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Abstract

In the past few years, two-dimensional quantum liquids with fractional excitations have been a topic of high
interest due to their possible application in the emerging field of quantum computation and cryptography.
This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and
their stabilization in local models. We pursue two different paths, namely chiral spin liquids and fractionally
quantized, topological phases.

The chiral spin liquid is one of the few examples of spin liquids with fractional statistics. Despite its
numerous promising properties, the microscopic models for this state proposed so far are all based on
non-local interactions, making the experimental realization challenging. In the first part of this thesis, we
present the first local parent Hamiltonians, for which the Abelian and non-Abelian chiral spin liquids are
the exact and, modulo a topological degeneracy, unique ground states. We have developed a systematic
approach to find an annihilation operator of the chiral spin liquid and construct from it a many-body
interaction which establishes locality. For various system sizes and lattice geometries, we numerically find
largely gapped eigenspectra and confirm to an accuracy of machine precision the uniqueness of the chiral
spin liquid as ground state of the respective system. Our results provide an exact spin model in which
fractional quantization can be studied.

Topological insulators are one of the most actively studied topics in current condensed matter physics
research. With the discovery of the topological insulator, one question emerged: Is there an interaction-
driven set of fractionalized phases with time reversal symmetry? One intuitive approach to the theoretical
construction of such a fractional topological insulator is to take the direct product of a fractional quantum
Hall state and its time reversal conjugate. However, such states are well studied conceptually and do not lead
to new physics, as the idea of taking a state and its mirror image together without any entanglement between
the states has been well understood in the context of topological insulators. Therefore, the community has
been looking for ways to implement some topological interlocking between different spin species. Yet, for
all practical purposes so far, time reversal symmetry has appeared to limit the set of possible fractional
states to those with no interlocking between the two spin species.

In the second part of this thesis, we propose a new universality class of fractionally quantized, topolog-
ically ordered insulators, which we name “fractional insulator”. Inspired by the fractional quantum Hall
effect, spin liquids, and fractional Chern insulators, we develop a wave function approach to a new class of
topological order in a two-dimensional crystal of spin-orbit coupled electrons. The idea is simply to allow
the topological order to violate time reversal symmetry, while all locally observable quantities remain time
reversal invariant. We refer to this situation as “topological time reversal symmetry breaking”. Our state
is based on the Halperin double layer states and can be viewed as a two-layer system of an ↑-spin and a
↓-spin sphere. The construction starts off with Laughlin states for the ↑-spin and ↓-spin electrons and an
interflavor term, which creates correlations between the two layers. With a careful parameter choice, we
obtain a state preserving time reversal symmetry locally, and label it the “311-state”. For systems of up
to six ↑-spin and six ↓-spin electrons, we manage to construct an approximate parent Hamiltonian with a
physically realistic, local interaction.
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Zusammenfassung

In den letzten Jahren waren zweidimensionale Quantenflüssigkeiten mit fraktionalen Anregungen auf-
grund ihrer möglichen Anwendung auf dem aufstrebenden Forschungsgebiet der Quantencomputer und
Quantenkryptographie von großem Interesse. Diese Dissertation hat sich zum Ziel gesetzt, einem tieferen
Verständnis bekannter und neuer fraktionaler Quanten-Hall-Zustände und ihrer Stabilisierung in lokalen
Modellen beizutragen. In diesem Zusammenhang werden zwei Themen betrachtet: Chirale Spinflüssigkeiten
und fraktional quantisierte, topologische Phasen.

Die chirale Spinflüssigkeit ist eines der wenigen Beispiele für Spinflüssigkeiten mit fraktionaler Statistik.
Trotz ihrer zahlreichen vielversprechenden Eigenschaften beruhen die bisher vorgeschlagenen mikroskopis-
chen Modelle für diesen Zustand alle auf nichtlokalen Wechselwirkungen. Dies erschwert eine experimentelle
Realisierung. Im ersten Teil dieser Dissertation stellen wir die ersten Eltern-Hamiltonoperatoren vor, für die
die Abelschen und nicht-Abelschen chiralen Spinflüssigkeiten die exakten und, abgesehen von einer topolo-
gischen Entartung, einzigen Grundzustände sind. Wir haben eine Methode entwickelt, um ausgehend von
einem Vernichtungsoperator für die chirale Spinflüssigkeit eine lokale Mehrkörper-Wechselwirkung zu kon-
struieren. Numerisch finden wir für verschiedene Systemgrößen und Gittergeometrien Eigenspektren mit
großer Anregungslücke und können mit Maschinengenauigkeit die Eindeutigkeit der chiralen Spinflüssigkeit
als Grundzustand des jeweiligen Systems bestätigen. Damit liefern unsere Ergebnisse ein exaktes Spin-
modell, in dem fraktionale Quantisierung untersucht werden kann.

Topologische Isolatoren sind derzeit eines der am häufigsten untersuchten Themen in der Physik der kon-
densierten Materie. Mit ihrer Entdeckung kam die Frage auf: Gibt es eine verschränkte Gruppe fraktionaler
Phasen mit Zeitumkehrsymmetrie? Ein intuitiver Ansatz für die theoretische Konstruktion eines solchen
fraktionalen topologischen Isolators besteht darin, das direkte Produkt eines fraktionalen Quanten-Hall-
Zustands und seines Zeitumkehrkonjugats zu bilden. Solche Zustände bringen jedoch konzeptionell keinen
Mehrwert, da Systeme bestehend aus einem Zustand und seinem Spiegelbild ohne zusätzliche Verschränkung
im Kontext der topologischen Isolatoren im Detail erforscht sind. Daher wird aktuell nach Möglichkeiten
gesucht, eine topologische Verschränkung zwischen verschiedenen Spinarten umzusetzen. Für alle Anwen-
dungen in der Praxis scheint die Zeitumkehrsymmetrie jedoch die Menge möglicher fraktionaler Zustände
auf solche ohne Verschränkung zwischen den beiden Spinspezies zu begrenzen.

Im zweiten Teil dieser Dissertation schlagen wir eine neue Universalitätsklasse von fraktional quan-
tisierten, topologisch geordneten Isolatoren vor, die wir “fraktionalen Isolator” nennen. Inspiriert vom
fraktionalen Quanten-Hall-Effekt, Spin-Flüssigkeiten und fraktionalen Chern-Isolatoren entwickeln wir eine
Wellenfunktion, die eine neue Klasse topologischer Ordnung in einem zweidimensionalen Kristall aus Spin-
Orbit-gekoppelten Elektronen beschreibt. Unser Ansatz basiert darauf, die topologische Ordnung gegen
die Zeitumkehrsymmetrie verstoßen zu lassen, während alle lokal beobachtbaren Größen zeitumkehrinvari-
ant sind. Wir bezeichnen diese Situation als “topologische Zeitumkehrsymmetriebrechung”. Unser Zustand
basiert auf den Halperin-Doppelschichtzuständen und kann als ein Zweischichtensystem aus einer ↑-Spin-
und einer ↓-Spin-Sphäre betrachtet werden. Die Konstruktion beginnt mit zwei Laughlin-Zuständen für
die ↑-Spin- und ↓-Spin-Elektronen und einem Wechselwirkungsterm, der eine Verschränkung zwischen den
beiden Schichten erzeugt. Wir erhalten einen neuen Zustand, den “311-Zustand”, der lokal zeitumkehrinvari-
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ant ist. Für Systeme mit bis zu sechs ↑-Spin- und sechs ↓-Spin-Elektronen finden wir einen approximativen
Eltern-Hamiltonoperator mit einer physikalisch realistischen, lokalen Wechselwirkung.
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Chapter 1

Introduction

One of the most fascinating aspects of condensed matter physics is the discovery and classification of new
phases of matter. For decades, different phases could be characterized by the Landau-Ginzburg theory of
symmetry breaking [83; 84]. Only with the experimental discovery of the integer and fractional quantum
Hall effect [80; 140], and its theoretical explanation by Laughlin [86], this paradigm was broken. A new
class of states was found which does not break any symmetries, but instead is characterized by the notion
of topological order [139; 144]. Such states are characterized by properties such as the quantized Hall
conductance or the number of edge modes, which depend on the topology of the system. While the integer
quantum Hall effect can be explained by a single-particle picture, strong electronic correlations require a
many-body theory to describe the fractional quantum Hall states.

Among these topological states of matter, especially two-dimensional quantum liquids with fractional
excitations have been a topic of high interest in the past few years [132; 150]. This is due to their possible
application in the emerging field of quantum computation and cryptography [79; 105]. In such systems,
the elementary excitations carry only a fraction of the quantum numbers of the particles. The fractional
quantum Hall state is the most prominent state in which fractional quantization was analyzed on a unified
footing [86; 63; 5]. It is noteworthy that fractional statistics can only occur in one- and two-dimensional
systems, where a winding number can be defined [45; 149].

This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and
their stabilization in local models. To set the theoretical background for our research projects, we review
the Laughlin formalism to describe fractionally quantized Hall states in Chapter 2. Haldane was the first
to extend the Laughlin formalism to a spherical geometry [53], which offers the advantage that it does
not have a boundary, making this geometry particularly suited for the investigation of bulk properties.
We therefore analyze the Laughlin state, its elementary excitations and its extension to multi-component
systems both in planar and spherical geometries.

In Section 3.1 of Chapter 3, we introduce the Haldane-Shastry model, which describes a spin-1/2 chain
with a Heisenberg interaction falling off as 1/r2 with increasing distance r. This integrable model reveals
a direct relationship of the spin chain to the fractional quantum Hall effect [74]. The Abelian chiral spin
liquid (CSL), which we introduce in Section 3.2 as one of the few examples of a spin liquid with fractional
statistics, may be considered as the two-dimensional analog of the Haldane-Shastry model. For spin systems
with s > 1/2, the spinon excitations of the CSL have non-Abelian statistics. This class of non-Abelian CSLs,
introduced in 2009 [45], is detailed in Section 3.3.

Although the CSL has many promising properties, it took almost two decades for a microscopic model
to emerge. The first exact parent Hamiltonian for the Abelian CSL was constructed by Schroeter et al.
[125], and, for a system with periodic boundary conditions, an approximate parent Hamiltonian for the
non-Abelian CSL has been proposed [42], which becomes exact in the thermodynamic limit. However, the
major problem of both parent Hamiltonians is their lack of locality, making such models challenging to
achieve experimentally.

In Chapter 4, we present the first local parent Hamiltonians, for which the Abelian and non-Abelian
CSLs are exact ground states [124]. The construction of such a parent Hamiltonian is highly complex since

1



2 1 Introduction

it has to meet several criteria: it has to be Hermitian, invariant under spatial translations and SU(2)-
spin rotations, the CSL has to be the exact and unique ground state, and the model should be local. We
have developed a method to systematically solve this problem, which is presented in Section 4.2. First,
an annihilation operator Ω of the CSL has to be constructed, as detailed in Sections 4.2.1-4.2.3. Second,
in Section 4.2.4, the Hermitian product Ω†Ω is taken. Section 4.2.5 explains that we need a many-body
interaction with at least four particles to obtain a local interaction. And to establish SU(2)-invariance
under spin rotations, the expression Ω†Ω is projected onto its scalar component in Section 4.3, in which we
also explain how to decompose arbitrary tensor products into irreducible representations under SU(2)-spin
rotations.

The parent Hamiltonian expressions in Section 4.3.5 are difficult to apprehend. To develop a better
intuition about the underlying model, we decompose the Hamiltonian into simple scalar spin terms. Per-
forming this task by hand is intricate and becomes unfeasible for more complex tensor expressions. We
have developed an exact numerical technique, which is presented in Section 4.4.1. Implemented as a Math-
ematica-program, the technique allows to decompose generic tensor expressions into simple products of
spin operators. We construct the Hamiltonians for spin-1/2, spin-1 and spin-3/2 systems, and present our
results in Section 4.5. Overall, these models represent an exact spin model in which fractional quantization
can be studied.

To determine whether the CSL is the unique ground state of our parent Hamiltonians, we perform exact
diagonalization studies [16; 109; 107]. This becomes numerically challenging due to the exponential growth
of the Hilbert space with system size. In Sections 4.4.2 and 4.4.3, we explain details of our implementation,
including which lattice geometries and sizes were investigated. Our numerical results in Section 4.6 show
an eigenspectrum with large gaps and confirm to an accuracy of machine precision that the Abelian CSL
is the unique ground state for our Hamiltonian with spin s = 1/2. In Section 4.7, the uniqueness of the
non-Abelian CSL for our Hamiltonian with spin s = 1 is confirmed for all geometries. We hereby provide an
exact spin model in which fractional quantization with Abelian and non-Abelian statistics can be studied.

In Chapter 5, we review the path that led to the discovery of topological insulators and the current
state of research. Both the integer and fractional quantum Hall effect require strong magnetic fields for
their realization. Therefore, soon after their discovery, the quest for systems exhibiting dissipationless
edge modes without any magnetic field began. Haldane was the first to propose a lattice analog to the
integer quantum Hall state without an orbital magnetic field [55], which is called the “Haldane model”.
Systems with this property are called “Chern insulators”. For decades, an experimental realization remained
inachieved. In 2005, Kane and Mele theoretically proposed a time reversal-invariant system exhibiting a
so-called quantum spin Hall state [75]. Based on the spin-orbit coupling of graphene, they combined two
copies of a Haldane model such that the ↑-spin electrons manifest a chiral quantum Hall effect, while the
↓-spin electrons manifest an anti-chiral quantum Hall effect.

To create an experimentally more attainable system, Bernevig et al. [12] followed up on an idea by
Molenkamp et al. [111; 108] and theoretically investigated semiconductors with an inverted band structure,
predicting a quantum phase transition in type-III HgTe/CdTe quantum wells between a trivial insulator
phase and quantum spin-Hall phase beyond a critical thickness of the well. Only one year later, in 2007, this
prediction could be confirmed experimentally [81]. A system exhibiting the quantum spin-Hall effect, also
labeled “topological insulator”, is a new topological state of matter, characterized by a bulk insulating gap
and a pair of gapless edge states, protected by time reversal symmetry. Currently, topological insulators
[64; 116; 9] are one of the most actively studied topics in condensed matter physics.

With the discovery of the topological insulator, one question became apparent: Is there an interaction-
driven set of fractionalized phases with time reversal symmetry? The idea is to take, similar to the con-
struction of a topological insulator, two copies of a system exhibiting a fractional quantum Hall effect for
each spin species, creating a fractional topological insulator. The first step toward such a state was achieved
with the realization of a lattice analog of the fractional quantum Hall effect, the “fractional Chern insu-
lator” [106; 128; 141; 121; 114; 155]. One intuitive approach to the theoretical construction of a fractional
topological insulator is to take the direct product of a fractional quantum Hall state and its time reversal
conjugate. Several wave functions and model interactions for such fractional topological insulators have
been constructed [114; 95; 130].
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However, such states are well studied conceptually and do not lead to new physics, as the idea of
taking a state and its mirror image together without any entanglement between the states has been well
understood in the context of topological insulators. So effectively replacing the IQH state (for the topological
insulator) by a fractional quantum Hall state for the fractional topological insulator does not give rise to
profoundly new physics, since the fractionalization and the symmetry protection do not entangle. Therefore,
the community has been looking for ways to implement some topological interlocking between different spin
species [137]. Yet, for all practical purposes so far, time reversal symmetry has appeared to limit the set of
possible fractional states to those with no interlocking between both “layers” of ↑- and ↓-spins [133].

In Chapter 6, we propose a new universality class of fractionally quantized, topologically ordered in-
sulators, which we name “fractional insulator” [123]. Inspired by the fractional quantum Hall effect, spin
liquids, and fractional Chern insulators, we develop a wave function approach to a new class of topological
order in a two-dimensional crystal of spin-orbit coupled electrons.

The idea is simply to allow the topological order to violate time reversal symmetry, while all locally
observable quantities are time reversal invariant. We refer to this situation as “topological time reversal
symmetry breaking”. The class of fractional insulators includes the previously established fractional topo-
logical insulators as a trivial case. To observe the violation of time reversal symmetry, one has to perform a
non-local probe, for instance measuring the fractionally valued, statistical parameter for the quasiparticles.

In Section 6.2, we construct a fractionally quantized Hall wave function, describing ↑-spin and ↓-spin
electrons in a two dimensional continuum subject to perpendicular magnetic fields of equal magnitude but
opposite direction, in the spherical geometry. Our state is inspired by the Halperin double layer states [62]
and can be viewed as a two-layer system of an ↑-spin and a ↓-spin sphere. The construction starts off with
Laughlin states for the ↑-spin and ↓-spin electrons and an interflavor term, which entangles the two spin
species. With a specific parameter choice, which is detailed in this section, we obtain a state preserving
time reversal symmetry locally, and label it the “311-state”. As we are dealing with a two-layer system in
which the magnetic fields point in opposite directions, the calculation of angular momenta is subtle. We
explain it in Section 6.2.2.

The important question is whether our 311-state can be stabilized for a reasonable interaction profile
among the electrons. To answer this question, we have developed a numerical technique to identify exact
or approximate parent Hamiltonians. We label this technique the “Hamiltonian Finder method” [41] and
provide a detailed explanation in Sections 6.3.1-6.3.4. To analyze the accuracy of our approximate parent
Hamiltonian, we introduce relative angular momentum resolved correlators in Section 6.3.5, which allow
to compare the inter- and intralayer correlations of the 311-state to the exact ground state of the parent
Hamiltonian. Section 6.3.6 explains how to represent the parent Hamiltonian as a real space interaction
potential, which allows to develop an intuition of our model.

The task of finding a parent Hamiltonian is numerically challenging, since we are effectively dealing
with a direct product of two quantum Hall Hilbert spaces, and hence exponentially large Hilbert spaces.
For systems of up to six ↑-spin and six ↓-spin electrons, we manage to construct an approximate parent
Hamiltonian with a physically realistic, local interaction. The numerical results are presented in Section 6.4.

We conclude with a brief summary of our results in Chapter 7. In the Appendices A and B, we provide
additional material for the interested reader on the angular momentum algebra and tensor decompositions.
Appendix C lists the essential properties of the Jacobi theta functions, and in Appendix D, we print our
Mathematica-notebooks for the implementation of a generic tensor decomposition.





Chapter 2

Review of the Laughlin state and its formalism

At the core of this thesis is the description and analysis of novel quantum Hall systems. It is therefore
worthwhile to review Laughlin’s theory [86; 53; 62; 87; 17; 112] for a series of fractionally quantized Hall
states, as it provides the basic formalism to treat more complicated systems. Here, we summarize the main
results crucial for this thesis. We follow the notation of [37], which provides a thorough discussion of the
theory.

2.1 Landau level quantization in the plane

The motion of a free charged particle moving in a plane perpendicular to a magnetic field with strength B
is

H =
1

2M

(
p+

e

c
A
)2

, (2.1.1)

where M is the particle mass and −e < 0 is its charge. The gauge field A is minimally coupled to the
canonical momentum p. It is convenient to choose the symmetric gaugeA = 1

2B r×ez for this problem, since
rotational symmetry around the origin is preserved and angular momentum is a good quantum number.

By introducing cyclotron ladder operators a and a†, the Hamiltonian (2.1.1) can be put into harmonic
oscillator form

H = ~ωc

(
a†a+

1

2

)
, (2.1.2)

with the cyclotron frequency ωc = eB/Mc. For a detailed derivation, the reader is referred to [37]. The
magnetic field quenches the kinetic energy into discrete energy levels, the so-called Landau levels,

En = ~ωc
(
n+

1

2

)
, n ∈ N0. (2.1.3)

In the unperturbed system without magnetic field, the density of states is proportional to the area of the
system, g0(E) = M/(2π~2). Adding a magnetic field results into a density of states of g(E) = 1/(~ωc).
Since the average density of states, taken over a sufficiently large energy range, is not altered by the addition
of a magnetic field, the resulting energy levels must be highly degenerate. The degeneracy per unit area
amounts to

NΦ =
g0(E)

g(E)
=
eB

hc
=

1

2πl2
, (2.1.4)

where we have introduced the magnetic length l =
√

~c/(eB), which is independent of any material
parameters. Thus, in every level n, one Dirac flux quantum Φ0 = hc/e is required per state, and NΦ

corresponds to the number of flux quanta per unit area.
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Analytically, to describe the motion of a charged particle in a two-dimensional plane perpendicular to a
magnetic field, it is convenient to introduce complex coordinates z = x+ iy and their complex conjugates
z̄ = x − iy. In the following, we will focus on the energy level n = 0, the so-called lowest Landau level
(LLL). The real space basis state of the LLL is

φ0(z) := φ0(z, z̄) =
1√
2πl2

exp

(
− 1

4l2
|z|2
)
. (2.1.5)

To shorten notation, we will set l = 1 from now on and will not keep track of the normalization of the wave
functions.

Extending to a N -particle system, the wave function of the LLL can be obtained by antisymmetrizing
the single-particle basis states (2.1.5),

ψ(z1, . . . , zN ) = A
{
z0

1z
1
2 . . . z

N−1
N

}
·
N∏
i=1

e−
1
4 |zi|2

=

N∏
i<j

(zi − zj)
N∏
i=1

e−
1
4 |zi|2 . (2.1.6)

The most generic N -particle wave function for the LLL is

ψ(z1, . . . , zN ) = P (z1, . . . , zN )

N∏
i<j

(zi − zj)
N∏
i=1

e−
1
4 |zi|2 , (2.1.7)

with a symmetric polynomial P in the coordinates zi.
A key quantity for the analysis of quantum Hall systems is the filling fraction, which is defined by the

number of particles divided by the number of states, and thus the number of flux quanta, in each Landau
level in the thermodynamic limit,

1

ν
:=

∂NΦ

∂N

∣∣∣∣
N→∞

. (2.1.8)

2.2 The Laughlin state in the plane

If the filling fraction is 0 < ν < 1, the LLL is only partly filled and the corresponding state of N particles is
highly degenerate, since the number of possible configurations is ∝ NΦ!

N !(NΦ−N)! . Laughlin made an inspired

guess for the wave function of a system driven by Coulomb interaction and with ν = 1/m,

ψm(z1, . . . , zN ) =

N∏
i<j

(zi − zj)m
N∏
i=1

e−
1
4 |zi|2 . (2.2.1)

This wave function minimizes the Coulomb energy by attaching additional zeros onto the particle posi-
tions. The prefactor thus vanishes with a zero of order m when two particles approach each other, keeping
the particles away from each other effectively. This minimizes the repulsive Coulomb interaction. The small-
est component of relative angular momentum between the particles is m, which is the uniquely defining
property of the Laughlin state. The exponential factor quickly decreases when the particles move away from
the origin, and the wave function peaks at configurations which balance these two effects. The Laughlin
state is incompressible and describes a circular droplet of uniform density [145]. To preserve antisymmetry,
m must be odd.
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Numerically, this approximate ground state is well confirmed for systems with small particle number N
[25], the overlap with the exact ground state being > 99.9%. Although impressive, one has to take into
account, that due to the complexity of the calculation, only small systems are accessible numerically. Even
with modern super-computers, calculations for particle numbers beyond the order O(101) are not feasible.
Thus, even though the overlap equals almost 1, for macroscopic systems, which are of order O(1023), the
overlap will vanish.

An exact parent Hamiltonian for the Laughlin state was first constructed by Haldane [53]. Its construction
and analysis will be detailed in Section 6.3.1.

2.3 Quasihole and quasiparticle excitations

In a fractionally quantized Hall system, there are two types of elementary charged excitations above the
incompressible ground state: the quasihole and the quasiparticle excitation. The wave function of a quasihole
at position ξ is

ψQH

ξ (z1, . . . , zN ) =

N∏
i=1

(zi − ξ)
N∏
i<j

(zi − zj)m
N∏
i=1

e−
1
4 |zi|2 . (2.3.1)

The electron density vanishes at point ξ, a “hole” has been created in the electron liquid. Physically, this
can be achieved by adiabatically inserting one Dirac flux quantum at position ξ, inducing an electrical field∮

E · ds = Eϕ · 2πr =
1

c

∂φ

∂t
, (2.3.2)

which increases the canonical angular momentum by ~,

∆Lz =
e

2πc

∫
∂φ

∂t
dt =

e

2πc
· φ0 = ~. (2.3.3)

The charge of the quasihole can be determined by inserting m Dirac flux quanta into the system at
position ξ and thus creating m quasiholes. The corresponding wave function then is

ψmQH’s

ξ (z1, . . . , zN ) =

N∏
i=1

(zi − ξ)m
N∏
i<j

(zi − zj)m
N∏
i=1

e−
1
4 |zi|2 . (2.3.4)

Overall, a full hole of charge e has been created. It follows that the quasihole charge must be e/m. Analyt-
ically, a quasihole can be identified as a zero in the wave function which does not coincide with any of the
electrons.

A quasiparticle excitation is created by inserting a Dirac flux quantum in the opposite direction as
compared to the construction of the quasihole. As a result, the canonical angular momentum is decreased
by ~. Mathematically, this process is achieved by removing one zero from the Laughlin state. The wave
function of a quasiparticle at position ξ therefore contains a derivative operator,

ψQE

ξ̄
(z1, . . . , zN ) =

N∏
i=1

e−
1
4 |zi|2

N∏
i=1

(
2
∂

∂zi
− ξ̄
) N∏
i<j

(zi − zj)m. (2.3.5)

Note that, in contrast to the quasihole excitation, the quasiparticle wave function is not an exact eigenstate
of Haldane’s parent Hamiltonian.

The most intriguing prediction of Laughlin’s theory is that both quasiparticles obey fractional statistics
with an exchange phase α = πν [63; 5]. This can be calculated by adiabatically exchanging the position of
two quasiholes (or quasiparticles) [5].
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The fractionalization is a direct consequence of the two-dimensionality of the physical system. To explain
this briefly, we consider two particles located at coordinates r1 and r2. Since the particles are indistinguish-
able, the probability of particle 1 being at position r1 and particle 2 being at position r2 must be equal to
the probability of the particles being at each others position,

|Ψ(r1, r2)|2 = |Ψ(r2, r1)|2.

The two wave functions therefore fulfill

Ψ(r1, r2) = eiαΨ(r2, r1),

and the exchange phase α can be any real number. Now, if we exchange the particles twice without changing
the sense (either clockwise or counterclockwise), the system comes back into its initial state. If Ψf denotes
the final state, it must be

Ψf (r1, r2)
!
= e2iαΨ(r1, r2). (2.3.6)

In three or more spatial dimensions, the exchange path of one particle encircling the other can always be
deformed into the identity operator without passing through the point r1 = r2. Therefore,

Ψf (r1, r2) = Ψ(r1, r2)

and thus α = 0 or π, leading to either Bose or Fermi statistics.
Leinaas and Myrheim were the first to demonstrate that the above consideration does not hold for

strictly two-dimensional systems [92], since the exchange path cannot be continuously contracted without
passing through the other point. Expression (2.3.6) still holds. However, α can be any real number. Such
particles are labeled “anyons”.

2.4 Landau level quantization on the sphere

Moving from a plane to a sphere for the description of a two-dimensional electron gas can be beneficial,
since the sphere does not have a boundary. Haldane formulated the Laughlin formalism in this geometry
for the LLL [53]. Only in 2011, it was extended to higher Landau levels by Greiter [36]. Working on the
sphere therefore is well suited to study the bulk properties of a quantized Hall system.

The formalism has also been extended to the torus [59; 40], another often studied geometry, which is
equivalent to a plane with periodic boundary conditions. It is the only manifold with a nonzero genus
(g = 1), giving rise to topological degeneracies.

We study a sphere with radius R, placed in a radial magnetic field B = ~cs0/eR
2 with e > 0, and

∇ × A = Ber. According to Dirac’s monopole quantization condition [22], the number of magnetic flux
quanta 2s0 piercing through the surface of the sphere must be integer. The single-particle Hamiltonian is

H =
Λ2

2MR2
=

ωc

2s0
Λ2, (2.4.1)

with the cyclotron frequency ωc = eB/M and the effective mass M of the particle. The dynamical angular
momentum is

Λ = r ×
(
− i∇+ eA(r)

)
, (2.4.2)

while the canonical angular momentum is the sum

L = Λ + s0er, (2.4.3)
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satisfying the Lie algebra. Given an eigenstate |Ψ〉, specified below, we set the eigenvalue of the angular
momentum as

L |Ψ〉 = s(s+ 1) |Ψ〉 . (2.4.4)

It follows that s = s0 + n with n ∈ N0, while s and s0 can be integer or half-integer. For the LLL (n = 0),
s = s0. The eigenstates of (2.4.1) can be derived via

Λ2 = L2 − s2
0, (2.4.5)

giving the Landau levels with index n,

En = ωc

[(
n+

1

2

)
+
n(n+ 1)

2s0

]
. (2.4.6)

To formulate eigenstates in a spherical geometry, Haldane [53] introduced spinor coordinates, defined by

u = cos

(
θ

2

)
exp

(
iϕ

2

)
,

v = sin

(
θ

2

)
exp

(
− iϕ

2

)
,

(2.4.7)

such that a position on the sphere is described by

er = Ω(u, v) := (u, v)σ

(
ū
v̄

)
. (2.4.8)

The vector σ = (σx, σy, σz) consists of the three Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.4.9)

In the LLL, the angular momentum operator can be rewritten in terms of the spinor coordinates as

L =
1

2
(u, v)σ

(
∂u
∂v

)
. (2.4.10)

A complete orthogonal basis spanning the LLL is expressed by the states

ψsm,0(u, v) = Nus+mvs−m (2.4.11)

with
m = −s,−s+ 1, . . . , s.

The normalization N can be derived from the integral

1

4π

∫
dΩ ūS+m′ v̄S−m

′
us+mvs−m =

(s+m)! (s−m)!

(2s+ 1)!
δmm′ , (2.4.12)

where the solid angle is dΩ = sin θ dθ dφ. The eigenvalues of the basis states are

Lzψsm,0 = mψsm,0,

Hψsm,0 =
1

2
ωc ψ

s
m,0. (2.4.13)

To describe a particle in the LLL at a position Ω(α, β), with spinor coordinates (α, β), |α|2 + |β|2 = 1,
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Ω(α, β) = (α, β)σ

(
ᾱ

β̄

)
, (2.4.14)

Haldane introduced “coherent states” [53] specified by the equation

{Ω(α, β) ·L}ψs(α,β),0(u, v) = sψs(α,β),0(u, v). (2.4.15)

Its solution is

ψs(α,β),0(u, v) = (ᾱu+ β̄v)2s. (2.4.16)

It is also possible to create two particle-coherent LLL states, which will be further detailed in Section 6.3.1.
It is worth mentioning that the formalism can be extended to higher Landau levels [36]. The basic idea

is to describe the Hilbert space of a charged particle on a sphere with a magnetic monopole in the center by
two mutually commuting SU(2) angular momentum algebras. The first algebra for the cyclotron momentum
S, consists of operators that raise or lower eigenstates from one Landau to the next. The operators for the
second algebra correspond to the guiding center momentum L, and rotate the eigenstates on the sphere
while preserving the Landau level index.

2.5 The Laughlin state on the sphere

Given N particles on a sphere, the Laughlin state with ν = 1/m [53] is

ψm[u, v] =

N∏
i<j

(uivj − ujvi)m. (2.5.1)

Here, [u, v] is a short-hand notation for (u1, . . . , uN , v1, . . . , vN ). Its flux can be calculated by counting the
zeros each particle sees, giving 2s0 = m(N − 1).

The state is invariant under spatial rotations on the sphere,

Ltotψm = 0, (2.5.2)

since each individual factor (uivj − ujvi) commutes with the total angular momentum

Ltot =

N∑
i=1

Li. (2.5.3)

In this geometry, the interaction part of the parent Hamiltonian can be constructed using pseudopoten-
tials. This procedure was first proposed by Haldane [53] and will be explained in further detail in Section
6.3.1. With addition of the kinetic part of the Hamiltonian (2.4.1), this model is the parent Hamiltonian
of the Laughlin state (2.5.1).

The wave function for the quasihole excitation on the sphere at position Ω(α, β) is

ψQH

(α,β)[u, v] =

N∏
i=1

(βui − αvi)
N∏
i<j

(uivj − ujvi)m. (2.5.4)

For the quasiparticle excitation, we get

ψQE

(α,β)[u, v] =

N∏
i=1

(β̄
∂

∂ui
− ᾱ ∂

∂vi
)

N∏
i<j

(uivj − ujvi)m (2.5.5)



2.6 Extension to multi-component systems 11

in this geometry. As can be easily verified, the number of flux quanta through the sphere is increased
(decreased) by one, s = 2s0 ± 1, while the projected total angular momentum, Ω(α, β) ·Ltot, is decreased
(increased) by N/2 for the quasihole (quasiparticle) state compared to the LLL.

2.6 Extension to multi-component systems

A multi-component extension of the Laughlin state was proposed by Halperin [62], who considered electrons
with degrees of freedom in addition to the two-dimensional coordinates. This can be spin degrees of freedom,
but also a system with electrons confined to different layers is possible. This formalism will be of specific
interest to us in Chapter 6, so that we provide a brief introduction here.

Consider a two-level system with N↑ (N↓) particles in the first (second) layer being denoted by coor-
dinates zi (wk). The straight-forward generalization of the Laughlin state to a two-component system is
described by the wave function [38]

Ψm↑,m↓,n[z, w] =
∏
i<j

(zi − zj)m↑
∏
k<l

(wk − wl)m↓
∏
i

∏
k

(zi − wk)n

· exp(−
∑
i

(|zi|2 + |wi|2)/4l2b ). (2.6.1)

The function argument [z, w] stands for (z1, . . . , zN↑ , w1, . . . , wN↓). This wave function can, for instance,
describe particles with spin 1/2. For a fermionic system, both m↑ and m↓ have to be odd. The mixed term∏

i

∏
k

(zi − wk)n (2.6.2)

introduces a correlation between the two types of particles. Usually, states of the form of (2.6.1) are referred
to as (m↑,m↓, n)-states or Halperin states. They have very similar properties compared to the Laughlin
state. For instance, the relative angular momentum between two particles of type ↑ (↓) is never less than
m↑ (m↓), and it is never less than n for particles of opposite spin.

Formulating the wave function (2.6.1) in spherical geometry yields

Ψm↑,m↓,n[ui, vi, ak, bk] =∏
i<j

(uivj − ujvi)m↑
∏
k<l

(akbl − albk)m↓
∏
i

∏
k

(uiak − vibk)n. (2.6.3)

As in the single-layer case, for a system of N↑ electrons in the first layer and N↓ electrons in the second
layer, the flux through each layer can be calculated to be

2s↑ = NΦ,↑ = m↑(N↑ − 1) + nN↓, (2.6.4)

and

2s↓ = NΦ,↓ = m↓(N↓ − 1) + nN↑. (2.6.5)

Combining the two equations, in matrix form we get(
NΦ,↑
NΦ,↓

)
=

(
m↑ n
n m↓

)(
N↑
N↓

)
−
(
m↑
m↓

)
. (2.6.6)

If the electrons in both layers are subject to the same magnetic field, the number of flux quanta seen in
each layer is identical, NΦ,↑ = NΦ,↓ = NΦ. The filling fraction for each layer is obtained via (2.1.8). For
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an explicit expression, we take the thermodynamic limit (Ni � 1 for i =↑, ↓). Using (2.6.6) to express the
particle numbers in terms of the flux quanta,(

N↑
N↓

)
=

(
m↑ n
n m↓

)−1 [(
1
1

)
NΦ +

(
m↑
m↓

)]
, (2.6.7)

we get (
ν↑
ν↓

)
=

∂

∂NΦ

(
N↑
N↓

)
=

1

m↑m↓ − n2

(
m↓ − n
m↑ − n

)
. (2.6.8)

The total filling fraction of the two layers is

νtot = ν↑ + ν↓ =
m↑ +m↓ − 2n

m↑m↓ − n2
. (2.6.9)

There are several interesting examples of the Halperin state. The (3, 3, 1)-state has filling fraction ν = 1/2
and is a genuine quantum Hall state. It has been observed in bilayer samples [134]. Another example is
the (3, 3, 2)-state with ν = 2/5, which competes with the spin-polarized hierarchy state that occurs at the
same filling [72].



Chapter 3

Chiral spin liquids

The chiral spin liquid (CSL) [73; 74; 89; 160; 125] is an example of a two-dimensional system obeying
fractional statistics. It is a spin liquid which violates time reversal (T) and parity (P) symmetry. Being
conceptually closely related, the system may be viewed as an extension of the Haldane-Shastry model to
two dimensions.

In case of the Abelian or spin s = 1/2 CSL, it is essentially a Laughlin state with filling fraction ν = 1/2
for spin flips on a two-dimensional lattice. The liquid supports spinon excitations, which are deconfined
and obey fractional statistics. The spinons of the CSL are quasiparticles with spin 1/2 and no charge. They
exhibit quantum-number fractionalization and carry only half of the spin as compared to the excitations
of conventional magnetically ordered systems with spin 1.

In 2009, Greiter and Thomale propopsed a novel CSL state for a s = 1 antiferromagnet, the non-Abelian
chiral spin liquid (NACSL) [45; 136]. As for the Abelian CSL, the spinon excitations are deconfined, but
in this state, they obey non-Abelian statistics, making the system interesting for the field of quantum
computation and cryptography. As suggested by [45], the concept can be extended to systems with s > 1.

In the following, we first briefly review the Haldane-Shastry model and summarize the main properties
of the Abelian and non-Abelian CSL.

3.1 The Haldane-Shastry model

The Haldane-Shastry model [54; 127; 70; 57; 126; 58; 77; 78; 21; 88; 11; 10; 44] plays a unique role among
the integrable models of spin 1/2 Heisenberg chains. Apart from being solvable by the asymptotic Bethe
ansatz, its ground state and several excited states (those with fully polarized spins of the spinon excitations)
can be written down in closed form. Futhermore, the model reveals a direct relationship of the spin chain
to the fractional quantum Hall effect (FQHE) [74].

Let a spin-1/2 chain of N sites, N ∈ 2N, with periodic boundary conditions be wrapped onto a unit
circle. Each site may be expressed as a complex number,

&%
'$rrrrrrrr r r r r ηα = ei 2π

N α with α = 1, . . . , N .

The Haldane-Shastry Hamiltonian then is

HHS =

(
2π

N

)2 N∑
α<β

SαSβ

|ηα − ηβ |2
, (3.1.1)

13
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with the chord distance |ηα − ηβ | between sites α and β. The interaction decreases with 1/r2. The Hamil-
tonian is invariant under translations, time reversal, parity and global SU(2)-spin rotations,

Stot =

N∑
α=1

Sα, [HHS,Stot] = 0. (3.1.2)

In addition, the model possesses a special internal symmetry, generated by the rapidity operator,

Λ =
i

2

N∑
α,β=1
α6=β

ηα + ηβ
ηα − ηβ

Sα × Sβ , [HHS,Λ] = 0. (3.1.3)

Since the rapidity operator transforms as a vector under spin rotations,[
Sitot,Λ

j
]

= i εijk Λk, (3.1.4)

it does not commute with the total spin. Thus, the operators Stot and Λ generate an infinite dimensional
associative algebra of the Haldane-Shastry model, the Yangian Y (sl2) [24; 19].

The exact ground state of the Haldane-Shastry model is

|ψHS

0 〉 =
∑

{z1,...,zM}
ψHS

0 (z1, . . . , zM )S+
z1 · . . . · S+

zM

∣∣ ↓↓ . . . . . . ↓︸ ︷︷ ︸
all N spins ↓

〉
, (3.1.5)

where the sum includes all possible configurations of distributing M = N/2 ↑-spins on the N -site chain,
and

ψHS

0 (z1, z2, . . . , zM ) =

M∏
i<j

(zi − zj)2
M∏
i=1

zi . (3.1.6)

The ground state is a spin singlet, which implies that the wave function does not alter with the quanti-
zation axis taken to be an arbitrary direction in spin space.

Proof. Since Sz
tot |ψHS

0 〉 = 0, it is sufficient to demonstrate that |ψHS
0 〉 is annihilated by S−tot:

S−tot |ψHS

0 〉 =

N∑
α=1

S−α
∑

{z1,...zM}
ψHS

0 (z1, z2, . . . zM )S+
z1 . . . S

+
zM |↓↓ . . . ↓〉

=
∑

{z2,...,zM}

N∑
α=1

ψHS

0 (ηα, z2, . . . , zM )︸ ︷︷ ︸
=0

S+
z2 . . . S

+
zM |↓↓ . . . ↓〉 , (3.1.7)

since ψHS
0 (ηα, z2, . . . , zM ) contains only powers η1

α, η
2
α, . . . , η

N−1
α and

N∑
α=1

ηmα = Nδm,0 mod N. (3.1.8)

ut
The proof of the singlet property is even simpler, if the Haldane-Shastry state is constructed via a

Gutzwiller projection. This will be detailed below.
Furthermore, the state is real and thus parity and time-reversal invariant.

Proof. Since z̄izi = 1, we have
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(zi − zj)2 = −zizj |zi − zj |2 . (3.1.9)

Hence, (3.1.6) can be rewritten as

ψHS

0 (z1, z2, . . . , zM ) = −
M∏
i<j

|zi − zj |2
M∏
i<j

zizj

M∏
i=1

zi

= −
M∏
i<j

|zi − zj |2
M∏
i=1

G(zi), (3.1.10)

where

G(ηα) = (ηα)
N
2 =

{
+1 α even
−1 α odd.

(3.1.11)

Parity invariance is now straight-forward: Under parity, the coordinates transform as ηα → η−α = η̄α and
thus zi → z̄i. Since ψHS

0 is real, it is unaltered under a parity transformation. Under time reversal [32],

i→ −i, Sα → −Sα, |s,m〉 → i2m |s,−m〉 ,

thus zi → z̄i, S
+
α → −S−α , and |↓↓ . . . ↓〉 → (−i)N |↑↑ . . . ↑〉. The Haldane-Shastry state (3.1.5) thus

transforms as ∑
{z1,...,zM}

ψHS

0 (z1, . . . , zM )S+
z1 · . . . · S+

zM |↓↓ . . . ↓〉

→
∑

{z1,...,zM}
ψHS

0 (z1, . . . , zM )S−z1 · . . . · S−zM |↑↑ . . . ↑〉 .
(3.1.12)

Since the state is a singlet, it follows that it is time-reversal symmetric.

ut
If we set the momentum of the vacuum state |↓↓ . . . ↓〉 to p = 0, the Haldane-Shastry state has momentum

p0 = −π
2
N, (3.1.13)

and energy

E0 = −π
2

24

(
N +

5

N

)
. (3.1.14)

A detailed derivation of (3.1.13) and (3.1.14) can be found in [37].
A straight-forward construction of the Haldane-Shastry wave function is to Gutzwiller project from a

completely filled one-dimensional band, in which there are as many spin-1/2 particles as there are sites
[51; 29; 96; 76; 50; 98; 30]:

|ψHS

0 〉 = PGW |ψNSD〉 , |ψNSD〉 :=
∏
q∈I

c†q↑c
†
q↓ |0〉 . (3.1.15)

The Gutzwiller projector

PGW :=

N∏
i=1

(
1− c†i↑ci↑c

†
i↓ci↓

)
(3.1.16)

eliminates doubly occupied sites. The interval I contains M = N/2 adjacent momenta. The resulting state
(3.1.15) is identical to the Haldane-Shastry state (3.1.5).

Proof. If the lattice constant is a = 2π/N , the creation operators in momentum space are obtained via a
Fourier transformation



16 3 Chiral spin liquids

c†q =

N∑
α=1

ei 2π
N αqc†α =

N∑
α=1

ηqαc
†
α, (3.1.17)

where the momentum can take the values q = 0, 1, . . . , N − 1. Then, the unnormalized single particle
momentum eigenstates are

φq(z) = 〈z|q〉 = 〈0| czc†q |0〉 = zq. (3.1.18)

From now on, expressions with creation and annihilation operators without spin index hold for both spin
orientations ↑ and ↓, so that czi := czi,α, α =↑, ↓. Given M fermions with adjacent momenta q ∈ I =
[q1, q1 +M − 1], the corresponding wave function is

φI(z1, z2, . . . , zM ) =

M∏
i=1

zq1i · A
{
z0

1z
1
2 . . . z

M−1
M

}
=

M∏
i=1

zq1i

M∏
i<j

(zi − zj). (3.1.19)

The Gutzwiller state (3.1.15) can be rewritten as

|ψHS

0 〉 =
∑

{z1,...,zM ;w1,...,wM}

φI(z1, . . . , zM )φI(w1, . . . , wM )

· c†z1↑ . . . c
†
zM↑ c

†
w1↓ . . . c

†
wM↓ |0〉 , (3.1.20)

since it is the sum of all possible configurations in whichM ↑-spin (coordinates zi) andM ↓-spin (coordinates
wi) particles distributed on N distinct lattice sites.

