 ± 0.52  | 73.4 ± 1.13  |
| Printex <sup>®</sup> 95                     | 95.6 ± 2.31  | 93.8 ± 1.81  | 95.9 ± 1.93  | 93.8 ± 1.81  | 85.5 ± 2.58  |
|                                             |              |              |              |              |              |

Bezüglich des Fließdrucks ergeben sich signifikante Unterschiede zwischen den Aerosilen<sup>®</sup> und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 bzw. Printex<sup>®</sup> 95. Die Erklärung liegt in den betreffenden Atomanordnungen. Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805 sind amorph [123], während die beiden anderen Materialien Kristallstruktur aufweisen [122,137]. Je nach Ausrichtung der Moleküle und Ausbildung intermolekularer H-Brücken entstehen in Kristallen stabile Anordnungen, die der Verdichtung mehr Widerstand entgegen bringen und damit den Fließdruck erhöhen [177-180].

Bei den Mischungen mit Aerosil<sup>®</sup> 200 sinkt  $P_y$  mit zunehmender Mischzeit zunächst ab und pendelt sich ab 30 Minuten auf Werte ein, die auch das hydrophobe Aerosil<sup>®</sup> R 805

einnimmt. Die Unterschiede bei den kurzen Mischdauern sind in der Agglomeratstabilität begründet. Es dauert länger, bis die Agglomerate des hydrophilen Fließregulierungsmittels zerkleinert werden. Große Agglomerate können der Verdichtung entgegenwirken und damit den Fließdruck erhöhen.

Bei den Mischungen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 hat die Mischzeit lange keinen Einfluss auf P<sub>y</sub>, erst ab sehr langen Mischzeiten von einem Tag und länger sinkt der zur plastischen Verformung nötige Druck signifikant ab. Möglicherweise bedingt adsorbiertes Wasser die Plastifizierung.

Printex<sup>®</sup> 95 bewirkt ebenfalls höhere Werte für P<sub>y</sub> als die Siliciumdioxide. Chemisch gesehen stellt Printex<sup>®</sup> 95 Graphit dar. Allerdings weist der Ruß nicht die geordnete Struktur von Graphit auf, sondern besteht aus Kristalliten, die willkürlich angeordnet und z. T. gegeneinander verdreht sind [136,137]. Damit sind ausgeprägte Kristalldefekte vorhanden. Deshalb sind die Mischungen mit dem Ruß leichter verformbar als diejenigen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25.

Insgesamt hat die Mischzeit nur einen geringen Einfluss auf den Fließdruck, lediglich beim Aerosil<sup>®</sup> 200 und bei sehr langen Mischdauern des Titandioxid zeigen aufeinander folgende P<sub>y</sub> signifikante Unterschiede.

Abbildung 5.121 und Tabelle 5.24 stellen die Verläufe von P<sub>y</sub> für die ternären Mischungen dar. Die Art des Nanomaterials hat hier einen geringeren Einfluss als bei den binären Gemischen, was auf die ebenfalls kristalline Komponente, das Ibuprofen, zurückzuführen ist. Dadurch wird der Einfluss des mengenmäßig geringen Nanomaterials nivelliert. Bei den Aerosil<sup>®</sup> 200-Mischungen nimmt der Fließdruck analog den binären Gemischen tendenziell ab, was auf die zunehmende Bindung von Feuchtigkeit und damit verbundene Plastifizierung zurückzuführen ist [91], die übrigen Nanomaterialien bewirken eher eine Zunahme von P<sub>y</sub>. Auch bei den ternären Pulvermischungen spielt die Mischzeit keine wesentliche Rolle.



Abbildung 5.121: Fließdruck P<sub>y</sub> der ternären Mischungen aus Maisstärke, Ibuprofen und Fließregulierungsmitteln in Abhängigkeit von der Mischzeit (n=3).

| Mischzeit [min]                                                                   | 1                                                | 10                                               | 30                                                       | 60                                                       | 180                                                      |
|-----------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Aerosil <sup>®</sup> 200                                                          | 65.7 ± 1.26                                      | 64.4 ± 1.04                                      | 63.3 ± 0.40                                              | 63.0 ± 1.49                                              | 61.5 ± 1.71                                              |
| Aerosil <sup>®</sup> R 805                                                        | 62.8 ± 1.62                                      | 66.5 ± 3.08                                      | 64.5 ± 0.42                                              | 69.0 ± 1.43                                              | 64.7 ± 2.91                                              |
| Printex <sup>®</sup> 95                                                           | 64.3 ± 2.23                                      | 62.5 ± 0.39                                      | 62.0 ± 3.14                                              | 66.1 ± 1.80                                              | 67.4 ± 0.95                                              |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                       | 54.1 ± 0.00                                      | 55.5 ± 1.18                                      | 54.6 ± 0.17                                              | 57.8 ± 1.34                                              | 56.7 ± 0.49                                              |
| Micchaoit [min]                                                                   | 000                                              |                                                  |                                                          |                                                          |                                                          |
| wischzeit [min]                                                                   | 360                                              | 720                                              | 1440                                                     | 2880                                                     | 4320                                                     |
| Aerosil <sup>®</sup> 200                                                          | <b>360</b><br>61.4 ± 1.13                        | 7 <b>20</b><br>59.3 ± 2.18                       | <b>1440</b><br>59.8 ± 1.71                               | <b>2880</b><br>65.1 ± 0.88                               | <b>4320</b><br>64.1 ± 1.47                               |
| Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805                            | <b>360</b><br>61.4 ± 1.13<br>64.7 ± 0.64         | 720<br>59.3 ± 2.18<br>64.8 ± 1.34                | <b>1440</b><br>59.8 ± 1.71<br>66.2 ± 1.15                | <b>2880</b><br>65.1 ± 0.88<br>65.4 ± 0.74                | <b>4320</b><br>64.1 ± 1.47<br>69.9 ± 1.31                |
| Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805<br>Printex <sup>®</sup> 95 | 360<br>61.4 ± 1.13<br>64.7 ± 0.64<br>67.0 ± 0.94 | 720<br>59.3 ± 2.18<br>64.8 ± 1.34<br>70.6 ± 1.51 | <b>1440</b><br>59.8 ± 1.71<br>66.2 ± 1.15<br>66.6 ± 1.99 | <b>2880</b><br>65.1 ± 0.88<br>65.4 ± 0.74<br>70.8 ± 2.25 | <b>4320</b><br>64.1 ± 1.47<br>69.9 ± 1.31<br>74.3 ± 0.85 |

Tabelle 5.24: Fließdruck P<sub>y</sub> [MPa] der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial (n=3).

## 5.6 Charakterisierung der Tabletten

Im folgenden Teil der Arbeit soll auf die mechanischen Eigenschaften der Tabletten abhängig von der Belegungsdichte und der Art des Fließregulierungsmittels eingegangen werden.

## 5.6.1 Bruchfestigkeit der Tabletten bei 150 MPa

Zur Veranschaulichung des Einflusses der Mischzeit werden in den Abschnitten 5.6.1.1 bis 5.6.1.3 die Bruchfestigkeiten bei einem Pressdruck dargestellt. Es wird hierfür ein mittlerer Druck von 150 MPa gewählt.

## 5.6.1.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Die Bruchfestigkeiten der binären Mischungen aus Maisstärke und Nanomaterial sind in Abbildung 5.122 für alle Mischzeiten dargestellt, Tabelle 5.25 gibt die dazugehörigen Mittelwerte an.

| Mischzeit [min]                                                                                      | 1                                                          | 10                                                         | 30                                                          | 60                                                          | 180                                                         |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Aerosil <sup>®</sup> 200                                                                             | 1.67 ± 0.093                                               | 2.14 ± 0.187                                               | 1.85 ± 0.134                                                | 2.53 ± 0.216                                                | 2.94 ± 0.099                                                |
| Aerosil <sup>®</sup> R 805                                                                           | 1.98 ± 0.093                                               | 1.60 ± 0.062                                               | 1.28 ± 0.124                                                | 1.28 ± 0.101                                                | 1.20 ± 0.115                                                |
| Printex <sup>®</sup> 95                                                                              | 1.84 ± 0.163                                               | 1.39 ± 0.176                                               | 1.53 ± 0.257                                                | 1.52 ± 0.129                                                | 1.81 ± 0.240                                                |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25                                                          | 1.63 ± 0.101                                               | 2.00 ± 0.113                                               | 1.90 ± 0.160                                                | 2.19 ± 0.212                                                | 2.52 ± 0.212                                                |
|                                                                                                      |                                                            |                                                            |                                                             |                                                             |                                                             |
| Mischzeit [min]                                                                                      | 360                                                        | 720                                                        | 1440                                                        | 2880                                                        | 4320                                                        |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200                                                          | <b>360</b><br>2.95 ± 0.174                                 | <b>720</b><br>3.11 ± 0.143                                 | <b>1440</b><br>3.21 ± 0.158                                 | <b>2880</b><br>2.76 ± 0.240                                 | <b>4320</b><br>2.58 ± 0.158                                 |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805                            | <b>360</b><br>2.95 ± 0.174<br>1.31 ± 0.130                 | <b>720</b><br>3.11 ± 0.143<br>1.22 ± 0.095                 | <b>1440</b><br>3.21 ± 0.158<br>1.05 ± 0.113                 | <b>2880</b><br>2.76 ± 0.240<br>1.37 ± 0.160                 | <b>4320</b><br>2.58 ± 0.158<br>1.34 ± 0.160                 |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200<br>Aerosil <sup>®</sup> R 805<br>Printex <sup>®</sup> 95 | <b>360</b><br>2.95 ± 0.174<br>1.31 ± 0.130<br>1.47 ± 0.159 | <b>720</b><br>3.11 ± 0.143<br>1.22 ± 0.095<br>1.82 ± 0.131 | <b>1440</b><br>3.21 ± 0.158<br>1.05 ± 0.113<br>2.07 ± 0.144 | <b>2880</b><br>2.76 ± 0.240<br>1.37 ± 0.160<br>2.82 ± 0.197 | <b>4320</b><br>2.58 ± 0.158<br>1.34 ± 0.160<br>2.80 ± 0.163 |

Tabelle 5.25: Bruchfestigkeit [MPa] der Tabletten der binären Mischungen aus Maisstärke und Nanomaterial, verpresst bei 150 MPa, (n=18).



Abbildung 5.122: Bruchfestigkeit von Tabletten der binären Mischungen aus Maisstärke und Nanomaterial in Abhängigkeit von der Mischzeit, Pressdruck 150 MPa (n=18).

Der Verlauf der Bruchfestigkeit gliedert die Fließregulierungsmittel in zwei Gruppen: Die hydrophilen Nanomaterialien Aerosil<sup>®</sup> 200 und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 führen mit zunehmender Mischzeit zu einer Erhöhung der Tablettenfestigkeit, während die hydrophoben Substanzen Aerosil<sup>®</sup> R 805 und Printex<sup>®</sup> 95 (z. T.) eine Abnahme der Festigkeit bewirken.

Beim Aerosil<sup>®</sup> 200 steigt die Bruchfestigkeit bei einer Misch- (Mahl-) dauer bis 180 Minuten signifikant an, beim Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 ist die Zunahme von 720 auf 1440 Minuten noch signifikant. Aerosil<sup>®</sup> R 805 führt von 1 bis 30 Minuten Mischzeit zur signifikanten Absenkung der Tablettenfestigkeit. Printex<sup>®</sup> 95 verhält sich bis zu einer Mischdauer von 6h ähnlich wie Aerosil<sup>®</sup> R 805, bewirkt allerdings bei längerem Mischen eine deutliche Zunahme der Festigkeit.

## 5.6.1.2 Binäre Mischungen aus Maisstärke und Ibuprofen

Um wie bei den Untersuchungen zum Fließverhalten (vgl. Abschnitte 5.4.1.2 und 5.4.2.2) den Einfluss einer möglicherweise verbesserten Mischgüte auf die Bruchfestigkeit der Tabletten zu erfassen, werden binäre Mischungen aus Maisstärke und Ibuprofen ohne Fließregulierungsmittel hergestellt und verpresst.

Wie in Tabelle 5.26 und Abb. 5.123 zu sehen ist, sind die Bruchfestigkeiten der reinen Maisstärke-/Wirkstoff-Mischungen sehr niedrig. Mit zunehmender Mischzeit sinken sie tendenziell ab. Zwei Mischzeiten sind signifikant unterschiedlich, es handelt sich dabei um die 10 Minuten- (verschieden von der 1 Minuten-Mischung) und die 4320 Minuten- (unterschiedlich zur 2- Tages-Mischung). Eine Verbesserung der Festigkeit primär durch längeres Mischen tritt nicht ein.

| Mischzeit [min]      | 1            | 10           | 30           | 60           | 180          |
|----------------------|--------------|--------------|--------------|--------------|--------------|
| Maisstärke+Ibuprofen | 0.36 ± 0.027 | 0.30 ± 0.022 | 0.33 ± 0.040 | 0.31 ± 0.027 | 0.29 ± 0.024 |
| Mischzeit [min]      | 360          | 720          | 1440         | 2880         | 4320         |
| Maisstärke+Ibuprofen | 0.29 ± 0.035 | 0.28 ± 0.029 | 0.31 ± 0.028 | 0.29 ± 0.025 | 0.34 ± 0.026 |

Tabelle 5.26: Bruchfestigkeiten [MPa] der Tabletten der binären Mischungen aus Maisstärke und Ibuprofen, verpresst bei 150 MPa, (n=18).



Abbildung 5.123: Bruchfestigkeit von Tabletten der binären Mischung aus Maisstärke und Ibuprofen in Abhängigkeit von der Mischzeit, Pressdruck 150 MPa (n=18).

## 5.6.1.3 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

Von besonderem Interesse ist die Entwicklung der Tablettenfestigkeit für die ternären Mischungen. Sind die Verläufe vergleichbar mit denen der binären Gemische? Inwiefern hat die Oberflächenbelegung des Ibuprofens Einfluss auf die mechanischen Eigenschaften? In Abbildung 5.124 ist der Verlauf für die Bruchfestigkeiten der ternären Mischungen abgebildet (Messwerte in Tab. 5.27).



Abbildung 5.124: Bruchfestigkeit von Tabletten der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial in Abhängigkeit von der Mischzeit, Pressdruck 150 MPa (n=18).

| Mischzeit [min]                             | 1            | 10           | 30           | 60           | 180           |
|---------------------------------------------|--------------|--------------|--------------|--------------|---------------|
| Aerosil <sup>®</sup> 200                    | 0.53 ± 0.046 | 0.58 ± 0.070 | 0.63 ± 0.051 | 0.65 ± 0.089 | 0.78 ± 0.089  |
| Aerosil <sup>®</sup> R 805                  | 0.51 ± 0.038 | 0.45 ± 0.047 | 0.43 ± 0.025 | 0.46 ± 0.027 | 0.49 ± 0.053  |
| Printex <sup>®</sup> 95                     | 0.85 ± 0.035 | 0.78 ± 0.079 | 0.77 ± 0.052 | 0.77 ± 0.053 | 0.83 ± 0.053  |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 0.52 ± 0.036 | 0.52 ± 0.050 | 0.48 ± 0.043 | 0.68 ± 0.066 | 0.54 ± 0.044  |
| Mischzeit [min]                             | 360          | 720          | 1440         | 2880         | 4320          |
| Aerosil <sup>®</sup> 200                    | 0.91 ± 0.063 | 1.00 ± 0.055 | 1.04 ± 0.074 | 0.93 ± 0.045 | 0.89 ± 0.0.58 |
| Aerosil <sup>®</sup> R 805                  | 0.45 ± 0.042 | 0.46 ± 0.037 | 0.49 ± 0.051 | 0.57 ± 0.038 | 0.64 ± 0.043  |
| Printex <sup>®</sup> 95                     | 0.89 ± 0.040 | 0.93 ± 0.030 | 0.90 ± 0.037 | 0.83 ± 0.091 | 0.87 ± 0.040  |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 0.55 ± 0.043 | 0.52 ± 0.030 | 0.54 ± 0.053 | 0.66 ± 0.049 | 0.61 ± 0.057  |

Tabelle 5.27: Bruchfestigkeiten [MPa] der Tabletten der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial, verpresst bei 150 MPa, (n=18).

Die beiden Aerosile<sup>®</sup> führen wie bei den binären Mischungen zu einer Zunahme (Aerosil<sup>®</sup> 200) bzw. zu einer Abnahme (Aerosil<sup>®</sup> R 805) der Festigkeit. Das hydrophobe Aerosil<sup>®</sup> R 805 zeigt bei sehr langen Mischzeiten (2d, 3d) eine Zunahme der Festigkeit ähnlich wie das Printex<sup>®</sup> 95 in den binären Mischungen. Zu einer unerwarteten Entwicklung führen die beiden anderen Fließregulierungsmittel. Die Tablettenfestigkeiten mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 liegen nur wenig über denen des Aerosil<sup>®</sup> R 805, obwohl es zu den hydrophilen Materialien zählt und sie verändern sich kaum mit der Mischzeit. Dagegen bewirkt Printex<sup>®</sup> 95 über einen Mischzeitenbereich von 1 min bis 180 min die höchsten Bruchfestigkeiten, erst ab 6 h steigen die Tablettenfestigkeiten der Aerosil<sup>®</sup> 200-Mischungen darüber hinaus an.

#### 5.6.1.4 Einfluss des Wirkstoffes

Das schlechte Kompaktierverhalten von Ibuprofen ist hinreichend bekannt (vgl. Abschnitt 4.1.3). Vor allem bei höheren Drücken ergeben sich unzureichende Tablettenfestigkeiten. Dieser Einfluss macht sich auch bei den ternären Mischungen bemerkbar. Während die binären Gemische aus Maisstärke und Fließregulierungsmitteln Festigkeitswerte zwischen 1.05 und 3.21 [MPa] (Tab. 5.25) aufweisen, liegt die höchste ermittelte Bruchfestigkeit für die ternären Mischungen bei 1.04 [MPa] (Tab. 5.27).

### 5.6.1.5 Einfluss der chemischen Natur des Nanomaterials

Bei den binären Mischungen aus Maisstärke und Fließregulierungsmitteln (Abb. 5.122) kristallisieren sich klar zwei Gruppen heraus: Hydrophile und hydrophobe Nanomaterialien. Die hydrophilen Substanzen führen zur Steigerung der Festigkeit mit zunehmender Mischzeit auf ca. das Doppelte des Ausgangswertes (Tab. 5.25). Der Grund für die Erhöhung findet sich in der Oberflächenchemie der Stoffe. An nahezu jeder Partikeloberfläche befinden sich bereits bei Lagerung unter moderaten Luftfeuchten Wasseradsorptionslayer, die je nach

Umgebungsbedingungen und chemisch-physikalischen Eigenschaften der Partikeln unterschiedlich stark ausgeprägt sind [52]. An der Maisstärkeoberfläche befinden sich OH-Gruppen, die von den Glucose-Einheiten stammen. An die Hydroxyl-Gruppen können über H-Brücken Wassermoleküle gebunden werden. Aerosil<sup>®</sup> 200 besitzt eine große Oberfläche von 200 m<sup>2</sup>/g, an der sich Si-OH-Gruppen befinden. Dadurch ist es in der Lage, große Mengen an Feuchtigkeit an die Oberfläche zu binden. Die Adsorptionsisotherme von Aerosil<sup>®</sup> 200 beschreibt bei einer relativen Luftfeuchte von 43% eine Wasseraufnahme von 1-1.5% [8,133]. Steigt die Belegung der Maisstärke mit dem Nanomaterial mit längerer Mischzeit an, wird sie "hydrophilisiert" [8], d.h., es können vermehrt Wassermoleküle an die Oberfläche gebunden werden und die Adsorptionslaver vergrößert werden. Werden zwei solcher Partikeln durch den Pressdruck in einen engen Kontakt gebracht, verbinden sich ihre Adsorptionslayer zu einem zusammenhängenden [52]. Neben den Interaktionen über Wassermoleküle ist auch die direkte Bindung von -Si-OH··HO-Si-, -Si-OH··HO-C- und -C-OH HO-C- möglich [156]. Die intermolekularen Wechselwirkungen beschränken sich also nicht auf van-der-Waals-Kräfte, sondern treten es überwiegend Wasserstoffbrückenbindungen auf, die im Vergleich zu den van-der-Waals-Kräften stärker sind. Bei den hydrophoben Fließregulierungsmitteln ergibt sich ein gegenteiliger Effekt: Die Maisstärkeoberfläche wird "hydrophobisiert", es kann weniger Feuchtigkeit gebunden werden. Beim Aerosil<sup>®</sup> R 805 sind die ursprünglichen OH-Gruppen etwa zur Hälfte durch Octyl-Reste ( $C_8H_{17}$ ) ersetzt [129]. Dadurch ergibt sich eine Wasseraufnahme bei 43% r. H. von nur 0.2-0.5% [8,133]. Entsprechend weniger Wassermoleküle werden an die Oberfläche adsorbiert. Als Folge werden die Möglichkeiten zur Ausbildung von H-Brücken vermindert und die Haupt-Wechselwirkungen finden über van-der-Waals-Kräfte statt. Zudem ist ein sterischer Effekt denkbar. Nach erfolgter Rückdehnung der Tablette bleiben mehr oder weniger große Flächen wahren Kontaktes zurück, die für die Festigkeit maßgebend sind [45,77]. Die Kohlenwasserstoffreste werden zwar durch die Druckeinwirkung deformiert, jedoch nehmen sie nach erfolgter Rückdehnung mehr an Raum ein als OH-Gruppen. Dadurch können Adsorptionslayer weiter auseinander gezogen werden bzw. freie OH-Gruppen soweit voneinander entfernt liegen, dass keine Wechselwirkung mehr möglich ist.

Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 führt ebenfalls zu einem Anstieg der Tablettenfestigkeit, allerdings liegen die Werte etwas unter denen des Aerosils<sup>®</sup> 200. Das Titandioxid besitzt zwar mit 1.5-2% eine ähnlich gute Wasserbindungsfähigkeit bei 43% r. H. [8,122], allerdings weist es eine Oberfläche auf, die nur ¼ so groß ist wie die des Aerosil<sup>®</sup> 200. Entsprechend weniger Si-OH-Gruppen zur Wasserbindung sind vorhanden.

Erstaunlich ist der starke Anstieg der Festigkeit von Tabletten mit Printex<sup>®</sup> 95 bei langen Mischzeiten. Die Microstrukturanalyse des Rußes hat gezeigt, dass die Primärpartikeln aus graphitähnlichen Kristalliten aufgebaut sind. Diese Kristallite bestehen aus parallel

angeordneten hexagonalen Graphitschichten, die jedoch teilweise gegeneinander verdreht sind [136,137]. Die einzelnen Kristalliten sind zufällig angeordnet. Damit weisen die Printex<sup>®</sup>-Teilchen eine stark gestörte Struktur auf. Die plastische Verformbarkeit von Kristallen ist in großem Maße abhängig vom Ausmaß an Defekten in der Kristallstruktur [174-176], den sog. "slip planes" (Gleitschichten). Im Falle des Printex<sup>®</sup> 95 können die Graphitschichten durch den Pressdruck gegeneinander verschoben werden, die Plastizität der Mischung erhöhen und damit zur Tablettenfestigkeit beitragen.

Bei den ternären Mischungen (Abb. 5.124) weisen die beiden Aerosile<sup>®</sup> den erwarteten Verlauf auf. Das Titandioxid jedoch bewirkt Festigkeiten, die nur wenig über denen des Aerosil<sup>®</sup> R 805 liegen. Offensichtlich reicht aufgrund der geringen Oberfläche das Wasserbindungsvermögen nicht aus, um die Bruchfestigkeit der insgesamt hydrophoberen Mischung (vgl. Ibuprofenstruktur, Abb. 4.8) zu erhöhen. Die von Beginn an hohe Bruchfestigkeit der Printex<sup>®</sup> 95-Mischungen lässt sich mit der besonderen Oberflächenbelegung (vgl. folgender Abschnitt 5.6.1.6) erklären.

## 5.6.1.6 Einfluss der Oberflächenbelegung

Der Einfluss der chemisch-physikalischen Eigenschaften der Fließregulierungsmittel wurde im vorangegangenen Abschnitt erklärt. Die Tablettenfestigkeit ist jedoch auch abhängig von der Mischzeit und damit dem Ausmaß der Belegung der Maisstärke- und Ibuprofenoberfläche.

Die höhere Agglomeratanzahl der hydrophilen Fließregulierungsmittel auf den Trägermaterialien führt zur Zunahme der Wasserbindungsfähigkeit und damit zur Vergrößerung der Adsorptionslayer. Bei den hydrophoben Substanzen setzt der gegenteilige Effekt ein. Die vollständige Belegung der Maisstärkeoberfläche bei den binären Mischungen mit Printex<sup>®</sup> 95 bewirkt eine starke Erhöhung der Bruchfestigkeit auf Werte, die im Bereich der hydrophilen Substanzen liegen (Abb. 5.122). Möglicherweise bleibt die durch den Pressdruck hervorgerufene Verschiebung der Graphitschichten bei solch dichter Packung der Teilchen nicht lokal auf ein Partikel beschränkt, sondern greift auf benachbarte Nanopartikeln über und führt zu einer Art Vernetzung der Oberfläche. Denkbar ist auch eine Änderung der Modifikation unter Druckeinwirkung.

Erstaunlich ist die hohe Bruchfestigkeit der ternären Mischungen mit dem Ruß bereits bei niedrigen Mischzeiten (Abb. 5.124). Wie die Abb. 5.75, 5.76 und 5.79 gezeigt haben, lagert sich das Nanomaterial auf dem Wirkstoff bevorzugt an den Erhebungen an und führt zur Rillenbildung. Abbildung 5.125 zeigt einen belegten Ibuprofenpartikel nach 3 h Mischzeit bei 2000-facher Vergrößerung.



Abbildung 5.125: Ibuprofen belegt mit Printex 95 nach 3 h Mischzeit, x2000.

Es ist deutlich die ausgeprägte Rillenbildung zu erkennen (Pfeile). Treffen zwei solcher Teilchen während des Pressens aufeinander, können diese Rillen ineinander greifen ähnlich wie bei einem Zahnrad und formschlüssige Bindungen ausbilden, die eine erhöhte Festigkeit zur Folge haben.

### 5.6.1.7 Einfluss der relativen Dichte

Rumpf schätzt über die relative Dichte die Anzahl an Partikelkontakten innerhalb der Tablette ab (vgl. Abschnitt 2.4.2.1). Da sich die Gesamtstärke aus den Einzelkontakten aufsummiert, sollte eine hohe relative Dichte stets mit hohen Tablettenfestigkeiten verbunden sein.

Da durch die Begrenzung des Pulverbetts durch Matrize und Stempel die Partikeln bei einem bestimmten Pressdruck ihre dichtest mögliche Packung erreicht haben, kann die Kontaktanzahl nicht beliebig erhöht werden. Die rel. Dichte kann sich jedoch erhöhen, wenn der Druck weiter erhöht wird und die Pulverteilchen plastisch deformiert werden. Somit kann die rel. Dichte nicht nur als ein Maß für die Kontaktanzahl, sondern auch als ein Maß für die wahre Kontaktfläche angesehen werden.

In Abbildung 5.126 sind beispielhaft die Bruchfestigkeiten von Tabletten (Pressdruck: 150 MPa) in Abhängigkeit von ihrer rel. Dichte für die einzelnen Mischzeiten der binären Mischungen dargestellt. Tendenziell kann eine Erhöhung der Bruchfestigkeit mit zunehmender rel. Dichte beobachtet werden. Die Dichtewerte der meisten Mischzeiten liegen allerdings für alle Nanomaterialien zwischen 0.78 und 0.80 [-]. Die Bruchfestigkeiten unterscheiden sich jedoch trotz gleicher rel. Dichte deutlich. Damit wird die These untermauert, dass unterschiedliche Arten von Bindungen wirksam sind, die die mechanischen Eigenschaften der Tabletten bestimmen. Die rel. Dichte scheint dabei eine untergeordnete Rolle zu spielen.



Abbildung 5.126: Bruchfestigkeit [MPa] der Tabletten der binären Mischungen aus Maisstärke und Nanomaterial abhängig deren rel. Dichte; von Pressdruck: 150 MPa, (n=18).

## 5.6.2 Verlauf nach Leuenberger

Leuenberger trägt der endlichen Steigerungsmöglichkeit der Tablettenfestigkeit in seinem Modell (vgl. 2.4.2.2) Rechnung und beschreibt den Zusammenhang zwischen der Bruchfestigkeit und dem Pressdruck bzw. der relativen Dichte mit einer Exponentialfunktion (Gl. 2.47). Ob auch die Mischungen mit Fließregulierungsmitteln diesen Verlauf aufweisen und ob sich abhängig von der Mischzeit Änderungen in den maximalen Bruchfestigkeiten ergeben, soll im Folgenden überprüft werden.

## 5.6.2.1 Abhängigkeit der Bruchfestigkeit vom Pressdruck

Zunächst werden die Bruchfestigkeiten der unterschiedlichen Mischungen gegen den Pressdruck aufgetragen.

Die Abbildungen 5.127 und 5.128 zeigen die Verläufe der Tablettenbruchfestigkeiten in Abhängigkeit vom Pressdruck exemplarisch für die 360 Minuten Mischzeit der binären und ternären Mischungen.

Mit zunehmendem Pressdruck steigt die Bruchfestigkeit für alle Nanomaterialien und alle Mischzeiten an. Die binären Mischungen zeigen alle (auch die der übrigen nicht dargestellten Mischzeiten) stets den Sättigungsverlauf. Ab 200-250 MPa Druck ändert sich die Festigkeit nicht mehr signifikant, die maximal mögliche Bruchfestigkeit ist erreicht.



Abbildung 5.127: Abhängigkeit der Tablettenbruchfestigkeit der binären 360 min Mischungen aus Maisstärke und Nanomaterial vom Pressdruck (n=6).



Abbildung 5.128: Abhängigkeit der Tablettenbruchfestigkeit der ternären 360 min Mischungen aus Maisstärke, Ibuprofen und Nanomaterial vom Pressdruck (n=6).

Bei den ternären Mischungen zeigt nur Aerosil<sup>®</sup> 200 den erwarteten Verlauf. Bei allen anderen Fließregulierungsmitteln kommt es bei höheren Drücken zu einem Abfall der Bruchfestigkeit. Bei der Printex<sup>®</sup> 95-Mischung setzt dieser ab 250 MPa ein, beim Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 ab 300 MPa und beim Aerosil<sup>®</sup> R 805 ab 400 MPa. Dieser Effekt ist auf die schlechte Kompaktierfähigkeit des Wirkstoffes zurückzuführen. Im Folgenden soll untersucht werden, inwiefern sich die Oberflächenbelegung auf die Kompaktierfähigkeit auswirkt und ob abhängig davon die maximale Bruchfestigkeit beeinflusst werden kann.

## 5.6.2.2 Abhängigkeit der Kompaktierfähigkeit (Kompaktibilität) von der Oberflächenbelegung

### 5.6.2.2.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Die Abbildungen 5.129 bis 5.132 zeigen die Verläufe der Tablettenbruchfestigkeiten abhängig vom Pressdruck und der Mischzeit. Aus Gründen der Übersichtlichkeit werden nur fünf der zehn untersuchten Mischdauern dargestellt. Die dazugehörigen Mittelwerte der jeweils sechs Messungen finden sich in Tabelle 5.28.



Abbildung 5.129:

Abhängigkeit der Tablettenbruchfestigkeit der binären Mischungen aus Maisstärke und Aerosil<sup>®</sup> 200 von der Mischzeit (n=6).



Abbildung 5.131:

Abhängigkeit der Tablettenbruchfestigkeit der binären Mischungen aus Maisstärke und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 von der Mischzeit (n=6).



Abbildung 5.130:

Abhängigkeit der Tablettenbruchfestigkeit der binären Mischungen aus Maisstärke und Aerosil<sup>®</sup> R 805 von der Mischzeit (n=6).



Abbildung 5.132: Abhängigkeit der Tablettenbruchfestigkeit der binären Mischungen aus Maisstärke und Printex<sup>®</sup> 95 von der Mischzeit (n=6).

Die Kompaktierfähigkeit steigert sich mit zunehmender Mischzeit, d.h. mit zunehmender Oberflächenbelegung. Die Verläufe der Bruchfestigkeiten abhängig von der Mischdauer entsprechen bei allen Pressdrücken dem bei 150 MPa (Abb. 5.122).

Welchen Einfluss hat nun die Oberflächenbelegung auf das Kompaktionsverhalten der Ibuprofen-Mischungen? Die Untersuchung der Festigkeiten bei einem Pressdruck von 150 MPa (Abb. 5.124) hat ergeben, dass auch hier eine Steigerung der Tablettenfestigkeit möglich ist. Kann eine entsprechende Oberflächenbelegung den Druck, bei dem noch eine ausreichende Festigkeit erreicht wird, erhöhen?

Aerosil<sup>®</sup> 200 σ<sub>t</sub> [MPa] PD [MPa] 1 [min] 10 [min] 360 [min] 1440 [min] 4320 [min] 0.14 ± 0.01  $0.29 \pm 0.04$  $0.34 \pm 0.08$  $0.49 \pm 0.03$  $0.39 \pm 0.05$ 50 0.87 ± 0.11  $0.50 \pm 0.04$ 80  $0.99 \pm 0.11$  $1.30 \pm 0.03$  $1.06 \pm 0.06$ 100 0.81 ± 0.06  $1.30 \pm 0.08$  $1.46 \pm 0.09$  $1.79 \pm 0.08$  $1.75 \pm 0.10$ 150 1.74 ± 0.10  $2.23 \pm 0.20$ 3.00 ± 0.14  $3.12 \pm 0.12$  $2.50 \pm 0.19$ 200  $2.17 \pm 0.08$ 2.66 ± 0.11  $3.61 \pm 0.14$  $3.72 \pm 0.23$  $2.80 \pm 0.27$ 250 3.08 ± 0.15  $2.53 \pm 0.11$  $3.56 \pm 0.27$  $3.96 \pm 0.28$  $3.19 \pm 0.11$ 300  $2.49 \pm 0.11$  $2.88 \pm 0.20$  $3.95 \pm 0.29$  $4.09 \pm 0.21$  $3.05 \pm 0.10$ 400  $2.75 \pm 0.18$ 3.05 ± 0.19  $4.08 \pm 0.17$ 4.08 ± 0.19  $3.21 \pm 0.32$ Aerosil<sup>®</sup> R 805 σ<sub>t</sub> [MPa] 1 [min] PD [MPa] 10 [min] 360 [min] 1440 [min] 4320 [min] 50  $0.29 \pm 0.02$  $0.25 \pm 0.04$  $0.00 \pm 0.00$  $0.00 \pm 0.00$  $0.00 \pm 0.00$ 80  $0.88 \pm 0.04$  $0.74 \pm 0.09$  $0.29 \pm 0.04$  $0.28 \pm 0.03$  $0.48 \pm 0.08$ 100  $1.29 \pm 0.07$  $1.08 \pm 0.08$  $0.63 \pm 0.09$  $0.50 \pm 0.05$  $0.79 \pm 0.09$ 150  $1.60 \pm 0.04$  $1.25 \pm 0.19$  $1.26 \pm 0.12$  $2.04 \pm 0.09$  $1.04 \pm 0.12$ 200  $1.80 \pm 0.12$  $1.69 \pm 0.16$  $1.30 \pm 0.09$  $1.89 \pm 0.18$  $2.37 \pm 0.10$ 250  $2.30 \pm 0.34$  $1.91 \pm 0.15$  $1.84 \pm 0.08$  $1.42 \pm 0.16$  $1.94 \pm 0.24$ 300 2.47 ± 0.07 1.74 ± 0.18  $1.93 \pm 0.13$  $1.43 \pm 0.13$ 1.94 ± 0.27 400  $2.59 \pm 0.09$ 1.91 ± 0.18  $1.74 \pm 0.05$  $1.59 \pm 0.22$  $2.23 \pm 0.19$ Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 σ<sub>t</sub> [MPa] PD [MPa] 1440 [min] 4320 [min] 1 [min] 10 [min] 360 [min] 50  $0.16 \pm 0.02$  $0.20 \pm 0.03$ 0.25 ± 0.01  $0.46 \pm 0.03$  $0.46 \pm 0.04$ 0.68 ± 0.06 80 0.72 ± 0.06 0.85 ± 0.07  $1.30 \pm 0.06$  $1.36 \pm 0.05$ 100  $1.11 \pm 0.07$  $1.17 \pm 0.05$  $1.38 \pm 0.07$  $1.90 \pm 0.08$  $2.05 \pm 0.07$ 150  $1.65 \pm 0.10$  $2.03 \pm 0.12$  $2.72 \pm 0.24$  $2.76 \pm 0.30$  $3.10 \pm 0.12$ 200  $1.86 \pm 0.06$  $2.33 \pm 0.07$  $3.22 \pm 0.06$  $3.69 \pm 0.32$  $3.76 \pm 0.20$ 250  $2.06 \pm 0.07$ 2.65 ± 0.17  $3.62 \pm 0.30$  $3.72 \pm 0.35$  $3.98 \pm 0.19$ 300  $2.15 \pm 0.18$  $2.78 \pm 0.15$  $3.80 \pm 0.33$  $3.85 \pm 0.42$  $4.10 \pm 0.20$ 400 2.26 ± 0.11  $2.83 \pm 0.13$ 3.98 ± 0.25  $4.10 \pm 0.19$  $4.16 \pm 0.12$ Printex<sup>®</sup> 95 σ<sub>t</sub> [MPa] PD [MPa] 1440 [min] 4320 [min] 1 [min] 10 [min] 360 [min] 50  $0.19 \pm 0.03$  $0.17 \pm 0.02$  $0.00 \pm 0.00$  $0.13 \pm 0.12$  $0.34 \pm 0.04$ 80  $0.64 \pm 0.07$  $0.56 \pm 0.06$  $0.46 \pm 0.07$  $0.78 \pm 0.16$ 1.01 ± 0.11 100  $1.13 \pm 0.08$  $0.78 \pm 0.06$  $0.79 \pm 0.14$  $1.14 \pm 0.16$  $1.45 \pm 0.24$ 150  $1.75 \pm 0.11$  $1.42 \pm 0.11$  $1.36 \pm 0.13$  $2.12 \pm 0.19$  $2.88 \pm 0.15$ 200 2.04 ± 0.11  $1.75 \pm 0.35$  $1.72 \pm 0.24$ 2.46 ± 0.21  $3.25 \pm 0.28$ 250  $2.13 \pm 0.23$  $1.79 \pm 0.22$  $2.02 \pm 0.32$  $2.62 \pm 0.38$  $3.46 \pm 0.20$ 300  $2.18 \pm 0.14$  $2.09 \pm 0.24$  $1.79 \pm 0.31$  $2.59 \pm 0.16$  $3.56 \pm 0.39$ 400  $2.36 \pm 0.12$ 2.09 ± 0.19  $2.04 \pm 0.19$  $2.68 \pm 0.14$  $3.67 \pm 0.57$ 

Tabelle 5.28: Abhängigkeit der Tablettenbruchfestigkeiten  $\sigma_t$  [MPa] der binären Mischungen aus Maisstärke und Nanomaterial von der Mischzeit (n=6).

# 5.6.2.2.2 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial 5.6.2.2.2.1 Aerosil<sup>®</sup> 200

Die Bruchfestigkeits-Pressdruck-Verläufe für die ternären Mischungen mit Aerosil<sup>®</sup> 200 sind in den Abbildungen 5.133-5.136 dargestellt.



Abbildung 5.133: Tablettenbruchfestigkeiten der ternären 1 min Mischung mit Aerosil<sup>®</sup> 200 abhängig vom Pressdruck (n=6).



Abbildung 5.135: Tablettenbruchfestigkeiten der ternären 180 min Mischung mit Aerosil<sup>®</sup> 200 abhängig vom Pressdruck (n=6).



Abbildung 5.134: Tablettenbruchfestigkeiten der ternären Mischungen (10, 30, 60 min) mit Aerosil<sup>®</sup> 200 abhängig vom Pressdruck (n=6).



Abbildung 5.136: Tablettenbruchfestigkeiten der ternären Mischungen (360-4320 min) mit Aerosil<sup>®</sup> 200 abhängig vom Pressdruck (n=6).

Die Graphen können in vier Mischzeitenbereiche aufgeteilt werden:

- 1 min:Es tritt keine Verschlechterung der Bruchfestigkeit bei hohenPressdrücken auf, allerdings ist die Festigkeit an sich sehr gering (max.0.66 MPa).
- 10 min-60 min: Die Tablettenfestigkeit steigt wie bei den binären Mischungen auch bei allen Pressdrücken mit zunehmender Mischzeit an. Der

Pressdruckeinfluss wird hier deutlich, ab 300 MPa sinkt die Bruchfestigkeit ab.

180 min: Die Mischung ist bis auf 300 MPa kompaktierbar.

360 min-4320 min: Auch bei hohen Pressdrücken sinkt die Festigkeit nicht mehr ab. Die Mischungen zeigen den exponentiellen Verlauf nach Leuenberger.

Die steigende Belegung der Oberflächen und die damit verbundene Hydrophilisierung bewirkt die Erhöhung der Bruchfestigkeiten. Zudem sind die gebildeten starken H-Brücken-Bindungen in der Lage, das schlechte Kompaktionsverhalten des Wirkstoffes bei hohen Drücken zu kompensieren. Noch zu klären ist, zu welchen Anteilen Wirkstoff und Hilfsstoff zu diesem Effekt beitragen.

## 5.6.2.2.2.2 Aerosil<sup>®</sup> R 805

Auch die Verläufe mit dem hydrophoben Fließregulierungsmittel Aerosil<sup>®</sup> R 805 lassen sich in charakteristische Bereiche einteilen (Abb. 5.137-5.140).





Abbildung 5.137: Tablettenbruchfestigkeiten der ternären Mischungen (1 min, 10 min) mit Aerosil<sup>®</sup> R 805 abhängig vom Pressdruck (n=6).

Abbildung 5.138: Tablettenbruchfestigkeiten der ternären 30 min-Mischungen mit Aerosil<sup>®</sup> R 805 abhängig vom Pressdruck (n=6).







Abbildung 5.140: Tablettenbruchfestigkeiten der ternären 4320 min-Mischungen mit Aerosil<sup>®</sup> R 805 abhängig vom Pressdruck (n=6).

Die Aerosil<sup>®</sup> R 805 Mischungen zeichnen sich wie erwartet durch generell niedrigere Bruchfestigkeiten als die der Mischungen mit dem hydrophilen Fließregulierungsmittel aus, lediglich die kurze Mischdauer von einer Minute bedingt wie bei den binären Mischungen auch (vgl. Tab. 5.28) bei Pressdrücken bis 150 MPa eine höhere Festigkeit als das Aerosil<sup>®</sup> 200. Der Grund dafür liegt in der nach 1 Minute niedrigen Oberflächenbelegung, die sich noch nicht stark auf die Hydrophilie auswirkt, jedoch bereits Einfluss auf das Fließverhalten hat. Die erhöhte Packungsdichte führt zu mehr Partikelkontakten und damit zur erhöhten Festigkeit.

Innerhalb der Messreihe ergibt sich allerdings ein unerwarteter Verlauf. Die 10 min Mischung liefert bei allen Pressdrücken Bruchfestigkeiten, die wie erwartet unter denen der 1 min-Mischung liegen. Bis 200 MPa sind die Mischungen gut kompaktierbar, danach erfolgt ein signifikanter Abfall der Festigkeit. Bei der 30 min Mischung (Abb. 5.138) jedoch steigt die Bruchfestigkeit bis 250 MPa an, im weiteren Verlauf (60-2880 min, Abb. 5.139) bis auf 300 MPa. Bei der 3d-Mischung (Abb. 5.140) ist wieder ein größerer Abfall ab 300 MPa zu erkennen. Ebenso nehmen die Bruchfestigkeiten der verschiedenen Mischungen bei Bei den reinen Maisstärke-/Fließregulierungsmittel-Mischungen gleichem Druck zu. verschlechtert sich die Tablettenfestigkeit aufgrund der zunehmenden Oberflächenhydrophobisierung. Bei sehr langen Mischzeiten (3d) und höheren Pressdrücken nimmt allerdings die Festigkeit etwas zu (vgl. Tab. 5.28). Zu diesem Zeitpunkt ist die Maisstärkeoberfläche vollständig mit Nanomaterial bedeckt. Die Belegung des Ibuprofens erfolgt schneller als die der Maisstärke (vgl. Abb. 5.55-5.64), bereits ab 30 Minuten ist die Oberfläche gleichmäßig bedeckt, nach 60 min sind keine Einzelagglomerate mehr erkennbar und der Film ist abgeplattet. Dies entspricht dem Zustand der binären Mischungen bei langen Mischzeiten. Somit ist der Anstieg der Festigkeit bei den ternären Mischungen bei den kürzeren Mischzeiten auf das Ibuprofen zurückzuführen. Zwischen den neu entstandenen Oberflächen treten offensichtlich Wechselwirkungen auf, die zu starken interpartikulären Haftkräften führen.

## 5.6.2.2.2.3 Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25

Die Verläufe der Titandioxid-haltigen Mischungen sind in den Abbildungen 5.141-5.145 aufgeführt.

Die wirkstoffhaltigen Mischungen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 weisen generell eine geringe Bruchfestigkeit auf. Mit zunehmender Mischzeit steigt zunächst die Kompaktierfähigkeit von 200 auf 300 MPa an, aber bereits bei 180 min Mischzeit erfolgt der Abfall der Bruchfestigkeit ab 300 MPa (Abb. 5.144) und steigert sich weiter auf 250 MPa (Abb. 5.145). Der Grund für die insgesamt niedrige Festigkeit trotz hydrophilem Charakter des Nanomaterials liegt in der geringen Oberfläche und der damit verbundenen geringeren Wasserbindungsfähigkeit. Bei den binären Mischungen mit der ebenfalls hydrophilen Maisstärke ist das Feuchtigkeitsbindungsvermögen ausreichend, bei den ternären Mischungen mit dem hydrophoben Ibuprofen stellt sich das Titandioxid als wenig potent heraus. Zudem bilden sich ab 60 Minuten Mischzeit auf den Ibuprofenpartikeln eine Art "Schuppen" (vgl. Abb. 5.68-5.74), die zu einer sehr unregelmäßigen Belegung führen. Diese großen Areale können sich beim Verpressen störend auf die Bindungsbildung auswirken und zur verminderten Bruchfestigkeit beitragen.





Abbildung 5.141: Tablettenbruchfestigkeiten der ternären 1 min-Mischungen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 abhängig vom Pressdruck (n=6).

Abbildung 5.142: Tablettenbruchfestigkeiten der ternären 10 min-Mischungen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 abhängig vom Pressdruck (n=6).



Abbildung 5.143: Tablettenbruchfestigkeiten der ternären Mischungen (30, 60 min) mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 abhängig vom Pressdruck (n=6).



Abbildung 5.144: Tablettenbruchfestigkeiten der ternären Mischungen (180-720 min) mit Aeroxide<sup>®</sup>  $TiO_2$  P 25 abhängig vom Pressdruck (n=6).



Abbildung 5.145: Tablettenbruchfestigkeiten der ternären Mischungen (1440-4320 min) mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 abhängig vom Pressdruck (n=6).

## 5.6.2.2.2.4 Printex<sup>®</sup> 95

Auch der Einfluss der Oberflächenbelegung mit dem Rußprodukt Printex<sup>®</sup> 95 auf die Kompaktierfähigkeit wird untersucht. Die Abbildungen 5.146 bis 5.149 zeigen die Entwicklung.

Die kurze 1 min Mischung zeigt nur einen Anstieg der Bruchfestigkeit bis zu einem Pressdruck von 150 MPa (Abb. 5.146), bereits ab 200 MPa verschlechtert sich die Kompaktierfähigkeit. Über einen breiten Mischzeitenbereich (10-720 min, Abb. 5.147) verbessert sich zwar die Festigkeit bei gleichem Pressdruck, ab 250 MPa jedoch tritt stets

400 350

60 min

die Abnahme der Tablettenfestigkeit ein. Erst nach langem Mischen (1440 min) verringert sich die Abnahme allmählich, die 3d Mischung ist bis zu 250 MPa kompaktierbar (Abb. 5.149).

1.4

1.2

1.0

0.6

0.4

0.2

0.0

100 150 200 250 300

10 min

Bruchfestigkeit [MPa] 0.8



Abbildung 5.146: Tablettenbruchfestigkeiten der ternären 1 min-Mischung mit Printex<sup>®</sup> 95 abhängig vom Pressdruck (n=6).



180 min - 360 min -720 min Abbildung 5.147: Tablettenbruchfestigkeiten der ternären Mischungen (10-720 min) mit Printex® 95 abhängig vom Pressdruck (n=6).

Pressdruck [MPa]

— 30 min



Abbildung 5.148: Tablettenbruchfestigkeiten der ternären Mischungen (1440, 2880 min) mit Printex<sup>®</sup> 95 abhängig vom Pressdruck (n=6).

Abbildung 5.149: Tablettenbruchfestigkeiten der ternären 4320 min-Mischung mit Printex<sup>®</sup> 95 abhängig vom Pressdruck (n=6).

Printex<sup>®</sup> 95 weist zwar die Besonderheit in der Belegung auf, nämlich die Anlagerung an den Erhöhungen der Ibuprofenoberfläche (vgl. Abschnitt 5.3.2.4), was zu den vergleichsweise höheren Bruchfestigkeiten als beim Aerosil<sup>®</sup> R 805 führt. Der "Film" bei längeren Mischzeiten ist jedoch sehr unregelmäßig und wirkt der Tablettenfestigkeit entgegen (vgl. 5.81-5.84). Erst ab Mischzeiten von einem Tag und länger verbessert sich die Kompaktierfähigkeit auf 250 MPa (Abb. 5.148, 5.149). Ab diesem Zeitpunkt sollte der Beitrag der vollständigen Belegung der Maisstärke zum Tragen kommen.

#### 5.6.2.3 Maximale Bruchfestigkeit σ<sub>tmax</sub> und Kompressibilitätsparameter γ

Der Verlauf nach Leuenberger erfolgt nach Gleichung 2.47:

$$\sigma_t = \sigma_{t \max} * (1 - exp^{-\gamma \rho_r P})$$
Gl. 2.47

Mittels nicht-linearer Regression können gleichzeitig die beiden Parameter maximale Bruchfestigkeit  $\sigma_{tmax}$  und der Kompressiblitätsparameter  $\gamma$  ermittelt werden, in dem die experimentell bestimmten Tablettenfestigkeiten gegen das Produkt aus rel. Dichte und Pressdruck aufgetragen werden. Die Abbildung 5.150 zeigt die Ergebnisse der Berechnung für die binären Mischungen, in Tab. 5.29 sind die dazugehörigen Werte sowie die ermittelten Werte für den Kompressibilitätsparameter angegeben.

Die ermittelten Maximalwerte für die Bruchfestigkeiten weisen den bekannten Verlauf auf: Mit zunehmender Oberflächenbelegung verändert sich die maximal mögliche Festigkeit. Die hydrophilen Nanomaterialien führen zu höheren maximalen Bruchfestigkeiten als die hydrophoben. Die Werte für den Kompressibilitätsparameter  $\gamma$  liegen zwischen 0.0044 und 0.0096 [MPa<sup>-1</sup>].



Abbildung 5.150: Maximale Bruchfestigkeit  $\sigma_{tmax}$  [MPa] der binären Mischungen aus Maisstärke und Fließregulierungsmitteln, ermittelt

mittels nicht-linearer Regression.

|                    | Aerosil <sup>®</sup> 200   |                         |        |                                             | Aerosil <sup>®</sup> R 808 | 5              |  |
|--------------------|----------------------------|-------------------------|--------|---------------------------------------------|----------------------------|----------------|--|
| Mischzeit<br>[min] | σ <sub>tmax</sub><br>[MPa] | γ*100<br>[MPa⁻¹]        | r²     | σ <sub>tmax</sub><br>[MPa]                  | γ*100<br>[MPa⁻¹]           | r <sup>2</sup> |  |
| 1                  | 3.82                       | 0.452                   | 0.9392 | 2.93                                        | 0.763                      | 0.9400         |  |
| 10                 | 3.69                       | 0.673                   | 0.9349 | 2.18                                        | 0.868                      | 0.9313         |  |
| 30                 | 2.80                       | 0.823                   | 0.9652 | 1.96                                        | 0.681                      | 0.9347         |  |
| 60                 | 3.87                       | 0.715                   | 0.9484 | 2.54                                        | 0.490                      | 0.9322         |  |
| 180                | 5.59                       | 0.550                   | 0.9500 | 2.90                                        | 0.386                      | 0.9313         |  |
| 360                | 5.00                       | 0.597                   | 0.9296 | 2.35                                        | 0.550                      | 0.8705         |  |
| 720                | 5.02                       | 0.704                   | 0.9589 | 2.25                                        | 0.496                      | 0.9027         |  |
| 1440               | 4.87                       | 0.714                   | 0.9392 | 2.16                                        | 0.460                      | 0.9197         |  |
| 2880               | 3.60                       | 0.960                   | 0.9211 | 2.23                                        | 0.664                      | 0.9308         |  |
| 4320               | 3.64                       | 0.827                   | 0.9402 | 3.04                                        | 0.446                      | 0.9274         |  |
|                    |                            | Printex <sup>®</sup> 95 |        | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 |                            |                |  |
| Mischzeit<br>[min] | σ <sub>tmax</sub><br>[MPa] | γ*100<br>[MPa⁻¹]        | r²     | σ <sub>tmax</sub><br>[MPa]                  | γ*100<br>[MPa⁻¹]           | r²             |  |
| 1                  | 2.70                       | 0.718                   | 0.9363 | 2.65                                        | 0.674                      | 0.9524         |  |
| 10                 | 2.63                       | 0.561                   | 0.9555 | 3.55                                        | 0.594                      | 0.9417         |  |
| 30                 | 2.62                       | 0.534                   | 0.9451 | 3.44                                        | 0.609                      | 0.9595         |  |
| 60                 | 2.38                       | 0.743                   | 0.9379 | 4.52                                        | 0.477                      | 0.9464         |  |
| 180                | 3.05                       | 0.641                   | 0.9039 | 5.34                                        | 0.491                      | 0.9332         |  |
| 360                | 2.55                       | 0.556                   | 0.9143 | 5.14                                        | 0.519                      | 0.9493         |  |
| 720                | 3.31                       | 0.591                   | 0.9197 | 6.90                                        | 0.436                      | 0.9502         |  |
| 1440               | 3.20                       | 0.686                   | 0.9172 | 4.82                                        | 0.681                      | 0.9592         |  |
| 2880               | 5.41                       | 0.533                   | 0.9335 | 4.90                                        | 0.656                      | 0.9400         |  |
| 4320               | 4.41                       | 0.651                   | 0.9329 | 4.87                                        | 0.726                      | 0.9508         |  |

Tabelle 5.29: Berechnete maximale Bruchfestigkeit  $\sigma_{tmax}$  [MPa] und Kompressibilitätsparameter  $\gamma$  [MPa<sup>-1</sup>] der binären Mischungen aus Maisstärke und Fließregulierungsmitteln, r<sup>2</sup>=Bestimmtheitsmaß.

Die ternären Mischungen mit Aerosil<sup>®</sup> 200 zeigen bei 1 Minute und wieder ab 360 Minuten Mischzeit den Sättigungsverlauf. Die dafür ermittelten maximalen Bruchfestigkeiten und Kompressibilitätsparameter sind in Tabelle 5.30 aufgeführt.

Tabelle 5.30: Berechnete maximale Bruchfestigkeit  $\sigma_{\text{tmax}}$  [MPa] und Kompressibilitätsparameter  $\gamma$  [MPa<sup>-1</sup>] der ternären Mischungen aus Maisstärke und Aerosil<sup>®</sup> 200, r<sup>2</sup>=Bestimmtheitsmaß.

|                 | Aerosil <sup>®</sup> 200   |                               |                |  |  |
|-----------------|----------------------------|-------------------------------|----------------|--|--|
| Mischzeit [min] | σ <sub>tmax</sub><br>[MPa] | γ*100<br>[MPa <sup>-1</sup> ] | r <sup>2</sup> |  |  |
| 1               | 0.91                       | 0.471                         | 0.7747         |  |  |
| 360             | 1.95                       | 0.433                         | 0.9057         |  |  |
| 720             | 2.00                       | 0.448                         | 0.8886         |  |  |
| 1440            | 1.93                       | 0.473                         | 0.8922         |  |  |
| 2880            | 1.87                       | 0.476                         | 0.8787         |  |  |
| 4320            | 2.03                       | 0.422                         | 0.8743         |  |  |

Aufgrund der Hydrophilisierung der Oberflächen sind bei den wirkstoffhaltigen Mischungen Tablettenfestigkeiten bis maximal 2 MPa zu erreichen. Damit ist, verglichen mit der kurzen 1 min Mischung, eine Steigerung um über 100% möglich.

# 5.7 Arzneibuchprüfungen

# 5.7.1 Gleichförmigkeit der Masse

Eine ausreichende Fließfähigkeit von Pulvern ist u. a. vonnöten, um die strengen Vorgaben des Arzneibuchs zu erfüllen. Die Dosierung des Tablettierguts erfolgt in der Tablettenpresse volumetrisch. Schwankungen in der Tablettenmasse führen zwangsläufig zu Veränderungen im Wirkstoffgehalt, was v. a. bei hoch wirksamen Substanzen nicht unerhebliche Gefahren für die Patienten zur Folge haben kann. Das Ph. Eur. 5.00 schreibt für Tabletten mit einem Gewicht zwischen 80 und 250 mg die Prüfung von 20 Einheiten vor, wobei höchstens zwei der Tabletteneinzelmassen um mehr als 7.5% vom Mittelwert abweichen dürfen, keine jedoch um mehr als 15%.

## 5.7.1.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Die Prüfung auf Gleichförmigkeit der Masse wird insgesamt dreimal durchgeführt. In Abbildung 5.151 ist das Ergebnis aus Versuch 2 dargestellt. Die anderen beiden Versuche verliefen entsprechend.



Abbildung 5.151: Abweichung der Tabletteneinzelmassen der binären Mischungen aus Maisstärke und Nanomaterial vom Mittelwert, Versuch 2 (n=20).

■ Aerosil 200 □ Aerosil R 805 Printex 95 Aeroxide TiO2 P 25

Die Abweichung der Einzelmassen von Mittelwert nimmt für alle Nanomaterialien mit zunehmender Mischzeit ab. Die hydrophoben Aerosile<sup>®</sup> sind bei kurzen Mischdauern den hydrophilen überlegen. Die Abnahme der Abweichung ist bei Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805 von 1 auf 10 Minuten signifikant, ebenfalls signifikant ist die Zunahme der Abweichung bei Aerosil<sup>®</sup> 200 von 2880 auf 4320 Minuten Mischzeit.

Tabelle 5.31 zeigt die Anzahl an Abweichungen von mehr als den erlaubten 7.5% vom Mittelwert für alle drei Versuche. Es sind nur die Mischzeiten 1 min und 3 d aufgeführt, da bei allen anderen Mischdauern die Abweichungen stets unter 7.5% liegen.

| Versuch | Mischzeit<br>[min] | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | Printex <sup>®</sup> 95 |
|---------|--------------------|--------------------------|----------------------------|---------------------------------------------|-------------------------|
| 1       | 1                  | 1                        | 2                          | 0                                           | 0                       |
| 1       | 4320               | 5                        | 0                          | 0                                           | 0                       |
| 2       | 1                  | 2                        | 1                          | 0                                           | 0                       |
| 2       | 4320               | 4                        | 0                          | 0                                           | 0                       |
| 2       | 1                  | 0                        | 0                          | 0                                           | 0                       |
| 3       | 4320               | 2                        | 0                          | 0                                           | 0                       |

Tabelle 5.31: Anzahl der Abweichungen der binären Tabletten aus Maisstärke und Nanomaterial von mehr als 7.5%.

#### 5.7.1.2 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

Das Ergebnis der Massenkonstanzprüfung der ternären Mischungen ist in Abbildung 5.152 gezeigt. Auch hier sind die Daten aus Versuch 2 dargestellt.



Abbildung 5.152: Abweichung der Tabletteneinzelmassen der ternären Mischungen aus Maisstärke, Ibuprofen und Nanomaterial vom Mittelwert, Versuch 2 (n=20).

Aerosil 200 Aerosil R 805 Printex 95 Aeroxide TiO2 P 25

Bei den ternären Gemischen zeigen alle vier Nanomaterialien bereits ab 1 Minute Mischzeit sehr niedrige Abweichungen. Im Verlauf nehmen sie noch weiter ab, jedoch nicht signifikant. Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 führt bei Mischzeiten ab 720 Minuten zu einem steilen Anstieg der Abweichungen.

Bei keinem der Fließregulierungsmittel außer Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 treten zu irgendeiner Mischzeit Differenzen >7.5% auf. Das Titandioxid verschlechtert bei langem Mischen die Fließfähigkeit dermaßen, dass sogar zwei Abweichungen >15% auftreten (Versuch 2). Tabelle 5.32 gibt die Anzahl der Abweichungen >7.5% für Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 an.

| Versuch | Mischzeit [min] | Aeroxide <sup>®</sup> TiO₂ P 25 |
|---------|-----------------|---------------------------------|
| 4       | 2880            | 1                               |
| 1       | 4320            | 4                               |
| 2       | 2880            | 3                               |
|         | 4320            | 5                               |
| 2       | 2880            | 0                               |
| 3       | 4320            | 4                               |

Tabelle 5.32: Anzahl der Abweichungen der ternären Tabletten aus Maisstärke, Ibuprofen und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 von mehr als 7.5%.

### 5.7.1.3 Einfluss der Oberflächenbelegung

Sowohl bei den binären als auch bei den ternären Gemischen führt die steigende Oberflächenbelegung zu einer Abnahme der Streuung der Tablettengewichte aufgrund der verbesserten Fließfähigkeit. Die Anzahl der Tablettenmassen mit mehr als der erlaubten 7.5% Abweichung beträgt ab 1 Minute Mischzeit maximal zwei, so dass bereits nach 1 Minute Mischen die Massenkonstanz nach dem Ph. Eur. 5.00 mit allen Nanomaterialien erreicht wird. Bei den binären Mischungen treten nur beim Aerosil<sup>®</sup> 200 bei sehr langen Mischdauern (3 Tage) häufigere Abweichungen auf, bei den ternären Gemischen beim Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 (ab 2 Tagen). Über den Mischzeitenbereich von 1 Minute bis 1 Tag liegt Massenkonstanz vor.

Der Grund für das gleich bleibend gute Fließverhalten der Gemische über einen langen Mischzeitenbereich mit hydrophilen Fließregulierungsmitteln liegt in der Bewegung des Füllschuhs. Durch das Rütteln können interpartikuläre Haftkräfte überwunden werden und die gleichmäßige Matrizenbefüllung noch mit Mischdauern sichergestellt werden, die z. B. bei der Schüttdichte bereits eine deutliche Abnahme der Fließfähigkeit bewirken. Bei den binären Mischungen zeigt nur die 3-Tages-Mischung des Aerosil<sup>®</sup> 200 ein schlechtes Fließverhalten. Das ebenfalls hydrophile Titandioxid bewirkt über den gesamten Mischzeitenbereich niedrige Abweichungen. Der Unterschied zum Aerosil<sup>®</sup> 200 liegt in der geringeren Oberfläche und der damit kleineren Anzahl an OH-Gruppen und damit möglichen Wasserstoffbrückenbindungen. Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 verhält sich jedoch bei den langen Mischzeiten der ternären Gemische sehr negativ. Ab 720 min steigt die prozentuale Abweichung kontinuierlich an. Dieser Sachverhalt lässt sich anhand der Schuppenbildung auf der Ibuprofenoberfläche erklären (vgl. Abschnitt 5.3.2.3, Abb. 5.71-5.74). Die Teilchen verhaken sich derart ineinander, dass auch die Rüttelbewegung des Füllschuhs nicht mehr ausreicht, das gleichmäßige Fließen zu gewährleisten. Die Belegung des Wirkstoffes mit Printex<sup>®</sup> 95 verläuft ebenso unregelmäßig (vgl. Abschnitt 5.75-5.84). Dennoch bleiben die Differenzen der Tablettenmassen auch bei langen Mischzeiten niedrig. Offensichtlich spielen neben der Gleichmäßigkeit der Belegung auch hier die chemisch-physikalischen Eigenschaften der Fließregulierungsmittel eine wichtige Rolle.

#### 5.7.1.4 Korrelation Tablettenmasse – Schüttdichte

Da mit steigender Oberflächenbelegung Trägerstoffe der mit den Fließregulierungsmittelagglomeraten die Fließfähigkeit der Mischungen ansteigt, sollten sich nicht nur Unterschiede in der Streuung der Tablettengewichte ergeben, sondern es ist zu erwarten, dass sich auch die Absolutmasse der Presslinge bei konstanten Einstellungen der Tablettenpresse verändert. Die Änderung der in die Matrize eingeflossenen Pulvermenge sollte im Verlauf den Schüttdichten entsprechen. Um dies zu überprüfen, werden die Tablettenmassen, die sich abhängig von der Mischzeit bei konstanter Fülltiefeneinstellung ergeben (vgl. Anhang 9.4.4.1.1, 9.4.4.1.2), mit den jeweiligen Schüttdichten korreliert. Die Fülltiefeneinstellung (entsprechend eines Tablettengewichts von 200 mg) erfolgt innerhalb einer Messreihe mit der Mischung jener Mischzeit, die den niedrigsten Hausner-Faktor und die höchste Schüttdichte ergibt.

Wie aus den Abbildungen 5.153-5.156, die exemplarisch die Verläufe der binären und ternären Mischungen mit den Aerosilen<sup>®</sup> zeigen, zu erkennen ist, gleicht der Verlauf der Tablettenmassen sowohl für die binären (Abb. 5.153 und 5.154) als auch für die ternären Gemische (Abb. 5.155 und 5.156) wie erwartet dem der jeweiligen Schüttdichten. Die sehr guten Korrelationskoeffizienten (Tab. 5.33) bestätigen dies. Damit kann die Schüttdichte eines Pulvers als direktes Maß für die Füllung der Matrize herangezogen werden.



Abbildung 5.153: Vergleich des Verlaufs der Tablettengewichte (n=60) bei konstanter Fülltiefeneinstellung und der Schüttdichte (n=3) der binären Mischungen mit Aerosil<sup>®</sup> 200.

Abbildung 5.154: Vergleich des Verlaufs der Tablettengewichte (n=60) bei konstanter Fülltiefeneinstellung und der Schüttdichte (n=3) der binären Mischungen mit Aerosil<sup>®</sup> R 805.



Abbildung 5.155: Vergleich des Verlaufs der Tablettengewichte (n=60) bei konstanter Fülltiefeneinstellung und der Schüttdichte (n=3) der ternären Mischungen mit Aerosil<sup>®</sup> 200.



Abbildung 5.156: Vergleich des Verlaufs der Tablettengewichte (n=60) bei konstanter Fülltiefeneinstellung und der Schüttdichte (n=3) der ternären Mischungen mit Aerosil<sup>®</sup> R 805.

Tabelle 5.33: Korrelationskoeffizient r nach Pearson für die Parameter Tablettenmasse bei gleicher Fülltiefeneinstellung – Schüttdichte.

| r      | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | Printex <sup>®</sup> 95 |
|--------|--------------------------|----------------------------|---------------------------------------------|-------------------------|
| binär  | 0.901                    | 0.928                      | 0.961                                       | 0.815                   |
| ternär | 0.976                    | 0.850                      | 0.959                                       | 0.978                   |

### 5.7.1.4 Korrelation Abweichung des Tablettengewichts – Schüttdichte

Aus den Abbildungen 5.151 und 5.152 wird die Abnahme der Streuung der Tablettenmasse mit steigender Oberflächenbelegung ersichtlich. Ob auch die Veränderung der Abweichungen der Einzelmassen vom Mittelwert mit den Schüttdichten korrelierbar ist, wird im Folgenden überprüft. Die Abbildungen 5.157 bis 5.160 zeigen beispielhaft Verläufe für die binären (Abb. 5.157, 5.158) und ternären (5.159, 5.160) Mischungen. Die entsprechenden Korrelationskoeffizienten sind in Tabelle 5.34 angegeben.

Tabelle 5.34: Korrelationskoeffizient r nach Pearson für die Parameter Abweichung der Tabletteneinzelmassen vom Mittelwert – Schüttdichte.

| r      | Aerosil <sup>®</sup> 200 | Aerosil <sup>®</sup> R 805 | Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | Printex <sup>®</sup> 95 |
|--------|--------------------------|----------------------------|---------------------------------------------|-------------------------|
| binär  | -0.736                   | -0.888                     | -0.862                                      | -0.349                  |
| ternär | -0.479                   | -0.419                     | -0.767                                      | -0.052                  |



Abbildung 5.157: Vergleich des Verlaufs der Abweichung der Einzelmassen vom Mittelwert (n=20) und der Schüttdichte (n=3) der binären Mischungen mit Aerosil<sup>®</sup> 200.



Abbildung 5.159: Vergleich des Verlaufs der Abweichung der Einzelmassen vom Mittelwert (n=20) und der Schüttdichte (n=3) der ternären Mischungen mit Aerosil<sup>®</sup> 200.



Abbildung 5.158: Vergleich des Verlaufs der Abweichung der Einzelmassen vom Mittelwert (n=20) und der Schüttdichte (n=3) der binären Mischungen mit Aerosil<sup>®</sup> R 805.



Abbildung 5.160: Vergleich des Verlaufs der Abweichung der Einzelmassen vom Mittelwert (n=20) und der Schüttdichte (n=3) der ternären Mischungen mit Aerosil<sup>®</sup> R 805.

Die Korrelationskoeffizienten (vgl. Tab. 5.34) zeigen große Unterschiede für die verschiedenen Fließregulierungsmittel. Insgesamt ist die Korrelation zwischen den Abweichungen der Einzeltablettenmassen vom Mittelwert und der Schüttdichte geringer als bei den Tablettengewichten und der Schüttdichten. Die binären Mischungen weisen im Vergleich zu den ternären höhere Korrelationen auf. Alle Gemische besitzen aufgrund der ausreichenden Fließfähigkeit bereits ab 1 Minute Mischzeit geringe Streuungen der Einzelmassen, jedoch mit einer im Verhältnis großen Standardabweichung und Schwankungen in den Absolutwerten. Das Ausmaß der Abweichungen der Einzelmassen vom Mittelwert befindet somit sich sowohl bei den binären als auch bei den ternären

Mischungen in einem Bereich, der für praktische Belange nicht signifikant ist und stellt damit einen minder relevanten Parameter dar.

