
Smart Store Applications
in Fashion Retail

Matthias Hauser

Dissertation an der Julius-Maximilians-Universität Würzburg
zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

vorgelegt von
Matthias Hauser

Würzburg, 2019



Erstgutachter: Prof. Dr. Frédéric Thiesse
Zweitgutachter: Prof. Dr. Christoph M. Flath
Datum der Abgabe: 6. August 2019
Datum der mündlichen Prüfung: 14. November 2019



Danksagung

Die vorliegende Arbeit ist nicht das Werk eines isoliert arbeitenden Forschers, sondern
Ergebnis zahlreicher Diskussionen und gemeinsamer Arbeit an Projekten. Ich möchte mich
an dieser Stelle bei allen bedanken, die zur Fertigstellung dieser Arbeit einen Beitrag
geleistet haben. An erster Stelle möchte ich mich bei meinen Betreuern (und Koautoren)
Prof. Dr. Frédéric Thiesse und Prof. Dr. Christoph M. Flath bedanken, die mich einerseits
bei jedem Schritt meines Dissertationsprojekts bestmöglich unterstützt haben und mir
immer mit Rat und Tat zur Seite standen, mir aber gleichzeitig die notwendige Freiheit zur
Weiterentwicklung neuer Ideen gegeben haben. Mein Dank gilt weiterhin Prof. Dr. Daniel
Müller, der trotz Forschungssemester die Leitung meiner Disputation übernommen hat.

Danken möchte ich darüber hinaus meinen Projektpartnerinnen und Projektpartnern
des Forschungsprojekts SERAMIS sowie meinen Kolleginnen und Kollegen am Lehrstuhl
für Wirtschaftsinformatik und Systementwicklung an der Universität Würzburg. Mein
ganz besonderer Dank gilt (neben meinen beiden Betreuern) Prof. Dr. Cleopatra Bardaki,
Prof. Dr. Massimo Bertolini, Dr. Patrick Föll, Matthias Griebel, Sebastian A. Günther,
Dr. Jannis Hanke, Dr. Simon Kloker, Roland Leitz, Prof. Dr. Antonio Rizzi, Prof. Dr.
Giovanni Romagnoli, Martin Saal, Dr. Nikolai Stein, Giacomo Welsch und Daniel Zügner,
die gemeinsam mit mir an den Veröffentlichungen gearbeitet haben, die die Grundlage
dieser Arbeit darstellen, oder einen wichtigen Beitrag zu diesen Veröffentlichungen geleistet
haben. Darüber hinaus möchte ich mich bei Christiane Kleespies und Justine Grein für die
organisatorische Unterstützung und die Verpflegung bei meiner Disputation bedanken.

Während meines Dissertationsprojekts habe ich viel Unterstützung durch meine Familie
und meine Freunde erfahren und ich möchte mich hierfür von ganzem Herzen bedanken. Mein
ganz besonderer Dank gilt meinen Eltern Christina und Bernhard, ohne deren Unterstützung
diese Arbeit nicht möglich gewesen wäre.



Abstract

Traditional fashion retailers are increasingly hard-pressed to keep up with their digital
competitors. In this context, the re-invention of brick-and-mortar stores as smart retail
environments is being touted as a crucial step towards regaining a competitive edge. This
thesis describes a design-oriented research project that deals with automated product
tracking on the sales floor and presents three smart fashion store applications that are
tied to such localization information: (i) an electronic article surveillance system (EAS)
that distinguishes between theft and non-theft events, (ii) an automated checkout system
that detects customers’ purchases when they are leaving the store and associates them
with individual shopping baskets to automatically initiate payment processes, and (iii) a
smart fitting room that detects the items customers bring into individual cabins and
identifies the items they are currently most interested in to offer additional customer
services (e.g., product recommendations or omnichannel services). The implementation of
such cyberphysical systems in established retail environments is challenging, as architectural
constraints, well-established customer processes, and customer expectations regarding
privacy and convenience pose challenges to system design. To overcome these challenges,
this thesis leverages Radio Frequency Identification (RFID) technology and machine learning
techniques to address the different detection tasks. To optimally configure the systems and
draw robust conclusions regarding their economic value contribution, beyond technological
performance criteria, this thesis furthermore introduces a service operations model that
allows mapping the systems’ technical detection characteristics to business relevant metrics
such as service quality and profitability. This analytical model reveals that the same system
component for the detection of object transitions is well suited for the EAS application
but does not have the necessary high detection accuracy to be used as a component of an
automated checkout system.



Kurzzusammenfassung

Das fortschreitende Wachstum des Online-Handels setzt traditionelle Modehändler zuneh-
mend unter Druck. Als entscheidender Schritt zur Rückgewinnung von Kunden wird die
Transformation traditioneller Ladengeschäfte hin zu intelligenten Ladenumgebungen gese-
hen. Die vorliegende gestaltungsorientierte Arbeit beschäftigt sich mit der automatischen
Verfolgung von Produkten auf der Verkaufsfläche und stellt drei intelligente Anwendungen
vor, die auf derartige Informationen angewiesen sind: (i) ein Diebstahlsicherungssystem,
(ii) ein System zur Automatisierung des Kassiervorgangs und (iii) eine intelligente Um-
kleidekabine. Das erste System erkennt Produkte mit denen Kunden die Verkaufsfläche
verlassen; das zweite System ordnet diese zusätzlich den richtigen Warenkörben zu. Das
dritte System erkennt die Produkte, die ein Kunde in eine Umkleidekabine bringt und
identifiziert, basierend auf der Interaktion des Kunden mit den Produkten, an welchem Pro-
dukt er aktuell am meisten Interesse hat. Zu diesem sollen anschließend maßgeschneiderte
Dienste angeboten werden (z.B. Produktempfehlungen). Die Einbettung derartiger cyber-
physischer Systeme in bestehende Einzelhandelsumgebungen ist aufgrund architektonischer
Einschränkungen, etablierten Kundenprozessen und Kundenerwartungen hinsichtlich Daten-
schutz und Einkaufskomfort mit zahlreichen Herausforderungen verbunden. Zur Lösung der
einzelnen Erkennungsaufgaben untersucht die Arbeit den Einsatz von RFID-Technologie
und maschinellen Lernverfahren. Um die Systeme zudem optimal zu konfigurieren und
belastbare Aussagen über den Wertbeitrag dieser zu treffen, wird zudem ein analytisches
Modell vorgestellt, welches es ermöglicht die technischen Erkennungsmerkmale der Systeme
auf geschäftsrelevante Kennzahlen wie Servicequalität und Rentabilität abzubilden. Die
Bewertung der Systeme mit diesem Modell zeigt, dass die gleiche Systemkomponente zur
Erkennung von Objektübergängen als Komponente eines Diebstahlsicherungssystems geeig-
net ist, jedoch nicht die erforderliche Erkennungsgenauigkeit aufweist, um als Komponente
eines Systems zu Automatisierung des Kassiervorgangs verwendet werden zu können.
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1 Introduction

“When we talk about the Internet of Things, it’s not just putting RFID tags on some
dumb thing so we smart people know where that dumb thing is. It’s about embedding
intelligence so things become smarter and do more than they were proposed to do.”

— Nicholas Negroponte

1.1 Digital Transformation in Fashion Retail

The proliferation of information technology is fueling service innovation across different
domains (Bitner, Zeithaml, and Gremler 2010; Böhmann, Leimeister, and Möslein 2014,
2018; Medina-Borja 2015; Ostrom et al. 2015). Rust and Huang (2014) describe the service
revolution and the information revolution as “two sides of the same coin” and argue that
neither can be understood without the other. One very promising avenue for research in
this context is the digitization of the physical world—usually discussed using the notion of
the Internet of Things (IoT) (Perera et al. 2014; Wortmann and Flüchter 2015)—which
promises new ways of creating value for service providers (Manyika et al. 2015; Peters et al.
2016). As an important area of application for IoT-based service innovation, the retailing
industry forms the subject of this thesis and is one of the “hotbeds of digital services that
thrive on advances in information technology” (Böhmann, Leimeister, and Möslein 2018).

Recently, the retailing industry has been undergoing a series of profound structural
changes. For traditional brick-and-mortar retailers, the key strategic challenge has been
the rapid growth of online competitors (e.g., Amazon, ASOS, Zalando). Competitive
pressure arises not only from lower prices, but also from new digital service offerings altering
customer relationships, customer behavior, and customers’ expectations regarding service
quality (Grewal, Roggeveen, and Nordfält 2017; Ingilizian et al. 2017; Kalish and Eng 2018;
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PricewaterhouseCoopers 2015). The measures and initiatives which traditional retailers
implement to meet these challenges can be subsumed under the umbrella term ‘omnichannel
retailing’ (Brynjolfsson, Hu, and Rahman 2013; Cao and Li 2015; Gallino and Moreno 2014;
Kwon and Lennon 2009; Piotrowicz and Cuthbertson 2014; Rigby 2011; Verhoef, Kannan,
and Inman 2015). The rationale behind this concept is not to merely copy the strategies of
pure online retailers, but rather to systematically integrate online and offline channels to
provide a seamless customer experience across existing channels. In this context, Herhausen
et al. (2015) distinguish between (i) online-offline and (ii) offline-online channel integration.
The first strategy aims at providing access to and knowledge about physical stores online
(e.g., providing customers with the option of picking up or returning products ordered
online at a nearby store); the second seeks to provide access to and knowledge about the
web store in physical stores (e.g., providing customers with the option of ordering products
from the web store while in the physical store). In this context, many scholars presume that
the role of traditional stores could change and that they could become the platform for the
integration of digital and physical channels (Cao 2014; Piotrowicz and Cuthbertson 2014).
Channel integration is considered particularly promising for retailers with both physical
stores and an online channel given that they have the opportunity to integrate already
existing channels (in contrast to pure play retailers) (Herhausen et al. 2015).1

A key element of many channel integration strategies is the provision of digital instore-
services aimed at the transformation of traditional retail stores into smart stores. Examples
of such services include individual pricing, targeted advertisements, automated product
recommendations, customer self-services, automated checkout, article security, out-of-stock
prevention, and workforce optimization (Betzing, Hoang, and Becker 2018; Manyika et al.
2015). The estimated economic potential of smart stores is huge with projections exceeding
$410 billion annually by 2025 (Manyika et al. 2015). An important indication of their
future potential may also be seen in the fact that it is not only traditional retailers who
are now concerned with such ideas, but also e-commerce giants like Amazon with its
‘Amazon Go’ store (Grewal, Roggeveen, and Nordfält 2017). This new store format is
based on image recognition techniques, which provide the technological foundation for an
automated checkout system. The system promises to automatically detect products taken

1Despite the overall optimistic assessment, scholars also presents arguments against channel integration.
The main argument is that channel integration may increase research shopping, which describes consumers’
propensity to research a product in one channel (e.g., a brick-and-mortar store) and then purchase it
through another channel (Herhausen et al. 2015; Verhoef, Neslin, and Vroomen 2007).
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from or returned to shelves, keep track of the products chosen by customers, and charge
the customers’ Amazon accounts when they are leaving the store (Amazon 2018).

Being able to continuously track products and customers represents the cornerstone of
many in-store services in retail environments (Manyika et al. 2015). In terms of practical
implementation, Radio Frequency Identification (RFID) is the technology of choice for
gathering such information for many retail companies (Donaldson 2015). The technology
is particularly widespread in fashion retail, with major companies (e.g., Macy’s, Marks
& Spencer, Zara) already using it (Roberti 2016). The focus of most of the first RFID
roll-outs in this area was on the automatic detection of logistical units in upstream and
backroom processes (Hardgrave, Aloysius, and Goyal 2013). In contrast, RFID applications
on the retail sales floor are still in their infancy (Blázquez 2014). In general, the impact of
Information Technology (IT) on operational and management processes can be categorized
into (i) automational, (ii) informational, and (iii) transformational effects (Mooney, Gur-
baxani, and Kraemer 1996). While the application of RFID in upstream processes of the
supply chain mainly yields automational effects (e.g., automation of inventory management
processes) and informational effects (e.g., inventory visibility along the retail supply chain),
the ability to track garments on the retail sales floor provides various opportunities with
transformative potential (Herhausen et al. 2015; Thiesse and Buckel 2015; Verhoef, Kannan,
and Inman 2015). The corresponding economic value has already been recognized by
retailers with RFID in active use who are eager to leverage their experience with the
technology and their existing IT infrastructure to establish smart store environments and
ultimately to improve their customers’ shopping experience (Donaldson 2015).

1.2 Research Gaps

This thesis examines the use of RFID as a technological enabler for different smart fashion
store applications. The starting point of this thesis was a three-year research project on
data-driven innovations in retail environments.2 The consortium included two European
fashion retailers, an RFID system integrator, and multiple research institutes. Object

2The project was entitled ‘Sensor-Enabled Real-World Awareness for Management Information Systems’
and received funding from the European Union’s Seventh Framework Programme for research, technological
development and demonstration under grand agreement 612 052. Besides the University of Würzburg, the
consortium included Adler Modemärkte, Diffusione Tessile, ID-Solutions, Athens University of Economics
and Business, the University of Parma, and the Vienna University of Economics and Business.
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tracking in retail store environments and the transformative potential of the tracking data
was one of the central research topics in the project. This thesis was motivated by the
observation that even in supposedly simple applications (e.g., electronic article surveillance),
the base technologies available today are not suitable for providing in-store services with
the necessary data quality. As will be shown in the following, retailers are confronted
with two interrelated challenges in the practical implementation of such applications. The
first challenge refers to the dependencies between digital services and events in the real
world; the second challenge to the optimal configuration and evaluation of such applications.
These two challenges delineate the research gap addressed in this thesis.

The collection of data regarding the physical environment through the use of sensor
systems is a key component of smart systems that are based on the locations of physical
objects and the detection of interactions with them (Borgia 2014; Manyika et al. 2015).
Smart shelves require, for example, information about the garments that are on them (e.g., to
display their prices), smart fitting rooms about the garments in their cabins (e.g., to offer
helpful product recommendations), and automated checkout systems about the garments
customers want to purchase (to initiate correct payment processes). The application of
RFID on the retail sales floor is especially error-prone and challenging (Bottani et al. 2012).
This is because, in contrast to controlled processes in upstream supply chain processes,
the number and variety of simultaneously moving objects is very high. As a consequence,
tracking errors may occur in the form of objects passing through a transition area and being
accidentally categorized as not having passed (and vice versa). In the case of tagged objects
passing through the transition area and not being registered as having done so, I speak of
false-negative events. False-positive events, on the other hand, denote situations in which
tagged objects that have not passed through the transition area are classified as having
done so. Complexity is further increased by the way objects are transported (e.g., stacked,
in bags), unpredictable customer behavior, suboptimal store layouts, and lack of space.
When using RFID for product tracking in upstream processes, companies usually instruct
their employees on how to behave in the proximity of RFID readers (e.g., instructions for
holding objects or crossing an RFID gate) (see Figure 1.1 which displays a real example of
a signboard in a warehouse). Clearly, such instructions cannot be imposed on customers in
a retail store. Tracking systems must nonetheless be able to reliably distinguish between
objects moving from one area to another (e.g., objects carried out of a store) and others
(e.g., static objects within range of the Radio Frequency (RF) field).



