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In biological tissue, an accumulation of similarly shaped objects with a susceptibility

difference to the surrounding tissue generates a local distortion of the external magnetic

field in magnetic resonance imaging. It induces stochastic field fluctuations that

characteristically influence proton spin dephasing in the vicinity of these magnetic

perturbers. The magnetic field correlation that is associated with such local magnetic field

inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation

function that is related to the time evolution of the measured magnetization. Here, an

eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and

cylinders, is considered for restricted spin diffusion in a simple model geometry. Then,

the concept of generalized moment analysis, an approximation technique that is applied

in the study of (non-)reactive processes that involve Brownian motion, allows deriving

analytical expressions of the correlation function for different exponential decay forms.

Results for the biexponential decay for both spherical and cylindrical magnetized objects

are derived and compared with the frequently used (less accurate) monoexponential

decay forms. They are in asymptotic agreement with the numerically exact value of the

correlation function for long and short times.

Keywords: magnetized sphere/cylinder, magnetic susceptibility, correlation function, diffusion, magnetic

resonance imaging

1. INTRODUCTION

When exposed to an external magnetic field as in magnetic resonance imaging (MRI), spatial
variations of magnetic susceptibility in heterogeneous systems such as biological tissue induce
local inhomogeneities of the magnetic field that are usually visible for macroscopic structures.
Susceptibility-weighted imaging and quantitative susceptibility mapping are MRI sequences that
make use of this effect, e.g., to better visualize a cerebral thromboembolism or to quantify
cerebral blood oxygen saturation [1, 2], and are therefore important in neuroradiological imaging.
Susceptibility differences in biological tissue occur at the interfaces between different tissue
structures and/or different types of tissue, thus generating local magnetic field gradients that lead
to a dephasing of the magnetization. This effect can also be used to obtain quantifiable information
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on microscopic structures that are not resolvable in routine MRI
due to technical limitations or optimization of measurement
time. Such structures might be near-spherical as, for instance,
iron accumulations in brain cells in neurodegenerative disease
[3] or ultrasmall paramagnetic iron oxide particles that are
ingested from macrophages in cell labeling techniques to allow
assessment of the extent of cardiovascular disease [4], nerve
injury [5], or to simply track immune cells [6]. Also, due to
the BOLD effect [7], capillaries containing erythrocytes with
deoxygenated hemoglobine possess an inherent paramagnetic
susceptibility that is different to that of the surrounding
tissue. For such magnetized spherical and cylindrical subvoxel
structures, diffusion effects due to spin movements are not
negligible. In fact, an increase of spin dephasing through
diffusion effects may lead to a characteristic loss of inter-spin
coherence: a spin that diffuses around these magnetic field
perturbers experiences the local magnetic field inhomogeneities
even though the applied external field is homogeneous. Diffusion
effects for an ensemble of diffusing spins therefore lead to a more
rapidly evolving phase decoherence than that expected from
diffusion-free spin relaxation [8]. In addition, combined effects
on dephasing of magnetic susceptibility and diffusion gradients
are actively investigated, e.g., for diffusional kurtosis imaging [9].
In fact, some authors suggest that anomalous or non-Gaussian
diffusion in biological tissue is due to dephasing effects that
are promoted by both diffusion multi-compartmentalization and
magnetic susceptibility [10, 11].

Previously, local susceptibility gradients and their effect on
MR-signal behavior have been examined through spin-echo
relaxation rates R2 = 1/T2 and gradient-echo relaxation
rates R∗2 = 1/T∗

2 [12–14], but, since magnetization does
not necessarily decay monoexponentially ∼ exp(−t/T2) or ∼
exp(−t/T∗

2 ) in time [15], a rightful interpretation of the signal
evolution becomes cumbersome. Another approach is given by
the frequency autocorrelation function K(t) that describes the
transition probability of a spin from one local Larmor frequency
state to the next in a specific time [16]. It is both sensitive
to proton spin diffusion and the shape of the local magnetic
field inhomogeneities. When spin dephasing around the local
magnetic field inhomogeneity is Gaussian, a relation between
magnetization time evolution and the frequency correlation
function can be established [17] and it could be shown that
information about correlation functions provide a more direct
and measurable link to the local magnetic field inhomogeneity
than relaxation rates [18]. Magnetic field correlation imaging
techniques have already been utilized for MR measurements of
iron accumulation in brain parenchyma [19] and for the MR-
analysis of porous media [20]. In addition, since Carr-Purcell-
Meiboom-Gill (CPMG) sequence relaxation rates are connected
to the correlation function [16], a better knowledge of the
correlation function may aid in determining microstrucutral
parameters that quantify local capillary size, density, and oxygen
extraction fraction in muscle tissue [21, 22].

Spin diffusion leads to a decrease of correlation over time
that is mostly assumed to occur monoexponentially with a
characteristic time constant or correlation time [23, 24], a
simplification that is hardly valid for large parameter regimes.

With this in mind, a detailed account of the intricate relation
between magnetic field inhomogeneities and the frequency
correlation function that characterizes the MRI relaxation
process has been provided recently for restricted diffusion in
Ziener et al. [25], and for unrestricted diffusion in Ayant et al.
[26] and Sukstanskii et al. [27].

To account for the time dependence of microstructural
quantities of the diffusion process, generalized moment
expansion analysis can be employed to approximate their long
time behavior. Generalized moment analysis is an extension of
the first passage time approximation [28] and has been used
to study, for instance, (non-)reactive processes that involve
Brownian motion [29, 30], finite Ising systems [31], single-mode
lasers [32], or to generally approximate autocorrelation functions
[30]. In fact, the mean relaxation time approximation represents
the lowest order approximation of the generalized moment
expansion method and could be shown to better approximate
the exact correlation function than the high-frequency i.e., short-
time approximation used in conventional Padé approximations
[30, 33].

In this work, the generalized moment analysis will be
introduced and utilized to determine Padé approximants
in the biexponential approximation for correlation functions
of spherical and cylindrical magnetic objects. This analysis
extends and furthers a preceding analysis that only considered
the monoexponential decay forms for cylindrical magnetic
perturbers [25].

