Nr.	Formation	Probenbezeichnung	Fundort	R	Н
93001	RF	Oberer Erbstrom-Gneis, 1.Folge	Oberhalb Steinbruch am Busbahnhof Ruhla	359639	564191
93002	RF	Oberer Erbstrom-Gneis, 2.Folge	Oberhalb Steinbruch am Busbahnhof Ruhla	359644	564199
93007	ZK	Liebensteiner Gneis	NNE Atterode	359824	563318
93010	ZK	Steinbacher Augengneis	am Fahrweg zum Lotzerödchen	359694	563435
93012	ZK	Katzenstein-Granit	am Eselssprung bei Bad Liebenstein	359674	563152
93014		Ruhlaer Granit	Eselskopf, Straße Bad Liebenstein-Ruhla, am Lutherweg	359675	563591
93015	ZK	Dorngehege-Gneis	N Bairoda, S des Dorngeheges	359778	563175
93018	TF	Trusetal-Granit (Seimberg-Granit)	WNW Seimberg am Fahrweg Brotterode-Mommelstein	360162	563198
93019	TF	Trusetal-Granit (Seimberg-Granit)	WNW Seimberg am Fahrweg Brotterode-Mommelstein	360160	563195
93020	BF	Brotterode-Diorit	Verladestelle Brotterode, am Heizwerk	360054	563245
93021	BF	Brotterode-Diorit	Verladestelle Brotterode, am Heizwerk	360054	563240
93022	BF	Brotterode-Diorit	Verladestelle Brotterode, am Heizwerk	360052	563238
93023	BF	Brotterode-Diorit	Verladestelle Brotterode, am Heizwerk	360050	563237
93024	BF	Brotterode-Diorit	Verladestelle Brotterode, am Heizwerk	360050	563235
93025	ZK	Schmalwasserstein-Gneis	Steinbruch Schmalwasserstein bei Brotterode	360083	563268
93026	BF	Brotterode-Diorit	Steinbruch Zainhammer	360099	563231
93027	TF	Trusetal-Granit (Bairodit)	Großer Steinbruch Bairoda	366038	562930
93028	TF	Trusetal-Granit (Bairodit)	Großer Steinbruch Bairoda	366038	562930
95002	BF	synmigmatitischer Gang (I)	unteres Alttal	360334	563382
96001	RK	Thüringer Hauptgranit	Kuppe Trockenberg	360511	563494
96003	RF	Thaler Gneis	Schoßberg, Ende der Ortschaft Thal	359842	564240
96004	RF	Thaler Gneis	Schoßberg, Ende der Ortschaft Thal	359840	564230
96005	RF	Silbergrund-Gneis	im Silbergrund NWN von Schweina	359342	563593
96006	ZK	Katzenstein-Granit	am Eselssprung bei Bad Liebenstein	359665	563144
96007	ZK	Heßles Gneis	W Hang der Truse, S Ortsausgang Brotterode	360062	563135
96008	VES	Thüringer Hauptgranit	Klippe oberes Vessertal, an der blauen Crux		
97002	BF	Schriftgranit	unteres Alttal, bei Brotterode	360344	563383
97003	BF	Gang (II) in feink. Amphibolit	unteres Alttal, bei Brotterode	360344	563383
97004	ZK	Schliere im Liebensteiner Gneis	Hügel NW Bairoda	357915	563114
97005	ZK	Fiederspalte im Liebensteiner Gneis	Hügel NW Bairoda	357915	563114
97006	ZK	metablastischer Biotit-Plagioklas Gneis	Hang NE Atterode	359844	563223
97010	RF	Granitporphyr Thal-Heiligenstein	Steinbruch kurz vor Ruhla	359718	564273
98001		Langewald-Granitporphyr	Steinbruch E Etterwinden	359260	564000
98002		Rhyolith (Typ Meisenstein)	Reifstieg	359895	563857
98004		Felsitporphyr	Laudenberg-Wanderstein	359978	563231
98005		Granitporphyr	oberhalb Drahtziehwerk Hohleborn	360362	562827
98006		Granitporphyr	Trusetaler Hauptgang	359917	562941
98007		Quarzporphyr	SE Mosbach	359437	564370

RF (Ruhlaer Formation), ZK (Zentrales Kristallin), TF (Truse-Formation), BF (Brotterode-Formation), RK (Ruhlaer Kristallin), VES (Vesser Zone)

132

Tabelle 1B: Haupt- (Gew.-%) und Spurenelemente (ppm), REE (ppm), CIPW-Norm (Gew.-%)

	93001	93002	93007	93010	93014	93015	93018	93019	93020	93021
SiO ₂	73.02	73.72	70.80	71.23	68.00	76.44	53.93	55.36	51.58	52.12
TiO ₂	0.34	0.36	0.43	0.55	0.48	0.17	1.13	0.91	1.47	1.44
Al ₂ O ₃	13.69	13.74	14.64	13.79	14.83	12.77	19.56	19.17	18.01	18.42
FeO	1.72	1.22	1.45	3.04	1.93	0.32	4.38	3.90	6.19	5.51
Fe ₂ O ₃	0.64	0.82	1.31	0.96	1.17	1.10	2.12	1.87	2.36	2.28
MnO	0.06	0.03	0.05	0.06	0.07	0.02	0.10	0.10	0.12	0.11
MgO	0.61	0.71	1.08	0.98	1.57	0.44	3.64	2.97	5.36	5.01
CaO	1.65	1.86	1.93	1.22	1.35	0.69	3.77	3.54	6.07	5.45
Na ₂ O	4.15	4.16	3.63	2.80	2.57	3.58	2.75	2.87	2.53	2.63
K ₂ O	2.90	1.60	4.12	4.84	5.61	4.19	5.18	6.13	3.44	3.75
P_2O_5	0.06	0.06	0.11	0.13	0.19	0.04	0.52	0.43	0.64	0.60
S	< 0.02	0.10	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.08	0.04
LOI	1.51	1.68	0.41	0.79	2.16	0.58	2.05	1.31	1.02	1.80
	100.35	100.06	99.96	100.39	99.93	100.34	99.13	98.56	98.87	99.16
Sc	<10	<10	<10	<10	14	<10	16	18	19	18
V	33	31	48	46	60	27	131	101	202	184
Cr	11	17	20	56	54	89	103	156	204	231
Со	34	31	22	24	52	<10	36	15	24	16
Ni	<5	<5	<5	16	10	9	31	44	56	62
Zn	35	58	48	32	37	16	120	90	100	89
Ga	15	12	20	22	17	15	26	28	26	28
Rb S	84	64	110	246	229	110	169	199	144	165
Sr V	80	98 24*	56/ 4.7*	192 5.4*	270	93 12*	1324	1011	1068	1041
1 7r	42 194	54 ⁴	4.7**	361	22* 309	12*	23 803	13* 001	21 711	10 ⁺ 769
Nh	15	150	6	17	19	107	13	11	11	11
Mo	<5	<5	<5	<5	<5	<5	<5	6	<5	<5
Sn	<15	<15	<15	<15	<15	<15	<15	<15	17	22
Ba	629	436	1791	523	916	717	3633	4278	2189	2237
Pb	<5	32	20	8	21	17	19	38	12	15
Th	12	15	<5	18	21	7	9	6	<5	9
U	<5	<5	<5	<5	<5	<5	8	<5	<5	<5
La		46	43	49	65	29		41		41
Ce		94	72	106	122	52		82		86
Pr		11	7.2	13	14	5.7		9.3		10
Nd		40	22	49	50	18		39		40
SIII Fu		0.2	0.84	10	0.9	0.50		3.5		7.4
Gd		7.5	2.0	1.0	6.6	29		5.5		2.4 5.8
Th		1.2	-	1.9	1.0	0.46		0.79		0.84
Dy		7.0	1.1	10	4.9	2.5		3.4		3.7
Но		1.3	0.22	2.0	0.85	0.43		0.85		0.82
Er		3.8	0.46	6.0	2.3	1.3		1.7		1.7
Tm		0.53	0.07	0.85	0.33	0.17		-		-
Yb		3.3	0.52	5.6	2.1	1.1		1.5		1.5
Lu		0.48	0.09	0.82	0.33	0.16		0.21		0.24
CIPW-Norm										
ab	35.53	35.82	30.85	23.79	22.24	30.36	23.96	24.97	21.89	22.86
an	7.88	8.99	8.90	5.22	5.58	3.17	15.76	15.17	26.51	23.75
ap	0.14	0.14	0.26	2.05	0.46	0.09	1.27	1.05	1.55	1.40
u hv	0.00 3 7/	1.90 2.84	0.97	2.03 6.46	2.39 5.96	1.19	3.93 14 00	2.47 12.03	21.02	2.85
ну il	0.65	2.04 0.70	0.82	1.05	0.90	0.32	2 21	1 2.05	21.02	2.03
 mt	0.94	1.21	1.91	1.40	1.73	0.61	3.17	2.79	3.50	3.40
or	17.34	9.62	24.46	28.72	33.91	24.82	31.52	37.24	20.79	22.76
q	32.89	38.72	28.17	31.02	26.60	37.64	4.09	2.52	1.25	2.32
ht						0.69				
di										

ru

* ICP-AES; n.b. = nicht bestimmt

Fortsetzung Tabelle 1B: Haupt- (Gew.-%) und Spurenelemente (ppm), REE (ppm), CIPW-Norm (Gew.-%)

