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DISTRIBUTION ANALYSES AND
BIMODALITY
Distribution analyses are becoming
increasingly popular in the psychological
literature as they promise invaluable infor-
mation about hidden cognitive processes
(e.g., Ratcliff and Rouder, 1998; Ratcliff
et al., 1999; Wagenmakers et al., 2005;
Miller, 2006; Freeman and Dale, 2013). One
particular approach probes distributions
for uni- vs. bi-modality, because bimodal-
ity often results from the contribution of
dual processes underlying the observed data
(Larkin, 1979; Freeman and Dale, 2013; see
Knapp, 2007, for a historical overview).
Although several statistical tools for this
purpose exist, it remains unclear which one
can be considered as a gold standard for
assessing bimodality in practice.

Freeman and Dale (2013) have recently
shed some light on the utility of three
different measures of bimodality known
as the bimodality coefficient (BC; SAS
Institute Inc, 1990), Hartigan’s dip
statistic (HDS; Hartigan and Hartigan,
1985), and Akaike’s information criterion
(AIC; Akaike, 1974) as applied to one-
component and two-component Gaussian
mixture distribution models (McLachlan
and Peel, 2000). Overall, their analyses
favored the HDS but also credited the BC
with considerable utility. Notably, how-
ever, rather different formulas for the
BC can be found in the literature (SAS

Institute Inc, 1990, 2012; Knapp, 2007;
Bimodal distribution, 2013; Freeman
and Dale, 2013)—certainly a potential
source of confusion among researchers
using the BC.1 Additionally, the Appendix
of Freeman and Dale (2013) gives a
slightly ambiguous formula for the BC
because their approach used non-standard
MATLAB functions that are not widely
accessible. The present article aims at clar-
ifying and correcting these issues in an
attempt to prevent misunderstanding and
confusion. Further, methodological issues
in using this measure are sketched to pro-
vide an intuition about its behavior. Note
that the current paper does not intend to
argue in favor of the BC as compared to
other measures (see Freeman and Dale,
2013, for a thorough comparison). Rather,
we want to point out pitfalls and limita-
tions of this measure that can easily be
overlooked.

THE BC AND ITS CAVEATS
The computation of the BC is easy and
straightforward as it only requires three
numbers: the sample size n, the skew-
ness of the distribution of interest, and
its excess kurtosis2 (see DeCarlo, 1997,
and Joanes and Gill, 1998, for a detailed
description of the latter two statistics).
First appearing as part of the SAS pro-
cedure CLUSTER under the headline

1 The corresponding Wikipedia article (Bimodal distri-
bution, 2013) used a wrong formula throughout, but
has been corrected as part of preparing this article.
2Excess kurtosis and Pearson’s original kurtosis dif-
fer only as to whether the distribution’s fourth scaled
moment is normalised to a value of 0 for normal dis-
tributions or not (with “excess” indicating that a value
of three has been subtracted for normalisation). The
present article assumes all statistics to represent excess
kurtosis if not explicitly indicated otherwise.

“Miscellaneous Formulas” of the SAS
User’s Guide (SAS Institute Inc, 1990, p.
561), the original formulation of the BC is

BC = m2
3 + 1

m4 + 3· (n − 1)2

(n − 2)(n − 3)

,

with m3 referring to the skewness of the
distribution and m4 referring to its excess
kurtosis (see Knapp, 2007, for critical
remarks about this notation), with both
moments being corrected for sample bias
(cf. Joanes and Gill, 1998). The BC of a
given empirical distribution is then com-
pared to a benchmark value of BCcrit =
5/9 ≈ 0.555 that would be expected for
a uniform distribution; higher numbers
point toward bimodality whereas lower
numbers point toward unimodality.