# 5.7.2 Abrieb: Binäre Mischungen aus Maisstärke und Aerosilen<sup>®</sup>

Für das Handling von Tabletten ist neben ihrer Stabilität bei starker Druckeinwirkung (Bruchfestigkeit, vgl. Abschnitt 5.6.1) auch das Verhalten unter leichteren Belastungen wichtig. Aus diesem Grund schreibt das Arzneibuch eine weitere Prüfung vor, die Friabilitätsprüfung [167].

Je größer die Bruchfestigkeit von Tabletten ist, desto geringer sollte auch ihre Anfälligkeit gegenüber Reibungsbelastung sein. Entsprechend sollte der Verlauf der Abriebsprüfung ausfallen.



Abbildung 5.161: Abrieb der Tabletten binärer Gemische mit Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805 abhängig von der Mischzeit bei einem Pressdruck von 150 MPa (n=3).

Tabelle 5.35: Abrieb [%] der Tabletten der binären Gemische mit Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805, verpresst bei 150 MPa (n=3).

| Mischzeit<br>[min]         | 1             | 10            | 30            | 60            | 180                 |
|----------------------------|---------------|---------------|---------------|---------------|---------------------|
| Aerosil <sup>®</sup> 200   | 0.0014±0.0001 | 0.0011±0.0005 | 0.0014±0.0001 | 0.0003±0.0001 | 0.0000±0.0000       |
| Aerosil <sup>®</sup> R 805 | 0.0014±0.0003 | 0.0029±0.0001 | 0.0043±0.0003 | 0.0042±0.0004 | $0.0060 \pm 0.0004$ |
| Mischzeit<br>[min]         | 360           | 720           | 1440          | 2880          | 4320                |
| Aerosil <sup>®</sup> 200   | 0.0006±0.0001 | 0.0007±0.0002 | 0.0006±0.0003 | 0.0012±0.0001 | 0.0013±0.0003       |
| Aerosil <sup>®</sup> R 805 | 0.0057±0.0004 | 0.0035±0.0000 | 0.0034±0.0001 | 0.0049±0.0003 | 0.0044±0.0001       |

Abbildung 5.161 stellt die ermittelten prozentualen Abriebe für die binären Gemische aus Maisstärke und den beiden Aerosilen<sup>®</sup> für Tabletten mit unterschiedlicher Oberflächenbelegung, verpresst bei 150 MPa, exemplarisch dar. Tabelle 5.35 gibt die dazugehörigen Messwerte an.

Der Abrieb der Tabletten ist mit beiden Fließregulierungsmitteln grundsätzlich sehr gering. Wie die Bruchfestigkeit ist auch das Abriebsverhalten sowohl abhängig von der Art des Nanomaterials als auch von der Oberflächenbelegung. Die Tabletten mit Aerosil<sup>®</sup> 200 werden mit zunehmender Mischzeit fester und entsprechend nimmt der Massenverlust durch die Beanspruchung im Friabilator ab. Da das hydrophobe Fließregulierungsmittel zu einer Schwächung des Tablettengefüges und damit zur Verminderung der Tablettenfestigkeit führt, nimmt auch der Abrieb mit zunehmender Mischzeit zu.

## 5.7.3 Zerfall: Binäre Mischungen aus Maisstärke und Aerosilen<sup>®</sup>

Für die Freisetzung des Wirkstoffes, die einen wichtigen Parameter für die Wirkgeschwindigkeit darstellt, ist die Zerfallszeit der Tablette von zentraler Bedeutung. Deshalb schreibt das Arzneibuch für jeden Wirkstoff und Darreichungsform eine Zeitspanne vor, innerhalb der die Tablette zerfallen muss, um eine bestimmte Wirkstoffkonzentration im Prüfmedium zu erhalten.

Auch bei dieser Prüfung soll im Rahmen dieser Arbeit lediglich exemplarisch anhand der beiden Aerosile<sup>®</sup> in den binären Mischungen gezeigt werden, welchen Einfluss die unterschiedliche Oberflächenbelegung mit den verschiedenen Nanomaterialien auf die Zerfallszeit der entsprechenden Tabletten hat.

In Abbildung 5.162 und Tabelle 5.36 sind die Zerfallszeiten für die binären Mischungen mit Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805 aufgeführt.

Der Verlauf der Zerfallszeiten entspricht ebenfalls für beide Nanomaterialien dem der jeweiligen Bruchfestigkeiten. Durch die festere Tablettenstruktur braucht die Flüssigkeit länger, um in die Poren einzudringen. Das hydrophobe Aerosil<sup>®</sup> R 805 bewirkt bei Mischzeiten bis 30 Minuten Zerfallszeiten, die über denen des Aerosil<sup>®</sup> 200 liegen. Dies kann entweder auf die dichtere Partikelpackung aufgrund der schnelleren Agglomeratzerkleinerung und damit verbundenen besseren Fließfähigkeit oder auf die Hydrophobie des Nanomaterials zurückgeführt werden, die die Benetzung der Maisstärkpartikeln mit dem Zerfallsmedium (Wasser) erschwert [173]. Bei dichteren Belegungen kommt es zu einer weiteren Abnahme der Zerfallszeit. Dies widerspricht der Benetzungshemmung durch Hydrophobie. Gleichzeitig nimmt mit steigender Oberflächenbelegung aber die Bindungsfestigkeit ab (vgl. Bruchfestigkeit), so dass das Tablettengefüge geschwächt wird. Der Aerosil<sup>®</sup> R 805-Kurvenverlauf lässt darauf schließen, dass bei kurzen Mischdauern der Abschirmungseffekt der hydrophoben Substanz der verlaufsentscheidende Parameter ist, bei längerem Mischen jedoch die Abnahme der Tablettenfestigkeit überwiegt.


Abbildung 5.162: Zerfallszeit der Tabletten binärer Gemische mit Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805 abhängig von der Mischzeit bei einem Pressdruck von 150 MPa (n=3).

Tabelle 5.36: Zerfallszeit [s] der Tabletten der binären Gemische mit Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805, verpresst

| bei 150 MPa (n=3).         |              |              |              |              |              |
|----------------------------|--------------|--------------|--------------|--------------|--------------|
| Mischzeit [min]            | 1            | 10           | 30           | 60           | 180          |
| Aerosil <sup>®</sup> 200   | 10.7 ± 0.808 | 11.5 ± 0.252 | 11.4 ± 0.777 | 17.7 ± 4.42  | 15.7 ± 1.53  |
| Aerosil <sup>®</sup> R 805 | 17.6 ± 3.20  | 14.8 ± 1.22  | 12.7 ± 1.11  | 11.9 ± 0.777 | 11.9 ± 0.436 |
| Mischzeit [min]            | 360          | 720          | 1440         | 2880         | 4320         |
| Aerosil <sup>®</sup> 200   | 23.0 ± 9.36  | 20.6 ± 4.51  | 27.3 ± 4.37  | 29.3 ± 1.32  | 31.2 ± 0.794 |
| Aerosil <sup>®</sup> R 805 | 10.6 ± 0.737 | 10.5 ± 1.25  | 10.1 ± 1.47  | 10.7 ± 0.850 | 10.7 ± 0.473 |

## 5.7.4 Einfluss des Zumischens von Mg-Stearat

Alle vorangegangenen Versuche fanden mit den reinen Maisstärke-/Fließregulierungsmittelbzw. Ibuprofen-/Maisstärke-/Fließregulierungsmittelmischungen statt. Die Bruchfestigkeiten wurden von einzeln gepressten Tabletten mit externer Schmierung bestimmt. Der Verzicht auf Schmiermittel ist nötig, um deren bekannten negativen Einfluss auf die Tablettenfestigkeit [118] und –zerfallszeit [173] auszuschließen.

Da in der Praxis auf die Stempelschmierung nicht zu verzichten ist, um den Tablettierwerkzeugen auf Dauer nicht zu schaden, wird im Folgenden überprüft, ob kurzes Zumischen von Schmiermittel (Mg-Stearat) zu den fertigen binären Gemischen mit den Aerosilen<sup>®</sup> einen signifikanten Einfluss auf die untersuchten Parameter hat. Den Mischungen werden 0.2% Mg-Stearat zugegeben und für 1 Minute im Turbula-Mischer gemischt.

#### 5.7.4.1 Tablettenmasse bei konstanter Fülltiefeneinstellung

Die Abbildungen 5.163 und 5.164 sowie die Tabellen 5.37 und 5.38 zeigen die Entwicklung der Tablettenmassen bei konstanter Fülltiefeneinstellung in Abhängigkeit von der Mischzeit für die binären Gemische mit den Aerosilen<sup>®</sup> ohne und mit Zusatz von Schmiermittel.





Abbildung 5.163: Tablettenmasse bei konstanter Fülltiefeneinstellung für die binären Gemische aus Maisstärke und Aerosil<sup>®</sup> 200 ohne und mit Mg-Stearat (n=60).

Abbildung 5.164: Tablettenmasse bei konstanter Fülltiefeneinstellung für die binären Gemische aus Maisstärke und Aerosil<sup>®</sup> R 805 ohne und mit Mg-Stearat (n=60).

Tabelle 5.37: Tablettenmasse [mg] der binären Gemische aus Maisstärke und Aerosil<sup>®</sup> 200 ohne und mit Mg-Stearat (n=60).

| Mischzeit [min]                                         | 1                        | 10                       | 30                        | 60                        | 180                       |
|---------------------------------------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Aerosil <sup>®</sup> 200 ohne Mg-St.                    | 149 ± 5.23               | 190 ± 1.45               | 199 ± 1.48                | 196 ± 1.43                | 202 ± 0.96                |
| Aerosil <sup>®</sup> 200 mit Mg-St.                     | 167 ± 2.26               | 196 ± 0.94               | 199 ± 0.83                | 200 ± 0.93                | 203 ± 0.97                |
|                                                         |                          |                          |                           |                           |                           |
| Mischzeit [min]                                         | 360                      | 720                      | 1440                      | 2880                      | 4320                      |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200 ohne Mg-St. | <b>360</b><br>201 ± 1.12 | <b>720</b><br>198 ± 0.96 | <b>1440</b><br>190 ± 1.10 | <b>2880</b><br>167 ± 0.87 | <b>4320</b><br>131 ± 7.54 |

Tabelle 5.38: Tablettenmasse [mg] der binären Gemische aus Maisstärke und Aerosil<sup>®</sup> R 805 ohne und mit Mg-Stearat (n=60).

| Mischzeit [min]                                          | 1                        | 10                       | 30                        | 60                        | 180                       |
|----------------------------------------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Aerosil <sup>®</sup> R 805 ohne Mg-St                    | 174 ± 5.64               | 195 ± 1.23               | 195 ± 0.93                | 200 ± 0.75                | 200 ± 1.17                |
| Aerosil <sup>®</sup> R 805 mit Mg-St.                    | 180 ± 2.86               | 196 ± 0.60               | 199 ± 0.62                | 199 ± 0.75                | 197 ± 0.56                |
|                                                          |                          |                          |                           |                           |                           |
| Mischzeit [min]                                          | 360                      | 720                      | 1440                      | 2880                      | 4320                      |
| Mischzeit [min]<br>Aerosil <sup>®</sup> R 805 ohne Mg-St | <b>360</b><br>199 ± 0.55 | <b>720</b><br>199 ± 0.70 | <b>1440</b><br>200 ± 0.61 | <b>2880</b><br>200 ± 0.65 | <b>4320</b><br>200 ± 0.89 |

Bereits das 1-minütige Zumischen von Mg-Stearat führt zu einer signifikanten Zunahme der Tablettenmasse, die bei den kurzen Mischzeiten besonders deutlich ist. Der Effekt ist beim Aerosil<sup>®</sup> 200 stärker ausgeprägt als beim hydrophoben Fließregulierungsmittel. Nicht signifikant verschieden von der jeweils vorhergehenden Mischzeit sind beim Aerosil<sup>®</sup> 200 die Mischzeiten 30, 720 und 4320 min, beim Aerosil<sup>®</sup> R 805 ist es nur die 10 min Mischung.

Ursache für die Massenzunahme ist die zusätzliche Agglomeratzerkleinerung durch den erneuten Mischvorgang. Beim hydrophoben Nanomaterial bewirkt das wiederholte Mischen einen geringeren Effekt als Aerosil<sup>®</sup> 200, da hier die Agglomeratzerkleinerung von vorne herein leichter und schneller stattfindet.

#### 5.7.4.2 Friabilität

Die zusätzliche Hydrophobisierung der Maisstärkeoberfläche durch das Schmiermittel verursacht wahrscheinlich eine verminderte Bindungsbildung. Sinkt die Festigkeit der Tablette, sollte der Anteil an Pulver, der bei der Abriebsprüfung verloren geht, zunehmen. Die Abbildungen 5.165 und 5.166 stellen die Verläufe für die beiden Aerosile<sup>®</sup> mit und ohne Mg-Stearat dar. Wie erwartet, nimmt der Abrieb zu und liegt beim hydrophoben Aerosil<sup>®</sup> R 805 generell höher als bei seinem hydrophilen Pendant. Signifikant sind die Unterschiede zwischen stearathaltiger und stearatfreier Mischung beim Aerosil<sup>®</sup> 200 bei allen Mischzeiten außer 1, 10, 60 und 360 min, beim Aerosil<sup>®</sup> R 805 sind sie nicht signifikant bei 180 und 360 min.



Abbildung 5.165: Abrieb abhängig von der Mischzeit Abbildung 5.166: Abrieb abhängig von der Mischzeit der der binären Gemische aus Aerosil<sup>®</sup> 200 ohne und mit Mg-Stearat, Pressdruck ohne und mit Mg-Stearat, Pressdruck 150 MPa, (n=3). 150 MPa, (n=3).

Maisstärke und binären Gemische aus Maisstärke und Aerosil® R 805

Tabelle 5.39 Abrieb [%] der Tabletten der binären Gemische mit Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805 und Mg-Stearat, verpresst bei 150 MPa (n=3).

| Mischzeit [min]                                       | 1                           | 10                          | 30                           | 60                           | 180                          |
|-------------------------------------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|
| Aerosil <sup>®</sup> 200+<br>Mg-St                    | 0.0018±0.0003               | 0.0020±0.0018               | 0.0018±0.0001                | 0.0004±0.0002                | 0.0019±0.0008                |
| Aerosil <sup>®</sup> R 805+<br>Mg-St.                 | 0.0048±0.0005               | 0.0057±0.0006               | 0.0067±0.0005                | 0.0054±0.0001                | 0.0065±0.0001                |
|                                                       |                             |                             |                              |                              |                              |
| Mischzeit [min]                                       | 360                         | 720                         | 1440                         | 2880                         | 4320                         |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200+<br>Mg-St | <b>360</b><br>0.0010±0.0002 | <b>720</b><br>0.0021±0.0003 | <b>1440</b><br>0.0022±0.0004 | <b>2880</b><br>0.0018±0.0001 | <b>4320</b><br>0.0035±0.0003 |

#### 5.7.4.3 Zerfall

Wie aus der Literatur [173] hinreichend bekannt ist, führen hydrophobe Substanzen durch eine Verminderung der Benetzbarkeit zur Zerfallsinhibition von Tabletten aus hydrophilen Grundstoffen in polaren Lösungsmitteln. Demzufolge sollte auch das kurze Zumischen von Mg-Stearat einen derartigen Effekt auf die Zerfallszeit der binären Mischungen ausüben.

Die Abbildungen 5.167 und 5.168 zeigen den erwarteten Verlauf. Bei den Mischungen mit Aerosil<sup>®</sup> 200 liegen die Zerfallszeiten der kurzen Mischungen mit Mg-Stearat höher als die der reinen Maisstärke-Fließregulierungsmittel-Gemische. Dies kann als Ursache die Benetzungshinderung durch das Stearat haben, allerdings kommt es durch das erneute Mischen ebenfalls zu einer zusätzlichen Agglomeratzerkleinerung, resultierend in höheren Oberflächenbelegungen. Da hydrophile Aerosile<sup>®</sup> mit steigender Belegungsdichte eine Zunahme der Bruchfestigkeit zur Folge haben (vgl. Abschnitt 5.6.1), kann die erhöhte Zerfallszeit auch darauf zurückzuführen sein. Wie bereits von Lerk et al. [114] beobachtet wurde, ist das Nanomaterial in der Lage, mit dem Mg-Stearat um die Bindungsplätze auf der Oberfläche zu konkurrieren. Für die Wechselwirkung Nanomaterial - Mg-Stearat spricht auch, dass die Zerfallszeit im Mischzeitenbereich von 60 min bis 360 min nicht weiter ansteigt. Hier wird die Agglomeratzerkleinerung bzw. zusätzliche Oberflächenbelegung geringer und die festigkeitsvermindernden Eigenschaften des Schmiermittels kommen zur Wirkung. Eine Mischung aus den beiden gegenläufigen Effekten führt wahrscheinlich dazu, dass im weiteren Verlauf die schmiermittelhaltigen Tabletten eine tendenziell geringere Zerfallszeit aufweisen.





Abbildung 5.167: Zerfall abhängig von der Mischzeit der binären Gemische aus Maisstärke und Aerosil<sup>®</sup> 200 ohne und mit Mg-Stearat, Pressdruck 150 MPa (n=3).

Abbildung 5.168: Zerfall abhängig von der Mischzeit der binären Gemische aus Maisstärke und Aerosil<sup>®</sup> R 805 ohne und mit Mg-Stearat, Pressdruck 150 MPa, (n=3).

Beim Aerosil<sup>®</sup> R 805 verläuft die Mg-Stearat-Kurve fast parallel zur reinen Maisstärke-Nanomaterial-Mischung. Mit steigender Mischdauer nimmt die Zerfallszeit durch die Schwächung des Tablettengefüges ab. Die zusätzliche Hydrophobisierung durch das Schmiermittel führt zur Benetzungsminderung. Als Folge steigt die Zerfallszeit an.

In Tabelle 5.40 sind die Mittelwerte der Zerfallszeit aus drei Bestimmungen für die Mg-Stearat-haltigen Mischungen aufgeführt.

Signifikant verschieden von den Mg-Stearat-haltigen Mischungen sind die Mischzeiten 10 min und 30 min der reinen binären Gemische mit Aerosil<sup>®</sup> 200, sowie die Mischzeiten 30-720 min der Mischungen mit Aerosil<sup>®</sup> R 805.

Tabelle 5.40: Zerfallszeit [s] der Tabletten der binären Gemische mit Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805 mit Mg-Stearat, verpresst bei 150 MPa (n=3).

| Mischzeit [min]                                    | 1                          | 10                        | 30                         | 60                         | 180                        |
|----------------------------------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|
| Aerosil <sup>®</sup> 200+Mg-St.                    | 11.6 ± 0.681               | 15.5 ± 1.40               | 16.3 ± 0.874               | 16.5 ± 1.31                | 16.0 ± 0.929               |
| Aerosil <sup>®</sup> R 805+Mg-St.                  | 16.7 ± 0.603               | 16.7 ± 1.12               | 16.7 ± 1.25                | 14.3 ± 0.751               | 14.1 ± 1.08                |
|                                                    |                            |                           |                            |                            |                            |
| Mischzeit [min]                                    | 360                        | 720                       | 1440                       | 2880                       | 4320                       |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200+Mg-St. | <b>360</b><br>15.7 ± 0.208 | <b>720</b><br>26.5 ± 3.48 | <b>1440</b><br>23.9 ± 7.10 | <b>2880</b><br>25.9 ± 6.62 | <b>4320</b><br>25.8 ± 7.08 |

### 5.7.4.4 Bruchfestigkeit

In Abschnitt 5.7.4.2 wurde bereits der Einfluss von Schmiermitteln auf die Bindungsbildung innerhalb der Tabletten angesprochen. Um die Ergebnisse zu untermauern, soll hier nochmals kurz auf die Bruchfestigkeit der Tabletten eingegangen werden, die in engem Zusammenhang mit der Friabilität und der Zerfallszeit steht. Die Abbildungen 5.169 und 5.170 stellen die Bruchfestigkeitsverläufe der Mischungen ohne und mit Mg-Stearat für die beiden Aerosile<sup>®</sup> in Abhängigkeit von der Mischzeit dar, Tabelle 5.41 gibt die Bruchfestigkeitswerte für die schmiermittelhaltigen Tabletten an.

Tabelle 5.41: Bruchfestigkeit [MPa] der Tabletten der binären Gemische mit Aerosil<sup>®</sup> 200 und Aerosil<sup>®</sup> R 805 mit Mg-Stearat, verpresst bei 150 MPa (n=18).

| Mischzeit [min]                                    | 1                          | 10                         | 30                          | 60                          | 180                         |
|----------------------------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Aerosil <sup>®</sup> 200+Mg-St.                    | 1.74 ± 0.128               | 2.18 ± 0.152               | 2.17 ± 0.130                | 2.42 ± 0.092                | 2.50 ± 0.200                |
| Aerosil <sup>®</sup> R 805+Mg-St.                  | 1.49 ± 0.092               | 1.43 ± 0.081               | 1.39 ± 0.104                | 1.54 ± 0.081                | 1.35 ± 0.105                |
|                                                    |                            |                            |                             |                             |                             |
| Mischzeit [min]                                    | 360                        | 720                        | 1440                        | 2880                        | 4320                        |
| Mischzeit [min]<br>Aerosil <sup>®</sup> 200+Mg-St. | <b>360</b><br>2.56 ± 0.171 | <b>720</b><br>2.74 ± 0.175 | <b>1440</b><br>2.97 ± 0.153 | <b>2880</b><br>2.38 ± 0.121 | <b>4320</b><br>2.15 ± 0.169 |





Abbildung 5.169: Bruchfestigkeit abhängig von der Mischzeit der binären Gemische aus Maisstärke und Aerosil<sup>®</sup> 200 ohne und mit Mg-Stearat, Pressdruck 150 MPa, (n=3).

Abbildung 5.170: Bruchfestigkeit abhängig von der Mischzeit der binären Gemische aus Maisstärke und Aerosil<sup>®</sup> R 805 ohne und mit Mg-Stearat, Pressdruck 150 MPa, (n=3).

Beim Aerosil<sup>®</sup> 200 ändert sich die Bruchfestigkeit der Mg-Stearat-haltigen Mischungen bis zu einer Mischzeit von 30 Minuten nicht oder ist sogar höher als bei den Mischungen ohne Schmiermittel. Damit wird die These bestätigt, dass durch den erneuten Mischvorgang die Schmiermittelteilchen an der Adsorption gehindert werden und zusätzliche adsorbierbare Nano-Agglomerate entstehen, die zur Erhöhung der Bruchfestigkeit führen. Erst ab 180 Minuten kommt der negative Effekt des Mg-Stearats zum Tragen und die Festigkeit sinkt signifikant für alle folgenden Mischzeiten ab. Beim hydrophoben Aerosil<sup>®</sup> R 805 kommt es nach Zusatz des Schmiermittels bei den kurzen Mischzeiten zu einer Verminderung der Festigkeit. Auch bei diesem Fließregulierungsmittel bewirkt ein zusätzlicher Mischvorgang eine erneute Agglomeratzerkleinerung, die sich im Falle des Aerosil<sup>®</sup> R 805 negativ auf die Bindungsbildung auswirkt. Im Verlauf findet kein zusätzlicher Abfall der Festigkeit statt.

### 5.8 Potenz hochdisperser Fließregulierungsmittel

Für die Tablettierfähigkeit von Pulvern sind vor allem zwei Eigenschaften ausschlaggebend: die Fließfähigkeit und das Vermögen, feste Presslinge zu bilden. In diesem Kapitel soll ausgehend von diesen Anforderungen eine Klassifizierung der untersuchten Nanomaterialien bezüglich ihres Einsatzes in der Tablettierung erfolgen. Gibt es eine optimale Mischzeit für ein bestimmtes Fließregulierungsmittel?

Wie in den vorangehenden Abschnitten gezeigt wurde, kann die Fließfähigkeit von Pulvern über ihre Schüttdichte beschrieben werden. Maß für die Fähigkeit, einen stabilen Pressling zu bilden, ist die diametrale Bruchfestigkeit. Demnach ist ein Nanomaterial dann gut als Fließregulierungsmittel in der Direkttablettierung geeignet, wenn es bei geringen Mischzeiten eine hohe Schüttdichte und gleichzeitig eine hohe Bruchfestigkeit der Tabletten bewirkt.

#### 5.8.1 Binäre Mischungen aus Maisstärke und Nanomaterial

Die Abbildungen 5.171 bis 5.174 stellen die Bruchfestigkeit der Tabletten der binären Mischungen, gepresst bei einem Druck von 150 MPa, in Abhängigkeit von der Mischzeit und ihrer Schüttdichte dar. Zur besseren Orientierung sind die Datenpunkte der Schüttdichte zusätzlich als Ankerpunkte eingetragen.



Abbildung 5.171: Bruchfestigkeit und Schüttdichte abhängig von der Mischzeit der binären Gemische aus Maisstärke und Aerosil<sup>®</sup> 200, Pressdruck 150 MPa, (n=18).



Abbildung 5.172: Bruchfestigkeit und Schüttdichte abhängig von der Mischzeit der binären Gemische aus Maisstärke und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25, Pressdruck 150 MPa, (n=18).



Abbildung 5.173: Bruchfestigkeit und Schüttdichte abhängig von der Mischzeit der binären Gemische aus Maisstärke und Aerosil<sup>®</sup> R 805, Pressdruck 150 MPa, (n=18).



Abbildung 5.174: Bruchfestigkeit und Schüttdichte abhängig von der Mischzeit der binären Gemische aus Maisstärke und Printex<sup>®</sup> 95, Pressdruck 150 MPa, (n=18).

Die Mischungen mit Aerosil<sup>®</sup> 200 besitzen die größte Schüttdichte bei 180 Minuten. Ab dieser Mischzeit ändert sich auch die Bruchfestigkeit nicht mehr signifikant. Ähnlich verhält sich das andere hydrophile Fließregulierungsmittel, Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25. Damit wird die höchste Dichte ab 360 (bis 1440) Minuten Mischdauer erreicht, die Bruchfestigkeit erhöht sich von 360 auf 720 Minuten noch signifikant. Damit kann für Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 eine Mischzeit von 12 h als optimal angesehen werden. Die beiden hydrophoben Nanomaterialien erreichen ebenfalls bei einer Mischzeit von 360 Minuten ihre Maximalwerte in den Schüttdichten, allerdings ist hier zu beachten, dass die Bruchfestigkeit mit zunehmender Oberflächenbelegung negativ beeinflusst wird. Die Tablettenfestigkeit ist bei der 1-minütigen Aerosil<sup>®</sup> R 805-Mischung am größten und nimmt im weiteren Verlauf ab, so dass generell die Mischzeit kurz gehalten werden sollte. Beim Printex<sup>®</sup> 95 befindet sich die optimale Schüttdichte bei 720 min im wieder aufsteigenden Teil der Kurve, die entsprechende Bruchfestigkeit erreicht den Ausgangswert. Die höchste Festigkeit bei gleich bleibender Fließfähigkeit wird bei sehr langen Mischzeiten von zwei Tagen erreicht.

# 5.8.2 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

Für die ternären Mischungen werden ebenfalls die erreichte Bruchfestigkeit und Schüttdichte der Mischzeit gegenüber gestellt. Die Abbildungen 5.175 bis 5.178 zeigen die Verläufe.



Abbildung 5.175: Bruchfestigkeit und Schüttdichte abhängig von der Mischzeit der ternären Gemische aus Maisstärke, Ibuprofen und Aerosil<sup>®</sup> 200, Pressdruck 150 MPa, (n=18).



Abbildung 5.176: Bruchfestigkeit und Schüttdichte abhängig von der Mischzeit der ternären Gemische aus Maisstärke, Ibuprofen und Aerosil<sup>®</sup> R 805, Pressdruck 150 MPa, (n=18).



Abbildung 5.177: Bruchfestigkeit und Schüttdichte abhängig von der Mischzeit der ternären Gemische aus Maisstärke, Ibuprofen und Printex<sup>®</sup> 95, Pressdruck 150 MPa, (n=18).



Abbildung 5.178: Bruchfestigkeit und Schüttdichte abhängig von der Mischzeit der ternären Gemische aus Maisstärke, Ibuprofen und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25, Pressdruck 150 MPa, (n=18).

Bei den Mischungen mit Aerosil<sup>®</sup> 200 erreicht die Schüttdichte ab 180 Minuten ihren Maximalwert, der erst ab 720 Minuten wieder absinkt (Abb. 5.175). Die Bruchfestigkeit steigt von 180 auf 360 Minuten nochmals signifikant an, so dass für die ternären Aerosil<sup>®</sup> 200-Mischungen eine Mischzeit von 360 Minuten als optimal angesehen werden kann.

Aerosil<sup>®</sup> R 805 bewirkt die beste Schüttdichte bei 3 h Mischdauer (Abb. 5.176). Bei den binären Mischungen zeigte die Bruchfestigkeit beim hydrophoben Fließregulierungsmittel einen starken Abfall mit längerer Mischdauer. Dieser Effekt ist bei den ternären Mischungen weniger ausgeprägt. Die Bruchfestigkeit ändert sich erst ab 1440 Minuten signifikant und steigt an. Da jedoch das Fließverhalten zu diesem Zeitpunkt negativ von der dichten Oberflächenbelegung beeinflusst wird, ist eine Mischzeit von 180 Minuten optimal.

Die Bruchfestigkeiten der Tabletten mit Printex<sup>®</sup> 95 ändern sich nicht signifikant, so dass lediglich die Schüttdichte als Maß für die beste Mischzeit herangezogen werden kann. Aufgrund der unregelmäßigen Oberflächenbelegung beginnt die Schüttdichte bereits ab 30 Minuten, sich wieder zu verringern. Damit sollte eine Mischdauer von 10 Minuten nicht überschritten werden (Abb. 5.177).

Die höchste Schüttdichte erreichen die Mischungen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 zwischen 30 und 60 Minuten. Die höchste Bruchfestigkeit tritt ebenfalls bei 60 Minuten auf. Damit stellt diese Mischzeit die optimale für die Titandioxid-Mischungen dar.

#### 5.8.3 Vergleichende Bewertung

Tabelle 5.42 fasst die Ergebnisse zusammen.

|                                             | Optimale Mischzeit [min] |        |  |
|---------------------------------------------|--------------------------|--------|--|
| Fließregulierungsmittel                     | binär                    | ternär |  |
| Aerosil <sup>®</sup> 200                    | 180                      | 360    |  |
| Aerosil <sup>®</sup> R 805                  | 1 (360)                  | 180    |  |
| Printex <sup>®</sup> 95                     | 1 (720)                  | 10     |  |
| Aeroxide <sup>®</sup> TiO <sub>2</sub> P 25 | 720                      | 60     |  |

Tabelle 5.42: Optimale Mischzeit [min] für die binären und ternären Mischungen der verschiedenen Fließregulierungsmittel

Wie aus Tabelle 5.42 ersichtlich ist, bestehen z. T. wesentliche Unterschiede bezüglich der optimalen Mischzeit für die binären und ternären Gemische. Beim Aerosil<sup>®</sup> 200 liegen die beiden optimalen Mischzeiten nahe beisammen. Man kann damit einen Bereich angeben, in dem das hydrophile Nanomaterial am wirksamsten ist. Bei den beiden hydrophoben Fließregulierungsmitteln fällt die Festigkeitsverschlechterung bei den binären Mischungen stark ins Gewicht, deshalb sollte die Mischzeit kurz gehalten werden. Die Angaben in Klammern beziehen sich auf das Fließverhalten. Die hohe Diskrepanz zwischen den binären Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 und Printex<sup>®</sup> 95 liegt in der und ternären Mischungen von unregelmäßigen Oberflächenbelegung verbunden mit einem geringen Einfluss der Mischdauer auf die Bruchfestigkeit. Lediglich für Aerosil<sup>®</sup> 200 kann eine generelle Aussage Weitere Untersuchungen verschiedenen getroffen werden. mit Mischungszusammensetzungen sind nötig, um zu einer allgemein gültigen Aussage zu gelangen.

# 6 Zusammenfassung

Die vorliegende Arbeit untersucht den Einfluss verschiedener nanoskaliger Fließregulierungsmittel auf die Direkt-Tablettiereigenschaften von pharmazeutischen Pulvern am Beispiel von reiner Maisstärke und deren Mischung mit einem schlecht kompaktierbaren Wirkstoff, Ibuprofen. Die wesentlichen Parameter für eine erfolgreiche Tablettierung sind die Fließfähigkeit und ein gutes Bindungsvermögen der Pulverbestandteile.

Das Fließverhalten der Pulvermischungen mit je 0.2% Fließregulierungsmittelanteil wurde sowohl mit apparativ einfachen Arzneibuchmethoden als auch mit einer instrumentierten Exzenterpresse untersucht. Mittels der Instrumentierung konnten zudem die Tablettierbedingungen gezielt ausgewählt und konstant gehalten werden. Die Untersuchung der mechanischen Eigenschaften der Tabletten erfolgte mit einem Schleuniger Bruchfestigkeitstester, der zugleich die Bestimmung der Tablettenabmessungen erlaubt. Zusätzlich wurde die Belegung der Maisstärke- und Ibuprofenoberflächen mit den Fließregulierungsmitteln gualitativ am Rasterelektronenmikroskop untersucht.

Zunächst wurde der Wirkstoff bezüglich seiner Partikeleigenschaften charakterisiert. Die Ibuprofen-Kristalle sind bis zu zehn Mal größer als die Maisstärkekörner und weisen eine längliche, kantige Form auf. Die Oberflächenanalyse ergab, dass sich geringfügig Auflagerungen auf den Partikeln befinden und stellenweise leichte Erhebungen auftreten. Die Oberfläche ist jedoch überwiegend glatt und damit zur Beobachtung der Belegung durch Nanomaterialien geeignet. Beide Trägermaterialien zählen zu den kohäsiven Stoffen, wie ihre geringen Schüttdichten von 0.51 [g/ml] (Maisstärke) und 0.36 [g/ml] (Ibuprofen) zeigen. Für die Berechnung weiterer Parameter ist die wahre Dichte der bei 43% rel. Luftfeuchte konditionierten Pulvermischungen nötig. Da zu erwarten war, dass sich diese abhängig von den chemisch-physikalischen Eigenschaften der Nanomaterialien sowie vom Ausmaß der Oberflächenbelegung ändert, wurde die Dichte für die einzelnen Mischungen Hepyknometrisch bestimmt. Die Dichtewerte lagen bei den binären Mischungen mit hydrophilen Fließregulierungsmitteln zwischen 1.51 und 1.56 [g/cm<sup>3</sup>] in der Regel höher als bei den hydrophoben mit 1.49 bis 1.52 [g/cm<sup>3</sup>]. Für die ternären Mischungen ergaben sich insgesamt niedrigere Werte zwischen 1.27 und 1.35 [g/cm<sup>3</sup>].

Aufgrund der von der nahezu idealen Kugelform der Maisstärke abweichenden Struktur des Wirkstoffes stellte sich die Frage, ob die Belegung der Ibuprofenkristalle ebenso gleichmäßig verläuft. Deshalb wurden die ternären Mischungen auf ihre Oberflächenbelegung hin untersucht. Die Maisstärkekörner werden darin genauso gleichmäßig mit Nanomaterial-Agglomeraten bedeckt wie in den binären Mischungen. Die Ibuprofen-Belegung erfolgt

jedoch sehr ungleichmäßig. Stellenweise findet komplette Bedeckung statt, in anderen Arealen sind keine oder nur sehr wenige Agglomerate zu finden. Die dichter belegten Stellen wurden genauer untersucht. Besonderheiten zeigten hierbei Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 und Printex<sup>®</sup> 95. Beim Titandioxid findet "Schuppenbildung" statt, eine Zusammenlagerung mehrerer Agglomerate, noch bevor die gesamte Oberfläche bedeckt ist. Beim Ruß finden sich phasenweise "Riesenagglomerate", die einen Durchmesser von bis zu 2 µm besitzen, sowie die gezielte Anordnung der Agglomerate entlang der Erhebungen auf der Ibuprofen-Oberfläche. Damit stehen sie im Gegensatz zu den beiden Aerosilen<sup>®</sup>, wo ähnlich wie bei der Maisstärke auch eine gleichmäßig zunehmende Belegung stattfindet.

Das über die Schüttdichte und den Hausner-Faktor ermittelte Fließverhalten der binären Mischungen entspricht dem erwarteten Verlauf. Infolge der steigenden Mischzeit und der damit zusammenhängenden Zerkleinerung der Nanomaterialien auf adsorbierbare Agglomeratgrößen steigt die Oberflächenbelegung der Trägerstoffe an und die interpartikulären Haftkräfte werden reduziert. Die höchsten Dichtewerte liegen für Aerosil<sup>®</sup> 200 bei 0.63 [g/ml] nach 180 min Mischzeit, für Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 bei 0.64 [g/ml] (360 min), für Aerosil<sup>®</sup> R 805 bei 0.66 [g/ml] (360 min) und für Printex<sup>®</sup> 95 bei 0.71 [g/ml] (720 min). Damit zeigt sich die Überlegenheit der hydrophoben Fließregulierungsmittel gegenüber den hydrophilen in bis zu 13% höheren Schüttdichten. Der Vergleich mit in früheren Arbeiten ermittelten Oberflächenbelegungen bestätigte die Ergebnisse. Die berechneten Korrelationskoeffizienten betragen 0.894 < r < 0.975. Der Vergleich mit dem zur Bestimmung der interpartikulären Haftkräfte eingesetzten Zugspannungstester zeigte eine leichte Überlegenheit des Stampfvolumeters, da Unterschiede im Mischzeitenbereich 1 min bis 180 min detektierbar und z. T. signifikant sind. Die Korrelationen lagen für den überwiegenden Teil der Nanomaterialien im Bereich -0.810 < r < -0.870. Bei Printex<sup>®</sup> 95 ergab sich die sehr schlechte Korrelation von r = -0.077. Dies liegt daran, dass das Minimum in der Zugspannungskurve sehr schnell erreicht wird und im weiteren Verlauf die Messwerte tendenziell wieder ansteigen, während die Schüttdichte noch signifikante Verbesserungen der Fließfähigkeit anzeigt.

Die ternären Mischungen verhalten sich teilweise auf den ersten Blick unerwartet. Vor allem Printex<sup>®</sup> 95 und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 zeigen nach dem initialen Anstieg einen kontinuierlichen Abfall der Schüttdichten ab Mischzeiten von 180 min (Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25) bzw. 60 min (Printex<sup>®</sup> 95). Erklären lässt sich dieser Sachverhalt mit der unregelmäßigen Oberflächenbelegung des Wirkstoffes. Durch die Schuppenbildung können sich die Partikeln beim Aneinandergleiten während des Fließens ineinander verhaken. Die zudem beim Printex<sup>®</sup> 95 vorhandenen Riesenagglomerate besitzen eine Größe, mit der sie nach dem Rumpf schen Modell einen nicht unerheblichen Beitrag zur Haftkraft leisten.

Die o. a. Ergebnisse konnten durch die Daten der Tablettenpressungen bestätigt werden. Über die Lage der Stempel zu bestimmten Zeitpunkten des Pressvorgangs können die Heckel-Dichten  $D_0$  und  $D_b$  berechnet werden.  $D_0$  beschreibt die Packungsdichte des Pulverbetts bei der Matrizenbefüllung,  $D_{b}$ die Verdichtung aufgrund von Partikelumordnungsvorgängen unter der Einwirkung niedriger Pressdrücke. Damit entsprechen diese beiden Parameter der Schüttdichte und dem Hausner-Faktor. Die binären Mischungen mit Aerosil<sup>®</sup> 200 erreichten ihren höchsten D<sub>0</sub>-Wert von 0.51 [-] bei 180 Minuten Mischzeit. Aerosil<sup>®</sup> R 805 bewirkte eine rel. Dichte D<sub>0</sub> von 0.53 [-] (180 min), Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 von 0.48 [-] (360 min) und Printex<sup>®</sup> 95 von 0.54 [-] (720 min). Die Korrelationskoeffizienten Schüttdichte – D<sub>0</sub> lagen sowohl für die binären als auch für die ternären Mischungen zwischen 0.785 < r < 0.986 mit Ausnahme der ternären Aerosil<sup>®</sup> R 805-Gemische, die lediglich zu 33% korrelierten (r = 0.334). Bei dem Vergleichspaar Hausner-Faktor –  $D_b$  ergaben sich Werte von r zwischen 0.717 < r < 0.957.

Zusätzlich ließen sich aus der Heckel-Analyse Informationen über das Verformungsverhalten der Pulvermischungen gewinnen. Unterschiede ergaben sich bei den binären Mischungen abhängig vom verwendeten Nanomaterial. Printex<sup>®</sup> 95 und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 bewirkten aufgrund ihrer kristallinen Natur höhere Fließdrücke als die amorphen Aerosile<sup>®</sup>. Der Einfluss wurde bei den ternären Mischungen durch den hohen Anteil an kristallinem Ibuprofen nivelliert. Die Oberflächenbelegung selbst spielt nur eine untergeordnete Rolle.

Entsprechend der Arbeitshypothese konnte die Annahme bestätigt werden, dass das Ausmaß der Oberflächenbelegung <u>und</u> die Art des Nanomaterials Einfluss auf die mechanische Festigkeit der Tabletten hat. Bei den binären Mischungen kristallisierten sich zwei Gruppen heraus: Hydrophile und hydrophobe Fließregulierungsmittel. Aerosil<sup>®</sup> 200 und Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 führten mit längerem Mischen zur Erhöhung der Tablettenfestigkeit, dabei erwies sich das Aerosil<sup>®</sup> als potenter. Hydrophile Substanzen sind in der Lage, über oberflächenständige OH-Gruppen Wassermoleküle über H-Brücken zu binden und damit die bestehenden Adsorptionslayer auf den Maisstärkepartikeln zu vergrößern. Während des engen Kontaktes bei der Pressung können zusammenhängende Layer ausgebildet werden. Da H-Brücken eine höhere Bindungsstärke besitzen als van-der-Waals-Kräfte, erhöht sich die Bruchfestigkeit der Tabletten. Die gegenüber dem Titandioxid vier Mal größere Oberfläche des Aerosil<sup>®</sup> 200 bedingt die Unterschiede zwischen den beiden Fließregulierungsmitteln. Ab 180 min Mischzeit wird beim Aerosil<sup>®</sup> 200 ein Art Plateauphase erreicht, Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 besitzt die höchste Bruchfestigkeit bei 720 min.

Bei den hydrophoben Nanomaterialien tritt der gegenteilige Effekt ein: Die Maisstärkeoberfläche wird "hydrophobisiert". Durch die Silanierung werden beim Aerosil<sup>®</sup> R 805 ca. 50% der OH-Gruppen durch Octylreste ersetzt, damit sinkt die Fähigkeit

Zusammenfassung

zur Bindung von Feuchtigkeit. Die Haupt-Wechselwirkungen stellen van-der-Waals-Kräfte dar, die insgesamt schwächer sind als H-Brückenbindungen. Für Aerosil<sup>®</sup> R 805 ergibt sich als beste Mischzeit die kürzeste, eine Minute.

Außergewöhnliches Verhalten zeigten die Langzeit-Mischungen des Printex<sup>®</sup> 95. Nach anfänglichem Absinken stieg die Bruchfestigkeit ab 1440 Minuten Mischdauer stark an. Dafür verantwortlich ist wahrscheinlich die besondere kristalline Struktur des Rußes, was in weitergehenden Versuchen jedoch noch vollständig geklärt werden muss.

Bei den ternären Mischungen erwies sich der Verlauf der beiden Aerosile<sup>®</sup> als dem der Maisstärke-Nanomaterial-Mischungen vergleichbar. Insgesamt reinen waren die Tablettenfestigkeiten niedriger als bei den binären Mischungen, was auf den Wirkstoff-Einfluss zurückzuführen ist. Das Mischen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 ergab Bruchfestigkeiten, die nur wenig über denen des Aerosil® R 805 liegen. Offensichtlich ist durch die geringe Oberfläche die Fähigkeit zur Feuchtigkeitsbindung zu niedrig, um bei den durch den Ibuprofen-Zusatz insgesamt hydrophoberen Mischungen eine Verbesserung der Tablettenfestigkeit zu bewirken. Printex<sup>®</sup> 95 zeigt hier trotz seines hydrophoben Charakters initial die höchsten Tablettenfestigkeiten. Die besondere Belegung der Ibuprofen-Oberfläche, die eine regelrechte Rillenbildung zur Folge hat, kann während des Pressens zur Ausbildung von formschlüssigen Bindungen beitragen.

Ibuprofen ist dafür bekannt, dass es besonders bei höheren Pressdrücken über 150 MPa ein schlechtes Kompaktionsverhalten aufweist. Es konnte gezeigt werden, dass auch dahingehend die Oberflächenbelegung und das Nanomaterial eine große Rolle spielt. Mit Aerosil<sup>®</sup> 200 trat bei der ternären 1-Minuten-Mischung der Abfall der Bruchfestigkeit ab 300 MPa ein. Durch eine Mischzeit von 360 Minuten konnte der Effekt komplett kompensiert werden und die Bruchfestigkeit blieb trotz des hohen Drucks erhalten. Abhängig vom Nanomaterial ergaben sich unterschiedliche maximale Drücke, bis zu denen die Mischungen kompaktierbar blieben. Der maximale Druck betrug beim Aerosil<sup>®</sup> R 805 300 MPa (ab 60 Minuten), beim Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 ebenfalls 300 MPa (ab 30 Minuten) und beim Printex<sup>®</sup> 95 250 MPa, allerdings erst nach einer Mischzeit von drei Tagen.

Anhand der Tablettierversuche im Füllschuhbetrieb der Exzenterpresse konnte die Annahme der Arbeitshypothese, dass mit steigender Mischzeit die in die Matrize geflossene Pulvermasse zunimmt, ebenfalls bestätigt werden. Die Korrelationskoeffizienten für den Vergleich Tablettenmasse – Schüttdichte lagen für die binären Mischungen bei Werten von 0.815 < r < 0.961, für die ternären zwischen 0.850 und 0.978. Gleichzeitig mit dem verbesserten Fließverhalten nahm die Streuung der Einzelgewichte ab. Sämtliche Mischungen lagen bereits ab 1 Minute Mischzeit innerhalb der Toleranzgrenzen. Die Fließfähigkeitsverschlechterung der hydrophilen Aerosile<sup>®</sup> bei langen Mischdauern macht

sich nur bei der binären 3-Tages-Mischung mit Aerosil<sup>®</sup> 200 sowie ab 720 Minuten Mischzeit bei den ternären Mischungen mit Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 bemerkbar. Bei der Aerosil<sup>®</sup> 200 3-Tages-Mischung und den 2- und 3-Tages-Gemischen des Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 sind die Schwankungen so groß, dass keine Massenkonstanz mehr vorliegt.

Die übrigen Arzneibuchprüfungen wie Abrieb und Zerfall konnten im Rahmen dieser Arbeit nur beispielhaft für die binären Mischungen der Aerosile<sup>®</sup> durchgeführt werden. Entsprechend den Tablettenfestigkeiten nimmt die Friabilität bei den Mischungen mit Aerosil<sup>®</sup> 200 ab (niedrigster Wert bei 180 min), während das hydrophobe Aerosil<sup>®</sup> R 805 zu größeren Abrieben im Verlauf des Mischens führt (niedrigster Wert bei 1 min).

Die Zerfallszeit verhält sich umgekehrt, durch die erhöhte Festigkeit der Tabletten mit dem hydrophilen Nanomaterial benötigen sie zum Zerfall länger als die des hydrophoben Aerosil<sup>®</sup> R 805, wo das Tablettengefüge durch die schwächeren Bindungen lockerer ist und das Wasser besser eindringen kann.

Auch die exemplarischen Untersuchungen zum Einfluss von Magnesiumstearat zeigen das große Potenzial, das in der Variation der Mischzeit liegt. Bereits das 1-minütige zusätzliche Mischen bewirkt bei ursprünglichen Mischzeiten bis 60 Minuten eine z. T. signifikante Erhöhung der Tablettenmasse. Durch den zusätzlichen Mischvorgang werden die Agglomerate weiter zerkleinert und an die Maisstärkeoberfläche adsorbiert. Im Zerfall und der Friablität spiegelt sich der negative Effekt des Schmiermittels wider. Mg-Stearat führt beim Verpressen zu einer starken Beeinflussung der Bindungsbildung, resultierend in höheren Werten für den Abrieb. Der Zerfall wird eher verzögert aufgrund der Benetzungsminderung. Interessant ist der Einfluss auf die Bruchfestigkeit. Die Störung der Bindungsbildung hat i. d. R. niedrige Tablettenfestigkeiten zur Folge. Bei den Mischungen mit Aerosil<sup>®</sup> 200 trat dieser Effekt erst ab Ausgangsmischzeiten von 180 Minuten auf. Bis dahin blieb die Bruchfestigkeit trotz des Schmiermittels gleich bzw. erhöhte sich noch. Die zusätzliche Agglomeratzerkleinerung und -adsorption kann den negativen Effekt des Mg-Stearat unterdrücken. Bei den Mischungen mit Aerosil<sup>®</sup> R 805 führt das Schmiermittel durch die zusätzliche Hydrophobisierung bei kurzen Mischzeiten bis zehn Minuten zu einer Verminderung der Tablettenfestigkeit.

Zusammenfassend stellen sich die hydrophilen Nanomaterialien aufgrund ihres Vermögens zur Feuchtigkeitsbindung als besser geeignet zur Tablettierung dar als die hydrophoben. In Bezug auf die fließregulierende Potenz ist die Zusammensetzung der Mischung von großer Bedeutung. Abhängig von der Partikelform ergeben sich unterschiedliche Belegungsprofile, die das Fließverhalten bestimmen. Aerosil<sup>®</sup> 200 kristallisierte sich als das Fließregulierungsmittel heraus, das sowohl bei den binären als auch den ternären Mischungen bei Mischzeiten zwischen 180 und 360 min sowohl eine gute Fließfähigkeit als auch hohe Tablettenfestigkeiten erzielte.

Für die weitergehende Forschung stellen sich folgende Gesichtspunkte als interessant heraus: Zunächst müssen mehr Nanomaterialien auf ihren Einfluss bei der Bindungsbildung in Tabletten untersucht werden, um eine allgemeine Klassifizierung zu schaffen. Zudem sollten die Partikelform und –größe mit in die Überlegungen einbezogen werden, da diese eine wesentliche Rolle bei der Oberflächenbelegung spielen, wie diese Arbeit zeigen konnte. Damit verbunden stellt sich auch die Frage der optimalen Konzentration der Fließregulierungsmittel.

# 7 Summary

In this work the influence of different nanoscalic flow regulating agents (glidants) on the direct compression properties of pharmaceutical powders has been investigated. As model substances native corn starch and its mixture with Ibuprofen, a drug substance with insufficient compactibility, were chosen.

In tableting, crucial parameters are the flowability of powders/granules and their ability to form a strong compact. Flow properties of powder mixtures containing 0.2% of glidant were investigated using methods from the European Pharmacopoeia (Ph. Eur. 5.00) as well as an instrumented excentric single punch tablet press. On the basis of the instrumentation specific compaction conditions could be selected and kept constant. Mechanical properties of the tablets were determined using a Schleuniger tensile strength tester which is able to measure not only crushing strength but also the tablets dimensions. Additionaly, surface coverage of the corn starch and Ibuprofen particles with nanomaterial was investigated qualitatively using a scanning electron microscope.

Initially, the drug substance has been investigated in terms of its granular properties. Ibuprofen crystals are up to ten times bigger in size than the corn starch particles and elongated and edgy in shape. Surface analysis revealed a tiny amount of adhered small particles, probably from the preceding grinding process. In addition, some parts of the crystals showed slight elevations. Overall, the surface is smooth and because of that suitable for observation of the surface coverage with nanomaterials. Due to their low bulk densities of 0.51 [g/ml] (corn starch) and 0.36 [g/ml] (lbuprofen) both model substances can be classified as cohesive. To calculate further parameters, true densities of the nanomaterials, a change in true density was expected when stored at a relative humidity of 43%. Note that the true density is dependent on the properties of the nanomaterials and on the extent of surface coverage, respectively. True densities of binary mixtures with hydrophilic glidants showed values between 1.51 and 1.56 [g/cm<sup>3</sup>]. In general, they were higher than the binary mixtures with hydrophobic nanomaterials (1.49 – 1.52 [g/cm<sup>3</sup>]). For the ternary mixtures, densities between 1.27 and 1.35 [g/cm<sup>3</sup>] were measured.

To investigate if the surface coverage of Ibuprofen is comparable to that of Corn starch, which is much different in shape, ternary mixtures of Ibuprofen, Corn starch and nanomaterial were elucidated. Corn starch particles within the mixtures are covered with nanomaterial agglomerates the same way as in binary mixtures. By contrast, surface coverage of Ibuprofen is very irregular. In parts complete coverage occurs while in other

areas hardly one single agglomerate can be detected. Areas with a denser packing of agglomerates have been investigated in more detail. The mixtures with Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 and Printex<sup>®</sup> 95 show a particular way of surface coverage. The titanium dioxide agglomerates form kinds of "sheds" which are bigger assemblies of agglomerates. These sheds are formed very soon, even before the rest of the surface is covered regularly. Ibuprofen crystals covered with Printex<sup>®</sup> 95 include some huge agglomerates with a diameter up to 2  $\mu$ m. In addition, the agglomerates are arranged particularly along the elevations on the Ibuprofen surface. Surface coverage of the drug substance is very regular with both of the Aerosiles<sup>®</sup>.

Determination of bulk densities and Hausner ratios allows a classification of the mixtures regarding their flow properties. Due to the increase in mixing time followed by a comminution of nanomaterial agglomerates to adsorbable sizes, surface coverage of the model substances increases and interparticulate forces are being reduced. Binary mixtures of corn starch and Aerosil<sup>®</sup> 200 lead to the highest bulk density value of 0.63 [g/ml] after a mixing time of 180 min, the mixtures with Aerosil<sup>®</sup> R 805 after 360 min (0.66 [g/ml]), with Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 after 360 min (0.64 [g/ml]) and with Printex<sup>®</sup> 95 after 720 min (0.71 [g/ml]). From these results the superiority of hydrophobic glidants compared to the hydrophilic ones gets clear. Their bulk densities are up to 13% higher than the densities of the mixtures containing hydrophilic nanomaterials. Correlation of the bulk densities with surface coverage values determined in earlier works gives correlation coefficients (r) of 0.894 < r < 0.975 and so confirms the results. Compared to measured interparticulate forces by using the tensile strength tester the tapping device gives more accurate results. Significant differences particularly in the area of low mixing times up to 180 min can be detected whereas the tensile strength values at those mixing times are already in the plateau phase. Because of this discrepancy correlation coefficients for most of the nanomaterials are lower than the above mentioned with -0.810 < r < -0.870. The binary mixtures with Printex<sup>®</sup> 95 showed bad correlation between bulk density and tensile strength with a coefficient of only -0.077. This is due to the fact that the minimum in tensile strength is reached very quickly followed by a slight increase in tensile strength whereas bulk density still increases.

Ternary mixtures differ from binary ones in terms of their bulk densities. In particular, blends containing Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 and Printex<sup>®</sup> 95 show a continuous drop of bulk density starting from mixing times of 180 min (Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25) and 60 min (Printex<sup>®</sup> 95), respectively and longer after an initial increase. This can be explained with the irregular surface coverage of the drug. With the formation of sheds, as mentioned above, particles can

hook together during slippage. Additionally, the huge agglomerates of Printex<sup>®</sup> 95 have sizes that considerably contribute to interparticulate van-der-Waals-forces.

Above mentioned results could be confirmed with the tableting data. With the position of the punches at certain points of the press cycle the Heckel-densities  $D_0$  and  $D_b$  can be calculated.  $D_0$  stands for the packing of the powder due to die filling;  $D_b$  describes particle rearrangement at low compaction pressures. So  $D_0$  corresponds to bulk density,  $D_b$  to the Hausner ratio. The highest value of  $D_0$  was reached after a mixing time of 180 min (0.51 [-]) for binary mixtures of corn starch and Aerosil<sup>®</sup> 200. Aerosil<sup>®</sup> R 805 led to a  $D_0$ -value of 0.53 after 180 min, Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 to 0.48 [-] (360 min) and Printex<sup>®</sup> 95 to 0.54 [-] (720 min). Correlation coefficients for the comparison bulk density –  $D_0$  were between 0.785 < r < 0.986 for binary blends as well as for ternary mixtures except for the ternary mixtures containing Aerosil<sup>®</sup> R 805 for which r was only at 0.334. For the comparison Hausner ratio –  $D_b$  correlations coefficients reached values between 0.717 < r < 0.957.

In addition, information about deformation properties of the powder mixtures could be gained from Heckel analysis. Binary mixtures showed differences dependent on the type of nanomaterial. Printex<sup>®</sup> 95 and Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 caused higher yield pressures than the amorphous Aerosiles<sup>®</sup> due to their crystalline nature. Within the ternary blends this influence was levelled by the big proportion of Ibuprofen which is also crystalline. Surface coverage itself plays a minor role.

In terms of the work's hypothesis it has been corroborated that the extent of surface coverage and the type of glidants, respectively influence the mechanical properties of the tablets. Within the binary mixtures, the nanomaterials can be divided into two groups: hydrophilic and hydrophobic flow regulators. Aerosil<sup>®</sup> 200 and Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 lead to an increase in tensile strength with longer mixing. Thereby Aerosil<sup>®</sup> 200 proved to cause higher strength values than the titanium dioxide. Hydrophilic substances are able to bind water molecules over surface-located OH-groups. In doing so they enlarge consisting adsorption layers on the corn starch particles. When particles get into close contact during compaction, coherent layers can be formed. Because hydrogen bridges exhibit a higher bonding strength than van-der-Waals-forces, tensile strength of tablets increases. Aerosil<sup>®</sup> 200 shows a surface area which is four times the area of Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25. This might be the reason why tablets containing Aerosil<sup>®</sup> 200 are stronger than tablets with the titanium dioxide. At a mixing time of 180 min Aerosil<sup>®</sup> 200 tablets reach a sort of plateau phase in strength, the highest tensile strength of Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 tablets shows up at 720 min.

With hydrophobic nanomaterials an opposite effect can be seen. The surface of the corn starch spheres becomes more and more hydrophobic. Silanation causes a substitution of 50% of the OH-groups with octyle rests. For this reason the ability to adsorb humidity

decreases. Bonds are formed which mainly act over van-der-Waals interactions. As mentioned above these forces are weaker than hydrogen bridges and so tensile strength decreases. For mixtures with Aerosil<sup>®</sup> R 805 a very short blending time of 1 min shows up to be the best.

A strange behaviour can be detected from long-term mixtures of corn starch and Printex<sup>®</sup> 95. After an initial decrease in strength tablets regain strength at mixing times of 1440 min and longer. Reason for this is probably the special crystalline microstructure of the carbon black but this has to be sorted out in on-going experiments.

Ternary mixtures of corn starch, Ibuprofen and the Aerosiles<sup>®</sup> behave similar to the corresponding binary blends. In general, tablet strengths were lower than those of binary mixtures which is due to the drug substance. Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 gave tablets whose strengths were only slightly higher than the strength values of tablets containing Aerosil<sup>®</sup> R 805. Obviously, with the small surface area an insufficient amount of water can be adsorbed to overcome the more hydrophobic character of the Ibuprofen-mixture. Despite its hydrophobia Printex<sup>®</sup> 95 leads to high tablet tensile strengths. The special type of surface coverage that causes formation of grooves can contribute to the development of mechanical interlocking.

It is well known that Ibuprofen is a poorly compactable substance, especially at high pressure levels of more than 150 MPa. This work was able to show that the type of glidant and the extent of surface coverage play also an important role in improving the compactibility. The 1 min-mixture with Aerosil<sup>®</sup> 200 showed a drop in tensile strength at a compaction pressure of 300 MPa. Increasing mixing time up to 360 min completely compensated the bad compaction behaviour and the blends could be compacted at pressures of 400 MPa without losing strength. Depending on the type of nanomaterial different maximum pressures could be established; 300 MPa for Aerosil<sup>®</sup> R 805 after a mixing time of 60 min, 300 MPa for Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25 (30 min) and 250 MPa for Printex<sup>®</sup> 95, however after a blending time of 3 days.

By means of the tableting experiments using the filling device the assumption that the amount of powder flowing into the die also increases with increasing mixing time, could be confirmed. Correlation coefficients of the comparison tablet mass – bulk density ranged from 0.815 < r < 0.961 for the binary mixtures, for the ternary mixtures they lay between 0.850 and 0.978. Simultaneously with improved flow properties deviation of the individual tablet weights decreased. All mixtures were within tolerance limits at a mixing time of 1 min. The decrease in flowability of mixtures containing hydrophilic Aerosiles<sup>®</sup> at very long blending times is only noticeable with the binary 4320 min mixture and the ternary 720 min blend from Aeroxide<sup>®</sup> TiO<sub>2</sub> P 25. With these mixtures no mass uniformity can be obtained.

Within the scope of this work other tests mentioned in the European Pharmacopoeia such as attrition and disintegration time could be realised only exemplarily with the binary mixtures containing Aerosiles<sup>®</sup>. Corresponding to the tensile strength attrition of tablets made of mixtures with Aerosil<sup>®</sup> 200 decreased (lowest value at 180 min) whereas the hydrophobic Aerosil<sup>®</sup> R 805 led to higher attrition with longer mixing (lowest value at 1 min). Disintegration time runs vice versa: Due to the increase in tensile strength it takes longer for the Aerosil<sup>®</sup> 200 tablets to disintegrate. On the other hand, Aerosil<sup>®</sup> R 805 weakens the network within the tablet so water could intrude more easily.

The experiments with mixtures containing an added amount of Mg-stearate also show the importance of mixing time. When consisting mixtures (up to 60 min) of excipient and nanomaterial are remixed with Mg-stearate for the very short time of 1 min, tablet mass increases significantly. With additional mixing the nanomaterial agglomerates are further being reduced to smaller pieces and adsorbed onto the surface of the corn starch particle. Tensile strength of tablets is strongly influenced by the lubricant. Therefore, attrition increases and disintegration time decreases due to declined wetting.

It is very interesting to see that the decrease in tensile strength could be detected only at mixtures that were premixed with Aerosil<sup>®</sup> 200 for 180 min or longer. The mixtures with premixing times up to 60 min showed the same or even higher tablet tensile strengths as the corresponding mixtures without lubricant. So the additional reduction of agglomerate size during anew blending is able to suppress the negative effect of Mg-stearate. In the mixtures containing Aerosil<sup>®</sup> R 805 an increase in hydrophobia is caused and so tablet tensile strength further decreases.

To sum up: hydrophilic flow regulators are more suitable for direct tableting than hydrophobic ones because of their ability to adsorb water.

Concerning the potency of nanomaterials in flow regulation, composition of the mixture is of crucial importance. Depending on particle shape, different patterns of coverage can be found which determine the flow properties. Aerosil<sup>®</sup> 200 showed up to be the glidant that causes in binary as well as in ternary mixtures good flow properties at blending times of 180 and 360 min, respectively. In addition, tablet tensile strengths of these mixtures were high.

For on-going research following aspects might be interesting: First of all, more nanomaterials have to be characterized concerning their influence in tablet bonding to find a general classification. Also, particle shape and size have to be included into considerations because they play an important role in surface coverage. Connected with these aspects the question of an optimal concentration of flow promoting agent has to be dealed with.