2. MATERIALS AND METHODS

The following analysis is based on the consideration of compact
and impermeable objects G inside a voxel of size VVoxel that are
exposed to an external static magnetic field with strength B0 (see
Figure 1A). Assuming homogeneous diffusion properties in the
dephasing volume V = VVoxel − G, i.e., no barriers such as
membranes or other materials, diffusing proton spins around
object G are subject to stochastic field fluctuations induced by the
distortion of the magnetic field in the vicinity of G.

2.1. Frequency Autocorrelation Function
Generally, the distortion of the magnetic field is connected to the
susceptibility difference 1χ = χi − χe between the magnetized
object and its surrounding medium and leads to a variation in the
local Larmor frequency

ω(r) = δω
∂2

∂z2

∫

G

d3r′

|r− r′| , (1)

with frequency shift δω = γB01χ and gyromagnetic ratio γ =
2.675×108 s−1T−1 [34]. Let p(r, r0, t) be the transition probability
of a proton spin at point r and time t that started at position
r0 and time t = 0. Since, presumably, spin diffusion inside the
dephasing volume encounters no barriers, transition probability
p(r, r0, t) is nothing less than the Green’s function of the diffusion
equation

∂

∂t
p(r, r0, t) = D1 p(r, r0, t) , (2)
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FIGURE 1 | Proton spin trajectory around a magnetized object and

measurement of the frequency correlation function through

asymmetric spin echos. (A) Magnetized object G with susceptibility χi

embedded in a surrounding medium V with susceptibility χe; both volumes

constitute the voxel volume VVoxel and the volume fraction is η = G/VVoxel.

The spin is subjected to stochastic field fluctuations in V induced by a

distortion of the magnetic field from object G. (B) The corresponding

frequency correlation function K(t) = 〈ω(t)ω(0)〉, where the bra-ket-formalism

indicates averaging over all protons inside the voxel, determines the MR-signal

S: through measurement of asymmetric spin echos, i.e., spin echos

S(t)|ts + t/2 that are shifted with time ts away from the standard spin echo value

of t/2 (see main text) we have S(t)|ts + t/2 = S(t)|t/2 exp
(

−2t2sK
(
t
2

))

.

where 1 denotes the Laplace operator and D is the diffusion
coefficient. Thus,

p(r, r0, t) = et D1 δ(r− r0) , (3)

and it is evident that p(r, r0, t) only depends on the spatial
difference r− r0.

Then, to investigate stochastic field fluctuations around object
G, a two-point correlation function K(t) can be introduced

K(t) =
∫

V
d3r

∫

V
d3r0 ω(r) p(r, r0, t)p(r0)ω(r0) (4)

= 1

V

∫

V
d3rω(r) et D1 ω(r) , (5)

where we made use of Equation (3) in the last step. The
probability density of the equilibrium p(r0) = 1/V due to
the assumption of homogeneous spin density. The frequency
autocorrelation function K(t) is linked to the measured MR-
signal S(t) and can be determined through measurement of
asymmetric spin echos (see also Figure 1B and [18]). An
asymmetric spin echo S(t)|tp is a spin echo that is measured after a
180◦ refocusing pulse given at a time tp 6= t/2 where a refocusing
pulse given at time t/2 corresponds to a symmetric spin echo
S(t)|t/2. When |tp − t/2| = ts, the following equality in our
notation holds for low orders of ts according to Jensen et al. [18]:

S(t)|ts + t/2 = S(t)|t/2 exp
(

−2t2sK

(
t

2

))

. (6)

Usually, Equation (6) is used in practice to be fitted to MRI data
to obtain the correlation function.

2.2. Spherical and Cylindrical Magnetic
Objects
In this work, two kinds of magnetic perturbers are considered:
spheres and cylinders (see Figures 2A,B, respectively). For
instance, an ensemble of microscopic spherical magnetic objects
can represent the intracellular accumulation of iron particles in
neurodegenerative disease [35] or the accumulation of ultrasmall
paramagnetic iron oxide as a contrast agent to trackmacrophages
in nerve injury or atherosclerotic disease [4, 5]. Collectives
of cylindrical magnetic perturbers can be represented through
a microvascular network in skeletal or cardiac muscle tissue
[36, 37] where capillaries contain paramagnetic deoxygenated
hemoglobine [7].

The magnetic field around a spherical magnetic perturber is
that of a magnetic dipole, i.e., with the external magnetic field
B0 being parallel to the z-axis of the coordinate system and
utilization of spherical coordinates (r, θ ,ϕ) (see also Figure 2A),
the Larmor frequency reads

ω(r) = δω R3i
3 cos2(θ)− 1

r3
. (7)

Here, δω = 1
3γ1χB0 represents the frequency shift on the

equatorial surface of the sphere with radius Ri. Its dephasing
volume V ranges from the sphere surfaces to the surface of the
mean relaxation volume. The latter depends on the form of the
magnetized object and, therefore, the outer surface of V can be
considered as a sphere with radius R. Consequently, the volume
fraction of the magnetic material η = R3i /R

3.
For a cylinder, the angle θ between its axis and the external

magnetic field B0 has to be acknowledged in the frequency shift
to obtain the local frequency (see Figure 2B)

ω(r) = δω R2i
cos(2ϕ)

r2
, (8)

where δω = 1
2γ1χB0 sin

2(θ) is the external frequency shift. In
analogy to spheres, the local volume fraction η = R2i /R

2 for a
outer cylindrical surface of the dephasing volume with radius
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FIGURE 2 | Spherical and cylindrical object in an external static

magnetic field B0. (A) Spherical magnetic object with radius Ri (red), that is

surrounded by a dephasing volume sphere with radius R. The corresponding

local Larmor frequency can be found in Equation (7). (B) Cylindrical object (red)

with radius Ri of the cross section circle perpendicular to the cylinder axis. The

cylinder is surrounded by a cylindrical dephasing volume with radius R. The

angle θ between external magnetic field and cylinder axis is important in the

determination of the local Lamor frequency in Equation (8).

