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Chapter 1

Introduction

Dynamical systems are traditionally categorized as either continuous-time dynam-
ical systems or discrete-time dynamical systems. For instances, classical mechanics
like the swinging of a clock pendulum or the flow of water in a pipe can be naturally
viewed as continuous-time dynamical systems, which are usually modeled by dif-
ferential equations. Inventory controls, digital systems or population growth can be
naturally viewed as discrete-time dynamical systems, which are usually modeled by
difference equations. Figure 1.1 visualizes progresses of trajectories in continuous-
time and discrete-time systems.

Numerous dynamical systems cannot be precisely placed in such categories. Partic-
ularly, they exhibit both of continuous and discrete dynamics. One of these systems
is a bouncing ball. During flowing, it shows continuous dynamics described by
Newton’s second law of motion. In addition, it shows discrete dynamics at every
jump since its velocity sign is changed instantaneously from minus to plus when
the ball touches the ground, see Figure 1.2. Additional examples are provided by
electronic circuits combined with analog and digital components and by mechanical
systems controlled by digital computers. Such systems are called hybrid dynamical
systems or just hybrid systems for short.

Basically, this work aims to provide a broader framework of hybrid systems allow-
ing us to deal with related issues on modeling, stability and interconnections. The
provided framework is based on the framework developed in [1–3], which is a solid
foundations for a comprehensive theory of hybrid systems. At the same time, this
work aims at providing the results from the very beginning which makes this work
self-contained as suitable as possible.

x
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(A) Continuous-time

xn
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(B) Discrete-time

FIGURE 1.1: Illustrations of trajectories in continuous-time and
discrete-time systems
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FIGURE 1.2: A bouncing ball exhibiting both continuous and discrete
dynamics.

The fundamental modeling framework of hybrid systems is given in Chapter 3. In
particular, a hybrid systemH = (X , f, C, g,D), see (3.1), is given in the form:

H : x ∈ X
{

ẋ = f(x) x ∈ C,
x+ = g(x) x ∈ D,

which is formulated by ordinary differential equations and difference equations. The
concept of solutions is introduced in the very beginning of the chapter. Essentially,
solutions always lie in the state spaceX , and they are generally non-unique at points
in C∩D 6= ∅ since the hybrid systemHmay exhibit continuous or discrete dynamics.
Moreover, we explicitly provide sufficient conditions for the existence of solutions
to hybrid systems. This result arises from an application of fixed-point theory. Con-
sequently, it can also be used to provide an iteration for finding numerical solutions
to hybrid systems.

Since characterization of solutions to hybrid systems, especially in long-term trends,
is significant, we therefore mainly focus on asymptotic stability of a non-empty com-
pact set. We provide tools for stability investigation called hybrid Lyapunov functions.
In brief, the existence of a hybrid Lyapunov function guarantees asymptotic stabil-
ity of a non-empty compact set. Various types of hybrid Lyapunov candidate func-
tions are additionally proposed with corresponding sufficient conditions to guaran-
tee asymptotic stability of a non-empty compact set.

Additionally we proposed a notion of partial stability for hybrid dynamical systems
consisting of variables like time, counters or logical parameters as a part of the state.
Such variables never tend to zero, and they are required for stability of the systems.
According to the provided notion, we can extend the results of stability to partial
stability for hybrid systems. For instance, we can directly apply theorems like hy-
brid Lyapunov theorem to impulsive systems which are hybrid systems exhibiting
discrete dynamics at specific impulse time sequences.

Chapter 4 deals with interconnections of hybrid dynamical systems. We firstly dis-
cuss the issues of modeling for interconnected hybrid systems in the beginning of
this chapter. Motivated by a simple example of interconnected bouncing balls, the
framework for interconnected hybrid systems given in the literature leads to the
problem of physically meaningless solutions which implies loss of stability. We fur-
ther discuss on these problems and suggest a possibility to solve them by proposing
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a different concept of solutions. Consequently, we introduce an extended framework
for interconnected hybrid systems. Generally, an interconnected hybrid system H
composed of n subsystem

{
iH
}n
i=1

with an admissible external input u is given by,
see (4.7):

iH
{

iẋ = if(x, u), i ∈ IC(x, u),
ix+ = ig(x, u), i ∈ ID(x, u).

The proposed framework allows for the possibility to have continuous flows for
some parts of the state also at those instants when other parts can jump. It also allows
to consider one large hybrid system as an interconnection of several ones or vice
versa to consider several interconnected hybrid systems as one larger hybrid system.
The idea is to partition the state of a system in several parts that are allowed to jump
separately while other parts are allowed to flow. In particular, the advantage of the
proposed framework is that we can avoid the physically meaningless solutions.

Moreover, we investigate stability of interconnected hybrid systems. Together with
extended notion of input-to-state stability (ISS) and other related notions, we pro-
vide a stability notion and results for interconnected hybrid systems. In essence,
ISS for the interconnection or a subsystem is guaranteed by existence of an ISS-
Lyapunov function. Moreover, existence of ISS-Lyapunov candidate function and
its various corresponding conditions can also guarantee ISS property for the system.
In addition, we also provide a result on the constructions of ISS-Lyapunov functions
for the interconnection from ISS-Lyapunov function for subsystems.

In Chapter 5, we propose a mathematical model for a spread of disease with public
vaccination programs in the framework of hybrid systems. The model is called hy-
brid SIRS, see (5.4). Unlike the epidemic models with vaccinations in [4–8] which is
based on a framework of impulsive systems, hybrid SIRS model allows us to design
significant effective strategies to control the spread of disease independently to pre-
determined vaccination time sequences. Basically, the system consists of two steady
states. One is called the disease-free steady state due to no infected individuals re-
maining in the system at this state. Another one is called the disease steady state
since at this state infected individuals remain in the system. In case of no vaccina-
tion, the disease-free steady state is globally asymptotically stable if the recovery rate
is not smaller than the infection rate, i.e., the spread of the disease eventually dis-
appears, and every individual get no more infected. Additionally, the disease-free
steady state is unstable and the disease steady state is locally asymptotically stable
if the infection rate is larger than the recovery rate, i.e., the infected individuals per-
manently remain in the population, which means the spread of disease is eventually
long lasting.

Consequently, we mainly focus on the case of the infection rate being larger than
the recovery rate. Further results on stability analysis of the system suggest that if
vaccination programs are launched limitedly, then the epidemic eventually remains
forever. Additionally, we discover that, even in the case of ideal vaccines, the vac-
cination can possibly fail by choosing an inappropriate strategy to limit or stop an
epidemic since the number of infected individuals is permanently positive, and it is
not different from the case of no vaccination or a finite number of vaccination pro-
grams. Due to this reason, we provide possible strategies to limit or stop the spread
of disease. We explicitly show that the provided strategies are significantly effective
to control an epidemic. Various numerical simulations are given to demonstrate a
possibility to limit or stop the spread of disease.
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The results on relaxed Lyapunov theorems in Chapter 3 is published in [9]. The
framework for interconnected hybrid dynamical systems, generalized hybrid time
domain and concept of solutions are published in [10]. Partial results on dwell-time
and small-gain conditions for impulsive systems and constructions of Lyapunov
functions for interconnections in Chapter 4 are published in [11] and [12] respec-
tively.
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Chapter 2

Preliminaries

In this chapter, we review some essential notions and results in control theory, dy-
namical systems and functional analysis which are important for this work. All of
the notations and symbols are listed in Appendix A.

The set of all real numbers defines the one-dimensional Euclidean space denoted by R.
Denoted by N the set all of natural numbers including zero, Z the set of all integers.
For a subset R ⊂ R, denoted by

R>0 := {r ∈ R : r > 0} ,

and
R≥0 := R>0 ∪ {0} .

The set of all n-dimensional vectors x = (x1, x2, . . . , xn), where x1, x2, . . . , xn ∈ R,
defines the n-dimensional Euclidean space denoted by Rn. For any real number
k ∈ R, vectors x = (x1, x2, . . . , xn), and y = (y1, y2, . . . , yn) ∈ Rn, define

k · (x+ y) = (k · (x1 + y1), k · (x2 + y2), . . . , k · (xn + yn)) .

A function f mapping from a set A into a set B is denoted by f : A→ B. A function
f : A → B is called a real-valued function if B ⊂ R, and it is called a real function if
A,B ⊂ R.

The norm ‖x‖ of a vector x is a real-valued function satisfying the following:

(1) For any x ∈ Rn, ‖x‖ ≥ 0 with ‖x‖ = 0 ⇐⇒ x = 0.

(2) For any x, y ∈ Rn, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
(3) For any a ∈ R, x ∈ Rn, ‖a · x‖ = |a| · ‖x‖.

In this work, ‖x‖ denotes any Lp-norm of a vector x, defined by

‖x‖p := (|x1|p + |x2|p + . . .+ |xn|p)1/p , 1 ≤ p <∞,

and the L∞-norm of a vector x is defined by

‖x‖∞ := max {|x1| , |x2| , . . . , |xn|} .

All Lp-norms are equivalent in the sense that there exist positive real numbers c1 and
c2 such that the inequality is satisfied:

c1 ‖x‖b ≤ ‖x‖a ≤ c2 ‖x‖b
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for any a, b ≥ 1 and x ∈ Rn. For a vector x and a nonempty subset S ⊂ Rn, define

‖x‖S := inf
s∈S
|x− s| .

A sequence of vectors x0, x1, x2, . . . , xj , . . . ∈ Rn, denoted by {xj}, converges to a
vector x ∈ Rn if ‖xj − x‖ → 0 as j →∞. Equivalently, a sequence {xj} converges to
a vector x if for any ε > 0, there exists an integer N such that

‖xj − x‖ < ε ∀j ≥ N.

A sequence {xj} is said to be convergent if there exists a vector x such that {xj}
converges to x. A sequence {xj} is said to be divergent if there exists none of vectors
x such that {xj} converges to x. A sequence of real numbers {xj} is said to be:

(1) non-decreasing if xj ≤ xj+1 for all j ∈ N,

(2) increasing if xj < xj+1 for all j ∈ N,

(3) non-increasing if xj ≥ xj+1 for all j ∈ N,

(4) decreasing if xj > xj+1 for all j ∈ N.

A sequence xj is said to be a subsequence of a sequence yj if there exists an increasing
sequence {nj} such that xj = ynj for all j. A vector x is an accumulation point of a
sequence {xj} if there exists a subsequence of {xj} that converges to x. An increasing
sequence of real numbers that is bounded from above converges to a real number,
and a decreasing sequence that is bounded from below converges to a real number.

A subset S ⊂ Rn is said to be open if, for any vector x ∈ S, there exists a ε-
neighborhood of x

Bε(x) := {z ∈ Rn : ‖z − x‖ ≤ ε}
such that Bε(x) ⊂ S. A set S is relatively closed in a nonempty subset X ⊂ Rn if X \S
is open. A set S is closed if it is relatively closed in Rn. Moreover, a set S is closed if
and only if every convergent sequence {xj}with elements in S converges to a point
in S. A set S is bounded if there exists a positive number k such that ‖x‖ ≤ k for all
x ∈ S. A set S is compact if it is closed and bounded. A point p is a boundary point
of a set S if every ε-neighborhood of p contains at least one point of S and one point
not belonging to S. Denoted by ∂S the set of all boundary points of S. The set ∂S is
called the boundary of a set S. An open set contains none of its boundary points, but
a closed set contains all its boundary points. A point p is an interior point of a set S if
it belongs to S \ ∂S. Denoted by int(S) the set of all interior points of a set S. The set
int(S) is called the interior of a set S. A set S is open iff S = int(S). The closure of a
set S is defined by S̄ := S ∪ ∂S. A set S is closed iff S = S̄.

A function f : Rn → Rm is said to be continuous at a point x ∈ Rn if f(xj) → f(x)
whenever xj → x. Equivalently, f is continuous at x if for all ε > 0, there exists δ > 0
such that

‖x− y‖ < δ =⇒ ‖f(x)− f(y)‖ < ε.

A function f is continuous on a set S if it is continuous at every point in S. Given a
subset X ⊂ Rn, a function f : X → Rm is said to be continuous if f is continuous
on X . If f : A → B and g : B → C, the function g ◦ f : A → C defined by
(g ◦ f)(x) := g(f(x)) is called the composition of functions f and g. Given an interval
I ⊂ R, a function f : R→ R is said to be:
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(1) increasing on I if f(x1) < f(x2) for any x1 < x2,

(2) decreasing on I if f(x1) > f(x2) for any x1 < x2,

(3) non-decreasing on I if f(x1) ≤ f(x2) for any x1 < x2,

(4) non-increasing on I if f(x1) ≥ f(x2) for any x1 < x2.

A function f : R→ R is said to be differentiable at x if the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists. The limit f ′(x) is called the derivative of a function f at x. A continuous function
f : R→ R is increasing on an interval I ⊂ R if f ′(x) > 0 for all x ∈ I . It is decreasing
on I if f ′(x) < 0 for all x ∈ I .

For a real function f : A→ B, it is said to be of class C0(A,B) if it is continuous. It is
said to be of class Ck(A,B) if there exists kth-derivative of f which is continuous. It
is said to be of class C∞(A,B) if there exists kth-derivative of f which is continuous
for all k ∈ N. For any k ∈ N, denoteCk(A) := Ck(A,A) andCk := Ck(R). A function
f : R→ R is said to be continuously differentiable if f ∈ C1.

Given a function f : Rn → Rm, the partial derivative of f at a point a = (a1, a2, . . . , an) ∈
Rn wrt the variable xj is defined as

∂

∂xj
f(a) := lim

h→0

f(a1, . . . , aj−1, aj + h, aj+1, . . . , an)− f(a)

h
,

and it is said to be continuous differentiable at a point a ∈ Rn if the partial derivative
∂fi/∂xj exists and continuous at a for 1 ≤ i ≤ m and 1 ≤ j ≤ n. A function f is
continuous differentiable on a set S if it is continuous differentiable at every point in
S. For a continuous differentiable f : Rn → R, the gradient of f is denoted by

∇f(x) =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
.

Consider a discrete-time dynamical system given by a system of difference equations

xj+1 = g(xj), (2.1)

where j ∈ N is the discrete time, xj ∈ Rn is the state at discrete time j, g : Rn → Rn
describes the discrete dynamics, and the initial condition is given at the discrete
time j = 0 by x0 ∈ Rn. A sequence {τj} is a solution to the system (2.1) if it satisfies
τ0 = x0 and τj+1 = g(τj) for any discrete-time j. It is clear to see that there exists a
non-trivial solution to the system (2.1) if g is continuous on Rn. A point x∗ is called
an equilibrium point or a steady state for the system (2.1) if g(x∗) = x∗. The following
are stability notions of discrete-time dynamical systems.

Definition 2.1 (Stability of Discrete-Time Dynamical Systems). For a system in the
form (2.1), a steady state x∗ is called

• stable if for any ε > 0 there exists δ > 0 such that ‖x0 − x∗‖ < δ implies
‖xj − x∗‖ < ε for all j ∈ N;
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• attractive if there exists η > 0 such that ‖x0 − x∗‖ < η implies lim
j→∞

xj = x∗;

• asymptotically stable if it is both stable and attractive.

Moreover, it is called unstable if it is not stable.

Consider a continuous-time dynamical system given by a system of ordinary differ-
ential equations

ẋ(t) = f (x (t)) , x(t0) = x0, (2.2)

where t is the time, x(t) ∈ Rn is the state at time t, f : Rn → Rn describes the
continuous dynamics and x(t0) is the initial condition at time t0. Each solution x :
[t0, t

?]→ Rn to the differential equation in the form of (2.2) will be understood in the
Carathéodory sense [13, 14] , i.e., function x is required to be absolutely continuous,
and ẋ(t) = f (x (t)) is required to hold for almost all t ∈ [t0, t

?]. For an absolutely
continuous x : [t0, t

?]→ Rn, the derivative ẋ(t) exists for all t ∈ [t0, t
?] except a set of

measure zero.

Definition 2.2. A function f : Rn → Rn satisfies the Lipschitz condition if it holds the
inequality

‖f(x)− f(y)‖ ≤ L ‖x− y‖ (2.3)

with some Lipschitz constant L.

Definition 2.3 (Lipschitz Continuous Functions). A function f is locally Lipschitz con-
tinuous on a domain (open and connected set)D ⊂ Rn if each point ofD has a neigh-
borhood D0 such that it satisfies the Lipschitz condition (2.3) for all points x, y ∈ D0

with some Lipschitz constant Lipschitz constant L0. A function f is Lipschitz contin-
uous on a set W if it satisfies the Lipschitz condition (2.3) for all points in W with
the same Lipschitz constant L. A function f is globally Lipschitz continuous if it is
Lipschitz on Rn.

Note that A locally Lipschitz continuous function on a domain D is not necessarily
Lipschitz continuous on D. Any locally Lipschitz continuous function is differen-
tiable almost everywhere. In case of the points where such a function is not differ-
entiable, we use the notion of Clarke’s generalized gradient [15] throughout this work.

The following theorems are well-known results of the existence and uniqueness of
solutions to the continuous-time dynamical system (2.2), see [16–19].

Theorem 2.4 (Peano Existence Theorem [16, 17, 19]). Given the continuous-time system
(2.2), if the function f is continuous on a neighborhood of x0, then there exists a solution,
defined in a neighborhood of t0, to the system (2.2).

Theorem 2.5 (Picard-Linderlöf Existence and Uniqueness Theorem [18]). Given the
continuous-time system (2.2), if the function f is globally Lipschitz continuous, then there
exists one and only one solution to the system (2.2).
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A point x∗ is called an equilibrium point or a steady state for the continuous-time dy-
namical system (2.2) if f(x∗) = 0. The following are stability notions of continuous-
time dynamical systems.

Definition 2.6 (Stability of Continuous-Time Dynamical Systems). For a system in
the form (2.2), a steady state x∗ is called

• stable if for any ε > 0 there exists δ > 0 such that ‖x(0)− x∗‖ < δ implies
‖x(t)− x∗‖ < ε for all t ∈ R≥0;

• attractive if there exists η > 0 such that ‖x(0)− x∗‖ < η implies

lim
t→∞

x(t ;x(0)) = x∗;

• asymptotically stable if it is both stable and attractive.

Moreover, it is called unstable if it is not stable.

Furthermore, the following notions are required in order to investigate stability of
dynamical systems.

Definition 2.7 (Positive Definite Functions). A continuous function α : Rn → R≥0 is
said to be positive definite if α(0) = 0 and α(s) > 0 for all s ∈ Rn \ {0}.

Definition 2.8 (Radially Unbounded Functions). A positive definite function α :
Rn → R≥0 is said to be radially unbounded if α(s)→∞ as ‖s‖ → ∞.

Example 2.9. The functions

f1(x) := (x1 − 2x2)2,

f2(x) :=
(x1 + x2)4

1 + (x1 + x2)4
+ (x1 − 2x2)2

are not radially unbounded because along the line x1 = 2x2, the condition is not
satisfied. In addition, only the function f2 is positive definite.

Definition 2.10 (Functions of Class P). A continuous function α : R≥0 → R≥0 be-
longs to the class P if α is positive definite.

For any α1, α2 ∈ P , we say α1 < α2 if α1(s) < α2(s) for all s > 0. The meaning of the
following: α1 ≤ α2, α1 > α2, and α1 ≥ α2 is understood in the same manner.

Definition 2.11 (Functions of Class S). A continuous function α : R≥0 → R≥0 be-
longs to the class S if it belongs to the class P and α < id .

Example 2.12. Consider the following:
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β(·, t)

s

β(s, ·)

t

FIGURE 2.1: An illustration of a class KL function.

• The function α(s) :=
s

1 + |s| , for all s ∈ R≥0, belongs to the class P and S since

α(0) = 0, α(s) > 0 for all s > 0, and
s

1 + |s| < s for all s > 0.

• The function α(s) := s2, for all s ∈ R≥0, belongs to the class P but does not
belong to the class S since a(s) ≥ s for all s ≥ 1.

Definition 2.13 (Functions of Class K and Class K∞). A function α ∈ P belongs to
the class K if it is strictly increasing, and it belongs to the class K∞ if it additionally
satisfies α(s)→∞ as s→∞.

Example 2.14. Consider the following:

• The function α(s) :=
√
s, for any s ≥ 0, is strictly increasing since α′(s) =

1

2
√
s
> 0 for all s > 0. It belongs to the class K and also to the class K∞ since it

additionally satisfies lim
s→∞

α(s) =∞.

• The function α(s) := tan−1(s) is strictly increasing since α′(s) =
1

1 + s2
> 0. It

belongs to the class K, but does not belong to the class K∞ since lim
s→∞

α(s) =

π/2.

• The function α(s) := max
{
s, s2

}
is continuous, strictly increasing and satisfies

lim
s→∞

α(s) = ∞. Therefore, it belongs to the class K∞. Note that continuous
differentiability is not required for the class K functions.

Definition 2.15 (Functions of Class L). A continuous function τ : R≥0 → R≥0 be-
longs to class L if it is non-increasing and satisfies τ(t)→ 0 as t→∞.

Definition 2.16 (Functions of ClassKL). A continuous function β : R≥0×R≥0 → R≥0

is said to be of class KL if for each fixed non-negative t the function β(·, t) ∈ K, and
for each fixed non-negative s the function β(s, ·) ∈ L.

Example 2.17. Consider the following:
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• The function β(s, t) :=
k1s

k2st+ k3
, for any positive numbers k1, k2 and k3, is

strictly increasing in s since

∂β

∂s
=

k1k3

(k2st+ k3)2
> 0

and decreasing in t since

∂β

∂t
= − k1k2s

2

(k2st+ k3)2
< 0.

Moreover, it satisfies β(s, t)→ 0 as t→∞. Hence, it belongs to class KL.

• The function β(s, t) := ske−t, for any positive k, belongs to class KL.

We give an illustration of a class KL function in Figure 2.1. The following are some
important properties of class K and class KL functions.

Theorem 2.18 ([18, 20]). Let αi be functions of class P for i ∈ N4, and β be a function of
classKL. If α1 and α2 belongs to classK , α3 and α4 belongs to classK∞, then the following
is true:

• α−1
3 belongs to class K∞.

• α1 ◦ α2 belongs to class K.

• α3 ◦ α4 belongs to class K∞.

• β̃(s, t) := α1(β(α2(s), t)) belongs to class KL.

Theorem 2.19 ([18]). Let D ⊂ Rn and Br := {x ∈ Rn : ‖x‖ ≤ r} ⊂ D for some r > 0.
If V : D → R≥0 is positive definite, then there exist class K functions ψ1 and ψ2 such that
the following inequality is satisfied

ψ1(‖x‖) ≤ V (x) ≤ ψ2(‖x‖) for all x ∈ Br.

If the function V is radially unbounded, then the functions ψ1 and ψ2 can be chosen to belong
to the class K∞.

Some basic concepts and results of hybrid dynamical systems will be reviewed in
the early beginning of the next chapter.
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Chapter 3

Hybrid Dynamical Systems

A hybrid dynamical system, or hybrid system, is a dynamical system exhibiting both
continuous and discrete dynamics. Hybrid dynamical modeling is widely presented
in many modern real world applications such as robots controlling [21, 22], com-
puter science [23], control systems [1, 3, 24], commercial problems [25, 26], biologi-
cal and medical systems [27–30]. Moreover, hybrid phenomena have been modeled
in many different frameworks since last few decades or more. Those frameworks
include hybrid automata [31, 32], impulsive systems [33–36] and switched systems
[37].

To work with hybrid systems, we use the framework developed in [1, 3, 24]. For
the most part, there are some differences from [31, 32, 34, 38] due to not only their
structure but also concept of solution to systems. The most considerable advantages
of the frameworks developed in [1, 3, 24] are results on robust asymptotic stability
and extended classical stability analysis tools. In addition, models such as hybrid
automata, impulsive differential equations and switching systems can be translated
to the framework developed in [1, 3, 24]. One of all benefits of translations is that
the stability theorems can be applied to other classes of hybrid dynamical systems,
e.g., the invariance principles for switching systems [39].

3.1 Modeling Framework

A hybrid systemH is modeled in the following form

H : x ∈ X ⊂ Rn
{

ẋ = f(x) if x ∈ C ⊂ X ,
x+ = g(x) if x ∈ D ⊂ X .

(3.1)

This model suggests that the state of hybrid systemH, represented by x, can change
according to a differential equation ẋ = f (x) while in the set C, and it can change
according to a difference equation x+ = g(x) while in the set D. The notation ẋ
represents the velocity of the state x, while x+ represents the value of the state after
an instantaneous change.

The behavior of hybrid system H that can be described by a differential equation
is referred to as flow, while the behavior of H that can be described by a difference
equation is referred to as jumps. Consequently the following names are assigned to
the four objects involved in the model (3.1): the flow set C, the flow map f , the jump set
D and the jump map g.
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This work deals with hybrid systems in finite-dimensional spaces, i.e., the flow set
C and the jump set D are subsets of an n-dimensional Euclidean space X ⊂ Rn. For
consistency reasons, we require that the flow map f be defined at least on the flow
set C, and the jump map g be defined at least on the jump set D.

The model (3.1) can be specialized to represent the dynamics of purely continuous-
time or purely discrete-time systems on Rn, i.e., purely continuous-time systems can
be captured with a flow set defined as Rn and an empty jump set, while the latter
can be captured with an empty flow set and a jump set defined as Rn.

For convenience reasons, we may write the the model (3.1) as H = (X , f, C, g,D). In
addition, these objects X , f, C, g, and D are called the data of hybrid systemH.

Note that this modeling framework, structure and concept of the model (3.1) are
taken from [1, 3].

In the following examples, we show some dynamical systems from science and en-
gineering that can be modeled with this framework. The first example is a bouncing
ball. This is a classical example of hybrid dynamic phenomena.

Example 3.1 (Bouncing Ball). One of classical hybrid phenomena is a bouncing ball,
i.e., a ball is dropped from some height above the floor. It flows by some initial veloc-
ity and gravitation force until a collision with the floor happens. After touching the
floor, the ball jumps, i.e., the velocity changes its sign instantaneously and reduces
its magnitude by a restitution factor λ ∈ [0, 1).

Denote the height of the bouncing ball by x1 and its velocity by x2. Let the state be

x :=

(
x1

x2

)
∈ X := R2.

The flow map f and the flow set C are defined as

f(x) :=

(
x2

−γ

)
and C :=

{
x ∈ R2 : x1 ≥ 0

}

where γ represents the gravitation constant. The jump map and the jump set are
respectively defined by

g(x) :=

(
x1

−λx2

)
and D :=

{
x ∈ R2 : x1 = 0, x2 ≤ 0

}

where λ ∈ [0, 1) denotes the restitution factor between the ball and the floor.

Example 3.2 (On/Off Switching Systems). Consider a system monitoring on the
value of x1 ∈ R≥0 with an automatic on/off switch. Suppose that the positive
numbers ψ1 and ψ2 are the lower and upper limit values of the monitored value
x1 respectively, i.e., 0 < ψ1 ≤ x1 ≤ ψ2. Let S0 and S1 be positive definite func-
tions from R≥0. The value of x1 is started at some point in the interval (ψ1, ψ2). It
is continuously changed, and its dynamics are dependent on the switch. When the
switch is turned on, x1 increasingly evolves according to the equation ẋ1 = S1(x1).
Additionally, it is decreasing according to the equation ẋ1 = −S0(x1) if the switch is
turned off. Moreover, the switch is automatically turned on if x1 reaches the lower
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limit value ψ1 and automatically turned off when x1 reaches the upper limit value
ψ2.

To model this system asH = (X , f, C, g,D), let us denote the state x of the system by

x :=

(
x1

x2

)
∈ X := R≥0 × {0, 1} .

The variable x2 indicates a stage of the switch. While the switch is turned on, we
assign x2 = 1. Otherwise, it is assigned by x2 = 0. The flow set and the jump set
are given by C := {x ∈ X : ψ1 ≤ x1 ≤ ψ2} and D := {x ∈ X : x1 = ψ1 or x1 = ψ2}
respectively. The flow map f and the jump map g are defined by

f(x) :=

(
f1(x1)

0

)
, f1(x1) :=

{
S1(x1) if x2 = 1,

−S0(x1) if x2 = 0.

g(x) :=

(
x1

g2(x2)

)
, g2(x2) :=

{
0 if x2 = 1,

1 if x2 = 0.

Example 3.3 (Impulsive Systems). This is a special case of hybrid systems exhibiting
discrete dynamics at specific sequences of time which are given in advance. Such
systems are called impulsive systems, see [3, 11, 34, 40–42].

Let the sequence {tj} be an increasing and unbounded sequence of positive num-
bers. Consider the differential equation

ẋ = f(x),

for some continuous function f : Rn → Rn with impulses leading to instantaneous
changes at the predetermined times t1, t2, . . ., according to

∆x(tj) = g(x, tj),

for some g : Rn × T → Rn and T = {t1, t2, . . .}.
To model this system asH = (X , F, C, G,D), firstly let us denote the state by

z :=

(
z1

z2

)
∈ X := Rn+1

where z1 := x, and z2 := t. The data of hybrid system H is given as follows. The
flow set

C := Rn × (R≥0 \ T ),

and the jump set
D := Rn × T.

The flow map F and the jump map G are respectively defined by

F (z) :=

(
f(z1)

1

)
, G(z) :=

(
z1 + g(z1, tj)

z2

)
.
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3.2 Basic Assumptions

In this section, we provide some important assumptions to deal with hybrid dynam-
ical systems.

For a hybrid dynamical system H = (X , f, C, g,D) given by (3.1), let the following
conditions be satisfied:

(BA1) X is open;

(BA2) C and D are relatively closed in X ;

(BA3) f : Rn → Rn is continuous;

(BA4) g : Rn → Rn is continuous.

The above assumptions are called basic assumptions for hybrid systems. These are the
important conditions to guarantee existence of a non-trivial solution to a hybrid sys-
tem which will be presented in the upcoming sections.

Throughout this work, the basic assumptions for hybrid systems (BA1)-(BA4) are
satisfied unless otherwise stated.

3.3 Concept of Solutions

The concept of a solution to a hybrid system is the topic what we are going to dis-
cuss here. It was firstly introduced in [1, 3]. Almost all of the following definitions
are taken from [1]. A generalized concept of hybrid time is introduced, solutions to
a hybrid system are defined and conditions for the existence of a solution to a hy-
brid system are addressed in this section. Moreover, we illustrate the concept of a
solution by some examples from a bouncing ball, an on/off switching system and
an impulsive system.

3.3.1 Hybrid Time Domains

Solutions to continuous-time systems are parameterized by time t ∈ R≥0, and solu-
tions to discrete-time systems are parameterized by the discrete steps j ∈ N, in other
words, by the number of jumps. For hybrid systems, it is natural to suggest that
solutions should be parameterized by both t, the amount of time passed, and j, the
number of jumps that have occurred.

Definition 3.4 (Hybrid Time Domain). A subsetE ⊂ R≥0×N is a compact hybrid time
domain if

E =
J−1⋃

j=0

([tj , tj+1]× {j}) (3.2)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ . It is a hybrid time
domain if for all (T, J) ∈ E,

E ∩ ([0, T ]× {0, 1, 2, . . . , J})

is a compact hybrid time domain.
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Note that every hybrid time domain contains the ordered pair (0, 0). The last term
(if existent) of a hybrid time domain is allowed to be in the form [tj , T ) × {j}, for
some j ∈ N, with T finite or T =∞.

Example 3.5. Consider the following:

• The set

E = ([0, 1]× {0})
∪ ([1, 2]× {1})
∪ ([2, 2]× {2})
∪ ([2, 2]× {3})
∪ ([2, 4]× {4})

is a (compact) hybrid time domain. It
is illustrated in Figure 3.1.

j

t
0 1 2 4

1

2

3

4

FIGURE 3.1: An
example of a (com-
pact) hybrid time

domain.

• Both [0,∞]× {0} and {0} × N are hybrid time domains, but not compact.

• The ordered pairs (0, 1) and (1, 0) cannot be in the same (compact) hybrid time
domain.

Definition 3.6 (The order on hybrid time domains). Given E a hybrid time domain
containing (t1, j1) and (t2, j2), we define

(t1, j1) � (t2, j2) ⇐⇒ t1 + j1 ≤ t2 + j2,

and,
(t1, j1) ≺ (t2, j2) ⇐⇒ t1 + j1 < t2 + j2.

Note that points in two different hybrid time domain is incomparable. For instance,
that is not the case either (0, 1) � (1, 0) or (1, 0) � (0, 1) since the points (0, 1) and
(1, 0) cannot contain in the same hybrid time domain. They are incomparable.

Definition 3.7. Given a hybrid time domain E,

sup
t
E := sup {t ∈ R≥0 : ∃ j ∈ N, (t, j) ∈ E} ,

and
sup
j
E := sup {j ∈ N : ∃ t ∈ R≥0, (t, j) ∈ E} .

Furthermore supE := (suptE, supj E), and length (E) := suptE + supj E.
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FIGURE 3.2: A hybrid arc with its corresponding hybrid time domain.

Definition 3.8 (Hybrid Arc). Let E be a hybrid time domain. A function x : E → Rn
is a hybrid arc on E if for each j ∈

{
0, 1, 2, . . . , (supj E − 1)

}
the function t 7→ x(t, j)

is locally absolutely continuous on the interval [tj , tj+1].

Definition 3.9. Given a hybrid time domain E and a hybrid arc x : E → Rn, define
the domain of x by

dom x := E,

and define the range of x by

rge x := {y ∈ Rn : ∃(t, j) ∈ dom x, x(t, j) = y} .

Definition 3.10 (Types of Hybrid Arcs). A hybrid arc x is said to be

(1) nontrivial if rge x contains at least two points;

(2) bounded if sup {‖y‖ : y ∈ rge x} <∞;

(3) complete if length (dom x) =∞;

(4) discrete if supt dom x = 0;

(5) continuous if supj dom x = 0;

(6) Zeno if it is complete and supt dom x <∞;

(7) eventually discrete if T = supt dom x <∞ and dom x∩ ({T}×N) contains at least
two points;

(8) eventually continuous if J = supj dom x < ∞ and dom x ∩ (R≥0 × {J}) contains
at least two points;

(9) absolutely hybrid if it is neither eventually discrete nor eventually continuous.
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C DX

FIGURE 3.3: The behavior of solutions to hybrid systems.