93(22 93023	93024	93025	93026	93027	93028	95002	96001	96003
SiO ₂ 52	91 53.00	52.58	68.60	53.01	62.68	63.34	72.82	65.01	78.58
TiO ₂ 1	.24 1.25	5 1.43	0.44	1.29	0.39	0.31	0.06	0.56	0.09
Al₂O₃ 17	.95 17.54	18.39	15.59	16.63	18.03	18.12	13.04	16.05	11.77
FeO 5	30 5.35	5.92	1.80	5.52	1.17	1.08	1.40	2.42	< 0.10
Fe₂O₃ 2	57 2.50	1.88	1.19	3.15	2.47	1.82	1.40	1.40	0.25
MnO 0	.14 0.13	3 0.10	0.06	0.15	0.06	0.05	0.15	0.05	< 0.01
MgO 5	25 5.26	6 4.80	1.78	6.60	1.03	0.81	0.85	1.51	0.14
CaO 5	42 4.80	6.11	1.82	6.05	1.49	1.75	0.77	2.80	0.09
Na₂O 2	51 2.42	2 2.62	4.65	2.29	3.18	3.06	2.00	2.92	3.06
K ₂ O 3	4.08	3.57	2.95	2.72	8.41	8.79	5.32	4.63	4.78
P_2O_5 0	.62 0.65	0.62	0.09	0.73	0.19	0.14	0.02	0.13	< 0.01
S 0	.11 0.41	0.04	< 0.02	0.10	<0.02	< 0.02	< 0.02	<0.02	< 0.02
	<u>12</u> 00 50	08.04	1.24	1.20	0.79	0.68	0.54	1.96	0.54
99	45 99.30	96.94	100.21	99.44	99.89	99.95	96.57	99.44	99.30
Sc	11 16	5 19 5 194	<10	18	19	<10	14	<10	<10
V Cr	0/ 1/0 08 310) 164) 165	22	273	50 13	50 14	10	115	17 <10
Co	25 26	5 105	39	49	13	23	17	<10	<10 49
Ni	61 68	53	8	92	<5	_== <5	<5	20	<5
Zn	01 83	3 90	49	106	70	36	53	52	<5
Ga	22 24	29	19	26	19	19	10	22	13
Rb	64 180) 149	73	121	181	186	105	171	179
Sr	64 917	1078	364	803	851	912	212	302	27
Y	21 21	22	11*	18*	19	10*	31*	24*	8
Zr	71 657	801	149	238	887	625	144	262	66
Nb	II I() II	-7 -5	12	9	1	<5	10	16
M0 Sn	<) <) 23 <14	o <5	<)	<5	<)	<5 24	<)	<5 21	<)
Ba 10	20 1982	2151	733	1479	2107	2410	1795	1170	139
Pb I	14 19) 14	13	9	35	41	111	11/0	11
Th	11 6	<u></u> 6	<5	13	10	<5	<5	9	16
U	<5 <5	5 <5	<5	<5	<5	10	<5	<5	<5
La			42	42		23	13	32	
Ce			79	88		44	18	68	
Pr			8.3	11		4.9	2.2	8.5	
Nd			33	42		17	7.8	32	
Sm Fu			5.9	8.1		3.2 0.82	1./	0.7	
Eu Gd			4.0	2.1 6.0		2.6	2.7	1.3 5.7	
Tb			0.56	0.81		0.38	0.75	0.94	
Dy			2.6	4.0		2.1	4.9	4.9	
Но			0.60	0.68		0.40	1.1	0.91	
Er			1.3	1.7		1.2	3.3	2.4	
Tm			-	0.25		0.15	0.52	0.33	
Yb			1.1	1.5		1.0	3.7	2.1	
Lu			0.19	0.24		0.16	0.60	0.32	
CIPW-Norm	76 21.11	22.61	30 71	10 74	27.15	26.08	17.30	25 34	26.10
an 23	38 20.17	22.01	8 52	25.71	6.21	20.08	3 77	13 38	0.19
ap 1	50 1.59) 1.50	0.22	1.76	0.45	0.33	0.05	0.32	0.02
c 1	45 2.03	0.60	1.67	0.68	1.45	0.73	2.70	1.49	1.44
hy 19	.35 19.62	2 19.48	6.20	22.53	2.59	2.09	3.79	6.38	0.35
il 2	41 2.45	2.77	0.84	2.50	0.75	0.59	0.12	1.09	0.17
	82 3.74	2.78	1.74	4.65	2.86	2.66	2.07	2.08	0.10
mt 3		01.50	17.60	16 37	50.15	52.32	32.14	28.07	28.57
mt 3 or 22	57 24.85	. 21.52	17.00	10.57					
mt 3 or 22 q 3	57 24.85 78 4.45	5 21.52 5 1.69	23.50	6.06	7.87	7.36	38.06	21.85	42.59
mt 3 or 22 q 3 ht di	57 24.85 78 4.45	5 21.52 5 1.69	23.50	6.06	7.87 0.52	7.36	38.06	21.85	42.59 0.19

* ICP-AES; n.b. = nicht bestimmt

Fortsetzung Tabelle 1B: Haupt- (Gew.-%) und Spurenelemente (ppm). REE (ppm). CIPW-Norm (Gew.-%)

	96004	96005	96006	96007	96008	97002	97003	97004	97005	97010
SiO ₂	81.32	71.55	73.17	69.17	62.16	78.60	59.74	63.46	77.70	75.38
TiO ₂	0.07	0.43	0.15	0.47	0.67	0.03	0.08	0.60	0.20	0.15
Al ₂ O ₃	10.04	14.31	14.49	14.99	16.18	12.40	20.84	16.63	12.97	12.87
FeO	< 0.10	0.75	0.50	1.39	1.30	n.b.	n.b.	n.b.	n.b.	n.b.
Fe ₂ O ₃	0.42	1.91	0.49	1.71	2.96	0.49	2.75	4.10	1.56	1.19
MnO	< 0.01	0.06	0.02	0.07	0.09	0.01	0.09	0.08	0.02	0.03
MgO	0.05	0.70	0.36	1.34	2.19	0.12	1.51	3.17	0.59	0.16
CaO	0.09	0.45	0.96	2.07	2.93	2.10	6.67	3.09	2.48	0.36
Na ₂ O	2.90	5.51	5.90 4.46	3.87 2.25	5.55 4.26	2.70	4.40	4.17	3./0 1.09	5.07
R ₂ 0	4.13 <0.01	4.10	4.40	0.08	4.20	<0.01	0.44	2.85	0.02	0.02
S	<0.01	<0.02	<0.03	<0.03	<0.02	<0.01	<0.02	<0.02	<0.02	<0.02
LOI	0.25	1.31	0.52	0.84	2.56	0.50	1.07	0.77	0.49	0.53
	99.33	98.99	99.05	99.25	98.82	99.04	99.14	99.09	100.87	99.34
Sc	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
V	17	56	17	68	89	12	36	68	32	10
Cr	18	13	<10	30	24	215	98	229	187	16
Со	46	41	29	21	29	<10	<10	<10	<10	68
Ni	<5	<5	<5	5	<5	<5	5	86	14	<5
Zn	<5	22	23	44	109	18	41	75	21	21
Ga	14	14	15	22	16	18	15	21	14	21
KD Sr	205	131	666	521	130	04 262	553	140 569	39 341	277
Y	13*	26*	3.5*	9.6*	13*	2.8*	14*	7.5*	2.2*	27*
Zr	56	174	103	130	161	131	23	211	130	146
Nb	20	15	<5	7	12	<5	<5	14	<5	33
Мо	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sn	21	17	<15	<15	<15	<15	<15	<15	<15	<15
Ba	120	594	960	795	1011	252	354	546	240	181
Pb	11	5	30 -5	7	12	20	32	23	49 -5	48
	19	15	<5	<5	15	<0	<5	-5	<5	12
La	14	11	11	25	47	16	19	28	23	33
Ce	25	24	21	43	89	25	42	49	36	84
Pr	2.6	3.1	2.3	4.8	9.2	2.6	5.3	5.0	3.4	8.6
Nd	8.5	12	8.2	17	33	8.4	23	18	9.6	30
Sm	1.7	2.8	1.5	2.9	5.6	1.4	5.5	2.9	1.2	6.5
Eu	0.26	0.60	0.65	0.87	1.4	1.3	1.9	1.2	0.59	0.86
Gu Th	1.9	0.76	1.1	2.5	0.52	0.95	0.69	0.33	0.81	0.86
Dv	2.0	4.9	0.73	1.9	2.7	0.57	3.4	1.5	0.45	5.3
Но	0.45	1.0	0.17	0.35	0.51	0.10	0.50	0.32	0.12	0.96
Er	1.3	3.2	0.36	1.0	1.4	0.22	1.1	0.80	0.27	3.0
Tm	0.20	0.45	-	0.14	0.24	-	0.14	-	-	0.46
Yb	1.4	3.1	0.40	1.0	1.5	0.28	0.77	0.78	0.30	2.9
	0.22	0.47	0.07	0.16	0.25	0.05	0.10	0.13	0.06	0.42
CIPW-Norm	1 25.25	28.67	33 /0	33 27	29.27	23 70	38 /7	35.88	31.70	26.29
an	0.38	1.55	4.63	9.90	13.81	10.50	30.47	14.46	12.13	1.68
ap	0.02	0.27	0.07	0.19	0.47	0.02	1.06	0.41	0.05	0.05
c	0.56	3.96	1.60	1.56	1.27	1.90	0.83	1.50	1.15	1.19
hy	0.13	1.78	1.22	3.89	5.67	0.30	3.83	8.03	1.46	0.40
il	0.13	0.84	0.29	0.91	1.32	0.02	0.15	0.17	0.04	0.06
mt	0.15	1.40	0.72	2.52	2.64		0.06			aa
or	24.60	24.80	26.75	19.52	26.15	12.17	8.98	17.13	6.36	33.37
y ht	48.44	35./3	31.23	28.24	18.10	50.86 0.50	13.04	17.73	45.39	35.64
di	0.32	0.77			1.23	0.50	2.70	4.1/	1.55	1.20
ru						0.02		0.52	0.18	0.12

* ICP-AES; n.b. = nicht bestimmt

Tabelle 2 A-C: Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für die mittelsilurischen Orthogneise aus der Ruhlaer Formation

Δ	96005	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
1	Silbergrund-Gneis	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
2	langprism., L/B=5, Typ P1, flach, gelb- lich, scharfkant., Einschlüsse, feiner Riß	180	0.00009 ± 0.2	0.05527 ± 4	$423.1\pm1.8~Ma$
3	langprism., L/B=5, P1, klar, gelblich, Einschlüsse, scharfkleicht kantenrund	46	0.00048 ± 2	0.05522 ± 33	421.2 ± 13.2 Ma
4	langprism., L/B=6, P2, leicht kanten- rund, Einschlüsse, Zr-Anwachsung (?)	34	0.00009 ± 1	0.05542 ± 27	429.1 ± 10.9 Ma
5	langprismatisch, L/B=4, P1, scharfkant., klar, außen Hämatit, Einschluß, ein Riß	85	0.00008 ± 0.1	$0.05546\pm\ 3$	430.7 ± 1.0 Ma
8	prismatisches Bruchstück, P2, scharf- kantig, gelblich	90	0.00046 ± 2	0.05529 ± 11	423.8 ± 4.4 Ma
				$Mittelwert \pm 2\sigma mean$	425.6 ± 3.7 Ma
6	kurzprismatisch, L/B=3, P1, bräunlich, scharfkantig, ein Riß	90	0.00009 ± 0.4	0.05595 ± 12	$450.5\pm4.8~Ma$
1	prismatisches Bruchstück, P1, bräunlich, scharfkantig, außen Hämatit	90	0.00003 ± 0.3	0.14491 ± 44	2286.7 ± 5.2 Ma