# 8 Literaturverzeichnis

- [1] Ph.Eur. 5.00; 2.9.5 Gleichförmigkeit der Masse einzeldosierter Arzneiformen; 5. Ausgabe, Grundwerk 2005; 292
- [2] Ph.Eur. 5.00; 2.9.6 Gleichförmigkeit des Gehalts einzeldosierter Arzneiformen;
   5. Ausgabe, Grundwerk 2005; 292-293
- [3] Bauer, Frömming, Führer; Lehrbuch der Pharmazeutischen Technologie; WVG, 6.Auflage S. 314
- [4] Max-Planck-Institut f
  ür Metallforschung Stuttgart; Materialforscher lernen von Fliege an der Wand; www.mf.mpg.de/de/organisation/gs/gsextern/archive/presse/2002/20021227.html
- [5] Spektrum der Wissenschaft; Wie Geckos an der Decke 'kleben'; Ausgabe September 2000 16; <u>www.wissenschaft-online.de/abo/spektrum/archiv/5096</u>
- [6] GEO kompakt; Planeten, geformt aus Gas und Staub; Ausgabe Nr. 6 Das Universum 28-34 (2006)
- [7] Meyer, K.; Nanomaterialien als Fließregulierungsmittel; Dissertation Würzburg 2003
- [8] Eber, M.; Wirksamkeit und Leistungsfähigkeit von nanoskaligen Fließregulierungsmitteln; Dissertation Würzburg 2003
- [9] Staniforth, J. N.; Powder flow; In M. E. Aulton (Eds.); Pharmaceutics. The science of dosage form design; Churchill Livingstone; Edinborough; 600-628 (1988)
- [10] Jenike, A. W.; Storage and flow of solids; *Eng. Exp. Station Bull.* 123 Salt Lake City, USA (1964)
- [11] Schulze, D.; Zur Fließfähigkeit von Schüttgütern Definition und Messverfahren; *Chem.-Ing.-Tech.* 67(1) 60-68 (1995)
- [12] Ph. Eur. 5.00; 2.9.16 Fließverhalten; Grundwerk 2005; 301-302
- [13] Kommentar zur Ph. Eur. 4.00; 2.9.16 Fließverhalten; 16. Lfg. (2004)
- [14] Kaye, B. H.; Gratton-Liimatainen, J.; Lloyd, J.; The effect of flow agents on the rheology of a plastic powder; *Part. Part. Syst. Charact.* 12 194-197 (1995)
- [15] Ph. Eur. 5.00; 2.9.15 Schütt- und Stampfvolumen; Grundwerk 2005; 301
- [16] Abdullah, E. C.; Geldart, D.; The use of bulk density measurements as flowability indicators; *Pow. Tech.* 102 151-165 (1999)
- [17] Hausner, H. H.; Friction conditions in a mass of metal powder; *Int. J. Pow. Metall.* 3(4) 7-13 (1967)
- [18] Thalberg, K.; Lindholm, D.; Axelsson, A.; Comparison of different flowability tests for powders for inhalation; *Pow. Tech.* 146 206-213 (2004)

- [19] Ricks, N. P.; Barringer, S. A.; Fitzpatrick, J. J.; Food powder characteristics important to nonelectrostatic and electrostatic coating and dustiness; *J. Food Sci.* 67(6) 2256-2263 (2002)
- [20] Wong, A. C.-Y.; Use of angle of repose and bulk densities for powder characterization and the prediction of minimum fluidization and minimum bubbling velocities; *Chem. Eng. Sci.* 57(14) 2635-2640 (2002)
- [21] Leuenberger, H.; Martin Physikalische Pharmazie; WVG Stuttgart; 4.Auflage 2002
- [22] Kretzler, K.; Eine neue Methode zur Bestimmung der Fließeigenschaften von Pulvern; Dissertation Würzburg 2002
- [23] Althaus, G.; Der modifizierte Auslauftrichter. Eine neue Methode zur Beurteilung der Potenz nanoskaliger Fließregulierungsmittel; Dissertation Würzburg 2006
- [24] Podzeck, F.; Rheological studies of physical properties of powder used in capsule filling; *Pharm. Tech. Eur. 11(9)* 16-24 (1999)
- [25] Podzeck, F.; Rheological studies of physical properties of powder used in capsule filling; *Pharm. Tech. Eur.* 11(10) 34-42 (1999)
- [26] Navaneethan, Ch. V.; Missaghi, S.; Fassihi, R.; Application of powder rheometer to determine powder flow properties and lubrication efficiency of pharmaceutical particulate systems; AAPS PharmSciTech 6 (3) Article 49 (2005)
- [27] Lavoie, F.; Cartilier, L.; Thibert, R.; New methods characterizing avalanche behaviour to determine powder flow; *Pharm. Res. 19(6)* 887-893 (2002)
- [28] Lindberg, N.-O.; Palsson, M.; Pihl, A.-C.; Freeman, R.; Freeman, T.; Zetzener H.; Enstad, G.; Flowability measurements of pharmaceutical powder mixtures with poor flow using five different techniques; *Drug Dev. Ind. Pharm.* 30(7) 785-791 (2004)
- [29] Orband, J. L. R.; Geldart, D.; Direct measurement of powder cohesion using a torsional device; *Pow. Tech.* 92 25-33 (1997)
- [30] Guerin, E.; Tchoreloff, P.; Leclerc, B.; Tanguy, D.; Deleuil, M.; Couarraze, G.; Rheological characterization of pharmaceutical powders using tap testing, shear cell and mercury porosimeter; *Int. J. Pharm. 189* 91-103 (1999)
- [31] Otsuka, A.; Iida, K.; Sunada, D. und H.; Measurements of the adhesive force between particles of powdered organic substances and a glass substrate by means of the impact separation method. I. Effect of temperature; *Chem. Pharm. Bull.* 31 4483-4488 (1983)
- [32] Bhattachar, S. N.; Hedden, D. B.; Olsofsky, A. M.; Xianggui, Q.; Wen-Yaw, H.; Canter, K. G.; Evaluation of the vibratory feeder method for assessment of powder flow properties; *Int. J. Pharm.* 269 385-392 (2004)
- [33] Hucke, T.; Hein, K.; Stintz, M.; Ripperger, S.; Die Vibrationsmethode zur Messung der Haftkräfte von Partikeln an Wänden; *Chem.-Ing.-Tech.* 74(6) 809-812 (2002)
- [34] Ripperger, S.; Hein, K.; Measurement of adhesion forces between particles and rough substrates in air with the vibration method; *Kona* 22 121-133 (2004)

- [35] Jenike, A. W.; Flow properties of bulk solids; Proc. Am. Soc. Test. Mater. 60 1168-1181 (1960)
- [36] Schulze, D.; Flowability and time consolidation measurements using a ring shear tester; *Pow. Hand. Proc.* 8(3) 221-226 (1996)
- [37] Schweiger, A.; Untersuchungen zum Fließverhalten feinkörniger Schüttgüter; Dissertation Würzburg 1998
- [38] Binnig, G.; Quate, C. F.; Gerber, Ch.; Atomic force microscope; *Phys. Rev. Lett.* 56(9) 930-933 (1986)
- [39] Wang, J. J.; Tonglei, L.; Bateman, S. D.; Erck, R.; Morris, K. R.; Modeling of adhesion in tablet compression – I. Atomic force microscopy and molecular simulation; *J. Pharm. Sci.* 92(4) 798-814 (2003)
- [40] Tsukada, M.; Irie, R.; Yonemochi, Y.; Noda, R.; Kamiya, H.; Watanabe, W.; Kauppinen, E. I.; Adhesion force measurement of a DPI size pharmaceutical particle by colloid probe atomic force microscopy; *Pow. Tech.* 141 262-269 (2004)
- [41] Kappl, M.; Butt, H.-J.; The colloidal probe technique and its application to adhesion force measurements; Part. Part. Syst. Charact. 19 129-143 (2002)
- [42] Heim, L. O.; Ecke, S.; Preuss, M.; Butt, H.-J.; Adhesion forces between individual gold and polystyrene particles; *J. Adhesion Sci. Technol.* 16(7) 829-843 (2002)
- [43] Schubert, H.; Grundlagen des Agglomerierens; *Chem.-Ing.-Tech.* 51(4) 266-277 (1979)
- [44] Zimmermann, I.; Pharmazeutische Technologie, Springer-Verlag 1998
- [45] Hiestand Everett N.; Mechanical Properties of Compacts and Particles that Control Tableting Success; *J. Pharm. Sci.* 86(9) 985-990 (1997)
- [46] Krupp, H.; Particle adhesion theory and experiment; *Adv. Coll. Int. Sci.* 1 111-239 (1967)
- [47] Hamaker, H. C.; The London-van der Waals attraction between spherical particles; *Physica 4* 1058-1072 (1937)
- [48] Visser, J.; An invited review. Van der Waals and other cohesive forces affecting powder fluidization; *Pow. Tech.* 58 1-10 (1989)
- [49] Rumpf, H.; Die Wissenschaft des Agglomerierens; Chem.-Ing.-Tech. 46 1-11 (1974)
- [50] Pahl, M. H.; Wicke, R.; Haftkräfte in kompaktierten Schüttgütern; Aufber.-Tech. 7 371-380 (1988)
- [51] Gerthsen, C.; Vogel, H.; Physik; Springer-Verlag Berlin Heidelberg New York (1997)
- [52] Alderborn, G. (Ed.); Powder compaction technology; Dekker; New York (1996)
- [53] Lutz, H. D.; Structure and strength of hydrogen bonds in inorganic solids; *J. Mol. Struct.* 646 227-236 (2003)
- [54] Rademacher, P.; Strukturen organischer Moleküle; VCH Weinheim, New York (1987)

- [55] Johnson, K. L.; Kendall, K.; Roberts, A. D.; Surface energy and the contact of elastic solids; Proc. R. Soc. London A 324 301-313 (1971)
- [56] Mizes, H. A.; Surface roughness and particle adhesion; J. Adhes. 51 155-165 (1995)
- [57] Derjaguin, B. V.; Untersuchungen über die Reibung und Adhäsion; *Kolloid-Zeitschrift* 69 155-164 (1934)
- [58] Meyer, K.; Zimmermann, I.; Effect of glidants in binary powder mixtures; *Pow. Tech.* 139 40-54 (2004)
- [59] Dünisch, S.; Untersuchung der Wirkungsweise von Nanomaterialien; Dissertation Würzburg 2006
- [60] Blattner, D.; Kolb, M.; Leuenberger, H.; Percolation Theory and Compactibility of Binary Powder Systems; *Pharm. Res.* 7(2) 113-117 (1990)
- [61] Heckel, R. W.; Density-pressure relationships in powder compaction; Trans. Metall. Soc. AIME 221 671-675 (1961a)
- [62] Heckel, R. W.; An analysis of powder compaction phenomena; Trans. Metall. Soc. AIME 221 1001-1008 (1961b)
- [63] Garekani, Hadi A.; Ford, James L.; Rubinstein, Michael H.; Siahboomi, Ali, R.; Effect of compression force, compression speed, and particle size on the compression properties of paracetamol; *Drug Dev. Ind. Pharm.* 27(9) 935-942 (2001)
- [64] Sonnergaard, J. M.; A critical evaluation of the Heckel equation; *Int. J. Pharm.* 193 63-71 (1999)
- [65] Cooper, A. R.; Eaton, L. E.; Compaction behaviour of several ceramic powders; *J. Am. Ceram. Soc.* 45 97 (1962)
- [66] Kurup, T. R. R.; Pilpel, N.; Compression Characterisitcs of Pharmaceutical Powder Mixtures; Pow. Tech. 19 147-155 (1978)
- [67] Chowhan, Z. T.; Chow, Y. P.; Compression behaviour of pharmaceutical powders; Int. J. Pharm. 5 139-148 (1980)
- [68] Paronen, P.; Juslin, M.; Compressional characteristics of four starches; *J. Pharm. Pharmacol. 35* 627-625 (1983)
- [69] Kawakita, K.; Lüdde, K.-H.; Some considerations on powder compression equations; Pow. Tech. 4 61 (1970/71)
- [70] Picker, K.M.; A new theoretical model to characterize the densification behaviour of tableting materials; *Eur. J. Pharm. Biopharm.* 49 267-273 (2000)
- [71] Picker, K.M.; New insights into the process of tablet formation. Ways to explore soft tableting; Habilitationsschrift, Universität Halle-Wittenberg (2002)
- [72] Leuenberger, H.; Jetzer, W.; The compactibility of powder systems A novel approach; *Pow. Tech.* 37 209-218 (1984)
- [73] Hiestand, Everett N.; Principles, tenets and notions of tablet bonding and measurements of tablet strength; *Eur. J. Pharm. Biopharm.* 44 229-242 (1997)

- [74] Leuenberger, H.; Rohera, B. D.; Fundamentals of powder compression. I. The compactibility and compressibility of pharmaceutical powders; *Pharm. Res. 3(1)* 12-22 (1986)
- [75] Hiestand Everett N.; Dispersion Forces and Plastic Deformation in Tablet Bond; *J. Pharm. Sci.* 74(7) 768-770 (1985)
- [76] Hiestand E. N.; Tablet bond. I. A theoretical model; Int. J. Pharm. 67 217-229 (1991)
- [77] Hiestand E. N.; Wells, J. E.; Peot, C. B.; Ochs, J. F.; Physical Processes of Tableting; J. Pharm. Sci. 66(4) 510-519 (1977)
- [78] Hiestand E. N.; Smith, D. P.; Tablet bond. II. Experimental check of model; *Int. J. Pharm.* 67 231-246 (1991)
- [79] Rumpf, H.; Basic principles and methods of granulation. I. II.; Chem. Eng. Tech. 30 144-158 (1958)
- [80] Führer, C.; Substance behaviour in direct compression; *Lab. Pharma. Probl. Technol.* 269 759-762 (1977)
- [81] Israelachvili, J. N.; Intermolecular and surface forces; Academic Press; London (1995)
- [82] Derjaguin, B. V.; The force between molecules; Sci. Am. 203 47-53 (1960)
- [83] Hüttenrauch, R.; Keiner, I.; Molecular galenics. Part 14. Mechanisms of tableting; Pharmazie 31 651-652 (1976)
- [84] Hüttenrauch, R.; Molecular galenics as the basis of modern drug formation; *Acta Pharm. Tech. Suppl.* 6 55-127 (1978)
- [85] Rumpf, H.; The strength of granules and agglomerates; in W. A. Knepper (Ed.); International Symposium on Agglomeration; Interscience, New York 379-414 (1962)
- [86] Vromanns, H.; de Boer, A. H.; Bolhuis, G. K.; Lerk, C. F.; Kussendrager, K. D.; Bosch, H.; Studies on tableting properties of lactose. Part 2. Consolidation and compaction of different types of crystalline lactose; *Pharm. Weekbl. Sci.* 7 186-193 (1986)
- [87] Leuenberger, H.; Bonny, J. D.; Lerk, C. F.; Vromanns, H.; Relation between crushing strength and internal specific surface area of lactose compacts; *Int. J. Pharm.* 52 91-100 (1989)
- [88] te Wierik, G. P. H.; Bergsma, J.; Arends-Scholte, A. W.; Boersma, T.; Eissens, A. C.; Lerk, C. F.; A new generation of starch products as excipient in pharmaceutical tablets. I. Preparation and binding properties of high surface area potato starch products; *Int. J. Pharm.* 134 27-36 (1996)
- [89] Eriksson, M.; Alderborn, G.; The effect of particle fragmentation and deformation on the interparticulate bond formation process during powder compaction; *Pharm. Res.* 12(7) 1031-1039 (1995)
- [90] Juppo, A. M.; Relationship between breaking force and pore structure of lactose, glucose and mannitol tablets; *Int. J. Pharm.* 127 95-102 (1996)

- [91] Adolfsson, A.; Gustafsson, C.; Nyström, C.; Use of tablet tensile strength adjusted for surface area and mean interparticulate distance to evaluate dominating bonding mechanisms; *Drug Dev. Ind. Pharm.* 25(6) 753-764 (1999)
- [92] Ryshkewitch, E.; Duckworth, W.; Compression strength of porous sintered alumina and zirconia: 9<sup>th</sup> communication to ceramography.; *J. Am. Ceram. Soc.* 36 65-68 (1953)
- [93] Higuchi, T.; Elowe, L. N.; Busse, L. W.; The physics of tablet compression. V. Studies on aspirin, lactose, lactose-aspirin, and sulfadiazine tablets.; J. Am. Pharm. Assoc. (Sci. Ed.) 43 685-689 (1954)
- [94] Shotton, E.; Ganderton, D.; The strength of compressed tablets. Part I. The measurement of tablet strength and its relation to compression forces; J. Pharm. Pharmacol. Suppl. 12 87T-96T (1960)
- [95] Leuenberger, H.; Zur Theorie der Pulverkompression; Habilitationsschrift; Basel 1980
- [96] Kuentz, Martin; Leuenberger, Hans; A new model for the hardness of a compacted particle system, applied to tablets of pharmaceutical polymers; *Pow. Tech. 111* 145-153 (2000)
- [97] Stauffer, D.; Aharony, A.; Perkolationstheorie Eine Einführung; VCH Weinheim (1995)
- [98] Sahimi, M.; Applications of percolation theory; Taylor&Francis, London (1994)
- [99] Sarmento, V. H. V.; Frigerio, M. R.; Dahmouche, K.; Pulcinelli, S. H.; Santilli, C. V.; Evolution of rheological properties and local structure during gelation of siloxanepolymethylmethacrylate hybrid materials; *J. Sol-Gel Sci. Techn.* 37 179-184 (2006)
- [100] Leuenberger, H.; Compression of binary powder mixtures and solubility parameters of solids; Int. J. Pharm. 27 128-138 (1985)
- [101] Leuenberger, H.; Leu, R.; Formation of a Tablet: A Site and Bond Percolation Phenomenon; *J. Pharm. Sci.* 81(10) 976-982 (1992)
- [102] Holman, L. E.; Leuenberger, H.; The relationship between solid fraction and mechanical properties of compacts – the percolation theory model approach; *Int. J. Pharm.* 46 35-44 (1988)
- [103] Leuenberger, H.; Ineichen, L.; Percolation theory and physics of compression; *Eur. J. Pharm. Biopharm.* 44 269-272 (1997)
- [104] Leuenberger, H.; Rohera, B. D.; Haas, Ch.; Percolation theory a novel approach to solid dosage form design; *Int. J. Pharm. 38* 109-115 (1987)
- [105] Kuentz, M.; Leuenberger, H.; A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance; Eur. J. Pharm. Biopharm. 49 151-159 (2000)
- [106] Hiestand, H. E. N.; Smith, D. P.; Indices of Tableting Performance; *Pow. Tech. 39* 145-159 (1984)
- [107] Tawashi, R.; Der Einfluß von Aerosil auf die Packungseigenschaften von Pulvern; Pharm. Ind. 11a 655-658

- [108] Lubner, G. C.; Ricciardello, G.; Influence of flow promoting agents on the flow properties of mixtures of powders and on the physical properties of the resulting tablets; *Boll. Chim. Farm.* 116 40-52 (1977)
- [109] Hollenbach, A. M.; Peleg, M.; Interparticle surface affinity and the bulk properties of conditioned powders; *Pow. Tech.* 35 51-62 (1983)
- [110] Egermann, H.; Beiträge zum technologischen Verhalten von Gleitmitteln; 1. Mitteilung: Der Einfluss der Zumischdauer von Gleitmitteln auf die Packungseigenschaften direkttablettierbarer Hilfsstoffe; Sci. Pharm. 44(2) 81-93 (1976)
- [111] Egermann, H.; Beiträge zum technologischen Verhalten vom Gleitmitteln; 4. Mitteilung: Der Einfluss von Fließregulierungsmitteln auf die Gewichtseigenschaften von Zellulosetabletten; Sci. Pharm. 44(3) 224-233 (1976)
- [112] Augsburger, L. L.; Shangraw, R. F.; Effect of Glidants in Tableting; *J. Pharm. Sci.* 55(4) 418-423 (1966)
- [113] Kedvessy, G.; Mucsi, E.; Der Einfluß einiger Hilfsstoffe auf die Bruchfestigkeit von Tabletten; *Pharm. Zentralhalle 104(5)* 309-314 (1964)
- [114] Lerk, C. F.; Bolhuis, G. K.; Smedema, S. S.; Interaction of lubricants and colloidal silica during mixing with excipients. I. Its effect on tableting; *Pharm. Acta Helv.* 52(3) 33-44 (1977)
- [115] Rahmouni, M.; Lenaerts, V.; Massuelle, D.; Doulker, E.; Leroux, J.-Ch.; Influence of physical parameters and lubricants on the compaction properties of granulated and non-granulated high amylose starch; *Chem. Pharm. Bull.* 50(9) 1155-1162 (2002)
- [116] Chang, R.-K.; Leonzio, M.; Hussain, M. A.; Effect of colloidal silicon dioxide on flowing and tableting properties of an experimental, crosslinked polyalkylammonium polymer; *Pharm. Dev. Tech.* 4(2) 285-289 (1999)
- [117] Ohta, K. M.; Masayoshi, F.; Takashi, T.; Masatoshi, C.; Effect of geometric structure and surface wettability of glidant on tablet hardness; *Int. J. Pharm.* 262 75-82 (2003)
- [118] De Boer, A. H.; Bolhuis, G. K.; Lerk, C. F.; Bonding characteristics by scanning electron microscopy of powders mixed with Magnesium Stearate; *Pow. Tech.* 20 75-82 (1978)
- [119] Kachrimanis K.; Nikolakais, I.; Malamataris, S.; Tensile strength and disintegration of tableted silicified cellulose: Influences of interparticle bonding; *J. Pharm. Sci.* 92(7) 1489-1501 (2003)
- [120] Tobyn, M.; McCarthy, G.; Staniforth, J.; Edge, S.; Physicochemical comparison between microcrystalline cellulose and silicified microcrystalline cellulose; *Int. J. Pharm.* 169 183-194 (1998)
- [121] Edge, S.; Steele, D. F.; Chen, A.; Tobyn, M.; Staniforth, J.; The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose; *Int. J. Pharm. 200* 67-72 (2000)
- [122] Degussa AG; Schriftenreihe Pigmente; Hochdisperse Metalloxide nach dem Aerosil<sup>®</sup>-Verfahren, Nummer 56; 1989

- [123] Degussa AG; Technische Information Aerosil 200 Pharma, TI 1237; 2002
- [124] Degussa AG; Schriftenreihe Pigmente; Aerosil<sup>®</sup>, Aluminiumoxid C und Titandioxid P 25 für Katalysatoren, Nummer 72; 1981
- [125] Degussa AG; Was ist Ruß?
- [126] Degussa AG; Schriftenreihe Pigmente; Zur Bedeutung und Existenz von Primärteilchen bei hochdispersen Stoffen; Nummer 60; 1984
- [127] Degussa AG; Aerosil<sup>®</sup>
- [128] Degussa AG; Schriftenreihe Pigmente; Aerosil<sup>®</sup> in Pharmazie und Kosmetik; Nummer 49; 1992
- [129] Zhou, J.; Fedkiw, P. S.; Khan, S. A.; Interfacial stability between Lithium and fumed silica-based composite electrolytes; *J. Electrochem. Soc.*; 149(9) A1121-A1126 (2002)
- [130] http://www.goodfellow.com/csp/active/STATIC/G/Siliciumdioxid.HTML
- [131] Degussa AG; Produktspezifikation Aerosil<sup>®</sup> 200
- [132] Degussa AG; Schriftenreihe Pigmente; Steuerung der Fließeigenschaften von Lacken mit neuen hydrophoben Aerosil<sup>®</sup>-Typen; Nummer 53; 1992
- [133] Degussa AG; Schriftenreihe Pigmente; Hydrophobe Aerosil<sup>®</sup>-Typen und ihr Einsatz in der Lackindustrie; Nummer 18
- [134] Degussa AG; Schriftenreihe Pigmente; Grundlagen von Aerosil<sup>®</sup>; Nummer 11
- [135] Degussa AG; Produktspezifikation Aerosil® R 805
- [136] Degussa AG; Füllstoffsysteme und Pigmente; Was ist Carbon Black?
- [137] Degussa AG; Schriftenreihe Pigmente; Eigenschaften von Pigmentrußen und Methoden zu ihrer Charakterisierung; Nummer 14
- [138] Degussa AG; Advanced Fillers and Pigments; Pigmentruße; Technische Daten
- [139] Degussa AG; TI Technische Information Titandioxid: Hochdisperses Titandioxid für Sonnenschutzmittel; 1996
- [140] http://www.goodfellow.com/csp/active/STATIC/G/Titandioxid.HTML
- [141] Burger, A.; Wachter, H.; Hunnius Pharmazeutisches Wörterbuch; 8. Auflage; de Gruyter; Berlin; New York; 1998
- [142] Garekani, H. A.; Sadeghi, F.; Badiee, A.; Mostafa, S. A.; Rajabi-Siahboomi, A. R.; Crystal habit modifications of Ibuprofen and their physicochemical characteristics; *Drug Dev. Ind. Pharm.*; 27(8) 803-809 (2001)
- [143] Nokhodchi, A.; Rubinstein, M. H.; Larhrib, H.; Guyot, J. C.; The effect of moisture on the properties of Ibuprofen tablets; *Int. J. Pharm.* 118 191-197 (1995)

- [144] Rasenack, Norbert; Müller, Bernd W.; Crystal habit and tableting behaviour; *Int. J. Pharm.* 244 45-57 (2002)
- [145] Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante; Influence of crystal habit on the compression and densification mechanism of Ibuprofen; J. Cryst. Grow.; 243 345-355 (2002)
- [146] Heumann PCS; Dr. Honecker, A.; Briefliche Kommunikation vom 19.10.2005
- [147] Synopharm; Prüfzertifikat Magnesiumstearat; 12.06.2003
- [148] Ph.Eur. 4.00; Monographie Aceton; 4. Ausgabe Grundwerk 2002 1100-1101
- [149] Ph.Eur. 4.00 Monographie Kaliumcarbonat; 4. Ausgabe Grundwerk 2002 2162-2163
- [150] Tables of Physical and Chemical Constants; 16<sup>th</sup> Ed.; Longman; 39; 1995
- [151] CRC Handbook of Chemistry and Physics; 58th Ed.; CRC Press; 1977
- [152] Sucker, H.; Fuchs, P.; Speiser, P.; Pharmazeutische Technologie; Georg Thieme Verlag; Stuttgart; 1991
- [153] Bedienungsanleitung Ultrapycnometer 1000; Quantachrome
- [154] Löschke, P.; Fraunhoferinstitut für Silikatforschung, Würzburg; Persönliche Kommunikation vom 14.07.2004
- [155] Reichenauer, G.; Bericht "Stickstoffsorptionsmessungen an binären Mischungen von Lactose-Monohydrat sowie Ibuprofen; ZAE Würzburg (2005)
- [156] Fuji, M.; Machida, K.; Takei, T.; Watanabe, T.; Chikazawa M.; Effect of wettability on adhesion force between silica particles evaluated by atomic force microscopy measurement as a function of relative humidity; *Langmuir* 15 4584-4589 (1999)
- [157] Hoffmann, K.; Eine Einführung in die Technik des Messens mit Dehnmessstreifen; HBM Messtechnik GmbH 1987
- [158] Belda, P. M.; Mielck, J. B.; The tabletting machine as an analytical instrument: qualification of the measurement devices for punch forces and validation of the calibration procedures; *Eur. J. Pharm. Biopharm.* 46 381-395 (1998)
- [159] Kempe-Ostertag; Korsch AG; Formel zur Ermittlung der Brückenempfindlichkeit; Persönliche Kommunikation vom 13.04.2004
- [160] Zuurman, K.; Van der Voort Maarschalk, K.; Bolhuis, G. K.; Effect of magnesium stearate on bonding and porosity expansion of tablets produced from materials with different consolidation properties; *Int. J. Pharm.* 179 107-115 (1999)
- [161] Gruber, P.; Gläsel, V. I.; Klingelhöller, W.; Liske, Th.; Presskammerbeschichtung, ein Beitrag zur Optimierung der Tablettenherstellung; *Pharm. Ind. 50 (7)* (1988)
- [162] Mitutoyo; Bedienungsanleitung Dickenmesser, Japan
- [163] Dr. Schleuniger Pharmatron; Schleuniger Tablettenhärtetester 8M; Handbuch Revision 3; Februar 2003

- [164] Fell, J. T.; Newton, J. M.; Determination of tablet strength by the diametralcompression test; *J. Pharm. Sci. 59 (5)* 688-691 (1970)
- [165] Güttler, B.; Korsch AG; Schriftliche Kommunikation vom 25.06.2004
- [166] Ph.Eur. 5.00; 2.9.1 Zerfallszeit von Tabletten und Kapseln; 5. Ausgabe, Grundwerk 2005; 283-284
- [167] Ph.Eur. 5.00; 2.9.7 Friabilität von nichtüberzogenen Tabletten; 5. Ausgabe, Grundwerk 2005; 293-294
- [168] Jeffrey, G. A.; Gress, M. E.; Takagi, S.; Some experimental observations on H-O hydrogen-bond lengths in carbohydrate crystal structures; *J. Am. Chem. Soc.* 99(2) 609-611 (1977)
- [169] Führer, C.; Erikson, G.; Über das Kompressionsverhalten von Amylum solani; Pharm. Zent.halle 9 (1968)
- [170] Zografi, G.; Kontny, J. K.; The interactions of water with cellulose- and starch-derived pharmaceutical excipients; *Pharm. Res. 3* 187-195 (1986)
- [171] Picker, K. M.; Mielck, J. B.; True density of swellable substances at different relative humidities – A new approach to ist determination; *Eur. J. Pharm. Biopharm.* 42(1) 82-84 (1996)
- [172] Nada, A. H.; Al-Saidan, S. M.; Müller, B. W.; Crystal modification for improving the physical and chemical properties of ibuprofen; *Pharm. Tech.* 29(11) 90-101 (2005)
- [173] Lerk, C. F.; Bolhuis, G. K.; Interaction of lubricants and colloidal silica during mixing with excipients; II. Its effect on wettability and dissolution velocity; *Pharm. Act. Helv.* 52(3) 39-44 (1977)
- [174] Feng, Y.; Grant, D. J. W.; Influence of crystal structure on the compaction properties of n-alkyl 4-hydroxybenzoate esters (parabens); *Pharm. Res. 23(7)* 1608-1616 (2006)
- [175] Sun, C.; Grant, D. J. W.; Influence of crystal structure on the tableting properties of sulfamerazine polymorphs; *Pharm. Res.* 18(3) 274-280 (2001)
- [176] Otsuka, M.; Nakanishi, M.; Matsuda, Y.; Effects of crystalline form on the tableting compression mechanism of phenobarbital polymorphs; *Drug Dev. Ind. Pharm.* 25(2) 205-215 (1999)
- [177] Roberts, R. J.; Rowe, R. C.; Influence of polymorphism on the Young's modulus and yield stress of carbamazepine, sulfathiazole and sulphanilamide; *Int. J. Pharm.* 129 79-94 (1996)
- [178] Sebhatu, T.; Alderborn, G.; Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size; *Eur. J. Pharm. Biopharm.* 8 235-242 (1999)
- [179] Suzuki, T.; Nakagami, H.; Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets; *Eur. J. Pharm. Biopharm.* 8 225-230 (1999)
- [180] Hancock, B. C.; Carlson, G. T.; Ladipo, D. D.; Langdon, B. A.; Mullarney, M. P.; Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance; *Int. J. Pharm.* 241 73-85 (2002)

- [181] Schütz, W.; Schubert, H.; Einfluss der Umgebungsfeuchte auf die Partikelhaftung; *Chem.-Ing.-Tech.* 52(5) 451-453 (1980)
- [182] Zimmermann, I.; Eber, M.; Meyer, K.; Nanomaterials as flow regulators in dry powders; *Z. Phys. Chem.* 218 51-102 (2004)

# 9 Anhang

# 9.1 Berechnung des Füllungsgrades der Mischungen aus Maisstärke und Ibuprofen

Die Schüttdichte von Ibuprofen ergibt sich zu 0.36 g/ml (vgl. 5.1.3), die der Maisstärke zu 0.51 g/ml (vgl. 5.1.3).

Damit nehmen jeweils 49.90 g Wirkstoff bzw. Maisstärke folgende Volumina ein:

$$V_{lbu,49.90g} = \frac{m}{\rho_{Schütt,Ibu}} = \frac{49.90g}{0.36\frac{g}{ml}} = 138.61ml$$

$$V_{Maisstärke,49.90g} = \frac{m}{\rho_{Schütt,Maisstärke}} = \frac{49.90g}{0.51\frac{g}{ml}} = 97.84ml$$

$$V_{gesamt} = V_{Ibu,49.90g} + V_{Maisstärke,49.90g} = 236.45ml$$

Der Füllungsgrad  $\phi$  eines 500 ml Weithalsglases beträgt damit

$$\varphi = \frac{V_{gesamt}}{500ml} = \frac{236.45ml}{500ml} = 0.47 \; .$$

# 9.2 Berechnung der theoretischen maximalen Oberflächenbelegung der Maisstärke-/Ibuprofen-Mischungen mit Aerosil<sup>®</sup> 200

## 9.2.1 Mischung aus 0.2% Aerosil 200 und Maisstärke

Radius eines Maisstärkekorns  $r_M$  = 0.0011 cm Wahre Dichte der Maisstärke (vgl. 5.2.1)  $\rho_M$  = 1.57 g/ml

Masse m<sub>M</sub> eines Maisstärkekorns

$$m_{M} = V_{M} * \rho_{M} = \frac{4}{3}\pi r_{M}^{3} * \rho_{M} = \frac{4}{3}\pi (0.0011 cm)^{3} * 1.57 \frac{g}{ml} = 8.753 * 10^{-9} g$$

Anzahl n<sub>M</sub> Partikel in 100 g Maisstärke

$$n_M = \frac{100g}{8.753 * 10^{-9} g} = 11424407425$$

Oberfläche O<sub>M</sub> eines Maisstärkepartikels

$$O_{M} = 4\pi r_{M}^{2} = 4\pi (0.0011 cm)^{2} = 1.521 * 10^{-5} cm^{2}$$

Gesamtoberfläche O<sub>M,ges</sub> in 100 g Maisstärke

 $O_{M,ges} = O_M * n_M = 1.521 * 10^{-5} cm^2 * 11424407425 = 173712 cm^2$ 

Radius eines Aerosil<sup>®</sup> 200 Primärpartikels  $r_N$  = 0.0000006 cm Wahre Dichte des Nanomaterials  $\rho_N$  = 2.2 g/ml

Masse m<sub>N</sub> eines Nano-Primärpartikels

$$m_N = V_N * \rho_N = \frac{4}{3}\pi r_N^3 * \rho_N = \frac{4}{3}\pi (0.000006 \, cm)^3 * 2.2 \frac{g}{ml} = 1.991 * 10^{-18} \, g$$

Anzahl  $n_N$  Partikel in 0.2 g Aerosil<sup>®</sup> 200

$$n_N = \frac{0.2g}{1.991*10^{-18}g} = 1.005*10^{17}$$

Oberfläche O<sub>N</sub> eines Primärpartikels im Hexagon-Modell (vgl. [7])

 $O_N = 2\sqrt{3}r_N^2 = 2\sqrt{3}(0.000006 \, cm)^2 = 1.247 * 10^{-12} \, cm^2$ 

Gesamtoberfläche  $O_{N,ges}$  von 0.2 g Aerosil<sup>®</sup> 200 = Maisstärkeoberfläche, die durch 0.2 g Aerosil 200 belegt werden kann

$$O_{N,ges} = O_N * n_N = 1.247 * 10^{-12} \, cm^2 * 1.005 * 10^{17} = 125302$$

Anteil  $\phi_{\text{M}}$  der Maisstärkeoberfläche, der maximal belegt werden kann

$$\varphi_M = \frac{O_{N,ges}}{O_{M,ges}} = \frac{125302}{173712} * 100 = 72\%$$

## 9.2.2 50% ige Mischung aus Ibuprofen, Maisstärke und 0.2% Aerosil<sup>®</sup> 200

Spezifische Oberfläche O<sub>I</sub> des Ibuprofens (vgl. 5.1.2)

$$O_I = 0.120 \frac{m^2}{g}$$
Oberfläche O<sub>I,49.90g</sub> von 49.90 g Ibuprofen

$$O_{I,49.90g} = O_I * 49.90g = 5.988m^2 = 59880cm^2$$

Oberfläche O<sub>M,49.90g</sub> von 49.90 g Maisstärke

$$O_{M,49,90g} = \frac{49.90 g}{m_M} * O_M = \frac{49.90 g}{8.753 * 10^{-9} g} * 1.521 * 10^{-5} cm^2 = 86682 cm^2$$

Gesamtoberfläche Oges, Mischung in der Mischung

 $O_{ges,Mischung} = O_{I,49,90g} + O_{M,49,90g} = 59880 \, cm^2 + 86682 \, cm^2 = 146562 \, cm^2$ 

Anteil  $\varphi_{ges,Mischung}$ , der Gesamtoberfläche, der maximal mit 0.2% Nanomaterial belegt werden kann

$$\varphi_{ges,Mischung} = \frac{O_{N,ges}}{O_{ges,Mischung}} = \frac{125302 \, cm^2}{146562 \, cm^2} * 100 = 85\%$$

Berechnung der nötigen Menge an Nanomaterial für eine Belegung von 72%.

$$m = \frac{\varphi^* O_{ges,Mischung} * m_N}{O_N} = \frac{0.72 * 146562 \, cm^2 * 1.991 * 10^{-18} \, g}{1.247 * 10^{-12} \, cm^2} = 0.17 \, g$$

# 9.3 Berechung der tatsächlichen Steghöhe und des tatsächlichen Volumens der facettierten Tabletten

#### 9.3.1 Berechnung der tatsächlichen Steghöhe

Stempelspezifikationen [165]:

| Stempeldurchmesser               | 9 mm   |
|----------------------------------|--------|
| Facettwinkel                     | 30°    |
| Facetttiefe                      | 0.2 mm |
| Übergangsradius für Facettwinkel | 0.1 mm |



Abbildung 9.1 Schematischer Aufbau einer facettierten Tablette, Querschnitt; modifiziert nach [53]



Abbildung 9.2 Facettierte Tablette, Aufsicht [53]

mit:

| h | Steghöhe [mm]                         |
|---|---------------------------------------|
| С | Dicke [mm]                            |
| d | Durchmesser [mm]                      |
| f | Facettenrand [mm]                     |
| t | Facetttiefe [mm]                      |
| α | Facettwinkel [°]                      |
| b | Übergangsradius für Facettwinkel [mm] |

Die Steghöhe h der Tablette kann wie folgt berechnet werden:

$$h = c - 2t = c - 0.4$$
 [*mm*] GI. 9.1

#### 9.3.2 Berechnung des tatsächlichen Volumens der Tablette



Abbildung 8.3 Teilbereiche einer facettierten Tablette

Zur Berechnung des Tablettenvolumens wird die Tablette in 3 Bereiche aufgeteilt (vgl. Abbildung 8.3). Der Übergangsradius zum Facettwinkel beträgt nur 0.1 [mm] und kann vernachlässigt werden.

Bereich 1: Gerader Kreiszylinder

$$V_{Zyl} = \pi r^2 h = \pi \frac{d^2}{4} h \ [mm^3]$$
 GI. 9.2

mit

r Stempelradius [mm]

Bereiche 2 und 3: Gerader Kreiskegelstumpf

$$V_{KKS} = \frac{1}{3}\pi t \left( r_2^2 + r_2 r_1 + r_1^2 \right) \ \left[ mm^3 \right]$$
Gl. 9.3

mit

$$r_2 = r_1 + r_3$$
 [*mm*] Gl. 9.4

Der Durchmesser d<sub>1</sub> wurde experimentell mit einer Schieblehre bestimmt und ergibt sich zu  $d_1 = 8 \text{ mm}$ . Daraus folgt für den Radius  $r_1$ :  $r_1 = 4 \text{ mm}$ .

$$r_3 = \frac{t}{\tan \alpha} = \frac{0.2}{\tan 30^\circ} = 0.35 \ [mm]$$
 GI. 9.5

Damit folgt:

$$r_2 = 4 + 0.35 = 4.35$$
 [mm]

Das Gesamtvolumen der Tablette ergibt sich als

$$V = V_{Zyt} + 2 * V_{KKS} = \pi r^2 h + 2 \left[ \frac{1}{3} \pi t \left( r_2^2 + r_2 r_1 + r_1^2 \right) \right] \quad [mm^3]$$
 GI. 9.6

#### 9.3.3 Beispielrechnung zur Bestimmung der relativen Dichte aus den Pressdaten

Für die Berechnung werden die Daten einer Tablette der binären 1 min-Mischung zugrunde gelegt.

Es handelt sich um die Tablette Nr. 6 (Pressdruck 50 MPa) mit der Masse 199 mg (vgl. 8.4.3.1.1). Die dazugehörigen EK 0-Daten finden sich bei 8.4.5 (1 min).

Da die Stempelwege mit den Enden der Stempel eingestellt wurden, entspricht die Differenz von Ober- und Unterstempelweg der Höhe h des Zylinderanteils der Tablette (bzw. des Pulverbetts) in der Matrize. Das Volumen wird nach Gl. 8.6 berechnet.

Angaben:

| Oberstempelweg x <sub>OS</sub>  | 6.48 mm  |
|---------------------------------|----------|
| Unterstempelweg x <sub>us</sub> | 10.41 mm |
| Radius r (Matrize)              | 4.5 mm   |

Die Höhe h ergibt sich aus

 $x_{US} - x_{OS} = 10.41 mm - 6.48 mm = 3.93 mm$ 

Demnach gilt für das Gesamtvolumen V [mm<sup>3</sup>] der Tablette:

$$V = V_{schein} = V_{Zyl} + 2 * V_{KKS}$$

$$= \pi (4.5 mm)^2 * 3.93 mm + 2 \left[ \frac{1}{3} \pi * 0.2 mm * ((4.35 mm)^2 + (4.35 mm * 4 mm) + (4 mm)^2) \right]$$
  
= 271.933 mm<sup>3</sup>

Die scheinbare Dichte ergibt sich aus der Tablettenmasse und deren Volumen:

$$\rho_{schein} = \frac{m}{V_{schein}} = \frac{199 \, mg}{271.933 \, mm^3} = 0.732 \frac{mg}{mm^3}$$

Unter Einbeziehung der wahren Dichte  $\rho_{FS}$  (vgl. 5.2.1) ergibt sich die relative Dichte D zu

$$D = \frac{\rho_{schein}}{\rho_{FS}} = \frac{0.732 \frac{mg}{mm^3}}{1.557 \frac{mg}{mm^3}} = 0.470$$

Zur Erstellung der Datenpunkte für das Heckel-Diagramm werden nach Gl. 2.24 die y-Werte für alle Messpunkte des Presszyklus gebildet.

Für den Startpunkt des Heckel-Diagramms der 1 Minuten-Mischung ergibt sich somit:

$$\ln\left(\frac{1}{(1-D)}\right) = \left(\frac{1}{(1-0.470)}\right) = 0.6349$$

## 9.4 Rohdaten

## 9.4.1 Wahre Dichte der Mischungen

### 9.4.1.1 Maisstärke

Messwerte in [g/cm<sup>3</sup>].

| Messung | Maisstärke |
|---------|------------|
| 1       | 1.5690     |
| 2       | 1.5752     |
| 3       | 1.5769     |

## 9.4.1.2 Binäre Mischungen aus Maisstärke und Nanomaterial

Messwerte in [g/cm<sup>3</sup>].

|         |        | Aero     | sil <sup>©</sup> 200   |        |        |
|---------|--------|----------|------------------------|--------|--------|
|         |        |          | Mischzeit [min]        |        |        |
| Messung | 1      | 10       | 30                     | 60     | 180    |
| 1       | 1.5511 | 1.5378   | 1.5424                 | 1.5142 | 1.5267 |
| 2       | 1.5582 | 1.5415   | 1.5491                 | 1.5160 | 1.5272 |
| 3       | 1.5627 | 1.5382   | 1.5506                 | 1.5201 | 1.5299 |
|         |        |          | Mischzeit [min]        |        |        |
| Messung | 360    | 720      | 1440                   | 2880   | 4320   |
| 1       | 1.5146 | 1.5157   | 1.5327                 | 1.5546 | 1.5445 |
| 2       | 1.5201 | 1.5238   | 1.5387                 | 1.5626 | 1.5520 |
| 3       | 1.5128 | 1.5252   | 1.5400                 | 1.5644 | 1.5510 |
|         |        | Aeros    | il <sup>®</sup> R 805  |        |        |
|         |        |          | Mischzeit [min]        |        |        |
| Messung | 1      | 10       | 30                     | 60     | 180    |
| 1       | 1.4974 | 1.5146   | 1.5000                 | 1.4966 | 1.4897 |
| 2       | 1.5006 | 1.5201   | 1.5048                 | 1.5036 | 1.4914 |
| 3       | 1.5053 | 1.5128   | 1.5042                 | 1.5000 | 1.4936 |
|         |        | •        | Mischzeit [min]        |        | •      |
| Messung | 360    | 720      | 1440                   | 2880   | 4320   |
| 1       | 1.4986 | 1.4904   | 1.4966                 | 1.5016 | 1.5150 |
| 2       | 1.4920 | 1.4944   | 1.4968                 | 1.4987 | 1.5200 |
| 3       | 1.4995 | 1.4953   | 1.4975                 | 1.4955 | 1.5243 |
|         |        |          |                        |        |        |
|         |        | Aeroxide | <sup>®</sup> TiO₂ P 25 |        |        |
|         |        |          | Mischzeit [min]        |        |        |
| Messung | 1      | 10       | 30                     | 60     | 180    |
| 1       | 1.5110 | 1.5199   | 1.5060                 | 1.5086 | 1.5049 |
| 2       | 1.5213 | 1.5227   | 1.5118                 | 1.5116 | 1.5153 |
| 3       | 1.5203 | 1.5287   | 1.5151                 | 1.5160 | 1.5126 |
|         |        |          | Mischzeit [min]        |        |        |
| Messung | 360    | 720      | 1440                   | 2880   | 4320   |
| 1       | 1.5015 | 1.5219   | 1.5274                 | 1.5152 | 1.5117 |
| 2       | 1.5065 | 1.5227   | 1.5315                 | 1.5168 | 1.5094 |
| 3       | 1.5094 | 1.5237   | 1.5346                 | 1.5186 | 1.5074 |
| •       |        | •        |                        |        | •      |
|         |        | Print    | tex <sup>®</sup> 95    |        |        |
|         |        |          | Mischzeit [min]        |        |        |
| Messung | 1      | 10       | 30                     | 60     | 180    |
| 1       | 1.5013 | 1.4973   | 1.4899                 | 1.4926 | 1.4970 |
| 2       | 1.5019 | 1.5036   | 1.4944                 | 1.4909 | 1.4937 |
| 3       | 1.5019 | 1.5052   | 1.4966                 | 1.4950 | 1.4970 |
|         |        |          | Mischzeit [min]        | -      |        |
| Messung | 360    | 720      | 1440                   | 2880   | 4320   |
| 1       | 1.4941 | 1.4979   | 1.4961                 | 1.4889 | 1.4837 |
| 2       | 1.4929 | 1.4904   | 1.4964                 | 1.4845 | 1.4859 |
| 3       | 1,4926 | 1,4926   | 1,4984                 | 1,4919 | 1,4902 |

# 9.4.1.3 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

|         |        | Aeros    | sil <sup>®</sup> 200               |        |         |
|---------|--------|----------|------------------------------------|--------|---------|
|         |        |          | Mischzeit [min]                    |        |         |
| Messung | 1      | 10       | 30                                 | 60     | 180     |
| 1       | 1.2971 | 1.2897   | 1.2899                             | 1.2911 | 1.2880  |
| 2       | 1.3017 | 1.2922   | 1.2926                             | 1.2950 | 1.2909  |
| 3       | 1.3047 | 1.2954   | 1.2962                             | 1.2976 | 1.2946  |
|         |        |          | Mischzeit [min]                    |        |         |
| Messuna | 360    | 720      | 1440                               | 2880   | 4320    |
| 1       | 1.2908 | 1.2785   | 1.2789                             | 1.3041 | 1.2907  |
| 2       | 1.2938 | 1.2873   | 1.2897                             | 1.3080 | 1.2934  |
| 3       | 1.2935 | 1.2873   | 1.2815                             | 1.3076 | 1.2960  |
|         |        |          |                                    |        |         |
|         |        | Aerosi   | il <sup>®</sup> R 805              |        |         |
|         |        |          | Mischzeit [min]                    |        |         |
| Messuna | 1      | 10       | 30                                 | 60     | 180     |
| 1       | 1.2841 | 1.2976   | 1.2927                             | 1.3185 | 1.2930  |
| 2       | 1.2877 | 1,2991   | 1.2961                             | 1.3209 | 1.3035  |
| 3       | 1.2900 | 1.3021   | 1.2980                             | 1.3212 | 1.2986  |
| -       |        |          | Mischzeit [min]                    |        |         |
| Messuna | 360    | 720      | 1440                               | 2880   | 4320    |
| 1       | 1 3012 | 1 3037   | 1 3078                             | 1 2971 | 1 3125  |
| 2       | 1.3110 | 1.3027   | 1.3087                             | 1 3040 | 1 3174  |
| 3       | 1.3087 | 12986    | 1 3131                             | 1 3060 | 1 3187  |
| U I     | 1.0001 | Aeroxide | <sup>®</sup> TiO <sub>2</sub> P 25 | 1.0000 | 1.0101  |
|         |        |          | Mischzeit [min]                    |        |         |
| Messuna | 1      | 10       | 30                                 | 60     | 180     |
| 1       | 1 2611 | 1 2780   | 1 2649                             | 1 2806 | 1 2711  |
| 2       | 1 2705 | 1 2842   | 1 2707                             | 1 2866 | 1 2746  |
| 3       | 1 2706 | 1 2858   | 1 2681                             | 1 2877 | 1 2770  |
| •       |        |          | Mischzeit [min]                    |        |         |
| Messung | 360    | 720      | 1440                               | 2880   | 4320    |
| 1       | 1 2652 | 1 2813   | 1 2915                             | 1 3029 | 1 3099  |
| 2       | 1 2707 | 1 2839   | 1 2910                             | 1.3029 | 1 3095  |
| 3       | 1 2731 | 1 2860   | 1 2954                             | 1.3051 | 1 3102  |
| Ū       | 1.2701 | 1.2000   | 1.2004                             | 1.0001 | 1.0102  |
|         |        | Print    | ex <sup>®</sup> 95                 |        |         |
|         |        |          | Mischzeit [min]                    |        |         |
| Messung | 1      | 10       | 30                                 | 60     | 180     |
| 1       | 1 3140 | 1 2979   | 1 2959                             | 1 3168 | 1 3175  |
| 2       | 1.3084 | 1.3073   | 1.3014                             | 1.3152 | 1 3217  |
| 3       | 1.3144 | 1,3019   | 1.3074                             | 1.3190 | 1 3251  |
|         |        | 1.0010   | Mischzeit [min]                    | 1.0100 | 1.0201  |
| Messung | 360    | 720      | 1440                               | 2880   | 4320    |
| 1       | 1 3265 | 1 3384   | 1 3128                             | 1 3328 | 1 3485  |
| 2       | 1 3314 | 1 334    | 1 3166                             | 1 3344 | 1 3473  |
| 3       | 1 33// | 1 3/0/   | 1 3200                             | 1 337/ | 1 2/17/ |
| 5       | 1.0044 | 1.0404   | 1.5209                             | 1.53/4 | 1.3474  |

## 9.4.2 Schütt-/Stampfdichten

# 9.4.2.1 Maisstärke

Masse: 50.00 g

| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml] | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
|---------|--------------------------|-------------|--------------|---------------------------|------------------------|---------------------|
| 1       | 98                       | 96          | 70           | 68                        | 0.510                  | 0.735               |
| 2       | 99                       | 97          | 70           | 69                        | 0.505                  | 0.725               |
| 3       | 99                       | 96          | 70           | 68                        | 0.505                  | 0.735               |

## 9.4.2.2 Ibuprofen

Masse: 40.00 g

| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml] | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
|---------|--------------------------|-------------|--------------|---------------------------|------------------------|---------------------|
| 1       | 110                      | 102         | 74           | 72                        | 0.364                  | 0.556               |
| 2       | 113                      | 104         | 75           | 73                        | 0.354                  | 0.548               |
| 3       | 110                      | 102         | 74           | 72                        | 0.364                  | 0.556               |

# 9.4.2.3 Binäre Mischungen aus Maisstärke und Ibuprofen

| Masse: 50.00 g |  |
|----------------|--|
|                |  |

|                   |                                        | 1 min                     |                          |                           |                          |                           |  |  |  |
|-------------------|----------------------------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--|--|--|
| Messung           | V <sub>0.S</sub><br>[ml]               | V₁₀<br>[ml]               | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml]   | Stampfdichte [g/ml]       |  |  |  |
| 1                 | 120                                    | 110                       | 69                       | 68                        | 0.417                    | 0.735                     |  |  |  |
| 2                 | 122                                    | 111                       | 70                       | 69                        | 0.410                    | 0.725                     |  |  |  |
| 3                 | 120                                    | 110                       | 70                       | 69                        | 0.417                    | 0.725                     |  |  |  |
|                   |                                        | •                         |                          | 10 m                      | in                       |                           |  |  |  |
| Messung           | V <sub>0.S</sub><br>[ml]               | V <sub>10</sub><br>[ml]   | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml]   | Stampfdichte [g/ml]       |  |  |  |
| 1                 | 120                                    | 110                       | 70                       | 69                        | 0.417                    | 0.725                     |  |  |  |
| 2                 | 124                                    | 113                       | 71                       | 69                        | 0.403                    | 0.725                     |  |  |  |
| 3                 | 122                                    | 110                       | 70                       | 69                        | 0.410                    | 0.725                     |  |  |  |
|                   |                                        |                           | •                        | 30 m                      | in                       | ·                         |  |  |  |
| Messung           | V <sub>0.S</sub>                       | V <sub>10</sub>           | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte             | Stampfdichte [g/ml]       |  |  |  |
| 4                 | [mi]<br>104                            |                           |                          | [mi]                      | [g/m]                    | 0.725                     |  |  |  |
| 1                 | 124                                    | 112                       | 70                       | 68                        | 0.403                    | 0.735                     |  |  |  |
| 2                 | 120                                    | 110                       | 69                       | 68                        | 0.417                    | 0.735                     |  |  |  |
| 3                 | 120                                    | 112                       | 70                       | 69                        | 0.417                    | 0.725                     |  |  |  |
|                   | V                                      | V                         | V                        | 00 m                      | III<br>Schüttdichto      |                           |  |  |  |
| Messung           | v <sub>0.S</sub><br>[m]]               |                           | v 500<br>[ml]            | V 1250<br>[ml]            | [a/ml]                   | Stampfdichte [g/ml]       |  |  |  |
| 1                 | 120                                    | 110                       | 70                       | 70                        | 0.417                    | 0.714                     |  |  |  |
| 2                 | 122                                    | 112                       | 69                       | 69                        | 0.410                    | 0.725                     |  |  |  |
| 3                 | 122                                    | 112                       | 69                       | 68                        | 0.410                    | 0.735                     |  |  |  |
|                   |                                        |                           |                          | 180 r                     | nin                      |                           |  |  |  |
| Messung           | V <sub>0.S</sub><br>[ml]               | V <sub>10</sub><br>[m]]   | V <sub>500</sub><br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml]   | Stampfdichte [g/ml]       |  |  |  |
| 1                 | 122                                    | 112                       | 71                       | 69                        | 0.410                    | 0.725                     |  |  |  |
| 2                 | 122                                    | 112                       | 70                       | 69                        | 0.410                    | 0.725                     |  |  |  |
| 3                 | 120                                    | 112                       | 70                       | 69                        | 0.417                    | 0.725                     |  |  |  |
|                   |                                        |                           |                          | 360 r                     | nin                      |                           |  |  |  |
| Maggung           | V <sub>0.S</sub>                       | V <sub>10</sub>           | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte             | Stampfdights [m/m]]       |  |  |  |
| wessung           | [ml]                                   | [ml]                      | [ml]                     | [ml]                      | [g/ml]                   | Stampforchite [g/m]       |  |  |  |
| 1                 | 122                                    | 112                       | 70                       | 69                        | 0.410                    | 0.725                     |  |  |  |
| 2                 | 120                                    | 110                       | 69                       | 69                        | 0.417                    | 0.725                     |  |  |  |
| 3                 | 122                                    | 112                       | 70                       | 70                        | 0.410                    | 0.714                     |  |  |  |
|                   |                                        |                           |                          | 720 r                     | nin                      |                           |  |  |  |
| Messung           |                                        |                           | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte             | Stampfdichte [g/ml]       |  |  |  |
| 1                 | 120                                    | 110                       | 70                       | 69                        | 0.417                    | 0.725                     |  |  |  |
| 2                 | 126                                    | 114                       | 70                       | 69                        | 0.397                    | 0.725                     |  |  |  |
| 3                 | 120                                    | 110                       | 69                       | 69                        | 0.417                    | 0.725                     |  |  |  |
| •                 |                                        |                           |                          | 1440                      | min                      | 0 20                      |  |  |  |
|                   | V <sub>0.S</sub>                       | V <sub>10</sub>           | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte             | Otawa fali alata Tarka II |  |  |  |
| wessung           | [ml]                                   | [ml]                      | [ml]                     | [ml]                      | [g/ml]                   | Stampfolchte [g/mi]       |  |  |  |
| 1                 | 124                                    | 114                       | 70                       | 69                        | 0.403                    | 0.725                     |  |  |  |
| 2                 | 120                                    | 112                       | 71                       | 70                        | 0.417                    | 0.714                     |  |  |  |
| 3                 | 122                                    | 110                       | 70                       | 69                        | 0.410                    | 0.725                     |  |  |  |
|                   | 2880 min                               |                           |                          |                           |                          |                           |  |  |  |
| Messung           | V <sub>0.S</sub><br>[ml]               | V <sub>10</sub><br>[ml]   | V <sub>500</sub><br>[ml] | V <sub>1250</sub><br>[ml] | Schuttdichte<br>[g/ml]   | Stampfdichte [g/ml]       |  |  |  |
| 1                 | 122                                    | 112                       | 70                       | 69                        | 0.410                    | 0.725                     |  |  |  |
| 2                 | 120                                    | 109                       | 69                       | 68                        | 0.417                    | 0.735                     |  |  |  |
| 3                 | 126                                    | 114                       | 71                       | 69                        | 0.397                    | 0.725                     |  |  |  |
|                   |                                        | •                         |                          | 4320                      | min                      |                           |  |  |  |
|                   |                                        | V                         | Vraa                     | V1250                     | Schüttdichte             |                           |  |  |  |
| Messung           | <b>V</b> <sub>0.S</sub>                | <b>V</b> 10               | • 500                    | 1200                      | <b>.</b>                 | Stamptdichte Id/mil       |  |  |  |
| Messung           | V <sub>0.S</sub><br>[ml]               | [ml]                      | [ml]                     | [ml]                      | [g/ml]                   | Stampfdichte [g/mi]       |  |  |  |
| Messung<br>1      | V <sub>0.S</sub><br>[ml]<br>122        | <b>[ml]</b><br>110        | [ml]<br>69               | [ml]<br>68                | [g/ml]<br>0.410          | 0.735                     |  |  |  |
| Messung<br>1<br>2 | V <sub>0.s</sub><br>[ml]<br>122<br>120 | <b>[ml]</b><br>110<br>110 | [ml]<br>69<br>70         | [ml]<br>68<br>68          | [g/ml]<br>0.410<br>0.417 | 0.735<br>0.735            |  |  |  |

# 9.4.2.4 Binäre Mischungen aus Maisstärke und Nanomaterial

|          | Т                        |                         |                          | Aerosil <sup>®</sup> 200  | -                      |                     |
|----------|--------------------------|-------------------------|--------------------------|---------------------------|------------------------|---------------------|
|          |                          |                         |                          | 1 m                       | in<br>A trut in the    |                     |
| Messung  | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V <sub>500</sub><br>[m]] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1        | 102                      | 100                     | 69                       | 68                        | 0.490                  | 0.735               |
| 2        | 102                      | 99                      | 68                       | 67                        | 0.490                  | 0.746               |
| 3        | 92                       | 88                      | 60                       | 59                        | 0.489                  | 0.763               |
|          |                          |                         |                          | 10 m                      | nin                    |                     |
| Messung  | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/m]] |
| messung  | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | otampidiente [g/m]  |
| 1        | 88                       | 85                      | 62                       | 61                        | 0.568                  | 0.820               |
| 2        | 88                       | 84                      | 62                       | 61                        | 0.568                  | 0.820               |
| 3        | 88                       | 84                      | 62                       | 61                        | 0.568                  | 0.820               |
|          |                          |                         |                          | 30 m                      |                        |                     |
| Messung  | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V <sub>500</sub><br>[m]] | V <sub>1250</sub><br>[ml] | Schuttdichte           | Stampfdichte [g/ml] |
| 1        | 84                       | 81                      | 60                       | 60                        | 0.595                  | 0.833               |
| 2        | 83                       | 80                      | 60                       | 59                        | 0.602                  | 0.847               |
| 3        | 84                       | 81                      | 60                       | 60                        | 0.595                  | 0.833               |
| -        |                          |                         |                          | 60 m                      | nin                    |                     |
| Measurer | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stomafdichts Falme  |
| wessung  | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfolchte [g/ml] |
| 1        | 83                       | 80                      | 60                       | 60                        | 0.602                  | 0.833               |
| 2        | 82                       | 79                      | 60                       | 59                        | 0.610                  | 0.847               |
| 3        | 82                       | 79                      | 60                       | 59                        | 0.610                  | 0.847               |
|          |                          |                         |                          | 180 r                     | nin                    |                     |
| Messuna  | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |
| g        | [ml]                     | [ml]                    | [m]]                     | [m]]                      | [g/ml]                 | 0.000               |
| 1        | 80                       | //                      | 59                       | 58                        | 0.625                  | 0.862               |
| 2        | 80                       | //                      | 59                       | 58                        | 0.625                  | 0.862               |
| 3        | 80                       | 11                      | 59                       | 58                        | 0.625                  | 0.862               |
|          | X                        | N N                     | V                        | 360 n                     | nin<br>Ochöttelichte   |                     |
| Messung  | V <sub>0.S</sub>         | V <sub>10</sub>         | V 500                    | V 1250                    | [a/ml]                 | Stampfdichte [g/ml] |
| 1        | 79                       | 76                      | 59                       | 58                        | 0.633                  | 0.862               |
| 2        | 80                       | 77                      | 59                       | 58                        | 0.625                  | 0.862               |
| 3        | 79                       | 76                      | 59                       | 58                        | 0.633                  | 0.862               |
| -        |                          |                         |                          | 720 r                     | nin                    |                     |
| Maggying | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stownfdichte [g/m]] |
| wessung  | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampidichte [g/mi] |
| 1        | 80                       | 78                      | 59                       | 58                        | 0.625                  | 0.862               |
| 2        | 80                       | 77                      | 59                       | 58                        | 0.625                  | 0.862               |
| 3        | 80                       | 77                      | 59                       | 58                        | 0.625                  | 0.862               |
|          |                          |                         |                          | 1440                      | min                    |                     |
| Messung  | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |
| 1        | 84                       | 80                      | 60                       | 59                        | 0.595                  | 0.847               |
| 2        | 83                       | 80                      | 59                       | 58                        | 0.000                  | 0.862               |
| 2        | 83                       | 80                      | 59                       | 58                        | 0.602                  | 0.862               |
| 5        | 00                       | 00                      | - 59                     | 2880                      | 0.002                  | 0.002               |
|          | Vac                      | Via                     | Vraa                     | Viasa                     | Schüttdichte           |                     |
| Messung  | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfdichte [g/ml] |
| 1        | 93                       | 90                      | 62                       | 61                        | 0.538                  | 0.820               |
| 2        | 93                       | 88                      | 61                       | 60                        | 0.538                  | 0.833               |
| 3        | 93                       | 89                      | 62                       | 61                        | 0.538                  | 0.820               |
|          |                          |                         |                          | 4320                      | min                    |                     |
| Messuna  | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |
| 4        | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 |                     |
| 1        | 96                       | 92                      | 04                       | 62                        | 0.521                  | 0.806               |
| 2        | 95                       | 91                      | 64                       | 63                        | 0.526                  | 0.794               |
| 3        | 95                       | 91                      | 64                       | 63                        | 0.526                  | 0.794               |

Masse: 50.00 g, abweichend davon Aerosil<sup>®</sup> 200 1 min Messung 3: 45.00 g

|          | Aerosil <sup>®</sup> R 805 |                         |                          |                           |                        |                     |  |  |  |
|----------|----------------------------|-------------------------|--------------------------|---------------------------|------------------------|---------------------|--|--|--|
|          |                            |                         |                          | 1 m                       | in                     |                     |  |  |  |
| Messung  | V <sub>0.S</sub><br>[ml]   | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |  |  |  |
| 1        | 100                        | 96                      | 63                       | 62                        | 0.500                  | 0.806               |  |  |  |
| 2        | 98                         | 94                      | 63                       | 62                        | 0.510                  | 0.806               |  |  |  |
| 3        | 100                        | 95                      | 64                       | 63                        | 0.500                  | 0.794               |  |  |  |
|          |                            |                         |                          | 10 n                      | nin                    |                     |  |  |  |
| Messung  | V <sub>0.S</sub>           | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/m]] |  |  |  |
| incooung | [ml]                       | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 |                     |  |  |  |
| 1        | 86                         | 82                      | 60                       | 59                        | 0.581                  | 0.847               |  |  |  |
| 2        | 87                         | 82                      | 60                       | 59                        | 0.575                  | 0.847               |  |  |  |
| 3        | 86                         | 82                      | 60                       | 59                        | 0.581                  | 0.847               |  |  |  |
|          |                            |                         |                          | 30 n                      | nin                    | I                   |  |  |  |
| Messung  | V <sub>0.S</sub>           |                         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |  |  |  |
| 1        | 80                         | 76                      | 58                       | 57                        | 0.625                  | 0.877               |  |  |  |
| 2        | 81                         | 70                      | 59                       | 57                        | 0.617                  | 0.877               |  |  |  |
| 3        | 81                         | 77                      | 58                       | 57                        | 0.617                  | 0.877               |  |  |  |
|          | 01                         |                         | 50                       | 60 n                      | 0.017                  | 0.011               |  |  |  |
| Messung  | V <sub>0.S</sub>           | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |  |  |  |
|          |                            |                         |                          | [mi]                      | [g/m]                  |                     |  |  |  |
| 1        | 78                         | 74                      | 57                       | 50                        | 0.641                  | 0.893               |  |  |  |
| 2        | 79                         | 75                      | 57                       | 56                        | 0.633                  | 0.893               |  |  |  |
| 3        | 78                         | 74                      | 57                       | 56                        | 0.641                  | 0.893               |  |  |  |
|          | V                          | V                       | V                        | 180 ו                     | nin<br>Cabütteliahta   |                     |  |  |  |
| Messung  | V <sub>0.S</sub><br>[m]]   |                         | v <sub>500</sub><br>[m]] | V <sub>1250</sub>         | Schuttaichte<br>[a/ml] | Stampfdichte [g/ml] |  |  |  |
| 1        | 78                         | 74                      | 56                       | 56                        | 0.641                  | 0.893               |  |  |  |
| 2        | 78                         | 74                      | 56                       | 56                        | 0.641                  | 0.893               |  |  |  |
| 3        | 78                         | 74                      | 56                       | 56                        | 0.641                  | 0.893               |  |  |  |
|          |                            | •                       | 1                        | 360 ו                     | nin                    |                     |  |  |  |
| Messung  | V <sub>0.S</sub><br>[ml]   | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[q/ml] | Stampfdichte [g/ml] |  |  |  |
| 1        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
| 2        | 77                         | 73                      | 56                       | 55                        | 0.649                  | 0.909               |  |  |  |
| 3        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
|          |                            |                         |                          | 720 ו                     | nin                    |                     |  |  |  |
| Mossung  | V <sub>0.S</sub>           | <b>V</b> <sub>10</sub>  | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichto [g/m]] |  |  |  |
| Messung  | [ml]                       | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfolichte [g/m] |  |  |  |
| 1        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
| 2        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
| 3        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
|          |                            |                         |                          | 1440                      | min<br>Och ättellighte |                     |  |  |  |
| Messung  | V <sub>0.S</sub><br>[m]]   | V <sub>10</sub>         | V <sub>500</sub><br>[m]] | V <sub>1250</sub><br>[m]] | Schuttdichte<br>[a/ml] | Stampfdichte [g/ml] |  |  |  |
| 1        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
| 2        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
| 3        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
|          |                            |                         |                          | 2880                      | min                    |                     |  |  |  |
| Messung  | V <sub>0.S</sub><br>[ml]   | V <sub>10</sub><br>[m]] | V <sub>500</sub><br>[m]] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[ɑ/ml] | Stampfdichte [g/ml] |  |  |  |
| 1        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
| 2        | 76                         | 73                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
| 3        | 76                         | 72                      | 56                       | 55                        | 0.658                  | 0.909               |  |  |  |
|          |                            |                         |                          | 4320                      | min                    | 0.000               |  |  |  |
| Messung  | V <sub>0.S</sub>           | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |  |  |  |
| messuing | [ml]                       | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 |                     |  |  |  |
| 1        | 74                         | 72                      | 55                       | 54                        | 0.676                  | 0.926               |  |  |  |
| 2        | 75                         | 72                      | 56                       | 55                        | 0.667                  | 0.909               |  |  |  |
| 3        | 75                         | 72                      | 56                       | 55                        | 0.667                  | 0.909               |  |  |  |

|         | -                        |                         | Aero                     | xide <sup>®</sup> TiO₂ P 2 | 5                      |                     |
|---------|--------------------------|-------------------------|--------------------------|----------------------------|------------------------|---------------------|
|         |                          |                         |                          | 1 m                        | in                     |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml]  | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 106                      | 100                     | 64                       | 64                         | 0.472                  | 0.781               |
| 2       | 106                      | 101                     | 65                       | 64                         | 0.472                  | 0.781               |
| 3       | 106                      | 101                     | 65                       | 64                         | 0.475                  | 0.781               |
|         |                          |                         |                          | 10 m                       | nin                    | 1                   |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V <sub>500</sub><br>[ml] | V <sub>1250</sub><br>[ml]  | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 94                       | 90                      | 60                       | 60                         | 0.532                  | 0.833               |
| 2       | 92                       | 87                      | 60                       | 60                         | 0.543                  | 0.833               |
| 3       | 93                       | 88                      | 60                       | 60                         | 0.538                  | 0.833               |
|         | V                        | V                       | V                        | 30 m                       | 1IN<br>Schüttdichto    |                     |
| Messung | • <sub>0.s</sub><br>[ml] | [ml]                    | [ml]                     | v 1250<br>[ml]             | [q/ml]                 | Stampfdichte [g/ml] |
| 1       | 86                       | 82                      | 58                       | 58                         | 0.581                  | 0.862               |
| 2       | 86                       | 81                      | 58                       | 58                         | 0.581                  | 0.862               |
| 3       | 86                       | 82                      | 58                       | 58                         | 0.581                  | 0.862               |
|         |                          | •                       |                          | 60 m                       | nin                    | •                   |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml]  | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 82                       | 79                      | 58                       | 57                         | 0.610                  | 0.877               |
| 2       | 80                       | 78                      | 57                       | 57                         | 0.625                  | 0.877               |
| 3       | 81                       | 78                      | 58                       | 57                         | 0.617                  | 0.877               |
|         |                          |                         |                          | 180 r                      | nin                    | ·                   |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml]  | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 80                       | 76                      | 57                       | 56                         | 0.625                  | 0.893               |
| 2       | 79                       | 76                      | 58                       | 57                         | 0.633                  | 0.877               |
| 3       | 80                       | 76                      | 58                       | 57                         | 0.625                  | 0.877               |
|         |                          |                         |                          | 360 r                      | nin                    | •                   |
| Messung | V <sub>0.S</sub>         |                         | V <sub>500</sub>         | V <sub>1250</sub>          | Schüttdichte           | Stampfdichte [g/ml] |
| 1       | 79                       | 75                      | 57                       | 56                         | 0.633                  | 0.893               |
| 2       | 78                       | 75                      | 57                       | 56                         | 0.641                  | 0.893               |
| 3       | 78                       | 75                      | 57                       | 56                         | 0.641                  | 0.893               |
|         |                          |                         |                          | 720 r                      | nin                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml]             | V <sub>1250</sub>          | Schüttdichte<br>[ɑ/ml] | Stampfdichte [g/ml] |
| 1       | 78                       | 75                      | 57                       | 56                         | 0.641                  | 0.893               |
| 2       | 78                       | 75                      | 57                       | 56                         | 0.641                  | 0.893               |
| 3       | 78                       | 75                      | 57                       | 56                         | 0.641                  | 0.893               |
|         |                          |                         |                          | 1440                       | min                    | ·                   |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml]  | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 78                       | 75                      | 56                       | 56                         | 0.641                  | 0.893               |
| 2       | 78                       | 74                      | 56                       | 56                         | 0.641                  | 0.893               |
| 3       | 78                       | 74                      | 56                       | 56                         | 0.641                  | 0.893               |
|         |                          |                         |                          | 2880                       | min                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml]  | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 80                       | 77                      | 57                       | 56                         | 0.625                  | 0.893               |
| 2       | 81                       | 78                      | 57                       | 56                         | 0.617                  | 0.893               |
| 3       | 81                       | 78                      | 57                       | 56                         | 0.617                  | 0.893               |
|         |                          |                         |                          | 4320                       | min                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml]  | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 81                       | 78                      | 57                       | 56                         | 0.617                  | 0.893               |
| 2       | 82                       | 80                      | 58                       | 57                         | 0.610                  | 0.877               |
| 3       | 82                       | 80                      | 58                       | 57                         | 0.610                  | 0.877               |

|           |                          |                         |                          | Printex <sup>®</sup> 95   |                        |                     |
|-----------|--------------------------|-------------------------|--------------------------|---------------------------|------------------------|---------------------|
|           |                          |                         |                          | 1 m                       | in                     |                     |
| Messung   | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1         | 88                       | 85                      | 62                       | 62                        | 0.568                  | 0.806               |
| 2         | 87                       | 83                      | 61                       | 61                        | 0.575                  | 0.820               |
| 3         | 90                       | 86                      | 62                       | 62                        | 0.556                  | 0.806               |
|           |                          | -                       | •                        | 10 m                      | nin                    | ·                   |
| Messung   | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | <b>V</b> <sub>1250</sub>  | Schüttdichte           | Stampfdichte [g/ml] |
| incooung  | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 |                     |
| 1         | 11                       | 74                      | 58                       | 57                        | 0.649                  | 0.877               |
| 2         | 78                       | 74                      | 58                       | 57                        | 0.641                  | 0.877               |
| 3         | 77                       | 74                      | 58                       | 57                        | 0.649                  | 0.877               |
|           |                          |                         |                          | 30 m                      |                        | 1                   |
| Messung   | V <sub>0.S</sub><br>[m]] | V <sub>10</sub>         | V <sub>500</sub><br>[m]] | V <sub>1250</sub>         | Schuttdichte           | Stampfdichte [g/ml] |
| 1         | 74                       | 71                      | 56                       | 56                        | 0 676                  | 0 893               |
| 2         | 74                       | 71                      | 56                       | 56                        | 0.676                  | 0.893               |
| 3         | 74                       | 70                      | 56                       | 56                        | 0.676                  | 0.893               |
|           |                          | 10                      | 00                       | 60 m                      | nin                    | 0.000               |
|           | Vos                      | <b>V</b> 10             | V500                     | V1250                     | Schüttdichte           | 0.                  |
| Messung   | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfdichte [g/ml] |
| 1         | 73                       | 70                      | 56                       | 55                        | 0.685                  | 0.909               |
| 2         | 73                       | 70                      | 55                       | 55                        | 0.685                  | 0.909               |
| 3         | 73                       | 70                      | 55                       | 55                        | 0.685                  | 0.909               |
|           |                          |                         |                          | 180 r                     | nin                    |                     |
| Messung   | <b>V</b> <sub>0.S</sub>  | <b>V</b> <sub>10</sub>  | V <sub>500</sub>         | <b>V</b> <sub>1250</sub>  | Schüttdichte           | Stampfdichte [g/ml] |
| incooring | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 |                     |
| 1         | 72                       | 69                      | 54                       | 54                        | 0.694                  | 0.926               |
| 2         | 72                       | 68                      | 54                       | 54                        | 0.694                  | 0.926               |
| 3         | 72                       | 69                      | 54                       | 54                        | 0.694                  | 0.926               |
|           |                          |                         |                          | 360 r                     | nin                    |                     |
| Messung   | V <sub>0.S</sub><br>[m]] | V <sub>10</sub>         | V <sub>500</sub><br>[m]] | V <sub>1250</sub>         | Schuttdichte           | Stampfdichte [g/ml] |
| 1         | 72                       | 68                      | 54                       | 53                        | 0 694                  | 0 943               |
| 2         | 70                       | 68                      | 54                       | 54                        | 0 714                  | 0.926               |
| 3         | 71                       | 68                      | 54                       | 54                        | 0 704                  | 0.926               |
|           |                          |                         | 0.                       | 720 r                     | nin                    | 0.020               |
|           | Vos                      | V <sub>10</sub>         | V500                     | V <sub>1250</sub>         | Schüttdichte           |                     |
| Messung   | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfdichte [g/ml] |
| 1         | 71                       | 69                      | 54                       | 53                        | 0.704                  | 0.943               |
| 2         | 71                       | 69                      | 53                       | 53                        | 0.704                  | 0.943               |
| 3         | 70                       | 68                      | 53                       | 53                        | 0.714                  | 0.943               |
|           |                          | •                       |                          | 1440                      | min                    |                     |
| Messung   | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |
| 1         | 73                       | 70                      | [m]<br>54                | <br>53                    | <b>[g/m]</b><br>0.685  | 0.943               |
| 2         | 73                       | 70                      | 54                       | 53                        | 0.005                  | 0.043               |
| 2         | 73                       | 70                      | 54                       | 53                        | 0.000                  | 0.043               |
| 5         | 12                       | 70                      | 54                       | 2880                      | 0.094                  | 0.343               |
|           | Vac                      | Via                     | Vraa                     | V1050                     | Schüttdichte           |                     |
| Messung   | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfdichte [g/ml] |
| 1         | 71                       | 69                      | 54                       | 53                        | 0.704                  | 0.943               |
| 2         | 71                       | 68                      | 54                       | 53                        | 0.704                  | 0.943               |
| 3         | 70                       | 69                      | 53                       | 53                        | 0.714                  | 0.943               |
|           |                          |                         |                          | 4320                      | min                    |                     |
| Messung   | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |
|           | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 |                     |
| 1         | /1<br>                   | 68                      | 54                       | 53                        | 0.704                  | 0.943               |
| 2         | /1                       | 69                      | 54                       | 53                        | 0.704                  | 0.943               |
| 3         | 70                       | 69                      | 54                       | 53                        | 0.714                  | 0.943               |

