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1 Summary 

Acetylcholine (ACh) mediates transmission at vertebrate neuromuscular junctions 

and many other synapses. The postsynaptic ACh receptors at neuromuscular 

junctions are of the nicotinic subtype (nAChRs). They are among the best studied 

receptor channels and often serve as models or receptor prototypes. Despite a 

wealth of information on muscle type nAChRs so far little is known about species 

specific functional differences. In this work, mouse and human adult muscle type 

nAChRs are investigated. 

Cell attached recordings in the HEK293T heterologous expression system provided 

evidence that the ACh affinity of recombinant mouse and human adult muscle type 

nAChRs are different. To clarify this, I compared these receptors in outside-out 

patches employing a system for fast agonist application. Thus, the individual 

membrane patches with receptors can be exposed to various ligand concentrations. 

In response to 10 and 30 µM ACh normalized peak currents (î) were significantly 

larger and current rise-time (tr) shorter in human than in mouse receptors. Analyzing 

dose-response curves of î and tr and fitting them with a two-step equivalent binding-

site kinetic mechanism revealed a two-fold higher ACh association rate constant in 

human compared to mouse receptors. Furthermore, human nAChRs were blocked 

faster in outside-out patches by superfusion of 300 nM α-Bungarotoxin (α-Bgtx) than 

mouse nAChRs. Finally, human nAChRs in outside-out patches showed higher 

affinity at 3 µM ACh than chimeric receptors consisting of mouse α- and human β-, 

γ- and ε-subunits. The higher affinity of human than mouse receptors for ACh and 

α-Bgtx is thus at least in part due to sequence difference in their α-subunits. 
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1 Zusammenfassung 

Acetylcholin (ACh) vermittelt Erregungsübertragung an neuromuskulären 

synaptischen Kontakten (neuromuscular junction, NMJ) von Wirbeltieren und vielen 

anderen Synapsen. Die postsynaptischen ACh-Rezeptoren an der NMJ sind vom 

nikotinischen Subtyp (nAChRs). Als Teil der am besten erforschten 

Kanalrezeptoren dienen sie oft als Modelle oder auch Prototypen für Rezeptoren. 

Trotz einer Fülle an Informationen über nAChRs des Muskeltyps ist bis heute recht 

wenig über artenspezifischen funktionellen Unterschiede bekannt. Diese Studie 

befasst sich daher mit der Untersuchung von nAChRs des Muskeltyps in 

erwachsenen Mäusen und Menschen. 

Aufzeichnungen mit sogenannten Cell-attached Patches im heterologen 

Expressionssystem HEK293T-Zellen lieferten Beweise dafür, dass die ACh-Affinität 

von rekombinanten erwachsenen Maus- und menschlichen nAChRs vom Muskeltyp 

unterschiedlich sind. Um diesem nachzugehen, habe ich diese Rezeptoren in 

Outside-out Patches mit Hilfe eines schnellen Piezogetriebenen 

Applikationssystems verglichen. Dieses System bietet den Vorteil, dass einzelne 

Membran-Patches mit Rezeptoren unterschiedlichen Ligandenkonzentrationen 

ausgesetzt werden können. Als Reaktion auf 10 und 30 µM ACh waren die 

normalisierten Stromamplituden (î) und Stromanstiegszeiten (tr) der menschlichen 

Rezeptoren signifikant höher als die der Mausrezeptoren. Die Analyse der Dosis-

Wirkungskurven von î und tr sowie die Anpassung eines quantitativen zweistufigen 

kinetischen Modells mit zwei äquivalenten Bindestellen an die Datensätze zeigten 

eine zweifach höhere Assoziationsrate für ACh bei menschlichen Rezeptoren, 

verglichen mit der von Mausrezeptoren. Zudem wurden menschliche nAChRs in 

Outside-Out-Patches schneller als Mausrezeptoren durch Superfusion mit 300 nM 

α-Bungarotoxin (α-Bgtx) blockiert, was für eine höhere Affinität auch für α-Bgtx 

spricht. Schließlich wiesen die menschlichen nAChRs in Outside-Out-Patches bei 3 

µM ACh eine höhere Affinität als chimäre Rezeptoren aus Maus α- und 

menschlichen β-, γ- and ε-Untereinheiten auf. Die höhere Affinität der menschlichen 

Rezeptoren zu ACh und α-Bgtx im Vergleich zu Mausrezeptoren basiert somit 

zumindest in Teilen auf Sequenzdifferenzen ihrer α-Einheitenen.  
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2 Introduction 

2.1 Synaptic transmission 

Synapses are structures that serve communication between neurons or between 

neurons and other target cells. The word "synapse", introduced by Sir Charles Scott 

Sherrington in 1897, comes from the Greek “synaptein” (“syn-” = “together” and 

“haptein” = “to clasp”). Two different modes for synaptic communication exist: 

electrical and chemical neurotransmissions. Unlike bi-directional transmission in 

electrical synapses, in chemical synapses a pre- and a postsynaptic part can be 

distinguished. This work focusses on chemical synapses, where presynaptic signals 

are transmitted through specific molecules (neurotransmitters) to receptors on the 

postsynaptic side. There are two principle types of neurotransmitter receptors: 

ionotropic and metabotropic receptors (Nicholls et al., 2000). Ionotropic receptors, 

which are investigated in this study, are ligand-gated ion channels (LGICs), 

consisting of ligand-binding sites and a gated pore. They interact with the 

neurotransmitters directly, causing fast synaptic transmission (in milliseconds) and 

modulating physical functions. Metabotropic receptors are slower, which mediate 

longer-lasting reactions (from many milliseconds to minutes) by engaging 

secondary messengers (Kandel, 2000; Hille, 2007). 

Since the 20th century, electrophysiology has made it possible to study the electrical 

events at synapses. Pioneering work has been carried out at the vertebrate 

neuromuscular junction (NMJ), which revealed the physical process of synaptic 

signaling and the interaction between neurotransmitters and the postsynaptic 

nicotinic acetylcholine receptors (nAChRs) (del Castillo and Katz, 1956). Muscle 

type nAChRs are LGICs and bind acetylcholine (ACh). As a small molecule, ACh is 

a common neurotransmitter in nervous systems. nAChRs are the best studied 

ionotropic receptors. 

The process of synaptic transmission at NMJs takes only milliseconds. When an 

action potential (AP) reaches the presynaptic terminal of a motor neuron, the 

membrane is depolarized, which initiates an influx of Ca2+ through voltage-

dependent Ca2+ channels (Hodgkin, Huxley and Katz, 1949; Fatt and Katz, 1952). 

This triggers the fusion of ACh-containing synaptic vesicles (SVs) with the 
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presynaptic membrane and exocytosis of ACh. Neurotransmitters are released as 

quanta (Fatt and Katz, 1952). Each SV represents a quantal packet, containing 

around several thousand transmitter molecules. In the case of vertebrate NMJs, 

there are on average about 7000 ACh molecules in each quantum (Kuffler and 

Yoshikami, 1975). The number of vesicles in presynaptic terminals differs between 

species. SVs are released at specific sites called active zones (AZs). AZs of frog 

motor terminals are long and contain many SVs, while in mice only about 30 - 40 

SVs are found per AZ (Slater, 2008; Nagwaney et al., 2009). 

Released ACh diffuses in the synaptic cleft, which has a width of about 50 nm 

(Nicholls et al., 2000), and neurotransmitter reaches a high concentration with a 

maximum of up to ~ 1 mM ACh at vertebrate NMJs (Matthews-Bellinger and 

Salpeter, 1978). Only a fraction of the thousands of released molecules bind to 

postsynaptic nAChRs, while unbound ACh is either removed from the cleft by 

diffusion or hydrolyzed by the acetylcholinesterase (AChE) (Katz and Miledi, 1973a). 

Once ACh molecules bind to nAChRs, receptor channels open within 0.1 - 2 

milliseconds, allowing Na+-influx which leads to the depolarization of the 

postsynaptic membrane. A single vesicle or quantum causes a miniature end-plate 

potential (mEPP; Figure 1A, upper traces). When many vesicles are released 

simultaneously, an excitatory postsynaptic potential (EPSP) or end-plate potential 

(EPP) is formed (Figure 1A, lower traces) and the depolarization may reach a 

threshold on the postsynaptic side and an action potential may be formed. 

Propagation of the action potentials leads to muscle contraction. 

Once ACh molecules dissociate from the receptor proteins, the receptor channels 

close, resulting in a return to equilibrium of the membrane potential. A sustained 

muscle contraction requires successive stimuli with an interval of about 10 ms. Fast 

synaptic transmission depends on rapid interactions between ACh and the receptors, 

which are inversely correlated with the receptor affinity, namely “low-affinity 

reactions”. The lower the affinity, the shorter the EPP time-course could be evoked 

at the NMJ (Eccles et al., 1942; Fatt and Katz, 1952; Dunant and Gisiger, 2017). 

Muscle type nAChRs are localized opposite to presynaptic ACh-releasing AZs, on 

the crests of the membrane junctional folds (JFs) (Salpeter et al.,1984; Figure 1B). 
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At vertebrate NMJs, the number of postsynaptic receptors is much higher than the 

number of ACh molecules per quantum. Therefore, the number of open receptors 

depends on the number of SVs which are released and the accessibility of released-

ACh to the receptor clusters at the JFs. Along with the receptor number, the affinity 

of the receptor also affects the receptor activation. The lower the affinity, the fewer 

receptors may open, generating a smaller synaptic response. 

 

Figure 1. Neuromuscular junctions. 

(A) Intracellular recording at a frog neuromuscular junction. In the upper half of the figure, 

a series of miniature end-plate potentials (mEPPs) is shown. Each mEPP is generated by 

the release of one ACh-containing presynaptic vesicle. In the lower part of the figure, an 

excitatory postsynaptic potential (EPSP) is demonstrated. An EPSP is stimulated when the 

presynaptic terminal evokes the nearly simultaneous release of ACh from many vesicles 

(modified from Fatt and Katz, 1952). The vertical and horizontal scale bars represent 3.6 

mV and 47 ms for the upper half, and 50 mV and 2 ms for the lower part of the recording. 

(B) Artistic illustration of a frog neuromuscular junction, emphasizing the complex and 

dense interaction of macromolecules and ACh at a magnification of x 106: presynaptic 

vesicle release site (top), synaptic cleft (in between) and postsynaptic cell membrane 

(bottom). At this magnification, individual molecules such as ACh are about the size of a 

grain of salt and too small to be resolved. The postsynaptic membrane is extensively folded, 

forming junctional folds (JFs). One typical JF presents with receptor clusters. Two ACh-

containing vesicles are shown. The one marked with an a is docked at the presynaptic cell 

membrane. The vesicle marked b is fusing with the cell membrane and releases ACh. On 

the postsynaptic side, a c is used to highlight one of the many muscle type nAChRs 

(modified from Goodsell, 2009). 
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2.2 Nicotinic acetylcholine receptors 

Evolution Nicotinic acetylcholine receptors (nAChRs) originated many hundreds 

of millions of years ago and belong to the acetylcholine receptors family. Based on 

their relative affinities for various agonists, these receptors are classified into two 

major subtypes, namely, muscarinic and nicotinic AChRs. The later can be further 

subdivided into neuronal- and muscle-type receptors. They are generated by 

different combinations of 17 known subunits in vertebrate: α (α1 - α10), β (β1 - β4), 

δ, ε and γ (Le Novère et al., 2002). The phylogenetic database, which documents 

how the members of nAChRs relate to each other, has been continuously 

augmented (Tsunoyama and Gojobori, 1998; Le Novère et al., 2002; Pedersen et 

al., 2019). Today it is known that all subunits can be divided into four subsets: the 

neuronal subset (α2 - α6 and β2 - β4 subunits), the NMJ subset (α1-, β1-, δ-, γ- and 

ε-subunits), the α7 / α8 subset and the α9 / α10 subset (Figure 2). The earliest 

ancestral subunits of this family might have originated from the nervous system, α7 

- α10 subunits (Le Novere and Changeux, 1995; Ortells and Lunt, 1995; Tsunoyama 

and Gojobori, 1998). All muscle type subunits were the products in the later stage 

of evolution (Lipovsek et al., 2012; Figure 2, magenta frames). Some of these 

subunits have been found of obvious functional differences among species (more 

details seen in Discussion 5.5), while the species functional differences of the other 

subunits have been little known. 