R	93002	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
D	Oberer Erbstrom-Gneis		$\pm 2\sigma$ mean	207 Pb/ 206 Pb $\pm 2\sigma$ mean	$\pm 2\sigma$ mean
1	prism. Bruchst., scharfk., Typ P1-2, gelb- lich-rötlich, narbige Oberfläche, Hämatit	85	0.00091 ± 2	0.05520 ± 14	$420.1\pm5.6~\text{Ma}$
2	prism. Bruchst., scharfk., narbige Oberfl., gelblich, pktf. dkl. Einschlüsse, Riß	90	0.00047 ± 7	0.05518 ± 13	419.5 ± 5.1 Ma
3	prism., L/B=3, scharfkleicht gerundet, gelblich-bräunlichrot, dunkler Einschluß	90	0.00050 ± 2	0.05523 ± 23	421.4 ± 9.4 Ma
4	prism. Bruchst., scharfk., narbige Oberfl., gelblich-rötlich, farblose Einschlüsse	90	0.00046 ± 1	0.05552 ± 13	433.3 ± 5.3 Ma
5	prism., L/B=5, S8, scharfkkantenrund, gelblich, rauhe Oberfl., dkl. Einschlüsse	90	0.00017 ± 4	0.05513 ± 12	417.5 ± 5.1 Ma
7	prism., L/B=4, kantengerundet, sehr rauhe Oberfl., xenom. Zirkonanwachsung	90	0.00049 ± 2	0.05537 ± 12	427.2 ± 4.9 Ma
	C C			$Mittelwert \pm 2\sigma mean$	423.2 ± 4.9 Ma
6	prism., L/B=3, S9-10, scharfkantig-leicht kantenrund, rauhe Oberfl., dkl. Einschluß	36	0.00003 ± 0.3	0.06888 ± 28	895.2 ± 8.4 Ma

С	96004	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
U	Thaler Gneis	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
1	prismatisch-rundlich, Typ S10, L/B=2, scharfkantig, außen etwas Hämatit	90	0.00108 ± 2	0.05267 ± 13	314.7 ± 5.6 Ma
2	prism., S24-25, L/B=3, gelblich, scharfk., klar, außen Hämatit, großer Kern	54	0.00020 ± 2	0.05895 ± 35	565.3 ± 13.1 Ma
3	prismatisches Bruchstück, kantenrund, S25, erscheint trübe	162	0.00022 ± 0.4	$0.05481\pm~7$	404.5 ± 2.8 Ma
4	prismatisches Bruchstück, Typ nicht zu erkennen, kantengerundet, getrübt	52	0.00033 ± 2	0.05266 ± 26	314.0 ± 11.3 Ma

Tabelle 3 A-C:	Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für die spät-
	silurischen Orthogneise aus dem Zentralen Kristallin

Δ	93007	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Liebensteiner Gneis		$\pm 2\sigma$ mean	$^{207}\text{Pb}/^{206}\text{Pb} \pm 2\sigma$ mean	$\pm 2\sigma$ mean
5	prismatisch, L/B=3, Typ S20-21, kanten- gerundet, punktf. dunkle Einschlüsse	90	0.00050 ± 6	0.05497 ± 9	410.8 ± 3.7 Ma
6	langprismatisch, L/B=6, kantengerundet	90	0.00028 ± 1	0.05504 ± 7	413.7 ± 2.7 Ma
7	prismatisch, L/B=4, S17, kantengerundet	90	0.00018 ± 0.6	0.05505 ± 13	414.0 ± 5.3 Ma
8	prismatisch, L/B=2-3, scharfkantig, S7,	87	0.00035 ± 0.2	$0.05500\pm~3$	412.2 ± 1.3 Ma
	klar, 2 längliche farblose Einschlüsse				
9	langprismatisch, L/B=5, leicht kantenge- rundet, punktförmige dunkle Einschlüsse	90	0.00087 ± 2	0.05485 ± 11	406.1 ± 4.3 Ma
11	prismatisch, L/B=3, klar, S8, narbige	86	0.00068 ± 3	0.05519 ± 14	$420.0\pm5.6~Ma$
	Oberfläche. stark kantengerundet				
12	prismatisch, L/B=3, klar, scharfkantig bis	90	0.00061 ± 0.9	0.05513 ± 11	417.3 ± 4.4 Ma
	leicht kantengerundet				

Mittelwert $\pm 2\sigma$ mean 413.4 ± 3.4 Ma

R	93015	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Dorngehege-Gneis		$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
1	prismatisch, L/B=5, scharfk., klar, gelb- lich, dunkler punktförmiger Einschluß	69	0.00026 ± 0.6	0.05505 ± 7	414.4 ± 2.7 Ma
2	prism. Bruchst., scharfk., feiner Riß c	84	0.00047 ± 0.9	0.05515 ± 14	418.3 ± 5.5 Ma
3	prismatisches Bruchstück, L/B=4, scharf- kantig, großer farbloser Einschluß	90	0.00010 ± 0.3	0.05489 ± 10	407.8 ± 3.9 Ma
4	prismatisches Bruchstück, scharfk., außen ist dunkles Mineral angewachsen	90	0.00028 ± 0.4	$0.05476\pm\ 6$	402.4 ± 2.3 Ma
6	prism., L/B=5, scharfk., hellgelb, außen Hämatit, blättchenf. dunkle Einschlüsse	85	0.00016 ± 0.6	$0.05511\pm~6$	416.7 ± 2.6 Ma
7	prismatisch, L/B=4, leicht kantengerun- det, gelblich-bräunliche Farbe	90	0.00057 ± 1	0.05489 ± 11	407.7 ± 4.7 Ma
8	prismatisches Bruchstück, P1, leicht kan- tenrund, gelblich, rauhe Oberfläche	90	0.00033 ± 0.5	$0.05500\pm~8$	412.3 ± 3.1 Ma
				Mittelwert $\pm 2\sigma$ mean	411.4 ± 4.3 Ma
5	prism. Bruchstück, leicht kantenrund, bräunlich, äußerlich etwas Hämatit	90	0.00005 ± 0.3	0.05451 ± 10	392.2 ± 3.9 Ma

С	93025	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Schmalwasserstein-Gneis	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
2	langprism., scharfk., S2, farbl. Einschluß	90	0.00019 ± 0.4	0.05493 ± 5	409.4 ± 2.1 Ma
4	langprism., scharfk., S2, dunkl. Einchluß	18	0.00004 ± 0.5	0.05512 ± 38	417.1 ± 15.4 Ma
5	prismatisch, L/B=3, scharfkantig, S7,	88	0.00024 ± 1	0.05475 ± 8	401.9 ± 3.4 Ma
	2 dunkle punktförmige Einschlüsse				
6	prismatisch, L/B=3, scharfkantig, S21,	79	0.00019 ± 0.9	0.05477 ± 12	402.7 ± 4.7 Ma
	ein Ende vermutlich etwas abgebrochen				
7	Bruchst. eines Prismas, scharfkantig	86	0.00007 ± 0.3	0.05484 ± 9	405.7 ± 3.5 Ma
8	prism., L/B=3, scharfkantig, S1, gelblich	87	0.00027 ± 0.5	0.05504 ± 8	413.9 ± 3.3 Ma
				$Mittelwert \pm 2\sigma mean$	$408.5\pm5.0~Ma$
1	prismrdl., scharfkantig, S12-17, klar, dunkler Einschluß, randlich mit anderer Mineralphase verwachsen	260	0.00010 ± 0.1	0.08552 ± 12	1327.2 ± 2.5 Ma

 Tabelle 3 D-F:
 Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für den frühdevonischen Steinbacher Augengneis und für zwei weitere Orthogneise aus dem Zentralen Kristallin.

D	93010	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
ν	Steinbacher Augengneis	Scans	$\pm 2\sigma$ mean	$^{207}\text{Pb}/^{206}\text{Pb} \pm 2\sigma$ mean	$\pm 2\sigma$ mean
5	langprism., L/B=5, kantenger., Einschluß	180	0.00006 ± 0.2	0.05483 ± 2	405.1 ± 1.0 Ma
6	prismatisch, L/B=3, kantengerundet, klar	171	0.00006 ± 0.2	0.05468 ± 2	399.1 ± 0.9 Ma
7	prism., L/B=3, scharfkkantengerundet	90	0.00007 ± 0.2	0.05465 ± 6	397.8 ± 2.4 Ma
8	prismatisch, L/B=4, kantengerundet	52	0.00008 ± 0.1	0.05473 ± 4	401.0 ± 1.4 Ma
9	prismatisch, L/B=3, stark kantengerundet	54	0.00006 ± 0.3	0.05450 ± 9	391.9 ± 3.5 Ma
32	langprismatisch, L/B=5, kantengerundet,	126	0.00015 ± 0.9	0.05480 ± 18	404.0 ± 7.2 Ma
	mehrere dunkle Einschlüsse				

 $Mittelwert \pm 2\sigma mean \qquad 399.8 \pm 3.9 \; Ma$

23 langprism., kantengerundet, 268 Scans insgesamt. 1.Meßblock: 704 ± 14 Ma, letzter Meßblock 494 ± 9 Ma

F	96007	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Heßles-Gneis	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
5	rundlich, scharfkantig, klar	89	0.00028 ± 0.6	0.05213 ± 7	291.0 ± 3.2 Ma
1	prism., flache Form, L/B=4 u. 2, scharfk.,	90	0.00008 ± 0.3	0.05271 ± 6	$316.2\pm2.4~\mathrm{Ma}$
	klar, S13, gelblich-rötlich, dkl. Einschluß				
8	prism., L/B=4, scharfk, gelblich, S19-24,	90	0.00005 ± 0.2	0.05318 ± 13	336.3 ± 5.6 Ma
	2 farbl. längl. u. 1 dkl. punktf. Einschluß				
2	prismatisches Bruchstück, L/B=4, klar,	90	0.00020 ± 0.3	0.05346 ± 8	348.5 ± 3.4 Ma
	scharfk., S18, gelbl., dunkle Einschlüsse				
6	prism., L/B=5, leicht kantengerundet, S4,	90	0.00015 ± 0.2	0.05386 ± 4	365.1 ± 1.9 Ma
	klar, dkl. Einschluß, Zirkon angewachsen				
3	prism., flach, L/B=5 u. 2, scharfk., klar,	180	0.00014 ± 0.3	0.05470 ± 4	400.0 ± 1.8 Ma
	S21, farbl. Einschl., Hämatit außen, Riß				
10	prism. Bruchstück, kantenrund, S4, gelb-	66	0.00092 ± 2	0.05470 ± 9	400.0 ± 3.9 Ma
	lich-rötlich, dunkles Material am Bruch				
7	prism., L/B=3, leicht kantengerundet, S4,	90	0.00007 ± 0.3	0.05476 ± 16	402.3 ± 6.4 Ma
	klar, gelblich-rötlich, außen Hämatit				