# 9.4.2.5 Ternäre Mischungen aus Maisstärke, Ibuprofen und Nanomaterial

| Masse: 50.00 g | ]                        |                 |                          |                           |                               |                              |
|----------------|--------------------------|-----------------|--------------------------|---------------------------|-------------------------------|------------------------------|
|                | •                        |                 |                          | Aerosil <sup>®</sup> 200  |                               |                              |
|                |                          |                 |                          | 1 m                       | in                            | -                            |
| Messung        | V₀.s<br>[ml]             | V₁₀<br>[ml]     | V₅₀₀<br>[ml]             | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml]        | Stampfdichte [g/ml]          |
| 1              | 90                       | 85              | 64                       | 62                        | 0.556                         | 0.806                        |
| 2              | 90                       | 85              | 64                       | 62                        | 0.556                         | 0.806                        |
| 3              | 89                       | 85              | 64                       | 62                        | 0.506                         | 0.726                        |
|                |                          |                 |                          | 10 m                      | nin<br>A trutturi tr          |                              |
| Messung        | V <sub>0.S</sub><br>[m]] | V <sub>10</sub> | V <sub>500</sub><br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte                  | Stampfdichte [g/ml]          |
| 1              | 80                       | 86              | 61                       | 60                        | 0.625                         | 0.833                        |
| 2              | 80                       | 86              | 62                       | 61                        | 0.625                         | 0.820                        |
| 3              | 80                       | 86              | 61                       | 60                        | 0.625                         | 0.833                        |
|                |                          |                 | •                        | 30 m                      | nin                           | •                            |
| Messuna        | V <sub>0.S</sub>         | V <sub>10</sub> | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte                  | Stampfdichte [g/ml]          |
| 4              | [ml]                     | [ml]            | [ml]                     | [ml]                      | [g/ml]                        | 0.920                        |
| 1              | 80                       | 76              | 60                       | 61                        | 0.625                         | 0.820                        |
| 2              | 80                       | 76              | 62                       | 61                        | 0.625                         | 0.820                        |
| 3              | 80                       | 70              | 02                       | 60 m                      | 0.025                         | 0.620                        |
|                | Vac                      | Via             | Vraa                     | Vinco                     | Schüttdichte                  |                              |
| Messung        | [ml]                     | [ml]            | [ml]                     | [ml]                      | [g/ml]                        | Stampfdichte [g/ml]          |
| 1              | 79                       | 75              | 62                       | 61                        | 0.633                         | 0.820                        |
| 2              | 80                       | 76              | 62                       | 61                        | 0.625                         | 0.820                        |
| 3              | 79                       | 75              | 62                       | 61                        | 0.633                         | 0.820                        |
|                |                          |                 |                          | 180 r                     | nin                           | 1                            |
| Messung        | V <sub>0.S</sub><br>[m]] | V <sub>10</sub> | V <sub>500</sub><br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml]        | Stampfdichte [g/ml]          |
| 1              | 78                       | 75              | 61                       | 60                        | 0.641                         | 0.833                        |
| 2              | 78                       | 74              | 60                       | 60                        | 0.641                         | 0.833                        |
| 3              | 78                       | 75              | 61                       | 60                        | 0.641                         | 0.833                        |
|                |                          |                 |                          | 360 r                     | nin                           |                              |
| Messung        | V <sub>0.S</sub>         | V <sub>10</sub> | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte                  | Stampfdichte [g/ml]          |
| 1              | [mi]<br>79               |                 | [ <b>m</b> ]             | [mi]<br>50                | [g/m]                         | 0.847                        |
| 2              | 78                       | 74              | 60                       | 59                        | 0.641                         | 0.847                        |
| 3              | 78                       | 75              | 60                       | 59                        | 0.641                         | 0.847                        |
| •              | 10                       | 10              | 00                       | 720 r                     | nin                           | 0.047                        |
|                | V <sub>0.S</sub>         | V <sub>10</sub> | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte                  | Otomore folia hata Taulus II |
| Messung        | [ml]                     | [ml]            | [ml]                     | [ml]                      | [g/ml]                        | Stampfolchte [g/ml]          |
| 1              | 79                       | 76              | 60                       | 59                        | 0.633                         | 0.847                        |
| 2              | 79                       | 75              | 61                       | 60                        | 0.633                         | 0.833                        |
| 3              | 79                       | 75              | 61                       | 60                        | 0.633                         | 0.833                        |
|                | N N                      |                 | V                        | 1440                      | min<br>Och <i>öttel</i> ichte |                              |
| Messung        | V <sub>0.S</sub><br>[m]] | Iml]            | v <sub>500</sub><br>[ml] | V <sub>1250</sub><br>[ml] | Schuttaichte<br>[a/ml]        | Stampfdichte [g/ml]          |
| 1              | 84                       | 79              | 61                       | 60                        | 0.595                         | 0.833                        |
| 2              | 83                       | 80              | 61                       | 60                        | 0.602                         | 0.833                        |
| 3              | 83                       | 80              | 61                       | 60                        | 0.602                         | 0.833                        |
|                |                          | •               | •                        | 2880                      | min                           | •                            |
| Messung        | V <sub>0.S</sub>         | V <sub>10</sub> | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte                  | Stampfdichte [g/ml]          |
| 1              |                          | [m]<br>84       | [mi]<br>62               | [ <b>m</b> ]              | [g/m]                         | 0.820                        |
| 2              | 90<br>88                 | 83              | 61                       | 60                        | 0.550                         | 0.820                        |
| 2              | 80                       | 84              | 62                       | 61                        | 0.500                         | 0.000                        |
| 5              |                          |                 | 02                       | 4320                      | min                           | 0.020                        |
| Marrie         | Vos                      | V <sub>10</sub> | V <sub>500</sub>         | -520<br>V <sub>1250</sub> | Schüttdichte                  | Otomo fillability in         |
| wessung        | [ml]                     | [mĺ]            | [ml]                     | [ml]                      | [g/ml]                        | Stampfdichte [g/ml]          |
| 1              | 98                       | 90              | 66                       | 64                        | 0.510                         | 0.781                        |
| 2              | 94                       | 88              | 64                       | 62                        | 0.532                         | 0.806                        |
| 3              | 96                       | 90              | 65                       | 63                        | 0.521                         | 0.794                        |

|           |                          |                         | Α                        | erosil <sup>®</sup> R 805 |                        |                     |
|-----------|--------------------------|-------------------------|--------------------------|---------------------------|------------------------|---------------------|
|           |                          |                         |                          | 1 m                       | in                     |                     |
| Messung   | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |
| 1         | 88                       | 85                      | 65                       | 64                        | 0.568                  | 0.781               |
| 2         | 88                       | 84                      | 66                       | 65                        | 0.568                  | 0.769               |
| 3         | 88                       | 85                      | 65                       | 64                        | 0.511                  | 0 703               |
|           | 00                       | 00                      | 00                       | 10 m                      | nin                    | 0.700               |
|           | Vos                      | V <sub>10</sub>         | V500                     | V <sub>1250</sub>         | Schüttdichte           |                     |
| Messung   | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfdichte [g/ml] |
| 1         | 86                       | 83                      | 68                       | 67                        | 0.581                  | 0.746               |
| 2         | 87                       | 83                      | 67                       | 66                        | 0.575                  | 0.758               |
| 3         | 86                       | 83                      | 66                       | 66                        | 0.581                  | 0.758               |
|           |                          | -                       |                          | 30 m                      | nin                    |                     |
| Messung   | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |
| 1         | 83                       | 80                      | 66                       | 66                        | 0.602                  | 0 758               |
| 2         | 82                       | 78                      | 66                       | 66                        | 0.610                  | 0.758               |
| 3         | 82                       | 78                      | 66                       | 65                        | 0.610                  | 0.769               |
|           | 02                       | 10                      | 00                       | 60 m                      | nin                    | 0.700               |
|           | Vas                      | V10                     | Venn                     | V1250                     | Schüttdichte           |                     |
| Messung   | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfdichte [g/ml] |
| 1         | 81                       | 76                      | 65                       | 65                        | 0.617                  | 0.769               |
| 2         | 82                       | 76                      | 65                       | 65                        | 0.610                  | 0.769               |
| 3         | 81                       | 76                      | 65                       | 65                        | 0.617                  | 0.769               |
|           |                          |                         | •                        | 180 r                     | nin                    |                     |
| Messung   | V <sub>0.S</sub>         | <b>V</b> <sub>10</sub>  | V <sub>500</sub>         | <b>V</b> <sub>1250</sub>  | Schüttdichte           | Stampfdichte [g/ml] |
| incooring | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | 0.700               |
| 1         | 78                       | 72                      | 66                       | 66                        | 0.641                  | 0.768               |
| 2         | 79                       | 74                      | 65                       | 65                        | 0.633                  | 0.769               |
| 3         | 78                       | 73                      | 65                       | 65                        | 0.641                  | 0.769               |
|           | N N                      | V                       | V                        | 360 r                     | nin<br>Cohöttaliohta   |                     |
| Messung   | V <sub>0.S</sub><br>[m]] | V <sub>10</sub>         | V <sub>500</sub><br>[m]] | V <sub>1250</sub><br>[m]] | Schuttaichte<br>[a/ml] | Stampfdichte [g/ml] |
| 1         | 80                       | 76                      | 66                       | 66                        | 0.625                  | 0.758               |
| 2         | 79                       | 75                      | 66                       | 66                        | 0.633                  | 0.758               |
| 3         | 79                       | 76                      | 66                       | 66                        | 0.633                  | 0.758               |
|           |                          | 1                       | 1                        | 720 r                     | nin                    |                     |
| Meeoung   | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdights [g/m]] |
| wessung   | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampfolichte [g/m] |
| 1         | 80                       | 76                      | 66                       | 66                        | 0.625                  | 0.758               |
| 2         | 80                       | 76                      | 66                       | 66                        | 0.625                  | 0.758               |
| 3         | 80                       | 76                      | 66                       | 66                        | 0.625                  | 0.758               |
|           |                          |                         |                          | 1440                      | min                    |                     |
| Messung   | V <sub>0.S</sub><br>[m]] | V <sub>10</sub><br>[ml] | V <sub>500</sub><br>[m]] | V <sub>1250</sub><br>[m]] | Schuttdichte           | Stampfdichte [g/ml] |
| 1         | 80                       | 77                      | 64                       | 64                        | 0.625                  | 0.781               |
| 2         | 81                       | 78                      | 65                       | 65                        | 0.617                  | 0.769               |
| 3         | 80                       | 77                      | 64                       | 64                        | 0.625                  | 0.781               |
|           |                          |                         | 1                        | 2880                      | min                    |                     |
| Messung   | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub>         | V <sub>1250</sub>         | Schüttdichte           | Stampfdichte [g/ml] |
| Messung   | [ml]                     | [ml]                    | [ml]                     | [ml]                      | [g/ml]                 | Stampforchte [g/m]  |
| 1         | 85                       | 82                      | 61                       | 60                        | 0.588                  | 0.833               |
| 2         | 82                       | 78                      | 61                       | 60                        | 0.588                  | 0.833               |
| 3         | 82                       | 78                      | 61                       | 60                        | 0.610                  | 0.833               |
|           |                          |                         |                          | 4320                      | min                    | 1                   |
| Messung   | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V <sub>500</sub><br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[a/ml] | Stampfdichte [g/ml] |
| 1         | 84                       | 82                      | 61                       | 60                        | 0.595                  | 0.833               |
| 2         | 86                       | 82                      | 62                       | 61                        | 0.581                  | 0.820               |
| 3         | 85                       | 82                      | 61                       | 60                        | 0.588                  | 0.833               |
| L         | 1                        | 1                       | I                        | 1                         | 1                      | 1                   |

|         |                          |                         | Aero             | xide <sup>®</sup> TiO <sub>2</sub> P 2 | 5                      |                     |
|---------|--------------------------|-------------------------|------------------|----------------------------------------|------------------------|---------------------|
|         |                          |                         |                  | 1 m                                    | in                     |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]     | V <sub>1250</sub><br>[ml]              | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 88                       | 84                      | 63               | 62                                     | 0.568                  | 0.806               |
| 2       | 88                       | 85                      | 64               | 63                                     | 0.568                  | 0.794               |
| 3       | 88                       | 85                      | 64               | 62                                     | 0.511                  | 0.726               |
|         |                          |                         |                  | 10 m                                   | nin                    |                     |
| Messung | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub> | V <sub>1250</sub>                      | Schüttdichte           | Stampfdichte [g/ml] |
| g       | [ml]                     | [ml]                    | [ml]             | [ml]                                   | [g/ml]                 | 0.000               |
| 1       | 83                       | 78                      | 61               | 60                                     | 0.602                  | 0.833               |
| 2       | 83                       | 78                      | 61               | 60                                     | 0.602                  | 0.833               |
| 3       | 84                       | 78                      | 62               | 01                                     | 0.595                  | 0.820               |
|         | V                        | V.                      | V                | 30 m                                   | IIII<br>Schüttdichte   |                     |
| Messung | v₀.s<br>[ml]             | [ml]                    | [ml]             | ▼ 1250<br>[ml]                         | [g/ml]                 | Stampfdichte [g/ml] |
| 1       | 80                       | 76                      | 59               | 58                                     | 0.625                  | 0.862               |
| 2       | 81                       | 77                      | 60               | 59                                     | 0.617                  | 0.847               |
| 3       | 80                       | 76                      | 59               | 58                                     | 0.625                  | 0.862               |
|         |                          |                         |                  | 60 m                                   | hin                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]     | V <sub>1250</sub><br>[ml]              | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 80                       | 77                      | 60               | 60                                     | 0.625                  | 0.833               |
| 2       | 81                       | 78                      | 60               | 60                                     | 0.617                  | 0.833               |
| 3       | 80                       | 77                      | 60               | 60                                     | 0.625                  | 0.833               |
|         |                          |                         |                  | 180 r                                  | nin                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml]     | V <sub>1250</sub><br>[ml]              | Schüttdichte<br>[ɑ/ml] | Stampfdichte [g/ml] |
| 1       | 84                       | 80                      | 62               | 60                                     | 0.595                  | 0.833               |
| 2       | 83                       | 80                      | 61               | 60                                     | 0.602                  | 0.833               |
| 3       | 84                       | 80                      | 62               | 60                                     | 0.595                  | 0.833               |
|         |                          | I.                      |                  | 360 r                                  | nin                    | •                   |
| Mossung | V <sub>0.S</sub>         | V <sub>10</sub>         | V <sub>500</sub> | <b>V</b> <sub>1250</sub>               | Schüttdichte           | Stamofdichte [g/ml] |
| Wessung | [ml]                     | [ml]                    | [ml]             | [ml]                                   | [g/ml]                 |                     |
| 1       | 86                       | 84                      | 62               | 61                                     | 0.581                  | 0.820               |
| 2       | 86                       | 82                      | 61               | 60                                     | 0.581                  | 0.833               |
| 3       | 86                       | 83                      | 61               | 60                                     | 0.581                  | 0.833               |
|         | N N                      | N N                     | V                | 720 r                                  | nin<br>Caböttaliahta   |                     |
| Messung | v <sub>0.S</sub><br>[ml] | v₁₀<br>[ml]             | v₅₀₀<br>[ml]     | v <sub>1250</sub><br>[ml]              | [g/ml]                 | Stampfdichte [g/ml] |
| 1       | 90                       | 87                      | 62               | 61                                     | 0.556                  | 0.820               |
| 2       | 92                       | 88                      | 63               | 62                                     | 0.543                  | 0.806               |
| 3       | 91                       | 87                      | 62               | 61                                     | 0.549                  | 0.820               |
|         |                          |                         |                  | 1440                                   | min                    | T                   |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]     | V <sub>1250</sub><br>[ml]              | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 94                       | 92                      | 64               | 62                                     | 0.532                  | 0.806               |
| 2       | 95                       | 92                      | 65               | 63                                     | 0.526                  | 0.794               |
| 3       | 94                       | 92                      | 64               | 62                                     | 0.532                  | 0.806               |
|         |                          |                         |                  | 2880                                   | min                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml]     | V <sub>1250</sub><br>[ml]              | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 96                       | 92                      | 62               | 62                                     | 0.521                  | 0.806               |
| 2       | 98                       | 92                      | 64               | 63                                     | 0.510                  | 0.794               |
| 3       | 97                       | 92                      | 64               | 63                                     | 0.515                  | 0.794               |
|         |                          |                         |                  | 4320                                   | min                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml]     | V <sub>1250</sub><br>[ml]              | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 96                       | 92                      | 64               | 62                                     | 0.521                  | 0.806               |
| 2       | 98                       | 93                      | 64               | 63                                     | 0.510                  | 0.794               |
| 3       | 98                       | 93                      | 64               | 63                                     | 0.510                  | 0.794               |

|         |                          |                         |              | Printex <sup>®</sup> 95   |                        |                     |
|---------|--------------------------|-------------------------|--------------|---------------------------|------------------------|---------------------|
|         |                          |                         |              | 1 m                       | in                     |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 90                       | 85                      | 63           | 62                        | 0.556                  | 0.806               |
| 2       | 90                       | 86                      | 63           | 62                        | 0.500                  | 0.806               |
| 3       | 90                       | 85                      | 63           | 62                        | 0.500                  | 0.726               |
|         |                          | -                       |              | 10 m                      | nin                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 86                       | 82                      | 61           | 60                        | 0.581                  | 0.833               |
| 2       | 87                       | 82                      | 61           | 60                        | 0.575                  | 0.833               |
| 3       | 86                       | 82                      | 61           | 60                        | 0.581                  | 0.833               |
|         |                          |                         |              | 30 m                      | nin                    |                     |
| Messung | V <sub>0.s</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 86                       | 83                      | 61           | 60                        | 0.581                  | 0.833               |
| 2       | 88                       | 84                      | 62           | 61                        | 0.568                  | 0.820               |
| 3       | 87                       | 83                      | 61           | 60                        | 0.575                  | 0.833               |
|         |                          |                         |              | 60 m                      | nin                    |                     |
| Messung | V <sub>0.s</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 92                       | 87                      | 62           | 61                        | 0.543                  | 0.820               |
| 2       | 92                       | 87                      | 63           | 62                        | 0.543                  | 0.806               |
| 3       | 92                       | 87                      | 62           | 61                        | 0.543                  | 0.820               |
|         |                          | •                       |              | 180 r                     | nin                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 96                       | 90                      | 64           | 63                        | 0.521                  | 0.794               |
| 2       | 96                       | 89                      | 64           | 63                        | 0.521                  | 0.794               |
| 3       | 96                       | 90                      | 64           | 63                        | 0.521                  | 0.794               |
|         |                          |                         |              | 360 r                     | nin                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[ɑ/ml] | Stampfdichte [g/ml] |
| 1       | 96                       | 90                      | 65           | 64                        | 0.521                  | 0.781               |
| 2       | 98                       | 92                      | 65           | 64                        | 0.510                  | 0.781               |
| 3       | 97                       | 91                      | 65           | 64                        | 0.515                  | 0.781               |
|         |                          |                         |              | 720 r                     | nin                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 98                       | 94                      | 66           | 64                        | 0.510                  | 0.781               |
| 2       | 100                      | 94                      | 66           | 64                        | 0.500                  | 0.781               |
| 3       | 98                       | 94                      | 66           | 64                        | 0.505                  | 0.781               |
|         |                          |                         |              | 1440                      | min                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[ɑ/ml] | Stampfdichte [g/ml] |
| 1       | 100                      | 94                      | 67           | 65                        | 0.500                  | 0.769               |
| 2       | 100                      | 93                      | 66           | 64                        | 0.500                  | 0.781               |
| 3       | 100                      | 94                      | 67           | 65                        | 0.500                  | 0.769               |
|         |                          |                         |              | 2880                      | min                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V <sub>10</sub><br>[ml] | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 102                      | 97                      | 67           | 65                        | 0.490                  | 0.769               |
| 2       | 103                      | 95                      | 67           | 65                        | 0.485                  | 0.769               |
| 3       | 102                      | 96                      | 67           | 65                        | 0.490                  | 0.769               |
|         |                          |                         |              | 4320                      | min                    |                     |
| Messung | V <sub>0.S</sub><br>[ml] | V₁₀<br>[ml]             | V₅₀₀<br>[ml] | V <sub>1250</sub><br>[ml] | Schüttdichte<br>[g/ml] | Stampfdichte [g/ml] |
| 1       | 106                      | 98                      | 68           | 66                        | 0.471                  | 0.758               |
| 2       | 104                      | 98                      | 68           | 66                        | 0.481                  | 0.758               |
| 3       | 105                      | 98                      | 68           | 66                        | 0.476                  | 0.758               |

#### 9.4.3 Pressdaten

Für die Pressdaten sind jeweils die Rohdaten der binären Mischungen aus Maisstärke und Aerosil<sup>®</sup> 200 aufgeführt, die übrigen Daten sind am Lehrstuhl für Pharmazeutische Technologie der Universität Würzburg hinterlegt.

# 9.4.3.1 Tablettenparameter der binären Mischungen aus Maisstärke und Aerosil<sup>®</sup> 200

#### 9.4.3.1.1 Mischung 1

|             |                 |                        |                        | 1 min                     |                     |                     |                     |                     |                        |
|-------------|-----------------|------------------------|------------------------|---------------------------|---------------------|---------------------|---------------------|---------------------|------------------------|
| PD<br>[MPa] | Tablette<br>Nr. | M <sub>P</sub><br>[mg] | M <sub>w</sub><br>[mg] | PK <sub>max</sub><br>[kN] | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | F <sub>вw</sub><br>[N] |
| 50          | 1               | 200                    | 200                    | 3.15                      | 3.27                | 3.35                | 8.97                | 9.15                | 6                      |
|             | 2               | 201                    | 201                    | 3.31                      | 3.27                | 3.35                | 8.98                | 9.16                | 6                      |
|             | 3               | 200                    | 201                    | 3.20                      | 3.27                | 3.35                | 8.98                | 9.16                | 5                      |
|             | 4               | 200                    | 201                    | 3.20                      | 3.27                | 3.35                | 8.98                | 9.17                | 6                      |
|             | 5               | 201                    | 202                    | 3.29                      | 3.28                | 3.36                | 8.98                | 9.15                | 6                      |
|             | 6               | 199                    | 201                    | 3.24                      | 3.27                | 3.35                | 8.98                | 9.16                | 6                      |
| 80          | 1               | 200                    | 200                    | 4.97                      | 2.98                | 3.06                | 8.95                | 9.14                | 17                     |
|             | 2               | 200                    | 200                    | 4.95                      | 2.96                | 3.05                | 8.97                | 9.13                | 19                     |
|             | 3               | 200                    | 200                    | 5.04                      | 2.98                | 3.05                | 8.96                | 9.15                | 20                     |
|             | 4               | 201                    | 201                    | 5.04                      | 2.97                | 3.05                | 8.95                | 9.12                | 20                     |
|             | 5               | 201                    | 201                    | 5.09                      | 2.98                | 3.06                | 8.95                | 9.12                | 21                     |
|             | 6               | 201                    | 201                    | 5.07                      | 2.98                | 3.06                | 8.96                | 9.14                | 17                     |
| 100         | 1               | 199                    | 200                    | 6.21                      | 2.82                | 2.89                | 8.93                | 9.10                | 28                     |
|             | 2               | 200                    | 200                    | 6.49                      | 2.82                | 2.90                | 8.94                | 9.10                | 30                     |
|             | 3               | 200                    | 200                    | 6.43                      | 2.82                | 2.90                | 8.94                | 9.12                | 31                     |
|             | 4               | 199                    | 200                    | 6.31                      | 2.82                | 2.90                | 8.94                | 9.12                | 28                     |
|             | 5               | 199                    | 200                    | 6.34                      | 2.82                | 2.90                | 8.93                | 9.11                | 26                     |
|             | 6               | 201                    | 201                    | 6.49                      | 2.82                | 2.90                | 8.94                | 9.11                | 31                     |
| 150         | 1               | 201                    | 201                    | 9.77                      | 2.60                | 2.65                | 8.91                | 9.04                | 53                     |
|             | 2               | 201                    | 199                    | 9.83                      | 2.60                | 2.65                | 8.91                | 9.05                | 61                     |
|             | 3               | 200                    | 199                    | 9.61                      | 2.60                | 2.64                | 8.91                | 9.05                | 55                     |
|             | 4               | 199                    | 199                    | 9.65                      | 2.60                | 2.64                | 8.92                | 9.05                | 56                     |
|             | 5               | 199                    | 199                    | 9.46                      | 2.60                | 2.65                | 8.92                | 9.05                | 52                     |
|             | 6               | 200                    | 200                    | 9.83                      | 2.60                | 2.65                | 8.91                | 9.05                | 56                     |
| 200         | 1               | 201                    | 200                    | 12.33                     | 2.58                | 2.62                | 8.92                | 9.04                | 65                     |
|             | 2               | 199                    | 199                    | 13.09                     | 2.52                | 2.57                | 8.91                | 9.05                | 66                     |
|             | 3               | 199                    | 199                    | 13.12                     | 2.52                | 2.57                | 8.93                | 9.05                | 67                     |
|             | 4               | 200                    | 200                    | 12.53                     | 2.54                | 2.59                | 8.91                | 9.06                | 66                     |
|             | 5               | 200                    | 199                    | 12.48                     | 2.53                | 2.57                | 8.91                | 9.03                | 71                     |
|             | 6               | 199                    | 199                    | 12.43                     | 2.53                | 2.58                | 8.91                | 9.05                | 68                     |
| 250         | 1               | 200                    | 200                    | 15.61                     | 2.50                | 2.53                | 8.90                | 9.03                | 72                     |
|             | 2               | 199                    | 199                    | 15.58                     | 2.50                | 2.53                | 8.90                | 9.03                | 77                     |
|             | 3               | 200                    | 201                    | 16.09                     | 2.51                | 2.55                | 8.90                | 9.05                | 79                     |
|             | 4               | 201                    | 200                    | 16.28                     | 2.52                | 2.55                | 8.90                | 9.03                | 80                     |
|             | 5               | 199                    | 198                    | 15.39                     | 2.50                | 2.52                | 8.91                | 9.03                | 79                     |
|             | 6               | 201                    | 200                    | 16.21                     | 2.52                | 2.55                | 8.90                | 9.04                | 73                     |
| 300         | 1               | 199                    | 198                    | 18.58                     | 199                 | 2.50                | 2.52                | 8.89                | 9.02                   |
|             | 2               | 200                    | 199                    | 18.85                     | 200                 | 2.49                | 2.51                | 8.90                | 9.01                   |
|             | 3               | 199                    | 198                    | 18.58                     | 199                 | 2.48                | 2.51                | 8.90                | 9.02                   |
|             | 4               | 200                    | 198                    | 18.75                     | 200                 | 2.49                | 2.52                | 8.89                | 9.01                   |
|             | 5               | 200                    | 200                    | 19.07                     | 200                 | 2.49                | 2.52                | 8.90                | 9.03                   |
|             | 6               | 201                    | 200                    | 19.18                     | 201                 | 2.50                | 2.52                | 8.90                | 9.03                   |
| 400         | 1               | 199                    | 197                    | 25.36                     | 199                 | 2.48                | 2.50                | 8.91                | 8.99                   |
|             | 2               | 200                    | 198                    | 25.48                     | 200                 | 2.49                | 2.52                | 8.91                | 8.99                   |
|             | 3               | 200                    | 197                    | 25.13                     | 200                 | 2.49                | 2.50                | 8.92                | 8.99                   |
|             | 4               | 201                    | 199                    | 25.58                     | 201                 | 2.50                | 2.52                | 8.90                | 8.99                   |
|             | 5               | 201                    | 198                    | 25.40                     | 201                 | 2.50                | 2.51                | 8.91                | 9.00                   |
|             | 6               | 201                    | 199                    | 25.26                     | 201                 | 2 50                | 2 51                | 8 90                | 8 99                   |

|             |                 |                        |                                       | 10 mir                    | <u>1</u>            |                     |                     |                          | 1                      |
|-------------|-----------------|------------------------|---------------------------------------|---------------------------|---------------------|---------------------|---------------------|--------------------------|------------------------|
| PD<br>[MPa] | Tablette<br>Nr. | M <sub>P</sub><br>[mg] | M <sub>w</sub><br>[mg]                | PK <sub>max</sub><br>[kN] | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm]      | F <sub>вw</sub><br>[N] |
| 50          | 1               | 200                    | 199                                   | 3.29                      | 3.17                | 3.21                | 8.95                | 9.10                     | 12                     |
|             | 2               | 199                    | 198                                   | 3.14                      | 3.19                | 3.23                | 8.95                | 9.11                     | 13                     |
|             | 3               | 199                    | 198                                   | 3.14                      | 3.20                | 3.24                | 8.90                | 9.11                     | 10                     |
|             | 4               | 200                    | 199                                   | 3.17                      | 3.19                | 3.23                | 0.90                | 9.11                     | 13                     |
|             | 6               | 200                    | 199                                   | 3.20                      | 3.19                | 3.23                | 8.95                | 9.11                     | 13                     |
| 80          | 1               | 199                    | 190                                   | 5.09                      | 2.88                | 2.92                | 8.93                | 9.12                     | 35                     |
| 00          | 2               | 200                    | 200                                   | 5.00                      | 2.00                | 2.02                | 8.93                | 9.09                     | 34                     |
|             | 3               | 201                    | 199                                   | 5.07                      | 2.89                | 2.92                | 8.94                | 9.08                     | 29                     |
|             | 4               | 200                    | 198                                   | 5.07                      | 2.88                | 2.92                | 8.93                | 9.07                     | 31                     |
|             | 5               | 199                    | 198                                   | 5.07                      | 2.88                | 2.91                | 8.94                | 9.09                     | 34                     |
|             | 6               | 199                    | 198                                   | 5.12                      | 2.89                | 2.93                | 8.94                | 9.10                     | 25                     |
| 100         | 1               | 200                    | 199                                   | 6.54                      | 2.74                | 2.78                | 8.93                | 9.08                     | 48                     |
|             | 2               | 200                    | 198                                   | 6.49                      | 2.74                | 2.78                | 8.93                | 9.07                     | 43                     |
|             | 3               | 200                    | 199                                   | 6.61                      | 2.74                | 2.79                | 8.93                | 9.08                     | 44                     |
|             | 4               | 199                    | 198                                   | 6.24                      | 2.74                | 2.80                | 8.93                | 9.08                     | 47                     |
|             | 5               | 199                    | 199                                   | 6.31                      | 2.76                | 2.80                | 8.93                | 9.08                     | 41                     |
|             | 6               | 199                    | 198                                   | 6.22                      | 2.75                | 2.80                | 8.93                | 9.08                     | 44                     |
| 150         | 1               | 200                    | 198                                   | 9.70                      | 2.58                | 2.61                | 8.91                | 9.05                     | 75                     |
|             | 2               | 199                    | 199                                   | 9.39                      | 2.59                | 2.63                | 8.91                | 9.06                     | 73                     |
|             | 3               | 200                    | 200                                   | 9.61                      | 2.59                | 2.63                | 8.91                | 9.05                     | 71                     |
|             | 4               | 199                    | 198                                   | 9.46                      | 2.59                | 2.63                | 8.91                | 9.05                     | 78                     |
|             | 5               | 200                    | 199                                   | 9.48                      | 2.59                | 2.03                | 8.91                | 9.05                     | 62                     |
| 200         | 1               | 100                    | 100                                   | 9.70                      | 2.02                | 2.00                | 8.93                | 9.00                     | 81                     |
| 200         | 2               | 200                    | 200                                   | 12.50                     | 2.53                | 2.57                | 8.90                | 9.00                     | 89                     |
|             | 3               | 199                    | 198                                   | 12.01                     | 2.52                | 2.57                | 8.90                | 9.06                     | 81                     |
|             | 4               | 201                    | 200                                   | 13.00                     | 2.52                | 2.50                | 8.91                | 9.05                     | 82                     |
|             | 5               | 200                    | 199                                   | 12.65                     | 2.53                | 2.56                | 8.90                | 9.05                     | 80                     |
|             | 6               | 200                    | 200                                   | 12.72                     | 2.53                | 2.57                | 8.90                | 9.06                     | 79                     |
| 250         | 1               | 199                    | 199                                   | 16.17                     | 2.48                | 2.51                | 8.90                | 9.05                     | 91                     |
|             | 2               | 199                    | 199                                   | 15.67                     | 2.49                | 2.53                | 8.90                | 9.06                     | 89                     |
|             | 3               | 201                    | 200                                   | 16.36                     | 2.51                | 2.55                | 8.89                | 9.06                     | 91                     |
|             | 4               | 200                    | 199                                   | 16.12                     | 2.50                | 2.54                | 8.90                | 9.05                     | 102                    |
|             | 5               | 199                    | 199                                   | 15.84                     | 2.49                | 2.53                | 8.91                | 9.05                     | 94                     |
|             | 6               | 200                    | 200                                   | 16.16                     | 2.50                | 2.54                | 8.90                | 9.05                     | 93                     |
| 300         | 1               | 200                    | 200                                   | 18.82                     | 2.48                | 2.52                | 8.90                | 9.05                     | 90                     |
|             | 2               | 200                    | 200                                   | 19.16                     | 2.50                | 2.54                | 8.91                | 9.05                     | 76                     |
|             | 3               | 200                    | 199                                   | 18.89                     | 2.48                | 2.52                | 8.90                | 9.05                     | 92                     |
|             | 4               | 199                    | 199                                   | 18.77                     | 2.47                | 2.52                | 8.90                | 9.05                     | 89                     |
|             | 5               | 200                    | 200                                   | 18.94                     | 2.48                | 2.52                | 8.91                | 9.05                     | 80                     |
| 400         | 0               | 200                    | 199                                   | 16.95                     | 2.40                | 2.52                | 8.90                | 9.05                     | 09                     |
| 400         | 2               | 100                    | 199                                   | 25.99                     | 2.47                | 2.50                | 8.90                | 9.04                     | 94<br>88               |
|             | 2               | 199                    | 199                                   | 25.07                     | 2.40                | 2.50                | 8.80                | 9.05                     | 00                     |
|             | J               | 201                    | 201                                   | 23.30                     | 2.40                | 2.50                | 8 90                | 9.05                     | 86                     |
|             | 5               | 201                    | 201                                   | 25.01                     | 2.49                | 2.53                | 8.90                | 9.05                     | 102                    |
|             | 6               | 201                    | 200                                   | 25.19                     | 2.52                | 2.53                | 8.90                | 9.04                     | 90                     |
|             |                 |                        | •                                     | 30 mir                    | n                   | •                   |                     | •                        |                        |
| PD          | Tablette        | MP                     | Mw                                    | PK <sub>max</sub>         | h- [mm]             | h[mm]               | d_ [mm]             | d[mm]                    | F <sub>BW</sub>        |
| [MPa]       | Nr.             | [mg]                   | [mg]                                  | [kN]                      | us friund           |                     | op [mm]             | ~w[uuu]                  | [N]                    |
| 50          | 1               | 200                    | 199                                   | 3.26                      | 3.16                | 3.20                | 8.95                | 9.08                     | 14                     |
|             | 2               | 200                    | 198                                   | 3.20                      | 3.16                | 3.21                | 8.95                | 9.08                     | 13                     |
|             | 3               | 199                    | 198                                   | 3.22                      | 3.16                | 3.20                | 8.95                | 9.10                     | 13                     |
|             | 4               | 200                    | 198                                   | 3.24                      | 3.16                | 3.20                | 8.96                | 9.09                     | 12                     |
|             | 5               | 199                    | 197                                   | 3.20                      | 3.16                | 3.20                | 8.95                | 9.08                     | 13                     |
| 00          | 6               | 199                    | 198                                   | 3.20                      | 3.16                | 3.20                | 8.96                | 9.09                     | 14                     |
| 80          | 1               | 200                    | 199                                   | 5.09                      | 2.85                | 2.89                | 8.93                | 9.04                     | 38                     |
|             | 2               | 201                    | 200                                   | 0.1/<br>5.04              | 2.85                | 2.89                | 0.93<br>0.02        | 9.04                     | 39                     |
|             | 3               | 200                    | 190                                   | 5.04                      | 2.00                | 2.09                | 0.93<br>8.02        | 9.04                     | 29                     |
|             | 4<br>5          | 200                    | 197                                   | 5.02                      | 2.00                | 2.09                | 0.92                | 9.04                     | 24                     |
|             | 5               | 100                    | 190                                   | 5.09                      | 2.00                | 2.09                | 0.93                | 9.04                     | 34                     |
| 100         | 1               | 200                    | 197                                   | 6 37                      | 2.00                | 2.03                | 8 0.95              | 9.0 <del>4</del><br>9.03 | <u> </u>               |
| 100         | 2               | 200                    | 108                                   | 6.36                      | 2.73                | 2.11                | 8 91                | 9.03                     | 45                     |
|             | 3               | 199                    | 108                                   | 6.34                      | 2.73                | 2.11                | 8 91                | 9.03                     | 45                     |
|             | 4               | 199                    | 198                                   | 6.32                      | 2.73                | 2.76                | 8.92                | 9.03                     | 41                     |
|             | 5               | 201                    | 199                                   | 6 53                      | 2.73                | 2.73                | 8.91                | 9.03                     | 43                     |
|             | 6               | 200                    | 197                                   | 6.29                      | 2.73                | 2.76                | 8.92                | 9.04                     | 41                     |
|             | -               |                        | · · · · · · · · · · · · · · · · · · · |                           |                     | -                   |                     |                          |                        |

| 150                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.59                                                                                                                                                                                                                                                                                 | 2.64                                                                                                 | 8.90                                                                                                                                                 | 9.03                                                                                 | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.61                                                                                                                                                                                                                                                                                 | 2.65                                                                                                 | 8.90                                                                                                                                                 | 9.03                                                                                 | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.59                                                                                                                                                                                                                                                                                 | 2.64                                                                                                 | 8,91                                                                                                                                                 | 9.04                                                                                 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.60                                                                                                                                                                                                                                                                                 | 2.64                                                                                                 | 8 00                                                                                                                                                 | 9.04                                                                                 | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00                                                                                                                                                                                                                                                                                 | 2.04                                                                                                 | 0.90                                                                                                                                                 | 9.04                                                                                 | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.59                                                                                                                                                                                                                                                                                 | 2.63                                                                                                 | 8.90                                                                                                                                                 | 9.03                                                                                 | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.60                                                                                                                                                                                                                                                                                 | 2.65                                                                                                 | 8.90                                                                                                                                                 | 9.03                                                                                 | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 200                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.52                                                                                                                                                                                                                                                                                 | 2.54                                                                                                 | 8.89                                                                                                                                                 | 9.01                                                                                 | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 53                                                                                                                                                                                                                                                                                 | 2 56                                                                                                 | 8 89                                                                                                                                                 | 9.02                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                 | 2.55                                                                                                 | 8.00                                                                                                                                                 | 0.02                                                                                 | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.52                                                                                                                                                                                                                                                                                 | 2.55                                                                                                 | 0.30                                                                                                                                                 | 3.00                                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.53                                                                                                                                                                                                                                                                                 | 2.55                                                                                                 | 8.89                                                                                                                                                 | 9.02                                                                                 | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.51                                                                                                                                                                                                                                                                                 | 2.54                                                                                                 | 8.90                                                                                                                                                 | 8.99                                                                                 | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.51                                                                                                                                                                                                                                                                                 | 2.54                                                                                                 | 8.89                                                                                                                                                 | 9.01                                                                                 | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 250                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 51                                                                                                                                                                                                                                                                                 | 2 53                                                                                                 | 8 89                                                                                                                                                 | 9 00                                                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.51                                                                                                                                                                                                                                                                                 | 2.54                                                                                                 | 8.80                                                                                                                                                 | 9.00                                                                                 | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.51                                                                                                                                                                                                                                                                                 | 2.54                                                                                                 | 0.03                                                                                                                                                 | 3.00                                                                                 | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.51                                                                                                                                                                                                                                                                                 | 2.54                                                                                                 | 8.90                                                                                                                                                 | 9.00                                                                                 | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.52                                                                                                                                                                                                                                                                                 | 2.55                                                                                                 | 8.89                                                                                                                                                 | 9.00                                                                                 | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.53                                                                                                                                                                                                                                                                                 | 2.56                                                                                                 | 8.90                                                                                                                                                 | 9.01                                                                                 | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 51                                                                                                                                                                                                                                                                                 | 2 54                                                                                                 | 8 89                                                                                                                                                 | 9 00                                                                                 | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 300                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                 | 2.52                                                                                                 | 8 80                                                                                                                                                 | 0.00                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 500                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00                                                                                                                                                                                                                                                                                 | 2.52                                                                                                 | 0.00                                                                                                                                                 | 0.00                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.48                                                                                                                                                                                                                                                                                 | 2.51                                                                                                 | 8.89                                                                                                                                                 | 9.00                                                                                 | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                 | 2.53                                                                                                 | 8.90                                                                                                                                                 | 9.00                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.48                                                                                                                                                                                                                                                                                 | 2.52                                                                                                 | 8.89                                                                                                                                                 | 9.01                                                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.48                                                                                                                                                                                                                                                                                 | 2.52                                                                                                 | 8.89                                                                                                                                                 | 9.00                                                                                 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 4 8                                                                                                                                                                                                                                                                                | 2 5 1                                                                                                | 8 90                                                                                                                                                 | 9.00                                                                                 | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 400                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.40                                                                                                                                                                                                                                                                                 | 2.51                                                                                                 | 0.00                                                                                                                                                 | 0.00                                                                                 | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 400                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.47                                                                                                                                                                                                                                                                                 | 2.51                                                                                                 | 0.00                                                                                                                                                 | 0.99                                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.49                                                                                                                                                                                                                                                                                 | 2.51                                                                                                 | 8.88                                                                                                                                                 | 8.99                                                                                 | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.52                                                                                                                                                                                                                                                                                 | 2.54                                                                                                 | 8.88                                                                                                                                                 | 8.99                                                                                 | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.49                                                                                                                                                                                                                                                                                 | 2.51                                                                                                 | 8.88                                                                                                                                                 | 8.99                                                                                 | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 4 9                                                                                                                                                                                                                                                                                | 2.51                                                                                                 | 8 88                                                                                                                                                 | 9.00                                                                                 | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.10                                                                                                                                                                                                                                                                                 | 2.61                                                                                                 | 0.00                                                                                                                                                 | 0.00                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.47                                                                                                                                                                                                                                                                                 | 2.00                                                                                                 | 0.00                                                                                                                                                 | 9.00                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60 mir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                      | 1                                                                                                    |                                                                                                                                                      | 1                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PD                             | Tablette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PKmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h- [mm]                                                                                                                                                                                                                                                                              | h [mm]                                                                                               | d- [mm]                                                                                                                                              | d[mm]                                                                                | F <sub>BW</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [MPa]                          | Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [mg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [mg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ub [uuu]                                                                                                                                                                                                                                                                             |                                                                                                      | ob [uuu]                                                                                                                                             | aw[iiiii]                                                                            | [N]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19                                                                                                                                                                                                                                                                                 | 3.22                                                                                                 | 9.07                                                                                                                                                 | 9.06                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | â                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                      |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 19                                                                                                                                                                                                                                                                                 | 3 2 3                                                                                                | 9.09                                                                                                                                                 | 9.09                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19                                                                                                                                                                                                                                                                                 | 3.23                                                                                                 | 9.09                                                                                                                                                 | 9.09                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 199<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.19<br>3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17                                                                                                                                                                                                                                                                         | 3.23<br>3.22                                                                                         | 9.09<br>9.08                                                                                                                                         | 9.09                                                                                 | 11<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201<br>200<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199<br>199<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.19<br>3.15<br>3.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19<br>3.17<br>3.17                                                                                                                                                                                                                                                                 | 3.23<br>3.22<br>3.22                                                                                 | 9.09<br>9.08<br>9.09                                                                                                                                 | 9.09<br>9.06<br>9.08                                                                 | 11<br>13<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201<br>200<br>199<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 199<br>199<br>197<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.15<br>3.12<br>3.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18                                                                                                                                                                                                                                                         | 3.23<br>3.22<br>3.22<br>3.22<br>3.22                                                                 | 9.09<br>9.08<br>9.09<br>9.09                                                                                                                         | 9.09<br>9.06<br>9.08<br>9.08                                                         | 11<br>13<br>15<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | 2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 201<br>200<br>199<br>199<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 199<br>199<br>197<br>199<br>199<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.19<br>3.15<br>3.12<br>3.19<br>3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19<br>3.17<br>3.17<br>3.18<br>3.18                                                                                                                                                                                                                                                 | 3.23<br>3.22<br>3.22<br>3.22<br>3.22<br>3.21                                                         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09                                                                                                                 | 9.09<br>9.06<br>9.08<br>9.08<br>9.07                                                 | 11<br>13<br>15<br>13<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80                             | 2<br>3<br>4<br>5<br>6<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 201<br>200<br>199<br>199<br>200<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199<br>199<br>197<br>199<br>199<br>199<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87                                                                                                                                                                                                                                         | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87                                                         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.09<br>9.06                                                                                                 | 9.09<br>9.06<br>9.08<br>9.08<br>9.07<br>9.06                                         | 11<br>13<br>15<br>13<br>16<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80                             | 2<br>3<br>4<br>5<br>6<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 201<br>200<br>199<br>199<br>200<br>201<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199<br>199<br>197<br>199<br>199<br>199<br>198<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88                                                                                                                                                                                                                                 | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88                                                 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07                                                                                         | 9.09<br>9.06<br>9.08<br>9.08<br>9.07<br>9.06<br>9.07                                 | 11<br>13<br>15<br>13<br>16<br>40<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80                             | 2<br>3<br>4<br>5<br>6<br>1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 201<br>200<br>199<br>200<br>201<br>200<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199<br>199<br>197<br>199<br>199<br>198<br>198<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.88                                                                                                                                                                                                                         | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.88                                         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07                                                                                                 | 9.09<br>9.06<br>9.08<br>9.08<br>9.07<br>9.06<br>9.07                                 | 11<br>13<br>15<br>13<br>16<br>40<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80                             | 2<br>3<br>4<br>5<br>6<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 199<br>199<br>197<br>199<br>199<br>198<br>198<br>198<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.88                                                                                                                                                                                                                 | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.88                                         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07                                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.06<br>9.07<br>9.07                         | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 80                             | $     \begin{array}{r}       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       4     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 199           199           197           199           199           199           198           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87                                                                                                                                                                                                         | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87                                         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07                                                                                 | 9.09<br>9.06<br>9.08<br>9.07<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07                 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80                             | $     \begin{array}{r}       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       5 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199           199           197           199           199           199           198           198           198           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.98<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87                                                                                                                                                                                                 | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87                         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                 | 9.09<br>9.06<br>9.08<br>9.07<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07         | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>201<br>199<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199           199           197           199           198           198           198           198           198           198           198           198           198           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.98<br>4.95<br>4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87                                                                                                                                                                                         | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87                 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>200<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199           199           197           199           199           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                 | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.93<br>4.95<br>4.95<br>6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                 | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>200<br>201<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 199           199           197           199           199           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           199           199                                                                                                                                                                                                                                                                                                                         | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.93<br>4.98<br>4.95<br>4.95<br>6.22<br>6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 199           199           199           197           199           198           198           198           198           198           198           198           198           198           198           198           198           198           198           199           199           199                                                                                                                                                                                                                                                                                                                                                     | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.98<br>4.93<br>4.95<br>6.22<br>6.17<br>6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>40<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80                             | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>201<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 199           199           197           199           199           198           198           198           198           198           199           199           198           198           199           199           199           199           199           199           199           199           197                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} 3.19 \\ 3.15 \\ 3.12 \\ 3.19 \\ 3.20 \\ 5.02 \\ 4.98 \\ 4.93 \\ 4.98 \\ 4.95 \\ 4.95 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.17 \\ 6.22 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.$     | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.06<br>9.06                                 | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ - \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>199<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 199           199           197           199           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           199           197           199                                                                                                                                                                                                         | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.93\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.44\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>55<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>199<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 199           199           197           199           198           198           198           198           198           198           198           198           198           198           199           199           199           199           199           199           199           199           199           198                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.93\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>199<br>200<br>200<br>200<br>200<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 199           199           197           199           199           198           198           198           198           198           199           198           198           199           199           199           199           199           199           199           199           199           199           199           199           199           199           199           199           199           199                                                                                                                                                                                                                       | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.93\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 6.41\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.06<br>9.06<br>9.06<br>9.06<br>9.06                 | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>200<br>201<br>200<br>200<br>200<br>200<br>200<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199           199           199           199           199           198           198           198           198           198           198           198           198           199           199           199           199           199           199           199           199           199           198           199           198           199           198           199           198                                                                                                                                                                                                                                                   | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.93\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 6.41\\ 9.27\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                 | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>200<br>201<br>200<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199           199           197           199           198           198           198           198           198           198           198           198           198           198           198           198           199           199           199           199           199           199           199           198           199           198           199           198           199           198           199           198           199                                                                                                                                                                                           | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.98<br>4.93<br>4.95<br>6.22<br>6.17<br>6.22<br>6.17<br>6.22<br>6.44<br>6.41<br>6.41<br>6.41<br>9.27<br>9.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.06<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.06<br>9.06<br>9.06<br>9.06<br>9.06<br>9.05 | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199           199           197           199           198           198           198           198           198           198           198           198           198           198           198           198           199           199           199           199           199           199           198           199           198           199           198           199           198           199           198           199           198           199           199           199           199           199           199                                                                                                       | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.93\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 9.27\\ 9.39\\ 0.29\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80                             | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199         199         197         199         198         198         198         198         198         199         198         198         198         199         198         199         199         199         199         198         199         199         198         199         198         199         198         199         198         199         198         199         198         199         199         199         199         199         199         199         199         199         199         199         199         199         199         199         199         199         199         199         199         1 | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.93<br>4.95<br>6.22<br>6.17<br>6.22<br>6.44<br>6.41<br>6.41<br>9.27<br>9.39<br>9.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>38<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80<br>100<br>150               | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 199         199         197         199         198         198         198         198         198         199         198         198         199         199         199         199         199         199         199         199         199         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198                                                                                                                                                           | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.93\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80<br>100<br>150               | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>201<br>200<br>201<br>200<br>200<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199         199         197         199         198         198         198         198         198         199         198         199         198         199         199         199         199         199         199         199         199         199         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         198         198         198         198         198         198         198         198                                                                       | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.93<br>4.95<br>6.22<br>6.17<br>6.22<br>6.17<br>6.22<br>6.44<br>6.41<br>6.41<br>6.41<br>9.27<br>9.39<br>9.38<br>9.27<br>9.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>85<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 80<br>100<br>150               | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 6 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199         199         197         199         198         198         198         198         198         198         198         198         198         199         199         199         199         199         199         199         199         199         198         199         198         198         198         198         198         198         198         198         198         198                                                                                                                                                                                                                                               | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.93\\ 4.98\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.51\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>85<br>79<br>79<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80                             | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200               | 199         199         197         199         198         198         198         198         198         198         198         198         198         198         199         199         199         199         199         199         199         199         199         199         199         198         199         198         198         198         199         198         198         198         198         198         198         198         198         198         198                                                                                                                                                           | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.93\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.38\\ 9.27\\ 9.51\\ 12.60\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>85<br>79<br>79<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80<br>100<br>150<br>200        | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200 | 199         199         199         199         199         198         198         198         198         198         198         198         198         199         198         199         199         199         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         199                                               | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.93<br>4.95<br>6.22<br>6.17<br>6.22<br>6.44<br>6.41<br>6.41<br>9.27<br>9.39<br>9.38<br>9.27<br>9.27<br>9.27<br>9.51<br>12.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>85<br>79<br>79<br>79<br>88<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80<br>100<br>150<br>200        | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 199         199         199         199         199         198         198         198         198         198         199         198         198         199         199         199         199         199         199         198         199         198         199         198         199         198         199         198         199         198         199         198         198         198         199         198         198         198         198         198         198         198         198         198         198         199         199         199         199         199         199         199         199         1 | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.93\\ 4.98\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.51\\ 12.60\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ $ | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>85<br>79<br>79<br>79<br>88<br>86<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80<br>100<br>150<br>200        | $     \begin{array}{r}       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       3 \\       4 \\       5 \\       6 \\       1 \\       2 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\     $ | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 199         199         197         199         198         198         198         198         198         198         198         198         199         199         199         199         199         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         1 | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.93\\ 4.98\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.51\\ 12.60\\ 12.50\\ 12.39\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         39         40         39         40         39         40         39         40         39         40         39         40         39         40         39         40         39         40         39         40         39         40         39         40         39         41         55         50         59         55         83         61         82         85         79         79         88         86         96                                                                                  |
| 80<br>100<br>150<br>200        | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 199         199         199         199         198         198         198         198         198         198         198         198         198         198         199         199         199         199         199         199         198         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         1 | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.98<br>4.95<br>6.22<br>6.17<br>6.22<br>6.17<br>6.22<br>6.44<br>6.41<br>6.41<br>9.27<br>9.39<br>9.38<br>9.27<br>9.27<br>9.27<br>9.51<br>12.60<br>12.50<br>12.39<br>12.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>85<br>79<br>79<br>88<br>86<br>96<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80<br>100<br>150<br>200        | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>200<br>201<br>200<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199         199         199         199         198         198         198         198         198         198         198         198         198         198         199         199         199         199         199         199         199         199         199         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         1 | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.98<br>4.95<br>6.22<br>6.17<br>6.22<br>6.17<br>6.22<br>6.44<br>6.41<br>6.41<br>9.27<br>9.39<br>9.38<br>9.27<br>9.39<br>9.27<br>9.51<br>12.60<br>12.50<br>12.50<br>12.39<br>12.83<br>13.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         38         39         40         39         47         55         50         59         55         83         61         82         85         79         88         86         96         89         86                                                                                                                                                                                                                                                                                                              |
| 80<br>100<br>150<br>200        | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 199         199         199         199         198         198         198         198         198         198         198         198         198         198         199         199         199         199         199         198         199         198         199         198         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198                                                           | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.98<br>4.95<br>6.22<br>6.17<br>6.22<br>6.17<br>6.22<br>6.44<br>6.41<br>6.41<br>9.27<br>9.39<br>9.38<br>9.27<br>9.27<br>9.27<br>9.27<br>9.51<br>12.60<br>12.50<br>12.39<br>12.83<br>13.02<br>12.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11<br>13<br>15<br>13<br>16<br>40<br>32<br>38<br>38<br>39<br>40<br>39<br>47<br>55<br>50<br>59<br>55<br>83<br>61<br>82<br>85<br>79<br>79<br>79<br>88<br>86<br>96<br>89<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80<br>100<br>150<br>200        | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201<br>200<br>199<br>200<br>201<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199         199         199         199         199         198         198         198         198         198         198         198         199         198         199         199         199         199         199         198         199         198         199         198         199         198         199         198         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         1 | 3.19<br>3.15<br>3.12<br>3.19<br>3.20<br>5.02<br>4.98<br>4.93<br>4.93<br>4.95<br>6.22<br>6.17<br>6.22<br>6.17<br>6.22<br>6.44<br>6.41<br>9.27<br>9.39<br>9.38<br>9.27<br>9.39<br>9.38<br>9.27<br>9.27<br>9.51<br>12.60<br>12.50<br>12.39<br>12.83<br>13.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         39         40         32         38         39         40         32         38         39         40         39         47         55         50         59         55         83         61         82         85         79         79         88         86         96         89         86         85         86         85         86         85         86         85          86          85          86          85          86          85          86          85          86          85         86      |
| 80<br>100<br>150<br>200<br>250 | $ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 199         199         197         199         198         198         198         198         198         198         198         198         199         198         199         199         199         199         199         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         199         198         199         199         199         1 | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.51\\ 12.60\\ 12.50\\ 12.39\\ 12.83\\ 13.02\\ 12.97\\ 16.04\\ 455 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         39         40         39         47         55         50         59         55         83         61         82         85         79         79         88         86         96         89         86         85         86         85         86         85         86         85         86         85         86         85         86         85         86         85         86         85         86         85         86         86         86         86          86          86          86          86 |
| 80<br>100<br>150<br>200<br>250 | $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 199         199         199         199         198         198         198         198         198         198         198         198         198         198         199         199         199         199         199         199         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         197                                   | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 9.27\\ 9.39\\ 9.27\\ 9.39\\ 9.27\\ 9.51\\ 12.60\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.60\\ 12.50\\ 12.60\\ 12.50\\ 12.50\\ 12.60\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.50\\ 12.5$  | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         39         40         39         47         55         50         59         55         83         61         82         85         79         88         86         96         89         86         85         86         85         86         85         86         85         86         85         86                                                                                                                                                                                                           |
| 80<br>100<br>150<br>200<br>250 | $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>201<br>200<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 199         199         199         199         198         198         198         198         198         198         198         198         198         198         199         199         199         199         199         199         198         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         199         197         199                                               | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.51\\ 12.60\\ 12.50\\ 12.50\\ 12.39\\ 12.83\\ 13.02\\ 12.97\\ 16.04\\ 15.51\\ 15.65\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         38         39         40         39         47         55         50         59         55         83         61         82         85         79         88         86         96         83         96                                                                                                                                                                                                                                                                                                              |
| 80<br>100<br>150<br>200<br>250 | $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>199<br>200<br>201<br>200<br>201<br>200<br>200<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199         199         199         199         198         198         198         198         198         198         198         198         199         198         199         199         199         199         198         199         198         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         198         199         197         198         198         199         198         198         198         199         197         198         199         198         1 | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.93\\ 4.98\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.27\\ 9.51\\ 12.60\\ 12.50\\ 12.50\\ 12.39\\ 12.83\\ 13.02\\ 12.97\\ 16.04\\ 15.51\\ 15.65\\ 16.34\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.88<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         39         40         32         38         39         40         32         38         39         47         55         50         59         55         83         61         82         85         79         79         88         86         96         83         96         102                                                                                                                                                                                                                                |
| 80<br>100<br>150<br>200<br>250 | $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201<br>200<br>199<br>200<br>201<br>200<br>199<br>201<br>201<br>200<br>201<br>200<br>200<br>200<br>200<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199         199         197         199         198         198         198         198         198         198         198         198         199         199         199         199         199         199         199         198         199         198         199         198         199         198         199         198         199         198         198         198         198         198         199         198         198         199         198         199         198         199         198         199         198         199         198         198         198         198         198         198         198         1 | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 6.41\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.39\\ 9.38\\ 9.27\\ 9.51\\ 12.60\\ 12.50\\ 12.39\\ 12.83\\ 13.02\\ 12.97\\ 16.04\\ 15.51\\ 15.65\\ 16.34\\ 15.67\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.8                                                                                                                                                                                  | 3.23<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87         | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         39         40         32         38         39         40         32         38         39         40         32         38         39         40         39         47         55         50         59         55         83         61         82         85         79         79         79         88         86         85         86         85         86         85         86         83         96         102         105                                                                                |
| 80<br>100<br>150<br>200<br>250 | $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 6 \\ 1 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 201<br>200<br>199<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>201<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 199         199         199         199         198         198         198         198         198         198         198         198         199         198         199         199         199         199         199         199         198         199         198         199         198         199         198         198         198         198         198         198         198         198         198         198         198         198         198         198         199         198         199         198         199         198         198         198         198         198         198         198         198         1 | $\begin{array}{r} 3.19\\ 3.15\\ 3.12\\ 3.19\\ 3.20\\ 5.02\\ 4.98\\ 4.93\\ 4.98\\ 4.95\\ 4.95\\ 6.22\\ 6.17\\ 6.22\\ 6.44\\ 6.41\\ 6.41\\ 9.27\\ 9.39\\ 9.27\\ 9.39\\ 9.27\\ 9.51\\ 12.60\\ 12.50\\ 12.50\\ 12.50\\ 12.60\\ 12.50\\ 12.50\\ 12.60\\ 12.50\\ 12.60\\ 12.50\\ 12.60\\ 12.50\\ 12.60\\ 12.50\\ 15.65\\ 16.34\\ 15.65\\ 16.34\\ 15.67\\ 15.89\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.19<br>3.17<br>3.17<br>3.18<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.73<br>2.74<br>2.73<br>2.74<br>2.73<br>2.74<br>2.59<br>2.61<br>2.59<br>2.63<br>2.59<br>2.63<br>2.59<br>2.53<br>2.53<br>2.53<br>2.53<br>2.51<br>2.52<br>2.51<br>2.50<br>2.50<br>2.50 | 3.23<br>3.22<br>3.22<br>3.22<br>3.21<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87<br>2.87 | 9.09<br>9.08<br>9.09<br>9.09<br>9.09<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07                                                                         | 9.09<br>9.06<br>9.08<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07<br>9.07 | 11         13         15         13         16         40         32         38         39         40         39         40         39         40         39         40         39         47         55         50         59         55         83         61         82         85         79         79         88         86         85         86         83         96         102         105         96                                                                                                                                                                                              |

| 300   | 1                | 201                      | 200                      | 19.28                        | 2.50                         | 2.53                         | 9.05                         | 8.97                         | 87                   |
|-------|------------------|--------------------------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|
|       |                  |                          | 400                      | 40.70                        | 0.40                         | 0.54                         | 0.05                         | 0.00                         | 400                  |
|       | 2                | 200                      | 198                      | 18.79                        | 2.49                         | 2.51                         | 9.05                         | 8.98                         | 100                  |
|       | 3                | 200                      | 199                      | 18.95                        | 2.49                         | 2.52                         | 9.05                         | 8.97                         | 102                  |
|       | 4                | 201                      | 100                      | 10.10                        | 2.52                         | 2.54                         | 0.05                         | 0.00                         | 70                   |
|       | 4                | 201                      | 190                      | 19.1Z                        | 2.52                         | 2.34                         | 9.05                         | 0.90                         | 19                   |
|       | 5                | 199                      | 197                      | 18.70                        | 2.49                         | 2.51                         | 9.05                         | 8.97                         | 94                   |
|       | 6                | 199                      | 197                      | 18 68                        | 2 4 9                        | 2 51                         | 9.05                         | 8 98                         | 90                   |
|       |                  | 100                      | 107                      | 10.00                        | 2.40                         | 2.01                         | 0.00                         | 0.00                         | 00                   |
| 400   | 1                | 200                      | 198                      | 25.94                        | 2.49                         | 2.52                         | 9.05                         | 8.97                         | 96                   |
|       | 2                | 199                      | 197                      | 25 58                        | 2 47                         | 2 50                         | 9 05                         | 8 98                         | 102                  |
|       | 2                | 200                      | 107                      | 26.66                        | 2.40                         | 2.50                         | 0.04                         | 0.07                         | 100                  |
|       | 3                | 200                      | 197                      | 25.45                        | 2.40                         | 2.50                         | 9.04                         | 0.97                         | 109                  |
|       | 4                | 200                      | 198                      | 26.02                        | 2.49                         | 2.51                         | 9.05                         | 8.97                         | 100                  |
|       | 5                | 100                      | 107                      | 25 70                        | 2/18                         | 2 50                         | 0.05                         | 8 07                         | 80                   |
|       | 5                | 199                      | 137                      | 25.70                        | 2.40                         | 2.50                         | 3.05                         | 0.37                         | 09                   |
|       | 6                | 200                      | 197                      | 25.69                        | 2.48                         | 2.50                         | 9.05                         | 8.97                         | 105                  |
|       |                  |                          |                          | 180 mi                       | n                            |                              |                              |                              |                      |
|       | Tablatta         | M                        | M                        | DK                           |                              |                              |                              |                              | E                    |
| FD.   | Tablette         | IVIP                     |                          | F N <sub>max</sub>           | h₀ [mm]                      | h <sub>w</sub> [mm]          | d⊳ [mm]                      | dw [mm]                      | BW                   |
| [мра] | Nr.              | [mg]                     | [mg]                     | [KN]                         |                              |                              |                              |                              | [N]                  |
| 50    | 1                | 199                      | 199                      | 3.14                         | 3.17                         | 3.22                         | 9.05                         | 9.09                         | 15                   |
|       | 2                | 100                      | 100                      | 3 15                         | 3 17                         | 3 22                         | 0.06                         | 0.00                         | 15                   |
|       | 2                | 199                      | 199                      | 0.10                         | 5.17                         | 0.22                         | 3.00                         | 3.03                         | 15                   |
|       | 3                | 200                      | 201                      | 3.20                         | 3.18                         | 3.23                         | 9.05                         | 9.09                         | 15                   |
|       | 4                | 199                      | 199                      | 3.17                         | 3.18                         | 3.22                         | 9.05                         | 9.09                         | 14                   |
|       | 5                | 100                      | 109                      | 3 1 2                        | 3 17                         | 3.22                         | 0.06                         | 0.00                         | 16                   |
|       | 5                | 133                      | 130                      | 0.12                         | 5.17                         | 5.22                         | 3.00                         | 3.03                         | 10                   |
|       | 6                | 201                      | 200                      | 3.24                         | 3.18                         | 3.23                         | 9.05                         | 9.10                         | 16                   |
| 80    | 1                | 200                      | 200                      | 5.24                         | 2.85                         | 2.90                         | 9.03                         | 9.06                         | 42                   |
|       | 2                | 100                      | 100                      | F 17                         | 2.0F                         | 2.00                         | 0.04                         | 0.07                         | 26                   |
|       | 4                | 199                      | 199                      | J.1/                         | 2.00                         | 2.90                         | 9.04                         | 9.07                         | 30                   |
|       | 3                | 199                      | 199                      | 5.24                         | 2.84                         | 2.89                         | 9.04                         | 9.06                         | 41                   |
|       | 4                | 200                      | 190                      | 5 24                         | 2 84                         | 2 80                         | 9 04                         | 9.05                         | 43                   |
|       |                  | 200                      | 100                      | 5.24                         | 2.04                         | 2.00                         | 0.04                         | 0.00                         | 40                   |
|       | 5                | 199                      | 199                      | 5.14                         | 2.84                         | 2.89                         | 9.03                         | 9.06                         | 39                   |
|       | 6                | 200                      | 198                      | 5.14                         | 2.84                         | 2.88                         | 9.03                         | 9.06                         | 41                   |
| 100   | 1                | 200                      | 200                      | 6.21                         | 2 77                         | 2.81                         | 0.03                         | 0.05                         | 52                   |
| 100   | 1                | 200                      | 200                      | 0.21                         | 2.11                         | 2.01                         | 3.05                         | 3.05                         | 52                   |
|       | 2                | 200                      | 200                      | 6.56                         | 2.74                         | 2.76                         | 9.02                         | 9.04                         | 60                   |
|       | 3                | 200                      | 198                      | 6 44                         | 2 72                         | 2 76                         | 9.03                         | 9.03                         | 58                   |
|       | 4                | 100                      | 100                      | 0.11                         | 0.70                         | 2.70                         | 0.00                         | 0.00                         | 53                   |
|       | 4                | 199                      | 199                      | 0.49                         | 2.12                         | 2.70                         | 9.03                         | 9.04                         | 57                   |
|       | 5                | 200                      | 199                      | 6.54                         | 2.73                         | 2.76                         | 9.02                         | 9.04                         | 61                   |
|       | 6                | 199                      | 198                      | 6.37                         | 2 72                         | 2 76                         | 9.01                         | 9.03                         | 60                   |
| 450   | 4                | 100                      | 100                      | 0.01                         | 2.72                         | 2.70                         | 0.01                         | 0.00                         | 00                   |
| 150   | 1                | 200                      | 198                      | 9.43                         | 2.57                         | 2.60                         | 8.99                         | 9.01                         | 94                   |
|       | 2                | 200                      | 198                      | 9.51                         | 2.58                         | 2.61                         | 9.01                         | 9.01                         | 90                   |
|       | 3                | 100                      | 107                      | 0.22                         | 2.57                         | 2.60                         | 0.00                         | 0.01                         | 02                   |
|       | 5                | 133                      | 137                      | 9.22                         | 2.57                         | 2.00                         | 9.00                         | 3.01                         | 32                   |
|       | 4                | 199                      | 198                      | 9.49                         | 2.58                         | 2.60                         | 9.00                         | 9.00                         | 87                   |
|       | 5                | 200                      | 198                      | 9 46                         | 2 58                         | 2 61                         | 9.02                         | 9 00                         | 87                   |
|       | 6                | 100                      | 100                      | 0.42                         | 2.50                         | 2.60                         | 0.00                         | 0.01                         | 02                   |
|       | 0                | 199                      | 190                      | 9.43                         | 2.00                         | 2.00                         | 9.00                         | 9.01                         | 92                   |
| 200   | 1                | 200                      | 198                      | 12.39                        | 2.52                         | 2.55                         | 9.00                         | 8.99                         | 107                  |
|       | 2                | 200                      | 100                      | 12 58                        | 2 5 3                        | 2 55                         | 8 99                         | 9.00                         | 108                  |
|       | 2                | 200                      | 100                      | 12.00                        | 2.00                         | 2.00                         | 0.00                         | 0.00                         | 100                  |
|       | 3                | 200                      | 199                      | 12.53                        | 2.53                         | 2.50                         | 9.00                         | 8.99                         | 103                  |
|       | 4                | 201                      | 198                      | 12.38                        | 2.52                         | 2.55                         | 9.00                         | 9.00                         | 115                  |
|       | 5                | 201                      | 108                      | 12 58                        | 2.53                         | 2 55                         | 8 00                         | 0.00                         | 11/                  |
|       | 5                | 201                      | 100                      | 12.50                        | 2.00                         | 2.55                         | 0.00                         | 0.00                         | 114                  |
|       | 6                | 200                      | 199                      | 12.56                        | 2.53                         | 2.55                         | 9.00                         | 8.99                         | 125                  |
| 250   | 1                | 200                      | 197                      | 16.31                        | 2.49                         | 2.51                         | 8.99                         | 8.98                         | 122                  |
|       | 2                | 200                      | 109                      | 15 73                        | 2.50                         | 2.52                         | 8 00                         | 8.00                         | 124                  |
|       | 2                | 200                      | 130                      | 10.70                        | 2.00                         | 2.02                         | 0.99                         | 0.99                         | 124                  |
|       | 3                | 199                      | 197                      | 15.46                        | 2.49                         | 2.51                         | 9.00                         | 8.99                         | 126                  |
|       | 4                | 199                      | 197                      | 15.68                        | 2.50                         | 2.52                         | 8.99                         | 8.98                         | 121                  |
|       | 5                | 201                      | 102                      | 15.97                        | 2 50                         | 2.52                         | 8 00                         | 8 08                         | 122                  |
|       | 5                | 201                      | 130                      | 10.07                        | 2.00                         | 2.02                         | 0.99                         | 0.90                         | 120                  |
|       | 6                | 199                      | 198                      | 15.70                        | 2.50                         | 2.52                         | 8.99                         | 8.99                         | 118                  |
| 300   | 1                | 200                      | 199                      | 19.58                        | 2.50                         | 2.52                         | 9.00                         | 8.98                         | 133                  |
|       | 2                | 100                      | 107                      | 10.06                        | 2 50                         | 2 5 2                        | 0.00                         | 8 00                         | 100                  |
|       | <u> </u>         | 199                      | 101                      | 10.00                        | 2.00                         | 2.02                         | 3.00                         | 0.99                         | 100                  |
|       | 3                | 200                      | 198                      | 19.23                        | 2.49                         | 2.51                         | 8.99                         | 8.99                         | 122                  |
|       | 4                | 199                      | 198                      | 18.94                        | 2.48                         | 2.51                         | 8.99                         | 8.98                         | 122                  |
|       | 5                | 200                      | 109                      | 10.10                        | 2 40                         | 2.51                         | 8 00                         | 8 0 9                        | 10/                  |
|       | 5                | 200                      | 190                      | 19.10                        | 2.49                         | 2.01                         | 0.99                         | 0.90                         | 124                  |
|       | 6                | 200                      | 198                      | 19.24                        | 2.49                         | 2.51                         | 8.99                         | 8.99                         | 116                  |
| 400   | 1                | 199                      | 197                      | 25 28                        | 2 47                         | 2 4 9                        | 8 99                         | 8 97                         | 136                  |
|       |                  | 100                      | 107                      | 25.40                        | 2.40                         | 2                            | 0.00                         | 0.07                         | 107                  |
|       | ۷                | 199                      | 197                      | ∠0.40                        | 2.40                         | 2.50                         | 9.00                         | 0.97                         | 121                  |
|       | 3                | 199                      | 197                      | 25.53                        | 2.48                         | 2.50                         | 8.99                         | 8.98                         | 139                  |
|       | 4                | 200                      | 198                      | 25.92                        | 2 4 9                        | 2.50                         | 8 99                         | 8 97                         | 138                  |
|       |                  | 100                      | 407                      | 20.02                        | 2.40                         | 2.00                         | 0.00                         | 0.07                         | 100                  |
|       | 5                | 199                      | 197                      | 25.70                        | 2.48                         | 2.50                         | 8.99                         | 8.98                         | 132                  |
|       | 6                | 199                      | 197                      | 25.06                        | 2.46                         | 2.48                         | 8.99                         | 8.98                         | 125                  |
|       | •                |                          |                          | 360 mi                       | n                            |                              |                              |                              |                      |
|       | Tablette         | 87                       | 14                       |                              | •                            |                              |                              |                              | -                    |
| 70    | laplette         | <b>WI</b> P              | WW                       | PKmax                        | իթ[mm]                       | hw [mm]                      | dր [mm]                      | dw [mm]                      | FBW                  |
| [MPa] | Nr.              | [mg]                     | [mg]                     | [kN]                         |                              | []                           | as fuund                     | aw [mm]                      | [N]                  |
| 50    | 1                | 100                      | 100                      | 3 26                         | 3 20                         | 3 25                         | 9.07                         | 9 10                         | 10                   |
| 50    |                  | 100                      | 400                      | 0.20                         | 0.20                         | 0.20                         | 0.07                         | 0.10                         | 10                   |
|       | 2                | 199                      | 198                      | 3.27                         | 3.21                         | 3.26                         | 9.07                         | 9.11                         | 10                   |
|       |                  |                          |                          |                              | 0.10                         | 0.00                         | 0.07                         | 0.40                         | 10                   |
|       | 3                | 200                      | 199                      | 3.31                         | 3.18                         | 3.23                         | 9.07                         | 9.10                         | 16                   |
|       | 3                | 200                      | 199                      | 3.31                         | 3.18                         | 3.23                         | 9.07                         | 9.10<br>0.10                 | 16<br>14             |
|       | 3                | 200<br>199               | 199<br>198               | 3.31<br>3.24                 | 3.18                         | 3.23                         | 9.07                         | 9.10                         | 16<br>14             |
|       | 3<br>4<br>5      | 200<br>199<br>199        | 199<br>198<br>199        | 3.31<br>3.24<br>3.31         | 3.18<br>3.19<br>3.18         | 3.23<br>3.23<br>3.23         | 9.07<br>9.07<br>9.07         | 9.10<br>9.10<br>9.09         | 16<br>14<br>17       |
|       | 3<br>4<br>5<br>6 | 200<br>199<br>199<br>199 | 199<br>198<br>199<br>197 | 3.31<br>3.24<br>3.31<br>3.24 | 3.18<br>3.19<br>3.18<br>3.18 | 3.23<br>3.23<br>3.23<br>3.22 | 9.07<br>9.07<br>9.07<br>9.06 | 9.10<br>9.10<br>9.09<br>9.10 | 16<br>14<br>17<br>15 |