1.2 Research Gaps 5
DISS – Test Setting Fitting Room

(a) Prohibited objects (b) Instructions for holding objects

(c) Instructions for crossing gates

Figure 1.1: Real example of a signboard that prohibits the use of certain logistical
equipment and specifies behaviors when passing through the RF field

While in-store detection systems may meet certain technological performance criteria
(e.g., the percentage of objects being detected), from an economic perspective it remains
unclear how to optimally configure them to minimize the costs incurred (i.e., costs from
false-negative and false-positive events). This is particularly important, as misclassifications
cannot be ruled out due to the limited process control on the retail sales floor. In addition,
technological performance criteria do not allow for conclusions to be drawn concerning the
economic value contribution of the detection systems. Typical evaluation procedures for
classification systems assume constant cost factors for misclassified entities (e.g., Elkan
2001; Fan et al. 1999; Pazzani et al. 1994). This is a reasonable approach for static settings
in which the costs of rework or penalties are fixed (e.g., due to contractual arrangements
or internal costing systems). In the case of an in-store detection system, however, this
evaluation is particularly difficult because error costs depend not only on individual events
(e.g., an item being moved across the sales floor area) but also on the state of the service
system in which the detection system is embedded (e.g., time of day, number of customers on
the retail sales floor). The complexity of optimizing such a system is therefore substantially
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higher than optimizing a similar system in the upstream supply chain. The connection
between the technological performance of the detection system and its optimal configuration
from a store operations perspective renders an evaluation particularly complex.

1.3 Research Objectives

This thesis seeks to design three different smart fashion store applications that are tied to
the locations of objects (i.e., garments). The services provided by the applications aim to
transform traditional stores into smart stores and help retailers to save costs or effort and
increase the attractiveness of their physical stores. The three applications are (i) Electronic
Article Surveillance (EAS), (ii) automated checkout, and (iii) smart fitting rooms:

• EAS systems are usually located at the exits of retail stores and trigger an alarm if a
customer leaves the store with unpaid items.

• Automated checkout systems promise to reduce cashier staff requirements and eliminate
waiting times at the checkout and must therefore be able to detect customers’ purchases
and initiate payment processes.

• Smart fitting rooms detect the product selections of customers and offer additional
services based on these selections (e.g., product recommendations).

In order to guarantee the necessary functionalities of these smart applications, they
must be able to reliably detect items that customers carry out of stores (to trigger alarms
or initiate payment processes) or into fitting room cabins (to offer additional services based
on these items).3 When developing a model for the reliable detection of item transitions,
the two challenges described above must be addressed. To this end, this thesis follows
a two-pronged approach (see Figure 1.2). I first seek to improve the accuracy of models
for item transition tracking beyond the state of the art (Classifier1 vs. Classifier2).
Subsequently, I fine-tune the detection models’ configuration to optimally internalize the
trade-off between the misclassification events (ConfigurationA vs. ConfigurationB).

3While reliable detection of item transitions is of utmost importance for the proposed smart applications,
there is more information that can be extracted from sensor data to improve the provided services.
Automated checkout systems should not only detect all the products customers want to purchase, but
also assign them to individual shopping baskets. Similarly, smart fitting rooms should not only detect the
products customers bring into them but also those they are currently interacting with in order to improve
service quality (e.g., to highlight recommendations for those items). Besides models for item transition
detection, this thesis also develops models that enable the extraction of such additional information.
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Figure 1.2: Interrelated challenges in the context of RFID-based tracking systems

This thesis first focuses on the question of how to improve the accuracy of classification
models for object transition detection in environments with limited process control. To
approach this question, I investigate the applicability of machine learning techniques to min-
imize the occurrence of incorrect classifications in terms of false-negative and false-positive
events. The second focus is on the question of how to optimally configure the classification
models. False-positive and false-negative classification errors are interdependent, that
is, configuring a model for fewer false-positive events typically increases the occurrence
of false-negative events and vice versa. To make these performance characteristics more
tractable, this thesis proposes a mathematical approximation of a classification model’s
detection error trade-off curve, which describes the ratio between false-positive and false-
negative events as a function of the model configuration. In a second step, this function is
integrated into an optimization model on the foundation of prior service operations research
to augment the classification model with a retail service operations model. While this thesis
presents transition detection models for all three of the above mentioned smart fashion
store applications, it focuses on two of the systems, namely EAS and automated checkout,
to showcase the applicability of the retail service operations model. The optimization
model reflects the costs associated with different types of false classifications (customer
dissatisfaction and unpaid merchandise), thus allowing for the identification of an optimal
configuration of the two smart fashion store applications.
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1.4 Structure of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 continues with a review
of literature on (i) cyberphysical systems and service systems, (ii) smart fashion store
applications, (iii) RFID-based tracking systems, and (iv) service management and retail
operations. Chapter 3 positions this thesis as design-oriented IS research and describes
the design science research methodology and evaluation method followed in the course of
the research. Chapters 4–6 describe the development of the three above mentioned smart
fashion store applications. As outlined above, the focus here is on the development of
classification models for the reliable detection of object transitions. Chapter 7 continues with
the development of the service operations model. While the assessment of the classification
models developed in Chapters 4–6 covers the accuracy of the models in isolation, this chapter
evaluates the performance of two of the smart fashion store applications embedded in retail
service environments. The thesis closes with a summary, a discussion of the contributions
to research and practice, limitations, and an outlook on future research opportunities.

1.5 Previously Published Work

This thesis incorporates research activities conducted over a time span of five years and large
parts of the research have already been published in peer-reviewed conference proceedings
or journals. This section relates the content of the thesis to these research activities.

An article describing the transition detection classification model presented in Chapter 4
and the service operations model presented in Chapter 7 is currently under review with the
European Journal of Operational Research (Hauser, Flath, and Thiesse 2019). The article is
based on a conference article I presented at the 36th International Conference on Information
Systems in Fort Worth, United States (Hauser et al. 2015). The automated checkout artifact
presented in Chapter 5 has been published in the journal Business & Information Systems
Engineering (Hauser et al. 2019). The journal article itself is based on a conference article
I presented together with Sebastian A. Günther at the 38th International Conference on
Information Systems in Seoul, South Korea (Hauser et al. 2017a). Finally, the smart
fitting room artifact presented in Chapter 6 is based on a conference article I presented
with Matthias Griebel at the 13th International Conference on Wirtschaftsinformatik in
St. Gallen, Switzerland (Hauser et al. 2017b).



2 Background

This thesis draws upon prior research on (i) cyberphysical systems, service systems, and
smart service systems; (ii) smart fashion store applications; (ii) RFID-based systems; and
(iv) service management and retail operations. The first section focuses on the concept of
cyberphysical systems, distinguishes them from service systems and smart service systems,
and presents associated design challenges discussed in the literature. The second section
presents various smart fashion store applications that are tied to the locations of physical
objects. The third section provides background information on RFID technology and
summarizes the available design knowledge concerning RFID-based tracking and interaction
detection systems. Finally, the last section reviews literature on service management
and retail operations and thus forms the basis for the analytical model for the economic
evaluation of the smart fashion store applications proposed in Chapter 7.

2.1 Cyberphysical Systems

The term ‘cyberphysical system’ refers to an intelligent system that connects the physical
and digital world using sensors (e.g., RFID, Near Field Communication (NFC), Bluetooth
Low Energy (BLE), camera systems, GPS information) and actuators (Borgia 2014). Such
systems have progressed beyond speculative visions and early pilot implementations and
create previously infeasible processes and establish new business models across various
economic sectors (Borgia 2014; Stankovic 2014). In manufacturing, for example, industrial
internet applications are increasingly turning shopfloors into smart factories (Lasi et al.
2014; Lee, Bagheri, and Kao 2015; Stein, Meller, and Flath 2018). Smart home applications
use information they learn about user behavior to automate energy management and
household chores (Manyika et al. 2015). In the automotive sector, ride-hailing platforms
(e.g., Uber, Lyft) and recently founded car makers (e.g., Tesla, Waymo) are giving established
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Original Equipment Manufacturers (OEMs) a run for their money by replacing individually
owned conventional cars with fleets of shared, autonomous vehicles (The Economist 2016).
Healthcare innovations (e.g., wearables, augmented surgical tools) promise to improve the
well-being and health outcomes of future generations (Lee and Sokolsky 2010). New retail
solutions are engendering a fundamental transformation of traditional retail stores into
smart stores “that are able to accommodate [customer] needs and wants when desired”
(Kourouthanassis and Roussos 2003).

2.1.1 Cyberphysical Systems and Service Systems

Martin, Hirt, and Kühl (2019) find that the term ‘cyberphysical system’ is often used
interchangeably with the terms ‘service system’ and ‘smart service system.’ However, while
the term ‘cyberphysical system’ is frequently used in the computer science literature, the
latter terms play a dominant role in the Information Systems (IS) community. A closer look
at the literature reveals that service systems and smart service systems are usually considered
socio-technical systems, that is, systems that involve complex interactions between humans,
machines, and the environment (Baxter and Sommerville 2011). Cyberphysical systems,
on the other hand, are usually characterized as technical systems that can be part of a
socio-technical system and thus of a smart system or smart service system.

Service systems describe the organizational setting in which services are created, analo-
gous to production systems in manufacturing companies (Maglio et al. 2009). The National
Science Foundation (2014) describes them as human-centered, with interactions on the
physical or virtual level constituting an essential part of a service that ultimately aims to
generate direct or indirect benefits for the parties involved. While the traditional service
system construct does not make any statements about the use of technology because of its
level of abstraction, a growing number of authors have recently discussed the concept of
smart service systems and their incorporation of information technologies (e.g., Beverungen
et al. 2017; Frost and Lyons 2017; Medina-Borja 2015). In this context, smartness refers to a
system’s capability for learning, dynamic adaptation, and decision-making, all of which are
made possible through the incorporation of technologies for sensing, actuation, coordination,
communication, and control (National Science Foundation 2014). Smart service systems
can thus be regarded as a special kind of service system. Figure 2.1 depicts the discussed
interrelations among the three concepts and their connections to socio-technical systems.
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Figure 2.1: Interrelations among service systems, smart service systems, and cyberphysical
systems (based on Martin, Hirt, and Kühl (2019))

Beverungen et al. (2017) describe smart service systems as the entirety of service
providers, service consumers, and smart products (see Figure 2.2). The latter act as
‘boundary objects’ at the interface between service providers and consumers and facilitate the
transfer of cross-boundary information and knowledge. Smart service systems are organized
around one or more products whose smartness may be attributed to various technological
features (e.g., unique identification, real-time location tracking, sensor technology).1 Based
on the definition of smart products put forth by Porter and Heppelmann (2014), these
features enable four different functions to be performed by or in relation to the smart product,
all of which differentiate it from traditional products: (i) monitoring of its environment
at the front stage; (ii) remote optimization of the service system using the collected data;
(iii) remote control of the smart product; and (iv) the ability of the product to make
autonomous decisions. In this context, the term ‘front stage’ denotes the set of possible
interactions between the product and the service consumers, whereas the ‘back stage’
encompasses all information flows between the product and the service provider.

2.1.2 Design Challenges

Questions regarding the design of (i) cyberphysical systems and (ii) service systems have
sparked numerous discussions in the research community (e.g., Böhmann, Leimeister, and
Möslein 2014; Ostrom et al. 2010, 2015). The design of cyberphysical systems is considered

1Beverungen et al. (2017) argue that smart products need not necessarily fulfill all properties described
in the literature (see Beverungen et al. (2017) for a complete list of technological features). Smart garments
(e.g., RFID-tagged garments), for example, do not possess actuators or computational capabilities but can
still function as smart products.
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Figure 2.2: Conceptualization of smart service systems (based on Beverungen et al. (2017))

challenging because they have to bridge the boundaries of tangible and intangible resources
(Brandt, Feuerriegel, and Neumann 2017; Böhmann, Leimeister, and Möslein 2014) and need
to be embedded seamlessly into physical environments (Weiser 1999). The integration of
these systems into existing retail environments is considered particularly challenging because
these infrastructures are characterized by a high prevalence of immutable components, both
physical (e.g., limited store space, architectural constraints) and non-physical (i.e., customers
have a clear expectation of how a retail store functions and are unlikely to accept drastic
changes) (Kourouthanassis and Roussos 2003).

The design of service systems, on the other hand, is considered challenging because
(i) system design must account for the uncertainty that arises from the unpredictability
of human behavior (Medina-Borja 2015) and (ii) new technologies have to be leveraged
to improve service systems (Ostrom et al. 2015). In this context, Ostrom et al. (2015)
call for more research on the issue of how the “IoT and smart services can enhance the
customer experience and influence relationships between customers and service providers.”
Similarly, Medina-Borja (2015) finds that the study of services “has been constrained
by existing services enabled by the information technology that is, rather than by the
information technology that could be” and that especially advances in the fields of sensing,
actuating, and computational and communication technologies could provide ground-
breaking contributions to the ongoing development of service systems. An understanding of
technology and consideration of the relationship between technology and human behavior
must therefore be at the center of the corresponding design activities.
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2.2 Smart Fashion Store Applications

Brick-and-mortar retailers are facing increasing competition from their online counterparts
(Grewal, Roggeveen, and Nordfält 2017). A recent survey showed that 92 % of retail
businesses consider digital innovation as vital or very important with participants referring
to it as “something retailers can’t afford not to do” or “one of the most powerful tools
[they] have in being able to learn about what [their] customers need” (Morrell 2017).
Examples of such digital retail innovations include personal shopping assistants, smart
kiosks, automated checkout systems, and smart fitting rooms (Blázquez 2014; Gregory
2015; Herhausen et al. 2015; Manyika et al. 2015; Parada et al. 2015; Senecal and Nantel
2004; Wong et al. 2012). They allow retailers to increase efficiency (e.g., better process
control, improved inventory transparency), offer services usually associated with online
retailers (e.g., recommendation services, contextualized information) and provide extensive
opportunities for the integration of retail channels (e.g., purchasing products that are
currently unavailable from the online store while in the smart fitting room). Consequently,
such systems can increase the attractiveness of retail stores and at the same time increase
their cost efficiency (Gregory 2015; Manyika et al. 2015). While the technological medium
for the delivery of digital services in physical stores has so far been primarily the customer’s
smartphone (Venkatesh et al. 2017), many of the aforementioned services also require
the store to be equipped with hardware and software components that support both the
collection of data and new forms of interaction with customers. The implementation of a
smart fitting room, for example, requires not only easy-to-use touchscreens but also an
infrastructure for the automatic identification of garments in real time.

Some fashion retailers have recently started deploying such cyberphysical systems in
their physical stores. The systems can roughly be categorized as (i) applications that offer
utilitarian benefits and (ii) applications that save costs or effort (Willems et al. 2017).
Applications that fall into the first category are smart kiosks, the aforementioned smart
fitting rooms, and smart shelves. J. C. Penney and Louis Vuitton, for example, have installed
smart kiosks that allow customers to browse product offerings or order products that are
not available in the store (Herhausen et al. 2015; Shankar et al. 2011). Similar systems are
also integral components of Amazon’s recently opened ‘Amazon Books’ stores. In these
stores, customers can obtain book prices, additional information (e.g., online reviews from
the Amazon online store) and access to additional services (e.g., home delivery of products)
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by scanning books’ barcodes with their smartphone or at an in-store terminal (Amazon
2018; Thottam 2016). Rebecca Minkoff, Nordstrom, Ralph Lauren, and Bloomingdale’s, on
the other hand, have installed smart fitting rooms in their retail stores. Such fitting rooms
are not just cabins for trying on selected garments. Instead, they offer customers additional
services on a screen within the cabin based on their product selection. One example of a
smart fitting room service is product recommendations, which facilitate cross- and up-selling
and can lead to substantial sales increases for retailers (Senecal and Nantel 2004; Wong et al.
2012). More importantly, smart fitting rooms enable retailers to provide customers with a
seamless shopping experience as they offer various possibilities to bridge the gap between
the different retail channels by, for example, offering customers the option of purchasing
products that are currently unavailable in the store from the online store while in the smart
fitting room. Finally, Parada et al. (2015) introduced an interaction detection system that
leverages RFID technology for the detection of RFID-tagged books customers remove from
shelves. Such systems offer similar opportunities for the development of novel services as
the applications discussed above. Retailers could, for example, use information indicating
which books customers remove from shelves (presumably because they are interested in
them) to provide them with additional information on these books.