Structure and conformational changes As the prototype for pentameric 

LGICs, nAChRs serves as a paradigm for studying other receptors. The first crystal 

structure of nAChRs came from the electric organs of Torpedo 30 years ago. 

Torpedo nAChRs have a high homology with those from vertebrate skeletal muscle 

(Numa et al., 1983; Changeux et al., 1998). Muscle type nAChRs are hetero-

pentamers formed by four different subunits (α, β, δ and either γ or ε), more precisely 

named as α1- and β1-subunits. At the mammalian embryonic stage or in denervated 

muscles, the receptors are composed of subunits α2βγδ, named embryonic-type 

nAChRs. During the development, when muscle innervation proceeds, the γ-subunit 

gets gradually replaced by the ε-subunit, assembling adult type nAChRs (α2βεδ) 

(Mishina et al., 1986; Karlin and Akabas, 1995). 
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Figure 2. Phylogenetic relationships among vertebrate nAChR subunits. 

The orthologs of each type of subunits are illustrated by the collapsed nodes. Each branch 

represents the same subunit of different organisms including mouse and human. Muscle-

type subunits (α1, β1, δ, ε and γ) are highlighted in magenta frames, corresponding to A1, 

B1, D, E and G, separately. The subunits α2 - α10 and β2 - β4 are neuronal-type subunits. 

There is no obvious divergence detected between neuronal- and muscle-type subunits. α1-

subunit diverged at an early stage of evolution with neuronal type subunits. Other muscle 

type subunits appeared later. The evolutionary sequence is: β1, δ, ε and γ. The numbers in 

the branches are the bootstrap values. The root is not given. The lengths of the branches 

are drawn to scale and proportional to their evolutionary distances (modified from Lipovsek 

et al., 2012). 

 

When seen from the extracellular side, the five subunits form a “rosette” around a 

central axis perpendicularly (~ 65 Å in length) in the most plausible order of α, γ (or 

ε), α, β and δ clockwise (Karlin et al., 1983; Karlin, 1993; Figure 3A). Muscle type 

nAChRs contain two ligand-binding sites, located at the α-γ (or ε) and α-δ interfaces 

(Figure 3A, yellow circles). The α-subunits serve as the principal component, 

providing the main binding surface, while the adjacent subunits (δ, γ and ε) are the 
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complementary components (Blount and Merlie, 1989; Glazi and Changeux, 1994; 

Arias, 2000; Corringer, Novere and Changeux, 2000). 

The whole receptor is composed of the extracellular domain (ECD), the 

transmembrane domain (TMD) and the intracellular domain (ICD). Each subunit has 

four transmembrane helices as shown in Figure 3B, with a long N-terminus (~ 200 

amino acids) and a short C-terminus (~ 4 - 28 amino acids) extracellularly. All five 

subunits have highly similar amino acid sequences except the highly variable C-

terminus (Hucho et al., 1996; Karlin, 2002; Unwin, 2005; Albuquerque et al., 2009). 

Various categories of ligand binding-sites exist in the ECD, such as those binding 

agonist and antagonists (Karlin, 1993; Karlin and Akabas, 1995; Arias, 2000; 

Corringer et al., 2012). The extracellular structure of the α-subunit is built around a 

curled β-sandwich core containing ten β strands. Loop A, B and C joining different 

β-sheets (Figure 3B) are functionally important for ligand-binding. 

Numerous agonists can activate nAChRs, including acetylcholine, carbamylcholine, 

tetramethylammonium and epibatidine. As a natural neurotransmitter at nicotinic 

synapses, ACh is one of the most suitable agonists for identifying the 

pharmacological profile and pathogenic effects of nAChRs (Castillo and Katz, 1956; 

Ridley et al., 1984; Colquhoun and Ogden, 1988; Sine et al., 1995; Zhang et al.,1995; 

Ohno et al., 1996; Francis et al., 1999; Himmelheber et al., 2000; Nayak et al., 2016). 

The key residues in α-subunits required for ligand-binding are located in loops A, B 

and C, while loop C acts as the principal loop for ligand-binding (Brejc et al., 2001; 

Unwin, 2005; Dellisanti et al., 2007a). The complementary part, for example, the γ-

subunit, contributes to loops D, E, F and G (Figure 4). These loops are involved in 

shaping the ligand-binding pockets and undergo various movements during 

channel-gating (Arias, 2000; Changeux and Taly, 2008; Unwin and Fujiyoshi, 2012). 

Through labelling, site-directed mutation and functional experiments, several critical 

residues in the hydrophobic ACh-binding pockets have been determined. These are 

located at the extracellular N-terminal domains of the respective subunits. 
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Figure 3. Surface structure of a whole nAChR and the basic structure of a single α-

subunit. 

(A) Top view of the nAChR seen from the synaptic cleft. The nAChR is a pentameric ion 

channel receptor. The ligand-binding sites at the α-δ and the α-ε interfaces, or in the case 

of the embryonic receptors at the α-δ and the α-γ interfaces, are labelled by yellow circles. 

The two equivalent α-subunits are colored in magenta. The β-, δ-, and γ- or ε-subunits are 

in grey. (B) Side view of a α-subunit. All the subunits share the same topology: the 

extracellular domain (ECD) on the top part, the helical-transmembrane domain (TMD) 

containing four transmembrane segments in the middle part and the large intracellular 

domain (ICD) on the bottom part. Loops A, B and C connect β-sheets in the ECD. The 

dimension of the bilayer lipid membrane is represented by grey bars (The structure is 

retrieved from the PDB database: 4AQ9). 
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Figure 4. Schematic representation of the ACh-binding site located at the α-γ interface 

in mouse nAChRs. 

The grey sphere represents ACh. Loops A, B and C belong to the principal component α-

subunit, and loops D, E, F and G are in the complementary component γ-subunit. The key 

residues within each loop contributing to ACh-binding are displayed with one letter code in 

small spheres, along with their sequence numbers. For adult muscle type nAChRs, the 

ACh-binding sites are at the α-δ and the α-ε interfaces (modified from Arias, 2000). 

 

Following agonist binding, the receptor conformation changes, mediating the central 

pore opening, which allows ions such as Na+, K+ and Ca2+ to pass through (Unwin, 

2005). By using high-resolution electron microscopy together with X-ray diffraction 

studies of crystal structures, this whole process has been extensively investigated. 
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It is known that both the ligand-binding domains (LBDs) and TMDs contribute to the 

conformational change of the channel pore. In the resting state, the five 

transmembrane helices M2 are close to each other, lining an inner ring as a 

hydrophobic transmembrane pore. The interactions of the side chains in neighboring 

helices generate a “gate”, which blocks the pathway of ions through the pore. Other 

transmembrane helices (M1, M3 and M4) form an outer wall exposed to the lipid 

environment. It has also been identified that the conformational extension of the two 

α-subunits are different from other non-α-subunits. When agonist bound, it causes 

the inner β-sheets in the α-subunits to twist, which enlarges the distance between 

each M2 helix. The interacting residues in M2 helices rotate away from being 

exposed to the pore lumen and the gate opens. In addition, a local disturbance at 

each binding-site is initiated, that is the bending of loop C in the α-subunits towards 

the ligand-binding pocket in the open channel conformation (Unwin, 1995; Unwin et 

al., 2002; Miyazawa et al., 2003; Unwin and Fujiyoshi, 2012). 

Competitive antagonist α-bungarotoxin (α-Bgtx), a typical α-neurotoxin present 

in the venom of the snake Bungarus multicinctus, can bind to muscle type nAChRs 

and block the action of agonists such as ACh. α-Bgtx is a long polypeptide 

neurotoxin with 74 amino acids, composed of one central globular core, three 

“finger-loops” and one C-terminal loop (Love and Stroud, 1986; Gentile et al., 1995; 

Zeng et al., 2001; Figure 5A). Once this polypeptide binds to the postsynaptic 

nAChRs at the NMJ, it causes paralysis of muscles and even lethality in severe 

cases (Dellisanti et al., 2007b; Ranawaka et al., 2013; Silva et al., 2017). Due to its 

high affinity and specificity for muscle type nAChRs, α-Bgtx has been widely used 

as a competitive antagonist in many studies to label and/or quantify nAChRs, as 

well as to detect channel blocking effects (Katz and Miledi, 1973b; Ishikawa et al., 

1977; Franklin et al., 1980; Ishikawa et al., 1985; Askanas et al., 1987; Garcia-

Borron et al., 1990; Vincent et al., 1997; Young et al., 2003). 

Dellisanti and colleagues (2007) solved the structure of a complex comprising α-

Bgtx with the ECD of a mouse nAChRs α-subunit at atomic-resolution level, where 

they found a specific bulky carbohydrate chain in the α-subunits of muscle type 

nAChRs, as well as several key amino acids for the toxin-receptor interaction 

(Dellisanti et al., 2007a; Figure 5B). In previous studies, loop C has been identified 
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as the most important structure for toxin-binding in the ECD (Arias, 2000; Dellisanti 

et al., 2007a, b). The interaction between loop C and this conserved carbohydrate 

chain, together with the cys-loop, plays an important role in the α-Bgtx binding and 

channel gating function. Once α-Bgtx binds, its loop I interacts with the carbohydrate 

chain, restricting the receptor conformational alteration. Also, α-Bgtx loop II can 

interact with the aromatic cage formed by the residues in α-subunits (positions at 

93, 149, 190 and 198) and then prevents agonists from approaching the ligand-

binding sites. 

 

Figure 5. α-bungarotoxin and the structure of mouse nAChR α-subunit ECD in 

complex with α-Bgtx. 

(A) Overall structure of α-Bgtx. The three finger loops (loop I, II and III) and the N-terminus 

are marked. Loop I, loop II and C-terminal loop form a hydrophobic region, which serves as 

the main part in α-Bgtx binding. Loop III is thought to be in touch with the neighbouring 

subunit, but only slightly. (B) Complex of α-Bgtx binding to the α-subunit ECD (retrieved 

from the PDB database: 2QC1). Loop I and II of α-Bgtx (orange) are wrapped around by 

loop C of the α-subunit. The carbohydrate chain (shown as stick diagram) in the α-subunit 

is positioned at the surface of the ECD, which links loop C and the cys-loop of the receptor, 

and also interacts with loop I in α-Bgtx. The interaction among these structures are very 

tight. Several key residues for toxin binding are marked as spheres in light blue (modified 

from Dellisanti et al., 2007a). 

 

2.3 Kinetic mechanism of receptor reaction 

With the development of the patch-clamp (Neher and Sakmann, 1976), as well as 

genetic and high-resolution protein structure techniques, refined kinetic schemes for 

nAChRs were suggested to describe the relationship between ligand-binding and 
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channel-gating in a quantitative manner. As early model for interpreting ACh 

receptor behavior was proposed by del Castillo and Katz (del Castillo and Katz, 

1957; Figure 6). They pointed out that binding and gating are separate steps. 

 

Figure 6. Simple reaction mechanism for receptor channels. 