| 80                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.92                                                                                                                                                                                                                                                                                                                                                                                                               | 2.97                                                                                                                                   | 9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31                                                                                                                                                                                                                                                                             |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.91                                                                                                                                                                                                                                                                                                                                                                                                               | 2.96                                                                                                                                   | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39                                                                                                                                                                                                                                                                             |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.90                                                                                                                                                                                                                                                                                                                                                                                                               | 2.96                                                                                                                                   | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                                                                                                                                                                                                                                             |
|                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.92                                                                                                                                                                                                                                                                                                                                                                                                               | 2.97                                                                                                                                   | 9.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32                                                                                                                                                                                                                                                                             |
|                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 91                                                                                                                                                                                                                                                                                                                                                                                                               | 2.96                                                                                                                                   | 9.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37                                                                                                                                                                                                                                                                             |
|                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.01                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00                                                                                                                                   | 9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38                                                                                                                                                                                                                                                                             |
| 100                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00                                                                                                                                   | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                                                                                                                                                                             |
| 100                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.03                                                                                                                                                                                                                                                                                                                                                                                                               | 2.03                                                                                                                                   | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                                                                                                                                                                             |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.11                                                                                                                                                                                                                                                                                                                                                                                                               | 2.03                                                                                                                                   | 9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53                                                                                                                                                                                                                                                                             |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.70                                                                                                                                                                                                                                                                                                                                                                                                               | 2.83                                                                                                                                   | 9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54                                                                                                                                                                                                                                                                             |
|                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.77                                                                                                                                                                                                                                                                                                                                                                                                               | 2.84                                                                                                                                   | 9.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51                                                                                                                                                                                                                                                                             |
|                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.79                                                                                                                                                                                                                                                                                                                                                                                                               | 2.85                                                                                                                                   | 9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                             |
|                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.77                                                                                                                                                                                                                                                                                                                                                                                                               | 2.84                                                                                                                                   | 9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51                                                                                                                                                                                                                                                                             |
| 150                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.58                                                                                                                                                                                                                                                                                                                                                                                                               | 2.63                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99                                                                                                                                                                                                                                                                             |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.59                                                                                                                                                                                                                                                                                                                                                                                                               | 2.64                                                                                                                                   | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                            |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.60                                                                                                                                                                                                                                                                                                                                                                                                               | 2.66                                                                                                                                   | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91                                                                                                                                                                                                                                                                             |
|                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.60                                                                                                                                                                                                                                                                                                                                                                                                               | 2.66                                                                                                                                   | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                                                                                                                                                                                                                                                                             |
|                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.60                                                                                                                                                                                                                                                                                                                                                                                                               | 2.65                                                                                                                                   | 9.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                                                                                                                                                                                                                                                                             |
|                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.59                                                                                                                                                                                                                                                                                                                                                                                                               | 2.65                                                                                                                                   | 9.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                             |
| 200                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.51                                                                                                                                                                                                                                                                                                                                                                                                               | 2.54                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114                                                                                                                                                                                                                                                                            |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.51                                                                                                                                                                                                                                                                                                                                                                                                               | 2.54                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104                                                                                                                                                                                                                                                                            |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.52                                                                                                                                                                                                                                                                                                                                                                                                               | 2.55                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106                                                                                                                                                                                                                                                                            |
|                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.51                                                                                                                                                                                                                                                                                                                                                                                                               | 2.55                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113                                                                                                                                                                                                                                                                            |
|                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.51                                                                                                                                                                                                                                                                                                                                                                                                               | 2.54                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106                                                                                                                                                                                                                                                                            |
|                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.52                                                                                                                                                                                                                                                                                                                                                                                                               | 2.54                                                                                                                                   | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111                                                                                                                                                                                                                                                                            |
| 250                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.51                                                                                                                                                                                                                                                                                                                                                                                                               | 2.53                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104                                                                                                                                                                                                                                                                            |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.48                                                                                                                                                                                                                                                                                                                                                                                                               | 2.51                                                                                                                                   | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114                                                                                                                                                                                                                                                                            |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.51                                                                                                                                                                                                                                                                                                                                                                                                               | 2.54                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                                                                                                                                                                                                                            |
|                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.50                                                                                                                                                                                                                                                                                                                                                                                                               | 2.53                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                                                                                                                                                                                                                                                                             |
|                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.48                                                                                                                                                                                                                                                                                                                                                                                                               | 2.51                                                                                                                                   | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99                                                                                                                                                                                                                                                                             |
|                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.48                                                                                                                                                                                                                                                                                                                                                                                                               | 2.52                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116                                                                                                                                                                                                                                                                            |
| 300                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.47                                                                                                                                                                                                                                                                                                                                                                                                               | 2.50                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123                                                                                                                                                                                                                                                                            |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.48                                                                                                                                                                                                                                                                                                                                                                                                               | 2.51                                                                                                                                   | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107                                                                                                                                                                                                                                                                            |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.47                                                                                                                                                                                                                                                                                                                                                                                                               | 2.50                                                                                                                                   | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130                                                                                                                                                                                                                                                                            |
|                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.53                                                                                                                                                                                                                                                                                                                                                                                                               | 2.57                                                                                                                                   | 9.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116                                                                                                                                                                                                                                                                            |
|                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 47                                                                                                                                                                                                                                                                                                                                                                                                               | 2 49                                                                                                                                   | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112                                                                                                                                                                                                                                                                            |
|                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.46                                                                                                                                                                                                                                                                                                                                                                                                               | 2.49                                                                                                                                   | 8 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117                                                                                                                                                                                                                                                                            |
| 400                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.46                                                                                                                                                                                                                                                                                                                                                                                                               | 2 4 9                                                                                                                                  | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125                                                                                                                                                                                                                                                                            |
|                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199                                                                                                                                                                                                                                                                                                                                                                                                                                          | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.45                                                                                                                                                                                                                                                                                                                                                                                                               | 2.48                                                                                                                                   | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116                                                                                                                                                                                                                                                                            |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.40                                                                                                                                                                                                                                                                                                                                                                                                               | 2.40                                                                                                                                   | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                                                                                                                                                                                                                            |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 248                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 1                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116                                                                                                                                                                                                                                                                            |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.19<br>25.47                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.48                                                                                                                                                                                                                                                                                                                                                                                                               | 2.31                                                                                                                                   | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116<br>125                                                                                                                                                                                                                                                                     |
|                                       | 3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200<br>199<br>200                                                                                                                                                                                                                                                                                                                                                                                                                            | 199<br>198<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.19<br>25.47<br>25.52                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.48<br>2.46<br>2.47                                                                                                                                                                                                                                                                                                                                                                                               | 2.51                                                                                                                                   | 8.98<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.00<br>8.98<br>8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116<br>125<br>116                                                                                                                                                                                                                                                              |
|                                       | 3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200<br>199<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                     | 199<br>198<br>198<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.19<br>25.47<br>25.52<br>25.55                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.48<br>2.46<br>2.47<br>2.48                                                                                                                                                                                                                                                                                                                                                                                       | 2.51<br>2.49<br>2.49<br>2.50                                                                                                           | 8.98<br>8.98<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00<br>8.98<br>8.97<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 116<br>125<br>116<br>125                                                                                                                                                                                                                                                       |
|                                       | 3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200<br>199<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                     | 199<br>198<br>198<br>198<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b>                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.48<br>2.46<br>2.47<br>2.48                                                                                                                                                                                                                                                                                                                                                                                       | 2.51<br>2.49<br>2.49<br>2.50                                                                                                           | 8.98<br>8.98<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00<br>8.98<br>8.97<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 116<br>125<br>116<br>125                                                                                                                                                                                                                                                       |
| PD                                    | 3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200<br>199<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                     | 199<br>198<br>198<br>198<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b>                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.48<br>2.46<br>2.47<br>2.48<br>n                                                                                                                                                                                                                                                                                                                                                                                  | 2.31<br>2.49<br>2.49<br>2.50                                                                                                           | 8.98<br>8.98<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00<br>8.98<br>8.97<br>8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 116<br>125<br>116<br>125                                                                                                                                                                                                                                                       |
| PD<br>[MPa]                           | 3<br>4<br>5<br>6<br>Tablette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200<br>199<br>200<br>200<br>M <sub>P</sub><br>[mg]                                                                                                                                                                                                                                                                                                                                                                                           | 199<br>198<br>198<br>198<br>199<br>Mw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b>                                                                                                                                                                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]                                                                                                                                                                                                                                                                                                                                                           | 2.31<br>2.49<br>2.49<br>2.50<br><b>h</b> w [mm]                                                                                        | 8.98<br>8.98<br>8.98<br><b>d</b> <sub>₽</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116<br>125<br>116<br>125<br><b>F</b> вw<br><b>ГN1</b>                                                                                                                                                                                                                          |
| PD<br>[MPa]<br>50                     | 3<br>4<br>5<br>6<br>Tablette<br>Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200<br>199<br>200<br>200<br>M <sub>P</sub><br>[mg]<br>200                                                                                                                                                                                                                                                                                                                                                                                    | 199<br>198<br>198<br>198<br>199<br>Mw<br>[mg]<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br>[kN]<br>3.26                                                                                                                                                                                                                                                                                                                                                                        | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13                                                                                                                                                                                                                                                                                                                                                   | 2.51<br>2.49<br>2.49<br>2.50<br>h <sub>w</sub> [mm]<br>3.17                                                                            | 8.98<br>8.98<br>8.98<br>d <sub>P</sub> [mm]<br>9.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116<br>125<br>116<br>125<br><b>F</b> вw<br>[ <b>N</b> ]<br>21                                                                                                                                                                                                                  |
| PD<br>[MPa]<br>50                     | 3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200<br>199<br>200<br>200<br><b>M<sub>P</sub></b><br>[mg]<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                       | 199<br>198<br>198<br>198<br>199<br><b>M<sub>W</sub></b><br>[mg]<br>199<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br>[kN]<br>3.26<br>3.20                                                                                                                                                                                                                                                                                                                                                                | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13                                                                                                                                                                                                                                                                                                                                           | 2.51<br>2.49<br>2.49<br>2.50<br>h <sub>w</sub> [mm]<br>3.17<br>3.17                                                                    | 8.98<br>8.98<br>8.98<br><b>d</b> <sub>P</sub> [mm]<br>9.05<br>9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116<br>125<br>116<br>125<br><b>F</b> вw<br><b>[N]</b><br>21<br>22                                                                                                                                                                                                              |
| PD<br>[MPa]<br>50                     | 3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200<br>199<br>200<br>200<br><b>M<sub>P</sub></b><br>[mg]<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                | 199<br>198<br>198<br>198<br>199<br><b>Mw</b><br><b>[mg]</b><br>199<br>198<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK<sub>max</sub><br/>[kN]</b><br>3.26<br>3.20<br>3.24                                                                                                                                                                                                                                                                                                                                                        | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13                                                                                                                                                                                                                                                                                                                                   | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17                                                                 | 8.98<br>8.98<br>8.98<br><b>d</b> <sub>P</sub> [mm]<br>9.05<br>9.06<br>9.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.00<br>8.98<br>8.97<br>8.98<br><b>dw [mm]</b><br>9.06<br>9.06<br>9.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 116<br>125<br>116<br>125<br><b>F</b> в₩<br><b>[N]</b><br>21<br>22<br>22                                                                                                                                                                                                        |
| PD<br>[MPa]<br>50                     | 3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200<br>199<br>200<br>200<br><b>M<sub>P</sub></b><br>[mg]<br>200<br>200<br>200<br>200<br>199                                                                                                                                                                                                                                                                                                                                                  | 199<br>198<br>198<br>199<br>199<br><b>Mw</b><br><b>[mg]</b><br>199<br>198<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK<sub>max</sub><br/>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17                                                                                                                                                                                                                                                                                                                                                | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13                                                                                                                                                                                                                                                                                                                           | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17                                                         | 8.98<br>8.98<br>8.98<br><b>d</b> <sub>P</sub> [mm]<br>9.05<br>9.06<br>9.05<br>9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.00<br>8.98<br>8.97<br>8.98<br><b>dw [mm]</b><br>9.06<br>9.06<br>9.05<br>9.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 116<br>125<br>116<br>125<br><b>F</b> вw<br>[ <b>N</b> ]<br>21<br>22<br>22<br>20                                                                                                                                                                                                |
| PD<br>[MPa]<br>50                     | 3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200<br>199<br>200<br>200<br>200<br><b>M<sub>P</sub></b><br><b>[mg]</b><br>200<br>200<br>200<br>199<br>201                                                                                                                                                                                                                                                                                                                                    | 199<br>198<br>198<br>199<br>199<br><b>Mw</b><br><b>[mg]</b><br>199<br>198<br>199<br>198<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK<sub>max</sub><br/>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27                                                                                                                                                                                                                                                                                                                                        | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13                                                                                                                                                                                                                                                                                                   | 2.31<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                                                 | 8.98<br>8.98<br>8.98<br><b>d</b> <sub>P</sub> [mm]<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.00<br>8.98<br>8.97<br>8.98<br><b>dw [mm]</b><br>9.06<br>9.06<br>9.05<br>9.05<br>9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 116<br>125<br>116<br>125<br><b>F</b> ∎w<br><b>[N]</b><br>21<br>22<br>22<br>22<br>20<br>21                                                                                                                                                                                      |
| PD<br>[MPa]<br>50                     | 3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200<br>199<br>200<br>200<br><b>M</b> <sub>P</sub><br><b>[mg]</b><br>200<br>200<br>200<br>200<br>199<br>201<br>199                                                                                                                                                                                                                                                                                                                            | No.           199           198           198           199           199           199           199           199           199           199           199           199           199           199           198           199           198           199           198           199           198           199           197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK<sub>max</sub><br/>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12                                                                                                                                                                                                                                                                                                                                | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.51<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                                         | 8.98<br>8.98<br>8.98<br><b>d</b> <sub>P</sub> [mm]<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04<br>9.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.00<br>8.98<br>8.97<br>8.98<br><b>dw [mm]</b><br>9.06<br>9.06<br>9.05<br>9.05<br>9.04<br>9.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 116<br>125<br>116<br>125<br><b>F</b> ∎w<br>[N]<br>21<br>22<br>22<br>20<br>21<br>17                                                                                                                                                                                             |
| PD<br>[MPa]<br>50                     | 3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200<br>199<br>200<br>200<br><b>M</b> <sub>P</sub><br><b>[mg]</b><br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199                                                                                                                                                                                                                                                                                                                     | No.           199           198           198           199           199           199           199           199           199           199           199           199           199           198           199           198           199           198           197           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10                                                                                                                                                                                                                                                                                                                 | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.51<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.18<br>2.87                         | 8.98<br>8.98<br>8.98<br><b>d</b> <sub>P</sub> [mm]<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04<br>9.05<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.00<br>8.98<br>8.97<br>8.98<br><b>dw [mm]</b><br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 116<br>125<br>116<br>125<br><b>F</b> вw<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51                                                                                                                                                                                |
| PD<br>[MPa]<br>50<br>80               | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2                                                                                                                                                                                                                                                                                                                                                                                                                       | 200<br>199<br>200<br>200<br><b>M</b> <sub>P</sub><br><b>[mg]</b><br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199                                                                                                                                                                                                                                                                                                              | Mw           199           198           198           199           199           199           199           199           199           199           199           199           198           199           198           199           198           199           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10                                                                                                                                                                                                                                                                                                                 | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.51<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.18<br>2.87<br>2.87                 | 8.98         8.98         8.98         9.05         9.06         9.05         9.06         9.04         9.05         9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.00<br>8.98<br>8.97<br>8.98<br><b>dw [mm]</b><br>9.06<br>9.06<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>116</u><br><u>125</u><br><u>116</u><br><u>125</u><br><b>F</b> вw<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46                                                                                                                                              |
| PD<br>[MPa]<br>50<br>80               | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                           | 200<br>199<br>200<br>200<br><b>M</b> <sub>P</sub><br><b>[mg]</b><br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199                                                                                                                                                                                                                                                                                                       | No.           199           198           198           199           199           199           199           199           199           199           199           199           199           199           198           199           198           199           198           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10                                                                                                                                                                                                                                                                                                 | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>2.87<br>2.87                         | 8.98<br>8.98<br>8.98<br>8.98<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04<br>9.05<br>9.03<br>9.03<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>116</u><br><u>125</u><br><u>116</u><br><u>125</u><br><b>F</b> вw<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46<br>51                                                                                                                                        |
| PD<br>[MPa]<br>50<br>80               | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4                                                                                                                                                                                                                                                                                                                       | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                             | Mw           199           198           199           198           199           199           199           199           199           199           199           199           198           199           198           199           198           199           198           198           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br>[kN]<br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.14                                                                                                                                                                                                                                                                                                | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.18<br>2.87<br>2.87<br>2.87<br>2.87 | 8.98<br>8.98<br>8.98<br>8.98<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04<br>9.05<br>9.03<br>9.03<br>9.03<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.06<br>9.05<br>9.05<br>9.04<br>9.03<br>9.03<br>9.03<br>9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>116</u><br><u>125</u><br><u>116</u><br><u>125</u><br><b>F</b> вw<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50                                                                                                                                  |
| PD<br>[MPa]<br>50<br>80               | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           4           5                                                                                                                                                                                                                                                                                                                                                           | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                             | Mw           199           198           199           198           199           199           199           199           199           199           199           198           199           198           199           198           199           198           199           198           198           198           198           198           198           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br>[kN]<br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.14<br>5.10                                                                                                                                                                                                                                                                                        | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                                 | 8.98         8.98         8.98         9.05         9.06         9.05         9.06         9.04         9.03         9.03         9.03         9.03         9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.06<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>116</u><br>125<br>116<br>125<br><b>F</b> вw<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51                                                                                                                                                 |
| PD<br>[MPa]<br>50<br>80               | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6                                                                                                                                                                                                                                                                                                                                                                       | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                             | Mw           199           198           199           198           199           199           199           199           199           199           199           198           199           198           199           198           199           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.14<br>5.10<br>5.10<br>5.10                                                                                                                                                                                                                                                                 | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.8                                                                                                                                                                                                                                    | 2.31<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                                 | 8.98         8.98         8.98         9.05         9.06         9.05         9.06         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03                                                                                                                                                                                                                                                                           | 9.00<br>8.98<br>8.97<br>8.98<br><b>dw [mm]</b><br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.03<br>9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>116</u><br>125<br>116<br>125<br><b>F</b> вw<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51                                                                                                                                                 |
| PD<br>[MPa]<br>50<br>80               | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           6           1                                                                                                                                                                                                                                                                                                                                   | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>200<br>200                                                                                                                                                                                                                                                                                                     | Mw           199           198           199           198           199           199           199           199           199           199           199           198           199           198           199           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           199           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.14<br>5.10<br>5.10<br>5.10<br>5.22<br>6.36                                                                                                                                                                                                                                                 | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.8                                                                                                                                                                                                                                    | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98         8.98         8.98         9.05         9.06         9.05         9.06         9.05         9.06         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03         9.03                                                                                                                                                                                                                                                                                                                               | 9.00<br>8.98<br>8.97<br>8.98<br><b>d<sub>w</sub> [mm]</b><br>9.06<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116<br>125<br>116<br>125<br><b>F</b> вw<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64                                                                                                                                            |
| PD<br>[MPa]<br>50<br>80               | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2                                                                                                                                                                                                                                                                                                                                               | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199<br>199<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                    | Mw           199           198           199           198           199           199           199           199           199           199           199           198           199           198           199           198           198           198           198           198           198           198           198           198           198           198           198           198           198           198           199           198           199           198           199           198           199           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.14<br>5.10<br>5.10<br>5.10<br>5.22<br>6.36<br>6.46                                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98         8.98         8.98         9.05         9.06         9.05         9.06         9.05         9.06         9.03         9.03         9.03         9.03         9.03         9.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116<br>125<br>116<br>125<br><b>F</b> в₩<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68                                                                                                                                      |
| PD<br>[MPa]<br>50<br>80               | 3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br>1<br>2<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>4<br>3<br>3<br>3<br>3<br>4<br>5<br>5<br>6<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                             | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>200<br>200<br>200<br>200<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>1                                                                                                                                                                                                                                 | Mw           199           198           199           198           199           199           199           199           199           199           199           198           199           198           199           198           198           198           198           198           198           198           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.14<br>5.10<br>5.10<br>5.10<br>5.14<br>6.36<br>6.46<br>6.41                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98         8.98         8.98         9.05         9.06         9.05         9.06         9.05         9.06         9.03         9.03         9.03         9.01         9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116<br>125<br>116<br>125<br><b>F</b> ₅₩<br><b>[N]</b><br>21<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61                                                                                                                                      |
| PD<br>[MPa]<br>50<br>80               | 3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>1<br>1<br>2<br>3<br>3<br>4<br>4<br>5<br>6<br>1<br>1<br>1<br>2<br>3<br>1<br>4<br>5<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                             | No.           199           198           198           199           198           199           199           199           199           199           199           198           199           198           199           198           198           198           198           198           198           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.14<br>5.10<br>5.10<br>5.22<br>6.36<br>6.46<br>6.41<br>6.42                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98         8.98         8.98         9.05         9.06         9.05         9.06         9.05         9.06         9.03         9.03         9.03         9.01         9.02         9.01         9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.03<br>9.02<br>9.01<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116<br>125<br>116<br>125<br><b>F</b> ₅₩<br><b>[N]</b><br>21<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61<br>60                                                                                                                                |
| PD<br>[MPa]<br>50<br>80               | Image: 2 minipage           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5                                                                                                                                                                                                                   | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>1                                                                                                                                                                                                                                                                                                                            | 199         199         198         199         199         199         199         199         199         199         199         199         198         199         198         198         198         198         198         198         198         198         198         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         198         199         198         199         198         199         198         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10                                                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98           8.98           8.98           8.98           9.05           9.06           9.05           9.06           9.03           9.03           9.03           9.01           9.02           9.01           9.02           9.02                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.01<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116<br>125<br>116<br>125<br><b>F</b> ∎w<br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61<br>69<br>71                                                                                                                    |
| PD<br>[MPa]<br>50<br>80               | Image: 2 minipage           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6                                                                                                                                                                                                       | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>1                                                                                                                                                                                                                                                                                                                            | No.           199           198           199           198           199           199           199           199           199           199           199           198           199           198           198           198           198           198           198           198           198           198           198           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           199           199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10                                                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98<br>8.98<br>8.98<br>8.98<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04<br>9.05<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116<br>125<br>116<br>125<br><b>F</b> ∎w<br><b>[N]</b><br>21<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61<br>69<br>71<br>70                                                                                                                    |
| PD<br>[MPa]<br>50<br>80<br>100        | Image: 2 minipage           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           4                                                                                                                   | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>1                                                                                                                                                                                                                                                                                                                            | No.           199           198           199           198           199           199           199           199           199           199           198           199           198           199           198           198           198           198           198           198           198           198           198           198           198           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198 <th>26.19<br/>25.47<br/>25.52<br/>25.55<br/><b>720 mi</b><br/><b>PK</b><sub>max</sub><br/><b>[kN]</b><br/>3.26<br/>3.20<br/>3.24<br/>3.17<br/>3.27<br/>3.12<br/>5.10<br/>5.10<br/>5.10<br/>5.10<br/>5.10<br/>5.10<br/>5.10<br/>5.10</th> <th>2.48<br/>2.46<br/>2.47<br/>2.48<br/>n<br/>h<sub>P</sub>[mm]<br/>3.13<br/>3.13<br/>3.13<br/>3.13<br/>3.13<br/>3.13<br/>3.13<br/>3.1</th> <th>2.31<br/>2.49<br/>2.49<br/>2.50<br/><b>hw [mm]</b><br/>3.17<br/>3.17<br/>3.17<br/>3.17<br/>3.17<br/>3.17<br/>3.17<br/>3.17</th> <th>8.98           8.98           8.98           8.98           9.05           9.06           9.05           9.06           9.05           9.06           9.03           9.03           9.03           9.01           9.02           9.01           9.02           9.01           9.03</th> <th>9.00<br/>8.98<br/>8.97<br/>8.98<br/>dw [mm]<br/>9.06<br/>9.05<br/>9.05<br/>9.05<br/>9.04<br/>9.06<br/>9.03<br/>9.03<br/>9.03<br/>9.03<br/>9.03<br/>9.02<br/>9.03<br/>9.02<br/>9.01<br/>9.02<br/>9.01<br/>9.02<br/>9.01<br/>9.02<br/>9.01<br/>9.02</th> <th>116<br/>125<br/>116<br/>125<br/><b>F</b>∎w<br/><b>[N]</b><br/>21<br/>22<br/>20<br/>21<br/>17<br/>51<br/>46<br/>51<br/>50<br/>51<br/>50<br/>64<br/>68<br/>61<br/>69<br/>71<br/>70<br/>02</th> | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10                                                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98           8.98           8.98           8.98           9.05           9.06           9.05           9.06           9.05           9.06           9.03           9.03           9.03           9.01           9.02           9.01           9.02           9.01           9.03                                                                                                                                                                                                                                                                                                                                                                         | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.06<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116<br>125<br>116<br>125<br><b>F</b> ∎w<br><b>[N]</b><br>21<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61<br>69<br>71<br>70<br>02                                                                                                              |
| PD<br>[MPa]<br>50<br>80<br>100        | 2           3           4           5           6           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2                                                                                                                                          | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199<br>199<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>199<br>199<br>199<br>200<br>200<br>200<br>200<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>1                                                                                                                                                                  | No.           199           198           199           198           199           199           199           199           199           199           199           198           199           198           198           198           198           198           198           198           198           198           198           198           198           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           197           197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10                                                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98           8.98           8.98           8.98           9.05           9.06           9.05           9.06           9.03           9.03           9.03           9.03           9.03           9.03           9.03           9.03           9.03           9.03           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.03           9.01           9.03           9.01           9.03           9.01           9.03           9.01           9.03           9.01 | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116<br>125<br>116<br>125<br><b>F</b> <sub>BW</sub><br><b>[N]</b><br>21<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61<br>69<br>71<br>70<br>93<br>405                                                                                            |
| PD<br>[MPa]<br>50<br>80<br>100        | 2           3           4           5           6           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3                                                                                                                              | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>199<br>200<br>200<br>200<br>200<br>199<br>200<br>200<br>200<br>200<br>200<br>199<br>200<br>200<br>200<br>200<br>199<br>200<br>200<br>200<br>200<br>200<br>199<br>200<br>200<br>200<br>200<br>200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2 | No.           199           198           199           198           199           199           199           199           199           199           199           198           199           198           199           198           198           198           198           198           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           199           198           197           198           197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.22<br>6.36<br>6.46<br>6.41<br>6.43<br>6.49<br>6.37<br>9.36<br>9.34<br>9.34 | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98           8.98           8.98           8.98           9.05           9.06           9.05           9.06           9.03           9.03           9.03           9.03           9.03           9.03           9.03           9.03           9.03           9.03           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.02           9.01           9.03           9.01           9.03           9.01           9.03           9.01           9.03           9.03           9.03                | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.00<br>9.00<br>9.01<br>9.00<br>9.00<br>9.01<br>9.00<br>9.00<br>9.01<br>9.00<br>9.00<br>9.00<br>9.01<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.01<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.0  | 116<br>125<br>116<br>125<br><b>F</b> <sub>в₩</sub><br><b>[N]</b><br>21<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61<br>69<br>71<br>70<br>93<br>105<br>22                                                                                      |
| PD<br>[MPa]<br>50<br>80<br>100        | 2           3           4           5           6           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3                                                      | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199<br>199<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>199<br>200<br>200<br>200<br>200<br>200<br>199<br>199<br>200<br>200<br>200<br>200<br>199<br>200<br>200<br>200<br>200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                              | 199         199         198         199         199         199         199         199         199         199         199         199         198         199         198         199         198         198         198         198         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         199         190         190         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.22<br>6.36<br>6.46<br>6.41<br>6.43<br>6.49<br>6.37<br>9.36<br>9.34<br>9.49<br>6.45                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.1                                                                                                                                                                                                                                                                                            | 2.31<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98<br>8.98<br>8.98<br>8.98<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00<br>8.98<br>8.97<br>8.98<br>dw [mm]<br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.02<br>9.01<br>9.02<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.00<br>8.99<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.00<br>8.99<br>9.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116<br>125<br>116<br>125<br><b>F</b> <sub>BW</sub><br><b>[N]</b><br>21<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61<br>69<br>71<br>70<br>93<br>105<br>96                                                                                      |
| PD<br>[MPa]<br>50<br>80<br>100        | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5                                                                                                                                                           | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199<br>199<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                    | 199         199         198         199         199         199         199         199         199         199         199         199         198         199         198         199         198         198         198         198         198         198         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         199         199         199         199         199         199         199         199         199         199         199         199         199         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10                                                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br>n<br>h <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.8                                                                                                                                                                                                                                    | 2.51<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98<br>8.98<br>8.98<br>8.98<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.00<br>8.98<br>8.97<br>8.98<br><b>dw [mm]</b><br>9.06<br>9.05<br>9.05<br>9.05<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01<br>9.000<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>9.00<br>8.99<br>9.01<br>9.00<br>9.00<br>8.99<br>9.01<br>9.00<br>9.00<br>8.99<br>9.01<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00 | 116         125         116         125         Г         21         22         20         21         17         51         50         51         50         64         68         61         69         71         70         93         105         96         99         97 |
| PD<br>[MPa]<br>50<br>80<br>100<br>150 | 2           3           4           5           6           Tablette           Nr.           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           6           1           2           3           4           5           2           3           4           5           2           3           4           5           2           3           4 <tr tr="">     5</tr> | 200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>201<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>199<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                     | 199         199         198         199         199         199         199         199         199         199         199         198         199         198         199         198         199         198         198         198         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         199         198         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.19<br>25.47<br>25.52<br>25.55<br><b>720 mi</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>3.26<br>3.20<br>3.24<br>3.17<br>3.27<br>3.12<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10<br>5.10                                                                                                                                                                                                                                                         | 2.48<br>2.46<br>2.47<br>2.48<br><b>h</b> <sub>P</sub> [mm]<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>3.13<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82<br>2.72<br>2.72<br>2.72<br>2.72<br>2.71<br>2.72<br>2.72<br>2.72<br>2.72<br>2.72<br>2.72<br>2.58<br>2.57<br>2.58<br>2.57<br>2.58<br>2.57 | 2.51<br>2.49<br>2.49<br>2.50<br><b>hw [mm]</b><br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17<br>3.17                         | 8.98<br>8.98<br>8.98<br>8.98<br>9.05<br>9.06<br>9.05<br>9.06<br>9.04<br>9.05<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.00<br>8.98<br>8.97<br>8.98<br><b>d<sub>w</sub> [mm]</b><br>9.06<br>9.05<br>9.05<br>9.04<br>9.03<br>9.03<br>9.03<br>9.03<br>9.03<br>9.02<br>9.03<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.02<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116<br>125<br>116<br>125<br><b>F</b> <sub>в₩</sub><br><b>[N]</b><br>21<br>22<br>22<br>20<br>21<br>17<br>51<br>46<br>51<br>50<br>51<br>50<br>64<br>68<br>61<br>69<br>71<br>70<br>93<br>105<br>96<br>99<br>97<br>57                                                              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |

| 200   | 1        | 200  | 199  | 12.97  | 2.53                 | 2.57                | 9.00                 | 8.99    | 89              |
|-------|----------|------|------|--------|----------------------|---------------------|----------------------|---------|-----------------|
|       | 2        | 199  | 198  | 12 90  | 2 50                 | 2 55                | 9.00                 | 8 99    | 123             |
|       | 2        | 100  | 100  | 12.00  | 2.00                 | 2.00                | 0.00                 | 0.00    | 100             |
|       | 3        | 199  | 190  | 12.00  | 2.50                 | 2.30                | 0.99                 | 0.90    | 109             |
|       | 4        | 199  | 198  | 12.82  | 2.50                 | 2.55                | 8.99                 | 8.99    | 115             |
|       | 5        | 199  | 197  | 12.31  | 2.50                 | 2.55                | 9.00                 | 8.98    | 115             |
|       | 6        | 199  | 198  | 12.68  | 2.51                 | 2.55                | 8.99                 | 8.99    | 130             |
| 250   | 1        | 200  | 199  | 15.70  | 2.49                 | 2.54                | 8.99                 | 8.98    | 126             |
|       | 2        | 199  | 199  | 15.94  | 2 52                 | 2 57                | 9.00                 | 8 99    | 118             |
|       | 2        | 201  | 200  | 16.01  | 2.51                 | 2.55                | 8.00                 | 8.08    | 108             |
|       | J        | 201  | 200  | 10.17  | 2.31                 | 2.55                | 0.99                 | 0.90    | 100             |
|       | 4        | 199  | 198  | 15.45  | 2.49                 | 2.53                | 8.99                 | 8.99    | 128             |
|       | 5        | 199  | 199  | 15.84  | 2.50                 | 2.54                | 8.99                 | 8.97    | 130             |
|       | 6        | 201  | 199  | 16.02  | 2.54                 | 2.58                | 9.00                 | 9.02    | 92              |
| 300   | 1        | 201  | 199  | 19.34  | 2.49                 | 2.53                | 8.99                 | 8.98    | 141             |
|       | 2        | 200  | 198  | 19.31  | 2 4 9                | 2.52                | 8 99                 | 8.98    | 121             |
|       | 3        | 100  | 107  | 18.00  | 2.17                 | 2.51                | 8 00                 | 8.00    | 122             |
|       | 3        | 200  | 100  | 10.30  | 2.47                 | 2.51                | 0.00                 | 0.00    | 122             |
|       | 4        | 200  | 199  | 19.30  | 2.40                 | 2.52                | 0.99                 | 0.90    | 122             |
|       | 5        | 199  | 198  | 19.06  | 2.48                 | 2.52                | 8.99                 | 8.97    | 132             |
|       | 6        | 200  | 199  | 19.48  | 2.49                 | 2.53                | 8.98                 | 8.98    | 124             |
| 400   | 1        | 199  | 198  | 25.74  | 2.48                 | 2.51                | 8.99                 | 8.97    | 144             |
|       | 2        | 200  | 199  | 25.94  | 2.48                 | 2.52                | 8.99                 | 8.98    | 125             |
|       | 3        | 199  | 199  | 26.16  | 2 4 9                | 2.52                | 8 99                 | 8.98    | 123             |
|       | 3        | 100  | 100  | 26.10  | 2.40                 | 2.52                | 8.00                 | 0.00    | 120             |
|       | 4        | 199  | 190  | 25.57  | 2.40                 | 2.01                | 0.99                 | 0.90    | 120             |
|       | 5        | 199  | 199  | 25.87  | 2.48                 | 2.52                | 8.99                 | 8.97    | 140             |
|       | 6        | 200  | 199  | 25.75  | 2.48                 | 2.52                | 8.99                 | 8.98    | 116             |
|       |          |      |      | 1440 m | in                   |                     |                      |         |                 |
| PD    | Tablette | MP   | Mw   | PKmax  | h [m]                | b [marrow]          | d [m]                | d [m]   | F <sub>BW</sub> |
| [MPa] | Nr.      | [mg] | [mg] | [kN]   | u <sup>6</sup> [uuu] | u <sup>w</sup> [mm] | a <sup>b</sup> [uuu] | aw [mm] | [N]             |
| 50    | 1        | 199  | 197  | 3.22   | 3.14                 | 3.18                | 9.02                 | 9.03    | 18              |
|       | 2        | 200  | 199  | 3 32   | 3 14                 | 3.18                | 9.03                 | 9.04    | 20              |
|       | 2        | 200  | 100  | 2.02   | 2.14                 | 2.10                | 0.00                 | 0.04    | 20              |
|       | 3        | 200  | 190  | 3.20   | 3.14                 | 3.17                | 9.04                 | 9.04    | 21              |
|       | 4        | 199  | 198  | 3.22   | 3.14                 | 3.17                | 9.03                 | 9.04    | 19              |
|       | 5        | 200  | 198  | 3.26   | 3.14                 | 3.18                | 9.03                 | 9.04    | 20              |
|       | 6        | 199  | 198  | 3.12   | 3.17                 | 3.21                | 9.02                 | 9.04    | 18              |
| 80    | 1        | 200  | 198  | 5.17   | 2.84                 | 2.88                | 9.01                 | 8.99    | 45              |
|       | 2        | 199  | 197  | 5.05   | 2 84                 | 2.88                | 9.00                 | 8 99    | 45              |
|       | 2        | 200  | 109  | 5 10   | 2.01                 | 2.00                | 0.00                 | 0.00    | 10              |
|       | 3        | 200  | 190  | 5.10   | 2.04                 | 2.09                | 9.00                 | 9.00    | 44              |
|       | 4        | 200  | 198  | 5.12   | 2.84                 | 2.89                | 9.01                 | 9.01    | 47              |
|       | 5        | 200  | 198  | 5.14   | 2.84                 | 2.88                | 9.01                 | 9.00    | 45              |
|       | 6        | 200  | 198  | 5.07   | 2.84                 | 2.88                | 9.01                 | 9.00    | 47              |
| 100   | 1        | 200  | 199  | 6.41   | 2.73                 | 2.76                | 8.99                 | 8.98    | 59              |
|       | 2        | 200  | 198  | 6.36   | 2.73                 | 2.76                | 8.99                 | 8.98    | 61              |
|       | 3        | 200  | 198  | 6.36   | 2 73                 | 2 76                | 8 99                 | 8 99    | 62              |
|       | 0        | 200  | 100  | 6.36   | 2.73                 | 2.76                | 8.00                 | 8.00    | 56              |
|       |          | 200  | 100  | 0.00   | 2.73                 | 2.70                | 0.33                 | 0.33    | 50              |
|       | 5        | 200  | 196  | 0.30   | 2.73                 | 2.77                | 0.99                 | 0.99    | 00              |
|       | 6        | 200  | 198  | 6.43   | 2.73                 | 2.77                | 8.99                 | 8.99    | 63              |
| 150   | 1        | 200  | 198  | 9.51   | 2.58                 | 2.61                | 8.98                 | 8.96    | 104             |
|       | 2        | 200  | 197  | 9.36   | 2.58                 | 2.61                | 8.97                 | 8.97    | 97              |
|       | 3        | 200  | 198  | 9.44   | 2.58                 | 2.61                | 8.97                 | 8.96    | 93              |
|       | 4        | 200  | 198  | 9 36   | 2 58                 | 2 61                | 8 97                 | 8 97    | 97              |
|       | 5        | 200  | 199  | 9.68   | 2.58                 | 2.61                | 8 97                 | 8.97    | 96              |
|       | 6        | 100  | 109  | 0.00   | 2.00                 | 2.01                | 8.02                 | 8.06    | 05              |
| 000   | 0        | 199  | 190  | 9.39   | 2.50                 | 2.01                | 0.90                 | 0.90    | 95              |
| 200   | 1        | 199  | 197  | 12.82  | 2.51                 | 2.53                | 8.98                 | 8.98    | 801             |
|       | 2        | 199  | 198  | 12.99  | 2.52                 | 2.53                | 8.97                 | 8.97    | 125             |
|       | 3        | 200  | 198  | 12.36  | 2.53                 | 2.54                | 8.98                 | 8.98    | 111             |
|       | 4        | 201  | 198  | 12.43  | 2.53                 | 2.55                | 8.97                 | 8.97    | 107             |
|       | 5        | 199  | 198  | 12 78  | 2 52                 | 2 54                | 8 98                 | 8 98    | 112             |
|       | 6        | 201  | 108  | 13 14  | 2.52                 | 2 55                | 8 98                 | 8.08    | 110             |
| 250   | 1        | 200  | 100  | 15 52  | 2.02                 | 2.00                | 2.00                 | 8.00    | 109             |
| 250   |          | 200  | 190  | 10.00  | 2.01                 | 2.00                | 2.90                 | 0.94    | 100             |
|       | 2        | 200  | 198  | 15.46  | 2.51                 | 2.53                | 2.97                 | 8.95    | 129             |
|       | 3        | 199  | 198  | 15.92  | 2.50                 | 2.52                | 2.98                 | 8.94    | 122             |
|       | 4        | 200  | 198  | 16.00  | 2.50                 | 2.52                | 2.98                 | 8.94    | 110             |
|       | 5        | 199  | 197  | 15.51  | 2.49                 | 2.51                | 2,98                 | 8.95    | 115             |
|       | 6        | 200  | 108  | 16.00  | 2 50                 | 2 52                | 2 07                 | 8 94    | 124             |
| 200   | 1        | 100  | 100  | 10.03  | 2.00                 | 2.02                | 2.01                 | 0.07    | 127             |
| 300   |          | 199  | 190  | 10.00  | 2.49                 | 2.01                | 0.90                 | 0.93    | 129             |
|       | 2        | 199  | 197  | 18.60  | 2.49                 | 2.51                | 8.98                 | 8.94    | 129             |
|       | 3        | 200  | 199  | 18.92  | 2.50                 | 2.53                | 8.98                 | 8.94    | 118             |
|       | 4        | 200  | 198  | 18.94  | 2.50                 | 2.52                | 8.97                 | 8.94    | 118             |
|       | 5        | 201  | 199  | 19.34  | 2.51                 | 2.51                | 8.98                 | 8.94    | 119             |
|       |          |      | 400  | 40.00  | 0.50                 | 2 5 0               | 0.00                 | 0.04    | 445             |
|       | 6        | 200  | 198  | 18.89  | 2.50                 | 2.50                | 0.90                 | 0.94    | 115             |

| 400        | 4                | 000            | 100  | 00.00        | 0.40                | 0.50                | 0.07                | 0.00                | 100             |
|------------|------------------|----------------|------|--------------|---------------------|---------------------|---------------------|---------------------|-----------------|
| 400        |                  | 200            | 198  | 20.23        | 2.49                | 2.52                | 8.97                | 8.93                | 120             |
|            | 2                | 200            | 198  | 25.41        | 2.49                | 2.51                | 8.97                | 8.94                | 115             |
|            | 3                | 201            | 199  | 26.14        | 2.51                | 2.53                | 8.97                | 8.93                | 119             |
|            | 4                | 200            | 199  | 25 79        | 2 4 9               | 2 5 2               | 8 98                | 8 93                | 116             |
|            | 5                | 200            | 100  | 26.70        | 2.40                | 2.02                | 8.08                | 8.04                | 120             |
|            | 5                | 200            | 190  | 25.70        | 2.50                | 2.51                | 0.90                | 0.34                | 129             |
|            | 6                | 200            | 198  | 25.70        | 2.50                | 2.52                | 8.98                | 8.94                | 122             |
|            |                  |                |      | 2880 mi      | in                  |                     |                     |                     |                 |
| PD         | Tablette         | Mp             | Mw   | PKmax        | h farmal            | h []                |                     | d . []              | F <sub>BW</sub> |
| [MPa]      | Nr.              | [ma]           | [ma] | [kN]         | n <sub>P</sub> [mm] | n <sub>w</sub> [mm] | a <sub>P</sub> [mm] | a <sub>w</sub> [mm] | [N]             |
| 50         | 1                | 200            | 200  | 3 17         | 3 16                | 3 20                | 9.04                | 9.01                | 18              |
| 50         | 2                | 200            | 100  | 0.17         | 2.10                | 2.20                | 0.04                | 0.01                | 10              |
|            | 2                | 200            | 190  | 3.15         | 3.15                | 3.20                | 9.05                | 9.01                | 19              |
|            | 3                | 200            | 198  | 3.17         | 3.16                | 3.20                | 9.05                | 9.01                | 17              |
|            | 4                | 200            | 199  | 3.15         | 3.16                | 3.20                | 9.04                | 9.02                | 19              |
|            | 5                | 200            | 198  | 3.15         | 3.16                | 3.20                | 9.05                | 9.01                | 17              |
|            | 6                | 200            | 198  | 3 14         | 3 16                | 3 19                | 9.04                | 9.01                | 18              |
| 80         | 1                | 200            | 108  | 5 15         | 2.83                | 2.87                | 0.02                | 8.08                | 10              |
| 00         |                  | 200            | 107  | 5.15         | 2.00                | 2.07                | 9.02                | 0.30                | 40              |
|            | 2                | 200            | 197  | 5.14         | 2.83                | 2.87                | 9.01                | 8.98                | 46              |
|            | 3                | 200            | 199  | 5.24         | 2.83                | 2.87                | 9.01                | 8.98                | 51              |
|            | 4                | 201            | 198  | 5.19         | 2.82                | 2.87                | 9.00                | 8.98                | 41              |
|            | 5                | 201            | 199  | 5.20         | 2.82                | 2.87                | 9.01                | 8.99                | 43              |
|            | 6                | 200            | 198  | 5 19         | 2.83                | 2.87                | 9.01                | 8 98                | 42              |
| 100        | 1                | 201            | 100  | 6.10         | 2.00                | 2.01                | 0.01                | 0.00                | 50              |
| 100        |                  | 201            | 190  | 0.19         | 2.13                | 2.11                | 0.99                | 0.90                | 50              |
|            | 2                | 201            | 199  | 6.51         | 2.12                | 2.76                | 9.01                | 8.97                | 62              |
|            | 3                | 199            | 197  | 6.32         | 2.72                | 2.75                | 9.00                | 8.96                | 63              |
|            | 4                | 201            | 198  | 6.41         | 2.71                | 2.76                | 9.00                | 8.96                | 67              |
|            | 5                | 201            | 199  | 6.53         | 2.71                | 2.76                | 9.00                | 8.96                | 64              |
|            | 6                | 200            | 197  | 6.41         | 2,71                | 2,75                | 9.01                | 8,96                | 62              |
| 150        | 1                | 200            | 108  | 9.77         | 2.57                | 2.61                | 8 98                | 8 94                | 74              |
| 100        | 2                | 200            | 107  | 0.74         | 2.51                | 2.01                | 9.00                | 9 0 <i>4</i>        | 77              |
|            | 2                | 200            | 197  | 9.71         | 2.37                | 2.00                | 0.99                | 0.94                | 11              |
|            | 3                | 199            | 197  | 9.65         | 2.57                | 2.60                | 8.98                | 8.95                | 96              |
|            | 4                | 200            | 199  | 9.83         | 2.57                | 2.61                | 8.99                | 8.95                | 77              |
|            | 5                | 200            | 198  | 9.83         | 2.57                | 2.61                | 8.98                | 8.94                | 86              |
|            | 6                | 200            | 199  | 9.77         | 2.57                | 2.61                | 8.99                | 8.95                | 97              |
| 200        | 1                | 201            | 199  | 12 58        | 2 54                | 2 57                | 8 97                | 8 93                | 111             |
|            | 2                | 201            | 108  | 12.00        | 2.53                | 2.56                | 8.07                | 8.04                | 108             |
|            | 2                | 201            | 190  | 12.44        | 2.55                | 2.50                | 0.97                | 0.34                | 100             |
|            | 3                | 199            | 196  | 12.34        | 2.53                | 2.50                | 0.90                | 0.93                | 90              |
|            | 4                | 201            | 199  | 12.97        | 2.54                | 2.58                | 8.98                | 8.93                | 90              |
|            | 5                | 199            | 198  | 12.38        | 2.52                | 2.56                | 8.98                | 8.94                | 98              |
|            | 6                | 200            | 199  | 12.72        | 2.54                | 2.57                | 8.97                | 8.93                | 99              |
| 250        | 1                | 200            | 198  | 15.58        | 2.51                | 2.54                | 8.97                | 8.95                | 79              |
|            | 2                | 201            | 199  | 15.84        | 2.51                | 2 55                | 8 98                | 8 95                | 97              |
|            | 3                | 200            | 100  | 15.75        | 2.51                | 2.56                | 8.00                | 8.00                | 08              |
|            | 5                | 200            | 199  | 15.75        | 2.51                | 2.50                | 0.99                | 0.94                | 30              |
|            | 4                | 200            | 199  | 15.69        | 2.52                | 2.30                | 0.97                | 6.95                | 02              |
|            | 5                | 201            | 199  | 15.97        | 2.53                | 2.58                | 8.98                | 8.96                | 83              |
|            | 6                | 200            | 198  | 15.61        | 2.51                | 2.54                | 8.98                | 8.94                | 100             |
| 300        | 1                | 200            | 199  | 19.16        | 2.51                | 2.54                | 8.97                | 8.93                | 92              |
|            | 2                | 201            | 199  | 19.29        | 2.51                | 2.54                | 8.97                | 8.93                | 105             |
|            | 3                | 199            | 197  | 18 70        | 2 50                | 2.53                | 8 97                | 8 95                | 102             |
|            | 4                | 200            | 107  | 10.70        | 2.00                | 2.00                | 0.07                | 0.00                | 104             |
|            | 4                | 200            | 190  | 19.04        | 2.50                | 2.04                | 0.97                | 0.94                | 104             |
|            | 5                | 200            | 190  | 19.00        | 2.53                | 2.00                | 0.90                | 0.94                | 01              |
|            | 6                | 200            | 198  | 18.89        | 2.50                | 2.54                | 8.96                | 8.94                | 104             |
| 400        | 1                | 200            | 198  | 25.48        | 2.49                | 2.52                | 8.97                | 8.93                | 95              |
|            | 2                | 199            | 197  | 25.41        | 2.49                | 2.53                | 8.97                | 8.94                | 89              |
|            | 3                | 200            | 198  | 25.75        | 2.49                | 2.53                | 8.97                | 8.93                | 91              |
|            | 4                | 200            | 199  | 25 79        | 2 4 9               | 2 53                | 8 96                | 8 94                | 102             |
|            | 5                | 200            | 198  | 25.67        | 2 4 9               | 2.53                | 8.97                | 8 94                | 105             |
|            | 6                | 100            | 100  | 25.07        | 2.40                | 2.53                | 8.07                | 8.03                | 05              |
|            | U                | 199            | 190  | 4200         | <u> </u>            | 2.00                | 0.97                | 0.90                | 90              |
|            | <b>T</b> -1-1-44 |                |      | 4320 m       | 111                 | 1                   |                     | r                   | _               |
| <b>U</b> 4 | lablette         | M <sub>P</sub> | _Mw  | PKmax        | h₀ [mm]             | h <sub>w</sub> [mm] | d₀ [mm1             | d <sub>w</sub> [mm] | FBW             |
| [MPa]      | Nr.              | [mg]           | [mg] | [kN]         |                     |                     |                     |                     | [N]             |
| 50         | 1                | 199            | 198  | 3.24         | 3.16                | 3.21                | 9.06                | 9.07                | 12              |
|            | 2                | 200            | 199  | 3.24         | 3.15                | 3.19                | 9.06                | 9.08                | 17              |
|            | 3                | 199            | 198  | 3.20         | 3.14                | 3.19                | 9.05                | 9.05                | 17              |
|            | 4                | 100            | 108  | 3 20         | 3.1/                | 3.20                | 9.00                | 9.00                | 15              |
|            |                  | 200            | 100  | 0.20         | 0.14                | 0.20                | 0.00                | 0.00                | 10              |
|            | 5                | 200            | 199  | 3.24         | 3.15                | 3.20                | 9.07                | 9.09                | 01              |
|            | 6                | 200            | 198  | 3.22         | 3.14                | 3.20                | 9.05                | 9.07                | 16              |
| 80         | 1                | 200            | 200  | 5.02         | 2.85                | 2.89                | 9.03                | 9.04                | 38              |
|            | 2                | 200            | 199  | 5.04         | 2.85                | 2.89                | 9.03                | 9.03                | 41              |
|            | 3                | 201            | 198  | 5.02         | 2.86                | 2.90                | 9.04                | 9.04                | 36              |
|            | 4                | 200            | 199  | 5.05         | 2.86                | 2 90                | 9.03                | 9.05                | 35              |
|            |                  | 200            | 100  | 5.05<br>E 00 | 2.00                | 2.00                | 0.03                | 0.03                | 20              |
|            | 5                | 200            | 198  | 5.00         | 2.85                | 2.89                | 9.04                | 9.04                | <u>ა</u> გ      |
|            | 1 6              | 199            | 198  | 4 4 2        | 289                 | 294                 | 906                 | 907                 | 37              |

| 100 | 1 | 201 | 198 | 6.51  | 2.72 | 2.75 | 9.01 | 9.01 | 52  |
|-----|---|-----|-----|-------|------|------|------|------|-----|
|     | 2 | 200 | 198 | 6.41  | 2.71 | 2.75 | 9.02 | 9.03 | 59  |
|     | 3 | 200 | 198 | 6.58  | 2.72 | 2.75 | 9.01 | 9.03 | 61  |
|     | 4 | 200 | 198 | 6.46  | 2.71 | 2.75 | 9.03 | 9.03 | 58  |
|     | 5 | 201 | 199 | 6.54  | 2.72 | 2.75 | 9.02 | 9.02 | 60  |
|     | 6 | 199 | 198 | 6.43  | 2.71 | 2.75 | 9.02 | 9.02 | 60  |
| 150 | 1 | 200 | 199 | 9.29  | 2.58 | 2.63 | 9.00 | 8.99 | 76  |
|     | 2 | 200 | 199 | 9.29  | 2.59 | 2.62 | 9.00 | 8.99 | 71  |
|     | 3 | 201 | 200 | 9.49  | 2.59 | 2.62 | 8.99 | 8.99 | 82  |
|     | 4 | 201 | 200 | 9.49  | 2.59 | 2.63 | 9.00 | 9.01 | 89  |
|     | 5 | 200 | 199 | 9.34  | 2.59 | 2.63 | 9.00 | 9.00 | 76  |
|     | 6 | 201 | 199 | 9.60  | 2.59 | 2.63 | 9.00 | 8.99 | 78  |
| 200 | 1 | 200 | 198 | 12.70 | 2.54 | 2.57 | 9.00 | 9.01 | 78  |
|     | 2 | 200 | 198 | 12.50 | 2.52 | 2.55 | 8.99 | 8.98 | 85  |
|     | 3 | 200 | 198 | 12.58 | 2.52 | 2.55 | 8.99 | 8.98 | 86  |
|     | 4 | 201 | 199 | 12.90 | 2.57 | 2.60 | 8.99 | 9.00 | 76  |
|     | 5 | 201 | 199 | 12.75 | 2.53 | 2.56 | 8.99 | 8.98 | 95  |
|     | 6 | 199 | 198 | 12.41 | 2.52 | 2.55 | 8.99 | 8.97 | 93  |
| 250 | 1 | 201 | 199 | 15.90 | 2.52 | 2.55 | 8.99 | 8.99 | 100 |
|     | 2 | 200 | 197 | 15.51 | 2.51 | 2.54 | 8.99 | 8.98 | 93  |
|     | 3 | 201 | 199 | 15.89 | 2.51 | 2.55 | 8.99 | 8.98 | 94  |
|     | 4 | 200 | 199 | 15.65 | 2.50 | 2.54 | 8.99 | 8.98 | 98  |
|     | 5 | 200 | 198 | 15.45 | 2.51 | 2.53 | 9.00 | 8.99 | 93  |
|     | 6 | 200 | 198 | 15.43 | 2.51 | 2.53 | 8.99 | 8.99 | 100 |
| 300 | 1 | 200 | 198 | 18.80 | 2.50 | 2.52 | 8.99 | 8.97 | 94  |
|     | 2 | 200 | 198 | 18.94 | 2.50 | 2.53 | 8.99 | 8.98 | 94  |
|     | 3 | 201 | 199 | 19.31 | 2.51 | 2.54 | 8.99 | 8.99 | 92  |
|     | 4 | 200 | 198 | 18.79 | 2.50 | 2.52 | 8.99 | 8.97 | 90  |
|     | 5 | 200 | 198 | 18.68 | 2.49 | 2.52 | 8.99 | 8.98 | 93  |
|     | 6 | 199 | 198 | 18.73 | 2.49 | 2.52 | 8.99 | 8.98 | 86  |
| 400 | 1 | 199 | 198 | 25.36 | 2.49 | 2.52 | 8.99 | 8.97 | 90  |
|     | 2 | 200 | 199 | 26.08 | 2.50 | 2.53 | 8.99 | 8.98 | 110 |
|     | 3 | 200 | 199 | 25.75 | 2.50 | 2.53 | 8.99 | 8.98 | 99  |
|     | 4 | 200 | 199 | 25.91 | 2.50 | 2.54 | 9.00 | 8.98 | 84  |
|     | 5 | 199 | 197 | 25.13 | 2.48 | 2.52 | 8.99 | 8.99 | 103 |
|     | 6 | 201 | 198 | 25.84 | 2.50 | 2.52 | 8.98 | 8.98 | 92  |
|     |   |     |     |       |      |      |      |      |     |