Automated checkout systems are a promising example of an application that falls into
the second category of cyberphysical systems in fashion retail (i.e., applications that save
costs or effort). Kourouthanassis and Roussos (2003) present an automated checkout
system that relies on shopping carts equipped with RFID readers that automatically detect
objects placed in the carts. As customers have their own RFID-equipped shopping carts
during a shopping trip, the assignment of products to customers is a somewhat trivial task;
customers are charged for the products that the RFID reader of their shopping cart has
detected. A system which has recently received enormous attention in the media is the
so-called ‘Amazon Go’ store (Grewal, Roggeveen, and Nordfält 2017). The system leverages
camera installations and image recognition techniques and promises to automatically detect
products taken from or returned to shelves, keep track of the products chosen by customers
in virtual shopping carts, and charge the customers’ Amazon accounts after they leave
the store. In addition, Amazon promises that all customers need to use their system is
an Amazon account, a supported smartphone, and the Amazon Go app to register their
entrance into the store (Amazon 2018). The corresponding benefits include both, personnel
cost reductions for the retailer as well as the complete elimination of waiting times.
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2.3 RFID-based Systems

In terms of practical implementation of cyberphysical systems in fashion retail environments,
RFID is the technology of choice for many retail companies (Donaldson 2015).2 Fashion
retailers and suppliers first adopted RFID at product case-level mainly for inventory
management purposes (Hardgrave, Aloysius, and Goyal 2013). Item-level tagging has,
however, moved out of the research environment and into mainstream commerce (Barthel,
Hudson-Smith, and de Jode 2014). Today, major fashion retailers such as Kohl’s, Macy’s,
Marks & Spencer, and Zara have already implemented item-level RFID tagging of products.
The main reason retailers implemented item-level RFID tagging in the first place was to
improve their inventory management (Hardgrave, Aloysius, and Goyal 2013). Item-level
tagging enables complete supply chain visibility, due to automatic identification, and the
seamless tracking of goods as they move from the suppliers to the customers. This allows
one to, for example, detect the causes of shrinkage, monitor the performance of logistical
processes, and analyze the movements of individual items in stores. Retailers were thus
mainly interested in automational effects (i.e., process automation) and informational
effects (i.e., an improvement in at least one data quality aspect). However, fine-granular
information stemming from RFID reads also provides opportunities for various data-driven
applications to support management decisions and enable novel customer services.

In contrast to barcode scanning, RFID tags not only enable the automatic detection
of the number of items belonging to a specific product category but also permit the
identification of each specific item (Finkenzeller 2015; Want 2006). Moreover, RFID-based
object identification does not require a direct line of sight between the tag and the reader
device, allows for the simultaneous bulk detection of multiple objects, and is very robust
even under harsh industrial conditions. In addition, certain RFID systems allow for optional
data storage within the tag or sensor-based monitoring of various environmental parameters.
Camera systems are a possible alternative to RFID technology (Parlak and Marsic 2013).

2RFID technology is not only used in retail, but also in many other industries (Zhu, Mukhopadhyay,
and Kurata 2012). Examples include the food industry, manufacturing, and healthcare: In the food
industry, the technology is used to identify and track animals and to trace the history and location of
products to guarantee their quality (Kumar et al. 2009; Ruiz-Garcia and Lunadei 2011). In manufacturing,
RFID enables the tracking of materials and components in order to detect disturbances and improve
decision-making (Zhong et al. 2017). In healthcare, the technology allows users (e.g., hospital staff) to
monitor patients, increase asset utilization through real-time tracking, and improve supply-chain efficiency
(Zhu, Mukhopadhyay, and Kurata 2012).
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However, they cannot be used in fashion stores because (i) it is difficult (and in some cases
even impossible) for cameras to distinguish between garments of different sizes and similar
garments from different brands and (ii) such systems raise privacy concerns and their usage
is thus problematic in key areas of fashion stores (Litfin and Wolfram 2006).

2.3.1 RFID Technology

RFID systems store data on electronic data carriers commonly referred to as RFID tags.
These tags are attached to the objects to be identified. In addition to the tags, an RFID
system comprises (i) RFID readers (including antennas) that can both read and write data
to the tags and (ii) a data processing system that supports reading and writing functions
and processes the sensor data (see Figure 2.3) (Lampe, Flörkemeier, and Haller 2005).

Cyberphysical systems
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Integrated circuit (IC)

Encasement

Cyberphysical systems

RFID reader 

(incl. antennas)

Data processing 

system
RFID tag

Power

Data

Figure 2.3: Components of an RFID system

RFID tags can be either passive or active (Want 2006). While passive tags use the
radio energy transmitted by the reader, active tags have an on-board battery to power
their internal circuits (Finkenzeller 2015). Passive tags are generally cheaper than active
tags and the component of choice for companies that want to track products along the
supply chain (Zhu, Mukhopadhyay, and Kurata 2012). The components of a passive RFID
tag are (i) an integrated circuit (also referred to as a chip or a microchip), (ii) antennas
that absorb energy propagated by a reader antenna’s RF field, and (iii) the encasement
(paper or synthetic label or hard case) (see Figure 2.4). The number that uniquely identifies
an RFID-tagged object is the Electronic Product Code (EPC), which is encoded into the
chip of every RFID tag. An EPC comprises the company code, the product code, and the
unique serial number of each object (Finkenzeller 2015).

Passive tags can operate in Low Frequency (LF) (30-300 kHz), High Frequency (HF)
(3-30 MHz), and Ultra High Frequency (UHF) (0.3-3 GHz) bands (Finkenzeller 2015). The
LF band offers a short read range and a slower read speed than the higher frequencies. The
higher the frequency, however, the more similar the behaviour of electromagnetic waves
becomes to visible light (Kern 2007). This means that (i) reflections increase (which may
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significantly extend the read range of RFID systems) and (ii) losses occur when certain
media (e.g., water) are penetrated. Attenuation effects can already be observed in the HF
band range and even more so in the UHF band range.

In the fashion retail industry, passive UHF tags are used with frequencies varying
from region to region due to different regulations. The main frequencies are 865-868 MHz
(Europe) and 902-928 MHz (USA) (Finkenzeller 2015). Passive UHF tags are easier to
manufacture than passive LF and HF tags (and therefore cheaper) and typically offer
ranges of up to three meters (Finkenzeller 2015). However, the read range achieved in
practice depends on many aspects such as the size and quality of the RFID antennas and
the sensitivity and transmission power of the RFID reader. In fashion stores, (i) spatial
conditions such as the presence of walls and other obstacles and (ii) metal foils or metal
ink in goods or packages significantly influences the maximum read range between RFID
readers and tags (Keller, Thiesse, and Fleisch 2014a; Lampe, Flörkemeier, and Haller 2005).

2.3.2 RFID Data Analytics

To transform traditional stores into smart stores, retailers must be enabled to gather
information about sales floor processes in real time. RFID technology is a prime candidate
to gather this information given its unique features for the identification of physical goods.
The information needed for the transformation of traditional stores can be categorized as
(i) information about the movements of products and (ii) information about customers’
interactions with products. While information in the first category answers the question of
where RFID-tagged products currently are, information of the second category is concerned
with the question of what is currently being done with an RFID-tagged product.
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RFID-based Tracking Systems

RFID-based tracking systems may be categorized as (i) systems that aim at determining
physical item coordinates (i.e., indoor localization) and (ii) systems that aim at detecting
item transitions between areas of interest (e.g., front- and backstore). Indoor environments
exhibit severe multi-path effects and low probability of line-of-sight between the tagged
objects and the RFID antennas (Motamedi, Soltani, and Hammad 2013). Despite these
challenges, techniques for the indoor localization of tagged objects have attracted consid-
erable attention in recent years (Papapostolou and Chaouchi 2011). RFID-based indoor
localization typically relies on three techniques: (i) triangulation, (ii) proximity estimation,
and (iii) scene analysis (Liu et al. 2007). The first technique uses distance measurements
between reference points; the second relies on the measurement of the nearness of a set of
neighboring points with known positions. The third technique consists of an offline training
and an online phase. The objective of the offline phase is to analyze relationships between
signal strength measurements and positions within the environment where the system is
deployed. Then, during the online phase, locations of tagged objects are estimated based
on the previously collected data. While many authors compare new measurements to the
closest a priori measurement in a database (offline phase) (e.g., Hoang et al. 2013; Yuanfeng
et al. 2016), machine learning techniques may be applied as well. Such models allow for the
formulation of the localization problem as (i) a regression or (ii) a classification problem
(Brunato and Battiti 2005). In the first case, the physical coordinates of tagged objects are
learned during the offline and estimated during the online phase. The formulation of the
classification problem, on the other hand, requires dividing the scene into selected areas.
During the offline phase, the machine learning model learns the radio signal behavior within
these areas. Then, during the subsequent online phase, the raw data streams of tagged
objects are matched to the areas with the closest radio signal characteristics.

The prediction of physical coordinates is often not necessary for the development of
in-store applications (Goller and Brandner 2011a; Uckelmann and Romagnoli 2016). Instead,
many in-store applications depend on the ability of a system to (i) reliably distinguish
between RFID-tagged objects within adjacent areas and (ii) detect transitions between
these areas in a timely fashion. Such RFID-based systems are, for example, gates in stores
that detect transitions between the sales floor and backroom, EAS systems that detect
items carried out of a store, and smart fitting rooms that detect items customers bring
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into individual cabins. Such systems must reliably distinguish between tagged objects that
pass through a transition area and others (e.g., static objects near the RFID reader). False-
negative events denote situations in which tagged objects passing through the transition
area are not registered as having done so; false-positive events are situations in which
tagged objects that do not pass through the transition area are classified as having done
so. In practice, the decisive factor in distinguishing between objects that pass through a
transition area and others is the Received Signal Strength Indicator (RSSI), a measure of
the strength of a signal received from a tagged object. Signals with RSSI values above
a certain threshold lead to tagged objects being classified as having moved through the
transition area. A typical countermeasure to avoid false-positive events is to reduce the
RSSI threshold value (Bottani et al. 2012). However, this usually leads to an increase of
false-negative events, which makes the determination of the threshold very difficult.

Approaches addressing this problem can be roughly categorized into (i) hardware-based
and (ii) software-based solutions. The first group comprises, for example, shielding measures,
antenna design improvements, and additional hardware—like multiple RFID tags per object
or additional RFID antennas—and is usually associated with high costs (Ma, Wang, and
Wang 2018). Approaches of the second variety apply data analytics techniques to distinguish
between objects that pass through a transition area and others. Early contributions in
this area considered threshold-based algorithms that use the frequency of tag detections
in a sliding-window heuristic (Bai, Wang, and Liu 2006; Brusey et al. 2003; Massawe,
Kinyua, and Vermaak 2012). Here, the number of times a particular tag is detected by
the reader within a fixed time interval determines whether it is classified as a valid tag
detection. The underlying assumption is that undesired reads occur only sporadically,
whereas tags that correctly pass the RF field are detected several times. Accordingly, a
threshold value regarding the number of detections per time unit must be determined for
each RFID installation. Extensions of such algorithms were presented by Fishkin et al.
(2004) and Ju Tu and Piramuthu (2008), who propose the use of more than one antenna.
The authors argue that valid passages through the RF field have a higher probability of
being detected by more than one antenna. The total number of detections per tag should
thus be complemented by additional information regarding the number of antennas that
detect a particular tag. Keller et al. (2010) include RSSI measurements in the data analysis.
The authors utilize RFID data gathered in a distribution center equipped with more than 40
RFID portals in the context of pallets being loaded sequentially into a truck and compare
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the value of thresholds based on several timestamp-, antenna-, and RSSI-based indicators
for the distinction of static and moving RFID-tagged objects. The results indicate that
RSSI information provides the best means for distinguishing between RFID-tagged objects.

An alternative approach is the application of classification models from data mining
research to distinguish between items that are moved through an RFID gate and others
(see Table 2.1). To this end, RFID data streams need to be aggregated to so-called features
(e.g., the average signal strength measured during a gathering cycle). These features encode
information regarding observed real-world events. In a second step, these features are used
for the training of classification models (e.g., logistic regression, decision trees, support
vector machines, or artificial neural networks). These models facilitate the automatic
mapping of sequences of RFID data streams to classification events.

Table 2.1: Overview of prior research studies leveraging data mining techniques to detect
transitions of RFID-tagged items

Study Environment Objective
Keller et al. (2012) Distribution center Classification between

static and moving tags
Keller, Thiesse, and Fleisch (2014a) Distribution center Classification between

static and moving tags
Ma, Wang, and Wang (2018) Production environment Classification between

static and moving tags
Buffi et al. (2017) Office building Classification between

different moving tags

Keller et al. (2012) use decision trees and an empirical data set that was again collected
in a distribution center and investigate the impact of different RFID portal configurations
(i.e., portals with different numbers of antennas and different antenna orientations) on
classification performance. In another study, Keller, Thiesse, and Fleisch (2014a) investigate
the applicability of different classification models to distinguish between pallets that are
loaded onto trucks and those that are not. In a more recent study, Ma, Wang, and Wang
(2018) consider a production environment and aim at detecting tagged keychains carried
through an RFID gate by factory workers. In contrast to earlier studies, they consider
phase values in addition to RSSI measurements in the development of their predictors
and show that this information is indeed useful when distinguishing between static and
moved RFID-tagged objects. While the studies presented so far describe the distinction
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between static and moved RFID-tagged objects as the main problem to solve in regard
to the respective classification problem, Buffi et al. (2017) investigate the applicability of
classification models to the task of distinguishing between different moving RFID-tagged
objects. The authors consider a transition area in an office building and aim at distinguishing
between RFID-tagged objects that are moved through an RFID gate—considering incoming
as well as outgoing tag events—and RFID-tagged objects that are carried in close proximity
to the same gate without passing through it. Interestingly, the authors find that these cases
cannot be distinguished based on the average signal strength measured during a gathering
cycle which represents a feature with high predictive power in the previously mentioned
studies. Instead, Buffi et al. (2017) propose partitioning the sequences of the data stream
into a certain number of windows, computing the mean values of the signal strengths for
each of these windows, and then using these values as input to the classification models.

