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Abstract
Liver cirrhosis is the common endpoint of many 

hepatic diseases and represents a relevant risk for liver 
failure and hepatocellular carcinoma. The progress 
of liver fibrosis and cirrhosis is accompanied by 
deteriorating liver function. This review summarizes 
the regulatory and functional changes in phase Ⅰ and 
phase Ⅱ metabolic enzymes as well as transport 
proteins and provides an overview regarding lipid and 
glucose metabolism in cirrhotic patients. Interestingly, 
phase Ⅰ enzymes are generally downregulated 
transcriptionally, while phase Ⅱ enzymes are mostly 
preserved transcriptionally but are reduced in their 
function. Transport proteins are regulated in a specific 
way that resembles the molecular changes observed in 
obstructive cholestasis. Lipid and glucose metabolism 
are characterized by insulin resistance and catabolism, 
leading to the disturbance of energy expenditure 
and wasting. Possible non-invasive tests, especially 
breath tests, for components of liver metabolism 
are discussed. The heterogeneity and complexity 
of changes in hepatic metabolism complicate the 
assessment of liver function in individual patients. 
Additionally, studies in humans are rare, and species 
differences preclude the transferability of data 
from rodents to humans. In clinical practice, some 
established global scores or criteria form the basis for 
the functional evaluation of patients with liver cirrhosis, 
but difficult treatment decisions such as selection for 
transplantation or resection require further research 
regarding the application of existing non-invasive tests 
and the development of more specific tests. 
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Core tip: Liver cirrhosis is a common endpoint for 
many hepatic diseases and is accompanied by the 
extensive gene regulation of cytokines and enzymes 
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for hepatic metabolism. The resulting organ deficiency 
complicates treatment decisions, especially regarding 
transplantation and the resection of hepatocellular 
carcinoma. This review summarizes the regulatory 
events involving the metabolism in the cirrhotic liver 
and puts these events into the context of the non-
invasive testing of liver function. This combination can 
help to better estimate the liver function of individual 
patients.
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INTRODUCTION
Liver cirrhosis is the common final pathway of 
inflammatory liver diseases of different origins. 
In general, it takes many years or even decades 
to develop the full picture of liver cirrhosis that is 
associated with the complete destruction of liver 
architecture (represented by the liver lobes) through 
bridging fibrosis. Liver cirrhosis per se is the main 
risk factor for hepatocellular carcinoma and leads, if 
the underlying disease is not treated adequately, to 
chronic liver failure. Other pathways to liver failure 
include acute and acute-on-chronic liver failure (figure 
1). Liver failure of various origins necessitates the 
transplantation of 5500 livers per year in Europe[1].

Chronic hepatitis B and C and alcoholic and non-
alcoholic steatohepatitis are quantitatively the most 
important causes of cirrhosis, the first mainly in sub-
Saharan Africa and most parts of Asia and the latter 
three in more developed countries in Europe and North 
America[2]. Other less frequent causes of liver cirrhosis 
comprise autoimmune diseases such as autoimmune 
hepatitis, primary biliary cirrhosis or primary sclerosing 
cholangitis and hereditary entities such as Wilson 
disease, hemochromatosis and alpha-1-antitrypsin-
deficiency. Vascular diseases such as Budd-Chiari 
syndrome or Osler disease rarely cause liver cirrhosis, 
while right-heart failure is likely a more frequent cause 
than is commonly assumed[3]. finally, drug-induced 
liver injury[4], recurrent biliary obstruction and rare 
metabolic disorders such as porphyria can lead to liver 
cirrhosis and decompensation[5].

The development of cirrhosis is a continuous 
process from inflammation to fibrosis and ultimately 
cirrhosis and is complicated by decompensation, 
liver failure and/or hepatocellular carcinoma (figure 
1). It is accompanied by molecular changes in the 
hepatocytes and other liver cells modulating the 
inflammatory and fibrosing process itself that also 
influence the metabolism of endo- and xenobiotics as 
well as the synthesis of liver-derived proteins[6]. These 

changes are the result of the up- or down-regulation 
of the respective genes in the liver cell or changes in 
translational mechanisms in the cell. Preliminary data 
from microarray analysis imply that there are distinct 
molecular differences between the different etiologies 
of cirrhosis[7,8]. Research over the past 20 years has 
been focused on examining molecular mechanisms 
in the liver for the development of methods to block 
or retard the development of cirrhosis but has also 
focused on molecular changes in hepatic metabolism 
to identify additional risks elicited by insufficient liver 
function. The limited function of the liver in cirrhosis 
has significant importance and limits therapeutic 
options in not only chronic liver disease but also in 
70% of all hepatocellular carcinomas (intermediate and 
advanced stages). The molecular changes in cirrhosis 
can alter the transport and metabolism of drugs 
and carcinogens as well as endogenous metabolic 
intermediates and therefore lead to a higher risk of 
side effects, drug interactions and genotoxic effects 
as well as to changes in glucose or lipid metabolism. 
Many previous studies have used animal models (see 
below), with unclear transferability to humans. Human 
studies are scarce and mostly include small sample 
sizes. This review summarizes the existing knowledge 
and puts the results into the clinically relevant 
framework of non-invasive metabolic tests and their 
application in the clinical routine.

ANIMAL MODELS OF LIVER CIRRHOSIS 
AND THEIR HUMAN COUNTERPARTS
Experimental liver cirrhosis has been induced by 
bile duct ligation, toxic compounds such as carbon 
tetrachloride and the generation of fatty liver for 
almost a century[9-11]. Over the years, various animal 
models have been developed in rodents that closely 
reflect relevant human disease entities and their 
unique differences[12,13]. The pattern of hepatic fibrosis 
varies with the model used.

Carbon tetrachloride (CCl4) is one of the oldest 
and most widely used toxins for the experimental 
induction of liver fibrosis in laboratory animals but 
does not currently resemble a clinically relevant human 
disease[10,14]. Alternatively, thioacetamide can be 
used as a supplement to the drinking water to induce 
severe toxic bridging fibrosis[12,13]. Diethylnitrosamine 
induces toxic fibrosis that mechanistically resembles 
CCl4-induced fibrosis. As rodents develop malignancies 
under treatment with this carcinogen, it is best for 
those studying fibrosis in the context of hepatocellular 
carcinoma (HCC)[13].