The mechanism of del Castillo and Katz (1957) is designated as Scheme I. Several points 

should be noted: (1) the binding sequence is represented as one step; (2) the forward 

association rate is proportional to the ligand concentration (k+1·[A]); and (3) other possible 

states of the receptor, such as desensitized and/or blocked states, are not taken into 

account. R represents an un-liganded, inactive receptor; A is the agonist molecule; AR 

denotes an inactive intermediate state with agonist bound; and AO is an active open 

receptor. k+1 is the agonist association rate (unit: M-1·s-1), k-1 is the agonist dissociation rate 

(unit: s-1), and α and β stand for the channel closing and opening rate (unit: s-1), respectively. 

 

Benefiting from substantial investigations into the quantitative subunit compositions 

and the arrangement of muscle-derived nAChRs, the kinetic mechanism of receptor 

opening can be refined as a four-state model (Figure 7). The identification of the 

reaction process is limited by the low-resolution recording technique at the level of 

macroscopic response (Liu and Dilger, 1991).  

 
Figure 7. Reaction scheme with two equivalent binding steps. 

Scheme II is a linear reaction scheme, in which only a double-liganded open state is defined 

and the two binding-sites of muscle type nAChRs are indistinguishable. R represents an 

inactive, un-liganded nAChR, A is the agonist ACh, AR and A2R represent inactive receptor 

states with one or two agonists bound, respectively. A2O is a double-liganded, active 

receptor. k+1 and k+2 are the association rate constants of each binding-site, k-1 and k-2 are 

the dissociation rate constants of each binding-site. For identical binding sites, there are k+1 

= k+2 and k-1 = k-2. 

 

The affinity for the agonists at two binding sites are assumed identical in Scheme II, 

in which the first binding step can happen either at the α-γ (or ε) or α-δ sites. The 
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current response can only be elicited, when both binding-sites are occupied by 

agonists and the receptor channels open. The postsynaptic current responses at 

the NMJ, caused by random fluctuations between activation and inactivation of 

many receptors, are observed at a macroscopic level (Katz and Miledi, 1970, 1971). 

In this case, the currents recorded in such situations are present as an average 

value (mean current, I). 

In subsequent studies, a mono-liganded open state of nAChRs was observed 

(Karlin, 1967; Sine and Taylor, 1981). At the same time, the advance of noise 

analysis has made it possible to study currents flowing through ion receptor 

channels with single-channel resolution (Neher and Sakmann, 1976). Therefore, 

various types of channel opening events for muscle type nAChRs have been 

detected, and microscopic kinetic information of individual channels could be 

obtained (Colquhoun and Sakmann, 1981; Hallermann et al., 2005; Stock et al., 

2014). Nowadays, the relationship between binding and gating steps is still under 

investigation. The effects produced by various agonists binding to nAChRs are 

distinct, which depend on the biochemical properties of the molecules and their 

physical functions. New schemes continue to emerge, which would doubtlessly 

provide new insights into the nAChRs binding-gating kinetics (more schemes seen 

in Discussion 5.2). 

2.4 Motivation of the study 

Proteins of the same family can be functionally different from one species to another. 

For example, haemoglobins of crocodiles and humans show interesting functional 

differences, which enable the crocodiles stay long time under the water to kill their 

prey by drowning (Komiyama et al., 1995). Crocodiles benefit from the bicarbonate 

binding effect of their haemoglobins (Kemp, 1995). Sequence alignment displays 

110 out of 287 amino acids are different between Nile crocodile and human 

haemoglobins. Exchanging 12 amino acids was enough to introduce the 

bicarbonate binding ability into the human haemoglobin (Komiyama et al., 1995). 

Therefore, it is useful to study species specific functional differences of proteins. 

Hence, I set out to study the difference of mouse and human nAChRs. As a standard 

animal model, mice obviously differ from humans, although they are remarkably 
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similar in many fundamental aspects. Our previous studies using single-channel 

recordings in cooperation with Dmitrij Ljaschenko (data unpublished) showed that 

at very low ACh concentration, long bursts of receptor openings were only detected 

in human receptors, but not in mouse nAChRs. This indicates a higher ACh affinity 

of human nAChRs than mouse receptors (see Results 4.1). It is of interest to further 

investigate their detailed difference. 

The kinetics of mouse nAChRs activation have been extensively investigated 

through single channel measurements and those proposed kinetic models (Sine and 

Steinbach, 1986a; Chen et al., 1995; Zhang et al., 1995; Sine et al., 1995; Akk and 

Auerbach, 1996; Wang et al., 1997). Although high-resolution single-channel 

recordings can distinguish the various open states (mono-liganded and double-

liganded openings) to some extent (Parzefall et al., 1998; Hallermann et al., 2005), 

there are some limitations to this method. For example, the opening rate estimated 

at high and low agonist concentrations are not consistent (Sine and Steinbach, 

1986b, 1987), and it is impossible to directly elucidate the forward rates of channel 

activation. Also, these measurements are usually done in the cell-attached mode, 

where the recordings are made with a fixed drug concentration. This is not sufficient 

for explaining the channel behavior in situ. To avoid or compromise these problems, 

outside-out patches together with a fast application system (Brett et al., 1986; 

Franke et al.,1987; Maconochie and Knight, 1989; Dudel et al., 1990) were 

introduced as an alternative method. This achieves a rapid change of certain agonist 

concentrations to mimic synaptic transmission and enables to control the ion 

concentrations on both sides of the membrane. Besides, the macroscopic current 

measurements overcome the resolution limitation when detecting the single-

channel opening (Franke et al., 1991b). 

To my knowledge, no investigation has been done so far that compares the affinities 

of mouse and human nAChRs directly in excised patches with a fast agonist 

changing system. The aim of this study is to compare the ACh affinity and the affinity 

for α-Bgtx between mouse and human nAChRs, to describe the observations and 

to elucidate the structure-function relationships. This enables to better predict the 

functional responses of muscle nicotinic receptors based.  
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3 Materials and Methods 

3.1 Chemicals and equipment  

Eagle medium  Gibco, Life Technologies GmbH, Karlsruhe, Germany 

NaCl    Merck Chemicals GmbH, Darmstadt, Germany 

KCl    Sigma-Aldrich Co., St. Louis, USA 

CaCl2    Merck Chemicals GmbH, Darmstadt, Germany 

Na2HPO4   NORAS MRI products GmbH, Höchberg, Germany 

KH2PO4   Merck Chemicals GmbH, Darmstadt, Germany 

HEPES   Sigma-Aldrich Co., St. Louis, USA 

D-Glucose   Gibco, Life Technologies GmbH, Karlsruhe, Germany 

MgCl2    Sigma-Aldrich Co., St. Louis, USA 

EGTA    Sigma-Aldrich Co., St. Louis, USA 

NaOH    Sigma-Aldrich Co., St. Louis, USA 

DMZ-Universal quartz puller  Zeits Instruments, Augsburg, Germany 

DMZ-Universal puller   Zeits Instruments, Augsburg, Germany 

Inverted microscope   Axiovert 35, Zeiss, Oberkochen, Germany 

Upright microscope    Axioscop, Zeiss, Oberkochen, Germany 

Axopatch 200B amplifier   Axon Instruments, Foster City, CA, USA 

Multi-micromanipulator (MPC-200) Sutter Instrument, Novato, CA, USA 

P810.30 actuator    Physik Instrumente, Waldbronn, Germany 

Precision pressure regulator  Festo, Esslingen, Germany 

6-port valve (HVX 86915)   Hamilton, Darmstadt, Germany 

POWER1401-3 A/D converter  Cambridge Electronic Design Limited, UK 

DC analysis programs (DC-Progs) University College of London, UK 

ISO2 software    MFK Computer, Niederhausen, Germany 

3.2 Cell culture 

The cells used in this study were human embryonic kidney cell-line, 293T (HEK293T) 

(ATCC®CRL-3216™). HEK293T cells were cultured at 37°C, 5% CO2, in Dulbecco’s 

modified Eagle medium supplemented with 10% fetal calf serum, 100 units/ml 

penicillin and 100 µg/ml streptomycin. They were plated on poly-L-lysine coated 
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coverslips. nAChRs were expressed using transient transfection based on calcium 

phosphate precipitation (Ausubel et al., 1992). For adult type mouse or human 

nAChRs, their α-, β-, ε- and δ-subunits cDNAs were cotransfected with EGFP 

cDNAs transiently in the ratio 2:1:1:1:0.5 (Auerbach and Akk, 1998). The chimeric 

receptors were composed of mouse α-subunits and human β-, δ- and ε-subunits 

expressed in HEK cells with the same subunit stoichiometry (MαHβδε). All subunits 

of human nAChRs and the ε-subunits of mouse receptors were coded using 

pcDNA3 plasmids, while the other mouse subunits α, β and δ were coded using 

pRc/CMV plasmids. Both vectors are commonly used in the mammalian expression 

system. 

The basic protocol for a Ø 35 mm dish with 250 ml media is as follows: the desired 

amount of cDNAs (a total of ~ 3 µg) was mixed with 36 µl of 2.5 M CaCl2 solution. 

One volume of this solution was added quickly to an equal volume of 2×HBSS (NaCl 

280 mM, Na2HPO4 2.8 mM, HEPES 50 mM, pH 7.2) at room temperature. Once the 

two solutions were mixed, they were immediately added to the pre-cultured cells 

within the medium. The cells were then incubated overnight. On the next day, the 

culture medium was removed from the dish containing the transfected cells and 

fresh medium with 10% fetal calf serum was added. Afterwards, the transfected cells 

were further incubated and used in electrophysiological recordings 20 - 28 h later. 

3.3 Electrophysiology 

Cell-attached configuration During single-channel recording experiments, 

cells were visualized using an inverted microscope. The measurements were 

carried out in the cell-attached configuration (Hamill et al., 1981). The physiological 

solution used in both the measuring chamber and patch pipettes included (mM): 

NaCl, 162; KCl, 5.3; CaCl2, 2; Na2HPO4, 0.67; HEPES, 15; (pH adjusted to 7.4 with 

NaOH). Additional agonist (ACh) was added to the pipette solution resulting in a 

concentration of 10 nM or 100 nM ACh. All measurements were done at 20 - 22°C. 

The cell-attached patches were clamped at -200 mV. 

Single-channel recordings Low-noise recordings for distinguishing the 

current signals from the background noise (Parzefall et al., 1998) were performed 

with the patch pipettes produced with quartz glass (outer Ø 2.00 mm, inner Ø 1 mm) 
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and had resistances between 10 - 20 MΩ (Dudel et al., 2000; Stock et al., 2014). 

The benefits of using the quartz glass are: (1) due to its hydrophobic surface it 

prevents creeping of fluid. (2) it has better electrical properties than other glass, 

such as borosilicate glass used for outside-out patches (see below). The quartz 

pipette was filled with pipette solution only at the very tip part (< 1 mm) in order to 

reduce capacitive noise. A very low noise level was achieved: 1.5 ± 0.1 (SD) pA root 

mean square (RMS) at 60 kHz (-3 dB) low pass filtering and 153 ± 30 (SD) fA RMS 

at 5 kHz (-3 dB) low pass filtering. 

Outside-out patch configuration The transfected cells were visualized with 

an upright microscope setup at 100-fold and 400-fold magnification sequentially. All 

recordings were made from patches in the outside-out configuration (Hamill et al., 

1981). Low resistance patch pipettes of ~ 5 - 10 MΩ were pulled from borosilicate 

glass capillaries (outer Ø 2.00 mm, inner Ø 1.16 mm) with a DMZ-Universal Puller. 