### 9.4.3.1.2 Mischung 2

|             |                 |                        |                        | 1 min                     |                     |                     |                     |                     |                        |
|-------------|-----------------|------------------------|------------------------|---------------------------|---------------------|---------------------|---------------------|---------------------|------------------------|
| PD<br>[MPa] | Tablette<br>Nr. | M <sub>P</sub><br>[mg] | M <sub>w</sub><br>[mg] | PK <sub>max</sub><br>[kN] | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | F <sub>вw</sub><br>[N] |
| 150         | 1               | 199                    | 199                    | 9.60                      | 2.59                | 2.66                | 8.92                | 9.07                | 53                     |
|             | 2               | 200                    | 199                    | 9.51                      | 2.61                | 2.66                | 8.93                | 9.05                | 50                     |
|             | 3               | 199                    | 200                    | 9.80                      | 2.60                | 2.65                | 8.92                | 9.07                | 53                     |
|             | 4               | 199                    | 199                    | 9.48                      | 2.59                | 2.65                | 8.92                | 9.09                | 52                     |
|             | 5               | 200                    | 201                    | 9.44                      | 2.63                | 2.70                | 8.92                | 9.08                | 59                     |
|             | 6               | 199                    | 198                    | 9.27                      | 2.62                | 2.69                | 8.91                | 9.08                | 51                     |
| 400         | 1               | 200                    | 199                    | 24.92                     | 2.49                | 2.50                | 8.92                | 9.00                | 83                     |
|             | 2               | 200                    | 198                    | 24.84                     | 2.49                | 2.50                | 8.91                | 9.00                | 80                     |
|             | 3               | 200                    | 198                    | 24.72                     | 2.48                | 2.50                | 8.91                | 8.99                | 91                     |
|             | 4               | 201                    | 199                    | 25.30                     | 2.50                | 2.51                | 8.91                | 8.99                | 80                     |
|             | 5               | 200                    | 198                    | 24.89                     | 2.49                | 2.51                | 8.92                | 9.00                | 87                     |
|             | 6               | 200                    | 199                    | 24.97                     | 2.49                | 2.51                | 8.92                | 8.99                | 83                     |
|             |                 |                        |                        | 10 mir                    | ۱                   |                     |                     |                     |                        |
| PD          | Tablette        | M <sub>P</sub>         | M <sub>w</sub>         |                           | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] |                        |
|             | Nr.             | [mg]                   | [mg]                   |                           | 2.00                | 0.00                |                     | 0.00                |                        |
| 150         | 1               | 199                    | 198                    | 9.48                      | 2.60                | 2.63                | 8.91                | 9.06                | 74                     |
|             | 2               | 201                    | 200                    | 9.75                      | 2.61                | 2.64                | 8.91                | 9.06                | 59                     |
|             | 3               | 199                    | 198                    | 9.32                      | 2.60                | 2.63                | 8.91                | 9.06                | /1                     |
|             | 4               | 201                    | 201                    | 9.85                      | 2.60                | 2.65                | 8.92                | 9.06                | 68                     |
|             | 5               | 200                    | 199                    | 9.51                      | 2.59                | 2.64                | 8.92                | 9.06                | 66                     |
|             | 6               | 200                    | 200                    | 9.58                      | 2.61                | 2.65                | 8.92                | 9.08                | 59                     |
| 400         | 1               | 200                    | 200                    | 24.97                     | 2.49                | 2.53                | 8.90                | 9.06                | 96                     |
|             | 2               | 201                    | 200                    | 24.84                     | 2.48                | 2.52                | 8.90                | 9.06                | 93                     |
|             | 3               | 201                    | 201                    | 25.19                     | 2.49                | 2.53                | 8.90                | 9.04                | 109                    |
|             | 4               | 200                    | 200                    | 24.96                     | 2.48                | 2.52                | 8.90                | 9.04                | 105                    |
|             | 5               | 200                    | 199                    | 24.99                     | 2.48                | 2.52                | 8.89                | 9.07                | 101                    |
|             | 6               | 199                    | 200                    | 24 85                     | 2 4 9               | 2 52                | 8.90                | 9.05                | 97                     |

|       |          |                 |      | 30 min            |                     |                     | 1                   |                     |                 |
|-------|----------|-----------------|------|-------------------|---------------------|---------------------|---------------------|---------------------|-----------------|
| PD    | Tablette | _M <sub>P</sub> | Mw,  | PK <sub>max</sub> | h₀ [mm]             | h <sub>w</sub> [mm] | d₀ [mm]             | d <sub>w</sub> [mm] | F <sub>BW</sub> |
| [MPa] | Nr.      | [mg]            | [mg] | [KN]              | 0.00                | 0.04                | 0.00                |                     | [N]             |
| 150   | 1        | 200             | 200  | 9.73              | 2.60                | 2.64                | 8.89                | 9.02                | 61              |
|       | 2        | 199             | 198  | 9.24              | 2.59                | 2.03                | 8.91                | 9.04                | 60              |
|       | 3        | 201             | 200  | 9.75              | 2.60                | 2.04                | 0.91                | 9.02                | 50              |
|       | 4        | 200             | 190  | 9.21              | 2.59                | 2.03                | 8.90                | 9.02                | 64              |
|       | 6        | 200             | 199  | 9.40              | 2.59                | 2.03                | 8.90                | 9.02                | 56              |
| 400   | 1        | 200             | 199  | 25.45             | 2.00                | 2.51                | 8.88                | 8.99                | 90              |
|       | 2        | 200             | 198  | 25.38             | 2 49                | 2.51                | 8.88                | 8.99                | 77              |
|       | 3        | 199             | 197  | 24.70             | 2.47                | 2.50                | 8.88                | 8.99                | 81              |
|       | 4        | 201             | 200  | 26.01             | 2.50                | 2.53                | 8.88                | 8.98                | 87              |
|       | 5        | 200             | 199  | 25.41             | 2.49                | 2.52                | 8.89                | 8.99                | 73              |
|       | 6        | 200             | 198  | 25.23             | 2.49                | 2.51                | 8.88                | 8.99                | 79              |
|       |          |                 |      | 60 min            |                     |                     |                     |                     |                 |
| PD    | Tablette | MP              | Mw   | PK <sub>max</sub> | h- [mm]             | h[mm]               | d- [mm]             | d[mm]               | F <sub>BW</sub> |
| [MPa] | Nr.      | [mg]            | [mg] | [kN]              | ub [uuu]            | IIW [IIIII]         | op [mm]             | dw [iiiii]          | [N]             |
| 150   | 1        | 199             | 198  | 9.36              | 2.58                | 2.61                | 9.05                | 8.99                | 81              |
|       | 2        | 200             | 198  | 9.41              | 2.58                | 2.61                | 9.04                | 8.99                | 88              |
|       | 3        | 200             | 198  | 9.53              | 2.59                | 2.62                | 9.07                | 8.99                | 75              |
|       | 4        | 200             | 199  | 9.58              | 2.58                | 2.62                | 9.05                | 8.99                | 82              |
|       | 5        | 201             | 199  | 9.75              | 2.59                | 2.62                | 9.05                | 8.99                | 83              |
| 400   | 0        | 200             | 198  | 9.30              | 2.58                | 2.02                | 9.06                | 0.99<br>0.7         | 19              |
| 400   | 2        | 199             | 197  | 24.62             | 2.40                | 2.48                | 9.05                | 8.97                | 114             |
|       | 2        | 200             | 197  | 25.50             | 2.40                | 2.51                | 9.06                | 0.97<br>8.07        | 102             |
|       |          | 100             | 190  | 20.01             | 2.49                | 2.51                | 9.00                | 8.97                | 103             |
|       | 5        | 199             | 197  | 25.02             | 2.40                | 2.50                | 9.07                | 8.97                | 97              |
|       | 6        | 199             | 197  | 25.65             | 2.40                | 2.50                | 9.07                | 8.97                | 96              |
|       | Ŭ        | 100             | 107  | 180 mi            | 1<br>2.40           | 2.01                | 0.07                | 0.07                | 00              |
| PD    | Tablette | MP              | Mw   | PKmax             |                     |                     |                     |                     | F <sub>BW</sub> |
| [MPa] | Nr.      | [mg]            | [mg] | [kN]              | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | [N]             |
| 150   | 1        | 199             | 198  | 9.43              | 2.58                | 2.61                | 8.99                | 9.01                | 93              |
|       | 2        | 201             | 199  | 9.82              | 2.58                | 2.61                | 9.00                | 9.01                | 98              |
|       | 3        | 199             | 198  | 9.39              | 2.58                | 2.60                | 9.01                | 9.02                | 96              |
|       | 4        | 200             | 199  | 9.53              | 2.58                | 2.61                | 9.00                | 9.01                | 91              |
|       | 5        | 200             | 199  | 9.56              | 2.58                | 2.61                | 9.01                | 9.02                | 94              |
|       | 6        | 200             | 199  | 9.65              | 2.58                | 2.61                | 9.00                | 9.02                | 93              |
| 400   | 1        | 200             | 198  | 25.86             | 2.49                | 2.50                | 9.00                | 8.98                | 144             |
|       | 2        | 200             | 200  | 26.26             | 2.50                | 2.52                | 8.99                | 8.98                | 133             |
|       | 3        | 199             | 197  | 25.23             | 2.47                | 2.49                | 8.99                | 8.98                | 138             |
|       | 4        | 201             | 198  | 26.09             | 2.49                | 2.51                | 8.99                | 8.99                | 137             |
|       | 5        | 200             | 190  | 20.92             | 2.49                | 2.51                | 8.99                | 8.99<br>8.00        | 123             |
|       | 0        | 200             | 190  | 20.02<br>360 mi   | 2.40                | 2.50                | 0.99                | 0.99                | 120             |
| PD    | Tablette | Ma              | M    | PK                |                     |                     |                     |                     | Faw             |
| [MPa] | Nr.      | [ma]            | [ma] | [kN]              | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | IN1             |
| 150   | 1        | 200             | 199  | 9.34              | 2.60                | 2.65                | 8.99                | 9.04                | 100             |
|       | 2        | 201             | 200  | 9.39              | 2.62                | 2.67                | 9.00                | 9.04                | 97              |
|       | 3        | 200             | 199  | 9.32              | 2.60                | 2.66                | 8.99                | 9.04                | 88              |
|       | 4        | 200             | 201  | 9.56              | 2.61                | 2.66                | 9.00                | 9.05                | 93              |
|       | 5        | 201             | 201  | 9.66              | 2.60                | 2.66                | 8.99                | 9.03                | 97              |
|       | 6        | 200             | 200  | 9.38              | 2.61                | 2.66                | 9.01                | 9.04                | 98              |
| 400   | 1        | 199             | 197  | 24.87             | 2.45                | 2.47                | 8.97                | 8.97                | 120             |
|       | 2        | 200             | 198  | 25.47             | 2.47                | 2.49                | 8.99                | 8.98                | 117             |
|       | 3        | 199             | 199  | 25.60             | 2.47                | 2.50                | 8.98                | 8.99                | 109             |
|       | 4        | 199             | 199  | 25.90             | 2.54                | 2.57                | 9.02                | 9.03                | 122             |
|       | 5        | ∠00<br>100      | 198  | 20.30             | 2.47                | 2.00                | 0.90                | 0.90                | 120             |
|       | 0        | 199             | 190  | 20.00             | 2.40                | 2.49                | 0.97                | 0.90                | 114             |
| PD    | Tablette | Ma              | M    | PK                |                     |                     |                     |                     | From            |
| [MPa] | Nr.      | [ma]            | [ma] | [kN1              | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | [N]             |
| 150   | 1        | 199             | 198  | 9.48              | 2.57                | 2.62                | 9.00                | 8.99                | 95              |
|       | 2        | 200             | 199  | 9.55              | 2.57                | 2.62                | 9.00                | 8.99                | 102             |
|       | 3        | 200             | 199  | 9.53              | 2.57                | 2.62                | 9.01                | 9.00                | 98              |
|       | 4        | 199             | 198  | 9.38              | 2.57                | 2.62                | 9.00                | 8.99                | 97              |
|       | 5        | 199             | 198  | 9.43              | 2.57                | 2.62                | 9.01                | 8.98                | 93              |
|       | 6        | 199             | 198  | 9.39              | 2.57                | 2.62                | 9.00                | 9.01                | 97              |

| 400         | 1                | 199                    | 197                    | 24.99                     | 2.46                | 2.50                | 8.99                | 8.97                | 132                    |
|-------------|------------------|------------------------|------------------------|---------------------------|---------------------|---------------------|---------------------|---------------------|------------------------|
|             | 2                | 199                    | 197                    | 25.14                     | 2.47                | 2.52                | 8.99                | 8.98                | 127                    |
|             | 3                | 199                    | 198                    | 25.60                     | 2.48                | 2.51                | 8.99                | 8.97                | 134                    |
|             | 4                | 199                    | 197                    | 25.13                     | 2.46                | 2.50                | 8.99                | 8.97                | 128                    |
|             | 5                | 200                    | 199                    | 25.84                     | 2.47                | 2.52                | 8.99                | 8.98                | 135                    |
|             | 6                | 199                    | 197                    | 25.78                     | 2.47                | 2.51                | 8.99                | 8.97                | 125                    |
|             |                  |                        |                        | 1440 m                    | in                  |                     |                     |                     |                        |
| PD<br>[MPa] | Tablette<br>Nr.  | M <sub>P</sub><br>[ma] | M <sub>w</sub><br>[ma] | PK <sub>max</sub><br>[kN] | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | F <sub>вw</sub><br>[N] |
| 150         | 1                | 200                    | 198                    | 9.48                      | 2.58                | 2.60                | 8.98                | 8.94                | 97                     |
|             | 2                | 200                    | 198                    | 9.48                      | 2.58                | 2.61                | 8.98                | 8.95                | 104                    |
|             | 3                | 201                    | 199                    | 9.77                      | 2.58                | 2.61                | 8.98                | 8.95                | 103                    |
|             | 4                | 200                    | 198                    | 9.63                      | 2.58                | 2.61                | 8.99                | 8.95                | 99                     |
|             | 5                | 200                    | 198                    | 9.49                      | 2.58                | 2.60                | 8.99                | 8.95                | 106                    |
|             | 6                | 200                    | 198                    | 9.60                      | 2.58                | 2.61                | 8.98                | 8.95                | 92                     |
| 400         | 1                | 200                    | 198                    | 25.50                     | 2.49                | 2.51                | 8.98                | 8.93                | 115                    |
|             | 2                | 199                    | 197                    | 25.21                     | 2.48                | 2.51                | 8.98                | 8.93                | 122                    |
|             | 3                | 201                    | 199                    | 25.96                     | 2.50                | 2.52                | 8.97                | 8.94                | 137                    |
|             | 4                | 200                    | 198                    | 25.36                     | 2.48                | 2.50                | 8.99                | 8.93                | 133                    |
|             | 5                | 199                    | 197                    | 25.19                     | 2.48                | 2.50                | 8.98                | 8.94                | 119                    |
|             | 6                | 200                    | 198                    | 25.80                     | 2.50                | 2.52                | 8.98                | 8.93                | 116                    |
|             |                  |                        |                        | 2880 m                    | in                  |                     |                     |                     |                        |
| PD<br>[MPa] | Tablette<br>Nr.  | M <sub>P</sub><br>[mg] | M <sub>w</sub><br>[mg] | PK <sub>max</sub><br>[kN] | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | F <sub>вw</sub><br>[N] |
| 150         | 1                | 200                    | 198                    | 9.77                      | 2.57                | 2.61                | 8.99                | 8.93                | 93                     |
|             | 2                | 200                    | 198                    | 9.66                      | 2.56                | 2.61                | 8.99                | 8.93                | 84                     |
|             | 3                | 199                    | 197                    | 9.56                      | 2.57                | 2.60                | 8.99                | 8.94                | 95                     |
|             | 4                | 200                    | 198                    | 9.70                      | 2.57                | 2.61                | 8.99                | 8.94                | 84                     |
|             | 5                | 199                    | 198                    | 9.60                      | 2.56                | 2.61                | 8.99                | 8.93                | 90                     |
|             | 6                | 200                    | 199                    | 9.78                      | 2.57                | 2.61                | 8.99                | 8.93                | 85                     |
| 400         | 1                | 200                    | 199                    | 26.06                     | 2.51                | 2.54                | 8.98                | 8.92                | 97                     |
|             | 2                | 200                    | 198                    | 25.67                     | 2.50                | 2.53                | 8.97                | 8.93                | 96                     |
|             | 3                | 201                    | 198                    | 25.63                     | 2.49                | 2.53                | 8.97                | 8.93                | 103                    |
|             | 4                | 200                    | 198                    | 25.80                     | 2.49                | 2.53                | 8.96                | 8.93                | 104                    |
|             | 5                | 200                    | 199                    | 25.84                     | 2.50                | 2.53                | 8.97                | 8.93                | 104                    |
|             | 6                | 200                    | 198                    | 25.75                     | 2.49                | 2.53                | 8.97                | 8.92                | 89                     |
|             |                  |                        |                        | 4320 m                    | in                  | 1                   |                     |                     | _                      |
| PD<br>[MPa] | l ablette<br>Nr. | M₽<br>[mg]             | Mw<br>[mg]             | PK <sub>max</sub><br>[kN] | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | ⊢ <sub>вw</sub><br>[N] |
| 150         | 1                | 200                    | 197                    | 9.26                      | 2.58                | 2.61                | 9.00                | 8.99                | 88                     |
|             | 2                | 200                    | 198                    | 9.38                      | 2.59                | 2.63                | 9.00                | 8.99                | 78                     |
|             | 3                | 201                    | 199                    | 9.41                      | 2.59                | 2.62                | 9.00                | 8.99                | 78                     |
|             | 4                | 201                    | 198                    | 9.43                      | 2.59                | 2.62                | 9.01                | 8.99                | 79                     |
|             | 5                | 201                    | 199                    | 9.46                      | 2.60                | 2.63                | 9.01                | 8.99                | 78                     |
|             | 6                | 201                    | 199                    | 9.53                      | 2.59                | 2.62                | 9.00                | 8.98                | 80                     |
| 400         | 1                | 200                    | 198                    | 25.79                     | 2.50                | 2.52                | 8.99                | 8.97                | 90                     |
|             | 2                | 200                    | 198                    | 25.50                     | 2.49                | 2.52                | 9.00                | 8.99                | 102                    |
|             | 3                | 200                    | 198                    | 25.87                     | 2.50                | 2.52                | 8.99                | 8.97                | 100                    |
|             | 4                | 200                    | 197                    | 25.40                     | 2.49                | 2.51                | 8.99                | 8.97                | 97                     |
|             | 5                | 200                    | 198                    | 25.67                     | 2.50                | 2.52                | 9.00                | 8.97                | 93                     |
| 1           | 6                | 200                    | 198                    | 25.63                     | 2 4 9               | 2 52                | 8 98                | 8 98                | 94                     |

# 9.4.3.1.3 Mischung 3

|             |                 |                        |                        | 1 min                     |                     |                     |                     |                     |                        |
|-------------|-----------------|------------------------|------------------------|---------------------------|---------------------|---------------------|---------------------|---------------------|------------------------|
| PD<br>[MPa] | Tablette<br>Nr. | M <sub>P</sub><br>[mg] | M <sub>w</sub><br>[mg] | PK <sub>max</sub><br>[kN] | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | F <sub>вw</sub><br>[N] |
| 150         | 1               | 201                    | 201                    | 9.58                      | 2.63                | 2.69                | 8.91                | 9.08                | 52                     |
|             | 2               | 199                    | 200                    | 9.36                      | 2.63                | 2.69                | 8.91                | 9.07                | 54                     |
|             | 3               | 200                    | 200                    | 9.49                      | 2.63                | 2.69                | 8.92                | 9.08                | 50                     |
|             | 4               | 200                    | 200                    | 9.51                      | 2.62                | 2.69                | 8.92                | 9.07                | 55                     |
|             | 5               | 199                    | 201                    | 9.46                      | 2.63                | 2.69                | 8.92                | 9.08                | 55                     |
|             | 6               | 200                    | 200                    | 9.71                      | 2.63                | 2.69                | 8.92                | 9.08                | 56                     |
| 400         | 1               | 200                    | 199                    | 24.92                     | 2.49                | 2.51                | 8.90                | 9.01                | 83                     |
|             | 2               | 201                    | 200                    | 25.23                     | 2.49                | 2.50                | 8.90                | 9.00                | 89                     |
|             | 3               | 201                    | 200                    | 25.04                     | 2.49                | 2.52                | 8.91                | 9.01                | 89                     |
|             | 4               | 201                    | 199                    | 25.50                     | 2.50                | 2.52                | 8.90                | 9.00                | 84                     |
|             | 5               | 199                    | 199                    | 24.65                     | 2.50                | 2.51                | 8.90                | 9.01                | 89                     |
|             | 6               | 201                    | 198                    | 24.97                     | 2.49                | 2.51                | 8.90                | 9.00                | 91                     |

|       |          |                   |      | 10 mir            | )                   |                     |                     |                     |                 |
|-------|----------|-------------------|------|-------------------|---------------------|---------------------|---------------------|---------------------|-----------------|
| PD    | Tablette | MP                | Mw   | PKmax             | h <sub>p</sub> [mm] | h <sub>w</sub> [mm] | d <sub>a</sub> [mm] | dw [mm]             | F <sub>BW</sub> |
| [MPa] | Nr.      | [mg]              | [mg] | [kN]              |                     |                     | ap[iiiii]           | aw []               | [N]             |
| 150   | 1        | 199               | 199  | 9.51              | 2.59                | 2.64                | 8.91                | 9.07                | 64              |
|       | 2        | 199               | 199  | 9.38              | 2.58                | 2.63                | 8.91                | 9.08                | 71              |
|       | 3        | 199               | 199  | 9.53              | 2.59                | 2.64                | 8.91                | 9.08                | 63              |
|       | 4        | 200               | 200  | 9.73              | 2.59                | 2.65                | 8.91                | 9.08                | 64              |
|       | 5        | 200               | 201  | 9.82              | 2.59                | 2.64                | 8.90                | 9.08                | 72              |
|       | 6        | 199               | 198  | 9.36              | 2.58                | 2.63                | 8.93                | 9.07                | 74              |
| 400   | 1        | 200               | 199  | 24.89             | 2.48                | 2.50                | 8.90                | 9.03                | 104             |
|       | 2        | 200               | 200  | 25.28             | 2.49                | 2.52                | 8.89                | 9.04                | 105             |
|       | 3        | 201               | 200  | 25.47             | 2.49                | 2.52                | 8.91                | 9.03                | 109             |
|       | 4        | 201               | 201  | 25.77             | 2.51                | 2.54                | 8.91                | 9.06                | 88              |
|       | 5        | 200               | 198  | 24.91             | 2.47                | 2.50                | 8.90                | 9.05                | 118             |
|       | 6        | 201               | 200  | 25.70             | 2.51                | 2.53                | 8.91                | 9.04                | 94              |
|       | •        | •                 |      | 30 mir            | 1                   |                     |                     |                     |                 |
| PD    | Tablette | MP                | Mw   | PKmax             | h <sub>a</sub> [mm] | h [mm]              | d_ [mm]             | d[mm]               | F <sub>BW</sub> |
| [MPa] | Nr.      | [mg]              | [mg] | [kN]              | ub [uuu]            |                     | ap[iiiii]           | aw [iiiii]          | [N]             |
| 150   | 1        | 200               | 198  | 9.41              | 2.58                | 2.63                | 8.90                | 9.02                | 68              |
|       | 2        | 200               | 199  | 9.51              | 2.59                | 2.63                | 8.90                | 9.01                | 54              |
|       | 3        | 200               | 200  | 9.56              | 2.59                | 2.64                | 8.90                | 9.01                | 58              |
|       | 4        | 201               | 199  | 9.48              | 2.59                | 2.63                | 8.91                | 9.02                | 63              |
|       | 5        | 201               | 200  | 9.75              | 2.60                | 2.64                | 8.91                | 9.01                | 55              |
|       | 6        | 199               | 198  | 9.34              | 2.59                | 2.63                | 8.90                | 9.02                | 62              |
| 400   | 1        | 199               | 197  | 24.70             | 2.48                | 2.51                | 8.88                | 8.99                | 80              |
|       | 2        | 200               | 198  | 25.18             | 2.49                | 2.52                | 8.88                | 8.99                | 89              |
|       | 3        | 200               | 198  | 25.40             | 2.49                | 2.52                | 8.87                | 8.98                | 89              |
|       | 4        | 199               | 197  | 24.75             | 2.48                | 2.50                | 8.88                | 8.98                | 88              |
|       | 5        | 199               | 197  | 25.08             | 2.50                | 2.51                | 8.87                | 8.99                | 76              |
|       | 6        | 200               | 198  | 25.43             | 2.50                | 2.51                | 8.86                | 8.98                | 80              |
|       |          |                   |      | 60 mir            | 1                   | 1                   |                     | n                   |                 |
| PD    | Tablette | _M <sub>P</sub> _ | Mw   | PK <sub>max</sub> | h₀ [mm]             | hw [mm]             | d₀ [mm]             | dw [mm]             | F <sub>BW</sub> |
| [MPa] | Nr.      | [mg]              | [mg] | [KN]              |                     |                     |                     |                     | [N]             |
| 150   | 1        | 199               | 197  | 9.26              | 2.57                | 2.61                | 9.06                | 8.99                | 83              |
|       | 2        | 201               | 199  | 9.63              | 2.59                | 2.63                | 9.06                | 8.99                | 68              |
|       | 3        | 200               | 199  | 9.60              | 2.58                | 2.61                | 9.05                | 8.99                | 85              |
|       | 4        | 201               | 198  | 9.75              | 2.59                | 2.63                | 9.05                | 8.99                | 77              |
|       | 5        | 199               | 198  | 9.36              | 2.58                | 2.61                | 9.05                | 8.99                | 78              |
|       | 6        | 199               | 198  | 9.49              | 2.59                | 2.62                | 9.07                | 9.00                | 81              |
| 400   | 1        | 199               | 197  | 25.63             | 2.48                | 2.50                | 9.07                | 8.97                | 93              |
|       | 2        | 200               | 199  | 26.23             | 2.49                | 2.52                | 9.06                | 8.97                | 111             |
|       | 3        | 199               | 197  | 25.21             | 2.47                | 2.50                | 9.06                | 8.97                | 104             |
|       | 4        | 200               | 197  | 25.77             | 2.49                | 2.51                | 9.07                | 8.96                | 101             |
|       | 5        | 200               | 198  | 25.91             | 2.48                | 2.51                | 9.06                | 8.97                | 117             |
|       | 6        | 199               | 197  | 25.63             | 2.48                | 2.51                | 9.07                | 8.97                | 100             |
|       | Tablatta | M                 |      | 180 mi            | n                   | 1                   |                     |                     | -               |
|       | Nr       | IVIP<br>[ma]      | [ma] |                   | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] |                 |
| 150   | 1        | 100               | 108  | 0.32              | 2.57                | 2.60                | 9.00                | 9.02                | 01              |
| 100   | 2        | 100               | 198  | 9.36              | 2.57                | 2.00                | 9.00                | 9.02                | 95              |
|       | 3        | 201               | 100  | 9.00              | 2.50                | 2.01                | 0.00                | 0.01                | 01              |
|       | 4        | 201               | 100  | 9.66              | 2.58                | 2.01                | 9.00                | 9.00                | 92              |
|       | 5        | 200               | 100  | 9.51              | 2.50                | 2.01                | 9.00                | 9.07                | 91              |
|       | 6        | 200               | 200  | 9.77              | 2.50                | 2.01                | 9.00                | 9.02                | 87              |
| 400   | 1        | 100               | 107  | 25.43             | 2.00                | 2.00                | 8.98                | 8.98                | 134             |
| 400   | 2        | 100               | 107  | 20.40             | 2.46                | 2.48                | 8 99                | 8.98                | 139             |
|       | 3        | 199               | 197  | 25.53             | 2.40                | 2.40                | 8 99                | 8.98                | 135             |
|       | 4        | 199               | 198  | 25.62             | 2.48                | 2.00                | 8.99                | 8.98                | 126             |
|       | 5        | 200               | 199  | 25.02             | 2.40                | 2.00                | 8 99                | 8 99                | 136             |
|       | 6        | 199               | 197  | 25.38             | 2.45                | 2.00                | 8,99                | 8.98                | 139             |
|       |          | 100               | 101  | 360 mi            | n <u></u>           | <u> </u>            | 5.00                | 0.00                | 100             |
| PD    | Tablette | Ma                | Mw   | PK                |                     |                     |                     |                     | Few             |
| [MPa] | Nr.      | [ma]              | [ma] | [kN1              | h <sub>P</sub> [mm] | h <sub>w</sub> [mm] | d <sub>P</sub> [mm] | d <sub>w</sub> [mm] | [N]             |
| 150   | 1        | 200               | 200  | 9.29              | 2.60                | 2.65                | 8.99                | 9.05                | 102             |
|       | 2        | 200               | 199  | 9.32              | 2.61                | 2.66                | 8.99                | 9.05                | 90              |
|       | 3        | 200               | 200  | 9.32              | 2.61                | 2.66                | 8.99                | 9.04                | 94              |
|       | 4        | 201               | 201  | 9.80              | 2.63                | 2.68                | 8.99                | 9.04                | 81              |
|       | 5        | 201               | 200  | 9.55              | 2.62                | 2.66                | 8.99                | 9.04                | 90              |
|       | 6        | 200               | 200  | 9.43              | 2.61                | 2.67                | 9.00                | 9.04                | 98              |
|       |          |                   |      | -                 |                     |                     |                     |                     |                 |

| 400                              | 1                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.36                                                                                                                                                                                                                               | 2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.50                                                                                                                                                           | 8.98                                                                                                                                                                                                                                                                                                                                                                                                 | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117                                                                                                                                                                                                                          |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | 2                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.31                                                                                                                                                                                                                               | 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.51                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106                                                                                                                                                                                                                          |
|                                  | 3                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 199                                                                                                                                                                                                                                                                                                                                     | 25.69                                                                                                                                                                                                                               | 2 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 53                                                                                                                                                           | 8 99                                                                                                                                                                                                                                                                                                                                                                                                 | 8 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                          |
|                                  | 4                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 24.84                                                                                                                                                                                                                               | 2 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 4 9                                                                                                                                                          | 8.98                                                                                                                                                                                                                                                                                                                                                                                                 | 8 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114                                                                                                                                                                                                                          |
|                                  | 5                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                     | 25.53                                                                                                                                                                                                                               | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.40                                                                                                                                                           | 8.08                                                                                                                                                                                                                                                                                                                                                                                                 | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                                                                                          |
|                                  | 6                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                     | 25.00                                                                                                                                                                                                                               | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.54                                                                                                                                                           | 8.08                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                          |
|                                  | 0                                                                                                                                                                                                                                                                                                                                          | 133                                                                                                                                    | 190                                                                                                                                                                                                                                                                                                                                     | 720 mi                                                                                                                                                                                                                              | n 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.52                                                                                                                                                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                 | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                          |
| PD                               | Tablatta                                                                                                                                                                                                                                                                                                                                   | м                                                                                                                                      | м                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      | г – т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                            |
| FD<br>[MDol                      | I ablette                                                                                                                                                                                                                                                                                                                                  | IVIP<br>[ma]                                                                                                                           | IWIW<br>[ma]                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     | h <sub>P</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h <sub>w</sub> [mm]                                                                                                                                            | d <sub>P</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                  | d <sub>w</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              |
|                                  | 1                                                                                                                                                                                                                                                                                                                                          | [11]                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.62                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                          |
| 150                              | 1                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 199                                                                                                                                                                                                                                                                                                                                     | 9.00                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.02                                                                                                                                                           | 9.00                                                                                                                                                                                                                                                                                                                                                                                                 | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                          |
|                                  | 2                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 199                                                                                                                                                                                                                                                                                                                                     | 9.78                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.63                                                                                                                                                           | 9.01                                                                                                                                                                                                                                                                                                                                                                                                 | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102                                                                                                                                                                                                                          |
|                                  | 3                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 197                                                                                                                                                                                                                                                                                                                                     | 9.31                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.63                                                                                                                                                           | 9.01                                                                                                                                                                                                                                                                                                                                                                                                 | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97                                                                                                                                                                                                                           |
|                                  | 4                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 9.46                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.62                                                                                                                                                           | 9.00                                                                                                                                                                                                                                                                                                                                                                                                 | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                                                                                                                                                                                                                           |
|                                  | 5                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 9.55                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.63                                                                                                                                                           | 9.01                                                                                                                                                                                                                                                                                                                                                                                                 | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86                                                                                                                                                                                                                           |
|                                  | 6                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                     | 9.85                                                                                                                                                                                                                                | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.63                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                                                                                                                                                                                           |
| 400                              | 1                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 199                                                                                                                                                                                                                                                                                                                                     | 26.18                                                                                                                                                                                                                               | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.54                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112                                                                                                                                                                                                                          |
|                                  | 2                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.58                                                                                                                                                                                                                               | 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.51                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132                                                                                                                                                                                                                          |
|                                  | 3                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.67                                                                                                                                                                                                                               | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.52                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133                                                                                                                                                                                                                          |
|                                  | 4                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 199                                                                                                                                                                                                                                                                                                                                     | 25.70                                                                                                                                                                                                                               | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.51                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 139                                                                                                                                                                                                                          |
|                                  | 5                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.50                                                                                                                                                                                                                               | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.51                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133                                                                                                                                                                                                                          |
|                                  | 6                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.63                                                                                                                                                                                                                               | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.53                                                                                                                                                           | 9.00                                                                                                                                                                                                                                                                                                                                                                                                 | 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118                                                                                                                                                                                                                          |
|                                  |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | 1440 m                                                                                                                                                                                                                              | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                              |
| PD                               | Tablette                                                                                                                                                                                                                                                                                                                                   | M⊳                                                                                                                                     | Mw                                                                                                                                                                                                                                                                                                                                      | PKmax                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Few                                                                                                                                                                                                                          |
| [MPa]                            | Nr.                                                                                                                                                                                                                                                                                                                                        | [ma]                                                                                                                                   | [ma]                                                                                                                                                                                                                                                                                                                                    | [kN]                                                                                                                                                                                                                                | h <sub>P</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h <sub>w</sub> [mm]                                                                                                                                            | d <sub>P</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                  | d <sub>w</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [N]                                                                                                                                                                                                                          |
| 150                              | 1                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 9.38                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.60                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99                                                                                                                                                                                                                           |
|                                  | 2                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 9 44                                                                                                                                                                                                                                | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 60                                                                                                                                                           | 8 99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106                                                                                                                                                                                                                          |
|                                  | 3                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 9.61                                                                                                                                                                                                                                | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.61                                                                                                                                                           | 8.98                                                                                                                                                                                                                                                                                                                                                                                                 | 8.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107                                                                                                                                                                                                                          |
|                                  | 4                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                     | 9.80                                                                                                                                                                                                                                | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.01                                                                                                                                                           | 8 99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95                                                                                                                                                                                                                           |
|                                  | 5                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                                                                                                                                                | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.01                                                                                                                                                           | 8.00                                                                                                                                                                                                                                                                                                                                                                                                 | 8.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                                                                                                                                                                                                           |
|                                  | 5                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 190                                                                                                                                                                                                                                                                                                                                     | 9.00                                                                                                                                                                                                                                | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.00                                                                                                                                                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105                                                                                                                                                                                                                          |
| 400                              | 0                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 196                                                                                                                                                                                                                                                                                                                                     | 9.43                                                                                                                                                                                                                                | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.01                                                                                                                                                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                 | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105                                                                                                                                                                                                                          |
| 400                              | 1                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 197                                                                                                                                                                                                                                                                                                                                     | 20.30                                                                                                                                                                                                                               | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.51                                                                                                                                                           | 0.97                                                                                                                                                                                                                                                                                                                                                                                                 | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112                                                                                                                                                                                                                          |
|                                  | 2                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.47                                                                                                                                                                                                                               | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.51                                                                                                                                                           | 8.98                                                                                                                                                                                                                                                                                                                                                                                                 | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 136                                                                                                                                                                                                                          |
|                                  | 3                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.89                                                                                                                                                                                                                               | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.52                                                                                                                                                           | 8.98                                                                                                                                                                                                                                                                                                                                                                                                 | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 138                                                                                                                                                                                                                          |
|                                  | 4                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.79                                                                                                                                                                                                                               | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.51                                                                                                                                                           | 8.97                                                                                                                                                                                                                                                                                                                                                                                                 | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133                                                                                                                                                                                                                          |
|                                  | 5                                                                                                                                                                                                                                                                                                                                          | 199                                                                                                                                    | 197                                                                                                                                                                                                                                                                                                                                     | 24.69                                                                                                                                                                                                                               | 2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.49                                                                                                                                                           | 8.98                                                                                                                                                                                                                                                                                                                                                                                                 | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 137                                                                                                                                                                                                                          |
|                                  | 6                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 25.67                                                                                                                                                                                                                               | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.52                                                                                                                                                           | 8.98                                                                                                                                                                                                                                                                                                                                                                                                 | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126                                                                                                                                                                                                                          |
|                                  | -                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | 2880 m                                                                                                                                                                                                                              | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                              |
| PD                               | Tablette                                                                                                                                                                                                                                                                                                                                   | MP                                                                                                                                     | Mw                                                                                                                                                                                                                                                                                                                                      | PKmax                                                                                                                                                                                                                               | h <sub>a</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h <sub>w</sub> [mm]                                                                                                                                            | d <sub>a</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                  | d[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F <sub>BW</sub>                                                                                                                                                                                                              |
| [MPa]                            | Nr.                                                                                                                                                                                                                                                                                                                                        | [mg]                                                                                                                                   | [mg]                                                                                                                                                                                                                                                                                                                                    | [kN]                                                                                                                                                                                                                                | ub [uuu]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                | ap [iiiii]                                                                                                                                                                                                                                                                                                                                                                                           | aw[iiiii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [N]                                                                                                                                                                                                                          |
| 150                              | 1                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 9.83                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.61                                                                                                                                                           | 8.99                                                                                                                                                                                                                                                                                                                                                                                                 | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                                                                                                                                                                                                                           |
|                                  | 2                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                    | 199                                                                                                                                                                                                                                                                                                                                     | 9.70                                                                                                                                                                                                                                | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.61                                                                                                                                                           | 8.98                                                                                                                                                                                                                                                                                                                                                                                                 | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82                                                                                                                                                                                                                           |
|                                  | 3                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 9.55                                                                                                                                                                                                                                | 2 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03                                                                                                                                                                                                                           |
|                                  | 4                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                     | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.62                                                                                                                                                           | 8.97                                                                                                                                                                                                                                                                                                                                                                                                 | 8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55                                                                                                                                                                                                                           |
|                                  | -                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                    | 198                                                                                                                                                                                                                                                                                                                                     | 9.70                                                                                                                                                                                                                                | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.62                                                                                                                                                           | 8.97<br>8.99                                                                                                                                                                                                                                                                                                                                                                                         | 8.94<br>8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78                                                                                                                                                                                                                           |
|                                  | 5                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                    | 198<br>198                                                                                                                                                                                                                                                                                                                              | 9.70<br>9.75                                                                                                                                                                                                                        | 2.58<br>2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.62<br>2.62<br>2.62                                                                                                                                           | 8.97<br>8.99<br>8.99                                                                                                                                                                                                                                                                                                                                                                                 | 8.94<br>8.94<br>8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78<br>79                                                                                                                                                                                                                     |
|                                  | 5<br>6                                                                                                                                                                                                                                                                                                                                     | 201<br>201<br>199                                                                                                                      | 198<br>198<br>198                                                                                                                                                                                                                                                                                                                       | 9.70<br>9.75<br>9.36                                                                                                                                                                                                                | 2.58<br>2.58<br>2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.62<br>2.62<br>2.62<br>2.61                                                                                                                                   | 8.97<br>8.99<br>8.99<br>8.99                                                                                                                                                                                                                                                                                                                                                                         | 8.94<br>8.94<br>8.94<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80                                                                                                                                                                                                               |
| 400                              | 6<br>1                                                                                                                                                                                                                                                                                                                                     | 201<br>199<br>199                                                                                                                      | 198<br>198<br>198<br>197                                                                                                                                                                                                                                                                                                                | 9.70<br>9.75<br>9.36<br>25.16                                                                                                                                                                                                       | 2.58<br>2.58<br>2.57<br>2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.62<br>2.62<br>2.62<br>2.61<br>2.52                                                                                                                           | 8.97<br>8.99<br>8.99<br>8.99<br>8.99<br>8.96                                                                                                                                                                                                                                                                                                                                                         | 8.94<br>8.94<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78<br>79<br>80<br>111                                                                                                                                                                                                        |
| 400                              | 5<br>6<br>1<br>2                                                                                                                                                                                                                                                                                                                           | 201<br>201<br>199<br>199<br>199                                                                                                        | 198<br>198<br>198<br>197<br>198                                                                                                                                                                                                                                                                                                         | 9.70<br>9.75<br>9.36<br>25.16<br>25.40                                                                                                                                                                                              | 2.58<br>2.58<br>2.57<br>2.48<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.62<br>2.62<br>2.62<br>2.61<br>2.52<br>2.53                                                                                                                   | 8.97<br>8.99<br>8.99<br>8.99<br>8.99<br>8.96<br>8.97                                                                                                                                                                                                                                                                                                                                                 | 8.94<br>8.94<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78<br>79<br>80<br>111<br>84                                                                                                                                                                                                  |
| 400                              | 5<br>6<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                      | 201<br>199<br>199<br>199<br>201                                                                                                        | 198<br>198<br>198<br>197<br>198<br>200                                                                                                                                                                                                                                                                                                  | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09                                                                                                                                                                                     | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55                                                                                                                   | 8.97<br>8.99<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95                                                                                                                                                                                                                                                                                                                                                 | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78<br>79<br>80<br>111<br>84<br>110                                                                                                                                                                                           |
| 400                              | 5<br>6<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                 | 201<br>199<br>199<br>199<br>201<br>200                                                                                                 | 198<br>198<br>198<br>197<br>198<br>200<br>198                                                                                                                                                                                                                                                                                           | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55                                                                                                                                                                            | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.51<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53                                                                                                           | 8.97<br>8.99<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95                                                                                                                                                                                                                                                                                                                                 | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78<br>79<br>80<br>111<br>84<br>110<br>95                                                                                                                                                                                     |
| 400                              |                                                                                                                                                                                                                                                                                                                                            | 201<br>199<br>199<br>201<br>200<br>200                                                                                                 | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197                                                                                                                                                                                                                                                                                    | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24                                                                                                                                                                   | 2.58<br>2.58<br>2.57<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.55<br>2.53<br>2.55                                                                                           | 8.97<br>8.99<br>8.99<br>8.96<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95                                                                                                                                                                                                                                                                                                                         | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110                                                                                                                                                                              |
| 400                              |                                                                                                                                                                                                                                                                                                                                            | 201<br>199<br>199<br>201<br>200<br>200<br>199                                                                                          | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197                                                                                                                                                                                                                                                                             | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11                                                                                                                                                          | 2.58<br>2.58<br>2.57<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.55<br>2.53<br>2.52<br>2.52                                                                                   | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96                                                                                                                                                                                                                                                                                                                 | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106                                                                                                                                                                       |
| 400                              | $ \begin{array}{r} 5\\ 6\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ \end{array} $                                                                                                                                                                                                                                                                           | 201<br>199<br>199<br>201<br>200<br>200<br>199                                                                                          | 198           198           198           197           198           200           198           197           198           197           198           197           197                                                                                                                                                             | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b>                                                                                                                                         | 2.58<br>2.58<br>2.57<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.55<br>2.53<br>2.52<br>2.52                                                                                   | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96                                                                                                                                                                                                                                                                                                                 | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106                                                                                                                                                                       |
| 400<br>PD                        | 5<br>6<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                       | 201<br>199<br>199<br>201<br>200<br>200<br>199                                                                                          | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197                                                                                                                                                                                                                                                                             | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b>                                                                                                                                         | 2.58<br>2.58<br>2.57<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.48<br>in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.55<br>2.53<br>2.52<br>2.52                                                                           | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96                                                                                                                                                                                                                                                                                                                 | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106                                                                                                                                                                       |
| 400<br>PD                        | 5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr                                                                                                                                                                                                                                                                              | 201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub>                                                                        | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br>197                                                                                                                                                                                                                                                                      | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN1</b>                                                                                              | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.52<br>2.52<br>2.52                                                                                   | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d</b> <sub>P</sub> [mm]                                                                                                                                                                                                                                                                                           | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106<br><b>Г</b> вw                                                                                                                                                        |
| 400<br>PD<br>[MPa]<br>150        | 5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1                                                                                                                                                                                                                                                                        | 201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201                                                         | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br>197<br><b>M</b> w<br><b>[mg]</b><br>199                                                                                                                                                                                                                                  | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34                                                                                      | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.52<br>2.52<br><b>h</b> w [mm]<br>2.62                                                                | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00                                                                                                                                                                                                                                                                                    | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79                                                                                                                                    |
| 400<br>PD<br>[MPa]<br>150        | 3           6           1           2           3           4           5           6           Tablette Nr.           1           2                                                                                                                                                                                                       | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201<br>200                                           | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br><b>M</b> w<br><b>[mg]</b><br>199<br>199                                                                                                                                                                                                                                  | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34<br>9.41                                                                              | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.55<br>2.52<br>2.52<br><b>hw [mm]</b><br>2.62<br>2.63                                                 | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99                                                                                                                                                                                                                                                                            | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>1111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79<br>85                                                                                                                             |
| 400<br>PD<br>[MPa]<br>150        | 3           1           2           3           4           5           6           Tablette           Nr.           1           2           3                                                                                                                                                                                             | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201<br>200<br>200                                    | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br><b>Mw</b><br>[mg]<br>199<br>199<br>108                                                                                                                                                                                                                                   | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br>[kN]<br>9.34<br>9.41<br>9.20                                                                             | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.55<br>2.52<br>2.52<br><b>hw [mm]</b><br>2.62<br>2.63<br>2.62                                         | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01                                                                                                                                                                                                                                                                    | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.99<br>8.99<br>8.99<br>8.99<br>8.99<br>8.99 | 78<br>79<br>80<br>1111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79<br>85<br>85                                                                                                                       |
| 400<br>PD<br>[MPa]<br>150        | 5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                         | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201<br>200<br>200<br>200<br>200                      | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br><b>Mw</b><br>[mg]<br>199<br>199<br>198<br>108                                                                                                                                                                                                                            | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br>[kN]<br>9.34<br>9.41<br>9.29<br>9.21                                                                     | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.55<br>2.52<br>2.52<br>2.52                                                                           | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01                                                                                                                                                                                                                                                                    | 8.94<br>8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79<br>85<br>85                                                                                                                        |
| 400<br>PD<br>[MPa]<br>150        | 5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                    | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201<br>200<br>200<br>200<br>200                      | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br><b>Mw</b><br>[mg]<br>199<br>199<br>198<br>198<br>198                                                                                                                                                                                                                     | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br>[kN]<br>9.34<br>9.41<br>9.29<br>9.31<br>0.22                                                             | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br><b>h</b> <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.55<br>2.52<br>2.52<br>2.52                                                                           | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01<br>9.00                                                                                                                                                                                                                                                    | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79<br>85<br>85<br>85<br>85                                                                                                            |
| 400<br>PD<br>[MPa]<br>150        | 5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5<br>5<br>5                                                                                                                                                                                                                                          | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201<br>200<br>200<br>200<br>200<br>200               | 198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br>197<br><b>Mw</b><br><b>[mg]</b><br>199<br>199<br>198<br>198<br>198                                                                                                                                                                                                              | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34<br>9.41<br>9.29<br>9.31<br>9.38                                                      | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.55<br>2.52<br>2.52<br>2.52                                                                           | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01<br>9.00                                                                                                                                                                                                                                            | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79<br>85<br>85<br>85<br>85<br>85                                                                                                      |
| 400<br>PD<br>[MPa]<br>150        | 5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5<br>5<br>6<br>0                                                                                                                                                                                                                                     | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br>197<br><b>Mw</b><br><b>[mg]</b><br>199<br>199<br>198<br>198<br>198<br>198                                                                                                                                                                                                | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34<br>9.41<br>9.29<br>9.31<br>9.38<br>9.44                                              | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.62<br>2.62<br>2.61<br>2.52<br>2.53<br>2.55<br>2.53<br>2.52<br>2.52<br>2.52<br>2.52                                                                           | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01<br>9.00<br>9.01<br>9.00                                                                                                                                                                                                                                            | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                          |
| 400<br>PD<br>[MPa]<br>150<br>400 | 5<br>6<br>1<br>2<br>3<br>4<br>5<br>6<br><b>Tablette</b><br>Nr.<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>1                                                                                                                                                                                                                                     | 201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201<br>200<br>200<br>200<br>200<br>200<br>200<br>200        | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br>197<br>197<br>197<br>199<br>199<br>199<br>198<br>198<br>198<br>198                                                                                                                                                                                                       | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34<br>9.34<br>9.31<br>9.38<br>9.44<br>25.99                                             | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.62<br>2.62<br>2.62<br>2.53<br>2.55<br>2.55<br>2.55<br>2.52<br>2.52<br>2.52<br><b>hw [mm]</b><br>2.62<br>2.63<br>2.62<br>2.62<br>2.62<br>2.62<br>2.62<br>2.62 | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01<br>9.00<br>9.01<br>9.00<br>9.01<br>9.00                                                                                                                                                                                                                            | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                    |
| 400<br>PD<br>[MPa]<br>150<br>400 | 5         6         1         2         3         4         5         6         Tablette<br>Nr.         1         2         3         4         5         6         1         2         3         4         5         6         1         2         3         4         5         6         1         2                                    | 201<br>199<br>199<br>201<br>200<br>200<br>199<br>M <sub>P</sub><br>[mg]<br>201<br>200<br>200<br>200<br>200<br>200<br>200<br>200        | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br>197<br>197<br>199<br>199<br>199<br>199<br>198<br>198<br>198<br>198<br>198                                                                                                                                                                                                | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34<br>9.34<br>9.34<br>9.31<br>9.38<br>9.31<br>9.38<br>9.44<br>25.99<br>25.52            | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.62<br>2.62<br>2.62<br>2.53<br>2.55<br>2.55<br>2.55<br>2.52<br>2.52<br><b>hw [mm]</b><br>2.62<br>2.62<br>2.62<br>2.62<br>2.62<br>2.62<br>2.62<br>2.52<br>2.5  | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01<br>9.00<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>9.01                                                                                                                                                                                                            | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> ₅w<br><b>[N]</b><br>79<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                      |
| 400<br>PD<br>[MPa]<br>150<br>400 | 5         6         1         2         3         4         5         6         Tablette<br>Nr.         1         2         3         4         5         6         1         2         3         4         5         6         1         2         3         4         5         6         1         2         3                          | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>200<br>200<br>201<br>200<br>200                                                       | 198         198         197         198         200         198         197         198         197         198         197         198         197         198         199         199         198         198         199         200         198         198         198         198         198         198         198         198 | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34<br>9.34<br>9.41<br>9.29<br>9.31<br>9.38<br>9.44<br>25.99<br>25.52<br>25.47           | 2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br><b>h_F [mm]</b><br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.62<br>2.62<br>2.62<br>2.53<br>2.55<br>2.53<br>2.55<br>2.52<br>2.52<br><b>hw [mm]</b><br>2.62<br>2.62<br>2.62<br>2.62<br>2.62<br>2.62<br>2.62<br>2.52<br>2.5  | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01<br>9.00<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>8.99<br>8.99                                                                                                                                                                                            | 8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>79<br>80<br>1111<br>84<br>110<br>95<br>110<br>106<br><b>F</b> вw<br><b>[N]</b><br>79<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                     |
| 400<br>PD<br>[MPa]<br>150<br>400 | 3         4         5         6         Tablette         Nr.         1         2         3         4         5         6         1         2         3         4         5         6         1         2         3         4         5         6         1         2         3         4                                                   | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                       | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br><b>Mw</b><br><b>[mg]</b><br>199<br>199<br>198<br>198<br>198<br>198<br>198<br>198<br>198                                                                                                                                                                                  | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34<br>9.34<br>9.34<br>9.34<br>9.34<br>9.38<br>9.44<br>25.99<br>25.52<br>25.47<br>25.94  | 2.58<br>2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50 | 2.62<br>2.62<br>2.62<br>2.53<br>2.55<br>2.53<br>2.55<br>2.53<br>2.52<br>2.52<br>2.5                                                                            | 8.97<br>8.99<br>8.99<br>8.96<br>8.97<br>8.95<br>8.95<br>8.95<br>8.95<br>8.96<br><b>d<sub>P</sub> [mm]</b><br>9.00<br>8.99<br>9.01<br>9.00<br>9.01<br>9.00<br>8.99<br>9.01<br>9.00<br>8.99<br>8.99<br>8.99<br>8.99                                                                                                                                                                                    | 8.94<br>8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78         79         80         111         84         110         95         110         106 <b>F</b> вw <b>[N]</b> 79         85         85         85         85         98         107         93         99            |
| 400<br>PD<br>[MPa]<br>150<br>400 | 5         6         1         2         3         4         5         6         Tablette         Nr.         1         2         3         4         5         6         1         2         3         4         5         6         1         2         3         4         5         6         1         2         3         4         5 | 201<br>201<br>199<br>199<br>201<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                       | 198<br>198<br>198<br>197<br>198<br>200<br>198<br>197<br>197<br>197<br>197<br>199<br>199<br>199<br>199<br>198<br>198<br>198<br>198<br>198<br>198                                                                                                                                                                                         | 9.70<br>9.75<br>9.36<br>25.16<br>25.40<br>26.09<br>25.55<br>25.24<br>25.11<br><b>4320 m</b><br><b>PK</b> <sub>max</sub><br><b>[kN]</b><br>9.34<br>9.41<br>9.29<br>9.31<br>9.38<br>9.44<br>25.99<br>25.52<br>25.47<br>25.94<br>25.89 | 2.58<br>2.58<br>2.58<br>2.57<br>2.48<br>2.50<br>2.51<br>2.50<br>2.49<br>2.49<br>2.49<br>2.48<br>in<br>h <sub>P</sub> [mm]<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59<br>2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.62<br>2.62<br>2.62<br>2.53<br>2.55<br>2.53<br>2.55<br>2.53<br>2.52<br>2.52<br>2.5                                                                            | 8.97         8.99         8.99         8.96         8.97         8.95         8.95         8.95         8.96         0         9         9.00         8.99         9.01         9.00         8.99         9.01         9.00         8.99         9.01         9.00         8.99         8.99         8.99         8.99         8.99         8.99         8.99         8.99         8.99         8.99 | 8.94<br>8.94<br>8.94<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93<br>8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78         79         80         111         84         110         95         110         106 <b>F</b> вw <b>[N]</b> 79         85         85         85         85         98         107         93         99         90 |

# 9.4.4 Arzneibuchprüfungen

# 9.4.4.1 Gleichförmigkeit der Masse

# 9.4.4.1.1 Binäre Mischungen aus Maisstärke und Aerosil<sup>®</sup> 200

|              |                        |           | 1 min                  |           |                        |           |
|--------------|------------------------|-----------|------------------------|-----------|------------------------|-----------|
|              | Vers                   | such 1    | Vers                   | uch 2     | Vers                   | uch 3     |
| Tablette Nr. | M <sub>P</sub><br>[mg] | AW<br>[%] | M <sub>P</sub><br>[mg] | AW<br>[%] | M <sub>P</sub><br>[mg] | AW<br>[%] |
| 1            | 148                    | 1.14      | 152                    | 2.77      | 149                    | 0.17      |
| 2            | 153                    | 2.20      | 150                    | 1.42      | 147                    | 1.51      |
| 3            | 158                    | 5.54      | 156                    | 5.48      | 148                    | 0.84      |
| 4            | 153                    | 2.20      | 143                    | 3.31      | 155                    | 3.85      |
| 5            | 152                    | 1.54      | 144                    | 2.64      | 143                    | 4.19      |
| 6            | 150                    | 0.20      | 146                    | 1.28      | 152                    | 1.84      |
| 7            | 154                    | 2.87      | 147                    | 0.61      | 148                    | 0.84      |
| 8            | 153                    | 2.20      | 142                    | 3.99      | 140                    | 6.20      |
| 9            | 151                    | 0.87      | 140                    | 5.34      | 155                    | 3.85      |
| 10           | 153                    | 2.20      | 149                    | 0.74      | 148                    | 0.84      |
| 11           | 150                    | 0.20      | 156                    | 5.48      | 148                    | 0.84      |
| 12           | 151                    | 0.87      | 160                    | 8.18      | 150                    | 0.50      |
| 13           | 149                    | 0.47      | 143                    | 3.31      | 151                    | 1.17      |
| 14           | 153                    | 2.20      | 159                    | 7.51      | 145                    | 2.85      |
| 15           | 146                    | 2.47      | 150                    | 1.42      | 152                    | 1.84      |
| 16           | 152                    | 1.54      | 145                    | 1.96      | 147                    | 1.51      |
| 17           | 134                    | 10.49     | 140                    | 5.34      | 149                    | 0.17      |
| 18           | 142                    | 5.14      | 145                    | 1.96      | 158                    | 5.86      |
| 19           | 146                    | 2.47      | 151                    | 2.10      | 148                    | 0.84      |
| 20           | 146                    | 2.47      | 140                    | 5.34      | 152                    | 1.84      |
|              |                        |           | 10 min                 |           | -                      |           |
|              | Vers                   | such 1    | Vers                   | uch 2     | Vers                   | uch 3     |
| Tablette Nr  | MP                     | AW        | MP                     | AW        | MP                     | AW        |
| Tublette HT. | [mg]                   | [%]       | [mg]                   | [%]       | [mg]                   | [%]       |
| 1            | 182                    | 3.73      | 189                    | 0.34      | 192                    | 1.05      |
| 2            | 187                    | 1.08      | 190                    | 0.18      | 190                    | 0.00      |
| 3            | 191                    | 1.03      | 190                    | 0.18      | 188                    | 1.05      |
| 4            | 190                    | 0.50      | 188                    | 0.87      | 189                    | 0.53      |
| 5            | 191                    | 1.03      | 188                    | 0.87      | 190                    | 0.00      |
| 6            | 190                    | 0.50      | 191                    | 0.18      | 190                    | 0.00      |
| 7            | 190                    | 0.50      | 191                    | 0.71      | 191                    | 0.53      |
| 8            | 190                    | 0.50      | 189                    | 0.34      | 190                    | 0.00      |
| 9            | 188                    | 0.56      | 189                    | 0.34      | 192                    | 1.05      |
| 10           | 189                    | 0.03      | 189                    | 0.34      | 188                    | 1.05      |
| 11           | 189                    | 0.03      | 190                    | 0.18      | 192                    | 1.05      |
| 12           | 190                    | 0.50      | 191                    | 0.71      | 191                    | 0.53      |
| 13           | 190                    | 0.50      | 190                    | 0.18      | 189                    | 0.53      |
| 14           | 189                    | 0.03      | 190                    | 0.18      | 190                    | 0.00      |
| 15           | 188                    | 0.56      | 189                    | 0.34      | 189                    | 0.53      |
| 16           | 190                    | 0.50      | 191                    | 0.71      | 191                    | 0.53      |
| 17           | 190                    | 0.50      | 190                    | 0.18      | 190                    | 0.00      |
| 18           | 189                    | 0.03      | 190                    | 0.18      | 190                    | 0.00      |
| 19           | 189                    | 0.03      | 189                    | 0.34      | 189                    | 0.53      |
| 20           | 189                    | 0.03      | 189                    | 0.34      | 189                    | 0.53      |

|              |                |       | 30 min             |       |              |       |
|--------------|----------------|-------|--------------------|-------|--------------|-------|
|              | Vers           | uch 1 | Versi              | uch 2 | Vers         | uch 3 |
| Tablatta Nr  | MP             | AW    | MP                 | AW    | Mp           | AW    |
| Tablette NT. | [mg]           | [%]   | [mg]               | [%]   | [mg]         | [%]   |
| 1            | 193            | 2.70  | 200                | 0.88  | 199          | 0.05  |
| 2            | 198            | 0.18  | 199                | 0.38  | 199          | 0.05  |
| 3            | 200            | 0.83  | 198                | 0.13  | 198          | 0.45  |
| 4            | 202            | 1.84  | 198                | 0.13  | 198          | 0.45  |
| 5            | 202            | 1.84  | 195                | 1.64  | 199          | 0.05  |
| 6            | 201            | 1.34  | 199                | 0.38  | 200          | 0.55  |
| 7            | 199            | 0.33  | 199                | 0.38  | 199          | 0.05  |
| 8            | 198            | 0.18  | 198                | 0.13  | 199          | 0.05  |
| 9            | 198            | 0.18  | 199                | 0.38  | 198          | 0.00  |
| 10           | 100            | 0.10  | 100                | 0.00  | 100          | 0.40  |
| 10           | 100            | 0.10  | 200                | 0.10  | 200          | 0.00  |
| 12           | 100            | 0.00  | 100                | 0.00  | 200          | 0.55  |
| 12           | 199            | 0.55  | 199                | 0.30  | 200          | 0.55  |
| 13           | 197            | 0.00  | 190                | 0.13  | 199          | 0.05  |
| 14           | 198            | 0.18  | 199                | 0.38  | 198          | 0.45  |
| 15           | 199            | 0.33  | 198                | 0.13  | 198          | 0.45  |
| 16           | 199            | 0.33  | 195                | 1.64  | 199          | 0.05  |
| 1/           | 199            | 0.33  | 198                | 0.13  | 200          | 0.55  |
| 18           | 196            | 1.18  | 198                | 0.13  | 199          | 0.05  |
| 19           | 198            | 0.18  | 198                | 0.13  | 199          | 0.05  |
| 20           | 196            | 1.18  | 199                | 0.38  | 198          | 0.45  |
|              |                |       | 60 min             |       |              |       |
|              | Vers           | uch 1 | Vers               | uch 2 | Vers         | uch 3 |
| Tablette Nr  | M <sub>P</sub> | AW    | MP                 | AW    | MP           | AW    |
| Tablette MI. | [mg]           | [%]   | [mg]               | [%]   | [mg]         | [%]   |
| 1            | 197            | 0.69  | 196                | 0.26  | 197          | 0.77  |
| 2            | 198            | 1.20  | 196                | 0.26  | 195          | 0.26  |
| 3            | 199            | 1.71  | 195                | 0.26  | 195          | 0.26  |
| 4            | 197            | 0.69  | 193                | 1.28  | 196          | 0.26  |
| 5            | 200            | 2.22  | 195                | 0.26  | 194          | 0.77  |
| 6            | 198            | 1.20  | 195                | 0.26  | 195          | 0.26  |
| 7            | 197            | 0.69  | 194                | 0.77  | 195          | 0.26  |
| 8            | 195            | 0.33  | 196                | 0.26  | 196          | 0.26  |
| 9            | 195            | 0.33  | 197                | 0.77  | 195          | 0.26  |
| 10           | 100            | 0.00  | 106                | 0.26  | 195          | 0.26  |
| 10           | 104            | 0.04  | 10/                | 0.20  | 195          | 0.20  |
| 12           | 107            | 0.69  | 104                | 0.26  | 105          | 0.20  |
| 12           | 102            | 1.05  | 105                | 0.20  | 106          | 0.20  |
| 13           | 193            | 1.33  | 195                | 0.20  | 190          | 0.20  |
| 14           | 192            | 1.07  | 190                | 0.20  | 190          | 0.20  |
| 10           | 193            | 1.35  | 190                | 0.20  | 190          | 0.20  |
| 10           | 194            | 0.04  | 190                | 0.20  | 190          | 0.20  |
| 17           | 194            | 0.84  | 197                | 0.77  | 196          | 0.26  |
| 18           | 195            | 0.33  | 195                | 0.26  | 196          | 0.26  |
| 19           | 195            | 0.33  | 197                | 0.77  | 196          | 0.26  |
| 20           | 196            | 0.18  | 195                | 0.26  | 194          | 0.77  |
|              |                |       | 180 min            |       |              |       |
|              | Vers           | uch 1 | Versi              | uch 2 | Vers         | uch 3 |
| Tablette Nr. | _ <b>M</b> ₽   | AW    | _ M <sub>P</sub> _ | AW    | _ <b>M</b> P | AW    |
|              | [mg]           | [%]   | [mg]               | [%]   | [mg]         | [%]   |
| 1            | 200            | 0.82  | 202                | 0.22  | 203          | 0.67  |
| 2            | 203            | 0.67  | 201                | 0.27  | 201          | 0.32  |
| 3            | 203            | 0.67  | 201                | 0.27  | 201          | 0.32  |
| 4            | 205            | 1.66  | 202                | 0.22  | 201          | 0.32  |
| 5            | 204            | 1.17  | 201                | 0.27  | 202          | 0.17  |
| 6            | 203            | 0.67  | 202                | 0.22  | 202          | 0.17  |
| 7            | 202            | 0.17  | 202                | 0.22  | 202          | 0.17  |
| 8            | 201            | 0.32  | 201                | 0.27  | 202          | 0.17  |
| 9            | 201            | 0.32  | 201                | 0.27  | 202          | 0.17  |
| 10           | 200            | 0.82  | 201                | 0.27  | 202          | 0.17  |
| 11           | 201            | 0.32  | 201                | 0.27  | 203          | 0.67  |
| 12           | 201            | 0.32  | 202                | 0.22  | 202          | 0.17  |
| 13           | 201            | 0.32  | 202                | 0.22  | 201          | 0.32  |
| 14           | 200            | 0.82  | 202                | 0.22  | 201          | 0.32  |
| 15           | 201            | 0.32  | 201                | 0.27  | 201          | 0.32  |
| 16           | 201            | 0.32  | 203                | 0.72  | 202          | 0.17  |
| 17           | 203            | 0.67  | 202                | 0.22  | 202          | 0.17  |
| 18           | 200            | 0.82  | 202                | 0.22  | 201          | 0.32  |
| 19           | 200            | 0.32  | 201                | 0.22  | 201          | 0.32  |
| 20           | 201            | 0.02  | 201                | 0.27  | 201          | 0.32  |
| 20           | 202            | 0.17  | 201                | 0.21  | 201          | 0.02  |

|              |      |       | 360 min     |        |      |       |
|--------------|------|-------|-------------|--------|------|-------|
|              | Vers | uch 1 | Vers        | such 2 | Vers | uch 3 |
| Tablatta Nr  | MP   | AW    | Mp          | AW     | Mp   | AW    |
| Tablelle Nr. | [mg] | [%]   | [mg]        | [%]    | [mg] | [%]   |
| 1            | 202  | 0.47  | 203         | 1.12   | 203  | 1.12  |
| 2            | 202  | 0.47  | 202         | 0.62   | 202  | 0.62  |
| 3            | 202  | 0.47  | 201         | 0.12   | 201  | 0.12  |
| 4            | 202  | 0.52  | 200         | 0.12   | 200  | 0.12  |
|              | 200  | 0.52  | 100         | 0.07   | 200  | 0.37  |
| 5            | 200  | 0.32  | 199         | 0.07   | 200  | 0.37  |
| 6            | 202  | 0.47  | 202         | 0.62   | 203  | 1.12  |
| 7            | 203  | 0.97  | 202         | 0.62   | 202  | 0.62  |
| 8            | 200  | 0.52  | 200         | 0.37   | 200  | 0.37  |
| 9            | 200  | 0.52  | 200         | 0.37   | 200  | 0.37  |
| 10           | 201  | 0.02  | 200         | 0.37   | 199  | 0.87  |
| 11           | 203  | 0.97  | 202         | 0.62   | 201  | 0.12  |
| 12           | 200  | 0.07  | 202         | 0.62   | 201  | 0.12  |
| 12           | 201  | 0.02  | 202         | 0.02   | 201  | 0.12  |
| 13           | 201  | 0.02  | 201         | 0.12   | 199  | 0.87  |
| 14           | 201  | 0.02  | 200         | 0.37   | 200  | 0.37  |
| 15           | 201  | 0.02  | 200         | 0.37   | 201  | 0.12  |
| 16           | 201  | 0.02  | 200         | 0.37   | 202  | 0.62  |
| 17           | 201  | 0.02  | 201         | 0.12   | 201  | 0.12  |
| 18           | 201  | 0.02  | 201         | 0.12   | 201  | 0.12  |
| 10           | 200  | 0.52  | 100         | 0.12   | 200  | 0.37  |
| 19           | 200  | 0.02  | 199         | 0.07   | 200  | 0.37  |
| 20           | 199  | 1.02  | 200         | 0.37   | 199  | 0.87  |
|              |      |       | 720 min     |        |      |       |
|              | Vers | uch 1 | Vers        | such 2 | Vers | uch 3 |
| Tablatta Nr  | MP   | AW    | MP          | AW     | MP   | AW    |
| Tablelle Nr. | [mg] | [%]   | [mg]        | [%]    | [mg] | [%]   |
| 1            | 199  | 0.56  | 198         | 0.13   | 198  | 0.28  |
| 2            | 108  | 0.05  | 108         | 0.13   | 108  | 0.28  |
| 2            | 100  | 0.05  | 100         | 0.13   | 107  | 0.20  |
| 3            | 190  | 0.05  | 190         | 0.13   | 197  | 0.23  |
| 4            | 198  | 0.05  | 19 <i>1</i> | 0.38   | 197  | 0.23  |
| 5            | 197  | 0.45  | 197         | 0.38   | 197  | 0.23  |
| 6            | 198  | 0.05  | 198         | 0.13   | 197  | 0.23  |
| 7            | 200  | 1.06  | 198         | 0.13   | 197  | 0.23  |
| 8            | 197  | 0.45  | 198         | 0.13   | 198  | 0.28  |
| G G          | 108  | 0.05  | 108         | 0.13   | 108  | 0.28  |
| 10           | 100  | 0.00  | 100         | 0.10   | 100  | 0.20  |
| 10           | 199  | 0.00  | 190         | 0.13   | 190  | 0.20  |
| 11           | 199  | 0.56  | 197         | 0.38   | 198  | 0.28  |
| 12           | 197  | 0.45  | 202         | 2.15   | 198  | 0.28  |
| 13           | 197  | 0.45  | 198         | 0.13   | 197  | 0.23  |
| 14           | 198  | 0.05  | 197         | 0.38   | 197  | 0.23  |
| 15           | 197  | 0 45  | 197         | 0 38   | 197  | 0.23  |
| 16           | 108  | 0.05  | 108         | 0.00   | 106  | 0.73  |
| 17           | 100  | 0.05  | 106         | 0.10   | 107  | 0.73  |
| 17           | 190  | 0.05  | 190         | 0.00   | 197  | 0.23  |
| 18           | 198  | 0.05  | 199         | 0.63   | 197  | 0.23  |
| 19           | 197  | 0.45  | 196         | 0.88   | 198  | 0.28  |
| 20           | 197  | 0.45  | 197         | 0.38   | 199  | 0.79  |
|              |      |       | 1440 min    |        |      |       |
|              | Vers | uch 1 | Vers        | such 2 | Vers | uch 3 |
|              | M⊳   | AW    | Mp          | AW     | M⊳   | AW    |
| Tablette Nr. | [ma] | [%]   | [ma]        | [%]    | Imal | [%]   |
| 1            | 102  | 0.39  | 102         | 1 00   | 102  | 0.81  |
|              | 102  | 0.00  | 102         | 1.00   | 101  | 0.01  |
| 2            | 193  | 0.92  | 192         | 1.00   | 191  | 0.29  |
| 3            | 193  | 0.92  | 191         | 0.47   | 190  | 0.24  |
| 4            | 193  | 0.92  | 191         | 0.47   | 190  | 0.24  |
| 5            | 193  | 0.92  | 189         | 0.58   | 191  | 0.29  |
| 6            | 192  | 0.39  | 189         | 0.58   | 190  | 0.24  |
| 7            | 192  | 0.39  | 190         | 0.05   | 190  | 0.24  |
| 8            | 190  | 0.65  | 190         | 0.05   | 191  | 0.29  |
| 0            | 100  | 0.00  | 100         | 0.00   | 100  | 0.20  |
| 9            | 190  | 0.00  | 190         | 0.05   | 190  | 0.24  |
| 10           | 190  | 0.65  | 190         | 0.05   | 191  | 0.29  |
| 11           | 190  | 0.65  | 190         | 0.05   | 191  | 0.29  |
| 12           | 190  | 0.65  | 190         | 0.05   | 191  | 0.29  |
| 13           | 189  | 1.18  | 190         | 0.05   | 190  | 0.24  |
| 14           | 190  | 0.65  | 189         | 0.58   | 190  | 0.24  |
| 15           | 190  | 0.65  | 190         | 0.05   | 189  | 0.76  |
| 16           | 101  | 0.00  | 100         | 0.05   | 100  | 0.70  |
| 10           | 191  | 0.13  | 190         | 0.05   | 190  | 0.24  |
| 17           | 188  | 1.70  | 190         | 0.05   | 191  | 0.29  |
| 18           | 191  | 0.13  | 190         | 0.05   | 190  | 0.24  |
| 19           | 190  | 0.65  | 190         | 0.05   | 191  | 0.29  |
| 20           | 189  | 1.18  | 189         | 0.58   | 190  | 0.24  |

|                            |                                 |                              | 2880 min                 |                              |                          |                      |
|----------------------------|---------------------------------|------------------------------|--------------------------|------------------------------|--------------------------|----------------------|
|                            | Versu                           | ich 1                        | Vers                     | uch 2                        | Versu                    | ich 3                |
| Tablette Nr.               | M <sub>P</sub>                  | AW                           | M <sub>P</sub>           | AW                           | M <sub>P</sub>           | AW                   |
| 1                          |                                 | [%]                          | [mg]                     | [%]                          | [mg]                     | [%]                  |
| 1                          | 167                             | 0.45                         | 169                      | 1.05                         | 168                      | 0.36                 |
| 2                          | 169                             | 0.75                         | 167                      | 0.15                         | 167                      | 0.24                 |
| 3                          | 168                             | 0.15                         | 168                      | 0.45                         | 168                      | 0.36                 |
| 4                          | 170                             | 1.34                         | 167                      | 0.15                         | 167                      | 0.24                 |
| 5                          | 167                             | 0.45                         | 166                      | 0.75                         | 167                      | 0.24                 |
| 6                          | 168                             | 0.15                         | 167                      | 0.15                         | 167                      | 0.24                 |
| /                          | 167                             | 0.45                         | 166                      | 0.75                         | 168                      | 0.36                 |
| 8                          | 167                             | 0.45                         | 167                      | 0.15                         | 168                      | 0.36                 |
| 9                          | 169                             | 0.75                         | 167                      | 0.15                         | 168                      | 0.36                 |
| 10                         | 167                             | 0.45                         | 166                      | 0.75                         | 167                      | 0.24                 |
| 11                         | 166                             | 1.04                         | 167                      | 0.15                         | 166                      | 0.84                 |
| 12                         | 168                             | 0.15                         | 168                      | 0.45                         | 167                      | 0.24                 |
| 13                         | 168                             | 0.15                         | 167                      | 0.15                         | 167                      | 0.24                 |
| 14                         | 167                             | 0.45                         | 168                      | 0.45                         | 167                      | 0.24                 |
| 15                         | 168                             | 0.15                         | 167                      | 0.15                         | 167                      | 0.24                 |
| 16                         | 168                             | 0.15                         | 167                      | 0.15                         | 167                      | 0.24                 |
| 17                         | 167                             | 0.45                         | 168                      | 0.45                         | 167                      | 0.24                 |
| 18                         | 169                             | 0.75                         | 168                      | 0.45                         | 168                      | 0.36                 |
| 19                         | 168                             | 0.15                         | 167                      | 0.15                         | 167                      | 0.24                 |
| 20                         | 167                             | 0.45                         | 168                      | 0.45                         | 170                      | 1.55                 |
|                            |                                 |                              | 4320 min                 |                              |                          |                      |
|                            | Versu                           | ich 1                        | Vers                     | uch 2                        | Versu                    | ıch 3                |
| Tablette Nr.               | M <sub>P</sub>                  | AW                           | M <sub>P</sub>           | AW                           | M <sub>P</sub>           | AW                   |
|                            | [mg]                            | [%]                          | [mg]                     | [%]                          | [mg]                     | [%]                  |
| 1                          | 146                             | 10.27                        | 123                      | 3.98                         | 134                      | 1.55                 |
| 2                          | 138                             | 4.23                         | 125                      | 2.42                         | 129                      | 2.24                 |
| 3                          | 148                             | 11.78                        | 138                      | 7.73                         | 137                      | 3.83                 |
| 4                          | 122                             | 7.85                         | 138                      | 7.73                         | 127                      | 3.75                 |
| 5                          | 139                             | 4.98                         | 119                      | 7.10                         | 124                      | 6.03                 |
| 6                          | 134                             | 1.21                         | 138                      | 7.73                         | 124                      | 6.03                 |
| 7                          | 132                             | 0.30                         | 135                      | 5.39                         | 143                      | 8.37                 |
| 8                          | 137                             | 3.47                         | 126                      | 1.64                         | 135                      | 2.31                 |
| 9                          | 129                             | 2.57                         | 124                      | 3.20                         | 139                      | 5.34                 |
| 10                         | 126                             | 4.83                         | 134                      | 4.61                         | 137                      | 3.83                 |
| 11                         | 135                             | 1.96                         | 127                      | 0.86                         | 123                      | 6.78                 |
| 12                         | 121                             | 8.61                         | 123                      | 3.98                         | 123                      | 6.78                 |
| 13                         | 132                             | 0.30                         | 121                      | 5.54                         | 139                      | 5.34                 |
| 14                         | 137                             | 3.47                         | 131                      | 2.26                         | 139                      | 5.34                 |
|                            | 400                             | 0.45                         | 112                      | 12.57                        | 136                      | 3.07                 |
| 15                         | 133                             |                              |                          | 0.04                         | 107                      | 2 75                 |
| 15<br>16                   | 133<br>136                      | 2.72                         | 132                      | 3.04                         | 127                      | 3.75                 |
| 15<br>16<br>17             | 133<br>136<br>132               | 2.72<br>0.30                 | 132<br>121               | 3.04<br>5.54                 | 127                      | 8.30                 |
| 15<br>16<br>17<br>18       | 133<br>136<br>132<br>120        | 2.72<br>0.30<br>9.37         | 132<br>121<br>122        | 3.04<br>5.54<br>4.76         | 127<br>121<br>135        | 8.30<br>2.31         |
| 15<br>16<br>17<br>18<br>19 | 133<br>136<br>132<br>120<br>125 | 2.72<br>0.30<br>9.37<br>5.59 | 132<br>121<br>122<br>136 | 3.04<br>5.54<br>4.76<br>6.17 | 127<br>121<br>135<br>127 | 8.30<br>2.31<br>3.75 |

|                               |      | U     | 1 min          | · •    |      |       |  |  |  |
|-------------------------------|------|-------|----------------|--------|------|-------|--|--|--|
| Versuch 1 Versuch 2 Versuch 3 |      |       |                |        |      |       |  |  |  |
| Tablette Nr                   | MР   | AW    | MP             | AW     | MP   | AW    |  |  |  |
| Tablette INT.                 | [mg] | [%]   | [mg]           | [%]    | [mg] | [%]   |  |  |  |
| 1                             | 181  | 2.75  | 178            | 1.66   | 174  | 0.80  |  |  |  |
| 2                             | 174  | 1.22  | 175            | 0.06   | 174  | 0.80  |  |  |  |
| 3                             | 176  | 0.09  | 175            | 0.06   | 176  | 0.34  |  |  |  |
| 4                             | 179  | 1.62  | 175            | 0.06   | 176  | 0.34  |  |  |  |
| 5                             | 177  | 0.48  | 176            | 0.51   | 176  | 0.34  |  |  |  |
| 6                             | 174  | 1.22  | 175            | 0.06   | 175  | 0.23  |  |  |  |
| 7                             | 178  | 1.05  | 177            | 1.09   | 174  | 0.80  |  |  |  |
| 8                             | 176  | 0.09  | 175            | 0.06   | 175  | 0.23  |  |  |  |
| 9                             | 175  | 0.65  | 176            | 0.51   | 174  | 0.80  |  |  |  |
| 10                            | 175  | 0.65  | 174            | 0.63   | 175  | 0.23  |  |  |  |
| 11                            | 175  | 0.65  | 175            | 0.06   | 176  | 0.34  |  |  |  |
| 12                            | 175  | 0.65  | 174            | 0.63   | 176  | 0.34  |  |  |  |
| 13                            | 175  | 0.65  | 175            | 0.06   | 176  | 0.34  |  |  |  |
| 14                            | 177  | 0.48  | 175            | 0.06   | 176  | 0.34  |  |  |  |
| 15                            | 177  | 0.48  | 175            | 0.06   | 174  | 0.80  |  |  |  |
| 16                            | 176  | 0.09  | 174            | 0.63   | 176  | 0.34  |  |  |  |
| 17                            | 176  | 0.09  | 172            | 1.77   | 176  | 0.34  |  |  |  |
| 18                            | 177  | 0.48  | 174            | 0.63   | 175  | 0.23  |  |  |  |
| 19                            | 177  | 0.48  | 174            | 0.63   | 177  | 0.91  |  |  |  |
| 20                            | 173  | 1.79  | 178            | 1.66   | 177  | 0.91  |  |  |  |
|                               |      |       | 10 min         |        |      |       |  |  |  |
|                               | Vers | uch 1 | Vers           | such 2 | Vers | uch 3 |  |  |  |
| Tablette Nr                   | MP   | AW    | M <sub>P</sub> | AW     | MP   | AW    |  |  |  |
| Tublette III.                 | [mg] | [%]   | [mg]           | [%]    | [mg] | [%]   |  |  |  |
| 1                             | 192  | 0.34  | 192            | 0.18   | 192  | 0.29  |  |  |  |
| 2                             | 192  | 0.34  | 191            | 0.34   | 192  | 0.29  |  |  |  |
| 3                             | 191  | 0.18  | 192            | 0.18   | 192  | 0.29  |  |  |  |
| 4                             | 191  | 0.18  | 189            | 1.38   | 192  | 0.29  |  |  |  |
| 5                             | 190  | 0.71  | 191            | 0.34   | 190  | 0.76  |  |  |  |
| 6                             | 191  | 0.18  | 191            | 0.34   | 191  | 0.24  |  |  |  |
| 7                             | 192  | 0.34  | 192            | 0.18   | 192  | 0.29  |  |  |  |
| 8                             | 192  | 0.34  | 192            | 0.18   | 190  | 0.76  |  |  |  |
| 9                             | 191  | 0.18  | 193            | 0.70   | 192  | 0.29  |  |  |  |
| 10                            | 191  | 0.18  | 193            | 0.70   | 191  | 0.24  |  |  |  |
| 11                            | 192  | 0.34  | 192            | 0.18   | 192  | 0.29  |  |  |  |
| 12                            | 192  | 0.34  | 191            | 0.34   | 191  | 0.24  |  |  |  |
| 13                            | 191  | 0.18  | 192            | 0.18   | 192  | 0.29  |  |  |  |
| 14                            | 191  | 0.18  | 191            | 0.34   | 192  | 0.29  |  |  |  |
| 15                            | 192  | 0.34  | 193            | 0.70   | 192  | 0.29  |  |  |  |
| 16                            | 192  | 0.34  | 191            | 0.34   | 191  | 0.24  |  |  |  |
| 17                            | 191  | 0.18  | 193            | 0.70   | 191  | 0.24  |  |  |  |
| 18                            | 190  | 0.71  | 191            | 0.34   | 192  | 0.29  |  |  |  |
| 19                            | 192  | 0.34  | 192            | 0.18   | 190  | 0.76  |  |  |  |
| 20                            | 191  | 0.18  | 191            | 0.34   | 192  | 0.29  |  |  |  |
|                               |      |       | 30 min         |        |      |       |  |  |  |
|                               | Vers | uch 1 | Vers           | such 2 | Vers | uch 3 |  |  |  |
| Tablette Nr                   | MP   | AW    | MP             | AW     | MP   | AW    |  |  |  |
|                               | [mg] | [%]   | [mg]           | [%]    | [mg] | [%]   |  |  |  |
| 1                             | 194  | 0.08  | 194            | 0.10   | 194  | 0.05  |  |  |  |
| 2                             | 195  | 0.44  | 194            | 0.10   | 193  | 0.46  |  |  |  |
| 3                             | 193  | 0.59  | 193            | 0.41   | 193  | 0.46  |  |  |  |
| 4                             | 195  | 0.44  | 194            | 0.10   | 194  | 0.05  |  |  |  |
| 5                             | 194  | 0.08  | 193            | 0.41   | 192  | 0.98  |  |  |  |
| 6                             | 194  | 0.08  | 194            | 0.10   | 194  | 0.05  |  |  |  |
| 7                             | 194  | 0.08  | 194            | 0.10   | 194  | 0.05  |  |  |  |
| 8                             | 194  | 0.08  | 194            | 0.10   | 194  | 0.05  |  |  |  |
| 9                             | 196  | 0.95  | 194            | 0.10   | 193  | 0.46  |  |  |  |
| 10                            | 194  | 0.08  | 194            | 0.10   | 194  | 0.05  |  |  |  |
| 11                            | 194  | 0.08  | 195            | 0.62   | 194  | 0.05  |  |  |  |
| 12                            | 193  | 0.59  | 194            | 0.10   | 193  | 0.46  |  |  |  |
| 13                            | 193  | 0.59  | 193            | 0.41   | 194  | 0.05  |  |  |  |
| 14                            | 195  | 0.44  | 195            | 0.62   | 194  | 0.05  |  |  |  |
| 15                            | 195  | 0.44  | 193            | 0.41   | 195  | 0.05  |  |  |  |
| 16                            | 193  | 0.59  | 193            | 0.41   | 194  | 0.05  |  |  |  |
| 17                            | 193  | 0.59  | 194            | 0.10   | 195  | 0.57  |  |  |  |
| 18                            | 195  | 0.44  | 193            | 0.41   | 195  | 0.57  |  |  |  |
| 19                            | 194  | 0.08  | 194            | 0.10   | 194  | 0.05  |  |  |  |
| 20                            | 195  | 0.44  | 194            | 0.10   | 195  | 0.57  |  |  |  |