We define Ĩ as the set containing all those momenta not contained in I, and the coordinates w1, . . . , wM
are all sites not occupied by ↑-spin electrons. We wish to express φI(w1, . . . , wM ) in (3.1.20) in terms of
φI(z1, . . . , zM ):

φI(w1, . . . , wM ) = 〈0| cwM . . . cw1

∏
q∈I

c†q |0〉

= sign[z;w] · 〈0|
∏
q∈I

cq
∏
q∈Ĩ

cq c
†
z1 . . . c

†
zM

∏
q∈I

c†q |0〉

= sign[z;w] · 〈0|
∏
q∈Ĩ

cq c
†
z1 . . . c

†
zM |0〉

= sign[z;w] · φĨ ∗(z1, . . . , zM )

= sign[z;w] ·
M∏
i=1

z̄i
M · φI∗(z1, . . . , zM )

= sign[z;w] ·
M∏
i=1

G(zi) · φI∗(z1, . . . , zM ), (3.1.21)

where
sign[z;w] ≡ 〈0| cwM . . . cw1

czM . . . cz1
∏
q∈Ĩ

c†q
∏
q∈I

c†q |0〉 (3.1.22)

is the sign obtained by ordering the z- and w-coordinates according to the lattice site indices α. Then, we
have

sign[z;w] · c†z1↑ . . . c
†
zM↑ c

†
w1↓ . . . c

†
wM↓ |0〉 = S+

z1 · . . . · S+
zM

∣∣ ↓↓↓ . . . . . . ↓︸ ︷︷ ︸
all N spins ↓

〉
. (3.1.23)

Therefore, the Gutzwiller state (3.1.20) can be expressed as
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|ψHS

0 〉 =
∑

{z1,...,zM}

|φI(z1, . . . , zM )|2
M∏
i=1

G(zi)S
+
z1 · . . . · S+

zM |↓↓ . . . ↓〉 , (3.1.24)

which is identical to (3.1.10).

ut
The singlet property of the Haldane-Shastry state can now be easily proven: The construction via

Gutzwiller projection starts off with a singlet state,

Stot |ψNSD〉 = 0, (3.1.25)

since this state is designed to fill each single particle state with ↑- and ↓-spin particles. The commutator of
the Gutzwiller projector with all local spin operators vanishes, and thus the projector commutes with the
total spin,

[PGW,Sα] = [PGW,Stot] = 0. (3.1.26)

Consequently,
Stot |ψHS

0 〉 = 0, (3.1.27)

implying that the Haldane-Shastry state is a singlet.
Free spinons are the elementary excitation of this model. The wave function for a spinon excitation,

carrying spin 1/2 but no charge, at site ηα is constructed analogously to the wave function for quasihole
excitations in a FQH liquid, as detailed in Section 2.3. For an odd number of sites N and M = (N − 1)/2
↑-spins, the one-spinon wave function is

ψα↓(z1, z2, . . . , zM ) =

M∏
i=1

(ηα − zi)ψHS

0 (z1, z2, . . . , zM ), (3.1.28)

with ψHS
0 defined in (3.1.6). Since Sz

totψα↓ = − 1
2ψα↓ and S−totψα↓ = 0, the spinon has the same transforma-

tion properties as a spinor under rotations. This is a fractionally quantized excitation since the spin of the
spinon is 1/2, while the Hilbert space is built up from spin flips, carrying spin 1.

However, the localized spinon (3.1.28) is not an eigenstate of HHS. Through Fourier transformation of
the this state, exact momentum eigenstates are constructed,

ψm↓(z1, z2, . . . , zM ) =

N∑
α=1

(η̄α)m ψα↓(z1, z2, . . . , zM ). (3.1.29)

The integer m is the momentum quantum number, which has to fulfill m ∈ {0, 1, . . . ,M}, since
ψα↓(z1, z2, . . . , zM ) contains only powers η0

α, η
1
α, . . . , η

M
α and

N∑
α=1

ηmα η
n
α = δm,n mod N. (3.1.30)

The physical spinon momentum pm can be obtained by translating (3.1.29) by one lattice spacing around
the unit circle,

Tlat |ψm↓〉 = ei(p0+pm) |ψm↓〉 . (3.1.31)

Setting p0 = −π2N , the momentum is

pm = π − 2π

N

(
m+

1

4

)
. (3.1.32)

The wave function for two spinons at sites ηα and ηβ is
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ψαβ(z1, z2, . . . , zM ) =

M∏
i=1

(ηα − zi)(ηβ − zi)ψHS

0 (z1, z2, . . . , zM ), (3.1.33)

for a chain with N even and M = (N−2)/2. The momentum eigenstate of the Haldane-Shastry Hamiltonian
then is

ψmn(z1, z2, . . . , zM ) =

N∑
α,β=1

(η̄α)m (η̄β)n ψαβ(z1, z2, . . . , zM ), (3.1.34)

with M ≥ m ≥ n ≥ 0.
Between two spinon excitations, there is no spin exchange [57], following from the commutativity of HHS

with Λ. The spinons constitute an ideal gas of particles obeying fractional statistics [150; 56; 43].

3.2 The Abelian chiral spin liquid

The model can be extended to two dimensions. We consider a system of spins on a square lattice with
lattice constant one. Its ground state wave function for a circular droplet with open boundary conditions
containing N electrons is

|ψCSL

0 〉 =
∑

z1,...,zM

ψCSL

0 (z1, . . . , zM )S+
z1 . . . S

+
zM |↓↓ . . . ↓〉 , (3.2.1)

where M = N/2 and the ground state wave function,

ψCSL

0 [z] = 〈z1, . . . , zM |ψ〉 =

M∏
j<k

(zj − zk)2
M∏
j=1

G(zj)e
−π/2|zj |2 , (3.2.2)

is, apart from the gauge factors G(zj), formally equivalent to the Laughlin wave function at filling fraction
ν = 1/2. The complex coordinates zi = xi + iyi indicate the positions of the electrons with ↑-spin on the
lattice, x, y ∈ Z. Lattice sites without an associated coordinate zi are occupied by ↓-spin electrons. The
factor G(z) = (−1)(x+1)(y+1) is a gauge sign, ensuring that the wave function describes a spin singlet.
The sign of each lattice site is indicated in Figure 3.1. The exponential factor in (3.2.2) corresponds to a
fictitious magnetic field of strength 2π/plaquet. The state violates the discrete symmetries of time-reversal
and parity.

For a CSL with periodic boundary conditions on a lattice with N sites and equal periods, L1 = L2 = L,
Schroeter et al.[125] wrote down the wave function, following Haldane and Rezayi [60],

〈z1, . . . , zM |ψ〉 = ψCSL

0 [z] =

2∏
ν=1

ϑ 1
2 ,

1
2

(π
L

[Z − Zν ]
) M∏
i<j

ϑ 1
2 ,

1
2

(π
L

[zi − zj ]
)2

·
M∏
j=1

G(zj)e
π/2(z2

j−|zj |2), (3.2.3)

with Z =
∑
i zi being the center-of-mass coordinate, and Z1, Z2 its zeros. They can be chosen anywhere

inside of the principal region 0 ≤ <(Z1) < L and 0 ≤ =(Z1) < L, but have to fulfill the condition
Z1 +Z2 = L+iL. Thus, one zero is free to choose and reflects the topological degeneracy of the CSL on the
torus, yielding two linearly independent ground states. The odd Jacobi theta function ϑ 1

2 ,
1
2
(w) in (3.2.3) is

further explained in Appendix C. The two ground states are strictly periodic on the torus, translationally
invariant under lattice transformations and spin singlets.
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L

L

Fig. 3.1 The CSL is defined on a square lattice with equal length L per side and N = L2 sites. It is N = 16. The
open (shaded) circles correspond to lattice sites with G(z) = +1 (G(z) = −1). The shaded sites create a sublattice
with twice the original lattice spacing. The shaded region in the figure is the doubled unit cell.

Proof. Similar to the Haldane-Shastry state, to proof the singlet property of the CSL state, it is sufficient
to proof that S−tot |ψCSL

0 〉 = 0, since Sztot |ψCSL
0 〉 = 0 holds by construction. Now, we have

S−tot |ψCSL

0 〉 =

N∑
α=1

S−α
∑

{z1,...zM}
ψHS

0 (z1, z2, . . . zM )S+
z1 . . . S

+
zM |↓↓ . . . ↓〉

=
∑

{z2,...,zM}

N∑
α=1

ψCSL

0 (ηα, z2, . . . , zM )︸ ︷︷ ︸
=0

S+
z2 . . . S

+
zM |↓↓ . . . ↓〉 . (3.2.4)

The identity
N∑
α=1

ψCSL

0 (ηα, z2, . . . , zM ) = 0 (3.2.5)

is a special case of the Perelomov identity [110; 46], which holds for all lattice sums of e−
π
2 |ηα|2G(ηα) times

an arbitrary analytic function of ηα. The identity was originally derived form the properties of the Jacobi
ϑ-functions, and many analytical results available for the CSL, such as the singlet property for Abelian and
non-Abelians CSL states, rely on this identity. A proof of (3.2.5) is contained in [46].

ut

Analogously to the construction of the Haldane-Shastry state via Gutzwiller projection, the CSL state
can be obtained by projecting from a completely filled LLL with M = N/2 ↑-spin and M ↓-spin electrons
[89; 35],

|ψCSL

0 〉 = PGW |ψNSD,2d〉 , (3.2.6)

with |ψNSD,2d〉 being the Slater determinant wave function for the LLL filled once with M ↑-spins and once
with M ↓-spins. The Gutzwiller projector PGW is defined in (3.1.16).

The state (3.2.6) is equivalent to (3.2.1).

Proof. Similar to the derivation for the Haldane-Shastry model, the Gutzwiller state (3.2.6) can be rewritten
as
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|ψCSL

0 〉 =
∑

{z1,...,zM ;w1,...,wM}

φ(z1, . . . , zM )φ(w1, . . . , wM )

· c†z1↑ . . . c
†
zM↑ c

†
w1↓ . . . c

†
wM↓ |0〉 , (3.2.7)

where φ(z1, . . . , zM ) is the wave function of a filled LLL in a fictitious magnetic field with flux π per plaquet,

φ[z] =

M∏
i<j

(zi − zj)
M∏
i=1

e−
π
4 |zi|2 . (3.2.8)

The coordinates zi (wi) label sites with ↑-spin (↓-spin) particles.
At the same time, we can rewrite (3.2.2),

ψCSL

0 [z] =

M∏
j=1

G(zj)e
−MπN |zj |2

M∏
k=1

(k 6=j)

(zj − zk)

 . (3.2.9)

Kalmeyer and Laughlin [74] have proven that

N∏
α=1

(α6=k)

(ζα − zk) = −C0G(zk)e
π
4 |zk|2 , (3.2.10)

where ζα are lattice sites and C0 is constant in the thermodynamic limit.
Inserting this into (3.2.9) yields

ψCSL

0 [z] =

M∏
j,k=1
(k 6=j)

(zj − zk)

 M∏
k=1

N∏
α=1

(ζα 6=zk)

(ζα − zk)


−1

(−C0)N . (3.2.11)

The coordinates ζα run over all lattice sites, the coordinates zj are the locations of the ↑-spins.
Taking {w1, w2, . . . , wM} as the locations of the sites occupied with ↓-spin particles, we have

M∏
k=1

N∏
α=1

(ζα 6=zk)

(ζα − zk) =

M∏
j,k=1
(k 6=j)

(zj − zk)

M∏
α,l=1

(wα − zl). (3.2.12)

Then, (3.2.11) takes the simple form

ψCSL

0 [z] =

 M∏
α,l=1

(wα − zl)

−1

(−C0)N . (3.2.13)

This form of the CSL manifests the inversion symmetry of the ground state, since interchanging ↑- and
↓-spins (interchanging zl and wα) only results in a global sign change. Therefore, the amplitude for a specific
spin configuration is equal to the amplitude of its spin-flipped image.

The sign obtained by ordering the z- and w-coordinates according to the lattice positions is

sign[z;w] ≡ 〈0| cwN−M↓ . . . cw1↓czM↑ . . . cz1↑ |↓↓ . . . ↓〉 . (3.2.14)

Since
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M∏
j<k

(zj − zk)

M∏
j,l=1

(zj − wl)
M∏
l<m

(wl − wm) = const. · sign[z;w], (3.2.15)

(3.2.13) can be rewritten as
ψCSL

0 [z] = sign[z;w]φ[z]φ[w] · const, (3.2.16)

which is equivalent to (3.2.7).

ut

In the framework of this construction, the singlet property of the CSL becomes evident: The Slater
determinant |ψNSD,2d〉 is clearly a singlet, and the Gutzwiller operator commutes with the spin operator of
every local site, see (3.1.26). Thus, |ψCSL

0 〉 is a singlet itself. Moreover, this construction illustrates that
the CSL is invariant under lattice transformations. Therefore, it can be defined on any lattice of interest
(square, triangular,. . . ).

In analogy to the spinon excitation in the Haldane-Shastry model, the wave function for a spinon
excitation at position ηα of the CSL with open boundary conditions reads

ψCSL

α (z1, . . . , zM ) =

M∏
j=1

(ηα − zj)
M∏
j=1

G(zj)

M∏
j<k

(zj − zk)2
M∏
j=1

e−
π
2 |zj |2 . (3.2.17)

The momentum wave function is given through Fourier transformation,

ψCSL

m (z1, . . . , zM ) =

N∑
α=1

(ηα)mψCSLα (z1, . . . , zM ). (3.2.18)

Constructing the CSL state via Gutzwiller projection lets us also express spinon excitations elegantly.
For a system with L ↓-spin spinons at positions η1, . . . , ηL, the state is

|ψCSL

η1,...,ηL〉 = PGW cη1↑ · · · cηL↑ |ψN+L
SD,2d 〉 , (3.2.19)

where N + L = 2M has to be an even integer. The fractional spin 1/2 of the spinons is nicely illustrated
in this form: The electron annihilation operators cη create inhomogeneities in spin and charge before the
projection, which enforces one particle per site and thus restores the homogeneity in the charge distribution.
Since the projector commutes with the spin, the final wave function is a neutral object of spin 1/2.

Since the spinon coordinates η do not have to coincide with lattice points, we can define a winding number
and with that a statistical parameter via a Berry phase upon adiabatic interchange of the excitations.

The spinons obey half-fermi statistics, both in the sense of Haldane’s exclusion principle and in the
sense of the Berry phase. The phase, obtained by adiabatically exchanging two spinons by moving then
counterclockwise around each other, is π/2,

|ψ〉 → eiπ2 |ψ〉 . (3.2.20)

A holon excitation carries a positive unit charge and no spin. It can be constructed from spinon excitations
by annihilating one electron at the spinon position, which now must coincide with a lattice point. As an
example, the CSL with L holons at sites η1, . . . , ηL is

|ψCSL

η1◦...ηL◦〉 = cη1↓ · · · cηL↓ PGW cη1↑ · · · cηL↑ |ψN+L
SD,2d 〉 (3.2.21)

with N + L = 2M an even integer again.
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3.3 The non-Abelian chiral spin liquid

In the previous models, the spinon excitations possessed Abelian fractional statistics. However, extending
the concept to systems with higher spin (s > 1/2), CSL states with non-Abelian statistics can be con-
structed [45]. Systems with such a property are candidates for applications in quantum computation and
cryptography [79]. After one braiding of two non-Abelian anyons, the corresponding wave function under-
goes a matrix rotation instead of simply achieving an additional phase factor [143], making such systems an
ideal candidate for encoding quantum information. For s = 1, the CSL state is the analogue of the bosonic
Pfaffian state, for s > 1, the CSLs correspond to the Read-Rezayi series at filling ν ≥ 3/2.

The Pfaffian state is an example of a quantized Hall state supporting quasiparticle excitations with
non-Abelian statistics. It was independently discovered by Moore and Read [100], and by Wen, Wilczek
and Greiter [47; 48]. The latter authors proposed the Pfaffian state as a candidate for the experimentally
measured Hall plateau at filling fraction ν = 5/2, which is equivalent to a filling fraction ν = 1/2 in the
second Landau level. Their proposal was strongly supported experimentally by the direct measurement of
the quasihole charge recently [23; 118].

The Pfaffian wave function initially proposed by Moore and Read [100] is

ψ0(z1, z2, . . . , zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj)m
N∏
i=1

e−
1
4 |zi|2 , (3.3.1)

where the particle number N is even, and the exponent m is even (odd) for fermions (bosons). The Pfaffian
is

Pf

(
1

zi − zj

)
:= A

{
1

z1 − z2
· . . . · 1

zN−1 − zN

}
. (3.3.2)

It is the fully antisymmetrized sum over all possible pairings of the N particle coordinates. Given an analytic
function ϕ(x), and a matrix

Mij =

{
0 for i = j,

ϕ(xi − xj) for i 6= j,
(3.3.3)

the square of the Pfaffian is equal to the determinant of the matrix,

Pf (ϕ(xi − xj))2
= det(Mij . (3.3.4)

The inverse Landau level filling fraction is

1

ν
=
∂NΦ

∂N
=
∂(m(N − 1)− 1)

∂N
= m. (3.3.5)

Obviously, the state is a combination of a Laughlin state at filling ν = 1/m and a Pfaffian which implements
p-wave pairing correlations but leaves the filling fraction unaltered. Since the Pfaffian is antisymmetric, it
changes the statistics from bosonic to fermionic or vice versa. The state vanishes as the (3m− 1)-th power
as three particles approach each other. Thus, there can be at most two particles at the same position among
each triplet of particles.

In spherical geometry, the Pfaffian wave function is [48]

ψ0[u, v] = Pf

(
1

uivj − ujvi

) N∏
i<j

(uivj − ujvi)m, (3.3.6)

for a system of N particles at Landau level filling ν = 1/m on a sphere pierced by 2s0 = m(N − 1) − 1
magnetic flux quanta. Again, m is even (odd) for fermions (bosons).
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The one-dimensional analog of a non-Abelian chiral spin liquid can be achieved by extending the Haldane-
Shastry model to spin s = 1 systems. We consider a one-dimensional lattice with periodic boundary
conditions and an even number of sites N on a unit circle embedded in the complex plane.

&%
'$rrrrrrrr r r r r

N sites with spin 1 on unit circle:

ηα = ei 2π
N α with α = 1, . . . , N

If the spin of each site is s = 1, the ground state wave function is expressed by a Pfaffian state supple-
mented by a phase factor [37],

ψs=1
0 (z1, z2, . . . , zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj)
N∏
i=1

zi. (3.3.7)

At sites zi, re-normalized spin flips S̃+
α are located, which act on a vacuum with all spins in the Sz = −1

state,

|ψs=1
0 〉 =

∑
{z1,...,zN}

ψs=1
0 (z1, . . . , zN ) S̃+

z1 · · · · · S̃+
zN |−1〉N . (3.3.8)

The sum extends over all possibilities of distributing the N “particles” over the N lattice sites, including
double occupation. The re-normalized spin flips are defined by

S̃+
α :=

Sz
α + 1

2
S+
α , (3.3.9)

and the vacuum state is
|−1〉N ≡ ⊗Nα=1 |1,−1〉α . (3.3.10)

A detailed analysis of this state and the derivation of its parent Hamiltonian can be found in [37].
A generalization to arbitrary spin s is achieved by combining 2s copies of the Haldane-Shastry ground

state with spin 1/2, and projecting the spin on each site onto spin s [37]. Considering a N particle system,
the resulting wave function is

ψs0(z1, . . . , zsN ) =

2s∏
m=1

 mM∏
i,j=(m−1)M+1

i<j

(zi − zj)2

 sN∏
i=1

zi, (3.3.11)

with M = N/2, having notable similarity to the Read-Rezayi states in the quantum Hall effect [120]. By
rewriting the state into

|ψs0〉 =

 ∑
{z1,...,zM}

ψHS

0 (z1, . . . , zM ) S̃+
z1 · . . . · S̃+

zM

2s

|−s〉N , (3.3.12)

its construction based on the Haldane-Shastry state becomes evident. In the vacuum state, all spins are
maximally polarized in the negative z-direction,

|−s〉N := ⊗Nα=1 |s,−s〉α . (3.3.13)

In a basis where Sz is diagonal, the re-normalized spin flip operators can be written as
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S̃+ =
1

s− Sz + 1
S+. (3.3.14)

(3.3.14) implies that

S−(S̃+)n |s,−s〉 = n(S̃+)n−1 |s,−s〉 . (3.3.15)

The previous considerations for one-dimensional systems help to derive the wave function for the non-
Abelian chiral spin liquid (NACSL) living in two dimensions. Greiter and Thomale [45] introduced a wave
function for a circular droplet with open boundary conditions occupying N sites of a triangular or square
lattice s = 1 antiferromagnet. It is expressed by a Pfaffian state supplemented by a gauge factor G(z),

ψ1
0(z1, z2, . . . , zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj)
N∏
i=1

G(zi) e
−(π/2)|zi|2 . (3.3.16)

The “particles” at complex coordinates zi are re-normalized spin flips S̃+
α acting on a vacuum with all spins

in the Sz = −1 state,
|−1〉N := ⊗Nα=1 |1,−1〉α . (3.3.17)

The NACSL state then is

|ψ1
0〉 =

∑
{z1,...,zN}

ψ1
0(z1, . . . , zN ) S̃+

z1 · · · · · S̃+
zN |−1〉N , (3.3.18)

where we sum over all possible distributions of N particles on N lattice sites, allowing also double occupa-
tion, and the re-normalized spin flips are defined by

S̃+
α :=

Sz
α + 1

2
S+
α . (3.3.19)

As proven in [45], the state is a spin singlet. It trivially violates parity and time-reversal symmetry, which
takes z → z̄.

Generalized to a spin s system [42], the NACSL state can be written as

|ψs0〉 =
∑

{z1,...,zsN}
ψs0(z1, . . . , zsN ) S̃+

z1 · · · · · S̃+
zsN |−s〉N . (3.3.20)

In the “vacuum” state, all spins are maximally polarized in the negative ẑ-direction,

|−s〉N := ⊗Nα=1 |s,−s〉α . (3.3.21)

In a basis in which Sz is diagonal, the renormalized spin flip operators are

S̃+
α =

1

s− Szα + 1
S+
α . (3.3.22)

The wave function is a bosonic Read-Rezayi state,

ψs0[z] =

2s∏
m=1

 mM∏
i,j=(m−1)M+1

i<j

(zi − zj)2

 sN∏
i=1

G(zi)e
− 1

4 |zi|2 , (3.3.23)

with M = N/2, and the function is understood to be completely symmetrized over the coordinates zi.
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The spinon excitations of (3.3.16) and the half vortex quasiparticles of the Moore-Read quantum Hall
state [100] can be analogously derived. As an example, four ↓-spin spinon excitations at coordinates η1, η2,
η3 and η4 are generated by simply replacing the Pfaffian in (3.3.16) by

Pf

(
(zi − η1)(zj − η2)(zi − η3)(zj − η4) + (i↔ j)

zi − zj

)
. (3.3.24)

Each spinon carries spin 1/2.





Chapter 4

Local parent Hamiltonian for the chiral spin liquid

4.1 Introduction

Despite the promising properties of the CSL, it took almost two decades for a microscopic model to emerge.
A first attempt was made by Wen et al., who proposed a parent Hamiltonian for a two-dimensional system
with a chiral spin state, but not a liquid, as a ground state [146]. One subtlety of the system is the fact
that for long-range chiral order to be stabilized, nearest-neighbor Heisenberg interactions are insufficient
[6]. Schroeter et al. were the first to construct a parent Hamiltonian for which the Abelian CSL on a square
lattice is an exact and, apart from the twofold topological degeneracy, the unique zero-energy ground state
[125]. In 2014, they extended their method to construct a parent Hamiltonian for the family of non-Abelian
CSL [42], which they introduced in 2009 [45].

The problem of these parent Hamiltonians, however, is twofold: The Hamiltonian for the non-Abelian
CSL [42] is only exact in the thermodynamic limit and, more importantly, both of them lack locality. Such
models are challenging to achieve experimentally. The question remains whether the CSL can be realized
in more realistic spin models. In this chapter, we present local spin Hamiltonians for which the Abelian or
the non-Abelian CSL is the exact ground state. These Hamiltonians are, in many respects, a generalization
of the Haldane-Shastry model to two dimensions. Moreover, they represent an exact spin model in which
fractional quantization can be studied. Similar to [125; 138], our method to find a parent Hamiltonian
relies on the singlet property of the CSL, allowing for a spherical tensor decomposition of the introduced
annihilation operator.

To find out whether the CSL is the unique ground state modulo topological degeneracy of the proposed
parent Hamiltonian, we perform exact diagonalization studies for different system sizes. An adapted kernel-
sweeping method, introduced in [138], is applied to allow for an efficient implementation of the complex
Hamiltonians, reducing the number of computations significantly.

We manage to construct local parent Hamiltonians for spin-1/2 and spin-1 systems with largely gapped
eigenspectrums. Through numerical study of the obtained Hamiltonians on various lattice geometries, we
confirm that the CSL (for the spin-1/2 system) and the NACSL (for the spin-1 system) are the unique
ground states. Our models work on all investigated lattices, making an experimental realization more
attainable.

The results presented in this chapter are product of a joint collaboration of Martin Greiter, Ronny
Thomale and the author of this thesis [124].

27
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4.2 A local parent Hamiltonian for the chiral spin liquid

We wish to construct a local parent Hamiltonian for the Abelian and non-Abelian chiral spin liquid (CSL).
The final Hamiltonian has to meet several criteria: Apart from being Hermitian, it should be invariant under
space translations and SU(2)-spin rotations. Moreover, the CSL state has to be the unique ground state
and the Hamiltonian should be local in order to be experimentally viable. Without any technique, the task
to find such a Hamiltonian seems dauntingly complex. To solve this problem, we have developed a method
to systematically construct such a Hamiltonian for systems with spin s = 1/2 and s = 1. Additionally, for
s = 3/2 systems, we have found a longer range parent Hamiltonian.

In the first step of this method, an annihilation operator for the ground state is set up. Since the CSL
state, living in a two-dimensional system, shares many similarities with the Haldane-Shastry state, living
in a one-dimensional system, we take the Haldane-Shastry model (3.1.1) as a template for the CSL parent
Hamiltonian. Therefore, in the following Section 4.2.1, we first set up an annihilation operator for the 1d-
system, and then, in Section 4.2.2, extend it to a 2d-system. In contrast to the one-dimensional system, the
CSL state in 2D breaks explicitly time-reversal and parity symmetry. Hence, the two-dimensional parent
Hamiltonian does not have these symmetries.

In the next step, detailed in Section 4.2.4, a parent Hamiltonian obeying the trivial symmetries of
the CSL is constructed out of the annihilation operator. In Section 4.2.5, locality of the Hamiltonian is
successfully established by extending the original annihilation operator from a two-spin term to a three-
and even four-spin term.

4.2.1 Annihilation operator in 1d

The defining condition for the annihilation operator is

Ωs,1d
α |ψHS

0 〉 = 0. (4.2.1)

We choose

Ωs,1d
α =

N∑
µ=1

(µ6=α)

ηα + ηµ
ηα − ηµ

(S−α )2sS−µ . (4.2.2)

This annihilation operator is associated with one lattice site α and contains a sum over all other lattice
sites. Compared to [37], we added a factor ηα + ηµ. This does not alter the annihilation property of the
operator, but its prefactor becomes time-reversal invariant, since it is purely imaginary,

η̄α + η̄µ
η̄α − η̄µ

= −ηα + ηµ
ηα − ηµ

. (4.2.3)

In the following, we will abbreviate

Mαµ :=
ηα + ηµ
ηα − ηµ

. (4.2.4)

4.2.2 Annihilation operator in 2d

The extension to two-dimensional CSL states is straightforward by setting up the annihilation operator
analogously to the one-dimensional case (4.2.2). The defining condition for the annihilation operator is

Ωs,2d
α |ψCSL

0 〉 = 0 (4.2.5)
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with

Ωs,2d
α =

N∑
µ=1

(µ6=α)

ϑa,b(ηα − ηµ|τ)

ϑ 1
2 ,

1
2
(ηα − ηµ|τ)

(S−α )2sS−µ . (4.2.6)

We define
Mab
αµ := ϑa,b(ηα − ηµ|τ)/ϑ 1

2 ,
1
2
(ηα − ηµ|τ), (4.2.7)

and ϑa,b(z|τ) is the Jacobi theta function, further explained in Appendix C. The index tuple (a, b) can take
values (0, 0), ( 1

2 , 0) or (0, 1
2 ). We will omit the superscript “2d” from now on.

4.2.3 Direct verification of the annihilation property

We wish to prove that the above-mentioned tensor operators annihilate the ground state of the respective
system.

One-dimensional system with spin s = 1/2: The operator (4.2.2) annihilates the Haldane-Shastry ground
state (3.1.5), since

Ωs,1d
α |ψHS

0 〉 =

N∑
β=1

β 6=α

ηα + ηβ
ηα − ηβ

S−α S
−
β

∑
{z1,...zM}

ψHS

0 (z1, z2, . . . zM )S+
z1 . . . S

+
zM |↓ . . . ↓〉

=
∑

{z3,...zM}

N∑
β=1

β 6=α

(ηα + ηβ)
ψHS

0 (ηα, ηβ , z3, . . . zM )

ηα − ηβ

︸ ︷︷ ︸
=0

S+
z3 . . . S

+
zM |↓ . . . ↓〉 .

(4.2.8)

The term

(ηα + ηβ)
ψHS

0 (ηα, ηβ , z3, . . . zM )

ηα − ηβ

= (η2
α − η2

β)ηαηβ

M∏
i=3

(ηα − zi)2(ηβ − zi)2zi

M∏
3≤i<j

(zi − zj)2

contains only powers of η1
β , η

2
β , . . . , η

N−1
β and

N∑
α=1

ηmα = Nδm,0 modN. (4.2.9)

ut
The complex conjugate of the annihilation operator, Ω̄s,1d

α , also annihilates the CSL state. The proof is
almost identical to the above calculation, since

(η̄α + η̄β)
ψHS

0 (ηα, ηβ , z3, . . . zM )

η̄α − η̄β
= −(ηα + ηβ)

ψHS
0 (ηα, ηβ , z3, . . . zM )

ηα − ηβ

again contains only powers of η1
β , η

2
β , . . . , η

N−1
β .

One-dimensional system with arbitrary spin s: The proof is slightly more involved. We first examine
the action of the spin operator (S−α )2sS−µ on the ground state (3.3.12). Since the Haldane-Shastry wave
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function ψHS
0 (z1, . . . , zM ) vanishes whenever two arguments zi coincide, one of the arguments in the 2s

copies in (3.3.12) must be equal to ηα. Due to the invariance of the Haldane-Shastry wave function under
interchange of the zi, and the fact that each configuration in the sum over {z1, . . . , zM} is counted only
once, we may choose without loss of generality z1 = ηα. At site µ, there can be 0, 1, 2, . . . , 2s re-normalized
spin flips S̃+

µ in state (3.3.12). Again, due to the invariance of the Haldane-Shastry state under interchange
of the zi, we may assume that the first n spin flips are present in the first n copies. A combinatorial factor(

2s
n

)
then takes into account all permutations.

(S−α )2sS−µ |ψHS

0 〉

= (S−α )2sS−µ

2s∑
n=0

(
2s

n

) ∑
{z3,...,zM}

ψHS

0 (ηα, ηµ, z3, . . .) S̃
+
α S̃

+
µ S̃

+
z3 · . . . · S̃+

zM

n

·

 ∑
{z2,...,zM}6=ηµ

ψHS

0 (ηα, z2, . . .) S̃
+
α S̃

+
z2 · . . . · S̃+

zM

2s−n

|−s〉N

= (2s)! 2s

 ∑
{z2,...,zM}

ψHS

0 (ηα, ηµ, z3, . . . , zM ) S̃+
z3 · . . . · S̃+

zM


·

2s∑
n=1

(
2s− 1

n− 1

) ∑
{z3,...,zM}

ψHS

0 (ηα, ηµ, z3, . . . , zM ) S̃+
µ S̃

+
z3 · . . . · S̃+

zM

n−1

·

 ∑
{z2,...,zM}6=ηµ

ψHS

0 (ηα, z2, . . . , zM ) S̃+
z2 · . . . · S̃+

zM

2s−n

|−s〉N

= (2s)! 2s

 ∑
{z3,...,zM}

ψHS

0 (ηα, ηµ, z3, . . . , zM ) S̃+
z3 · . . . · S̃+

zM



·

 ∑
{z2,...,zM}

ψHS

0 (ηα, z2, . . . , zM ) S̃+
z2 · . . . · S̃+

zM

2s−1

|−s〉N , (4.2.10)

where we have used (3.3.15). Applying the entire operator (4.2.2) onto the ground state then results in

Ωs,1d
α |ψHS

0 〉 = (2s)! 2s

·

 ∑
{z3,...,zM}

N∑
µ=1

(ηα + ηµ)
ψHS

0 (ηα, ηµ, z3, . . . , zM )

ηα − ηµ︸ ︷︷ ︸
=0

S̃+
z3 · . . . · S̃+

zM



·

 ∑
{z2,...,zM}

ψHS

0 (ηα, z2, . . . , zM ) S̃+
z2 · . . . · S̃+

zM

2s−1

|−s〉N , (4.2.11)

where we have used that
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(ηα + ηµ)
ψHS

0 (ηα, ηµ, z3, . . . zM )

ηα − ηµ

= (ηα + ηµ)(ηα − ηµ)ηαηµ

M∏
i=3

(ηα − zi)2(ηµ − zi)2zi

M∏
3≤i<j

(zi − zj)2

vanishes for µ = α and contains only powers η1
µ, η

2
µ, . . . , η

N−2
µ . Note that the calculation for Ω̄s,1d

α is almost
identical, since

(η̄α + η̄µ)
ψHS

0 (ηα, ηµ, z3, . . . zM )

η̄α − η̄µ
= −(ηα + ηµ)

ψHS
0 (ηα, ηµ, z3, . . . zM )

ηα − ηµ

vanishes also for µ = α and contains only powers η2
µ, η

3
µ, . . . , η

N−1
µ .

ut
Two-dimensional system with arbitrary spin s: The considerations for the Haldane-Shastry wave function

ψHS
0 up to (4.2.10) also hold for the CSL state ψCSL

0 , leading to

Ωs,2d
α |ψCSL

0 〉 = (2s)! 2s

·

 ∑
{z3,...,zM}

N∑
µ=1

(µ6=α)

ϑa,b(ηα − ηµ|τ)
ψCSL

0 (ηα, ηµ, z3, . . . , zM )

ϑ 1
2 ,

1
2
(ηα − ηµ|τ)

︸ ︷︷ ︸
=0

S̃+
z3 · . . . · S̃+

zM



·

 ∑
{z2,...,zM}

ψCSL

0 (ηα, z2, . . . , zM ) S̃+
z2 · . . . · S̃+

zM

2s−1

|−s〉N . (4.2.12)

As in the proof of the singlet property of the CSL state (3.2.5), we have used a special case of the Perelomov
identity to proof that the first term vanishes.

ut

4.2.4 Construction of a parent Hamiltonian

From the annihilation operator (4.2.6), we now wish to construct a parent Hamiltonian for the Abelian
chiral spin liquid state for spin s = 1/2 systems (3.2.3) and for the non-Abelian chiral spin liquid state for
arbitrary spin s > 1/2 (3.3.23). The Hamiltonian has to fulfill several criteria: It should be Hermitian and
invariant under spatial translations and SU(2)-spin rotations.

The product of our annihilation operator with its Hermitian conjugate, Ωs †Ωs, is itself Hermitian and
positive semi-definite. Consequently, the CSL state is a zero-energy ground state of the product operator.
It becomes translationally invariant by summing over all possible lattices sites, giving the first template for
our parent Hamiltonian

Hs =

N∑
α=1

Ωs †
α Ωs

α. (4.2.13)

The Hamiltonian contains a scalar, vector, and higher-order tensor components which all have to annihilate
the state |ψ0〉 individually. For the one-dimensional case, the preliminary Hamiltonian is
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Hs =

N∑
α,µ,ν

(α6=µ,ν)

M̄αµMαν(S+
α )2s(S−α )2sS+

µ S
−
ν . (4.2.14)

In two dimensions, the coefficients Mαβ simply have to be generalized to Mab
αβ .

Since the CSL state is a spin singlet state, the final Hamiltonian has to fulfill SU(2)-symmetry. Therefore,
we project the Hamiltonian Hs onto its scalar component, Hs

0 = {Hs}0. Still, the CSL is the ground state
of the scalar Hamiltonian, since the following theorem holds:

If an operator M annihilates a singlet state ψS , also each of its irreducible components are annihilation
operators.

Proof. According to the Wigner-Eckart theorem, in the basis of angular momentum eigenstates, matrix
elements of spherical tensor operators can be expressed as the product of a Clebsch-Gordan coefficient [7]
and a factor independent of the orientation of the angular momentum. Given a spherical tensor operator
T (k), the matrix element of its q-th component in an angular momentum resolved basis can be decomposed
into

〈n, j,m|T (k)
q |n′, j′,m′〉 = 〈j′,m′, k, q|j,m〉 〈n, j| |T (k)| |n′, j′〉 . (4.2.15)

Here, |n, j,m〉 are the eigenstates with j the total angular momentum number, L2 |n, j,m〉 = ~2j(j +
1) |n, j,m〉, and m the z-component, Lz |n, j,m〉 = ~m |n, j,m〉. All remaining quantum numbers are ex-
pressed by n. The first factor on the right of (4.2.15) is a Clebsch-Gordan coefficient for coupling j′ with
k to give j. The second factor, traditionally written as a bracket with double lines, is the reduced matrix
element depending only on the total (or relative) angular momentum. Applying a tensor on a state can
then be written as

T (k)
q |n′, j′,m′〉 =

∑
j,m

〈j′,m′, k, q|j,m〉 〈n, j| |T (k)| |n′, j′〉 |n, j,m〉 . (4.2.16)

Since ψS is a singlet state, ψS = β |n, 0, 0〉 holds for some constant β, thus j′ = m′ = 0 in (4.2.16). The
Clebsch-Gordan coefficients then vanish unless k = j and q = m. Given an operator M which annihilates

the CSL state, it can be decomposed into its irreducible tensor components, Mq =
∑
k αkT

(k)
q , |q| ≤ k.

Inserted into (4.2.16), we get for all k

0 = MqψS =
∑
k

αk 〈n′, k| |T (k)| |n, 0〉 |n′, k, q〉 =:
∑
k

γk |n′, k, q〉 . (4.2.17)

Since the basis states |n′, k, q〉 with different k are orthogonal, it follows that each of the coefficients γk has

to be zero. Thus, all operators T
(k)
q are annihilation operators of ψS .

ut
We have developed an exact numerical technique to project a tensor operator onto its singlet component

and decompose it into scalar spin operator products. It will be presented in detail in Section 4.4.1. In
Section 4.5, we apply the above procedure to construct the final parent Hamiltonians for different system
setups.

4.2.5 Establishing locality

There are two problems with the model constructed so far: First, the Hamiltonian Hs
0 is long-ranged,

since it decreases as 1/r with the distance, such that the spatial integral in one as well as two dimensions is
diverging. Second, the Hamiltonian is not periodic in two dimensions. The factor Mab

αβ acquires the following
phases under translations:
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z → z + 1 : e2πi(a− 1
2 ),

z → z + τ : e2πi(b− 1
2 ) (4.2.18)

due to the quasi-periodicity of the ϑ-function, as explained in Appendix C. For specific values of the
parameters a, b, the phase shift is

a,b z → z + 1 z → z + τ

0, 1
2 - +

1
2 , 0 + -

0, 0 - -

The cure to both problems [124] is to replace the annihilation operator Ωs
α in (4.2.6), by

Ωs
αβ =

∑
µ

(µ6=α,β)

Mab
αµM

ab
βµ(S−α )2s(S−β )2sS−µ . (4.2.19)

The new annihilation operator for one-dimensional systems is derived by replacing the prefactors Mab
αµ by

Mαµ in (4.2.19).

α β

µ

Fig. 4.1 Schematic of the interaction of the two-site annihilation operator Ωsαβ with an arbitrary external site µ on

a square lattice. The interaction decreases as 1/r2.

The resulting Hamiltonian is then

Hs,2 =
∑
<α,β>

Ωs †
αβΩs

αβ , (4.2.20)

establishing an interaction of two neighboring sites α, β with an external site µ. We call this a “two-
site” Hamiltonian. The sum goes only over neighboring sites in all lattice directions. Again, for the final
Hamiltonian, we project (4.2.20) onto its scalar component, Hs,2

0 := {Hs,2}0.
For the two-dimensional system, the choice of the parameters (a, b) in (4.2.19) can be (0, 0), ( 1

2 , 0) or
(0, 1

2 ), thereby choosing one of the three even ϑ-functions in the nominator of the prefactor Mab
αµ of the

annihilation operator Ωs
αβ . To treat the boundaries in x- and y-direction symmetrically, (0, 0) is the best

choice. The three choices lead to three different Hamiltonians which are locally equivalent.
In the two-site Hamiltonian (4.2.20), the interaction decreases as 1/r2, thus being still long-ranged for

two-dimensional systems, as depicted in Figure 4.1. However, extending the logic from above, we can easily
increase the locality in our Hamiltonian. Instead of a two-site interaction with an external site, as in (4.2.20),
it is possible to introduce an interaction over three neighboring sites

Hs,3 =
∑

<α,β,γ>

Ωs †
αβγΩ

s
αβγ , (4.2.21)
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with
Ωs
αβγ =

∑
µ

(µ6=α,β,γ)

Mab
αµM

a′b′

βµ Ma′′b′′

γµ (S−α )2s(S−β )2s(S−γ )2sS−µ , (4.2.22)

or even a four-site interaction
Hs,4 =

∑
<α,β,γ,δ>

Ωs †
αβγδΩ

s
αβγδ, (4.2.23)

with
Ωs
αβγδ =

∑
µ

(µ6=α,β,γ,δ)

Mab
αµM

a′b′

βµ Ma′′b′′

γµ Ma′′′b′′′

δµ (S−α )2s(S−β )2s(S−γ )2s(S−δ )2sS−µ . (4.2.24)

The three-site Hamiltonian falls off as 1/r3 with distance. Consequently, the integral in two spatial dimen-
sions is finite when taking the limit of large distances, corresponding to the low energy regime,∫ R0

r0

2πrdr
1

r3
= 2π

[
−1

r

]R0

r0

=
2π

r0
− 2π

R0
−→ 2π

r0
as R0 −→∞. (4.2.25)

The four-site Hamiltonian falls off as 1/r4. Its integral in two spatial dimensions is local in the infrared
cutoff, ∫ R0

r0

2πrdr
1

r4
= 2π

[
− 1

2r2

]R0

r0

=
π

r2
0

− π

R2
0

−→ π

r2
0

as R0 −→∞. (4.2.26)

This implies that both parent Hamiltonians are local, the four-site system even more than the three-site
system.

For the three-site operator (4.2.22), there is a subtlety in the choice of the parameters (a, b), (a′, b′) and
(a′′, b′′), since we have to impose periodicity when translating ηµ by 1 or by τ in the complex plane. This
is fulfilled for the choice

(a, b) = (0, 0), (a′, b′) =

(
1

2
, 0

)
and (a′′, b′′) =

(
0,

1

2

)
. (4.2.27)

The operator is not symmetric under permutations of the site indices α, β, γ. However, the symmetry is
established in the final Hamiltonian since we sum over all permutations of nearest-neighboring sites.

In case of the four-site interaction (4.2.23), there are multiple choices for the parameters (a, b), (a′, b′),
(a′′, b′′) and (a′′′, b′′′) in the ϑ-functions of operator (4.2.24) which have to fulfill the required periodic
boundary conditions. The easiest way is to set all parameters equal, (a, b) = (a′, b′) = (a′′, b′′) = (a′′′, b′′′).
Still, there remain three choices since we can choose one of the three ϑ-functions for the parameters (a, b).
We have opted for the rotationally invariant choice, (a, b) = (0, 0), as will be further detailed in Section 4.5.

In Sections 4.4-4.7, we construct rotationally invariant and non-invariant versions of our parent Hamil-
tonians with a two-, three- and four-site interaction and analyze them numerically on the square and the
triangular lattice.
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4.3 Tensor representation of operators

We want our final parent Hamiltonian to be invariant under translations as well as SU(2)-spin rotations.
The last condition entails that the Hamiltonian transforms as a scalar under spin rotations. Our construction
of the parent Hamiltonian starts from the annihilation operator (4.2.6), which transforms as a higher order
tensor. For instance, the operator Ωα,β consists of spin products proportional to S−αS

−
β S
−
µ , µ 6= α, β, and

is therefore a third order tensor. Therefore, to obtain the final Hamiltonian, the scalar component has to
be projected out of the operator product.

In theory, this can be achieved by hand. This, however, becomes unfeasible for slightly more involved
tensor expressions. We therefore have developed an exact numerical technique to easily project out the
scalar component and decompose it into scalar spin operator products, which will be presented in Section
4.4. Before presenting our technique, we review the rotation properties of tensor operators and how to
project and decompose them.