The holding potential was set to -40 mV, the resting potential of HEKT cells. The 

bath solution contained (mM): NaCl, 162; KCl, 5.3; CaCl2, 2; Na2HPO4, 0.62; 

KH2PO4, 0.22; HEPES, 15; Glucose, 5.6 (pH adjusted to 7.4 with NaOH). The 

pipette filling solution contained (mM): KCl, 150; MgCl2, 2; EGTA, 11; HEPES, 10 

(pH adjusted to 7.4 with KOH) (Heckmann et al., 1996). Measurements were 

performed at room temperature (21 - 24°C). 

Excised outside-out patches of HEK293T cells were performed as shown in Figure 

8. At the instant of achieving the whole-cell configuration, an anticipated resting 

potential (-40 mV) was applied to the cell. This negative potential prevented the cell 

from dying quickly, and made the excision of the membrane from the cell easier. All 

the measurements were carried out in the voltage-clamp mode. 
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Figure 8. Schematic diagram illustrating the formation of an outside-out patch. 

Step 1: When a pipette is in contact with the cell membrane with a low resistance seal 

(around 50 MΩ), a suction is applied and an Ω-shaped membrane vesicle is drawn into the 

pipette tip forming a gigaohm seal. Step 2: A brief but strong suction is further applied to 

destroy the cell membrane, allowing the pipette gain access to the cytoplasm. Step 3: The 

pipette is slowly withdrawn from the cell, allowing a bulb of membrane to bleb out from the 

cell. When the pipette is pulled sufficiently far away, this bleb detaches from the cell to form 

an isolated membrane. Step 4: The isolated pieces of membrane reconnect and form a 

convex structure with the original outside of the membrane still exposed from the pipette 

(modified from Hamill et al., 1981). 
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Fast application system ACh was applied at desired concentrations to the 

excised, outside-out patch with a system for fast drug application (Heckmann and 

Pawlu, 2002). The apparatus comprises mainly of three parts: a piezo element 

(P810.30 Actuator), a monoluminal application pipet and an application chamber. 

The whole application system was mounted on the stage of the upright microscope. 

The patch electrode was repositioned between the bath chamber and the 

application chamber by moving the stage horizontally. The movement of the 

electrode itself was controlled by a micromanipulator. The electrode tip was 

maintained to be in the solution during the course of an experiment. The relevant 

parts of the system are shown in Figure 9A. 

The piezo held in a brass cylinder was connected with the glass application pipet 

(outer Ø 0.50 mm and inner Ø 0.30 mm; Hilgenberg, Malsfeld, Germany) which 

extends 45 µm on application of 100 V, and fixed to the stage using strong magnets. 

The application pipet was bent to an angle (95 - 110°) (Figure 9B) and placed at the 

symmetry center of the application chamber (outer Ø 3.00 mm and inner Ø 1.50 mm) 

via an upper opening. The extracellular solution containing ACh was discharged out 

of the application pipet forming a thin liquid filament. Syringes (10 ml) served as 

solution reservoirs. The fluid in the application chamber was the extracellular 

solution (w/o ACh). The in- and out-flows passing the application chamber were 

regulated using a pump, while the ACh filament was ejected by hydrostatic pressure. 

By adjusting the pump and the hydrostatic pressure to vary the speeds of the 

solutions, a laminar flow pattern was obtained. Care was also taken in the speed of 

the agonist filament. This was adjusted empirically during application onto a patch. 

The liquid filament was visualized with DIC (differential interference contrast) optics. 

After the outside-out patch was obtained, the excised patch was transferred to the 

application chamber. Initially the tip of the patch electrode was positioned several 

µm away from the ACh-containing filament with 0 V applied to the piezo. When a 

voltage pulse (100 V) was applied to the piezo, the filament shifted toward the patch 

tip. At the end of the voltage pulse, the filament returned back to its initial position. 

(Figure 9C). The voltage pulse was produced using ISO2 software. The time course 

of current changes during the displacement of the filament could be monitored in 

real time as the channels were activated due to the application of ACh. 
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A 6-port valve with each port containing a different concentration of an agonist-

containing solution was manually operated to flow the solution through the 

application pipet. For each excised patch, the agonist solutions were applied starting 

with highest ACh concentration, downgraded step by step, to reduce the “run-down” 

effect of the system. 

 

Figure 9. Illustration of the fast application system. 

(A) Schematic drawing of the fast application system. The piezo element (1), which is fixed 

to the stage using strong magnets; a platelet (2) to hold the application pipet (3) joint to a 

tube (4); in- (5) and out-flow (6) of the application chamber (7); in- (8) and out-flow (9) of the 

bath chamber (10); objective (11); head-stage of the amplifier (12); the electrode (13) for 

patching and recording; fixed stage (14) of an upright microscope. (B) The application 

pipette was made using a borosilicate glass and glued into a fiberglass platelet. On the left 

panel, a longer piece of glass was heated using a common lighter to obtain a proper angle 

for the pipette. On the right panel, the application pipette is glued with a fiberglass platelet 

to connect with the piezo element (2) in (A). (C) The displacement of the liquid filament in 

response to a voltage pulse, which is applied to the piezo, observed with DIC optics. In the 

upper image, the initial position of the liquid filament is shown, when 0 V is applied to the 

piezo. The tip of the patch electrode was placed at the interface between liquid filament and 

superfusion solution. In the lower image, the liquid filament shifts 45 µm towards the patch 

electrode with 100 V at the piezo. Dotted lines shows the end position of the filament when 

0 V is applied to the piezo (modified from Heckmann and Pawlu, 2002). 
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Pulse protocols For measuring the affinity of human and mouse nAChRs, ACh 

with different concentrations (1000 µM, 100 µM, 30 µM, 10 µM and 3 µM) was 

applied using a single-pulse protocol with a 300 ms duration (100 V applied to the 

piezo) and a 3 s interval (0 V applied to the piezo) between each pulse. In the 

antagonist binding affinity experiments, 300 nM α-Bgtx was added to the external 

solution constantly. The patches were exposed to 30 µM ACh for 30 ms with an 

interval of 2 s. The potential was hold at -40 mV. To wash out the agonist and 

antagonist (i.e. ACh and α-Bgtx) with water, the pulse protocol applied to the piezo 

was set at 0 V, while the liquid filament was kept away from the patch tip. 

Half inhibition time To describe the characteristics of the channel blocker, 

Equation 1 was used to fit the time dependence of peak current amplitudes: 

I = (îa – îb)·t50
n/(Tn+t50

n) + îb  Equation 1 

where îa is the initial current amplitude when all channel opened, îb is the finial 

current amplitude after most channels being blocked, and t50 is a time period when 

half channels are blocked, namely “half inhibition time”. 

3.4 Single-channel data collection, idealization and time course fitting 

Data were recorded, filtered, digitized and stored as described in Parzefall et al. 

(1998) and Stock et al. (2014). The 4 pole internal 100 kHz low pass filter of 

Axopatch 200B amplifier was removed, which enabled a recording of the signal with 

a maximum bandwidth of 130 kHz. The signal was converted at 1 MHz sampling 

rate with an A/D converter. All data were stored on the hard drive of a PC running 

Windows XP professional. To reduce noise, the recordings were digitally low-pass 

filtered at 40 kHz, 3 dB cut off using FILTSAMP (DC software), leading to a filter 

rise-time of ~ 8.5 µs. After filtering, recordings were down-sampled from 1 MHz to 

500 kHz, therefore the sampling frequency was 12.5-fold higher than the -3 dB low-

pass filter cut off. 

Generally, for reliable detection, the signal to noise ratio is required to be at least 

10. The obtained mean signal to noise ratio was 14.2 ± 1.6 (SD). For idealization, 

the Scan program (DC software) was used. Afterward imposing a resolution of 5 µs, 
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the open periods were done in EKDIST (DC software). Recordings with unstable 

baselines or amplitudes were not used for analysis. 

3.5 Data acquisition and analysis for macroscopic current responses 

Membrane currents were recorded with an Axopatch 200B amplifier with the internal 

low pass filter at 100 kHz (-3 dB). The output was filtered subsequently with an 

external 4 kHz low-pass filter. The signals were digitized and stored on the hard disk 

of a PC 486 using ISO2 software. Digitization was performed at a sampling rate of 

12.5 kHz and at 12-bit resolution. Averaging and fitting were performed offline with 

the ISO2 software. 

Statistical analysis and graphics were carried out using Sigmaplot 12.5 software. 

Since data were not distributed normally, a Mann-Whitney rank-sum test was 

performed for determining the significance when comparing independent groups. 

Data are given in the form of mean ± s.e.m. (standard error of the mean). The levels 

of significance are denoted by asterisks: * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. 

3.6 Numerical simulations for kinetic modelling 

The kinetic model for nAChRs activation (Scheme II in Figure 7) was used. 

Numerical simulations of the receptor kinetics were performed using a commercial 

software, ChanneLab. The software solves coupled differential equations through 

the Runge-Kutta integration method, to generate various sets of rate constants for 

the receptor behavior during application of ACh. The initial values of the rate 

constants were taken from Colquhoun and Sakmann (1985). After setting up the 

parameters for simulations and importing the corresponding stimulus files, 

numerical simulations were carried out and data generated, i.e. peak current and 

rise-time, used for plotting the simulated dose-response curves. 

To obtain an optimized fit of the simulated dose-response curves, the values of rate 

constants were changed and the above process was repeated. After optimizing the 

simulated data compared to the experimental data, the finial estimated values for 

the rate constants were defined. 
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3.7 Sequence alignments 

The amino acid sequences of nAChR subunits (α-, β-, ε- and δ- subunits) and 

subunits of other receptors were obtained from the Universal Protein Resource 

(UniProt) database. Alignments were performed by using the online tool ClustalW 

(Chenna et al., 2003). 
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4 Results 

4.1 Open period distributions in single channel recordings 

The initial studies about mouse and human nAChRs were performed at fixed agonist 

concentration using the ultra low-noise single-channel recording technique 

(Parzefall et al., 1998; Hallermann et al., 2005). The recordings were done by Dmitrij 

Ljaschenko and I contributed to the data evaluation. All the measurements were 

made from patches in the cell-attached mode. To increase the signal to noise ratio, 

the membrane potential was clamped at -200 mV, which is in addition to the 

approximate -40 mV of a transfected cell. Recordings were filtered with a low-pass 

filter at 40 kHz, -3 dB cut-off. A temporal resolution of 5 µs was imposed, which is 

better than the 6 µs resolution reported by Stock et al. (2014). 

Representative open period distributions from recordings at 10 nM and 100 nM ACh 

are shown in Figure 10. Two sample patches are given at each agonist 

concentration. In mouse muscle type nAChRs, open period distributions from 

measurements at 10 nM ACh display two short open period components (Figure 

10A). A statistically significant third component was not detected. Open periods are 

exponentially distributed, and their decay constant  shows the mean length of 

channel openings. Here, the open periods were plotted in logarithm vs. square root 

transform. In this case,  is the peak of the distribution. The peaks of the open 

periods in one recording are at 37 µs (O1) with 65% and 187 µs (O2) with 35%, 

while the components of another patch were at 53 µs (O1) with 46% and 209 µs 

(O2) with 53%. The two components represent two open states. Their length is 

determined by the closing rate constant α. The area (%) indicates how often the 

event happens. At a higher ACh concentration (100 nM), two further open period 

components appear, a very short one and a long one. Again, open period 

distributions of two sample recordings are shown. The long openings are at 787 µs 

(O3) and 1380 µs (O3), respectively. The long openings are known to stem from 

double-liganded receptors, which perform long bursts of openings. Such findings 

proved to be consistent in all recordings. Therefore, I conclude that at 100 nM ACh, 

but not at 10 nM, the mouse receptor channels occur double-liganded states and 
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therefore create long bursts of openings, which sum up to relevant excitatory 

postsynaptic potentials. 