Figure 3.2 illustrates a trajectory given by a hybrid arc x with its corresponding hy-
brid time domain drawn by solid red lines in (t, j)-plane. Each dashed line with
arrow head represents a jump occurring in the system.

3.3.2 Solutions to Hybrid Systems

Given a hybrid systemH = (X , f, C, g,D), its solutions are hybrid arcs x that satisfy
certain conditions determined by the hybrid time domain dom x and the data of the
hybrid system.

Definition 3.11 (Solutions to a Hybrid System). A hybrid arc x is a solution to (3.1)
if x(0, 0) ∈ C ∪ D, x(t, j) ∈ X for all (t, j) ∈ dom x, and

1. for all j ∈ N such that Ij := {t : (t, j) ∈ dom x} has nonempty interior,

x(t, j) ∈ C for all t ∈ int Ij ,

ẋ(t, j) = f(x) for almost all t ∈ Ij ; (3.3)

2. for all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x,

x(t, j) ∈ D,
x(t, j + 1) = g(x(t, j)). (3.4)

Solutions will stay in X . At points in C ∩ D, solutions can be nonunique, i.e., they
can either flow or jump. Solutions can not be continued at points in C where flow is
not possible. At points in X \ (C ∪D), no solution exists. In Figure 3.3, we depict the
behavior of a solution to a hybrid dynamical system.

A hybrid system H = (X , f, C, g,D) given by (3.1) with the initial condition x(0, 0) =
ξ ∈ C ∪ D is called an initial value problem of the hybrid systemH.

Definition 3.12 (Maximal Solutions). A solution x to a hybrid dynamical system
H = (X , f, C, g,D) is maximal if there is no other solution x′ to H such that dom x ⊂
dom x′ and x(t, j) = x′(t, j) for all (t, j) ∈ dom x. We denote by SH(ξ) the set of all
maximal solutions toH with the initial condition x(0, 0) = ξ ∈ C ∪ D.
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FIGURE 3.4: Hybrid time domains corresponding to various types of
hybrid arcs

Definition 3.13 (Classes of Hybrid Systems). A hybrid systemH is called a complete
hybrid system if any maximal solution toH is complete. The systemH is called a Zeno
hybrid system if any maximal solution to H is Zeno. Moreover, a continuous hybrid
system, a discrete hybrid system or other types given in Definition 3.10 are defined in
the same manner.

Some examples of various types of hybrid time domains of hybrid arcs are illustrated
by Figure 3.4. Note that to obtain a solution to a hybrid dynamical system, we do
not know a hybrid time domain in advance. However, we collect it as simultaneous
as a hybrid arc (or a solution) to the system is obtained.

The following example demonstrates how a solution to the bouncing ball system in
Example 3.1 and its hybrid time domain are found.

Example 3.14 (Solution to the Bouncing Ball System). Let h be a positive number. For
a bouncing ball given in Example 3.1 with a given initial condition ξ = (h, 0) ∈ C,
say x1(t0, 0) = x1(0, 0) = h and x2(t0, 0) = x2(0, 0) = 0, the hybrid time domain of
the solution is written in the form

∞⋃

j=0

([tj , tj+1]× {j}) ,
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and the solution is written as follows. The first arc until the first jump (continuous
flow from t0 and t1) is given by

x1(t, 0) = −1

2
γt2 + h, (3.5)

x2(t, 0) = −γt (3.6)

for t ∈ [t0, t1], where

t1 =

√
2h

γ

is the first time that the ball hits the ground, i.e., x(t1, 0) ∈ D. The state after the
jump at t1 is then given by

x1(t1, 1) = 0,

x2(t1, 1) = −λx2(t1, 0) = −λ (−γt1)

Moreover, the further arcs (from tj and tj+1) are given by

x1(t, j) = −1

2
γt2 + (x2(tj , j) + γtj) t−

(
1

2
γt2j + x2(tj , j)tj

)
, (3.7)

x2(t, j) = −γt+ (x2(tj , j) + γtj), (3.8)

and the states after the jump at tj+1 are given by

x1(tj+1, j + 1) = 0, (3.9)
x2(tj+1, j + 1) = −λx2(tj+1, j) = −λ (−γtj+1 + (x2(tj , j) + γtj)) , (3.10)

where

tj+1 :=
2x2(tj , j) + γtj

2γ

is the time at the (j + 1)th jump. Furthermore, the total amount of time that the
system spends in C is

lim
n→∞

n∑

j=1

(tj+1 − tj) =

√
2h

γ
+

2λ

1− λ

√
2h

γ
=: tmax. (3.11)

The hybrid arc x = (x1, x2) is a Zeno solution to the system of bouncing ball. Note
that tmax is finite due to convergence of sequence {tj+1 − tj} and λ ∈ (0, 1). In
addition there are infinitely many jumps until tmax. Sometimes such tmax is called a
Zeno time , see [43–46]. There is no more continuous flow after tmax. Each interval of
the hybrid time domain is of the from [·, t]× {·} such that t < tmax, i.e., the solutions
never, in mathematical sense, reach to tmax.

In Figure 3.5, we give a numerical simulation of this system with the initial condition
x(0, 0) = (10, 0) along with the following parameters γ = 9.8, and λ = 0.8.

Example 3.15 (Solution to an On/Off Switching System). Consider the on/off switch-
ing system given in Example 3.2 with the initial condition x1(0, 0) = v and x2(0, 0) =
1, where v ∈ (ψ1, ψ2). The function S1 and S0 are respectively given by S1(x1) := kx1

and S0(x1) := kx2
1, where k > 0. The hybrid time domain of the solution will be
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FIGURE 3.5: To a numerical simulation of a bouncing ball.

written in the form
∞⋃

j=0

[tj , tj+1]× {j} ,

and the solution to the system is given by

x1(t, 0) = vekt, x2(t, 0) = 1 for 0 ≤ t ≤ t1 =
1

k
ln(

ψ2

v
).

Note that t1 is the time that x1 reaches the value of ψ2. Therefore the switch is al-
lowed to be turned off, i.e., the solution after t1 is given by

x1(t1, 1) = vekt1 , x2(t1, 1) = 0.

In the next step

x1(t, 1) =
x1(t1, 1)

(
3k(t2 − t1)x3

1(t1, 1) + 1
)1/3 , x2(t, 1) = 0 for t1 ≤ t ≤ t2

where

t2 = t1 +
1

3kx3
1(t1, 1)

(
x3

1(t1, 1)

ψ3
1

− 1

)

is the time at which x1 reaches the value of ψ1. Consequently, the switch is allowed
to be turned on, and x1 will increasingly evolve to the value of ψ2. The solution
after t2 can be obtained by the above iteration. In Figure 3.6, we provide a numerical
simulation of this system with the initial condition

x1(0, 0) = 0.5, x2(0, 0) = 1

along with the following arguments: k = 0.8, ψ1 = 0.2 and ψ2 = 1. This solution is
an absolutely hybrid arc.

Example 3.16 (Solution to an Impulsive System). Consider a special case of hybrid
systems: an impulsive system H = (X , F, C, G,D) given in Example 3.3 with the
initial condition z1(0, 0) = z0 ∈ Rn, and z2(0, 0) = 0 along with an impulse time
sequence T = {t1, t2, . . .} ⊂ R such that 0 < t1 < t2 < . . . < ∞. A solution to H is
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FIGURE 3.6: To a numerical simulation of an on/off switching system.

given by

z1(t, 0) = z0 +

∫ t

0
f(z(τ)) dτ, z2(t, 0) = t for all t ∈ [0, t1] ,

z1(t1, 1) = z1(t1, 0) + g(z1(t1, 0)), z2(t1, 1) = z2(t1, 0) = t1.

Moreover, the solution after t1 is obtained by

z1(t, j) = z1(tj , j) +

∫ t

tj

f(z(τ)) dτ, z2(t, j) = t for all t ∈ [tj , tj+1] ,

z1(tj+1, j + 1) = g(z1(tj+1, j)), z2(tj+1, j + 1) = z2(tj+1, j) = tj+1.

In Figure 3.7, we provide a numerical simulation of this system with the state z1 =
(z11, z12) ∈ X ⊂ R2, the initial condition z1(0, 0) = (1, 0), z2(0, 0) = 0, the functions
f and g given by

f(z1) = f(z11, z12) :=

(
sin(z11) + z12

−z11 + sin(z12)

)
,

g(z1) = g(z11, z12) :=

(
z11 + sin(z12)
sin(z11) + z12

)

along with the impulse time sequence T = {1, 2, 3, . . .}. The hybrid time domain is
given by

∞⋃

j=1

([j, j + 1]× {j})

and this solution is an absolutely hybrid arc.

3.3.3 Existence of Solutions

In this section we show sufficient conditions to guarantee existence of a nontrivial
solution to a hybrid dynamical system.

Theorem 3.17 (The Existence Theorem of Hybrid Systems). Given a hybrid system
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FIGURE 3.7: To a numerical simulation in Example 3.16.

H = (X , f, C, g,D) with the initial condition x(0, 0) = ξ ∈ C ∪D. If the basic assumptions
for hybrid systems1 are satisfied, then there exists a nontrivial solution toH.

Proof. Let the basic assumptions (BA1)-(BA4) be satisfied for the hybrid system H.
We are going to show that there exists a nontrivial hybrid arc ϕ such that it is a
solution toH. It is unnecessary to satisfy ϕ ∈ SH(ξ).

Consider the first case which ξ ∈ D. Define the function y : {0, 1} → Rn by

y(j) :=

{
ξ if j = 0;

g(ξ) if j = 1.

The function value y(1) is determined due to the basic assumption (BA4), the func-
tion g : Rn → Rn is continuous. It is clear to see that the hybrid arc ϕ1 defined
by

ϕ1(0, j) := y(j)

with the hybrid time domain

dom ϕ1 = {(0, 0), (0, 1)}

is a solution to the hybrid systemH.

In the case that ξ ∈ C \D, we show the existence of solutions toH as follows. By The-
orem 2.4 and the basic assumption (BA3), the function f : Rn → Rn is continuous,
there exists a solution z : [0, t∗]→ Rn to the continuous-time dynamical system

ẋ(t) = f(x(t)), x(0) = ξ.

Therefore the hybrid arc ϕ2 defined by

ϕ2(t, 0) := z(t) for t ∈ [0, t∗]

with the hybrid time domain dom ϕ2 = {(t, 0) ∈ R× {0} : 0 ≤ t ≤ t∗} is a solution
to the hybrid systemH.

1See Section 3.2.
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Remark 3.1. Zeno solutions are an interesting behavior in hybrid dynamical systems.
Unfortunately, we cannot discover a condition for the existence of Zeno solutions.
Consider the following:

(1) A hybrid arc x with dom x = {0} × N is discrete, complete and Zeno.

(2) A complete eventually discrete hybrid arc is Zeno.

(3) For a hybrid systemH = (X , f, C, g,D):

(a) a solution toH is not Zeno if D = ∅.
(b) a solution toH is possibly Zeno if C ∩ D 6= ∅ and g(D) ⊂ C.

(c) if a solution toH is Zeno, the following condition must be satisfied:

lim
j→∞

(tj+1 − tj) = 0 ∀(tj , j) ∈ dom x.

3.4 Stability

In this section, we introduce notions of stability of hybrid dynamical systems. We
mainly focus on asymptotic stability of a non-empty compact set. Asymptotic sta-
bility is an essential key and also fundamental property of nonlinear dynamical sys-
tems. It yields qualitative data of solutions to hybrid systems, especially long-term
behaviors of the solutions. Asymptotic stability of a non-empty compact set, instead
of a steady state or an equilibrium point, is important since the solutions to hybrid
systems do not often settle down on an equilibrium point.

Like for other classes of nonlinear dynamical system, Lyapunov functions are tools for
the investigation of stability of hybrid systems. Various Lyapunov theorems and the
invariance principle for hybrid systems are presented in this section. The concepts of
stability and invariance for hybrid systems in the form (3.1) were proposed in [1] and
[47]. Lyapunov stability and hybrid invariance principles were also introduced in [1,
9, 47–49]. For simplicity, let us assume that hybrid systems are complete throughout
this section, unless stated otherwise.

Definition 3.18. For a complete hybrid systemH = (X , f, C, g,D), a non-empty com-
pact set A ⊂ X is called

• stable if for each ε > 0, there exists δ > 0 such that any solution x to H with
‖x(0, 0)‖A < δ satisfies ‖x(t, j)‖A < ε for all (t, j) ∈ dom x;

• attractive if any solution x toH satisfies x converges to A, i.e.,

‖x(t, j)‖A → 0 as t+ j →∞;

• asymptotically stable if it is both stable and attractive.

Note that the non-empty compact set A ⊂ X in the above definition could be re-
placed by a single point % ∈ C ∪D if A contains only the single point %, i.e., A = {%}.
In Figure 3.8, we depict a behavior of the trajectories in the vicinity of stable set of
origin in R2. By choosing the initial points in the spherical neighborhood of radius
δ, we can force the graph of the solution x for (t, j) ∈ dom x to stay entirely inside a
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FIGURE 3.8: Visualization for stability of the set of origin in R2.
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FIGURE 3.9: Visualization for asymptotic stability of the set of origin
in R2.

given ε-tube. The behavior of the trajectories in the vicinity of asymptotically stable
set of origin in R2 is illustrated in Figure 3.9.

3.4.1 Hybrid Lyapunov Theorem

This section addresses the hybrid Lyapunov functions as sufficient conditions for
stability. The definitions below make the strict and relaxed conditions required for a
function to be considered as a hybrid Lyapunov candidate function for establishing
stability of a non-empty compact set for a hybrid system.

Definition 3.19 (Hybrid Lyapunov Candidate Functions). Given a hybrid dynamical
system H = (X , f, C, g,D) and a non-empty compact set A ⊂ X ⊂ Rn, a function
V : Rn → R is called a hybrid Lyapunov candidate function for (H,A) if it is globally
Lipschitz and there exist class K∞ functions ψ1 and ψ2 such that it satisfies

ψ1(‖x‖A) ≤ V (x) ≤ ψ2(‖x‖A) for all x ∈ X . (3.12)

Definition 3.20 (Hybrid Lyapunov Functions). Given a hybrid dynamical system
H = (X , f, C, g,D) and a non-empty compact set A ⊂ X ⊂ Rn, a hybrid Lyapunov
candidate function V for (H,A) is called a hybrid Lyapunov function for (H,A) if it
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satisfies

〈∇V (x), f(x)〉 < 0 for all x ∈ C \ A, (3.13)
V (g(x))− V (x) < 0 for all x ∈ D \ A. (3.14)

Moreover, it is called a relaxed hybrid Lyapunov function for (H,A) if it satisfies

〈∇V (x), f(x)〉 ≤ 0 for all x ∈ C \ A, (3.15)
V (g(x))− V (x) ≤ 0 for all x ∈ D \ A. (3.16)

The following results provide sufficient conditions on a Lyapunov candidate func-
tion that guarantee stability. Even though the similar results were presented in [1, 3,
47], we intentionally propose the following theorem with an alternative proof which
is possibly less complicated and difficult to understand. Various results in this chap-
ter are also obtained from the concept of this proof. They will be presented in the
forthcoming sections.

Theorem 3.21 (Hybrid Lyapunov Theorem). Given a hybrid systemH = (X , f, C, g,D)
and a non-empty compact set A ⊂ X ⊂ Rn,

(L1) if there exists a relaxed Lyapunov function for (H,A), then A is stable forH.

(L2) if there exists a Lyapunov function for (H,A) andH is a complete hybrid system, then
A is asymptotically stable forH.

Proof. Let V be a relaxed Lyapunov function for (H,A) satisfying the conditions
(3.12), (3.13) and (3.14). Recall that the derivative of V at x

V ′(x) = 〈∇V (x), f(x)〉 .

For any positive number p, define

Bp := {x ∈ Rn : ‖x‖A ≤ p} .

Given ε > 0, choose r ∈ (0, ε] such that A ⊂ Br. Let

α := min
‖x‖A=r

V (x),

then α > 0 since V (x) ≥ ϕ1(‖x‖A) > 0 for any x with ‖x‖A = r. In addition, for any
β ∈ (0, α), let us define

Ωβ := {x ∈ Br : V (x) ≤ β} .

Firstly, we need to show that Ωβ is in the interior of Br. Suppose that Ωβ is not
in the interior of Br, then there is b ∈ Ωβ that lies on the boundary of Br. Thus,
V (b) ≥ α > β, but V (b) ≤ β for all b ∈ Ωβ . From this contradiction, it follows that
Ωβ ⊂ intBr. Figure 3.10 illustrates the level sets used in this proof.

Secondly, we need to show that any trajectories starting in Ωβ always lie in Ωβ . Sup-
pose that x(0, 0) ∈ Ωβ , t0 = 0 and the hybrid time domain dom x is in the form of the
union of a finite or infinite sequence of intervals [tj , tj+1]×{j}with the last interval,
if it exists, is allowed to be in the form [tj , T ) with T finite of T =∞.
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(ii) Suppose additionally that

hOV (x), f(x)i < 0, (4)
V (g(x)) � V (x) < 0, (5)

for all x 2 U \ {0}. Then the origin is pre-
asymptotically stable.

The pre-asymptotic stability of the origin, for a hybrid
system H = (X , f, C, g, D) , can be verified by the above
theorem. In many cases, the origin is still pre-asymptotically
stable, even though the condition (ii) does not hold. Some
examples are also shown in Section V. When the condition
(i) is satisfied, invariance principles for hybrid systems can
be applied to guarantee the pre-asymptotic stability of the
origin.

Definition 3.2: For a hybrid system H = (X , f, C, g, D),
the set M ⇢ X is said to be

• weakly forward invariant if for each ⇠ 2 M, there exist
at least one solution x 2 SH(⇠) with x(t, j) 2 M for
all (t, j) 2 dom x;

• weakly backward invariant if for each q 2 M, N > 0,
there exist ⇠ 2 M and at least one solution x 2 SH(⇠)
such that for some (t⇤, j⇤) 2 dom x, t⇤ + j⇤ � N , the
solution satisfies x(t⇤, j⇤) = q and x(t, j) 2 M for all
(t, j) � (t⇤, j⇤), (t, j) 2 dom x.

• weakly invariant if it is both weakly forward invariant
and weakly backward invariant;

• strongly forward invariant if for each ⇠ 2 M and each
x 2 SH(⇠), then x(t, j) 2 M for all (t, j) 2 dom x.

Theorem 3.2: For a hybrid system H = (X , f, C, g, D),
suppose that (i) holds, and there exists ✏ > 0 such that for
all r 2 (0, ✏) the largest weakly invariant subset in

V �1(r) \ U \
⇥
u�1

C (0) [
�
u�1

D (0) \ g(u�1
D (0))

�⇤
(6)

is empty, where uC(x) := hOV (x), f(x)i for all x 2 C and
uD(x) := V (g(x))� V (x) for all x 2 D. Then the origin is
pre-asymptotically stable.

The above theorem has been called hybrid Krasovskii
which was introduced in [24]. The following theorem is
given in [25] and provides the conditions of asymptotic
stability when either uC or uD, defined in Theorem 3.2, is
not strictly negative.

Theorem 3.3: For a hybrid system H = (X , f, C, g, D),
suppose that (i) holds. If either

(a) uC(x) < 0 for all x 2 C \ {0},
(b) any complete discrete solution x to H with rge x 2 U

converges to the origin; or
(a’) uD(x) < 0 for all x 2 D \ {0},
(b’) any complete continuous solution x to H with rge x 2

U converges to the origin;

is satisfied, then the origin is asymptotically stable.
Even though Theorem 3.2 and 3.3 are consequences of the

hybrid LaSalle’s invariance principle, the similar conditions
can also be obtained without any application of hybrid
invariance principles. They are introduced in the next section.

IV. MAIN RESULTS

We neither require strict inequalities in both conditions (ii)
of Theorem 3.1 to show the asymptotic stability nor use any
application of hybrid invariance principles. Moreover, we do
not need to check that there exist a complete discrete, or
continuous, solution and if it converges to the origin.

Theorem 4.1: Let assumptions (A1) - (A4) hold for the
hybrid system H = (X , f, C, g, D). Suppose every solution
x 2 SH(⇠) is complete for all ⇠ 2 C [ D. There exists a
smooth function V : X ! Rn, and there exist  1 and  2

belonging to class-K1 such that  1(|x|)  V (x)   2(|x|)
for all x 2 C [ D. If the following conditions are satisfied:

(G1) For any nontrivial solution x 2 SH(⇠), x is not
eventually continuous,

(G2) hOV (x), f(x)i  0 for all x 2 C \ {0},
(G3) V (g(x)) � V (x) < 0 for all x 2 D \ {0},

then the origin is asymptotically stable.
Proof: Recall that

d

dt
V (x) = hOV (x), f(x)i .

Given ✏ > 0, choose r 2 (0, ✏] such that

Br := {x 2 X : |x|  r} ⇢ C [ D.

Let ↵ := min
|x|=r

V (x), then ↵ > 0. For � 2 (0, ↵), define

⌦� := {x 2 Br : V (x)  �} .

Firstly, we need to show that ⌦� is in the interior of Br.
Suppose that ⌦� is not in the interior of Br, then there is
b 2 ⌦� that lies on the boundary of Br. Thus, V (b) � ↵ >
�, but V (b)  � for all b 2 ⌦� . From this contradiction
follows that ⌦� ⇢ int Br.

Let us show that ⌦� is strongly invariant set. Without
loss of generality, let us suppose x(0, 0) 2 ⌦� \ C. Since
the condition (G1) holds, there exists t1 > 0 such that
x(t1, 0) 2 D. We get x(t1, 0) 2 ⌦� because V (x(t1, 0)) 
V (x(0, 0))  �.

C

D

Br

⌦�

Fig. 1. Representation of sets in the proof of Theorem 4.1 and Theorem
4.2FIGURE 3.10: Level sets in the proof of Theorem 3.21.

Due to the conditions (3.13) and (3.14), it holds that

V (x(t1, 1)) ≤ V (x(t1, 0)) ≤ V (x(0, 0)) ≤ β.

So we have V (x(t1, 1)), V (x(t1, 0)) ∈ Ωβ . By induction, it is sufficient to conclude
that x(t, j) ∈ Ωβ for any (t, j) ∈ dom x.

Since V is globally Lipschitz and V (a) = 0 for any a ∈ A, there exists δ > 0 such that
‖x‖A < δ implies V (x) < β. Then,

Bδ := {x ∈ X : ‖x‖A ≤ δ} ⊂ Ωβ ⊂ Br.

We need to show that the compact set A is stable. Suppose x(0, 0) ∈ Bδ. It follows
that

x(0, 0) ∈ Bδ =⇒ x(0, 0) ∈ Ωβ =⇒ x(t, j) ∈ Ωβ =⇒ x(t, j) ∈ Br
for all (t, j) ∈ dom x. Therefore,

‖x(0, 0)‖A < δ =⇒ ‖x(t, j)‖A < r ≤ ε

for all (t, j) ∈ dom x.

For (L2), let the system H be a complete hybrid system and V be a Lyapunov func-
tion for (H,A) satisfying the conditions (3.15) and (3.16). We have to additionally
show that A is attractive. It is sufficient to show that V (x(t, j)) → 0 as t + j → ∞
since ‖x(t, j)‖A ≤ ψ−1

1 (V (x(t, j))).

Suppose a contradiction, that the trajectory x does not converge to A, i.e., ‖x(t, j)‖A
does not converge to zero as t + j → ∞. Since (3.15) and (3.16) hold and V is
bounded from below by zero, suppose V (x(t, j)) converges to some constant c > 0
as t + j → ∞. Because V is globally Lipschitz, and it holds V (a) = 0 for any a ∈ A,
there exists a positive number q such that

Bq := {x ∈ X : ‖x‖A ≤ q} ⊂ Ωc := {x ∈ Br : V (x) ≤ c} .

Therefore, this solution x(t, j) lies outside Bq as t + j → ∞ since V (x(t, j)) → c.
Define

γ̄ := sup
q≤‖x(t,j)‖A≤r

〈∇V (x(t, j)), f(x(t, j))〉 , γ := −γ̄,
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σ̄ := sup
q≤‖x(t,j)‖A≤r
q≤‖x(t,j+1)‖A≤r

V (x(t, j + 1))− V (x(t, j)), and σ := −σ̄.

It is clear that γ > 0 and σ > 0 due to the conditions (3.15) and (3.16) respectively.
Let us denote the numbers

t(η;x) := inf {t ∈ R+ : (t, η) ∈ dom x} ,

and
j(τ ;x) := sup {j ∈ N : (τ, j) ∈ dom x} . (3.17)

It follows that

V (x(t, j)) = V (x(0, 0)) +

∫ t

0
V ′(x(τ, j(τ ;x)))dτ

+

j∑

η=1

[V (x(t(η;x), η))− V (x(t(η;x), η − 1))]

≤ V (x(0, 0))− γt− σj.

We obtain a contradiction since V (x(t, j)) eventually becomes negative.

Example 3.22 (Stability of the Bouncing Ball System). Consider the bouncing ball
system introduced in Example 3.1. We are going to consider stability of the compact
set A = {0}, i.e., the origin of R2.

Define a continuously differentiable function V : R2 → R by

V (x) =
1

2
x2

2 + γx1. (3.18)

It follows that
〈∇V (x), f(x)〉 = 0 for all x ∈ C \ A,

and
V (g(x))− V (x) = −1

2
(1− λ2)x2

2 < 0 for all x ∈ D \ A.

Since the inequalities (3.15) and (3.16) hold, we can conclude that the origin is glob-
ally stable. However, this is not enough to guarantee asymptotic stability of the
origin since the inequality (3.13) does not hold.

3.4.2 Hybrid Invariance Principle

For hybrid dynamical systems, asymptotic stability of a non-empty compact set can
be assured by Theorem 3.21. In many cases, there are difficulties to find a Lyapunov
function to guarantee asymptotic stability of a non-empty stable compact set for a
hybrid system. However, if we can achieve a relaxed Lyapunov function, we can
guarantee asymptotic stability of a nonempty compact set despite no satisfying of
the strict inequalities (3.13) and (3.14) by the invariance principles for hybrid systems.
The following definitions and theorems for the hybrid invariance principle are taken
from [1, 47].

Definition 3.23. For a hybrid systemH = (X , f, C, g,D), the setM⊂ X is said to be
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• weakly forward invariant if for each ξ ∈ M, there exists at least one maximal
solution x with x(t, j) ∈M for all (t, j) ∈ dom x;

• weakly backward invariant if for each q ∈ M, N > 0, there exist ξ ∈ M and at
least one solution x ∈ SH(ξ) such that for some (t∗, j∗) ∈ dom x, t∗ + j∗ ≥ N ,
the solution satisfies x(t∗, j∗) = q and x(t, j) ∈M for all (t, j) � (t∗, j∗), (t, j) ∈
dom x.

• weakly invariant if it is both weakly forward invariant and weakly backward
invariant;

• strongly forward invariant if for each ξ ∈ M and each x ∈ SH(ξ), then x(t, j) ∈
M for all (t, j) ∈ dom x.

Definition 3.24. Given a hybrid system H = (X , f, C, g,D) and a relaxed Lyapunov
function V for (H,A), define a function uC : Rn → R by

uC(x) := 〈∇V (x), f(x)〉 ,

and a function uD : Rn → R by

uD(x) := V (g(x))− V (x).

Theorem 3.25 (hybrid LaSalle’s invariance principle [1]). Let H = (X , f, C, g,D) be a
complete hybrid system,A be a nonempty compact subset of X and V be a relaxed Lyapunov
function for (H,A). Suppose that U is a neighborhood ofA, and for any maximal solution x
toH, x is bounded and rge x ⊂ U . If

uC(x) ≤ 0, and uD(x) ≤ 0 ∀x ∈ U ,

then for some constant r ∈ V (U), x approaches the largest weakly invariant set in

V −1(r) ∩ U ∩
[
u−1
C (0) ∪

(
u−1
D (0) ∩ g(u−1

D (0))
)]

(3.19)

Theorem 3.26 (hybrid Krasovskii [1, 47]). Let H = (X , f, C, g,D) be a complete hybrid
system, A be a nonempty compact subset of X and V be a relaxed Lyapunov function for
(H,A). Suppose that U is a neighborhood of A, and it holds uC(x) ≤ 0 and uD(x) ≤ 0 for
all x ∈ U . If there exists r∗ > 0 such that, for all r ∈ (0, r∗), the largest weakly invariant
subset in (3.19) is empty, then A is asymptotically stable forH.

The following theorem was given in [47] and provided the conditions of asymptotic
stability when either uC or uD is strictly negative.

Theorem 3.27 ([3, 47]). Let H = (X , f, C, g,D) be a complete hybrid system, A be a
nonempty compact subset of X and V be a relaxed Lyapunov function for (H,A). Suppose
that U is a neighborhood ofA, and it holds uC(x) ≤ 0 and uD(x) ≤ 0 for all x ∈ U . If either

(a1) uC(x) < 0 for all x ∈ U \ A,

(a2) any discrete solution x toH with rge x ⊂ U converges to A ;

or
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(b1) uD(x) < 0 for all x ∈ U \ A,

(b2) any continuous solution x toH with rge x ⊂ U converges to A ;

is satisfied, then A is asymptotically stable forH.

Even though Theorem 3.26 and 3.27 are consequences of the hybrid LaSalle’s invari-
ance principle, the similar conditions can also be obtained without any application of
hybrid invariance principle, which are provided in the next subsection.

3.4.3 Relaxed Hybrid Lyapunov Theorems

We are going to provide alternative conditions being comfortable to apply, in some
cases, than previous works in the literature. In term of energy functions, instead of
losing energy by both of continuous and discrete dynamics, we allow energy to be
lost by only one of them when all of our conditions hold for the hybrid systems.
We do not require neither the strict inequalities in the hybrid Lyapunov theorems
nor a consideration of hybrid invariant principles. Furthermore, existence of dis-
crete, or continuous solutions to a hybrid system does not need to be verified in our
conditions.

Theorem 3.28 (Relaxed Hybrid Lyapunov Theorem). Given a complete hybrid system
H = (X , f, C, g,D) and a non-empty compact set A ⊂ X ⊂ Rn. Suppose that there exists
a relaxed hybrid Lyapunov function V for (H,A). If the following conditions are satisfied:

(G1) Any maximal solution is not eventually continuous,

(G2) 〈∇V (x), f(x)〉 ≤ 0 for all x ∈ C \ A,

(G3) V (g(x))− V (x) < 0 for all x ∈ D \ A,

then A is asymptotically stable forH.

Proof. Consider the set Br and Ωβ defined in the proof of Theorem 3.21. Note that
that Ωβ ⊂ intBr.

Let us show that Ωβ is strongly invariant set. Without loss of generality, let us sup-
pose x(0, 0) ∈ Ωβ ∩ C. Since the condition (G1) holds, there exists t1 > 0 such that
x(t1, 0) ∈ D. We get x(t1, 0) ∈ Ωβ because V (x(t1, 0)) ≤ V (x(0, 0)) ≤ β.
If there is no j ∈ N such that x(t1, j) ∈ C, we can conclude that x(t, j) ∈ Ωβ for
all (t, j) ∈ dom x because V (x(t1, j + 1)) < V (x(t, j)) ≤ V (x(t1, 0)) for all j ∈ N.
If there exists an integer j1 such that x(t1, j1) lies in C, then we get x(t1, j1) ∈ Ωβ

since V (x(t1, j1)) < V (x(t1, j0)) for all j0 ∈ {0, 1, 2, . . . , j1 − 1}. Moreover, we still
get x(t, j1) ∈ Ωβ for all t ≥ t1 because of the condition (G2). With this procedure, we
obtain that any solution starting from Ωβ always lies in Ωβ .

Since V is globally Lipschitz, and V (a) = 0 for all a ∈ A, there exists δ > 0 such
that ‖x‖A < δ implies V (x) < β. Then, Bδ ⊂ Ωβ ⊂ Br. Suppose x(0, 0) ∈ Bδ. It
follows that x(0, 0) ∈ Bδ =⇒ x(0, 0) ∈ Ωβ =⇒ x(t, j) ∈ Ωβ =⇒ x(t, j) ∈ Br
for all (t, j) ∈ dom x. Therefore, ‖x(0, 0)‖A < δ implies ‖x(t, j)‖A < r ≤ ε for all
(t, j) ∈ dom x. Hence A is stable.

Finally, we have to show that the origin is attractive. Suppose by a contradiction that
the solution x does not converge to the compact set A . Since (G1) - (G3) hold and V
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is bounded from below by zero, then V converges to some constant c > 0. Therefore,
there exists q > 0 such that Bq ⊂ Ωc due to the continuity of V . As t+ j →∞, x(t, j)
lies outside Bq since V (x(t, j))→ c > 0. It follows that

V (x(t, j)) ≤ V (x(0, 0))− γt− σj,

where γ and σ are two constants defined in the proof of Theorem 3.21.

Under the conditions (G2) and (G3), we get γ ≥ 0 and σ > 0 respectively. Since
V (x(t, j)) eventually becomes negative, we obtain a contradiction.

Our next result is proposed in the following theorem. Instead of using the condition
(F1), we can also consider complete maximal solutions toH = (X , f, C, g,D, ξ) which
are not eventually discrete. It leads to a new result provided here.

Theorem 3.29 (Another Relaxed Hybrid Lyapunov Theorem). Given a complete hybrid
systemH = (X , f, C, g,D) and a non-empty compact set A ⊂ X ⊂ Rn. Suppose that there
exists a relaxed hybrid Lyapunov function V for (H,A). If the following conditions are
satisfied:

(F1) Any maximal solution toH is not eventually discrete,

(F2) 〈∇V (x), f(x)〉 < 0 for all x ∈ C \ A,

(F3) V (g(x))− V (x) ≤ 0 for all x ∈ D \ A,

then A is asymptotically stable forH.