4.3.1 Representation of rotations

A spherical tensor operator is defined by its transformation properties under rotations. The generator of
SU(2)-rotations is the angular momentum operator J. The operator

Rω = e−iJ·ω (4.3.1)

rotates a state vector around the axis ω by an angle |ω|.
The eigenstates |j,m〉 of the total angular momentum J and its z-component, with eigenvalues j(j + 1)

and m, form a complete orthonormal basis. They transform under rotations as

Rω |j,m〉 =

j∑
m′=−j

|j,m′〉 d(j)
m′m(ω). (4.3.2)

Obviously, a rotation only changes m, the total angular momentum is conserved. In (4.3.2), the matrix
elements are

d
(j)
m′m(ω) = 〈j,m′| e−iJω |j,m〉 . (4.3.3)

This so-called Wigner d-matrix describes an irreducible, 2j + 1-dimensional representation of the group
SU(2) [148].

4.3.2 Spherical tensor operators

It is straightforward to determine the transformation properties of operators: Rotations are required to
leave the expectation value of an operator A unaltered,

〈ψ′|A′ |ψ〉 = 〈ψ′|A |ψ〉 . (4.3.4)

Here, a prime stands for a rotated object. Therefore, the transformation has to be unitary, R−1
ω = R†ω.

Since state vectors transform under rotations as

|ψ〉 → |ψ′〉 = Rω |ψ〉 , (4.3.5)

the operator must transform as
A′ = RωAR−1

ω . (4.3.6)
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Scalar operators are invariant under rotations

Asc = RωAscR
−1
ω , (4.3.7)

and thus, they commute with the generators of rotation,

[Asc,J] = 0. (4.3.8)

Scalars are irreducible tensors of order zero.
Vectors, which are irreducible tensors of order one, are a set of three operators, such as the position

vector r and the angular momentum operator J. In general, an irreducible tensor operator of order j, T (j),
has 2j + 1 components T (j)m , m = −j, . . . , j. Under rotations, they transform according to

Rω T
(j)mR−1

ω =

j∑
m′=−j

T (j)m
′

d
(j)
m′m(ω). (4.3.9)

The coefficients d
(j)
m′m(ω) are defined in (4.3.3).

Rewriting (4.3.9) for infinitesimal rotations

Rε = e−iJε ≈ 1− iJε, (4.3.10)

ignoring higher terms beyond first order, we obtain the commutation relation with the angular momentum
operator, [

J , T (j)m
]

=

j∑
m′=−j

T (j)m
′

〈j,m′|J |j,m〉 . (4.3.11)

Remembering that

Jz |j,m〉 = m |j,m〉 ,
J± |j,m〉 =

√
j(j + 1)−m(m± 1) |j,m± 1〉 , (4.3.12)

leads to the commutation relations with the angular momentum components[
Jz, T (j)m

]
= mT (j)m, (4.3.13)

[
J±, T (j)m

]
=
√
j(j + 1)−m(m± 1) T (j)m±1

, (4.3.14)

where J± := Jx ± iJy.
When acting on an angular momentum eigenstate |j,m〉, the tensor T

(j)
m increases its eigenvalue by m,

as can be demonstrated by the application of the Jz-operator,

Jz T (j)m|j′,m′〉 =
[
Jz, T (j)m

]
|j′,m′〉+ T (j)mJz |j′,m′〉

= (m+m′) T (j)m |j′,m′〉 .
(4.3.15)

In the spherical basis, the components of a vector V = (Vx, Vy, Vz), up to an overall normalization factor,
are

V m=1 = −V
x + iV y

√
2

, V m=0 = V z, V m=−1 =
V x − iV y

√
2

. (4.3.16)

This follows from the commutation relation
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J i, V j

]
= iεijkV k.

4.3.3 Product of tensor operators

The tensor product of two irreducible representations T (l) and T (m), l,m ∈ N0, of a group or Lie algebra is
not irreducible in general. Its decomposition into irreducible pieces is called the Clebsch-Gordan problem.
In the SU(2)-case, assuming l = m, the direct product decomposes as follows

T (l) ⊗ T (m) ∼= T (l−m) ⊕ T (l−m+1) ⊕ . . . T (l+m). (4.3.17)

The Jz-quantum number m of a product of two tensors

T (j1)m1
T (j2)m2

(4.3.18)

is the sum of the Jz-quantum numbers of the individual tensors, m = m1 +m2. This can be directly seen
by using (4.3.13).

Using Clebsch-Gordan coefficients, two tensor operators can be combined to produce a tensor of order
j,

T (j)m =

j1∑
m1=−j1

j2∑
m2=−j2

T (j1)m1
T (j2)m2 〈j1,m1; j2,m2|j,m〉 , (4.3.19)

with the Clebsch–Gordan coefficients 〈j1,m1; j2,m2|j,m〉. This expression can be simplified if we take into
account that all Clebsch-Gordan coefficients with m 6= m1 + m2 vanish. The expression reduces to one
summation,

T (j)m =

min{j1,j2+m}∑
m1=max{−j1,−j2+m}

T (j1)m1
T (j2)m−m1 〈j1,m1; j2,m−m1|j,m〉 . (4.3.20)

To proof that the left hand side of (4.3.19) is an irreducible tensor of order j, its transformation properties
under rotations may be considered:

Rω T
(j)mR−1

ω =
∑
m1,m2

Rω T
(j1)m1

R−1
ω Rω T

(j2)m2
R−1
ω 〈j1,m1; j2,m2|j,m〉

=
∑
m′1,m

′
2

T (j1)m
′
1T (j2)m

′
2

·
∑
m1,m2

〈j1,m′1; j2,m
′
2| e−iJ·ω |j1,m1; j2,m2〉 〈j1,m1; j2,m2|j,m〉

=
∑
m′1,m

′
2

T (j1)m
′
1T (j2)m

′
2
∑
j′,m′

〈j1,m′1; j2,m
′
2|j′,m′〉 〈j′,m′| e−iJ·ω |j,m〉

=
∑
m′

T (j)m
′

d
(j)
m′m(ω).

(4.3.21)

For the derivation, the completeness relations

j1∑
m1=−j1

j2∑
m2=−j2

|j1,m1; j2,m2〉 〈j1,m1; j2,m2| = 1, (4.3.22)
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j1+j2∑
j=|j1−j2|

j∑
m=−j

|j,m〉 〈j,m| = 1, (4.3.23)

of the Clebsch–Gordan algebra have been inserted.
With the knowledge of (4.3.19), we can now decompose the product of two tensors into its irreducible

components,

T (j1)m1
T (j2)m2

=

j1+j2∑
j=|j1−j2|

j∑
m=−j

T (j)m 〈j,m|j1,m1; j2,m2〉 . (4.3.24)

The projection of the above tensor product onto its j′-th order component then simply is

{T (j1)m1
T (j2)m2}j′ = T (j′)m1+m2 〈j′,m1 +m2|j1,m1; j2,m2〉 , (4.3.25)

where T (j)m1+m2
is defined in (4.3.20).

In the following, we will frequently use the projection of a tensor product onto its scalar component,

{T (j1)mT (j2)−m}0 =

〈0, 0|j1,m; j2,−m〉
min{j1,j2}∑

m′=−min{j1,j2}
T (j1)m

′

T (j2)−m
′

〈j1,m′; j2,−m′|0, 0〉 .
(4.3.26)

In Appendix B, the tensor decomposition of spin products with up to three spin operators will be listed.

4.3.4 Decomposition of tensor products

For tensors consisting only of a few spin operators, the decomposition of the scalar component can be done
analytically. However, with an increasing number of operators in a tensor, the decomposition becomes soon
too intricate to be executable by hand. At this point, it is useful to employ numerical methods which can
decompose the expression in a fraction of time. For this purpose, we have developed an exact numerical
technique which projects a tensor expression onto its scalar component and decomposes it into simple scalar
spin terms. In this section, we explain how the decomposition can be executed analytically. The following
Section 4.4.1 then introduces our numerical technique.

As a shorthand notation, we label tensors of N -th order which are a product of N spin operators by
Ti1,i2,...,iN . Their m = N -component is

TNi1,i2,...,iN := S+
i1
S+
i2
· · ·S+

iN
. (4.3.27)

The spin indices are not necessarily different.
To illustrate how to proceed with an analytical decomposition, we present in the following the steps

to obtain the scalar component of a very simple expression, the tensor product of T 0
αβ and T 0

µν with
α 6= β 6= µ, ν but allowing µ = ν. Both tensors are of order 2, so that j1 = j2 = 2. Using (4.3.26), we can
write the tensor product as

{
T 0
αβT

0
µν

}
0

= 〈0, 0|2, 0; 2, 0〉
2∑

m=−2

TmαβT
−m
µν 〈2,m; 2,−m|0, 0〉 . (4.3.28)

With (B.2.4) and the Clebsch-Gordan coefficients
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〈2,m; 2,−m|0, 0〉 =
(−1)m√

5
, (4.3.29)

we obtain

5
{
T 0
αβT

0
µν

}
0

=

2∑
m=−2

(−1)mTmαβT
−m
µν

= S−α S
−
β S

+
µ S

+
ν

+
(
Sz
αS
−
β + S−α S

z
β

)(
Sz
µS

+
ν + S+

µ S
z
ν

)
+

1

6

(
4Sz

αS
z
β − S+

α S
−
β − S−α S+

β

)(
4Sz

µS
z
ν − S+

µ S
−
ν − S−µ S+

ν

)
+
(
Sz
αS

+
β + S+

α S
z
β

)(
Sz
µS
−
ν + S−µ S

z
ν

)
+ S+

α S
+
β S
−
µ S
−
ν . (4.3.30)

This expression can be rewritten such that the scalar transformation property under spin rotations becomes
apparent. Since

1⊗ 1⊗ 1⊗ 1 = 3 · 0⊕ 6 · 1⊕ 6 · 2⊕ 3 · 3⊕ 4,

only three scalars can be formed from four spin operators. For α 6= β 6= µ, ν, three such scalars are

(SαSβ)(SµSν), (SαSµ)(SβSν), and (SβSµ)(SαSν).

Note that since α 6= β, only the order Sµ vs. Sν in the products is relevant. If we were to allow for α = β
in addition to µ = ν, we would need to write the last scalar as Sα(SβSµ)Sν . As an ansatz, we may try

5
{
T 0
αβT

0
µν

}
0

= a (SαSβ)(SµSν) + b
[
(SαSµ)(SβSν) + (SβSµ)(SαSν)

]
(4.3.31)

where we have used the invariance of the tensor product under interchange of α and β. The task is now
to find the values of the parameters a and b. For a generic system beyond this example, the task can be
formulated as follows: A tensor T is given whose scalar component {T}0 shall be decomposed. There is a
set {Ai} of possible scalar terms, which can occur in the decomposition. Thus, we have to solve the system
of linear equations

{T}0 =
∑
i

aiAi (4.3.32)

for the parameters ai ∈ R. For more complicated tensors, in which a large number of possible scalar spin
products can occur, this step becomes intricate.

Back to our example: Since the S−α S
−
β term in (4.3.30) originates from the second term in (4.3.31), it

follows immediately that b = 2. To obtain a, we write out the second term in (4.3.31) for α 6= β 6= µ, ν,

2
[
(SαSµ)(SβSν) + (SβSµ)(SαSν)

]
=

1

2

(
2Sz

αS
z
µ + S+

α S
−
µ + S−α S

+
µ

)(
2Sz

βS
z
ν + S+

β S
−
ν + S−β S

+
ν

)
+ same with α↔ β

= S+
α S

+
β S
−
µ S
−
ν + S−α S

−
β S

+
µ S

+
ν

+ Sz
αS

z
µ

(
S+
β S
−
ν + S−β S

+
ν

)
+ Sz

βS
z
µ

(
S+
α S
−
ν + S−α S

+
ν

)
+
(
S+
α S
−
µ + S−α S

+
µ

)
Sz
βS

z
ν +

(
S+
β S
−
µ + S−β S

+
µ

)
Sz
αS

z
ν

+
1

2

(
S+
α S
−
β + S−α S

+
β

)(
S+
µ S
−
ν + S−µ S

+
ν

)
+ 4Sz

αS
z
βS

z
µS

z
ν .

(4.3.33)
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Subtracting this from (4.3.30), we obtain

5
{
T 0
αβT

0
µν

}
0
− 2

[
(SαSµ)(SβSν) + (SβSµ)(SαSν)

]
=

1

6

(
4Sz

αS
z
β − S+

α S
−
β − S−α S+

β

)(
4Sz

µS
z
ν − S+

µ S
−
ν − S−µ S+

ν

)
− 1

2

(
S+
α S
−
β + S−α S

+
β

)(
S+
µ S
−
ν + S−µ S

+
ν

)
− 4Sz

αS
z
βS

z
µS

z
ν .

= −4

3
Sz
αS

z
βS

z
µS

z
ν

− 2

3

(
S+
α S
−
β + S−α S

+
β

)
Sz
µS

z
ν −

2

3
Sz
αS

z
β

(
S+
µ S
−
ν + S−µ S

+
ν

)
− 1

3

(
S+
α S
−
β + S−α S

+
β

)(
S+
µ S
−
ν + S−µ S

+
ν

)
= −4

3
(SαSβ)(SµSν), (4.3.34)

or

5
{
T 0
αβT

0
µν

}
0

= −4

3
(SαSβ)(SµSν) + 2

[
(SαSµ)(SβSν) + (SβSµ)(SαSν)

]
(4.3.35)

As an aside, the Clebsch–Gordan coefficient

〈2, 0; 2, 0|1, 0〉 = 0 (4.3.36)

in (4.3.28) implies that the tensor product of T 0
αβ and T 0

µν has no vector component, i.e.,{
T 0
αβT

0
µν

}
1

= 0. (4.3.37)

4.3.5 Structure of the parent Hamiltonian

The expressions for the parent Hamiltonians (4.2.20)-(4.2.23), projected onto their scalar component as
detailed in Section 4.3.3, will now be written out explicitly.

To shorten notation, we define for one-dimensional systems

wαµν := M̄αµMαν , (4.3.38)

and for two-dimensional systems
wabαµν := M̄ab

αµM
ab
αν . (4.3.39)

The factors Mαν and Mab
αν are defined in (4.2.4) and (4.2.7).

The first two-dimensional spin s system we investigate has the parent Hamiltonian

Hs,2
0 =

∑
<α,β>

[ ∑
µ6=ν

(µ,ν 6=α,β)

wabαµνw
ab
βµνHs,6=αβµν +

∑
µ

(µ6=α,β)

wabαµµw
ab
βµµHs,=αβµ

]
. (4.3.40)

Such a system is labeled a “two-site” Hamiltonian, since two neighboring sites α, β interact with one (µ)
or two (µ, ν) external sites. For a one-dimensional system, the prefactors wabαµν simply have to be replaced
by wαµν . The Hamiltonian consists of two summands: In the first summand, the two neighboring sites α
and β interact with two distinct external sites µ and ν, which can be anywhere on the lattice. The second
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summand treats the special case, in which the two external sites coincide, µ = ν. We call the expressions
Hs,6=αβµν and Hs,=αβµ “small Hamiltonians”, since they describe a subsystem of only four (µ 6= ν) or three
interacting sites (µ = ν). Explicitly written out, they read

Hs,6=αβµν =
{
T 3
αβνT

−3
αβµ

}
0

=
{

(S+
α )2s(S+

β )2sS+
ν (S−α )2s(S−β )2sS−µ

}
0
, (4.3.41)

and

Hs,=αβµ =
{
T 3
αβµT

−3
αβµ

}
0

=
{

(S+
α )2s(S+

β )2sS+
µ (S−α )2s(S−β )2sS−µ

}
0
. (4.3.42)

In case of a three-site interaction, three neighboring sites α, β, γ interact with one or two external sites.
The general form of the parent Hamiltonian for a two-dimensional spin s system is

Hs,3
0 =

∑
<α,β,γ>

[ ∑
µ 6=ν

(µ,ν 6=α,β,γ)

wabαµνw
a′b′

βµνw
a′′b′′

γµν Hs,6=αβγµν +
∑
µ

(µ6=α,β,γ)

wabαµµw
a′b′

βµµw
a′′b′′

γµµ Hs,=αβγµ
]
. (4.3.43)

with the parameter choice given in (4.2.27),

(a, b) = (0, 0), (a′, b′) =

(
1

2
, 0

)
and (a′′, b′′) =

(
0,

1

2

)
.

The small Hamiltonians are

Hs,6=αβγµν =
{
T 4
αβγνT

−4
αβγµ

}
0

=
{

(S+
α )2s(S+

β )2s(S+
γ )2sS+

ν (S−α )2s(S−β )2s(S−γ )2sS−µ
}

0
, (4.3.44)

and

Hs,=αβγµ =
{
T 4
αβγµT

−4
αβγµ

}
0

=
{

(S+
α )2s(S+

β )2s(S+
γ )2sS+

µ (S−α )2s(S−β )2s(S−γ )2sS−µ
}

0
. (4.3.45)

Finally, for a four-site interaction, the general form of the parent Hamiltonian in a two-dimensional
system with spin s is

Hs,4
0 =

∑
<α,β,γ,δ>

[ ∑
µ6=ν

(µ,ν 6=α,β,γ,δ)

wabαµνw
ab
βµνw

ab
γµνw

ab
δµνHµ6=νs +

∑
µ

(µ6=α,β,γ,δ)

wabαµµw
ab
βµµw

ab
γµµw

ab
δµµHµ=ν

s

]
. (4.3.46)

The small Hamiltonians are

Hs,6=αβγδµν =
{
T 5
αβγδνT

−5
αβγδµ

}
0

=
{

(S+
α )2s(S+

β )2s(S+
γ )2s(S+

δ )2sS+
ν (S−α )2s(S−β )2s(S−γ )2s(S−δ )2sS−µ

}
0
, (4.3.47)

and

Hs,=αβγδµ =
{
T 5
αβγδµT

−5
αβγδµ

}
0

=
{

(S+
α )2s(S+

β )2s(S+
γ )2s(S+

δ )2sS+
µ (S−α )2s(S−β )2s(S−γ )2s(S−δ )2sS−µ

}
0
. (4.3.48)

We numerically derive explicit expressions for the small Hamiltonians in Section 4.5, consisting of simple
scalar spin terms. This allows to develop a better intuition about the underlying models. In Section 4.6, we
calculate the eigenspectra of these Hamiltonians in order to check whether they are local parent Hamilto-
nians for the Abelian and non-Abelian CSL.



42 4 Local parent Hamiltonian for the chiral spin liquid

4.4 Implementation details

We wish to demonstrate numerically, that the suggested Hamiltonians in Section 4.5 are indeed the parent
Hamiltonians for the CSLs for a two-dimensional system with spin s. To achieve this, three numerical tasks
are accomplished: First, the small Hamiltonians Hs,6= and Hs,=, listed in Section 4.3.5, are decomposed into
simple scalar spin products. This allows to have a better intuition about the underlying model, since we
can analyze its constituent scalar spin interaction terms. We detail the numerical challenges in Section 4.4.1
and present results in Section 4.5. Second, the parent Hamiltonians (4.3.40)-(4.3.46) are constructed from
the small Hamiltonians we obtained in the first step by choosing a lattice geometry and system size, then
summing over all possible site configurations. This is explained in Section 4.4.2. In the third and final step,
explained in Section 4.4.3, these Hamiltonians are diagonalized to obtain their eigenspectrum. We present
our results in Section 4.6.

4.4.1 Numerical decomposition of tensor operators

Section 4.3.4 demonstrates the analytical decomposition of generic tensor expressions into simple spin prod-
ucts. Performing this task by hand is intricate and becomes unfeasible for more complex tensor expressions.
We now present an exact numerical technique which resolves this problem. The essential idea is to gather
all possible scalar spin terms which can possibly contribute to the tensor product we wish to decompose.
We then determine the coefficients of the linear combination of these scalar terms which equals the tensor
product.

We have implemented a program in Wolfram Mathematica R© [153] which can decompose tensor products
consisting of up to fourteen spin operators in total. Larger products can be decomposed in theory, though
the computation time becomes excessively large. Our numerical method enables us to calculate the parent
Hamiltonian for systems with spin 1/2, 1 and even 3/2. Mathematica uses the Wolfram Language. This
high-level, dynamically typed, interactive programming language is symbolic and provides nearly 6000
built-in functions and algorithms.

For the interested reader, a copy of our program for the decomposition of the small Hamiltonian (4.3.44)
of a spin-1 system with a three-site Hamiltonian is printed in Appendix D.

Finding all scalar spin terms

Before we can decompose a given tensor according to the linear equation (4.3.32), we have to find all spin
products which possibly occur in the decomposition. With a few preliminary considerations, many spin
terms can be excluded.

We illustrate how to find all scalar products with two examples: (1) A spin 1/2 system with a three-site
interaction; (2) a spin 1 system with a two-site interaction. As a reminder, we define an “n-site” small
Hamiltonian to describe an interaction of n neighboring sites with one or two external sites, as further
explained in Section 4.3.5.

For a spin 1/2 system with a three-site interaction, the two small Hamiltonians (4.3.44) and (4.3.45)
have to be decomposed. We start with

H1/2,=
αβγµ =

{
S+
α S

+
β S

+
γ S

+
µ S
−
α S
−
β S
−
γ S
−
µ

}
0

=:
{
T
}

0
. (4.4.1)

Using the identity for spin 1/2-systems,

S+
i S
−
i = Szi +

1

2
, (4.4.2)

tensor T can be rewritten as
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T =(Szα +
1

2
)(Szβ +

1

2
)(Szγ +

1

2
)(Szµ +

1

2
)

=
1

16
+

1

8
(Szα + Szβ + Szγ + Szµ)

+
1

4
(SzαS

z
β + SzαS

z
γ + SzβS

z
γ + SzαS

z
µ + SzβS

z
µ + SzγS

z
µ)

+
1

2
(SzαS

z
βS

z
γ + SzαS

z
βS

z
µ + SzαS

z
γS

z
µ + SzβS

z
γS

z
µ) + SzαS

z
βS

z
γS

z
µ. (4.4.3)

The projection on the scalar component for the individual terms in (4.4.3) is{
1
}

0
= 1,{

Szα
}

0
= 0,{

SzαS
z
β

}
0
∝ (Sα · Sβ),{

SzαS
z
βS

z
γ

}
0

= 0,{
SzαS

z
βS

z
γS

z
µ

}
0
∝
(
(Sα · Sβ)(Sγ · Sµ) + (Sα · Sγ)(Sβ · Sµ)

+ (Sβ · Sγ)(Sα · Sµ)
)
.

It is not necessary to calculate these projections explicitly as we do not need any prefactors for our numerical
analysis.

In total, there can thus be four different types of scalar terms in H1/2,=
αβµ :

(1) 1, a constant,

(2) (Si · Sj), (i, j) = (α, β), (α, γ), (β, γ), (4.4.4)

(3) (Si · Sµ), i = α, β, γ,

(4) (Si · Sµ)(Sj · Sk), (i, j, k) = (α, β, γ), (β, γ, α), (γ, α, β).

The second small Hamiltonian H1/2,6=
αβγµν =:

{
T ′
}

0
of the spin-1/2 system, (4.3.44), can be rewritten as

T ′ =(Szα +
1

2
)(Szβ +

1

2
)(Szγ +

1

2
)S+
ν S
−
µ (4.4.5)

=

[
1

8
+

1

4
(Szα + Szβ + Szγ) +

1

2
(SzαS

z
β + SzαS

z
γ + SzβS

z
γ) + SzαS

z
βS

z
γ

]
S+
ν S
−
µ .

We see that, when projecting T ′ onto its scalar component, no constant term can occur due to the factor
S+
ν S
−
µ . Using Appendix B, we have{

SzαS
+
ν S
−
µ

}
0
∝ iSα · (Sµ × Sν),{

SzαS
z
βS

+
ν S
−
µ

}
0
∝ (Sα · Sµ)(Sβ · Sν) + (Sβ · Sµ)(Sα · Sν)

+ (Sα · Sβ)(Sµ · Sν),{
SzαS

z
βS

z
γS

+
ν S
−
µ

}
0
∝ i [(Sβ · Sγ)Sα + (Sα · Sγ)Sβ + (Sα · Sβ)Sγ ] · (Sµ × Sν).

The small Hamiltonian H1/2,6=
αβγµν therefore can be decomposed into the terms

(1) (Sµ · Sν),

(2) (Si · Sj)(Sµ · Sν), (i, j) = (α, β), (α, γ), (β, γ),

(3) i Si · (Sµ × Sν), i = α, β, γ, (4.4.6)

(4) (Si · Sj)i Sk · (Sµ × Sν), (i, j, k) = (α, β, γ), (β, γ, α), (γ, α, β),
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(5) (Si · Sµ)(Sj · Sν), (i, j) = (α, β), (α, γ), (β, γ).

For a spin-1 system, the decomposition contains even more terms, as the small Hamiltonians are built
out of more spin operators. For instance, given a two-site model, the small Hamiltonian with µ = ν is

H1,=
αβµ =

{
(S+
α )2(S+

β )2S+
µ (S−α )2(S−β )2S−µ

}
0

=:
{
T
}

0
. (4.4.7)

This time, the identity
(S+
i )2(S−i )2 = 2Szi (Szi + 1),

is useful. Applying the same method as for the spin-1/2 system, we see that the following scalar terms can
occur:

(1) 1, a constant,

(2) (Sα · Sβ),

(3) (Sα · Sβ)2,

(4) (Sα + Sβ) · Sµ,
(5) (Sα · Sβ)(Sα + Sβ) · Sµ, (4.4.8)

(6) (Sα · Sµ)2 + (Sβ · Sµ)2,

(7) (Sα · Sµ)(Sβ · Sµ),

(8) (Sα · Sβ)(Sα · Sµ)(Sβ · Sµ) + (Sα · Sµ)(Sβ · Sµ)(Sα · Sβ).

When constructing the scalar terms, we have to be aware that the order of the spin operators for
systems with s > 1/2 is relevant since repeated indices may occur in the tensors. The higher the number
of neighboring sites in the parent Hamiltonian and the higher the spin s, the more scalar terms can occur
in the decomposition. In practice, this makes a numerical approach necessary.

Implementation of the scalar terms

At the beginning of the numerical implementation, a tensor representation for the spin operators acting on
a single-site system has to be chosen. As outlined in Appendix A, we choose a SU(2)-matrix representation
for the individual spin operators of each site. Given a spin s, the matrices have dimension (2s+1)×(2s+1).

If our system consists of N sites, the dimension of the Hilbert space is (2s+ 1)N × (2s+ 1)N . A tensor
operator TN living in this many-site system can be created out of N single-site operators ti, i = 1, . . . , N ,
by taking the direct product,

TN = t1 ⊗ t2 ⊗ · · · ⊗ tN . (4.4.9)

For instance, the single-site spin operator S1 becomes

S1 ⊗ 111⊗ · · · ⊗ 111︸ ︷︷ ︸
N−1 times

. (4.4.10)

The advantage of Mathematica’s language for our purpose is, that it supports tensors as nested lists, where
the nesting level corresponds to the rank of the tensor. The direct product in (4.4.9) can be taken by
applying the built-in function

TensorProduct[t1 , t2 , . . . , tN ].

Since we are only calculating small Hamiltonians with Mathematica, the systems consist of only a few
sites. For instance, for spin 1/2 and a three-site Hamiltonian (4.3.43), the total number of sites in the
small Hamiltonian (4.3.44), including the external sites µ and ν, is N = 5. The Hilbert space has dimension
25×25, i. e. the Hamiltonian matrix has 1024 elements. The higher the spin and the more sites involved, the
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larger the Hilbert space gets, for spin 3/2 and and a two-site Hamiltonian, the small Hamiltonian (4.3.41)
lives in a 44 × 44-Hilbert space, and the Hamiltonian matrix has 65, 536 elements. This makes efficient
programming necessary.

With the Hilbert space set-up, the scalar product of two spin operators can be implemented in a few
lines of code. We have written the function

ScalarProd[SiteList ],

which takes as argument an occupation list, indicating which sites occur in the scalar product. An occupation
list suffices since the site indices are always distinct, and therefore the spin operators commute in the scalar
product. For instance, if our system consisted of the five sites α, β, γ, µ, ν and we wanted to calculate
Sα · Sµ, the corresponding argument would be SiteList = {1, 0, 0, 1, 0}. Inside the function, the three
direct products

Szα ⊗ 1⊗ 1⊗ Szµ ⊗ 1,

1

2
S+
α ⊗ 1⊗ 1⊗ S−µ ⊗ 1,

1

2
S−α ⊗ 1⊗ 1⊗ S−µ ⊗ 1

are calculated, added and flattened to a matrix which then is returned. A flattening becomes necessary since
Mathematica can only treat matrix but not tensor equations, which we need to solve later in the program.
On the level of implementation, flattening means nested lists are “unraveled” into a list of one-dimensional
lists, which represents a matrix.

Since we wish to decompose a tensor into simple scalar spin products, we have written a function

ArbTensor[P , N ],

which calculates arbitrary spin products, such as the products listed in (4.4.4), (4.4.6) and (4.4.8). The
central insight is that all terms occuring in a scalar tensor decomposition are scalar products of an even
number of sites. Even the vector product iSα · (Sµ×Sν) can be rewritten in terms of scalar products using
the identity

iSα · (Sµ × Sν) = (Sα · Sµ)(Sα · Sν)− (Sα · Sν)(Sα · Sµ). (4.4.11)

We encode such scalar product terms in two lists: A list RR of the indices, and a list P of the pairing of
the indices. For instance, if the term∑

p=x,y,z

∑
(i,j,k)∈P̃3

6

Spi (Sj · Sµ)(Si · Sµ)Spj ,

with
P̃3

6 := {(α, β, γ), (α, γ, β), (β, γ, α), (β, α, γ), (γ, α, β), (γ, β, α)}
shall be implemented, we have RR = (i, j, µ, i, µ, j) and P = (1, 3, 4, 5, 6, 2). In contrast to the function
ScalarProd[SiteList], this function requires two lists, since the order of the spin indices matters.

Inside of our function ArbTensor, the sum over all permutations P̃3
6 of the neighboring indices α, β, γ is

generated by a function

LL[x , y , z , d , N ] :=

Which[N == 6, Permute[{x, y, z, d}, SymmetricGroup[4]],

N == 5, Permute[{x, y, z}, SymmetricGroup[3]],

N == 4, Permute[{x, y}, SymmetricGroup[2]]];
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which works for systems with two (N = 4), three (N = 5) and four (N = 6) neighboring sites and two external
sites.

With all necessary spin operations set-up, we can generate and save all possible scalar terms Uk.

Finding the coefficients of the scalar terms

The small Hamiltonian we wish to decompose can always be written as a product of two tensors,

Hs =: {TMi1,...,iMT
−M
j1,...,jM

}0. (4.4.12)

For the labeling of the indices, we use the convention introduced in (4.3.27).
To calculate (4.4.12), we first need a way to create tensors of the type Ti1,...,iM . For this purpose, we

provide a function
CreateTensor[Tlist ].

As an argument, it takes an occupation list of sites. For instance, in a Hilbert space with five sites α, β, γ, µ, ν,
the choice Tlist = {1, 1, 0, 1, 0} instructs CreateTensor to calculate Tα,β,µ. The function implements the
method described in Appendix B, starting with (B.2.3). First, the highest order tensor component TMi1,...,iM is
setup by taking the direct product of single-site spin operators and adding them up. For the aforementioned
example, this means

T 3
α,β,µ = (S+

α )2s(S+
β )2sS+

µ

=̂ ((S+
α )2s ⊗ 1⊗ 1) · (1⊗ (S+

β )2s ⊗ 1) · (1⊗ 1⊗ S+
µ ).

Then, the ladder operator
S−tot = S−i1 + S−i2 + · · ·+ S−iM , (4.4.13)

is implemented (in this example for spin 1/2) via

sm := {{0, 0}, {1, 0}}
SpinIndex = Flatten[Position[Tlist, x /; x > 0]];

Smtemp = 0;

SmArgs = Table[IdentityMatrix[2], i, N];

For[j = 1, j < (M + 1), SmArgs[[SpinIndex[[j]]]] = sm;

Smtemp+ = (TensorProduct@@@SmArgs)[[1]];

SmArgs = Table[IdentityMatrix[2], {i, N}]; j + +];

Smtot := Flatten[Smtemp, {Table[2 ∗ i− 1, {i, N}], Table[2 ∗ i, {i, N}]}];

The first line defines a single-site ladder operator S−i . The second line lists the indices which contribute
to the tensor. Taking the above example, where Tlist = {1, 1, 0, 1, 0}, SpinIndex evaluates to {1, 2, 4},
meaning that sites α, β, µ contribute. With a for-loop, the single-site ladder operators S−i are transformed
into the N -site basis and summed up, yielding the total ladder operator (4.4.13). Applying this operator
recursively to our tensor, beginning with its highest component, we obtain the return expression of the
function, a list of all tensor components in decreasing order, {TMi1,...,iM , T

M−1
i1,...,iM

. . . , T−Mi1,...,iM }.
Our program is generic enough to project onto an arbitrary component of the tensor. Here, however, we

only project onto the scalar component. To project the tensor product TMi1,...,iMT
−M
j1,...,jM

of (4.4.12) onto its
scalar component, we directly implement (4.3.26) via a function

TProject[Tm1List , Tm2List , m1 , m2 , jres ],
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where Tm1List is the list of all components of tensor Ti1,...,iM , created via the function CreateTensor

and similarly, Tm2List is the list of all components of Tj1,...,jM . Projection onto the scalar component is
achieved by setting jres = 1, and the components m1 = M and m2 = −M.

To calculate the coefficient {ak} of the contribution of each scalar term Uk to the tensor product, the
system of linear equations

{TMi1,...,iMT
−M
j1,...,jN

}0 =

r∑
k=1

akUk (4.4.14)

has to be solved, where r is the number of scalar terms. This system is highly overdetermined, since we
have in total t := (2s+ 1)2N equations, which is significantly larger than the number of coefficients, t� r.
However, the matrices are sparse, effectively reducing the number of equations, since many equations are
fulfilled trivially.

In our Mathematica-program, we have automated all previous steps into a single function

ResStructure[Tm1List , Tm2List , m1 , m2 , jres , ResTerms ],

which takes as arguments the two tensors Tm1List and Tm2List contributing to the tensor product (4.4.12),
their components m1 = M and m2 = −M, the component onto which we wish to project, jres = 0, and the
list of scalar terms ResTerms =̂ {Uk}, which can occur in the result. It returns a list of the coefficients
{a1, . . . , ar}.

Using this Mathematica-program, we construct the small Hamiltonians for spin-1/2, spin-1 and spin-3/2
systems. The results are presented in Section 4.5.

Especially for higher spin systems, it is useful to reduce the number of coefficients by considering which
scalar terms have equal coefficients due to the incorporated symmetries to save computation time.

Apart from its benefits for the decomposition into scalar spin products, the above described numer-
ical method to write out arbitrary tensor products has one major advantage for the implementation of
Hamiltonians for the CSL: It provides a user-friendly and efficient framework to obtain the matrix of the
parent Hamiltonian without having to implement all individual spin products. This is especially relevant
for systems with a higher spin s or with many-body interactions of three or more sites, since the number
of spin terms increases decisively. In the Mathematica-program, we simply have to evaluate the function

TProject[Tm1List , Tm2List , m1 , m2 , jres ]

for a given system to obtain its Hamiltonian matrix for further numerical studies.

4.4.2 From a small Hamiltonian to a parent Hamiltonian

With the small Hamiltonians set up, the complete parent Hamiltonians can now be calculated. We have
chosen a 16-site lattice with periodic boundary conditions, which allows to numerically analyze the eigen-
spectra of our suggested parent Hamiltonians. Due to the exponential growth of the Hilbert space with
system size, this is also the maximal site number accessible to our technical equipment in a decent amount
of computation time.

Two different lattice geometries are implemented to analyze how they influence the eigenspectra: the
square and triangular lattice. The choice of parameters (a, b) for the ϑ-functions in the prefactors of the small
Hamiltonians decides upon the conservation of rotational invariance. This will be explained in Section 4.6.

In what we refer to as an n-site term in the construction of the parent Hamiltonians, (4.3.40)-(4.3.46), we
sum over n neighboring sites. Obviously, there are, depending on the lattice geometry, multiple possibilities
to choose a subset C of nearest-neighboring sites. In some cases, it even turns out to be useful to include
next-nearest neighbor configurations.

As summarized in Figure 4.2, we thus have two different versions of the parent Hamiltonian for the
square (triangular) lattice: One Hamiltonian has a 90◦ (60◦) rotational invariance, commensurate with the
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lattice rotational symmetry, and is from now on labeled the “full version”. The other Hamiltonian does not
have such a rotational invariance, and it will be labeled the “minimal version”. Depending on the set C of
configurations chosen, the quality of the resulting eigenvalue spectrum differs dramatically, which will be
analyzed in detail in Section 4.6.

Lattice geometry

Square

Hamiltonian
with 90◦

rotational
invariance

Hamiltonian
without 90◦

rotational
invariance

Triangular

Hamiltonian
with 60◦

rotational
invariance

Hamiltonian
without 60◦

rotational
invariance

full version minimal version full version minimal version

Fig. 4.2 Two different lattice geometries are numerically analyzed: the square and the triangular lattice. For each
lattice type, two different Hamiltonians are implemented: The so-called “full version” has the full rotational lattice
symmetries. The “minimal” version does not have this rotational lattice invariance.

While the small Hamiltonians were calculated with Mathematica, we now switch gears. Since the systems
investigated are growing exponentially with system size, an interpreted programming language such as
Mathematica’s Wolfram Language would be too slow. Hence, the parent Hamiltonians are set up and
diagonalized using the imperative programming language Fortran (2003 standard). Fortran is well suited
to high performance computing and scientific computation and provides a huge number of libraries, e.g.
LAPACK [2] for numerical linear algebra.

With the small Hamiltonians previously calculated and a set C of configurations chosen, the next step
is to take the sum ∑

<α,β,···>

∑
µ6=ν

(µ,ν 6=α,β,... )

(4.4.15)

in (4.3.40)-(4.3.46) over all lattice sites by applying the small Hamiltonians to all possible configurations of
two, three or four neighboring sites, communicating with one or two external sites, µ or ν. In this process,
the prefactors wabαµν have to be calculated, which involves computing multiple ϑ-functions. As explained in
Appendix C, these functions are defined by infinite sums. For instance, the odd ϑ-function can be expressed
as

ϑ 1
2 ,

1
2
(z|τ) =

∑
n∈Z+ 1

2

eπin2τeπine2πinz, (4.4.16)

where we have shifted n by 1/2 as compared to the expression in (C.0.1). The convergence properties of the
above sum can be visualized by rewriting τ = τ ′ + iτ ′′, with τ ′ ∈ R and τ ′′ ∈ R+. Obviously, convergence
increases with larger τ ′′. Under modular transformations

T : τ → τ + 1, and S : τ → −1

τ
, (4.4.17)

our system is invariant. Hence, it is always possible to choose a unit cell with τ ′′ >
√

3
2 . Even for the worst

case of convergence in (4.4.16), =(z) = −τ ′′, the series decays as e−π(n−2)nτ ′′ , which is for τ ′′ = 1 of order
1 for n = 1

2 and of order 10−27 for n = 11
2 . In constrast, the sum of all terms with n > 11

2 is below machine
precision. Therefore, to calculate the ϑ-functions, it is sufficient to only compute the 12 terms from n = − 11

2
to n = 11

2 .
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Using translational symmetry, the Hilbert space can be reduced significantly, in our case by a factor of
16. The largest Hilbert spaces we analyzed were of order 105 × 105. To save memory, the Hamiltonians are
therefore saved in a sparse matrix format.

4.4.3 Calculation of the eigenspectra

With the Hamiltonian now numerically set up, the last step is to calculate the eigenspectrum by imple-
menting an exact diagonalization algorithm [16; 109; 107]. After having obtained the eigenvectors of the
true ground state, their overlaps with the CSL are calculated to determine the accuracy of the parent
Hamiltonian.

A number of software libraries provide complete diagonalization routines. Examples are the NAGlibrary
[3], the LAPACK library [2] or the algorithms published in Numerical Recipes [113]. In principle, these
routines can be used to diagonalize the Hamiltonian matrix of a finite spin system. For large system sizes,
however, it is generally much more efficient to use an iterative algorithm such as the Davidson algorithm
[107] or the Lanczos algorithm [107; 82; 142].

The approach of the diagonalization routines is to transform first the matrix into tridiagonal form
using a series of Householder transformations or Givens rotations. The resulting tridiagonal matrix is then
diagonalized with the QR algorithm, which factorizes the matrix T = QR into an orthogonal Q and an
upper triangular matrix R. Calculating eigenvalues and eigenvectors, the computational cost is O(3n3). The
drawback of this approach is obvious: The whole matrix has to be stored and the cost scales exponentially
with system size.

For smaller systems, such as the spin-1/2 models with a Hilbert space of order 104 × 104, we have
implemented an exact diagonalization routine from the LAPACK library, since it allows to analyze the
degeneracy of the eigenstates easily. For larger systems, where execution time becomes critical, a Lanczos
algorithm from the numerical software library ARPACK [91] is utilized.

Basis creation and matrix-vector multiplications are one of the most time-consuming parts of the pro-
gram. By parallelizing these parts, we are able to reduce execution time by a factor of > 10. To do so,
OpenMP is used, which is a standard for thread-memory multiprocessing [1]. It consists of a set of OpenMP
directives (!$omp parallel in Fortran) and a run-time library. One of its advantages over other paralleliza-
tion standards is that it requires only small changes in the source code. The programming paradigm is
the so-called fork-join model which means that in the main code, there is only one master thread working
through the serial code. Once the thread reaches a parallelized section, it forks into multiple threads and
the work is shared equally. After finishing the parallel part, the threads join again, and the master thread
continues with the serial code.

The eigenspectra of our parent Hamiltonians are analyzed in Section 4.6.
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4.5 Results for a local parent Hamiltonian of the chiral spin liquid

In the previous Sections 4.2 and 4.3, we have outlined an analytical method to construct a parent Hamil-
tonian for a chiral spin liquid for systems with arbitrary spin. Section 4.4.1 details how to decompose a
tensor operator into its scalar components numerically. We use this numerical technique to reformulate the
small Hamiltonians Hs,6= and Hs,= in (4.3.40)-(4.3.46) in terms of simple scalar spin products.

We have shown in (4.2.25) and (4.2.26) that locality in a two-dimensional system can be achieved by
realizing a many-body interaction of three or more neighboring sites in the Hamiltonian. As mentioned
above, in our method, the most intricate step is the final one, in which the Hamiltonian is projected onto
its scalar component and decomposed into simple spin products. Since the Hilbert space grows exponentially
for increasing spin s, the construction of a local Hamiltonian becomes computationally challenging. We have
created parent Hamiltonians for systems with three different spin values: spin 1/2 systems with a two-,
three- and four-site interaction, spin 1 systems with a two- and three-site interaction, as well as spin 3/2
systems with a two-site interaction.

In the following subsections, the small Hamiltonians decomposed into their scalar components for systems
with spin 1/2, 1 and 3/2 are listed. In Sections 4.6 and 4.7, we numerically diagonalize the Hamiltonians
for all spin-1/2 and spin-1 systems and successfully find that, indeed, these are parent Hamiltonians for the
Abelian and non-Abelian CSLs.