Several models have been developed to represent 
biliary fibrosis and cirrhosis. These include surgical 
common bile duct ligation, which leads to cirrhosis 
with signs of portal hypertension and ascites[13]. 
Genetic alterations of the biliary transporters involved 
in bile formation are reflected by mice with targeted 
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disruption of the Mdr2 (Abcb4) gene, encoding a 
canalicular phospholipid flippase (Mdr2-/- mice) that 
spontaneously develops sclerosing cholangitis with 
macroscopic and microscopic features of human 
primary sclerosing cholangitis (PSC) and serves as a 
model for biliary liver cirrhosis[15,16]. Immunological 
models include a range from simple heterologous 
serum application to sophisticated knockout models 
of autoimmune liver disease[17]. Beyond autoimmune 
hepatitis models, different spontaneous autoimmune 
biliary disease mouse models, including the interleukin 
(IL)-2Rα-/- mouse model, have been reported[18].

Non-alcoholic fatty liver disease (NAfLD)-associated 
cirrhosis currently represents the most frequent liver 
disease in developed countries. Various rodent models 
for fatty liver-derived fibrosis are available either 
nutritionally or based on a genetic modification[19-22]. 
Among the most widely used models for different 
stages of the metabolic syndrome including NAfLD 
are ob/ob and db/bd mice with genetic alterations in 
the leptin/leptin receptor pathway and feeding models 
with high fat (or high fat high fructose). In contrast, 
the methionine-choline-deficient diet model does not 
resemble typical human NAFLD in the context of the 
metabolic syndrome but rather full-blown non-alcoholic 
steatohepatitis (NASH) with peripheral cachexia[20]. 
Animal models of alcohol-induced liver disease include 
a range of different exposure modalities from acute 
binge ethanol feeding to chronic ethanol feeding 
(Lieber-DeCarli model)[23]. 

Genetically humanized mouse models for hepatitis 
C virus infection are just emerging and have their 
focus on the immunological pathogenesis rather than 
on the induction of advanced fibrosis[24]. The same is 
true for hepatitis B models, which provide clues for 
understanding host-virus immunologic interactions 

rather than serve as a disease-specific fibrosis model[25].
As human studies providing data on molecular 

changes in hepatic metabolism and transport in 
cirrhosis are very scarce, data from animal models of 
cirrhosis have been incorporated into this work as far 
as these models adequately reflect human disease 
counterparts.

REGULATION
CYP450 isoforms
The human Cytochrome P450s are more than 50 
oxygenases present mainly in the liver and the 
intestine, divided into several families with different 
substrate specificities. CYP P450 families 1-3 are 
most important for the metabolism of xenobiotics, 
including drugs and carcinogens, while the other 
families catalyze the metabolism of endogenous 
substrates. A comprehensive review of the structure 
and function of the CYPs can be found elsewhere[26]. 
It is very important to note that the CYP450s not only 
catalyze the detoxification of drugs or carcinogens, but 
can also promote their carcinogenicity by activating 
such compounds via hydroxylation[27]. Changes in the 
gene regulation or functional activity of the CYP450s 
therefore do not have a uniform effect on xenobiotics. 

Additionally to this central role of hepatic CYPs in 
the handling of xenobiotics, the rate-limiting step of 
bile acid synthesis is mediated by the liver-specific CYP 
7A1. Thus, changes in CYP gene regulation also have 
an impact on bile acid synthesis and lipid metabolism.

CYP isoforms are intensely regulated by nuclear 
receptors aryl hydrocarbon receptor (AhR), constitutive 
androstane receptor (CAR), pregnane X receptor 
(PXR) and peroxisome proliferator-activated receptors 
(PPAR) in coordination with phase Ⅱ enzymes and 
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failure; for scores and criteria, see Table 2. MELD: Model of end stage liver disease.
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and model of end stage liver disease (MELD) score 
was shown in 24 patients with end-stage liver disease 
without any differentiation between cholestatic and 
non-cholestatic types[36]. Likewise, CYP 1A2, 2C19, 
3A4 and 2E1 mRNA were negatively correlated with 
increasing liver stiffness in additional studies analyzing 
patients with alcoholic fibrosis[37] or viral hepatitis[38,39]. 
Combined, these data support the hypothesis that 
the expression and function of many CYP isoenzymes 
declines with cirrhosis progression.

In Chinese patients with cirrhosis based on he-
patitis B, CYP 1A2 activity measured via phenacetin 
metabolism was decreased by 91%[40]. This result 
was accompanied by unchanged sulfotransferase 
(SULT) 1A1 activity in 159 cirrhotic patients, while a 
subgroup of 46 patients exhibited normal CYP 1A2 
activity and elevated SULT 1A1 activity. Interestingly, 
in a 2 year follow up, three patients from this latter 
group, but none from the first group, developed HCC, 
indicating a higher carcinogenic risk with preserved 
CYP 1A2 activity[40]. These results may offer a chance 
for identifying a subgroup of cirrhotic patients prone 
to HCC but were obtained in a simple metabolism 
analysis of phenacetin without any determination of 
the molecular expression levels. Even if these results 
fit with the theoretical considerations regarding the 
importance of CYP 1A2 in the activation of carcinogens, 
they should be confirmed in further studies. 

In another Chinese study with human end-stage 
liver disease samples, almost all CYP isoforms (and 
especially 1A2, 2E1, 2C19, 3A4 and 4A11) were 
down-regulated to various degrees[30]. This result was 
accompanied by the down-regulation of the nuclear 
receptor PPAR, while CAR, PXR and AhR expression 
was preserved. The data regarding metabolic enzymes 
are in line with another study already cited above 
showing the significant down-regulation of CYP 1A2, 
2C19 and 2E1 in advanced fibrosis and cirrhosis in 
patients with viral hepatitis[39]. However, in this study, 
CAR, PXR and AhR expression were reduced as well, 
significantly in contrast to the study above. In both 
studies, the analysis was restricted to mRNA data, 
while protein expression and functional data were 
lacking[30,39]. 

The down-regulation of CYP 2E1 mRNA in cirrhosis, 
including alcoholic cirrhosis[30], is interesting as this 
isoform is up-regulated in acute and chronic alcohol 
consumption and is implicated in the genesis of 
alcoholic liver damage due to its ability to produce 
ROS[41,42]. Obviously, cirrhosis as the end stage of 
alcoholic disease evens this up-regulation into a more 
dominant general regulatory event associated with 
severe cell damage.

CYP 7A1 as the rate-limiting enzyme of bile acid 
synthesis was shown to be up-regulated in primary 
biliary cholangitis (PBC) patients, but when determined 
in end-stage patients with PBC (defined as Child Pugh 
class C), the investigators observed the significant 
mRNA down-regulation of this enzyme[43]. This 

transporters[28]. Not unexpectedly, inter-individual 
variations in gene expression are much higher in 
human samples than in animal livers[29]. Additionally, 
end-stage livers often exhibit even higher variation 
than normal livers[30]. Depending on the study design, 
conflicting data exist regarding the regulation of CYP 
isoforms in cirrhosis.