Proof. We already know from Theorem 3.28 that Ωβ is in the interior of Br. Suppose
x(0, 0) ∈ Ωβ . We will show that Ωβ is strongly forward invariant when conditions
(F1) - (F3) hold. Without loss of generality, let us suppose that the initial point lies
in D. Then there exists j1 ∈ N such that x(0, j1) ∈ C due to the condition (F1).
Thus, x(0, j1) ∈ Ωβ because V (x(0, j1)) ≤ V (x(0, j0)) ≤ V (x(0, 0)) ≤ β for all j0 ∈
{0, 1, 2, . . . , j1}. Moreover, we can conclude that x(t1, j1) ∈ Ωβ for all t1 > 0 because,
from (F2), V (x(t1, j1)) < V (x(0, j1)) ≤ β for all t1 > 0 and x(t1, j1) ∈ C \ A. If there
is no positive t such that x(t, j1) ∈ D, then x(t, j) ∈ Ωβ for all (t, j) ∈ dom x.

If there exists t2 > t1 such that x(t2, j1) ∈ D, then x(t2, j1) will still be in Ωβ since
V (x(t2, j1)) < V (x(t1, j1)). Since (F1) holds, there exist j2 ∈ N such that x(t2, j2) ∈ C.
Further x(t2, j2) ∈ Ωβ because V (x(t2, j2)) ≤ V (x(t2, i)) ≤ V (x(t2, j1)) ≤ β for all
i ∈ {j1, j1 + 1, j1 + 2, ..., j2}. By the above procedure, we can conclude that any
solution x starting form Ωβ will lie in Ωβ for all (t, j) ∈ dom x.

Since V is globally Lipschitz, and V (a) = 0 for any a ∈ A, there exists δ > 0 such that
‖x‖A < δ implies V (x) < β. Then, Bδ ⊂ Ωβ ⊂ Br. For any x(0, 0) ∈ Bδ, it follows
that x(0, 0) ∈ Ωβ . Since Ωβ is strongly forward invariant, then x(t, j) ∈ Ωβ ⊂ Br
for all (t, j) ∈ dom x. Therefore, ‖x(0, 0)‖A < δ implies ‖x(t, j)‖A < r ≤ ε for all
(t, j) ∈ dom x, i.e., the compact set A is stable.

Finally, we are going to show that the origin is attractive. Suppose by a contradiction
that the trajectory x does not converge to the compact set A . Since (F1) - (F3) hold
and V is bounded from below by zero, then V converges to c > 0. Therefore, there
exists q > 0 such that Bq ⊂ Ωc due to the continuity of V . As t + j → ∞, x(t, j) lies
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outside Bq since V (x(t, j))→ c > 0. It follows that

V (x(t, j)) ≤ V (x(0, 0))− γt− σj,

where γ and σ are two constants defined in the proof of Theorem 3.21. Under the
conditions (F2) and (F3), we get γ > 0 and σ ≥ 0 respectively. If hybrid arc x
is not Zeno, then we get a contradiction since V (x(t, j)) eventually becomes neg-
ative as t + j → ∞. Otherwise, x is Zeno, there exists a nonnegative constant
T = supt dom x < ∞. Since x is not eventually discrete, it is clear that T > 0. Let
x(t∗, j∗) be a point lying outside Bq such that V (x(t∗, j∗)) = c, it follows that

x(t∗, j∗) ∈ (C \ A) ∪ (D \ A) .

Suppose, without loss of generality, x(t∗, j∗) ∈ D \ A. There exists η > 0 such that
x(t∗, j∗ + η) ∈ C \ A due to the condition (F1). Therefore there exists τ > 0 such that
(t∗ + τ, j∗ + η) ∈ dom x since x(t∗, j∗ + η) ∈ C \ A and the hybrid arc x is allowed to
flow further. Therefore, a contradiction is obtained since t∗ + τ > T .

Some examples of application are illustrated by a classical hybrid phenomena and
its extension as follows.

Example 3.30 (Asymptotic Stability of the Bouncing Ball System). In this example,
asymptotic stability of a bouncing ball system is subjected. Consider a relaxed hy-
brid Lyapunov function V defined by (3.18) in Example 3.22. Note that Theorem 3.21
can not be applied to verify asymptotic stability because the strict inequality (3.15)
does not hold.

Since
〈∇V (x), f(x)〉 = 0 for all x ∈ C \ {0} ,

and
V (g(x))− V (x) = −1

2
(1− λ2)x2

2 < 0 for all x ∈ D \ {0} ,

it follows that (G2) and (G3) are satisfied.

Additionally any nontrivial solution to the bouncing ball system H = (X , f, C, g,D)
is absolutely hybrid (see Definition 3.10) since, for every point x(t, j) ∈ C \{0}, there
exists time t∗ such that the ball reaches the floor, i.e.,

t∗ = t+
x2(t, j) +

√
(x2(t, j))2 + 2γx1(t, j)

γ
> t.

Moreover x(t∗, j) ∈ D and g(D) ⊂ C. Therefore, the condition (G1) automatically
holds, i.e., for each nontrivial x ∈ SH(ξ), x is not eventually continuous. By Theo-
rem 3.28, we can conclude that the origin is asymptotically stable.

Example 3.31 (An elastic bouncing ball with air resistance). Extended Example 3.1,
we put the restitution factor between the ball and the floor to be equal to one. The
air resistance, or drag, is now considered in the system. Flows and jumps of the state
can be described as follows:

f(x) :=

(
x2

−γ − kx2

)
, g(x) :=

(
x1

−x2

)
.
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FIGURE 3.11: To a numerical solution in Example 3.31.

The positive number k indicates a linear air drag constant.

To guarantee asymptotic stability of the origin, let us consider the continuously dif-
ferentiable function V defined in (3.18). It follows that

〈∇V (x), f(x)〉 = −kx2
2 < 0,

and
V (g(x))− V (x) = 0.

The condition (F1) holds since any nontrivial solutions to the system are absolutely
hybrid. The conditions (F3) is also satisfied, but (F2) is satisfied only if x2 6= 0.
According to this relaxed Lyapunov function V , we cannot apply Theorem 3.29 to
guarantee that the origin is asymptotically stable. In addition, we depict a numerical
solution for this example in Figure 3.11.

Example 3.32. With the same flow set C and jump set D as in Example 3.31, let us
redefine

f(x) := H

(
x1

x2

)
, and g(x) :=

(
ρ1(|x1|)
ρ2(|x2|)

)
,

where H is a Hurwitz matrix , i.e., every eigenvalue of H has negative real part, and
ρi ∈ K∞ with ρi ≤ id for i = 1, 2. There exists a positive definite symmetric matrix
P 2 and a continuously differentiable function in a form 3

V (x) = xTPx

such that
〈∇V (x), f(x)〉 = xT(PH +HTP )x < 0

for all x ∈ C \ {0}. Furthermore, we also get

V (g(x))− V (x) ≤ 0 for all x ∈ D \ {0} .

We have already shown that (F2) and (F3) are satisfied. Moreover, (F1) also holds

2Given a positive definite symmetric matrix Q, P is the unique solution of PH +HTP = −Q.
3See [50], Theorem 10.1 and [18], Page 135-136.
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since g(D) ⊂ C. Thus, we can directly conclude that the origin is globally asymptot-
ically stable from Theorem 3.29.

Alternative conditions to guarantee asymptotic stability of hybrid dynamical sys-
tems are provided. The conditions are based on relaxed hybrid Lyapunov functions.
If either (F1)–(F3) or (G1)–(G3) holds, then asymptotic stability of a non-empty com-
pact set can be guaranteed. Although our conditions are similar to Theorem 3.27, the
advantages of our results can be described as follows. Firstly, instead of an applica-
tion of any invariance principles as in [1] or [47], our results are directly obtained by
simple trajectory-based proofs. Secondly, we do not need to check the conditions in
Theorem 3.27 which are possibly difficult to verify in some cases.

3.4.4 Dwell-Time Conditions

In the previous section, stability of hybrid dynamical systems is guaranteed by ex-
istence of hybrid Lyapunov function or relaxed Lyapunov function (with additional
requirement on types of solutions). Consider a hybrid Lyapunov candidate function
satisfying that it is decreasing during flow, but increasing at any jumps. Obviously,
we can see that such hybrid Lyapunov candidate function grows unbounded if the
system exhibits excessively discrete dynamics. However, if discrete dynamics occur
not too frequently, and continuous dynamics occur long enough, then such hybrid
Lyapunov candidate function may tend to decrease. The number of jumps and time
during flow in the system therefore become important conditions to study stabil-
ity. Such condition are called dwell-time conditions. In this section, we provide such
conditions to guarantee the stability of hybrid dynamical systems.

To provide the results, particular hybrid dynamical systems are required. Let us
introduce the special classes of hybrid dynamical systems as follow.

Definition 3.33. For a hybrid arc x, define

T (j, x) := {t ∈ R≥0 : (t, j) ∈ dom x} .

Definition 3.34 (Hybrid Systems of Class L(θ)). Let H = (X , f, C, g,D) be a hybrid
system and θ be a positive real number.

A hybrid arc x is said to be of class L(θ) if either

J := sup
j

dom x = 0

or the inequality
inf T (j + 1, x)− inf T (j, x) ≥ θ

is satisfied for j ∈ {0, 1, . . . , J − 1}.
A hybrid system H is called a class L(θ) hybrid system if any maximal solution to H
is of class L(θ).

Example 3.35. Any hybrid dynamical system H = (X , f, C, g,D, ξ) with D = ∅ is a
class L(θ) hybrid system for any θ > 0.
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FIGURE 3.12: A solution to the system in Example 3.37.

Example 3.36. Let {tj} be an unbounded increasing sequence of positive real num-
bers. Any impulsive system with the impulse time sequence

T (θ) = {tj ∈ R>0 : tj+1 − tj ≥ θ}

is a class L(θ) hybrid system.

Example 3.37. Let k be a positive real number. Any maximal solution to the hybrid
system H = (X , f, C, g,D), with the initial condition x(0, 0) > e · k, defined by the
state x ∈ X ⊂ R≥0,

f(x) := −x, C := {x ∈ R≥0 : x > k} ,

g(x) := e · k, and D := {x ∈ R≥0 : 0 ≤ x ≤ k} ,
is of class L(1). Figure 3.12 illustrates a solution to H. The yellow region visualizes
the jump set D.

Example 3.38. The bouncing ball, proposed in Example 3.1, is not a class L(θ) hybrid
system for any θ > 0.

Definition 3.39 (Hybrid Systems of Class H(θ)). Let H = (X , f, C, g,D) be a hybrid
system and θ be a positive real number.

A hybrid arc x is said to be of class H(θ) if

J := sup
j

dom x > 0

and the inequality
inf T (j + 1, x)− inf T (j, x) ≤ θ

is satisfied for j ∈ {0, 1, . . . , J − 1}.
A hybrid system H is called a class H(θ) hybrid system if any maximal solution to H
is of class H(θ).
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Example 3.40. Any hybrid system H = (X , f, C, g,D) with C = ∅ is a class H(θ)
hybrid system for any θ > 0.

Example 3.41. Let {tj} be an unbounded increasing sequence of positive real num-
bers. Any impulsive system with impulse time sequence

T (θ) = {tj ∈ R>0 : tj+1 − tj ≤ θ}

is a class H(θ) hybrid system.

Example 3.42. Let {tj} be an unbounded increasing sequence of positive real num-
bers. Any impulsive system with impulse time sequence

T (θ) = {tj ∈ R>0 : tj+1 − tj = θ}

is both a class L(θ) hybrid system and a class H(θ) hybrid system.

Example 3.43. The bouncing ball system given in Example 3.1 with

x1(0, 0) > 0

is a class H(T ) hybrid system, where

T =
x2(0, 0) +

√
(x2(0, 0))2 + 2γx1(0, 0)

γ
.

For class L(θ) hybrid systems, any consecutive jumps are allowed if time has already
passed by at least θ from the point of latest jump. While class H(θ) hybrid systems
allow the behaviors of systems in the opposite way, i.e., any consecutive jumps must
occur before time has passed by θ since the latest jump happened.

Theorem 3.44. Let x be a maximal solution to a hybrid system H with its hybrid time
domain

dom x =

∞⋃

j=0

[tj , tj+1]× {j} .

(1) If the inequality
tj+1 − tj ≥ θ ∀(tj , j) ∈ dom x,

is satisfied, then x is of class L(θ).

(2) If the inequality
tj+1 − tj ≤ θ ∀(tj , j) ∈ dom x,

is satisfied, then x is of class H(θ).

Proof. For (1), it is clear to see that

inf T (j + 1, x)− inf T (j, x) = tj+1 − tj ≥ θ

for all j ∈ N. The proof for (2) is omitted due to its similarity.
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The following results provide conditions to guarantee asymptotic stability hybrid
systems without a hybrid Lyapunov function. The conditions required only a hybrid
Lyapunov candidate function for a class L(θ) hybrid system or a class H(θ) hybrid
system.

Theorem 3.45. For a complete hybrid systemH = (X , f, C, g,D) and a non-empty compact
set A ⊂ X ⊂ Rn, if there exists a hybrid Lyapunov candidate function V for (H,A) such
that it satisfies for some ϕ, λ ∈ P ,

(DL1) H is a class L(θ) hybrid system for some θ > 0;

(DL2) 〈∇V (x), f(x)〉 ≤ −ϕ(V (x)) for all x ∈ C \ A;

(DL3) V (g(x)) ≤ λ(V (x)) for all x ∈ D \ A;

(DL4) The following inequality is satisfied

∫ λ(a)

a

ds

ϕ(s)
≤ θ for all a > 0, (3.20)

then A is stable. Additionally, if there exists δ > 0 such that it satisfies

∫ λ(a)

a

ds

ϕ(s)
≤ θ − δ for all a > 0, (3.21)

then A is asymptotically stable.

Proof. Let us consider the first statement. It is enough to only show that any trajec-
tory starting in Ωβ , defined in the proof of Theorem 3.21, always lies Ωβ . Suppose
that x(0, 0) ∈ Ωβ . Since the condition (DL1) holds, the trajectory flows in C. If there
is no T > 0 such that x(T, 0) ∈ D then the compact set A is stable by Theorem 3.21,
(L1). Note that V with (DL2) and D = ∅ is a relaxed Lyapunov function. Therefore
we assume that there exists t1 > 0 such that x(t1, 0) ∈ D. Due to the condition (DL1),
we obtain that the trajectory jumps from x(t1, 0) ∈ D to x(t1, 1) = g(x(t1, 0)) ∈ C.
Since the condition (DL2) holds, we have for any j ∈ N, t ∈ [0, t1],

V ′(x(t, j)) ≤ −ϕ(V (x(t, j))),

and so

−
∫ t1

0

V ′(x(t, 0)) dt

ϕ(V (x(t, 0)))
≥ t1 − 0 = t1.

By substitution V (x(t, 0)) = s and using the condition (DL1), we therefore obtain

∫ V (x(0,0))

V (x(t1,0))

ds

ϕ(s)
≥ t1 ≥ θ.

Note that this implies V (x(t1, 0)) ≤ V (x(0, 0)). By replacing a by V (x(t1, 0)) in the
inequality (3.20) and using the condition (DL3), we then can write

∫ V (x(t1,1))

V (x(t1,0))

ds

ϕ(s)
=

∫ V (g(x(t1,0)))

V (x(t1,0))

ds

ϕ(s)
≤
∫ λ(V (x(t1,0)))

V (x(t1,0))

ds

ϕ(s)
≤ θ.
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FIGURE 3.13: Illustration of hybrid Lyapunov candidate function V
in Theorem 3.45.

With these two inequalities, it follows that

∫ V (x(0,0))

V (x(t1,0))

ds

ϕ(s)
≥
∫ V (x(t1,1))

V (x(t1,0))

ds

ϕ(s)
,

and this implies that V (x(t1, 1)) ≤ V (x(0, 0)) ≤ β. To guarantee that any solution
starting in Ωβ always lies in Ωβ , it is sufficient to apply induction to get that

V (x(tj+1, j + 1)) ≤ V (x(tj , j)) ≤ V (x(0, 0)) ≤ β

for all (tj , j) ∈ dom x, see Figure 3.13.

For the second statement, instead of the inequality (3.20), we suppose that the in-
equality (3.21) holds for some δ > 0. Assume that dom x is the union of [tj , tj+1]×{j}
for all j ∈ N. By condition (DL2), we have

−
∫ tj+1

tj

V ′(x(t, j)) dt

ϕ(V (x(t, j)))
≥ tj+1 − tj ≥ θ.

By substitution V (x(t, j)) = s, we therefore get

∫ V (x(tj ,j))

V (x(tj+1,j))

ds

ϕ(s)
≥ tj+1 − tj ≥ θ.

Note that it implies V (x(tj+1, j)) < V (x(tj , j)). Replacing a = V (x(tj+1, j)) in (3.21)
and then using the condition (DL3), we see that

∫ V (x(tj+1,j+1))

V (x(tj+1,j))

ds

ϕ(s)
=

∫ V (g(x(tj+1,j)))

V (x(tj+1,j))

ds

ϕ(s)
≤
∫ λ(V (x(tj+1,j+1)))

V (x(tj+1,j))

ds

ϕ(s)
≤ θ − δ.

From two last inequalities it follows that

∫ V (x(tj ,j))

V (x(tj+1,j))

ds

ϕ(s)
≥
∫ V (x(tj+1,j+1))

V (x(tj+1,j))

ds

ϕ(s)
+ δ,
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or it can be rewritten as
∫ V (x(tj ,j))

V (x(tj+1,j+1))

ds

ϕ(s)
=

∫ V (x(tj ,j))

V (x(tj+1,j))

ds

ϕ(s)
−
∫ V (x(tj+1,j+1))

V (x(tj+1,j))

ds

ϕ(s)
≥ δ.

This implies V (x(tj+1, j+ 1)) < V (x(tj , j)). So the sequence {V (x(tj , j))} is decreas-
ing for j →∞, and it satisfies the inequality

∫ V (x(tj ,j))

V (x(tj+1,j+1))

ds

ϕ(s)
≥ δ for all j ∈ N. (3.22)

Let us show that the sequence {V (x(tj , j))} converges to zero as j → ∞. Suppose
by contradiction that V (x(tj , j)) → α > 0 as j →∞. Let

c := inf
α≤s≤V (x(0,0))

ϕ(s),

then c > 0. From (3.22) we get

δ ≤
∫ V (x(tj ,j))

V (x(tj+1,j+1))

ds

ϕ(s)
≤ 1

c
(V (x(tj , j))− V (x(tj+1, j + 1))) ,

That is V (x(tj , j)) − V (x(tj+1, j + 1)) ≥ δc, but it contradicts to convergence of the
sequence {V (x(tj , j))}. So we have V (x(tj , j)) → 0 as j → ∞. Recall that V (x(t, j))
is decreasing on every interval [tj , tj+1], so

V (x(tj , j)) = sup
(tj ,j)�(t,j)�(tj+1,j+1)

V (x(t, j)).

Together with the inequality V (x(tj+1, j + 1)) < V (x(tj , j)) that holds for all j ∈ N.
Consequently it follows, from the result V (x(tj , j))→ 0 as j →∞, that V (x(t, j))→
0 as t+ j →∞, and then ‖x(t, j)‖A → 0 as t+ j →∞.

Remark 3.2. The above proof does not consider the case of finite jumps since the
system is eventually continuous. Along with the condition (DL2), it is clear thatA is
asymptotically stable.

Theorem 3.46. For a complete hybrid systemH = (X , f, C, g,D) and a non-empty compact
set A ⊂ X ⊂ Rn, if there exists a hybrid Lyapunov candidate function V for (H,A) such
that it satisfies for some ϕ, λ ∈ P ,

(DH1) H is a class H(θ) hybrid system for some θ > 0;

(DH2) 〈∇V (x), f(x)〉 ≤ ϕ(V (x)) for all x ∈ C ∩ U ;

(DH3) V (g(x)) ≤ λ(V (x)) for all x ∈ D ∩ U ;

(DH4) The following inequality is satisfied
∫ a

λ(a)

ds

ϕ(s)
≥ θ for all a > 0, (3.23)
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then A is stable. Additionally, if there exists δ > 0 such that it satisfies
∫ a

λ(a)

ds

ϕ(s)
≥ θ + δ for all a > 0, (3.24)

then A is asymptotically stable.

Remark 3.3. Either the inequality (3.23) or the inequality (3.24) implies λ < id .

Proof. We are going to show stability of the system H of class H(θ) under the above
conditions in the similar way of the proof of Theorem 3.45. For the first statement,
it is enough to only show that any trajectory starting in Ωβ , defined in the proof of
Theorem 3.21, always lies in Ωβ . It is easy to verify that ifH is an eventually discrete
hybrid system and the conditions (DH1)-(DH4) are satisfied, then A is stable for
H. Let us suppose that any maximal solution to H is not eventually discrete. Let
x(0, 0) ∈ Ωβ ∩ C. Due to (DH1), there exists t1 ∈ (0, θ] such that x(t1, 0) ∈ D. Since
ϕ ∈ P and (DH2) holds, we have for any t ∈ [0, t1],

V ′(x(t, 0)) ≤ ϕ(V (x(t, 0))),

and so ∫ t1

0

V ′(x(t, 0)) dt

ϕ(V (x(t, 0)))
≤ t1 − 0 = t1.

By substitution V (x(t, 0)) = s, we therefore obtain

∫ V (x(t1,0))

V (x(0,0))

ds

ϕ(s)
≤ t1 ≤ θ.

By replacing a by V (x(t1, 0)) in the inequality (3.23) and using the condition (DH3),
we then can write

∫ V (x(t1,0))

V (x(t1,1))

ds

ϕ(s)
=

∫ V (x(t1,0))

V (g(x(t1,0)))

ds

ϕ(s)
≥
∫ V (x(t1,0))

λ(V (x(t1,0)))

ds

ϕ(s)
≥ θ.

With these two inequalities, it follows that

∫ V (x(t1,0))

V (x(t1,1))

ds

ϕ(s)
≥
∫ V (x(t1,0))

V (x(0,0))

ds

ϕ(s)

which implies that V (x(t1, 1)) ≤ V (x(0, 0)) ≤ β. To guarantee that any solution
starting in Ωβ always lies in Ωβ , it is sufficient to apply induction to get that

V (x(tj+1, j + 1)) ≤ V (x(tj , j)) ≤ V (x(0, 0)) ≤ β

for all (tj , j) ∈ dom x.

For the second statement, instead of the inequality (3.20), we suppose that the in-
equality (3.21) holds for some δ > 0. Assume that the hybrid time domain dom x is
union of [tj , tj+1]× {j} for all j ∈ N. Since ϕ ∈ P , and (DH2) holds, we have

∫ tj+1

tj

V ′(x(t, j)) dt

ϕ(V (x(t, j)))
≤ tj+1 − tj .
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By substitution V (x(t, j)) = s and using (DH1), we therefore get

∫ V (x(tj+1,j))

V (x(tj ,j))

ds

ϕ(s)
≤ tj+1 − tj ≤ θ.

Replacing a = V (x(tj+1, j)) in (3.24) and then using (DH3), we see that

∫ V (x(tj+1,j))

V (x(tj+1,j+1))

ds

ϕ(s)
=

∫ V (x(tj+1,j))

V (g(x(tj+1,j)))

ds

ϕ(s)
≥
∫ V (x(tj+1,j))

λ(V (x(tj+1,j)))

ds

ϕ(s)
≥ θ + δ.

From two last inequalities it follows that

∫ V (x(tj+1,j))

V (x(tj+1,j+1))

ds

ϕ(s)
≥
∫ V (x(tj+1,j))

V (x(tj ,j))

ds

ϕ(s)
+ δ,

or it can be rewritten as
∫ V (x(tj ,j))

V (x(tj+1,j+1))

ds

ϕ(s)
=

∫ V (x(tj+1,j))

V (x(tj+1,j+1))

ds

ϕ(s)
−
∫ V (x(tj+1,j))

V (x(tj ,j))

ds

ϕ(s)
≥ δ.

This implies V (x(tj+1, j+ 1)) < V (x(tj , j)). So the sequence {V (x(tj , j))} is decreas-
ing for j →∞, and it satisfies the inequality

∫ V (x(tj ,j))

V (x(tj+1,j+1))

ds

ϕ(s)
≥ δ, for all j ∈ N. (3.25)

Let us show that V (x(tj , j))→ 0 as j →∞. Suppose by contradiction that V (x(tj , j))→
α > 0 as j →∞. Let c = infα≤s≤V (x(0,0)) ϕ(s). From (3.25) we get

δ ≤
∫ V (x(tj ,j))

V (x(tj+1,j+1))

ds

ϕ(s)
≤ 1

c
(V (x(tj , j))− V (x(tj+1, j + 1))) ,

That is V (x(tj , j)) − V (x(tj+1, j + 1)) ≥ δc, but it contradicts to convergence of the
sequence {V (x(tj , j))}. So we have V (x(tj , j))→ 0 as j →∞.

However, V (x(t, j)) may not be decreasing on any interval [tj , tj+1] since (DH2)
holds. We need more investigation on this case. Without loss of generality, suppose
that V (x(t, j)) is increasing on every interval [tj , tj+1], i.e., for any interval [tj , tj+1],
it holds ∫ V (x(tj+1,j))

V (x(tj ,j))

ds

ϕ(s)
= tj+1 − tj = θ,

which implies V (x(tj , j)) < V (x(tj+1, j)), see Figure 3.14.

Therefore, it yields V (x(tj+2, j+1)) < V (x(tj+1, j)) for any j ∈ N since V (x(tj+1, j+
1)) < V (x(tj , j)), and it holds (DH1) and (DH2). In consequence, we obtain that the
sequence {V (x(tj+1, j))} is decreasing for j →∞. By way of contradiction, suppose
that V (x(tj+1, j)) → β > 0 as j → ∞. Since each point in sequence {V (x(tj+1, j))}
is corresponding to tail end of jth-flow, there exists k > 0 such that (tk, k) ∈ dom x,
x(tk, k) /∈ A, and it satisfies ∫ β

V (x(tk,k))

ds

ϕ(s)
= θ.
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V (x(t, j))

t
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FIGURE 3.14: Illustration of hybrid Lyapunov candidate function V
in Theorem 3.46.

Since V is positive definite on U \ A, we have V (x(tk, k)) > 0, which contradicts to
convergence of sequence {V (x(tj , j))}.
Therefore, it yields V (x(tj+1, j)) → 0 as j → ∞. Together with convergence of
sequence {V (x(tj , j))}, it follows that V (x(t, j)) → 0 as t + j → ∞. Therefore
‖x(t, j)‖A → 0 as t+ j →∞.

The inequalities (3.20), (3.21), (3.23) and (3.24) are called dwell-time conditions, which
was proposed for impulsive systems in [11, 40, 51]. The following results are just spe-
cial cases of hybrid Lyapunov candidate functions with their corresponding dwell-
time conditions.

Corollary 3.47. For a complete hybrid system H = (X , f, C, g,D) and a non-empty com-
pact set A ⊂ X ⊂ Rn, if there exists a hybrid Lyapunov candidate function V for (H,A)
such that it satisfies for some c > 0, and d 6= 0:

(1) H is a class L(θ) for some θ > 0;

(2) 〈∇V (x), f(x)〉 ≤ −cV (x) for all x ∈ C ∩ U ;

(3) V (g(x)) ≤ e−dV (x) for all x ∈ D ∩ U ;

(4) −d ≤ c · θ,

then A is stable. Additionally, if it holds the inequality

− d ≤ c · θ − δ′ (3.26)

for some δ′ > 0, then A is asymptotically stable.

Proof. Consider the following inequalities

〈∇V (x), f(x)〉 ≤ −cV (x) = −ϕ(V (x)), V (g(x)) ≤ e−dV (x) = λ(V (x))

where ϕ(s) := cs and λ(s) := e−ds for all s > 0. Moreover, it holds

∫ λ(a)

a

ds

ϕ(s)
=
−d
c
≤ θ for all a > 0. (3.27)
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By Theorem 3.45, it consequently yields that A is stable for H. In addition, asymp-
totic stability of A can be guaranteed by the dwell-time condition

∫ λ(a)

a

ds

ϕ(s)
=
−d
c
≤ θ − δ for all a > 0, where δ =

δ′

c
. (3.28)

Remark 3.4. In case of d > 0 then the dwell-time condition (4) in the above corollary
is automatically satisfied for any θ > 0.

Remark 3.5. Various dwell-time conditions for impulsive systems given in the litera-
ture, see [36, 42], were provided by the inequality

− dN(t, s)− (c− λ)(t− s) ≤ µ, (3.29)

or in a more general form

− dN(t, s)− c(t− s) ≤ lnh(t− s). (3.30)

Note that the inequality (3.30) yields (3.29) by substitution h(x) := exp(µ − λx).
Additionally, by substitution µ := −d in the inequality (3.29) and choosing time
interval [tj , tj+1), where dom x = ∪ [tj , tj+1] × {j}, and x is a solution to H of class
L(θ) , it yields N(t, tj) = 0 and implies the inequality

c− λ
−d ≥

1

θ
. (3.31)

Moreover, from the dwell time condition (3.28), there exists λ ∈
[
cδ

θ
,∞
)

such that

it satisfies the following inequalities

cθ − λθ ≤ −d ≤ cθ − cδ,

which is equivalent to the inequality (3.31). We therefore summarize the relation
of these dwell-time conditions as follows: the dwell-time condition (3.28) implies
(3.31); the dwell-time condition (3.30) implies (3.29); and the dwell-time condition
(3.29) implies (3.31).

Corollary 3.48. For a complete hybrid system H = (X , f, C, g,D) and a non-empty com-
pact set A ⊂ X ⊂ Rn, if there exists a hybrid Lyapunov candidate function V for (H,A,U)
such that it satisfies for some c > 0, and d 6= 0:

(1) The systemH belongs to class H(θ) for some θ > 0;

(2) 〈∇V (x), f(x)〉 ≤ cV (x) for all x ∈ C ∩ U ;

(3) V (g(x)) ≤ e−dV (x) for all x ∈ D ∩ U ;

(4) d ≥ c · θ,

then A is stable. Additionally, if it holds the inequality

d ≤ c · θ + δ′ (3.32)
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for some δ′ > 0, then A is asymptotically stable.

Proof. The proof is omitted due to similarity of the proof of the previous corollary.

3.5 Partial Stability

Consider a state of hybrid systems consisting of time, counters or logical values. It
is clear to see that this part of state never tends to zero. Additionally from a practical
point of view, this part of state is insignificantly required for stability of the systems,
see [1]. For such systems, the definitions of stability and hybrid Lyapunov function
need to be modified. Suppose that the hybrid system H = (X , f, C, g,D) can be
decomposed to the following form:

ẋs = fs(xs), ẋc = f c(xs, xc) if x ∈ C, (3.33)
xs+ = gs(xs), xc+ = gc(xs, xc) if x ∈ D (3.34)

with x = (xs, xc) ∈ X ⊂ Rn, xs ∈ X s, xc ∈ X c, and X = X s ×X c. Here xs is the part
of the state x, which we are interested in view of stability.

To provide stability notions for a part of state and related results, let us introduce the
following definitions.

Definition 3.49 (Partial Stability). For a hybrid systemH = (X , f, C, g,D) in the form
of (3.33)–(3.34) and a non-empty compact set As ⊂ X s is said to be

• partially stable if for each ε > 0, there exists δ > 0 such that any solution x =
(xs, xc) to H with ‖xs(0, 0)‖As < δ satisfies ‖xs(t, j)‖As < ε for all (t, j) ∈
dom xs;

• partially attractive if any solution x = (xs, xc) to H satisfies ‖xs(t, j)‖As → 0 as
t+ j →∞;

• partially asymptotically stable if it is both partially stable and partially attractive.

Definition 3.50. Given a hybrid system H = (X , f, C, g,D) in the form of (3.33)–
(3.34) and a non-empty compact set As ⊂ X s ⊂ Rns . A function V : Rns → R is
called a hybrid Lyapunov candidate function for (H,As) if it is globally Lipschitz, and
there exist class K∞ functions ϕ1 and ϕ2 such that it satisfies

ϕ1(‖xs‖As) ≤ V (xs) ≤ ϕ2(‖xs‖As)

for all xs ∈ X s.

Definition 3.51. Given a hybrid system H = (X , f, C, g,D) in the form of (3.33)–
(3.34) and a non-empty compact set As ⊂ X s ⊂ Rns . A function V : Rns → R
is called a hybrid Lyapunov function for (H,As) if it is a hybrid Lyapunov candidate
function for (H,As) and satisfies

〈∇V (xs), fs(xs)〉 < 0 for all (xs, xc) ∈ C \ (As ×X c),
V (gs(xs))− V (xs) < 0 for all (xs, xc) ∈ D \ (As ×X c).
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Moreover, it is called relaxed hybrid Lyapunov function for (H,As) if it satisfies

〈∇V (xs), fs(xs)〉 ≤ 0 for all (xs, xc) ∈ C \ (As ×X c),
V (gs(xs))− V (xs) ≤ 0 for all (xs, xc) ∈ D \ (As ×X c).

The above definitions only focus on the state xs. Hybrid systems of the form (3.33)–
(3.34) allow us to model and additionally investigate stability of a desired part of the
state, while another part of the state is just time or other parameters usually not in
point of view for stability.

The following results shows an example to guarantee stability of impulsive systems
proposed in Example 3.3.

Theorem 3.52. For a complete impulsive system H = (X , F, C, G,D) defined in Example
3.3 and a non-empty compact set As ⊂ Rn, if there exists a hybrid Lyapunov candidate
function V for (H,As) such that it satisfies for some ϕ, λ ∈ P ,

(DL1) T = {t ∈ R>0 : tj+1 − tj ≥ θ} for some θ > 0;

(DL2) 〈∇V (x), f(x)〉 ≤ −ϕ(V (x)) for all (x, t) ∈ C \ (As × R≥0);

(DL3) V (g(x)) ≤ λ(V (x)) for all (x, t) ∈ D \ (As × R≥0);

(DL4) The following inequality holds

∫ λ(a)

a

ds

ϕ(s)
≤ θ for all a > 0, (3.35)

then As is partially stable. Additionally, if there exists δ > 0 such that it satisfies

∫ λ(a)

a

ds

ϕ(s)
≤ θ − δ for all a > 0, (3.36)

then As is partially asymptotically stable.