In contrast, the single-channel recordings performed on the human nAChRs clearly 

show the long openings already at 10 nM ACh. The long component in sample 

measurements of Figure 10B are at 1400 µs (O3) and 1080 µs (O3). Since no 

significant number of long bursts for mouse receptors at 10 nM ACh occurred, this 

suggests a higher ACh binding affinity in human receptors. 

 

Figure 10. Open period histograms from single-channel recordings with ACh in 

mouse and human adult type nAChRs. 

(A) Open period distributions of mouse nAChRs. In the upper row, results of two patches 

measured at 10 nM ACh display two short open period components in each patch. In the 

lower row, histograms for two patches recorded at 100 nM ACh. Each patch shows four 

open period components. (B) Open period histograms for human nAChRs from two patches 

at 10 nM ACh. Each histogram is fitted with three components, including one long opening 

component. The parameters of the fits are shown within each histogram,  (µs) and area 

(%). 
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4.2 Macroscopic current responses activated by ACh 

Based on the findings from single-channel recordings, it appeared to be necessary 

to test the responses of the receptors at different agonist concentrations in a 

physiological-like condition. Outside-out patches from cells expressing either mouse 

or human muscle type nAChRs were held at -40 mV and exposed with a system for 

fast application to ACh for 300 ms at 3 s intervals. The fast application system can 

deliver agonists within ~80 µs, a time scale sufficient for studying the quick receptor-

openings which are in the order of milliseconds (Heckmann and Pawlu, 2002). 

Figure 11 shows averaged current traces from one patch with human receptors. 

Channel openings were elicited with applications of 3 µM to 1 mM ACh. The ACh 

concentrations applied in such a range can avoid the open-channel block (Sine and 

Steinbach, 1984, 1987; Ogden and Colquhoun, 1985; Franke et al., 1991a, b). 

Above 3 µM averaged currents decayed during ACh applications due to 

desensitization as described earlier (Franke et al., 1991b). Figure 11B shows the 

initial parts of the normalized traces on an expanded time scale to illustrate the 

concentration dependence of the current rise-time. Peak current amplitudes were 

normalized during data evaluation in each recording to the response obtained with 

100 µM ACh to obtain î (displayed in Figure 12A). The rise-time (tr) of average 

currents (Figure 12B) was defined as the time from 10% to 90% of the peak current 

amplitude (Franke et al., 1991b). Both î and tr are concentration dependent. 

Recordings of î and tr for all experiments of mouse (grey) and human receptors 

(black) are summarized in Fig 12 in double-logarithmic plots. At high ACh 

concentrations î reached a plateau due to saturation of the receptors. For the two 

types of receptors, significant differences of î at 30 µM (for mouse: 0.52 ± 0.02 (n=6) 

and for human: 0.70 ± 0.06 (n=8), P ≤ 0.05) and at 10 µM ACh (for mouse: 0.19 ± 

0.03 (n=9) and for human: 0.33 ± 0.04 (n=10), P ≤ 0.05) were discovered. Fitting the 

data with a dose-response curve (not shown) gave half-maximal responses (K50) of 

mouse receptors of ~ 30 µM ACh compared to ~ 14 µM ACh for human receptors. 

Furthermore, from 3 to 10 µM ACh, maximum double-logarithmic slopes (Hill slopes) 

of mouse and human receptors resulted in 1.82 and 1.29, respectively. 

The values of tr in Figure 12B decreased with increasing agonist concentration and 

tr reached a lower plateau above 100 µM. With 1 mM ACh, tr of mouse receptors 
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was 0.21 ± 0.04 ms (n=5) compared to 0.17 ± 0.02 ms (n=4) in human receptors. 

Similarly, at low ACh concentrations, tr also reached a plateau at a maximum value 

(Franke et al., 1991b; von Beckerath et al., 1995). The values of tr for mouse and 

human receptors at 3 µM ACh are 10.20 ± 0.20 ms (n=2) and 4.44 ± 0.76 ms (n=6), 

respectively. The general concentration dependence is in line with the findings of 

Franke et al. (1991b), although the tr values for mouse receptors in this experiment 

are slightly faster than their value of 0.5 ms at high concentrations, whereas the tr 

measured at low concentration are slower than the value of about 5 ms they 

obtained. Below 1 mM ACh I obtained significant tr differences for mouse and human 

receptors. With 100 µM ACh tr of mouse receptors was 0.44 ± 0.03 ms (n=13) 

compared to 0.33 ± 0.04 ms (n=12) for human receptors (P ≤ 0.05). Furthermore, 

with 30 µM ACh tr of mouse receptors was 1.01 ± 0.11 ms (n=6) and 0.61 ± 0.06 ms 

(n=8) for human receptors (P ≤ 0.01). Finally, with 10 µM ACh tr of mouse receptors 

was 3.05 ± 0.39 ms (n=9) compared to 1.95 ± 0.27 ms (n=10) for human receptors 

(P ≤ 0.01). 

 

Figure 11. Averaged macroscopic current responses of human adult type nAChRs on 

a representative patch at different ACh concentrations. 

(A) Superimposed averages were recorded in the same outside-out patch. The patch was 

clamped at -40. A 300 ms ACh-pulse was applied with an interval of 3 s. All data were low-

pass filtered at 4 kHz and digitized at 12.5 kHz. (B) Enlarged onset sections of normalized 

current responses in (A). Traces were elicited by the indicated concentration of ACh. The 

rise-time (10 - 90%) for this patch at 1000 µM, 100 µM, 30 µM, 10 µM and 3 µM ACh was 

0.16 ms, 0.20 ms, 0.40 ms, 1.05 ms and 2.98 ms, respectively. 
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Figure 12. Concentration dependence of the peak current amplitudes (î) and the rise-

time (tr) of mouse and human nAChRs. 

Experimental data shown as points (mean ± s.e.m.) were overlaid by the by the kinetic 

model Scheme II (Figure 7). The black and blue lines in each graph represent the optimal 

fit for each type nAChRs using rates in Scheme IIa and IIb (Figure 13). Scheme IIa fits the 

data of mouse nAChRs with the rate constants: k+1 = k+2 = 1.5 × 108 M-1·s-1, k-1 = k-2 = 20000 

s-1, α = 1100 s-1 and β = 50000 s-1. 2, 9, 6, 13 and 5 patches were recorded at 3, 10, 30, 

100 and 1000 M ACh, respectively. For human receptors in each panel, the curves are 

fitted by Scheme IIb with the following parameters: k+1 = k+2 = 3 × 108 M-1·s-1, k-1 = k-2 = 

20000 s-1, α = 1100 s-1 and β = 50000 s-1. The number of patches averaged at 3, 10, 30, 

100 and 1000 µM ACh were 6, 10, 8, 12 and 4 correspondingly. The statistical analysis was 

performed for comparing the data of mouse and human nAChRs measured at the same 

ACh concentration (* P ≤ 0.05 and ** P ≤ 0.01, rank-sum test). 

 

4.3 Numerical simulation and current fitting 

To distinguish the binding and gating steps from the channel activation path, and to 

interpret the data quantitatively, I recruited the kinetic models for depicting 

experimental data. According to the maximum double-logarithmic slopes derived 

from my electrophysiological recordings, both mouse and human receptors are 

supposed to be activated through two ligand-binding steps. Moreover, referring to 

the observations in Franke et al. (1991b), I used the same simple reaction model 

(Scheme II in Figure 7) with two identical binding-sites (Akk and Auerbach, 1996) 

for numerical simulation of this study. There is no cooperative binding between the 

two sites. As mentioned before, Scheme II (Figure 7) does not include other reaction 

processes, such as desensitization and channel openings of mono-liganded 

receptors. 



30 
 

To find optimal sets of these transition rate constants to fit the experimental data, I 

systematically tried many intermediate values for each rate constant (k+1, k-1, α and 

β). Franke and his colleague (1991b) have already elaborated in their paper about 

the change tendency of the dose-response curves by varying each rate constant 

during numerical simulations with this simplified model: (1) Binding rate constants 

have a stronger effect on the dose-response of peak currents than gating rate 

constants. (2) Increase of k+ causes the dose-response curves of both î and tr to 

shift to the left, which is treated as higher affinity of the receptors, but there is almost 

no change in the rising phases. (3) In contrast, the changes in k- affect the plateau 

of tr greatly, especially at low agonist concentrations, but have little effect on î values. 

(4) The combination of these variations is more complex to estimate and understand 

superficially. For comparing the receptors affinity, I put more emphasis on varying 

the values of k+ and k-. 

The measurements here show that the values of î and tr in mouse receptors are 

significant different from the corresponding values in human nAChRs at both 30 µM 

and 10 µM ACh. Thus, the data at these two concentrations are treated as important 

nodes for fitting the responses. The initial values of these rate constants were taken 

from the values determined for adult mouse muscle with a similar range of ACh 

concentrations as in the study by Franke et al.(1991b) (k+1 = k+2 = 108 M-1·s-1, k-1 = 

k-2 = 20000 s-1, α = 1100 s-1 and β = 50000 s-1). Consequently, the optimal fits for 

mouse receptors are obtained by increasing the association rate constants based 

on the initial values, which are of the same order of magnitude: k+1 = k+2 = 1.5 × 108 

M-1·s-1, k-1 = k-2 = 20000 s-1, α = 1100 s-1 and β = 50000 s-1 (Figure 12 and Scheme 

IIa in Figure 13). Likewise, the suitable simulated dose-response curves of both î 

and tr for human receptors were generated by increasing the association rate 

constants even higher than that for mouse receptors up to 3 × 108 M-1·s-1 and 

keeping the values of α and β: k+1 = k+2 = 3 × 108M-1·s-1, k-1 = k-2 = 20000 s-1, α = 

1100 s-1 and β = 50000 s-1 (Figure 12 and Scheme IIb in Figure 13). I had also 

checked the effect of adjusting the dissociation rate constants by altering k-1. The 

reduction of k-1 from 20000 s-1 to 10000 s-1 leads similar changes in the simulated 

dose-response curve of î as increasing k+1 value. The simulated curve fits the î 

experimental data well (Figure 14A). However, for tr simulation, the plateau of the 
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rise-time at low agonist concentrations shifts greatly compared to the experimental 

data. At 3 µM ACh, the experimental observed value was ~ 4 ms, while the 

computationally estimated value was ~ 7 ms (Figure 14B). This difference reflects a 

predicted slower on-rate phase, which does not match the experimental data. 

Figure 14 shows the simulated dose-response curves of î (Figure 12A) and tr (Figure 

12B) plotted with the optimized set of the rate constants (Scheme IIa for mouse 

receptors and Scheme IIc for human receptors). It shows that all simulated curves 

come to a plateau at high ACh concentrations, matching quite well with experimental 

data. And the curves of î seem to fit generally better than the curves of tr. This is in 

line with the trends of experimental variations. 

Therefore, it can be predicted from the kinetic model that the difference of the affinity 

between mouse and human receptors is affected predominantly by the binding steps, 

in particular by the association rate constants. The simulations demonstrate that the 

association rate constant of human nAChRs are 2-fold of those of mouse receptors, 

indicating a higher affinity of human compared to mouse receptors for the agonist 

ACh. 

 

Figure 13. Parameters estimated for the kinetic Scheme II with two identical binding 

sites (confer Figure 7). 

Scheme IIa, IIb and IIc were used for the simulated dose-response curves in Figure 12 and 

Figure 14 with the indicated rate constants. Scheme IId is used for the dose-response curves 

in Figure 19. 
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Figure 14. Simulated dose-response curves of î and tr of mouse and human nAChRs 

by reducing k- values. 