R. In both cases, the rationale of the approach has already been
discussed in detail elsewhere [13, 38, 39].

For ensembles of several (microscopic) magnetic objects,
it is helpful to avail oneself of the principle of supply areas
as in the Krogh capillary model [40]. If the volume hosting

the magnetic perturbers can be split into smaller volumes of
similar geometry and if the local resonance frequency around
the magnetic perturber is point symmetric, i.e., ω(r) = ω(−r)
which is valid for both spheres and cylinders, it is possible
to think of spin trajectories that leave their initial supply area
or dephasing volume as being reflected at its boundary. Also,
the same applies for spins whose trajectories hit the surface of
the magnetic perturber that is assumed impermeable. Then, the
Krogh model allows reducing the problem to one single object,
i.e., diffusion is not considered in the whole tissue but, instead,
for one single magnetic perturber only and reflective boundary
conditions are assumed

∂

∂r
p(r, r0, t)

∣
∣
∣
∣
r=Ri

= 0 = ∂

∂r
p(r, r0, t)

∣
∣
∣
∣
r=R

. (9)

The case of unrestricted diffusion for a dephasing volume V
extending from the surface of the magnetic perturber to infinity
has already been analyzed in detail for spheres [26, 27, 41] and
cylinders [27] and shall not be the subject of this investigation. It
corresponds to very small volume fractions η ≈ G/VVoxel where
spin diffusion around the magnetic object does not reach the
outer surface of V during the measurement. A detailed account
in a similar notation can be found in Ziener et al. [25].

2.3. Eigenfunction Expansion
The diffusion equation (Equation 2) can be solved with the
help of an eigenfunction expansion of the transition probability
p(r, r0, t):

p(r, r0, t) =
∞
∑

κn≥0

e
−κ2n

Dt

R2i φn(r)φ
∗
n(r0)

= 1

V
+

∞
∑

κn>0

e
−κ2n

Dt

R2i φn(r)φ
∗
n(r0) . (10)

The eigenfunctions φn are solutions of the eigenvalue equation

1φn(r) = −κ2
n

R2i
φn(r) , (11)

with eigenvalues κn, and, they fulfill the orthogonality condition
∫

d3rφn(r)φ
∗
n′ (r) = δnn′ , (12)

where Ri is the radius of the inner sphere or cylinder, respectively.
Thereby, the lowest eigenvalue κ0 = 0 corresponds to the lowest
eigenfunction φ0 = 1/

√
V [42]. The influence of diffusion is

taken into account by the correlation time τ

τ = R2i
D

. (13)

By substituting the spectral expansion of the transition
probability p(r, r0, t) into the definition of the autocorrelation
function (Equation 4), we obtain

K(t) =
∞
∑

n= 1

F2ne
−κ2n

t
τ (14)
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with expansion coefficients

Fn = 1√
V

∫

d3rω(r)φn(r) . (15)

Since φ0(r) = 1/
√
V , the expansion coefficient F0 = 0 does not

contribute to the correlation function.
Explicit expressions can be given for both spherical and

cylindrical geometries; in the case of spheres, F2n reads

F2n = 216

5κ2
n

η

η − 1

[

j′2

(
κn
3
√

η

)

− η
4
3 j′2(κn)

]2

[κ2
n − 6]

[

j′2

(
κn
3
√

η

)]2
+ η

1
3 [6η

2
3 − κ2

n]
[

j′2(κn)
]2

,

(16)
with κn obeying the eigenvalue equation

j′2(κn)y
′
2

(
κn
3
√

η

)

= j′2

(
κn
3
√

η

)

y′2(κn) . (17)

Functions j′2 and y
′
2 are the first derivatives of the spherical Bessel

functions of the first and second kind, respectively [25]. An
approximation for the first zero κ1 is provided in Appendix A.

For cylinders, we have with cylindrical Bessel functions J2 and
Y2 of the first and second kind, respectively,

F2n = 8

κ2
n

η

η − 1

[

J′2

(
κn√
η

)

− η
3
2 J′2(κn)

]2

[

κ2
n − 4

]
[

J′2

(
κn√
η

)]2
+ [4η − κ2

n]
[

J′2(κn)
]2

,

(18)
and eigenvalues κn are the solution of

J′2(κn)Y
′
2

(
κn√
η

)

= J′2

(
κn√
η

)

Y ′
2(κn) . (19)

The long time behavior of K(t) can be determined by considering
the first eigenvalue κ1 only:

KL(t) = F21e
−κ21

t
τ . (20)

Evidently, KL(t) converges asymptotically against zero for large
t or K(∞) = 0. On the other hand, the value of the correlation
function at t = 0 can be obtained by making use of Equation (3)
with the initial condition p(r, r0, 0) = δ(r− r0):

K(0) = 〈ω2(r) 〉 = 1

V

∫

V
d3rω2(r) (21)

=
∞
∑

n= 1

F2n . (22)

The last relation is useful for numerical computation and
corresponds to Parseval’s theorem in Fourier analysis.

2.4. Generalized Moment Analysis
The generalized moment expansion method or generalized
moment approximation (GMA) has been used recently as
an effective algorithm to approximate the time dependence

of observables that are connected to reactive and non-
reactive processes involving Brownian motion [29, 30, 43,
44]. It can be applied for monitoring diffusive redistributions
and barrier crossing problems as well as to approximate
autocorrelation functions [30]. In our case, the generalized
moment analysis will be used to derive analytical expressions
for the correlation function for biexponentially approximated
decay forms that will prove to be more accurate than
monoexponential approximations. The following subsections
will introduce generalized moments and the Padé approximation
and results frommonoexponential approximations, as detailed in
Ziener et al. [25], will be briefly recapitulated to give a buildup to
biexponential approximations.

2.4.1. Generalized Moments

In using the Laplace transform K̂(s) of the correlation function
K(t) in Equation (5),

K̂(s) = 1

V

∫

V
d3rω(r)

1

s− D1
ω(r) , (23)

it is convenient to expand K̂(s) in a power series of 1/s and s for
the short and long time behavior, respectively, as

lim
s→0

K̂(s) =
∞
∑

n= 0

µ−(n+ 1)[−s]n , (24)

and

lim
s→∞

K̂(s) = 1

s

∞
∑

n= 0

µn

[

− 1

s

]n

. (25)

The high-frequency moments µn hereby correspond to the short
time behavior and the low-frequency moments µ−(n+ 1) to the
long time behavior. They are defined as

µn = [−1]n

n!
lim
s→∞

dn
[

sK̂(s)
]

d
[
1
s

]n

(26)

= lim
t→0

dnK(t)

dtn

and

µ−(n+ 1) =
[−1]n

n!
lim
s→0

dnK̂(s)

dsn
(27)

= 1

n!