In an animal study from 30 years ago, rats with 
biliary cirrhosis (35 d of bile-duct ligation) showed 
a reduction in the total protein mass of cytochrome 
P450 by 45%[31]. In the same study however, toxic 
post-necrotic cirrhosis in rats (induced by CCl4) did 
not lead to a change in the CYP450 protein mass in 
the diseased livers. This result is in line with recent 
data regarding non-ascitic animals with cirrhosis, 
while ascitic cirrhotic rats (assuming a later cirrhosis 
stage for those animals) had a significant decrease in 
the total CYP450 protein mass in this newer study[32]. 
Certainly the differential regulation of specific isoforms 
of CYP450 contributes to unchanged total protein 
mass in cirrhosis. CYP450 11B2, for example, was 
upregulated in rats with fibrotic liver due to CCl4[33]. 

In (uninduced) rats, CYP 1A1 is virtually absent, 
while CYP 1A2 is abundant[32]. Basically, the CYP 
1A2 protein mass was decreased to approximately 
half in cirrhotic rats without ascites; this reduction 
was intensified to less than 20% in rats with ascites, 
indicating a dependency on the cirrhosis stage[32]. 
The mRNA levels correlated well with the protein 
amount in this study. Interestingly, treatment with 
benzo[a]pyrene led to the normalization of CYP 1A2 
mRNA and protein mass in cirrhotic rats without 
ascites, while in rats with ascites, a significant 
decrease remained (albeit lower than in uninduced 
animals). The same results were obtained for CYP 1A1 
in these animals, and all these changes in regulation 
correlated well with AhR mRNA as well as protein 
expression[32]. Practically, this means that the ability to 
have microsomal oxidation (accompanied by possible 
molecular activation) of carcinogens is preserved in 
compensated liver cirrhosis (in rats). 

Human studies began 20 years ago, when an 
analysis of 50 end-stage livers showed the differential 
regulation of CYP isoforms, with the clear basal 
downregulation of CYP 1A2 as one of the most 
important activators of xenobiotic carcinogens. In 
contrast, the CYP 3A protein mass (as the most 
important isoform for drug metabolism) was only 
slightly decreased, reaching significance only in non-
cholestatic cirrhosis due to hepatocellular diseases, and 
CYP 2E1 was significantly reduced only in cholestatic 
cirrhosis[34]. This result implies an interesting isoform-
specific regulation in different subforms of cirrhosis. 
The mechanisms of regulation were diverse and were 
not restricted to classic translational regulation[35]. 
These results question an interpretation of gene 
regulation that rests solely upon mRNA analysis. Very 
recently, a clear correlation of midazolam clearance (as 
a surrogate for CYP 3A activity) with the Child Pugh 
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mechanism of late down-regulation may be associated 
with protective regulation events in liver cirrhosis 
(avoidance of intracellular bile acid accumulation 
in hepatocytes) and is confirmed by an additional 
study[44]. Interestingly, in this latter study, CYP 8B1 
as well as CYP 27 mRNAs were preserved, and CYP 
3A4 mRNA was only mildly reduced. PBC patients with 
a certain CYP 7A1 polymorphism leading to higher 
protein expression of this isoform in hepatocytes were 
at risk for a rapid PBC progression in a study of more 
than 300 Japanese patients[45].

In vitro studies in human hepatocytes showed 
that PXR not only induces CYP 3A4 in normal cells but 
also mediates the IL-6-induced repression of this CYP 
isoform[46]. These results may confer an explanation of 
CYP 3A4 down-regulation in an IL-6 productive state, 
such as chronic inflammation and liver cirrhosis, but it 
needs confirmation in in vivo studies. A recent human 
study implies that microRNA-155, a known regulator 
of liver inflammation, may contribute to lower CYP 
3A4 activity in liver cirrhosis[47], but the data presented 
in this study are merely descriptive and lack a clear 
mechanistic explanation.

The effect of liver fibrosis or cirrhosis on CYP450 
expression and function outside the liver remains 
controversial. In a human study with 23 patients 
with various degrees of cirrhosis, duodenal CYP 3A 
expression and total midazolam hydroxylation were 
both reduced to less than 50% of normal control 
patients[48]. In a pharmacokinetic animal study of 
ofloxacin, the authors found increased CYP enzyme 
activity in cirrhotic rats (CCl4, ethanol and high fat) as 
a reason for prolonged and reduced bioavailability of 
the test substance[49]. It must be clarified in additional 
studies whether these conflicting data are species-
specific or relate to the different study designs.

In summary, most CYP isoforms are reduced 
in expression and activity in advanced fibrosis and 
cirrhosis. This especially holds true for the important 
isoenzymes 1A2, 2E1 and 3A4 (for exogenous 
compounds) but also for CYP 7A1 (for bile acids). One 
important problem in many studies is that only mRNA 
data are available for the respective animal model or 
the human liver disease. Additionally, even protein 
expression data do not necessarily reflect the enzyme 
activity in vivo in advanced liver disease (see also 
below).

Phase-Ⅱ metabolism (UGT’s, sulfotransferases)
Phase Ⅱ in metabolism of xenobiotics is conferred 
by several groups of enzymes, the most important 
of which are uridine diphosphate (UDP)-glucuro-
nosyltransferases (2 families with more than 20 
isoforms[50]) and sulfotransferases (13 isoforms in 4 
groups[51]). The ultimate goal of phase Ⅱ metabolism 
is the solubilization of metabolites in water and 
thereby the potential for excretion in urine and bile. 
Nevertheless, sulfatation by sulfotransferases can 

also potentiate the genotoxic effect of a certain 
carcinogen. In general however, these metabolites 
are no longer toxic or carcinogenic, and therefore 
phase Ⅱ-metabolism is the final step of detoxification 
(before transport into urine or bile). Not surprisingly, 
both groups of enzymes are regulated coordinately by 
the nuclear receptors AhR, CAR, PXR and PPAR[28,52] 
together with phase Ⅰ and transporters, and this 
principle also holds for human liver disease[39]. In the 
latter study, coordination between nuclear receptors 
and metabolic enzymes was even stronger in severe 
liver disease (METAVIR score 3-4 in patients with 
mainly HCV) than in mild liver disease, indicating 
increasing cross-talk between transcription factors[39]. 
Human SULT 2A1, an important sulfotransferase 
for endogenous compounds including bile acids, 
has been shown to be regulated by the retinoid-
related orphan receptors RORα and β[53]. for UDP-
glucuronosyltransferase (UGT) 1A7, a clear association 
of low-activity genotypes with cirrhosis, functional 
hepatic impairment and HCC was shown[54], indicating 
the importance of detoxification by this isoenzyme in 
the pathophysiology of chronic liver disease.