# 9.4.4.1.2 Ternäre Mischungen aus Maisstärke, Ibuprofen und Aerosil<sup>®</sup> 200

|                               |      |       | 60 min  |       |      |       |  |  |
|-------------------------------|------|-------|---------|-------|------|-------|--|--|
| Versuch 1 Versuch 2 Versuch 3 |      |       |         |       |      |       |  |  |
| Tablatta Nr                   | MP   | AW    | MP      | AW    | MP   | AW    |  |  |
| Tablelle Nr.                  | [mg] | [%]   | [mg]    | [%]   | [mg] | [%]   |  |  |
| 1                             | 196  | 0.08  | 196     | 0.03  | 196  | 0.03  |  |  |
| 2                             | 196  | 0.08  | 195     | 0.54  | 196  | 0.03  |  |  |
| 3                             | 196  | 0.08  | 196     | 0.03  | 196  | 0.03  |  |  |
| 4                             | 196  | 0.08  | 197     | 0.48  | 197  | 0.54  |  |  |
| 5                             | 196  | 0.08  | 196     | 0.03  | 196  | 0.03  |  |  |
| 6                             | 197  | 0.43  | 196     | 0.03  | 195  | 0.48  |  |  |
| 7                             | 197  | 0.43  | 196     | 0.03  | 196  | 0.03  |  |  |
| 8                             | 194  | 1 10  | 196     | 0.03  | 195  | 0.48  |  |  |
| 0                             | 104  | 0.08  | 100     | 0.00  | 100  | 0.40  |  |  |
| 10                            | 107  | 0.00  | 190     | 0.03  | 190  | 0.03  |  |  |
| 10                            | 100  | 0.43  | 190     | 0.03  | 190  | 0.03  |  |  |
| 11                            | 190  | 0.94  | 190     | 0.03  | 196  | 0.03  |  |  |
| 12                            | 190  | 0.08  | 196     | 0.03  | 196  | 0.03  |  |  |
| 13                            | 196  | 0.08  | 196     | 0.03  | 197  | 0.54  |  |  |
| 14                            | 196  | 0.08  | 196     | 0.03  | 196  | 0.03  |  |  |
| 15                            | 196  | 0.08  | 195     | 0.54  | 196  | 0.03  |  |  |
| 16                            | 196  | 0.08  | 196     | 0.03  | 196  | 0.03  |  |  |
| 17                            | 196  | 0.08  | 198     | 0.99  | 196  | 0.03  |  |  |
| 18                            | 196  | 0.08  | 196     | 0.03  | 196  | 0.03  |  |  |
| 19                            | 197  | 0.43  | 196     | 0.03  | 196  | 0.03  |  |  |
| 20                            | 195  | 0.59  | 196     | 0.03  | 195  | 0.48  |  |  |
|                               |      |       | 180 min |       |      |       |  |  |
|                               | Vers | uch 1 | Vers    | uch 2 | Vers | uch 3 |  |  |
| <b>-</b>                      | M₽   | AW    | Mp      | AW    | MР   | AW    |  |  |
| l ablette Nr.                 | [mg] | [%]   | [mg]    | [%]   | [mg] | [%]   |  |  |
| 1                             | 201  | 0.30  | 199     | 0.75  | 197  | 1 50  |  |  |
| 2                             | 201  | 0.30  | 200     | 0.25  | 199  | 0.50  |  |  |
| 3                             | 200  | 0.00  | 200     | 0.25  | 200  | 0.00  |  |  |
| 4                             | 200  | 0.20  | 200     | 0.25  | 200  | 0.00  |  |  |
| 5                             | 200  | 0.20  | 200     | 0.25  | 200  | 0.00  |  |  |
| 5                             | 200  | 0.20  | 201     | 0.25  | 200  | 0.00  |  |  |
| 0                             | 201  | 0.30  | 200     | 0.25  | 200  | 0.00  |  |  |
| /                             | 200  | 0.20  | 201     | 0.25  | 200  | 0.00  |  |  |
| 8                             | 200  | 0.20  | 200     | 0.25  | 201  | 0.50  |  |  |
| 9                             | 200  | 0.20  | 201     | 0.25  | 200  | 0.00  |  |  |
| 10                            | 200  | 0.20  | 200     | 0.25  | 200  | 0.00  |  |  |
| 11                            | 201  | 0.30  | 201     | 0.25  | 200  | 0.00  |  |  |
| 12                            | 201  | 0.30  | 201     | 0.25  | 200  | 0.00  |  |  |
| 13                            | 200  | 0.20  | 200     | 0.25  | 201  | 0.50  |  |  |
| 14                            | 201  | 0.30  | 201     | 0.25  | 200  | 0.00  |  |  |
| 15                            | 200  | 0.20  | 200     | 0.25  | 200  | 0.00  |  |  |
| 16                            | 200  | 0.20  | 202     | 0.75  | 200  | 0.00  |  |  |
| 17                            | 201  | 0.30  | 200     | 0.25  | 200  | 0.00  |  |  |
| 18                            | 201  | 0.30  | 201     | 0.25  | 200  | 0.00  |  |  |
| 19                            | 200  | 0.20  | 201     | 0.25  | 200  | 0.00  |  |  |
| 20                            | 200  | 0.20  | 201     | 0.25  | 202  | 1.00  |  |  |
|                               |      |       | 360 min |       | -    |       |  |  |
|                               | Vers | uch 1 | Vers    | uch 2 | Vers | uch 3 |  |  |
|                               | Mn   | AW    | Mp      | AW    | Ма   | AW    |  |  |
| l'ablette Nr.                 | [ma] | [%]   | [ma]    | [%]   | [ma] | [%]   |  |  |
| 1                             | 200  | 1.48  | 198     | 2.25  | 199  | 1.85  |  |  |
| 2                             | 203  | 0.00  | 201     | 0.77  | 201  | 0.86  |  |  |
| 3                             | 202  | 0.49  | 202     | 0.27  | 203  | 0.12  |  |  |
| 4                             | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 5                             | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 6                             | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 7                             | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| /<br>9                        | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 0                             | 204  | 0.49  | 203     | 0.22  | 203  | 0.12  |  |  |
| 9                             | 204  | 0.49  | 203     | 0.22  | 203  | 0.12  |  |  |
| 10                            | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 11                            | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 12                            | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 13                            | 204  | 0.49  | 203     | 0.22  | 204  | 0.62  |  |  |
| 14                            | 203  | 0.00  | 203     | 0.22  | 202  | 0.37  |  |  |
| 15                            | 204  | 0.49  | 203     | 0.22  | 203  | 0.12  |  |  |
| 16                            | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 17                            | 203  | 0.00  | 203     | 0.22  | 204  | 0.62  |  |  |
| 18                            | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
| 19                            | 203  | 0.00  | 202     | 0.27  | 203  | 0.12  |  |  |
| 20                            | 203  | 0.00  | 203     | 0.22  | 203  | 0.12  |  |  |
|                               |      |       |         |       |      |       |  |  |

| 720 min                       |              |       |              |        |               |       |  |  |
|-------------------------------|--------------|-------|--------------|--------|---------------|-------|--|--|
| Versuch 1 Versuch 2 Versuch 3 |              |       |              |        |               |       |  |  |
|                               | M⊳           | AW    | AW Ma        |        | MP            | AW    |  |  |
| Tablette Nr.                  | [ma]         | [%]   | [ma]         | [%]    | [ma]          | [%]   |  |  |
| 1                             | 100          | 0.80  | 201          | 0.10   | 100           | 0.80  |  |  |
| 2                             | 201          | 0.00  | 201          | 0.10   | 201           | 0.00  |  |  |
| 2                             | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 3                             | 200          | 0.30  | 200          | 0.40   | 200           | 0.30  |  |  |
| 4                             | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 5                             | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 6                             | 200          | 0.30  | 201          | 0 10   | 200           | 0.30  |  |  |
| 7                             | 201          | 0.00  | 201          | 0.10   | 201           | 0.00  |  |  |
| 7                             | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 8                             | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 9                             | 201          | 0.20  | 202          | 0.60   | 201           | 0.20  |  |  |
| 10                            | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 11                            | 200          | 0.30  | 200          | 0.40   | 200           | 0.30  |  |  |
| 12                            | 200          | 0.30  | 201          | 0.10   | 200           | 0.30  |  |  |
| 12                            | 200          | 0.00  | 201          | 0.10   | 200           | 0.00  |  |  |
| 13                            | 201          | 0.20  | 200          | 0.40   | 201           | 0.20  |  |  |
| 14                            | 200          | 0.30  | 200          | 0.40   | 200           | 0.30  |  |  |
| 15                            | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 16                            | 200          | 0.30  | 201          | 0.10   | 200           | 0.30  |  |  |
| 17                            | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 10                            | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 10                            | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 19                            | 201          | 0.20  | 201          | 0.10   | 201           | 0.20  |  |  |
| 20                            | 201          | 0.20  | 200          | 0.40   | 201           | 0.20  |  |  |
|                               |              |       | 1440 min     |        |               |       |  |  |
|                               | Vers         | uch 1 | Vers         | such 2 | Vers          | uch 3 |  |  |
|                               | M            | Δ\Δ/  | M            | A\A/   | M             | Δ\Δ/  |  |  |
| Tablette Nr.                  | IVIP<br>[ma] | F0/ 1 | IVIP<br>[ma] | F0/ 1  | IVIP<br>[mag] | F0/1  |  |  |
|                               | [mg]         | [%]   | [mg]         | [%]    | [mg]          | [%]   |  |  |
| 1                             | 186          | 0.80  | 188          | 0.24   | 188           | 0.11  |  |  |
| 2                             | 186          | 0.80  | 187          | 0.29   | 189           | 0.64  |  |  |
| 3                             | 187          | 0.27  | 188          | 0.24   | 188           | 0.11  |  |  |
| 4                             | 187          | 0.27  | 187          | 0.20   | 180           | 0.64  |  |  |
|                               | 107          | 0.27  | 107          | 0.20   | 100           | 0.04  |  |  |
| 5                             | 107          | 0.27  | 107          | 0.29   | 100           | 0.11  |  |  |
| 6                             | 186          | 0.80  | 187          | 0.29   | 187           | 0.43  |  |  |
| 7                             | 187          | 0.27  | 186          | 0.83   | 187           | 0.43  |  |  |
| 8                             | 187          | 0.27  | 187          | 0.29   | 187           | 0.43  |  |  |
| 9                             | 188          | 0.27  | 188          | 0.24   | 188           | 0 11  |  |  |
| 10                            | 199          | 0.27  | 199          | 0.24   | 197           | 0.43  |  |  |
| 10                            | 100          | 0.27  | 100          | 0.24   | 107           | 0.43  |  |  |
| 11                            | 187          | 0.27  | 188          | 0.24   | 188           | 0.11  |  |  |
| 12                            | 187          | 0.27  | 187          | 0.29   | 188           | 0.11  |  |  |
| 13                            | 188          | 0.27  | 188          | 0.24   | 188           | 0.11  |  |  |
| 14                            | 189          | 0.80  | 188          | 0.24   | 188           | 0.11  |  |  |
| 15                            | 188          | 0.27  | 188          | 0.24   | 187           | 0.43  |  |  |
| 16                            | 100          | 0.27  | 100          | 0.24   | 107           | 0.40  |  |  |
| 10                            | 100          | 0.27  | 100          | 0.24   | 100           | 0.11  |  |  |
| 17                            | 188          | 0.27  | 187          | 0.29   | 188           | 0.11  |  |  |
| 18                            | 189          | 0.80  | 188          | 0.24   | 188           | 0.11  |  |  |
| 19                            | 189          | 0.80  | 188          | 0.24   | 188           | 0.11  |  |  |
| 20                            | 188          | 0.27  | 188          | 0.24   | 187           | 0.43  |  |  |
| 20                            | 100          | 0.21  | 2880 min     | 0.24   | 107           | 0.40  |  |  |
|                               | Marra        |       | 2000 11111   | ······ |               |       |  |  |
|                               | vers         |       | vers         |        | vers          | uch 3 |  |  |
| Tablette Nr.                  | MP           | AW    | MP           | AW     | MP            | AW    |  |  |
|                               | [mg]         | [%]   | [mg]         | [%]    | [mg]          | [%]   |  |  |
| 1                             | 165          | 0.03  | 165          | 0.00   | 162           | 1.61  |  |  |
| 2                             | 165          | 0.03  | 164          | 0.61   | 165           | 0.21  |  |  |
| 3                             | 166          | 0.64  | 164          | 0.61   | 164           | 0.30  |  |  |
| 5                             | 100          | 0.04  | 104          | 0.01   | 104           | 0.00  |  |  |
| 4                             | 100          | 0.04  | COT          | 0.00   | 103           | 1.00  |  |  |
| 5                             | 165          | 0.03  | 165          | 0.00   | 165           | 0.21  |  |  |
| 6                             | 165          | 0.03  | 165          | 0.00   | 165           | 0.21  |  |  |
| 7                             | 165          | 0.03  | 165          | 0.00   | 164           | 0.39  |  |  |
| 8                             | 164          | 0.58  | 165          | 0.00   | 165           | 0.21  |  |  |
| 0                             | 161          | 0.00  | 166          | 0.00   | 164           | 0.21  |  |  |
| 9                             | 104          | 00.0  | 100          | 0.01   | 104           | 0.39  |  |  |
| 10                            | 164          | 0.58  | 166          | 0.61   | 165           | 0.21  |  |  |
| 11                            | 163          | 1.18  | 165          | 0.00   | 165           | 0.21  |  |  |
| 12                            | 165          | 0.03  | 165          | 0.00   | 166           | 0.82  |  |  |
| 13                            | 165          | 0.03  | 165          | 0.00   | 166           | 0.82  |  |  |
| 1/                            | 166          | 0.64  | 165          | 0.00   | 166           | 0.82  |  |  |
| 14                            | 100          | 0.04  | 100          | 0.00   | 100           | 0.02  |  |  |
| 15                            | 165          | 0.03  | 165          | 0.00   | 165           | 0.21  |  |  |
| 16                            | 166          | 0.64  | 164          | 0.61   | 165           | 0.21  |  |  |
| 17                            | 165          | 0.03  | 165          | 0.00   | 165           | 0.21  |  |  |
| 18                            | 165          | 0.03  | 166          | 0.61   | 164           | 0.39  |  |  |
| 10                            | 165          | 0.03  | 164          | 0.61   | 164           | 0.30  |  |  |
| 20                            | 165          | 0.00  | 166          | 0.61   | 165           | 0.00  |  |  |
| 20                            | 105          | 0.03  | 100          | 0.01   | 100           | 0.∠1  |  |  |

| 4320 min      |           |      |      |       |                |      |  |  |  |
|---------------|-----------|------|------|-------|----------------|------|--|--|--|
|               | Versuch 1 |      | Vers | uch 2 | Versuch 3      |      |  |  |  |
| Tabletta Nu   | MP        | AW   | MP   | AW    | M <sub>P</sub> | AW   |  |  |  |
| l'ablette Nr. | [mg]      | [%]  | [mg] | [%]   | [mg]           | [%]  |  |  |  |
| 1             | 158       | 0.51 | 156  | 0.89  | 156            | 0.61 |  |  |  |
| 2             | 158       | 0.51 | 157  | 0.25  | 156            | 0.61 |  |  |  |
| 3             | 156       | 0.76 | 157  | 0.25  | 157            | 0.03 |  |  |  |
| 4             | 157       | 0.13 | 157  | 0.25  | 156            | 0.61 |  |  |  |
| 5             | 156       | 0.76 | 158  | 0.38  | 157            | 0.03 |  |  |  |
| 6             | 157       | 0.13 | 157  | 0.25  | 157            | 0.03 |  |  |  |
| 7             | 156       | 0.76 | 157  | 0.25  | 156            | 0.61 |  |  |  |
| 8             | 158       | 0.51 | 157  | 0.25  | 157            | 0.03 |  |  |  |
| 9             | 156       | 0.76 | 158  | 0.38  | 157            | 0.03 |  |  |  |
| 10            | 158       | 0.51 | 158  | 0.38  | 157            | 0.03 |  |  |  |
| 11            | 157       | 0.13 | 158  | 0.38  | 157            | 0.03 |  |  |  |
| 12            | 157       | 0.13 | 158  | 0.38  | 157            | 0.03 |  |  |  |
| 13            | 158       | 0.51 | 158  | 0.38  | 157            | 0.03 |  |  |  |
| 14            | 157       | 0.13 | 156  | 0.89  | 156            | 0.61 |  |  |  |
| 15            | 158       | 0.51 | 158  | 0.38  | 158            | 0.67 |  |  |  |
| 16            | 158       | 0.51 | 157  | 0.25  | 158            | 0.67 |  |  |  |
| 17            | 157       | 0.13 | 159  | 1.02  | 157            | 0.03 |  |  |  |
| 18            | 156       | 0.76 | 158  | 0.38  | 158            | 0.67 |  |  |  |
| 19            | 157       | 0.13 | 157  | 0.25  | 158            | 0.67 |  |  |  |
| 20            | 159       | 1.15 | 157  | 0.25  | 157            | 0.03 |  |  |  |

# 9.4.4.2 Friabilität: Binäre Mischungen aus Maisstärke und Nanomaterial

|         |                    |                           |                    | Aeros                     | sil <sup>®</sup> 200  |                    |                    |                    |                    |                       |
|---------|--------------------|---------------------------|--------------------|---------------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|
|         | Mischzeit [min]    |                           |                    |                           |                       |                    |                    |                    |                    |                       |
|         | 1                  |                           | 10                 |                           | 30                    |                    | 60                 |                    | 180                |                       |
| Messung | M <sub>v</sub> [g] | M <sub>n</sub> [g]        | M <sub>v</sub> [g] | M <sub>n</sub> [g]        | M <sub>v</sub> [g]    | M <sub>n</sub> [g] | M <sub>v</sub> [g] | M <sub>n</sub> [g] | M <sub>v</sub> [g] | M <sub>n</sub> [g]    |
| 1       | 3.989              | 3.984                     | 4.034              | 4.029                     | 3.975                 | 3.970              | 3.955              | 3.954              | 4.022              | 4.022                 |
| 2       | 3.990              | 3.984                     | 4.034              | 4.028                     | 3.964                 | 3.958              | 3.961              | 3.96               | 4.021              | 4.021                 |
| 3       | 3.985              | 3.979                     | 4.026              | 4.024                     | 3.965                 | 3.959              | 3.947              | 3.945              | 4.022              | 4.022                 |
|         |                    |                           |                    |                           | Mischze               | eit [min]          |                    |                    |                    |                       |
|         | 360                |                           | 720                |                           | 1440                  |                    | 2880               |                    | 4320               |                       |
| Messung | M <sub>v</sub> [g] | M <sub>n</sub> [g]        | M <sub>v</sub> [g] | M <sub>n</sub> [g]        | M <sub>v</sub> [g]    | M <sub>n</sub> [g] | M <sub>v</sub> [g] | M <sub>n</sub> [g] | M <sub>v</sub> [g] | <b>M</b> n <b>[g]</b> |
| 1       | 4.012              | 4.009                     | 3.999              | 3.997                     | 3.981                 | 3.978              | 3.983              | 3.978              | 3.989              | 3.985                 |
| 2       | 4.003              | 4.001                     | 4.002              | 3.999                     | 3.987                 | 3.984              | 3.985              | 3.981              | 3.990              | 3.985                 |
| 3       | 4.003              | 4.001                     | 4.006              | 4.002                     | 3.987                 | 3.986              | 3.988              | 3.983              | 3.985              | 3.979                 |
|         |                    |                           |                    |                           |                       |                    |                    |                    |                    |                       |
|         |                    |                           |                    | Aerosi                    | il <sup>®</sup> R 805 |                    |                    |                    |                    |                       |
|         |                    |                           |                    |                           | Mischze               | eit [min]          |                    |                    |                    |                       |
|         |                    | 1                         | 10                 |                           | 3                     | 0                  | 60                 |                    | 180                |                       |
| Messung | M <sub>v</sub> [g] | <b>M</b> <sub>n</sub> [g] | M <sub>v</sub> [g] | <b>M</b> <sub>n</sub> [g] | M <sub>v</sub> [g]    | M <sub>n</sub> [g] | M <sub>v</sub> [g] | M <sub>n</sub> [g] | M <sub>v</sub> [g] | M <sub>n</sub> [g]    |
| 1       | 3.982              | 3.977                     | 4.001              | 3.990                     | 3.976                 | 3.958              | 4.002              | 3.985              | 3.984              | 3.962                 |
| 2       | 3.985              | 3.978                     | 3.997              | 3.985                     | 3.980                 | 3.964              | 3.983              | 3.965              | 3.965              | 3.941                 |
| 3       | 3.990              | 3.985                     | 3.999              | 3.987                     | 3.985                 | 3.968              | 3.981              | 3.966              | 3.969              | 3.944                 |
|         | Mischzeit [min]    |                           |                    |                           |                       |                    |                    |                    |                    |                       |
|         | 360 720            |                           | 1440               |                           | 2880                  |                    | 4320               |                    |                    |                       |
| Messung | M <sub>v</sub> [g] | M <sub>n</sub> [g]        | M <sub>v</sub> [g] | M <sub>n</sub> [g]        | M <sub>v</sub> [g]    | M <sub>n</sub> [g] | M <sub>v</sub> [g] | M <sub>n</sub> [g] | M <sub>v</sub> [g] | M <sub>n</sub> [g]    |
| 1       | 3.950              | 3.926                     | 3.966              | 3.952                     | 3.980                 | 3.966              | 3.983              | 3.962              | 3.987              | 3.969                 |
| 2       | 3.947              | 3.926                     | 3.967              | 3.953                     | 3.974                 | 3.960              | 3.972              | 3.953              | 3.976              | 3.959                 |
|         |                    |                           |                    |                           |                       |                    |                    |                    |                    |                       |
# 9.4.4.3 Zerfallszeit: Binäre Mischungen aus Maisstärke und Nanomaterial

| Messwerte  | in | [s]  |
|------------|----|------|
| INCOOVERCE |    | 131. |

|         |      | Aero  | sil <sup>®</sup> 200   |      |      |
|---------|------|-------|------------------------|------|------|
|         |      |       | Mischzeit [min]        |      |      |
| Messung | 1    | 10    | 30                     | 60   | 180  |
| 1       | 11.4 | 11.3  | 12.0                   | 14.7 | 14.0 |
| 2       | 9.8  | 11.5  | 11.6                   | 15.7 | 16.9 |
| 3       | 10.8 | 11.8  | 10.5                   | 22.8 | 16.3 |
|         |      |       | Mischzeit [min]        |      |      |
| Messung | 360  | 720   | 1440                   | 2880 | 4320 |
| 1       | 33.8 | 20.9  | 24.2                   | 30.8 | 32.1 |
| 2       | 18.5 | 25.0  | 32.3                   | 28.8 | 30.9 |
| 3       | 16.8 | 16.0  | 25.4                   | 28.3 | 30.6 |
|         |      |       |                        |      |      |
| •       |      | Aeros | sil <sup>®</sup> R 805 |      |      |
|         |      |       | Mischzeit [min]        |      |      |
| Messung | 1    | 10    | 30                     | 60   | 180  |
| 1       | 21.3 | 13.7  | 11.5                   | 11.3 | 11.6 |
| 2       | 15.8 | 16.1  | 12.9                   | 11.7 | 11.7 |
| 3       | 15.7 | 14.5  | 13.7                   | 12.8 | 12.4 |
|         |      |       | Mischzeit [min]        |      |      |
| Messung | 360  | 720   | 1440                   | 2880 | 4320 |
| 1       | 10.0 | 11.9  | 11.8                   | 11.5 | 10.9 |
| 2       | 10.3 | 9.9   | 9.2                    | 10.7 | 11.1 |
| 3       | 11.4 | 9.6   | 9.3                    | 9.8  | 10.2 |

### 9.4.5 EK 0 - Daten

Von den für die Berechnung der Heckel-Parameter verwendeten Tablettenpressendaten ist beispielhaft jeweils eine Datei für jede Mischzeit der binären Mischungen aus Maisstärke und Aerosil<sup>®</sup> 200 dargestellt. Die übrigen Dateien befinden sich ebenfalls am Lehrstuhl hinterlegt.

| 1 min                    |                          |                         | 10 min                  |                          |                          |                         |                         |
|--------------------------|--------------------------|-------------------------|-------------------------|--------------------------|--------------------------|-------------------------|-------------------------|
| PK <sub>os</sub><br>[kN] | PK <sub>us</sub><br>[kN] | x <sub>os</sub><br>[mm] | x <sub>us</sub><br>[mm] | PK <sub>os</sub><br>[kN] | PK <sub>us</sub><br>[kN] | x <sub>os</sub><br>[mm] | x <sub>us</sub><br>[mm] |
| 0.00                     | 0.02                     | 6.48                    | 10.41                   | 0.00                     | 0.00                     | 6.59                    | 10.40                   |
| 0.02                     | 0.00                     | 6.52                    | 10.41                   | 0.02                     | 0.03                     | 6.64                    | 10.40                   |
| 0.02                     | 0.02                     | 6.6                     | 10.43                   | 0.03                     | 0.05                     | 6.70                    | 10.41                   |
| 0.02                     | 0.03                     | 6.67                    | 10.42                   | 0.08                     | 0.09                     | 6.73                    | 10.40                   |
| 0.07                     | 0.09                     | 6.73                    | 10.46                   | 0.10                     | 0.15                     | 6.81                    | 10.43                   |
| 0.12                     | 0.10                     | 6.75                    | 10.43                   | 0.15                     | 0.19                     | 6.87                    | 10.43                   |
| 0.12                     | 0.15                     | 6.82                    | 10.45                   | 0.24                     | 0.24                     | 6.92                    | 10.45                   |
| 0.20                     | 0.20                     | 6.9                     | 10.45                   | 0.31                     | 0.31                     | 6.98                    | 10.45                   |
| 0.25                     | 0.26                     | 6.92                    | 10.46                   | 0.31                     | 0.31                     | 7.03                    | 10.45                   |
| 0.31                     | 0.29                     | 6.99                    | 10.46                   | 0.37                     | 0.36                     | 7.08                    | 10.47                   |
| 0.34                     | 0.32                     | 7.04                    | 10.51                   | 0.39                     | 0.43                     | 7.12                    | 10.51                   |
| 0.37                     | 0.34                     | 7.08                    | 10.47                   | 0.47                     | 0.48                     | 7.18                    | 10.53                   |
| 0.42                     | 0.39                     | 7.13                    | 10.48                   | 0.49                     | 0.51                     | 7.21                    | 10.52                   |
| 0.46                     | 0.46                     | 7.17                    | 10.47                   | 0.58                     | 0.60                     | 7.26                    | 10.53                   |
| 0.54                     | 0.51                     | 7.23                    | 10.51                   | 0.61                     | 0.65                     | 7.31                    | 10.53                   |
| 0.58                     | 0.56                     | 7.28                    | 10.51                   | 0.73                     | 0.73                     | 7.36                    | 10.52                   |
| 0.68                     | 0.65                     | 7.31                    | 10.52                   | 0.83                     | 0.83                     | 7.41                    | 10.52                   |
| 0.75                     | 0.75                     | 7.36                    | 10.51                   | 0.90                     | 0.90                     | 7.45                    | 10.52                   |
| 0.86                     | 0.85                     | 7.4                     | 10.52                   | 1.02                     | 0.99                     | 7.48                    | 10.52                   |
| 0.95                     | 0.92                     | 7.42                    | 10.51                   | 1.10                     | 1.09                     | 7.52                    | 10.52                   |
| 1.07                     | 1.02                     | 7.45                    | 10.51                   | 1.22                     | 1.17                     | 7.56                    | 10.53                   |
| 1.15                     | 1.11                     | 7.51                    | 10.52                   | 1.31                     | 1.28                     | 7.59                    | 10.52                   |
| 1.24                     | 1.19                     | 7.54                    | 10.52                   | 1.39                     | 1.38                     | 7.63                    | 10.52                   |
| 1.36                     | 1.31                     | 7.57                    | 10.52                   | 1.51                     | 1.45                     | 7.65                    | 10.51                   |
| 1.48                     | 1.40                     | 7.62                    | 10.53                   | 1.61                     | 1.55                     | 7.69                    | 10.52                   |
| 1.53                     | 1.48                     | 7.63                    | 10.51                   | 1.68                     | 1.63                     | 7.74                    | 10.52                   |
| 1.66                     | 1.60                     | 7.69                    | 10.51                   | 1.80                     | 1.72                     | 7.74                    | 10.50                   |
| 1.76                     | 1.69                     | 7.73                    | 10.54                   | 1.88                     | 1.80                     | 7.80                    | 10.52                   |
| 1.86                     | 1.77                     | 7.74                    | 10.52                   | 1.97                     | 1.89                     | 7.82                    | 10.50                   |
| 1.92                     | 1.86                     | 7.74                    | 10.51                   | 2.03                     | 1.97                     | 7.85                    | 10.54                   |

| 207                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.07                                                                                                                                                                                                                           | 1.96                                                                                                                                                                                                                                                | 7.81                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                     | 2.17                                                                                                                                                                                                                        | 2.08                                                                                                                                                                                                                                  | 7.87                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 2.17                                                                                                                                                                                                                           | 2.04                                                                                                                                                                                                                                                | 7.84                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 2.22                                                                                                                                                                                                                        | 2.13                                                                                                                                                                                                                                  | 7.91                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 2.22                                                                                                                                                                                                                           | 2.14                                                                                                                                                                                                                                                | 7.85                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 2.29                                                                                                                                                                                                                        | 2.21                                                                                                                                                                                                                                  | 7.93                                                                                                                                                                                                                           | 10.51                                                                                                                                                                                                                                                                      |
| 2.32                                                                                                                                                                                                                           | 2.23                                                                                                                                                                                                                                                | 7.89                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 2.41                                                                                                                                                                                                                        | 2.28                                                                                                                                                                                                                                  | 7.97                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 2.41                                                                                                                                                                                                                           | 2.30                                                                                                                                                                                                                                                | 7.91                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 2.44                                                                                                                                                                                                                        | 2.37                                                                                                                                                                                                                                  | 7.97                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 2.51                                                                                                                                                                                                                           | 2.38                                                                                                                                                                                                                                                | 7.93                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 2.56                                                                                                                                                                                                                        | 2.47                                                                                                                                                                                                                                  | 8.00                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.61                                                                                                                                                                                                                           | 2.45                                                                                                                                                                                                                                                | 7.96                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 2.63                                                                                                                                                                                                                        | 2.50                                                                                                                                                                                                                                  | 8.00                                                                                                                                                                                                                           | 10.56                                                                                                                                                                                                                                                                      |
| 2.63                                                                                                                                                                                                                           | 2.54                                                                                                                                                                                                                                                | 7.97                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 2.70                                                                                                                                                                                                                        | 2.59                                                                                                                                                                                                                                  | 8.03                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.73                                                                                                                                                                                                                           | 2.60                                                                                                                                                                                                                                                | 7.98                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 2.80                                                                                                                                                                                                                        | 2.64                                                                                                                                                                                                                                  | 8.07                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.81                                                                                                                                                                                                                           | 2.67                                                                                                                                                                                                                                                | 8.01                                                                                                                                                                                                                                   | 10.57                                                                                                                                                                                                                                                                                                                                                     | 2.87                                                                                                                                                                                                                        | 2.69                                                                                                                                                                                                                                  | 8.09                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.88                                                                                                                                                                                                                           | 2.74                                                                                                                                                                                                                                                | 8.01                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 2.90                                                                                                                                                                                                                        | 2.77                                                                                                                                                                                                                                  | 8.11                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.95                                                                                                                                                                                                                           | 2.77                                                                                                                                                                                                                                                | 8.06                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 2.97                                                                                                                                                                                                                        | 2.81                                                                                                                                                                                                                                  | 8.11                                                                                                                                                                                                                           | 10.51                                                                                                                                                                                                                                                                      |
| 2.98                                                                                                                                                                                                                           | 2.84                                                                                                                                                                                                                                                | 8.03                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 3.03                                                                                                                                                                                                                        | 2.88                                                                                                                                                                                                                                  | 8.13                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 3.07                                                                                                                                                                                                                           | 2.91                                                                                                                                                                                                                                                | 8.04                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 3.07                                                                                                                                                                                                                        | 2.91                                                                                                                                                                                                                                  | 8.13                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 3.10                                                                                                                                                                                                                           | 2.93                                                                                                                                                                                                                                                | 8.09                                                                                                                                                                                                                                   | 10.56                                                                                                                                                                                                                                                                                                                                                     | 3.10                                                                                                                                                                                                                        | 2.94                                                                                                                                                                                                                                  | 8.15                                                                                                                                                                                                                           | 10.51                                                                                                                                                                                                                                                                      |
| 3.14                                                                                                                                                                                                                           | 3.00                                                                                                                                                                                                                                                | 8.09                                                                                                                                                                                                                                   | 10.56                                                                                                                                                                                                                                                                                                                                                     | 3.12                                                                                                                                                                                                                        | 3.00                                                                                                                                                                                                                                  | 8.18                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 3.14                                                                                                                                                                                                                           | 3.00                                                                                                                                                                                                                                                | 8.11                                                                                                                                                                                                                                   | 10.48                                                                                                                                                                                                                                                                                                                                                     | 3.14                                                                                                                                                                                                                        | 3.00                                                                                                                                                                                                                                  | 8.18                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 3.17                                                                                                                                                                                                                           | 3.03                                                                                                                                                                                                                                                | 8.12                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 3.17                                                                                                                                                                                                                        | 3.01                                                                                                                                                                                                                                  | 8.19                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 3.22                                                                                                                                                                                                                           | 3.06                                                                                                                                                                                                                                                | 8.11                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                     | 3.19                                                                                                                                                                                                                        | 3.03                                                                                                                                                                                                                                  | 8.19                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 3.24                                                                                                                                                                                                                           | 3.06                                                                                                                                                                                                                                                | 8.14                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 3.22                                                                                                                                                                                                                        | 3.03                                                                                                                                                                                                                                  | 8.19                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 3.22                                                                                                                                                                                                                           | 3.06                                                                                                                                                                                                                                                | 8.13                                                                                                                                                                                                                                   | 10.5                                                                                                                                                                                                                                                                                                                                                      | 3.19                                                                                                                                                                                                                        | 3.05                                                                                                                                                                                                                                  | 8.22                                                                                                                                                                                                                           | 10.54                                                                                                                                                                                                                                                                      |
| 3.24                                                                                                                                                                                                                           | 3.06                                                                                                                                                                                                                                                | 8.14                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 3.19                                                                                                                                                                                                                        | 3.03                                                                                                                                                                                                                                  | 8.23                                                                                                                                                                                                                           | 10.51                                                                                                                                                                                                                                                                      |
| 3.20                                                                                                                                                                                                                           | 3.06                                                                                                                                                                                                                                                | 8.17                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 3.20                                                                                                                                                                                                                        | 3.05                                                                                                                                                                                                                                  | 8.23                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 3.19                                                                                                                                                                                                                           | 3.03                                                                                                                                                                                                                                                | 8.14                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 3.12                                                                                                                                                                                                                        | 3.01                                                                                                                                                                                                                                  | 8.23                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 3.15                                                                                                                                                                                                                           | 3.00                                                                                                                                                                                                                                                | 8.15                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 3.14                                                                                                                                                                                                                        | 2.98                                                                                                                                                                                                                                  | 8.20                                                                                                                                                                                                                           | 10.54                                                                                                                                                                                                                                                                      |
| 3.10                                                                                                                                                                                                                           | 2.96                                                                                                                                                                                                                                                | 8.15                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 3.07                                                                                                                                                                                                                        | 2.94                                                                                                                                                                                                                                  | 8.22                                                                                                                                                                                                                           | 10.54                                                                                                                                                                                                                                                                      |
| 3.05                                                                                                                                                                                                                           | 2.91                                                                                                                                                                                                                                                | 8.17                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 2.98                                                                                                                                                                                                                        | 2.86                                                                                                                                                                                                                                  | 8.22                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.97                                                                                                                                                                                                                           | 2.88                                                                                                                                                                                                                                                | 8.17                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 2.90                                                                                                                                                                                                                        | 2.81                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.85                                                                                                                                                                                                                           | 2.81                                                                                                                                                                                                                                                | 8.18                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 2.76                                                                                                                                                                                                                        | 2.74                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.70                                                                                                                                                                                                                           | 2.72                                                                                                                                                                                                                                                | 8.14                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 2.59                                                                                                                                                                                                                        | 2.66                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 2.54                                                                                                                                                                                                                           | 2.64                                                                                                                                                                                                                                                | 8.15                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 2.46                                                                                                                                                                                                                        | 2.55                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 2.39                                                                                                                                                                                                                           | 2.52                                                                                                                                                                                                                                                | 8.17                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                     | 2.27                                                                                                                                                                                                                        | 2.42                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 2.25                                                                                                                                                                                                                           | 2.33                                                                                                                                                                                                                                                | 8.17                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 2.14                                                                                                                                                                                                                        | 2.23                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.51                                                                                                                                                                                                                                                                      |
| 2.09                                                                                                                                                                                                                           | 2.16                                                                                                                                                                                                                                                | 8.14                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 1.95                                                                                                                                                                                                                        | 2.06                                                                                                                                                                                                                                  | 8.25                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 1.92                                                                                                                                                                                                                           | 1.99                                                                                                                                                                                                                                                | 8.18                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 1.76                                                                                                                                                                                                                        | 1.84                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 1.71                                                                                                                                                                                                                           | 1.80                                                                                                                                                                                                                                                | 8.18                                                                                                                                                                                                                                   | 10.5                                                                                                                                                                                                                                                                                                                                                      | 1.58                                                                                                                                                                                                                        | 1.65                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.54                                                                                                                                                                                                                                                                      |
| 1.51                                                                                                                                                                                                                           | 1.58                                                                                                                                                                                                                                                | 8.18                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 1.37                                                                                                                                                                                                                        | 1.46                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 1.36                                                                                                                                                                                                                           | 1.40                                                                                                                                                                                                                                                | 8.18                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 1.2                                                                                                                                                                                                                         | 1.24                                                                                                                                                                                                                                  | 8.23                                                                                                                                                                                                                           | 10.54                                                                                                                                                                                                                                                                      |
| 1.17                                                                                                                                                                                                                           | 1.21                                                                                                                                                                                                                                                | 8.18                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                        | 1.06                                                                                                                                                                                                                                  | 8.25                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 0.97                                                                                                                                                                                                                           | 1.04                                                                                                                                                                                                                                                | 8.17                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 0.85                                                                                                                                                                                                                        | 0.89                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 0.80                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                | 8.13                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 0.68                                                                                                                                                                                                                        | 0.71                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 0.63                                                                                                                                                                                                                           | 0.70                                                                                                                                                                                                                                                | 8.14                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 0.51                                                                                                                                                                                                                        | 0.56                                                                                                                                                                                                                                  | 8.22                                                                                                                                                                                                                           | 10.50                                                                                                                                                                                                                                                                      |
| 0.49                                                                                                                                                                                                                           | 0.53                                                                                                                                                                                                                                                | 8.12                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 0.37                                                                                                                                                                                                                        | 0.46                                                                                                                                                                                                                                  | 8.19                                                                                                                                                                                                                           | 10.52                                                                                                                                                                                                                                                                      |
| 0.36                                                                                                                                                                                                                           | 0.41                                                                                                                                                                                                                                                | 8.11                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                        | 0.34                                                                                                                                                                                                                                  | 8.19                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| 0.25                                                                                                                                                                                                                           | 0.34                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        | 40.54                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                       | 0.40                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                            |
| 0.22                                                                                                                                                                                                                           | 0.04                                                                                                                                                                                                                                                | 8.09                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                     | 0.22                                                                                                                                                                                                                        | 0.29                                                                                                                                                                                                                                  | 8.18                                                                                                                                                                                                                           | 10.53                                                                                                                                                                                                                                                                      |
| -                                                                                                                                                                                                                              | 0.31                                                                                                                                                                                                                                                | 8.09<br>8.07                                                                                                                                                                                                                           | 10.54                                                                                                                                                                                                                                                                                                                                                     | 0.22                                                                                                                                                                                                                        | 0.29                                                                                                                                                                                                                                  | 8.18                                                                                                                                                                                                                           | 10.53<br>10.51                                                                                                                                                                                                                                                             |
| 0.17                                                                                                                                                                                                                           | 0.31                                                                                                                                                                                                                                                | 8.09<br>8.07<br>8.03                                                                                                                                                                                                                   | 10.54<br>10.52<br>10.53                                                                                                                                                                                                                                                                                                                                   | 0.22<br>0.14<br>0.15                                                                                                                                                                                                        | 0.29<br>0.29<br>0.24                                                                                                                                                                                                                  | 8.18<br>8.15<br>8.13                                                                                                                                                                                                           | 10.53<br>10.51<br>10.53                                                                                                                                                                                                                                                    |
| 0.17<br>0.14                                                                                                                                                                                                                   | 0.31<br>0.27<br>0.24                                                                                                                                                                                                                                | 8.09<br>8.07<br>8.03<br>8.03                                                                                                                                                                                                           | 10.54<br>10.52<br>10.53<br>10.52                                                                                                                                                                                                                                                                                                                          | 0.22<br>0.14<br>0.15<br>0.12                                                                                                                                                                                                | 0.29<br>0.29<br>0.24<br>0.22                                                                                                                                                                                                          | 8.18<br>8.15<br>8.13<br>8.08                                                                                                                                                                                                   | 10.53<br>10.51<br>10.53<br>10.50                                                                                                                                                                                                                                           |
| 0.17<br>0.14<br>0.14                                                                                                                                                                                                           | 0.34<br>0.31<br>0.27<br>0.24<br>0.22                                                                                                                                                                                                                | 8.09<br>8.07<br>8.03<br>8.03<br>8.03<br>8.01                                                                                                                                                                                           | 10.54<br>10.52<br>10.53<br>10.52<br>10.52                                                                                                                                                                                                                                                                                                                 | 0.22<br>0.14<br>0.15<br>0.12<br>0.05                                                                                                                                                                                        | 0.29<br>0.29<br>0.24<br>0.22<br>0.15                                                                                                                                                                                                  | 8.18<br>8.15<br>8.13<br>8.08<br>8.08                                                                                                                                                                                           | 10.53<br>10.51<br>10.53<br>10.50<br>10.47                                                                                                                                                                                                                                  |
| 0.17<br>0.14<br>0.14<br>0.07                                                                                                                                                                                                   | 0.31<br>0.27<br>0.24<br>0.22<br>0.17                                                                                                                                                                                                                | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98                                                                                                                                                                                           | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.52<br>10.48                                                                                                                                                                                                                                                                                               | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03                                                                                                                                                                                | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1                                                                                                                                                                                           | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07                                                                                                                                                                                   | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50                                                                                                                                                                                                                         |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02                                                                                                                                                                                           | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12                                                                                                                                                                                                        | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93                                                                                                                                                                                   | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.52<br>10.48<br>10.46                                                                                                                                                                                                                                                                                      | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00                                                                                                                                                                        | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07                                                                                                                                                                                   | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.08<br>8.07<br>8.02                                                                                                                                                                   | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47                                                                                                                                                                                                                |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00                                                                                                                                                                                   | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07                                                                                                                                                                                                | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93                                                                                                                                                                           | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48                                                                                                                                                                                                                                                                                      | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00                                                                                                                                                                        | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07                                                                                                                                                                                   | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02                                                                                                                                                                           | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47                                                                                                                                                                                                                |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00                                                                                                                                                                                   | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b>                                                                                                                                                                                   | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min                                                                                                                                                                    | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.48<br>10.48                                                                                                                                                                                                                                                                                      | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00                                                                                                                                                                        | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07                                                                                                                                                                                   | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min                                                                                                                                                                    | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47                                                                                                                                                                                                                |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br>PK <sub>os</sub>                                                                                                                                                               | 0.34<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub>                                                                                                                                                        | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>xos                                                                                                                                                             | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.48<br>10.48                                                                                                                                                                                                                                                                                      | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>os</sub>                                                                                                                                                    | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br>60<br>PKus                                                                                                                                                                     | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub>                                                                                                                                                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>X</b> us                                                                                                                                                                                                 |
| 0.17<br>0.14<br>0.07<br>0.02<br>0.00<br>PK <sub>os</sub><br>[kN]                                                                                                                                                               | 0.34<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>80</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b>                                                                                                                                         | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]                                                                                                                                         | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.48<br>10.48<br>10.48                                                                                                                                                                                                                                                                             | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>os</sub><br>[kN]                                                                                                                                            | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br>60<br>FK <sub>us</sub><br>[kN]                                                                                                                                                 | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]                                                                                                                                         | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> <sub>us</sub><br>[mm]                                                                                                                                                                              |
| 0.17<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00                                                                                                                                                           | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br>[kN]<br>0.00                                                                                                                                | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70                                                                                                                                 | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.48<br>10.46<br>10.48<br><b>x</b> <sub>us</sub><br>[mm]<br>10.40                                                                                                                                                                                                                                  | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>os</sub><br>[kN]<br>0.00                                                                                                                                    | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>60</b><br><b>PK</b> us<br>[kN]<br>0.07                                                                                                                                      | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73                                                                                                                                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> <sub>us</sub><br>[mm]<br>10.41                                                                                                                                                                     |
| 0.17<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02                                                                                                                                                   | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub><br>[ <b>kN</b> ]<br>0.00<br>0.05                                                                                                               | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76                                                                                                                         | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br>[mm]<br>10.40<br>10.42                                                                                                                                                                                                                                             | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>os</sub><br>[kN]<br>0.00<br>0.07                                                                                                                            | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>60</b><br><b>PK</b> us<br><b>[kN]</b><br>0.07<br>0.12                                                                                                                       | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79                                                                                                                         | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> us<br>[mm]<br>10.41<br>10.45                                                                                                                                                                       |
| 0.17<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02<br>0.05                                                                                                                                           | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub><br>[ <b>kN</b> ]<br>0.00<br>0.05<br>0.12                                                                                                       | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82                                                                                                                 | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br>[mm]<br>10.40<br>10.42<br>10.43                                                                                                                                                                                                                                    | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>os</sub><br>[kN]<br>0.00<br>0.07<br>0.12                                                                                                                    | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>60</b><br><b>PK</b> us<br><b>[kN]</b><br>0.07<br>0.12<br>0.17                                                                                                               | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82                                                                                                                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> us<br><b>[mm]</b><br>10.41<br>10.45<br>10.45                                                                                                                                                       |
| 0.17<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br><b>[kN]</b><br>0.00<br>0.02<br>0.05<br>0.10                                                                                                                            | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12                                                                                                 | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86                                                                                                         | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br>[mm]<br>10.40<br>10.42<br>10.43<br>10.41                                                                                                                                                                                                                           | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> <sub>0S</sub><br><b>[kN]</b><br>0.00<br>0.07<br>0.12<br>0.15                                                                                              | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>60</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20                                                                                            | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88                                                                                                         | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> <sub>US</sub><br>[mm]<br>10.41<br>10.45<br>10.45<br>10.45<br>10.42                                                                                                                                 |
| 0.17<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br><b>[kN]</b><br>0.00<br>0.02<br>0.05<br>0.10<br>0.17                                                                                                                    | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.20                                                                                         | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93                                                                                                 | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br>[mm]<br>10.40<br>10.42<br>10.43<br>10.41<br>10.45                                                                                                                                                                                                                  | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> <sub>0S</sub><br><b>[kN]</b><br>0.00<br>0.07<br>0.12<br>0.15<br>0.22                                                                                      | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>US</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20<br>0.27                                                                                                 | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95                                                                                                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> us<br>[mm]<br>10.41<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43                                                                                                                                   |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20                                                                                                           | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.20<br>0.27                                                                                 | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99                                                                                         | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br>[mm]<br>10.40<br>10.42<br>10.43<br>10.41<br>10.45<br>10.45                                                                                                                                                                                                         | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>0S</sub><br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27                                                                                            | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>US</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31                                                                                         | 8.18<br>8.15<br>8.13<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01                                                                                                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> <sub>US</sub><br>[mm]<br>10.41<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48                                                                                                               |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27                                                                                                   | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31                                                                         | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04                                                                                         | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br>[mm]<br>10.40<br>10.42<br>10.43<br>10.41<br>10.45<br>10.45<br>10.43                                                                                                                                                                                                | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>os</sub><br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29                                                                                    | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>us</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34                                                                                 | 8.18<br>8.15<br>8.13<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06                                                                                         | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> <sub>US</sub><br>[mm]<br>10.41<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.47                                                                                                      |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31                                                                                           | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub><br>[ <b>kN</b> ]<br>0.00<br>0.05<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34                                                                       | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08                                                                                 | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br><b>[mm]</b><br>10.40<br>10.42<br>10.43<br>10.41<br>10.45<br>10.45<br>10.43<br>10.43<br>10.43<br>10.43                                                                                                                                                              | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> <sub>os</sub><br><b>[kN]</b><br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36                                                              | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>us</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36                                                                         | 8.18<br>8.15<br>8.13<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10                                                                                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> <sub>us</sub><br>[mm]<br>10.41<br>10.45<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.47<br>10.48                                                                                    |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34                                                                                   | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br>[ <b>kN</b> ]<br>0.00<br>0.05<br>0.12<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37                                               | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14                                                                 | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br><b>[mm]</b><br>10.40<br>10.42<br>10.43<br>10.41<br>10.45<br>10.45<br>10.43<br>10.45<br>10.43<br>10.50<br>10.48                                                                                                                                                     | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>os</sub><br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36<br>0.41                                                                    | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>60</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43                                                    | 8.18<br>8.15<br>8.13<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.15                                                                         | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> <sub>us</sub><br>[mm]<br>10.41<br>10.45<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.47<br>10.48<br>10.48                                                                           |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.39                                                                           | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>us</sub><br>[ <b>kN</b> ]<br>0.00<br>0.05<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37<br>0.41                                               | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14<br>7.15                                                         | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> us<br><b>[mm]</b><br>10.40<br>10.42<br>10.43<br>10.41<br>10.45<br>10.45<br>10.45<br>10.43<br>10.50<br>10.48<br>10.48                                                                                                                                                     | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>os</sub><br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36<br>0.41<br>0.42                                                            | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br>60<br>PKus<br>[kN]<br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43<br>0.46                                                                             | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.15<br>7.19                                                         | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br>10.47<br>10.47<br>10.47<br>10.41<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.43<br>10.48<br>10.47<br>10.48<br>10.48<br>10.48<br>10.48<br>10.50                                                       |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.39<br>0.44                                                                   | 0.34<br>0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37<br>0.41<br>0.48                                         | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14<br>7.15<br>7.25                                                 | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> <sub>us</sub><br>[mm]<br>10.40<br>10.42<br>10.43<br>10.41<br>10.45<br>10.45<br>10.43<br>10.50<br>10.48<br>10.48<br>10.50                                                                                                                                                 | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br>PK <sub>0s</sub><br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36<br>0.41<br>0.42<br>0.49                                                    | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>60</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43<br>0.46<br>0.54                                    | 8.18<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>X <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.15<br>7.19<br>7.25                                                         | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> us<br>[mm]<br>10.41<br>10.45<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.47<br>10.48<br>10.48<br>10.48<br>10.50<br>10.52                                                           |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br><b>[kN]</b><br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.39<br>0.44<br>0.49                                                    | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37<br>0.41<br>0.48<br>0.53                         | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14<br>7.15<br>7.25<br>7.29                                 | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> <sub>us</sub><br>[mm]<br>10.40<br>10.42<br>10.43<br>10.41<br>10.45<br>10.45<br>10.43<br>10.50<br>10.48<br>10.48<br>10.50<br>10.53                                                                                                                                        | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.27<br>0.29<br>0.36<br>0.41<br>0.42<br>0.49<br>0.54                                        | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>us</sub><br>[kN]<br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43<br>0.46<br>0.54<br>0.60                                                | 8.18<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>X <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.15<br>7.19<br>7.25<br>7.29                                                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br><b>x</b> <sub>us</sub><br>[mm]<br>10.41<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.47<br>10.48<br>10.48<br>10.48<br>10.50<br>10.52<br>10.52                                                |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> os<br><b>[kN]</b><br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.39<br>0.44<br>0.49<br>0.56                                            | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37<br>0.41<br>0.48<br>0.53<br>0.61                                 | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14<br>7.15<br>7.25<br>7.29<br>7.34                         | 10.54<br>10.52<br>10.53<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> <sub>us</sub><br>[mm]<br>10.40<br>10.42<br>10.43<br>10.41<br>10.45<br>10.43<br>10.45<br>10.43<br>10.50<br>10.48<br>10.48<br>10.50<br>10.53<br>10.52                                                                                                                               | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36<br>0.41<br>0.42<br>0.49<br>0.54<br>0.64                                        | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>us</sub><br>[kN]<br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43<br>0.46<br>0.54<br>0.60<br>0.68                                        | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>X <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.15<br>7.19<br>7.25<br>7.29<br>7.34                                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br>10.50<br>10.47<br>10.47<br>10.45<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.47<br>10.48<br>10.48<br>10.50<br>10.52<br>10.52<br>10.52                                                       |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> <sub>0S</sub><br><b>[kN]</b><br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.39<br>0.44<br>0.49<br>0.56<br>0.64                         | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37<br>0.41<br>0.48<br>0.53<br>0.61<br>0.71                                 | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>xos<br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14<br>7.15<br>7.25<br>7.29<br>7.34<br>7.39                                     | 10.54     10.52     10.53     10.52     10.52     10.48     10.48     10.48     10.48     10.48     10.48     10.48     10.48     10.43     10.42     10.43     10.45     10.45     10.43     10.45     10.43     10.43     10.43     10.43     10.50     10.48     10.50     10.53     10.52     10.52                                                   | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36<br>0.41<br>0.42<br>0.49<br>0.54<br>0.64<br>0.73                                | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>us</sub><br>[kN]<br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43<br>0.46<br>0.54<br>0.60<br>0.68<br>0.80                                | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>X <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.10<br>7.15<br>7.19<br>7.25<br>7.29<br>7.34<br>7.39                 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br>10.50<br>10.47<br>10.47<br>10.45<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.47<br>10.48<br>10.48<br>10.50<br>10.52<br>10.52<br>10.52<br>10.52<br>10.50                                     |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> <sub>0S</sub><br><b>[kN]</b><br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.39<br>0.44<br>0.49<br>0.56<br>0.64<br>0.76                 | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37<br>0.41<br>0.48<br>0.53<br>0.61<br>0.71<br>0.78                 | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14<br>7.15<br>7.25<br>7.29<br>7.34<br>7.39<br>7.42                 | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.46<br>10.48<br><b>x</b> <sub>us</sub><br>[mm]<br>10.40<br>10.42<br>10.43<br>10.41<br>10.43<br>10.41<br>10.45<br>10.43<br>10.50<br>10.48<br>10.48<br>10.50<br>10.53<br>10.52<br>10.5<br>10.52                                                                                                     | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36<br>0.41<br>0.42<br>0.49<br>0.54<br>0.64<br>0.73<br>0.88                        | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>us</sub><br>[kN]<br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43<br>0.46<br>0.54<br>0.60<br>0.68<br>0.80<br>0.89                        | 8.18<br>8.15<br>8.13<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.15<br>7.19<br>7.25<br>7.29<br>7.34<br>7.39<br>7.40                         | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br>10.50<br>10.47<br>10.47<br>10.45<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.43<br>10.43<br>10.48<br>10.47<br>10.48<br>10.48<br>10.50<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.50<br>10.51 |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> <sub>08</sub><br><b>[kN]</b><br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.39<br>0.44<br>0.49<br>0.56<br>0.64<br>0.76<br>0.83         | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37<br>0.41<br>0.48<br>0.53<br>0.61<br>0.71<br>0.78<br>0.87         | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14<br>7.15<br>7.25<br>7.29<br>7.34<br>7.39<br>7.42<br>7.46         | 10.54<br>10.52<br>10.53<br>10.52<br>10.52<br>10.48<br>10.48<br>10.48<br>10.48<br>10.48<br>10.40<br>10.42<br>10.43<br>10.41<br>10.43<br>10.41<br>10.45<br>10.43<br>10.50<br>10.48<br>10.48<br>10.48<br>10.50<br>10.53<br>10.52<br>10.5<br>10.52<br>10.54                                                                                                   | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> os<br><b>[kN]</b><br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36<br>0.41<br>0.42<br>0.49<br>0.54<br>0.64<br>0.73<br>0.88<br>0.93         | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>us</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43<br>0.46<br>0.54<br>0.60<br>0.68<br>0.80<br>0.89<br>0.95         | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.15<br>7.19<br>7.25<br>7.29<br>7.34<br>7.39<br>7.40<br>7.40<br>7.46 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br>10.50<br>10.47<br>10.47<br>10.47<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.43<br>10.48<br>10.48<br>10.50<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.50<br>10.51<br>10.53          |
| 0.17<br>0.14<br>0.14<br>0.07<br>0.02<br>0.00<br><b>PK</b> <sub>08</sub><br><b>[kN]</b><br>0.00<br>0.02<br>0.05<br>0.10<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.39<br>0.44<br>0.49<br>0.56<br>0.64<br>0.76<br>0.83<br>0.93 | 0.31<br>0.27<br>0.24<br>0.22<br>0.17<br>0.12<br>0.07<br><b>30</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.00<br>0.05<br>0.12<br>0.12<br>0.20<br>0.27<br>0.31<br>0.34<br>0.37<br>0.41<br>0.48<br>0.53<br>0.61<br>0.71<br>0.78<br>0.87<br>0.95 | 8.09<br>8.07<br>8.03<br>8.03<br>8.01<br>7.98<br>7.93<br>7.93<br>min<br>x <sub>os</sub><br>[mm]<br>6.70<br>6.76<br>6.82<br>6.86<br>6.93<br>6.99<br>7.04<br>7.08<br>7.14<br>7.15<br>7.25<br>7.29<br>7.34<br>7.39<br>7.42<br>7.46<br>7.50 | 10.54     10.52     10.53     10.52     10.48     10.48     10.48     10.48     10.48     10.48     10.48     10.48     10.48     10.49     10.40     10.42     10.43     10.45     10.45     10.45     10.45     10.45     10.45     10.45     10.45     10.45     10.45     10.45     10.50     10.51     10.52     10.52     10.52     10.54     10.50 | 0.22<br>0.14<br>0.15<br>0.12<br>0.05<br>0.03<br>0.00<br><b>PK</b> os<br><b>[kN]</b><br>0.00<br>0.07<br>0.12<br>0.15<br>0.22<br>0.27<br>0.29<br>0.36<br>0.41<br>0.42<br>0.49<br>0.54<br>0.64<br>0.73<br>0.88<br>0.93<br>1.05 | 0.29<br>0.29<br>0.24<br>0.22<br>0.15<br>0.1<br>0.07<br><b>FK</b> <sub>us</sub><br><b>[kN]</b><br>0.07<br>0.12<br>0.17<br>0.20<br>0.27<br>0.31<br>0.34<br>0.36<br>0.43<br>0.46<br>0.54<br>0.60<br>0.68<br>0.80<br>0.89<br>0.95<br>1.04 | 8.18<br>8.15<br>8.13<br>8.08<br>8.08<br>8.07<br>8.02<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.79<br>6.82<br>6.88<br>6.95<br>7.01<br>7.06<br>7.10<br>7.15<br>7.19<br>7.25<br>7.29<br>7.34<br>7.39<br>7.40<br>7.46<br>7.51 | 10.53<br>10.51<br>10.53<br>10.50<br>10.47<br>10.50<br>10.47<br>10.50<br>10.47<br>10.47<br>10.45<br>10.45<br>10.45<br>10.45<br>10.42<br>10.43<br>10.48<br>10.43<br>10.48<br>10.47<br>10.48<br>10.50<br>10.52<br>10.52<br>10.52<br>10.52<br>10.50<br>10.51<br>10.53<br>10.54 |