Additional approaches presented in the literature leverage (i) dynamic time warping
and (ii) hidden Markov models for the distinction between items that are moved through
an RFID gate and those that are not. Keller, Thiesse, and Fleisch (2014b) use dynamic
time warping, a technique used for speech recognition, for the analysis of RFID time series.
The empirical dataset used for evaluation purposes was again collected in a distribution
center (see Keller, Thiesse, and Fleisch 2014a; Keller et al. 2010, 2012). The model achieves
a detection accuracy that surpasses prior results for the specific case of data sets with
exactly one valid tag (i.e., all other simultaneous tag detections are misreads). In contrast,
Goller and Brandner (2011a,b, 2012) present probabilistic approaches based on hidden
Markov models to detect objects moved through RFID gates. The resulting tag detection
algorithms show high classification accuracy for an automated transportation process using
conveyor belts under laboratory conditions.

Prior research on RFID-based tracking systems usually assesses tracking performance
using standard performance metrics for predictive power in terms of accuracy, that is, the
number of correct classifications relative to the total size of the dataset. However, the
focus on accuracy neglects the economic impact of misclassifications and the inherent trade-
off between different misclassification events. Regarding predictive models for transition
detection, this gap also implies that a major degree-of-freedom of these models, the freedom
of fine-tuning detection sensitivity, is not used. Unlike hardware-based solutions with
hard-wired detection sensitivity, data-driven approaches can be dynamically adjusted to
favor either false-positive or false-negative events.
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RFID-based Interaction Detection Systems

Several scholars have focused on systems that are based on the detection of interactions
with RFID-tagged items. While most research focuses on the detection of object motion
(e.g., Parada et al. 2015; Parlak and Marsic 2013), some articles propose systems that are
able to distinguish between several interaction types (e.g., Li, Ye, and Sample 2015; Yao
et al. 2015). In line with Parlak and Marsic (2013), this thesis defines object motion as
any human interaction that causes a change in an object’s orientation and location, as
well as occlusions with hand or body. In their study, Parlak and Marsic (2013) extract
features from low-level RFID data to detect objects that are being used during trauma
resuscitations in hospitals. Li, Ye, and Sample (2015), on the other hand, demonstrate that
RFID data can be used to differentiate between four interaction types: ‘translation’ (i.e.,
movements of RFID-tagged objects of more than ten centimeters), ‘rotation’ (i.e., rotation
around one of the RFID-tagged objects’ axes), ‘swipe touch’ (i.e., swiping a finger across
the RFID tag), and ‘cover touch’ (i.e., touching more than half of an RFID tag).

2.4 Retail Service Management

A proper understanding and modeling of the retail system dynamics is key to the successful
design and configuration of smart retail solutions. Such models can help prioritize certain
design options and provide a natural approach for progressing beyond merely technological
evaluation scenarios. The importance of comprehensive economic evaluation of new techno-
logical solutions has been underlined in prior research. Ostrom et al. (2015), for example,
find that “measuring and optimizing service performance and impact” represents one of
the most important research priorities, with one participant in a roundtable discussion
describing the tools used today as “simply too blunt.” Lee and Özer (2007), on the other
hand, note that industry reports on the value of RFID-based systems are often vague in
describing how the promised benefits can be achieved. The authors ascribe the resulting
“credibility gap” primarily to a general lack of models and techniques for the assessment of
quantifiable economic benefits. Furthermore, they argue that models and techniques from
operations management research lend themselves to the quantification of RFID benefits
and provide a way to show and understand what RFID can actually achieve in the future.

One important theme in the academic literature is the relationship between service
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productivity and quality (Parasuraman 2010). Exploring factors that influence quality and
productivity performance in service capacity management, Armistead and Clark (1994)
conclude that capacity and quality management are fundamentally intertwined and note
that “operations managers in a service organization will either succeed or fail in the process
of balancing quality of service and resource management [. . . ] depending on their skill in
managing capacity to match demand.” Furthermore, they identify “coping capabilities”
as a key asset of flexible and successful service providers. Similarly, Oliva and Sterman
(2001) find that temporary imbalances between service capacity and demand can lead to the
permanent erosion of service standards and revenues. A case in point is that of congestion
effects as exemplified by queuing. Davis and Vollmann (1990) explore this fundamental
question in service quality and conceptualize an integrative framework. They highlight the
value of queuing models from operations management to quantify waiting time effects. This
line of thought is adapted by Ho and Zheng (2004), who leverage a queuing model with
endogenous customer choice to formally analyze trade-offs in congestion-sensitive service
environments. Their model simultaneously captures the impact of process variability on
quality and the impact of congestion on customer choice. They show that service quality
management needs to account for both congestion effects and customer sensitivity. Lu
et al. (2013) empirically investigate the effect of in-store queues using information on people
waiting at a deli counter and point-of-sale data. They find that waiting in a queue has a
non-linear effect on purchases and that queue length has a greater impact than expected wait
time on purchase decisions. Building on a model motivated by queuing theory and using
a large empirical data set from multiple retail stores, Mani, Kesavan, and Swaminathan
(2015) show that reducing understaffing may lead to significant increases in sales and profits.
In particular, they underline the importance of acting upon store traffic information to
guide staffing decisions. Considering service capacity as a given, Kesavan, Deshpande, and
Lee (2014) also rely on different queuing models and use point-of-sale and staffing data
to show that congestion management in fashion stores is critical to store performance.
Specifically, they identify and explain an inverted U-shape relationship between service
system traffic and sales. Based on this observation, the authors make recommendations
for active management of staff assignments, with a particular focus on conversion-relevant
areas such as fitting rooms.



3 Methodology

Questions relating to the design of information systems have always been an important focus
in IS research (Baskerville et al. 2018; Peffers, Tuunanen, and Niehaves 2018). Nevertheless,
for a long time researchers struggled to publish designed artifacts in leading IS journals (in
particular the Senior Scholars’ Basket of Eight journals) (Peffers, Tuunanen, and Niehaves
2018).1 The emergence of Design Science Research (DSR) as a mainstream research
paradigm in IS research is often associated with the Hevner et al. (2004) MIS Quarterly
article in which the authors provide guidelines for understanding, executing, and evaluating
design science research (Gregor and Hevner 2013). Since then many design science articles
have been published in leading IS journals. However, most of them have not focused
on the actual design of artifacts but rather on “conceptual, theoretical, and guidance
contributions to help researchers conduct, present, and publish design science endeavours”
(Peffers, Tuunanen, and Niehaves 2018). Against this backdrop, leading scholars in the IS
community have called for more research on the actual design of novel and useful artifacts
(e.g., Baskerville et al. 2018; Peffers, Tuunanen, and Niehaves 2018). The authors emphasize
that the design of such artifacts is an important contribution to the design science knowledge
base and that articles focusing on artifact design do not necessarily also have to present a
fully developed design theory. In this context, Baskerville et al. (2018) refer to the seminal
article by Gregor and Hevner (2013), arguing that design science contributions “could be
justified in terms of advances in knowledge in either a problem or a solution domain [and
that] design theory development may occur over time and multiple projects, with small
steps and revisions on an ongoing basis.”

1Senior Scholars’ Basket of Eight journals are MIS Quarterly, Information Systems Research, the Journal
of Management Information Systems, the European Journal of Information Systems, the Information Systems
Journal, the Journal of the Association for Information Systems, the Journal of Information Technology,
and the Journal of Strategic Information Systems. These journals are endorsed by the Association for
Information Systems as high quality journals within the IS discipline (Levy and Ellis 2006).
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3.1 Design Science Research Genres

Peffers, Tuunanen, and Niehaves (2018) find that the great number of guidelines, rules, and
frameworks put forward by IS scholars also poses challenges for design science researchers
because they make it difficult to conduct DSR projects. The authors consider part of the
problem that DSR is still an undifferentiated research paradigm that “leaves reviewers and
editors without concepts for how to differentiate among submissions.” As a result, many
submissions are rejected because reviewers follow one of the many published guidelines and
use them indiscriminately as the basis for criticism of DSR submissions (Peffers, Tuunanen,
and Niehaves 2018). To address this problem, the authors propose five DSR genres that
are grounded in one or more founding papers, define their contributions differently (and
evaluate them accordingly), have their own expectations for methodology, and their own
presentation style. The objective here is that “researchers who work within a genre will, to
some extent, avoid facing reviewer criticism based on premises that deny the legitimacy of
work from the genre.” The five genres put forward by the authors are (i) IS design theory,
(ii) design science research methodology, (iii) design-oriented IS research, (iv) explanatory
design theory, and (v) action design research.

The present thesis is positioned as design-oriented IS research, a form of DSR which
puts special emphasis on utility for practice and is particularly popular within the German-
speaking IS community. Important founding papers for this form of DSR are Winter
(2008) and Österle et al. (2011). The latter article is a “memorandum on design-oriented
information systems research” which was undersigned by 111 full professors from the
community who declared that they “fully agree with this memorandum and make efforts to
effectively promote the viewpoints and principles stated therein.” The memorandum defines
four basic principles that design-oriented IS research must comply with: (i) abstraction,
(ii) originality, (iii) justification, and (iv) benefit. The first principle states that each artifact
must be applicable to a class of problems, the second that each artifact must substantially
contribute to the advancement of the body of knowledge, the third that each artifact must
be justified in a comprehensive manner and must allow for its validation, and the fourth
that each artifact must yield benefit for the respective stakeholder group (e.g., companies,
managers, employees, taxpayers, students) (Österle et al. 2011).
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3.2 Research Process and Evaluation Method

As regards the procedure for designing the artifacts, this thesis follows a well-established
process model. Since the proposed solutions are based on machine learning methods, I
rely on the Cross-Industry Standard Process for Data Mining (CRISP-DM) (Chapman
et al. 2000), the most popular process model for data mining projects. The model describes
six phases of a data mining project, their respective tasks, and the relationships between
these tasks. The phases are (i) business understanding, (ii) data understanding, (iii) data
preparation, (iv) modeling, (v) evaluation, and (vi) deployment. The focus of the first
phase is to understand the project objectives and requirements from a business perspective.
Here, the most important goal is to determine the data mining objectives. The tasks of
the second phase are to collect data, to familiarize oneself with available data, to identify
possible problems with regard to data quality, and to gain first insights into the data. The
third phase covers all the activities needed to construct the final data set that will then be
fed into the data mining models (e.g., data selection, feature engineering). The objectives
of the modeling phase are to select different modeling techniques, generate a procedure to
test model quality (e.g., separate the dataset into train and test sets), build the models (in
particular to determine optimal hyperparameters), and assess model quality. While the
modeling phase deals with performance indicators such as the accuracy of the models, the
evaluation phase assesses the degree to which they meet the business objectives. Finally,
the last phase takes the evaluation results and determines a strategy for model deployment.

Though the origins of CRISP-DM lie outside the IS community, the similarities between
the model and the DSR approach are remarkably close. Figure 3.1 compares the CRISP-DM
phases with the DSR methodology process model introduced by Peffers et al. (2007), an
oft-cited example of a methodology for carrying out DSR research. The methodology
is based on DSR principles—in particular the principles put forward by Hevner et al.
(2004)—and comprises six phases (in Peffers et al. (2007) referred to as ‘activities’) of a
design science project, their respective tasks, and the relationships between these tasks. The
objectives of the six phases are to (i) identify and motivate the research problem, (ii) define
the objectives for a solution, (iii) design and develop the artifact, (iv) demonstrate its use or
to solve one or more instances of the problem, (v) measure how well the artifact contributes
to the solution of the research problem, and (vi) communicate the problem and the solution
to appropriate audiences.
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Figure 3.1: Comparison of the project phases in CRISP-DM (Chapman et al. 2000) and
the DSR methodology process model put forward by Peffers et al. (2007)

As the graphical depiction of the two process models indicates, some project activities
are elaborated in more detail in the one model than in the other. For example, due to its
focus on data mining, CRISP-DM puts more emphasis on the design and development phase,
which is divided into the three distinct sub-phases of data understanding, data preparation,
and modeling. On the other hand, while CRISP-DM only provides for a single evaluation
phase, the model of Peffers et al. (2007) distinguishes between demonstration and evaluation.
Whereas the former activity demonstrates the use of the artifact in solving a problem as such,
the latter evaluates “how well the artifact supports a solution to a problem” which “involves
comparing the objectives of a solution to actual observed results from use of the artifact
in the demonstration” (Peffers et al. 2007). Furthermore, there are also minor differences
regarding the possible process iterations. In particular, CRISP-DM explicitly provides for a



3.2 Research Process and Evaluation Method 28

jump back from the design and development phase into the business understanding phase.2

Overall, however, I consider the congruence between the two process models to be so high
that CRISP-DM appears acceptable as a more specialized, yet complete, design science
research methodology. The only substantial difference may be seen in the fact that, as
a research method, the model by Peffers et al. (2007) ends with a communication phase
(i.e., scholarly and professional publications), while the CRISP-DM cycle terminates with
the deployment of a solution in practice.

Following the framework for evaluation in DSR proposed by Venable, Pries-Heje, and
Baskerville (2016), the evaluation method followed in this thesis belongs to the class of
artificial ex post evaluations. The ex post evaluation serves a summative purpose (Sein et al.
2011), that is, the thesis evaluates the artifact components after they have been created to
support the decision of selecting them for an application. This objective may be achieved
either by artificial evaluation (e.g., experiments, simulation, mathematical proofs) or by
evaluation in a naturalistic setting. While at first glance a naturalistic evaluation seems
clearly more appropriate to assess the effectiveness of an IT artifact, it is also associated
with high costs and the risk of misinterpreting results due to confounding variables (Venable,
Pries-Heje, and Baskerville 2012). In the specific case at hand, a complete naturalistic
evaluation even seems practically impossible, since the involvement of real shoplifters in the
EAS scenario, for example, is not feasible for obvious reasons. The thesis therefore relies on
an artificial evaluation method using experimental data collected in the lab under real-world
conditions in combination with an analytical model, which in turn offers advantages in the
form of better repeatability and falsifiability (Gummesson 1998).

2Chapman et al. (2000) note that moving back and forth between the six different phases is always
possible and that the arrows displayed in the CRISP-DM reference model only indicate the most important
and frequent dependencies between the process phases.



4 Design of Electronic Article
Surveillance Systems1

The first smart fashion store application this thesis is concerned with is an electronic article
surveillance system that leverages RFID technology and machine learning techniques to
reliably detect RFID-tagged items leaving the shopping floor area so that an alarm can be
triggered in case a customer leaves the store with items that have not been paid for.

Inventory shrinkage is a major issue worldwide (Bamfield 2011; Bottani et al. 2012;
Fan et al. 2014). In 2010, total inventory shrinkage in retail amounted to more than 100
billion USD globally, which is about 1.36 % of global retail sales (Bamfield 2011). The
largest cause of shrinkage is customer theft with 42.4 % of total shrinkage, followed by
employee theft (35.3 %), administrative failure (16.9 %) and supplier/vendor fraud (5.4 %)
(Bamfield 2011). The negative consequences of theft are not limited to the value of stolen
items but rather include store security expenses, higher prices for consumer goods, and lost
sales taxes (Deyle 2015). Moreover, like any other form of shrinkage, theft may lead to
inventory inaccuracies and thus to stock-outs and inefficient store replenishment processes
(Kang and Gershwin 2005). The main approach to combat theft in retail stores is the
introduction of EAS. These systems trigger an alarm if a customer leaves the store with
unpaid items. Yet while protecting from theft, EAS systems often give rise to false alarms
which “create collateral damage such as store disruption and customer irritation” (Hayes
and Blackwood 2006). According to Dawson (1993), they may result in lowered goodwill,
negative word-of-mouth, the entire loss of a future stream of revenue, and possibly costs
from legal actions brought by patrons. The same author summarizes that EAS “provides
a good example of the unintended pitfalls of poorly implementing a new technology” as
retailers often do not account for the direct and indirect costs of false alarms.