Freeman and Dale (2013) gave infor-
mation about computation of the BC with
Matlab, but unfortunately two problems
likely arise from using their code (for more
information and examples of calculation
with different software packages, see the
online material): First, the call

m3 = skew(x);
likely results in an error, as skew() is not
a native Matlab function. The correct call
should be

m3 = skewness(x, 0);
where the second input parameter 0
prompts the necessary correction for
sample bias. Secondly, kurtosis() com-
putes Pearson’s original kurtosis (The
MathWorks Inc., 2012). To obtain the
correct and sample-bias corrected value,
the call should be

m4 = kurtosis(x, 0) − 3;
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FIGURE 1 | Histograms for four hypothetical distributions, their skewness (m3) and kurtosis

(m4), as well as the corresponding BCs (values exceeding 0.555 are taken to indicate

bimodality). Panel (A) shows a clearly unimodal distribution whereas the distribution in Panel (B) is
clearly bimodal. Both distributions are classified correctly by the BC. Panel (C) shows a skewed
unimodal distribution that is classified erroneously as bimodal by the BC. The distribution in Panel
(D) is correctly classified as bimodal, even though its BC is lower than that of distribution C. See
the text for a detailed comparison of the distributions.

Irrespective of these computational issues,
the above-mentioned formula reveals that
the BC is directly influenced by both,
skewness and kurtosis: Higher BCs result
from high absolute values of skewness
and low or negative values of kurtosis.
Especially the influence of skewness can
result in undesired behavior of the BC. As
an illustration, four hypothetical distribu-
tions of 100 values each (range 1–11) are
plotted in Figure 1, including their skew-
ness, kurtosis, and the resulting BC (see
Appendix for the raw data).

Comparing distribution A and B reveals
the expected behavior of the BC: The
two obvious modes in distribution B
decrease kurtosis and increase the BC.
Distribution C, however, is clearly uni-
modal when inspected by eye but its heavy
skew also leads to a large BC. In terms
of the BC, distribution C is even more
bimodal than distribution D even though
distribution D clearly has two modes,
but otherwise both are very similar.
The additional mode, however, decreases
skewness thereby lowering the BC as long
as it is not compensated by (negative)
kurtosis.

CONCLUSIONS
As described above, empirical values of
BC > 0.555 are taken to indicate bimodal-
ity. A probability density function for the
BC, however, cannot be derived (Knapp,
2007). This is a major drawback because it
precludes a thorough null-hypothesis sig-
nificance test.

A suitable alternative test for bimodal-
ity is the dip test (Hartigan and Hartigan,
1985) that probes for deviations from
unimodality (see also Freeman and Dale,
2013, for a more detailed description).
An algorithm for this test was proposed
after its publication (Hartigan, 1985)
and this algorithm has meanwhile been
adopted for MATLAB (Mechler, 2002).
Additionally, an up-to-date, bug-corrected
version was recently published as an R
package (diptest, Maechler, 2012).

A direct comparison of the BC and
the dip test (Freeman and Dale, 2013)
revealed that both measures have merit
for assessing bimodality but neither statis-
tic is perfectly sensitive and specific at the
same time. Accordingly, one may assess
empirical distributions with both mea-
sures and diagnose bimodality especially

in case of convergent results. Should the
results not converge, it seems the best
strategy to investigate distributions for
other measures, such as skewness and
kurtosis individually (as well as their
appearance when inspected by eye), to
determine whether the result of the BC
might be biased in one or the other
direction.
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APPENDIX

Table A1 | Frequency data of four hypothetical distributions of 100

values each, with corresponding estimates of skewness (m3),

kurtosis (m4), and the BC.

Data Set

Value A B C D

1 3 2 2 2

2 5 26 3 3

3 5 14 3 6

4 10 6 3 17

5 17 2 3 3

6 20 0 4 4

7 17 2 5 5

8 10 6 11 12

9 5 14 21 14

10 5 26 41 30

11 3 2 4 4

m3 0.00 0.00 −1.55 −0.59

m4 −0.12 −1.83 1.55 −1.08

BC 0.34 0.79 0.73 0.67

Data set C is adapted from Knapp (2007) (Figure 7).
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