∫ ∞

0
dt tn K(t) ,

respectively. Equation (5) allows combining the last two
equalities into one expression for positive and negative n as

µn = 1

V

∫

V
d3rω(r) [−D1]n ω(r) . (28)

Therefore, the moments µn only depend on diffusion coefficient
D and the form of the distortion of the magnetic field from
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magnetic perturber G. To avoid confusion, only one expression
µn will be used below that refers to high-frequency moments for
n ≥ 0 and to low-frequency moments for n < 0. For n = 0,
the moment is identical to K(0) in Equation (21) and, therefore,
corresponds to µ0 = 〈ω2(r) 〉. The evaluation of Equation (28)
for positive indices is straight-forward, whereas moments with a
negative index n can be determined through quadratures, i.e.,

µ−n = 1

V Dn

∫

V
d3rω(r) [−1]−n ω(r)

︸ ︷︷ ︸

µ−n(r)

, (29)

where the moment function µ−n(r) for n ≥ 0 was introduced
that satisfies

[−1]n µ−n(r) = ω(r) . (30)

Thus, moments with negative index can be determined by solving
the differential equation Equation (30) where µ−n(r) obeys the
same reflecting boundary conditions in Equation (9).

2.4.2. Padé Approximation

The frequency autocorrelation function K(t) can be
approximated by the sum of N exponential decays as

K(t) ≈ k(Nh ,Nl)(t) =
N

∑

n= 1

f(Nh,Nl),n e
−Ŵ(Nh ,Nl),n

t
, (31)

with prefactors f(Nh ,Nl),n and decay constants Ŵ(Nh ,Nl),n that are
related to the moments µn. The sum of the number of high
frequency moments Nh and that of low frequency moments Nl

equals the 2N parameters to be determined:Nh+Nl = 2N. Then,
the Laplace transform of K(t) in Equation (23) can be written as
a sum of Lorentzians as

K̂(s) ≈ k̂(Nh ,Nl)(s) =
N

∑

n= 1

f(Nh ,Nl),n

s+ Ŵ(Nh ,Nl),n
. (32)

Padé approximants k̂(s) are required to accurately describe the
high- and low-frequency behavior of K̂(s) in Equations (24)
and (25) to a desired degree and to correctly reproduce the Nh

high- and Nl low-frequency moments. The resulting description
of the (Nh,Nl)-generalized-moment approximation, denoted as
(Nh,Nl)-GMA, is a two-sided Padé approximation around s = 0
and s = ∞ [45]. When introducing the Padé approximation
of the frequency autocorrelation function according to Equation
(31) into the definition of the high and low frequency moments
according to Equations (26) and (27), the parameters f(Nh ,Nl),n

and Ŵ(Nh ,Nl),n can be obtained through

N
∑

n=1

f(Nh ,Nl),n Ŵm
(Nh ,Nl),n

= µm , with (33)

m = −Nl, . . . ,Nh − 1 .

The generalized moments µn are closely related to the
shape of the local field inhomogeneity as shown above and

parameters f(Nh ,Nl),n and Ŵ(Nh ,Nl),n can be determined by the
multi-exponential approximation of the correlation function in
Equation (31). Therefore, an approximation of the correlation
function is given through the solution of Equation (33), provided
that the generalized moments µn are known.

3. RESULTS

In the following, the correlation function within the GMA is
derived for the biexponential approximation (N = 2) in the
spherical and cylindrical model geometry, since it is then possible
to provide an algebraic solution of Equation (33). However, the
numerical solution for N > 2 is still possible by means of an
equivalent eigenvalue problem [44, 46]. The case N = 1 was
treated in Ziener et al. [25] and is presented in Appendix B for
the sake of completeness.

For N = 2, the approximation of the correlation function can
be extended to the sum of two exponential decays and Equation
(33) leads to the sum

f(Nh ,Nl),1Ŵ
m
(Nh ,Nl),1

+ f(Nh,Nl),2Ŵ
m
(Nh ,Nl),2

= µm , with (34)

m = −Nl, . . . ,−Nl + 4 .

In this work, two cases are being considered. The first case is the
(2,2)-GMA reproducing the moments µ−2, µ−1, µ0, and µ1 of
the exact correlation function. To find the best approximation
for the long time behavior, we choose the (1, 3)-GMA that
reproduces the moments µ−3, µ−2, µ−1, and µ0, i.e., more low-
frequency moments are being taken into account. Introducing
the following abbreviations

A = µ2
−1 − µ0 µ−2 ,

B = µ0 µ−1 − µ1 µ−2 ,

C = µ2
0 − µ1 µ−1 , (35)

D = µ−1 µ−2 − µ0 µ−3 ,

E = µ2
−2 − µ−1 µ−3 ,

we find for the (2, 2)-GMA the parameters

Ŵ(2,2),1 =
B+

√
B2 − 4AC

2A
,

Ŵ(2,2),2 =
B−

√
B2 − 4AC

2A
,

(36)

f(2,2),1 = + Ŵ(2,2),2 µ0 − µ1

Ŵ(2,2),2 − Ŵ(2,2),1
,

f(2,2),2 = − Ŵ(2,2),1 µ0 − µ1

Ŵ(2,2),2 − Ŵ(2,2),1
.

Consequently, the correlation function for short times can be
approximated as

K(2,2)(t) = f(2,2),1e
−Ŵ(2,2),1t + f(2,2),2e

−Ŵ(2,2),2t . (37)
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Similar results have been obtained by Bauer et al. [31] and Barsky
et al. [47]: Equations (3.19–3.22) in Bauer et al. [31] as well as
Equations (B15–B19) in Barsky et al. [47] are in agreement with
the coefficients in Equation (35).

The second case of the (1,3)-GMA yields parameters

Ŵ(1,3),1 =
2A

D−
√
D2 − 4AE

,

Ŵ(1,3),2 =
2A

D+
√
D2 − 4AE

,

(38)

f(1,3),1 = +
µ−1 − µ0Ŵ

−1
(1,3),2

Ŵ−1
(1,3),1

− Ŵ−1
(1,3),2

,

f(1,3),2 = −
µ−1 − µ0Ŵ

−1
(1,3),1

Ŵ−1
(1,3),1

− Ŵ−1
(1,3),2

,

and, consequently, the correlation function for long times reads

K(1,3)(t) = f(1,3),1e
−Ŵ(1,3),1t + f(1,3),2e

−Ŵ(1,3),2t . (39)

Similar expression could be derived by Bauer and Schulten [38].
Introducing the above results for the biexponential

approximation in the (2,2)- and (1,3)-GMA into Equation
(31) determines the corresponding correlation function at t = 0 :

K(2,2)(t = 0) = K(1,3)(t = 0) = µ0 = 〈ω2(r) 〉 , (40)

which is in agreement with the generally valid Equation (21).
In the following sections, the time evolution of the two
biexponential approximations in the GMA for the correlation
function are exemplified for both spherical and cylindrical
objects, respectively (see below).