| 1 1 2                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.12                                                                                                                                                                                                                                                              | 1.14                                                                                                                                                                                                                                                                                  | 7.59                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.22                                                                                                                                                                                                                                                                           | 1.21                                                                                                                                                                                                                                                                                                  | 7.58                                                                                                                                                                                                                                                   | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.22                                                                                                                                                                                                                                                              | 1.24                                                                                                                                                                                                                                                                                  | 7.62                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.31                                                                                                                                                                                                                                                                           | 1.29                                                                                                                                                                                                                                                                                                  | 7.62                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.34                                                                                                                                                                                                                                                              | 1.31                                                                                                                                                                                                                                                                                  | 7.65                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.41                                                                                                                                                                                                                                                                           | 1.38                                                                                                                                                                                                                                                                                                  | 7.64                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.42                                                                                                                                                                                                                                                              | 1.43                                                                                                                                                                                                                                                                                  | 7.69                                                                                                                                                                                                                                                                                                                  | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.51                                                                                                                                                                                                                                                                           | 1.48                                                                                                                                                                                                                                                                                                  | 7.69                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.53                                                                                                                                                                                                                                                              | 1.50                                                                                                                                                                                                                                                                                  | 7.71                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.58                                                                                                                                                                                                                                                                           | 1.58                                                                                                                                                                                                                                                                                                  | 7.73                                                                                                                                                                                                                                                   | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 61                                                                                                                                                                                                                                                              | 1 62                                                                                                                                                                                                                                                                                  | 7 76                                                                                                                                                                                                                                                                                                                  | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 68                                                                                                                                                                                                                                                                           | 1 63                                                                                                                                                                                                                                                                                                  | 7 76                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 71                                                                                                                                                                                                                                                              | 1.69                                                                                                                                                                                                                                                                                  | 7 79                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.80                                                                                                                                                                                                                                                                           | 1 75                                                                                                                                                                                                                                                                                                  | 7 79                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.71                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                  | 7.02                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                                                                                           | 1.75                                                                                                                                                                                                                                                                                                  | 7.82                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.70                                                                                                                                                                                                                                                              | 1.79                                                                                                                                                                                                                                                                                  | 7.02                                                                                                                                                                                                                                                                                                                  | 10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                                                                                           | 1.04                                                                                                                                                                                                                                                                                                  | 7.02                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.90                                                                                                                                                                                                                                                              | 1.87                                                                                                                                                                                                                                                                                  | 7.85                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.97                                                                                                                                                                                                                                                                           | 1.92                                                                                                                                                                                                                                                                                                  | 7.85                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.00                                                                                                                                                                                                                                                              | 1.96                                                                                                                                                                                                                                                                                  | 7.89                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.05                                                                                                                                                                                                                                                                           | 1.99                                                                                                                                                                                                                                                                                                  | 7.87                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.09                                                                                                                                                                                                                                                              | 2.03                                                                                                                                                                                                                                                                                  | 7.92                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.12                                                                                                                                                                                                                                                                           | 2.11                                                                                                                                                                                                                                                                                                  | 7.91                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.19                                                                                                                                                                                                                                                              | 2.13                                                                                                                                                                                                                                                                                  | 7.95                                                                                                                                                                                                                                                                                                                  | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.20                                                                                                                                                                                                                                                                           | 2.16                                                                                                                                                                                                                                                                                                  | 7.93                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.25                                                                                                                                                                                                                                                              | 2.20                                                                                                                                                                                                                                                                                  | 7.97                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.29                                                                                                                                                                                                                                                                           | 2.23                                                                                                                                                                                                                                                                                                  | 7.95                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.34                                                                                                                                                                                                                                                              | 2.28                                                                                                                                                                                                                                                                                  | 8.00                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.41                                                                                                                                                                                                                                                                           | 2.33                                                                                                                                                                                                                                                                                                  | 7.98                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 42                                                                                                                                                                                                                                                              | 2 37                                                                                                                                                                                                                                                                                  | 8 02                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 48                                                                                                                                                                                                                                                                           | 2 38                                                                                                                                                                                                                                                                                                  | 8 00                                                                                                                                                                                                                                                   | 10 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 49                                                                                                                                                                                                                                                              | 2 43                                                                                                                                                                                                                                                                                  | 8.02                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 56                                                                                                                                                                                                                                                                           | 2 47                                                                                                                                                                                                                                                                                                  | 8.01                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.40                                                                                                                                                                                                                                                              | 2.40                                                                                                                                                                                                                                                                                  | 8.06                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00                                                                                                                                                                                                                                                                           | 2.50                                                                                                                                                                                                                                                                                                  | 8.02                                                                                                                                                                                                                                                   | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.55                                                                                                                                                                                                                                                              | 2.50                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.01                                                                                                                                                                                                                                                                           | 2.50                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.00                                                                                                                                                                                                                                                              | 2.37                                                                                                                                                                                                                                                                                  | 0.09                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.70                                                                                                                                                                                                                                                                           | 2.00                                                                                                                                                                                                                                                                                                  | 0.07                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.73                                                                                                                                                                                                                                                              | 2.66                                                                                                                                                                                                                                                                                  | 8.11                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.73                                                                                                                                                                                                                                                                           | 2.67                                                                                                                                                                                                                                                                                                  | 8.11                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.80                                                                                                                                                                                                                                                              | 2.71                                                                                                                                                                                                                                                                                  | 8.12                                                                                                                                                                                                                                                                                                                  | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.83                                                                                                                                                                                                                                                                           | 2.72                                                                                                                                                                                                                                                                                                  | 8.11                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.85                                                                                                                                                                                                                                                              | 2.77                                                                                                                                                                                                                                                                                  | 8.15                                                                                                                                                                                                                                                                                                                  | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.87                                                                                                                                                                                                                                                                           | 2.76                                                                                                                                                                                                                                                                                                  | 8.13                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.93                                                                                                                                                                                                                                                              | 2.81                                                                                                                                                                                                                                                                                  | 8.14                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.93                                                                                                                                                                                                                                                                           | 2.81                                                                                                                                                                                                                                                                                                  | 8.15                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.97                                                                                                                                                                                                                                                              | 2.86                                                                                                                                                                                                                                                                                  | 8.17                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.02                                                                                                                                                                                                                                                                           | 2.86                                                                                                                                                                                                                                                                                                  | 8.13                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.02                                                                                                                                                                                                                                                              | 2.91                                                                                                                                                                                                                                                                                  | 8.18                                                                                                                                                                                                                                                                                                                  | 10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.02                                                                                                                                                                                                                                                                           | 2.91                                                                                                                                                                                                                                                                                                  | 8.18                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.07                                                                                                                                                                                                                                                              | 2.94                                                                                                                                                                                                                                                                                  | 8.20                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.02                                                                                                                                                                                                                                                                           | 2.96                                                                                                                                                                                                                                                                                                  | 8.18                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 10                                                                                                                                                                                                                                                              | 2.98                                                                                                                                                                                                                                                                                  | 8.22                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 10                                                                                                                                                                                                                                                                           | 2.98                                                                                                                                                                                                                                                                                                  | 8 19                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.10                                                                                                                                                                                                                                                              | 2.00                                                                                                                                                                                                                                                                                  | 8.22                                                                                                                                                                                                                                                                                                                  | 10.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.10                                                                                                                                                                                                                                                                           | 3.00                                                                                                                                                                                                                                                                                                  | 8 20                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 15                                                                                                                                                                                                                                                              | 3.03                                                                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                                                                                                                  | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.14                                                                                                                                                                                                                                                                           | 3.00                                                                                                                                                                                                                                                                                                  | 9.20                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.10                                                                                                                                                                                                                                                              | 3.05                                                                                                                                                                                                                                                                                  | 0.24                                                                                                                                                                                                                                                                                                                  | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.14                                                                                                                                                                                                                                                                           | 3.05                                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.20                                                                                                                                                                                                                                                              | 3.06                                                                                                                                                                                                                                                                                  | 0.24                                                                                                                                                                                                                                                                                                                  | 10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.17                                                                                                                                                                                                                                                                           | 3.05                                                                                                                                                                                                                                                                                                  | 0.24                                                                                                                                                                                                                                                   | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.17                                                                                                                                                                                                                                                              | 3.06                                                                                                                                                                                                                                                                                  | 8.25                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.20                                                                                                                                                                                                                                                                           | 3.06                                                                                                                                                                                                                                                                                                  | 8.23                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.20                                                                                                                                                                                                                                                              | 3.06                                                                                                                                                                                                                                                                                  | 8.26                                                                                                                                                                                                                                                                                                                  | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.19                                                                                                                                                                                                                                                                           | 3.06                                                                                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.17                                                                                                                                                                                                                                                              | 3.06                                                                                                                                                                                                                                                                                  | 8.25                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.20                                                                                                                                                                                                                                                                           | 3.03                                                                                                                                                                                                                                                                                                  | 8.25                                                                                                                                                                                                                                                   | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.20                                                                                                                                                                                                                                                              | 3.03                                                                                                                                                                                                                                                                                  | 8.28                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.14                                                                                                                                                                                                                                                                           | 3.00                                                                                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                                                   | 10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.15                                                                                                                                                                                                                                                              | 3.03                                                                                                                                                                                                                                                                                  | 8.28                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.09                                                                                                                                                                                                                                                                           | 2.98                                                                                                                                                                                                                                                                                                  | 8.24                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.14                                                                                                                                                                                                                                                              | 3.00                                                                                                                                                                                                                                                                                  | 8.29                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.07                                                                                                                                                                                                                                                                           | 2.94                                                                                                                                                                                                                                                                                                  | 8.26                                                                                                                                                                                                                                                   | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.07                                                                                                                                                                                                                                                              | 2.94                                                                                                                                                                                                                                                                                  | 8.28                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.02                                                                                                                                                                                                                                                                           | 2.93                                                                                                                                                                                                                                                                                                  | 8.26                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.02                                                                                                                                                                                                                                                              | 2 93                                                                                                                                                                                                                                                                                  | 8 28                                                                                                                                                                                                                                                                                                                  | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 93                                                                                                                                                                                                                                                                           | 2 86                                                                                                                                                                                                                                                                                                  | 8 24                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.88                                                                                                                                                                                                                                                              | 2.84                                                                                                                                                                                                                                                                                  | 8 29                                                                                                                                                                                                                                                                                                                  | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.83                                                                                                                                                                                                                                                                           | 2 79                                                                                                                                                                                                                                                                                                  | 8.26                                                                                                                                                                                                                                                   | 10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.00                                                                                                                                                                                                                                                              | 2.04                                                                                                                                                                                                                                                                                  | 8 20                                                                                                                                                                                                                                                                                                                  | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00                                                                                                                                                                                                                                                                           | 2.75                                                                                                                                                                                                                                                                                                  | 8.26                                                                                                                                                                                                                                                   | 10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 / 11 /                                                                                                                                                                                                                                                          | ///                                                                                                                                                                                                                                                                                   | 0.29                                                                                                                                                                                                                                                                                                                  | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.70                                                                                                                                                                                                                                                                           | 2.71                                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.00                                                                                                                                                                                                                                                              | 2.60                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                  | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 5 2                                                                                                                                                                                                                                                                          | 0.66                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                   | 10 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.64                                                                                                                                                                                                                                                              | 2.69                                                                                                                                                                                                                                                                                  | 8.26                                                                                                                                                                                                                                                                                                                  | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.53                                                                                                                                                                                                                                                                           | 2.66                                                                                                                                                                                                                                                                                                  | 8.26                                                                                                                                                                                                                                                   | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.64<br>2.46                                                                                                                                                                                                                                                      | 2.69<br>2.59                                                                                                                                                                                                                                                                          | 8.26<br>8.28                                                                                                                                                                                                                                                                                                          | 10.52<br>10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.53<br>2.37                                                                                                                                                                                                                                                                   | 2.66<br>2.54                                                                                                                                                                                                                                                                                          | 8.26<br>8.28                                                                                                                                                                                                                                           | 10.51<br>10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.64<br>2.46<br>2.32                                                                                                                                                                                                                                              | 2.69<br>2.59<br>2.47                                                                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.29                                                                                                                                                                                                                                                                                                  | 10.52<br>10.54<br>10.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.53<br>2.37<br>2.22                                                                                                                                                                                                                                                           | 2.66<br>2.54<br>2.38                                                                                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.24                                                                                                                                                                                                                                   | 10.51<br>10.52<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.60<br>2.64<br>2.46<br>2.32<br>2.17                                                                                                                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28                                                                                                                                                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29                                                                                                                                                                                                                                                                                          | 10.52<br>10.54<br>10.56<br>10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.53<br>2.37<br>2.22<br>2.07                                                                                                                                                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18                                                                                                                                                                                                                                                                          | 8.26<br>8.28<br>8.24<br>8.26                                                                                                                                                                                                                           | 10.51<br>10.52<br>10.53<br>10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02                                                                                                                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11                                                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29                                                                                                                                                                                                                                                                          | 10.52<br>10.54<br>10.56<br>10.52<br>10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.53<br>2.37<br>2.22<br>2.07<br>1.92                                                                                                                                                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03                                                                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28                                                                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02<br>1.83                                                                                                                                                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91                                                                                                                                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29                                                                                                                                                                                                                                                                  | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.52<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73                                                                                                                                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80                                                                                                                                                                                                                                                          | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28                                                                                                                                                                                                           | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63                                                                                                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72                                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26                                                                                                                                                                                                                                                  | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51                                                                                                                                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60                                                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28                                                                                                                                                                                           | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42                                                                                                                                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50                                                                                                                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29                                                                                                                                                                                                                                                  | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34                                                                                                                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41                                                                                                                                                                                                                                          | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28                                                                                                                                                                           | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24                                                                                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25                                                                                                                                                                                                                                          | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14                                                                                                                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21                                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05                                                                                                                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11                                                                                                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.25<br>8.26                                                                                                                                                                                                                          | 10.52<br>10.54<br>10.56<br>10.52<br>10.53<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98                                                                                                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02                                                                                                                                                                                                                          | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88                                                                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92                                                                                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.25<br>8.26<br>8.28                                                                                                                                                                                                                          | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78                                                                                                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85                                                                                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64                                                                                                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75                                                                                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.25<br>8.26<br>8.28<br>8.28                                                                                                                                                                                                          | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54<br>10.52<br>10.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58                                                                                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66                                                                                                                                                                                                          | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.64<br>2.46<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.52                                                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60                                                                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.26<br>8.25<br>8.26<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28                                                                                                                                                                                          | 10.52     10.54     10.56     10.52     10.53     10.53     10.51     10.54     10.54     10.51     10.54     10.54     10.54     10.54     10.54     10.54     10.54     10.54     10.54     10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41                                                                                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54                                                                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | $\begin{array}{c} 10.51 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.53 \\ 10.52 \\ 10.50 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53                                                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60                                                                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.26<br>8.28<br>8.28<br>8.28<br>8.26<br>8.28                                                                                                                                                                                          | 10.52     10.54     10.56     10.52     10.53     10.53     10.51     10.54     10.54     10.51     10.52     10.53     10.51     10.54     10.52     10.54     10.52     10.52     10.52     10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41                                                                                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54                                                                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37                                                                                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46                                                                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.26<br>8.28<br>8.28<br>8.28<br>8.26<br>8.28                                                                                                                                                                                          | 10.52     10.54     10.56     10.52     10.53     10.53     10.51     10.54     10.52     10.53     10.53     10.51     10.54     10.52     10.52     10.52     10.52     10.52     10.52     10.52     10.52     10.52     10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32                                                                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41                                                                                                                                                                                          | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25                                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34                                                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.24<br>8.24<br>8.23                                                                                                                                                                          | 10.52     10.54     10.56     10.52     10.53     10.53     10.51     10.54     10.54     10.51     10.52     10.53     10.51     10.54     10.52     10.52     10.52     10.52     10.52     10.52     10.52     10.52     10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24                                                                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34                                                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22                                                                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32                                                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.24<br>8.23<br>8.20                                                                                                                                                                  | $\begin{array}{c} 10.52 \\ 10.54 \\ 10.56 \\ 10.52 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.48 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.52 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17                                                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31                                                                                                                                                                          | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | $\begin{array}{c} 10.51 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.52 \\ 10.54 \\ 10.53 \\ 10.54 \\ 10.53 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19                                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27                                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.26<br>8.28<br>8.28<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.18                                                                                                                                                                  | $\begin{array}{c} 10.52 \\ 10.54 \\ 10.56 \\ 10.52 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.48 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.53 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14                                                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27                                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | $\begin{array}{c} 10.51 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.52 \\ 10.54 \\ 10.53 \\ 10.53 \\ 10.53 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14                                                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26                                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.24<br>8.23<br>8.20<br>8.18<br>8.15                                                                                                                                                          | $\begin{array}{c} 10.52 \\ 10.54 \\ 10.56 \\ 10.52 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.48 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.53 \\ 10.51 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12                                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24                                                                                                                                                          | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | $\begin{array}{c} 10.51 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.52 \\ 10.54 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12                                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22                                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.26<br>8.26<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.18<br>8.15<br>8.11                                                                                                                                  | $\begin{array}{c} 10.52 \\ 10.54 \\ 10.56 \\ 10.52 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.48 \\ 10.52 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | $\begin{array}{c} 10.51 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.54 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.51 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07                                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19                                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.26<br>8.29<br>8.26<br>8.28<br>8.26<br>8.28<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.15<br>8.11<br>8.11                                                                                                                                          | 10.52     10.54     10.56     10.52     10.53     10.53     10.53     10.54     10.54     10.54     10.54     10.54     10.54     10.54     10.54     10.52     10.52     10.52     10.52     10.53     10.51     10.51     10.47     10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.31<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17                                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | $\begin{array}{c} 10.51 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03                                                                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12                                                                                                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.24<br>8.23<br>8.20<br>8.18<br>8.15<br>8.11<br>8.11<br>8.08                                                                                                                          | 10.52     10.54     10.56     10.52     10.53     10.53     10.53     10.54     10.54     10.54     10.54     10.54     10.54     10.52     10.54     10.52     10.52     10.52     10.52     10.52     10.53     10.51     10.51     10.52     10.52     10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | $\begin{array}{c} 10.51 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.47 \\ 10.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.18<br>8.15<br>8.11<br>8.11<br>8.08<br>8.07                                                                                                                  | $\begin{array}{c} 10.52 \\ 10.54 \\ 10.56 \\ 10.52 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.54 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.50 \\ 10.55 \\ 10.51 \\ 10.47 \\ 10.52 \\ 10.50 \\ 10.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.03<br>0.00                                                                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26                                                                                                                                                                   | $\begin{array}{c} 10.51 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.50 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.47 \\ 10.47 \\ 10.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05                                                                                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28                                                                                                                                                                                  | $\begin{array}{c} 10.52 \\ 10.54 \\ 10.56 \\ 10.52 \\ 10.52 \\ 10.53 \\ 10.53 \\ 10.51 \\ 10.54 \\ 10.54 \\ 10.54 \\ 10.52 \\ 10.48 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.53 \\ 10.51 \\ 10.51 \\ 10.47 \\ 10.52 \\ 10.50 \\ 10.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12                                                                                                                                  | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51   10.52   10.53   10.51   10.53   10.53   10.53   10.53   10.54   10.52   10.52   10.53   10.52   10.53   10.52   10.53   10.53   10.53   10.53   10.54   10.52   10.53   10.53   10.53   10.54   10.53   10.54   10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00                                                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br>180                                                                                                   | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28                                                                                                                                                                                  | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.53<br>10.51<br>10.53<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.54<br>10.54<br>10.54<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.55<br>10.53<br>10.54<br>10.54<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00                                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br>360                                                                                                                           | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br>PK <sub>os</sub><br>IkNI                                                          | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br>180<br>PKus<br>IkNI                                                                                   | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.11<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br>min                                                                                                                           | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54<br>10.54<br>10.52<br>10.52<br>10.48<br>10.52<br>10.52<br>10.52<br>10.53<br>10.51<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.53<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10 | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00<br>PK <sub>os</sub><br>IkNI                                                                               | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br>360<br>PKus<br>IkNI                                                                                                           | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.54<br>10.52<br>10.52<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.55<br>10.55<br>10.55<br>10.55<br>10.54<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.57<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PKos</b><br>[ <b>kN</b> ]<br>0.00                                              | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br><b>180</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.05                                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.18<br>8.15<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br>min<br>6.77                                                                                                   | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54<br>10.54<br>10.54<br>10.52<br>10.48<br>10.52<br>10.52<br>10.52<br>10.52<br>10.53<br>10.51<br>10.51<br>10.52<br>10.53<br>10.51<br>10.47<br>10.52<br>10.50<br>10.47<br><b>x</b> <sub>us</sub><br>[mm]<br>10.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00<br><b>PK</b> os<br>[ <b>kN</b> ]<br>0.00                                                                  | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br>360<br>PKus<br>[kN]<br>0.05                                                                                                   | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26<br>8.23<br>8.25<br>8.23<br>8.25<br>8.23<br>8.20<br>8.19<br>8.17<br>8.15<br>8.12<br>8.11<br>8.07<br>min<br>6.73                                                    | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.55<br>10.55<br>10.50<br>10.52<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.54<br>10.53<br>10.54<br>10.54<br>10.55<br>10.55<br>10.54<br>10.55<br>10.55<br>10.55<br>10.50<br>10.52<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.54<br>10.54<br>10.53<br>10.54<br>10.54<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.47<br>10.47<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00                                                      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br><b>180</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.05<br>0.10                                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.26<br>8.26<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.23<br>8.20<br>8.13<br>8.15<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br>min<br>Xos<br>[mm]<br>6.77<br>6.84                                                                    | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.53<br>10.51<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.50<br>10.47<br>10.52<br>10.50<br>10.47<br>10.52<br>10.50<br>10.47<br>10.52<br>10.50<br>10.47<br>10.52<br>10.50<br>10.47<br>10.52<br>10.50<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.42<br>10.47<br>10.47<br>10.42<br>10.47<br>10.47<br>10.47<br>10.42<br>10.47<br>10.47<br>10.47<br>10.42<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10.47<br>10 | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.78<br>0.78<br>0.78<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00                                                                                           | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br>360<br>PKus<br>[kN]<br>0.05<br>0.00                                                                                           | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26<br>8.26<br>8.23<br>8.25<br>8.23<br>8.23<br>8.20<br>8.19<br>8.17<br>8.15<br>8.12<br>8.11<br>8.07<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.81                 | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.52<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.47<br>10.47<br>10.40<br>10.40<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PK</b> <sub>os</sub> [ <b>kN</b> ]<br>0.00<br>0.02                             | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br>180<br>PK <sub>us</sub><br>[kN]<br>0.05<br>0.10                                                       | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.26<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.15<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br>min<br>Xos<br>[mm]<br>6.77<br>6.84<br>6.20                                                                            | 10.52   10.54   10.56   10.52   10.53   10.53   10.53   10.53   10.54   10.53   10.54   10.54   10.54   10.54   10.52   10.52   10.52   10.52   10.52   10.52   10.51   10.52   10.50   10.47   10.50   10.47   10.42   10.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.03                                                                   | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.22<br>0.17<br>0.12<br>360<br>PKus<br>[kN]<br>0.05<br>0.09<br>0.12                                                                   | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26<br>8.26<br>8.26<br>8.23<br>8.23<br>8.23<br>8.23<br>8.20<br>8.19<br>8.17<br>8.15<br>8.12<br>8.11<br>8.07<br>min<br>x <sub>os</sub><br>[mm]<br>6.73<br>6.81<br>6.26 | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.55<br>10.54<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.54<br>10.55<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.47<br>10.47<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PK</b> os [kN]<br>0.00<br>0.02                                                 | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br>180<br>PK <sub>us</sub><br>[kN]<br>0.05<br>0.10<br>0.14<br>0.22                                       | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.24<br>8.23<br>8.20<br>8.11<br>8.15<br>8.11<br>8.11<br>8.08<br>8.07<br>min<br>Xos<br>[mm]<br>6.77<br>6.84<br>6.90<br>9.25                                                                    | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.53<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.53<br>10.51<br>10.52<br>10.52<br>10.53<br>10.52<br>10.53<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.48<br>10.52<br>10.55<br>10.55<br>10.55<br>10.47<br>10.47<br>10.52<br>10.47<br>10.47<br>10.52<br>10.47<br>10.47<br>10.55<br>10.47<br>10.47<br>10.55<br>10.47<br>10.47<br>10.55<br>10.47<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.47<br>10.55<br>10.47<br>10.47<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10.42<br>10 | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.12<br>0.03<br>0.00<br><b>PK</b> <sub>os</sub><br>[ <b>kN</b> ]<br>0.00<br>0.03<br>0.05                               | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br>360<br>PK <sub>US</sub><br>[kN]<br>0.05<br>0.09<br>0.12                                                                       | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.47<br>10.47<br>10.47<br>10.47<br>10.40<br>10.41<br>10.40<br>10.41<br>10.40<br>10.41<br>10.40<br>10.41<br>10.41<br>10.40<br>10.41<br>10.41<br>10.40<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10.41<br>10 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PK</b> os [kN]<br>0.00<br>0.02<br>0.07                                         | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br><b>180</b><br><b>PK</b> <sub>us</sub><br><b>[kN]</b><br>0.05<br>0.10<br>0.14<br>0.20                  | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.26<br>8.28<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.13<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br>min<br>Xos<br>[mm]<br>6.77<br>6.84<br>6.90<br>6.95<br>0.5                                             | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.47<br>10.52<br>10.55<br>10.47<br>10.52<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.55<br>10.47<br>10.47<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.47<br>10.42<br>10.47<br>10.42<br>10.47<br>10.45<br>10.47<br>10.47<br>10.42<br>10.47<br>10.47<br>10.47<br>10.47<br>10.42<br>10.47<br>10.47<br>10.42<br>10.47<br>10.45<br>10.47<br>10.47<br>10.47<br>10.42<br>10.47<br>10.47<br>10.42<br>10.47<br>10.45<br>10.47<br>10.47<br>10.47<br>10.42<br>10.47<br>10.45<br>10.47<br>10.47<br>10.42<br>10.46<br>10.47<br>10.45<br>10.47<br>10.47<br>10.42<br>10.46<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.45<br>10.47<br>10.45<br>10.47<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10 | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00<br><b>PK</b> os [kN]<br>0.00<br>0.03<br>0.05<br>0.12                                                      | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br>360<br>PK <sub>us</sub><br>[kN]<br>0.05<br>0.09<br>0.12<br>0.17                                                               | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.54<br>10.53<br>10.52<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.54<br>10.53<br>10.54<br>10.54<br>10.54<br>10.53<br>10.54<br>10.54<br>10.55<br>10.54<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.53<br>10.54<br>10.55<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.54<br>10.53<br>10.55<br>10.54<br>10.54<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.55<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.47<br>10.47<br>10.40<br>10.40<br>10.45<br>10.41<br>10.45<br>10.54<br>10.55<br>10.55<br>10.54<br>10.54<br>10.54<br>10.47<br>10.47<br>10.40<br>10.45<br>10.41<br>10.45<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PK</b> os [kN]<br>0.00<br>0.02<br>0.07<br>0.14<br>0.22                         | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br><b>180</b><br><b>PK</b> <sub>us</sub><br><b>[kN]</b><br>0.05<br>0.10<br>0.29                          | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.26<br>8.29<br>8.25<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.18<br>8.15<br>8.11<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br><b>min</b><br><b>x</b> <sub>os</sub><br>[ <b>mm</b> ]<br>6.77<br>6.84<br>6.90<br>6.95<br>6.99 | 10.52   10.54   10.56   10.52   10.53   10.53   10.53   10.53   10.53   10.54   10.52   10.54   10.52   10.52   10.52   10.52   10.52   10.52   10.52   10.52   10.51   10.51   10.52   10.50   10.51   10.47   10.50   10.47   10.47   10.47   10.42   10.47   10.42   10.42   10.42   10.42   10.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.78<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.12<br>0.03<br>0.00<br><b>PK</b> <sub>0S</sub><br><b>[kN]</b><br>0.00<br>0.03<br>0.05<br>0.12<br>0.19 | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br>360<br>PKus<br>[kN]<br>0.05<br>0.09<br>0.12<br>0.17<br>0.24                                                                   | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.55<br>10.54<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.54<br>10.47<br>10.47<br>10.47<br>10.40<br>10.45<br>10.41<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PK</b> os <b>[kN]</b><br>0.00<br>0.02<br>0.07<br>0.02<br>0.07                  | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br><b>180</b><br><b>PK</b> <sub>US</sub><br>[kN]<br>0.05<br>0.10<br>0.14<br>0.20<br>0.29<br>0.29         | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.25<br>8.26<br>8.28<br>8.26<br>8.28<br>8.26<br>8.24<br>8.23<br>8.20<br>8.18<br>8.20<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br><b>min</b><br><b>x</b> <sub>os</sub><br>[mm]<br>6.77<br>6.84<br>6.90<br>6.95<br>6.99<br>7.04          | 10.52   10.54   10.56   10.52   10.53   10.53   10.53   10.53   10.53   10.54   10.52   10.54   10.52   10.54   10.52   10.52   10.52   10.52   10.52   10.51   10.52   10.53   10.51   10.52   10.53   10.51   10.47   10.52   10.47   10.42   10.47   10.42   10.47   10.42   10.45   10.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00<br><b>PK</b> <sub>0S</sub><br><b>[kN]</b><br>0.00<br>0.03<br>0.05<br>0.12<br>0.19<br>0.24                 | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br><b>360</b><br><b>PK</b> <sub>US</sub><br><b>[kN]</b><br>0.05<br>0.09<br>0.12<br>0.17<br>0.24<br>0.27                          | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.54<br>10.52<br>10.54<br>10.53<br>10.52<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.55<br>10.54<br>10.55<br>10.54<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.55<br>10.47<br>10.47<br>10.40<br>10.45<br>10.41<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.46<br>10.45<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10.46<br>10 |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.02<br>0.07<br>0.14<br>0.22<br>0.24<br>0.29      | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br><b>180</b><br><b>PK</b> <sub>US</sub><br>[kN]<br>0.05<br>0.10<br>0.14<br>0.20<br>0.29<br>0.29<br>0.34 | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.24<br>8.23<br>8.20<br>8.18<br>8.15<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br>min<br><sup>K</sup> os<br>[mm]<br>6.77<br>6.84<br>6.90<br>6.95<br>6.99<br>7.04<br>7.09                                | 10.52<br>10.54<br>10.56<br>10.52<br>10.52<br>10.53<br>10.53<br>10.51<br>10.54<br>10.54<br>10.54<br>10.54<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.52<br>10.53<br>10.51<br>10.47<br>10.47<br>10.42<br>10.47<br>10.42<br>10.45<br>10.51<br>10.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.58<br>0.41<br>0.32<br>0.24<br>0.17<br>0.14<br>0.12<br>0.12<br>0.03<br>0.00<br><b>PK</b> os<br>[kN]<br>0.00<br>0.03<br>0.05<br>0.12<br>0.12<br>0.12<br>0.12<br>0.019<br>0.24<br>0.25  | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br>360<br>PK <sub>us</sub><br>[kN]<br>0.05<br>0.09<br>0.12<br>0.17<br>0.24<br>0.27<br>0.31                                       | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.54<br>10.53<br>10.54<br>10.54<br>10.54<br>10.53<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.54<br>10.47<br>10.47<br>10.47<br>10.45<br>10.41<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.45<br>10.46<br>10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.64<br>2.64<br>2.32<br>2.17<br>2.02<br>1.83<br>1.63<br>1.42<br>1.24<br>1.05<br>0.88<br>0.64<br>0.53<br>0.37<br>0.25<br>0.22<br>0.19<br>0.14<br>0.12<br>0.07<br>0.03<br>0.00<br><b>PK</b> os [kN]<br>0.00<br>0.02<br>0.07<br>0.14<br>0.22<br>0.24<br>0.29<br>0.31 | 2.69<br>2.59<br>2.47<br>2.28<br>2.11<br>1.91<br>1.72<br>1.50<br>1.29<br>1.11<br>0.92<br>0.75<br>0.60<br>0.46<br>0.34<br>0.32<br>0.27<br>0.26<br>0.22<br>0.19<br>0.12<br>0.05<br><b>180</b><br><b>PK</b> <sub>us</sub><br>[kN]<br>0.05<br>0.10<br>0.29<br>0.29<br>0.34<br>0.39         | 8.26<br>8.28<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.29<br>8.25<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.24<br>8.23<br>8.20<br>8.18<br>8.15<br>8.11<br>8.11<br>8.11<br>8.08<br>8.07<br>min<br><b>x</b> <sub>os</sub><br>[mm]<br>6.77<br>6.84<br>6.90<br>6.95<br>6.99<br>7.04<br>7.09<br>7.15         | 10.52     10.54     10.56     10.52     10.53     10.53     10.53     10.53     10.53     10.54     10.52     10.53     10.51     10.52     10.52     10.52     10.52     10.52     10.52     10.52     10.51     10.47     10.52     10.50     10.47     10.47     10.47     10.42     10.47     10.42     10.45     10.45     10.46     10.45     10.46     10.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.53<br>2.37<br>2.22<br>2.07<br>1.92<br>1.73<br>1.51<br>1.34<br>1.14<br>0.98<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.7                                                                                                                                    | 2.66<br>2.54<br>2.38<br>2.18<br>2.03<br>1.80<br>1.60<br>1.41<br>1.21<br>1.02<br>0.85<br>0.66<br>0.54<br>0.41<br>0.34<br>0.31<br>0.27<br>0.24<br>0.20<br>0.17<br>0.12<br><b>360</b><br><b>PK</b> <sub>US</sub><br>[kN]<br>0.05<br>0.09<br>0.12<br>0.17<br>0.24<br>0.27<br>0.24<br>0.27<br>0.31<br>0.36 | 8.26<br>8.28<br>8.24<br>8.26<br>8.28<br>8.28<br>8.28<br>8.28<br>8.26<br>8.26<br>8.26                                                                                                                                                                   | 10.51<br>10.52<br>10.53<br>10.51<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.54<br>10.54<br>10.52<br>10.50<br>10.52<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.53<br>10.54<br>10.53<br>10.53<br>10.54<br>10.47<br>10.47<br>10.40<br>10.45<br>10.41<br>10.42<br>10.45<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.44<br>10.45<br>10.46<br>10.45<br>10.46<br>10.46<br>10.50<br>10.46<br>10.46<br>10.46<br>10.48<br>10.48<br>10.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|      | 1    | 1                        |       |      |      |                  |        |
|------|------|--------------------------|-------|------|------|------------------|--------|
| 0.41 | 0.48 | 7.24                     | 10.51 | 0.42 | 0.44 | 7.23             | 10.53  |
| 0.47 | 0.54 | 7.30                     | 10.50 | 0.46 | 0.51 | 7.25             | 10.52  |
| 0.54 | 0.63 | 7.30                     | 10.52 | 0.51 | 0.58 | 7.32             | 10.53  |
| 0.62 | 0.00 | 7.00                     | 10.52 | 0.01 | 0.00 | 7.02             | 10.00  |
| 0.03 | 0.73 | 7.39                     | 10.52 | 0.01 | 0.00 | 7.30             | 10.54  |
| 0.73 | 0.80 | 7.42                     | 10.52 | 0.68 | 0.73 | 7.39             | 10.53  |
| 0.81 | 0.89 | 7.47                     | 10.51 | 0.81 | 0.85 | 7.43             | 10.53  |
| 0.92 | 0.97 | 7.51                     | 10.51 | 0.88 | 0.92 | 7.47             | 10.53  |
| 1 02 | 1 06 | 7 56                     | 10 51 | 0.98 | 0.99 | 7 54             | 10 54  |
| 1 12 | 1 16 | 7 50                     | 10.52 | 1.07 | 1.00 | 7.54             | 10.52  |
| 1.12 | 1.10 | 7.00                     | 10.52 | 1.07 | 1.09 | 7.04             | 10.52  |
| 1.22 | 1.24 | 7.63                     | 10.52 | 1.17 | 1.19 | 7.60             | 10.56  |
| 1.32 | 1.31 | 7.68                     | 10.51 | 1.27 | 1.29 | 7.63             | 10.52  |
| 1.39 | 1.41 | 7.70                     | 10.52 | 1.36 | 1.38 | 7.68             | 10.53  |
| 1.51 | 1.52 | 7.73                     | 10.52 | 1.49 | 1.48 | 7.69             | 10.54  |
| 1.63 | 1 58 | 7 78                     | 10.52 | 1 59 | 1 55 | 7 75             | 10.53  |
| 1.00 | 1.00 | 7.01                     | 10.52 | 1.00 | 1.00 | 7.76             | 10.50  |
| 1.70 | 1.07 | 7.01                     | 10.52 | 1.70 | 1.03 | 7.70             | 10.52  |
| 1.76 | 1.79 | 7.81                     | 10.48 | 1.76 | 1.74 | 7.81             | 10.53  |
| 1.90 | 1.86 | 7.85                     | 10.52 | 1.88 | 1.86 | 7.82             | 10.54  |
| 1.95 | 1.96 | 7.90                     | 10.52 | 1.97 | 1.94 | 7.87             | 10.53  |
| 2 09 | 2 04 | 7 92                     | 10 53 | 2 03 | 2 01 | 7 90             | 10 56  |
| 2.00 | 2.13 | 7.06                     | 10.51 | 2 15 | 2 11 | 7 00             | 10.52  |
| 2.17 | 2.13 | 7.00                     | 10.51 | 2.10 | 2.11 | 7.05             | 10.52  |
| 2.24 | 2.20 | 1.98                     | 10.53 | 2.22 | 2.10 | 1.95             | 10.50  |
| 2.32 | 2.26 | 8.01                     | 10.52 | 2.29 | 2.25 | 7.98             | 10.54  |
| 2.39 | 2.37 | 8.03                     | 10.52 | 2.42 | 2.33 | 8.00             | 10.54  |
| 2.48 | 2.43 | 8.06                     | 10.51 | 2.49 | 2.40 | 8.02             | 10.54  |
| 2.56 | 2 47 | 8.07                     | 10.51 | 2 54 | 2 49 | 8 04             | 10.54  |
| 2.00 | 2.71 | Q 11                     | 10.51 | 2.57 | 2.40 | 0.0 <del>7</del> | 10.57  |
| 2.04 | 2.07 | 0.11                     | 10.01 | 2.04 | 2.01 | 0.07             | 10.00  |
| 2./1 | 2.64 | 8.12                     | 10.51 | 2.75 | 2.64 | 8.09             | 10.56  |
| 2.76 | 2.69 | 8.11                     | 10.52 | 2.80 | 2.71 | 8.11             | 10.53  |
| 2.83 | 2.76 | 8.15                     | 10.53 | 2.88 | 2.77 | 8.12             | 10.54  |
| 2.88 | 2.81 | 8.17                     | 10.53 | 2.92 | 2.84 | 8.15             | 10.53  |
| 2.03 | 2.86 | 8 10                     | 10.54 | 2.08 | 2.86 | 8 15             | 10.54  |
| 2.93 | 2.00 | 0.19                     | 10.04 | 2.90 | 2.00 | 0.10             | 10.54  |
| 3.02 | 2.89 | 8.19                     | 10.51 | 3.02 | 2.93 | 8.18             | 10.51  |
| 3.03 | 2.94 | 8.22                     | 10.54 | 3.05 | 2.96 | 8.17             | 10.52  |
| 3.09 | 2.98 | 8.23                     | 10.54 | 3.10 | 3.00 | 8.20             | 10.50  |
| 3.09 | 3.01 | 8.23                     | 10.51 | 3.15 | 3.01 | 8.22             | 10.51  |
| 3 12 | 3.01 | 8 25                     | 10.53 | 3 17 | 3.05 | 8.22             | 10.52  |
| 2.14 | 2.05 | 0.25                     | 10.55 | 2.17 | 2.00 | 0.22             | 10.52  |
| 3.14 | 3.05 | 0.23                     | 10.50 | 3.22 | 3.06 | 0.23             | 10.52  |
| 3.15 | 3.05 | 8.24                     | 10.52 | 3.24 | 3.08 | 8.22             | 10.51  |
| 3.12 | 3.05 | 8.28                     | 10.50 | 3.22 | 3.10 | 8.24             | 10.51  |
| 3.14 | 3.05 | 8.28                     | 10.53 | 3.24 | 3.06 | 8.25             | 10.51  |
| 3 15 | 3.03 | 8 26                     | 10.51 | 3 22 | 3.08 | 8 26             | 10.50  |
| 3 10 | 3.00 | 8.28                     | 10.53 | 3 10 | 3.05 | 8.26             | 10.50  |
| 0.10 | 3.00 | 0.20                     | 10.55 | 0.15 | 0.00 | 0.20             | 10.50  |
| 3.07 | 3.00 | 0.20                     | 10.55 | 3.15 | 3.01 | 0.24             | 10.54  |
| 3.03 | 2.96 | 8.28                     | 10.53 | 3.12 | 2.98 | 8.26             | 10.53  |
| 2.93 | 2.88 | 8.28                     | 10.54 | 3.03 | 2.94 | 8.28             | 10.51  |
| 2.87 | 2.83 | 8.29                     | 10.53 | 2.97 | 2.86 | 8.25             | 10.52  |
| 2 75 | 2 77 | 8.30                     | 10.53 | 2 83 | 2 81 | 8 28             | 10.51  |
| 2 50 | 2.67 | 8.28                     | 10.52 | 2.68 | 2.74 | 8.26             | 10.53  |
| 2.00 | 2.01 | 0.20                     | 10.52 | 2.00 | 2.17 | 0.20             | 10.55  |
| 2.42 | 2.59 | 0.29                     | 10.57 | 2.01 | 2.04 | 0.20             | 10.54  |
| 2.27 | 2.45 | 8.30                     | 10.52 | 2.34 | 2.52 | 8.25             | 10.52  |
| 2.14 | 2.26 | 8.29                     | 10.53 | 2.20 | 2.37 | 8.26             | 10.53  |
| 1.97 | 2.08 | 8.29                     | 10.52 | 2.03 | 2.18 | 8.28             | 10.53  |
| 1.78 | 1.91 | 8.30                     | 10.54 | 1.86 | 1.99 | 8.25             | 10.53  |
| 1.59 | 1 70 | 8 30                     | 10.53 | 1 64 | 1 79 | 8 28             | 10.53  |
| 1.00 | 1.70 | 0.00                     | 10.55 | 1.07 | 1.75 | 0.20             | 10.00  |
| 1.59 | 1.40 | 0.20                     | 10.53 | 1.44 | 00.1 | 0.20             | 10.52  |
| 1.17 | 1.29 | 8.29                     | 10.53 | 1.24 | 1.36 | 8.25             | 10.53  |
| 1.02 | 1.11 | 8.26                     | 10.54 | 1.09 | 1.19 | 8.28             | 10.52  |
| 0.81 | 0.92 | 8.28                     | 10.53 | 0.92 | 0.99 | 8.25             | 10.56  |
| 0.63 | 0.75 | 8.24                     | 10.56 | 0.70 | 0.78 | 8.23             | 10.53  |
| 0.00 | 0.58 | 8.2 <i>4</i>             | 10.56 | 0.51 | 0.63 | 8.23             | 10.56  |
| 0.70 | 0.00 | 0.27                     | 10.50 | 0.01 | 0.00 | 0.20             | 10.50  |
| 0.32 | 0.40 | ŏ.∠3                     | 00.01 | 0.41 | 0.49 | <u>ö.22</u>      | 10.53  |
| 0.22 | 0.36 | 8.18                     | 10.54 | 0.27 | 0.36 | 8.22             | 10.53  |
| 0.19 | 0.31 | 8.19                     | 10.56 | 0.14 | 0.31 | 8.19             | 10.53  |
| 0.14 | 0.29 | 8.17                     | 10.52 | 0.15 | 0.29 | 8.15             | 10.52  |
| 0.08 | 0.24 | 8.13                     | 10.52 | 0.12 | 0.26 | 8.15             | 10.53  |
| 0.05 | 0.22 | Q 12                     | 10.51 | 0.10 | 0.20 | 8 13             | 10.50  |
| 0.00 | 0.47 | 0.13                     | 10.01 | 0.10 | 0.20 | 0.10             | 10.50  |
| 0.02 | 0.17 | 0.11<br>0.0 <del>-</del> | 10.50 | 0.05 | 0.19 | 8.09             | 10.50  |
| 0.00 | 0.10 | 8.07                     | 10.48 | 0.00 | 0.15 | 8.08             | 10.48  |
|      | 720  | min                      |       |      | 1440 | min              |        |
| PKos | PKus | Xos                      | Xus   | PKos | PKus | Xos              | Xus    |
| [kN] | [kN] | [mm]                     | [mm]  | [kN] | [kN] | [mm]             | [mm]   |
| 0.00 | 0.07 | 6.72                     | 10.40 | 0.00 | 0.05 | 6.62             | 10 / 2 |
| 0.00 | 0.07 | 0.70                     | 10.40 | 0.00 | 0.05 | 0.02             | 10.40  |
| 0.03 | 0.10 | 0.19                     | 10.47 | 0.05 | CU.U | 0.07             | 10.41  |

| 0.07  | 0.45  | 0.04  | 10.11 | 0.40  | 0.40 | 0.70  | 40.40  |
|-------|-------|-------|-------|-------|------|-------|--------|
| 0.07  | 0.15  | 6.84  | 10.41 | 0.10  | 0.10 | 6.76  | 10.46  |
| 0.14  | 0.19  | 6.90  | 10.45 | 0.12  | 0.12 | 6.81  | 10.45  |
| 0.10  | 0.24  | 6.05  | 10.42 | 0.17  | 0.17 | 6.97  | 10.45  |
| 0.19  | 0.24  | 0.95  | 10.42 | 0.17  | 0.17 | 0.07  | 10.45  |
| 0.25  | 0.31  | 7.01  | 10.48 | 0.29  | 0.24 | 6.92  | 10.48  |
| 0.27  | 0.32  | 7 04  | 10 46 | 0.32  | 0.31 | 6.97  | 10 47  |
| 0.20  | 0.26  | 7.10  | 10.10 | 0.02  | 0.00 | 7.00  | 10.50  |
| 0.29  | 0.30  | 7.10  | 10.51 | 0.37  | 0.32 | 7.02  | 10.50  |
| 0.36  | 0.43  | 7.15  | 10.47 | 0.39  | 0.36 | 7.07  | 10.52  |
| 0.30  | 0 44  | 7 20  | 10 52 | 0.41  | 0.30 | 7 1 2 | 10 56  |
| 0.00  | 0.44  | 7.20  | 10.52 | 0.41  | 0.00 | 7.12  | 10.50  |
| 0.46  | 0.51  | 7.25  | 10.48 | 0.44  | 0.43 | 7.18  | 10.53  |
| 0.53  | 0.58  | 7.30  | 10.54 | 0.56  | 0.49 | 7.23  | 10.56  |
| 0.59  | 0.66  | 7 35  | 10.51 | 0.50  | 0.58 | 7 29  | 10.58  |
| 0.50  | 0.00  | 7.55  | 10.51 | 0.59  | 0.00 | 1.20  | 10.50  |
| 0.68  | 0.73  | 7.39  | 10.53 | 0.68  | 0.66 | 7.31  | 10.54  |
| 0.76  | 0.85  | 7.42  | 10.51 | 0.75  | 0.73 | 7.36  | 10.57  |
| 0.86  | 0.02  | 7 / 9 | 10.52 | 0.80  | 0.78 | 7 3 7 | 10.61  |
| 0.00  | 0.92  | 7.40  | 10.52 | 0.00  | 0.78 | 1.51  | 10.01  |
| 0.97  | 1.00  | 7.52  | 10.52 | 0.93  | 0.90 | 7.43  | 10.58  |
| 1.05  | 1.09  | 7.56  | 10.53 | 1.07  | 0.99 | 7.48  | 10.53  |
| 1 15  | 1 10  | 7 50  | 10.51 | 1 1 2 | 1.07 | 7.50  | 10.57  |
| 1.15  | 1.19  | 7.30  | 10.51 | 1.12  | 1.07 | 1.52  | 10.57  |
| 1.22  | 1.24  | 7.63  | 10.54 | 1.20  | 1.16 | 7.56  | 10.58  |
| 1 31  | 1 33  | 7 68  | 10 52 | 1.31  | 1 24 | 7 59  | 10 54  |
| 1.01  | 1.00  | 7.00  | 10.02 | 1.01  | 1.24 | 7.00  | 10.04  |
| 1.42  | 1.41  | 7.70  | 10.53 | 1.41  | 1.33 | 7.04  | 10.57  |
| 1.49  | 1.53  | 7.75  | 10.51 | 1.46  | 1.38 | 7.68  | 10.61  |
| 1 61  | 1 62  | 7 79  | 10.51 | 1 59  | 1 48 | 7 68  | 10.56  |
| 4 70  | 4.00  | 7.00  | 40.50 | 1.00  | 4 50 | 7.00  | 10.00  |
| 1.73  | 1.69  | 1.82  | 10.52 | 1.00  | 1.58 | 1.14  | 10.56  |
| 1.80  | 1.79  | 7.82  | 10.51 | 1.78  | 1.67 | 7.78  | 10.59  |
| 1 00  | 1 86  | 7 80  | 10 52 | 1 86  | 1 75 | 7 70  | 10.56  |
| 1.80  | 1.00  | 7.08  | 10.52 | 1.00  | 1.75 | 1.19  | 10.00  |
| 1.98  | 1.96  | 7.87  | 10.52 | 1.93  | 1.82 | 7.84  | 10.57  |
| 2.09  | 2.04  | 7.95  | 10.54 | 2.03  | 1.91 | 7.85  | 10.58  |
| 2 15  | 2 12  | 7 06  | 10.50 | 21/   | 2.01 | 7 00  | 10.58  |
| 2.10  | 2.10  | 1.00  | 10.00 | 2.17  | 2.01 | 7.50  | 10.00  |
| 2.24  | 2.18  | 8.00  | 10.52 | 2.20  | 2.06 | 7.92  | 10.56  |
| 2.34  | 2.25  | 8.02  | 10.52 | 2.27  | 2.18 | 7.95  | 10.56  |
| 2 4 2 | 2.35  | 8.04  | 10.53 | 2 30  | 2.23 | 7.07  | 10.57  |
| 2.42  | 2.55  | 0.04  | 10.55 | 2.39  | 2.23 | 1.91  | 10.57  |
| 2.49  | 2.40  | 8.07  | 10.50 | 2.44  | 2.30 | 8.00  | 10.57  |
| 2.56  | 2.50  | 8.09  | 10.52 | 2.54  | 2.37 | 8.03  | 10.57  |
| 2.64  | 2.57  | 0 10  | 10.51 | 2.50  | 2.47 | 9.04  | 10 59  |
| 2.04  | 2.57  | 0.12  | 10.51 | 2.09  | 2.47 | 0.04  | 10.00  |
| 2.70  | 2.62  | 8.13  | 10.52 | 2.68  | 2.52 | 8.07  | 10.59  |
| 2.78  | 2.69  | 8.14  | 10.53 | 2.71  | 2.59 | 8.09  | 10.56  |
| 2.83  | 2 77  | 9.19  | 10.52 | 2.80  | 2.66 | Q 11  | 10.58  |
| 2.03  | 2.11  | 0.10  | 10.52 | 2.00  | 2.00 | 0.11  | 10.50  |
| 2.90  | 2.81  | 8.18  | 10.52 | 2.88  | 2.71 | 8.13  | 10.57  |
| 2 95  | 2 86  | 8 18  | 10 51 | 2 92  | 2 74 | 8 14  | 10 58  |
| 2.00  | 2.01  | 0.00  | 10.50 | 2.00  | 2.01 | 0.15  | 10.00  |
| 3.00  | 2.91  | 8.23  | 10.52 | 3.00  | 2.81 | 8.15  | 10.58  |
| 3.07  | 2.96  | 8.24  | 10.52 | 3.05  | 2.84 | 8.18  | 10.59  |
| 3 10  | 2 98  | 8 24  | 10 52 | 3 10  | 2.88 | 8 18  | 10 54  |
| 0.10  | 2.00  | 0.24  | 10.02 | 0.10  | 2.00 | 0.10  | 10.04  |
| 3.10  | 3.01  | 8.20  | 10.53 | 3.14  | Z.94 | 8.20  | 10.58  |
| 3.15  | 3.06  | 8.28  | 10.52 | 3.17  | 2.96 | 8.22  | 10.58  |
| 3 17  | 3 05  | 8 29  | 10.54 | 3 20  | 3 00 | 8 2 2 | 10.57  |
| 0.11  | 0.00  | 0.20  | 10.01 | 0.20  | 0.00 | 0.04  | 10.01  |
| 3.19  | 3.08  | 8.29  | 10.51 | 3.ZZ  | 3.01 | 8.24  | 10.58  |
| 3.20  | 3.06  | 8.30  | 10.53 | 3.22  | 3.01 | 8.25  | 10.57  |
| 3 20  | 3.08  | 8 30  | 10.51 | 3 26  | 3 05 | 8 26  | 10.54  |
| 2.40  | 2.00  | 0.00  | 10.01 | 2.20  | 2.00 | 0.20  | 10.0-1 |
| 3.19  | 3.00  | 0.29  | 10.53 | 3.24  | 3.03 | ö.20  | 10.58  |
| 3.17  | 3.05  | 8.31  | 10.52 | 3.24  | 3.03 | 8.26  | 10.56  |
| 3 15  | 3 05  | 8.34  | 10.54 | 3 24  | 3 01 | 8 28  | 10.58  |
| 2 10  | 2.00  | Q 2/  | 10.50 | 2 15  | 2.00 | Q 2Q  | 10.59  |
| 5.10  | 3.01  | 0.34  | 10.52 | 3.13  | 3.00 | 0.20  | 10.00  |
| 3.03  | 2.93  | 8.33  | 10.51 | 3.17  | 2.96 | 8.28  | 10.59  |
| 2.95  | 2.89  | 8.33  | 10.52 | 3.09  | 2.91 | 8.29  | 10.56  |
| 2.65  | 202   | 0 33  | 10.54 | 3 0 3 | 2.21 | 0 J0  | 10.57  |
| 2.00  | 2.03  | 0.33  | 10.54 | 3.02  | 2.04 | 0.20  | 10.57  |
| 2.70  | 2.76  | 8.33  | 10.53 | 2.92  | 2.79 | 8.29  | 10.58  |
| 2.56  | 2.67  | 8.33  | 10.51 | 2.80  | 2.72 | 8.29  | 10.54  |
| 2 27  | 2 50  | 8 3 3 | 10.53 | 2.61  | 2.64 | 8 30  | 10.50  |
| 2.31  | 2.09  | 0.00  | 10.00 | 2.01  | 2.04 | 0.30  | 10.09  |
| 2.22  | 2.40  | 8.31  | 10.52 | 2.48  | 2.54 | 8.29  | 10.57  |
| 2.05  | 2.21  | 8.30  | 10.52 | 2.34  | 2.42 | 8.29  | 10.59  |
| 1 89  | 2 03  | 8 33  | 10.52 | 2 17  | 2.23 | 8.20  | 10.57  |
| 1.00  | 2.00  | 0.00  | 10.02 | 4.17  | 2.20 | 0.23  | 10.07  |
| 1./1  | 1.82  | 8.33  | 10.52 | 1.98  | 2.06 | 8.26  | 10.59  |
| 1.51  | 1.62  | 8.33  | 10.51 | 1.81  | 1.86 | 8.29  | 10.57  |
| 1 22  | 1 / 2 | 8 3/  | 10.53 | 1.61  | 1.62 | 8 20  | 10.61  |
| 1.02  | 1.40  | 0.04  | 10.00 | 1.01  | 1.00 | 0.29  | 10.01  |
| 1.12  | 1.23  | 8.30  | 10.51 | 1.44  | 1.45 | 8.29  | 10.57  |
| 0.92  | 1.00  | 8.30  | 10.52 | 1.27  | 1.24 | 8.31  | 10.56  |
| 0.75  | 0.85  | 8 20  | 10.53 | 1.05  | 1.06 | 8 20  | 10.58  |
| 0.75  | 0.00  | 0.23  | 10.00 | 1.00  | 1.00 | 0.23  | 10.00  |
| 0.59  | 0.68  | 8.31  | 10.52 | 0.90  | 0.89 | 8.30  | 10.56  |
| 0.42  | 0.53  | 8.29  | 10.53 | 0.68  | 0.71 | 8.26  | 10.54  |
| 0.20  | 0.30  | 8 28  | 10.51 | 0.58  | 0.58 | 8.28  | 10 57  |
| 0.23  | 0.03  | 0.20  | 10.01 | 0.00  | 0.00 | 0.20  | 10.07  |
| 0.20  | 0.32  | 8.26  | 10.52 | 0.44  | 0.44 | 8.29  | 10.58  |
| 0.17  | 0.31  | 8.24  | 10.53 | 0.31  | 0.34 | 8.28  | 10.59  |
| 0 14  | 0.20  | 8 10  | 10 52 | 0.20  | 0.20 | 8 24  | 10 54  |
| U.1+  | 0.23  | 0.10  | 10.04 | 0.20  | 0.20 | 0.47  | 10.04  |

| 0.10 | 0.24  | 8.20            | 10.50           | 0.24  | 0.29 | 8.23            | 10.54         |
|------|-------|-----------------|-----------------|-------|------|-----------------|---------------|
| 0.00 | 0.10  | Q 15            | 10.50           | 0.20  | 0.27 | 0 10            | 10 51         |
| 0.00 | 0.19  | CI.0            | 10.00           | 0.20  | 0.27 | 0.10            | 10.01         |
| 0.02 | 0.15  | 8.15            | 10.47           | 0.20  | 0.22 | <u>8.19</u>     | 10.51         |
| 0.00 | 0.10  | 8 1 2           | 10.47           | 0.15  | 0.19 | 8 17            | 10.52         |
| 0.00 | 0.10  | 0.12            | 10.47           | 0.10  | 0.10 | 0.17            | 10.02         |
|      |       |                 |                 | 0.12  | 0.12 | 8.15            | 10.50         |
|      |       |                 |                 | 0.05  | 0.10 | 8.12            | 10.50         |
|      |       |                 |                 | 0.03  | 0.05 | 8 11            | 10.50         |
|      |       |                 |                 | 0.00  | 0.05 | 0.11            | 10.50         |
|      |       |                 |                 | 0.00  | 0.05 | 8.08            | 10.48         |
|      | 2880  | ) min           |                 |       | 4320 | min             |               |
| DV   |       | ~               | ~               | DV    |      | ~               |               |
| PROS | Phus  | X <sub>OS</sub> | X <sub>US</sub> | PROS  | PRUS | X <sub>OS</sub> | XUS           |
| [kN] | [kN]  | [mm]            | [mm]            | [kN]  | [kN] | [mm]            | [mm]          |
| 0.00 | 0.02  | 6.34            | 10.45           | 0.00  | 0.07 | 6.38            | 10.41         |
| 0.00 | 0.02  | 0.04            | 10.40           | 0.00  | 0.01 | 0.00            | 10.41         |
| 0.03 | 0.00  | 6.42            | 10.41           | 0.02  | 0.10 | 6.64            | 10.41         |
| 0.05 | 0.02  | 6.48            | 10.43           | 0.05  | 0.12 | 6.70            | 10.42         |
| 0.07 | 0.05  | 6 54            | 10.42           | 0.10  | 0.17 | 6 76            | 10.45         |
| 0.07 | 0.05  | 0.04            | 10.42           | 0.10  | 0.17 | 0.70            | 10.45         |
| 0.08 | 0.03  | 6.60            | 10.42           | 0.15  | 0.22 | 6.82            | 10.47         |
| 0.12 | 0.09  | 6.65            | 10.45           | 0.15  | 0.27 | 6.88            | 10.45         |
| 0.17 | 0.15  | 6 71            | 10.45           | 0.24  | 0.20 | 6.02            | 10.45         |
| 0.17 | 0.15  | 0.71            | 10.45           | 0.24  | 0.29 | 0.92            | 10.45         |
| 0.17 | 0.19  | 6.76            | 10.42           | 0.27  | 0.32 | 6.99            | 10.48         |
| 0.25 | 0.22  | 6.85            | 10.45           | 0.31  | 0.36 | 7.04            | 10.47         |
| 0.27 | 0.26  | 6.00            | 10.45           | 0.34  | 0.42 | 7 10            | 10.50         |
| 0.27 | 0.20  | 0.90            | 10.45           | 0.34  | 0.43 | /.IU            | 10.50         |
| 0.31 | 0.32  | 6.95            | 10.47           | 0.36  | 0.44 | 7.15            | 10.54         |
| 0.37 | 0.31  | 7.01            | 10.48           | 0.44  | 0.49 | 7.19            | 10.52         |
| 0.44 | 0.26  | 7.00            | 10.50           | 0.47  | 0.56 | 7.05            | 10.52         |
| 0.41 | 0.30  | 1.00            | 10.52           | 0.47  | 0.00 | 1.20            | 10.53         |
| 0.44 | 0.44  | 7.10            | 10.51           | 0.58  | 0.61 | 7.30            | 10.52         |
| 0.49 | 0.48  | 7 15            | 10.51           | 0.68  | 0 71 | 7 32            | 10.51         |
| 0.70 | 0.40  | 7.10            | 10.01           | 0.00  | 0.71 | 7.02            | 10.01         |
| 0.58 | 0.51  | 7.20            | 10.52           | 0.71  | U.78 | 1.30            | 10.52         |
| 0.58 | 0.56  | 7.25            | 10.51           | 0.83  | 0.87 | 7.42            | 10.52         |
| 0.70 | 0.63  | 7 30            | 10 54           | 0 02  | 0 07 | 7 46            | 10.53         |
| 0.70 | 0.05  | 7.00            | 10.04           | 0.02  | 0.01 | 7.40            | 10.00         |
| 0.73 | 0.75  | 7.34            | 10.51           | 1.00  | 1.04 | 7.52            | 10.53         |
| 0.85 | 0.80  | 7.39            | 10.54           | 1.10  | 1.12 | 7.54            | 10.51         |
| 0.02 | 0.95  | 7.41            | 10.54           | 1 17  | 1.01 | 7.60            | 10.51         |
| 0.92 | 0.65  | 7.41            | 10.34           | 1.17  | 1.21 | 7.00            | 10.51         |
| 1.03 | 0.92  | 7.46            | 10.54           | 1.27  | 1.28 | 7.64            | 10.53         |
| 1 07 | 1 04  | 7 51            | 10 52           | 1 32  | 1 36 | 7 69            | 10 53         |
| 1.10 | 1 1 4 | 7.50            | 10.52           | 1.46  | 1.46 | 7 70            | 10.50         |
| 1.19 | 1.14  | 7.00            | 10.52           | 1.40  | 1.40 | 1.10            | 10.55         |
| 1.25 | 1.17  | 7.59            | 10.56           | 1.53  | 1.53 | 7.76            | 10.52         |
| 1.37 | 1 28  | 7 63            | 10.53           | 1 64  | 1.63 | 7 79            | 10.51         |
| 1.07 | 1.20  | 7.00            | 10.00           | 4.74  | 1.00 | 7.00            | 10.01         |
| 1.42 | 1.36  | 1.67            | 10.56           | 1.71  | 1.72 | 7.82            | 10.51         |
| 1.54 | 1.41  | 7.68            | 10.53           | 1.81  | 1.79 | 7.84            | 10.50         |
| 1.63 | 1 53  | 7 74            | 10 54           | 1 90  | 1.87 | 7 85            | 10 50         |
| 1.00 | 1.00  | 7.74            | 10.54           | 1.00  | 1.07 | 7.00            | 10.50         |
| 1./1 | 1.63  | 1.18            | 10.52           | 1.97  | 1.96 | 7.90            | 10.54         |
| 1.78 | 1.67  | 7.79            | 10.54           | 2.07  | 2.06 | 7.93            | 10.54         |
| 1 00 | 1 74  | 7.81            | 10.56           | 2 1 2 | 2 14 | 7 07            | 10.53         |
| 1.00 | 1.74  | 7.01            | 10.50           | 2.12  | 2.14 | 1.01            | 10.50         |
| 1.98 | 1.86  | 7.80            | 10.53           | 2.24  | 2.20 | 8.00            | 10.52         |
| 2.07 | 1.94  | 7.89            | 10.56           | 2.31  | 2.30 | 8.02            | 10.52         |
| 2 15 | 2.03  | 7 02            | 10.52           | 2/1   | 2 33 | 8.03            | 10.52         |
| 2.10 | 2.00  | 7.52            | 10.02           | 2.71  | 2.00 | 0.00            | 10.02         |
| 2.20 | 2.11  | 7.95            | 10.54           | 2.46  | 2.43 | 8.08            | 10.52         |
| 2.27 | 2.14  | 7.97            | 10.52           | 2.58  | 2.47 | 8.09            | 10.53         |
| 2 36 | 2 20  | 7 0.8           | 10.54           | 2.61  | 2 57 | <u>8 11</u>     | 10.52         |
| 2.00 | 2.20  | 1.00            | 10.04           | 2.01  | 2.01 | 0.11            | 10.02         |
| 2.46 | 2.32  | 8.03            | 10.53           | 2.68  | 2.62 | 8.13            | 10.52         |
| 2.54 | 2.40  | 8.04            | 10.54           | 2.76  | 2.69 | 8.15            | 10.50         |
| 2 58 | 2 4 2 | 8.07            | 10 54           | 2 81  | 2 74 | 8 18            | 10 52         |
| 2.00 | 2.72  | 0.07            | 10.04           | 2.01  | 2.17 | 0.10            | 10.02         |
| 2.64 | 2.54  | 8.09            | 10.54           | 2.90  | 2.83 | 8.17            | 10.52         |
| 2.73 | 2.55  | 8.11            | 10.54           | 2.93  | 2.86 | 8.20            | 10.56         |
| 2 78 | 2 64  | 8 00            | 10 53           | 3.00  | 2 91 | 8 22            | 10.53         |
| 2.70 | 2.07  | 0.00            | 40.50           | 0.00  | 2.01 | 0.22            | 10.00         |
| 2.85 | 2.00  | 8.12            | 10.56           | 3.03  | 2.94 | 8.24            | 10.53         |
| 2.92 | 2.71  | 8.15            | 10.54           | 3.09  | 3.00 | 8.24            | 10.51         |
| 2.92 | 2 77  | 8 18            | 10.56           | 3.07  | 3.01 | 8 28            | 10.52         |
| 2.02 | 2.17  | 0.10            | 10.00           | 0.07  | 0.01 | 0.20            | 10.02         |
| 2.98 | 2.83  | ŏ.1/            | 10.56           | 3.15  | 3.05 | ö.2ŏ            | 10.56         |
| 3.03 | 2.84  | 8.20            | 10.54           | 3.19  | 3.06 | 8.29            | 10.51         |
| 3 00 | 2.88  | 8 22            | 10.53           | 3 10  | 3 10 | 8 28            | 10.53         |
| 0.05 | 2.00  | 0.22            | 10.00           | 0.10  | 0.10 | 0.20            | 10.00         |
| 3.05 | 2.88  | 8.23            | 10.54           | 3.20  | 3.08 | 8.30            | 10.51         |
| 3.12 | 2.94  | 8.24            | 10.52           | 3.22  | 3.08 | 8.30            | 10.56         |
| 3 15 | 2 0 2 | Q 25            | 10.57           | 3 10  | 3 08 | 8 33            | 10.52         |
| 0.10 | 2.30  | 0.20            | 10.07           | 0.19  | 0.00 | 0.00            | 10.00         |
| 3.14 | 2.94  | 8.26            | 10.54           | 3.17  | 3.08 | 8.31            | 10.53         |
| 3.14 | 2.96  | 8.26            | 10.54           | 3.15  | 3.05 | 8.33            | 10.53         |
| 3 1/ | 2.06  | 8.26            | 10.52           | 3 10  | 3.01 | 8 3 <i>1</i>    | 10.56         |
| 0.14 | 2.00  | 0.20            | 10.00           | 0.10  | 0.01 | 0.04            | 10.00         |
| 3.12 | 2.94  | 8.28            | 10.53           | 3.03  | 2.96 | 8.30            | 10.51         |
| 3.12 | 2.89  | 8.28            | 10.54           | 2.98  | 2.91 | 8.33            | 10.52         |
| 2.02 | 2.00  | 0.20            | 10.50           | 2.00  | 2.05 | 0.00            | 10.54         |
| 3.02 | 2.00  | 0.29            | 10.53           | 2.90  | 2.00 | 0.33            | 10.51         |
| 3.02 | 2.81  | 8.29            | 10.54           | 2.76  | 2.79 | 8.34            | <u>10.5</u> 0 |
| 2.93 | 2 76  | 8 29            | 10.56           | 2.61  | 2 71 | 8.33            | 10.51         |
| 2.00 | 0.74  | 0.20            | 10.00           | 2.01  | 0.57 | 0.00            | 10.01         |
| Z.ŏ/ | 2.71  | ö.29            | 00.01           | Z.48  | 2.57 | Ö.JJ            | 10.51         |

| 2.71 | 2.67 | 8.29 | 10.52 | 2.32 | 2.47 | 8.33 | 10.54 |
|------|------|------|-------|------|------|------|-------|
| 2.54 | 2.59 | 8.29 | 10.54 | 2.17 | 2.26 | 8.30 | 10.54 |
| 2.37 | 2.45 | 8.29 | 10.54 | 2.00 | 2.09 | 8.34 | 10.54 |
| 2.22 | 2.35 | 8.29 | 10.54 | 1.80 | 1.91 | 8.31 | 10.53 |
| 2.10 | 2.18 | 8.29 | 10.53 | 1.63 | 1.70 | 8.34 | 10.52 |
| 1.93 | 1.99 | 8.29 | 10.53 | 1.41 | 1.50 | 8.31 | 10.51 |
| 1.75 | 1.77 | 8.29 | 10.54 | 1.24 | 1.29 | 8.33 | 10.51 |
| 1.58 | 1.58 | 8.29 | 10.57 | 1.03 | 1.09 | 8.33 | 10.51 |
| 1.32 | 1.41 | 8.28 | 10.52 | 0.88 | 0.90 | 8.31 | 10.51 |
| 1.17 | 1.19 | 8.30 | 10.56 | 0.66 | 0.73 | 8.30 | 10.54 |
| 1.00 | 1.06 | 8.29 | 10.54 | 0.51 | 0.60 | 8.28 | 10.51 |
| 0.83 | 0.87 | 8.26 | 10.58 | 0.36 | 0.46 | 8.28 | 10.54 |
| 0.66 | 0.70 | 8.26 | 10.54 | 0.25 | 0.36 | 8.24 | 10.54 |
| 0.51 | 0.53 | 8.28 | 10.57 | 0.24 | 0.32 | 8.23 | 10.52 |
| 0.41 | 0.44 | 8.25 | 10.56 | 0.17 | 0.29 | 8.22 | 10.50 |
| 0.31 | 0.32 | 8.24 | 10.53 | 0.15 | 0.27 | 8.19 | 10.50 |
| 0.25 | 0.31 | 8.23 | 10.53 | 0.14 | 0.24 | 8.17 | 10.47 |
| 0.20 | 0.29 | 8.20 | 10.56 | 0.05 | 0.20 | 8.14 | 10.46 |
| 0.20 | 0.27 | 8.18 | 10.52 | 0.02 | 0.10 | 8.13 | 10.48 |
| 0.15 | 0.26 | 8.15 | 10.52 | 0.00 | 0.05 | 8.08 | 10.45 |
| 0.07 | 0.19 | 8.12 | 10.51 |      |      |      |       |
| 0.10 | 0.10 | 8.11 | 10.48 |      |      |      |       |
| 0.05 | 0.07 | 8.08 | 10.48 |      |      |      |       |
| 0.02 | 0.09 | 8.08 | 10.50 |      |      |      |       |
| 0.00 | 0.05 | 8.08 | 10.47 |      |      |      |       |

## 9.5 Heckel-Analyse

### 9.5.1 Vergleich der Heckel-Diagramme bei 50 und 150 MPa Pressdruck



Abbildung 9.4: Heckel-Diagramme Aerosil<sup>®</sup> 200, 50 MPa Pressdruck



#### Vergleich des Fließdrucks Py bei 50 und 150 MPa Pressdruck 9.5.2



Abbildung 9.6:

Vergleich Fließdruck Aerosil<sup>®</sup> 200 bei verschiedenen Drücken (50 und 150 MPa)

# CURRICULUM VITAE

### Persönliche Daten

| Name          | Margit Jaser      |
|---------------|-------------------|
| Geburtsdatum  | 28. Juli 1976     |
| Geburtsort    | Bobingen (Bayern) |
| Familienstand | Iedig             |

### Schulausbildung

| 1982 – 1986       | Grundschule Bobingen                           |
|-------------------|------------------------------------------------|
| 1986 – 1995       | Maria-Stern-Gymnasium Augsburg                 |
|                   | Abschluss Abitur                               |
| 09.1995 – 04.1996 | Berufsfachschule für Pharmazeutisch-Technische |
|                   | Assistenten Augsburg                           |

# Hochschulausbildung und Beruf

| 05.1996 - 04.2000                      | Studium der Pharmazie an der Julius-Maximilians-<br>Universität Würzburg                                                                                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 08.1998                                | Erster Abschnitt der Pharmazeutischen Prüfung                                                                                                                                                                            |
| 04.2000                                | Zweiter Abschnitt der Pharmazeutischen Prüfung<br>(2. Staatsexamen)                                                                                                                                                      |
| 05.2000                                | Praktikum in der Rosen-Apotheke, Frankfurt am Main                                                                                                                                                                       |
| 06.2000 – 10.2000<br>11.2000 – 04.2001 | Praktikum in der Alten Apotheke, Konigstein (Taunus)<br>Praktikum im Krankenhaus Southend-on-Sea, England                                                                                                                |
| 07. 2001                               | Dritter Abschnitt der Pharmazeutischen Prüfung<br>(3. Staatsexamen)                                                                                                                                                      |
| 00 2001 00 2001                        | Appropation als Apothekerin                                                                                                                                                                                              |
| 08.2001 - 09.2001                      | Nürnberg                                                                                                                                                                                                                 |
| 10.2001 – 04.2002                      | Wissenschaftliche Mitarbeiterin am Lehrstuhl für Klinische<br>Pharmakologie und Toxikologie, Universität Erlangen                                                                                                        |
| 05 2002 - 09 2003                      | Angestellte Anothekerin in der Föhren-Anotheke                                                                                                                                                                           |
| 05.2002 - 05.2005                      | Nürnberg                                                                                                                                                                                                                 |
| 10.2003 – 09.2006                      | Promotionsarbeit "Untersuchungen zur Wirkungsweise<br>nanoskaliger Fließregulierungsmittel in der Tablettierung"<br>bei Prof. Dr. I. Zimmermann am Lehrstuhl für<br>Pharmazeutische Technologie der Universität Würzburg |