1The chapter is adapted from Hauser, Flath, and Thiesse (2019) (see Section 1.5).
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4.1 Practical Background

EAS systems are usually located at the exits of stores and trigger an alarm if a customer
leaves the store with items that have not been paid for. Traditional EAS systems are
so-called 1-bit systems, which means that they can only detect whether objects are in the
surveillance zone but cannot uniquely identify them (Finkenzeller 2015). In contrast, RFID
tags permit the identification of each specific item in the surveillance zone (Want 2006).2

4.1.1 Traditional EAS Systems

Traditional EAS systems are (i) RF systems, (ii) electromagnetic systems, and (iii) acousto-
magnetic systems (Bottani et al. 2012; Herzer 2003). The tags of RF systems have a
metal antenna with a small diode that allows them to emit a radio signal in response to a
radio signal received from an antenna of the system (Bottani et al. 2012). Loop antennas
are used to generate the required alternating magnetic field in the detection area of the
article surveillance system and the technology allows for gate widths of up to two meters
(Finkenzeller 2015). In contrast, the tags of electromagnetic and acousto-magnetic systems
consist of soft magnetic strips, which act as sensors, and a semi-hard bias magnet for
activation and deactivation (Finkenzeller 2015; Herzer 2003). Electromagnetic systems are
commonly used in libraries because the tags can be deactivated when books are borrowed
and reactivated upon return (Bottani et al. 2012; Finkenzeller 2015). In addition, the
systems are well suited to securing low value goods in retail stores because the tags are
comparatively cheap (Bottani et al. 2012; Finkenzeller 2015). Acousto-magnetic systems,
on the other hand, are considered more sophisticated than electromagnetic systems (Herzer
2003). In general, these tags are thicker than electromagnetic tags and the systems have a
higher sensitivity, which enables, for example, much wider EAS gates (Herzer 2003).

4.1.2 RFID-based EAS Systems

In contrast to 1-bit systems, RFID-based systems are able to send more complex signals
that uniquely identify the objects they are attached to. RFID-based EAS systems are
particularly interesting for retailers that already use RFID technology for the automatic

2Despite the differences between RF systems and RFID systems, the term RFID is often loosely used
in the literature to describe both systems (Finkenzeller 2015).
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detection of garments in upstream and backroom processes because the same tags can also
be used for article surveillance. Moreover, the cost-efficient substitution of traditional EAS
solutions by RFID has become an important foundation for the business case underlying
many RFID implementations in retail (GS1 Germany 2007).

RFID-based EAS systems must reliably distinguish between tagged objects that pass
through an EAS gate and others (e.g., static tagged objects near the gate). If tagged objects
passing through the transition area are not registered as doing so, we speak of false-negative
events. False-negative events result in losses for retailers and lead to inventory inaccuracies
(Kang and Gershwin 2005). False-positive events, on the other hand, denote situations in
which tagged objects that do not pass through the transition area are classified as having
done so. In the case of EAS, false-positives not only lead to incorrect inventory data but
also trigger false alarms, which impair customer satisfaction. False-positives may occur, for
example, if customers with unsold items walk in close proximity to but not through the
gate or products are displayed in close proximity to the antennas. The presence of products
with metal applications or any other metallic object within range of the antennas may also
influence the readability of RFID tags. In practice, the decisive factor in distinguishing
between objects that pass through a transition area and others is the RSSI, a measure of
the strength of a signal received from an RFID-tagged object. Signals with RSSI values
above a certain threshold lead to tagged objects being classified as having moved through
the transition area. A typical countermeasure to avoid false-positive events is to reduce the
RSSI threshold value (Bottani et al. 2012). However, this usually leads to an increase of
false-negative events, which makes the determination of the threshold very difficult (see
Section 2.3).

To gain a better understanding of the challenges associated with RFID-based EAS
systems, we conducted a pre-study in an RFID laboratory equipped with an EAS gate with
a gate-mounted RFID reader from Impinj (Impinj Inc. 2017a) and four far-field antennas,
a typical setup for RFID-based transition detection systems (Bottani et al. 2012). In this
environment, we considered (i) two movement paths and (ii) two test scenarios. The two
movement paths are walking straight through the gate and walking straight by the gate
with one metre distance to the gate. In the first scenario, tagged garments were held in front
of the carrier’s body; in the second scenario, the tagged garments were put in a booster
bag, that is, a standard shopping bag with a single layer of alumina foil. We chose these
two typical scenarios in consultation with the industry partners of the three-year research



4.2 System Design 32

project introduced in the Introduction (see Section 1.2) and discussions with Eleonora
Bottani who had conducted a comprehensive study on the potentials of RFID for EAS
considering similar scenarios (Bottani et al. 2012).

We repeated each of the four tests multiple times. Figure 4.1 shows exemplary antenna
traces from the test runs. The graphs show that with non-concealed tags, ‘by the gate’ and
‘through the gate’ events can reliably be distinguished by means of their RSSI measurements.
When the tagged garment is held in front of the carrier’s body, the signal strength of the
RFID reads increases steeply when the person with the garment approaches the gate.
Moreover, the maximum signal strength is considerably higher than it is in the ‘by the
gate’ setting and is reached when the person with the tag is closest to the antennas, that
is, when the person is standing right in the middle of the gate. However, during in-store
situations with concealed tags (i.e., clothes in a bag), antenna readings become so strongly
distorted that accurate separation of the two classes of events using thresholds becomes
unfeasible. The results show that the booster bag scenario is particularly challenging and
therefore seems well-suited for the present study.

4.2 System Design

Instead of adjusting the RSSI threshold value, we propose keeping antenna power levels
at 100% and using data mining models to distinguish between items that are carried
through an EAS gate and others. Given the broad scope of our study, we approach the
classification problem using a set of standard algorithms: logistic regression, decision trees,
Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs). Other methods
or ensembles over multiple classifiers should not qualitatively change the results. This
approach is in line with prior research on RFID data analytics (Buffi et al. 2017; Keller,
Thiesse, and Fleisch 2014a; Ma, Wang, and Wang 2018). To train these models, so-called
‘features’ must be extracted from the raw data, which contain information regarding observed
real-world events. Although the classifiers used in the thesis are generic, the considered
features are appropriately specific to RFID and must be developed based on knowledge
of the particular business process. Several authors stress the fact that feature generation
is a key phase of any data mining project (Domingos 2012; Flath and Stein 2018; Halevy,
Norvig, and Pereira 2009; Stein and Flath 2017).
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Figure 4.1: Exemplary RFID detection time series

4.2.1 Data Understanding

Table 4.1 provides a representative excerpt from the low-level RFID data gathered with the
RFID infrastructure described in the last section (i.e., an EAS gate with a gate-mounted
Impinj RFID reader (Impinj Inc. 2017a) and four far-field antennas). Each row reflects
a single RFID tag read event triggered by one of the four far-field antennas. EPC is the
unique identifier of the RFID tag, Timestamp is the Unix timestamp of when the tag was
read, RSSI is the radio signal’s power measured in dBm, and Antenna is the unique ID of
the far-field antenna that read the RFID tag.
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Table 4.1: Representative low-level RFID data excerpt

EPC Timestamp RSSI Antenna
0x3551c704600c35b000018bcb 1416221066.269 -63 4
0x3551c704600c35b000018bcb 1416221066.354 -67 2
0x3032d58e474bf440000000b8 1416221066.396 -71 3
0x3032d58e474bf440000000b8 1416221166.861 -74 1

4.2.2 Feature Engineering

Features are generated by applying various aggregation functions that correspond to specific
characteristics of the data (e.g., maximum RSSI value of a tag during a test run). We
seek to identify features with high predictive power to achieve robust classification for all
scenarios, including the scenario where the tag is located in a booster bag.

Table 4.2 lists typical features considered for the classification of RFID events used
in previous studies (Buffi et al. 2017; Keller, Thiesse, and Fleisch 2014a; Ma, Wang, and
Wang 2018). These features are very useful for distinguishing RFID tags in controlled
environments, but their ability to distinguish moving objects from other moving objects
in uncontrolled environments seems limited. For this reason, we came up with additional
features that are specifically tailored towards our application (see Table 4.3). These features
put information from different attributes into relation to one another (e.g., temporal
relation of reads depending on antenna or signal strength information) which should help
distinguishing moving from other moving objects.

Table 4.2: Features used in previous studies on RFID data analytics

Feature Description
F1 Average signal strength of all reads
F2 Difference between the highest and lowest signal strength
F3 Maximum signal strength of all reads
F4 Standard Deviation (SD) of RSSI measurements

To illustrate our reasoning, Figure 4.2 shows the signal strength recorded by the two
antennas on the left and right side of the gate over the course of two representative test
runs. In both cases, the tagged garment was held in front of the carrier’s body. In the left
plot, the RFID-tagged garment was moved by the gate and in the right one, the garment
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Table 4.3: Additional features used in this study

Feature Description
F5 Maximum signal strength measured by the antennas on the bottom
F6 Maximum signal strength measured by the antennas on the top
F7 Mean RSSI measurement of the antennas on the left side of the gate
F8 Mean RSSI measurement of the antennas on the right side of the gate
F9 Mean temporal shift between the signals’ timestamps of the antennas on the top

and the bottom
F10 Mean temporal shift between the signals’ timestamps of the antennas on the right

and the left side of the gate
F11 Number of tag reads in the time interval 500ms before and after the maximum

RSSI measurement
F12 Proportion of the tag reads before the maximum RSSI measurement over all tag

reads
F13 Proportion of the tag reads in the time interval 500ms before and after the

maximum RSSI measurement over all tag reads
F14 Temporal shift between maximum RSSI values of the antennas on the bottom
F15 Temporal shift between maximum RSSI values of the antennas on the top
F16 SD of the timestamps of the antennas’ maximum RSSI measurements
F17 Temporal shift between maximum RSSI value of the antenna with earliest maxi-

mum value and the antenna with the latest
F18 Temporal shift between maximum RSSI value of the antennas on the one side of

the gate and the antennas on the other side of the gate
F19 Proportion of maximum timestamp minus timestamp of the maximum RSSI

measurement over maximum minus minimum timestamp
F20 Regression coefficient of linear regression model with dependent variable signal

strength and explanatory variable timestamp
F21 Regression coefficient of linear regression model based on the signals measured

after the maximum signal strength measurement with dependent variable signal
strength and explanatory variable timestamp

F22 Regression coefficient of linear regression model based on the signals measured
before the maximum signal strength measurement with dependent variable signal
strength and explanatory variable timestamp

F23 Linear regression coefficient of quadratic regression model with dependent variable
signal strength and explanatory variable timestamp

F24 Quadratic regression coefficient of quadratic regression model with dependent
variable signal strength and explanatory variable timestamp
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was moved through the gate. This basic example highlights how both types of features help
separate the two classes: mean and maximum of the signal strength measurements over the
interval as well as a spatio-temporal relationship. In the example on the right, the RSSI
values measured by all antennas increase steeply until the maximum is met. All antennas
exhibit their maximum roughly at the same time—this is the point when the carrier with
the RFID-tagged item is in the middle of the gate. After passing the antennas, the RSSI
values decrease even more steeply, given that the body shields the tag while moving away
from the gate. Conversely, in the left-hand panel the two sides’ RSSI maxima are shifted
in time. This can be explained by the fact that the tag moves by the gate in a straight
line. Hence, the tag is first closer to one side of the gate and then moves towards the other
side. The combination of many different features allows us to augment pure signal strength
readings with spatial (i.e., the proximity of the tag to the antenna) as well as temporal
(i.e., the time between sequential read events) information.
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Figure 4.2: Side-by-side comparison of two representative test runs
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4.3 Evaluation

We collected large data sets in two laboratories under real-world conditions for instantiation
and evaluation of the EAS artifact. In the following, the evaluation setting (Section 4.3.1)
and the evaluation results (Section 4.3.2) are described. The evaluation focuses particularly
on comparing the results of our classification models with (i) classification models based
only on features used in previous studies and (ii) the threshold approach. The threshold
approach classifies RFID-tagged objects with signals above an optimal RSSI threshold as
having moved through the transition area (see Section 4.1.2).

4.3.1 Evaluation Setting

The detection system prototypes were set up in two university research laboratories, one
at the University of Würzburg in Germany and one at the University of Parma in Italy.
Figure 4.3 shows the dimensions of the gates used in the laboratories (which were identical
in both cases) and a picture of the evaluation setting in Italy.
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Figure 4.3: Dimensions of the RFID gates and picture of the laboratory

Naturally, the experimental setup had to appropriately reflect the intricacies of a real-
word store (Bottani et al. 2012). To achieve this, we adopted two different test scenarios,
multiple walking paths, and different movement speeds (running and walking). In the
first test scenario, tagged garments were held in front of the carrier’s body; in the second
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scenario, the tagged garments were put in a booster bag. Figure 4.4 illustrates the customer
movement paths we considered in our experiments. We included complex settings with
combinations of movement paths that require the transition detection system to be able to
distinguish between different moving objects.

Movement paths through the gate

A) B) C)

Movement paths by the gate

D) E) F)

Combination of movement paths through and by the gate

G) H) I)

Test Setting – kleiner!
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Combination of movement paths through and by the gate
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Figure 4.4: Test setting with typical movement paths in retail stores

In total, our experimental design includes 20 test settings, which are combinations
of different movement paths, numbers of people, movement speeds, and test scenarios
(e.g., two people per path are running straight through the gate with one RFID-tagged
garment held in front of the body) (see Table 4.4). The resulting data set comprises 4554
detection time series, of which 2640 represent valid passages through the gate. The total
number of individual tag read events across these time series is 488 006.
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Table 4.4: Experimental design

Movement patterns
Test description A B C D E F G H I
One person per path walking with one
garment held in front of the body

150 150 150 150 150 170 120 120 120

One person per path walking with one
garment put in a shopping bag

150 150 150 150 150 150 - - -

One person per path running with one
garment held in front of the body

150 - - - - - - - -

One people per path running with one
garment put in a shopping bag

150 - - - - - - - -

Two people per path walking with one
garment held in front of the body

240 - - - - - - - -

Two people per path running, with one
garment held in front of the body

120 - - - - - - - -

Three people per path walking with
one garment held in front of the body

120 - - - - - - - -

4.3.2 Evaluation Results

We followed best practices in machine learning to ensure that the results were representative
and performed 10-fold cross validation: In each round, we used 90 % of the data for the
training of our classification models and the remaining 10 % for the evaluation of the artifact.
In addition, we performed hyper-parameter optimization of the models by considering, for
example, different maximum numbers of constructed decision trees for the random forest
classifier to ensure robust classification results (Witten et al. 2016).