F	97006	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	metablastischer Biotit-Plagioklas-Gneis	Scans	$\pm 2\sigma$ mean	$^{207}\text{Pb}/^{206}\text{Pb} \pm 2\sigma$ mean	$\pm 2\sigma$ mean
1	langprism., L/B=4, Typ S21, leicht gelbl.,	90	0.00018 ± 0.7	0.05218 ± 16	$293.4\pm7.0~\mathrm{Ma}$
	scharfkantig, flach, farblose Einschlüsse				
7	prism., L/B=3, S21, gelblich, klar, rauhe	90	0.00124 ± 2	0.05244 ± 18	304.7 ± 8.0 Ma
	Oberfläche, scharfkantig, Zr-Anwachsung				
2	langprismatisch, L/B=6, S21, klar, Riß,	18	0.00075 ± 3	0.05275 ± 42	318.0 ± 18.3 Ma
	kantenrund, gelblich, dunkler Einschluß				
6	prism., L/B=3, S21, klar, gelbl., scharfk.	36	0.00027 ± 2	0.05276 ± 37	318.6 ± 15.9 Ma
8	prism., L/B=4, S21, scharfk., gelblich mit				
	Zr-Anwachsung. Erste 22 Scans:	22	0.00019 ± 0.5	0.05275 ± 9	317.9 ± 3.7 Ma
	restliche Scans:	122	0.00016 ± 0.1	0.05254 ± 4	308.9 ± 1.7 Ma
3	prismatisch, L/B=3, S21, scharfkantig,	90	0.00044 ± 1	0.05283 ± 23	321.5 ± 9.8 Ma
	klar, gelblich, sehr steile {211}-Flächen				
10	prism., L/B=5, scharfkantig, gelblich,	180	0.00016 ± 0.7	0.05400 ± 6	370.9 ± 2.4 Ma
	dunkle Einschlüsse, Zr-Anwachsung				
5	langprism., L/B=4, scharfk., S17, klar,	82	0.00011 ± 0.9	0.05479 ± 31	403.6 ± 12.6 Ma
	gelblich, 2 dunkle u. 3 farbl. Einschlüsse				
4	prism., L/B=1, S22-17, klar, scharfk.,	90	0.00025 ± 0.5	0.05516 ± 17	418.6 ± 6.8 Ma
	Pyramidenfläche narbig, Zr-Anwachsung				

For	tsetzung Tabelle $\mathbf{3F}$				
9	prismatisch-rundliche Form, L/B=2, S17, gelblich klar leicht kantenrund	90	0.00011 ± 0.4	0.05737 ± 7	505.9 ± 2.6 Ma
11	prismatisch-rundliche Form, S12-17, gelblich-bräunlich leicht kantengerundet	162	0.00010 ± 0.3	$0.05995\pm~9$	601.8 ± 3.4 Ma
12	runder Zirkon (REM-Bild Abb. 4.8b)	90	0.00003 ± 0.1	0.16798 ± 10	2537.5 ± 1.0 Ma
	Zirkone aus dem Restit				
20	prism., L/B=2, S16, steile {211}, scharfk. gelblich, ein ovaler farbloser Einschluß	180	0.00036 ± 0.9	$0.05245\pm~8$	305.2 ± 3.4 Ma
24	prism., scharfk., klar, gelblich, S7, L/B=2	90	0.00117 ± 6	0.05361 ± 63	354.6 ± 26.4 Ma
25	prismatisch, L/B=3, kantenrund, weniger transparent, leicht trübe	90	0.00068 ± 2	0.05361 ± 26	354.5 ± 11.1 Ma
21	langprism., L/B=5, scharfk., gelblich, rauhe Oberf., dkl. und farbl. Einschluß	72	0.00032 ± 1	0.05511 ± 21	416.8 ± 8.6 Ma
22	rundlich, dunkelgelb gefärbt, Kristallkanten nur teilweise scharf	90	0.00014 ± 0.4	$0.05854\pm~6$	549.8 ± 2.2 Ma

Tabelle 3 G:Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für die
Fiederspaltenfüllung im Liebensteiner Gneis

Image: Scans $\pm 2\sigma$ mean $^{207}Pb/^{206}Pb \pm 2\sigma$ mean $\pm 2\sigma$ 1rundliche Form, L/B=1, leicht kantenge- rundet, rosa-gelblich gefärbt, Riß90 0.00039 ± 0.4 0.05494 ± 11 409.72langprism., L/B=3, S16, klar, rosa- gelblich gefärbt., kantenrund, narbige Oberfl., Riß, Einschluß90 0.00049 ± 0.3 0.05509 ± 5 416.03prismatisch, L/B=2, S2, gelblich, ein rundlicher farbloser Einschluß69 0.00038 ± 0.8 0.05555 ± 8 434.45langprismatischer Zwilling c, L/B=4, kantengerundet, S3, außen Hämatit63 0.00020 ± 0.4 0.05501 ± 9 412.7	/ ²⁰⁶ Pb Alter
1rundliche Form, L/B=1, leicht kantenge- rundet, rosa-gelblich gefärbt, Riß90 0.00039 ± 0.4 0.05494 ± 11 409.72langprism., L/B=3, S16, klar, rosa- gelblich gefärbt., kantenrund, narbige Oberfl., Riß, Einschluß90 0.00049 ± 0.3 0.05509 ± 5 416.03prismatisch, L/B=2, S2, gelblich, ein rundlicher farbloser Einschluß69 0.00038 ± 0.8 0.05555 ± 8 434.45langprismatischer Zwilling c, L/B=4, kantengerundet, S3, außen Hämatit63 0.00019 ± 0.5 0.05501 ± 9 412.7	2σ mean
 2 langprism., L/B=3, S16, klar, rosa- gelblich gefärbt., kantenrund, narbige Oberfl., Riß, Einschluß 3 prismatisch, L/B=2, S2, gelblich, ein rundlicher farbloser Einschluß 5 langprismatischer Zwilling c, L/B=4, kantengerundet, S3, außen Hämatit 6 prismatisches Bruchstück S2 scharf- 90 0.00020 ± 0.4 0.05501 ± 9 	7 ± 4.4 Ma
 3 prismatisch, L/B=2, S2, gelblich, 69 0.00038 ± 0.8 0.05555 ± 8 434.4 ein rundlicher farbloser Einschluß 5 langprismatischer Zwilling c, L/B=4, 63 0.00019 ± 0.5 0.05534 ± 11 425.9 kantengerundet, S3, außen Hämatit 6 prismatisches Bruchstück S2 scharf- 90 0.00020 ± 0.4 0.05501 ± 9 412.7 	0 ± 2.0 Ma
5 langprismatischer Zwilling c, L/B=4, 63 0.00019 ± 0.5 0.05534 ± 11 425.9 kantengerundet, S3, außen Hämatit 6 prismatisches Bruchstück S2 scharf- 90 0.00020 ± 0.4 0.05501 ± 9 412.7	4 ± 3.1 Ma
6 prismatisches Bruchstück S2 schaff- 90 0.00020 ± 0.4 0.05501 ± 9 4127	9 ± 4.4 Ma
kantig, Risse mit Hämatit verfüllt, längl. größerer und winziger dunkler Einschluß	7 ± 3.4 Ma

 $Mittelwert \pm 2\sigma mean \qquad 419.7 \pm 9.1 \ Ma$

Tabelle 4 A-C:Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für die früh-
karbonischen Granite und dem Gang II in der Brotterode Formation

Δ	96001	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
11	Thüringer Hauptgranit (RK)	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
1	kurzprismatsich, Typ S24	87	0.00037 ± 2	0.05325 ± 20	339.4 ± 8.4 Ma
2	kurzprism., S18, bräunlich, weniger transparent, leicht trübe	170	0.00049 ± 1	0.05316 ± 16	335.6 ± 6.7 Ma
3	Prismenbruchstück, scharfkantig, klar	180	0.00026 ± 0.6	0.05316 ± 4	335.5 ± 1.5 Ma
4	kurzprismatischer Zwilling c, S19, 1 punktförmiger dunkler Einschluß	173	0.00020 ± 0.5	0.05307 ± 5	331.6 ± 2.0 Ma
5	kurzprismatisch, S24	90	0.00012 ± 0.4	0.05340 ± 10	345.6 ± 4.3 Ma
6	kurzprismatisches Bruchstück, S24	90	0.00018 ± 1	0.05318 ± 19	336.3 ± 8.2 Ma
				Mittelwert $\pm 2\sigma$ mean	337.3 ± 3.9 Ma

R	96008	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
D	Thüringer Hauptgranit, Vesser	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
1	prism., L/B=2, S22, scharfk., rötlgelbl., farblose Einschlüsse, steile Pyramidenfl.	90	0.00060 ± 4	0.05309 ± 20	332.8 ± 8.5 Ma
2	langprism., L/B=4, S21, scharfk., rötlich- gelblich, Riß, ein farbl. rundl. Einschluß	18	0.00022 ± 4	0.05332 ± 78	342.2 ± 33.1 Ma
5	prism., L/B=2, S22, hellgelb, scharfk., rauhe Oberfl., punktförmige Einschlüsse	87	0.00007 ± 0.4	0.05316 ± 12	335.6 ± 5.2 Ma
				Mittelwert $\pm 2\sigma$ mean	$\textbf{336.9} \pm \textbf{5.6} \; \textbf{Ma}$

С	97003	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Gang II in der Brotterode-Formation	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb $\pm 2\sigma$ mean	$\pm 2\sigma$ mean
1	prismatisch-rundlich, L/B=2, S8, nahezu	87	0.00004 ± 0.1	0.05349 ± 4	349.8 ± 1.5 Ma
2	prism., L/B=3, leicht kantenrund, rauhe	86	0.00002	0.05371 ± 4	358.9 ± 1.5 Ma
3	prismrdl., L/B=2, S14, scharfkantig bis leicht kantenrund, Riß ist mit dunklem feinkörnigem Material belegt	85	0.00002 ± 0.1	0.05336 ± 3	343.9 ± 1.2 Ma
4	prism., L/B=5, S4, scharfkantig, mehrere farblose Einschlüsse, 1 dunkler Einschluß	135	0.00003	0.05365 ± 2	$356.2\pm0.9~Ma$
6	prismatisch, L/B=3, S9, leicht kanten- gerundet, bräunlich gefärbt	72	0.00006 ± 0.1	0.05371 ± 3	359.0 ± 1.3 Ma
				$Mittelwert \pm 2\sigma mean$	$\textbf{353.7} \pm \textbf{6.0} \ \textbf{Ma}$
5	prismatisch, L/B=5, S1, steile Pyramiden, farblos, viele rundliche-ovale Einschl.,				
	narbige Oberfläche. 1. Block:	18	0.00010 ± 0.1	0.05389 ± 7	366.6 ± 2.9 Ma
	2. und 3. Block:	31	0.00009 ± 0.1	0.05312 ± 5	333.8 ± 2.0 Ma
	4. und 5. Block:	36	0.00008 ± 0.1	$0.05257\pm~6$	310.1 ± 2.7 Ma
7	prismatisch, L/B=3, S4, bräunlich, zahl- reiche kurze bräunlich belegte Risse				
	erste 5 Blöcke:	90	0.00005 ± 0.1	$0.05342\pm~9$	$346.8\pm3.8~Ma$
	zweite 5 Blöcke:	90	0.00005 ± 0.1	$0.05325\pm~6$	339.4 ± 2.7 Ma

Tabelle 4 D-E:	Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für den früh-
	karbonischen Schriftgranit und den synmigmatitischen Gang I, beide Brotterode-Formation