3.1. Spheres
In order to solve differential equation (Equation 30) for spherical
magnetic objects, it is helpful to start with the ansatz

µ−n(r) = δω R3i µ−n(r) [3 cos
2(θ)− 1] (41)

that separates the angle dependent part of the local Larmor
frequency given in Equation (7). Also, the radial part of the
Laplace operator can be written as

1d,r = 1

rd−1

d

dr
rd−1 d

dr
(42)

with d = 3 for spheres and d = 2 for infinitely long cylinders.
This leads to an iterative set of equations for the functionsµ−n(r)
of the form

[

13,r −
6

r2

]

µ−n(r) = −µ−(n−1)(r) , (43)

or, equivalently,

µ−n(r) =
[
6

r2
− 13,r

]−n 1

r3
. (44)

The differential equation (Equation 43) can be transformed to
an Euler type differential equation. Using the general expression
(Equation 41) for the solution of the differential equation
(Equation 30), where the local Larmor frequency corresponds to
Equation (7), the low-frequency moments given in Equation (28)
can be found as

µ−n = 12

5

δω2

Dn

η

1− η
R3i

R∫

Ri

dr
µ−n(r)

r
. (45)

The evaluation of the integral yields the general form

µn = δω2

τn
ln(η) . (46)

For spherical geometries, the functions µn(r) can be found as the
solution of Equation (43). The recursion starts with µ0(r) which
results from Equation (44). The functions are given by

µ0(r) =
1

r3
,

µ−1(r) =
1

6r

[

1+ c1

3

[
r

Ri

]−2

+ c2

2

[
r

Ri

]3
]

, (47)

µ−2(r) =
r

6

[

1

4
+ c1

18

[
r

Ri

]−2

− c2

28

[
r

Ri

]3

+ c3

3

[
r

Ri

]−4

+ c4

2

r

Ri

]

,

µ−3(r) =
r3

6

[

− 1

24
+ c1

72

[
r

Ri

]−2

+ c2

1008

[
r

Ri

]3

+ c3

18

[
r

Ri

]−4

− c4

28

r

Ri
+ c5

3

[
r

Ri

]−6

+ c6

2

[
r

Ri

]−1
]

.

We have used the abbreviation

di =
i

∑

j= 0

η
j
3 (48)

and the constants c1, . . . , c6 that are given by

c1 = −d2

d4
,

c2 = 1+ c1 ,

c3 = 25

126
η

1
3
d21
d24

+ 11

36d4
,

c4 = c3 −
3

28
− 25

126

d2

d4
, (49)

c5 = 61

588

[

η−
1
3 − d3

d4

]

− 625

15876

η − 2d1

d34

− 5

31752

331d2 + 250d1 + 232

d24
,

c6 = c5 +
61

588
+ 625

15876
η

1
3
d21
d24

+ 5

31752

385− 54d2

d4
,
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where η = R3i /R
3. The functions ln(η) are necessary to determine

the moments µn in Equation (46) for negative indices from
Equation (45). They are given by

l1(η) =
126

25

η

1− η
,

l0(η) =
4

5
η ,

l−1(η) =
η

90

32[1+ η4/3]+ 37[η1/3 + η]+ 42η2/3

[η2/3 + η1/3 + 1][η4/3 + η + η2/3 + η1/3 + 1]
,

(50)

l−2(η) =
η2/3[972[1+ η8/3]+ 1684[η1/3 + η7/3]+ 2271[η2/3 + η2]+ 2733[η + η5/3]+ 3580η4/3]

11340[η2/3 + η1/3 + 1][η4/3 + η + η2/3 + η1/3 + 1]2
,

l−3(η) =
1

1143072[η2/3 + η1/3 + 1][η4/3 + η + η2/3 + η1/3 + 1]3

× [6021[1+ η14/3]+ 24084[η1/3 + η13/3]+ 47034[η2/3 + η4]+ 80260[η + η11/3]

+ 125533[η4/3 + η10/3]+ 180466[η5/3 + η3]+ 215176[η2 + η8/3]+ 230452η7/3] .

It is convenient to define a ratio τn of successive moments as

τn =
∣
∣
∣
∣

µn

µn+1

∣
∣
∣
∣
. (51)

As in Ziener et al. [25], we make use of Koenig’s theorem
[48, 49] on the zeros of Padé approximants [48, 49]:
the theorem states that the series 1/τn converges to
the lowest eigenvalue of Equation (11) and [39], since
then

κ2
1 = τ lim

n→∞
µ−n

µ−(n+1)
, (52)

where τ is the correlation time from Equation (13). The
lowest eigenvalue κ1 is the solution to the geometry-dependent
eigenvalue equation, i.e., Equation (17) for spheres and Equation
(19) for cylinders. In Figure 3, a sequence of successive moment
ratios τn ranging from n = −3, . . . , 0 is compared with the
exact numerical solution for κ1 for spherical magnetic objects
and Koenig’s theorem is nicely exemplified for η → 1.
The asymptotic value of the first eigenvalue for large volume
fractions could be determined as limη→1 κ2

1 (η) = 6 for
spheres and limη→1 κ2

1 (η) = 4 for cylinders (from Equations
[A14] and [A5] in Ziener et al. [25], respectively), simply
stating that, in this limit, the correlation function decays
monoexponentially with time constant κ2

1 . An approximation
for κ1 is provided in Appendix A. Figure 3 also validifies
the concept of generalized moments to define a search
interval for numerical computation of the exact solution from
Equations (17) and (19). However, the successive moments
curves diverge from the exact solution for small volume
fractions.