Following Keller, Thiesse, and Fleisch (2014a) and Ma, Wang, and Wang (2018), we
assess the performance of the classification models considering the performance measures
Accuracy, Precision, Recall and Area Under the ROC Curve (AUC). Accuracy is defined
as the number of correct classifications relative to the total size of the data set. Precision
is the share of instances classified as ‘moved through the gate’ that actually were moved
through the gate. In our application, if tags that were not moved through the gate are
erroneously classified as ‘moved through the gate’ (false alarms), precision is diminished.
Recall, on the other hand, measures the proportion of correctly classified ‘through the
gate’ instances. For very conservative classifiers, which tend to classify uncertain cases as
‘not moved through the gate,’ recall will be low. The Area Under the ROC Curve (AUC)
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provides an aggregate measure of performance across all possible discrimination thresholds
(Fawcett 2006). Receiver Operating Characteristic (ROC) curves plot the true-positive
rate against the false-positive rate at various threshold settings (see Figure 4.5). When
evaluating a data mining model with the ROC curve, the farther the curve shifts towards
the top-left corner (i.e., the greater the area under the ROC curve) the better the model is.
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Figure 4.5: ROC curves for the different classification approaches

Table 4.5 shows the classification results for (i) the classification models and (ii) the
threshold approach (see Section 4.1).3 The classification results in Table 4.5 and Figure 4.5
show the superiority of (i) the classification models in comparison to the threshold approach
and (ii) the ANN and the SVM in comparison to the decision tree and the logistic regression.
The latter result is in line with the results described in Keller, Thiesse, and Fleisch (2014a)
and Ma, Wang, and Wang (2018). With greater than 97 % accuracy, greater than 97 %

3We obtained different performance measures for the different possible threshold values. Following
Keller, Thiesse, and Fleisch (2014a) who consider accuracy the most important indicator, we chose to report
the performance measures obtained with the threshold value that led to the best best accuracy value.
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precision, greater than 98 % recall, and an AUC value of 0.9975, the SVM arguably achieves
the best result. In addition, Table 4.6 shows the results for models that leverage only
features used in previous studies (i.e., features F1-F4). A comparison of the results with the
results from Table 4.5 clearly shows the importance of the additional features (i.e., features
that augment pure signal strength readings with spatial and temporal information) for the
reliable differentiation between ’through-the-gate’ and ’by-the-gate’ events.

Table 4.5: Classification results

Classifier Balanced Accuracy (%) Precision (%) Recall (%) AUC
Decision Tree 94.77 94.44 96.59 0.9817
Logistic Regression 94.34 96.12 93.94 0.9881
SVM 97.60 97.03 98.86 0.9975
ANN 96.95 97.35 97.35 0.9966
Threshold Approach 89.50 94.86 86.47 0.9385

Table 4.6: Classification results when training the models only with features F1-F4

Classifier Balanced Accuracy (%) Precision (%) Recall (%) AUC
Decision Tree 90.85 95.12 88.64 0.9343
Logistic Regression 91.72 95.20 90.15 0.9433
SVM 94.77 95.45 95.45 0.9832
ANN 94.34 94.40 95.83 0.9821

4.4 Discussion

This chapter was concerned with the use of RFID as a technological enabler for EAS in
retail store environments. The practical relevance of our research is given not only by the
economic extent of losses due to theft (e.g., value of stolen item, inventory inaccuracies)
but also by the cost reduction potential of replacing existing proprietary EAS systems
such as electromagnetic or acoustomagnetic systems (GS1 Germany 2007). To address the
problem of limited process control on the retail sales floor, we collected a large amount
of data in a retail research laboratory mimicking real-world conditions featuring various
scenarios (e.g., people carrying garments that are put into shopping bags). We then applied
machine learning techniques to distinguish between theft and non-theft events. To this
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end, we developed novel machine learning features which facilitate reliable identification
of multiple moving objects. In doing so, we go beyond prior research on RFID analytics
which has almost exclusively focused on standardized processes in controlled environments
(e.g., production or logistics facilities). Our study confirms the suitability of advanced
analytics to extract valuable information from low-level RFID data streams.

Naturally, there are limitations and future research opportunities inherent to the
presented research. First, our empirical data was not collected in the field but in a retail
research laboratory. This allowed for rapid experimentation and recording of training data
while avoiding major interruptions of store operations. While the experimental setup tried
to capture as many particularities of retail environments as possible, the vast number of
different store layouts and products ultimately limits the level of generalizability. However,
given the integral role of EAS systems in retail stores, experimentation in practice is hardly
possible. As a next step, data from several real stores needs to be passively collected to
validate the applicability of the classification models in a real-world setting. A richer data
set will also offer the potential of refining the classifiers by introducing new features. To
further boost predictive power ensemble methods and alternative algorithmic approaches
(e.g., deep learning) may help create a more reliable detection system. Moreover, we only
considered RFID data in the context of our study. However, these data points may be
complemented by additional data sources such as surveillance cameras systems or checkout
systems. In addition, the integration of the EAS system in business processes may improve
the performance as contextual information (e.g., if a specific item was sold at the check-out
desk) can be taken into consideration when assessing whether or not a specific tag in
the reading field of the antennas is stolen. Finally, the classification approach described
performs ex-post classification in the moment a thief leaves the store. This may be too late
for actual capturing of the shoplifter which may necessitate some form of in advance alarm.
Using non-aggregated data on the single read level (or aggregate data only for short-time
intervals) may allow us to detect tags RFID-tagged objects in the very moment (or shortly
after) they pass the gate. Our ultimate objective is to ensure feasibility of our system under
real-world conditions to facilitate a subsequent rollout in a real retail environment.



5 Design of Automated Checkout
Systems1

The second detection system this thesis is concerned with is an automated checkout system.
These systems have to (i) detect customers’ purchases and (ii) initiate payment processes.
We focus on the main challenge of automatically detecting customer purchases. To this
end, we develop a system that (i) reliably and timely detects RFID-tagged objects when
they are leaving the store and (ii) assigns them to customers’ shopping baskets. For this
purpose, we take a two step approach. We (i) further develop the transition detection
model described in the previous chapter to detect RFID-tagged items leaving the store and
(ii) develop a model that associates these items with individual customer shopping baskets.
With regard to the transition detection model, we take up the idea of aggregating data only
for short time intervals discussed in the last chapter to detect RFID-tagged items at the
very moment (or shortly after) they are leaving the store.

Traditional checkout systems are labor-intensive and can be a great source of frustration
for customers when having to wait in line (Manyika et al. 2015). Automated checkout
systems, on the other hand, promise greater sales due to an improved customer experience
and cost savings because less store personnel is needed (Kasiri, Sharda, and Hardgrave
2012; Manyika et al. 2015). With an economic potential of more than $150 billion annually
by 2025, automated checkout systems have emerged as the most significant opportunity
among smart fashion store applications (Manyika et al. 2015). In addition, automated
checkout is a particularly suitable application for the present thesis, as it needs to be
embedded in an environment with immutable physical system components (e.g., architectural
constraints) and immutable non-physical system components (e.g., established customer
behavior patterns) (see design challenges described in Section 2.1).

1The chapter is adapted from Hauser et al. (2019) (see Section 1.5).
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5.1 Practical Background

To reduce costs, retailers have started adopting self-service technologies which enable
shoppers to scan, bag and pay for their purchases with little or no help from store personnel
(Litfin and Wolfram 2006; Orel and Kara 2014). These systems, however, offer hardly any
improvements over the traditional checkout process with respect to the customer experience,
potentially creating new challenges as many customers consider the service as frustrating,
irritating and alienating (Meuter et al. 2000).2 Self-service checkout systems can be
roughly categorized into (i) centralized systems at store exits and (ii) decentralized systems
(e.g., handhelds, mobile phones) that customers carry with them while moving through
the store. Both types of system usually rely on linear or matrix barcodes (e.g., QR codes).
The first group comprises self-checkout terminals (e.g., NCR self-checkout systems) and
tunnel scanners (e.g., Wincor Nixdorf 360-degree scanners). In the former case, customers
themselves must scan the items they want to purchase one at a time. Tunnel systems,
on the other hand, rely on cameras that scan the barcodes of items on a conveyer belt,
thus requiring customers to simply put their items on the belt. In contrast to centralized
systems, decentralized systems allow for the continuous scanning of items while customers
are walking through the store. Such portable systems can be handhelds that retailers
provide to their customers or even customers’ own mobile phones (the latter case requiring
that customers install an app that provides self-checkout functionality).

Automated checkout systems scan, total, and charge a customer’s purchases to a
registered payment account as the customer is leaving the store (Manyika et al. 2015).
These systems promise greater sales due to an improved customer experience and cost
savings because less store personnel is needed. Automated checkout systems have to detect
customers’ shopping baskets and initiate payment processes. To solve the detection task,
these systems must tackle two subtasks: They have to reliably detect purchased products and
assign these to individual shoppers. Figure 5.1 presents an overview of the different checkout
systems we identified: we first differentiate between clerk-based and unmanned systems
(criterion ‘staffing’). Unmanned systems can be further broken down into self-service and
automated checkout systems (criterion ‘process’). Third, we differentiate between systems

2Meuter et al. (2000) found that causes of dissatisfaction with self-service technologies were failure of
the technology, design problems in regard to both the technological interface and the service that it offered,
as well as customer-based failures, e.g., forgetting one’s personal identification number.
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with a central point of scanning (e.g., at the store exit) and systems with decentralized
points of scanning, that is systems that require scanning at the very moment customers
select items from shelves or put them into shopping carts (criterion ‘infrastructure’).
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Figure 5.1: Differentiation of checkout systems

The literature on fully automated systems is sparse. To the best of our knowledge,
details of only two systems that address the afore mentioned challenges have been published.
The first system (MyGrocer) relies on shopping carts equipped with RFID readers that
automatically detect objects placed in the carts (Kourouthanassis and Roussos 2003; Roussos
et al. 2003). As customers have their own RFID-equipped shopping carts during a shopping
trip, the assignment of products to customers is a somewhat trivial task; customers are
charged for the products that the RFID reader of their shopping cart has detected. The
second system is ‘Amazon Go’, which recently received enormous attention in the media.
The system promises to automatically (i) detect products taken from or returned to shelves,
(ii) keep track of the products chosen by customers in virtual shopping carts, and (iii) charge
the customers’ Amazon accounts after they leave the store. In addition, Amazon promises
that all customers need to use their system is an Amazon account, a supported smartphone,
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and the Amazon Go app to register their entrance into the store (Amazon 2018). Available
information suggests that the system stores the inventory locations of all products within
Amazon Go stores and mainly relies on cameras to detect products that customers take
from or return to particular inventory locations.3 In addition to the cameras, additional
sensors (e.g., pressure sensors, infrared sensors, and RFID readers) as well as customer
information (e.g., purchase history) can be utilized to identify and assign purchases.

5.2 System Design

Automated checkout systems must identify customers’ shopping baskets and initiate payment
processes. We focus on the first task, which entails reliably and instantaneously detecting
products and correctly assigning them to shopping baskets. We do not aim at assigning these
shopping baskets to individual customers because we consider customer identification as
part of the payment initialization process. The main reason for focusing on the identification
of shopping baskets is that this task cannot be adequately solved by the automated checkout
systems described in the literature. This is because these solutions were developed for
supermarket settings which differ significantly from fashion retail environments with respect
to in-store processes and the suitability of specific technologies.

5.2.1 Requirements Analysis

The automated checkout solution presented in this chapter was developed in the course of
the three-year research project introduced in the Introduction (see Section 1.2). Together
with the industry partners within the project, we put forward the following observations
and explain how they affected various design decisions:

1. There are no shopping carts or baskets in fashion retail stores. We consider this
an immutable property of fashion retail, as customers will likely be alienated by
fashion stores requiring them to use shopping carts to track their purchases (Litfin
and Wolfram 2006). Furthermore, store layouts may not permit carts to navigate the
shopping area (i.e., an immutable physical component of fashion store environments).

3Although Amazon has not published any technical details about their system, information on the
company’s website and two patents filed by the company (Kumar et al. 2015; Puerini, Kumar, and Kessel
2015) provide insights into the implementation of this cyberphysical retail system.
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In addition, the mental association of bulk shopping with the use of carts and baskets
may be detrimental to brand image (i.e., an immutable non-physical component).
Another argument against the application of smart shopping carts is that the costs
for equipping every shopping cart with RFID sensors are very high (Roussos et al.
2003). In addition, we also expect high operating costs because the individual carts
would probably have to be regularly recharged and checked for defects.

2. Customers in fashion retail stores usually leave unwanted garments in the changing
room. We consider this to be another immutable business process of fashion store
environments as some customers might not accept the necessity of going back to
search for the shelf from which they picked up a garment.

3. Usage of cameras is problematic in key areas of fashion stores (i.e., changing rooms).
Several scholars have highlighted the importance of considering the potential intru-
siveness of technological innovations in retail stores with regard to customer privacy
(e.g., Grewal, Roggeveen, and Nordfält 2017; Litfin and Wolfram 2006).

4. Major fashion retailers have implemented item-level RFID tagging of products. Fash-
ion retailers and suppliers first adopted RFID at case-level mainly for inventory
management purposes (Hardgrave, Aloysius, and Goyal 2013). Item-level tagging
has, however, moved out of the research environment and into mainstream commerce
(Barthel, Hudson-Smith, and de Jode 2014). Today, major fashion retailers such as
Walmart, J. C. Penney, and Zara have already implemented item-level RFID tagging
of products. Leveraging the available sensor infrastructure facilitates a cost-effective
and less intrusive integration of checkout systems into existing store environments.

These requirements are violated by the decentralized automated checkout solutions
presented in Section 5.1. The first observation rules out automated checkout systems based
on smart shopping carts. The second observation rules out automated checkout systems
that rely on shelf activity to track purchases. We therefore decided to design an automated
system with a central point of detection (i.e., items are detected when customers leave
the store). With respect to technology selection, observations 3 and 4 make a very strong
case for RFID-based item detection. However, the use of RFID is more challenging than
in the MyGrocer project, where carts only need to detect items within them. In our case,
the system needs to detect items that leave the store through an exit gate. This requires
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antennas with a large read range and high power. Unfortunately, this leads to the detection
of RFID tags carried near the gate instead of through the gate. Furthermore, assigning
items to individual customers is very challenging unless customers wait in line and pass
through the gate one at a time. However, prior work has demonstrated that RFID-based
solutions can successfully execute diverse and complex processes in retail environments
(e.g., Chaves, Buchmann, and Böhm 2010; Li, Ye, and Sample 2015; Parada et al. 2015).

5.2.2 System Architecture and Infrastructure

The architecture of the artifact combines hardware and software components (see Figure 5.2).
The hardware consists of two RFID reader installations, a ceiling-mounted system that
tracks items in the store, and a gate-mounted system that helps to detect items that are
leaving the store. This infrastructure collects low-level RFID data that is then processed
by the software components. There are two distinct software functionalities. The first
software component uses machine learning techniques to reliably and instantaneously detect
items that are leaving the store (item detection approach); the second assigns items leaving
the store (identified by the first component) to individual shopping baskets (purchase
assignment approach). These shopping baskets are the output of the artifact.
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Figure 5.2: Architecture of the automated checkout artifact

Figure 5.3 depicts the infrastructure with two parallel RFID readers from Impinj, a
manufacturer of RFID devices and software based in Seattle. The gate-mounted system
features four far-field antennas (Impinj Inc. 2017a), the ceiling-mounted system an array
with 52 far-field antenna beams mounted in one housing (Impinj Inc. 2017b).
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Figure 5.3: Infrastructure with two parallel RFID reader installations

5.2.3 Item Detection Approach

The item detection software component has to reliably detect items that pass through
a transition area. If items passing the transition area are not registered, we speak of
false-negative events. False-positive events, on the other hand, denote situations in which
items that do not pass the transition area are classified as having done so. Similar to prior
research (Keller, Thiesse, and Fleisch 2014a; Ma, Wang, and Wang 2018), the approach
presented in Chapter 4 considered aggregates for single runs and the classification was thus
performed after a tag has moved through a transition area. In contrast, in this chapter we
aim to detect products at the very moment they are moved through the gate (i.e., when a
person leaving the store is standing right in the middle of the RFID gate). This is important
because detecting a shopping basket after a customer has left the store is obviously too late
to initiate a payment process. Therefore, to enable continuous evaluation in real time, the
RFID data streams first need to be split into chunks. In a second step, these chunks are
aggregated to extract predictive features encoding information regarding observed real-world
events. These features are then used to train classification models, which automatically
map RFID data streams to classification events.