D	97002	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Schriftgranit in der Brotterode-Form.	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
2	prism., L/B=5, farbl., fast klar, scharfk., Hämatit, rdl. Einschl., Zr-Anwachsung	90	0.00002 ± 0.1	$0.05382\pm~6$	363.4 ± 2.4 Ma
3	prismatisch, L/B=3, leicht kantengerun- det, stark rissig, weißlich-gelblich gefärbt	134	0.00015 ± 0.1	0.05367 ± 1	357.3 ± 0.6 Ma
4	prismatisch, L/B=3, rissig, scharfkantig, 1 rötlicher Einschluß	90	0.00015 ± 0.2	0.05350 ± 4	350.0 ± 1.7 Ma
5	prism., L/B=2, kantengerundet, rissig, weißlich, gelblich an den Pyramidenfl.	86	0.00012 ± 0.2	0.05369 ± 3	357.9 ± 1.4 Ma
7	prismatisch, L/B=4, S3, fast klar, Risse sind mit Hämatit belegt	263	0.00007 ± 0.1	0.05344 ± 2	347.5 ± 0.9 Ma
				$Mittelwert \pm 2\sigma mean$	355.2 ± 5.7 Ma
6	prismatisch, L/B=2, kantengerundet, bräunlich, rissig, Kern zu vermuten	90	0.00005 ± 0.1	0.08809 ± 61	1384.3 ± 13 Ma
8 1	Zirkon D (REM), Hülle? prism., L/B=4, leicht kantengerundet	52 18	$\begin{array}{c} 0.00011 \pm 0.8 \\ 0.00047 \pm 6 \end{array}$	$\begin{array}{c} 0.05297 \pm 22 \\ 0.05399 \pm 73 \end{array}$	327.5 ± 9.6 Ma 370.7 ± 30.4 Ma

F	95002	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Gang I in der Brotterode Formation	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
1	prismatisch, Typ S22, klar, scharfkantig, ein Einschluß	85	0.00070 ± 3	0.05192 ± 26	282.0 ± 11.5 Ma
5	rundlich, scharfk., S13, leicht bräunlich, ein Ende teilweise weggebrochen	83	0.00047 ± 1	0.05204 ± 10	287.0 ± 4.3 Ma
4	prismatisch, L/B=3, kantengerundet, fast klar, einige wenige Risse	108	0.00059 ± 0.8	0.05239 ± 12	302.4 ± 5.2 Ma
2	prismatisches Bruchstück, S13, klar, scharfkantig	54	0.00075 ± 2	0.05242 ± 35	303.9 ± 15.2 Ma
8	flach, vermutlich S2, gelblich, weniger rissig, kantenrund	88	0.00111 ± 1	0.05297 ± 3	327.5 ± 1.4 Ma
3	prismatisch, L/B=3, S8, trübe durch zahl- reiche Risse, leicht kantenrund	180	0.00030 ± 0.2	0.05321 ± 3	337.8 ± 1.5 Ma
7	prismatisch, L/B=5, S4, farblos bis ganz leicht gelblich, rissig, trübe, kantenrund	90	0.00040 ± 0.3	$0.05319\pm\ 3$	336.9 ± 1.2 Ma
6	prismatisch, L/B=2, S3, farblos, nur we- nige Risse, leicht kantengerundet	123	0.00020 ± 0.2	0.05319 ± 3	337.1 ± 1.4 Ma

Tabelle 4 F:

Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für die grobkristalline Schliere im Liebensteiner Gneis

	9700/	Anz	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
F	Schliere im Liebensteiner Chois	Scans	10/10	207 Db/ 206 Db + 2σ maan	
	Schnere in Liebensteiner Gheis	Scans	± 20 mean	$F0/F0 \pm 20$ mean	± 20 mean
Grı	ippe I				
18	langprismatisch, L/B=5, scharfk., klar	86	0.00015 ± 0.4	0.05172 ± 10	273.2 ± 4.5 Ma
3	2 langprismatische, L/B=6 und 5, klar	52	0.00028 ± 0.5	0.05173 ± 10	$273.5\pm4.4~\mathrm{Ma}$
2	langprism., L/B=6, S16, scharfkantig,	86	0.00011 ± 0.5	0.05180 ± 10	276.5 ± 4.3 Ma
	klar, größerer dunkler punktf. Einschluß				
5	2 langprismatische, L/B=6 und 5, klar	86	0.00008 ± 0.3	0.05204 ± 12	287.2 ± 5.1 Ma
17	langprism. Bruchst., S21, klar, scharfk.	69	0.00009 ± 0.6	0.05192 ± 17	281.8 ± 7.5 Ma
Gr	unna II				
1	langprism L/B=6 scharfkantig klar	90	0.00011 ± 0.2	0 05236 + 5	300 9 + 2 2 Ma
1	mehrere farblose rundliche Einschlüsse	20	0.00011 ± 0.2	0.05250 ± 5	500.9 ± 2.2 Mu
4	langprismatisch, L/B=6, scharfkantig,	153	0.00056 ± 1	$0.05243\pm~9$	304.1 ± 3.8 Ma
12	klar, ein großerer dunkler Einschluß	162	0.00005+0.04	0.05256 ± 2	$300.7 \pm 1.0 M_{\odot}$
15	außen ist dunkles Material aufgewachsen	102	0.00005±0.04	0.03230 ± 2	309.7 ± 1.0 WIa
Gri	uppe III				
8	prismatisch, L/B=3, scharfkantig, klar,	18	0.00004 ± 0.9	0.05282 ± 47	321.0 ± 20.2 Ma
-	außen Hämatit	-			
19	prismatisch, L/B=3, S18, scharfkantig,	180	0.00017 ± 0.1	0.05291 ± 3	$324.8 \pm 1.2 \text{ Ma}$
	weniger transparent, leicht trübe				
10	prismatisch, L/B=3, S16, scharfk., klar,	180	0.00008 ± 0.2	0.05294 ± 6	326.2 ± 2.7 Ma
4.4	ein dunkler punktförmiger Einschluß,Riß	100	0.00000 1	0.05006	2214 2714
11	prismrundl., L/B=2, S17, schartkantig,	180	0.00028 ± 1	0.05306 ± 6	331.4 ± 2.7 Ma
16	ein dunkler und zwei farblose Einschl. priem Zwilling $ _{O} L/P = 4$ S17 sohorf	00	0.00264 ± 4	0.05334 ± 10	$3/3.1 \pm 4.4$ Ma
10	kantig größere dunkle Finschlußpartie	90	0.00204 ± 4	0.05554 ± 10	$3+3.1 \pm 4.4$ W1a
	enormer ²⁰⁴ Pb-Anteil !				
12	sphäroidale Form durch steile Pyramiden				
	und kurzes Prisma, L/B=2, S11, scharfk.,				
	gelblich-bräunlich, klar. Erster Block:	16	0.00034 ± 2	0.05375 ± 23	$360.3\pm9.8~\mathrm{Ma}$
	restliche Messungen:	137	0.00021 ± 0.7	0.05303 ± 8	330.0 ± 3.4 Ma
Grı	ıppe IV				
2*	Bruchst., langprism., scharfk., klar, zahl-	68	0.00018 ± 0.5	0.05480 ± 11	$404.0\pm4.4~Ma$
	reiche dunkle und ein farbloser Einschluß				
9*	prismatisch, L/B=3, S17, scharfk., klar,	180	0.00050 ± 0.8	0.05503 ± 8	413.5 ± 3.3 Ma
<u>~</u> "	ein dunkler und ein farbloser Einschluß	40	0.00020 + 0.4	0.05540	421 4 . 2 5 3 5
0*	prismatiscn, S12, Klar, gelblich, scharf-	40	0.00029 ± 0.4	0.05548 ± 6	431.4 ± 2.5 Ma
	²⁰⁴ Pb vermutl. auf Flanke gemessen				

* möglicherweise aus dem Nebengestein assimiliert da ähnliches Alter wie der Liebensteiner Gneis

Gruppe V

7	prism., L/B=2, scharfkantig, weißlich nur	90	0.00014 ± 0.3	0.06451 ± 17	$758.5\pm5.6~\mathrm{Ma}$
14	wenig gelblich, ein farbloser Einschluß prismatisch, L/B=2, S16, scharfkantig, bräunlich-rötlich gefärbt, Riß	90	0.00007 ± 0.3	$0.09000\pm~6$	1425.5 ± 1.2 Ma

 Tabelle 4 G-H:
 Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für die beiden Proben des Katzenstein-Granits

G	93012	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
U	Katzenstein-Granit (Randvarietät)	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
5	prismatisches Bruchstück, scharfkantig, Typ S19, klar, weißlich-gelblich, ein dunkler Einschluß	168	0.00024 ± 0.7	0.05246 ± 5	305.7 ± 1.9 Ma
н	96006	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
11	Katzenstein-Granit (Normalausbild.)	Scans	$\pm 2\sigma$ mean	$^{207}\text{Pb}/^{206}\text{Pb} \pm 2\sigma$ mean	$\pm 2\sigma$ mean
9	prismatisch, L/B=4, Typ S11, klar, scharfkantig	90	0.00015 ± 0.4	0.05245 ± 10	$304.8\pm4.4~\mathrm{Ma}$
3	prism., L/B=4, farblos, klar, wenig Hä- matit, Kern zu vermuten	90	0.00012 ± 0.2	$0.05246\pm~6$	305.5 ± 2.7 Ma
1	prism., L/B=4, farblos, leicht kantenrund, Hämatit auf Riß und außen, Einschlüsse	90	0.00047 ± 0.5	0.05259 ± 9	311.2 ± 4.0 Ma
8	prismatisch, L/B=4, S3, scharfkantig, Riß	90	0.00079 ± 2	$0.05315\pm~5$	335.2 ± 2.4 Ma
10	prism., L/B=3, S6, kantenger., Hämatit	258	0.00054 ± 0.4	0.05317 ± 6	335.8 ± 2.5 Ma
4	prism., L/B=3, scharfkantig, plattig, S7, steile {211}-Flächen, farbloser Einschluß	90	0.00031 ± 0.4	$0.05329 \pm \ 6$	341.2 ± 2.6 Ma
6	langprism., L/B=4, S8, scharfk., gelblich	90	0.00057 ± 2	0.05379 ± 14	362.1 ± 5.7 Ma
2	langprism., L/B=5, farblos-gelblich, leicht kantenrund-scharfk., Einschl., ht	90	0.00044 ± 0.7	0.05414 ± 12	377.0 ± 4.9 Ma
5	prism., L/B=3, S6, rötlich, scharfkantig	54	0.00056 ± 3	0.05669 ± 40	479.5 ± 15.5 Ma

Tabelle 5 A-B:	Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für die
	beiden Varietäten des spätkarbonischen Trusetal-Granits