Proof. The proof is done in the same general manner as the proof of Theorem 3.45
since the time-variable t is not a part of state.

Example 3.53. Consider the impulsive system H = (X , f, C, g,D) defined in Exam-
ple 3.3 with x = (x1, x2) ∈ X = R× R≥0,

f(x) :=

(
−x3

1

1

)
, g(x) :=

(
x1 + x3

1

0

)
,

and T = Tθ := {t ∈ R>0 : tj+1 − tj ≥ θ} for some θ > 0.

Obviously, x never tends to zero since x2 indicated time is a part of the state. How-
ever, our focused part of state is only x1, and it may converge to zero in long-term
trends. Let us denote x := (xs, xc), xc := x2, xs := x1 ∈ X s := R, fs(xs) := −(xs)3,
gs(xs) := xs + (xs)3 and As = {0} ⊂ X s. Define the function V : R → R≥0 by
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FIGURE 3.15: Numerical solutions to the hybrid system in Example
3.53 with various Tθ.

V (xs) := |xs|. Consider the following

〈∇V (xs), fs(xs)〉 = sign (xs) · (−(xs)3) = −(V (xs))3 = −ϕ(V (xs)),

V (gs(xs)) =
∣∣xs + (xs)3

∣∣ ≤ |xs|+ |xs|3 = V (xs) + (V (xs))3 = λ(V (xs))

where the functions ϕ : R≥0 → R≥0 and λ : R≥0 → R≥0 are defined as follows:

ϕ(s) := s3, λ(s) := s+ s3.

Consequently, we consider the dwell-time condition

∫ λ(a)

a

ds

ϕ(s)
=

∫ a+a3

a

ds

s3
=

a2 + 2

2(a2 + 1)2
< 1 for all a > 0.

By Theorem 3.52, As = {0} is partially asymptotically stable forH if θ ≥ 1.

In Figure 3.15, we provide numerical simulations of this with the initial condition
x1(0, 0) = 1 along with various impulse time sequences Tθ. It is clear to see that the
frequency of discrete dynamics and period of continuous dynamics play in impor-
tant role for stability in the system. In case of T0.5, the trajectory x1 grows unbounded
while ‖x1(t, j)‖ → 0 as t+ j →∞ in the cases of Tθ, with θ ≥ 1.
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Chapter 4

Interconnected Hybrid Dynamical
Systems

This chapter addresses the question of the composition and decomposition of hy-
brid dynamical systems. Motivated by the results in [10], we propose an extended
framework of hybrid dynamical systems allowing us to consider an interconnection
of several hybrid dynamical systems as one hybrid dynamical system and to de-
compose one large hybrid dynamical system into several subsystems. Results on
the stability analysis of the interconnection and subsystems are also provided.

One of many currently active research field is related to interconnected large-scale
systems [51–57]. Interconnections of hybrid dynamical systems were considered in
[10, 58–63]. However it turns out, that the description of an interconnection in case
of hybrid dynamical systems is not a trivial issue. For example, stability results for
interconnections are possible only under some restrictive and physically unnatural
conditions, see [61].

In particular, a natural way to consider such interconnections leads to the existence
of solutions that are physically meaningless. This will be demonstrated by a simple
example of an interconnection of two bouncing balls that are connected by an elastic
spring. We discuss these kind of problems occurring in interconnections of hybrid
dynamical systems, and we also suggest a possible way out to solve them.

4.1 Motivation

Two Bouncing Balls

Consider two bouncing balls with states 1x = (1x1,
1x2) ∈ R2 and 2x = (2x1,

2x2) ∈
R2 respectively. The upper-left index indicates the number of each ball. Let the balls
be interconnected by an elastic spring with elastic coefficient µ ≥ 0, see Figure 4.1.
The case µ = 0 means that the balls are disconnected and move independently. The
mass of the spring is ignored. The motion of balls is vertical along different lines, so
that a collision is not possible. In this case there is an interaction force between the
bouncing balls due to the elastic spring. By Hooke’s law this force is proportional to
the strain of the spring and is given by ±µ(1x1 − 2x1).

Hence the dynamics of each ball is influenced by the other one, and it is given by the
following equations, where again the upper index denotes the number of the ball:
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µ

FIGURE 4.1: Two bouncing ball connected with an elastic spring.

1ẋ=

(
1x2

−γ−µ(1x1− 2x1)

)
:= 1f(1x, 2x), (1x, 2x) ∈ 1C,

1x
+

=

(
1x1

−λ 1x2

)
=: 1g(1x), (1x, 2x) ∈ 1D,

and
2ẋ=

(
2x2

−γ+µ(1x1− 2x1)

)
:= 2f(1x, 2x), (1x, 2x) ∈ 2C,

2x
+

=

(
2x1

−λ 2x2

)
=: 2g(2x), (1x, 2x) ∈ 2D,

where

1C = {(1x, 2x) ∈ R4 : 1x1 ≥ 0},
2C = {(1x, 2x) ∈ R4 : 2x1 ≥ 0},
1D = {(1x, 2x) ∈ R4 : 1x1 = 0, 1x2 ≤ 0},
2D = {(1x, 2x) ∈ R4 : 2x1 = 0, 2x2 ≤ 0}.

Let us now consider this interconnection of two bouncing balls as one hybrid dy-
namical system. For this purpose we need to define the new state and new sets C
and D for the whole interconnection. It is natural to define z := (1x, 2x) ∈ R4 as the
state of the whole system.

Now we have to define C and D as well as the functions f and g describing the flow
and jumps respectively for the whole system. Since it is natural to understand that
if any time one of the balls jumps, the state z ∈ R4 jumps, i.e., the whole intercon-
nection undergoes a jump, we hence define D := 1D ∪ 2D ∈ R4 and C := 1C ∩ 2C. A
choice for f and g is as follows

f(z) := (1fT , 2fT )T , (4.1)

g(z) := (1g̃T , 2g̃T )T , (4.2)

where for i = 1, 2

ig̃(z) = ig̃(1x, 2x) :=

{
ig(ix), if (1x, 2x) ∈ iD,
ix, otherwise.
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With this notation the interconnection can be written as one hybrid system without
inputs in the form

ż = f(z), z ∈ C, (4.3)

z+ = g(z), z ∈ D. (4.4)

The same approach was also used in [63, 64] to describe an interconnection of hy-
brid dynamical systems. Moreover we have not seen any other choice of choosing
C, D, f and g in the literature.

Solutions and Stability Problems

We do not see any other reasonable definition for C, D, f , g in the given setting
written above. However, this choice leads to the following problems illustrated
by the example. Consider the following initial condition 1x1(0) = 1x2(0) = 0 and
2x1(0) = h > 0, 2x2(0) = v ∈ R. Then observe that the following hybrid arc

1x1(t, j) = 1x2(t, j) = 0, 2x1(t, j) = h, 2x2(t, j) = v (4.5)

is a solution for (4.3)-(4.4) with the hybrid time domain given by {(0, j)}∞j=0. This can
be checked by a direct substitution of (4.5) into (4.3)-(4.4) and taking into account that
in the intersection Ci ∩Di both jumps and continuous flow are allowed. In this case
tmax = 0 and the system jumps infinitely many times from a non-zero state to the
same state.

This "frozen" solution appears due to the interconnection and leads to the following
problems that are relevant not only for the considered example but for interconnec-
tions of other hybrid dynamical systems with a stable equilibrium point:

• The above particular solution has no physical meaning.

• This solution shows that the resting state, i.e., the origin, is not asymptotically
stable any more.

This artificial loss of stability is counterintuitive. It happens due to the physically
meaningless solution that needs to be ruled out by a suitable improvement of the
notion of hybrid dynamical system. This is the main motivation of the extended
framework of hybrid systems, and we provide such a generalization of hybrid dy-
namical systems below.

Moreover, there is another issue apart from the mentioned problems. In general,
there is a solution corresponding to the case of one ball reaching its resting state in a
finite time (after infinite number of jumps, its continuous motion stops for while) and
then being pulled out from this state by the second ball (and flows again for a while
after that). This problem is very interesting, but it will not be considered in this work
because it appears not necessarily with an interconnection but can happen with only
one ball with external input. This problem is related to the issue of extension of
solutions over the Zeno behavior [43–46]. We will later give some comments about
that issue.

To solve the problem of artificial solutions and related stability loss, we are going to
propose an extended framework of a hybrid dynamical system in the next section.
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4.2 Generalized Hybrid Dynamical Systems

Throughout this chapter we fix positive numbers n and iN ∈ N such that
∑n

i=1
iN =

N . Denote Nn = {1, 2, . . . , n}. Let x ∈ X ⊂ RN be partitioned into n parts: x =

(1x, . . . , xn) with ix ∈ iX ⊂ RiN and u ∈ U ⊂ RM be an external input. For i ∈ Nn,
suppose that each iX is open. Let iC ⊂ X and iD ⊂ X be given and relatively closed
in iX . Let if : RN × U → RiN and ig : RN × U → RiN be given and continuous. For
any given (x, u) ∈ X × U , define the index sets

IC(x, u):={i : (x, u) ∈ iC × U}, ID(x, u):={i : (x, u) ∈ iD × U}. (4.6)

For any (x, u) such that (x, u) ∈ (iC ∪ iD) × U ∀i ∈ Nn, it holds that IC ∪ ID = Nn.
Note that if iC ∩ iD 6= ∅ for some i, it holds that IC ∩ ID 6= ∅.
A generalized hybrid dynamical systemH is given by

iH
{

iẋ = if(x, u), i ∈ IC(x, u);
ix+ = ig(x, u), i ∈ ID(x, u),

(4.7)

which is denoted by
{
iH
}n
i=1

.

In case for a given x and u there are some i ∈ IC ∩ ID 6= ∅, it is allowed for ix that it
can flow or jump. This is similar to the case when C ∩ D 6= ∅ for system (4.3)-(4.4),
where the system may flow or jump. In the special case iD = D and iC = C for
all integer i ∈ [1, n] we arrive to the same definition of a hybrid dynamical system
as in [65], whose trajectories can flow in continuous time and also jump at discrete
instants.

However, our definition is more general due to the possibility to have continuous
flows for some parts of the state also at those instants when other parts can jump.
This definition allows to consider one large hybrid dynamical system as an inter-
connection of several ones or vice versa to consider several interconnected hybrid
dynamical systems as one larger hybrid dynamical system. The idea is to partition
the state of a system in several parts that are allowed to jump separately while other
parts are allowed to flow. In this case, we have to take into account such situations
when one part of the state "stops" while another part "moves".

Remark 4.1. It is obvious to see that a generalized hybrid dynamical system
{
iH
}n
i=1

of the form (4.7) is identical to a hybrid system in the form (3.1) if x ∈ X ⊂ RN , for
some positive integer N , be partitioned into one part.

4.3 Concept of Solutions

4.3.1 Generalized Hybrid Time Domains

For a generalized hybrid system H =
{
iH
}n
i=1

, we suggest that solutions is param-
eterized by t, the amount of time passed, and ik, the number of jumps that have
occurred in the subsystem iH. Note that the upper-left index numerates the subsys-
tem iH and the parts of the state x, i.e., i corresponds to ix and ik counts the jumps of
this part of the state. We denote that the number k corresponds to the total number
of jumps of all parts of the state.
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Definition 4.1. For a generalized hybrid systemH =
{
iH
}n
i=1

, a point

k =
(

1k, 2k, . . . , nk
)
∈ Nn

is called a multi-index. For a number r ∈ R, multi-indices k =
(

1k, 2k, . . . , nk
)
∈ Nn

and s =
(

1s, 2s, . . . , ns
)
∈ Nn, define

r · (k + s) :=
(
r ·
(

1k + 1s
)
, r ·

(
2k + 2s

)
, . . . , r · (nk + ns)

)
.

Denote the zero multi-index by 0 := (0, . . . , 0) ∈ Nn. A multi-index p = (1p, . . . , np)
is said to be binary if ip ∈ {0, 1} for each i ∈ {1, 2, . . . , n}.
Define the function ς : Nn → N by

ς(k) = ς(1k, . . . , nk) := 1k + . . .+ nk. (4.8)

Definition 4.2 (Generalized Hybrid Time Domains). For a generalized hybrid sys-
tem H =

{
iH
}n
i=1

, a set E ⊂ R≥0 × Nn is called a compact generalized hybrid time
domain if

E =
K−1⋃

k=0

(
[tk, tk+1]×

{
1k
}
×
{

2k
}
× . . .× {nk}

)
(4.9)

with k = ς
(

1k, 2k, . . . , nk
)
, for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tK .

In addition, we assume for each i = 1, 2, . . . , n and all k = 0, 1, . . . ,K − 2 that

ik ≤ i(k + 1).

It is a generalized hybrid time domain if for all (t, k) ∈ E,

E ∩
(

[0, t]×
{

0, 1, 2, . . . , ς(k)
}n)

is a compact generalized hybrid time domain.

According to the above definition, a generalized hybrid time domain is written by a
union of finite or infinite sequence of [tk, tk+1]× {1k} × · · · × {nk} ⊂ R≥0 × Nn with
k = 1k+ · · ·+ nk , where the last interval is allowed to be of the form [tk, T )×{1k}×
{2k} × · · · × {nk}with T finite or T =∞.

Definition 4.3 (The order on generalized hybrid time domains). Given E a general-
ized hybrid time domain containing (t1, k1) and (t2, k2), we define

(t1, k1) � (t2, k2) ⇐⇒ t1 + ς(k1) ≤ t2 + ς(k2),

and,
(t1, k1) ≺ (t2, k2) ⇐⇒ t1 + ς(k1) < t2 + ς(k2).
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Definition 4.4. Given a generalized hybrid time domain E,

sup
t
E := sup

{
t ∈ R≥0 : ∃ k ∈ Nn, (t, k) ∈ E

}
,

and
sup
k
E := sup

{
ς(k) : ∃t ∈ R≥0, (t, k) ∈ E

}
.

Furthermore supE := (suptE, supk E), and length (E) := suptE + supk E.

Definition 4.5 (Generalized Hybrid Arc). Let E be a generalized hybrid time do-
main. A function x : E → Rn is called a generalized hybrid arc on E if for each
k = ς(k) ∈ {0, 1, 2, . . . , (supk E − 1)} the function t 7→ x(t, k) is locally absolutely
continuous on the interval [tk, tk+1].

Definition 4.6. Given a generalized hybrid time domainE and a generalized hybrid
arc x : E → Rn, define the domain of x by

dom x := E,

and define the range of x by

rge x :=
{
y ∈ Rn : ∃(t, k) ∈ dom x, x(t, k) = y

}
.

Definition 4.7 (Types of Generalized Hybrid Arcs). A generalized hybrid arc x is
said to be

(1) nontrivial if rge x contains at least two points;

(2) bounded if sup {‖y‖ : y ∈ rge x} <∞;

(3) complete if length (dom x) =∞;

(4) discrete if supt dom x = 0;

(5) continuous if supk dom x = 0;

(6) Zeno if it is complete and supt dom x <∞;

(7) eventually discrete if T = supt dom x < ∞ and dom x ∩ ({T} × Nn) contains at
least two points;

(8) eventually continuous if J = supk dom x <∞ and dom x ∩ (R≥0 × {J}n) contains
at least two points;

(9) absolutely hybrid if it is neither eventually discrete nor eventually continuous.

4.3.2 Solutions to Interconnections

This section addresses a topic of solutions to a generalized hybrid system H ={
iH
}n
i=1

and some additional discussion of artificial solutions to the interconnected
bouncing balls.

Let 1tmax,
2tmax, . . . ,

ntmax be fixed positive real numbers and H =
{
iH
}n
i=1

be a
generalized hybrid system. Throughout the rest of this chapter, these are Zeno times
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for 1x, 2x, . . . , nx respectively. For simplicity, let us assume that there exists one and
only one Zeno time itmax for ix.

Definition 4.8 (Solutions to a generalized hybrid dynamical system). For a general-
ized hybrid system H =

{
iH
}n
i=1

with an initial condition x(0, 0) = ξ ∈ X , a pair
of a generalized hybrid arc x and an external input u is called a solution to H if the
following is satisfied:

(i) For any i, (ξ, u(0, 0)) ∈
(
iC ∪ iD

)
× U ,

(ii) For any multi-index k ∈ Nn and almost all t ∈ R≥0 with (t, k) ∈ dom x, the
following is satisfied

iẋ(t, k) = if(1x(min{t, 1tmax}, k), . . . , nx(min{t, ntmax}, k), u(t, k)),

for any i ∈ IC(1x(t, k), . . . , nx(t, k), u(t, k)),

(iii) For any (t, k) ∈ dom x, binary multi-index p ∈ Nn such that (t, k + p) ∈ dom x
and ς(p) ≥ 1,

ix+(min{t, ktmax}, k + p) = ig(1x(min{t, 1tmax}, k), . . . , nx(min{t, ntmax}, k), u(t, k))

for any i ∈ ID(1x(t, k), . . . , nx(t, k), u(t, k)).

Remark 4.2. The numbers itmax are not known in advance. Each one should be found
as for example in (3.11) and should be considered as a part of solution or, more
precisely, of its hybrid time domain. The number itmax is the total time during which
the i-th part of the state flows.

Definition 4.9. For a generalized hybrid system H =
{
iH
}n
i=1

, a solution to H is
said to be maximal if it cannot be extended. Denoted by SH(ξ) the set of all maximal
solutions toH with the initial condition x(0, 0) = ξ ∈ X .

Definition 4.10. A generalized hybrid systemH =
{
iH
}n
i=1

is said to be complete if
any maximal solution to H is complete. It is called a Zeno hybrid system if any of
its maximal solutions is Zeno. It is called an eventually continuous (discrete) hybrid
system if any of its maximal solutions is eventually continuous (discrete). It is called
an absolutely hybrid system if any of its maximal solutions is absolutely hybrid.

Definition 4.11. For a generalized hybrid arc x, define

T (k, x) :=
{
t ∈ R≥0 : (t, k) ∈ dom x, ς(k) = k

}
.

Definition 4.12 (Generalized Hybrid Systems of Class L(θ)). Let H =
{
iH
}n
i=1

be a
generalized hybrid system and θ be a positive real number.

A generalized hybrid arc x is said to be of class L(θ) if either

K := sup
k

dom x = 0
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or the inequality
inf T (k + 1, x)− inf T (k, x) ≥ θ

is satisfied for k ∈ {0, 1, . . . ,K − 1}.
A generalized hybrid system H is said to be class L(θ) if any maximal solution to H
is of class L(θ).

Definition 4.13 (Generalized Hybrid Systems of Class H(θ)). Let H =
{
iH
}n
i=1

be a
generalized hybrid system and θ be a positive real number.

A generalized hybrid arc x is said to be of class H(θ) if

K := sup
k

dom x > 0

and the inequality
inf T (k + 1, x)− inf T (k, x) ≤ θ

is satisfied for j ∈ {0, 1, . . . ,K − 1}.
A generalized hybrid systemH is said to be class H(θ) if any maximal solution toH
is of class H(θ). .

On Additional Artificial Solutions

The advantage of Definition 4.2 and Definition 4.8 is, in particular, that we can avoid
the meaningless "frozen" solutions shown in the example of two bouncing balls con-
nected by a spring given in the section 4.1. To see this let us again consider the
interconnection (4.1)-(4.1) as one hybrid dynamical system of the form (4.7) with
n = 2, 1N = 2N = 2, the same sets iC and iD and U = ∅. The functions if and ig
remain also unchanged. The sets IC(x) and ID(x) for the interconnection are given
by

IC(x) = {1, 2}, ID(x) = ∅ if 1x1 > 0, 2x1 > 0,

IC(x) = {1, 2}, ID(x) = {1} if 1x1 = 0, 2x1 > 0,

IC(x) = {1, 2}, ID(x) = {2} if 1x1 > 0, 2x1 = 0,

IC(x) = {1, 2}, ID(x) = {1, 2} if 1x1 = 0, 2x1 = 0.

Consider the same initial conditions 1x1(0) = 1x2(0) = 0, 2x1(0) = h, 2x2(0) = v.
Now observe that the hybrid arc (4.5) is not a solution to the whole system (4.7)
with these data, because it corresponds to IC = {1, 2}, ID = {1}, i.e., the second
subsystem is not allowed to jump. From this we see that our approach naturally
avoids the additional artificial solutions discussed above.

The first arcs of solution to our example corresponding to the continuous flow up to
the first jump with initial conditions 1x1(0) = 1x2(0) = 0, 2x1(0) = h, 2x2(0) = v is
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Fig. 1. Trajectories two bouncing balls connected by a spring.

define the new state and new sets C and D for the whole
interconnection. It is natural to define z := (x1, x2) 2 R4 as
the state of the whole system. Now we have to define C and
D as well as the functions f and g describing the flow and
jumps respectively for the whole system.

Any time one of the balls jumps, the state z 2 R4 jumps,
i.e., the whole interconnection undergoes a jump. Hence it
is natural to define D := D1 [D2 2 R4 and C := C1 \C2.
A natural choice for f and g is as follows

f(z) := (f1T , f2T )T , (20)

g(z) := (eg1T , eg2T )T , (21)

where for i = 1, 2

egi(z) = egi(x1, x2) :=

⇢
gi(xi), if (x1, x2) 2 Di,
xi, otherwise.

With this notation the interconnection can be written as one
hybrid system without inputs in form (4)

ż = f(z), z 2 C, (22)

z+ = g(z), z 2 D. (23)

The same approach was also used in [6], [22] to describe an
interconnection of hybrid systems.
B. Solution and stability problems

We do not see any other reasonable definition for C, D,
f , g in the given setting then written above. However, this
choice leads to the following problems illustrated by the
example. Consider the following initial condition x1

1(0) =
x1

2(0) = 0 and x2
1(0) = h > 0, x2

2(0) = v 2 R. Then
observe that the following hybrid arc

x1
1(t, j) = x1

2(t, j) = 0, x2
1(t, j) = h, x2

2(t, j) = v
(24)

is a solution for (22)-(23) with the hybrid time domain given
by {(0, j)}1j=0. This can be checked by a direct substitution
of (24) into (22)-(23) and taking into account that in an
intersection Ci \ Di both jumps and continuous flow are

Fig. 2. Time domain of two interconnected balls.

allowed. In this case tmax = 0 and the system jumps
infinitely many times from a non-zero state to the same state.
This ”frozen” solution appears due to the interconnection and
leads to the following problems that are relevant not only
for the considered example but for interconnections of other
hybrid systems with a stable equilibrium point:

• The above particular solution has no physical meaning.
• This solution shows that the resting state is not GAS

any more.
This artificial loss of stability is contra intuitive, it happens
due to the physically meaningless solution that needs to be
ruled out by a suitable improvement of the notion of hybrid
system. This is the main motivation of the paper and we
provide such a generalization of hybrid systems below.

Apart of the mentioned problems there is another one:
In general there is a solution corresponding to the case
when one ball reaches its resting state in a finite time (after
infinite number of jumps its continuous motion stops for
while) and then it is pulled out from this state by the
second ball (and moves again continuously for a while after
that). This problem is very interesting but it will not be
considered in this paper, because it appears not necessarily
due to the interconnection but can happen with only one
ball with external input. This problem is related to the issue
of extension of solutions over the Zeno behavior [1], [29]
and [18]. We give some comments later about that issue but
in the rest of the paper for simplicity we assume that each
subsystem can have at most one accumulation time point of
jumps, i.e., at most one Zeno type motion can happen with
each subsystem.

To solve the problem of artificial solutions and related
stability loss we propose a slightly extended definition of a
hybrid system in the next section.

IV. GENERALIZED HYBRID SYSTEMS

Throughout this section we fix numbers Ni, n 2 N such
that

Pn
i=1 Ni = N . Let x 2 RN be partitioned into n parts:

x = (x1, . . . , xn) with xi 2 RNi , where Ni are given fixed
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allowed. In this case tmax = 0 and the system jumps
infinitely many times from a non-zero state to the same state.
This ”frozen” solution appears due to the interconnection and
leads to the following problems that are relevant not only
for the considered example but for interconnections of other
hybrid systems with a stable equilibrium point:

• The above particular solution has no physical meaning.
• This solution shows that the resting state is not GAS

any more.
This artificial loss of stability is contra intuitive, it happens
due to the physically meaningless solution that needs to be
ruled out by a suitable improvement of the notion of hybrid
system. This is the main motivation of the paper and we
provide such a generalization of hybrid systems below.

Apart of the mentioned problems there is another one:
In general there is a solution corresponding to the case
when one ball reaches its resting state in a finite time (after
infinite number of jumps its continuous motion stops for
while) and then it is pulled out from this state by the
second ball (and moves again continuously for a while after
that). This problem is very interesting but it will not be
considered in this paper, because it appears not necessarily
due to the interconnection but can happen with only one
ball with external input. This problem is related to the issue
of extension of solutions over the Zeno behavior [1], [29]
and [18]. We give some comments later about that issue but
in the rest of the paper for simplicity we assume that each
subsystem can have at most one accumulation time point of
jumps, i.e., at most one Zeno type motion can happen with
each subsystem.
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FIGURE 4.2: A solution of two bouncing ball with its corresponding
generalized hybrid time domain.

given by

1x1(t, 0) = − 1

2µ
e−2µt− 1

12
γµt4+

1

6
µvt3−1

2
γt2−t+ 1

2µ
,

1x2(t, 0) = e−2µt − 1

3
γµt3 +

1

2
µvt2 − γt− 1,

2x1(t, 0) =
1

2µ
e−2µt+

1

12
γµt4−1

6
µvt3−1

2
γt2+(v+1)t

+h− 1

2µ
,

2x2(t, 0) = −e−2µt +
1

3
γµt3 − 1

2
µvt2 − γt+ (v + 1).

Further arcs can be calculated iteratively. A simulated solution and the correspond-
ing generalized hybrid time domain are shown in Figure 4.2.

4.4 Stability

We are going to introduce different stability notions for interconnected hybrid sys-
tems and showing the relation between them. Moreover, we give a more general
formulation of input-to-state stability (ISS) than those used in the literature, e.g., in
[63, 66–68]. For simplicity, let us assume throughout this work that each subsystem
iH is complete, and its initial condition satisfies ix(0) = iξ ∈ iC ∪ iD.

Through the end of this chapter, for any i ∈ Nn, let each iA ⊂ iX be a non-empty
compact set and

A := 1A× . . .× nA. (4.10)

It is obvious to see that A is a non-empty compact subset of X .

Generally a hybrid systemH of the form (4.7) also has an input uwhich not necessar-
ily equal to zero. Even when we consider a decomposition of one large hybrid sys-
tem without inputs, it turns that the subsystem has inputs from other subsystems. In
general a decomposed system contains both internal inputs and external inputs. We
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are interested in a stability notion taking such inputs into account. Input-to-state sta-
bility provides a natural framework in which to formulate notions of stability with
respect to input perturbations [69]. The essential supremum norm of a measurable
function φ : R≥0 → Rm is denoted by

‖φ‖∞ := ess sup {‖φ(s)‖ , s ∈ R≥0} .

Throughout this chapter, we require the assumption of measurable essentially bounded
input u.

Definition 4.14 (Class KLn). Let a positive n ∈ N be fixed. A function

β : R≥0 × R≥0 × · · · × R≥0︸ ︷︷ ︸
n

→ R≥0

is said to be of classKLn if for fixed non-negative numbers ri for i = 1 . . . n it satisfies
β(·, r1, . . . , rn) ∈ K, and it additionally holds for any i ∈ {1, 2, . . . , n} and fixed s ≥ 0
that β(s, r1, r2, . . . , ri−1, ·, ri+1, . . . , rn) ∈ L.

Alternatively we can say that a function belonging to KLn if it belongs to class K
wrt the first argument while the other argument are all fixed; it belongs to class L
wrt the second argument while the other are fixed; it belongs to class Lwrt the third
while the other are fixed; and so on.

Definition 4.15 (Input-to-State Stability). A complete generalized hybrid system
H =

{
iH
}n
i=1

is said to be input-to-state stable (ISS) wrt a non-empty compact set
A ⊂ X if there exist β ∈ KLn+1 and γ ∈ K∞ such that any solution pair (x, u)
with x(0, 0) = ξ ∈ X satisfy

∥∥x(t, k)
∥∥
A ≤ max

{
β(‖ξ‖A , t, k), γ(‖u‖∞)

}
, ∀(t, k) ∈ dom x. (4.11)

The function γ is called an ISS gain forH.

Particularly by the properties of both functions β and γ in (4.11), any solution to an
ISS hybrid system wrt A is bounded and does not diverge from A in the long-run.
Note that the abbreviation ISS stands for either input-to-state stability or input-to-
state stable which depends on context.

Remark 4.3. By using the inequalities

max
i=1,...,n

{xi} ≤
n∑

i=1

xi ≤ n max
i=1,...,n

{xi} ,

the inequality (4.11) can be replaced by the form:
∥∥x(t, k)

∥∥
A ≤ β̃(‖ξ‖A , t, k) + γ̃(‖u‖∞), ∀(t, k) ∈ dom x,

where the function β̃ ∈ Kn+1 and γ̃ ∈ K∞ generally differ from β and γ in (4.11). We
need both the maximization form and the summation form to deal with ISS proper-
ties.
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Additional stability notions proposed in [66] are also considered in this work. Since
our definition of ISS is given in a more general way, some characterizations of the
following stability notions for generalized hybrid systems need further investiga-
tions.

Definition 4.16 (Global Stability). A generalized hybrid systemH =
{
iH
}n
i=1

is glob-
ally stable wrt a non-empty compact set A ⊂ X if there exist σ, γ ∈ K∞ such that any
solution pair (x, u) with x(0, 0) = ξ ∈ X satisfies

∥∥x(t, k)
∥∥
A ≤ max {σ(‖ξ‖A), γ(‖u‖∞)} , ∀(t, k) ∈ dom x.

Definition 4.17 (0-Input Stability). A complete generalized hybrid systemH =
{
iH
}n
i=1

is 0-input stable wrt a non-empty compact setA ⊂ X if there exists β ∈ KLn+1 such that
any solution pair (x, u) with x(0, 0) = ξ ∈ X satisfies

∥∥x(t, k)
∥∥
A ≤ β(‖ξ‖A , t, k) ∀(t, k) ∈ dom x.

Theorem 4.18. If a complete generalized hybrid system H =
{
iH
}n
i=1

is ISS wrt a non-
empty compact set A ⊂ X , then it is globally stable and 0-input stable wrt A.

Proof. ISS leads to global stability by taking σ(‖ξ‖A) := β(‖ξ‖A , 0, . . . , 0). Moreover,
it leads to 0-input stability under a consideration of u = 0.

Definition 4.19 (Asymptotic Gain Property). A hybrid system H =
{
iH
}n
i=1

has
asymptotic gain property wrt a non-empty compact set A ⊂ X if there exists γ ∈ K∞
such that any solution pair (x, u) with x(0, 0) = ξ ∈ X is bounded and satisfies

lim sup
(tk,k)∈dom x, tk+ς(k)→∞

∥∥x(tk, k)
∥∥
A ≤ γ(‖u‖∞).

Intentionally this work skips the characterizations of the extended notion of input-
to-state stability for interconnected hybrid systems. However, we expect that some
results like the contribution in [66] may be achieved in a similar way, which need
further study.

4.5 ISS-Lyapunov Theorems

As we can see from stability conditions in the previous chapter, hybrid Lyapunov
theorems are useful for the investigation of stability for hybrid dynamical systems
without inputs. In this section, we provide conditions to guarantee ISS property for
a generalized hybrid systemH =

{
iH
}n
i=1

of the form (4.7) by using some extensions
of our results in Chapter 3.

Let H =
{
iH
}n
i=1

be a complete generalized hybrid system. Due to difficulties of its
generalized hybrid time domains, let us firstly start from stability for each subsys-
tem iH for all i ∈ Nn. Suppose that each subsystem iH is complete. To formulate
stability notions for subsystem iH, we necessarily consider both external input u and
additional internal inputs from other subsystems jH for j ∈ Nn\{i}. Therefore, each
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subsystem iH has the total input iv denoted by

iv := (1x, . . . , i−1x, i+1x, . . . , nx, u), (4.12)

together with the assumption that the inequality
∥∥iv
∥∥
∞ <∞ is satisfied.

The subsystem iH is ISS wrt iA if there exist iβ ∈ KLn+1, and iγ ∈ K∞ such that any
solution pair (ix, iv) with ix(0, 0) = iξ ∈ iX satisfies

∥∥ix(t, k)
∥∥
iA ≤ max

{
iβ(
∥∥iξ
∥∥
iA , t, k), iγ(

∥∥iv
∥∥
∞)
}
, ∀(t, k) ∈ dom ix, (4.13)

Remark 4.4. Consider the case of an interconnection H =
{
iH
}n
i=1

of the form (4.7)
consisting of only one subsystem, i.e., x ∈ X is partitioned into 1 part. It is obvious to
see that H has only one input, which is u, and the stability notion for the subsystem
is identical to the stability notion of the interconnection.

For a convenience reason, let us introduce the following multi-indices.

Definition 4.20 (Multi-index Representations). A multi-index (q1, q2, . . . , qn) ∈ Nn is
represented by 1i if qi = 1, and it is represented by 0i if qi = 0. For a multi-index
k = (k1, k2, . . . , kn) ∈ Nn, denoted by

k = 1i ⇐⇒ ki = 1,

k = 0i ⇐⇒ ki = 0.

Remark 4.5. Either 1i or 0i represents a multi-indexes, which is unnecessary unique,
satisfying the certain conditions. That is not the case of comparison with 1i or 0i. For
instance, given η a positive integer, η · 11 is not equal to 11 + . . .+ 11︸ ︷︷ ︸

η

in general.

Secondly, we need to generally parameterize solutions to iH in order to point out
the time when trajectories start and stop the flows.