Different cases of the monoexponential functions Ki(t) (see
Appendix B and Equation B3) are being shown in Figure 4A

to demonstrate the dependence of the monoexponential
approximation on the chosen moments µn. Evidently, the initial

value of Ki(t), i ≥ 1, decreases with increasing i while the
exponential cutoff begins at longer times for increasing i. Also,
the approximants Ki(t) converge to the long time behavior

given in Equation (20), as expected from Koenig’s theorem.
To evaluate the accuracy of the biexponential approximation,
a double logarithmic plot has been chosen in Figure 4B.
The (2, 2)-GMA with the two lowest high and low frequency
moments approximates the short as well as the long time limit
sufficiently well. In contrast, the (1, 3)-GMA with the three
lowest low and the first high frequency moment approximates
the long time limit significantly better than the short time limit.
An application to biological tissue is provided in Figure 4C

where mono- and bi-exponential approximations in the GMA
of the correlation function are visualized for values that are
typical for susceptibility gradients based on nonheme iron-
storage in brain tissue (through iron-rich oligodendrocytes in
the Globus pallidus that approximately have radii Ri of 3–4
µm, a frequency shift of δω = 184 s−1, a tissue density of
η = 0.04 and D = 0.76 · 10−9m2s−1, leading to τ =
16.12ms; see [50, 51] for more details). It can be seen that
the biexponential approximations K(1,3)(t) and K(2,2)(t) are in
excellent agreement with the actual correlation function K(t),
while the monoexponential functions Ki(t) only approximate
K(t) sufficiently for t & 30ms. However, changes in the size
Ri of the spherical perturbers affect the correlation time τ

as well according to Equation (13). The correlation function
in dependence on correlation time τ is therefore shown in
Figure 4D at the characteristic time t = 10ms for the
same set of mono- and bi-exponential approximations as
in Figure 4C. In this case, the biexponential approximations
show an equally well agreement with the numerically obtained
correlation function K(τ ) for all correlation times, whereas the
monoexponential approximations exhibit significant deviations
from K(τ ) for correlation times that range from 40ms to 5 s.
For very short and very long correlation times, however, the
monoexponential approximationsK0(τ ) andK1(τ ) coincide with
K(τ ). Mono- and bi-exponential approximations as compared
to K(t) for nanoparticle experiments based on parameters in
Muller et al. [52], and for lung tissue based on parameters
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FIGURE 3 | Dependence of successive moment ratios on the volume

fraction for spherical magnetic objects. The ratio of successive moments

τ µ−n(η)/µ−(n+1)(η) = l−n (η)/l−(n+1)(η) in dependence on volume fraction η is

obtained from Equation (46) [functions l−n(η) are given in Equation (50)]. The

numerically exact eigenvalue (solid line) can be obtained by solving Equation

(17). An approximate solution for κ21 (dashed line), based on a Taylor

expansion, is given in Equation (A3) in Appendix A. For η → 1, all graphs

asymptotically converge to the value κ21 = 6. A visualization of the

dependence of the ratio of successive moments on the volume fraction for

cylinders with a slightly different notation is given in Figure 9 in Ziener et al.

[25]. It can be obtained from Equation (46) with quantities δω, τ , and ln (η)

determined from the cylindrical geometry.

given in Stone et al. [53] and Baete et al. [54], are shown in
Appendix C.

3.2. Cylinders
In analogy to spherical magnetic objects, the correlation
functions for spins that diffuse between two concentric cylinders
can be obtained within the GMA by employing a similar ansatz as
the one for a spherical geometry and by using Equation (42) for
d = 2 as shown in Ziener et al. [25]. Then, generalized moments
are determined by the differential equation

µ−n(r) =
[
4

r2
− 12,r

]−n 1

r2
. (53)

Again, for n = 0, 1, 2, 3, the functions µ−n(r) for cylindrical
geometries that obey Equation (53) can be determined as

µ0(r) = 1

r2
,

µ−1(r) = 1

4
,

µ−2(r) = − r2

16

[

ln

(
r

Ri

)

+ c1

[
r

Ri

]−4

+ c2

]

, (54)

µ−3(r) = r4

192

[

ln

(
r

Ri

)

+ c3

[
r

Ri

]−4

+ c4 + c5

[
r

Ri

]−6

+ c6

[
r

Ri

]−2
]

,

and the constants c1, . . . , c6 are given by

c1 = 1

2

ln(η)

1− η2
,

c2 = c1 −
1

2
,

c3 = −3c1,

c4 = 6

7
[c1 − 1], (55)

c5 = 1

1+ η

[

2c1 +
11

6η

]

,

c6 = η

1+ η

[
11

6

[

1+ 1

η
+ 1

η2

]

− 2c1

]

.

The functions ln(η) are obtained in analogy to the spherical case
and are given as

l1(η) = 2η [1+ η],

l0(η) = η

2
,

l−1(η) = 1

8

η ln(η)

η − 1
,

l−2(η) = 1

32
, (56)

l−3(η) = 1

256

η

1− η

[
3

4

1− η2

η2
+ [ln(η)]2

1− η2

]

.

As in the case for spheres, the low-frequency moments µ−n for
cylinders from Equation (28) can be expressed as

µ−n = δω2

Dn

η

1− η
R2i

R∫

Ri

dr
µ−n(r)

r
, (57)

that correspond to Equation (77) in Ziener et al. [25].
Evaluation of the integral leads to Equation (46), but with
the respective values of δω, τ , and ln(η) for cylinders (see
Equation 56).

In analogy to Figure 4A, the time evolution of the functions
Ki(t) and their proximity to the long time approximation
KL(t) from Equation (20) is shown in Figure 5A. As in the
spherical case, the initial value of Ki(t), i ≥ 1, decreases with
increasing i and successive moments converge to the long time
approximation KL(t) for d = 2.