Increasing amounts of deposited cholesterol in 
the livers of rats fed with high cholesterol diet, with 
final development of fibrotic steatohepatitis, led to a 
progressive down-regulation of the mRNA expression 
of SULT 2A1 and UGT 1A1 as well as UGT activity, 
most likely due to the parallel down-regulation of PXR 
and CAR[55]. In a rat model of toxic fibrosis/cirrhosis 
(treatment with thioacetamide), major UGT isoforms 
were up-regulated, but the enzyme activity was 
unchanged[56]. In CCl4-cirrhotic rat livers, however, 
UGT protein expression was completely preserved 
while enzyme activity was not measured[57]. In biliary 
cirrhotic rats, we also found the protein content of UGT 
1A isoforms unchanged, but the enzyme activity of 
both UGT and SULT isoforms was clearly reduced[58]. 
As Mrp2 expression (the main transporter of glucu-
ronidated and sulfated metabolites) is extensively 
down-regulated in biliary cirrhosis, these results can be 
interpreted as end-product inhibition of UGT 1A activity 
via lack of efflux[58]. 

Zollner et al[44] investigated the mRNA expression 
of a few UGT and SULT isoforms (UGT 2B4 and 2B7 
and SULT 2A1) in 11 PBC patients and found them 
unaltered. This result is only partially in line with an 
earlier human study showing the mRNA expression 
levels of several UGT isoforms (1A4, 2B4, 2B7) to be 
significantly down-regulated in inflammation but not 
in fibrotic livers[59]. Later, the same group confirmed 
unaltered UGT isoenzyme mRNA in advanced fibrosis 
or cirrhosis in viral hepatitis[39]. In a recent human 
study, the authors analyzed UGT and SULT expression 
along with NAfLD from steatosis via NASH to 
cirrhosis[60]. In this comprehensive study, the mRNA 
expression levels of numerous UGT and SULT isoforms 
were almost invariably preserved in cirrhosis. Protein 
expression of the tested UGT isoforms (1A1, 1A6, 1A9 
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and 2B10) was also very similar in normal, steatotic 
and cirrhotic tissue, with a significant down-regulation 
in cirrhosis only for 1A6. SULT isoenzymes protein 
expression levels (analyzed for 1A1, 1C4 and 2A1) 
were significantly up-regulated for SULT 1C4 (important 
for endocrine metabolism) and down-regulated for 2A1 
in cirrhotic NASH. The significance of these specific 
regulatory events on enzyme activity or hepatic 
metabolism must remain open as in this study, UGT 
activity was unchanged in all NASH patients, and SULT 
activity was significantly reduced in fatty and cirrhotic 
NASH patients[60]. In another study analyzing the 
SULT isoenzymes 1A1, 2A1, 1E1 and 1A3 in fatty liver 
disease (both NASH and ASH), the authors showed a 
clear reduction of SULT 1A1, 1A3 and 1E1 activity and 
protein expression correlating to the extent of fatty 
liver disease[61]. This down-regulation was pronounced 
in alcoholic cirrhotic patients, where additionally 
SULT 2A1 activity was reduced. In general, this study 
found a clear reduction in the protein expression and 
function of SULT isoenzymes with the progression of 
liver disease[61]. In contrast, SULT 1A1 activity was 
unchanged in cirrhosis in a study analyzing phenacetin 
metabolism, while cirrhotic patients with elevated SULT 
1A1 activity (along with preserved CYP 1A2 activity) 
were at higher risk for HCC (see above[40]). These 
partially conflicting data may indicate on the one hand 
high interindividual differences and on the other hand 
the decoupling of molecular expression and activity 
of isoenzymes during advancing fibrosis. Additionally, 
a decrease in SULT expression or activity can be 
modified by sulfatase activity, which is known to be 
reduced in cirrhosis as well[62]. 

In general, UGT and SULT expression seem to be 
largely unchanged in advanced fibrosis and cirrhosis. 
However, with regard to the enzyme activity of these 
two important phase Ⅱ enzymes, we are facing 
a serious methodological problem. Most studies 
(especially in humans) have used in vitro methods 
with defined substrates to determine the activity of 
the respective isoenzymes[60,61]. In these isolated 
test situations, the pure enzymatic activity of each 
specific isoenzyme can be determined accurately 
and is preserved for most isoenzymes. In contrast, 
data from rat in vivo experiments indicate that in the 
cirrhotic liver, where the transport of some phase Ⅱ 
metabolites is impaired (see below), the phenomenon 
of end product inhibition can occur[58]. As phase Ⅱ 
metabolism is crucially linked to transporter-mediated 
export into bile, these results in a reduced in vivo 
activity of phase Ⅱ isoenzymes despite preserved in 
vitro activity. The validity of in vitro data is therefore 
in question, which in turn indicates the increasing 
importance of in vivo test systems for hepatic 
metabolism in health and disease.

Transport
functional changes in enterohepatic transport systems 
have been described in experimental liver disease and 

specific human disease entities[63,64].
Basolateral import transporters of the liver are 

down-regulated in inflammatory and cholestatic 
conditions[63]. In human cholestatic liver disease, 
decreased Na-taurocholate co-transporting polypeptide 
(NTCP) (SLC 10A1), mRNA and protein levels have 
been observed in PBC patients with stage Ⅲ and 
Ⅳ disease[65,66] as well as biliary atresia[67]. Reduced 
organic anion-transporting polypeptides (OATP1B1) 
and OATP1B3 mRNA and protein expression have also 
been described in the later stages of PBC[65,66]. In line 
with these findings, OATP1B1 down-regulation can 
be observed in other cholestatic conditions such as 
PSC[68]. Remarkably, the expression of NTCP is only 
reduced in PBC stage Ⅳ (cirrhosis), whereas OATP1B1 
is diminished at an earlier stage Ⅲ[65,68]. The down-
regulation of NTCP (SLC 10A1) and OATP1B1 may not 
only contribute to impaired hepatic bile salt uptake 
in the advanced stages of cholestatic liver disease 
but could also represent a defense mechanism that 
is partially limiting the accumulation of potentially 
toxic bile salts[65]. As another line of defense, the 
compensatory upregulation of basolateral escape 
transporters such as the multidrug resistance-
associated proteins MRP3 (ABCC3) and MRP4 (ABCC4) 
is already induced at a precirrhotic PBC stage, while 
canalicular ATP-dependent export pumps remain stably 
expressed in the cirrhotic stage[44,65,66,69]. 