Without loss of generality, assume that a maximal solution (ix, iv) to the subsystem
iH starts by flow, and its corresponding generalized hybrid time domain dom ix is a
union of elements of the form [tk, tk+1]×

{
1k
}
× . . .× {nk}where k = 1k + . . .+ nk.

The hybrid arc ix has a first flow from the point

ix(t0, 0) = ix(0, 0) to ix(tς(0i), 0i).

Note that the jump counter of ix is still zero since there is no jump occurring in iH,
but the other jump counters are possibly equal to some positive integers.

Let {ηj} be a sequence of natural numbers including zero, which η0 = 0. Suppose
additionally that, for any integer j ≥ 1, the subsystem iH exhibits ηj jumps between
the jth-flow and the (j + 1)th-flow.

Therefore we have
tς(0i+η11i)

= tς(0i),
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ix(t0, 0)
ix(tς(0i), 0i)

ix(tς(0i+η11i), 0i + η11i)

ix(tς(20i+η11i), 20i + η11i)

ix(tς(20i+(η1+η2)1i)
, 20i + (η1 + η2)1i)

ix
(
tk, k

)

t
t0 tς(0i+η11i) tς(20i+(η1+η2)1i)

tς((j)0i+(
∑j

l=0 ηl)1i)
tς((j+1)0i+(

∑j+1
l=0 ηl)1i)

FIGURE 4.3: Trajectory ix with its generalized parameters.

and the hybrid arc ix has the second flow from the point

ix(tς(0i+η11i)
, 0i + η11i) to ix(tς(20i+η11i)

, 20i + η11i).

According to this manner, for any integer j ≥ 1, the hybrid arc ix has the j-th flow
from the point

ix

(
t
ς((j−1)0i+(

∑j−1
l=0 ηl)1i)

, (j − 1)0i +

(
j−1∑

l=0

ηl

)
1i

)

to the point

ix

(
t
ς(j0i+(

∑j−1
l=0 ηl)1i)

, j0i +

(
j−1∑

l=0

ηl

)
1i

)
,

and
t
ς(j0i+(

∑j−1
l=0 ηl)1i)

= t
ς(j0i+(

∑j
l=0 ηl)1i)

.

Figure 4.3 illustrates the hybrid arc ix with its generalized parameters.

For brevity, for any integer j ≥ 1, let us denote

κ(j) := j0i +

(
j∑

r=0

ηr

)
1i, ν(j) := κ(j) + 0i, (4.14)

κ(j) := ς(κ(j)), and ν(j) := ς(ν(j)). (4.15)

Note that the following equations

tκ(0) = t0 = 0 and tκ(j) = tν(j−1) (4.16)

are satisfied for any integer j ≥ 1.

In addition, we provide Figure 4.4 as a redrawing of Figure 4.3 with the notation of
κ and ν.

Thirdly, let us provide ISS-Lyapunov candidate functions, ISS-Lyapunov functions
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ix
(
tκ(0), κ (0)

)
ix
(
tς(κ(0)+0i)

, κ (0) + 0i

)
= ix

(
tν(0), ν (0)

)

ix
(
tκ(1), κ (1)

)

ix(ix
(
tς(κ(1)+0i)

, κ (1) + 0i

)
= ix

(
tν(1), ν (1)

)

ix
(
tκ(2), κ (2)

)

ix
(
tk, k

)

t
tκ(0)

t0

tκ(1)
tν(0)

tκ(2)
tν(1)

tκ(j)
tν(j−1)

tκ(j+1)

tν(j)

FIGURE 4.4: Trajectory ix with its generalized parameters in term of
κ and ν.

and relaxed ISS-Lyapunov functions which are essentially important for stability in-
vestigation. They are an extension of hybrid Lyapunov functions from the previous
chapter.

Definition 4.21 (ISS-Lyapunov Functions). Given a complete generalized hybrid
system H =

{
iH
}n
i=1

, iv an admissible input and a compact set A = 1A × . . . × nA
which ∅ 6= iA ⊂ iX ⊂ RiN , a function iV : RiN → R≥0 is called an ISS-Lyapunov
candidate function for (iH, iA) if it is globally Lipschitz and there exist iψ1, iψ2 ∈ K∞
such that it satisfies

iψ1

(∥∥ix
∥∥
iA

)
≤ iV (ix) ≤ iψ2

(∥∥ix
∥∥
iA

)
for ix ∈ iX . (4.17)

An ISS-Lyapunov candidate function iV wrt (iH, iA) is called an ISS-Lyapunov func-
tion for (iH, iA) if there exists iϑ ∈ K∞, and iϕ ∈ P , such that it satisfies

iV (ix) ≥ iϑ(
∥∥iv
∥∥
∞) =⇒

{〈
∇ iV (ix), if(x, u)

〉
≤ − iϕ(iV (ix)) for x ∈ iC \ A,

iV (ig(x, u))− iV (ix) ≤ − iϕ(iV (ix)) for x ∈ iD \ A.
(4.18)

Moreover, the function iV is called a relaxed ISS-Lyapunov function for (iH, iA) if it
additionally satisfies

iV (ix) ≥ iϑ(
∥∥iv
∥∥
∞) =⇒

{〈
∇ iV (ix), if(x, u)

〉
≤ 0 for x ∈ iC \ A,

iV (ig(x, u))− iV (ix) ≤ 0 for x ∈ iD \ A.
(4.19)

In addition, a function iϑ is called an ISS-Lyapunov gain wrt a (relaxed) ISS-Lyapunov
function iV .

Here, we are ready to provide results on stability of subsystem iH. The following
theorems give sufficient conditions to guarantee ISS property of subsystem iH. The
conditions are provided in such same manner as conditions in hybrid Lyapunov
theorems from the previous chapter with extension for ISS.
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Theorem 4.22 (ISS-Lyapunov Theorem). If there exists an ISS-Lyapunov function iV
wrt (iH, iA), then the system iH is ISS wrt iA.

Proof. Suppose that iV is a Lyapunov function for (iH, iA) satisfying (4.17)–(4.18).
We are going to prove ISS for the system by direct constructions of iβ and iγ in the
inequality (4.13). Suppose that ix(0, 0) = iξ. Define

R :=
{
x ∈ Rn : iV (ix) < iϑ(

∥∥iv
∥∥
∞)
}
. (4.20)

Without loss of generality, let us suppose that x(0, 0) ∈ iC.

Consider the first case: x(0, 0) ∈ R′ := (iC ∪ iD) \R, i.e.,

iV (ix(0, 0)) = iV (iξ) ≥ iϑ(
∥∥iv
∥∥
∞).

Due to the condition (4.18), it follows that

〈
∇ iV (ix), if(x, u)

〉
=

i
V̇ (ix) ≤ − iϕ(iV (ix)) < 0 for x ∈ iC \ A, (4.21)

and
iV (ig(x, u)) < iV (ix) for x ∈ iD \ A. (4.22)

In a similar way of the proof of Theorem 3.45, we obtain

∫ iV (ix(tκ(j+1),κ(j+1))

iV (ix(tκ(j),κ(j)))

ds

ϕ(s)
= −

(
tκ(j+1) − tκ(j)

)
< 0.

Since iϕ ∈ P , it follows that

iV (ix(tκ(j+1), κ(j + 1)) < iV (ix(tκ(j), κ(j))).

Therefore we obtain that the sequence
{
iV (ix(tκ(j), κ(j))

}
and

{
iV
(
ix
(
tν(j), ν (j)

))}

are decreasing as j →∞ and bounded from below by iϑ(
∥∥iv
∥∥
∞) while x ∈ R′. Note

that the following inequalities are satisfied

iV
(
ix
(
tν(j), ν (j)

))
< iV

(
ix
(
tk, k

))
< iV

(
ix
(
tκ(j), κ (j)

))

for any (
tk, k

)
∈
{

(a, a) :
(
tν(j), ν (j)

)
≺ (a, a) ≺

(
tκ(j), κ (j)

)}
,

and there exists iψ1 ∈ K∞ such that
∥∥ix
∥∥
iA ≤

iψ1
−1
(
iV (ix)

)
for all ix ∈ iX .

While x ∈ R′, we are going to show that iV
(
ix
(
tk, k

))
converges to iϑ(

∥∥iv
∥∥
∞).

Suppose a contradiction that iV
(
ix
(
tk, k

))
→ c > iϑ(

∥∥iv
∥∥
∞) as tk + ς(k) → ∞. Let

us denote positive constants K and S corresponding to
(
tk, k

)
∈ dom ix by

K̃ := −K̃(tk, k) := sup
(tκ(0),κ(0))�(a,a)�(tk,k)

iV ′(ix(a, a)),

S̃ := S̃(tk, k) := sup
j∈E(tk,k)

[
iV
(
ix
(
tκ(j), κ (j)

))
− iV

(
ix
(
tν(j), ν (j)

))]
,
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K := −K̃, and S := −S̃,
where E(tk, k) :=

{
j ∈ N :

(
tκ(j), κ (j)

)
� (tk, k)

}
. For any

(
tk, k

)
∈ dom ix, there

exists J ∈ N such that it holds

iV
(
ix
(
tk, k

))
= iV

(
ix
(
tκ(0), κ (0)

))
+

∫ tk

tκ(0)

iV ′
(
ix(s, k)

)
ds

+
J∑

j=0

[
iV
(
ix
(
tκ(j), κ (j)

))
− iV

(
ix
(
tν(j), ν (j)

))]

≤ iV
(
ix
(
tκ(0), κ (0)

))
−K(tk, k) ·

(
tk − tκ(0)

)
− S(tk, k) · J

= iV
(
ix
(
tκ(0), κ (0)

))
+K · tκ(0) −K · tk − S · J,

which eventually becomes negative as tk + ς(k) → ∞. So we obtain a contradiction
here.

Since while x ∈ R′, iV (ix(tk, k)) → iϑ(
∥∥iv
∥∥
∞) as tk + ς(k) → ∞, let us suppose that

there exists (tς(k?), k
?
) ∈ dom ix such that it satisfies

iV (ix(tς(k?), k
?
))) ≥ iϑ(

∥∥iv
∥∥
∞),

and
iV (ix(tk, k))) ≥ iϑ(

∥∥iv
∥∥
∞) =⇒ (tk, k) � (tς(k?), k

?
).

Define a function ϑ̃ : R≥0 → R≥0 by

ϑ̃(s) := max

{
sup

0≤r≤iϑ(s)

iV (ig(r)), iϑ(s)

}
for all s ≥ 0.

Together with the condition (4.17), there exists an ISS gain

iγ := iψ−1
1 ◦ ϑ̃ ∈ K∞

such that it satisfies
∥∥ix

(
tk, k

)∥∥
A ≤

iψ−1
1 (iV

(
ix
(
tk, k

))
) ≤ iψ−1

1 (ϑ̃(
∥∥iv
∥∥
∞)) = iγ(

∥∥iv
∥∥
∞) (4.23)

for (tς(k?), k
?
) ≺ (tk, k).

Here we are going to construct a function α : Rn+2 → R≥0, which provide an upper
bound for iV (ix(tk, k)) when (tk, k) � (tς(k?), k

?
). Define

α(s, t0, 0) := iV (iξ) + iϕ(iV (iξ)) for any s > 0,

and α(s, tν(0), ν(0)) := y0 for any s > 0, where y0 is a solution to the integral equation
∫ y0

iV (iξ)

ds

ϕ(s)
= −

(
tν(0) − t0

)
.

For j > 0 and it holds the following inequality

tν(j−1) < tς(k?), (4.24)
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iV (ix(tk, k))

t
t0 tν(0) tν(1) tς(k?)

α(r, tν(0), ν(0))

α(r, tν(1), ν(1))

iϑ(
∥∥iv
∥∥
∞)

α(r, ·, . . . , ·)

FIGURE 4.5: To the construction of function α providing an upper
bound for iV before time reaching tς(k?) in Theorem 4.22.

we define α(s, tν(j), ν(j)) := yj for any s > 0, where yj is a solution to the integral
equation ∫ yj

aj

ds

ϕ(s)
= −

(
tν(j) − tν(j−1)

)
,

and
aj = α(s, tν(j−1), ν(j − 1))− iϕ(α(s, tν(j−1), ν(j − 1))).

Suppose that j? is the greatest natural number such that it satisfies the inequal-
ity (4.24). For any positive r, we define α(r, ·, . . . , ·) on each interval

(
tν(j−1), tν(j)

)

and on the interval
(
tν(j?−1), tς(k?)

)
as an arbitrary continuous decreasing function,

which lies above iV . Additionally on the interval
(
tς(k?),∞

)
, we define α(s, ·, . . . , ·)

as an arbitrary continuous decreasing function, which tends to zero. See Figure 4.5.
By this construction, for any (tk, k) ∈ dom ix and (tk, k) � (tς(k?), k

?
), it holds that

iV (ix(tk, k)) ≤ α(iV (iξ), tk, k) ≤ α(iψ2(
∥∥iξ
∥∥
A), tk, k),

where α : Rn+2 → R≥0 is continuous wrt the second argument, third argument,
and so on; α(0, tk, k) := 0 for all (tk, k) ∈ dom ix; α(s, ·, . . . , ·) is decreasing for all
positive s; it holds that α(s, tk, k) → 0 as tk + ς(k) → ∞. So there exists iβ ∈ KLn+1

such that it satisfies the following inequality

∥∥ix(tk, k)
∥∥
iA ≤

iβ
(∥∥iξ

∥∥
iA , tk, k

)
(4.25)

for (tk, k) � (tς(k?), k
?
), where iβ(s, tk, k) = iψ−1

1

(
α
(
iψ2(s), tk, k

))
. By a combination

of the inequalities (4.23) and (4.25), we finally conclude that

∥∥ix(tk, k)
∥∥
iA ≤ max

{
iβ
(∥∥iξ

∥∥
iA , tk, k

)
, iγ(

∥∥iv
∥∥
∞)
}

(4.26)

for any (tk, k) ∈ dom ix.

For the case: x(0, 0) ∈ R, i.e.,

iV (ix(0, 0)) = iV (iξ) < iϑ(
∥∥iv
∥∥
∞).
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If the trajectory x never leaves the set R, there exists an ISS gain

γ := iψ1
−1 ◦ iϑ ∈ K∞

such that
∥∥ix(tk, k)

∥∥
iA ≤

iψ1
−1(iV (ix(tk, k))) ≤ iψ1

−1(iϑ(
∥∥iv
∥∥
∞) = iγ(

∥∥iv
∥∥
∞)

for all (tk, k) ∈ dom ix.

Otherwise, suppose that there exists (tς(k?), k
?
) ∈ dom ix such that it satisfies

iV (ix(tς(k?), k
?
))) ≥ iϑ(

∥∥iv
∥∥
∞),

and
iV (ix(tk, k))) ≥ iϑ(

∥∥iv
∥∥
∞) =⇒ (tς(k?), k

?
) � (tk, k).

A functionα ∈ KLn+1 providing an upper bound of iV (ix(tk, k)) for any (tς(k?), k
?
) �

(tk, k) may be differently defined, but it still uses the same concept of construction.
For this case, the rest of proof to show existence of iβ ∈ KLn+1 satisfying the in-
equality (4.26) is intentionally omitted due to its similarity.

Remark 4.6. According to the condition (4.18), the trajectory can leave the set R by
jumping only. However, it will eventually return to the set R. In case that the initial
starting point lies in the set R, the function α providing an upper bound of iV may
be differently defined, but it still uses the same concept of construction. In addition
to the proof, we assume that the trajectory reach to the set R by flowing. Note that
it can also reach to the set R by jumping, but such case is skipped here since it is
similar to the proof of Theorem 4.24.

Remark 4.7. In the proof of Theorem 4.22, the construction of α is given by an as-
sumption that iH is absolutely hybrid system, i.e., tκ(j) and tν(j) grow to infinity.
The proof does not explicitly show all of the possibility. However, the concept of
construction is just slightly different in case of either tκ(j) < ∞ or tν(j) < ∞ as
j → ∞. See the proof of Theorem 4.23 and Theorem 4.24 for the case of finite tκ(j)

and tν(j).

Theorem 4.23 (Relaxed ISS-Lyapunov Theorem). If there exists a relaxed Lyapunov
function iV for (iH, iA) such that for some iϑ ∈ K∞ and iϕ ∈ P it satisfies

iV (ix) ≥ iϑ
(∥∥iv

∥∥
∞
)

=⇒
{〈
∇ iV (ix), if(x, u)

〉
< − iϕ(iV (ix)) for x ∈ iC \ A

iV (ig(x, u))− iV (ix) ≤ 0 for x ∈ iD \ A,
(4.27)

and iH is not an eventually discrete system, then iH is ISS wrt iA.

Proof. Assume that V satisfies

iV (ix) ≥ iϑ
(∥∥iv

∥∥
∞
)

=⇒
{〈
∇ iV (ix), if(x, u)

〉
< − iϕ(iV (ix)) for x ∈ iC \ A

iV (ig(x, u)) = iV (ix) for x ∈ iD \ A.
(4.28)
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Define the set R exactly as (4.20). Let us suppose that that x(0, 0) ∈ R′ := (iC ∪
iD) \ R and ix(0, 0) = iξ. That is iV (ix(0, 0)) = iV (iξ) ≥ iϑ(

∥∥iv
∥∥
∞). With no loss

of generality, we further assume that x(0, 0) ∈ iC ∩ R′. Similarly to the proof of
Theorem 3.45, we obtain

∫ iV (ix(tκ(j+1),κ(j+1)))

iV (ix(tκ(j),κ(j)))

ds
iϕ(s)

≤ −
(
tκ(j) − tκ(j+1)

)
< 0.

Since iϕ ∈ P , it follows that iV
(
ix
(
tκ(j+1), κ (j + 1)

))
< iV

(
ix
(
tκ(j), κ (j)

))
. Conse-

quently the sequence
{
iV
(
ix
(
tκ(j), κ (j)

))}
is decreasing and bounded from below

by iϑ
(∥∥iv

∥∥
∞
)

while x ∈ R′. Moreover, it holds

iV
(
ix
(
tν(j), ν (j)

))
< iV

(
ix
(
tκ(j), κ (j)

))
,

which implies that the sequence
{
iV
(
ix
(
tν(j), ν (j)

))}
is decreasing and bounded

from below by iϑ
(∥∥iv

∥∥
∞
)

while x ∈ R′. In case that iH is also not eventually con-
tinuous, i.e., tκ(j) → ∞ as j → ∞, the proof may go along similarly to the proof
of Theorem 4.22. Let us suppose that the sequence

{
iV
(
ix
(
tκ(j), κ (j)

))}
is finite.

Since the sequence
{
iV
(
ix
(
tκ(j), κ (j)

))}
is decreasing, there exists J ∈ N such that

it holds
iV
(
ix
(
tκ(J), κ (J)

))
= inf

{
iV
(
ix
(
tκ(j), κ (j)

))}
.

Note that there exists iψ1 ∈ K∞ such that
∥∥ix
∥∥
iA ≤

iψ1
−1
(
iV (ix)

)
for all ix ∈ iX .

While x ∈ R′, we are going to show that iV
(
ix
(
tk, k

))
converges to iϑ(

∥∥iv
∥∥
∞).

Suppose for a contradiction that iV
(
ix
(
tk, k

))
converges to some positive number

c > iϑ(
∥∥iv
∥∥
∞) as tk + ς(k)→∞. Note that tκ(j) → tκ(J) <∞ as j →∞. Denote

K̃ := K̃(tk, k) := sup
(tκ(J),κ(J))�(a,a)�(tk,k)

iV ′(ix(a, a)),

and
K := −K̃.

For any
(
tk, k

)
�
(
tκ(J), κ (J)

)
, it holds

iV
(
ix
(
tk, k

))
= iV

(
ix
(
tκ(J), κ (J)

))
+

∫ tk

tκ(J)

iV ′(ix(s, k)) ds

≤ iV
(
ix
(
tκ(J), κ (J)

))
−K(tk, k) ·

(
tk − tκ(J)

)

= iV
(
ix
(
tκ(J), κ (J)

))
+K · tκ(J) −K · tk,

which eventually becomes negative as tk + ς(k) → ∞. So we obtain a contradiction
here.

Since while x ∈ R′, iV (ix(tk, k)) → iϑ(
∥∥iv
∥∥
∞) as tk + ς(k) → ∞, let us suppose that

there exists (tς(k?), k
?
) ∈ dom ix such that it satisfies

iV (ix(tς(k?), k
?
))) ≥ iϑ(

∥∥iv
∥∥
∞),
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and
iV (ix(tk, k))) ≥ iϑ(

∥∥iv
∥∥
∞) =⇒ (tk, k) � (tς(k?), k

?
).

Define a function γ̃ : R≥0 → R≥0 by

ϑ̃(s) := max

{
sup

0≤r≤iϑ(s)

iV (ig(r)), iϑ(s)

}
for all s ≥ 0.

Together with the condition (4.17), there exists an ISS gain iγ := iψ−1
1 ◦ ϑ̃ ∈ K∞ such

that it satisfies
∥∥ix

(
tk, k

)∥∥
A ≤

iψ−1
1 (iV

(
ix
(
tk, k

))
) ≤ iψ−1

1 (ϑ̃(
∥∥iv
∥∥
∞)) = iγ(

∥∥iv
∥∥
∞) (4.29)

for (tς(k?), k
?
) ≺ (tk, k).

Here we are going to construct a function α : Rn+2 → R≥0, which provide an upper
bound for iV (ix(tk, k)) when (tk, k) � (tς(k?), k

?
). Define

α(r, t0, 0) := iV (iξ) + iϕ(iV (iξ)) for any r > 0,

and α(s, tν(0), ν(0)) := y0 for any s > 0, where y0 is a solution to the integral equation
∫ y0

iV (iξ)

ds

ϕ(s)
= −

(
tν(0) − t0

)
.

For j ∈ {1, 2, . . . , J − 1} and the following inequality is satisfied

tν(j−1) < tς(k?), (4.30)

we define α(s, tν(j), ν(j)) := yj for any s > 0, where yj is a solution to the integral
equation ∫ yj

α(s,tν(j−1),ν(j−1))

ds

ϕ(s)
= −

(
tν(j) − tν(j−1)

)
.

Without loss of generality, suppose that tς(k?) > tν(J−1). For any positive number s,

we define α(s, ·, . . . , ·) on each interval
(
tν(j−1), tν(j)

)
and the interval

(
tν(J−1), tς(k?)

)

as an arbitrary continuous decreasing function, which lie above iV . Additionally on
the interval

(
tς(k?),∞

)
, we define α(s, ·, . . . , ·) as an arbitrary continuous decreasing

function, which tends to zero. See Figure 4.6.

By this construction, for any (tk, k) ∈ dom ix and (tk, k) � (tς(k?), k
?
), it holds that

iV (ix(tk, k)) ≤ α(iV (iξ), tk, k) ≤ α(iψ2(
∥∥iξ
∥∥
A), tk, k),

where α : Rn+2 → R≥0 is continuous wrt the second argument, third argument,
and so on; α(0, tk, k) := 0 for all (tk, k) ∈ dom ix; α(s, ·, . . . , ·) is decreasing for all
positive number s; it holds that α(s, tk, k) → 0 as tk + ς(k) → ∞. So there exists
iβ ∈ KLn+1 such that it satisfies the following inequality

∥∥ix(tk, k)
∥∥
iA ≤

iβ
(∥∥iξ

∥∥
iA , tk, k

)
(4.31)
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iV (ix(tk, k))

t
tκ(0)
t0

tκ(1)
tν(0)

tκ(2)
tν(1)

tκ(J)
tν(J−1)

tς(k?)

α(r, tν(0), ν(0))

α(r, tν(1), ν(1))

α(r, tν(J−1), ν(J − 1))

iϑ(
∥∥iv
∥∥
∞)

α(r, ·, . . . , ·)

FIGURE 4.6: To the construction of function α providing an upper
bound for iV in Theorem 4.23.

for (tk, k) � (tς(k?), k
?
), where iβ(s, tk, k) := iψ−1

1

(
α
(
iψ2(s), tk, k

))
. By a combina-

tion of the inequalities (4.29) and (4.31), we finally conclude that

∥∥ix(tk, k)
∥∥
iA ≤ max

{
iβ
(∥∥iξ

∥∥
iA , tk, k

)
, iγ(

∥∥iv
∥∥
∞)
}

for any (tk, k) ∈ dom ix.

Theorem 4.24 (Another Relaxed ISS-Lyapunov Theorem). If there exists a relaxed Lya-
punov function iV for (iH, iA) such that for some iϑ ∈ K∞ and iϕ ∈ P it satisfies

iV (ix) ≥ iϑ
(∥∥iv

∥∥
∞
)

=⇒
{〈
∇ iV (ix), if(x, u)

〉
≤ 0 for x ∈ iC \ A

iV (ig(x, u))− iV (ix) < − iϕ(iV (ix)) for x ∈ iD \ A,
(4.32)

and iH is not eventually continuous, then iH is ISS wrt iA.

Proof. Assume that V satisfies

iV (ix) ≥ iϑ
(∥∥iv

∥∥
∞
)

=⇒
{〈
∇ iV (ix), if(x, u)

〉
= 0 for x ∈ iC \ A

iV (ig(x, u))− iV (ix) = − iϕ(iV (ix)) for x ∈ iD \ A,
(4.33)

Define the set R exactly as (4.20). Moreover, let it hold x(0, 0) ∈ R′ := (iC ∪ iD) \ R
and ix(0, 0) = iξ. It follows that iV (ix(0, 0)) = iV (iξ) ≥ iϑ(

∥∥iv
∥∥
∞). Without loss of

generality, we assume that x(0, 0) ∈ iC ∩R′.
Similarly to the proofs of previous theorems, we obtain the results that the sequence{
iV
(
ix
(
tκ(j), κ (j)

))}
and

{
iV
(
ix
(
tν(j), ν (j)

))}
is decreasing and bounded from

below by iϑ(
∥∥iv
∥∥
∞) while x ∈ R′. If iH is not eventually discrete system, this proof

will go along the lines of the proof of Theorem 4.22. Let us only consider a case that
iH is eventually discrete system. In this case, there exists J ∈ N such that it satisfies
tκ(j) → tκ(J) <∞ and tν(j) → tν(J) <∞ as j →∞.

While x ∈ R′, we are going to show that iV
(
ix
(
tk, k

))
converges to iϑ(

∥∥iv
∥∥
∞).

Suppose for a contradiction that iV
(
ix
(
tk, k

))
converges to some positive number



70 Chapter 4. Interconnected Hybrid Dynamical Systems

c > iϑ(
∥∥iv
∥∥
∞) as tk + ς(k)→∞. Denote

S̃ := S̃(tk, k) := sup
j∈E(tk,k)

[
iV
(
ix
(
tκ(j), κ (j)

))
− iV

(
ix
(
tν(j), ν (j)

))]
,

and
S := −S̃

where E(tk, k) :=
{
j ∈ N :

(
tκ(j), κ (j)

)
� (tk, k)

}
. For any

(
tk, k

)
∈ dom ix, there

exists j∗ ∈ N such that it holds

iV
(
ix
(
tk, k

))
= iV

(
ix
(
tκ(0), κ (0)

))
+

∫ tk

tκ(0)

iV ′
(
ix(s, k)

)
ds

+

j∗∑

j=0

[
iV
(
ix
(
tκ(j), κ (j)

))
− iV

(
ix
(
tν(j), ν (j)

))]

≤ iV
(
ix
(
tκ(0), κ (0)

))
− S · j∗.

Since iH is an eventually discrete system, iV
(
ix
(
tk, k

))
eventually becomes negative

as tk + ς(k)→∞. So we obtain a contradiction here.

Since while x ∈ R′, iV (ix(tk, k)) → iϑ(
∥∥iv
∥∥
∞) as tk + ς(k) → ∞, let us suppose that

there exists (tς(k?), k
?
) ∈ dom ix such that it satisfies

iV (ix(tς(k?), k
?
))) ≥ iϑ(

∥∥iv
∥∥
∞),

and
iV (ix(tk, k))) ≥ iϑ(

∥∥iv
∥∥
∞) =⇒ (tk, k) � (tς(k?), k

?
).

Without loss of generality, we additionally suppose that

iV (ix(tν(J), ν(J))) > iV (ix(tς(k?), k
?
))) > iϑ(

∥∥iv
∥∥
∞).

Define a function γ̃ : R≥0 → R≥0 by

ϑ̃(s) := max

{
sup

0≤r≤iϑ(s)

iV (ig(r)), iϑ(s)

}
for all s ≥ 0.

Together with the condition (4.17), there exists an ISS gain iγ := iψ−1
1 ◦ ϑ̃ ∈ K∞ such

that it satisfies
∥∥ix

(
tk, k

)∥∥
A ≤

iψ−1
1 (iV

(
ix
(
tk, k

))
) ≤ iψ−1

1 (ϑ̃(
∥∥iv
∥∥
∞)) = iγ(

∥∥iv
∥∥
∞) (4.34)

for (tς(k?), k
?
) ≺ (tk, k). Note that it holds

tν(J) = tς(k?) = tς(k?+1i)
.

Here we are going to construct a function α : Rn+2 → R≥0, which provide an upper
bound for iV (ix(tk, k)) when (tk, k) � (tς(k?), k

?
). Define

α(s, t0, 0) := iV (iξ) + iϕ(iV (iξ)) for any s > 0,
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iV (ix(tk, k))

t
tκ(0)
t0

tκ(1)
tν(0)

tκ(J)
tν(J−1) tν(J)

α(r, ·, . . . , ·)

α(r, tν(0), ν(0))

α(r, tν(J−1), ν(J − 1))

α(r, tν(J), ν(J))

iϑ(
∥∥iv
∥∥
∞)

tς(k?)

FIGURE 4.7: To the construction of function α providing an upper
bound for iV in Theorem 4.24.

and
α(s, tν(0), ν(0)) := iV (iξ) for any s > 0.

For j ∈ {1, 2, . . . , J}, we define

α(s, tν(j), ν(j)) := α(s, tν(j), ν(j))− iϕ(α(s, tν(j), ν(j))) for any s > 0.

For any positive s, we define α(s, ·, . . . , ·) on each interval
(
tν(j−1), tν(j)

)
as an arbi-

trary continuous decreasing function, which lies above iV . Additionally for the in-
terval

(
tς(k?),∞

)
, we define α(s, ·, . . . , ·) as an arbitrary continuous decreasing func-

tion, which tends to zero. See Figure 4.7. By construction, for all (tk, k) ∈ dom ix
and (tk, k) � (tς(k?), k

?
), it holds that

iV (ix(tk, k)) ≤ α(iV (iξ), tk, k) ≤ α(iψ2(
∥∥iξ
∥∥
A), tk, k),

where α : Rn+2 → R≥0 is continuous wrt the second argument, third argument,
and so on; α(0, tk, k) := 0 for all (tk, k) ∈ dom ix; α(s, ·, . . . , ·) is decreasing for all
positive s. Moreover, it holds that α(s, tk, k) → 0 as tk + ς(k) → ∞. So there exists
iβ ∈ KLn+1 such that

∥∥ix(tk, k)
∥∥
iA ≤

iβ
(∥∥iξ

∥∥
iA , tk, k

)
, (4.35)

for all (tk, k) � (tς(k?), k
?
), where iβ(s, tk, k) = iψ−1

1

(
α
(
iψ2(s), tk, k

))
.

By a combination of the inequalities (4.34) and (4.35), we finally conclude that

∥∥ix(tk, k)
∥∥
iA ≤ max

{
iβ
(∥∥iξ

∥∥
iA , tk, k

)
, iγ(

∥∥iv
∥∥
∞)
}

for any (tk, k) ∈ dom ix.

The following results provides sufficient conditions to guarantee ISS for class L(θ)
and class H(θ) generalized hybrid systems.

Theorem 4.25 (ISS-Dwell-time Condition). If iH is a class L(θ) generalized hybrid sys-
tem for some θ > 0, and there exists an ISS-Lyapunov candidate function iV for (iH, iA)
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such that for some iϑ ∈ K∞, iϕ, iλ ∈ P and δ > 0 it satisfies

iV (ix) ≥ iϑ
(∥∥iv

∥∥
∞
)

=⇒
{〈
∇ iV (ix), if(x, u)

〉
≤ − iϕ(iV (ix)) for x ∈ iC \ A

iV (ig(x, u)) ≤ iλ(iV (ix)) for x ∈ iD \ A,
(4.36)

and ∫ iλ(a)

a

ds
iϕ(s)

≤ θ − δ for all a > 0, (4.37)

then iH is ISS wrt iA.

Proof. Define the set R and R′ exactly as in the proof of Theorem 4.22. Suppose that
that x(0, 0) ∈ iC ∩ R′ and ix(0, 0) = iξ. That is iV (ix(0, 0)) = iV (iξ) ≥ iϑ(

∥∥iv
∥∥
∞).

By following the proof of Theorem 3.45, we obtain that, while x ∈ R′, the sequence{
iV
(
ix
(
tκ(j), κ (j)

))}
is decreasing and bounded from below by iϑ(

∥∥iv
∥∥
∞), and the

following inequality is satisfied

∫ iV (ix(tκ(j),κ(j)))

iV (ix(tκ(j+1),κ(j+1)))

ds

ϕ(s)
≥ δ for all j ∈ N. (4.38)

While x ∈ R′, we are going to show that iV
(
ix
(
tk, k

))
converges to iϑ(

∥∥iv
∥∥
∞).

Suppose for a contradiction that iV
(
ix
(
tk, k

))
converges to some positive number

c > iϑ(
∥∥iv
∥∥
∞) as tk + ς(k)→∞. Denote

ρ := inf
c≤s≤V (x(0,0))

ϕ(s).

From the inequality (4.38), it follows that

δ ≤
∫ iV (ix(tκ(j),κ(j)))

iV (ix(tκ(j+1),κ(j+1)))

ds

ϕ(s)
≤ 1

ρ

(
iV
(
ix
(
tκ(j), κ (j)

))
− iV

(
ix
(
tκ(j+1), κ (j + 1)

)))
.