4.5.1 Spin 1/2, two-site interaction

We start with the fermionic spin 1/2-system with a two-site interaction, the parent Hamiltonian consists
of only a few terms. The small Hamiltonian for the case µ 6= ν of (4.3.40) is given by

H1/2, 6=
αβµν = Sµ · Sν +

8

5
(Sα · Sβ)(Sµ · Sν)− iSα · (Sµ × Sν)

− 4

5
[(Sα · Sµ)(Sβ · Sν) + (Sα · Sν)(Sβ · Sµ)] , (4.5.1)

and the small Hamiltonian for µ = ν is

H1/2,=
αβµ =

3

4
+ Sα · Sβ + (Sα + Sβ) · Sµ. (4.5.2)

4.5.2 Spin 1/2, three-site interaction

The small Hamiltonian for the case µ 6= ν for a spin 1/2 system with a three-site interaction (4.3.43) is

H1/2,6=
αβγµν = 5 Sµ · Sν + 8 (Sµ · Sν) [(Sα · Sβ) + (Sα · Sγ) + (Sβ · Sγ)]

− 5i (Sα + Sβ + Sγ) · (Sµ × Sν)

− 2i [(Sβ · Sγ)Sα + (Sγ · Sα)Sβ + (Sα · Sβ)Sγ ] · (Sµ × Sν)

− 2 [(Sα · Sµ)(Sβ · Sν) + (Sβ · Sµ)(Sα · Sν)

+ (Sα · Sµ)(Sγ · Sν) + (Sγ · Sµ)(Sα · Sν)

+ (Sβ · Sµ)(Sγ · Sν) + (Sγ · Sµ)(Sβ · Sν)], (4.5.3)

and the small Hamiltonian for µ = ν is
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H1/2,=
αβγµ =

15

4
+ 5 [Sα + Sβ + Sγ ] · Sµ + 5 [Sα · Sβ + Sα · Sγ + Sβ · Sγ ]

+ 4 [(Sα · Sβ) + (Sα · Sγ) + (Sβ · Sγ)] (Sγ · Sµ). (4.5.4)

4.5.3 Spin 1/2, four-site interaction

In case of a spin 1/2-system with a four-site interaction, the small Hamiltonian for µ 6= ν of (4.3.46) is

H1/2,6=
αβγδµν = 5 Sµ · Sν + 8 (Sµ · Sν)

∑
(i,j)∈P2

6

(Si · Sj)

+
12

7

∑
(i,j,k,l)∈P4

6

(Si · Sj)(Sk · Sl)(Sµ · Sν)

− 5i (Sα + Sβ + Sγ + Sδ) · (Sµ × Sν)

− 4i
∑

(i,j,k)∈P3
12

(Si · Sj)Sk · (Sµ × Sν)

− 2
∑

(i,j)∈P2
12

(Si · Sµ)(Sj · Sν)

− 8

7

∑
(i,j,k,l)∈P4

12

(Si · Sj)(Sk · Sµ)(Sl · Sν). (4.5.5)

To shorten the expression in (4.5.5), we sum over sets Pmn , which consist of n m-tuples of indices. The first
set P2

6 consists of all possible unordered permutations of two of the four indices α, β, γ, δ,

P2
6 = {(α, β), (α, γ), (α, δ), (β, γ), (β, δ)}. (4.5.6)

The total number of tuples in P2
6 is 4 · 3/2 = 6. The other sets of permutations in (4.5.5) are defined as

follows:

P4
6 ={(α, β, γ, δ), (α, γ, β, δ), (α, δ, β, γ), (β, γ, α, δ), (β, δ, α, γ)}, (4.5.7)

P3
12 ={(β, γ, α), (β, γ, δ), (α, β, γ), (α, β, δ), (α, γ, β), (α, γ, δ),

(α, δ, β), (α, δ, γ), (β, δ, α), (β, δ, γ), (γ, δ, α), (γ, δ, β)}, (4.5.8)

P2
12 ={(α, β), (β, α), (α, γ), (γ, α), (α, δ), (δ, α), (β, γ), (γ, β),

(β, δ), (δ, β)}, (4.5.9)

P4
12 ={(γ, δ, α, β), (γ, δ, β, α), (β, δ, α, γ), (β, δ, γ, α),

(β, γ, α, δ), (β, δ, δ, α), (α, δ, β, γ), (α, δ, γ, β),

(α, γ, β, δ), (α, γ, δ, β), (α, β, γ, δ), (α, β, δ, γ)}. (4.5.10)

The small Hamiltonian for µ = ν is

H1/2,=
αβγδµ =

15

4
+ 5

∑
(i,j)∈P2

6

(Si · Sj) + 4
∑

(i,j,k,l)∈P4
6

(Si · Sj)(Sk · Sl)

+ 5 [Sα + Sβ + Sγ + Sδ] · Sµ + 4
∑

(i,j,k)∈P3
12

(Si · Sj)(Sk · Sµ). (4.5.11)
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4.5.4 Spin 1, two-site interaction

Given a bosonic spin 1 system with a two-site interaction, the small Hamiltonian for µ 6= ν of (4.3.40) is

H1, 6=
αβµν = 96 Sµ · Sν + 128 (Sα · Sβ)(Sµ · Sν) + 54 (Sα · Sβ)2(Sµ · Sν)

− 24 [(Sα · Sµ)(Sβ · Sν) + (Sα · Sν)(Sβ · Sµ)]

− 8 (Sα · Sβ) [(Sα · Sµ)(Sβ · Sν) + (Sα · Sν)(Sβ · Sµ)]

− 8 [(Sα · Sµ)(Sβ · Sν) + (Sα · Sν)(Sβ · Sµ)] (Sα · Sβ)

− 8 [(Sα · Sµ)(Sα · Sν) + (Sβ · Sµ)(Sβ · Sν)]

− 56i (Sα + Sβ) · (Sµ × Sν)

− 56i (Sα · Sβ)(Sα + Sβ) · (Sµ × Sν), (4.5.12)

and for the small Hamiltonian with µ = ν, we get

H1,=
αβµ = 192 + 256Sα · Sβ + 96(Sα · Sβ)2

+ 48(Sα + Sβ) · Sµ + 56(Sα · Sβ)(Sα + Sβ) · Sµ
+ 16

[
(Sα · Sµ)2 + (Sβ · Sµ)2

]
− 24(Sα · Sµ)(Sβ · Sµ)

− 8(Sα · Sβ)(Sα · Sµ)(Sβ · Sµ)

− 8(Sα · Sµ)(Sβ · Sµ)(Sα · Sβ). (4.5.13)

4.5.5 Spin 1, three-site interaction

For a spin 1 system with a three-site interaction, the small Hamiltonian for µ 6= ν of (4.3.43) is

H1,6=
αβγµν = 128 Sµ · Sν + 256 [(Sα · Sβ) + (Sα · Sγ) + (Sβ · Sγ)] (Sµ · Sν)

+ 96
[
(Sα · Sβ)2 + (Sα · Sγ)2 + (Sβ · Sγ)2

]
(Sµ · Sν)

+ 160
∑

(i,j,k)∈P̃3
6

(Si · Sj)(Sj · Sk)(Sµ · Sν)

+
80

3

∑
p,q=x,y,z

∑
(i,j,k)∈P̃3

6

Spi S
q
j (Si · Sk)Spj S

q
k(Sµ · Sν)

−(Sβ · Sγ)[40 + 8(Sβ · Sγ)][(Sα · Sµ)(Sα · Sν) + (Sα · Sν)(Sα · Sµ)]

−(Sα · Sγ)[40 + 8(Sα · Sγ)][(Sβ · Sµ)(Sβ · Sν) + (Sβ · Sν)(Sβ · Sµ)]

−(Sα · Sβ)[40 + 8(Sα · Sβ)][(Sγ · Sµ)(Sγ · Sν) + (Sγ · Sν)(Sγ · Sµ)]

− 8
∑

(i,j,k)∈P̃3
6

(Si · Sk)(Sj · Sν)(Si · Sµ)(Sj · Sk)

− 16
∑

(i,j,k)∈P̃3
6

(Si · Sµ)(Sj · Sν)(Si · Sj)

− 16
∑

(i,j,k)∈P̃3
6

(Si · Sj)(Si · Sµ)(Sj · Sν)

− 40
∑

(i,j,k)∈P̃3
6

(Si · Sk)(Sj · Sν)(Si · Sµ)
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− 48
∑

(i,j,k)∈P̃3
6

(Si · Sµ)(Sj · Sν)

− 96i (Sα + Sβ + Sγ) · (Sµ × Sν)

− 192i [(Sβ · Sγ)Sα + (Sα · Sγ)Sβ + (Sα · Sβ)Sγ ] · (Sµ × Sν)

− 48i
[
(Sβ · Sγ)2Sα + (Sγ · Sα)2Sβ + (Sα · Sβ)2Sγ

]
· (Sµ × Sν)

− 96i
∑

(i,j,k)∈P̃3
6

(Si · Sj)Si · (Sµ × Sν)

− 48i
∑

(i,j,k)∈P̃3
6

Si · (Sµ × Sν)(Sj · Sk)(Si · Sj)

− 48i
∑

(i,j,k)∈P̃3
6

(Si · Sj)(Sj · Sk)Si · (Sµ × Sν), (4.5.14)

The set of all permutations over three sites is defined as

P̃3
6 = {(α, β, γ), (α, γ, β), (β, γ, α), (β, α, γ), (γ, α, β), (γ, β, α)}. (4.5.15)

The small Hamiltonian for µ = ν is

H1,=
αβγµ = 1024 +

256

3

∑
(i,j,k)∈P̃3

6

(Si · Sj)(Sj · Sk)(Sk · Si)

+ 32 [(Sβ · Sγ)2(Sα · Sµ)2 + (Sα · Sγ)2(Sβ · Sµ)2

+ (Sα · Sβ)2(Sγ · Sµ)2]

− 192
[
(Sα · Sµ)2 + (Sβ · Sµ)2 + (Sγ · Sµ)2

]
+

512

189
(Sα + Sβ + Sγ) · Sµ

+
32

3

∑
(i,j,k)∈P̃3

6

(Si · Sj)(Sj · Sk)(Si · Sµ)

+
352

3

∑
(i,j,k)∈P̃3

6

(Si · Sj)(Si · Sµ)

+ 128 [(Sβ · Sγ)(Sα · Sµ) + (Sα · Sγ)(Sβ · Sµ) + (Sα · Sβ)(Sγ · Sµ)]

+
352

3

∑
p=x,y,z

∑
(i,j,k)∈P̃3

6

(Si · Sµ)Spk(Sj · Sµ)(Si · Sk)Spj

+
256

3

∑
p=x,y,z

∑
(i,j,k)∈P̃3

6

Spi (Sj · Sk)(Si · Sµ)Spk(Sj · Sµ)

+ 32
∑

p=x,y,z

∑
(i,j,k)∈P̃3

6

(Si · Sk)Spj (Si · Sµ)Sik(Sj · Sµ)

− 128
∑

p,q=x,y,z

∑
(i,j,k)∈P̃3

6

Spi S
q
k(Sj · Sµ)(Si · Sµ)SpkS

q
j

− 832 [(Sα · Sµ)(Sβ · Sµ)(Sα · Sβ) + (Sα · Sβ)(Sα · Sµ)(Sβ · Sµ)

+ (Sα · Sµ)(Sγ · Sµ)(Sα · Sγ) + (Sα · Sγ)(Sα · Sµ)(Sγ · Sµ)

+ (Sβ · Sµ)(Sγ · Sµ)(Sβ · Sγ) + (Sβ · Sγ)(Sβ · Sµ)(Sγ · Sµ)]
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+ 896
∑

p=x,y,z

∑
(i,j,k)∈P̃3

6

Spi (Sj · Sµ)(Si · Sµ)Spj

+
352

3

∑
(i,j,k)∈P̃3

6

(Si · Sµ)(Sj · Sµ)

+
64

3

∑
(i,j,k)∈P̃3

6

(Si · Sµ)(Sk · Si)(Sj · Sµ). (4.5.16)

4.5.6 Spin 3/2, two-site interaction

We also managed to compute the parent Hamiltonian for a spin 3/2 system with a two-site interaction. Its
small Hamiltonian for µ 6= ν of (4.3.40) is given by

H3/2,6=
αβµν = 990 Sµ · Sν + 1944 (Sα · Sβ)(Sµ · Sν)

+ 928 (Sα · Sβ)2(Sµ · Sν) + 128 (Sα · Sβ)3(Sµ · Sν)

− 99

2

∑
i=α,β

[(Si · Sµ)(Si · Sν) + (Si · Sν)(Si · Sµ)]

− 84 (Sα · Sβ)
∑
i=α,β

[(Si · Sµ)(Si · Sν) + (Si · Sν)(Si · Sµ)]

− 24 (Sα · Sβ)2
∑
i=α,β

[(Si · Sµ)(Si · Sν) + (Si · Sν)(Si · Sµ)]

− 99 [(Sα · Sµ)(Sβ · Sν) + (Sβ · Sµ)(Sα · Sν)]

− 168 (Sα · Sβ) [(Sα · Sµ)(Sβ · Sν) + (Sβ · Sµ)(Sα · Sν)]

− 48 (Sα · Sβ)2 [(Sα · Sµ)(Sβ · Sν) + (Sβ · Sµ)(Sα · Sν)]

− 891

2
i (Sα + Sβ) · (Sµ × Sν)

− 756i (Sα · Sβ)(Sα + Sβ) · (Sµ × Sν)

− 216i (Sα · Sβ)2(Sα + Sβ) · (Sµ × Sν), (4.5.17)

and the small Hamiltonian for µ = ν is

H3/2,=
αβµ =

7425

2
+ 7290 (Sα · Sβ) + 3480 (Sα · Sβ)2

+ 480 (Sα · Sβ)3 − 99
[
(Sα · Sµ)2 + (Sβ · Sµ)2

]
− 168 (Sα · Sβ)

[
(Sα · Sµ)2 + (Sβ · Sµ)2

]
− 48 (Sα · Sβ)2

[
(Sα · Sµ)2 + (Sβ · Sµ)2

]
− 336 (Sα · Sβ)(Sα · Sµ)(Sβ · Sµ)

− 96 (Sα · Sβ)2(Sα · Sµ)(Sβ · Sµ)

− 198 (Sα · Sµ)(Sβ · Sµ) + 396 Sα · Sµ
+ 672 (Sα · Sβ)(Sα · Sµ) + 192 (Sα · Sβ)2(Sα · Sµ). (4.5.18)
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4.6 Numerical validation of spin 1/2 systems

Applying the numerical techniques detailed in Section 4.4.3, we calculate and analyze the eigenspectra of
our parent Hamiltonians for the Abelian CSL.

4.6.1 Two-site interaction

We start with the simplest model, a spin-1/2 system with a two-site interaction. The parent Hamiltonian
is presented in (4.3.40), with the small Hamiltonians (4.5.1) and (4.5.2).

As pointed out in Section 4.2.5, this Hamiltonian is not local. Still, it is useful to analyze the model
since it is closely related to its local counterparts and only consists of a few terms (eight in total) as
compared to the three-site (26 terms) and four-site Hamiltonians (82 terms), simplifying the numerical
analysis decisively.

The numerical results confirm that, independent of the lattice geometry, our Hamiltonian is the parent
Hamiltonian of the Abelian CSL with a largely gapped eigenspectrum, robust to finite size effects. In the
following, the results for each lattice type are documented.

Square lattice, full version

The 16-site square lattice is set up as depicted in Figure 4.3 on the left side. Now, in the two-site Hamilto-
nian (4.3.40), we have to choose which one of the three even ϑ-functions shall occur in the prefactors wabijk.
Our aim is to provide a parent Hamiltonian with the smallest possible number of terms. As explained in
Appendix C, among the even ϑ-functions, only ϑ0,0(z|τ) is invariant under a rotation by π/2 around the
origin in real space. Therefore, we choose (a, b) = (0, 0) for our prefactor.

square, full version:

α

β
+

α β

square, minimal version:

α

β

triangular, full version:

α

β
+

α

β
+

α β

triangular, minimal version:

α

β

Table 4.1 Nearest-neighbor configurations occurring in the parent Hamiltonians with a two-site interaction. The two
neighboring sites are labeled α and β. The symbol at the lattice site depicts which even ϑ-function, with the distance
from this lattice point to µ and ν as its argument, is chosen for the prefactor of the Hamiltonian: N is ϑ0,0(z|τ), � is
ϑ 1

2
,0(z|τ), and # is ϑ0, 1

2
(z|τ). A minimal and a full version of the Hamiltonian, each for the square and triangular

lattice, are created.
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In the sum over neighboring lattice sites,
∑
<a,b>, we include the two NN configurations illustrated in

the first row of Table 4.6.1: For instance, for site 1, we sum over the two configurations α = 1, β = 2 and
α = 1, β = 5.

R1

R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

k1

k2

Fig. 4.3 Left: Indexing of the lattice sites in the 16-site square lattice. Right: The light-gray region marks the
corresponding Brillouin zone, consisting of 16 momentum points. Due to reflection symmetry, only the momenta in
the shaded-gray region have unique eigenvalues.

k1

k2

Γ X

M

k1

k2

Γ X

MY

Fig. 4.4 A plot of the symmetry points in the Brillouin zone of the square lattice for a system with 90◦ rotational
invariance (left) and without 90◦ rotational invariance (right). The arrows indicate the path taken for the energy
spectra in Figure 4.5 and 4.6, starting at the Γ-point.

The corresponding Brillouin zone consists of sixteen momentum points. As it turns out, the eigenspec-
trum is reflection symmetric while the state is not, as it transforms as Ψ→ Ψ∗. Hence, for our eigenspectrum
analysis, we only have to calculate at most nine eigenvalues for kx ≥ 0 and ky ≥ 0. This region is shaded
dark-gray in the right panel of Figure 4.3. Combined with the four-fold rotational symmetry of the lattice,
only six momentum points are distinct. Thus, for the calculation of the eigenspectrum, the system has to
be diagonalized numerically at six different points in momentum space.

The resulting eigenspectrum is presented in Figure 4.5, with the path taken in the Brillouin zone displayed
in the left panel of Figure 4.4. The spectrum is positive semidefinite and its zero-energy state at the Γ-point
is two-fold degenerate. For an analysis of the ground state, we numerically construct the CSL state (3.2.3)
and find a two-dimensional subspace of functions. The subspace of the exact ground state of our Hamiltonian
is numerically identical to the CSL subspace. Since we obtain only two zero-energy states, the Abelian CSL
state is the only ground state of our parent Hamiltonian. This conclusion could not have been drawn
analytically. We also confirmed numerically, that the ground state is a singlet, as its the case for the CSL.

The spectrum exhibits a large gap between the ground state and the remainder of the spectrum. We
believe that this gap is substantial and does not stem from finite size effects, since a comparison with a
twelve-site lattice reveals that the gap is decisively larger than any finite size effect. The presence of a gap is
expected since the CSL ground state is energetically separated from what should be two-spinon excitations.
The nature of those states is not be addressed in this work.
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Fig. 4.5 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1/2 system with a two-site
interaction on a square lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.

Square lattice, minimal version

Next, the minimal version of the two-site parent Hamiltonian on the square lattice is analyzed. This model
is not rotationally invariant, so that we have to consider nine points in momentum space, as illustrated in
the right panel of Figure 4.4. As ϑ-function for the prefactor of the Hamiltonian (4.3.40), similar to the
full version on the square lattice, we choose ϑ0,0(z|τ) and sum over the nearest-neighbor configurations in
y-direction, as depicted in the second row of Table 4.6.1.

The eigenspectrum is presented in Figure 4.6, the corresponding path in the Brillouin zone is illustrated
in the right panel of Figure 4.4.

Fig. 4.6 Low-energy spectrum of the parent Hamiltonian without rotational invariance for a spin-1/2 system with a
two-site interaction on a square lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.
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As for the full version, the zero-energy state is two-fold degenerate and the calculation of the overlap
confirms that it is identical to the Abelian CSL. Above the excitation gap, the spectrum is denser than for
the full version.

Triangular lattice, full version

In the triangular lattice, Figure 4.7, each site has six nearest neighbors, as compared to four in the square
lattice. This also increases the possible numbers of nearest-neighbor configurations we can choose to con-
struct the parent Hamiltonian. In Appendix C, it is explained that, under a rotation by π/3 around the
origin in real space, the even ϑ-functions map into each other via (0, 0) → (0, 1

2 ) → ( 1
2 , 0) → (0, 0). Thus,

to obtain a rotationally invariant system, we need at least three configurations, depicted in the third row
of Table 4.6.1.

R1

R2

Fig. 4.7 The 16-site triangular lattice in real space.
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Fig. 4.8 A plot of the symmetry points in the Brillouin zone of the triangular lattice for a system with 60◦ rotational
invariance (left) and without 60◦ rotational invariance (right). The arrows indicate the path taken for the energy
spectra in Figure 4.9 and 4.10, starting at the Γ-point.

Similar to the square lattice, in the full version, there are six distinct momentum points in the Brillouin
zone. For the eigenspectrum, Figure 4.9, we have chosen the path depicted in the left panel of Figure 4.8.
Also for this lattice geometry, the gapped spectrum is positive semidefinite and its zero-energy state at the
Γ-point is doubly degenerate. Calculating the overlap with the Abelian CSL confirms that both states are
numerically identical.
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Fig. 4.9 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1/2 system with a two-site
interaction on a triangular lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.

Triangular lattice, minimal version

The minimal version on the triangular lattice is the non-rotational invariant counterpart of the full version.
For the eigenspectrum, Figure 4.10, we have to consider a path along nine points in momentum space, as
depicted in the right panel of Figure 4.8. As ϑ-function for the prefactor of the Hamiltonian (4.3.40), we
choose ϑ0,0(z|τ) and sum over the nearest-neighbor configurations in y-direction, as depicted in the fourth
row of Table 4.6.1.

Again, the Abelian CSL is the doubly degenerate ground state. Above the excitation gap, the spectrum
is denser than for the full version.

Fig. 4.10 Low-energy spectrum of the parent Hamiltonian without rotational invariance for a spin-1/2 system with
a two-site interaction on a triangular lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.
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4.6.2 Three-site interaction

The parent Hamiltonian is presented in (4.3.43), with the small Hamiltonians (4.5.3) and (4.5.4). As ex-
plained in Section 4.2.5, this model is local in two spatial dimensions.

Independently of the lattice geometry, the eigenspectrum of the three-site Hamiltonian is largely gapped
with a doubly degenerate ground state. Calculating the overlap with the exact Abelian CSL confirms that
both states are numerically identical. We have thus found a local parent Hamiltonian for the CSL. In the
following, the results for the individual lattices for the full and minimal versions of the parent Hamiltonians
are presented.

Square lattice, full version

For the square lattice, we construct two different realizations of the parent Hamiltonian: In the first real-
ization, we sum only over the four nearest-neighbor configurations illustrated in the first row of Table 4.6.2.
The ϑ-functions are assigned to the respective sites such that the resulting Hamiltonian is rotationally
invariant. For the second realization, we add to the four nearest-neighbor terms four next-nearest neighbor
configurations, as specified in the second row of Table 4.6.2.

The eigenspectra for the realization with only nearest-neighbor configurations, Figure 4.11, and for the
realization with additional next-nearest neighbor interactions, Figure 4.12, differ decisively in the density
of the excited states. For a denser spectrum, the excitation gap becomes larger relative to the separation
between adjacent excited states. Thus, it is worth the computational effort to include next-nearest neighbor
interactions into the parent Hamiltonian.

Square lattice, minimal version

The minimal version is the non-rotational invariant counterpart of the full version. Here, it is sufficient to
consider only one configuration per site, as illustrated in the third row of Table 4.6.2. As explained for
the two-site Hamiltonian, nine momentum points have to be considered in the eigenspectrum, Figure 4.13.
Obviously, the spectrum is less dense as compared to the full version.

Triangular lattice, full version

For the triangular lattice, at least six nearest-neighbor configurations are necessary to create a rotationally
invariant model. They are listed in the fourth row of Table 4.6.2. The fifth row presents an alternative ver-
sion, in which also next-nearest neighbor configurations are considered. The resulting spectra are displayed
in Figure 4.14 and 4.15. Similar to the square lattice, the excitation spectrum for the model including
next-nearest neighbor interactions is much denser.

Triangular lattice, minimal version

For the minimal version on the triangular lattice, nine momentum points in the Brillouin zone are distinct,
see Figure 4.8. In the construction of the parent Hamiltonian, one configuration per lattice site is sufficient,
as illustrated in the last row of Table 4.6.2. The eigenspectrum, Figure 4.16, is less dense as compared to
the full version.
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square, full version:

α
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+
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+
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square, full version with NNN:

α

β

γ

+ + +

+

α

β

γ
+ + +

square, minimal version:

α

β

γ

triangular, full version:

α β

γ
+ + +

α

βγ
+ +

triangular, full version with NNN:

α β

γ
+ + +

α

βγ
+ +

+

γ α

β + + + + +

triangular, minimal version:

α β

γ

Table 4.2 Configurations, including nearest neighbors, and in two cases also next-nearest neighbors (NNN), occurring
in the parent Hamiltonian with a three-site interaction. The three neighboring sites are labeled α, β and γ. The symbol
at the lattice site depicts which even ϑ-function, with the distance from this lattice point to µ and ν as its argument,
is chosen for the prefactor of the Hamiltonian: N is ϑ0,0(z|τ), � is ϑ 1

2
,0(z|τ), and # is ϑ0, 1

2
(z|τ). Configurations on

the square and triangular lattice are created, for models with (full version) and without (minimal version) rotational
invariance.

4.6.3 Four-site interaction

The parent Hamiltonian is presented in (4.3.46), with the small Hamiltonians (4.5.5) and (4.5.11). Here,
the interaction drops off as 1/r4 with the distance, so that this model is even more local than the three-site
version.

Also for this parent Hamiltonian, we find that, independently of the lattice geometry and the rotational
symmetry, the eigenspectrum is largely gapped with a doubly degenerate ground state. Calculating the



62 4 Local parent Hamiltonian for the chiral spin liquid

Fig. 4.11 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1/2 system with a three-
site interaction on a square lattice with 16 sites, summing only over nearest-neighbor configurations. The E = 0
eigenvalue at the Γ point is doubly-degenerate.

Fig. 4.12 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1/2 system with a three-
site interaction on a square lattice with 16 sites, including nearest and next-nearest neighbor interactions. The E = 0
eigenvalue at the Γ point is doubly-degenerate.

overlap with the exact Abelian CSL confirms that both states are numerically identical. We have thus
found another local parent Hamiltonian for the CSL. Compared to the eigenspectra for a two- and three-
site interaction, the following spectra are the least dense. Still, a robust gap is discernible.

Square lattice, full version

The eigenspectrum is presented in Figure 4.17.
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Fig. 4.13 Low-energy spectrum of the non-rotationally invariant parent Hamiltonian for a spin-1/2 system with a
three-site interaction on a square lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.

Square lattice, minimal version

The eigenspectrum is presented in Figure 4.18.

Triangular lattice, full version

The eigenspectrum is presented in Figure 4.19.

Triangular lattice, minimal version

The eigenspectrum is presented in Figure 4.20.

4.7 Numerical validation of spin 1 systems

Applying the numerical techniques detailed in Section 4.4.3, we calculate and analyze the eigenspectra of
our parent Hamiltonians for the non-Abelian CSL.

4.7.1 Two-site interaction

Now, we turn to the parent Hamiltonians for the non-Abelian CSL. The model with a two-site interaction
is presented in (4.3.40), with the small Hamiltonians (4.5.12) and (4.5.13). For a two-dimensional system,
this Hamiltonian is not local. We nevertheless analyzed the system for pedagogical purposes.

As compared to spin-1/2 systems, the numerical calculation becomes much more challenging since the
Hilbert space for a N -site lattice is of size 3N (43, 046, 721 for N = 16), instead of 2N (65, 536 for N = 16)
for the spin-1/2 system.
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Fig. 4.14 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1/2 system with a three-
site interaction on a triangular lattice with 16 sites, summing only over nearest-neighbor configurations. The E = 0
eigenvalue at the Γ point is doubly-degenerate.

Fig. 4.15 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1/2 system with a three-
site interaction on a triangluar lattice with 16 sites, including nearest and next-nearest neighbor interactions. The
E = 0 eigenvalue at the Γ point is doubly-degenerate.

As expected, the eigenspectrum is largely gapped with a three-fold degenerate ground state at the Γ-
point. The overlap with the non-Abelian CSL confirms that both states are numerically identical. The
results for the different lattice geometries for systems with and without rotational invariance are presented
below. The choice of lattice site configurations occurring in the parent Hamiltonian is similar to the spin-1/2
case and listed in Table 4.6.1.

Square lattice, full version

The eigenspectrum is presented in Figure 4.21.
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Fig. 4.16 Low-energy spectrum of the non-rotationally invariant parent Hamiltonian for a spin-1/2 system with a
three-site interaction on a triangular lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.

Fig. 4.17 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1/2 system with a four-site
interaction on a square lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.

Square lattice, minimal version

The eigenspectrum is presented in Figure 4.22.

Triangular lattice, full version

The eigenspectrum is presented in Figure 4.23. Since this spectrum is much denser than for the square and
rectangular lattice, this geometry seems to be more suitable.
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square, full version:
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triangular, full version:
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Table 4.3 Nearest-neighbor configurations occurring in the parent Hamiltonian with a four-site interaction. The four
neighboring sites are labeled α, β, γ and δ. The symbol at the lattice site depicts which even ϑ-function is chosen for
the prefactor of the Hamiltonian: N is ϑ0,0(z|τ), � is ϑ 1

2
,0(z|τ), and # is ϑ0, 1

2
(z|τ). Configurations on the square and

triangular lattice are created, for models with (full version) and without (minimal version) rotational invariance.

Triangular lattice, minimal version

The eigenspectrum is presented in Figure 4.24.

4.7.2 Three-site interaction

The parent Hamiltonian is presented in (4.3.43), with the small Hamiltonians (4.5.14) and (4.5.16). As
explained in Section 4.2.5, this model is local in two dimensions.

We find that, independent of the lattice geometry, our model is a local parent Hamiltonian of the non-
Abelian CSL. Due to the size of the Hilbert space and the convincing quality of the previous results, we
only tested the full version of this model on the square and triangular lattice.

Square lattice, full version

The eigenspectrum is presented in Figure 4.25.
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Fig. 4.18 Low-energy spectrum of the non-rotationally invariant parent Hamiltonian for a spin-1/2 system with a
four-site interaction on a square lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.

Fig. 4.19 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1/2 system with a four-site
interaction on a triangular lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.

Triangular lattice, full version

The eigenspectrum is presented in Figure 4.26.
Since the numerical calculation for arbitrary spin s represents a proof of concept, a detailed finite size

analysis is left for future research. Also, a numerical study of the parent Hamiltonian for the spin-3/2
system, (4.5.17) and (4.5.18), will be subject of future work.
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Fig. 4.20 Low-energy spectrum of the non-rotationally invariant parent Hamiltonian for a spin-1/2 system with a
four-site interaction on a triangular lattice with 16 sites. The E = 0 eigenvalue at the Γ point is doubly-degenerate.

Fig. 4.21 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1 system with a two-site
interaction on a square lattice with 16 sites. The E = 0 eigenvalue at the Γ point is three-fold degenerate.
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Fig. 4.22 Low-energy spectrum of the non-rotationally invariant parent Hamiltonian for a spin-1 system with a
two-site interaction on a square lattice with 16 sites. The E = 0 eigenvalue at the Γ point is three-fold degenerate.

Fig. 4.23 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1 system with a two-site
interaction on a triangular lattice with 16 sites. The E = 0 eigenvalue at the Γ point is three-fold degenerate.
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Fig. 4.24 Low-energy spectrum of the non-rotationally invariant parent Hamiltonian for a spin-1 system with a
two-site interaction on a triangular lattice with 16 sites. The E = 0 eigenvalue at the Γ point is three-fold degenerate.

Fig. 4.25 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1 system with a three-site
interaction on a square lattice with 16 sites, including nearest and next-nearest neighbor interactions. The E = 0
eigenvalue at the Γ point is three-fold degenerate.
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Fig. 4.26 Low-energy spectrum of the rotationally invariant parent Hamiltonian for a spin-1 system with a three-site
interaction on a triangular lattice with 16 sites, including nearest and next-nearest neighbor interactions. The E = 0
eigenvalue at the Γ point is three-fold degenerate.





Chapter 5

Topological insulators

5.1 Overview

Currently, topological insulators [64; 116; 9] are one of the most fashionable topics in condensed matter
physics, with currently about 3000 publications per year with the words “topological insulators” in the title
and about 30,000 references made to this topic.

For a long time in condensed matter physics, different states of matter could be classified by the symme-
tries they spontaneously break. With the discovery of the integer quantum Hall effect (IQHE) in 1980 [80],
however, a new quantum state without any broken symmetry entered the stage, a so-called topological state
of quantum matter. Klaus von Klitzing was investigating the Hall conductance of a 2D electron gas at low
temperatures, when he observed that the Hall conductance σxy exhibited a sequence of wide plateaus as a
function of the strength of the magnetic field applied perpendicularly to the sample. More astonishingly,
each plateau occured at a precise integer multiple of a fundamental natural constant, the so-called von
Klitzing constant h/e2,

σxy = n
e2

h
, n ∈ N. (5.1.1)

It was a big surprise when, in 1982, Tsui and Störmer measured an additional plateau at a fractional value,
n = 1/3 [140], discovering the fractional quantum Hall effect (FQHE). Since then, a plethora of additional
plateaus at fractional values have been discovered. However, not all fractions appear.

The quantum Hall effect (QHE) occurs when a strong magnetic field is applied perpendicular to the
plane of a 2D electron gas. As a result, bulk electrons become localized, turning the bulk into an insulator.
Electrons near the edge of the sample, however, form extended, gapless 1D channels with a quantized Hall
conductance. The electrons’ counterflows are separated spatially, top and bottom edge of the QH sample
each contains only half the degrees of freedom: One edge has only right-moving electrons, the other edge
only left-moving electrons. Thus, the channels are said to be chiral. In literature, this behavior is represented
by the symbolic equation 2 = 1(forward mover)+1(backward mover) [115]. As electrons on one edge cannot
reverse their direction of propagation, backscattering is completely suppressed, making the QH state robust
to disorder. Unlike other 1D systems, the QH channels completely evade Anderson localization.

The bulk of a QH state does not break any symmetries except for time reversal (T ). Therefore, there is
no local order parameter to characterize the state. Nonetheless, QH states with different Hall conductances
are distinct phases of matter, their ground states cannot be connected adiabatically, i.e. without closing
an energy gap. Instead, a topological invariant is needed to characterize this state: The TKNN-invariant
[139] or first Chern number [129]. For the IQHE, the Chern number equals the number of edge states which
are stable against local perturbations, which is equal to the quantized Hall conductance in units of e2/h.
The connection of the Hall conductance of the edge and the topological index (Chern number) of the bulk
establishes a so-called bulk-edge correspondence.

Microscopically, the IQHE can be understood using one-particle physics. In the presence of a magnetic
field, the single particle energy spectrum splits up into equally spaced levels, the Landau levels (LL). Their

73
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gap is proportional to the magnetic field. The LL quantization for different geometries has been reviewed
in Chapter 2. Each LL can accommodate a finite number of electrons, its degeneracy is proportional to
the magnetic field B. Thus by increasing B, electrons from higher LLs drop to lower levels until they are
completely filled again. If by further increasing B, the highest Landau level is depleted, the Fermi energy
drops suddenly, causing a change in the number of extended states in the sample. According to Laughlin’s
gauge argument [85], the Hall conductance is quantized in exact multiples of e2/h, and it is carried by the
extended states, as pointed out by Halperin [61]. Thus, with increasing B, at some point, a jump of the
Hall conductivity is observed.

The finite width of the conductivity plateaus owes its existence to disorder in the physical sample, giving
rise to localized states. As they cannot contribute to the current, the conductivity remains unchanged until
a new Fermi level is populated.

For a theory of the FQHE, we need to take into account interactions between electrons, making the
problem much harder and richer. This gives rise to a plethora of exotic properties, for instance the emergence
of gauge fields, fractional charges and non-Abelian statistics in the Moore-Read state [100] and higher states
of the Read-Rezayi series [120]. Laughlin was the first to formulate a theory for plateaus with n = 1/m, m
odd [86]. He illustrated that the fractionalization occurs due to the formation of a correlated incompressible
electron liquid with exotic properties. In such a state, a LL of the electronic system is only partially filled,
making the Coulomb interaction relevant. The quantity n in the Hall conductance (5.1.1) also determines
the filling fraction of the LL. Laughlin’s formalism to explain the FQHE was further discussed in Section 2.

Another series of plateaus occurs at filling fractions p/(2sp± 1), s, p ∈ Z. This type of FQH states has
been explained by a hierarchy theory, which views the FQH effect as an IQH effect of a novel quasiparticle,
which is an electron with an even number of flux quanta attached to it [53; 63; 49]. A third type of FQH
states was discovered at filling fractions n = 5/2 and 7/2 [151], being in so far surprising as up to that time,
only odd denominator filling fractions had been observed. In 1991, a theoretical explanation was attempted
by Greiter, Wilczek and Wen [47], demonstrating that this type of FQH effect could be described by a
Pfaffian wave function. Having anyonic excitations and non-Abelian statistics, these states are more than
ever of high interest as they might play a role in quantum computing.

The FQH effect is the first physical system, in which fractional statistics have been discovered. Let us
shortly mention that a cousin of this state with fractionalized quasiparticle excitations is the chiral spin
liquid (CSL), which emerges in frustrated magnetic systems. The CSL is a state with strong, local anti-
ferromagnetic correlations but without long range order, which breaks time reversal (T ) and parity (P )
symmetry. Kalmeyer and Laughlin proposed that a FQH wave function for bosons can describe the am-
plitudes for spin-flips in a two-dimensional frustrated Heisenberg antiferromagnet via a Holstein-Primakoff
transformation [73; 74]. The bosons then form a 1/2 FQH state.

Unfortunately, the prerequisite of strong magnetic fields makes the broad scale application of the QHE
unfeasible. Early on, it was therefore asked: Is it possible to have dissipationless edge modes without any
magnetic field? A first step in this direction was achieved in 1988 by Haldane [55] with the theoretical
proposal of a lattice analog to the IQH state without an orbital magnetic field: Analogously to the classical
effect, this was labeled quantum anomalous Hall effect (QAHE). For the effect to arise, the system needs an
energy band with non-zero Chern number, which is achieved by breaking T symmetry. Haldane proposed a
tight-binding model on a periodic 2D honeycomb lattice with real nearest neighbor hopping and complex
next-nearest neighbor hopping, where the (net zero) flux is distributed inhomogeneously over the unit cell.
Consequently, certain materials, other than the 2D electron gas with external magnetic field, can have
topologically non-trivial band structures, nowadays labeled Chern insulators (CI).

Although Haldane demonstrated the existence of a QAH state, an experimental realization remained
inachieved for another two decades. In the end, it was discovered via a detour by realizing first a cousin of
this effect protected by T symmetry: In 2005, Kane and Mele theoretically proposed a system exhibiting a
so-called quantum spin Hall (QSH) state [75]. Based on the spin-orbit coupling of graphene, they combined
two copies of the Haldane model such that the ↑-spin electrons manifest a chiral QHE, while the ↓-spin
electrons manifest an anti-chiral QHE. The QSH effect is deeply related to the QAH effect as the state of
each spin component can be either an IQH state or a QAH state.
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Independently, Bernevig and Zhang proposed a realization of the QSHE [13] in a strained GaAs system,
which engineers, due to spin-orbit coupling, a magnetic field pointing upwards for spin up electrons and a
magnetic field pointing downwards for spin down electrons. Mostly due to the small spin-orbit coupling in
the proposed systems, so far, neither theory has been realized experimentally.

As an experimentally more attainable system, in 2006, Bernevig et al.[12] followed up an idea by
Molenkamp et al.[111; 108] and theoretically investigated semiconductors with an inverted band structure,
predicting a quantum phase transition in type-III HgTe/CdTe quantum wells between a trivial insulator
phase and QSH phase beyond a critical thickness of the well. Only one year later, in 2007, this prediction
could be confirmed experimentally [81]. While for most semiconductors, the conduction band is formed by
electrons in s-orbitals and the valence band by electrons in p-orbitals, in HgTe, the bands are inverted due
to spin orbit coupling. Sandwiched with the normal ordered semiconductor CdTe, having a similar lattice
constant as compared to HgTe, the band structure can be varied with the thickness of the quantum well.

A system exhibiting the QSHE, also called a topological insulator (TI), is a new topological state of
matter, characterized by a bulk insulating gap and a pair of gapless edge states protected by T symmetry.
It can be symbolically summarized by (2D TI)=IQHE+IQHE. The edge states are labeled “helical states”,
since spin is correlated with the direction of propagation. The traffic lanes for the electrons can be split into
four channels in a T invariant manner as follows: On the top edge of the sample, there is a ↑-spin forward
and a ↓-spin backward mover, the other two channels are on the bottom edge. This behavior is represented
by the symbolic equation 4 = 2 + 2. Thus, there is a net transport of spin forward along the top edge and
backward along the bottom edge - similar to the separated charge transport in the QH state. On a given
edge, the two states with opposite chirality transform into each other under T . This is called a “Kramers
pair“. The helical edge states are robust to nonmagnetic disorder (meaning impurities that preserve T
symmetry), as backscattering would require a spin flip which is prohibited by T symmetry. Furthermore,
the helical states consist of a single massless Dirac fermion, which is “holographic“, as it can only live a
the boundary of a two-dimensional system, but not in a purely 1D system [154].

Hall conductivity violates T symmetry, so it must vanish in the QSH state. In a realistic system, the spin
sz is not a good quantum number, for instance due to the existence of spin-orbit coupling. Therefore, there
is no quantized SH conductance σ↑xy − σ↓xy in the QSHE. This is the reason why it would be incorrect to
label this effect quantized spin-Hall effect instead of quantum spin-Hall effect. Unlike for the QH effect, the
Chern number thus cannot provide a useful classification for T -invariant systems. The actual topological
invariant is in the Z2 group, containing only the elements 0 and 1 [75]. Here, 1 corresponds to the nontrivial
QSH state, while 0 labels the topologically trivial insulator. This invariant therefore counts the number of
stable helical states modulo 2. A nontrivial QSH state indeed requires an odd number of edge states. If
the number was even, an electron on one edge could be scattered from a forward- to a backward-moving
channel without changing spin, making the system dissipative and thus giving a trivial insulator.

The two-dimensional model for the QSH effect offers a template for a generalization to three dimen-
sions. Initial theories turned out to be extremely complex [28]. A much simpler model has been provided
for the Bi2Se3-, Bi2Te3- and Sb2Te3-class of materials [159; 156], for which angle-resolved photoemission
spectroscopy (ARPES) experiments could confirm the existence of 3D TIs [156; 20; 67]. Again, spin orbit
coupling provokes a band inversion at the Γ-point, giving rise to a toplogically protected surface state,
which consists of a two-dimensional massless Dirac fermion. Its dispersion forms a single Dirac cone on the
surface. Similarly to the 2D case, the fermion is “holographic”, as it can only exist at the boundary of a
3D system. Its spin lies in the surface plane and is always perpendicular to the propagation direction of
the electrons, thus forming a helical state.

The following brief summary on topological insulators is an extension of a lecture held by Martin Greiter
during a winter school at Galileo Galilei Institute for Theoretical Physics in Florence, 2014.
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5.2 Basic properties of topological insulators

Topological insulators (TIs) can be realized in two or three spatial dimensions. For most of this chapter,
we will limit the explanations to two dimensions. In the last section, a brief overview of three-dimensional
TIs will be presented.

For a first understanding of TIs, it is instructive to compare the quantum spin Hall (QSH) effect to the
integer quantum Hall (IQH) effect, as summarized in Table 5.2. Equivalently, a 2D TI can be compared to
a Chern insulator (CI), which is in the same universality class as the IQH effect, but without an external
magnetic field. CIs can be understood as an IQH effect on a lattice commensurate with the magnetic field
such that the flux per unit cell is one Dirac flux quantum.

IQH effect (B 6= 0) or QSH effect =
Chern insulator (no external B) 2D TI

dirt

• chiral edge states • helical edge states

• violates time reversal (T ) • T is restored

• Hall conductivity σxy quantized • spin Hall conductivity σSxy not
quantized

• edge state protected by the
TKNN invariant

• edge states protected by T

Table 5.1 Comparison of the IQH effect and the QSH effect.

For a two-dimensional system displaying the IQH effect, as depicted in the left figure of Table 5.2, the
bulk violates T invariance. The edge states (red lines in the figure) are chiral and thus protected from
backscattering. This leads to a quantized Hall conductivity

σxy = n
e2

h
(5.2.1)

with the topological quantum number n ∈ Z, which is related to the TKNN invariant in band structures.
For the CI, n is exactly the TKNN invariant, and it counts the number of chiral modes.

In the QSH effect, the bulk is gapped, similar to a conventional insulator, but gapless edge states exist
and are protected by time reversal (T ) symmetry. The effect is driven by spin-orbit coupling (SOC). To a
naive interpretation, there are two copies, one for ↑-spins and one for ↓-spins, of a Chern insulator with
opposite Hall conductivity for the two layers. As illustrated in the right figure of Table 5.2, T -symmetry
is restored. Importantly, the spin Hall conductance

σsxy =
J↑x − J↓x
Ey

, (5.2.2)

which is the difference of the ↑-spin current and the ↓-spin current divided by the electric field, is not
quantized. Nevertheless, there is a topological invariant ν which can take the values 0 for a trivial insulator
or 1 for a TI. We define a “trivial insulator” as an insulator which can be adiabatically deformed into an
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atomic insulator, in which the orbitals are isolated and do not form bands. The invariant ν is the number
of Kramers pairs of edge states modulo 2. The edge states come in Kramers pairs since the system is
T -invariant. The topological invariant will be further explained in the following Sections 5.3 and 5.4.

5.3 Time reversal and Kramers pairs

Under time reversal T , the position operator remains unaltered while the momentum changes sign,

TxT−1 = x, TpT−1 = −p. (5.3.1)

It therefore follows that
T [x, p]T−1 = −[x, p], with [x, p] = i~. (5.3.2)

Thus, T is a combination of a unitary transformation U and a complex conjugation K, T = U · K. The
square of T then is

T 2 = UKUK = UU∗ = U(Uᵀ)† = U(Uᵀ)−1 !
= eiφ

⇒ U = eiφUᵀ = eiφ(eiφUᵀ)ᵀ = e2iφU

⇒ φ = 0 or π

⇒ T 2 = ±1.