Canalicular transport systems of the liver are less 
tightly regulated in inflammatory and cholestatic 
conditions. for Multidrug resistance-associated protein 
2 (MRP2, ABCC2), decreased immunostaining has 
been described in a subset of PBC patients with stage 
Ⅳ disease and progressive cholestasis[70]. Similarly, 
decreased MRP2 (ABCC2) mRNA levels have also been 
observed in PSC patients and patients with poorly 
drained obstructive cholestasis[68,71]. In the latter study, 
the mRNA levels of MRP2 (ABCC2) and bile salt export 
pump (BSEP, ABCB11) were decreased in poorly 
drained compared to well-drained patients, who were 
at the levels of control subjects. Immunostaining of 
MRP2 (ABCC2) and BSEP (ABCB11) at the canalicular 
membrane domain were fuzzy to varying degrees in 
the specimens obtained from poorly drained cholestatic 
liver but linear and intense in the liver of well-drained 
patients and control subjects, correlating with impaired 
bilirubin conjugate and bile acid secretion[71].

The down-regulation of hepatic transport systems 
has also been observed in patients with non-cholestatic 
chronic inflammation of the liver such as hepatitis C 
infection. Together with the expression levels of nuclear 
receptors as the transactivators, the mRNA levels of 
various transporter genes, including NTCP (SLC10A1), 
OATP1B1, BSEP (ABCB11) and MRP2 (ABCC2), are 
decreased depending on the stage of fibrosis, with 
an approximately 50 % decrease between F3 and 
f1 patients[72]. In another study investigating viral 
hepatitis C patients, inflammatory cytokines such as 
tumor necrosis factor (TNf)α have been found to be 
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increased with fibrosis stage f3, while transporters 
including OATP1B1 were decreased[38]. Additional 
cell culture experiments have also demonstrated a 
functional contribution of interleukin (IL)-1 and -6, 
which was most prominent for NTCP (SLC 10A1).   

The functional consequences of decreased tran-
sporter expression during the progression of fibro-
genesis have been studied in rats with experimental 
biliary cirrhosis[58]. A significant down-regulation of 
canalicular multidrug-resistance transporters, including 
Mrp2 (Abcc2) and Bcrp (Abcg2), has been detected, 
while the biliary excretion of a radiolabelled food-
derived carcinogen into the bile was significantly 
decreased. Of note, the mRNA and protein expression 
of MRP2 (ABCC2) was only moderately decreased 
in human livers with alcoholic cirrhosis, whereas 
BCRP (ABCG2) was increased[73]. Therefore, the 
potential contribution of decreased carcinogen defense 
transporters to the increased hepatic and extrahepatic 
incidence of cancers in cirrhosis patients remains to 
be evaluated in more detail. Additional findings for 
hepatic uptake systems have been obtained in rat 
liver perfusion experiments. Here, a linear relationship 
was found to exist between the histopathologic 
fibrosis index and the hepatic extraction ratio of 
3H-taurocholate[74].

In summary, changes in transporter expression 
in cirrhosis fit into the “cholestatic paradigm”[75] of 
transporter regulation. Cirrhosis also represents a 
cholestatic state with the intracellular accumulation 
of bile acids in hepatocytes. Consequently, import 
transporters (at the basolateral membrane) are 
downregulated, and export transporters (especially 
basolaterally) are simultaneously upregulated. At 
the canalicular membrane, the regulation events are 
less uniform and also depend upon the stage and 
pathogenesis of fibrosis and cirrhosis.

In clinical practice, decreased hepatic transport 
and metabolic function may be critical for decision 
making in critically ill patients or those undergoing 
hepatic intervention or surgery. Methods to assess 
hepatic function quantify the abundance and functional 
integrity of the basolateral uptake and canalicular 
export systems described above. The indocyanine 
green (ICG) disappearance rate reflects a direct 
non-invasive measure of the actual functional state 
of these hepatic transport systems at the time of 
assessment[76-78]. Albumin-bound water-soluble 
ICG, which is not metabolized by hepatocytes[79], is 
selectively taken up by the basolateral uptake systems 
NTCP (SLC10A1) and OATP1B3 and is later excreted 
unchanged into the bile by the canalicular MRP2 
(ABCC2) transporter[80]. At the basolateral membrane, 
OATP1B1 and OATP2B1 are both inhibited by ICG[80]. 
ICG clearance thus reflects the overall hepatic uptake, 
and excretory function and can be used to assess liver 
function in patients with chronic liver failure and as a 
prognostic factor in critically ill patients[76]. However, a 
delayed residual ICG excretion indicates an additional 

transcellular pathway, which can be blocked by col-
chicines[81]. This might be an explanation for ICG 
plasma disappearance that occurs in humans during 
the anhepatic phase of orthotopic liver transplantation, 
possibly hampering the validity of the test[82]. 

Although less frequently used in clinical practice today, 
hepatobiliary radiotracers such as 99mTc-mebrofenin 
and 99mTc-N-pyridoxyl-5-methyltryptophan (99mTc-
PMT) share a transporter spectrum that is partially 
overlapping with ICG, which involves OATP1B1 and 
OATP1B3 for basolateral uptake[80,83,84]. 99mTc-
mebrofenin and 99mTc-PMT excretion into bile cana-
liculi is facilitated by the canalicular ATP-dependent 
export pumps MDR1 (ABCB1) and MRP2 (ABCC2)[83,84], 
which contribute to the visualization of biliary struc-
tures in clinical scintigraphy.

Changes in transporter expression in chronic liver 
disease associated with fibrosis or even cirrhosis 
also have implications for MRI-based imaging. MRI 
contrast agents are taken up into and excreted out 
of hepatocytes by the same transporters of the 
OATP and MRP family. Experimental cirrhosis in 
rats is associated with the decreased entry of Gd-
BOPTA into hepatocytes in a radioactivity distribution 
compartment model[85] in agreement with the reduced 
expression of Oatp transporters in experimental 
cirrhosis[86]. Although the entry of contrast agent into 
hepatocytes was lower in cirrhotic than in normal 
livers, the accumulation of Gd-BOPTA was higher in 
cirrhotic livers because biliary excretion was totally 
abolished[85], again correlating with decreased Mrp2 
(Abcc2) expression in previous studies. Additionally, 
the Gd-EOB-DTPA uptake in hepatocytes is strongly 
affected by liver function[87]. Gd-EOB-DTPA-enhanced 
MRI and the assessment of relative enhancement 
during the hepatobiliary phase may serve as a useful 
image-based test in liver imaging for determining 
regional and global liver function[88]. 