That is
iV
(
ix
(
tκ(j), κ (j)

))
− iV

(
ix
(
tκ(j+1), κ (j + 1)

))
≥ ρδ.

So a contradiction is found here.

Since while x ∈ R′,iV (ix(tk, k)) → iϑ(
∥∥iv
∥∥
∞) as tk + ς(k) → ∞, let us suppose that

there exists (tς(k?), k
?
) ∈ dom ix such that it satisfies

iV (ix(tς(k?), k
?
))) ≥ iϑ(

∥∥iv
∥∥
∞),

and
iV (ix(tk, k))) ≥ iϑ(

∥∥iv
∥∥
∞) =⇒ (tk, k) � (tς(k?), k

?
).

Define a function ϑ̃ : R≥0 → R≥0 by

ϑ̃(s) := max

{
sup

0≤r≤iϑ(s)

iV (ig(r)), iϑ(s)

}
for all s ≥ 0.
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iV (ix(tk, k))

t
t0 tκ(1) tκ(2) tκ(3) tς(k?)

α(r, tκ(1), κ(1))

α(r, tκ(2), κ(2))

α(r, tκ(3), κ(3))

α(r, ·, . . . , ·)

iϑ(
∥∥iv
∥∥
∞)

FIGURE 4.8: To the construction of function α providing an upper
bound for iV in Theorem 4.25.

Together with the condition (4.17), there exists an ISS gain iγ := iψ−1
1 ◦ ϑ̃ ∈ K∞ such

that it satisfies
∥∥ix

(
tk, k

)∥∥
A ≤

iψ−1
1 (iV

(
ix
(
tk, k

))
) ≤ iψ−1

1 (ϑ̃(
∥∥iv
∥∥
∞)) = iγ(

∥∥iv
∥∥
∞) (4.39)

for (tς(k?), k
?
) ≺ (tk, k).

Here we are going to construct a function α : Rn+2 → R≥0, which provide an upper
bound for iV (ix(tk, k)) when (tk, k) � (tς(k?), k

?
). Define

α(r, t0, 0) := iV (iξ) + iλ(iV (iξ)) for all r > 0,

and α(s, tκ(1), κ(1)) := iλ(y1) for any s > 0, where y1 is a solution to the integral
equation ∫ y1

iV (iξ)

ds

ϕ(s)
= −

(
tκ(1) − t0

)
.

For j > 1 and it holds the following inequality

tκ(j) < tς(k?), (4.40)

we define α(s, tκ(j), κ(j)) := iλ(yj) for any s > 0, where y is a solution to the integral
equation ∫ yj

α(s,tκ(j−1),κ(j−1)))

ds

ϕ(s)
= −

(
tκ(j) − tκ(j−1)

)
.

Suppose that j? is the greatest natural number such that it satisfies the inequality
(4.40). For any positive s, we define α(s, ·, . . . , ·) on each interval

(
tκ(j−1), tκ(j)

)
and

the interval
(
tκ(j?), tς(k?)

)
as an arbitrary continuous decreasing function, which lie

above iV . Additionally on the interval
(
tς(k?),∞

)
, we define α(s, ·, . . . , ·) as an ar-

bitrary continuous decreasing function, which tends to zero. See Figure 4.8. By this
construction, for any (tk, k) ∈ dom ix and (tk, k) � (tς(k?), k

?
), it holds that

iV (ix(tk, k)) ≤ α(iV (iξ), tk, k) ≤ α(iψ2(
∥∥iξ
∥∥
A), tk, k),
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where α : Rn+2 → R≥0 is continuous wrt the second argument, third argument,
and so on; α(0, tk, k) := 0 for all (tk, k) ∈ dom ix; α(s, ·, . . . , ·) is decreasing for all
positive number s; it holds that α(s, tk, k) → 0 as tk + ς(k) → ∞. So there exists
iβ ∈ KLn+1 such that it satisfies the following inequality

∥∥ix(tk, k)
∥∥
iA ≤

iβ
(∥∥iξ

∥∥
iA , tk, k

)
(4.41)

for (tk, k) � (tς(k?), k
?
), where iβ(s, tk, k) = iψ−1

1

(
α
(
iψ2(s), tk, k

))
. By the combina-

tion of the inequalities (4.39) and (4.41), we finally conclude that

∥∥ix(tk, k)
∥∥
iA ≤ max

{
iβ
(∥∥iξ

∥∥
iA , tk, k

)
, iγ(

∥∥iv
∥∥
∞)
}

for any (tk, k) ∈ dom ix.

Theorem 4.26 (Another ISS-Dwell-time Condition). If iH is a class H(θ) generalized
hybrid system for some θ > 0, and there exists an ISS-Lyapunov candidate function iV for
(iH, iA) such that for some iϑ ∈ K∞, iϕ, iλ ∈ P and δ > 0 it satisfies

iV (ix) ≥ iϑ
(∥∥iv

∥∥
∞
)

=⇒
{〈
∇ iV (ix), if(x, u)

〉
≤ iϕ(iV (ix)) for x ∈ iC \ A

iV (ig(x, u)) ≤ iλ(iV (ix)) for x ∈ iD \ A,
(4.42)

and ∫ a

iλ(a)

ds
iϕ(s)

≥ θ + δ for all a > 0, (4.43)

then iH is ISS w.r.t iA.

Proof. Define the set R and R′ exactly as in the proof of Theorem 4.22. Suppose that
that x(0, 0) ∈ iC ∩R′ and ix(0, 0) = iξ. That is iV (ix(0, 0)) = iV (iξ) ≥ iϑ(

∥∥iv
∥∥
∞). By

following the proof of Theorem 3.46, while x ∈ R′, we obtain that the sequence{
iV
(
ix
(
tκ(j), κ (j)

))}
and

{
iV
(
ix
(
tν(j), ν (j)

))}
is decreasing and bounded from

below by iϑ(
∥∥iv
∥∥
∞), and the following inequality is satisfied

∫ iV (ix(tκ(j),κ(j)))

iV (ix(tκ(j+1),κ(j+1)))

ds

ϕ(s)
≥ δ for all j ∈ N. (4.44)

While x ∈ R′, we are going to show that iV
(
ix
(
tk, k

))
converges to iϑ(

∥∥iv
∥∥
∞).

Suppose for a contradiction that iV
(
ix
(
tk, k

))
converges to some positive number

c > iϑ(
∥∥iv
∥∥
∞) as tk + ς(k) → ∞. Therefore, iV

(
ix
(
tκ(j), κ (j)

))
converges to b ∈(

iϑ(
∥∥iv
∥∥
∞), c

]
.

Let
ρ = inf

b≤s≤V (x(0,0))
ϕ(s).

From the inequality (4.44), we get

δ ≤
∫ iV (ix(tκ(j),κ(j)))

iV (ix(tκ(j+1),κ(j+1)))

ds

ϕ(s)
≤ 1

ρ

(
iV
(
ix
(
tκ(j), κ (j)

))
− iV

(
ix
(
tκ(j+1), κ (j + 1)

)))
,
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That is
iV
(
ix
(
tκ(j), κ (j)

))
− iV

(
ix
(
tκ(j+1), κ (j + 1)

))
≥ ρδ.

So a contradiction is found here.

Since iV (ix(tk, k)) → iϑ(
∥∥iv
∥∥
∞) as tk + ς(k) → ∞, let us suppose that there exists

(tς(k?), k
?
) ∈ dom ix such that it satisfies

iV (ix(tς(k?), k
?
))) ≥ iϑ(

∥∥iv
∥∥
∞),

and
iV (ix(tk, k))) ≥ iϑ(

∥∥iv
∥∥
∞) =⇒ (tk, k) � (tς(k?), k

?
).

Define a function γ̃ : R≥0 → R≥0 by

ϑ̃(s) := max

{
sup

0≤r≤iϑ(s)

iV (ig(r)), iϑ(s)

}
for all s ≥ 0.

Together with the condition (4.17), there exists an ISS gain iγ := iψ−1
1 ◦ ϑ̃ ∈ K∞ such

that it satisfies
∥∥ix

(
tk, k

)∥∥
A ≤

iψ−1
1 (iV

(
ix
(
tk, k

))
) ≤ iψ−1

1 (ϑ̃(
∥∥iv
∥∥
∞)) = iγ(

∥∥iv
∥∥
∞) (4.45)

for (tς(k?), k
?
) ≺ (tk, k).

Here we are going to construct a function α : Rn+2 → R≥0, which provide an upper
bound for iV (ix(tk, k)) when (tk, k) � (tς(k?), k

?
). Define

α(r, t0, 0) := y0 + iλ(y0), and α(s, tν(0), ν(0)) := y0 for all s > 0,

where y0 is a solution to the integral equation
∫ y0

iV (iξ)

ds

ϕ(s)
= tν(0) − t0.

For j > 0 and it holds the following inequality

tκ(j) < tς(k?), (4.46)

we define α(s, tν(j), ν(j)) := yj for any s > 0, where yj is a solution to the integral
equation ∫ yj

iV (ix(tκ(j),κ(j)))

ds

ϕ(s)
= tν(j) − tκ(j).

Suppose that j? is the greatest natural number such that it satisfies the inequality
(4.46). Therefore, we have tν(j?) = tς(k?). For any positive s, we define α(s, ·, . . . , ·)
on each interval

(
tκ(j−1), tκ(j)

)
as an arbitrary continuous decreasing function, which

lie above iV . Additionally on the interval
(
tς(k?),∞

)
, we define α(s, ·, . . . , ·) as an

arbitrary continuous decreasing function, which tends to zero. See Figure 4.8. By
this construction, for any (tk, k) ∈ dom ix and (tk, k) � (tς(k?), k

?
), it holds that

iV (ix(tk, k)) ≤ α(iV (iξ), tk, k) ≤ α(iψ2(
∥∥iξ
∥∥
A), tk, k),
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V (x(t, j))

t
tκ(0)
t0

tκ(1)
tν(0)

tκ(2)
tν(1)

tκ(3)
tν(2)

tς(k?)
tν(j?)

α(r, ·, . . . , ·)
α(r, tν(0), ν(0))
α(r, tν(1), ν(1))
α(r, tν(2), ν(2))

iγ(
∥∥iv
∥∥
∞)

FIGURE 4.9: To the construction of function α providing an upper
bound for iV in Theorem 4.26.

where α : Rn+2 → R≥0 is continuous wrt the second argument, third argument,
and so on; α(0, tk, k) := 0 for all (tk, k) ∈ dom ix; α(s, ·, . . . , ·) is decreasing for all
positive r; it holds that α(s, tk, k) → 0 as tk + ς(k) → ∞. So there exists iβ ∈ KLn+1

such that it satisfies the following inequality

∥∥ix(tk, k)
∥∥
iA ≤

iβ
(∥∥iξ

∥∥
iA , tk, k

)
(4.47)

for (tk, k) � (tς(k?), k
?
), where iβ(s, tk, k) := iψ−1

1

(
α
(
iψ2(s), tk, k

))
. By the combina-

tion of the inequalities (4.45) and (4.47), we finally conclude that

∥∥ix(tk, k)
∥∥
iA ≤ max

{
iβ
(∥∥iξ

∥∥
iA , tk, k

)
, iγ(

∥∥iv
∥∥
∞)
}

for any (tk, k) ∈ dom ix.

4.6 ISS-Lyapunov Functions for Interconnections

We are going to discuss on the stability of interconnected hybrid dynamical systems
in this section. Consider a hybrid system H =

{
iH
}n
i=1

of the form (4.7). Although
each subsystem iH is ISS wrt iA, the interconnectionH is not necessary to be ISS wrt
A defined by (4.10). The following is an example to claim this fact.

Example 4.27. Consider the following hybrid system

ẋ = f(x) := −x+ u, x ∈ C := X ⊂ R,

x+ = g(x) :=
x

2
, x ∈ D := {x ∈ X : x = 1} .

Let V (x) = |x|. It follows that V (x) ≥ 2 ‖u‖∞ implies

〈∇V (x), f(x)〉 = sign (x) (−x+ u) ≤ −V (x) + ‖u‖∞ ≤ −
V (x)

2
,

V (g(x))− V (x) =
∣∣∣x
2

∣∣∣− |x| = −V (x)

2
.
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FIGURE 4.10: A numerical simulation in Example 4.27.

Consequently, this hybrid system is ISS wrt A := {0}.
Moreover, for i = 1, 2, we can conclude that the system:

iH : ix ∈ iX ⊂ R





iẋ = if(ix, iu) := − ix+ iu, x ∈ iC := iX ,
i
x+ = ig(ix, iu) := −

ix

2
, x ∈ iD :=

{
x ∈ iX : ix = 1

}

is ISS wrt iA = {0}.
Here, we are going to connect 1H and 2H by setting

1u =
16(2x)2 + 1

(2x)2 + 1
+ u, 2u =

1x+ 3
1x+ 1

+ u

where u is admissible external input. In Figure 4.10, we depict a numerical simula-
tion of the interconnection H =

{
1H, 2H

}
along with u = 0. It is clear to see that H

is not 0-GAS wrt 1A× 2A, which implies thatH is not ISS.

To find the sufficient conditions to guarantee stability of interconnection consequently
becomes an interesting issue. Our goal aims to provide such conditions that guaran-
tee stability of the interconnection by investigating only on stability of subsystems.

4.6.1 Interconnections of Two Subsystems

Let us firstly consider the simplest case of interconnected ISS hybrid dynamical sys-
tems. Suppose that a system H =

{
1H, 2H

}
of the form (4.7) satisfies the following

requirements. For each i, j = 1, 2; and i 6= j, there exists an ISS-Lyapunov function
iV wrt (iH, iA) such that for some iψ1,

iψ2,
ijϑ, iuϑ ∈ K∞, and iϕ ∈ P , it satisfies

iψ1

(∥∥ix
∥∥
iA

)
≤ iV

(
ix
)
≤ iψ2

(∥∥ix
∥∥
iA

)
for all ix ∈ iX ,

and

iV
(
ix
)
≥ iΥ =⇒

{〈
∇ iV (ix), if(x, u)

〉
≤ − iϕ(iV (ix)) for x ∈ iC \ A,

iV (ig(x, u))− iV (ix) ≤ − iϕ(iV (ix)) for x ∈ iD \ A,
(4.48)
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where iΥ = max
{
ijϑ
(
jV
(
jx
))
, iuϑ (‖u‖∞)

}
.

Here we are going to construct an ISS-Lyapunov function to guarantee that the inter-
connectionH is ISS wrtA = 1A×2A, i.e., a globally Lipschitz continuous V : Rn → R
such that for some ψ1, ψ2, ϑ ∈ K∞, and ϕ ∈ P , it satisfies

ψ1

(
‖x‖A

)
≤ V (x) ≤ ψ2

(
‖x‖A

)
for all x ∈ X ,

and

V (x) ≥ ϑ (‖u‖∞) =⇒
{
〈∇ V (x), f(x, u)〉 ≤ − ϕ(V (x)) for x ∈ C \ A,
V (g(x, u))− V (x) ≤ − ϕ(V (x)) for x ∈ D \ A,

where f(x, u) :=
(

1
f̃T(x, u),

2
f̃T(x, u)

)T
, g(x, u) :=

(
1
g̃T(x, u),

2
g̃T(x, u)

)T
,

i
f̃(x, u) :=

{
if(x, u) if i ∈ IC(x, u),

0 otherwise.
, ig̃(x, u) :=

{
ig(x, u) if i ∈ ID(x, u),

x otherwise.
,

C := 1C ∪ 2C and D := 1D ∪ 2D.

Additionally we suppose that 12ϑ ◦ 21ϑ ∈ S . This extra condition will sufficiently
guarantee that such function V exists, and the interconnection H is consequently
ISS wrt A. To show existence of such ISS-Lyapunov function V for H, the following
lemmas are required tools for the construction, which are motivated by the results
in [52, 70].

Lemma 4.28. For any ρ0 ∈ P , there exists ρ ∈ S such that

• ρ(s) < ρ0(s) for all s > 0,

• ρ ∈ C1(R>0),

• ρ′(s) < 1 for all s > 0.

Proof. Arbitrarily choose a constant λ ∈ (0, 1) and define a function ρ̃ : R → R by
ρ̃(s) := min {λ, ρ0(s)} for all s ≥ 0. It is clear to see that ρ̃(s) < 1 for all s > 0, and
ρ̃(s) ≤ ρ0(s) for all s > 0. Let

ρ1(s) :=





min
a∈[s,2]

ρ̃(a) if 0 ≤ s ≤ 1,

min
a∈[1,s+1]

ρ̃(a) if s > 1.

Firstly, let us show that ρ1 is not decreasing on (0, 1). Suppose for the sake of con-
tradiction that ρ1(s1) > ρ1(s2) for any 0 < s1 < s2 < 1. Assume k1 = ρ1(s1) and
k2 = ρ1(s2). So we have k1 > k2. This contradicts the fact that

k1 = min
a∈[s1,2]

ρ̃(a) = min
a∈[s1,s2]∪[s2,2]

ρ̃(a) ≤ min
a∈[s2,2]

ρ̃(a) = k2.

Secondly, let us show that ρ1 is not increasing on (1,∞). We therefore suppose for
a contradiction that ρ1(s1) < ρ1(s2) for any 1 < s1 < s2. Again, we assume that
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k1 = ρ1(s1) and k2 = ρ1(s2). However, it holds

k1 = min
a∈[1,s1+1]

ρ̃(a) ≤ min
a∈[1,s2+1]

ρ̃(a) = k2.

So we obtain a contradiction here. Moreover, it is obvious to see that ρ1(s) ≤ ρ̃(s) for
all s > 0, and ρ1(s− 1) ≤ ρ̃(s) for all s ≥ 1.

Let us define a function ρ : R≥0 → R≥0 by

ρ(s) =





∫ s

0
ρ1(y) dy if 0 ≤ s ≤ 1,

∫ s

s−1
ρ1(y) dy if s > 1.

Note that it yields ρ ∈ C1(R>0) with

ρ′(s) =

{
ρ1(s) if 0 ≤ s ≤ 1,

ρ1(s)− ρ1(s− 1) if s > 1.

Therefore ρ′(s) ≤ ρ1(s) ≤ ρ̃(s) < 1 for all s > 0. Furthermore it satisfies for all
s ∈ [0, 1]

ρ(s) =

∫ s

0
ρ1(y) dy <

∫ s

0
ρ1(s) dy = sρ1(s) ≤ ρ1(s) ≤ ρ̃(s) ≤ ρ0(s).

For all s ∈ (1, 2), it satisfies

ρ(s) =

∫ s

s−1
ρ1(y) dy

=

∫ 1

s−1
ρ1(y) dy +

∫ s

1
ρ1(y) dy

<

∫ 1

s−1
ρ1(1) dy +

∫ s

1
ρ1(1) dy

= ρ1(1) (1− (s− 1)) + ρ1(1)(s− 1) = ρ1(1) ≤ ρ̃(s) ≤ ρ0(s).

Lastly, for all s ≥ 2, it satisfies

ρ(s) =

∫ s

s−1
ρ1(y) dy <

∫ s

s−1
ρ1(s− 1) dy = ρ(s− 1) ≤ ρ̃(s) ≤ ρ0(s).

Lemma 4.29. If σ1 ∈ K and σ2 ∈ K∞ satisfy σ1(s) < σ2(s) for all s > 0, then there exists
σ ∈ K∞ such that

• σ1(s) < σ(s) < σ2(s) for all s > 0,

• σ ∈ C1 (R>0),

• σ′(s) > 0 for all s > 0.
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Proof. Define ρ0 : R≥0 → R≥0 by

ρ0(s) :=
1

2

(
s− σ−1

2 ◦ σ1(s)
)
.

It is obvious to see that ρ0 ∈ P , and for all s > 0, it holds that

2ρ0(s) = s− σ−1
2 ◦ σ1(s),

σ−1
2 ◦ σ1(s) = s− 2ρ0(s) < s− ρ0(s),

σ1(s) < σ2 (s− ρ0(s)) .

By Lemma 4.28, there exists ρ ∈ S such that ρ(s) < ρ0(s) for all s > 0, ρ ∈ C1(R>0),
and ρ′(s) < 1 for all s > 0. Therefore we have

σ2(s− ρ0(s)) < σ2(s− ρ(s)).

Let us define σ : R≥0 → R≥0 by σ(0) = 0, and

σ(s) :=
1

ρ(s)

∫ s

s−ρ(s)
σ2(y) dy for all s > 0.

We are going to show that σ ∈ K∞, and it holds the desired property as follows. It is
straight forward to see that for all s > 0,

σ(s) =
1

ρ(s)

∫ s

s−ρ(s)
σ2(y) dy <

1

ρ(s)

∫ s

s−ρ(s)
σ2(s) dy = σ2(s).

Additionally it holds

σ(s) =
1

ρ(s)

∫ s

s−ρ(s)
σ2(y) dy >

1

ρ(s)

∫ s

s−ρ(s)
σ2(s− ρ(s)) dy = σ2(s− ρ(s)).

In consequence, for all s > 0, it yields

σ1(s) < σ2 (s− ρ0(s)) < σ2(s− ρ(s)) < σ(s) < σ2(s).

Consider the following derivative, for all s > 0,

σ′(s) =
d

ds

1

ρ(s)

∫ s

s−ρ(s)
σ2(y) dy

=
1

ρ2(s)

(
ρ(s)

d

ds

∫ s

s−ρ(s)
σ2(y) dy − ρ′(s)

∫ s

s−ρ(s)
σ2(y) dy

)

=
1

ρ2(s)

(
ρ(s) ·

(
σ2(s)− σ2(s− ρ(s)) · (1− ρ′(s))

)
− ρ′(s) · ρ(s) · σ(s)

)

=
1

ρ(s) · (σ(s)− σ2(s− ρ(s)))

(
σ2(s)− σ2(s− ρ(s))

σ(s)− σ2(s− ρ(s))
− ρ′(s)

)
.

Note that σ(s) − σ2(s − ρ(s)) > 0, σ2(s) − σ2(s − ρ(s)) > σ(s) − σ2(s − ρ(s)) and
ρ′(s) < 1 for all s > 0. Therefore it holds σ′(s) > 0 for all s > 0. Since ρ ∈ S
and σ2 ∈ K∞, it yields σ2(s − ρ(s)) → ∞ as s → ∞. Together with the fact that
σ2(s− ρ(s)) < σ(s) for all s > 0, we eventually conclude that σ(s)→∞ as s→∞.
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V2

0 V1

21ϑ

12ϑ−1

σ
B

A

C

FIGURE 4.11: Level Sets: A, B and C.

Now we are ready to construct the ISS-Lyapunov function V wrt (H,A). Recall our
extra condition: 12ϑ ◦ 21ϑ ∈ S. It follows that

21ϑ(s) < 12ϑ−1(s) for all s > 0.

By Lemma 4.29, there exists σ ∈ K∞ such that σ ∈ C1 (R>0), σ′(s) > 0 for all s > 0
and

21ϑ(s) < σ(s) < 12ϑ−1(s) for all s > 0.

Let us define V : Rn → R≥0 by

V (x) := max
{
σ(1V (1x)), 2V (2x)

}
.

Define the following sets, as shown in Figure 4.11.

A =
{

(x1, x2) ∈ X : σ(1V (1x)) > 2V (2x)
}
,

B =
{

(x1, x2) ∈ X : σ(1V (1x)) < 2V (2x)
}
,

C =
{

(x1, x2) ∈ X : σ(1V (1x)) = 2V (2x)
}
.

Consider the first case: x ∈ A. In this case we have V (x) = σ(1V (1x)), and conse-
quently

〈∇V (x), f(x, u)〉 = σ′(1V (1x))
〈
∇ 1V, 1f(x, u)

〉
.

Note that
12ϑ−1(1V (1x)) > σ(1V (1x)) > 2V (2x).

Therefore 1V (1x) > 12ϑ(2V (2x)). Define ϑ1 := σ ◦ 1uϑ, which is clear that ϑ1 ∈ K∞.
As a consequence, V (x) ≥ ϑ1(‖u‖∞) implies

〈∇V (x), f(x, u)〉 = σ′(1V (1x))
〈
∇ 1V, 1f(x, u)

〉

≤ −σ′(1V (1x)) 1ϕ(1V (1x))

= −σ′(σ−1(V (x))) 1ϕ(σ−1(V (x)))

= −ϕ̃1(V (x))
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for x ∈ C, and

V (g(x))− V (x) = σ(1V (1g(1x)))− V (x)

≤ σ(1V (1x)− 1ϕ(1V (1x)))− V (x)

= −
(
V (x)− σ(1V (1x)− 1ϕ(1V (1x)))

)

= −
(
V (x)− σ(σ−1(V (x))− 1ϕ(σ−1(V (x))))

)

= −ϕ̃2(V (x))

for x ∈ D, where ϕ1(s) :=
(
σ′ ◦ σ−1

)
(s) ·

(
1ϕ ◦ σ−1

)
(s), and ϕ2(s) := s− σ(σ−1(s)−

1ϕ ◦ σ−1(s)). It is clear to see that ϕ1 ∈ P . Here we further show that ϕ2 ∈ P .
Suppose for a contradiction that ϕ2(s) = s−σ(σ−1(s)− 1ϕ◦σ−1(s)) < 0 for all s > 0.
It follows that

s < σ(σ−1(s)− 1ϕ ◦ σ−1(s)),

σ−1(s) < σ−1(s)− 1ϕ ◦ σ−1(s),

and consequently 1ϕ ◦ σ−1(s) < 0 for all s > 0, which contradicts to the fact that
1ϕ ◦ σ−1 ∈ P . Therefore, in the first case there exists ϕ1 ∈ P defined by ϕ1(s) =
max {ϕ̃1(s), ϕ̃2(s)} for all s ≥ 0 such that V (x) ≥ ϑ1 (‖u‖∞) implies 〈∇V (x), f(x, u)〉 ≤
−ϕ1(V (x)) for x ∈ C and V (g(x))− V (x) ≤ −ϕ1(V (x)) for x ∈ D.

In the second case: x ∈ B, we have V (x) = 2V (2x), and consequently

〈∇V (x), f(x, u)〉 =
〈
∇ 2V, 2f(x, u)

〉
.

Since it satisfies
2V (2x) > σ(1V (1x)) > 21ϑ(1V (1x)),

we obtain V (x) ≥ 2uϑ(‖u‖∞) implies

〈∇V (x), f(x, u)〉 =
〈
∇ 2V, 2f(x, u)

〉
≤ − 2ϕ(2V (2x)) = − 2ϕ(V (x))

for x ∈ C, and

V (g(x))− V (x) = 2V (2g(2x))− V (x) ≤ − 2ϕ(2V (2x))− V (x) ≤ − 2ϕ(V (x))

for x ∈ D.

Without loss of generality, we can take V (x) = 2V (2x) in the last case: x ∈ C, and
consequently the similar result is obtained. Combining the above results, therefore
there exist ϑ ∈ K∞ defined by ϑ(s) := max

{
ϑ1(s), 2uϑ(s)

}
for all s ≥ 0, and ϕ ∈ P

defined by ϕ(s) := max
{
ϕ1(s), 2ϕ(s)

}
for all s ≥ 0 such that V (x) ≥ ϑ (‖u‖∞)

implies 〈∇V (x), f(x, u)〉 ≤ −ϕ(V (x)) for x ∈ C and V (g(x))− V (x) ≤ −ϕ(V (x)) for
x ∈ D.

Note that
1

2

(
σ(1V (1x)) + 2V (2x)

)
≤ V (x) ≤ σ(1V (1x)) + 2V (2x)

for all x ∈ X . So there exist ψ1, ψ2 ∈ K∞, which are defined by

ψ1(s) :=
1

2

(
σ ◦ 1ψ1(s1) + 2ψ1(s2)

)
, ψ2(s) := σ ◦ 1ψ2(s1) + 2ψ2(s2)

for all s = (s1, s2) ≥ 0 such that ψ1(‖x‖A) ≤ V (x) ≤ ψ2(‖x‖A).
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In conclusion of stability of the interconnected ISS hybrid systemH =
{

1H, 2H
}

, we
summarize the result as follows. In order to state an assumption that subsystems 1H
and 2H are ISS wrt 1A and 2A respectively, we suppose that there exist ISS-Lyapunov
functions for subsystems. Along with the required condition 12ϑ ◦ 21ϑ ∈ S , we can
construct an ISS-Lyapunov function for H as shown above. Finally, it is sufficient to
conclude thatH =

{
1H, 2H

}
is ISS wrt A.

4.6.2 Small-Gain Theorem

We further discuss on stability of interconnected ISS hybrid dynamical systemsH ={
iH
}n
i=1

of the form (4.7). Suppose that for each i ∈ Nn, there exists an ISS-Lyapunov
function iV : iX → R≥0 wrt (iH, iA) such that for some iψ1,

iψ2,
ijϑ, iuϑ ∈ K∞, and

iϕ ∈ P , it satisfies

iψ1

(∥∥ix
∥∥
iA

)
≤ iV

(
ix
)
≤ iψ2

(∥∥ix
∥∥
iA

)
for all ix ∈ iX , (4.49)

and

iV
(
ix
)
≥ iΥ =⇒

{〈
∇ iV (ix), if(x, u)

〉
≤ − iϕ(iV (ix)) for x ∈ iC \ A,

iV (ig(x, u))− iV (ix) ≤ − iϕ(iV (ix)) for x ∈ iD \ A,
(4.50)

where iΥ = max

{
max

j∈Nn\{i}
ijϑ
(
jV
(
jx
))
, iuϑ (‖u‖∞)

}
.

In [54], Dashkovskiy, Rueffer and Wirth proposed sufficient conditions for the ex-
istence of an ISS Lyapunov function for a continuous-time system obtained as the
interconnection of many continuous-time subsystems. The concept of Ω-path was
also presented in this paper. This path plays a crucial role in the construction of a
Lyapunov function for the whole network. A small gain assumption on the mono-
tone operator induced by the gain matrix is used to constructively obtain a locally
Lipschitz continuous ISS Lyapunov function for the whole network by appropriately
scaling the individual Lyapunov functions for the subsystems.

The following definitions and theorems are essential tools to construct an ISS-Lyapunov
function wrt (H,A) whereA = 1A×. . .×nA. The similar concept of the construction
was also proposed in [12, 42, 53].

Definition 4.30 (Gain Operators). For each i ∈ Nn, let iV be an ISS-Lyapunov candi-
date function for (iH, iA) such that for some ijϑ, iuϑ ∈ K∞, and iϕ ∈ P , it satisfies

iV
(
ix
)
≥ iΥ =⇒

{〈
∇ iV (ix), if(x, u)

〉
≤ iϕ(iV (ix)) for x ∈ iC \ A,

iV (ig(x, u))− iV (ix) ≤ iϕ(iV (ix)) for x ∈ iD \ A,

where iΥ = max

{
max

j∈Nn\{i}
ijϑ
(
jV
(
jx
))
, iuϑ (‖u‖∞)

}
.
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Denote a gain operator Γ : Rn≥0 → Rn≥0 for the interconnection H =
{
iH
}n
i=1

wrt a
collection

{
iV
}n
i=1

by

Γ(s) :=




max
{

12ϑ(s2), 13ϑ(s3), . . . , 1nϑ(sn)
}

max
{

21ϑ(s1), 23ϑ(s3), . . . , 2nϑ(sn)
}

...
max

{
i1ϑ(s1), i2ϑ(s2), . . . , i,i−1ϑ(si−1), i,i+1ϑ(si+1), . . . , inϑ(sn)

}
...

max
{
n1ϑ(s1), n2ϑ(s2), . . . , n,n−1ϑ(sn−1)

}




.

Definition 4.31 (Small-Gain Condition). Let Γ : Rn≥0 → Rn≥0 be a gain operator for
H =

{
iH
}n
i=1

of the form (4.7). We say that the small-gain condition wrt Γ is satisfied
if Γ 6> id .

Definition 4.32 (Ω-Paths). A function σ = (σ1, σ2, . . . , σn) ∈ Kn∞ is called an Ω-path
wrt gain operator Γ forH =

{
iH
}n
i=1

of the form (4.7) if the following is satisfied:

(Ω1) For each i ∈ Nn, it holds σ−1
i is locally Lipschitz continuous;

(Ω2) For any compact setK ⊂ (0,∞), there are finite constants 0 < c1 < c2 such that
for all point of differentiability of σ−1

i and i ∈ Nn, it holds that

c1 ≤
(
σ−1
i

)′
(s) ≤ c2 for all s ∈ K;

(Ω3) For all s > 0, it holds that
Γ (σ(s)) ≤ σ(s).

Theorem 4.33 (Existence of Ω-Path). An Ω-path σ ∈ Kn∞ wrt gain operator Γ for H ={
iH
}n
i=1

of the form (4.7) exists if and only if the small-gain condition wrt Γ is satisfied.

Proof. (⇒) Since
Γ(s) = Γ(σ(σ−1(s))) ≤ σ(σ−1(s)) = s

for all s ≥ 0, it follows that Γ 6> id .

(⇐) See [54], Theorem 5.2 for µ = max and Γµ 6> id .

Here we are ready to provide sufficient condition to guarantee ISS for the intercon-
nectionH. The following theorem uses the result of existence of Ω-path to construct
an ISS-Lyapunov function forH.

Theorem 4.34 (Small-Gain Theorem). Let Γ be a gain operator for H =
{
iH
}n
i=1

of the
form (4.7) wrt a collection of ISS-Lyapunov functions

{
iV
}n
i=1

satisfying (4.49)–(4.50). If
the small-gain condition wrt Γ is satisfied, thenH is ISS wrt A.

Proof. To show that H is ISS wrt A, it is enough to only show existence of an ISS-
Lyapunov function V wrt (H,A) such that for some ψ1, ψ2, ϑ ∈ K∞, and ϕ ∈ P , it
satisfies

ψ1

(
‖x‖A

)
≤ V (x) ≤ ψ2

(
‖x‖A

)
for all x ∈ X ,
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and

V (x) ≥ ϑ (‖u‖∞) =⇒
{
〈∇ V (x), f(x, u)〉 ≤ − ϕ(V (x)) for x ∈ C \ A,
V (g(x, u))− V (x) ≤ − ϕ(V (x)) for x ∈ D \ A,

where f(x, u) :=
(

1
f̃T(x, u), . . . ,

n
f̃T(x, u)

)T
, g(x, u) :=

(
1
g̃T(x, u), . . . ,

n
g̃T(x, u)

)T
,

i
f̃(x, u) :=

{
if(x, u) if i ∈ IC(x, u),

0 otherwise.
, ig̃(x, u) :=

{
ig(x, u) if i ∈ ID(x, u),

x otherwise.
,

(4.51)

C :=
n⋃

i=1

iC and D :=
n⋃

i=1

iD.