The spin operator reverses under T ,
TST = −S. (5.3.3)

If we choose a basis where S± = Sx ± iSy and Sz are real, then

T = e−iπSyK. (5.3.4)

For S = 1/2, we have

T = e−iπ2 σyK = −iσyK =

(
0 −1
1 0

)
·K

⇒ T |↑〉 = |↓〉 , T |↓〉 = − |↑〉 ,

so that T leaves a singlet unaltered. In general,

T 2 = (−1)2s =

{
+1, integer s

−1, half-integer s.
(5.3.5)

Kramers theorem states that for a system with T 2 = −1 and a T -invariant Hamiltonian H, the single
particle states come in pairs of T -conjugates.

Proof. We define |Tψ〉 = T |ψ〉. The overlap of two arbitrary states is

〈Tφ|Tψ〉 =
∑
m,n,p

(UnmKφm)∗(UnpKψp)

=
∑
m,p

ψ∗p
∑
n

(U†)mnUnpφm

=
∑
m,p

ψ∗pδmpφm = 〈ψ|φ〉 .
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First, we take φ = Tψ. Then, (5.3.6) becomes

〈T 2ψ|Tψ〉 = 〈ψ|Tψ〉
⇒ 〈ψ|Tψ〉 = 0 for T 2 = −1. (5.3.6)

Thus, |ψ〉 and |Tψ〉 are orthogonal.
Second, we take φ = HTψ and assume THT = H. Then, from (5.3.6), we get

〈THTψ|Tψ〉 = 〈ψ|HTψ〉 . (5.3.7)

This can be rewritten to
〈T 2ψ|H|Tψ〉 = 〈ψ|H|Tψ〉 = 0 for T 2 = −1, (5.3.8)

meaning that a T -invariant Hamiltonian does not scatter between members of a Kramers pair, which is the
essence of TIs.

ut

5.4 Absence of backscattering in 2D topological insulators

In the previous section, we already encountered the absence of backscattering in TIs. An intuitive under-
standing of the effect can be conveyed by Figure 5.1: Let us assume we have a forward and a backward
moving edge mode and a non-magnetic impurity. There are two possible scattering paths, depicted by the
black solid and dotted lines in the figure. The relative phase of the rotation of the spin between the two
paths is 2π, which gives a minus-sign for spin s = 1/2. Thus, the two paths cancel each other, destructive
interference annihilates backscattering.

Fig. 5.1 Intuitive understanding of the absence of backscattering in a 2D TI. The destructive interference of the two
scattering paths of a Kramers pair annihilates backscattering.

Mathematically, the absence of backscattering can also be easily derived. The Hamiltonian for a single
edge state is

Hedge = −ivσz∂x − µ

=

∫
dk

2π

(
ψ†↑(k), ψ†↓(k)

)
(vkσz − µ)

(
ψ↑(k)
ψ↓(k)

)
. (5.4.1)

This expression simply means that ↑-spins (↓-spins) travel to the right (left).
Let us consider a mass term to gap the spectrum,

Hmass = m

∫
dk

2π
(ψ†↑(k)ψ↓(k) + h.c.), (5.4.2)

which scatters between ↑- and ↓-spins. Since
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THmassT
−1 = −Hmass, (5.4.3)

such a term (5.4.2) cancels out and is thus forbidden by T -invariance.
However, for a system with two edge modes, two forward and two backward movers,

Hedge =
∑
j=1,2

∫
dk

2π

(
ψ†↑j(k), ψ†↓j(k)

)
(vkσz − µ)

(
ψ↑j(k)
ψ↓j(k)

)
, (5.4.4)

the total spin of one mode is 1 and Kramers theorem does not apply anymore. It is now possible to construct
a T -invariant mass term,

Hmass = m

∫
dk

2π
(ψ†↑1(k)ψ↓2(k)− ψ†↓1(k)ψ↑2(k) + h.c.). (5.4.5)

Thus, the two edge states gap each other out, making backscattering possible. Any impurity thus can
eliminate the modes. This is the reason why the topological invariant of the TI is only a Z2-invariant, since
backscattering is only absent for single modes with half-integer spin.

5.5 TKNN and Chern invariants

We consider a 2D lattice Hamiltonian,

H(k) |un(k)〉 = εn(k) |un(k)〉 , (5.5.1)

where |un(k)〉 are the Bloch states and n is the band index. If a Bloch state is transported around a closed
loop in k-space, it will acquire a Berry phase

γn(C) =

∮
C

dk · i 〈un(k)|∇k|un(k)〉︸ ︷︷ ︸
=:An(k),

Berry connection

=
x

BZ

d2k êz · (∇k ×An(k))︸ ︷︷ ︸
=:−Vn(k),

Berry curvature

, (5.5.2)

where BZ is short for Brillouin zone. After a few steps of algebra [14], we have

Vn = =

 ∑
m

(m 6=n)

〈un|∇kH|um〉 × 〈um|∇kH|un〉
(εm(k)− εn(k))2

 = Vnêz. (5.5.3)

The Chern number Cn of each band is the total Berry flux through the Brillouin zone in units of 2π,

Cn =
1

2π
γn(C) = − 1

2π

x

BZ

d2k Vn(k) ∈ Z. (5.5.4)

In a seminal paper in 1982, Thouless, Kohmoto, Nightingale and den Nijs (TKNN) [139] proved that the
IQH conductivity is precisely the Chern number times natural constants,

σxy =
∑
n

Cn
e2

~
. (5.5.5)
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In the following, we explain why the Chern number is an integer. To do so, it is sufficient to consider a
two-level system. The lattice Hamiltonian can always be written as

H = ε(k) + h(k) · σ, (5.5.6)

since this is the most general form of a Hermitian 2 × 2−matrix. Here, σ = (σx, σy, σz) is the vector of

Pauli matrices. We introduce the unit vector ĥ := h/|h|, which simply maps the Brillouin zone (BZ) to a
unit sphere. Due to its periodic boundary conditions in the kx- and ky-direction, the BZ has the topology
of a torus. For the Chern number of the lower band, we get

C− =
1

4π

x

BZ

dkxdky

(
∂ĥ

∂kx
× ∂ĥ

∂ky

)
· ĥ. (5.5.7)

When mapping the system from a torus to a unit sphere, the infinitesimal space element dkxdky maps into
the solid angle on the unit sphere, which is given by the first part of the integrand,

dkxdky

(
∂ĥ

∂kx
× ∂ĥ

∂ky

)
. (5.5.8)

By multiplying this expression with ĥ in (5.5.7), we keep track of the sign of the solid angle. The torus
is a compact surface and we map it to a sphere, which is compact itself. The Chern number has a simple
geometric interpretation, since it counts the number of times the vector ĥ(k) covers the unit sphere for k
in the first Brillouin zone.

5.6 Graphene band structure and the Haldane model

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. It is a hexagonal lattice with
two atoms, A and B, per unit cell, as depicted in Figure 5.2. The A and B sublattices are triangular Bravais
lattices, and the honeycomb lattice may be viewed as a triangular lattice with a two-atom basis A and B.
The Brillouin zone is a hexagon featuring two Dirac cones Q+ and Q−.

x

y

BA

B

A B

A

a1

a2

Q+

Q−

Q+

Q−

Q+

Q−

kx

ky

b1

b2

BZ

Fig. 5.2 The unit cell (left) of graphene consists of two sites inequivalent sites A and B. The unit vectors in real
space are a1 and a2. The Brillouin zone (right) is hexagonal with two Dirac points Q+ and Q−. The unit vectors in
reciprocal space are b1 and b2.

Its Hamiltonian is

H =
∑
k

(c†Ak, c
†
Bk)H (k)

(
cAk
cBk

)
, (5.6.1)
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with
H (k) = h(k) · σ. (5.6.2)

and c†Ak (c†Bk) the creation operator for an electron on the A (B) sublattice. We expand H around the two
Dirac points Q± to first order,

H (Q± + p) ≈ a

2
(∓σxpy − σypx) =: H±(p) (5.6.3)

Time reversal maps the Hamiltonian matrix into

TH (k)T−1 = H ∗(−k). (5.6.4)

Under inversion symmetry, (x, y) → (−x,−y), the sublattices A and B are interchanged, with the Hamil-
tonian matrix transforming as

IH (k)I−1 = σxH (−k)σx. (5.6.5)

Since under inversion I, Q± → Q∓, σy → −σy, σx → σx and px/y → −px/y, H is inversion invariant at
the Dirac points Q±.

Time reversal and inversion symmetry together protect the Dirac points locally. To demonstrate this,
consider adding a mass term

H±,m = m±σz. (5.6.6)

Its transformation properties are dictated by the Pauli matrix,

TσzT
−1 = σz, IσzI

−1 = −σz, (5.6.7)

If we impose both time reversal and inversion symmetry, it follows m+ = m− = 0. Thus, the Dirac cones
are protected.

To open a gap in the spectrum of graphene, we have to break at least one symmetry. The first possibility
is to keep time reversal symmetry intact but break inversion symmetry. Then, m+ = m− = M , which is
equivalent to an on-site potential of ±M at the A/B sites. The resulting system is a trivial insulator, since
the Chern number C− = 0 vanishes due to the equal sign of the masses at both Dirac points.

The second possibility is to keep inversion symmetry intact but break time reversal symmetry. It follows
that m+ = −m− = m, and H (Q±) = ±mσz at the Dirac points. Since ĥ(Q±) = sgn(m±)êz, the sphere is
covered once when calculating the Chern number, yielding C− = ν and a Hall conductance σxy = νe2/h,
with ν = 1

2 (sgn(m+)− sgn(m−)) [55]. Thus, in this phase, we have a topologically non-trivial insulator.
A way to accomplish this was first proposed by F.D.M. Haldane in 1988 [55]. This so-called Haldane

model is a paradigmatic example of a Hamiltonian featuring topologically distinct phases of matter, having
provided the conceptual basis for theoretical as well as experimental research of TIs and superconductors
[18; 75; 81; 65; 64]. This model is the realization of the integer quantum Hall effect without Landau levels. It
features a chiral edge spectrum without a net external magnetic field, being the prototype for the quantum
anomalous Hall insulator [147; 94]. This is achieved with a periodic magnetic field with a zero net flux per
plaquette.

Time reversal symmetry is broken by introducing a complex next-nearest neighbor hopping with an
amplitude t′eiφ, additionally to a real nearest-neighbor hopping. If both mass terms are present, the insulator
is non-trivial for |M/t′| < |3

√
3 sin(φ)|, and the Chern number is ±1. Its sign equals the sign of the phase

φ, −π < φ < π. The phase diagram of the Haldane model is displayed in Figure 5.3.

5.7 Edge states of Chern insulators

A simple theory for a chiral edge state was first proposed by Jackiw and Rebbi in 1976 [71]. They considered
a system in which the mass at one Dirac point is fixed m+ > 0, while the other mass m− changes as a
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φ

M/t′

C− = −1 C− = 1

C− = 0

−π π

3
√

3

−3
√

3

Fig. 5.3 Phase diagram of the Haldane model. The Chern number C− of the bottom band is plotted as a function of
the hopping parameters φ and M/t′. As compared to the original work by Haldane [55], the sign of the Chern number
is reversed here.

function of x, vanishing at x = 0, as depicted in Figure 5.4. Thus, for x > 0 (x < 0), the system is a trivial
(topological) insulator.

x

m−

topological trivial

insulator

Fig. 5.4 In the system studied here, the mass m− changes linearly as a function of x, changing sign at x = 0.

Taking p = −i∇ and v0 := a/2, the Hamiltonian (5.6.3) at the Dirac point Q− takes the form of a
massive Dirac Hamiltonian,

H−(x, y) = v0 (σx(−i∂y)− σy(−i∂x)) + m−(x)σz

=

(
m− v0(∂x − i∂y)

v0(−∂x − i∂y) −m−

)
(5.7.1)

The function

ψpy (x, y) =

(
1
1

)
eipyye−

1
v0

∫ x
0
dx′m−(x′). (5.7.2)

is an eigenstate of H−. This can be easily proven by acting with the Hamiltonian on the state. Since

v0(±∂x − i∂y)
(
eipyye−

1
v0

∫ x
0
dx′m−(x′)

)
= (∓m− + v0py)

(
eipyye−

1
v0

∫ x
0
dx′m−(x′)

)
, (5.7.3)

we have

H−ψpy =

(
m− −m− + v0py

m− + v0py −m−

)(
1
1

)
eipyye−

1
v0

∫ x
0
dx′m−(x′) = v0pyψpy . (5.7.4)
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This state is exponentially localized at the boundary x = 0, is extended in the y-direction, and has the
dispersion E(py) = v0py. With a positive group velocity of dE/dpy = v0, the state (5.7.2) describes a
right-moving gapless chiral edge mode.

The occurrence of such a gapless edge mode at the interface where the topological invariant changes
is a fundamental consequence of the topological classification of gapped band structures. A low energy
electronic state has to be bound to the region where the energy gap vanishes, since otherwise it would be
impossible for the topological invariant to change.

5.8 2D Topological insulators in HgTe/CdTe quantum wells

Since graphene is made out of carbon, which is a light element with weak spin-orbit coupling, its energy
gap is small, although its absolute magnitude remains controversial [69; 99; 15; 157; 31]. This makes an
experimental measurement of the topological effects challenging. A more promising approach is to look
for materials with strong spin-orbit coupling. Bernevig, Hughes and Zhang followed up on an idea by
Molenkamp to investigate semiconductor quantum well structures of HgCdTe [12]. A few months later, the
first signature of the quantum spin Hall insulator was measured by the Molenkamp group in Würzburg
[81].

CdTe is a semiconductor with a GaAs-type band structure near the Γ-point, which is depicted on the left
in Figure 5.5. Due to spin-orbit coupling, the total angular momentum J becomes a good quantum number.
At the Γ-point with in-plane momentum k|| = 0, also the angular momentum component mJ remains a
good quantum number. The conduction band Γ6 has an s-type symmetry, while the valence band Γ8, which
splits into two bands with m = ±3/2 and m = ±1/2, has a p-like symmetry.

The band structure of HgTe exhibits a band inversion at the Γ-point. Figure 5.5 on the right displays
that the Γ8-band lies energetically higher than the Γ6-band. Since the chemical potential µ coincides with
the bottom of the Γ8-band, HgTe is a zero gap semiconductor [64].

In both materials, the gap is smallest near the Γ-point in the Brillouin zone. Other bands, such as the
bulk split-off Γ7-band, have a negligible effect on the band structure around the Fermi level [108; 111], so
that the system can be constricted to a six band model with the states

|Γ6, 1/2〉 , |Γ6,−1/2〉 , |Γ8, 3/2〉 ,
|Γ8,−3/2〉 , |Γ8, 1/2〉 , |Γ8,−1/2〉 . (5.8.1)

CdTe

Γ6

Γ8

µ

J = 1
2

s-type

J = 3
2

p-type

mJ = ±1
2

mJ = ±3
2

mJ = ±1
2

HgTe

Γ8

µ

Γ6

p-type

s-type

±1
2

±3
2

±1
2

k|| k||

Fig. 5.5 Bulk band structure near the Γ-point of CdTe and HgTe. The angular momentum J and its z-component of
the bands are specified. Here and in the following Figures, Γ8- (Γ6-) symmetry is indicated in red (blue).
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Following [111], Bernevig et al. considered a quantum well structure with CdTe as barrier material in
between which a layer of HgTe is sandwiched. In the quantum well, the system is confined in z-direction
and the six states (5.8.1) hybridize to form three subbands, each with a ↑-spin and a ↓-spin component:
E1, H1 and L1. The L1-subband can be neglected due to a large separation from the other two bands [111].
Hence, the quantum well is effectively described by a four-band model. At the Γ-point, the E1-subband is
formed by a linear combination of the |Γ6,±1/2〉 and |Γ8,±1/2〉 states,

|E1,+〉 = α |Γ6, 1/2〉+ β |Γ8, 1/2〉 ,
|E1,−〉 = α∗ |Γ6,−1/2〉+ β∗ |Γ8,−1/2〉 .

The H1 band is formed by the Γ8,±3/2 states,

|H1,±〉 = |Γ8,±3/2〉 .

Since away from the Γ-point, mJ is not a good quantum number, the bands E1 and H1 can mix.
The states |H1,±〉 (|E1,±〉) have odd (even) parity under two-dimensional spatial reflections [12]. Thus,

the coupling matrix element between these states has odd parity. Since the states |E1,+〉 and |E1,−〉 are
Kramers pairs, there are no matrix elements coupling theses states. The same holds for |H1,+〉 and |H1,−〉.
There is also no coupling between |E1,+〉 and |H1,−〉 or |E1,−〉 and |H1,+〉 due to inversion symmetry.

With the above considerations, the general form of the effective Hamiltonian around the Γ-point can be
deduced. In the basis

{|E1,+〉 , |H1,+〉 , |E1,−〉 , |H1,−〉}, (5.8.2)

it is block-diagonal,

H =

(
H(k) 0

0 H∗(−k)

)
, (5.8.3)

with
H(k) = ε(k)1 + h(k) · σ. (5.8.4)

The above parity symmetry arguments imply that ε(k) and hz(k) are an even function of k, while hx/y(k)
is an odd functions of k,

h(k) =

 Akx
−Aky

M +B(k2
x + k2

y)

 , ε(k) = C −D(k2
x + k2

y), (5.8.5)

where A, B, C and D are expansion parameters, depending on the heterostructure. The effective Hamil-
tonian thus has the form of a (2 + 1)-dimensional Dirac Hamiltonian with an additional diagonal term
ε(k). The sign of the gap parameter M determines the topology of the problem. It is the energy difference
between the E1 and H1 levels at the Γ-point.

Now, due to the band inversion in HgTe, there exists a level crossing at a critical thickness dc of the HgTe-
layer. The system undergoes a phase transition as a function of the HgTe-layer thickness d. If d < dc = 6.3nm
[111; 81], the 2D electronic states bound to the quantum well have normal band order, meaning that the
Γ6-band lies energetically higher than the Γ8-band, resulting in a trivial insulator (Figure 5.6). For d > dc,
the bands invert, so that the electron-like band E1 lies below the heavy hole band H1. As a consequence,
the system becomes a topological insulator. Thus, at d = dc, the energy gap vanishes.

The energy levels E1 and H1 as a function of the HgTe-layer thickness d are plotted in Figure 5.7.
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CdTe CdTe

Fig. 5.6 The CdTe/HgTe/CdTe quantum well in the normal band order regime E1 > H1 with d < dc (left) and the
band inversion regime H1 > E1 with d > dc (right).

d

E
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H1

Fig. 5.7 Energy of the E1 and H1 bands at k|| as a function of the quantum well thickness d.

5.9 Z2-invariant

We assume an inversion-symmetric band structure. Under an inversion I, the momentum transforms as
k → −k. Then, the four points Λa, a = 1, 2, 3, 4 in the Brillouin zone, marked in Figure 5.8, are inversion
invariant. The Bloch state |um(k)〉 therefore is an eigenstate of the inversion operator,

I |um(Λa)〉 = ξm(Λa) |um(Λa)〉 (5.9.1)

with eigenvalues ξm(Λa) = ±1.

kx

ky

π

π−π

−π

Λ4

Λ1 Λ2

Λ3

Fig. 5.8 Brillouin zone of a system with inversion symmetry, the points Λa, a = 1, 2, 3, 4, are inversion invariant.

It turns out that it is not necessary to explicitly calculate the TKNN invariant to determine the topo-
logical phase of the system. The eigenvalues ξm are sufficient for this purpose [27], since the topological
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invariant ν is determined by

(−1)ν =

4∏
a=1

∏
m

(filled bands)

ξm(Λa). (5.9.2)

This relation has proven useful for the identification of topological insulators from band structure calcula-
tions [27; 135].

5.10 3D topological insulators

In 2006, three theoretical groups independently discovered that the quantum spin Hall insulator can be
extended to three dimensions [28; 101; 122]. It took only a year to discover the first realizations such as
Bi1−xSbx [66] and Bi2Se3 [156] via ARPES measurements.

There are two types of 3D TIs: weak and strong TIs. They are defined by four independent topological
Z2-invariants, νx, νy , νz and ν0. A weak 3D TI can be constructed by stacking several 2D TIs on top
of each other in y-direction. The Brillouin zone of the 3D system is a cube with eight inversion invariant
points Λa, a = 1, . . . , 8, as presented in Figure 5.9. Now, equation (5.9.2) for νz is fulfilled for each set of
four points Λa in the ky = 0 and ky = π plane.

The helical edge states of the 2D TI-layers become anisotropic surface states. The Fermi surface for a
system of weakly coupled layers stacked along the y-direction is depicted in the left panel of Figure 5.10.
However, since there are always multiple edge states from the individual 2D TI-layers, they gap each other
out, since the surface states are not protected by inversion symmetry. The same holds for the topological
invariants νx and νz. Therefore, such systems are labeled “weak” TIs.

kz

ky

kx

Fig. 5.9 The Brillouin zone of a 3D TI is a cube with eight inversion invariant points Λa (marked as blue circles).

The fourth topological invariant can be determined via equation (5.9.2), summing over all eight inversion
invariant points,

(−1)ν0 =

8∏
a=1

∏
m

(filled bands)

ξm(Λa). (5.10.1)

For the weak TI, we have ν0 = 0, since the two planes with four points each give the same result.
A strong TI has ν0 = 1 and cannot be interpreted as a descendant of a 2D TI. Its surface state is

protected and consists of a single two-dimensional massless Dirac fermion, with the physical spin tied to its
momentum. As depicted in Figure 5.11 and in the right panel of Figure 5.10, the spin is always perpendicular
to the momentum.

Its effective field theory is
H = vF n̂ · (σ × k), (5.10.2)

with n̂ the surface normal, σ the electron spin and k the surface momentum [64].
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Fig. 5.10 Fermi circles in the surface Brillouin zone of a weak TI (left) and a strong TI (right).

EF

E

Fig. 5.11 Dispersion of the surface state of a strong 3D TI. The Fermi circle encloses a single Dirac point. The spin
(black arrows) of the surface state is tied to its momentum.





Chapter 6

Fractional insulators

In this work, we introduce a novel microscopic state describing a fractional insulator in which different spin
species are interlocked without loss of locality. In the following, this state will be called the “311-state”, a
nomenclature which will be explained later on.

After a brief review of the advancements in fractional quantum Hall (FQH) systems and topological
insulators in Section 6.1, the 311-state is constructed in Section 6.2, based on Laughlin’s wave function. In
Sections 6.3.1-6.3.4, an efficient numerical technique is introduced to find the exact or approximate parent
Hamiltonian of a specified wave function. This technique makes use of pseudopotential coefficients, which
are derived in Section 6.3.1, and we label it “Hamiltonian Finder method”. Furthermore, in Section 6.3.5,
we introduce the relative angular momentum resolved correlators, which allow to analyze the correlation
properties of our 311-state. Section 6.3.6 explains how to obtain the real space interaction potential from
a Hamiltonian specified by angular momentum resolved pseudopotentials. Our numerical results are pre-
sented in Section 6.4: After succeeding the numerically challenging task of implementing the 311-state for
sufficiently large systems in Section 6.4.1, its correlation properties including a finite size analysis are in-
vestigated in Sections 6.4.2 and 6.4.3. Applying the Hamiltonian Finder method in Section 6.4.4 and some
manual fine tuning returns an approximate parent Hamiltonian with a large overlap of the exact ground
state with our 311-state even for larger systems. The corresponding real space interactions, presented in
Section 6.4.5, show, that the 311-state can be stabilized for a reasonable, local interaction profile among
the electrons.

The results presented in this chapter are product of a joint collaboration of Martin Greiter, Ronny
Thomale and the author of this thesis [123].

6.1 Introduction

As detailed in Chapter 5, the quantum Hall effect (QHE) and quantum spin-Hall effect (QSHE) share many
similarities. For the former, an integer version and a fractional version have been discovered. Therefore, the
question arises: Is there an interaction-driven set of fractionalized phases with time reversal (T) symmetry?
From now on, we will call such phases “fractional topological insulators” (FTIs).

Inspired by the construction of a topological insulator (TI) by the combination of two Haldane models,
one for each spin species, a first step in answering this question is to look for a lattice realization of the
fractional quantum Hall effect (FQHE). Due to particle interactions, this quest is much more intricate,
but highly important if we recall that it is experimentally enormously challenging to achieve the settings
needed to realize a FQH state: First, the electrons must be confined to a two-dimensional plane maintaining
high electron mobility, as too much disorder destroys the FQHE. Second, a very strong magnetic field is
needed for the Landau level quantization to be measurable. And third, only at low temperatures (<10K),
the FQH physics become manifest. Even nowadays, it remains tremendously intricate to reproduce all FQH
states. Per contra, in lattice models, the interaction energy scale is at the order of ten or even one-hundred
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Kelvin, and each unit cell usually sees a large effective magnetic field. This opens the possibility to stabilize
exotic topological phases without large cooling units and external magnetic fields. Moreover, the interplay
of topological order with lattice symmetries gives rise to a plethora of new physics beyond the continuum
realization of the FQHE. One example are topological crystalline insulators, in which lattice symmetries
protect the edge states [26].

The basic idea of the lattice realization of the QHE is that a single LL may be identified with an
infinitely flat band of two-dimensional electrons with a non-trivial Chern number, as the electrons’ energy
is completely quenched due to LL quantization. For the IQHE, it was realized that a filled Chern band is
equivalent to a filled LL. The extension to fractionally filled Chern bands holds as well: Fractional Chern
insulators (FCIs) are the lattice analog of the FQHE [106; 128; 141; 121; 114; 155]. Microscopically, these
flat band models create a (nearly) degenerate low-energy subspace. To generate an exact degeneracy, the
electron hopping would have to span infinitely large distances. Instead, an approximately flat band is
created by an exponential decay of the hopping amplitude. A relatively flat band can thus be created with
a small number of hopping amplitudes. As a quantitative measure for this property, the flatness parameter
equals the ratio of the band gap to the bandwidth. We actually do not need an exactly flat band, but
a band which is so flat that the dependance of the energy on the different momenta is sub-dominant to
the potential energy of the Coulomb interaction, meaning that the bandwidth is small compared to the
Coulomb energy scale. If the kinetic energy was dominant, the electrons would arrange themselves in a
Fermi sea, being the starting point for a perturbative analysis of weakly coupled systems.

Let us return to the question whether FTIs exist. At present, no such system could be realized experi-
mentally, as most theoretical proposals so far are based on idealized models without relation to any existing
material. One intuitive approach, in analogy to the construction of TIs, would be to take two copies of a FCI,
one for each partner of the Kramers pairs [93; 13], resulting in a T-invariant system1: (FTI)=FQHE+FQHE.
Without any interaction between electrons of opposite spin, the corresponding ground state is a direct
product of wave functions for both spin species. These states are from now on labeled fractional topolog-
ical insulators (FTI). Several wave functions and model interactions for such FTIs have been constructed
[114; 95; 130].

However, the FTIs investigated so far have two shortcomings. First, in order to stabilize a FQH fluid in
a lattice model, electron-electron interaction energies on neighboring lattice sites of at least the order of the
bandwidth are needed, which is only possible for extremely flat bands. In our project, we do not address
this problem. Second, and more importantly, such states are well studied conceptually and do not lead to
new physics, as the idea of taking a state and its mirror image together without any interaction between
the states has been well understood in the context of TIs. So effectively replacing the IQH state (for the
TI) by a FQH state (for the FTI) does not give rise to profoundly new physics, since the topological order
(the fractionalization) and the symmetry protection do not entangle. Additionally, in real-life electronic
systems, interactions between T-conjugate particles, for instance ↑-spin and ↓-spin particles, are present.
Therefore, the community has been looking for ways to implement some topological entanglement between
different spin species [137]. For all practical purposes so far, however, T symmetry has appeared to limit the
set of possible fractional states to those with no interlocking between both “layers” of up- and down-spins
[133]. Up to now, this is just an empirical observation, but it may be due to a theorem which has not yet
been formulated or verified. Thus, the quest for a state beyond a FTI, a state where different spin species
are entangled, ideally via topological order, remains open.

Our proposal is based on the idea that demanding T as protecting symmetry might be too restrictive.
The concepts of protection of edge states via T and fractionalization are orthogonal. We found that, given
two FQH-layers and looking for a way to interlock up- and down-spins, we do not necessarily need T as a
protecting symmetry. Rather, the protection can be established through topological interlocking. Moreover,
experience tells that it is difficult to realize both topological interlocking and protection by T [95; 130; 133],

1 An alternative approach is presented in [158]: The authors apply a slave-rotor mean-field approach to study a bilayer
honeycomb lattice with spin-orbit coupling and short-range electron-electron repulsion. A FQSH phase occurs, carried
by fractionalized spinons
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and, as alluded to above, it may well be that for reasons we presently do not know, both ways of protection
cannot coexist.

In this chapter, we propose the very first example of a microscopic state where a topological entanglement
is present, and hence introduce a new universality class of fractionally quantized, topologically ordered
insulators. While T is no longer an exact symmetry, it is only violated in a subtle way, making it an
“approximate symmetry”. By this, we mean that locally observable quantities such as the filling factors
and quasi-particle charges in both layers are time reversal symmetry invariant. We refer to this situation as
“topological time reversal symmetry breaking”. Our new universality class of FIs includes the previously
established FTI as a trivial case. For our novel state, the meaning of “approximate” becomes clearer as
we formulate our proposal in the upcoming sections. We choose a state in which the energetic cost of
non-conservation of T is minimal: The interlayer interaction energies are similar to the T-symmetric case
for non-interacting systems, while a significant interaction between the layers is present. Incidentally, if T
was not even an approximate symmetry, we could still have an interesting state for further research.

The challenge in our work is not to find an energetically optimal state for our system. It is a proof-
of-concept, in which we want to demonstrate that interlayer correlation through topological interlocking
can be energetically advantageous. This opens the door for a possible generalization of the conceptual
framework, investigating FIs which are not symmetry-protected but topologically protected.

As we know from recent discoveries, the protecting symmetry for TIs does not necessarily need to be T:
For instance, topological crystalline insulators are protected by an interplay of T- and lattice symmetries
[26; 68]. So far, there is a whole class of symmetry protected TIs, but we found the first topological phase
protected by topology, meaning that the topological properties are not protected by a symmetry but by a
topological entanglement itself. The step, we propose, from a conventional TI to a topologically stabilized
TI is loosely comparable to the conceptional difference between conventional order and topological order,
even though there are crucial differences. In a conventionally ordered system, a symmetry is violated and
an order parameter can be defined, while in a topologically ordered system, the order manifests itself only
through topological properties including fractional quantum numbers of excitations, emergent gauge fields,
edge states and topological degeneracies on higher genus Riemann surfaces.

Another perspective on the problem is that, while the exact restoration of a symmetry like time reversal
in a TI takes place on the level of single particle physics, the approximate restoration of a symmetry (for us
T) in a state as we propose here is intrinsically a many body effect. For our state, time reversal is violated
by topological order, meaning that local quantities such as the filling factor and charge are the same in both
layers. One has to employ a non-local probe to see the difference to a time reversal symmetric system, for
instance by measuring the quasiparticle statistics, which is a non-local quantity. It is noteworthy that the
spontaneous time reversal symmetry breaking by topological order, which amounts to a global symmetry
breaking of a locally conserved symmetry, does not affect the dynamics of the edge states. The chiral edge
states still form Kramers pairs, and are protected from backscattering by the local time reversal symmetry.

One important point to address is the issue of locality. We have developed and employed a method to
formulate wave functions where topological interlocking is possible without the loss of locality. The locality
of our state follows from the locality of the quasihole and quasiparticle excitations of the wave functions
for FQH states. Their locality, on the other hand, stems from Laughlin’s gauge argument [85]: He created
a quasihole by piercing a droplet of the Hall fluid with a magnetic flux tube, turning the flux adiabatically
from Φ = 0 to Φ = 2π. By the end of the process, the Hamiltonian of the state has evolved back to its
initial form modulo a singular gauge transformation. We hence assume that the changes in the density of
the Hall fluid occur locally in a region around the flux tube. The length scale determining the size of this
region has to be the only available length scale in this problem, that is, the so-called magnetic length. The
difference between quasihole and quasiparticle excitation lies merely in the direction, in which the flux is
applied. The locality of the excitations has been amply confirmed by numerical studies [103].

So far, we have analyzed the 311-state only in a spherical geometry. For many purposes, however, it
is highly desirable to embed the state into a system without rotational symmetry, such as a torus or
cylinder. For instance, only on higher genus manifolds, quantum Hall states exhibit a topological ground
state degeneracy. The framework of the parent Hamiltonian construction of Chapter 6.3 would have to be
modified to accommodate cylindric and toroidal geometries as indicated in [90], since it relies on the relative
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angular momentum as an exact quantum number, which only applies for rotationally invariant systems.
Pseudopotentials for systems without rotational symmetry would have to be defined, which is possible as
outlined in [90].
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6.2 Properties of the 311-state

6.2.1 Construction of the 311-state

To investigate the feasibility to stabilize a fractional insulator (FI), we construct a quantized Hall wave
function, describing electrons in a two dimensional continuum subject to a perpendicular magnetic field.
More precisely, we need a wave function for ↑- and ↓-spin electrons, which move in magnetic fields of equal
magnitude but pointing in opposite directions, since we wish to describe a topological insulator with chiral
edge modes protected by time reversal symmetry.

Our wave function for an FI is inspired by the explicit form of the Haldane-Halperin hierarchy
states (2.6.1) [38] and a coupled-wire construction in [97]. In the plane, we have

Ψm↑,m↓,n[z, w̄] =

N↑∏
i=1

e−
1
4 |zi|2

N↓∏
k=1

e−
1
4 |w̄k|2

· 1

N

N↓∏
k<l

(w̄k − w̄l)m↓
N↓∏
k

N↑∏
i

(w̄k − 2
∂

∂zi
)n

N↑∏
i<j

(zi − zj)m↑ ,
(6.2.1)

where N is the overall normalization of the state, and z1, . . . , zN↑ and w1, . . . , wN↓ denote the coordinates
of the ↑ and ↓ electrons, respectively, in complex coordinate notation. The bars above the w-coordinates
indicate complex conjugation. The exponents m↑ and m↓ are positive, odd integers and n ∈ Z.

A translational invariant version is derived by placing the wave function on a unit sphere, as explained
in Section 2.4, yielding the wave function

Ψm↑,m↓,n[u, v, ā, b̄] = (6.2.2)

1

N

N↓∏
k<l

(
āk b̄l − ālb̄k

)m↓ N↓∏
k

N↑∏
i

(
b̄k

∂

∂ui
− āk

∂

∂vi

)n N↑∏
i<j

(uivj − ujvi)m↑ .

This state realizes a system of N↑ particles of flavor ↑ and N↓ particles of flavor ↓, which are described
by the spinor coordinates (u, v) and (ā, b̄), respectively. It can be visualized as a two-layered system, one for
flavor ↑ and one for flavor ↓. As formally reflected in the complex conjugation, the ↓-particles experience a
magnetic field B↓ with opposite direction as compared to the magnetic field B↑ for the ↑-particles.

The flux quanta seen in each layer are

2s↑ = NΦ,↑ = m↑(N↑ − 1)− nN↓ (6.2.3)

and
2s↓ = NΦ,↓ = m↓(N↓ − 1) + nN↑. (6.2.4)

We assume that the magnetic field in both layers is of equal strength, NΦ,↑ = NΦ,↓ = NΦ. The filling
fraction is defined by

1

ν
:=

∂NΦ

∂N

∣∣∣∣
N→∞

, (6.2.5)

such that the filling fractions in both layers are given by(
ν↑
ν↓

)
=

1

m↑m↓ + n2

(
m↓ + n
m↑ − n

)
. (6.2.6)

In our numerical analysis, however, we assume an unpolarized ground state, i.e. equal particle numbers
N↑ = N↓. The filling fractions in both layers then are
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ν↑ =
1

m↑ − n
and ν↓ =

1

m↓ + n
. (6.2.7)

In general, (6.2.6) and (6.2.7) give different results. For our state, we choose m↑ = 3, m↓ = 1 and n = 1,
to which we from now on refer to as the “311-state”. This is the simplest applicable choice for which the
filling fractions are identical, ν↑ = ν↓ = 1/2. This guarantees that time reversal symmetry is locally valid.
Another possible choice preserving time-reversal symmetry locally is m↑ = 5, m↓ = 1 and n = 2. In this
512-state, it is ν↑ = ν↓ = 1/3.

The state (6.2.2) starts with a Laughlin state of filling fraction 1/m↑ for the ↑-particles and a completely
filled lowest Landau level for the ↓-particles. The effect of the interflavor term∏

r

∏
s

(
b̄s

∂

∂ur
− ās

∂

∂vr

)n
can be understood by comparing our state to the Laughlin state with a quasielectron (2.3.5): The ↑-particles
see quasielectrons at the positions of the ↓-particles. The quasiparticles decrease the flux through the ↑-
sphere by nN↓. This implies that the degree of the polynomial for the ↓-particles increases by nN↑, while
the total flux seen by the ↓-particles increases by nN↑. The interflavor term thus shifts zeros from the ↑-
layer to the ↓-layer. As far as the filling factors are concerned, increasing n thereby effectively increases ν↑
while decreasing ν↓. Since quasiparticles correspond to a surplus of electron charge, we see that the density
of ↑-particles is increased at the position of the ↓-particles. In other words, the interlayer correlation is
attractive. When both fillings factors are equal, the quasiparticle excitations in both groups carry opposite
charges which are equal in magnitude.

(u, v)

(ā, b̄)

m↑ = 3

m↓ = 1

e−↑

e−↓ e−↓

qh qh

qe qe

Fig. 6.1 Illustration of the 311-state. In the ↑-layer, the particles e−↑ have spherical coordinates (u, v) and live in a

Laughlin state with filling fraction 1/m↑ = 1/3 before the interlayer interaction is turned on. In the ↓-layer, the particles

e−↓ , have coordinates (ā, b̄) and start off in a filled lowest Landau level, m↓ = 1. The ↑-particles see quasielectrons

(qe) at the positions of the ↓-particles, which remove one zero each in the ↑-layer. This corresponds to quasiholes (qh)
adding zeros in the ↓-layer, yielding one extra zero per electron. Finally, the number of zeros in each layer is two per
electron, which implies ν↑ = ν↓ = 1

2
.

6.2.2 Angular momentum calculation and rotational invariance

As we are dealing with a two-layer system in which the magnetic fields point in opposite directions, the
calculation of angular momenta is somewhat more subtle. Remembering the formalism leading to (2.4.10),
in the lowest Landau level, the angular momentum L is

L =
1

2
(u, v)σ

(
∂u
∂v

)
.
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This formalism is applicable for the ↑-layer, where we describe the particles by spinor coordinates

u = cos

(
θ

2

)
eiϕ2 ,

v = sin

(
θ

2

)
e−iϕ2 .

(6.2.8)

The angular momentum components are

Lz↑ =
1

2
(u∂u − v∂v),

L+
↑ = u∂v,

L−↑ = v∂u.

(6.2.9)

The spinor coordinates u and v can also be viewed as independent boson creation operators, and their
derivative operators ∂u and ∂v as the conjugate destruction operators.

As detailed in Section 2.4, the states

ψsm,0(u, v) =

√
(2s+ 1)!

(s+m)!(s−m)!
us+mvs−m (6.2.10)

form a complete orthogonal basis, m = −s,−s + 1, . . . , s. A single particle state localized at position
Ω(α, β), defined in (2.4.14), is given by

Ψ(α,β)(u, v) = (ᾱu+ β̄v)2s. (6.2.11)

Its angular momentum along Ω is s, since

(Ω · L↑)Ψ(α,β)(u, v) = sΨ(α,β)(u, v) (6.2.12)

and, according to [36],

(Ω · L↑) = (u, v)

(
ᾱ
β̄

)
(α, β)

(
∂u
∂v

)
− 1

2
(αᾱ+ ββ̄)(u∂u + v∂v). (6.2.13)

In Figure 6.2, Ω is chosen to point towards the north pole, so that α = 1 and β = 0. Then, ↑-particles with
maximal angular momentum s along Ω, described by (6.2.11), are located at the north pole, while particles
at the south pole have angular momentum −s.

A more intuitive understanding of the state (6.2.11) can be achieved by the following considerations:
The chord distance between two points on the unit sphere is given by

|Ω(u1, v1)−Ω(u2, v2)| = 2|u1v2 − u2v1|. (6.2.14)

Given a point Ω(α, β) on the sphere, the point antipodal to it is −Ω(α, β) = Ω(b̄,−ā), since insertion into
(6.2.14) gives

|Ω(α, β)−Ω(β̄,−ᾱ)| = 2||α|2 + |β|2| = 2.

Then the absolute value of state (6.2.11) is proportional to the distance of point (u, v) to the point P ′

antipodal to (α, β) taken to the power 2s, since the distance is

|Ω(u, v)−Ω(β̄,−ᾱ)| = 2|ᾱu+ β̄v|.

For the ↓-layer, however, the sign of the magnetic field is reversed. Thus, the spinor coordinates are
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Ω

N

S

m = s
s− 1
s− 2

...

0

−s

Fig. 6.2 Localization of a single-particle state on the ↑-sphere for an angular momentum component along Ω of m.
For maximum angular momentum m = s, the state is localized at the north pole.

ā = cos

(
θ

2

)
e−iϕ2 ,

b̄ = sin

(
θ

2

)
eiϕ2 .

(6.2.15)

The states

ψs
′

m′,0(ā, b̄) =

√
(2s′ + 1)!

(s′ +m′)!(s′ −m′)! ā
s′−m′ b̄s

′+m′ (6.2.16)

form a complete orthogonal basis, m′ = −s′,−s′ + 1, . . . , s′.
Since Ψ(α,β)(u, v) is located around Ω(α, β) on the sphere, the same holds for

Ψ′(α,β)(ā, b̄) = (αā+ βb̄)2s′ . (6.2.17)

In this case, however, the angular momentum points to the antipodal point −Ω(α, β), as we will explain
now.

At the north pole, α = eiξ and β = 0, where ξ is a pure phase. Since the complex-valuedness of α only
adds a phase ξ to the wave function Ψ′, we can set it to 0, such that α = 1. Then Ψ′ becomes

Ψ′(1,0)(ā, b̄) = ā2s′ = e−is′ϕ. (6.2.18)

Thus, the z-component of the angular momentum operator

Lz↓ = −i
∂

∂ϕ
(6.2.19)

is Lz↓ = −s′. We therefore need to construct an angular momentum operator for the ↓-particle which fulfills

(Ω · L↓)Ψ′(α,β)(ā, b̄) = −s′Ψ′(α,β)(ā, b̄), (6.2.20)

with

Ω(α, β) = (α, β)σ

(
ᾱ
β̄

)
= (ᾱ, β̄)σ>

(
α
β

)
. (6.2.21)

The previous expression (6.2.21) can be proven by explicitly writing out Ω,
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Ωz = αᾱ− ββ̄ = cos2

(
θ

2

)
− sin2

(
θ

2

)
= cos(θ),

Ωx = αβ̄ + ᾱβ = cos

(
θ

2

)
sin

(
θ

2

)(
eiϕ + e−iϕ

)
= sin(θ) cos(ϕ),

Ωy = −i(αβ̄ − ᾱβ) = · · · = sin(θ) sin(ϕ).

(6.2.22)

The operator

L↓ = −1

2
(ā, b̄)σ>

(
∂ā
∂b̄

)
. (6.2.23)

fulfills the Lie algebra and the above requirement (6.2.20). It is thus the total angular momentum for the
↓-layer.

We then have

(Ω · L↓) = −(ā, b̄)

(
α
β

)
(ᾱ, β̄)

(
∂ā
∂b̄

)
+

1

2
(ᾱα+ β̄β)(ā∂ā + b̄∂b̄). (6.2.24)

The components of the angular momentum are

Lz↓ = −1

2
(ā∂ā − b̄∂b̄),

L+
↓ = −b̄∂ā,

L−↓ = −ā∂b̄.

(6.2.25)

Obviously, the ↓-layer components have a minus sign as compared to the ↑-components (6.2.9). Thus, for
maximum Lz↓-eigenvalue s′, the single-particle state is located a the south pole of the ↓-sphere. This state
is maximally separated from a single-particle state on the ↑-sphere with maximum Lz↓-eigenvalue, which
sits at the north pole.