In comparison, the biexponential approximation is shown
in Figure 5B: for the (2,2)- and the (1,3)-GMA it can be seen
that the first approximation describes short and long time limit
sufficiently well whereas the second approximation is more
accurate in the long time limit. An application to biological
tissue is provided in Figure 5C where mono- and bi-exponential
approximations in the GMA of the correlation function are
visualized for values that are typical for susceptibility gradients
between capillaries, that contain deoxygenated hemoglobine,
and the surrounding tissue [with approximate values Ri =
4µm [55], δω = 200 s−1 at 3 Tesla [12, 56], a tissue
density of η = 0.03 [55], and D = 1 · 10−9m2s−1 [57],
leading to τ = 16ms]. It can be seen that the biexponential
approximations K(1,3)(t) and K(2,2)(t) are in excellent agreement
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FIGURE 4 | Mono- and bi-exponential approximation in the GMA of spherical objects. (A) Monoexponential approximations Ki (t) of the correlation function

K(t) (solid line) as obtained from Equation (B3) with moments given in Schulten et al. [46]. The long time approximation KL (t) (dashed line) is given by Equation (20)

where the first eigenvalue κ1 is determined by Equation (17) (η = 0.001 in A,B). (B) Biexponential approximations for long times K(1,3)(t) [dashed line obtained from

Equation (39)] and for short times K(2,2)(t) [dotted line obtained from Equation (37)] of the correlation function K(t) [solid line obtained from Equation (14)]. Evidently, for

spherical objects, the biexponential approximations are more accurate than monoexponential approximations and show a better agreement for large and short times

with the actual correlation function K(t). (C) Mono- and bi-exponential approximations of K(t) for typical parameters of iron-storage in oligodendrocytes of the Globus

pallidus, see main text for details. K(1,3)(t) and K(2,2)(t) both show an excellent agreement with K(t) whereas the monoexponential approximations exhibit significant

deviations from K(t) for t . 30ms. (D) Correlation function approximations in dependence on correlation time τ at time-point t = 10ms for otherwise equal

parameters as in (C). The agreement of biexponential approximations with K(t) is excellent for all correlation times, whereas the monoexponential approximations

mainly agree with K(t) for very short or very long correlation times.

with the actual correlation function K(t) for t & 20ms, while
only the monoexponential functions K2(t) and K3(t) sufficiently
approximate K(t) for t & 80ms. Still, the deviation of the
biexponential approximations to K(t) for t < 30ms are visibly
smaller than for the monoexponential approximations. However,
changes in the size Ri of the cylindrical perturbers affect the
correlation time τ as well according to Equation (13). The
correlation function in dependence on correlation time τ is
therefore shown in Figure 5D at the characteristic time t = 10ms
for the same set of mono- and bi-exponential approximations
as in Figure 5C. In this case, the biexponential approximations
show an equally well agreement with the numerically obtained
correlation function K(τ ), especially for correlation times τ .

50ms, whereas the monoexponential approximations exhibit
significant deviations from K(τ ) for correlation times that range
from 1ms to 5 s. For very short and very long correlation
times, however, the monoexponential approximations K0(τ )

and K1(τ ) coincide with K(τ ), as in the case of spherical
perturbers.

4. DISCUSSION AND CONCLUSIONS

The incentive of this work was to gain a better understanding of
the dynamic frequency correlation function of spins that diffuse
around microscopic magnetized objects. The analysis is based
on an eigenfunction expansion of the correlation function where
eigenfunctions and eigenvalues can be determined in the case
of restricted diffusion through reflective boundary conditions. A
two-sided Padé approximation is then utilized to derive analytical
expressions in the short and long time limit. The different
regimes of the functional form of the correlation function as
well as the case of unrestricted diffusion have been studied
in a preceding analysis that considered a monoexponentially
decaying correlation function in the generalized moment
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FIGURE 5 | Mono- and bi-exponential approximation in the GMA of cylindrical objects. (A) Monoexponential approximations Ki (t) of the correlation function

K(t) (solid line) as obtained from Equation (B3) with moments given in Schulten et al. [46]. The long time approximation KL (t) (dashed line) is given by Equation (20)

where the first eigenvalue κ1 is determined by Equation (19) (η = 0.01 in A,B). (B) Biexponential approximations for long times K(1,3)(t) [dashed line obtained from

Equation (39)] and for short times K(2,2)(t) [dotted line obtained from Equation (37)] of the correlation function K(t) [solid line obtained from Equation (14)]. As in the

case for spherical objects, the biexponential approximations of the correlation function for cylindrical objects show a better asymptotic agreement with the actual

correlation function K(t) than monoexponential approximations. (C) Mono- and bi-exponential approximations of the correlation function for typical parameters of

capillaries in brain tissue, see main text for details. The deviations of the biexponential approximations from K(t) are visibly smaller than that of the monoexponential

approximations. (D) Mono- and bi-exponential approximations of the correlation function in dependence on correlation time τ at time-point t = 10ms, for otherwise

equal parameters as in (C). The approximations K0(τ ), K1(τ ), K(1,3)(τ ), and K(2,2)(τ ) coincide with K(t) for very short and very long correlation times, whereas

correlation function K(τ ) for intermediate correlation times between 1msand1 s is best approximated by the biexponential approximations.

approximation (GMA) for cylindrical magnetic objects [25].
The here-presented analysis extends and furthers this prior
work to include biexponentially decaying correlation functions
in the GMA for both high and low frequency moments
and both spherical and cylindrical magnetic field perturbers,
respectively. Expressions for four generalized moments in both
model geometries are provided. They allow to determine the
corresponding parameters of Padé aproximants for small and
large times. Also, successive generalized moment ratios are
shown to asymptotically converge to the exact first eigenvalue
of the underlying spherical and cylindrical model geometry
eigenvalue (Equations 17, 19), respectively, in agreement with
Koenig’s theorem.

The model with its boundary conditions is based on a
presumed regular arrangement of accumulations of similarly
shaped objects that can then be considered in analogy to
Krogh’s model for supply volumes around capillaries [40]. Thus,

large volume fractions or the long time limit of spin diffusion
processes can be examined for a point-symmetric local Larmor
frequency where diffusion trajectories into a neighboring supply
volume are thought of as being reflected at the boundary
to said volume. More detailed accounts about the case of
unrestricted diffusion can be found in Yablonskiy et al. [12],
Ziener et al. [25], Ayant et al. [26], and Ziener et al. [58]. With
Figures 4, 5 it can be seen that biexponential approximations
in the GMA for K(1,3)(t) and K(2,2)(t) and for both spherical
and cylindrical model geometries are in much better agreement
with the actual correlation function K(t) than monoexponential
approximations such as the frequently used “mean correlation
time approximation” [38]. Comparisons of the approximations
are also provided for iron-accumulations in brain tissue and for
cerebral cortex capillaries in Figures 4C,D, 5C,D, respectively.
Both cases demonstrate that there are pronounced differences
between mono- and bi-exponential approximations for t ∼
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FIGURE 6 | Mono- and bi-exponential approximation in the GMA for nanoparticles and lung tissue. (A) Mono- and bi-exponential approximations are

compared to the correlation function K(t) [solid line, obtained from Equation (14)]; parameter set obtained from Muller et al. [52], see also main text. For this extremely

short correlation time τ , the monoexponential approximations K0(t) and K1(t) coincide with the biexponential approximations K(2,2)(t) and K(1,3)(t), respectively. (B)

Mono- and bi-exponential approximations for peripheral lung tissue, based on parameters given in Stone et al. [53] and Baete et al. [54]. In this case of a very long

correlation time τ , most approximations coincide with K(t).