Since the small-gain condition wrt Γ is satisfied, there exists an Ω-path

σ = (σ1, σ2, . . . , σn) ∈ Kn∞.

Let us denote V : Rn → Rn≥0 by

V (x) = max
i∈Nn

σ−1
i (iV (ix)).

Due to a reason that

1

n

n∑

i=1

σ−1
i (iV (ix)) ≤ V (x) ≤

n∑

i=1

σ−1
i (iV (ix)),

there exist ψ1, ψ2 ∈ K∞ defined by

ψ1(s) :=
1

n

n∑

i=1

σ−1
i (iψ1(si)), and ψ2(s) :=

n∑

i=1

σ−1
i (iψ2(si))

for all s = (s2, s2) ≥ 0 such that

ψ1(‖x‖A) ≤ V (x) ≤ ψ2(‖x‖A).

Denote

I =

{
i ∈ Nn : V (x) = σ−1

i (iV (ix)) > max
j∈Nn\{i}

σ−1
j (jV (jx))

}
.

Fix i ∈ I . By the property (Ω3) in Definition 4.32, it follows that

iV (ix) = σi(V (x)) ≥ max
j∈Nn\{i}

ijϑ(σj(V (x))) ≥ max
j∈Nn\{i}

ijϑ(jV (jx)).

By the property (Ω2) and (4.49)–(4.50), it yields

V (x) ≥ ϑ(‖u‖∞) := max
i∈Nn

σ−1
i (iuϑ(‖u‖∞))
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implies

〈∇V (x), f(x, u)〉 =
(
σ−1
i

)′
(iV (ix))

〈
∇ iV, if(x, u)

〉

≤ −
(
σ−1
i

)′
(iV (ix)) iϕ(iV (ix))

= −
(
σ−1
i

)′
(σi(V (x))) iϕ(σi(V (x))) ≤ −ϕ1(V (x)),

for x ∈ C, and

V (g(x, u))− V (x) = σ−1
i (iV (ig(x, u)))− V (x)

≤ σ−1
i

(
iV (ix)− iϕ(iV (ix))

)
− V (x)

= −
(
V (x)− σ−1

i

(
σi(V (x))− iϕ(σi(V (x)))

))
≤ −ϕ2(V (x)).

for x ∈ D, where ϕ1 : R≥0 → R≥0 and ϕ1 : R≥0 → R≥0 are defined by

ϕ1(s) := max
i∈Nn

{(
(σ−1
i )′ ◦ σi

)
(s) ·

(
iϕ ◦ σi

)
(s)
}
,

and
ϕ2(s) := max

i∈Nn

{
s− σ−1

i

(
σi(s)− iϕ(σi(s))

)}

for all s ≥ 0. Note that ϕ1, ϕ2 ∈ P since for each i ∈ Nn, it holds
(
σ−1
i

)′
(s) > 0 and

s > σ−1
i

(
σi(s)− iϕ(σi(s))

)
for all s > 0. In consequence, there exists ϕ ∈ P defined

by ϕ(s) := max {ϕ1(s), ϕ2(s)} for all s ≥ 0 such that it holds V (x) ≥ ϑ(‖u‖∞) implies
〈∇V (x), f(x, u)〉 ≤ −ϕ(V (x)) for all x ∈ C, and V (g(x, u))−V (x) ≤ −ϕ(V (x)) for all
x ∈ D.

4.6.3 Additional Constructions

Various types of Lyapunov candidate functions can be used to provide conditions for
guaranteeing stability of hybrid dynamical systems. In the foregoing subsection, we
construct an ISS-Lyapunov function for (H,A) from a collection of ISS-Lyapunov
functions wrt (iH, iA). Therefore, we are going further on investigations for con-
structions of relaxed ISS-Lyapunov function and ISS-Lyapunov candidate function
for (H,A) from a collection of relaxed ISS-Lyapunov functions or ISS-Lyapunov can-
didate functions wrt (iH, iA). The results are obtained by a combination of the small-
gain condition and other stability conditions guaranteeing that each subsystem iH
is ISS wrt iA.

Theorem 4.35. For each i ∈ Nn, let iH be a non-eventually discrete hybrid system, iA be
nonempty subset of iX , and iV be a relaxed ISS-Lyapunov function for (iH, iA) such that
for some iϑ ∈ K∞ and iϕ ∈ P it satisfies

iV (ix) ≥ iΥ =⇒
{〈
∇ iV (ix), if(x, u)

〉
≤ − iϕ(iV (ix)) for x ∈ iC \ A,

iV (ig(x, u))− iV (ix) ≤ 0 for x ∈ iD \ A,
(4.52)

where iΥ = max

{
max

j∈Nn\{i}
ijϑ
(
jV
(
jx
))
, iuϑ (‖u‖∞)

}
. Given by Γ a gain operator for

H =
{
iH
}n
i=1

wrt a collection
{
iV
}n
i=1

. If the small gain condition wrt Γ is satisfied, then
H is ISS wrt A.
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Proof. To show that H is ISS wrt A, it is enough to only show existence of a relaxed
ISS-Lyapunov function V wrt (H,A) such that for some ψ1, ψ2, ϑ ∈ K∞, and ϕ ∈ P ,
it satisfies

ψ1

(
‖x‖A

)
≤ V (x) ≤ ψ2

(
‖x‖A

)
for all x ∈ X ,

and

V (x) ≥ ϑ (‖u‖∞) =⇒
{
〈∇ V (x), f(x, u)〉 ≤ − ϕ(V (x)) for x ∈ C \ A,
V (g(x, u))− V (x) ≤ 0 for x ∈ D \ A,

where f , g, C and D are exactly defined in the proof of Theorem 4.34. The proof is
going along the lines of the proof of Theorem 4.34, except V (x) ≥ ϑ (‖u‖∞) implies

V (g(x, u))− V (x) = σ−1
i (iV (ig(x, u)))− V (x)

≤ σ−1
i

(
iV (ix)

)
− V (x) = V (x)− V (x) = 0

for x ∈ D.

Theorem 4.36. For each i ∈ Nn, let iH be a non-eventually continuous hybrid system, iA
be nonempty subset of iX , and iV be a relaxed ISS-Lyapunov function for (iH, iA) such that
for some iϑ ∈ K∞ and iϕ ∈ P it satisfies

iV (ix) ≥ iΥ =⇒
{〈
∇ iV (ix), if(x, u)

〉
≤ 0 for x ∈ iC \ A,

iV (ig(x, u))− iV (ix) ≤ − iϕ(iV (ix)) for x ∈ iD \ A,
(4.53)

where iΥ = max

{
max

j∈Nn\{i}
ijϑ
(
jV
(
jx
))
, iuϑ (‖u‖∞)

}
. Given by Γ a gain operator for

H =
{
iH
}n
i=1

wrt a collection
{
iV
}n
i=1

. If the small gain condition wrt Γ is satisfied, then
H is ISS wrt A.

Proof. To show that H is ISS wrt A, it is enough to only show existence of a relaxed
ISS-Lyapunov function V wrt (H,A) such that for some ψ1, ψ2, ϑ ∈ K∞, and ϕ ∈ P ,
it satisfies

ψ1

(
‖x‖A

)
≤ V (x) ≤ ψ2

(
‖x‖A

)
for all x ∈ X ,

and

V (x) ≥ ϑ (‖u‖∞) =⇒
{
〈∇ V (x), f(x, u)〉 ≤ 0 for x ∈ C \ A,
V (g(x, u))− V (x) ≤ − ϕ(V (x)) for x ∈ D \ A,

where f , g, C and D are exactly defined in the proof of Theorem 4.34. The proof is
going along the lines of the proof of Theorem 4.34, except V (x) ≥ ϑ (‖u‖∞) implies

〈∇V (x), f(x, u)〉 =
(
σ−1
i

)′
(iV (ix))

〈
∇ iV, if(x, u)

〉
≤ 0

for x ∈ C.

Theorem 4.37. For each i ∈ Nn, let iH be a class L(θ) hybrid system, iA be nonempty
subset of iX , and iV be an ISS-Lyapunov candidate function for (iH, iA) such that for some
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iϑ ∈ K∞, iϕ, iλ ∈ P and a constant iδ > 0, it satisfies

iV (ix) ≥ iΥ =⇒
{〈
∇ iV (ix), if(x, u)

〉
≤ − iϕ(iV (ix)) for x ∈ iC \ A,

iV (ig(x, u)) ≤ iλ(iV (ix)) for x ∈ iD \ A,
(4.54)

where iΥ = max

{
max

j∈Nn\{i}
ijϑ
(
jV
(
jx
))
, iuϑ (‖u‖∞)

}
, and additionally

∫ iλ(a)

a

ds
iϕ(s)

≤ θ − iδ for all a > 0. (4.55)

Given by Γ a gain operator for H =
{
iH
}n
i=1

wrt a collection
{
iV
}n
i=1

. If the small gain
condition wrt Γ is satisfied, then there exists an ISS-Lyapunov candidate function for (H,A).

Proof. We are going to show existence of an ISS-Lyapunov candidate function V wrt
(H,A) such that for some ψ1, ψ2, ϑ ∈ K∞, ϕ, λ ∈ P and a constant δ > 0, it satisfies

ψ1

(
‖x‖A

)
≤ V (x) ≤ ψ2

(
‖x‖A

)
for all x ∈ X ,

V (x) ≥ ϑ (‖u‖∞) =⇒
{
〈∇ V (x), f(x, u)〉 ≤ − ϕ(V (x)) for x ∈ C \ A,
V (g(x, u)) ≤ λ(V (x)) for x ∈ D \ A,

where f , g, C and D are exactly defined in the proof of Theorem 4.34. The proof
is also going along the lines of the proof of Theorem 4.34, except V (x) ≥ ϑ (‖u‖∞)
implies

〈∇V (x), f(x, u)〉 =
(
σ−1
i

)′
(iV (ix))

〈
∇ iV, if(x, u)

〉

≤ −
(
σ−1
i

)′
(iV (ix)) iϕ(iV (ix))

= −
(
σ−1
i

)′
(σi(V (x))) iϕ(σi(V (x))) ≤ −ϕ(V (x))

for x ∈ C, , and

V (g(x, u)) = σ−1
i (iV (ig(x, u)))

≤ σ−1
i (iλ(iV (ix)))

= σ−1
i (iλ(σi(σ

−1
i (V (x)))) ≤ λ(V (x))

for x ∈ D, where ϕ : R≥0 → R≥0 and λ : R≥0 → R≥0 are defined by

ϕ(s) := max
i∈Nn

{(
(σ−1
i )′ ◦ σi

)
(s) ·

(
iϕ ◦ σi

)
(s)
}
,

and
λ(s) := max

i∈Nn

{(
σ−1
i ◦ iλ ◦ σi

)
(s)
}

for all s ≥ 0.

Theorem 4.38. For each i ∈ Nn, let iH be a class H(θ) hybrid system, iA be nonempty
subset of iX , and iV be an ISS-Lyapunov candidate function for (iH, iA) such that for some
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iϑ ∈ K∞, iϕ, iλ ∈ P and a constant iδ > 0, it satisfies

iV (ix) ≥ iΥ =⇒
{〈
∇ iV (ix), if(x, u)

〉
≤ iϕ(iV (ix)) for x ∈ iC \ A,

iV (ig(x, u)) ≤ iλ(iV (ix)) for x ∈ iD \ A,
(4.56)

where iΥ = max

{
max

j∈Nn\{i}
ijϑ
(
jV
(
jx
))
, iuϑ (‖u‖∞)

}
, and additionally

∫ a

iλ(a)

ds
iϕ(s)

≥ θ + iδ for all a > 0. (4.57)

Given by Γ a gain operator for H =
{
iH
}n
i=1

wrt a collection
{
iV
}n
i=1

. If the small gain
condition wrt Γ is satisfied, then there exists an ISS-Lyapunov candidate function for (H,A).

Proof. The proof is omitted due to similarity of the proof of Theorem 4.37.

4.7 Further Problems

Here we would like to address some interesting problems that we have not discussed
so far. One of them is the third kind of problems mentioned in Section 4.1. In the
previous sections we have assumed for simplicity that each part ix of the whole state
x can undergo at most one Zeno behavior. However, in general it may easily happen
that a (sub)system undergoes several Zeno-type motions. As a simple example, we
consider one bouncing ball (Example 3.1) and introduce an external input there:

ẋ =

(
x2

−γ + u

)
=: f(x, u), x ∈ C,

x+ =

(
x1

−λx2

)
=: g(x, u), x ∈ D

where

u(t) :=

{
γ + 1 if tmax ≤ t ≤ 2tmax,

0 otherwise

and tmax is given by the equation (3.11). Let us take the same initial conditions as
x1(0) = h, x2 = 0. After tmax the ball will be elevated to some finite height and
dropped again. The second Zeno-type behavior will follow. This kind of behavior
can be modeled by introducing multiple Zeno times tmax,1, tmax,2, . . . in an appro-
priate extension of the provided framework.

Moreover there is also another interesting issue that we do not consider here. A
hybrid behavior can appear due to interconnection of systems that are not hybrid by
their nature. For instance, a movement of a mass-point in a free space under some
forces is usually modeled by ordinary differential equations and is not hybrid by its
nature. However, if we consider two such mass-points in the same space, so that
they can collide, then the resulting systems exhibits hybrid behavior. To model it as
a hybrid systems, we will need to define the corresponding flow and jump sets due
to interconnections.
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Chapter 5

Hybrid Epidemic Systems

In this chapter, we propose a mathematical model for a spreading of disease with
vaccination programs under a framework of hybrid dynamical system in the form
of (3.1). The epidemic progress and the vaccination program are mathematically
modeled by a system of differential equations and a system of difference equations
respectively. Not only the effective vaccination strategies are demonstrated but the
significant keys to efficiently launch the vaccination programs are also provided.

Our model is based on the works of [71–73] and additionally extended to the frame-
work of hybrid dynamical systems [1–3, 66] which is rich in variety of tools for ro-
bust stability analysis and has useful features such as translation to other frame-
works of hybrid dynamical systems including impulsive systems [33–36], switched
systems [37] or hybrid automata [31, 32]. Moreover, we provide stability analysis of
the new model, propose strategies to launch vaccination programs effectively and
also demonstrate the provided strategies by some examples. In the very end of the
chapter, we discuss some further problems which can possibly and practically be
investigated in our framework.

5.1 Background

Nearly a century after the works of Kermack and McKendrick [71–73], modern
mathematical models of an epidemic have been raised and allowed researchers to
study an outbreak of disease by using some information of the state and the disease
spreadability. As a consequence of many developments in this field, we can predict
an epidemic and also enable a policy to either control or get rid of a disease. One
of the difficulties to either extrapolate or model a spread of disease is to discover
the factors reflecting the real-world data of the spread. Another arduousness is to
deal with the dynamics of the systems because not only a spreadability of disease
but also a public health policy can cause a progression of epidemic in either smooth
transitions or instantaneous changes the number of infected individuals.

Numerous studies like [4–8, 74, 75] contributed mathematical models to show the
effects of vaccination in epidemic system . Since the epidemic models with vaccina-
tions proposed in [4–8] are based on impulsive systems (the launching time of vac-
cination is determined in advance), the systems may lack some degree of freedom
to analyze a suitable launching time of vaccination program. Especially, the effect of
launching time are probably difficult to be investigated due to a variety of choices to
choose the impulse times in those systems. Moreover, we believe that the effective-
ness and suitability of a launched vaccination program is still in question since the
launching times are determined by a method of trial-and-error. Unlike [76], defining
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an algebraic language for specifying disease processes and multiple treatments from
which a semantics in terms of hybrid dynamical system can be derived, we use a
framework of hybrid dynamical system given in (3.1) which extends classical tools
and methods to handle hybrid dynamic phenomena.

We are going to propose a mathematical model for a spread of disease in case of a
vaccination program publicly launching to population. Unlike other works in this
area of research, which are listed above, our vaccination program does not only de-
pend on the states of system but also the launching time of vaccination which are
not pre-determined. The vaccination is not forced to be released at the time we have
no clues to launch it. This can save cost of vaccination programs and avoid inappro-
priate health policies.

5.2 Classic SIRS Model

Especially with large populations, continuous-time dynamical systems are used to
describe a progression of epidemic. The SIR model which is firstly introduced in
the works of Kermack and McKendrick [71–73] is admitted to be one of the most
fundamental and significant of all epidemic mathematical models [77]. The Letters
S, I and R represent different stages of disease in individuals, which stands for
susceptible, infected and recovered respectively. According to the assumptions of SIR
model, a recovered individual is assumed to be permanently immune against the
disease. One of extensions of SIR model is SIRS model which allows temporarily
immune. After a period of time, recovered individuals may risk to be infected again.
Let us briefly overview SIRS model as follows.

5.2.1 Modeling

Let the number of population be permanently fixed and the mixing of population
be homogeneous. The spread of disease is understood by means of infection getting
from infected individuals. We require the assumptions as follow:

1. There are no disease deaths;

2. There are no immigrations of population;

3. The infected individuals can be recovered from the infection of disease;

4. The recovered individuals are temporarily immune against the infection of dis-
ease.

Each individual is assigned to a class representing a specific stage of the disease
which is one of the following: susceptible class; infected class; and recovered class.
The independent parameter of the model is time t, and we denote the part of sys-
tem’s state (or compartment) by S the proportion of susceptible individuals, I the
proportion of infected individuals and R the proportion of recovered individuals.
The state space is now ready to be defined as

XSIRS :=
{

(S, I,R) ∈ [0, 1]3 : S + I +R = 1
}
.

The transfer rates between the classes are mathematically expressed as derivatives
of the sizes of classes with respect to t. As a result, the dynamic is mathematically
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S I R
get infected get recovered

and immune

loss immune

FIGURE 5.1: Transitions between compartments in SIRS model.

modeled by a system of differential equations. Let us define the epidemic system by

ΣSIRS := (XSIRS ,ΦSIRS) (5.1)

where ΦSIRS represents continuous dynamics and is given by the following ordi-
nary differential equations:

ΦSIRS





Ṡ = −βSI + δR,

İ = βSI − γI,
Ṙ = γI − δR.

The dynamics can be described as follows. Per unit time, some susceptible indi-
viduals become infected by social intercourse with any infected individual. Conse-
quently, the number of infected individuals increasingly evolves at rate βSI , where
β > 0 represents the infection rate. The infected individuals have been assumed to
be recoverable at the recovery rate γ. Moreover, each of recovered individuals keeps
temporary immune to the infection of disease by the infective period of 1/δ. With
some infections of diseases like chickenpox or poliomyelitis, recovered individuals
usually are practically given permanent immunity to them, δ can be assumed as
zero.

5.2.2 Stability

Direct calculation shows that ΣSIRS has two steady states called the disease-free
steady state E0(ΣSIRS) and the disease steady state E+(ΣSIRS), where

E0(ΣSIRS) = (1, 0, 0), (5.2)

and

E+(ΣSIRS) =

(
γ

β
,
δ (β − γ)

β (γ + δ)
,
γ (β − γ)

β (γ + δ)

)
. (5.3)

The global stability of the steady states can be acquired by means of direct Lya-
punov’s method. The following theorems are well-known results extracted from the
literature [7, 78, 79].

Theorem 5.1. The disease-free steady state E0(ΣSIRS) is globally asymptotically stable if
β ≤ γ.
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(A) β = γ.
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(B) β > γ.

FIGURE 5.2: Simulations of the classic SIRS model.

Theorem 5.2. The disease steady state E+(ΣSIRS) is locally asymptotically stable and the
disease-free steady state E0(ΣSIRS) is unstable if β > γ.

There are only two arguments affecting the behavior of solutions, which are the in-
fection rate β and the recovery rate γ. The spread of the disease eventually disap-
pears, and every individual get no more infected if the recovery rate is not smaller
than the infection rate. In addition, the infective period does not give a huge im-
pact to the system. In case that the infection rate β is larger than the recovery rate
γ, no matter of other arguments, the infected individuals permanently remain in the
population, which means the spread of disease is eventually long lasting. Figure
5.2 illustrates numerical simulations of the classic SIRS model. The simulations are
given in two cases: (A) in case of β = γ, the trajectory tends to the disease-free steady
state; (B) in case of β > γ, the trajectory eventually reach to the disease steady state.

5.3 Hybrid SIRS Model with Vaccination

Public health programs such as vaccination, isolation or quarantine have been ap-
plied to control a spread of disease throughout population for many decades. Ac-
cording to CDC1, vaccination is injection of a killed or weakened infectious organism
in order to prevent the infection of disease. This process is sometimes called immu-
nization or inoculation. In case that infection rate β is larger than recovery rate γ,
which leads to the result that an epidemic appears eternally, such a public health

1Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA 30333, USA
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program like vaccination may help controlling an epidemical disaster. In this sec-
tion, a hybrid SIRS model is introduced. A progress of epidemic is modeled by a
system of differential equations based on SIRS model, and a vaccination program is
applied to a class of susceptible individuals, which is modeled by a system of differ-
ence equations. Stability analysis is also provided in the very end of the section.

5.3.1 Modeling

In order to present a hybrid dynamical system for a spread of disease with vacci-
nation, the additional assumptions for the epidemic system ΣSIRS given in (5.1) are
required:

1. The initial value of infected individuals is positive;

2. The epidemic appears eternally, i.e., β > γ;

3. No permanent immunity against disease , i.e., δ > 0.

To stop or limit a spread of disease, vaccination programs can not be practically
launched at the very beginning time since the vaccine against the infection of disease
may not ready to be used yet. For this reason, let us introduce a program clock tν rep-
resenting the realistic condition that the vaccination program will not be launched
until time reaching to tν . Consequently, we assume that if all of the following is
satisfied at time t:

1. the proportion of infected individuals I has reached to a closed set Iv ⊂ [0, 1];

2. the proportion of susceptible individuals S has reached to a closed set Sv ⊂
[0, 1];

3. time has already passed by the program clock tν ≥ 0,

then a vaccination program is allowed to be instantaneously launched to the class
of susceptible individuals, which results that the number of vaccinated individuals
becomes ρS(t), where ρ ∈ [0, 1], since the vaccines may not be applied to all suscep-
tible individuals. Additionally, some of the vaccinated individuals in the susceptible
class are instantly moved to the recovery class by means of vaccine’s performance
ν ∈ [0, 1]. It results that there are νρS(t) individuals moving from the susceptible
class to the recovered class, and there are (1− ν)ρS(t) individuals, representing vac-
cinated individuals who become truly infected due to the possibility of vaccine’s
side effects, moving from the susceptible class to the infection class.

Note that we also assume that min Iv is the lowest nonnegative number such that a
proportion of infected individuals can be detected, which means no one practically
knows that the infected individuals actually exist if I(t) < min Iv for any time t.
Moreover, the sets Sv and Iv are called S-detection and I-detection respectively.

Here we provide a hybrid SIRS model with vaccination as follows.

ΣSIRS,v := (XSIRS,v,ΦSIRS,v, CSIRS,v,∆SIRS,v,DSIRS,v) (5.4)

where
XSIRS,v :=

{
(S, I,R, t) ∈ [0, 1]3 × R≥0

}
,
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ΦSIRS,v





Ṡ = −βSI + δR,

İ = βSI − γI,
Ṙ = γI − δR,
ṫ = 1,

if (S, I,R, t) ∈ CSIRS,v := XSIRS,v,

∆SIRS,v





S+ = S − ρS,
I+ = I + (1− ν)ρS,

R+ = R+ νρS,

t+ = t,

if (S, I,R, t) ∈ DSIRS,v := {(S, I,R, t) ∈ XSIRS,v : S ∈ Sv, I ∈ Iv, t ≥ tν}.
Since the flow set CSIRS,v and the jump set DSIRS,v are not disjoint, the trajectories
can basically either flow or jump in the overlapping of CSIRS,v andDSIRS,v according
to ΦSIRS,v and ∆SIRS,v respectively. For this reason, a solution to ΣSIRS,v is generally
not unique. Moreover, a vaccination program is not strictly forced to be launched
even at the time that all of requirement is satisfied. It may never be launched or
just temporarily delayed as long as the vaccination program’s conditions are still
fulfilled.

Different from [80] which propose an SIR model with state dependent vaccination,
our hybrid SIRS model additionally consists of not only the extra arguments like
a performance of vaccine or more flexibility to launch vaccination but also taking
advantage in means of tools on stability analysis provided in the framework.

5.3.2 Stability

According to the hybrid epidemic system ΣSIRS,v, time is a part of the state. We
may use the notion of partial stability given in Section 3.5 to deal with the hybrid
epidemic system.

However, the part of state that we focus on stability is (S, I,R). For simplicity, we
are going to provide results of stability for the hybrid epidemic system with the
program clock tν = 0. Therefore, the hybrid epidemic system ΣSIRS,v is given as
follows:

ΣSIRS,v := (XSIRS,v,ΦSIRS,v, CSIRS,v,∆SIRS,v,DSIRS,v) (5.5)

where
XSIRS,v :=

{
(S, I,R) ∈ [0, 1]3

}
,

ΦSIRS,v





Ṡ = −βSI + δR,

İ = βSI − γI,
Ṙ = γI − δR,

if (S, I,R) ∈ CSIRS,v := XSIRS,v, and

∆SIRS,v





S+ = S − ρS,
I+ = I + (1− ν)ρS,

R+ = R+ νρS,
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if (S, I,R) ∈ DSIRS,v := {(S, I,R) ∈ XSIRS,v : S ∈ Sv, I ∈ Iv, t ≥ tν}.
Since the system allows a chance of no vaccination, we firstly consider the trivial
case where the discrete dynamics ∆x,v is not exhibited. Obviously, it follows that for
a hybrid epidemic system ΣSIRS,v the disease steady state E+(ΣSIRS,v) is asymptot-
ically stable, and the disease-free steady state E0(ΣSIRS,v) is unstable.

We are now consider stability of the hybrid epidemic system ΣSIRS,v in case that
vaccination program is definitely launched. Let us do the following mathematical
procedure on ΣSIRS,v. First of all, the system is going to be reduced by one degree
of freedom, which means that R is substituted by 1− S − I . It follows that

{
Ṡ = −βSI + δ(1− S − I),

İ = βSI − γI,

and {
S+ = S − ρS
I+ = I + (1− ν)ρS

Moreover, let us provide a translation of ΣSIRS,v to the equivalent, but lower dimen-
sion, hybrid epidemic system

Σx,v := (Xx,v,Φx,v, Cx,v,∆x,v,Dx,v) ,

where
x1 := S +

δ

β
, x2 := I,

Xx,v :=

{
(x1, x2) ∈

[
δ

β
, 1 +

δ

β

]
× [0, 1] : x1 + x2 ≤ 1 +

δ

β

}
,

Φx,v




ẋ1 = −βx1x2 − δx1 +

δ(β + δ)

β
,

ẋ2 = βx1x2 − (γ + δ)x2,

if (x, t) ∈ Cx,v,

Cx,v := Xx,v,

∆x,v





x+
1 = (x1 −

δ

β
)− ρ(x1 −

δ

β
) +

δ

β

= (1− ρ)x1 +
δρ

β
,

x+
2 = x2 + (1− ν)ρ(x1 −

δ

β
)

if (x, t) ∈ Dx,v,

Dx,v :=
{

(x, t) ∈ Xx,v : x1 ∈ S′ν , x2 ∈ Iv
}
,

S′ν :=

{
s′ ∈

[
δ

β
, 1 +

δ

β

]
: ∃ s ∈ Sv, s′ = s+

δ

β

}
,

Note that the disease steady state of the above system then becomes

E+(Σx,v) =

(
γ + δ

β
,
δ(β − γ)

β(γ + δ)

)
.
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Let us explicitly show what happens to the system if vaccinations are launched by a
limited number of vaccination programs.

Theorem 5.3. If the hybrid epidemic system Σx,v exhibits discrete dynamics finitely, i.e.,

sup
j

dom x <∞ (5.6)

where (x, t) is a solution to Σx,v, then the epidemic steady state E+(Σx,v) is asymptotically
stable.

Proof. Obviously, the hybrid epidemic system Σx,v is eventually continuous system
under the condition (5.6). By Theorem 5.2, we conclude that the epidemic steady
state E+(Σx,v) is asymptotically stable.

According to the above result, we found that if vaccination programs are launched
limitedly, then the epidemic eventually remains forever.

To provide additional results of stability of the disease steady state of the hybrid
epidemic system Σx,v, let us provide a definition of the ideal vaccination.

Definition 5.4 (Ideal Vaccination). For the hybrid epidemic system Σx,v, a vaccina-
tion program is ideal if ν = 1.

In the following results, we consider stability of Σx,v in the case of infinitely launch-
ing of ideal vaccination program, i.e., an ideal vaccine always works perfectly with
no unexpected side effects. To say precisely, no increasing in the number of infected
individuals is the result from an ideal vaccination program.

Theorem 5.5. If the vaccination is ideal, and

supS
′
v <

δ

ρβ
,

then the epidemic steady state E+(Σx,v) is asymptotically stable.

Proof. Define g : R2 → R2 by

g(x1, x2) :=

(
(1− ρ)x1 + (δρ/β)

x2 + (1− ν)ρ(x1 − δ
β )

)
,

and V : R2 → R≥0 by

V (x1, x2) := x1 −
(γ + δ)

β
ln(x1) + x2 −

δ (β − γ)

β (γ + δ)
ln(x2)− v̄,

where

v̄ :=
γ + δ

β
− (γ + δ)

β
ln(

γ + δ

β
) +

δ(β − γ)

β(γ + δ)
− δ (β − γ)

β (γ + δ)
ln(

δ(β − γ)

β(γ + δ)
).
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It follows that

V̇ (x1, x2) =

(
1− (γ + δ)

βx1

)(
−βx1x2 − δx1 +

δ(β + δ)

β

)

+

(
1− δ (β − γ)

β (γ + δ)x2

)
(βx1x2 − (γ + δ)x2)

= −δ (−βx1 + γ + δ)
(
−βδx1 − β2x1 + γβ + δβ + γδ + δ2

)

β2 (γ + δ)x1

= −δ (β + δ) (−βx1 + γ + δ)2

β2 (γ + δ)x1
.

It is clear to see that V̇ (x1, x2) < 0 for all (x1, x2, t) ∈ Cx,v. Furthermore, consider the
following

V (g(x1, x2))− V (x1, x2) = −ρ
(
x1 −

δ

β

)
−
(
γ + δ

β

)
ln

(
1− ρ

(
1− δ

βx1

))

= −ρ
(
x1 −

δ

β

)
−
(
γ + δ

β

)
ln

(
1 +

δ − ρβx1

βx1

)
.

It is obvious to see that

ln

(
1 +

δ − ρβx1

βx1

)
> 0 if x1 <

δ

ρβ
.

Therefore
V (g(x1, x2))− V (x1, x2) < 0 for all (x1, x2, t) ∈ Dx,v.

Finally, we conclude that the epidemic steady stateE+(Σx,v) is asymptotically stable.

Corollary 5.6. If the vaccination is ideal, and

supSv <
δ(1− ρ)

ρβ
,

then the epidemic steady state E+(ΣSIRS,v) is asymptotically stable.

We eventually discover that even in the case of ideal vaccine, the vaccination can
possibly fail by choosing an inappropriate strategy to limit or stop an epidemic since
the number of infected population is permanently positive and not different from the
case of no or a limited number of vaccinations. In the next section, we are going to
discuss on public health strategies of vaccination which can decrease the number of
infected individuals.

5.4 Control Plans

According to the results shown in the previous section, sufficient conditions to limit
or stop a spread of disease by vaccination programs are still in question. Throughout
this section, we try to deal with S-detection Sv and I-detection Iv in order to discover
a sufficient condition for stopping or limiting an epidemic. The following example
shows a failure of vaccination caused by inappropriate Sv.
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FIGURE 5.3: Solution to ΣSIRS,v in Example 5.7.

Example 5.7. Let the epidemic system ΣSIRS,v hold the arguments given in Table 5.1.
The solution illustrated in Figure 5.3 shows that the vaccination is failed to control
the spread of disease. Note that

supSv = 0.5 <
δ(1− ρ)

ρβ
=

0.6(1− 0.3)

0.4(1.2)
= 0.75,

which means, by Corollary 5.6, that the disease steady state is asymptotically stable.

Remark 5.1. For any figure provided throughout the rest of this chapter: the blue,
red and yellow filled regions represent the S-detection, I-detection and vaccination
region respectively. Moreover, the red plus-sign indicates the epidemic steady state
E+(ΣSIRS,v).

Unfortunately, a vaccination program does not always work effectively in order to
limit or stop the number of infected individuals. Let us demonstrate a possibility
to design a vaccination region which is exactly the jump set DSIRS,v. Basically, the
number of infected individuals will be continuously decreasing in the left-hand side
of the disease steady state in the SI-plane because

İ(t, j) = βS(t, j)I(t, j)− γI(t, j) < 0 if S(t, j) <
γ

β
.

Therefore, the vaccination may be unnecessary to be applied on that region. Addi-
tionally, Corollary 5.6 guides us to launch vaccination appropriately, which suggest
the following. We should choose the S-detection such that

supSv ≥
δ(1− ρ)

ρβ
,

in order to avoid trajectories reaching to the disease steady state.
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Captions Arguments Values
Infection rate β 1.2
Recovery rate γ 0.6
Loss of immunity rate δ 0.6
Vaccination ratio ρ 0.4
Vaccine performance ν 1
S-detection Sv [0,0.5]
I-detection Iv [0.1,1]
Program clock tν 0
Initial susceptible individual S(0, 0) 0.9
Initial infected individual I(0, 0) 0.1
Initial recovered individual R(0, 0) 0
Disease steady state E+(ΣSIRS,v) (0.5,0.25,0.25)

TABLE 5.1: Arguments of ΣSIRS,v in Example 5.7.