The simulations were performed by using Scheme II in Figure 7. The black and red lines 

represent the fits with Scheme IIa and Scheme IIc (Figure 13), respectively. Scheme IIc has 

the rate constants: k+1 = k+2 = 1.5 × 108 M-1·s-1, k-1 = k-2 = 10000 s-1, α = 1100 s-1 and β = 

50000 s-1. Experimental data values (mean ± s.e.m.) and their statistical analysis at the 

same ACh concentration were the same as in Figure 12. The number of patches averaged 

at 3, 10, 30, 100 and 1000 µM ACh were 6, 10, 8, 12 and 4 correspondingly (* P ≤ 0.05 and 

** P ≤ 0.01, rank-sum test). 

 

4.4 Inhibiting effect of α-Bgtx 

To further inspect the difference of ligand-binding affinity between mouse and 

human receptors, the outside-out patches were performed in the fast application 

system by adding the competitive antagonist α-Bgtx to the background solution. An 

ACh-pulse was applied for 30 ms with an interval of 2 s. The holding potential was 

-40 mV, the same as for the step application of ACh. 

Comparison of α-Bgtx-affinity of mouse with human receptors was carried out by 

recording the current responses elicited when competitive binding of ACh and α-

Bgtx took place. All of the responses were elicited by repetitive pulses of 30 µM ACh 

during a wash-in of 300 nM α-Bgtx. Recordings from six patches of both mouse and 

human receptors are plotted in Figure 15 with the mean values (± s.e.m.) of î versus 

time. The duration of measurement for each patch was not uniform. It varied from 

patch to patch, depending on the quality of the outside-out patch, as well as on the 

properties of the two types of receptors. To enable comparison, the traces recorded 
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during the first 250 s were analyzed for all the current peak amplitudes. Both mouse 

and human receptors were initially fully activated by ACh, but then gradually got 

blocked by α-Bgtx. Consequently, it was found that α-Bgtx blocks currents more 

rapidly in human nAChRs than in mouse receptors. This was the first time that α-

Bgtx block was shown using fast agonist application at a high temporal resolution. 

The antagonist induced a reduction of î of human receptors to 26.77 ± 11% at 250 

s. In contrast, α-Bgtx attenuated currents to only 63.82 ± 9% in mouse nAChRs (P 

≤ 0.05). A first significant difference of the reduction in current amplitudes between 

mouse and human receptors was detected starting at 130 s (for mouse: 84.53 ± 3% 

and for human: 46.93 ± 12%, P ≤ 0.05).  

 

Figure 15. Time course of α-Bgtx induced nAChR block. 

Current responses of mouse and human nAChRs were recorded during the application of 

300 nM α-Bgtx. The membrane potential was kept at -40 mV. A pulse of 30 µM ACh in the 

presence of background α-Bgtx was applied for 30 ms with an interval of 2 s (n=6 for both 

mouse and human receptors). Data is presented as mean ± s.e.m. The statistical analysis 

compared the data of mouse and human nAChRs collected at the same time points (* P ≤ 

0.05, rank-sum test). 

 

By fitting the curves using Equation 1 (see Materials and Methods 3.3), I obtained 

the T1/2 values, which shows that the time period for half of the mouse receptors to 

be blocked is ~ 2-fold of the half inhibition time of human nAChRs (for mouse: T1/2 
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= 384.83 ± 41.56 s and for human: T1/2 = 160.33 ± 40.60 s, P ≤ 0.05). The 

competitive antagonist, α-Bgtx can fully occupy both ACh-binding sites and block 

the receptors. It has been found that competitive antagonists contribute little to the 

channel-gating behavior (Sine, 2012). Therefore, the current amplitude reductions 

are most likely due to the alteration occurring at the ligand-binding steps. Thus, this 

inhibition experiment shows that the α-Bgtx-affinity for human receptors is 

significantly higher compared to mouse receptors. 

4.5 Sequence alignments of various subunits 

The results so far raise the questions how such functional difference works, or more 

specifically, how this difference is related to the genetic difference between mouse 

and human. To examine the genetic relevance, amino acid sequences were aligned. 

Since two α-subunits of muscle type nAChRs form the important part of the ligand-

binding sites, more detailed analysis of the α-subunits was performed. In this study, 

a comparison of the sequence difference between mouse and human along with the 

α-subunit from the electric fish (i.e. Torpedo) was carried out. Torpedo receptors 

have been involved in many classical researches on nAChRs (Wilson et al., 1988; 

O'Leary and White, 1992; Hucho et al., 1996; Brejc et al., 2001; Karlin, 2002; 

Cadugan and Auerbach, 2007; Dellisanti et al., 2007a; Prinston et al., 2017). Here, 

the comparison could provide insights into the relationship between the amino acids 

evolution and their functional variation among species, which might correlate to their 

living environment. The sequence alignment displays that all of these different 

residues can be further distinguished into three groups: (1) residues shared only 

between human and Torpedo, (2) residues shared only between mouse and 

Torpedo, and (3) completely different residues at the same positions among the 

three species (Figure 16). It is of interest that the proportions of the three groups 

were similar throughout the amino acids evolution. 

To further analyze whether these different residues are related to functional 

differences between mouse and human receptors, the positions with different amino 

acids between mouse and human α-subunits are marked at corresponding positions 

in a solved Torpedo α-subunit 3D structure (Figure 17). The residues which are 

known to play an important role in ligand-binding (Arias, 2000) are highlighted. It 
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was found that most of these amino acids are located in the secondary structures 

of the ligand binding domain and in the cytoplasmic domain. 

 

Figure 16. Amino acid sequence alignment of human, mouse and Torpedo nAChR α-

subunits. 

Residues shared only between human and Torpedo are marked in yellow, whereas those 

only shared between mouse and Torpedo are highlighted in blue. Residues, different in all 

three species, are labeled in red. α1 is a helix structure. β1 - β10 show the structures of β-

strands in the ECD. M1 - M4 are the four TMDs. The indicated loop A, B and C join β5 - β5’, 

β7 - β8 and β9 - β10, separately. All key residues located in the loops which are important 

for ligand-binding are highly conserved among three species. 

 

Figure 17 shows that residues at position 187, 189 and 195 are embedded within a 

region containing the key amino acids related to the affinity of nAChRs. Therefore, 

the different amino acids at these three positions are expected to contribute to the 

affinity difference between human and mouse receptors. This assumption is in line 

with the different properties of the residues at these positions (more details seen in 

Discussion 5.4). 
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Figure 17. Amino acid differences between mouse and human α-subunits. 

The ribbon diagram illustrates a single Torpedo α-subunit (retrieved from the PDB database: 

4AQ9). This is merely a part of the real structure except for the cytoplasmic region. Key 

residues known to be critical to ligand-binding at the N-terminus are marked as spheres in 

magenta (residues: 93 in loop A; 149, 152 and 153 in loop B; 190, 192, 193 and 198 in loop 

C). The same structure is shown in Figure 3B. The amino acids, which differ between mouse 

and human subunits, are indicated as grey spheres. Four of these different residues 

between mouse and human (colored as blue, pink, yellow spheres according to Figure 16) 

are potential candidates, which might cause the observed affinity difference. Mouse amino 

acid is written first, then the position number in the mouse subunit, then the amino acid in 

the human subunit. 

 

Another potentially important residue for ligand-binding can be at position 230, 

which is located in the M1 transmembrane domain. Although the contribution of this 

domain to the nAChRs function is still unknown, several studies which addressed 
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structure and function have been carried out (Mishina et al., 1985; Suchnay et al., 

1993; Akabas and Karlin, 1995; Engel et al., 1996; Wang et al. 1997). Kinetic 

investigations, based on single channel recordings of mutant mouse adult nAChRs, 

showed that the M1 domain plays an important role in the channel binding affinity, 

for example by affecting the dissociation rate (Wang et al., 1997). In human α-

subunits, at position 230 a Gly230 is present, instead of the mouse α-subunit Ser230. 

This difference probably leads to great structural changes (more details also seen 

in Discussion 5.4). 

Additionally, sequence alignment studies on all of the four mouse and human 

nAChRs subunits (α, β, γ and ε), as well as a comparison to other receptor subunits 

between mouse and human are summarized in Figure 18. Surprisingly, it was found 

that mouse and human α1-subunits share higher identity (95%) and similarity (98%) 

compared to the other muscle type non-α-subunits (~ 88% and ~ 93%). On the other 

hand, although these two homologous receptors are known to be highly conserved, 

the subunits of nAChRs appear to have a relatively lower conservation than subunits 

of GABA1, NR1 and GluK2. This lower conservation could be the reason for 

significant functional differences between mouse and human nAChRs. 

 

Figure 18. Amino acid differences among the subunits of mouse and human receptors. 

Bar plot shows the percentage difference of the amino acids in various subunits between 

mouse and human. The values in the brackets indicate the number of different residues and 

the length of each subunit. 
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Comparison of other α-subunits (α4, α9 and α10) between mouse and human 

reveals even greater differences (Figure 18). However, 50% of amino acid 

differences in the α1-subunit are located within the ECD, whereas in α4-, α9- and 

α10-subunits only 6%, 19% and 28% of the different amino acids are situated there 

and a very high portion of the different residues is located at the ICD. Therefore, the 

observed differences in the affinity between mouse and human muscle type 

receptors could be due to the functional-related sequence differences, especially in 

the ECD, of their α-subunits. 

4.6 Experimental responses of chimeric receptors 

To address the question whether α-subunits are responsible for the observed 

differences in affinity between mouse and human receptors, chimeric receptors 

composed of mouse α-subunits and human β-, δ- and ε-subunits expressed in HEK 

cells were generated (MαHβδε). The ACh-induced current responses were measured 

by using the same agonist concentrations and pulse protocol as those performed in 

experiments for Figure 12.  

Analysis of the recordings shows that there is a significant difference in current 

amplitudes between human and chimeric MαHβδε receptors at low ACh concentration 

of 3 µM (for human: 0.067 ± 0.001 (n=6) and for MαHβδε: 0.035 ± 0.013 (n=7), P ≤ 

0.05). Macroscopic amplitudes are a measure of the number of functional receptors 

per patch. Interestingly, no significant difference was observed between the rise-

times (Figure 19). The finding supports my hypothesis that α-subunits affect the 

channel activation behavior. Next, I applied the numerical simulation using the same 

kinetic model as in previous analysis (Scheme II in Figure 7). Consequently, a set 

of parameters was obtained: k+1 = k+2 = 1.8 × 108 M-1·s-1, k-1 = k-2 = 20000 s-1, α = 

1100 s-1 and β = 50000 (Scheme IId in Figure 13), with which the simulated dose-

response curves were plotted (Figure 19). The association rate constants (k+) of 

chimeric MαHβδε receptors are smaller than that of human nAChRs, but larger than 

the k+ values of mouse receptors. The experimental data combined with the 

estimated association rate constants indicate that the lower affinity of MαHβδε 

receptors was caused by a slight reduction in the association rate constants as a 

result of introducing mouse α-subunits into the human receptors. 
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Figure 19. Concentration dependence of the peak current amplitudes (î) and the rise-

time (tr) of human and chimeric MαHβδε nAChRs. 