The 311-state is invariant under spacial rotations around the sphere, i.e., it is a singlet state with respect
to the total angular momentum: L2

tot |Ψ311〉 = 0, with

Ltot = L↑tot + L↓tot,

Lαtot =

Nα∑
i=1

Lαi , α =↑, ↓ .
(6.2.26)

The singlet nature of the 311-state can be verified both analytically and numerically for finite systems.
The easiest way to do this is to verify Lztot |Ψ311〉 = 0 and to check if the ladder operator L+

tot annihilates
the state,

L+
tot |Ψ311〉 = 0, (6.2.27)

as only rotationally invariant states fulfill this requirement. The total ladder operator is

L+
tot =

N↑∑
i=1

L+
↑,i +

N↓∑
j=1

L+
↓,j (6.2.28)

=
∑
i

ui∂vi −
∑
j

b̄j∂āj . (6.2.29)

The above statement (6.2.27) can be easily proven, since L+
tot commutes with each of the three factors of

the 311-state (6.2.2). For instance, for the interlayer term, we have
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L+

tot,

(
b̄k

∂

∂ui
− āk

∂

∂vi

)]
=

[∑
l

ul
∂

∂vl
, b̄k

∂

∂ui

]
+

[∑
l

b̄l
∂

∂āl
, āk

∂

∂vi

]

= − ∂

∂vi
b̄k + b̄k

∂

∂vi
= 0.

(6.2.30)

We have also confirmed the singlet nature of the wave function for all available system sizes.

6.2.3 Effective field theory of the 311-state

An effective field theory of the 311-state can be formulated, and we will summarize the main results here.
A detailed derivation will be subject of a future publication by our research group.

For the Lagrangian, we get

L = − 1

4π
εµνρa>µK∂νaρ −

1

2π
εµνρ(a>µ q)∂νAρ+ (a>µ l)J

µ
QP, (6.2.31)

where we sum over repeated indices. The K-matrix, charge vector q and vector l are specified by

K =

(
3 −1
−1 −1

)
, q =

(
1
−1

)
, l =

(
l↑
l↓

)
(6.2.32)

In terms of the above quantities, the quantum Hall conductivity σxy, the quasiparticle charge QQP and
the exchange phase θ can be expressed as

σxy =
e2

h
q>K−1q, QQP = q>K−1l, θ = πl>K−1l. (6.2.33)

For the 311-state, we have

σxy = 0, Q↑ = Q↓ =
1

2
, θ↑ =

π

4
, θ↓ = −3π

4
. (6.2.34)

Comparing this result to the state proposed by Meng et al. [97], we see that both systems are equivalent:
After interchanging the labels of the first and second layer(K → K̃, q → q̃), the two systems can be
transformed into each other via a simple transformation matrix [145], W ∈ SL(n,Z), according to

K ′ = WK̃WT , q′ = Wq̃, W =

(
0 1
1 0

)
. (6.2.35)

6.2.4 Pair correlation function

The pair correlation function g(r) of a many particle system describes how its particle density varies as a
function of distance to a reference particle [7]. Loosely speaking, it is related to the probability of finding a
particle at a specified distance from a reference particle. In order to link microscopic details to macroscopic
properties, this function is of fundamental interest. In this section, the analytical construction of the pair
correlation function is presented. In Section 6.4.2, the numerical results for our 311-state are discussed.

In case of a two-flavor system, as for the 311-state, there are three different types of pair correlation
functions: two intraflavor corrleations g↑↑ and g↓↓, and one interflavor correlation g↓↑. On the sphere, for a
system with N↑ (N↓) spin-up (spin-down) particles with spinor coordinates (ui, vi) ((āi, b̄i)), they are
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N↑(N↑ − 1)g↑↑(u1, v1, u2, v2) =

N↑∏
i=3

∫
D(ui, vi)

·
N↓∏
k=1

∫
D(āk, b̄k)Ψ̄311({ui, vi}i, {āk, b̄k}k)Ψ311({ui, vi}i, {āk, b̄k}k),

(6.2.36)

N↓(N↓ − 1)g↓↓(ā1, b̄1, ā2, b̄2) =

N↑∏
i=1

∫
D(ui, vi)

·
N↓∏
k=3

∫
D(āk, b̄k)Ψ̄311({ui, vi}i, {āk, b̄k}k)Ψ311({ui, vi}i, {āk, b̄k}k),

(6.2.37)

N↓N↑g↓↑(u1, v1, ā1, b̄1) =

N↑∏
i=2

∫
D(ui, vi)

·
N↓∏
k=2

∫
D(āk, b̄k)Ψ̄311({ui, vi}i, {āk, b̄k}k)Ψ311({ui, vi}i, {āk, b̄k}k).

(6.2.38)

We integrate out all particle coordinates except for two.
To numerically calculate these quantities, we write out the correlation functions in terms of creation

and annihilation operators. To begin with, we take a system with only one particle flavor. Extending this
feature to a two flavor-system is straightforward. A normalized single particle state with spinor coordinates
(u1, v1) is

|u1, v1〉 = Ψ†(u1, v1) |0〉 =

2s∑
β=0

1

Nβ
ūβ1 v̄

2s−β
1 c†β |0〉 , (6.2.39)

with the normalization N 2
β = β!(2s−β)!

(2s+1)! . The single-particle state fulfills the completeness relation∫
D(u1, v1) |u1, v1〉 〈u1, v1| = 1. (6.2.40)

A many particle state in second quantization, consisting of M configurations, is

|α〉 =

M∑
n=1

αn |αn〉 =
∑
n

αn |n0, n1, . . . , n2s〉

=

M∑
n=1

αn
(c†0)n0

√
n0!

(c†1)n1

√
n1!

. . .
(c†2s)

n2s

√
n2s!

|0〉N , (6.2.41)

with |n0, n1, . . . , n2s〉 being the occupation number basis, id est ni indicates the number of particles in
orbital i and 2s + 1 is the number of orbitals in the state. For a fermionic system, the orbitals can be at
most singly occupied, ni = 0, 1. Each configuration is labelled by its orbital occupation n = n0, n1, . . . , n2s.

To calculate the pair correlation function, we integrate out all but two particles

N(N − 1)g(u1, v1, u2, v2) = 〈α|u1, v1〉 |u2, v2〉 〈u2, v2| 〈u1, v1|α〉

=

M∑
n=1

M∑
n′=1

∑
β,γ

∑
β′,γ′

ᾱn′αn
1

Nβ
1

Nγ
1

Nβ′
1

Nγ′
ūβ
′

1 v̄
2s−β′
1 ūγ

′

2 v̄
2s−γ′
2 uβ1v

2s−β
1 uγ2v

2s−γ
2

·N 〈0|
(c2s)

n′2s√
n′2s!

. . .
(c1)n

′
1√

n′1!
c†βc
†
γcγ′ cβ′

(c†1)n1

√
n1!

. . .
(c†2s)

n2s

√
n2s!

|0〉N . (6.2.42)
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In general, all matrix elements, diagonal (n = n′) as well as off-diagonal (n 6= n′), contribute to the pair
correlation function. However, if we pin the first particle at the south pole, (u1, v1) = (0, 1), only those
configurations with the first particle in the orbital 0 contribute, which imposes β = β

′
= 0. As a reminder,

according to Haldane’s definition [53] of a set of spinor coordinates (a, b), they correspond to a point Ω(a, b)
with

Ω(a, b) = (a, b)σ

(
ā

b̄

)
, (6.2.43)

where σ is the Pauli matrix vector. Thus, the above values correspond to real space positions Ω(0, 1) =
(0, 0,−1) and Ω(sin(θ/2), cos(θ/2)) = (sin(θ), 0,− cos(θ)).

Now, if we fix one particle to a specific orbital, only diagonal matrix elements can contribute to the pair
correlation function as the total angular momentum in z-direction is conserved for each configuration. This
decisively simplifies the above equation (6.2.42) to

N(N − 1)g(u1, v1, u2, v2) =
∑
n

|αn|2 〈αn|u1, v1〉 |u2, v2〉 〈u2, v2| 〈u1, v1|αn〉

=

M∑
n=1

2s∑
β,γ=0

2s∑
β′,γ′=0

|αn|2
1

Nβ
1

Nγ
1

Nβ′
1

Nγ′
ūβ
′

1 v̄
2s−β′
1 ūγ

′

2 v̄
2s−γ′
2 uβ1v

2s−β
1 uγ2v

2s−γ
2 〈αn| c†βc†γcγ′ cβ′ |αn〉 .

(6.2.44)

We can further simplify

〈αn| c†βc†γcγ′ cβ′ |αn〉 = −δβ,γ′δγ,β′ 〈αn|nβnγ |αn〉+ δβ,β′δγ,γ′ 〈αn|nβnγ |αn〉 (6.2.45)

with the number operator nβ = c†βcβ . Inserting (6.2.45) into (6.2.44) yields

N(N − 1)g(u1, v1, u2, v2) =
∑
n

∑
β,γ

|αn|2
1

N 2
βN 2

γ

nβnγ ·

·
(
ūβ1 v̄

2s−β
1 ūγ2 v̄

2s−γ
2 uβ1v

2s−β
1 uγ2v

2s−γ
2 − ūβ1 v̄2s−β

1 ūγ2 v̄
2s−γ
2 uγ1v

2s−γ
1 uβ2v

2s−β
2

)
. (6.2.46)

The pair correlation function of particles with different flavor, e.g. spin-up particles with coordinates
(u1, v1) and spin-down particles with coordinates (ā1, b̄1), with the spin-down particle pinned at the south
pole, is

N↑N↓g(ā1, b̄1, u1, v1) =
∑
n

2s↑∑
β=0

2s↓∑
γ=0

|αn|2
1

N 2
βN 2

γ

nβnγ · aγ1b
2s↓−γ
1 ūβ1 v̄

2s↑−β
1 āγ1 b̄

2s↓−γ
1 uβ1v

2s↑−β
1 . (6.2.47)

For a bosonic system with N particles, the pair correlation function with one particle pinned at the south
pole ((u1, v1) = (0, 1)) simplifies accordingly. However, we get an additional term in expression (6.2.45) for
the case β = γ = β′ = γ′ which is excluded in the fermionic case. It is

N(N − 1)g(u1, v1, u2, v2) =∑
n

∑
β,γ

|αn|2
(
(1− δβ,γ)

1

N 2
βN 2

γ

nβnγ ·

· (ūβ1 v̄2s−β
1 ūγ2 v̄

2s−γ
2 uβ1v

2s−β
1 uγ2v

2s−γ
2 + ūβ1 v̄

2s−β
1 ūγ2 v̄

2s−γ
2 uγ1v

2s−γ
1 uβ2v

2s−β
2 )

+ δβ,γ
1

N 4
β

nβ(nβ − 1)ūβ1 v̄
2s−β
1 ūβ2 v̄

2s−β
2 uβ1v

2s−β
1 uβ2v

2s−β
2

)
. (6.2.48)

To check the correctness of the correlation functions, the particle density ρ(u1, v1) can be calculated by
integrating out one particle degree of freedom of the correlation function g(u1, v1, u2, v2),
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ρ(u1, v1) =

∫
D(u1, v1)g(u1, v1, u2, v2). (6.2.49)

We expect a constant particle density over the whole sphere, as the particles spread over it evenly.
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6.3 Construction of a parent Hamiltonian

The knowledge of a parent Hamiltonian is crucial for the characterization of a specified state. Therefore,
we wish to derive a parent Hamiltonian for our 311-state. For the system to be experimentally viable,
this Hamiltonian optimally contains only short-range interactions. In the following chapter, we introduce
a numerical method to construct an approximate parent Hamiltonian for any specified state.

6.3.1 Pseudopotentials

Initially, pair pseudopotentials were developed by Haldane in the context of the FQHE [53], expressing the
interaction energy of a pair of particles in terms of their realtive angular momentum. The formalism applies
to QH systems in the infinite plane or on the surface of a sphere. In such cases, the system is invariant
under transformations around at least one axis, so that the Wigner-Eckart theorem (4.2.15) applies.

According to the Wigner-Eckart theorem, any long range interaction V in a spherically symmetric system
decomposes into a discrete set of components depending only on the relative angular momentum, the so-
called pseudopotential coefficients. These are partial wave expansion coefficients of N -body interactions.
For two particle-scattering, the pseudopotential is a quantitative measure of the interaction energy in terms
of the relative angular momentum. Generalizations to more than two bodies allow the expansion of a wider
range of interaction types [131]. For instance, the “Pfaffian” state [100] has a parent Hamiltonian which is
the shortest-range repulsion potential acting on three particles at a time [47; 48; 119]. The pseudopotential
formalism has proven to be very useful to universally classify different interaction profiles, to provide an
adequate description of FQHE phase diagrams, and to find a parent Hamiltonian to a specified FQH wave
function. In the following, we will restrict our analysis to pair pseudopotentials.

Let us consider a sphere of radius R with a magnetic monopole placed at the center of the sphere,
resulting in a radial magnetic field B. Due to Dirac’s quantization condition, the total flux 4πR2B equals
an integer 2s of the elementary flux quantum h/e. Taking c = 1, we have

B =
~s
eR2

⇐⇒ s =
R2

a2
0

, (6.3.1)

with a0 = (~/eB)1/2 the magnetic length. In the following, we again set ~ = 1. The kinetic energy within a
single LL is effectively constant. Thus, the remaining effective Hamiltonian is rotationally invariant, which
equals translational invariance on the sphere. The Hamiltonian depends solely on particle interactions (e.g.
the Coulomb potential) projected to the LL.

Assuming a two-body interaction, the projection Πn of the Hamiltonian H on the n-th LL can be
expressed in second quantized form as

Heff = ΠnHΠn =

s∑
m1=−s

s∑
m2=−s

s∑
m3=−s

s∑
m4=−s

c†m1
c†m2

cm4
cm3

· δm1+m2,m3+m4
Vm1m2m3m4

, (6.3.2)

where c†m (cm) creates (annihilates) a particle with Lz quantum number m in the properly normalized
single particle state

ψsm,0(u, v) =

√
(2s+ 1)!

4π(s+m)!(s−m)!
us+mvs−m. (6.3.3)

The Kronecker-delta assures angular momentum conservation throughout the scattering process. Due to
rotational invariance, the matrix element Vm1m2m3m4

factorizes into
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V m1m2m3m4
=

2s∑
l=0

〈s,m1; s,m2|2s− l,m1 +m2〉V 2s
l 〈2s− l,m3 +m4|s,m3; s,m4〉 , (6.3.4)

which is a product of the Haldane pair pseudopotential V 2s
l and a geometrical factor involving the Clebsch-

Gordon coefficients 〈s,m1; s,m2|j,m1 +m2〉. The relative angular momentum l of two particles with an-
gular momenta L1 and L2, L2

1 = L2
2 = s(s+ 1), fulfills 0 ≤ l ≤ 2s, l ∈ N. For fermions (bosons), the sum is

restricted to l odd (even). The coefficient V 2s
l then equals the energy cost of two particles having relative

angular momentum l. Basically, in (6.3.4), a basis transformation is performed from an uncoupled tensor
product basis to a total angular momentum basis, the result is multiplied with a pseudopotential coefficient
and then transformed back into the original uncoupled basis. The finite set of pseudopotentials contains
the information about the interaction projected to the specified LL.

To understand pseudopotentials in more detail, it is instructive to expand the effective Hamiltonian
in terms of projection operators, with the pseudopotentials as expansion coefficients. In the following, we
restrict our analysis to two-body interactions and the lowest LL. However, the pseudopotential formalism
can be expanded to higher-order interactions [131] and higher LLs [36]. The simple generalization to higher
LLs is based on the fact that there is in every LL a one-to-one mapping to a system confined to the lowest
LL with a modified interparticle interaction.

To derive the pseudopotential expansion, we first need to define an orthonormal basis for the space
of magnetic translation invariant QH states. A convenient choice are the two-particle coherent lowest LL
states introduced by Haldane [53], which are defined by

{Ω(α, β) · (L1 + L2)}ψs,j(α,β),0[u, v] = jψs,j(α,β),0[u, v], (6.3.5)

with [u, v] := (u1, u2, v1, v2) the particle coordinates on the sphere and j the total angular momentum,

(L1 + L2)2ψs,j(α,β),0[u, v] = j(j + 1)ψs,j(α,β),0[u, v]. (6.3.6)

(6.3.5) is solved by

ψs,j(α,β),0[u, v] = (u1v2 − u2v1)2s−j ∏
i=1,2

(ᾱui + β̄vi)
j , (6.3.7)

describing two particles with relative angular momentum l = 2s− j precessing around their common center
of mass at Ω(α, β). As above, l has to be odd (even) for fermions (bosons). The total angular momentum
can take 2s+1 values j = 0, 1, . . . , 2s, and the relative angular momentum accordingly l = 2s, 2s−1, . . . , 0.
Properly orthogonalized, the states {ψs,j(α,β),0}j form an orthogonal basis in the subspace of two-particle
interactions.

Analogously to the localization of the single-particle state, illustrated in Figure 6.2 of Section 6.2.2,
the two-particle state has its two particles localized at the north pole for j = 2s. For j = 0, the state is
rotationally invariant. However, the two particles are not located at opposite sides of the sphere. This can
be seen mathematically by multiplying out (6.3.7), yielding

ψs,0(α,β),0[u, v] =

2s∑
k=0

(
2s
k

)
(−1)ku2s−k

1 v2s−k
2 uk2v

k
1 . (6.3.8)

The terms with k = 0 and k = 2s describes a state with the two particles localized at opposite sides of the
sphere. Modulo the antisymmetrization, these terms correspond to the state

|j1,m1; j2,m2〉 = |s, s; s,−s〉

in Clebsch-Gordon notation. All other terms occurring in the sum (6.3.8), however, describe states in which
the two particles are not maximally separated.
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Projected onto the lowest Landau level via Π0, every rotationally invariant two-body operator V (r1 · r2)
can be expanded as

Π0V (Ω(u1, v1) ·Ω(u2, v2)) Π0 =

2s∑
l=0

V 2s
l P2s−l(L1 + L2), (6.3.9)

and the pseudopotential coefficients V 2s
l , similar to those in (6.3.4), can be evaluated using the coherent

states (6.3.7), yielding

V 2s
l =

〈ψs,j(α,β),0|V (Ω(u1, v1) ·Ω(u2, v2)) |ψs,j(α,β),0〉
〈ψs,j(α,β),0|ψ

s,j
(α,β),0〉

. (6.3.10)

The relative angular momentum quantum number l = 2j−1 is restricted to odd (even) integers, depending
on the fermionic (bosonic) character of the system. The projection operator Pj(L) projects onto states with
total angular momentum L2 = (L1 + L2)2 = j(j + 1).

The most general two-particle interaction Hamiltonian for a system of N particles in terms of pseudopo-
tential coefficients thus is

Hint =

N∑
i<j

2s∑
l

V 2s
l P2s−l(Li + Lj) =:

2s∑
l

V 2s
l H(l). (6.3.11)

The pseudopotential expansion has proven to be highly useful to describe FQH states. For instance, the
Laughlin state with a filling fraction of ν = 1/3 is the unique zero mode of the V 2s

1 pseudopotential (V 2s
l = 0

∀ l > 1). For a filling of 1/m, the Laughlin state emerges as the densest ground state of a Hamiltonian
H =

∑
l′<m V

2s
l′ H

(l′), with arbitrary, but positive coefficients V 2s
l′ . The requirement of being the densest

zero mode is necessary to obtain non-trivial results, since it is easy to construct additional zero modes by
increasing the flux and thus creating quasihole states.

A pseudopotential of the form V 2s
l = a + bl(l + 1), with a, b ∈ R, is called harmonic. The parameter

a adds a constant potential, while b adds a term ∝ L2
tot. It can be proven that it does not break the

degeneracy of n-particle angular momentum multiplets and thus does not introduce correlations into the
QH system [152; 117]. Correlations in the system then can be introduced by deviations from the harmonic
pseudopotential.

6.3.1.1 Intralayer pseudopotentials for the Coulomb potential

For the Coulomb potential, the pseudopotential coefficients can be expressed in a compact form. We first
consider an intralayer interaction, meaning a single-flavor system of N electrons on the sphere interacting
with each other and a positive background via the Coulomb potential. In Section 6.3.1.3, we will derive an
expression for the more complicated system of an interlayer interaction, described by a Coulomb potential.
Assuming the magnetic length a0 as the unit length and e2/4πεa0 the unit of energy, ε being the dielectric
constant, (6.3.1) simplifies to S = R2. The Coulomb potential then simplifies to V (r) = 1/r, where r is the
distance between two interacting particles. On the unit sphere, the chord distance between two particles is
given by (6.2.14).

Inserting the Coulomb potential into (6.3.2), we get

VCoul =
1

2

s∑
m1=−s

s∑
m2=−s

s∑
m3=−s

s∑
m4=−s

c†m1
c†m2

cm4
cm3
· 〈s,m1; s,m2|

1

r
|s,m3; s,m4〉 . (6.3.12)

The coefficient can be written as

〈s,m1; s,m2|
1

r
|s,m3; s,m4〉 =

2s∑
l=0

V 2s
l

l∑
M=−l

〈s,m1; s,m2|l,M〉 〈l,M |s,m3; s,m4〉R−1. (6.3.13)
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As derived by Fano et al. [25], the pseudopotential coefficients are given by

V 2s
l = 2

(
2l
l

)(
2(4s−l+1)

4s−l+1

)
(

2(2s+1)
2s+1

)2 , (6.3.14)

for a relative angular momenteum 0 ≤ l ≤ 2s. The pseudopotential coefficients for different total fluxes 2s
through the sphere are depicted in Figure 6.3. For large values of 2s, l and 2s− l, the asymptotic behavior
is

V 2s
l ∼

1

2

s√
l(s− l/4)

. (6.3.15)
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Fig. 6.3 Plot of the pseudopotential coefficients V 2s
l of the Coulomb potential, as a function of the relative angular

momentum l for different total fluxes 2s through the sphere, according to (6.3.14). The relative angular momentum
can only take values 0 ≤ l ≤ 2s. In case of a fermionic (bosonic) system, only the pseudopotential coefficients with l
odd (even) are non-zero.

6.3.1.2 Pseudopotentials for the total angular momentum

It is further useful to calculate the pseudopotentials of the total angular momentum of our two-layer system
in order to compare them to the parent Hamiltonian we propose below.

Given a single layer system of N particles living on a sphere, pierced by 2s Dirac flux quanta, the total
angular momentum can be rewritten in the form of (6.3.9) as a two-body scattering part and some constant

L2
tot =

N∑
i<j

2s∑
l=0

V 2s
l P2s−l(Li + Lj) + C. (6.3.16)

The operator P2s−l(Li + Lj) projects onto a two-particle state with total angular momentum (Li + Lj)
2 =

(2s− l)(2s− l + 1), such that
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L2
tot =

N∑
i<j

2s∑
l=0

(2s− l)(2s− l + 1)P2s−l(Li + Lj) + C. (6.3.17)

The constant C can be determined by expanding the total angular momentum,

L2
tot =

(
N∑
i=1

Li

)2

=
∑
i

L2
i + 2

∑
i<j

Li · Lj

= Ns(s+ 1) +
∑
i<j

(Li + Lj)
2 − 2

∑
i<j

L2
i

= Ns(s+ 1) +
∑
i<j

(Li + Lj)
2 − 2

N − 1

2
Ns(s+ 1)

=
∑
i<j

2s∑
l=0

(2s− l)(2s− l + 1)P2s−l(Li + Lj)−N(N − 2)s(s+ 1),

(6.3.18)

and therefore

V 2s
l = (2s− l)(2s− l + 1)− 2

N − 2

N − 1
s(s+ 1). (6.3.19)

Now, for a two-layer system, the total angular momentum can be separated into an intralayer part for
each sphere (first and second term) and an interlayer part (third term),

L2
tot =

 N↑∑
i=1

L↑i +

N↓∑
i=1

L↓i

2

=(L↑tot)
2 + (L↓tot)

2 + 2L↑tot · L↓tot

=

N↑∑
i<j

2s∑′

l=1

V 2s
l P2s−l(L

↑
i + L↑j )

+

N↓∑
k<l

2s′∑′

l=1

V 2s′

l P2s′−l(L
↓
k + L↓l )

+

N↑∑
i

N↓∑
k

2s∑
l=0

V s+s
′

l Ps+s′−l(L
↑
i + L↓k).

(6.3.20)

The primed summation in the first two terms includes only odd relative angular momenta due to the
fermionic nature of the particles. The total angular momentum can take values in the interval |s′ − s| <
j < (s′ + s). Since l = (s+ s′ − j), the relative angular momentum fulfills

0 ≤ l ≤ 2 min(s, s′).

According to the considerations for the one-layer system, the intralayer pseudopotentials are

V 2s
l = (2s− l)(2s− l + 1)− 2

N↑ − 2

N↑ − 1
s(s+ 1),

V 2s′

l = (2s′ − l)(2s′ − l + 1)− 2
N↓ − 2

N↓ − 1
s′(s′ + 1).

(6.3.21)

Analogously to the intralayer case, an orthonormal basis for the space of two-particle coherent states
has to be set up to derive the pseudopotential expansion for the interlayer case. The coherent states are
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defined by

{Ω(α, β) · (L↑ + L↓)}ψs+s
′,j

(α,β),0[u, v, ā, b̄] = jψs+s
′,j

(α,β),0[u, v, ā, b̄], (6.3.22)

with
(L↑ + L↓)

2ψs+s
′,j

(α,β),0[u, v, ā, b̄] = j(j + 1)ψs+s
′,j

(α,β),0[u, v, ā, b̄]. (6.3.23)

The expression

ψs+s
′,j

(α,β),0[u, v, ā, b̄] = (āu+ b̄v)s+s
′−j(ᾱu+ β̄v)s−s

′+j(ᾱb̄− β̄ā)s
′−s+j (6.3.24)

solves (6.3.22). The total angular momentum can have values |s− s′| ≤ j ≤ s+ s′ and the relative angular
momentum l = s + s′ − j has values l = 0, 1, . . . ,min(s, s′). For l = 0, the two particles are maximally
separated, sitting on opposite points of the sphere. For l = s+s′, the particles are in a rotationally invariant
state close to each other.

Similar to (6.3.10), the pseudopotential coefficients can be obtained from the coherent states (6.3.24),

V s+s
′

l =
〈ψs+s

′,j
(α,β),0|V (Ω(u, v) ·Ω(ā, b̄)) |ψs+s

′,j
(α,β),0〉

〈ψs+s′,j(α,β),0|ψ
s+s′,j
(α,β),0〉

. (6.3.25)

For the total angular momentum, the pseudopotential coefficients for the interlayer term are

V s+s
′

l = −(s+ s′ − l)(s+ s′ − l + 1) + [s(s+ 1) + s′(s′ + 1)], (6.3.26)

since

−2L↑tot · L↓tot =−
N↑∑
i=1

N↓∑
k=1

(L↑i + L↓k)2 +N↑N↓[
N↑∑
i=1

(L↑i )
2 +

N↓∑
k=1

(L↓k)2]

=−
N↑∑
i=1

N↓∑
i=k

2s∑
l=0

(s+ s′ − l)(s+ s′ − l + 1)Ps+s′−l(L
↑
i + L↓k)

+N↑N↓[s(s+ 1) + s′(s′ + 1)].

(6.3.27)
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Fig. 6.4 Plot of the pseudopotential coefficients V αβl of the total angular momentum, as a function of the relative
angular momentum l for a system of six ↑ − and six ↓ −particles. The intralayer angular momentum can only take
odd values as each layer consists of indistinguishable fermions, and 1 ≤ l ≤ 2sα. For the interlayer pseudopotentials,
all values for l are allowed, and it is 0 ≤ l ≤ (s+ s′)− |s− s′|.
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6.3.1.3 Interlayer pseudopotentials for the Coulomb potential

The pseudopotentials V s+s
′

l for a two-flavor system are given in (6.3.25). Given a Coulomb interaction
between the particles of the two layers, we wish to derive a compact expression by explicitly writing out
the coefficients. The chord distance between two particles located at Ω(u, v) and Ω(ā, b̄) on the unit sphere
is

|Ω(ā, b̄)−Ω(u, v)| = 2|av − bu|, (6.3.28)

so that the Coulomb potential reads

V (Ω(ā, b̄) ·Ω(u, v)) =
1

2|av − bu| . (6.3.29)

Since our system is rotationally invariant, we may choose (α, β) = (1, 0) in (6.3.25) without loss of generality.
Then, the denominator of (6.3.25) written out explicitly is

N0 :=

∫
dΩ(u, v)

∫
dΩ(a, b) |u|2(2s−l)|b|2(2s′−l)|āu+ bv̄|2l, (6.3.30)

the nominator is

I :=
1

2

∫
dΩ(u, v)

∫
dΩ(a, b) |u|2(2s−l)|b|2(2s′−l) |āu+ bv̄|2l

|av − bu| . (6.3.31)

The integrals can be simplified by applying a unitary transformation(
a′

b′

)
=

(
ū v̄
−v u

)
︸ ︷︷ ︸

=:T

(
a
b

)
(6.3.32)

with

T−1 =

(
u −v̄
v ū

)
.

The spherical coordinates are defined as

u = cos

(
θ

2

)
eiϕ/2,

v = sin

(
θ

2

)
e−iϕ/2,

a′ = cos

(
θ′

2

)
eiϕ′/2,

b′ = sin

(
θ′

2

)
e−iϕ′/2.

(6.3.33)

Inserting (6.3.32) into (6.3.31), we obtain

I =
1

2

∫
dΩ(u, v)

∫
dΩ(a′, b′) |u|2(2s−l)|a′v + ūb′|2(2s′−l) |a′|2l

|b′|

=
1

2

∫
dϕ

∫
dϕ′

∫
dθ sin(θ)

∫
dθ′ sin(θ′)

| cos
(
θ
2

)
|2(2s−l)| cos

(
θ′

2

)
|2l

| sin
(
θ′

2

)
|

·
∣∣∣∣sin(θ2

)
cos

(
θ′

2

)
+ cos

(
θ

2

)
sin

(
θ′

2

)
e−iϕ′

∣∣∣∣2(2s′−l)
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Using the identity [33] ∫ 2π

0

dϕ
∣∣α+ βe−iϕ

∣∣2n = 2π

n∑
k=0

(
n
k

)2

α2kβ2n−2k, (6.3.34)

the nominator I can be simplified to

I = 2π2
2s′−l∑
k=0

(
2s′ − l
k

)2 ∫ π

0

dθ sin(θ)

∫ π

0

dθ′ sin(θ′) | cos

(
θ

2

)
|2(2s−l)

·
| cos

(
θ′

2

)
|2l

| sin
(
θ′

2

)
|

∣∣∣∣sin(θ2
)

cos

(
θ′

2

)∣∣∣∣2k ∣∣∣∣cos

(
θ

2

)
sin

(
θ′

2

)∣∣∣∣2(2s′−l)−2k

= 32π2
2s′−l∑
k=0

(
2s′ − l
k

)2

·
∫ π/2

0

dθ sin(θ)(cos(θ))2(2s−l)+2(2s′−l)−2k+1(sin(θ))2k+1︸ ︷︷ ︸
=:I1

·
∫ π/2

0

dθ′ sin(θ′)(cos(θ′))2l+2k+1(sin(θ′))2(2s′−l)−2k︸ ︷︷ ︸
=:I2

.

To solve the integrals I1 and I2, we need the identity [33]∫ π/2

0

(sin(θ))2α+1(cos(θ))2β+1 =
Γ(α+ 1)Γ(β + 1)

2Γ(α+ β + 2)

=
α!β!

2(α+ β + 1)!
for α, β ∈ N0.

(6.3.35)

In I1, we have
α = k, β = 2s− l + 2s′ − l − k,

in I2, we have

α = 2s′ − l − k − 1

2
, β = l + k.

Inserting (6.3.35) into the integrals yields

I1 =
k!(2s+ 2s′ − 2l + k)!

2(2s+ 2s′ − 2l + 1)!

and

I2 =
Γ(2s′ − l − k + 1/2)Γ(l + k + 1)

2Γ(2s′ + 3/2)

= (l + k)!22(l+k+1)−1 [2(2s′ − l − k)]! (2s′ + 1)!

(2s′ − l − k)! [(2(2s′ + 1))]!
,

(6.3.36)

where we have used

Γ(n+ 1/2) =
(2n)!

√
π

n! 22n
, n ∈ N0.

Putting all results together, we obtain for the nominator of the pseudopotentials (6.3.25)
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I = 8π2
2s′−l∑
k=0

(
2s′ − l
k

)2

k!(k + l)!22(l+k+1)

· (2s+ 2s′ − 2l − k)!

(2s+ 2s′ − 2l + 1)!

[2(2s′ − l − k)]!

(2s′ − l − k)!

(2s′ + 1)!

[2(2s′ + 1)]!
.

(6.3.37)

Similar calculations for the denominator yield

N0 = 16π2 [(2s′ − l)!]2
(2s+ 2s′ − 2l + 1)!(2s′ + 1)!

2s′−l∑
k=0

(2s+ 2s′ − 2l − k)!(l + k)!

k!(2s′ − l − k)!︸ ︷︷ ︸
=:S2

. (6.3.38)

The sum S2 can be explicitly written out,

S2 =
(2s− l)! l! (2s+ 1 + 2s′ − l)!

(2s′ − l)!(2s+ 1)!
,

so that the final expression for the denominator is

N0 = 16π2 (2s′ − l)!(2s− l)! l! (2s+ 2s′ − l + 1)!

(2s′ + 1)!(2s+ 1)!(2s+ 2s′ − 2l + 1)!
. (6.3.39)

Combining both results, we get for the pseudopotential coefficients

V s+s
′

l =
I

N0

= 2
(2s′ − l)![(2s′ + 1)!]2(2s+ 1)!

[2(2s′ + 1)]!(2s+ 2s′ − l + 1)! l! (2s− l)!

·
2s′−l∑
k=0

4k+l (k + l)!(2s+ 2s′ − 2l − k)![2(2s′ − l − k)]!

k![(2s′ − l − k)!]3

= 21+4s′
(2s+ 1)![(2s′ + 1)!]2(2s+ 2s− 2l)!Γ

(
4s′−2l+1

2

)
√
π(2s− l)![2(2s′ + 1)]!(2s′ − l)!(2s′ + 2s− l + 1)!

· pFq({l + 1,−2s′ + l,−2s′ + l}, {−2s′ + l +
1

2
,−2s′ − 2s+ 2l}, 1).

While all previous steps of this derivation were calculated analytically, the last step (6.3.40) was obtained
using the FullSimplify-routine in Mathematica. The generalized hypergeometric function pFq is defined
by the series expansion

pFq({a1, . . . , ap}, {b1, . . . , bq}, z) :=

∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!
,

which can be calculated in Mathematica using the function HypergeometricPFQ. The Pochhammer symbol
(a)k, also called the rising factorial, is defined by

(a)k :=
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · (a+ k − 1).
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6.3.2 The Hamiltonian Finder - General method

In the following, we describe and employ a general method to identify exact, local parent Hamiltonians for
trial states like quantum Hall or spin liquid states [41]. It can be used to identify exact parent Hamiltonians,
either directly or via the construction of simpler annihilation operators from which a parent Hamiltonian
respecting all the required symmetries can be constructed. Most remarkably, however, the method provides
approximate parent Hamiltonians whenever an exact solution is not available within the space of presumed
interaction terms.

The goal of the method is to determine the parent Hamiltonian of a trial ground state |Ψ〉 for a finite
system, of a system size amenable to exact diagonalization studies. We now wish to ask whether |Ψ〉 is
the exact ground state of a (local) model Hamiltonian specified by a finite number L of terms H(i) with
unknown coefficients ai,

H =

L∑
i=1

aiH
(i), (6.3.40)

and determine the coefficients. To begin with, this requires that |Ψ〉 is an exact eigenstate,

H |Ψ〉 = E0 |Ψ〉 , (6.3.41)

which we write as

(H + a0) |Ψ〉 = 0. (6.3.42)

Clearly, the additional variational parameter a0 is to be interpreted as −E0. Defining H0 ≡ 1, we may
write this compactly as

L∑
i=0

aiH
(i) |Ψ〉 = 0. (6.3.43)

Since we are interested in identifying parent Hamiltonians for highly correlated many body states, and the
number of translationally invariant m-body terms H(i) for a system with N sites, scales roughly as Nm−1,
the dimension of the Hilbert space for system sizes with more than four particles will in general be larger
than the number of terms L. This means that some special principle must be at work for each solution of
(6.3.43). In most applications, there is one or several solutions due to conserved quantities (e.g. total spin
in a spin system, total angular momentum for quantized Hall fluids on the sphere), and an additional one
if an exact parent Hamiltonian exists.

To find these solutions, we define the state vectors |Ψi〉 ≡ H(i) |Ψ〉, and multiply (6.3.43) from the left
with the corresponding dual 〈Ψj |. With Mji ≡ 〈Ψj |Ψi〉, this yields2

L∑
i=0

Mjiai = 0 for j = 0, 1, . . . , L. (6.3.45)

2 In general, given a matrix A, we have
Av = 0⇔ A†Av = 0. (6.3.44)

The corresponding proof is trivial,

Av = 0 ⇒ A†Av = 0

⇒ v†A†Av = 0 = |Av|2

⇒ Av = 0.
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Obviously, there is one solution of (6.3.45) for each zero eigenvalue of the L + 1 dimensional, Hermitian
matrix Mji. Substitution of the corresponding eigenvectors ai into (6.3.43) yields operators annihilating
the ground state, which enable us to extract the desired parent Hamiltonian (6.3.40). Even though this
may come across as a trivial observation, the models one can obtain with this method are in general highly
non-trivial.

Possibly the most outstanding feature is that, according to our longstanding experience, the method
usually yields a highly non-trivial approximate parent Hamiltonian if no exact one exists within the operator
space spanned by theH(i)’s. In these cases, there are likewise one or several zero eigenvalues due to conserved
quantities, and one small, nonzero eigenvalue. The eigenstate corresponding to this eigenvalue defines the
approximate Hamiltonian.

An obvious drawback is that the method guarantees that |Ψ〉 is an exact or approximate eigenstate
of H, but not that it is the ground state. This has hence to be verified a posteriori by exact, numerical
diagonalization of H. Our experience here is that whenever an exact parent Hamiltonian exists, it will
have |Ψ〉 as its unique ground state. In the case of approximate solutions, we have sometimes encountered
situations where the method suggested operators for which |Ψ〉 has only been an approximate eigenstate,
not the ground state. In the cases we have studied, however, it was always possible to find a suitable set
of operators H(i) such that the method converged on an approximate parent Hamiltonian for the ground
state.

For our 311-state, the system’s behavior is dominated by particle interactions, since the kinetic term
is effectively a constant. We can expand the Hamiltonian in terms of many-body pseudopotentials. For
the sake of simplicity, we restrict our analysis to two-body interactions, i.e. two particles precessing about
their common center of mass. As explained in the previous section, the model Hamiltonian can be written
as a discrete, angular momentum resolved sum of projection operators, see (6.3.11), with pseudopotential
coefficients V 2s

l , which have yet to be determined. The relative angular momentum is again l = 2s− j, The
total angular momentum is j = 2s− l, and s is the maximum angular momentum for each particle. In case
of charged particles on a sphere in a magnetic field, 2s corresponds to the number of Dirac flux quanta
through this sphere. As 0 ≤ j ≤ 2s, the relative angular momentum quantum number fulfills l ≥ 0. We
now wish to ask whether |Ψ〉 is the exact ground state of such a Hamiltonian,

H =

2s∑
l=0

V 2s
l H(l) and H |Ψ〉 = E0 |Ψ〉 . (6.3.46)

It is easy to see that

V 2s
l = 1 ∀ l ⇒ H =

∑
l

H(l) ∝ 1. (6.3.47)

To eliminate this trivial solution from our eigenvalue equation (6.3.46), we note that a constant shift in the
eigenenergy of |Ψ〉, (H − E01)Ψ = 0, can be absorbed into a shift of the pseudopotentials, V 2s

l + E0 ∀ l.
Therefore, we focus on the eigenvalue equation

H |Ψ〉 = 0. (6.3.48)

There is another trivial solution which we want to eliminate from the solution space. It is

V 2s
l = (2s− l)(2s− l + 1) + const., l = 0, 1, 2, . . . , 2s

⇒ H = L2
tot.

(6.3.49)

One way of eliminating this solution is to add additional constraints such as V 2s
2s = V 2s

2s−1 or V 2s
1 = 0,

depending on the properties of the physical system.
Our state lives in a finite Hilbert space of some dimension nmax,

{|ϕ1〉 , |ϕ2〉 , . . . , |ϕnmax〉}. (6.3.50)
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Usually, for large systems, nmax � (2s+ 1) applies.
In this basis, our state is

|Ψ〉 = (Ψ1,Ψ2, . . . ,Ψnmax
)
>
, (6.3.51)

and we write

H(l) |Ψ〉 =: |Ψl〉 =:
(
h

(l)
1 , h

(l)
2 , . . . , h(l)

nmax

)>
. (6.3.52)

The eigenvalue equation (6.3.48) can then be written in matrix form as

0 =
∑
l

V 2s
l |Ψl〉 =


h

(0)
1 h

(1)
1 · · · h(2s)

1

h
(0)
2 h

(1)
2 · · · h(2s)

2
...

...
. . .

...

h
(0)
nmax h

(1)
nmax · · · h(2s)

nmax



V 2s

0

V 2s
1
...

V 2s
2s

 =: Av. (6.3.53)

Thus, matrix A has dimension nmax × (2s + 1), whereas the eigenspace of our Hamiltonian has at most
(2s + 1) solutions depending on how many columns |Ψl〉 of matrix A are linearly independent. These
solutions determine a set of pseudopotential coefficients {V 2s

l }2sl=0, defining an exact parent Hamiltonian
for the state |Ψ〉.

The product matrix M := A†A has dimension (2s + 1) × (2s + 1), and as usually s � nmax, this
matrix is considerably smaller than A, reducing computational costs when treating the system numerically.
Diagonalizing the quadratic matrix M yields its eigenspectrum. Its zero mode determines the sought parent
Hamiltonian, and its entries are the pseudopotential coefficients.

6.3.3 The Hamiltonian Finder - Approximate parent Hamiltonians

Possibly the most important feature of our method is that it delivers approximate parent Hamiltonians
whenever an exact parent Hamiltonian for the trial ground state is not available in the considered space
spanned by the terms H(i). More often than not, this situation arises because no simple, local, analytically
amenable parent Hamiltonian exists for the state in question. Examples for such a situation are provided
by the hierachy wave functions of the QH effect, which is also the instance where this method was first
applied [34], or for the non-Abelian chiral spin liquid (NACSL) [45].

As explained in the context of the general method above, in situations where no exact, but an approx-
imate, parent Hamiltonian can be constructed with the terms H(i) included in (6.3.40), the eigenvector
associated with the smallest non-zero eigenvalue of Mji usually provides such an approximate Hamiltonian
H. The result, however, will slightly depend on the relative normalizations wi of the operators H(i) used
in the numerical procedure. In the following, we refer to these normalizations as precondition weights.

In this context, however, the optimal solution will depend on what one desires to optimize. This could
be the relative variance of the ground state energy

〈Ψ|H2 |Ψ〉 − 〈Ψ|H |Ψ〉2

〈Ψ|H |Ψ〉2
, (6.3.54)

the overlap 〈GS|Ψ〉 between the exact ground state |GS〉 of H and the reference trial state |Ψ〉, or the
similarity between the expectation values CGS,i = 〈GS|H(i) |GS〉 and CΨ,i = 〈Ψ|H(i) |Ψ〉. These quantities
will be further explained in Section 6.3.5, and we label them “correlators”. For the NACSL [45], the method
was applied to demonstrate that a local, approximate Hamiltonian with a gap between the three (in the
thermodynamic limit topologically degenerate) ground states and the remaining spectrum can be found.
The size of this gap was hence a parameter considered as well.

In most applications studied so far with this method, its most naive application designed for the iden-
tification of an exact parent Hamiltonian provided us with remarkably accurate approximations whenever
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no exact solutions were available. If one then desires to optimize the Hamiltonian specified by the set of
parameters [ai] ≡ (a0, a1, . . . , aL) further, one may apply a Newton scheme, as follows.

We illustrate the method here for an optimization of the similarity in the correlators, as this usually
optimizes variance and overlap as well. To begin with, we choose a set of weights [wi], and another set
[w′i], where only a single weight wj differs by a small parameter δj . We then evaluate the corresponding
coefficients [ai] and [a′i], and from there [Ci] and [C ′i]. This yields the j-th row of the derivative matrix

∂Ci
∂wj

≡ C ′i − Ci
δj

.

As a next step, we solve the linear equation

L∑
j=0

∂Ci
∂wj

∆wj = C0,i − Ci

for the shifts ∆wj we would require if we assume a linear dependence. The procedure can then be repeated
with the adjusted weights [wi + ∆wi] until it has converged. In the examples we considered, however, a
single iteration was sufficient. Whenever adjustments of the weights [wi] are insufficient to induce the desired
changes in the correlators, one possible route is to follow the same steps with infinitesimal variations in
the coefficients [ai]. Usually, one needs to adjust nuances of the method to the problem one is considering.
For example, it is sometimes better to include w0 and a0 in the optimization, while in other situations it is
better to take a0 constant, if not zero to start with.

Also, examples were encountered where the optimization worked better when we adjusted the weights
not on a linear, but on a logarithmic scale, a change which is fully implemented by taking ewiH(i) instead of
wiH

(i) for the re-normalized operators in H =
∑
i aiwiH

(i) and |Ψi〉 = wiH
(i) |Ψ〉. The procedure we have

outlined here hence should be taken mostly as a guideline to find an adequate algorithm for the problem
one is interested in.