1 − 100ms, with the biexponential approximations providing
the better approximations to the correlation function for all
time-points. These results are therefore relevant for diffusion
MRI experiments applied to these tissue types since the typical
diffusion time during which the diffusion process can be detected
in such an experiment ranges between 1 ms and 1 s. However,
for very short correlation times (e.g., iron-oxide nanoparticle
suspensions, see Figure 6A) or very long correlation times (e.g.,
diffusion in peripheral lung tissue, see Figure 6B), mono- and
bi-exponential approximations practically coincide.

Recently, it could be shown that Carr-Purcell-Meiboom-
Gill (CPMG) relaxation rates are connected to the correlation
function [16, 59]. Therefore, knowledge of the correlation
function allows obtaining microstructural parameters through
CPMG measurements for accumulations of similarly shaped
subvoxel structures, for example in the case of lung alveoli
[60], microscopic blood products around or in malign cerebral
tumors or for microvascular changes in skeletal muscle tissue
[21]. Also, based on a recently developed measurement method,
magnetic field correlation imaging has been shown promising
in its potential to evaluate iron-associated neuropathologies [18,

19]. Knowledge of the exact time course and limit case behavior
of the correlation function will aid in further application of
magnetic field correlation imaging to determine microstructural
parameters of susceptibility gradient based local magnetic field
inhomogeneities.
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APPENDICES

Appendix A
To determine the eigenvalues in Equation (17), we must find the
roots of the function

f (κn) = j′2(κn)y
′
2

(
κn
3
√

η

)

− j′2

(
κn
3
√

η

)

y′2(κn) . (A1)

The derivatives of the spherical Bessel functions j2 and y2 can be
expanded in a Taylor series for small arguments of κn and, thus,
an expression for small arguments of f (κn) is given as

f (κn) ≈
6

5

1

κ3
n

[η
4
3 − η−

1
3 ]+ 18[1− η

5
3 ]− 7η

2
3 [1− η]

105κnη
. (A2)

The first zero of Equation (A1) then approximates the first zero
of Equation (17) as

κ2
1 ≈ 126η

2
3 [1− η

5
3 ]

18[1− η
7
3 ]− 7η

2
3 [1− η]

, (A3)

see also Figure 3 and Equation (A16) in Ziener et al. [61].

Appendix B
In the monoexponential approximation (N = 1) or (1,1)-GMA,
only two generalized moments have to be taken into account and
Equation (33) reduces to

f(Nh ,Nl),1Ŵ
m
(Nh ,Nl),1

= µm , with (B1)

m = −Nl,−Nl + 1 .

The first ratio τµ0/µ−1 = τ/τ−1 is determined in the (1,1)-
GMA that can be regarded as the “mean correlation time
approximation,” since, form = −1, 0, f(1,1) = µ0, Ŵ(1,1) = 1/τ−1

and with Equation (27)

τ−1 =
∫ ∞

0
dt

K(t)

K(0)
=

∫ ∞

0
dt tPc(t) , (B2)

where Pc(t) = −∂tK(t)/K(0) and τ−1 represents a “mean
correlation time.” This is in analogy to the “mean relaxation
time approximation” in nuclear spin dephasing [38, 62].
While considering the two high-frequency moments µ0 and
µ1, the corresponding (2,0)-GMA with f(2,0) = µ0 and

Ŵ(2,0) = µ1/µ0 = 1/τ0 describes the short time behavior
of K(t) whereas the (0, 2)-GMA with the two low-frequency
moments µ−2 and µ−1 and parameters f(0,2) = µ2

−1/µ−2 and
Ŵ(0,2) = µ−1/µ−2 = 1/τ−2 is a measure for the long time
behavior. Since the MCTA is an approximation of the dynamic
monoexponentially decaying correlation function, the deviation
in Figure 3 of the first ratio τ/τ−1 reflects a strongly decaying
non-exponential correlation function.

It is useful to define monoexponential functions Ki(t) for
arbitrary successive moments as

Ki(t) =
µi
1−i

µi−1
−i

e
−t

µ1−i
µ−i , (B3)

where the index i = 1 uses only the lowest high and low
frequency moment and indices i ≤ 0 only high and indices i ≥ 2
only low frequency moments, respectively. In Figures 4A, 5A,
the time evolution of the functions Ki(t) is exemplified for both
spherical and cylindrical objects, respectively (see below). With
Koenig’s theorem we find that limi→∞ Ki(t) = KL(t) where KL is
given in Equation (20).

Appendix C
The relaxivity of particulate MR contrast media was examined
in Muller et al. [52] to obtain the set of approximate parameters
Ri = 50 nm, δω = 34 · 106 s−1, η = 2 · 10−6,
D = 2.3 · 10−9m2s−1, and τ = 1.09 · 10−6 s for iron-
oxide nanoparticle suspensions. This extreme example of a
very short correlation time was chosen to demonstrate the
coincidence of mono- and bi-exponential approximations of the
correlation function, as shown in Figure 6A. The biexponential
approximations K(1,3)(t) and K(2,2)(t) then practically coincide
with the respective monoexponential approximations K1(t) and
K0(t), as anticipated.

The influence of magnetic susceptibility properties of
peripheral lung tissue with near-spherical air-containing alveoli
on MR signal decay was examined recently, see e.g. [60,
63]. For a typical set of parameters with Ri = 150µm,
δω = 1500 s−1, η = 0.85, D = 1 · 10−9m2s−1

(τ = 22.5 s) [53, 54], the correlation function K(t) is
shown with mono- and bi-exponential approximations in
Figure 6B. In this case of a very long correlation time, mono-
and bi-exponential approximations coincide completely with
the numerically obtained correlation function K(t), with the
exception of K0(t).
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