Experimental data are shown as points (mean ± s.e.m.). The blue and dark blue lines 

represent the simulated curves for human and chimeric MαHβδε receptors using Scheme IIb 

and Scheme IId (Figure 13). Data points of chimeric MαHβδε nAChRs are fitted by Scheme 

IId with the following rate constants: k+1 = k+2 = 1.8 × 108 M-1·s-1, k-1 = k-2 = 20000 s-1, α = 

1100 s-1 and β = 50000 s-1. The number of patches averaged at 3, 10, 30, 100 and 1000 

µM ACh were 6, 10, 8, 12 and 4, respectively. M, mouse. H, human. The statistical analysis 

compared the data of chimeric and human nAChRs measured at the same ACh 

concentration (* P ≤ 0.05, rank-sum test). 
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5 Discussion 

In the present study, an affinity difference between mouse and human adult nAChRs 

was uncovered and quantified. Human receptors have a higher affinity for both ACh 

and α-Bgtx than mouse receptors. The quantification of ACh affinity shows a two-

fold higher association rate in human nAChRs. The chimeric MαHβδε receptors are 

functional and have an intermediate ACh association rate. On that account, an 

important role of the α-subunits in influencing the receptor affinity was discovered. 

Several key residues within the ACh-binding pockets have been identified, which 

putatively affect the receptor’s affinity. This could help in deciphering the nAChR 

structure-function relationship and in understanding how the different properties of 

the receptor, such as sequence differences, influence receptor function in various 

species. 

5.1 Subunit composition and affinity 

Experiments with the fast application system, i.e. macroscopic recordings, in this 

study point to a significantly higher affinity for ACh in human compared to mouse 

nAChRs. This finding confirms the observations in single-channel recordings 

(Figure 10). Data collected from the macroscopic current responses are more 

practical for generating dose-response plots, where agonist affinity is studied based 

on ensemble properties, than from microscopic single-channel currents (Edelstein 

et al., 1996). The dose-response experiments on the chimeric MαHβδε nAChRs, in 

which the human α-subunits were exchanged by the mouse α-subunits, showed a 

lower affinity than that of human nAChRs. Assisted by the kinetic model (Scheme II 

in Figure 7), the ligand binding effect was quantitatively analyzed through dose-

response simulations. The optimal rate constants were estimated by fitting the dose-

responses of î and tr (Figure 12 and Figure 19). The channel opening rate (β) was 

found to be 50000 s-1. This value is close to the value (50000 - 60000 s-1) for human 

adult nAChRs obtained by Sine et al. (1995) from their single-channel recordings at 

ACh concentrations ranging from 50 to 300 nM. For mouse adult nAChRs, the ACh 

association and dissociation rates (k+ and k-) estimated from single-channel current 

responses were ~ 3 × 108 M-1·s-1 and 50000 s-1, respectively (Wang et al., 1997; 

Salamone et al., 1999; Bouzat et al., 2000). The estimated values in the present 

investigation are in the same order of magnitude as the previous findings (for mouse: 
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k+ = 1.5 × 108 M-1·s-1, k- = 20000 s-1; for human: k+ = 3 × 108 M-1·s-1, k- = 20000 s-1). 

Simulations for the chimeric MαHβδε receptors showed an association rate (1.8 × 108 

M-1·s-1), which lies between the values of mouse and human nAChRs, while other 

parameters remained unaffected. Therefore, the substitution of α-subunits primarily 

alters the agonist association rate. 

The affinity of the receptors for the competitive antagonist (α-Bgtx) was also studied. 

Previous binding experiments found 125I-labeled Bgtx has a higher binding affinity 

for human than mouse nAChRs (Ishikawa et al., 1985). However, there is a 

possibility that the fluorescent agents or the conjugated radioactive isotopes altered 

the binding properties of the toxin for the receptor. Here, unmodified α-Bgtx was 

used in the fast application patch clamp experiments. This made it possible to 

examine the toxin affinity via its inhibitory effect on the receptors in its natural state. 

The result shows that human nAChRs have a significantly higher affinity for α-Bgtx 

than mouse receptors. However, whether α-subunits cause a lower affinity for α-

Bgtx in mouse receptors still needs to be determined. Experiments to test the toxin 

affinity of the chimeric MαHβδε receptors would be required. If the current responses 

of the MαHβδε receptors display a significant decrease compared to human nAChRs 

(with a similar method as in Figure 15), it would be possible to conclude that α-

subunits contribute to the different affinities for α-Bgtx between two species. 

5.2 Various kinetic models 

The extended del Castillo and Katz mechanism (Scheme II in Figure 7) has been 

generally used for analyzing both adult and embryonic nAChRs activations 

(Colquhoun and Sakmann, 1981; Sine and Steinbach,1986a, b; Auerbach and 

Linglet, 1987). Based on Scheme II, a modified model, which contains an additional 

mono-liganded open state of the receptor (Scheme III in Figure 20) was proposed 

by Karlin (1967). However, at high agonist concentrations, mono-liganded open 

states exist but are not considered to be important for the channel opening 

(Colquhoun and Sakmann, 1981, 1985; Labarac et al., 1985). This is consistent with 

the findings of the single-channel recordings in the present study. The long 

component in the open period distributions of mouse nAChRs at 100 nM ACh 

represents the largest proportion (~ 50% area) among all the components (Figure 
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10A). Therefore, measurements at high agonist concentrations, where the majority 

of the channel opening events are induced by double-liganded, active receptors, 

make the observations easier to understand. Several laboratories have reported the 

two binding sites (αδ- and αε-site) to be almost equivalent in adult nAChRs (Franke 

et al., 1991b; Akk and Auerbach, 1996; Wang et al., 1997; Salamone et al., 1999). 

This is different in embryonic receptors, where ACh binds to the αδ-site with much 

higher affinity, compared to its binding to the αγ-site (Zhang et al., 1995; Stock et 

al., 2014). Therefore, as mentioned above, the four-state Scheme II with two 

equivalent binding-sites is taken to be adequate for depicting adult nAChRs. 

 

Figure 20. Reaction scheme with the mono-liganded open state. 

Based on Scheme II, Karlin (1967) proposed Scheme III, which is based on Scheme II but 

with an additional mono-liganded, open-state of the receptor (AO). This intermediate open-

state can be further liganded by another agonist. When double-liganded, the receptor 

comes to another open state (A2O). In this scheme, more rate constants than in Scheme II 

are included (i.e.: k+2*, k-2*, α1 and β1). These rate constants are constrained by each other 

in a semi-cyclical path. The equilibrium between the two open states (AO and A2O) is 

defined by k+2* and k-2*. k+2* is agonist concentration dependent. As in Scheme II, the affinity 

for the agonists at two binding sites are assumed to be identical. 

 

With respect to a finer feature of the receptor binding-gating process, a model with 

an intermediate “flip-state” was introduced (Lape et al., 2008; Scheme IV in Figure 

21A). Scheme IV allows the reaction rates of the channel activation to be 

investigated in more detail. The flipping model has been used for comparing the 

effect of the full agonist with that of the partial agonist (Figure 21B). The current 

response to partial agonists is smaller, which is limited by an inefficient 

conformational change (the flipping) before channel opening. 
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Figure 21. The “flip” nAChR kinetic model. 

(A) “Flip” model without mono-liganded binding step. Scheme IV includes a pre-opening 

conformational change (“flip”) in the activation path. A2F represent the double-liganded pre-

opening flipped state. The channel can open afterwards. The receptor flipping reaction 

differs between agonists (modified from Lape et al., 2008). (B) Activation of the receptor by 

ACh and choline. The rate constants for channel flipping (δ and γ) and opening (β and α) 

are shown. The sizes of the arrows are related to the values of the transition rates. The 

gating reaction is similar for ACh and choline. The low gating efficiency of the partial agonist 

choline stems from its inability to stabilize the flipped state. The mean lifetime of each state 

(µs) and the proportion of time (%) spent in each of the states are shown at equilibrium. The 

A2R occupied by choline stays much longer (90%) than that by ACh (1%), followed by a 

quick flip-state (1%). The receptor occupied by ACh stays in the flip-state a bit longer (3%). 

The mean lifetime of the open states are similar for both ACh (390 µs) and choline (311 µs), 

whereas the opening probability of the receptor is 96% for ACh, but only 9% for choline. 

ACh, full agonist. Choline, partial agonist. Values for ACh are from Lape et al., 2008. Choline 

values are from Lape et al., 2009. 

 

For the present study, it would be interesting to compare the affinities by using partial 

agonist choline. It is another natural agonist for nAChRs and the precursor of ACh. 

The choline affinity for the receptor flip-state (A2F) is lower than for the closed state 

(A2R). As a consequence, the receptor occupied by choline spends more time in its 

closed state (A2R). Therefore, an even lower number of open mouse nAChRs are 

expected through choline association. 
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5.3 Simulation of synaptic responses at the NMJ 

The time course of opening events of the postsynaptic nAChRs is determined mostly 

by the binding- and gating-rates of the receptor. It is possible to simulate a 

physiological-like process between synapses using well-estimated rate constants. 

The simulations carried out in this study focused on the properties of the receptors 

without concerning such features as the receptor surface geometry or the spatial 

distribution of the receptors and agonist molecules. The software (ChanneLab) 

employs a deterministic approach using ordinary differential equations (ODEs) to 

describe the reaction mechanisms. The advantage of this one-dimensional 

approach is the ability to integrate the ODEs rapidly and predict the average 

behavior of the receptors. However, this approach does not take into account the 

spatial features present in a realistic physiological condition. 

Simulation programs are available to model more realistic conditions. MCell, for 

example, is one such software, which is used extensively. It is based on Monte Carlo 

algorithms to simulate the diffusion of agonists and their interaction with the 

receptors, in combination with 3D synaptic reconstructions (https://mcell.org). 

Figure 22 shows a 3D reconstructed postsynaptic membrane at the NMJ by using 

the MCell programme. The software is capable of providing snapshots of the 

synaptic transmission at any point in time. By simulating the diffusion and binding of 

ACh molecules to nAChRs with stochastic interactions in 3D, the spatial distribution 

of target nAChRs in various states can be obtained. From these data, the efficiency 

of the synaptic transmission can be predicted, such as the amplitudes and the time 

course of the miniature endplate currents (mEPCs). The results obtained from these 

simulations compare well with average values from experimental measurements 

(Stiles et al., 1996; Pawlu et al., 2004). 
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Figure 22. Time course simulation of ACh binding to nAChRs at the NMJ. 

Snapshots of the synaptic transmission were taken in MCell at 100 µs (upper panel) and 

400 µs (lower panel) after the release of ACh from presynaptic vesicles. Two sites (a and 

b) are shown, which correspond to two different presynaptic AZs (not shown). The area of 

site a, which contains double-liganded, activated receptors, is marked with a white circle as 

“saturated disc”. For example, at 100 µs, 387 activated receptors within a Ø 0.3 µm 

saturated disc (upper panel) are present. At 400 µs, 687 receptors are activated (lower 

panel) in the extended saturated disc of Ø 0.5 µm. This simulation can demonstrate the 

effect of the affinity on the receptor activity, which causes the postsynaptic mEPCs. The 

time course of receptor opening is mostly determined by the rates of binding and gating, as 

well as receptor spatial distribution. Receptors on the postsynaptic membrane are color-

coded according to their states (unbound state R, blue; single-liganded state AR, red; 

double-liganded, inactive state A2R, green; double-liganded, active state A2O, yellow). The 

size of each image is 1.7 × 0.7 µm (modified from Stiles et al., 2003). 

 

Therefore, MCell can be used to simulate the mEPCs generation at the mouse and 

human NMJs according to the affinity parameters observed. These simulations 

would help to understand how the affinity affects the efficiency of the synaptic 
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transmission quantitatively, which has been little known in the synaptic physiology 

in human. 