5.2 System Design 50

Data Understanding and Preprocessing

Table 5.1 provides a representative excerpt from the raw data gathered by the RFID
infrastructure. Each row reflects a single tag read event triggered by one of the RFID
readers’ antennas. Here, EPC is the unique identifier of the RFID tag, Timestamp is
the Unix timestamp of when the tag was read, RSSI indicates the radio signal’s power
measured in dBm, Phase Angle is the current state of the back-scattered sinusoidal wave,
and Antenna is the unique ID of the antenna that read the tag.

Table 5.1: Representative low-level RFID data excerpt

Reader EPC Timestamp Antenna RSSI Phase Angle
Ceiling 3032...7D 1453989765.31 15 -59.0 3.50
Ceiling 3032...D1 1453989765.31 15 -56.0 2.91
Gate 3032...7D 1453989765.34 4 -69.0 2.72
Ceiling 3032...7D 1453989765.34 17 -56.0 3.07

We aim to detect products at the very moment they are moved through the RFID gate.
Similar to Parlak and Marsic (2013), we therefore first apply a sliding window approach
to enable continuous evaluations in real time. A sliding window is a window of a certain
size (e.g., detection events of the last two seconds) that is updated at regular time intervals
(Jeffery, Garofalakis, and Franklin 2006). Each window contains only detection events
from one particular tagged product within reading range of the antennas. Our research
determined that window sizes of two seconds offer sufficient information to reliably classify
the events. To facilitate real-time evaluation, we apply window shifts every 250 milliseconds.

Feature Engineering

In a second step, we examine the two-second windows and extract features from the raw data
stream. These features condense information regarding observed real-world events. The
considered features are specific to the RFID analysis task at hand and must be developed
based on knowledge of the particular business process in question.

We focus on the development of features that facilitate the reliable identification of
multiple moving objects. To this end, we engineered 184 different features for training of the
classification models (see Table 5.2). One example of a feature with high predictive power
is the maximum RSSI value measured in a series of detections of a particular tag within
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the two-second windows. Here we first consider the reader level and derive a maximum
RSSI value for the gate antenna detections and one for the ceiling antenna detections. In
addition, we focus on the individual antenna level and derive values for the detections
of the antennas. Maximum signal strength values are standard features considered for
the classification of RFID events in previous studies (Keller, Thiesse, and Fleisch 2014a;
Ma, Wang, and Wang 2018). These features are very useful in distinguishing static and
moving tags, but their ability to distinguish moving objects from other moving objects is
limited (see Chapter 4). For this reason, we came up with additional features that put
individual readings into temporal relation to one another and augmented them with antenna
information. Examples are the parameters of a Gaussian fit of the signal strength values
for detections of a particular tag within the two-second windows.

Modelling

Similar to our approach in Chapter 4, we approach the classification problem using a set of
standard algorithms: Logistic Regression (LogReg) (Menard 2018), ANN (Bishop 2006),
SVM (Chang and Lin 2011), and Gradient Tree Boosting (XGBoost) (Chen and Guestrin
2016). Other methods or ensembles over multiple classifiers should not qualitatively change
the results. Similar to our approach in Chapter 4, we again performed hyper-parameter
optimization (e.g., different numbers of hidden layers and nodes for the ANN classifier or
maximum number of constructed trees for the XGBoost classifier).

Every 250 milliseconds, the data-mining models consider two-second windows of raw
data for every tagged item within reading range of the antennas and analyze whether the
particular tags have moved through the gate or not. To detect an item that has moved
through the gate, the data mining models have to classify at least one of the associated
two-second windows as moving through the gate (true-positive event). In this context,
associated windows are all the windows containing detection events for a particular item
while the item was being moved out of the store. In contrast, to avoid false alarms (false-
positive events), the models have to classify none of the two-second windows associated
with detections from products that are in vicinity of the gate but have not been moved
through it (e.g., products that are carried near the gate or products on shelves close to the
gate) as having moved through the gate.
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5.2.4 Purchase Assignment Approach

The software component for purchase assignments associates items leaving the store (iden-
tified by the first component) with individual customers. To this end, we first infer item
paths in the shopping area and then apply cluster analysis to group them. The procedure
rests on the assumption that the paths of items purchased by one customer are more similar
to each other than to paths of other items.

Item Path Determination

We rely on state-of-the-art indoor localization techniques (see Section 2.3.2) to infer item
paths. To this end, we first apply the ‘Scene Analysis’ technique to estimate the position
of an object by matching its real-time measurements with the raw data ‘fingerprints’ at
different positions (Liu et al. 2007).4 We again consider a sliding window approach with
window shifts every 250 milliseconds to facilitate continuous evaluation. In contrast to the
development of the first software component, we do not, however, rely on window sizes of
equal length but split the data such that each chunk contains only detections from one
collection cycle covering all 52 successively activated antenna beams of the ceiling-mounted
RFID reader. The durations of the physical cycles depend on the number of tags in the
antenna field and therefore vary over time. Considering time intervals of equal length would
have the drawback that some antenna beams might not yet have been activated. This, in
turn, would lead to areas not being covered by the system, thus resulting in undetected
items. In the artifact’s first software component, we consider time intervals instead of
collection cycles because objects that are carried out of the store will definitely be detected
by the gate antennas (in contrast to objects that are somewhere within the shopping area in
front of the gate). Whereas the data from the ceiling antennas is decisive for the localization
of RFID-tagged objects, the gate antennas are more important for the identification of
objects that pass through the gate.

4The ceiling-mounted RFID system offers a ‘Wide Area Monitoring’ mode and a ‘Location’ mode
(Impinj Inc. 2017b). The first mode provides information about every read event (e.g., timestamp, signal
strength); the second estimates physical coordinates of tags within reading range of the antennas. We
cannot use these coordinates for our purchase approach because only the Wide Area Monitoring mode
provides the low-level RFID data we need for the item detection approach and the RFID system can only
be used in one mode at a time. Another argument against using the coordinates estimated by the system is
that in an earlier publication we compared our localization approach with the system’s localization mode
and achieved better results with our approach (Hauser, Griebel, and Thiesse 2017).
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We developed 174 features for the training of the classifiers that help localize tags
within reading range of the RFID antennas. Most of them are antenna-based features
pertaining to the ceiling-mounted RFID system, but we also leverage the low-level data
from the gate-mounted antennas. For instance, a high maximum signal strength from the
gate antennas in combination with a low number of reads from the ceiling-mounted reader
is a good indicator that an object is very close to the exit. Intuitively, the high maximum
signal strength indicates that the person is near the gate, while the low number of readings
suggests that the person is facing away from the ceiling-mounted system (i.e., that the
person’s body is shielding the RSSI signals). A complete list of the features considered in
our classification models is provided in Table 5.3.

Table 5.3: Purchase assignment model features

Features Description
F1-F56 Median RSSI measurements of individual xArray and R420 antennas
F57-F112 Maximum RSSI measurements of individual xArray and R420 antennas
F113-F168 Number of tag reads of individual xArray and R420 antennas
F169 Ratio of the number of xArray measurements to the number of all measure-

ments
F170 Logical attribute that determines whether the xArray measurements cover

an entire gathering cycle of the xArray
F171-F172 Number of tag reads of the xArray and the R420 antennas
F173 Number of individual RFID tags in reading range of the two systems’

antennas (unlike all other purchase assignment model features, this feature
does not only take into account the measurements of a particular tag but
the measurements of all tags)

F174 Time difference between the first and the last xArray reading

We apply multiclass classification for solving the localization task, which requires dividing
the shopping floor area in front of the gate into grid fields and collecting training data for
each of these fields (raw data ‘fingerprints’). Here the number of grid fields denotes the
number of classes considered in the data-mining model. We consider the same machine
learning models as for the first software component (see Section 5.2.3) and again perform
hyper-parameter optimization. To determine item paths, we concatenate the most probable
locations of individual items over time.
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Assignment Process

To assign RFID-tagged items to customers, the automated checkout artifact needs to
identify the correct customer for the items that are currently leaving the store. Thus, the
task is to group the items within the antennas’ reading field such that items in the same
group belong to the same customer. We approach the problem by first determining all
individual item paths within the antennas’ reading range. The procedure for the assignment
of items then rests on the assumption that paths of items carried by one customer are more
similar to each other than to paths of other items.

Figure 5.4 illustrates the assignment process. The process is triggered every time the
first software component detects an item being moved through the gate. The objective
then is to determine the other items that also belong to the shopping basket of the item
first identified. To this end, we analyze the paths of all items in the antennas’ reading field.
We first determine whether all the items belong to a single customer by applying a simple
threshold rule based on the average Euclidean distance between pairs of items. If all items
belong to one customer, we assign them to one customer shopping basket. Otherwise, we
use clustering techniques to determine the items that belong with the item that triggered
the ‘through the gate’ event. If the first software component triggers another ‘through the
gate’ event, we repeat the process. This time, however, we exclude items that are already
assigned to customer shopping baskets.

DISS – ZUORDNUNGSPROZESS

More than 

one 

customer?

Perform 

clustering

“Through 

the gate” 

events?

Exclude 

assigned 

objects

Yes Yes

No No

Figure 5.4: Visualization of the process for the assignment of objects to customers

We follow a two-step approach to grouping items. We first determine clusters for every
possible number of customer shopping baskets and evaluate each clustering result. Then,
in a second step, we choose the best result. To determine the item groups, we use the
Partitioning Around Medoids (PAM) clustering algorithm (Reynolds et al. 2006). In order
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to evaluate the similarity between pairs of tagged items, we again rely on the Euclidean
distance. For the evaluation of the goodness of the clustering results, we calculate the
average silhouette width for each cluster result, which indicates whether objects are matched
well to their own clusters and poorly to neighboring clusters (Rousseeuw 1987).

5.3 Evaluation

We collected large data sets in the laboratory under real-world conditions for instantiation
and evaluation of the artifact. The artifact design necessitates, on the one hand, the
collection of RFID raw data traces stemming from tests with people carrying RFID-tagged
objects and simulating real world customer movements in the experimental shopping area.
On the other hand, we need raw data fingerprints at different locations within the shopping
area for training of the indoor localization model. Whereas the first data set is used for
model training and evaluation of the artifact, the second data set is used only for model
training (i.e., training of the indoor localization model).

5.3.1 Evaluation Setting

We set up an experimental shopping area in a retail research laboratory for the evaluation
of the automated checkout artifact (see Figure 5.5). The dimensions of our experimental
shopping area were 4.8 m by 4.8 m.5 For the collection of training data for the indoor
localization model, we divided this area into 64 grid fields of equal size (0.6 m by 0.6 m).

The artifact design necessitates the collection of (i) RFID raw data fingerprints at
different locations within the shopping area for training and testing of the indoor localization
model and (ii) RFID raw data traces stemming from tests with people that carry RFID-
tagged objects and simulate real-world customer movements in the experimental shopping
area. For the collection of the first data set, we collected RFID raw data fingerprints for
each of the 64 grid fields within the experimental shopping area. To achieve this, a person
carrying garments stood in the shopping area and held the garments such that they were
positioned right above one of the fields. During the tests, the garments were moved up and
down to reflect real-life shopping situations. We collected approximately two minutes of

5The proposed system can be applied in retail environments that are larger than our experimental
shopping area because the automated checkout solution we propose requires only observation by RFID
systems of the area in front of the store exit and not observation of the entire store.
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DISS – Auto Checkout

4.8 m

4.8 m

0.6 m

Figure 5.5: Dimensions and picture of the test setting in the laboratory

low-level RFID data for every grid field and two different numbers of tagged items (one and
three objects). The resulting RFID data set comprises 1 515 918 individual tag readings.

Similar to our approach in Chapter 4, our experimental setup takes into account the
limited process control at store exits by considering multiple walking paths, different numbers
of people and RFID-tagged items as well as different movement speeds (i.e., walking and
running). Error sources that we identified during our experiments are (i) customers with
tagged objects who walk in close proximity to the gate and (ii) customers with tagged
objects who leave the store at the same time and on similar movement paths. To account
for such settings, we expanded our analysis. Figure 5.6 illustrates the customer movement
paths that we consider in our analysis. Training and testing of supervised classification
models necessitates labelled data. To obtain precise labels concerning garment position, we
additionally installed a light barrier at the gate for the data collection process to identify
the exact time a tag was moved through the gate. We did not use the information from the
light barrier for the development of our features.6

In total, our experimental design includes 18 tests, which are combinations of different
movement paths, number of people, number of RFID-tagged items, and movement speeds
(e.g., one person with three RFID-tagged items running straight through the RFID gate at

6We decided against using the information because (i) our objective is the development of an artifact
that facilitates automated checkout with as little hardware investment as possible and (ii) the light barrier
requires a direct line of sight and is thus very susceptible to fault in real-world implementations.
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the same time or three people carrying three RFID-tagged items each walking on different
movement paths). Table 5.4 provides a complete overview of the experimental design. Each
of the tests was repeated was repeated 50 times. The data set comprises 1500 runs with a
total of 1 431 347 individual tag readings.

DISS – DM model development

GFE H

CBA D

KJI L

end pointstart point store exit

DISS - EAS

Figure 5.6: Test setting with typical customer movement paths

5.3.2 Evaluation Results

The artifact’s item detection and purchase assignment approach rely on supervised machine
learning techniques. We thus have to train the models to instantiate the artifact. We use
data stemming from the tests dealing with typical movement paths in retail stores (i.e., the
second data set) for the training of the item detection component’s underlying data mining
model. Therefore, we first split the low-level data streams into data chunks (i.e., windows)
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Table 5.4: Experimental design

Movement patterns
People Tags Speed A B C D E F G H I J K L
1 3 Walking 50 50 50 - - - - - - - - -
1 3 Running 50 50 50 - - - - - - - - -
1 6 Walking 50 50 50 - - - - - - - - -
2 6 Walking - - - 50 50 50 50 50 50 - - -
3 9 Walking - - - - - - - - - 50 50 50

and calculate the features for each of them (see Section 5.2.3). In addition, we use the RFID
fingerprints for every grid field within the experimental setting (i.e., the first data set) for
the training of the indoor localization model. To this end, we first split the low-level data
streams into collection cycles and calculate the features for each of them (see Section 5.2.4).
We then train a classification model with one class for each of the 64 grid cells. We use the
collected RFID fingerprints only for the training of the indoor localization model and not
for the evaluation of the automated checkout artifact.

The evaluation of the automated checkout artifact is based on the tests dealing with
typical movement paths in retail stores (i.e., the second data set). To ensure representative
results, we performed 5-fold cross validation: In each round, we used 80 % of the data
for the training of the item detection model and the remaining 20 % for the evaluation
of the automated checkout artifact. We first evaluate the system’s ability to detect, in a
reliable and timely fashion, items that are moved through the RFID gate. Subsequently,
we evaluate the assignment of purchases to shopping baskets.