Lipid and glucose metabolism
Interaction and changes in hepatic lipid and glucose 
metabolism are important for the etiology and 
progression of non-alcoholic steatohepatitis[89]. 
These changes are not confined to the liver, and 
they contribute to the development of liver cirrhosis 
rather than being the result of cirrhosis development. 
Insulin resistance, increased synthesis and the release 
of free fatty acids and changes in the production of 
leptin, adiponectin and interleukins 1 and 6 are the 
central players in NAfLD and NASH-dependent liver 
fibrosis[90,91], and these changes are connected to 
excessive fat accumulation in obese NASH patients[92]. 

However, studies investigating changes in lipid 
and glucose metabolism in liver cirrhosis are rare. 
Insulin resistance is also an important hallmark in liver 
cirrhosis, but here it is a catabolic disease associated 
with muscle wasting, anorexia and weight loss. Twenty 
years ago, a receptor/postreceptor dysfunction was 
already postulated as the explanation for the glucose 
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metabolism disturbances and malnutrition found in 
cirrhotic patients, based on altered membrane lipid 
composition, hyperinsulinemia and a lack of liver-
derived humoral factors[93]. Protein synthesis in 
general is disturbed in liver cirrhosis[94], intensifying 
ER stress and organ failure[95], but the changes in 
glucose and lipid metabolism are more complex and 
are individually very diverse depending on the general 
metabolic status. This concept is also illustrated by 
the results of a microarray analysis of fibrosis progres-
sion in hepatitis c patients. In this study, the amino 
acid metabolism enzymes were more severely and 
uniformly down-regulated than were the glucose and 
lipid metabolism enzymes[6]. 

Patients with cirrhosis were shown to have a 
lower energy intake and a higher resting energy 
expenditure, higher fasting leptin and higher insulin 
resistance than controls[96]. In a follow-up study with 
42 cirrhotic patients, the same group found increased 
postprandial glucose, insulin and glucagon-like pep-
tide 1 responses and reduced postprandial ghrelin. 
Interestingly, in this latter study, these metabolic 
changes were related to delayed gastric emptying and 
prolonged small bowel transit[97], and a high proportion 
of these patients suffered from gastrointestinal 
symptoms. Additionally, cirrhotic patients showed 
increased rates of gluconeogenesis but lower net 
hepatic glycogenolysis[98]. These effects explain the 
higher insulin resistance and the diminished reaction to 
hypoglycemia in cirrhotic patients. Hyperinsulinemia in 
cirrhotic patients has also been linked to an increased 
pancreatic beta-cell sensitivity to glucose[99], again 
an extrahepatic metabolic effect of liver cirrhosis. In 
the explanation of higher circulating plasma levels 
of enzymes (e.g., insulin or glucagon) or proteins in 
general, the decreasing hepatic extraction capacity as 
represented by, for example, the asialoglycoprotein-
receptor certainly plays a role[100] but must be quan-
tified individually[99]. However, again, effects such as 
this may form a basis for another non-invasive test of 
a part of liver function, in this case the extraction of 
circulating proteins from the portal blood[101-104]. 

fibroblast growth factor (fGf) 15/19 acts as a fXR-
activated negative feedback regulator that signals 
from the intestine to the liver to repress bile acid 
synthesis and has recently been recognized to regulate 
energy homeostasis and lipid metabolism (Jahn and 
Geier, Mechanisms of enterohepatic fibroblast Growth 
factor (fGf) 15/19 signaling in health and disease, 
manuscript submitted). Intestinal fGf19 has emerged 
as a novel endocrine regulator of hepatic bile salt and 
lipid metabolism, and an impaired hepatic response 
to fGf19 may contribute to the dysregulation of lipid 
homeostasis in NAfLD patients[105]. Although no data 
on FGF19 expression and signaling exist in human 
liver cirrhosis, recent data from mouse experiments 
indicate that activated ileal fGf15 may contribute to 
HCC development in the context of chronic liver injury 
and fibrosis[106].

Many associations between cytokine regulation 
and metabolism have been identified. The level of 
the adipokine resistin was increased in 57 cirrhotic 
patients and correlated negatively with hepatic 
glucose production and positively with circulating 
free fatty acids and TNf-α levels, implicating an 
effect in glucose and lipid metabolism. However, 
resistin was not associated with the degree of insulin 
resistance after transplantation; the resistin levels 
remained unchanged, while the insulin resistance was 
significantly improved[107]. Adiponectin has also been 
shown to be elevated in liver cirrhosis without any 
etectable correlation with the parameters of lipid or 
glucose metabolism or proinflammatory cytokines[108]. 
So far, the overall influence of these cytokine regulatory 
events on lipid and glucose metabolism is unclear, and 
a causal relationship has not continuously been shown. 
However, it is obvious that altered cytokine profiles 
in liver cirrhosis contribute to systemic alterations 
in lipid and glucose metabolism that concern many 
extrahepatic sites, such as the pancreas, the gut 
and the muscle tissue. Still, the exact mechanisms 
of altered lipid and glucose metabolism during liver 
cirrhosis deserve further research.  

In addition to the general changes in cirrhotic livers, 
disease-specific metabolic events must be considered 
in these patients. As such, hepatitis B virus (HBV) 
infection alters bile acid and cholesterol metabolism 
as a consequence of impaired NTCP-mediated bile 
acid uptake into hepatocytes[109]. Using human liver-
chimeric uPA/SCID mice (SCID - severe combined 
immunodeficiency) and human liver biopsies from 
HBV patients, Oehler et al[110] showed that nuclear fXR 
localization and SHP expression are decreased with 
chronic HBV infection, leading to relevant expression 
changes in genes involved in bile acid synthesis as well 
as cholesterol uptake and synthesis. The metabolic 
consequences for patients with chronic HBV infection 
and particularly end-stage liver disease remain to be 
determined. The regulatory events of liver cirrhosis 
described in this chapter are summarized in figure 2.

BREATH TESTS FOR LIVER METABOLISM 
AND FUNCTION
Several functions of hepatic metabolism can be 
monitored non-invasively using specific breath test 
analysis. The determination of pCO2 in breath following 
the ingestion of a meal was the first application 
of a breath analysis in hepato-gastroenterology in 
the early twentieth century[111-113]. Because of their 
minimally invasive nature and feasibility, breath 
tests were attractive for their clinical use but had no 
clinical applications for almost 40 years. Later on, a 
large variety of breath tests were introduced as “no-
touch” functional diagnostic tests and are currently 
performed to investigate gastrointestinal motility and 
liver disorders[114]. Typical stable isotope breath tests 
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for liver function are listed in Table 1.
Liver function tests using unlabeled and labeled 