5.4 Interpretations of the candidate key residues effects 

α-subunits Investigators of adult nAChRs have demonstrated that the ligand-

receptor interaction takes place at the binding-sites formed at the α-δ and α-ε 

surfaces (Ishikawa et al., 1985). Although the binding sites for ACh and α-Bgtx have 

an overlap, the key residues involved in their binding are not entirely identical (Arias, 

2000; Dellisanti et al., 2007a, b). In this study, the contribution of α-subunits to the 

ligand-binding effect was exemplified through the dose-response experiments of the 

chimeric MαHβδε receptors. Their k+1 value lying between mouse and human 

nAChRs indicates a reduction in ACh affinity caused by mouse α-subunits, when 

interacting with non-α-subunits of human receptors. The amino acids in the α-

subunits are highly conserved between mouse and human nAChRs. Sequence 

alignments revealed that, among the few different residues, about 50% of the 

differences in the muscle type α-subunits are located in the ECD. This is a much 

higher proportion than for the other subunits (see Results 4.5). Thus, it is interesting 

to further understand how the structural and molecular-interaction characteristics of 

mouse and human α-subunits affect the receptor properties. 

The amino acids 93 to 198 form loops A, B and C (Figure 4). Loop C (residues 

around 176 - 209) was found to contribute predominantly to the ligand-binding (Sine, 

2002). There are 10 amino acids that are different in the ECDs of human and mouse 

nAChRs. Four of these are located in loop C (Figure 16). Among them, three 

residues (at positions 187, 189 and 195) are considered to contribute to the different 

affinities between the two species. The fourth residue (at position 181) is close to 

the three residues in the receptor’s primary structure (Figure 17), but it is not thought 

to be a candidate due to its spatial position far from the loop C. 

Residues 187 and 189 are known to participate in both ACh- and α-Bgtx-binding 

(Sine, 2002; Figure 5B). Several kinetic studies performed in HEK293 cells indicate 

that mutations of both residues reduce the affinity for α-Bgtx through their impact on 

the association process (Kreienkamp et al., 1994; Keller et al., 1995). The present 

study supports this conclusion. It was found that residue 189 is located at the center 
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of the toxin-receptor interface, most likely interacting with the toxin directly. Residue 

187 is located at the peripheral region and mainly stabilizes the interacting structure 

(Dellisanti et al., 2007b). The residues Trp187 and Phe189 in mouse α-subunits are 

replaced by Ser187 and Thr189 in human subunit, respectively. Ser187 and Thr189 

belong to the group of polar-uncharged amino acids, which can form hydrogen 

bonds with ligands and confer specificity onto receptor-ligand interaction. Therefore, 

the amino acids at these two positions appear to generate a higher affinity for both 

ACh and α-Bgtx in human nAChRs. On the other hand, the aromatic residues Trp187 

and Phe189 in mouse α-subunits are capable of interacting with other aromatic amino 

acids and the positively-charged groups. Such properties are important for forming 

closed scaffolds within proteins, but they have not been proven to play a role in 

ligand-binding. 

Candidate residue 195 is negatively charged in human α-subunits (Asp195), while it 

is uncharged at the corresponding position in mouse subunits (Thr195). Both are 

polar and hydrophilic. The residue at this position had not been reported to 

contribute to ligand-binding directly (Arias, 2000; Sine, 2002). However, it is situated 

in close proximity to the cysteines Cys192,193, which play a major role in agonist-

binding (Kao and Karlin, 1986). Although this cys residue pair itself is not required 

for α-Bgtx binding (Griesmann et al., 1990; Spura et al.,1999), amino acids in its 

proximity, such as residue 194, have been found to contribute to conformation 

changes when interacting with the toxin (Neumann et al., 1989; Barchan et al., 1992, 

1995; Kachalsky et al., 1995; Dellisanti et al., 2007b). Thus, there is a possibility 

that the residue 195 affects the ligand-binding due to its proximal location. 

In addition to the residues mentioned above, residue 230 in the M1 segment, also 

presents itself as a candidate. In fact, most residues in M1 are known to be highly 

conserved. Residue Gly230 in mouse α-subunits is occupied by Ser230 in human 

subunits. Gly, as the smallest amino acid, can fit into narrower spaces, giving it an 

amphoteric property. Also, Gly does not help in helix formation. Therefore, 

compared to mouse nAChRs, residue Ser230 in human subunits appears to cause a 

prominent structural change of the M1 segment. Such a structural change could 

lead to an alteration at the binding-sites and thus result in binding affinity changes. 
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Non-α-subunits Since the two binding-sites are located at the interfaces of two 

subunits, the contribution of the neighboring non-α-subunits can not be neglected. 

It is known that most α-subunits have strong functional constrains (Tsunoyama and 

Gojobori, 1998). And the less conserved non-α-subunits provide functional 

specificity for various nAChR subtypes (Sine and Engel, 2006). Previous studies 

have suggested that the genes of the ancestors of β-, δ-, γ- and ε-subunits might 

have been co-regulated by each other to some extent. The k+1 value of the chimeric 

MαHβδε receptors is higher than that of mouse receptors, but not as high as that of 

human receptors. This result is in agreement with the idea that non-α-subunits can 

also affect the receptor affinity. The sequence alignments of the non-α-subunits 

(Figure 23) reveal that several residues located in the supplementary binding loops 

(loops D, E, F and G) are different between mouse and human nAChRs. These 

residues are likely to be critical in shifting the affinities, either by interacting with 

ligands directly or through their interaction with α-subunits. 

In δ-subunits, four residues of the known key amino acids in binding loops (Arias, 

2000) are different between human and mouse (Figure 23A). The amino acids at 

these four positions are the same between mouse and Torpedo, a primitive 

vertebrate, indicating that the changes seen in human receptors are due to the 

molecular events that occurred later in evolution. In loop D, the hydrophilic and polar 

Ser37 of mouse receptor is replaced in human by Ala37, a hydrophobic and nonpolar 

residue. Similarly, in loop F, the polar Tyr117 and the hydrophilic Thr119 in mouse are 

substituted by nonpolar Phe117 and hydrophobic Tyr119 respectively in human. 

Hence, residues 37, 117 and 119 might affect the affinity of nAChRs. In addition, 

the residue 60 is also different between mouse and human. These amino acids, 

however, have similar properties (Glu60 in mouse and Asp60 in human). Thus, this 

residue replacement between mouse and human nAChRs may be functionally 

neutral. 

Between human and mouse ε-subunits, there are two amino acids (residues 115 

and 117) that are different in the binding loops (Figure 23B). In human receptors it 

was found that, when Pro121 is replaced by Leu121, the ACh affinity of the open-state 

nAChRs is reduced by 500-fold. In contrast, little change was observed in the affinity 

of the close-state receptors (Ohno et al., 1996). Residue 115 is arranged spatially 
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close to residue 121. Since the aromatic residue Tyr115 in mouse subunits is 

exchanged for Ser115 in human ε-subunits, residue 115 could be considered to 

influence ACh affinity. On the other hand, residue 117 has similar properties in 

human and mouse receptors, thus it is unlikely to affect affinity. 

 

Figure 23. Sequence alignment of δ- and ε-subunits from human and mouse nAChRs. 

(A) Alignment of δ-subunits. (B) Alignment of ε-subunits. Loop D, E, F and G at the α-δ or 

α-ε ligand-binding site are marked with frames. The critical residues for ligand-binding in 

each loop are highlighted in green. In case there are differences between the mouse and 

human subunits, the amino acids are highlighted in blue. In δ-subunits, the residues that 

differ are S36A, D59E, Y117F and T119Y (highlighted in blue). In ε-subunits, only two 

residues are different between mouse and human subunits, Y115S and S117T (highlighted 

in blue). They are both in loop F. Note that there are γ-subunits in Torpedo receptors, 

therefore the alignment of ε-subunits is only between human and mouse receptors. 
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In summary, the higher affinity of human nAChRs can be caused by amino acid 

substitutions in α-subunits and non-α-subunits. Notably, several of the potential 

candidates are aromatic in mouse subunits (αW187, αF189 and εY115). β-subunits 

are not a component of the ligand-binding sites, but they affect the conformation of 

the receptors. Sequence alignment of mouse and human β-subunits shows that 

there are 25 residue differences between mouse and human in the ECD. However, 

the contribution of these amino acids to nAChRs affinity is still unclear. To discover 

how these amino acids affect the affinity, electrophysiological recordings of site-

directed mutant nAChRs need to be performed. Such experiments would allow a 

targeted screening of amino acids, which contribute to the different affinities 

between mouse and human nAChRs.  

5.5 Functional diversity of the nAChR family 

Among various receptors, the nAChRs family is particularly noticeable. In this 

greatly expanded superfamily, presently including 17 subgroups in the vertebrates 

(Liebeskind et al., 2015), there is no overlapping functional property for all members 

(Dani and Bertrand, 2007; Elgoyhen and Katz, 2012). Sequence analyses of various 

LGIC subunits show that the nAChR subunits are conserved to a less degree than 

the subunits of other LGICs (Figure 18). It has been suggested that their greater 

divergence in coding sequences could be the reason for the remarkable functional 

variety among the nAChR subunits (Marcovich et al., 2019). Roux and his 

colleagues (2017) reported that the diversity in the subunits sequences is the result 

of genome multiplications during its evolutionary history (Roux et al., 2017). 

Moreover, members of the nAChRs family show variable subunit stoichiometries, 

which can shape different functions (Nemecz et al., 2016). 

It is important to understand how the variations in the structure affect nAChRs 

functional diversity in different species. One direct evidence came from α9α10 

nAChRs in inner ear hair cells, as a unique type of proteins with highest calcium 

selectivity. It was found that whenever a rat α9 subunit is present, calcium 

permeability of the receptors is high; on the other hand, whenever a chicken α9 

subunit is present, the calcium permeability of the receptors is low. Moreover, the 

substitution of mammalian α9 into chicken α9α10 nAChRs produced a lower calcium 
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permeability than the mammalian receptors. This calcium permeability is related to 

the hair cell hyperpolarization, which is suggested as an evolutionary consequence 

for enhancing high-frequency hearing in mammals (Lipovsek et al., 2012, 2014). 

Another example of the structure-function relationship is α4β2 nAChRs in the human 

brain, as a main target for nicotine addiction. This subtype can be assembled by two 

stoichiometries, which have different physiological properties: (α4)2(β2)3 and 

(α4)3(β2)2. Depending on the nicotine amount, α4β2 nAChRs shift between these 

two assemblies. The (α4)2(β2)3 receptors have a higher nicotine affinity than the 

(α4)3(β2)2 receptors (Nelson et al., 2003). All these observations confirm the 

conclusion of this study, that muscle type nAChRs can have different function 

characteristics among various species. 
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7 Abbreviations 

α   closing rate constant 

α-Bgtx   α-bungarotoxin 

ACh   acetylcholine 

AChE   acetylcholinesterase 

AP   action potential 

AZs   active zones 

β   opening rate constant 

DIC   differential interference contrast 

ECD   extracellular domain 

EPP   end-plate potential 

EPSP   excitatory postsynaptic potential 

HEK293T  human embryonic kidney cell-line 293T 

I   mean current 

î   normalized I value 

ICD   intracellular domain 

LGICs   ligand-gated ion channels 

JFs   junctional folds 

k+1, k+2  association rate constant 

k-1, k-2   dissociation rate constant 

K50   half-maximal responses 

LBD   ligand-binding domain 

MαHβδε chimeric receptors composed of mouse α-subunits and human 

β-, δ- and ε-subunits 

mEPCs  miniature endplate currents 

mEPP   miniature end-plate potential 

nA   nanoampere 

nAChRs  nicotinic acetylcholine receptors 

NMJ   neuromuscular junction 

ODEs   ordinary differential equations 

pA   picoampere 

RMS   root mean square 

s.e.m.   standard error of the mean 
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SVs   synaptic vesicles 

TMD   transmembrane domain 

tr   rise-time 

UniProt  Universal Protein Resource 
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