Δ	93019	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Trusetal-Granit (Seimberg-Granit)	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
5	kurzprismatisch, Typ S12-13, gelblich	52	0.00059 ± 2	0.05218 ± 33	293.3 ± 14.4 Ma
7	langprismatisch, Typ S19	90	0.00068 ± 2	0.05229 ± 21	298.1 ± 9.3 Ma
10	kurzprismrundl., ein Ende scharfkantig	84	0.00050 ± 2	0.05235 ± 11	$300.7\pm4.8~\mathrm{Ma}$
	mit Flächen anderes Ende ohne Flächen				
11	kurzprismatisch, Typ S18, scharfkantig	180	0.00049 ± 1	0.05226 ± 7	297.0 ± 3.1 Ma
13	langprismatisch, S13, dunkler Einschluß	34	0.00030 ± 1	0.05217 ± 28	292.8 ± 12.0 Ma
14	langprism., Typ S18,	171	0.00065 ± 0.4	0.05232 ± 4	299.5 ± 1.8 Ma
	4 rundliche helle Einschlüsse				
16	kurzprismatisch, Typ S23	153	0.00028 ± 0.6	0.05234 ± 9	$300.1 \pm 4.0 \text{ Ma}$
17	kurzprismatisch, Typ S13, scharfkantig	68	0.00016 ± 0.4	0.05234 ± 8	300.0 ± 3.3 Ma
				$Mittelwert \pm 2\sigma mean$	$297.7 \pm 2.2 \ \mathbf{Ma}$
4	rundlich, sehr hohes ²⁰⁴ Pb/ ²⁰⁶ Pb-Verh.	36	0.00840 ± 6	0.05248 ± 45	306.4 ± 19.8 Ma
6	rundliche Form, kein Typ bestimmbar	90	0.00049 ± 0.9	0.05250 ± 14	307.3 ± 6.0 Ma
8	rundlich, klar	87	0.00058 ± 0.9	0.05264 ± 8	313.4 ± 3.5 Ma
9	rundlich, sehr hohes ²⁰⁴ Pb/ ²⁰⁶ Pb-Verh.	87	0.00367 ± 19	0.05280 ± 111	320.0 ± 47.6 Ma
12	rundlich, sehr hohes ²⁰⁴ Pb/ ²⁰⁶ Pb-Verh.	17	0.00631 ± 5	0.05260 ± 41	311.5 ± 17.8 Ma
21	rundliche Form	180	0.00073 ± 0.3	0.05260 ± 5	311.4 ± 2.0 Ma
				$Mittelwert \pm 2\sigma mean$	$311.7 \pm 4.0 \ \mathbf{Ma}$
3	rundlich, nicht im Mittelwert dabei	69	0.00031 ± 2	0.05320 ± 30	337.1 ± 12.7 Ma
17	erste Messungen von Zirkon 17 (restliche	17	0.00019 ± 0.8	0.05273 ± 14	317.0 ± 6.0 Ma
	Messungen s.o.) zeigen vermutlich er- erbte Kompontente an. nicht im Mittel-				

erble	Kompontente an,	me
wert		

R	93028	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Trusetal-Granit (Bairodit)	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
2	kurzprism., L/B=2, kantengerundet, klar	88	0.00021 ± 0.7	0.05225 ± 14	296.4 ± 6.3 Ma
4	prism. Bruchstück, Typ S18, scharfkantig	147	0.00041 ± 0.7	0.05222 ± 7	295.2 ± 3.0 Ma
6	prism., S21-22, L/B=4, scharfkantig, klar	90	0.00010 ± 0.3	0.05226 ± 6	296.9 ± 2.8 Ma
7	kurzprism., S13-14, scharfkantig, klar	180	0.00027 ± 0.6	0.05216 ± 13	292.3 ± 5.6 Ma
9	kurzprismatisch, S13, scharfkantig, klar	72	0.00042 ± 0.9	0.05231 ± 23	298.7 ± 9.9 Ma
				$Mittelwert \pm 2\sigma mean$	295.9 ± 2.1 Ma
3	rundliche Form	87	0.00052 ± 1	0.05269 ± 16	315.4 ± 6.7 Ma
5	rundlich, sehr hohes ²⁰⁴ Pb/ ²⁰⁶ Pb-Verh.	34	0.00312 ± 5	0.05257 ± 24	310.3 ± 10.2 Ma
8	prismatisch-rundlich, L/B=2, S24, klar,	90	0.00099 ± 2	0.05278 ± 20	319.2 ± 8.6 Ma
	scharfkantig, 1 ovaler farbloser Einschluß				
12	rundliche Form, kein Typ erkennbar	90	0.00049 ± 0.6	0.05244 ± 10	304.8 ± 4.5 Ma
				$Mittelwert \pm 2\sigma mean$	$312.4 \pm 6.3 \ \mathbf{Ma}$

Tabelle 5 C-D:	Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für den
	spätkarbonischen Ruhlaer-Granit und den Brotterode-Diorit

С	93014	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
U	Ruhlaer Granit	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb $\pm 2\sigma$ mean	$\pm 2\sigma$ mean
2	langprismatisch, klar, scharfkantig, S17, L/B=4, größerer Einschl., ²⁰⁴ Pb/ ²⁰⁶ Pb (!)	34	0.00140 ± 3	0.05222 ± 24	294.8 ± 10.3 Ma
3	kurzprismatisch, klar, Typ S19	90	0.00030 ± 0.2	0.05230 ± 7	298.3 ± 2.9 Ma
4	leicht kantengerundet, weniger transpa- rent, klar, S24, L/B=2, dkl. Punkt außen	83	0.00003 ± 0.2	0.05229 ± 6	297.9 ± 2.4 Ma
5	prism., L/B=2, S19, scharfkantig, ein dunkler Einschluß	84	0.00010 ± 0.4	0.05225 ± 12	296.1 ± 5.1 Ma
6	prism., L/B=3, S19-24, scharfkantig, klar	84	0.00012 ± 0.4	0.05213 ± 10	290.9 ± 4.3 Ma
7	langprismatisch, L/B=5, S19	52	0.00059 ± 1	0.05202 ± 15	286.3 ± 6.7 Ma
8	kurzprismatisch, L/B=1.5, flache Form	90	0.00013 ± 0.5	0.05230 ± 15	298.6 ± 6.4 Ma
11	prismatisch, S17	86	0.00041 ± 1	0.05228 ± 15	297.6 ± 6.7 Ma
14	langprismatisch, S19	90	0.00020 ± 0.3	0.05225 ± 8	296.4 ± 3.6 Ma
				$Mittelwert \pm 2\sigma mean$	295.2 ± 3.1 Ma
9	S8, scharfk., L/B=2, klar, 3 farblose größere Einschlüsse	90	0.00110 ± 1	0.05273 ± 12	317.3 ± 5.3 Ma

D	93020	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Brotterode-Diorit	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
3	prismatisch, scharfkantig, klar, Typ S19	90	0.00029 ± 1	0.05217 ± 14	292.9 ± 6.3 Ma
4	prism., scharfkantig, klar, S23, ein Ende stark abgerundet - erscheint angelöst	86	0.00026 ± 0.8	0.05223 ± 12	295.3 ± 5.4 Ma
16	langprism., scharfkantig, klar, S22, farbl. rdl. Einschluß, Prismenflächen angelöst	90	0.00049 ± 0.7	0.05209 ± 11	289.3 ± 5.1 Ma
17	prismatisch, scharfkantig, klar, S22	85	0.00041 ± 0.6	0.05202 ± 8	286.1 ± 3.3 Ma
21	rundlich, klar	87	0.00031 ± 0.7	0.05210 ± 11	$289.6\pm5.0~\text{Ma}$
14	rundlich, scharfkantig, klar	89	0.00026 ± 0.5	0.05193 ± 11	$282.4\pm4.8~\mathrm{Ma}$
	-			$Mittelwert \pm 2\sigma mean$	289.3 ± 3.8 Ma
2	prismatisch, scharfkantig, klar, S19	90	0.00025 ± 1	0.05298 ± 29	328.0 ± 12.5 Ma

Tabelle 6 A-C:	Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für die
	spätkarbonischen Gangintrusionen

٨	98001	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Langewald-Granitporphyr	Scans	$\pm 2\sigma$ mean	$^{207}\text{Pb}/^{206}\text{Pb} \pm 2\sigma$ mean	$\pm 2\sigma$ mean
7	kurzprismrundlich, L/B=2, Zwilling c, gelblich, scharfkantig, etwas Hämatit	157	0.00041 ± 0.9	$0.05230\pm~5$	298.5 ± 2.1 Ma
9	prism., L/B= 3, Typ vermutl. P3, scharf- kantig, weißlich, außen Hämatit, Risse	54	0.00026 ± 2	0.05230 ± 19	298.7 ± 8.4 Ma
11	kurzprismatisch, L/B=2, vermutlich S10, klar, weißlich	85	0.00010 ± 0.5	$0.05198\pm~8$	$284.5\pm3.6~\mathrm{Ma}$
12	prism., L/B=3, S 19, scharfk., klar, weiß	54	0.00013 ± 1	0.05206 ± 32	$288.1\pm14.0~\text{Ma}$
13	prismatisch, L/B=2, S 18, scharfkantig, gelblich, ein Einschluß	180	0.00017 ± 0.6	0.05232 ± 8	299.2 ± 3.4 Ma
14	prism. Bruchstück, S18, klar, scharfk., hellgelb-weißlich, Hämatit, Einschluß	88	0.00008 ± 0.2	0.05231 ± 8	298.9 ± 3.3 Ma
				Mittelwert $\pm 2\sigma$ mean	294.7 ± 5.4 Ma

R	97010	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Granitporphyr von Thal-Heiligenstein	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
4	prism., L/B=3, kantengerundet, gelblich,	85	0.00035 ± 0.9	0.05036 ± 10	211.8 ± 4.7 Ma
	ein dkl. pktf. Einschluß, narbige Oberfl.				
5	prismatisches Bruchstück, Typ S13,	90	0.00017 ± 0.7	0.05201 ± 16	$285.7\pm7.0~\mathrm{Ma}$
	scharfkantig, gelblich, Riß				
8	prism., L/B=2, S13, scharfkantig, klar,	90	0.00027 ± 0.5	0.05220 ± 9	294.2 ± 4.1 Ma
	gelblich, ein farbloser Einschluß				
6	prism., L/B=3, S14, gelblich-weißlich,	72	0.00063 ± 1	0.05244 ± 20	304.7 ± 8.6 Ma
	scharfk., geriefte Oberfläche, Hämatit				
_	außen, vier pktf. dunkle Einschlüsse				
7	prismatisches Bruchst., S14, gelblich-röt-	180	0.00024 ± 1	0.05245 ± 13	304.9 ± 5.8 Ma
	lich, rauhe Oberfläche, leicht kantenrund				
10	prismatisch, L/B=5, P4, gelblich, scharf-	86	0.00006 ± 0.2	0.05248 ± 9	306.4 ± 3.9 Ma
	kantig, Hämatit liegt außen auf	= 2	0.00010 0.6	0.050 (1. 10	211.0 01.1
3	prism., L/B=3, scharfk., gelblich-weiß-	72	0.00013 ± 0.6	0.05261 ± 19	311.8 ± 8.1 Ma
0	lich, S8, zwei winzige dunkle Einschl.	07	0.00007 0.5	0.05050 10	217.2 4 4 7 4
9	prism., L/B=2, S5-P1, gelblich-rotlich,	87	0.00027 ± 0.5	$0.052/3 \pm 10$	317.2 ± 4.4 Ma
1	klar, rauhe Oberflache, dunkler Einschl.	07	0.00000 + 0.1	0.05202 . 5	221.2 ± 2.0 M.
1	prismatisch, L/B=5, kantengerundet, S13,	8/	0.00008 ± 0.1	0.05283 ± 5	321.3 ± 2.0 Ma
	raune Obertiache, gelblich-rotlich, leicht				
2	trube, Hamatit, dunkler Einschluß	71	0.00010 . 0.7	0.05201	220.1 . 0.4 14
2	prism., L/B=3, S3, schartk., feiner Riß,	/1	0.00010 ± 0.7	0.05301 ± 22	329.1 ± 9.4 Ma
	geioi., naroige Obern., Zr-Anwachsung				