(13C, 14C, D, 15N) compounds as marker substances 
play an important role for the management of patients 
with chronic liver disease. Chronic liver diseases 
comprise pathomorphological features such as ne-
crosis, inflammation, fibrosis, changes of intra- and 
extrahepatic blood flow and impaired function. These 
changes result in the typical clinical manifestations 
of complications governing overall patient outcome, 
whereas the degree of functional impairment has 
been described as a stronger predictor for the clinical 
outcome than are histological changes in patients 
with chronic hepatitis C infection[115]. Indices for the 
prediction of survival are essential tools for assessing 
prognosis, establishing priority for liver transplantation 
and identifying those at high risk for developing 
complications due to disease progression or following 
interventions[116-118]. Determining the hepatic reserve 
is essential for assessing the prognosis, predicting 
decompensation and organ allocation[119,120]. Decision-
making in the treatment of patients with chronic liver 
disease focuses on the early identification of these 
patients[118,120]. for the non-invasive evaluation of 
“quantitative liver function” exogenous/xenobiotic 
or natural liver, specific test substances have been 
introduced to specify partial function, such as 
hepatic blood flow (HBF) by ICG clearance or cholate 
clearance, hepatic plasma flow by sorbitol elimination 
capacity, cytosolic liver function by (13C) galactose 
elimination capacity, mitochondrial function by alpha-
ketoisocaproic acid or 13C-methionine breath test 
(MeBT), hepatic cytochrome P450 function by 13C 
aminopyrine (CYP 2C19, 2D6) (ABT), caffeine test 
or 13C-methacetin (CYP 1A2) (MBT) breath test or 
lidocaine/monoethylglycinexylidite (CYP 3A4) (MEGX) 
test[121-134]. The dual cholate test is a novel oral (D4-
cholate) and intravenous (13C-cholate) simultaneous 
function test that quantifies clearance from the 
systemic circulation, portal circulation and portal 
systemic shunting[134]. 

Hepatic clearance (in mL of plasma/min/kg of 
substance cleared) can be flow or functional liver cell 
mass-dependent (comprising extraction and metabolic 
efficiency of hepatocytes) or both and is given 

by[134,135]:
clearance = [c (arterial) - c (hepatic venous)]/c 

(arterial) × hepatic blood flow 
with [c (arterial) - c (hepatic venous)]/c (arterial) 

defined as first pass hepatic extraction E, calculated 
from the concentrations of the substance measured 
in the arterial and hepatic venous blood[136]. for 
substances with high extraction, which is facilitated 
by high affinity transport systems, e.g., for orally 
administered bile acids[137], the membrane sodium-
dependent bile acid transporter and organic solute 
transporter (OST-α/OST-β in enterocytes, the Na-
dependent taurocholate cotransporter (NTCP, 
SLC10A1) and the Na-independent superfamily of 
organic anion transporting polypeptides (OATP) at the 
basolateral membrane of hepatocytes, elimination half-
lives are in the range of minutes, and the clearance 
is close to HBf. If flow-dependent substances are 
administered, such as ICG[138] or lidocaine[139], then the 
hepatic extraction of ICG in normal controls measured 
by hepatic venous catheter is 0.7-0.9. In patients with 
liver diseases, it is reduced, with values < 0.3. 

Test substances with E < 0.25, such as the CYP-
metabolized xenobiotics aminopyrine or diazepam, 
are only extracted to a small amount during liver 
passage, i.e., the hepatic disposition of the substance 
is determined only by the metabolic capacity of the 
liver and not by HBf. Interestingly, for most substrates 
frequently used for the assessment of hepatic 
biotransformation function (methacetin, aminopyrine), 
the transport mechanisms are not well described. 
For example, erythromycin applied as a 13C-labeled 
substrate in a breath test for hepatic CYP 3A4 activity 
inhibits OATP1B1 and OATP1B3[140], is transported by 
OATP1B1 and is a substrate for MRP2 (see also ICG 
transport above[135]). Again, transport function alters 
erythromycin metabolism, showing a close relationship 
with hepatocyte metabolism and transport in humans 
as well[141]. This interrelationship must be implemented 
in the interpretation of the 13C erythromycin breath 
test. The biotransformation of drugs is reduced in 
patients with severe liver diseases, whereas the 
microsomal monooxygenase system is the most 
affected. The well-known reduction of total cytochrome 
P450 protein in patients with liver cirrhosis[142,143] 
could be characterized in detail by George and co-
workers for specific CYP subfamilies in patients with 
cholestatic (primary biliary cirrhosis, primary sclerosing 
cholangitis, biliary atresia, idiopathic cholestasis) and 
non-cholestatic liver cirrhosis (auto-immune hepatitis, 
alcoholic cirrhosis, chronic viral hepatitis) in different 
Child Pugh stages (see above[34]). furthermore, 
the CYP1A2 protein amount and catalytic activity 
is significantly and homogenously reduced in both 
cholestatic and non-cholestatic liver cirrhosis compared 
to a control group, which serves as a pathobiochemical 
basis of the frequently used 13C-methacetin breath 
test[34,144-147]. It is important to note that the activity 
of the NADPH-cytochrome P450 reductase is not 

80 January 7, 2016|Volume 22|Issue 1|WJG|www.wjgnet.com

Table 1  Typical clinical applications for the quantitative 
assessment of hepatic function by means of 13C-labeled 
compounds as breath test substrates

Investigated function 13C-labelled compound

Bile acid malabsorption Glycocholic acid
Hepatic microsomal function 
(CYP P450)

Aminopyrine, methacetin, 
phenacetin caffeine, diazepam, 

erythromycin
Hepatic cytosolic function 
(galactokinase)

Galactose, phenylalanine

Hepatic mitochondrial function 
(α-keto acid dehydrogenase complex)

Methionine, octanoate, 
α-ketoisocaproic acid
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decreased in patients with liver cirrhosis, and thus 
the reduction of specific CYP isoforms in hepatocytes 
for the selective change of the mixed functional 
monooxygenase activity is causative[34]. 

In summary, transport systems are an important 
component of well-established flow and liver cell 
mass-dependent liver function tests. The involvement 
of multiple processes, including substance uptake 
in the intestine and the hepatocyte, metabolism, 
and excretion from the hepatocyte indicate that the 
(patho)-physiological interpretation of a liver function 
test is multilayered and might influence the clinical 
value of a single test[135].

CONCLUSION
Liver cirrhosis is a serious disease with far-reaching 
changes in gene expression and function. The 
impairment of hepatic function has consequences 
for the treatment and prognosis of patients. These 
consequences mainly comprise the resection of 
hepatocellular carcinoma (or other tumors including 
metastasis) and an indication for liver transplantation. 
Additionally, decisions about medical treatment 
must take impaired liver function into account 
(dose adjustment), and the altered metabolism of 
xenobiotics including carcinogens can have an impact 
on toxic or carcinogenic effects in the body.