The approximate method we just outlined is heuristic and crude, but has been highly successful in our
experience. The reader might ask at this point whether a more scholarly approach does not offer itself. One
possible avenue we have explored is to minimize the variance (6.3.54) by maximizing 〈Ψ|H |Ψ〉2 subject to
the constraints 〈Ψ|Ψ〉 = 〈Ψ|H2 |Ψ〉 = 1 with H specified in (6.3.40). This yields

L∑
i=1

Mjiai = −Mj0a0 for j = 1, . . . , L, (6.3.55)

where a0 is now a normalization constant

a−2
0 =

L∑
i,j=1

M0i(M
−1)ijMj0. (6.3.56)

Note that since a0 only affects the overall normalization of the parent Hamiltonian, we do not need to
evaluate (6.3.56) in practical applications. Instead, we may set a0 = 1 in (6.3.55). In some of the examples
we have investigated, the Hamiltonian corresponding to the solution of (6.3.55) for ai was more accurate
than the one obtained with the previous method, i.e., via the lowest non-zero eigenvalue of (6.3.45). In
general, however, this method has not been as stable and robust as the previous one.

As an example of how the two methods (6.3.45) (from now on called method A) and (6.3.55) (from
now on called method B) perform if only an approximate parent Hamiltonian can be determined, we have
numerically investigated a system of N charged fermionic particles on a sphere, pierced by a flux of 2s Dirac
flux quanta, and interacting via a Coulomb potential. To do so, we first construct the Coulomb Hamiltonian
using the pseudopotential coefficients (6.3.14). Via exact diagonalization, the exact ground state |Ψ0〉 is
determined. For this state, now, we want to see how accurately a parent Hamiltonian in both methods can
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be constructed. As we want to check the approximate version of the Hamiltonian Finder, we artificially
restrict our Hilbert space by setting all pseudopotentials V 2s

l with l > 5 to zero. For this fermionic system,
only three pseudopotential coefficients V 2s

1 , V 2s
3 and V 2s

5 are non-zero.
Three different system sizes were considered: (1) N = 7, 2s = 18, (2)N = 8, 2s = 18 and (3) N = 8,

2s = 20. In case (1), the system setup is similar to a Laughlin state with filling fraction ν = 1/3. As a
measure to compare the accuracy of the resulting Hamiltonian Hres, we calculated the overlap of the initial
state |Ψ0〉 with the exact ground state |GS〉 of Hres, and the relative variance (6.3.54). The results are
presented in Table 6.1.

N = 7, 2s = 18 N = 8, 2s = 18 N = 8, 2s = 20

A B A B A B

overlap 0.9999 0.9529 0.0000 0.0000 0.9990 0.9815

rel. variance 0.9151 · 104 0.5171 0.1871 · 104 0.0009 0.290 · 104 0.0008

Table 6.1 Results of the two methods A and B of the Hamiltonian Finder for three different system sizes. As indicators
for the accuracy of the approximate parent Hamiltonian, the overlap of the initial state |Ψ0〉 with the exact, zero energy
ground state |GS〉, and the relative variance are calculated.

For systems (1) and (3), both methods A and B find a ground state. The original method A, however,
reaches a higher overlap. In contrast, for system (2), both methods fail to determine a zero mode. Obviously,
method B minimizes the relative variance as its value is by orders of magnitude smaller than that of method
A. Yet, as we can see, this does not necessitate a higher overlap.

6.3.4 Finding an approximate parent Hamiltonian for the 311-state

So far, we have only considered systems with one particle-flavor. If there are particles of two flavors in the
system, as is the case for the 311-state, the Hilbert space extends, and also additional constraints have to
be formulated to eliminate trivial solutions from the solution space.

Consider a system with particles of two flavors, ↑ and ↓ (for instance spin ±1/2). All states then live in
a product Hilbert space H↑ ⊗H↓ and the Hamiltonian consists of three parts: two intraflavor interactions
H(↓,↓) and H(↑,↑) and one interflavor interaction H(↑,↓). The angular momentum of a ↑-particle (↓-particle)
is s (s′). For a system of charged particles which live on different spheres according to their flavor, 2s (2s′) is
the number of Dirac flux quanta through the ↑-sphere (↓-sphere). We will only consider fermionic particles,
therefore, the intraflavor pseudopotential coefficients for even relative angular momenta are zero,

V 2s
l = V 2s′

l = 0 ∀ l ∈ 2Z. (6.3.57)

The total Hamiltonian is the sum of all three contributions,

H =

N↑∑
i<j

2s−1∑′

l=1

V 2s
l P2s−l(L

↑
i + L↑j ) +

N↓∑
i<j

2s′−1∑′

l=1

V 2s′

l P2s′−l(L
↓
i + L↓j )

+

N↑∑
i=1

N↓∑
j=1

2s∑
l=0

V s+s
′

l Ps+s′−l(L
↑
i + L↓j )

=

2s′−1∑′

l=1

V 2s′

l H(↓↓,l) +

2s−1∑′

l=1

V 2s
l H(↑↑,l) +

2s∑
l=0

V s+s
′

l H(↑↓,l).

(6.3.58)
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The primed summation in the first two terms includes only odd relative angular momenta. We assume
s ≤ s′. For s ≥ s′, the sum of l in the interflavor term would range from 0 to 2s′.

Using (6.3.52), the eigenvalue equation can therefore be written as

H |Ψ〉 = E0 |Ψ〉 = Av, (6.3.59)

A :=


h

(↑↑,1)
1 · · · h(↑↑,2s−1)

1 h
(↓↓,1)
1 · · · h(↓↓,2s′−1)

1 h
(↑↓,0)
1 · · · h(↑↓,2s)

1

h
(↑↑,1)
2 · · · h(↑↑,2s−1)

2 h
(↓↓,1)
2 · · · h(↓↓,2s′−1)

2 h
(↑↓,0)
2 · · · h(↑↓,2s)

2
...

. . .
...

...
. . .

...
...

. . .
...

h
(↑↑,1)
nmax · · · h(↑↑,2s−1)

nmax h
(↓↓,1)
nmax · · · h(↓↓,2s′−1)

nmax h
(↑↓,0)
nmax · · · h(↑↓,2s)

nmax

 ,

v :=
(
V 2s

1 · · · V 2s
2s−1 V

2s′

1 · · · V 2s′

2s′−1 V
s+s′

0 · · · V s+s′2s

)>
.

Matrix A has dimension (3s+ s′+ 1)×nmax. The column size of the interflavor block is determined by the
range in which the relative angular momentum between two particles of different flavor lies, |s− s′| ≤ s+
s′ − l ≤ s+ s′.

For many physical realizations, the matrix dimension is decreased due to additional constraints on the
choice of pseudopotential coefficients. In the case of the 311-state, we have four trivial solutions to (6.3.59)
we wish to eliminate. Three of the four trivial solutions arise from setting all pseudopotential coefficents to
zero except for one type of interaction,

1. V 2s
l = 1, V 2s′

l = 0, V s+s
′

l = 0 ∀ l,
2. V 2s

l = 0, V 2s′

l = 1, V s+s
′

l = 0 ∀ l,
3. V 2s

l = 0, V 2s′

l = 0, V s+s
′

l = 1 ∀ l.
The resulting Hamiltonian is proportional to the identity in the respective Hilbert subspace. The fourth
trivial solution is specified by the choice

V 2s
l = 0 = V 2s′

l ∀ l,
V s+s

′

l = (s+ s′ − l)(s+ s′ + 1− l) + const. (6.3.60)

One of these four solutions can be eliminated by choosing E0 = 0 in (6.3.59). For the remaining trivial
solutions to be eliminated, we have to further introduce three constraints. Assuming the pseudopotentials
to decrease with increasing distance, a first guess could be

V 2s
2s−3 = V 2s

2s−1, V
2s′

2s′−3 = V 2s′

2s′−1, V
s+s′

0 = V s+s
′

1 . (6.3.61)

For the intralayer interactions, large distances translate into large relative angular momentum l. However,
for the interlayer interaction, a large distance results into a small relative angular momentum due to the
opposite magnetic fields in the two layers.

The numerical implementation of the Hamiltonian finder yields one or even several sets of pseudopotential
coefficients, each forming an interaction HamiltonianHres, whose ground state is approximately the specified
state |Ψ〉. To investigate which of these sets of coefficients is the best approximation, we calculate two
quantities: the overlap of the exact ground state |GS〉 of Hres with our initial state |Ψ〉, and the relative
variance, defined by (6.3.54).

As we are dealing with finite size systems, a high overlap, however, is not a quantitative indication
of a good approximate parent Hamiltonian. For instance, in non-interacting Fermi gases perturbed by a
finite-range scattering potential, the so-called Anderson orthogonality catastrophe is observed [4]. Given a
system of N ferminons living in a box of length L, it manifests itself in the asymptotic vanishing of the
overlap of the ground state of the unperturbed system with the ground state of the same system with a
finite range perturbation,

〈ΨN
L |ΦNL 〉 ∼ Lγ/2, (6.3.62)
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in the thermodynamic limit, N → ∞, L → ∞ and N/Ld = const. > 0. Here, d ∈ N is the spatial
dimension. The decay exponent γ is derived from the scattering phases associated with the perturbation.
Nonetheless, for our system, a high overlap indicates that the approximate parent Hamiltonian lies in the
same equivalence class as the unknown exact parent Hamiltonian.

A far better way of determining the accuracy of the approximate parent Hamiltonian is to make a spectral
analysis of our 311-state |Ψ〉 and the exact ground state |GS〉. To do so, relative angular momentum resolved
pseudopotential expectation values for both states must be calculated. This procedure is explained in further
detail in the following Section 6.3.5. In Section 6.4, we will apply these quantities to determine the best
approximate parent Hamiltonian for our 311-state.

6.3.5 Relative angular momentum resolved analysis

Since we are interested in a system exhibiting rotational symmetry, the z-component of the relative angular
momentum of two particles is a good quantum number. Thus, it makes sense to analyze relative angular
momentum resolved properties of our system. For instance, we can calculate the expectation value of the
relative angular momentum resolved projection operators in (6.3.58) with respect to the system’s ground
state ψ,

Cαα
′

ψ,l := 〈ψ|H(αα′,l) |ψ〉 , whereα, β =↑, ↓, (6.3.63)

which we will from now on label relative angular momentum resolved correlators, or short “correlators”.
For implementation purposes, the Hamiltonian is rewritten in terms of creation and annihilation opera-

tors as in (6.3.2),

H(αα′,l) =

s∑
m1=−s

s′∑
m2=−s′

s∑
m3=−s

s′∑
m4=−s′

c†m2,αc
†
m1,β

cm3,αcm4,β
δm1+m2,m3+m4

· 〈s,m1; s′,m2|s+ s′ − l,m1 +m2〉V αα
′

l 〈s+ s′ − l,m3 +m4|s,m3; s′,m4〉 , (6.3.64)

where 〈s,m1; s′,m2|j,m1 +m2〉 are Clebsch-Gordan coefficients and cm,α annihilates a particle with flavor
α in the properly normalized single particle state (6.3.3), which is further explained in Section 2.4.

It can be used to compare two states ψ1 and ψ2 by analyzing how much the correlators Cψ1
and Cψ2

differ for a specific angular momentum. In Section 6.4, we will do exactly this to compare the 311-state to
the exact ground state of the approximate parent Hamiltonian.

Given two states ψ1 and ψ2, the calculation of the correlators Cαα
′

ψ1,l
and Cαα

′

ψ2,l
for a specific relative

angular momentum l allows us to compare the scattering properties of the two states. In Section 6.4, we
then use this to compare the 311-state to the exact ground state of the approximate parent Hamiltonian.

Based on this information, we will manually alter the pseudopotential coefficients V s+s
′

l of our parent
Hamiltonian in such a way that the new interaction Hamiltonian represents a better approximate parent
Hamiltonian of our state Ψ.

As an illustration of the information being provided by the correlators, the single particle Laughlin state
with filling factor ν = 1/m = 1/3 is calculated for a single flavor-system of seven fermions. The results
are presented in Figure 6.5. Due to the system’s fermionic character, all correlators with even momentum
must vansish. Moreover, they equal zero for relative angular momenta l < m due to the construction of
the Laughlin state, minimizing the energetical cost of the state living in a potential

∑
l<m V

2s
l H(↑↑,l), in

which all pseudopotential coefficients with l ≥ m vanish. The maximum relative angular momentum of
the system is m(N − 1). Thus, in Figure 6.5, all correlators for l > 18 vanish. The absolute values of the
correlators does not convey any physical information, as it is given in arbitrary units. Due to the locality
of the correlations, the correlators decay with increasing angular momentum.
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6.3.6 Real space potentials

We assume a spherical two-layer system of N ↑-spin particles living on a ↑-sphere pierced by 2s Dirac
flux quanta, and N ↓-spin particles living on a ↓-sphere pierced by 2s′ Dirac flux quanta. Given a set of
pseudopotential coefficients {Ṽl}l, we wish to obtain the real space potential Ṽ (θ) = f({Ṽl}l), where f is
some analytic function of the pseudopotentials.

To fulfill this task, we first have to set up a basis of real space potentials

Vn(θ) = Nn
(

cos
θ

2

)2(2s−n)(
sin

θ

2

)2n

, n = 0, 1, . . . , 2s, (6.3.65)

with their normalization

Nn =

∫ π

0

dθ 2π sin θ Vn(θ). (6.3.66)

There are two types of potentials for a two-layer system: The intralayer interactions in one sphere, and
the interlayer interactions between ↑- and ↓-particles on different spheres. In the first case, θ is the angle
between two interacting particles of the same flavor, in the second case, it is the angle between an ↑- and a
↓-particle. Since the system is rotationally invariant, we can pin one of the two particles to the north pole.
Then, θ = 0 (θ = π) corresponds to the north (south) pole.

In Figures 6.6 and 6.7, the real space basis potentials (6.3.65) are shown for 2s = 9 and 2s = 11,
respectively. For n = 0 (n = 2s), the maximum of the potential is at the north (south) pole. Since we
have pinned one particle at the north pole, V0 describes an interaction which yields a maximal separation
between the two particles, while they move closer together for increasing n.

With the help of (6.3.10) for the intralayer case and (6.3.25) for the interlayer case, the basis of pseu-
dopotentials Vl,n, l = 0, 1, . . . , 2s, corresponding to the real space basis potentials Vn(θ) can be calculated.
Explicit expressions for the pseudopotential basis will be derived below. Since the calculations are similar
to the calculation in Section 6.3.1.3, only the starting equations and the final result are given.

With the potential basis set up, we get the real space potential from a set of pseudopotentials {Ṽl}l by
solving the system of linear equations

Fig. 6.5 Angular momentum resolved correlators for the single particle Laughlin state with filling factor ν = 1/3 in
a single flavor-system of seven fermions.
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Fig. 6.6 Real space basis potentials Vn(θ) in arbitrary units for a sphere pierced by 2s = 9 flux quanta. The italic
label indicates the index n. The north (south) pole corresponds to θ = 0 (θ = π).
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Fig. 6.7 Real space basis potentials Vn(θ) in arbitrary units for a sphere pierced by 2s = 11 flux quanta. The italic
label indicates the index n. The north (south) pole corresponds to θ = 0 (θ = π).

∑
n

anVl,n = Ṽl, ∀ l, n,∑
n

bnVl,n = 1,∑
n

cnVl,n = V ang
l ,

(6.3.67)

where V ang
l are the pseudopotentials for the total angular momentum, corresponding to (6.3.21) for the

intralayer case and (6.3.26) for the interlayer case. The real space potential is given by
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Ṽ αβ(θ) =
∑
n

(aαβn + γαβbn + µcαβn )Vn(θ), (6.3.68)

with α = β =↑ or α = β =↓ for the intralayer case, and α =↑, β =↓ for the interlayer case. The second and
third term in (6.3.68) only add a constant to the potential, so that their coefficients γ and µ can be used
as tuning parameters to create the experimentally most realistic potential possible. While the coefficient γ
can be chosen arbitrarily for the intra- and interlayer case, the coefficient µ has to be equal in both real
space potentials. In summary, we can thus visualize the potential in real space with this method, given
a set of pseudopotential coefficients. We can fine-tune the shape of the potential, adjusting it to possible
experimental needs.

Intralayer pseudopotentials

Given two particles of the same flavor at positions Ω(u1, v1) and Ω(u2, v2) on the sphere, the pseudopotential
coefficients are evaluated via

V 2s
l =

〈ψs,j(α,β),0|Vn(θ) |ψs,j(α,β),0〉
〈ψs,j(α,β),0|ψ

s,j
(α,β),0〉

=:
I

N0
, (6.3.69)

with the basis wave functions defined in (6.3.7). Written out explicitly, the denominator is

N0 =

∫
dΩ(u1, v1)

∫
dΩ(u2, v2) |u1|2(2s−l)|u2|2(2s−l)|u1v2 − u2v1|2l, (6.3.70)

the nominator is

I =

∫
dΩ(u1, v1)

∫
dΩ(u2, v2) |u1|2(2s−l)|u2|2(2s−l)|u1v2 − u2v1|2l

· N
(

cos
θ

2

)2(2s−n)(
sin

θ

2

)2n

. (6.3.71)

The chord distance between the two particles reads

d := |Ω(u1, v1)−Ω(u2, v2)| = |u1v2 − u2v1| = 2 sin
θ

2
. (6.3.72)

To solve the above expressions, it is useful to perform the unitary transformation(
u′2
v′2

)
=

(
ū1 v̄1

−v1 u1

)
︸ ︷︷ ︸

=:T

(
u2

v2

)
, (6.3.73)

with

ui = cos
θi
2
eiϕi/2,

vi = sin
θi
2
e−iϕi/2.

Applying this transformation, θ
T7−→ θ′2, yields

N0 =

∫
dΩ(u1, v1)

∫
dΩ(u′2, v

′
2) |u1|2(2s−l)|u1u

′
2 − v̄1v

′
2|2(2s−l)|v′2|2l, (6.3.74)

and
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I =

∫
dΩ(u1, v1)

∫
dΩ(u′2, v

′
2) |u1|2(2s−l)|u1u

′
2 − v̄1v

′
2|2(2s−l)|v′2|2l

· N
(

cos
θ′2
2

)2(2s−n)(
sin

θ′2
2

)2n

. (6.3.75)

Applying similar steps as in Section 6.3.1.3, we finally obtain

Vl,n =
1

4π

[(2s+ 1)!]3(2s+ n)!

n! l! (4s+ 1)!(4s− l + 1)!

· pFq({l − 2s, 2s− l + 1, 2s− n+ 1}, {1,−2s− n}, 1). (6.3.76)

The pseudopotentials for all possible values of l and n are shown in Figure 6.8 for a sphere pierced by
2s = 9 flux quanta and in Figure 6.9 for a sphere pierced by 2s = 11 flux quanta.

Interlayer pseudopotentials

For the interlayer pseudopotentials, given the choice (6.3.65) of the real space basis potentials, the fluxes
through the ↑- and ↓-sphere have to fulfill s ≤ s′. Similar to the intralayer case, the pseudopotential
coefficients are evaluated via (6.3.69). This time, the basis wave functions are specified by (6.3.24). The
denominator of (6.3.69) is identical to the denominator for the Coulomb potential, given in (6.3.39). The
nominator in explicit form is

I =
1

2

∫
dΩ(u, v)

∫
dΩ(a, b) |u|2(2s−l)|b|2(2s′−l)|āu+ bv̄|2lN

(
cos

θ

2

)2(2s−n)(
sin

θ

2

)2n

.

Under the unitary transformation (6.3.32), the angle θ transforms as θ
T7−→ θ′2, allowing to simplify the

above integral. The spherical coordinates are defined in (6.3.33). Applying similar steps as in Section 6.3.1.3,
we finally obtain

Vl,n =
1

4π

[(2s+ 1)!]2(2s′ + 1)!(2s+ l − n)!(2s′ − l + n)!(2s+ 2s′ − 2l)!

n! l! (2s− n)!(2s− l)!(2s′ − l)!(2s+ 2s′ − l + 1)!(2s+ 2s′ + 1)!

· pFq({2s+ l − n+ 1, l − 2s′, l − 2s′}, {l − n− 2s′, 2l − 2s′ − 2s}, 1). (6.3.77)

The pseudopotentials for all possible values of l and n are shown in Figure 6.10 for the interlayer interaction
in a two-layer system, consisting of an ↑-sphere pierced by 2s = 9 flux quanta and a ↓-sphere pierced by
2s′ = 11 flux quanta, which, according to (6.2.3), corresponds to a system of six ↑-spin particles and six
↓-spin particles for the 311-state. For n = 0, the maximum of the pseudopotential is at maximal relative
angular momentum l = 2s. In contrast, for the intralayer pseudopotential at n = 0, the maximum is at
minimal relative angular momentum l = 0. This is a consequence of the fact that the magnetic field on the
↓-sphere points in the opposite direction than the magnetic field on the ↑-sphere.

Having obtained explicit expressions for the intra- and interlayer basis pseudopotentials, we can cal-
culate the real space potential given a set of pseudopotential coefficients. This method will be applied in
Section 6.4.5 to create a real space potential for the 311-state with the pseudopotential coefficients obtained
by our Hamiltonian Finder method.
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Fig. 6.8 Basis pseudopotentials Vl,n for the intralayer interaction on a sphere pierced by 2s = 9 flux quanta. The
index n can take values 0, 1, . . . , 2s.
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Fig. 6.9 Basis pseudopotentials Vl,n for the intralayer interaction on a sphere pierced by 2s = 11 flux quanta. The
index n can take values 0, 1, . . . , 2s.
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Fig. 6.10 Basis pseudopotentials Vl,n for the interlayer interaction in a two-layer system, consisting of an ↑-sphere
pierced by 2s = 9 flux quanta and a ↓-sphere pierced by 2s′ = 11 flux quanta. The index n can take values 0, 1, . . . , 2s.
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6.4 Numerical results for the 311-state

With the analytical background of the previous chapters, we now wish to analyze the properties of the 311-
state numerically. One challenge is to set up the state for large enough systems, as the size of the Hilbert
space grows exponentially with system size. For the present application, we managed to treat two-layer
systems with up to fourteen particles, corresponding to seven particles per layer. We use the imperative
programming language Fortran (2003 standard) for the numerical analysis, which provides an efficient
framework for high-performance scientific programming.

The first numerical task is to implement the 311-state. Section 6.4.1 details how this can be achieved.
Given the numerical 311-state, we calculate the pair correlation function in Section 6.4.2, which provides
a measure of how the particles are distributed on the sphere. In Section 6.4.3, we calculate the relative
angular momentum correlation of the 311-state and compare it to other uncorrelated quantum Hall states.
Using the Hamiltonian Finder method, which is explained in detail in Section 6.3.3, we manage to construct
an approximate parent Hamiltonian of the 311-state for different system sizes in Section 6.4.4. Out of the
pseudopotential coefficients specifying the parent Hamiltonian, we finally construct a physically realistic
real space potential in Section 6.4.5.

To eliminate possible programming errors in our program, we have extensively run test cases by studying
various systems documented in literature. For instance, we have tested our Hamiltonian Finder method by
calculating the parent Hamiltonian of the Laughlin state. Additionally, such tests help to determine the
influence of finite size effects on the results.

In contrast to programming errors, numerical errors cannot be eliminated entirely. One type of numerical
error is the roundoff error, which is due to the finite number precision of computers, which depends on
the choice of data type. For example, for 64-bit double precision values, the exponent is represented by 11
bits, and the mantissa by 52 bits. One bit is reserved for the sign of the number. The resulting machine
precision3 is εm = 2.22 ·10−16. Non-representable numbers are rounded to the next representable value and
the roundoff error accumulates with the number of arithmetic operations.

Truncation errors are independent of the computer hardware. They occur when, for instance, an orig-
inally continuous mathematical operation is discretized. While roundoff erros can hardly be eliminated,
truncation errors can be decisively decreased by a careful choice of the discretization method and system
resolution. If, as for the present case, a naturally discrete system is analyzed, this type of error does not
occur.

Another important aspect is the numerical stability of the algorithms used. In a stable algorithm, small
fluctuations of the input values lead to only small fluctuations of the output data. If there is an instability,
roundoff and/or truncation errors build up unboundedly and yield unphysical results. Here, a thorough
understanding of the numerical background is necessary to circumvent possible instabilities.

6.4.1 Numerical construction of the wave function

To write out the microscopic 311-state (6.2.2) numerically, we start by expanding its first quantized form.
We assume a two-layer system of N↑ ↑-spin particles and N↓ ↓-spin particles, living on an ↑-sphere pierced
by 2s Dirac flux quanta and a ↓-sphere pierced by 2s′ Dirac flux quanta, respectively. Then, the 311-state
can be written as

Ψ311[u, v, ā, b̄] =
1

N
∑

(c↑,c↓)

a2,(c↑,c↓)√
N↑!N↓!

∑
P

sign(P)ΨP(c↑,c↓)[u, v, ā, b̄], (6.4.1)

with

3 The machine precision is defined as the smallest floating point number which, when added to 1.0, yields a result
other than 1.0.
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ΨP(c↑,c↓)[u, v, ā, b̄] :=

N↑∏
i=1

N↓∏
k=1

u
c↑(P(i))
i v

2s−c↑(P(i))
i ā

c↓(P(k))
k b̄

2s′−c↓(P(k))
k , (6.4.2)

N being the overall normalization of the wave function. Similar to (6.3.5), we define [u, v, ā, b̄] :=
({ui, vi}i, {āk, b̄k}k) as the list of all particle coordinates in both layers. Each monomial occuring in the
sum in (6.4.1) is a product of a coefficient a2,(c↓,c↑) ∈ C, all ↑-spin coordinates

(u1, v1, u2, v2, . . . , uN↑ , vN↑)

with corresponding exponents

(β1, 2s− β1, β2, 2s− β2, . . . , βN↑ , 2s− βN↑) (6.4.3)

and all ↓-spin coordinates
(ā1, b̄1, ā2, b̄2, . . . , āN↓ , b̄N↓)

with corresponding coordinates

(γ1, 2s
′ − γ1, γ2, 2s

′ − γ2, . . . , γN↓ , 2s
′ − γN↓). (6.4.4)

For each monomial, c↑ is the list of ordered exponents of the spinor components ui, corresponding to the
↑-spin particles, with

c↑ := (β1, β2, . . . , βN↑). (6.4.5)

Similarly, the list of ordered exponents of the spinor components āk corresponding to the ↓-spin particles
is c↓, with

c↓ := (γ1, γ2, . . . , γN↓). (6.4.6)

We label a2,(c↓,c↑) the “geometrical coefficients”, as they result from expanding the factorized expression
of the 311-state (6.2.2). In (6.4.1), we sum over all possible permutations P of the elements of lists c↑ and
c↓. For even permutations, it is sign(P) = 1, for odd permutations, it is sign(P) = −1.

The idea of our numerical construction of the 311-state (6.2.2) is to first create parent states for the
↑-spin and ↓-spin particles, which are the Laughlin-3 state and the Laughlin-1 state, respectively. Then,
we take the direct product of the two parent states to create a two-layer system. Finally, the interlayer
derivative term is applied to the Laughlin-3 term, yielding our 311-state.

In the program, the state is saved in second quantization, (6.2.41), as a list of normalized coefficients
a1,(c↑,c↓)/Nβ := α(c↑,c↓) and their corresponding orbital configurations

|Ψ(c↑, c↓)〉 := |c↑(0), c↑(1), . . . , c↑(2s); c↓(0), c↓(1), . . . , c↓(2s
′)〉 ,

yielding

|Ψ〉 =
1

Nβ
∑

(c↑,c↓)

a1,(c↑,c↓) |Ψ(c↑,c↓)〉 . (6.4.7)

The orbital number basis is orthonormal, 〈Ψn|Ψm〉 = δn,m. The overall normalization is Nβ , which we
determine via

1
!
= 〈Ψ|Ψ〉 =

1

N 2
β

∑
(c′↑,c

′
↓)

∑
(c↑,c↓)

a∗1,(c′↑,c′↓)a1,(c↑,c↓) 〈Ψ(c′↑,c
′
↓)
|Ψ(c↑,c↓)〉

=
1

N 2
β

∑
(c↑,c↓)

|a1,(c↑,c↓)|2. (6.4.8)
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One challenging part of the numerical implementation is the correct calculation of the orbital coefficients.
To do so, we have to keep track of how often every possible permutation of exponents can appear and which
sign is associated to it. A sign can occur when permuting particles due to their fermionic character. The
orbital coefficients then have to be rescaled in order for the wave function to be normalized. In the following,
we demonstrate how to obtain the normalization factor as well as the final coefficients.

Using the first quantized form (6.4.1) of the wave function, the normalization constraint (6.4.8) can be
rewritten as

1
!
=

1

N 2

∑
(c↑,c↓)

|a2,(c↑,c↓)|2
∑
P

1

N↑!
1

N↓!

∫
DuDv

∫
DāDb̄ (ΨP(c↑,c↓)[u, v, ā, b̄])

∗ΨP(c↑,c↓)[u, v, ā, b̄], (6.4.9)

where we have used the orthogonality of the basis states. The two integrals denote an integration over the
entire sphere of ↑-spin and ↓-spin electrons,

∫
DuDv =

N↑∏
i=1

∫
duidvi =

∏
i

1

4π

∫
dΩ↑,i =

(
1

4π

)N↑ ∫
dΩ↑,

∫
DāDb̄ =

N↓∏
i=1

∫
dāidb̄i =

∏
i

1

4π

∫
dΩ↓,i =

(
1

4π

)N↓ ∫
dΩ↓, (6.4.10)

with dΩ = sin θdθdφ. Using the integration relations

1

4π

∫
dΩ↑ ū

m′ v̄2s−m′umv2s−m =
m!(2s−m)!

(2s+ 1)!
δm,m′ (6.4.11)

and
1

4π

∫
dΩ↓ ā

m′ b̄2s
′−m′amb2s

′−m =
m!(2s′ −m)!

(2s′ + 1)!
δm,m′ , (6.4.12)

we get

1
!
=

1

N 2

∑
(c↑,c↓)

|a2,(c↑,c↓)|2
N↑∏
i=1

N↓∏
j=1

c↑(i)!(2s− c↑(i))!
(2s+ 1)!

c↓(j)!(2s′ − c↓(j))!
(2s′ + 1)!

(6.4.13)

The factor 1/N ! cancels out as there are N ! permutations P, and their integration gives always the same
result. The expression can be rewritten into

1

Nβ
∑

(c↑,c↓)

|a1,(c↑,c↓)|2
!
= 1

!
=

1

β↑β↓N 2

∑
(c↑,c↓)

|a2,(c↑,c↓)|2a3,(c↑,c↓), (6.4.14)

where we have introduced the quantities

a3,(c↑,c↓) :=

N↑∏
i=1

c↑(i)!(2s− c↑(i))!
(2s+ 1)!

(2s+ 1)!

c↑,1(i)!(2s− c↑,1(i))!

·
N↓∏
j=1

c↓(j)!(2s′ − c↓(j))!
(2s′ + 1)!

(2s′ + 1)!

c↓,1(j)!(2s′ − c↓,1(j))!
,

β↑ :=

N↑∏
i=1

(2s+ 1)!

c↑,1(i)!(2s− c↑,1(i))!
and

β↓ :=

N↓∏
j=1

(2s′ + 1)!

c↓,1(j)!(2s′ − c↓,1(j))!
. (6.4.15)
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In the first expression, the factors

(2s+ 1)!

c↑,1(i)!(2s− c↑,1(i))!
and

(2s′ + 1)!

c↓,1(i)!(2s′ − c↓,1(i))!

are introduced to limit the size of the resulting decimal numbers, since large values can cause numerical
instabilities. In the normalization process, the factor cancels out. Hence, we arbitrarily choose the normal-
ization factor of the first basis configuration to be a3,(c↑,1,c↓,1) = 1.

For the normalization, we get Nβ =
√
β↑β↓N . The phase of the normalization is free to choose, and we

set it to zero. We get for the orbital coefficients

a1,(c↑,c↓) = a2,(c↑,c↓)
√
a3,(c↑,c↓) (6.4.16)

To numerically implement the 311-state, we compute the necessary parameters in second quantization via
the geometrical coefficients a2,(c↑,c↓) of the first quantized wave function.

Table 6.2 displays for different system sizes the dimension of the Hilbert space, dim(H ), as well as
the total number of possible orbital configurations Nconfig. Given the product Hilbert space with N↑ (N↓)
particles in the first (second) layer pierced by 2s (2s′) flux quanta, this total number is simply the stochastic
quantity

Nconfig =

(
2s+ 1

N↑

)(
2s′ + 1

N↓

)
. (6.4.17)

The dimension of the Hilbert space is much smaller than the total number of configurations, as the 311-state
is rotationally invariant, thus living in the singlet subspace. Nevertheless, the dimension grows rapidly with
increasing particle number. The largest system we are able to treat numerically is a two-layer system with
seven ↑-spin and seven ↓-spin particles.

N↑ +N↓ (2s, 2s′) Nconfig dim(H )

2+2 (1,3) 6 2

3+3 (3,5) 80 12

4+4 (5,7) 1050 100

5+5 (7,9) 14,112 936

6+6 (9,11) 194,040 9697

7+7 (11,13) 2,718,144 106,872

Table 6.2 For different system sizes, the total number of possible orbital configurations Nconfig, specified in (6.4.17),
and the dimension of the Hilbert space dim(H ) of the 311-state are listed.

6.4.2 Pair correlation function

The pair correlation function introduced in Section 6.2.4 is a measure of the correlation properties of a
many-particle system. It returns the probability of finding a particle at a specified distance from a reference
particle. Since we only investigate rotationally invariant systems, we pin the reference particle to the north
pole of the sphere. Since the 311-state is a two-layer system, we calculate the intra- and interlayer pair
correlations.

To develop an intuition for the pair correlation function, it is useful to first calculate the quantity for
a well-studied system, such as the Laughlin state. In Figure 6.11, the pair correlation function g(r) of a
fermionic Laughlin state with filling fraction ν = 1/m = 1/3 for a system of eight particles is plotted. Figure
6.12 shows the pair correlation function of the bosonic Laughlin state with ν = 1/2 for eight particles. In
both systems, the reference particle sits at the north pole with spinor coordinates (0, 1), and θ is the angle
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between the two particle positions. The spinor coordinates of the second particle are (sin(θ/2), cos(θ/2)).
The largest distance between the two particles is reached for θ = π, when the second particle is located
at the south pole. For small distances r between two particles, the correlation function is proportional to
|r|m, which is in terms of angle θ

|r|m =
√

2(1− cos θ)
m
. (6.4.18)

Fermionic statistics requires g → 0 for r → 0. Incompressibility implies suppressed long range correlations,
so that the pair correlation function is constant for large distances. The pair correlation functions are mirror
symmetric around the south pole, g(π+ x) = g(π− x). The wiggles observed in both figures appear due to
finite size effects.

Fig. 6.11 Pair correlation function for the fermionic Laughlin state with filling fraction ν = 1/3 for a system with
N = 8 particles living on a sphere. One particle is pinned at the north pole corresponding to θ = 0.

For the 311-state, the pair correlation functions for 6+6 (meaning six ↑-spin particles on a sphere with
flux 2s and six ↓-spin particles on a sphere with flux 2s′) and 7+7 particles are presented in Figures 6.13
and 6.14. The first particle sits at the north pole, and the second particle is at (sin(θ/2), cos(θ/2)). The
correlation functions gr(θ) = g(θ)/Nr are renormalized with a renormalization constant Nr in such a way,
that the integration over the sphere, θ ∈ [0, π] equals 1,∫ π

0

d

(
θ

2

)
1

Nr
g(0, 1, u2(θ/2), v2(θ/2)) = 1. (6.4.19)

The intraspin pair correlation functions are qualitatively similar to those for the fermionic Laughlin state:
For small distances, the particles avoid each other, for large distances, the function reaches a constant value.
Also, for increasing system size, the intraspin correlation functions for both spin flavors become increasingly
similar.

As the Pauli exclusion principle does not hold for distinguishable particles, the interspin pair correlation
function does not vanish for θ → 0. The wavy structure indicates some degree of correlation between the
layers.



130 6 Fractional insulators

Fig. 6.12 Pair correlation function for the bosonic Laughlin state with filling fraction ν = 1/2 for a system with
N = 8 particles living on a sphere. One particle is pinned at the north pole corresponding to θ = 0.

In Figure 6.15, we have compared the interlayer pair correlation function for different system sizes. This
finite size analysis shows that the shape of the correlation function indicates some correlation between
the two layers. However, a quantitative measure cannot be deduced, since also finite size effects influence
the wavy structure of the function. This leads us to the conclusion that, although the pair correlation
function delivers some information about our wave function, we need to calculate different quantities for
a more detailed analysis. As the relative angular momentum is a good quantum number in the given
system, essential information lies in its relative angular momentum resolved correlation values, introduced
in Section 6.3.5. This information gets lost in the pair correlation function by integrating over all angular
momenta.

6.4.3 Relative angular momentum resolved correlators

For our 311-state in a system with up to 7 ↑-spin and 7 ↓-spin particles, we calculate the relative angular
momentum resolved correlators C↓↑l , C↑↑l and C↓↓l , which are specified in Section 6.3.5. As compared to
the pair correlation function of the previous section, these quantities convey much more information on the
correlation properties of the state.

In Figures 6.16 and 6.17, the correlators for the 311-state with 5+5 and 6+6 particles are plotted.
Since the particles for the intralayer correlators are indistinguishable and fermionic, the relative angular
momentum can only take odd values, and 0 ≤ l ≤ 2s for C↑↑l , 0 ≤ l ≤ 2s′ for C↓↓l . For the interspin
correlators, all values with 0 ≤ l ≤ 2s for s ≤ s′ are possible. The difference between the dots and crosses
in the figures will be explained in Section 6.4.4.

The dashed lines show the value of the correlators for an uncorrelated system, which equals the average
relative angular momentum density of the particles being distributed homogeneously over the sphere, which
is
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Fig. 6.13 Intra- and interflavor pair correlation functions of the 311-state for a system of six ↑-spin and six ↓-spin
particles living on a sphere.

C̄↑↓ =
N↑N↓

(s+ s′ + 1)2
, C̄↑↑ =

N2
↑

(2s+ 1)2
, C̄↓↓ =

N2
↓

(2s′ + 1)2
. (6.4.20)

These expressions can be derived as follows: With the steps yielding (6.3.11), we have constructed our
pseudopotentials such that by setting all pseudopotentials to 1, we have

2s∑
l=0

l∑
ml=−l

H(l) =

2s∑
l=0

(2l + 1)H(l) !
= N2

↑ (6.4.21)

for particles on the ↑-sphere and

2s′∑
l=0

l∑
ml=−l

H(l) =

2s′∑
l=0

(2l + 1)H(l) !
= N2

↓ (6.4.22)

for particles on the ↓-sphere as well as

s+s′∑
l=0

l∑
ml=−l

H(l) =

s+s′∑
l=0

(2l + 1)H(l) !
= N↑N↓, (6.4.23)

where we sum over all possible relative angular momenta l and their z-components ml. With the definition
(6.3.63) of the correlators, we can rewrite (6.4.21)-(6.4.23) into

sα+sβ∑
l=0

(2l + 1)Cαβl = 〈Ψ|NαNβ |Ψ〉 = NαNβ , (6.4.24)
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Fig. 6.14 Intra- and interflavor pair correlation functions of the 311-state for a system of seven ↑-spin and seven
↓-spin particles living on a sphere.

with α, β ∈ {↑, ↓} and s↑ := s, s↓ := s′. In a non-interacting system, all correlators are constant, Cαβl = C̄αβ

∀ l. Then, (6.4.24) simplifies to
(sα + sβ + 1)2C̄αβ = NαNβ , (6.4.25)

yielding the result (6.4.20).
For the 311-state, (6.4.20) can be further simplified by expressing the flux numbers in terms of particle

numbers with (6.2.3) and setting N↑ = N↓, so that

C̄↑↓ =
N2

4(N − 1
2 )2

, C̄↑↑ =
N2

4(N − 1)2
, C̄↓↓ =

1

4
. (6.4.26)

The relative angular momentum density in the ↓-layer is independent of the system size, and all densities
are equal in the thermodynamic limit.

For large relative angular momentum l, the intralayer correlators converge to C̄αα. Large values of l
loosely translate into a large distance between the two particles of the same flavor. In contrast, for the
interlayer interaction, the maximal distance of the two particles is reached at l = 0. For decreasing l, the
interlayer correlators converge to C̄↑↓. Thus, for large distances, the 311-state resembles an uncorrelated
system. For small distances, however, the 311-state shows high correlation of the particles.

To further analyze the correlations in the 311-state, we compare it to the correlators of the Laughlin
product state, Figure 6.18. The Laughlin product state in spherical geometry is constructed by taking
the direct product of two Laughlin states (2.5.1) with filling fraction ν = 1/3 and N = 5 particles each,
experiencing an opposite magnetic field. This yields a two layer system, and we label the particles of the
first (second) Laughlin state in the product as ↑-spin (↓-spin) particles. The flux through each sphere for
this state is 2sα = 3(Nα − 1) = 12, α =↑, ↓. The interlayer correlators for the Laughlin product state have
a constant value independent of the relative angular momentum. Thus, the ↑- and ↓-layer are completely
uncorrelated. In contrast, our 311-state shows a high deviation from the average angular momentum density,
especially for high values of l. The intralayer correlators for all three states have a qualitatively similar shape.
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Fig. 6.15 Finite size analysis of the interlayer pair correlation function for the 311-state for different system sizes. As
compared to Figures 6.11-6.14, we have taken θ → π − θ.

Since we can only treat finite systems, it is important to determine how the finite size of the system
influences the computational results. For this purpose, we compare the correlators of the 311-state for
5+5, 6+6 and 7+7 particles. Figure 6.19 compares the intralayer correlators C̄↑↑, Figure 6.20 compares the
intralayer correlators C̄↓↓, and Figure 6.21 compares the interlayer correlators C̄↑↓. One consequence of the
finite system is that there is only a finite number of pseudopotential coefficients, since 0 ≤ l ≤ 2s for C̄↑↑

and C̄↑↓, and 0 ≤ l ≤ 2s′ for C̄↓↓. Only the absolute values slightly change. While the local extrema of the
intralayer correlators remain at the same angular momentum for varying system size, they shift to higher
momenta for the interlayer correlators. However, for all three correlator types, we see that the overall shape
of the scatter plot does not alter with system size. It is therefore safe to assume that the 311-state shows
a strong correlation not only between particles of the same flavor, but also between the ↑- and ↓-particles.

What about time-reversal (T) symmetry in a system described by the 311-state? For a finite system, T
symmetry is broken. This can be seen analytically by observing that either the number of ↑-spin and ↓-spin
particles differs (N↑ 6= N↓) or the number of flux quanta through the two spheres (2s 6= 2s′) is unequal or
both. Thus, the 311-state changes under a time-reversal operation, Ψ311 6= TΨ311T

−1. Now, if we compare
the intraspin correlators C↑↑l and C↓↓l numerically, their difference decreases with increasing system size.

6.4.4 Construction and analysis of a parent Hamiltonian

The calculation of an approximate parent Hamiltonian has the highest computational cost as compared to
the other numerical tasks performed in this chapter. The largest system we are able to treat, is a two-layer
311-state with six particles per layer. Our Hamiltonian Finder method is explained in detail in Section 6.3.3.

We first analyze a system of five ↑-spin and five ↓-spin particles, each living on a sphere with respectively
2s = 9 and 2s′ = 7 Dirac flux quanta running through it. The Hilbert space is of the order O(103). With
the choice of pseudopotential coefficients given in Table 6.3 and plotted in Figure 6.22, obtained by our
Hamiltonian Finder method and further manual fine tuning, we obtain an overlap 〈Ψ311|GS〉 = 98.2% of
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Fig. 6.16 The relative angular momentum resolved correlators Cαα
′

l of the 311-state (crosses) and the actual ground
state (dots) of the parent Hamiltonian for the interlayer (red) and intralayer (black and blue) case. The system consists
of five ↑-spin particles living on an ↑-sphere pierced by 2s = 7 flux quanta, and five ↓-spin particles living on a ↓-sphere
pierced by 2s′ = 9 flux quanta. The dashed lines show the value of the correlators for an uncorrelated system.

the 311-state with the actual ground state of the resulting Hamiltonian. The relative angular momentum
of the intralayer pseudopotentials cannot exceed the number of Dirac flux quanta through the respective
sphere: For the ↑-sphere (↓-sphere), it is 0 ≤ l ≤ 2s (0 ≤ l ≤ 2s′). Since the particles inside one layer
are indistinguishable and fermionic, l has to be odd. For the interlayer pseudopotentials, it is 0 ≤ l ≤ 2s
for s ≤ s′. The corresponding relative angular momentum resolved correlators for both states are plotted
in Figure 6.16. We see that both for interlayer and intralayer interactions, the correlators are almost
identical. The pseudopotential coefficients V αβl drop monotonously for increasing l. Only the interlayer

pseudopotential coefficient V ↑↓7 is larger than the previous value. Since this anomaly does not reproduce in
larger systems, we expect this to be a finite size effect.

l V ↑↓l V ↑↑l V ↓↓l
0 16.950

1 8.453 10.16 18.50

2 0.868

3 -5.50 -1.16 3.14

4 -10.74

5 -15.07 -8.25 -7.97

6 -18.16

7 -7.25 -11.28 -15.02

8

9 -18.02

Table 6.3 The interlayer and intralayer pseudopotential coefficients of our approximate parent Hamiltonian for the
311-state with five ↑-spin and five ↓-spin particles.
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Fig. 6.17 The relative angular momentum resolved correlators Cαα
′

l of the 311-state (crosses) and the actual ground
state (dots) of the parent Hamiltonian for the interlayer (red) and intralayer (black and blue) case. The system consists
of six ↑-spinoparticles living on an ↑-sphere pierced by 2s = 9 flux quanta, and six ↓-spin particles living on a ↓-sphere
pierced by 2s′ = 11 flux quanta. The dashed lines show the value of the correlators for an uncorrelated system.