С	98005 Granitporphyr vom	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Drahtziehwerk nördlich Hohleborn	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
1	prism. Bruchstück, vermutl. S9, weißlich- gelb, glatte Oberfl., Risse, dkl. Einschluß	180	0.00017 ± 0.8	0.05210 ± 7	289.6 ± 3.0 Ma
2	kurzprismatisch, L/B=2, P1, klar, scharf- kantig, gelblich, Riß mit Hämatit belegt	120	0.00004 ± 0.2	0.05210 ± 3	290.0 ± 1.3 Ma
3	kurzprism., L/B=2, P1-S5, klar, scharfk., hellgelb, 2 Risse mit Hämatit belegt	90	0.00004 ± 0.3	0.05207 ± 8	288.5 ± 3.5 Ma
5	prism., L/B=3, Typ P1, glatte Oberfläche, gelblich-rötlich, scharfkantig	90	0.00003 ± 0.2	0.05221 ± 9	294.6 ± 3.8 Ma
6	prism., L/B=3, meist klar, P2, scharfk., nahezu farblos, Riß mit Hämatit belegt	90	0.00004 ± 0.3	0.05231 ± 3	298.8 ± 1.4 Ma
7	prism., L/B=3, S8-S4, klar, scharfkantig, hellgelb, Bruchstück, 2 dkl. Einschlüsse	87	0.00003 ± 0.1	0.05234 ± 3	300.3 ± 1.2 Ma

Mittelwert $\pm 2\sigma$ mean 293.6 ± 4.1 Ma

Tabelle 6 D-E:	Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für den Rhyolith
	sowie den Felsitporphyr vom Laudenberg-Wanderstein

D	98002	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Rhyolith (Typ Meisenstein), Reifstieg	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
1	prism., L/B=3, vermut. S9, gelbl., außen Hämatit, scharfk., leicht rauhe Oberfl.	90	0.00013 ± 0.3	0.05180 ± 13	276.5 ± 5.8 Ma
2	prismatisch, L/B=2.5, S10-P2, klar, leicht gelblich, mehrere Risse, außen Hämatit	86	0.00009 ± 0.6	0.05188 ± 10	279.9 ± 4.6 Ma
4	prism., L/B=3, P1, gelblich-weißlich, weniger transparent, scharfk., Hämatit	88	0.00011 ± 0.8	0.05216 ± 11	292.2 ± 4.7 Ma
6	prism., L/B=2, verm. P4, hellgelb-weißl., Riß, weniger transparent, scharfkantig	73	0.00012 ± 0.9	0.05193 ± 20	282.2 ± 8.6 Ma
8	prismatischer Zwilling c, L/B=3, S10- P2, klar, scharfkantig, gelblich, ein Riß	180	0.00012 ± 0.4	0.05200 ± 7	285.5 ± 3.1 Ma
10	prismatisch, L/B=3, vermutl. P4, gelbl., rauhe Oberfläche, Hämatit, Einschluß	90	0.00022 ± 0.3	0.05223 ± 4	295.5 ± 1.8 Ma
12	prismatisch, L/B=2.5, weißlich-gelblich, scharfkantig, dunkler punktf. Einschluß	162	0.00006 ± 0.3	0.05227 ± 10	297.1 ± 4.5 Ma
13	prism., L/B=2.5, weißlich, stark rissig	180	0.00013 ± 0.3	0.05208 ± 4	288.7 ± 3.2 Ma
				$Mittelwert \pm 2\sigma mean$	287.2 ± 5.3 Ma
5	prismatisch, L/B=2, S5-P1, klar, scharf- kantig, außen liegt reichlich Hämatit auf	90	0.00018 ± 1	0.05116 ± 11	$248.2\pm5.0~Ma$
9	prismatisch, L/B=3, P1, leicht gelblich, weniger transparent, 2 farbl. Einschlüsse	90	0.00015 ± 0.6	0.05459 ± 9	395.6 ± 3.9 Ma
11	prismatisch, L/B=2.5, vermutlich S4, rissig, scharfkantig, weißlich	90	0.00015 ± 1	0.05090 ± 25	236.3 ± 11.4 Ma

F	98004 Felsitporphyr,	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
	Laudenberg-Wanderstein	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
5	prismatisches Bruchstück, Typ vermutlich S25-P5, scharfkantig, hellgelb-weißlich, rauhe Oberfl., dunkelroter Einschluß	85	0.00014 ± 1	0.05184 ± 22	278.4 ± 9.8 Ma
9	prismatisches Bruchstück, klar, scharf- kantig, leicht rissig	85	0.00050 ± 1	0.05190 ± 20	$280.8\pm9.0~\text{Ma}$
8	prismatisches Bruchst., vermutlich S23, scharfk., gelblich-bräunlich, transparent	90	0.00010 ± 0.5	0.05192 ± 18	$281.7\pm8.1~Ma$
7	prism., vermutlich P5, scharfkantig, gelb- lich, Bruch, mehrere farblose Einschlüsse	180	0.00038 ± 1	0.05197 ± 11	284.1 ± 4.7 Ma
10	Bruchst., gelblich leicht bräunlich, klar	84	0.00012 ± 0.3	0.05213 ± 8	290.9 ± 3.5 Ma
6	prismat. Bruchstück, gelblich, P4, transp.	41	0.00007 ± 0.9	0.05218 ± 25	293.4 ± 11.0 Ma
				$Mittelwert \pm 2\sigma mean$	284.9 ± 4.9 Ma
1	prism., L/B=3, stark kantenrund, intensiv gelb gefärbt, außen etwas Hämatit, Riß	68	0.00019 ± 1	0.05291 ± 21	325.0 ± 9.0 Ma
3	prism., L/B=4, stark kantenrund, hellgelb- weißlich, Hämatit außen, keine Flächen	90	0.00006 ± 0.3	$0.05323\pm~9$	338.4 ± 3.9 Ma
11	kurzprismatisch-rundliche Form, farblos, scharfkantig, außen etwas Hämatit	90	0.00014 ± 0.4	0.05835 ± 12	$542.9\pm4.4~\mathrm{Ma}$

Tabelle 6 F-G:Zirkonbeschreibung und Ergebnisse der Einzelzirkon-Evaporationsmethode für den
frühpermischen Quarzporphyr bei Mosbach sowie für den Trusetaler-Hauptgang

F	98007		²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
T .	Quarzporphyr bei Mosbach	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb $\pm 2\sigma$ mean	$\pm 2\sigma$ mean
2	prismatisches Bruchstück, L/B=3, Typ	90	0.00033 ± 2	0.05150 ± 30	263.3 ± 13.3 Ma
	S18, scharfkantig, gelblich, klar				
3	prismatisches Bruchstück, L/B=3.5, S18,	85	0.00024 ± 0.8	0.05182 ± 11	277.3 ± 5.1 Ma
	scharfkantig, gelblich, klar, ein farbloser Einschluß				
5	prismatisch, L/B=2, S23-24, scharf-	36	0.00042 ± 2	0.05200 ± 21	285.6 ± 9.1 Ma
	kantig, gelblich-ganz leicht bräunlich bis transparent				
6	prismatisch, L/B=2.5, S24-25, scharfkan-	72	0.00020 ± 1	0.05176 ± 17	274.6 ± 7.7 Ma
	tig, hellgelbe Farbe				
7	prism., L/B=3, S17, scharfkantig, hell-	85	0.00038 ± 2	0.05178 ± 15	275.7 ± 6.4 Ma
	gelb-leicht bräunlich, mehrere farblose				
9	EINSCHIUSSE prismatisches Bruchstück I/B-3 S19	90	0 00026 + 0 8	0.05199 ± 12	284 9 + 5 2 Ma
,	scharfkantig, gelblich-leicht bräunlich	70	0.00020 ± 0.0	0.05177 ± 12	204.9 ± 5.2 Wid
	2, 2			Mittelwert $\pm 2\sigma$ mean	276.9 ± 6.6 Ma
4	prismatisch, L/B=3, S14, scharfkantig,	90	0.00020 ± 0.7	$0.05340\pm~9$	$345.8\pm3.9~Ma$
	gelblich, klar, Hämatit außen				
8	kurzprismatisch, L/B=1.5, leicht rauhe	90	0.00013 ± 0.9	0.05240 ± 9	302.9 ± 4.0 Ma
	Oberfläche, kleiner dunkler Einschluß				
10	prismatisch, L/B=3, klar, leicht bräunlich,	90	0.00026 ± 0.5	0.05290 ± 7	324.6 ± 3.1 Ma
	Hamatit außen				

G	98006	Anz.	²⁰⁴ Pb/ ²⁰⁶ Pb	korrigiertes	²⁰⁷ Pb/ ²⁰⁶ Pb Alter
U	Granitporphyr Trusetaler Hauptgang	Scans	$\pm 2\sigma$ mean	207 Pb/ 206 Pb ± 2 σ mean	$\pm 2\sigma$ mean
1	Bruchst. prism., kantenrund, klar, farblos, evtl. Anwachsung vorhanden, mehrere dunkle Einschlüsse	90	0.00076 ± 1	0.04972 ± 14	181.7 ± 6.8 Ma
4	prismatisches Bruchstück, bräunlich-gelb, klar, ein kleiner dunkler Einschluß	90	0.00021 ± 1	0.05151 ± 16	263.6 ± 7.1 Ma

Tab. 7A-C:SHRIMP-Analysenwerte für den oberen Erbstrom-Gneis aus der Ruhlaer Formation,
den Steinbacher Augengneis aus dem Zentralen Kristallin und den Schriftgranit aus der
Brotterode-Formation

A oberer Erbstrom-Gneis Zirkon . Analyse	U ppm	Th ppm	204 Pb/ 206 Pb $\pm 1\sigma$	$^{206} Pb/^{238} U* \pm 1 \sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb* ± 1σ	²⁰⁶ Pb/ ²³⁸ U ± 1σ Alter (Ma)	²⁰⁷ Pb/ ²⁰⁶ Pb ± 1σ Alter (Ma)
3.1 randlich	340	296	0.00065 ± 16	0.0682 ± 11	0.0560 ± 27	425 ± 6	451 ± 110
5.1 randlich	227	137	0.00014 ± 8	0.0692 ± 10	0.0542 ± 33	$431\pm~6$	377 ± 142
4.1 randlich	100	88	0.00154 ± 55	0.0697 ± 19	0.0517 ± 60	434 ± 11	272 ± 272
8.1 zentral	323	351	0.00025 ± 11	0.0680 ± 11	0.0621 ± 43	424 ± 7	678 ± 155
1.1 zentral	286	143	0.00042 ± 19	0.0685 ± 12	0.0551 ± 23	427 ± 7	418 ± 97
9.1 zentral	165	92	0.00039 ± 15	0.0663 ± 8	0.0578 ± 35	414 ± 5	524 ± 138
2.1 zentral	115	99	0.00207 ± 46	0.0690 ± 15	0.0476 ± 50	$430\pm~9$	78 ± 233
6.1 zentral	99	111	0.00184 ± 42	0.0656 ± 13	0.0565 ± 71	$410\pm~8$	472 ± 304
10.1 zentral	83	53	0.00109 ± 88	0.0679 ± 16	0.0594 ± 62	424 ± 10	583 ± 244
7.1 zentral	81	49	0.00200 ± 65	0.0697 ± 21	0.0580 ± 52	434 ± 13	532 ± 210