Metabolism in the liver represents a coordinated 

sequence of enzymatic steps: (1) extraction of 
compounds from the portal blood is followed by uptake 
into the hepatocyte (phase 0, basolateral import); 
(2) oxygenation/activation of compounds (phase I, 
CYP 450); (3) glucuronidation or sulfation, and rarely 
acetylation, methylation or conjugation to glutathione 
(phase Ⅱ, UGT, SULT and others); and (4) secretion 
via the basolateral or canalicular membrane to the 
caval blood or the bile (phase Ⅲ, basolateral or 
canalicular export transporters).

The close connection between these steps is also 
embodied by the coordinated regulation of these 
metabolic steps by central nuclear receptors, which 
is even stronger in diseased livers[28,39]. The data 
summarized in this review show the down-regulation 
of important CYP 450 isoforms[34,35] and basolateral 
import transporters[65,66]. Phase Ⅱ enzymes (UGT, 
SULT) are mostly preserved in their expression[39,44,60], 
but data from animal in vivo experiments point 
to a reduction of enzymatic function[58]. Lipid or 
glucose metabolism is individually altered as a 
result of cytokine regulation, differential enzyme 
expression and basic metabolic status but is in general 
characterized by hyperinsulinemia, insulin resistance 
and catabolism[96,98]. These data show the complexity 
of metabolic processes and their regulation in cirrhosis.

Experimental data clearly show that every metabolic 
step can influence the preceding steps of metabolism 
in their functional capacity or differentiation. In a 
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study in Gunn rats (an animal model for Crigler-Najjar 
syndrome), the lack of UGT1 isoforms significantly 
changed the metabolic ratio of phase Ⅰ metabolism 
conferred by CYP isoforms[148]. The influence of a single 
transporter function on hepatic metabolism is best 
exemplified by MRP2. MRP2 represents a transporter 
for organic anions[149] but also transports amphipathic 
compounds in co-transport with glutathione[150,151]. The 
genetic loss of MRP2 expression forms the basis for the 
rare Dubin Johnson syndrome[152], but acquired MRP2 
deficiency is common in cholestatic diseases, including 
liver cirrhosis[72,73]. In Mrp2 knockout mice but also 
in patients with a MRP2 polymorphism, metabolism 
of erythromycin was altered independently from CYP 
3A4 expression and function[141]. In animal studies, the 
pronounced down-regulation of the canalicular organic 
anion transporter MRP2 is supposed to be responsible 
for the pronounced functional inhibition of phase Ⅱ 
enzymes[58] despite preserved enzyme expression. 
The up-regulation of Mrp3 and 4 at the basolateral 
membrane can obviously only partially compensate 
for this acquired Mrp2 deficiency. Phase Ⅱ metabolism 
is extremely important in the detoxification of 
endogenous and exogenous toxicants, including 
carcinogens. At least in rats, the accumulation of 
metabolized but also activated carcinogens in the liver 
and in other organs as a consequence of genetic or 
acquired Mrp2 deficiency was shown and may have 
consequences for the toxic and carcinogenic effects 
of xenobiotics[58,153]. However, species differences 
can complicate the interpretation of these results. 
Hepatic BCRP, a transporter with overlapping substrate 
specificity, can compensate for MRP2 deficiency in 
humans, where it is preserved or even upregulated[73], 
while in rats, it is down-regulated during liver cir-
rhosis[58]. As a further complication, extrahepatic 
expression of these transporters also contributes to 
metabolism, tissue accumulation and the excretion of 
toxic compounds. In colonic adenomas, BCRP is more 
down-regulated in humans than in mice, where the 
accumulation of a food-derived carcinogen has been 
shown to promote carcinogen accumulation[154]. The 
overall effect of impaired liver function the metabolism 
of toxins and carcinogens is not sufficiently defined 
and needs further studies, especially epidemiological 

data[155].
Dose adjustments in patients with liver cirrhosis 

are also difficult and mostly based on rough calculation 
of hepatic function with Child Pugh criteria[156]. Many 
of the tests mentioned above, using either blood or 
breath samples, exploit pharmaceutical compounds 
such as midazolam or erythromycin, but no test can 
be recommended for dosing decisions in cirrhotic 
patients[114,156]. 

The summarized data show that in humans, 
enzymatic functions are difficult to test in vivo, and 
therefore ex vivo methods (e.g., microsomal assays) 
have been used. In these assays, however, the 
enzymatic function is tested in an isolated manner, 
leaving out the necessary connection between phases 
0 and Ⅲ. for almost all steps in hepatic metabolism, 
there is a test that can be applied, but the full picture 
is hidden behind many complex regulatory events. 
No single test is able to reliably estimate liver function 
simply because liver function is extremely complex 
and encompasses many diverse functions. Breath tests 
have advantages in daily patient care as they are non-
invasive, readily available and can be applied in vivo in 
the intact metabolic sequence[114,115,134]. Nevertheless, 
even these tests are dependent on test substances, 
and therefore the used test substance and its rate-
limiting step determines the value of the test[114]. 
from a logical point of view, it certainly is useful to 
combine breath tests with different test substances 
and different rate-limiting metabolic steps to examine 
different aspects of liver function in a test panel.

In every-day practice, established global easy-to-
measure scores such as MELD or Child Pugh will be 
used for a first estimation of liver function (Table 2 and 
Figure 1). The continuing discussion about the efficacy 
and validity of these scores already shows their 
limitations[157-160]. We know too little about functional 
tests in liver cirrhosis, and all available tests only 
represent parts of the individual’s liver function. As a 
consequence, even applying multiple tests on different 
aspects of liver function cannot avoid the misjudgment 
of individual patients[161,162]. If difficult decisions in 
treatment must be made (e.g., partial liver resection 
or liver transplantation), the application of two or more 
complementary breath tests as outlined above may 
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Table 2  Established scores or criteria for treatment decisions in hepatology, some criteria are used with different parameters in 
different countries

Name Parameters Used for

MELD[163] INR, creatinine, bilirubin CLF, LTX, resection
Child Pugh[164] Prothrombin time, bilirubin, ascites, encephal., albumin CLF, resection
King’s College[165] Paracetamol-ALF: pH, INR, creatinine, encephal ALF, LTX

Non-paracetamol-ALF: INR, age, bilirubin, timing of jaundice, etiology
Clichy[165] Age, factor V, encephalopathy ALF, LTX
Milano[166] Size and number of tumor nodules HCC, LTX

INR: International normalized ratio; CLF: Chronic liver failure; ALF: Acute liver failure; encephal.: Encephalopathy; LTX: Liver transplantation; HCC: 
Hepatocellular carcinoma.
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help in an appropriate classification of liver function to 
live up to the expectations of clinicians and patients in 
legitimate treatment decisions.
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