In the following result, the vaccination strategies to control a spread of disease are
proposed. The strategies aim to limit the spread of disease to a safely acceptable
desired level Ī where

Ī < I∗ :=
δ(β − γ)

β(γ + δ)
.

Note that the solutions to the hybrid epidemic systems ΣSIRS,v are not unique, so the
time when vaccination programs are launched to the susceptible class will possibly
vary according to various situations.

Strategy 5.8. In case of a hybrid epidemic system ΣSIRS,v satisfying

1. S(0, 0) >
γ

β
;

2. β > γ, δ > 0, ρ > 0 and ν = 1,

choose the S-detection and I-detection as follows:

Sv :=





[
γ

β
,
δ(1− ρ)

ρβ

]
if
γ

β
<
δ(1− ρ)

ρβ
< 1,

[
γ

β
, 1

]
otherwise,

Iv :=
[
Ī , 1
]

to control an epidemic.

In order to guarantee the efficiency of provided strategies, let us provide a definition
of effective strategies as follow.

Definition 5.9 (Effective Strategies). For a hybrid epidemic system ΣSIRS,v, a strat-
egy is effective if there exists a positive number T such that the number of infected
individuals I(t, j) is eventually not larger than the safely acceptable desired level
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FIGURE 5.4: Graphical representation of a vaccination program in
Strategy 5.8

Ī < I∗ for any time t beyond T , where (S∗, I∗, R∗) := E+(ΣSIRS,v), i.e.,

∃ T > 0 ∀ t ≥ T : I(t, j) ≤ Ī < δ(β − γ)

β(γ + δ)
, (t, j) ∈ dom I.

Theorem 5.10. Strategy 5.8 is effective.

Proof. We are going to consider the solutions on the SI-plane. Suppose that y is a
solution to ΣSIRS,v. Let z be a trajectory such that for all (t, j) ∈ dom y it satisfies

z(t, j) = (S(t, j), I(t, j))

where
y(t, j) = (S(t, j), I(t, j), 1− S(t, j)− I(t, j), t) .

Define A := Sv × Iv, and

E+(ΣSI,ν) := (S∗, I∗) ∈ R2

where
E+(ΣSIRS,v) = (S∗, I∗, 1− S∗ − I∗).

In Figure 5.4, we depict this vaccine strategy and also visualize the vaccination re-
gion A.

According to the strategy, there exists t1 ≥ tν ≥ 0 such that the trajectories will flow
to A which is assured by Corollary 5.6. The state z(t1, 0) ∈ A is therefore mapped
by the discrete dynamics ∆SIRS,v. Consequently, there exists a finite natural number
j1 > 0 such that z(t1, j1) ∈ [0, 1]2 \A. In case that the state satisfies I(t1, j1) > Ī , then
we omit the proof of this case since it is similar to the proof of Theorem 5.12.

Suppose that the state satisfies I(t1, j1) = Ī . In the trivial case Ī = 0, there are no dy-
namics in the system beyond this state, which is obvious to say that I(t, j1) = 0 < I∗

for all t ≥ t1. Additionally suppose that Ī > 0, therefore, the trajectory continuously
flows to A in the direction that the proportion of infected individuals is decreasing
since the state is yet in the region located on the left-hand side of E+(ΣSI,ν) on the
SI-plane. If the trajectory flows to the S-axis, then the strategy is effective. Other-
wise, there exists t2 > t1 such that z(t2, j1) ∈ A. Indeed, I(t, j1) ≤ Ī for all t ∈ [t1, t2].
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Consequently the discrete dynamics exhibit to the system, and there exists a natural
number j2 > j1 such that z(t2, j2) ∈ [0, 1]2 \ A. With this iteration, we therefore
conclude that there exists T = t1 such that, for any j ≥ j1,

I(t, j) ≤ Ī < I∗ ∀ t ≥ T.

The proof is completed since a proportion of infected individuals is eventually lower
than I∗.

Strategy 5.11. In case a hybrid epidemic system ΣSIRS,v satisfying all of the requirements
stated in Strategy 5.8 except S(0, 0) ≤ γ

β
, choose Iv as given in Strategy 5.8. Moreover,

1. if Ī > 0, then choose

Sv :=





[
γ

β
,
δ(1− ρ)

ρβ

]
if
γ

β
<
δ(1− ρ)

ρβ
< 1;

[
γ

β
, 1

]
otherwise;

2. if Ī = 0, then pick any small number ε > 0 and choose

Sv :=

[
γ

β
,
γ

β
+ ε

]
;

to control an epidemic.

Remark 5.2. We can pick any small positive ε in the above strategy to control an epi-
demic. The smaller ε we pick results in the smaller region of vaccination programs,
which practically imply to less resources of vaccination.

Theorem 5.12. Strategy 5.11 is effective.

Proof. Define the set A, the trajectory z(t, j) and the point E+(ΣSI,ν) as in the proof
of Theorem 5.10. By Corollary 5.6, there exists t1 ≥ tν ≥ 0 such that z(t1, 0) ∈ A
and I(t1, 0) ≤ I∗. Due to the discrete dynamics ∆ΣSIRS,v , there exists a positive
j1 ∈ N such that z(t1, j1) ∈ [0, 1]2 \ A. Since the vaccination is ideal, I(t1, j1) =
I(t1, 0) ≤ I∗. However the state z(t1, j1) is yet in the region located on the left-hand
side of E+(ΣSI,ν). Hence the trajectories flow to A in the direction that the number
of infected individuals is decreasing, which results that there exists t2 > t1 such that
z(t2, j1) ∈ A and I(t2, j1) < I(t1, j1). As a consequence, the proportion of infected
individuals gets lower on each round of the above iteration.

Since the sequence of I(tj , j) is decreasing and bounded from below by Ī , let us
consider two possible cases. The first case of consideration is Ī = 0. We will show
that the trajectory z will converge to (S∗, Ī). Suppose by a contradiction that the
proportion of infected individuals does not converge to Ī , but it converges to Î > Ī ,
i.e., there exist Î > Ī , T > 0 and J > 0 such that S(τ, ξ) = S∗ and I(τ, ξ) = Î for all
τ ≥ T and ξ ≥ J . However the trajectory z(τ, ξ) ∈ A. Therefore the vaccination is
launched and then z(τ, ξ + 1) ∈ [0, 1]2 \ A. Since S(τ, ξ + 1) < S∗, there exist κ > 0
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FIGURE 5.5: Solution to ΣSIRS,v in Example 5.13 with Iv = [0.05, 1].

such that the state z(τ + κ, ξ + 1) ∈ A and S(τ + κ, ξ + 1) = S∗. Note that from time
t = τ to t = τ +κ, the trajectory flows in the direction that the proportion of infected
individuals decreases, i.e., I(τ + κ, ξ + 1) < Î . So the contradiction is obtained.

The second case is Ī 6= 0. According to the above iteration, the trajectory will reach
A and there exist Tν > 0 and Jν > 0 such that S(Tν , Jν) > S∗ and I(Tν , Jν) = Ī .
Therefore, the vaccinations are allowed to be launched until the trajectory is not inA.
It results that there exists k > 0 such that S(Tν , Jν +k) < S∗ and I(Tν , Jν +k) = Ī . So
this iteration can be repeated infinitely many times which results that the proportion
of infected individuals is limited by Ī .

Example 5.13. Consider the hybrid epidemic system ΣSIRS,v along with the argu-
ments shown in Table 5.2. In case of no vaccination, the trajectories always converge
to the disease steady state (0.5, 0.25, 0.25). To limit the proportion of infected in-
dividuals, Strategy 5.8 is therefore applied with Iv = [0.05, 1] and Iv = [0, 1]. The
solutions are also shown in Figure 5.5 and Figure 5.6 respectively.

Example 5.14. Consider the hybrid epidemic system ΣSIRS,v along with the argu-
ments shown in Table 5.2 except S(0, 0) = 0.05 and I(0, 0) = 0.95. In this example,
we apply Strategy 5.11. The result illustrated in Figure 5.7 shows that it can stop the
spread of disease.

5.5 Discussion and Other Problems

Although the strategies proposed in the previous section are effective in our sense
and can either limit or stop the spread of disease, they are practically infeasible in
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FIGURE 5.6: Solution to ΣSIRS,v in Example 5.13 with Iv = [0, 1].

Captions Arguments Values
Infection rate β 1.2
Recovery rate γ 0.6
Loss of immunity rate δ 0.6
Vaccination ratio ρ 0.3
Vaccine performance ν 1
S-detection Sv [0.5,0.75]
Program clock tν 0
Initial susceptible individual S(0, 0) 0.95
Initial infected individual I(0, 0) 0.05
Initial recovered individual R(0, 0) 0
Disease steady state E+(ΣSIRS,v) (0.5,0.25,0.25)

TABLE 5.2: Arguments of ΣSIRS,v in Example 5.13.
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FIGURE 5.7: Solution to ΣSIRS,v in Example 5.14.
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FIGURE 5.8: Trajectory of S to ΣSIRS,v in Example 5.15.

some situations. Example 5.13 and Example 5.14 show that the vaccination pro-
grams are frequently launched. This kind of situation can lead to the problems that
the vaccination programs suggested by the proposed strategies can not be applied
practically. Moreover, the following example shows a possibility of the strategies
aiming to control the spread of disease. However, it need some cautions to apply in
a real world situation.

Example 5.15. The epidemic system ΣSIRS,v holds the parameters indicated by Ta-
ble 5.2 except ρ = 0.1 and Iv = [0.2, 1]. At time t = 3.5 approximately, multiple
discrete dynamics exhibit instantly. Such cases like this need a remark since to apply
vaccination many times in a row is impossible. According to its trajectory illustrated
in Figure 5.8, the state needs 3 vaccinations to leave the vaccination zone. It means
that, in a practical point of view, we have to apply ρ ≥ 0.3 at a first jump. After that,
the vaccination program may decrease the parameter ρ to 0.1 which can control the
spread of disease to the desired level effectively.
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Furthermore, the effects of vaccine performance ν and program clock tν are not in-
vestigated in this work. At this point we believe that they possibly give a huge
impact to vaccination programs. The future study is necessary to explore these un-
known effects.
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Chapter 6

Conclusion

This work provides a framework for generalized hybrid dynamical systems includ-
ing stability analysis and applications in epidemic systems. In Chapter 3, we in-
troduce a fundamental framework of hybrid dynamical systems developed in [1–
3]. In Theorem 3.17, sufficient conditions guaranteeing existence of a non-trivial
solution to a hybrid dynamical system are provided by using Banach contraction
principle and its extension. This results give us a possibility to use numerical iter-
ations to find solutions to hybrid systems, however, it is not studied in this work.
Moreover, numerous results on stability are proposed by extensions of direct Lya-
punov’s method. In Theorem 3.21, existence of a hybrid Lyapunov function guaran-
tees asymptotic stability for hybrid systems. In Theorem 3.29 and Theorem 3.28, we
guarantee asymptotic stability by existence of relaxed hybrid Lyapunov functions
and additional conditions on characterizations of solutions. Such conditions require
non-eventually discrete or continuous solutions to hybrid systems, which is eas-
ier to verify than the other conditions provided in the literature. We consequently
investigate on the case of nonexistence of hybrid Lyapunov function and relaxed
hybrid Lyapunov function. In such case, we consider hybrid Lyapunov candidate
functions with additional conditions on characterization of solutions. We provide
sufficient conditions guaranteeing asymptotic stability for a hybrid system of class
L(θ) and classH(θ) in Theorem 3.45 and Theorem 3.46 respectively. Such conditions
are called dwell-time conditions, which describe the frequency of discrete dynamics
and duration of continuous dynamics in stable systems.

In addition, we provide a notion of partial stability for hybrid systems consisting of
time, counters or logical values as a part of the state. For such systems, we modify
the definitions of stability and hybrid Lyapunov functions. We assume that they
can be decomposed to the form (3.33)–(3.34). The main part considered in stability
is only xs. According to the modified definitions, see Definition 3.49, Definition
3.50 and Definition 3.51, existence of hybrid Lyapunov function guarantees partial
asymptotic stability for the system in the form (3.33)–(3.34). Furthermore, stability
conditions provided in Theorem 3.28, Theorem 3.29, Theorem 3.45 and Theorem 3.46
can be modified to guarantee partial stability.

In Chapter 4, we firstly discuss on the issues of modeling for interconnections of
hybrid systems. The issues are motivated by a simple example on interconnected
bouncing balls. The framework for interconnected hybrid systems given in litera-
ture leads to the problems of physical meaningless solutions which imply to loss of
stability property. We suggest a possibility to solve them by proposing a different
concept of solutions. Consequently, we propose an extended framework for gener-
alized hybrid dynamical systems allowing us to decompose one large hybrid system
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as an interconnection of several ones or compose several interconnected hybrid sys-
tems as one larger hybrid system, see (4.7). This framework allows the possibility to
have continuous flows for some parts of the state also at those instants when other
parts can jump, which avoids the mentioned issues of modeling for interconnections
of hybrid systems.

According to generalize hybrid time domains in the provided framework, stabil-
ity notions like input-to-state stability needs to be more generally formulated. We
propose stability notions and numerous results for generalized hybrid dynamical
systems. Due to the difficulties of generalized hybrid time domains, we firstly con-
sider stability of subsystems. Note that results on stability of the interconnection
are equivalent to the results on stability of subsystems if there is only one partition
in the interconnection. In Theorem 4.22, existence of ISS-Lyapunov functions guar-
antees ISS property of subsystems. In Theorem 4.23 and Theorem 4.24, existence
of relaxed ISS-Lyapunov functions with additional conditions on characterization
of solutions guarantees ISS property of subsystems. In Theorem 4.25 and 4.26, ex-
istence of ISS-Lyapunov candidate functions with their corresponding dwell-time
conditions guarantees ISS property of subsystems. To guarantee stability of the in-
terconnection, we construct an ISS-Lyapunov function for the interconnection from
a collection of ISS-Lyapunov functions for subsystems along with an Ω path. Basi-
cally, existence of an Ω path is guaranteed if the small-gain condition, see Definition
4.31, wrt the gain operator, see Definition 4.30, is satisfied. We therefore essentially
require the satisfied small-gain condition to construct an ISS-Lyapunov function for
the interconnection. Explicit constructions of ISS-Lyapunov functions for the inter-
connection are provided in Theorem 4.34, Theorem 4.35, Theorem 4.36, Theorem
4.37 and Theorem 4.38.

However, there are some interesting problems that we would like to address here.
One of them is the problem on multiple Zeno-type motions. Consider the bouncing
ball provided in Example 3.1 along with initial conditions x1(0) = h, x2 = 0 and
the defined input u such that it takes value of γ + 1 for tmax ≤ t ≤ 2tmax and is
zero otherwise, where tmax is the corresponding Zeno time. After tmax this ball will
be elevated to some finite height and dropped again. Consequently, the ball will
tend to reach the second Zeno point, which is naturally larger than tmax. This kind
of behavior can be modeled by introducing multiple Zeno times tmax,1 and tmax,2

in an appropriate extension of the provided framework. Another problem is that
hybrid dynamics can appear due to interconnection of systems that are not hybrid
by their nature. For example, a movement of a mass-point in a free space under some
forces is usually modeled by ordinary differential equations and is not hybrid by its
nature. However, if we consider such two mass-points in the same space, so that
they can collide, then the resulting systems exhibits hybrid phenomena. In addition,
we provide Table 6.1 comparing features in our framework of generalized hybrid
systems and the framework provided in the literature [63, 64]. Since we do not see
any setting of interconnected hybrid systems in the literature that can handle issues
on model composition or decomposition appropriately, we mark this topic with the
question symbol. The check mark in the table indicates that the framework can
handle the corresponding issue properly, while the cross mark indicates the opposite
meaning or the framework is not ready to handle such issues.

In Chapter 5, we propose a mathematical model for a spread of disease with pub-
lic vaccination programs called hybrid SIRS, see (5.4). Basically, the system consists
of two steady states: the disease-free steady and the disease steady state. In case
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Features Literature Present
Flow set C = ∩ni=1

iC IC
Jump set D = ∪ni=1

iD ID
Flow map See (4.3) See (4.51)
Jump map See (4.4) See (4.51)
Hybrid time domains t, k t, 1k, 2k, . . . , nk,

1tmax, . . . ,
ntmax

Inputs 3 3

Hybrid arcs 3 3

Independent dynamics of subsystems 6 3

Void physical-meaningless solutions 6 3

Global asymptotically stability 6 3

Composition/decomposition ? 3

Tracking a state at t ≥ tmax 6 3

Multiple Zeno times in each subsystem 6 6

Hybrid phenomena due to interconnections 6 6

TABLE 6.1: Features comparison of the provided framework.

of no vaccination, the disease-free steady state is globally asymptotically stable if
the recovery rate is not smaller than the infection rate, i.e., the spread of the disease
eventually disappears, and every individual get no more infected. Additionally, the
disease-free steady state is unstable and the disease steady state is locally asymp-
totically stable if the infection rate is larger than the recovery rate, i.e., the infected
individuals permanently remain in the population, which means the spread of dis-
ease is eventually long lasting.

Consequently, we mainly focus on the case of the infection rate being larger than the
recovery rate. The result of Theorem 5.3 suggests that if vaccination programs are
launched limitedly, then the epidemic eventually remains forever. On the results in
Theorem 5.5 and Corollary 5.6, we discover that even on a case of ideal vaccines, the
vaccination can possibly fail by choosing an inappropriate strategy to limit or stop
an epidemic since the number of infected individuals is permanently positive, and it
is not different from the case of no vaccination or a finite number of vaccination pro-
grams. Furthermore, we provide Strategies 5.8 and Strategies 5.11 to limit or stop the
spread of disease. We explicitly show that the provided strategies are significantly
effective to control an epidemic in Theorem 5.10 and Theorem 5.12.

Even though Strategies 5.8 and Strategies 5.11 are effective in our sense and can
either limit or stop the spread of disease, they are practically infeasible in some situ-
ations. We see that, in Example 5.13 and Example 5.14, the discrete dynamics exhibit
very frequently in the very end of numerical simulations. Such situations can lead
us to the problem of non-practical vaccination programs. Additionally, Example
5.15 shows some cautions to apply the provided strategies. Unfortunately, this work
does not deal with the effects of non-ideal vaccine, i.e., ν < 1, and the program clock
tν . However, we believe that the further study on this model can lead us to discover
some unknown and interesting results. Finally, we wish that all of the provided
results would give a possibility to solve real world problems.





113

Appendix A

List of Symbols

H A hybrid system.
X The state space of a hybrid system.
C The flow set of a hybrid system.
D The jump set of a hybrid system.
ẋ, x′ The derivative wrt time of the state x of a dynamical system.
x+ The state of a hybrid dynamical system after a jump.
π 3.1415926536 . . .
e, exp(1) 2.7182818285 . . .
ln(·) Natural logarithm function.
R The set of real numbers.
R≥0 [0,∞) or the set of nonnegative real numbers.
R+, R>0 (0,∞) or the set of positive real numbers.
N {0, 1, 2, 3, . . .} the set of natural numbers.
Nn {1, 2, 3, . . . , n}.
Z −N ∪ N the set of integers.
Rn The n-dimensional Euclidean Space.
∅, {} The empty set.
A The closure of a set A.
∂A The boundary of a set A.
A ∪B The set of points belonging to set A or set B.
A ∩B The set of points belonging to set A and set B.
A \B The set of points belonging to set A but not belonging to set B.
A×B The set of order pairs (a, b) such that a ∈ A and b ∈ B.
max Maximum.
min Minimum.
sup Supremum, the least upper bound.
inf Infimum, the greatest lower bound.
dxe The least integer greater than or equal to x.
xT The transpose of vector x.
(x, y) Equivalent notation of

(
xT, yT

)T.
‖x‖ The norm of a vector x.
|x| The Euclidean norm of a vector x.
‖x‖p (|x1|p + |x2|p + . . .+ |xn|p)1/p the Lp-norm of vector a x = (x1, x2, . . . , xn).
‖x‖∞ max {|x1| , |x2| , . . . , |xn|} the L∞-norm of a vector x = (x1, x2, . . . , xn).
‖x‖A infa∈A |x− a| for a non-empty A ⊂ Rn and a vector x ∈ Rn.
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f : Rn → Rm A function or mapping f from Rn to Rm.
f−1 The inverse function of f .
f ′ The derivative of a function f .
id The identity mapping.
g ◦ f The composite function g on f .
g(n) The n-fold composition function on g.
〈x, y〉 The dot product of the vectors x and y.
∂
∂xi
f(x) The partial derivative of a function f at x wrt the direction xi.

∇V (x) The gradient of the real-valued function V (x).
=⇒ Material implication; if...then.
∀ Universal quantification.
∃ Existencial quantification.
C0 The space of continuous functions.
C1, C The space of continuously differentiable functions.
Ck The space of functions with k continuous derivatives.
P The class of positive definite functions, see Definition 2.10.
S The class of P functions, see Definition 2.11.
K, K∞ The class of K and K∞ functions, see Definition 2.13.
KL The class of KL functions, see Definition 2.16.
KLn The class of KLn functions, see Definition 4.14.
L(θ) The class L(θ), see Definition 3.34 and Definition 4.12
H(θ) The class H(θ), see Definition 3.39 and Definition 4.13
�, ≺ The order of hybrid time domains, see Definition 3.6 and Definition 4.3.
iH The hybrid subsystem i in an interconnection.
iX The state space of the hybrid subsystem i.
iC The flow set of the hybrid subsystem i.
iD The jump set of the hybrid subsystem i.
itmax The Zeno time of ix, see Section 4.3.2.
IC The flow index set, see 4.6.
ID The jump index set, see 4.6.
k The multi-index (1k, . . . , nk) ∈ Nn. See Definition 4.1.
ς(k) The summation 1k + · · ·+ nk, see Definition 4.1
1i (1p, . . . , i−1p, 1, i+1p, np) ∈ Nn.
0i (1p, . . . , i−1p, 0, i+1p, np) ∈ Nn.
κ(j), ν(j) The κ-multi-indices and a ν-multi-indices, see the equation (4.14).
κ(j), ν(j) The κ-mapping and the ν-mapping , see the equation (4.15).
T (j, x), T (k, x) See Definition 3.33 or Definition 4.11.
E0(ΣSIRS) The disease-free steady state of ΣSIRS , see the equation (5.2).
E+(ΣSIRS) The disease steady state of ΣSIRS , see the equation (5.3).
Ī The safely acceptable value of infected individuals.
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[59] D. Nešić and A. Teel, “A Lyapunov-based small-gain theorem for hybrid ISS
systems”, in 47th IEEE Conference on Decision and Control, 2008. CDC 2008, Dec.
2008, pp. 3380–3385.

[60] S. Dashkovskiy and M. Kosmykov, “Stability of networks of hybrid ISS sys-
tems”, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
Held Jointly with 2009 28th Chinese Control Conference, Shanghai: IEEE, Dec.
2009, pp. 3870–3875.

[61] R. Sanfelice, “Results on input-to-output and input-output-to-state stability
for hybrid systems and their interconnections”, in 2010 49th IEEE Conference
on Decision and Control (CDC), Dec. 2010, pp. 2396–2401.

[62] A. Teel, “Asymptotic stability for hybrid systems via decomposition, dissipa-
tivity, and detectability”, in 2010 49th IEEE Conference on Decision and Control
(CDC), Dec. 2010, pp. 7419–7424.

[63] S. Dashkovskiy and M. Kosmykov, “Input-to-state stability of interconnected
hybrid systems”, Automatica, vol. 49, no. 4, pp. 1068–1074, Apr. 2013.

[64] R. G. Sanfelice, “Interconnections of hybrid systems: Some challenges and
recent results”, Journal of Nonlinear Systems and Applications, vol. 2, no. 1-2,
pp. 111–121, 2011.

[65] R. Goebel, J. Hespanha, A. R. Teel, C. Cai, and R. Sanfelice, “Hybrid systems:
Generalized solutions and robust stability”, in Proc. 6th IFAC Symposium in
Nonlinear Control Systems, 2004, pp. 1–12.

[66] C. Cai and A. R. Teel, “Characterizations of input-to-state stability for hybrid
systems”, Systems & Control Letters, vol. 58, no. 1, pp. 47–53, Jan. 2009.

[67] E. Sontag and Y. Wang, “On Characterizations of Input-to-State Stability with
Respect to Compact Sets”, in In Proc. IFAC Non-Linear Control Systems Design
Symposium (NOLCOS ’95), Tahoe City, CA, 1995, pp. 226–231.

[68] E. D. Sontag and Y. Wang, “On characterizations of the input-to-state stability
property”, Systems & Control Letters, vol. 24, no. 5, pp. 351–359, 1995.



Bibliography 119

[69] E. D. Sontag, “On the Input-to-State Stability Property”, European Journal of
Control, vol. 1, no. 1, pp. 24–36, Jan. 1, 1995.

[70] Z.-P. Jiang, I. M. Y. Mareels, and Y. Wang, “A Lyapunov formulation of the non-
linear small-gain theorem for interconnected ISS systems”, Automatica, vol. 32,
no. 8, pp. 1211–1215, Aug. 1, 1996.

[71] W. O. Kermack and A. G. McKendrick, “A Contribution to the Mathemati-
cal Theory of Epidemics”, Proceedings of the Royal Society of London. Series A,
vol. 115, no. 772, pp. 700–721, Jan. 8, 1927.

[72] ——, “Contributions to the Mathematical Theory of Epidemics. III. Further
Studies of the Problem of Endemicity”, Proceedings of the Royal Society of Lon-
don. Series A, vol. 141, no. 843, pp. 94–122, Mar. 7, 1933.

[73] ——, “Contributions to the Mathematical Theory of Epidemics. II. The Prob-
lem of Endemicity”, Proceedings of the Royal Society of London. Series A, vol. 138,
no. 834, pp. 55–83, Jan. 10, 1932.

[74] M. J. Keeling, M. E. J. Woolhouse, R. M. May, G. Davies, and B. T. Grenfell,
“Modelling vaccination strategies against foot-and-mouth disease”, Nature,
vol. 421, pp. 136–142, Jan. 9, 2003.

[75] O. Misra and D. Mishra, “Modelling the effect of booster vaccination on the
transmission dynamics of diseases that spread by droplet infection”, Nonlinear
Analysis: Hybrid Systems, vol. 3, no. 4, pp. 657–665, Nov. 2009.

[76] P. Liò, E. Merelli, and N. Paoletti, “Disease processes as hybrid dynamical sys-
tems”, in Proceedings First International Workshop on Hybrid Systems and Biology,
vol. 92, Newcastle, UK, Aug. 15, 2012, pp. 152–166.

[77] M. J. Keeling and L. Danon, “Mathematical modelling of infectious diseases”,
British Medical Bulletin, vol. 92, no. 1, pp. 33–42, Jan. 12, 2009.

[78] A. Korobeinikov and G. C. Wake, “Lyapunov functions and global stability
for SIR, SIRS, and SIS epidemiological models”, Applied Mathematics Letters,
vol. 15, no. 8, pp. 955–960, Nov. 2002.

[79] Cruz Vargas De León, “Constructions of Lyapunov Functions for Classics SIS,
SIR and SIRS Epidemic model with Variable Population Size”, Foro-Red-Mat:
Revista electrónica de contenido matemático, vol. 26, 2009.

[80] L. Nie, Z. Teng, and A. Torres, “Dynamic analysis of an SIR epidemic model
with state dependent pulse vaccination”, Nonlinear Analysis: Real World Appli-
cations, vol. 13, no. 4, pp. 1621–1629, Aug. 2012.



120

Index

I-detection, 95
S-detection, 95
Ω-Paths, 84

Existence, 84

Accumulation points, 6

Bouncing Ball, 14, 49
Asymptotic Stability, 33
Solution, 20
Stability, 29

Carathéodory, 8
Clarke’s generalized gradient, 8
Continuous dynamical systems

Equilibrium point, 8
Stability

Asymptotically stable, 9
Attractive, 9
Stable, 9
Unstable, 9

Steady state, 8

Discrete dynamical systems
Equilibrium point, 7
Stability

Asymptotically stable, 8
Attractive, 8
Stable, 7
Unstable, 8

Steady state, 7
Disease steady state, 93
Disease-free steady state, 93
Dwell-time conditions, 35, 38, 40, 43, 44,

46
Dynamical systems

Continuous-time, 8
Discrete-time, 7
Hybrid, 13

Epidemic control strategies, 101, 103
Epidemic systems, 91

Infection rate, 93
Infective period, 93
Recovery rate, 93

Essential supremum norm , 58
Euclidean space, 5

Frozen solutions, 51
Functions, 5

Class K, 10
Class K∞, 10
Class KL, 10
Class L, 10
Class P , 9
Class S, 9
Compositions, 6
Continuous, 6
Continuous differentiable, 7
Continuously differentiable, 7
Decreasing, 7
Derivatives, 7
Differentiable, 7
Increasing, 7
Non-decreasing, 7
Non-increasing, 7
Partial Derivatives, 7
Positive definite, 9
Radially unbounded, 9
Real, 5
Real-valued, 5

Gain operators, 83
Generalized Hybrid Arcs, 54

Absolutely hybrid, 54
Bounded, 54
Class H(θ), 56
Class L(θ), 56
Complete, 54
Continuous, 54
Discrete, 54
Eventually continuous, 54
Eventually discrete, 54
Nontrivial, 54
Zeno, 54

Generalized Hybrid Systems, 52
Absolutely hybrid, 55
Class H(θ), 56
Class L(θ), 55
Complete, 55
Eventually continuous, 55
Eventually discrete, 55
Solutions, 55



INDEX 121

Stability
0-Input stability, 59
Asymptotic gain property, 59
Global stability, 59
Input-to-state stability, 58
ISS, 58

Zeno, 55
Generalized Hybrid Time Domains, 53

Order, 53

Hooke’s law, 49
Hurwitz matrix, 34
Hybrid Arcs, 17

Absolutely hybrid, 18
Bounded, 18
Class H(θ), 36
Class L(θ), 35
Complete, 18
Continuous, 18
Discrete, 18
Eventually continuous, 18
Eventually discrete, 18
Nontrivial, 18
Zeno, 18

Hybrid Invariance Principle, 29
Strong forward, 30
Weakly, 30
Weakly backward, 30
Weakly forward, 30

Hybrid Krasovskii, 30
Hybrid Lyapunov Candidate Functions,

26
Hybrid Lyapunov Functions, 26
Hybrid Lyapunov Theorem, 27
Hybrid SIRS Model, 94
Hybrid Systems

Absolutely hybrid, 20
Basic assumptions, 16
Class H(θ), 36, 56
Class L(θ), 35
Complete, 20
Continuous, 20
Data of hybrid systems, 14
Discrete, 20
Eventually continuous, 20
Eventually discrete, 20
Existence of solutions, 23
Flow maps, 13
Flow sets, 13
Jump maps, 13
Jump sets, 13

Maximal solutions, 19
Partial stability, 45

Asymptotically stable, 45
Attractive, 45
Stable, 45

Solutions, 19
Complete solutions, 20
Continuous solutions, 20
Discrete solutions, 20
Eventually continuous solutions, 20
Eventually discrete solutions, 20
Zeno solutions, 20

Stability
Asymptotically stable, 25
Attractive, 25
Stable, 25

State space, 13
Zeno, 20

Hybrid Time Domain, 16
Hybrid Time Domains

Order, 17

Ideal vaccinations, 98
Impulsive systems, 15

Solutions, 22
Initial Conditions, 19
Inputs

External, 52
Internal, 59

ISS gains, 58
ISS-dwell-time conditions, 71, 74
ISS-Lyapunov candidate functions, 62
ISS-Lyapunov functions, 62
ISS-Lyapunov gains, 62
ISS-Lyapunov Theorem, 63

Kermack, 91

Lipschitz Condition, 8
Lipschitz Constants, 8
Lipschitz Continuous Functions, 8

McKendrick, 91

Norms, 5
Lp-norms, 5
L∞-norm, 5

On/off switching systems, 14
Solutions, 21

Positive definite functions, 9
Program clocks, 95



122 INDEX

Relaxed hybrid Lyapunov functions, 27
Relaxed hybrid Lyapunov theorems, 31,

32
Relaxed ISS-Lyapunov functions, 62
Relaxed ISS-Lyapunov Theorems, 66, 69

Sequences, 6
Convergent, 6
Decreasing, 6
Divergent, 6
Increasing, 6
Non-decreasing, 6
Non-increasing, 6
Subsequences, 6

Sets
Boundary, 6
Bounded, 6
Closed, 6
Compact, 6
Interior, 6
Open, 6
Relatively closed, 6

SIR model, 92
SIRS Model, 92
Small-gain conditions, 84
Small-gain theorem, 84
Stages of disease

Infected class, 92
Recovered class, 92
Susceptible class, 92

Vaccinations, 94

Zeno time, 21


	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Hybrid Dynamical Systems
	Modeling Framework
	Basic Assumptions
	Concept of Solutions
	Hybrid Time Domains
	Solutions to Hybrid Systems
	Existence of Solutions

	Stability
	Hybrid Lyapunov Theorem
	Hybrid Invariance Principle
	Relaxed Hybrid Lyapunov Theorems
	Dwell-Time Conditions

	Partial Stability

	Interconnected Hybrid Dynamical Systems
	Motivation
	Generalized Hybrid Dynamical Systems
	Concept of Solutions
	Generalized Hybrid Time Domains
	Solutions to Interconnections

	Stability
	ISS-Lyapunov Theorems
	ISS-Lyapunov Functions for Interconnections
	Interconnections of Two Subsystems
	Small-Gain Theorem
	Additional Constructions

	Further Problems

	Hybrid Epidemic Systems
	Background
	Classic SIRS Model
	Modeling
	Stability

	Hybrid SIRS Model with Vaccination
	Modeling
	Stability

	Control Plans
	Discussion and Other Problems

	Conclusion
	List of Symbols
	Bibliography