B Steinbacher	U	Th	²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U*	²⁰⁷ Pb/ ²⁰⁶ Pb*	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
Augengneis	ppm	ppm	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$
Zirkon . Analyse						Alter (Ma)	Alter (Ma)
1.1 randlich	1176	679	0.00005 ± 2	0.0698 ± 6	0.0543 ± 11	435 ± 4	382 ± 48
4.3 randlich	388	58	0.00056 ± 34	0.0629 ± 9	0.0534 ± 20	393 ± 5	344 ± 87
6.1 randlich	230	115	0.00041 ± 15	0.0666 ± 10	0.0540 ± 24	416 ± 6	369 ± 102
4.1 randlich	226	102	0.00109 ± 30	0.0668 ± 10	0.0529 ± 25	417 ± 6	326 ± 111
3.1 randlich	217	98	0.00098 ± 27	0.0617 ± 8	0.0539 ± 32	386 ± 5	367 ± 140
2.1 randlich	200	114	0.00077 ± 18	0.0642 ± 11	0.0550 ± 29	401 ± 7	412 ± 121
8.2 randlich	199	72	0.00144 ± 28	0.0633 ± 12	0.0551 ± 32	396 ± 8	418 ± 135
8.1 zentral	530	50	0.00041 ± 18	0.0648 ± 6	0.0558 ± 12	405 ± 4	443 ± 50
3.2 zentral	435	395	0.00069 ± 28	0.0653 ± 17	0.0533 ± 43	408 ± 10	342 ± 192
7.1 zentral	190	30	0.00175 ± 29	0.0665 ± 10	0.0530 ± 25	415 ± 6	331 ± 111
2.2 zentral	150	74	0.00179 ± 33	0.0627 ± 11	0.0559 ± 51	392 ± 7	449 ± 218
6.2 zentral	148	182	0.00224 ± 48	0.0660 ± 9	0.0605 ± 63	412 ± 5	622 ± 240
4.2 zentral	80	67	0.00164 ± 76	0.0648 ± 18	0.0463 ± 98	405 ± 11	13 ± 608
5.1 zentral	78	76	0.00218 ± 67	0.0656 ± 14	0.0502 ± 68	409 ± 9	205 ± 287
1.2 Kern	105	41	0.00100 ± 39	0.1289 ± 23	0.0766 ± 48	782 ± 13	1112 ± 131

C Schriftgranit	U	Th	²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U*	²⁰⁷ Pb/ ²⁰⁶ Pb*	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
Zirkon . Analyse	ppm	ppm	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$
						Alter (Ma)	Alter (Ma)
4.1 Überwachsung	6800	473	0.00047 ± 4	$0.0504\pm~7$	0.0533 ± 4	317 ± 4	341 ± 17
5.1 Überwachsung	6266	292	0.00063 ± 4	0.0472 ± 6	$0.0526\pm~5$	298 ± 4	311 ± 22
6.1 Überwachsung	5683	258	0.00011 ± 3	0.0584 ± 4	$0.0536\pm~3$	366 ± 3	354 ± 13
10.1 Überwachsung	5566	281	0.00055 ± 6	0.0465 ± 4	0.0517 ± 4	293 ± 3	274 ± 17
3.1 Überwachsung	5553	238	0.00009 ± 2	0.0547 ± 5	$0.0538\pm~3$	343 ± 3	361 ± 13
2.1 Überwachsung	4197	189	$0.00008\pm~3$	0.0557 ± 4	$0.0534\pm~5$	349 ± 2	348 ± 22
9.1 Überwachsung	4106	120	0.00004 ± 2	0.0559 ± 5	0.0537 ± 3	351 ± 3	360 ± 15
8.1 Überwachsung	2082	41	0.00014 ± 5	0.0561 ± 6	$0.0526\pm~5$	352 ± 3	310 ± 22
1.1 Überwachsung	1666	77	0.00011 ± 6	0.0552 ± 4	0.0542 ± 10	346 ± 3	379 ± 40
7.1 Überwachsung	1213	27	$0.00018\pm\ 8$	$0.0550\pm~4$	$0.0545\pm~7$	345 ± 3	390 ± 27
4.2 Kern	749	317	0.00011 ± 7	0.0965 ± 9	0.0620 ± 12	594 ± 5	674 ± 41
11.1 Kern	504	141	0.00033 ± 14	0.0743 ± 9	0.0576 ± 24	462 ± 5	513 ± 95
8.2 Kern	400	181	0.00098 ± 23	0.0875 ± 20	0.0553 ± 39	541 ± 12	425 ± 164
5.2 Kern	334	168	0.00043 ± 15	0.1979 ± 388	0.1351 ± 98	1164 ± 212	2165 ± 132
1.2 Kern	333	391	0.00046 ± 17	0.0773 ± 19	0.0597 ± 32	480 ± 11	594 ± 122

D 96001 Thüringer Haupt- granit (RK) Zirkon, Analyse	U ppm	Th ppm	²⁰⁴ Pb/ ²⁰⁶ Pb ±1σ	²⁰⁸ Pb/ ²⁰⁶ Pb* ±1σ	²⁰⁸ Pb/ ²³² Th* ±1σ	²⁰⁶ Pb/ ²³⁸ U* ±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb* ±1σ	²⁰⁸ Pb/ ²³² Th ±1σ Alter in Ma	²⁰⁶ Pb/ ²³⁸ U ±1σ Alter in Ma	²⁰⁷ Pb/ ²⁰⁷ Pb ±1σ Alter in Ma
5.1 Überwachsung	1484	193	0.00003 ± 2	0.0405 ± 8	0.0178 ± 4	0.0572 ± 5	0.0536 ± 6	357 ± 8	359 ± 3	354 ± 27
4.2 Überwachsung	758	73	0.00024 ± 6	0.0277 ± 23	0.0162 ± 13	0.0563 ± 4	0.0522 ± 11	326 ± 27	353 ± 3	295 ± 49
1.2 Überwachsung	674	52	0.00001 ± 3	0.0261 ± 12	0.0190 ± 9	0.0560 ± 5	0.0540 ± 11	381 ± 17	351 ± 3	371 ± 46
3.1 zoniert	425	186	0.00013 ± 3	0.1404 ± 34	0.0179 ± 5	0.0559 ± 5	0.0537 ± 8	359 ± 9	351 ± 3	360 ± 35
6.1 zoniert	281	90	0.00001 ± 8	0.1135 ± 42	0.0196 ± 8	0.0551 ± 8	0.0574 ± 17	392 ± 15	346 ± 5	509 ± 65
2.1 zoniert	151	61	0.00004 ± 2	0.1432 ± 54	0.0199 ± 9	0.0557 ± 12	0.0593 ± 17	398 ± 18	349 ± 8	578 ± 65
7.1 zoniert	136	77	0.00078 ± 21	0.1817 ± 89	0.0176 ± 10	0.0547 ± 10	0.0578 ± 35	352 ± 20	343 ± 6	524 ± 139
1.1 zoniert zentral	387	273	0.00014 ± 5	0.2284 ± 40	0.0177 ± 4	0.0546 ± 8	0.0532 ± 12	354 ± 8	343 ± 5	339 ± 50
1.3 zoniert zentral	213	139	0.00055 ± 33	0.2120 ± 149	0.0181 ± 15	0.0558 ± 20	0.0507 ± 56	363 ± 29	350 ± 12	229 ± 238
4.1 zoniert zentral	175	46	0.00014 ± 6	0.0968 ± 37	0.0206 ± 9	0.0556 ± 8	0.0606 ± 15	413 ± 17	349 ± 5	625 ± 54

E 930191										
Trusetal Granit (Seimberg Granit) Zirkon, Analyse	U ppm	Th ppm	²⁰⁴ Pb/ ²⁰⁶ Pb ±1σ	²⁰⁸ Pb/ ²⁰⁶ Pb* ±1σ	²⁰⁸ Pb/ ²³² Th* ±1σ	²⁰⁶ Pb/ ²³⁸ U* ±1σ	²⁰⁷ Pb/ ²⁰⁶ Pb* ±1σ	²⁰⁸ Pb/ ²³² Th ±1σ Alter in Ma	²⁰⁶ Pb/ ²³⁸ U ±1σ Alter in Ma	²⁰⁷ Pb/ ²⁰⁷ Pb ±1σ Alter in Ma
1.1 prismat. randlich	81	93	0.00026 ± 9	0.371 ± 12	0.0155 ± 6	0.0481 ± 9	0.0639 ± 23	311 ± 12	303 ± 5	740 ± 79
5.1 prismat. zentral	115	142	0.00121 ± 37	0.693 ± 18	0.0142 ± 8	0.0477 ± 15	0.0473 ± 62	285 ± 17	300 ± 9	63 ± 286
3.1 prismat. zentral	115	100	0.00045 ± 14	0.281 ± 13	0.0155 ± 8	0.0477 ± 10	0.0565 ± 27	312 ± 16	300 ± 6	473 ± 109
4.1 prismat. zentral	75	64	0.00166 ± 35	0.234 ± 16	0.0132 ± 10	0.0486 ± 12	0.0395 ± 60	266 ± 19	306 ± 7	0 ± 285
2.1 prismat. zentral	64	53	0.00215 ± 62	0.232 ± 25	0.0131 ± 14	0.0471 ± 13	0.0499 ± 106	264 ± 29	297 ± 8	192 ± 585
3.1 rundlich, randl	76	69	0.00061 ± 31	0.312 ± 17	0.0168 ± 10	0.0489 ± 10	0.0624 ± 53	338 ± 20	308 ± 6	688 ± 192
1.1 rundlich, zentral	134	162	0.00134 ± 30	0.359 ± 14	0.0136 ± 6	0.0460 ± 9	0.0447 ± 49	271 ± 12	290 ± 6	0 ± 236
4.1 rundlich, zentral	115	135	0.00056 ± 14	0.365 ± 9	0.0151 ± 5	0.0485 ± 8	0.0550 ± 26	303 ± 9	305 ± 5	413 ± 108
2.1 rundlich, zentral	96	89	0.00109 ± 36	0.275 ± 16	0.0141 ± 9	0.0475 ± 11	0.0518 ± 58	283 ± 18	299 ± 7	277 ± 272