Fig. 6.18 Relative angular momentum resolved correlators of the product Laughlin state with filling fraction ν = 1/3
of a system with five ↑-spin and five ↓-spin particles.

Increasing the system size, we investigate a state with six ↑-spin and six ↓-spin particles living on spheres
with 2s = 11 and 2s′ = 9 Dirac flux quanta respectively. The corresponding Hilbert space is of the order
O(104). Assuming the pseudopotential coefficients listed in Table 6.4 and displayed in Figure 6.23, the
overlap of our 311-state and the actual ground state of the Hamiltonian 〈Ψ311|GS〉 is 82.1%. The intralayer
pseudopotentials are monotonously decreasing with increasing relative angular momentum l, meaning that
the interaction is strongest for the particles being close to each other, which is physically realistic. The
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Fig. 6.19 Finite size analysis of the intralayer correlators C↑↑l of the 311-state with 5+5 (blue triangles), 6+6 (gray
squares) and 7+7 (red circles) particles. The dashed lines show the value of the correlators for an uncorrelated system.

Fig. 6.20 Finite size analysis of the intralayer correlators C↓↓l of the 311-state with 5+5 (blue triangles), 6+6 (gray
squares) and 7+7 (red circles) particles. The dashed lines show the value of the correlators for an uncorrelated system.

two intralayer pseudopotentials are similar in shape, the difference arises only due to the different flux
number. Thus, in the thermodynamic limit, we most likely have V ↑↑l ≈ V ↓↓l ∀ l. Figure 6.17 shows that
the correlators of the 311-state and the ground state have qualitatively the same shape, the differences
being marginal. Comparing to the smaller system with five ↑-spin and five ↓-spin particles, pseudopotential
coefficients are of equivalent shape and magnitude, if we take into account that the range of permitted
non-zero pseudopotentials is restricted by the system size.

In our Hamiltonian Finder method, we have only considered two-body interactions. To construct an
exact parent Hamiltonian, it would be necessary to include many-body terms with three or more particles.
This increases the numerical effort decisively. Since our two-body parent Hamiltonian turns out to be an
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Fig. 6.21 Finite size analysis of the interlayer correlators C↑↓l of the 311-state with 5+5 (blue triangles), 6+6 (gray
squares) and 7+7 (red circles) particles. The dashed lines show the value of the correlators for an uncorrelated system.

2 4 6 8
l

15

10

5

0

5

10

15

V
α
α
′

l

α= ↑ ,α′= ↓
↓ , ↓
↑ , ↑

Fig. 6.22 For a system of five ↑-spin and five ↓-spin particles, the best approximation of a parent Hamiltonian for
our 311-state is specified by this choice of intralayer (black and blue dots) and interlayer (red dots) pseudopotential
coefficients V αα

′

l .

accurate approximation, we leave the search for an exact parent Hamiltonian as well as the detailed analysis
of the eigenspectrum of our approximate parent Hamiltonian for future research.
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l V ↑↓l V ↑↑l V ↓↓l
0 3.24

1 1.72 6.00 7.93

2 0.34

3 -0.87 3.72 5.04

4 -1.93

5 -2.84 2.05 2.76

6 -3.60

7 -4.21 0.99 1.09

8 -4.67

9 -4.97 0.53 0.03

10

11 -0.43

Table 6.4 The interlayer and intralayer pseudopotential coefficients of our approximate parent Hamiltonian for the
311-state with six ↑-spin and six ↓-spin particles.
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Fig. 6.23 For a system of six ↑-spin and six ↓-spin particles, the best approximation of a parent Hamiltonian for
our 311-state is specified by this choice of intralayer (black and blue dots) and interlayer (red dots) pseudopotential
coefficients V αα

′

l .

6.4.5 Real space potentials for the 311-state

For the 311-state with six ↑-spin particles and six ↓-spin particles, given the choice of pseudopotential
coefficients {Ṽl}l in Figure 6.23, the corresponding real space potentials V αβ311(θ) for the intralayer (α = β =↑
or α = β =↓) and interlayer (α =↑ and β =↓) interactions are derived by solving the system of linear
equations (6.3.67). Details of this method are described in Section 6.3.6. The three real space potentials
then are
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V ↑↑311(θ) =

2s∑
n=0

(a↑↑n + γ↑↑bn + µc↑↑n )Vn(θ),

V ↓↓311(θ) =

2s′∑
n=0

(a↓↓n + γ↓↓bn + µc↓↓n )Vn(θ),

V ↑↓311(θ) =

2s∑
n=0

(a↑↓n + γ↑↓bn + µc↑↓n )Vn(θ).

(6.4.27)

By manually fine-tuning the coefficients γαβ and µ, we attempt to create the most realistic real space
potentials possible. With “realistic”, we mean that the interaction drops to zero for large distances and is
monotonous. The choice γ↑↑ = 3.54, γ↓↓ = 3.92 and γ↑↓ = −5.26, µ = 7.60 gives the real space potentials
shown in Figures 6.24 and 6.25. As expected, the intralayer potential is repulsive, differing slightly for the ↑-
and ↓-sphere since they experience a different magnetic field. The interlayer interaction is attractive. This
behavior is plausible since, as explained in 6.2.1, the ↑-spin particles see quasielectrons at the positions of
the ↓-spin particles. The real space potentials presented here show, that the 311-state can be stabilized for
a reasonable, local interaction profile among the electrons.

V311
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V311
↑↑

π /4 π /2 3π /4 π

θ
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15

20

25

30

Fig. 6.24 Repulsive real space potential for the intralayer interaction of the parent Hamiltonian of the 311-state for a
two-layer system with six ↑-spin and six ↓-spin particles. One particle is pinned at the north pole (θ = 0). The orange
(blue) curve shows the potential in the ↑-sphere (↓-sphere).
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Fig. 6.25 Attractive real space potential for the interlayer interaction of the parent Hamiltonian of the 311-state for
a two-layer system with six ↑-spin and six ↓-spin particles. One particle is pinned at the north pole (θ = 0).



Chapter 7

Conclusion

In this thesis, we investigate known and new fractional quantum Hall states in two-dimensional spin systems.
Our research pursues two different projects:

In the first project, we develop a method to construct parent Hamiltonians for the CSL, and present the
first local spin Hamiltonians for which the Abelian or the non-Abelian CSLs are the exact and, modulo a
topological degeneracy, unique ground states. These microscopic models are promising candidates for the
study of elementary excitations and fractional statistics in the CSLs, since all parent Hamiltonians proposed
so far have only non-local interactions. Our method relies on the singlet property of the CSLs, allowing for
a spherical tensor decomposition of the introduced annihilation operator. We confirm numerically that the
CSLs are the unique ground states of our Hamiltonians for the square lattice and the triangular lattice.
Moreover, our numerical method to write out arbitrary tensor products provides a user-friendly and efficient
framework to implement the parent Hamiltonian of a CSL for further numerical studies.

In the second project, we propose “fractional insulators” as a new universality class of fractionally
quantized, topologically ordered insulators. We construct a wave function, which we label the “311-state”,
and which exhibits topological order, but violates time reversal symmetry. Even though time reversal
symmetry is broken, the state is designed in such a way, that all locally observable quantities remain time
reversal invariant - a condition we label “topological time reversal symmetry breaking”. For the 311-state,
this condition is achieved by coupling two Laughlin states for the ↑-spin and ↓-spin electrons through an
interflavor term, which creates entanglement between the two spin species. Thereby we go beyond well-
studied time reversal symmetric fractionalized phases, where the state is constructed as a direct product
of a fractional quantum Hall state and its time reversal conjugate without any entanglement between the
spin species.

In this context, we introduce a numerical technique to identify the exact or approximate parent Hamil-
tonian of a spin system. For the 311-state with up to six ↑-spin and six ↓-spin electrons, we manage to
construct an approximate parent Hamiltonian with a physically realistic, local interaction. It might there-
fore be possible to find an experimental realization of such a state. Still, there are many tasks open for
future research. A detailed analysis of the new class of insulators may reveal interesting physics. A concrete
next step is to calculate and understand their excitation spectra and fractional statistics. By including
many-body interactions of three- or more particles, it might also be possible to obtain an exact parent
Hamiltonian for the 311-state.

In view of the rapid developments both theoretically and experimentally in the field of fractional quan-
tization in recent years, its importance will even increase in the near future. We hope to contribute with
the research presented here to a deeper understanding of fractionalization in two dimensional quantum
systems.
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Appendix A

Angular momentum algebra and spin operators

The group SU(2) corresponds to special unitary transformations on complex 2D vectors. Its natural repre-
sentation is that of 2×2-matrices acting on 2D vectors. However, there are other representations, especially
in higher dimension vector spaces, which will be detailed below. There are 22 − 1 parameters, thus 3 gen-
erators, which have to be traceless and Hermitian. They are given by the angular momentum components
{Jx, Jy, Jz}. In the matrix representation, the generators have the form(

a b∗

b −a

)
, (A.1)

with a ∈ R. A suitable, but not unique, representation are the Pauli matrices with J i = σi/2 and

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (A.2)

It is σiσj = δij111 + iεijkσk, using Einstein’s sum convention.
In the following, a few basic relations of the angular momentum algebra are reviewed [7; 32]. The

components of the angular momentum operator J obey the Lie algebra[
Ja, Jb

]
= iεabcJc for a, b, c = x, y, z. (A.3)

A Casimir operator is one which commutes with all generators. In SU(2), there is one Casimir, the
sqaure of the total angular momentum J2. The operators J2 and Jz have a set of simultaneous eigenstates,
since

[
J2, Jz

]
= 0. Their eigenvalues are

J2 |j,m〉 = j(j + 1) |j,m〉 ,
Jz |j,m〉 = m |j,m〉 ,

(A.4)

where m = −j, . . . , j.
Defining the ladder operators with J± ≡ Jx ± iJy, we have[

Jz, J±
]

= ±J±. (A.5)

Their matrix representation is

J+ =

(
0 1
0 0

)
, J− =

(
0 0
1 0

)
. (A.6)

Further, we have
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J+J− = (Jx)2 + (Jy)2 − i [Jx, Jy] = J2 − (Jz)2 + Jz,

J−J+ = J2 − (Jz)2 − Jz.
(A.7)

These equations imply [
J+, J−

]
= 2Jz. (A.8)

and

J± |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 , (A.9)

Here, we have chosen the phases between J− |j,m〉 and |j,m± 1〉 real.
The spin S is one type of angular momentum and thus obeys the SU(2) Lie algebra. A spin 1/2-

systems can be represented by a two-dimensional matrix representation of SU(2). The Pauli matrices can be
generalized to represent higher spin systems in three spatial dimensions. A three-dimensional representation
is needed for spin 1. In this case, the Pauli matrices are

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , Sz =

1 0 0
1 0 0
0 0 −1

 . (A.10)

As we also analyze spin systems with spin 3/2 in this thesis, the corresponding Pauli matrices are listed as
well,

Sx =
1

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 , Sy =
1

2


0 −

√
3i 0 0√

3i 0 −2i 0

0 2i 0 −
√

3i

0 0
√

3i 0

 ,

Sz =
1

2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 . (A.11)



Appendix B

Tensor decompositions of spin operators

In Chapter 4, the parent Hamiltonians of the chiral spin liquid consist of up to four neighboring interacting
spins. In this appendix, we decompose the product of one, two and three spin operators into their irreducible
components.

B.1 One spin operator

A single spin operator transforms as a vector under rotations. We choose the normalization such that the
m = 0-component is equal to Sz. The three components the are

V 1 = − 1√
2
S+,

V 0 =
1√
2

[
S−, V 1

]
= Sz,

V −1 =
1√
2

[
S−, V 0

]
=

1√
2
S−.

(B.1.1)

B.2 Two spin operators

The direct product of two vectors, representing two spin operators S1 and S2, can be decomposed into the
direct sum of a scalar, a vector and a second order tensor,

1⊗ 1 = 0⊕ 1⊕ 2.

The scalar component is the scalar product

U12 = S1 · S2 =
1

2

(
S+

1 S
−
2 + S−1 S

+
2

)
+ Sz

1S
z
2, (B.2.1)

and the vector is −i (S1 × S2),
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V 1
12 =

i√
2

(S1 × S2)+ =
1√
2

(
S+

1 S
z
2 − Sz

1S
+
2

)
,

V 0
12 = −i(S1 × S2)z =

1

2

(
S+

1 S
−
2 − S−1 S+

2

)
,

V −1
12 = − i√

2
(S1 × S2)− =

1√
2

(
S−1 S

z
2 − Sz

1S
−
2

)
.

(B.2.2)

For the second order tensor, we start with the term S+
1 S

+
2 , since it is the only operator of two spin operators

which raises the Sz-quantum number by two. Therefore, it is proportional to the m = 2-component of the
second order tensor. Since the normalization is free to choose, we set

T 2
12 = S+

1 S
+
2 . (B.2.3)

The remaining tensor components are derived using the angular momentum ladder operators of (4.3.14),
reducing the m-component consecutively by 1. We obtain

T 1
12 =

1

2

[
S−1 + S−2 , T

2
12

]
= −Sz

1S
+
2 − S+

1 S
z
2,

T 0
12 =

1√
6

[
S−1 + S−2 , T

1
12

]
=

1√
6

(
4Sz

1S
z
2 − S+

1 S
−
2 − S−1 S+

2

)
, (B.2.4)

T−1
12 =

1√
6

[
S−1 + S−2 , T

0
12

]
= Sz

1S
−
2 + S−1 S

z
2,

T−2
12 =

1

2

[
S−1 + S−2 , T

−1
12

]
= S−1 S

−
2 .

These expressions allow us to reformulate the scalar product S1·S2 is terms of its irreducible representations.
In particular, Equations (B.2.1), (B.2.3) and (B.2.4) imply

1

2

(
S+

1 S
−
2 + S−1 S

+
2

)
=

2

3
S1S2 −

1√
6
T 0

12, (B.2.5)

Sz
1S

z
2 =

1

3
S1S2 +

1√
6
T 0

12. (B.2.6)

The combination of (B.2.5) and (B.2.2) yields

S+
1 S
−
2 =

2

3
S1S2 − i(S1 × S2)z − 1√

6
T 0

12,

S−1 S
+
2 =

2

3
S1S2 + i(S1 × S2)z − 1√

6
T 0

12.

(B.2.7)

B.3 Three spin operators

The direct product of three vector operators, for instance three spin operators S1, S2, and S3, can be
decomposed into a scalar, three vectors, two second order tensors and one third-order tensor,

1⊗ 1⊗ 1 = 0⊕ 3 · 1⊕ 2 · 2⊕ 3.

The scalar is constructed out of the triple product,
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U123 = −iS1 · (S2 × S3)

=
1

2
Sz

1

(
S+

2 S
−
3 − S−2 S+

3

)
+ 2 cyclic permutations

=
1

2

(
Sz

1S
+
2 S
−
3 + S+

1 S
−
2 S

z
3 + S−1 S

z
2S

+
3

− Sz
1S
−
2 S

+
3 − S−1 S+

2 S
z
3 − S+

1 S
z
2S
−
3

)
.

(B.3.1)

Note that, for S2 6= S3, this operator can be rewritten as the sum of scalar products,

− iS1 · (S2 × S3) = −(S1 · S2)(S1 · S3) + (S1 · S3)(S1 · S2). (B.3.2)

In the case of S2 = S3, since Sj × Sj = iSj , the triple product reduces to

− iS1 · (S2 × S2) = S1 · S2. (B.3.3)

The three vectors are
S1(S2S3), Sα1 (S2)Sα3 , and (S1S2)S3, (B.3.4)

where Einstein’s sum convention is used in the second expression, α = x, y, z. For later puroposes, the
m = 0-component is explicitly written out,

V 0
a,123 = Sz

1(S2S3) =
1

2

(
Sz

1S
+
2 S
−
3 + Sz

1S
−
2 S

+
3

)
+ Sz

1S
z
2S

z
3,

V 0
b,123 = S1(Sz

2)S3 =
1

2

(
S−1 S

z
2S

+
3 + S+

1 S
z
2S
−
3

)
+ Sz

1S
z
2S

z
3, (B.3.5)

V 0
c,123 = (S1S2)Sz

3 =
1

2

(
S+

1 S
−
2 S

z
3 + S−1 S

+
2 S

z
3

)
+ Sz

1S
z
2S

z
3.

The m = 2-component of the tensor of second order is obtained by forming the product of two vector
operators which are constructed out of the three spins. Two choices are possible

T 2
a,123 = −iS+

1 (S2 × S3)+,

T 2
b,123 = −i(S1 × S2)+S+

3 .
(B.3.6)

There is no third operator of this form, as the sum of the three operators obtained by cyclic permutation
of the superscripts equals zero.

As in (B.2.4), the remaining components are derived by applying the ladder operator. As it is needed in
the following, the m = 0-component is written out explicitly,

T 0
a,123 = − i√

6

[
4Sz

1(S2 × S3)z − S+
1 (S2 × S3)− − S−1 (S2 × S3)+

]
=

1√
6

[
2Sz

1

(
S+

2 S
−
3 − S−2 S+

3

)
− S+

1 S
−
2 S

z
3 + S+

1 S
z
2S
−
3

+ S−1 S
+
2 S

z
3 − S−1 Sz

2S
+
3

]
.

(B.3.7)

The same holds for T 0
b,123, which is obtained from T 0

b,123 by a cyclically permutating the superscripts z,+,−.
The tensor of third order is obtained with the same method as used for (B.2.3), this time for three spin

operators,

W 3
123 = −S+

1 S
+
2 S

+
3 ,
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W 2
123 =

1√
6

[
S−1 + S−2 + S−3 ,W

3
123

]
= − 1√

6

[
S−1 , S

+
1

]
S+

2 S
+
3 + 2 cycl. permutations

=

√
2

3
Sz

1S
+
2 S

+
3 + 2 cycl. permutations,

W 1
123 =

1√
10

[
S−1 + S−2 + S−3 ,W

2
123

]
=

1√
15

( [
S−1 , S

z
1

]
S+

2 S
+
3 + Sz

1

[
S−2 + S−3 , S

+
2 S

+
3

] )
+ 2 cycl. perms.

=
1√
15

(
S−1 S

+
2 S

+
3 − 4Sz

1S
z
2S

+
3

)
+ 2 cycl. permutations,

W 0
123 =

1√
12

[
S−1 + S−2 + S−3 ,W

1
123

]
=

1

6
√

5

(
S−1
[
S−2 + S−3 , S

+
2 S

+
3

]
− 4

[
S−1 + S−2 , S

z
1S

z
2

]
S+

3

− 4Sz
1S

z
2

[
S−3 , S

+
3

] )
+ 2 cycl. permutations

= − 1√
5

(
S−1 S

+
2 S

z
3 + 5 permutations

)
+

4√
5
Sz

1S
z
2S

z
3, (B.3.8)

W−1
123 =

1√
12

[
S−1 + S−2 + S−3 ,W

0
123

]
= − 1√

15

(
S−1 S

−
2 S

+
3 − 4S−1 S

z
2S

z
3

)
+ 2 cycl. permutations,

W−2
123 =

1√
10

[
S−1 + S−2 + S−3 ,W

−1
123

]
=

√
2

3
S−1 S

−
2 S

z
3 + 2 cycl. permutations,

W−3
123 =

1√
6

[
S−1 + S−2 + S−3 ,W

−2
123

]
= S−1 S

−
2 S
−
3 .

Here, the permutations always refer to the superscripts z,+,−, otherwise, we would habe to assume that
none of the spin operators are identical.

We can now express certain spin operator products in terms of their irreducible tensor components. For
instance, by combining (B.3.5) and the expression for W 0

123 from (B.3.8), we obtain

Sz
1S

z
2S

z
3 =

1

5

(
V 0
a,123 + V 0

b,123 + V 0
c,123

)
+

1

2
√

5
W 0

123. (B.3.9)

This results into

1

2
Sz

1

(
S+

2 S
−
3 + S−2 S

+
3

)
= V 0

a,123 − Sz
1S

z
2S

z
3
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=
4

5
V 0
a,123 −

1

5
V 0
b,123 −

1

5
V 0
c,123 −

1

2
√

5
W 0

123. (B.3.10)

Further, Eqs. (B.3.1) and (B.3.7) can be combined to

1

2
Sz

1

(
S+

2 S
−
3 − S−2 S+

3

)
=

1

3
U123 +

1√
6
T 0
a,123. (B.3.11)

In total, this yields

Sz
1S

+
2 S
−
3 = +

1

3
U123 +

1

5

(
4V 0

a,123 − V 0
b,123 − V 0

c,123

)
+

1√
6
T 0
a,123 −

1

2
√

5
W 0

123

= +
1

3
S1(S2 × S3) +

1

5

[
4Sz

1(S2S3)− S1(Sz
2)S3 − (S1S2)Sz

3

]
+

1√
6
T 0
a,123 −

1

2
√

5
W 0

123, (B.3.12)

Sz
1S
−
2 S

+
3 = −1

3
U123 +

1

5

(
4V 0

a,123 − V 0
b,123 − V 0

c,123

)
− 1√

6
T 0
a,123 −

1

2
√

5
W 0

123

= −1

3
S1(S2 × S3) +

1

5

[
4Sz

1(S2S3)− S1(Sz
2)S3 − (S1S2)Sz

3

]
− 1√

6
T 0
a,123 −

1

2
√

5
W 0

123. (B.3.13)

B.4 Four spin operators

In the case of a direct product of four spin operators S1, S2, S3 and S4, the decomposition consists of
tensors up to order four,

1⊗ 1⊗ 1⊗ 1 = 3 · 0⊕ 6 · 1⊕ 6 · 2⊕ 3 · 3⊕ 4.

The three scalars are

Ua,1234 = (S1 · S2)(S3 · S4),

Ub,1234 = Si1(S2 · S3)Si4,

Uc,1234 = Si1S
j
2S

i
3S

j
4,

(B.4.1)

with the indices i, j = x, y, z.
For the six vectors, we have

Va,1234 = (S1 · S2)(S3 × S4),

Vb,1234 = (S1 × S2)(S3 · S4),

Vc,1234 = εijkêkSi1S
l
2S

j
3S

l
4,

Vd,1234 = εijkêkSi1(S2 · S3)Sj4,

Ve,1234 = εijkêkSl1S
i
2S

l
3S

j
4,

Vf,1234 = Sl1(S2 × S3)Sl4.

(B.4.2)

The m = 2-components of the six tensors of second order are
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T 2
a,1234 = (S1 × S2)+(S3 × S4)+,

T 2
b,1234 = S•1S

◦
2S
•
3S
◦
4 ,

T 2
c,1234 = S•1 (S2 × S3)S•4 ,

T 2
d,1234 = S+

1 (S2 × (S3 × S4))+,

T 2
e,1234 = S+

2 ((S1 × S4)× S3)+,

T 2
f,1234 = S+

3 (S1 × (S2 × S4))+.

(B.4.3)

The expressions for Tb,1234 and Tc,1234 need some explanation: We define

S•1S
•
2 := (S1 × S3)+. (B.4.4)

The same holds for the open symbols. This notation allows us to keep the order of the spin operators
unaltered.

Similarly to above, the remaining components can be derived by applying the ladder operator.
For the three tensors of third order, the m = 3-component is

W 3
a,1234 = S+

1 S
+
2 (S3 × S4)+,

W 3
b,1234 = S+

1 (S2 × S3)+S+
4 ,

W 3
c,1234 = (S1 × S2)+S+

3 S
+
4 .

(B.4.5)

Finally, the m = 4-component of the fourth-order tensor is

X4
1234 = S+

1 S
+
2 S

+
3 S

+
4 . (B.4.6)



Appendix C

The Jacobi theta function

With the help of the Jacobi theta functions, plane boundary wave functions can be rephrased to the torus
geometry of periodic boundary conditions.

The theta functions with characteristics a, b are defined in general by

ϑa,b(z|τ) =

∞∑
n=−∞

eiπ(n+a)2τei2π(n+a)(z+b). (C.0.1)

with z ∈ C and τ ∈ C with =(τ) > 0, living in the upper half plane. They satisfy the quasi-periodicity
relations on a lattice Λ = m′ +mτ with m,m′ ∈ Z,

ϑa,b(z + 1|τ) = ei2πaϑa,b(z|τ),

ϑa,b(z + τ |τ) = e−iπτe−i2π(z+b)ϑa,b(z|τ). (C.0.2)

The latter formula implies

ϑa,b(z + nτ |τ) = e−iπτn
2

e−i2πn(z+b)ϑa,b(z|τ). (C.0.3)

The series converge absolutely and uniformly on compact sets [104].
Especially important are the four theta functions with half-integer characteristics, of which three are

even,
ϑ0,0(z|τ), ϑ 1

2 ,0
(z|τ), ϑ0, 12

(z|τ), (C.0.4)

with ϑa,b(−z|τ) = ϑa,b(z|τ), and one odd function,

ϑ 1
2 ,

1
2
(−z|τ) = −ϑ 1

2 ,
1
2
(z|τ). (C.0.5)

Theta functions are multivalued on the torus Tτ = C/Λ, but its zeros are well-defined, being located at

(−a+
1

2
)τ + (−b+

1

2
) mod Λ, (C.0.6)

as illustrated in Figure C.1.
By a rotation of π/2 around the origin, the odd ϑ-function ϑ 1

2 ,
1
2

as well as the even ϑ-function ϑ0,0 remain

unchanged, whereas ϑ 1
2 ,0

maps into ϑ0, 12
and vice versa. If we rotate by π/3 around the origin, only the

odd ϑ-function is invariant. The even ϑ-functions map into each other via (0, 0)→ (0, 1
2 )→ ( 1

2 , 0)→ (0, 0).
As one example for a physical application, the four theta functions ϑa,b(z|τ), a, b ∈ {0, 1/2} provide

periodic solutions of the partial differential equation

∂ϑ(z|τ)/∂τ = κ∂2ϑ(z|τ)/∂z2, (C.0.7)
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0 1

1 + ττ

Fig. C.1 Zeros of the theta-functions in the complex plane:  zeros of ϑ 1

2
, 1

2
(z|τ), � zeros of ϑ 1

2
,0(z|τ), # zeros of

ϑ0, 1

2
(z|τ), N zeros of ϑ0,0(z|τ).

with κ = −iπ/4. For τ = it and t, z ∈ R, (C.0.7) has the form of a real-time t diffusion equation, also called
heat equation,

∂ϑ/∂t = α∂2ϑ/∂z2, (C.0.8)

with a diffusion constant α = π/4. The non-periodic Gaussian

g(z, t) =

√
π

4αt
exp

(
− z2

4αt

)
(C.0.9)

is a solution of (C.0.8) and approaches the Dirac delta distribution for t→ 0. Since√
π

4αt

∞∑
n=−∞

e−(nπ+z)2/4αt = ϑ0,0(z|i4αt/π) (C.0.10)

and √
π

4αt

∞∑
n=−∞

(−1)ne−(nπ+z)2/4αt = ϑ0, 12
(z|i4αt/π) (C.0.11)

the classical theta functions are ”periodized” and ”anti-periodized” Gaussians [8].
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Tensor operations :

Package file with functions to calculate a scalar product ("ScalarProd") of two spins and to calculate a 

tensor of a specific spin product ("ArbTensor").  (Spin-1/2 system with 1 or 2 or 3 spins communicating 

with two external spins S_m and S_n)

BeginPackage["Spin12CreateTensors20140817`"]

LL::usage = "Generate all permutations of x,y,z"

RR::usage = "List of site order for five sites"

RR4::usage = "List of site order for four sites"

RR3::usage = "List of site order for three sites"

ScalarProd::usage = "Calculate scalar product"

Tens::usage = "Create flattened tensor"

ArbTensor::usage = "Calculate arbitrary tensor"

Begin["`Private`"]

(*Define spin operators*)

id := IdentityMatrix[2];

sp := {{0, 1}, {0, 0}};

sm := {{0, 0}, {1, 0}};

sid := 34*id; (*sid=sz.sz+12*(sp.sm+sm.sp)*)
sz := 12, 0, 0, -12;
S:={sp,sz,sm};

Sup := {1, 0};

Sdown := {0, 1};

Nil := {0, 0};

(*Function to generate all permutations of {x,y,z} for 3 spins, {x,y}

for 2 spins, {x} for 1 spin *)

LL[x_,y_,z_,NoS_]:=Which[NoS==5,Permute[{x,y,z},SymmetricGroup[3]],

NoS==4,Permute[{x,y},SymmetricGroup[2]],NoS==3,Permute[{x},

SymmetricGroup[1]]];

(*RR defines the order of the sites*)

RR[x_,y_,z_,m_,n_]:={x,y,z,x,y,z,m,n};

(*Function to create a scalar product of two spin operators S_a.S_b,

returns flattened tensor,a and b being the site index of the two

spins*)

(*SiteList:list with NN elements indicating spin positions,1:spin,

0:vacancy,eg.SiteList={1,1,0,0,0}*)

ScalarProd[SiteList_]:=

Module{NN,IndexListOdd,IndexListEven,SpinIndex,SiteArgs,Prod,
FlatProd},



NN=Length[SiteList];

IndexListOdd=Table[2*i-1,{i,NN}];

IndexListEven=Table[2*i,{i,NN}];

SpinIndex=Flatten[Position[SiteList,1]];(*list of positions

of spins*)

SiteArgs=SiteList/.{0->id,1->sz};
Prod=TensorProduct@@@{SiteArgs}[[1]];
IfNN==5 && SiteList=={0,0,0,0,0}
|| NN==4 && SiteList=={0,0,0,0}

|| NN==3 && SiteList=={0,0,0},

(* In this case: flattened identity tensor is created. *)

FlatProd=Flatten[Prod,{IndexListOdd,IndexListEven}];

Return[FlatProd];

,

SiteArgs[[SpinIndex[[1]]]]=sp;

SiteArgs[[SpinIndex[[2]]]]=sm;

Prod+=12*TensorProduct@@@{SiteArgs}[[1]];
SiteArgs[[SpinIndex[[1]]]]=sm;

SiteArgs[[SpinIndex[[2]]]]=sp;

Prod+=12*TensorProduct@@@{SiteArgs}[[1]];
FlatProd=Flatten[Prod,{IndexListOdd,IndexListEven}];

Return[FlatProd];






(* Function to create a flattened tensor whose argument is given by

one component of the N-dimensional matrix L: L[[a]][[b]]; each

element of L has the structure like {sp,id,sm,id,id} *)

Tens[n_, x_, L_, IndexListOdd_, IndexListEven_] :=

FlattenTensorProduct @@@ {L[[n]][[x]]}[[1]],
{IndexListOdd,IndexListEven};

(* Function to create a tensor given by a spin product as for instance

S^a_x S^a_y S^b_m S^b_n with Einstein's sum convention for the upper

indices a,b and all possible permutations of the sites x,y,z,

returning the sum of all tensors example: if we have 3 sites, there

are 3! permutations; RR[x,y,z] defines the order of the sites and P

defines pairing of the spin operators; The tensors live in a space with

five spin sites a,b,c,m,n.; e.g. RR={x,y,m,n} and P={1,2,3,4,5,6,7,8}

gives a spin product S^a_x S^a_y S^b_m S^b_n; The argument P always has

eight elements 1,...,8. However, if RR has M<8 elements, only the first



M elements of P are relevant. *)

(* !!!! What cannot be calculated: A Self-products of spins as

S^a_x S^a_x; B In RR, the elements of a the 1st and 2nd, b 3rd

and 4th, c 5th and 6th cannot be of the same site. E.g. RR={x,x,y,z}

cannot be calculated. However, this is equal to RR={y,x,x,z}, which can

be calculated. *)

ArbTensor[P_,NoS_] :=

Module{t1, t2, NN, IndexListOdd, IndexListEven, L, DL, Temp1, posm, posn,

pos, case1, ArgList, NoPerm, LEN, LengthEl, T1, T2, T3, Tprod,fac1, fac2,

fac3, fac4, OutP, SUM},

t1 = SessionTime[];

NN = NoS; (* NN: Number of sites *)

IndexListOdd = Table[2*i - 1, {i, NN}];

IndexListEven = Table[2*i, {i, NN}];

Temp1 = LL[1, 2, 3,NoS];

LEN = Length[Temp1];

Which[NoS==5,For[i = 1, i <= LEN, i++,

Temp1[[i]] = Append[Temp1[[i]], NoS-2+1];

Temp1[[i]] = Append[Temp1[[i]], NoS-2+2]],

NoS==4,For[i = 1, i <= LEN, i++,

Temp1[[i]] = Append[Temp1[[i]], NoS-2+1];

Temp1[[i]] = Append[Temp1[[i]], NoS-2+2]],

NoS==3,For[i = 1, i <= LEN, i++,

Temp1[[i]] = Append[Temp1[[i]], NoS-2+1];

Temp1[[i]] = Append[Temp1[[i]], NoS-2+2]]];

WhichNoS==5,

ArgList = RR @@@ Temp1;
(* Get all possible permutations of the sites x,y,z *)

,NoS==4,

ArgList = RR4 @@@ Temp1;
(* Get all possible permutations of the sites x,y *)

,NoS==3,

ArgList = RR3 @@@ Temp1;
(* Get all possible permutations of the sites x just one *)


;
(*Print[ArgList];*)

ArgList = DeleteDuplicates[ArgList];

Print[ArgList];

NoPerm = Length[ArgList]; (* NoPerm: Number of permutations *)

LengthEl = Length[ArgList[[1]]];



L = Table0, {k, NoPerm}, i, LengthEl2, {m, NN};
OutP = Table[0, {i, NoPerm}]; (* List to safe the tensors of the

different site permutations *)

Fori = 1, i <= NoPerm, i++, Forj = 1, j <= LengthEl, j++,

L[[i]]IntegerPartj + 12[[ArgList[[i]][[j]]]]
= P[[j]];

fac1 = 1;

fac2 = 1;

fac3 = 1;

fac4 = 1;

Which[LengthEl == 2, Goto[SC1], LengthEl == 4,

Goto[SC2], LengthEl == 6, Goto[SC3]];

Label[SC1];

Print["SC1"];

Forh = 1, h <= NoPerm, h++, Tprod = 0;

Fori = 1, i <= 3, i++, a1 = S[[i]]; a2 = S[[4 - i]];

DL = L /. {0 -> id, 1 -> a1, 2 -> a2};
fac1 = Ifa1 == sz, 1, 12;
T1 = Tens[h, 1, DL, IndexListOdd, IndexListEven];

Tprod += fac1*T1(*; Print[i]*); OutP[[h]] = Tprod;
SUM = Total[OutP];

(*Print[SUM];*)

t2 = SessionTime[] - t1;

Print["Calculation time = ",t2," s"];

Return[SUM];

Label[SC2];

Print["SC2"];

Forh = 1, h <= NoPerm, h++, Tprod = 0;

Fori = 1, i <= 3, i++, a1 = S[[i]]; a2 = S[[4 - i]];

fac1 = Ifa1 == sz, 1, 12;
Forj = 1, j <= 3, j++, b1 = S[[j]]; b2 = S[[4 - j]];

DL = L /. {0 -> id, 1 -> a1, 2 -> a2, 3 -> b1, 4 -> b2};
fac2 = Ifb1 == sz, 1, 12;
T1 = Tens[h, 1, DL, IndexListOdd, IndexListEven];

T2 = Tens[h, 2, DL, IndexListOdd, IndexListEven];

Tprod += fac1*fac2*T1.T2(*; Print[i, j]*);
OutP[[h]] = Tprod;

SUM = Total[OutP];

(* Print[SUM];*)

t2 = SessionTime[] - t1;

Print["Calculation time = ",t2," s"];



Return[SUM];

Label[SC3];

Print["SC3"];

Forh = 1, h <= NoPerm, h++, Tprod = 0;

Fori = 1, i <= 3, i++, a1 = S[[i]]; a2 = S[[4 - i]];

fac1 = Ifa1 == sz, 1, 12;
Forj = 1, j <= 3, j++, b1 = S[[j]]; b2 = S[[4 - j]];

fac2 = Ifb1 == sz, 1, 12;
Fork = 1, k <= 3, k++, c1 = S[[k]]; c2 = S[[4 - k]];

DL = L /. {0 -> id, 1 -> a1, 2 -> a2, 3 -> b1, 4 -> b2,

5 -> c1, 6 -> c2};
fac3 = Ifc1 == sz, 1, 12;
T1 = Tens[h, 1, DL, IndexListOdd, IndexListEven];

T2 = Tens[h, 2, DL, IndexListOdd, IndexListEven];

T3 = Tens[h, 3, DL, IndexListOdd, IndexListEven];

Tprod += fac1*fac2*fac3*fac4*T1.T2.T3;
OutP[[h]] = Tprod;
SUM = Total[OutP];

(* Print[SUM]; *)

t2 = SessionTime[] - t1;

Print["Calculation time = ",t2," s"];

Return[SUM];



End[]

EndPackage[]



Finding the prefactors of the scalar terms in the tensor 

decomposition :

Package file with functions to create the tensor projection {T^m1 T^m2}_j whose prefactors are to be 

calculated (Spin - 1/2 system, arbitrary number of sites)

BeginPackage["Spin12FindFactors20140817`"]

CreateTensor::usage = "Create tensor of order M"

TProject::usage = "Project two tensors onto each other"

ResStructure::usage = "Create the tensor product whose prefactors are to be

found"

Begin["`Private`"]

(* Define spin operators *)

id := IdentityMatrix[2]

sp := {{0, 1}, {0, 0}}

sm := {{0, 0}, {1, 0}}

sid := 34*
id (*sid=sz.sz+12*(sp.sm+sm.sp)*)
sz := 12, 0, 0, -12

(* Define commutator *)

Commutator[A_, B_] := A.B - B.A;

(* Function to create tensor of order M M≥1 for a system of NN sites whose

maximum component is of the form S+a S+b ... S+M *)

(* TMlist: list with NN elements indicating how often which sites appear in

index of tensor, the number per site can be 0, 1, 2, e.g. TMlist={1,1,0,0,1}

for the tensor Tabn *)

(* Function returns a list of the components of the tensor in increasing

order from m=+M to m=-M; e.g. for Tab: {T2ab,T1ab,T0ab,T-1ab,T-2ab} *)

CreateTensor[TMlist_] :=

Module{NN, M, MM, IndexListOdd, IndexListEven, SpinIndex, TMArgs, TM, FlatTM,

ListFlatT, Smtemp, SmArgs, Smtot},

NN = Length[TMlist];(* # of sites *)

M = Count[TMlist, 1] ; (* # of spin operators in the tensor *)

MM = Count[TMlist, 1] ;(* # of occupied sites *)

IndexListOdd = Table[2*i - 1, {i, NN}];

IndexListEven = Table[2*i, {i, NN}];

SpinIndex = Flatten[Position[TMlist, x_ /; x > 0]];(* list of positions

of spins *)

TMArgs = TMlist /. {0 -> id, 1 -> sp}; (* transform list of spin



positions into list of spin matrices sp and id *)

TM = TensorProduct @@@ {TMArgs}[[1]]; (* create tensor of order

M, m=M *)

FlatTM = Flatten(-1)^M*TM, {IndexListOdd, IndexListEven};
ListFlatT = Table[0, {i, 2*M + 1}];

ListFlatT[[1]] = FlatTM;

Smtemp = 0; (* creation of total spin flip down operator *)

SmArgs = Table[id, {i, NN}];

Forj = 1, j < MM + 1, SmArgs[[SpinIndex[[j]]]] = sm;

Smtemp += TensorProduct @@@ {SmArgs}[[1]];
SmArgs = Table[id, {i, NN}]; j++;
Smtot := Flatten[Smtemp, {IndexListOdd, IndexListEven}];

Fori = 2, i < 2*M + 2, ListFlatT[[i]] =

Simplify1SqrtM*M + 1 - M - i + 2*M - i + 1
*Commutator[Smtot, ListFlatT[[i - 1]]]; i++;
(* create all tensor components *)

(* Test if correct tensor components are created *)

TMArgs = TMlist /. {0 -> id, 1 -> sm};
TM = TensorProduct @@@ {TMArgs}[[1]];
If[ListFlatT[[2*M + 1]] == Flatten[TM, {IndexListOdd, IndexListEven}],

Return[ListFlatT],

Return[Print["Error in tensor calculation occured!"]]]



(* Function to calculate the projection of two tensors

Tj1m1 Tj2m2_jres *)

TProject[Tm1List_, Tm2List_, m1_, m2_, jres_] :=

Module{j1, j2, mmin, mmax, T1, T2, Contraction},

j1 = Count[Tm1List, 1];

j2 = Count[Tm2List, 1];

mmin = Max[-j1, -j2 + m1 + m2];

mmax = Max[j1, j2 + m1 + m2];

T1 = CreateTensor[Tm1List];

T2 = (-1)^j2*CreateTensor[Tm2List];

fterm[m_] := ClebschGordan[{j1, m}, {j2, m1 + m2 - m}, {jres, m1 + m2}]

*T1[[mmax + 1 + m]].T2[[mmax + 1 + m1 + m2 - m]];
Contraction = ClebschGordan[{j1, m1}, {j2, m2}, {jres, m1 + m2}]

*Sum[fterm[m], {m, mmin, mmax}];

Return[Contraction];



(* Function to create the function which defines the structure of the result;

it takes a list of the terms which contribute to the structure and the

parameters for every term: Params={a,b,c,...} *)



ResStructure[Tm1List_, Tm2List_, m1_, m2_, jres_, ResTerms_] :=

Module[{Num, alphabet, ParamList, ResFunction, NN, TensorProject, FlatStateVec,

Bres, Res},

Num = Length[ResTerms];

ParamList = Take[ParamListTotal, {1, Num}];

ResFunction[X_] := Sum[ResTerms[[i]] X[[i]], {i, Num}];

NN = Length[Tm1List];

TensorProject = TProject[Tm1List, Tm2List, m1, m2, jres];

Bres = ResFunction[ParamList];

Res = Solve[DeleteCases[Flatten[Table[Bres[[i]][[j]] ==

TensorProject[[i]][[j]], {i, 1, 2^NN}, {j, 1, 2^NN}]], True],

Table[ParamList[[kh]], {kh, Num}]];

Return[Res];

]

End[]

EndPackage[]



Main program : Decompose the small Hamiltonian for a 

spin - 1 system with a 3 - site interaction

Needs["Spin12CreateTensors20140817`"]

Needs["Spin12FindFactors20140817`"]

Part 1 :

 External spins are not equal, m != n

A1 = ScalarProd[{0, 0, 0, 1, 1}];

RR[x_, y_, z_, m_, n_] := {x, y};

PA2 = {1, 2, 3, 4, 5, 6};

A2 = ArbTensor[PA2, 5].A1;

RR[x_, y_, z_, m_, n_] := {x, m, x, n};

PB3 = {1, 2, 3, 4, 5, 6};

B3p = ArbTensor[PB3, 5];

RR[x_, y_, z_, m_, n_] := {x, n, x, m};

B4p = ArbTensor[PB3, 5];

B3 = B3p - B4p;

B4 = B3p + B4p;

RR[x_, y_, z_, m_, n_] := {y, z, x, m, x, n};

PB5 = {1, 2, 3, 4, 5, 6};

B5p = ArbTensor[PB5, 5];

RR[x_, y_, z_, m_, n_] := {y, z, x, n, x, m};

B6p = ArbTensor[PB5, 5];

B5 = B5p - B6p;

B6 = B5p + B6p;

RR[x_, y_, z_, m_, n_] := {x, m, y, n};

PC7 = {1, 2, 3, 4, 5, 6};

C7 = ArbTensor[PC7, 5];

ResTerms = {A2, A1, B5, B3, C7};

(* Terms B4 and B6 do not occur in the final result *)

ResStructure[{1, 1, 1, 1, 0}, {1, 1, 1, 0, 1}, 4, -4, 0, ResTerms]

aa →
1

15
, bb →

1

12
, cc → -

1

30
, dd → -

1

12
, ee → -

1

30
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