Reliability of Detection

In our tests, 4350 items (1300 customer shopping baskets) were carried through the RFID
gate and another 600 items (200 customer shopping baskets) were carried around the store
but did not leave the shopping floor area (see movement patterns I, K and L in Figure 5.6).

We base our evaluation of the model’s reliability on the criteria of Balanced Accuracy,
Precision, and Recall. As outlined in Section 5.2.3, items are classified as ‘moved through
the gate’ if the model classifies at least one of the associated two-second windows as moving
through the gate. In contrast, to avoid false alarms (false-positive events), the models have
to classify none of the two-second windows associated with detections from products that
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are in vicinity of the gate but have not been moved through it as having moved through
the gate. Balanced accuracy is the arithmetic mean of the detection rates of both classes,
while precision represents the share of instances classified as ‘moved through the gate’ that
were actually moved through the gate. In our application, precision values below 100 %
indicate that tags which were not moved through the gate were erroneously classified as
‘moved through the gate.’ Recall measures the proportion of correctly classified ‘through
the gate’ instances. For very conservative classifiers that tend to classify instances as ‘not
through the gate’ in uncertain cases, recall will be low.

The performance indicators for the four classifiers are summarized in Table 5.5. With
the exception of the logistic regression model, all models achieve a high level of classification
performance. Recall values of 96.56 % (SVM), 95.47 % (XGBoost), and 98.85 % (ANN)
indicate that the models appropriately classified almost all items that were moved through
the gate. As outlined in Section 5.2.3, items are classified as ‘moved through the gate’ if the
model classifies at least one of the associated two-second windows as moving through the
gate. A detailed analysis of the false positive classifications (false alarms) reveals that most
errors were caused by false classifications of items that were carried in very close proximity
to the gate, but not through it (see movement pattern K in Figure 5.6).

Recall values below 100 % on item level do not necessarily imply that some items might
not get assigned to shopping baskets. This is because the item detection component only
needs to classify at least one of the items in a shopping basket as ‘through the gate’ in order
to trigger the assignment process for the items that are currently within reading range of
the antennas. To obtain a more accurate evaluation of the item detection component, we
therefore additionally consider classification results at basket level. Table 5.6 presents the
evaluation results. A basket is correctly classified as ‘moved through the gate’ if at least one
item in that basket was correctly classified as ‘moved through the gate.’ Accordingly, the
component correctly identifies shopping baskets that did not leave the shopping floor if it
never classifies any of the items in those baskets as ‘moved through the gate.’ With 99.50 %
balanced accuracy, 99.85 % precision, and 100 % recall the SVM and the XGBoost achieve
the best classification results. The 100 % recall rate indicates that the models detected all
the shopping baskets that were moved through the gate.
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Table 5.5: Item-level classification results

Classifier Balanced Accuracy (%) Precision (%) Recall (%)
ANN 98.59 99.76 98.85
LogReg 79.23 98.70 64.62
SVM 98.13 99.95 96.56
XGBoost 97.57 99.95 95.47

Table 5.6: Basket-level classification results

Classifier Balanced Accuracy (%) Precision (%) Recall (%)
ANN 97.75 99.31 100.00
LogReg 89.25 97.65 93.00
SVM 99.50 99.85 100.00
XGBoost 99.50 99.85 100.00

Timeliness of Detection

Apart from reliability, the timeliness of detection is important. If the shopping basket of a
customer is detected after the customer has already walked through the RFID gate, it may
be too late to initiate a payment process. The initiation of a payment process long before
the customer actually walks through the gate, on the other hand, could also be a source of
potential error because these customers might not yet have made up their mind and, on
their way to the exit, decide not to leave the store after all.

Figure 5.7 visualizes the distribution of the detection times (difference between the time
at which the item detection component correctly classified the shopping basket as moving
through the gate and the time at which the light barrier was triggered by the customer
carrying the basket in question). The histograms and boxplots show that the classifiers
detected most baskets shortly after the customers walked through the gate. As outlined
above, the SVM and the XGBoost classifiers achieved the best classification results at
basket level. With the earliest detection occurring at 0.16 s, a 2.5 % percentile value of
0.55 s, a median detection time of 1.03 s, a 97.5 % percentile value of 1.28 s and the latest
detection recorded at 1.63 s, the XGBoost classifier arguably detects items faster than the
SVM classifier. For this reason, we choose the XGBoost classifier for the item detection
component of our automated checkout artifact.
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Fig. 6  Detection time histograms and boxplots with 2.5 and 97.5 percentiles
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Figure 5.7: Detection time histograms and boxplots with 2.5 and 97.5 percentiles

Purchase Assignment

Every time a basket is detected, the purchase assignment component determines the items
that are in the basket by considering the paths of all items within the shopping area in front
of the gate. Table 5.7 presents the evaluation results for the different movement patterns in
our experiment and the different classifiers that we considered for indoor localization of
RFID-tagged items. The results indicate that the component assigns most purchases to
customers correctly if we use XGBoost, SVM, or ANN for indoor localization. In all three
cases, the misclassifications arise in particularly challenging test scenarios where multiple
customers approach the exit gate simultaneously on very similar movement paths. The
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most difficult movement patterns seem to be I and J. In the first case (movement pattern I),
two customers approach the gate next to each other, but one of them turns to the right just
before reaching the gate and walks by the gate. Under such circumstances in some of the
tests, the component assigns items of the customer not leaving the store to the customer
leaving the store. In the second case (movement pattern J), three customers with very
similar movement paths leave the store next to each other and at the same time, which
results in some items being assigned to the wrong shopping baskets.

Table 5.7: Correctly assigned purchases

Classifier A-C (%) D (%) E (%) F (%) G (%) H (%) I (%) J (%) K (%) L (%)
ANN 100 100 100 100 100 100 42 50 100 90
LogReg 100 54 62 16 22 66 2 10 84 44
SVM 100 100 100 100 68 100 18 24 100 100
XGBoost 100 100 100 100 100 96 42 70 100 100

5.4 Discussion

The system we proposed in this chapter is the first automated checkout system specifically
developed for fashion stores. Existing automated checkout systems were developed for
supermarket settings and are not applicable in the fashion retail domain because they
either (i) rely on shopping carts or baskets, (ii) use camera systems (which is problematic in
key areas of fashion stores), or (iii) require changes to well-established customer processes
(e.g., returning a garment tried on in the fitting room to the shelf from which it was picked
up). To this end, we conceptualized and implemented an RFID-based system that reliably
and instantaneously detects items that are leaving a store and correctly assigns them to
individual shopping baskets. In contrast to existing automated checkout solutions, which
rely on the continuous scanning of products, we developed a system with a central point of
scanning whereby items are detected when customers leave the store.

The proposed artifact is a direct extension of the EAS solution presented in the last
chapter. In contrast to the EAS system’s item detection approach, we apply a sliding window
approach to enable continuous evaluations in real time and detect products at the very
moment they are moved through the RFID gate. In addition, the proposed system not only
detects the objects that are leaving the store but also assigns them to individual customer



5.4 Discussion 64

shopping baskets to initiate correct payment processes. We find that while most purchases
were correctly assigned, our artifact suffered from sub-par performance in more challenging
test instances where multiple customers approached the exit gate simultaneously on very
similar movement paths. In practice, such situations could easily arise when friends are
shopping together, which highlights the limitations of the pilot implementation. Nonetheless,
the research demonstrates the fundamental feasibility of RFID-based automated checkout
and shows that machine learning techniques can be leveraged to mitigate problems arising
from immutable components of the environment in which the system is to be embedded.

Naturally, there are several limitations and future research opportunities inherent to the
presented research. First, we see various potential model improvements that might enable
us to distinguish between customers, even when their movement paths are very similar. As
a next step, we propose the use of probabilistic models to improve the accuracy of item
paths (see Hauser, Griebel, and Thiesse 2017).7 Instead of concatenating the most probable
locations of individual items over time, we suggest considering the layout of store areas
and characteristics of processes within retail stores to improve path accuracy. The former
consideration comprises, for example, information about the location of shelves or walls,
while the latter builds on the assumption that particular sequences of item locations within
a certain time are more likely than others. To further boost predictive power, ensemble
methods and alternative algorithmic approaches (e.g., deep learning techniques) may help
create a more reliable system.

Secondly, the integration of additional data sources can improve the assignment process.
One possibility is the implementation of additional sensor systems (e.g., camera systems).
In cases in which it is not technologically feasible to reliably assign items to customers (even
with additional hardware), we propose the inclusion of data from additional information
systems in the assignment process (e.g., customer purchase history, sales data, garment
characteristics). Product characteristics, for example, could be very helpful in a case in
which two customers of different height or of the opposite sex, leave the store at the same
time (as they would likely carry very different products with them). This approach is in line
with Lee (2008), who suggests that in such cases “the next level of abstraction [. . . ] must

7Preliminary results with regard to this idea have been published in Hauser, Griebel, and Thiesse
(2017). In this paper, we demonstrate that a hybrid approach based on an ANN and a Hidden Markov
Model (HMM) that leverages not only low-level RFID data streams but also information about physical
constraints and process knowledge is able to reliably distinguish between RFID-tagged objects within
adjusted areas (even in cases where the objects are very close to the borders of the adjacent areas).
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compensate with robustness” and notes that “successful designs today follow this principle.”
Moreover, expanding the monitored area through additional hardware (i.e., installation of
more ceiling-based RFID systems) would make it possible to more accurately distinguish
item movement paths.

Finally, we did not have access to real-world store data but rather ran experiments
in a retail research laboratory. While our experimental setup tried to capture as many
particularities of retail environments as possible, the vast number of different store layouts
and products ultimately limits the level of generalizability. As a next step, expanding the
test setting in the laboratory to scenarios that are more complex (e.g., situations in which
customers take objects from shelves that are placed near the exits) could be considered.
A richer data set will also offer the potential to refine the classifiers by introducing new
features. The ultimate objective is to ensure the feasibility of our system under real-world
conditions in order to facilitate a subsequent roll-out in a real store environment.



6 Design of Smart Fitting Rooms1

The third detection system this thesis is concerned with is smart fitting rooms. While current
implementations of such systems mainly rely on hardware-based solutions (e.g., shielding
measures) to reliably detect a customer’s product selection, we investigate the applicability
of software-based solutions to perform the detection task. In contrast to hardware-based
solutions, software-based solutions enable the easy integration of smart fitting room func-
tionality into existing retail store environments. In addition, software-based approaches
can also be leveraged to identify not only the garments within individual cabins but also
those that are currently most relevant to customers (e.g., garments that they are currently
trying on), which allows retailers to improve smart fitting room services. To develop the IT
artifact, we again take a two step approach: We (i) further develop the transition detection
system described in the previous two chapters and (ii) develop a model that identifies
customer interactions with RFID-tagged items. With regard to the transition detection
model, the main challenge addressed in this chapter is that the antennas of the proposed
RFID infrastructure are not located at the transition areas (i.e., the transitions from outside
the cabins into the individual cabins), which necessitates a different approach to enable the
reliable and timely detection of RFID-tagged items carried into the cabins.

Smart fitting room applications offer great potential to (i) enhance the customer shopping
experience (Melià-Segui et al. 2013; Piotrowicz and Cuthbertson 2014; Walter et al. 2012;
Wong et al. 2012) and (ii) support managerial decisions (Thiesse, Al-Kassab, and Fleisch
2009). A popular service is product recommendations, which facilitate cross- and up-selling
and can lead to substantial sales increases for retailers (Senecal and Nantel 2004; Walter
et al. 2012; Wong et al. 2012). More importantly, smart fitting rooms enable retailers to
provide customers with a seamless shopping experience as they offer various possibilities to
bridge the gap between the different retail channels by, for example, offering customers the

1The chapter is based on Hauser et al. (2017b) (see Section 1.5).
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opportunity to purchase products that are currently unavailable in the brick-and-mortar
store from the online store while in the smart fitting room (Piotrowicz and Cuthbertson
2014). Additional possible services include (i) the display of additional product information
(e.g., available sizes, cuts, or colors of garments), (ii) enhanced customer experience through
video projections, lighting effects, and sounds (e.g., playing a surf video when shoppers bring
swimwear into the fitting room cabin) (Sjøbakk, Landmark, and Hübert 2016), (iii) the
possibility for customers to give feedback about the products they have tried on in the
fitting room cabins, and (iv) the possibility for customers to call for assistance in case they
need, for example, a different size or color of a particular garment (Melià-Segui et al. 2013).
In addition, RFID data gathered by smart fitting room applications can also be used to
support managerial decisions. Thiesse, Al-Kassab, and Fleisch (2009), for example, use
the information about garments tried on in smart fitting rooms to visualize the number of
products that were taken from individual catchment areas of the sales floor, which could
help retailers to optimize sales floor layouts, product placements, or the positioning of fitting
rooms. The authors also show that combining the RFID data with sales data allows one to
analyze merchandise performance by comparing the ratios of try-ons and sales events.

6.1 Practical Background

Retailers like Rebecca Minkoff, Nordstrom, Ralph Lauren, and Bloomingdale’s have already
started testing fitting rooms that provide additional services to customers (Wahba 2014).
While some of these retailers provide customers with barcode scanners for the identification
of items (e.g., Nordstrom), others rely on RFID technology (e.g., Rebecca Minkoff). As
outlined in Section 2.3, RFID offers several advantages over barcode scanning. In particular,
RFID-based object identification (i) does not require a direct line of sight between the tag
and the reader device, (ii) allows for simultaneous bulk detection of multiple objects, and
(iii) permits the identification of each specific item (Finkenzeller 2015; Want 2006).

Melià-Segui et al. (2013), Thiesse, Al-Kassab, and Fleisch (2009), and Wong et al. (2012)
describe pilot projects with smart fitting rooms that rely on RFID technology. While,
Thiesse, Al-Kassab, and Fleisch (2009) focus on the value of the RFID data collected by
smart fitting room installations to support managerial decisions, Melià-Segui et al. (2013)
and Wong et al. (2012) focus on (i) the enhancement of the customer shopping experience
and its effect on sales and (ii) customer acceptance of the IT artifacts. Melià-Segui et al.
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(2013) describe that sales staff at retail stores with smart fitting rooms reported that the
functionalities were well accepted by the customers and led to increased sales. Similarly,
Wong et al. (2012) find that recommendations presented to customers in smart fitting rooms
in a fashion chain store in Hong Kong led to sales increases of more than 20 %. To cope
with the problem of limited process control, smart fitting room solutions described in the
literature require the installation of an RFID reader system for each cabin and the use of
shielding measures (e.g., shielding paint, thick fitting room walls from floor to ceiling) to
ensure that only items within the cabins are detected by the RFID systems (Melià-Segui
et al. 2013; Thiesse, Al-Kassab, and Fleisch 2009; Wong et al. 2012). The need for shielding
measures obviously complicates the integration of such systems into existing fashion store
environments. Another drawback of current implementations is that they cannot distinguish
between products that are currently of interest to the customer (e.g., products that they
are currently trying on) and others (e.g., products hanging on a coat hook). It is obvious
that such information would be valuable for retailers as this would, for example, allow them
to highlight recommendations for the most relevant products.

6.2 System Design

We aim to develop a system that leverages RFID technology to (i) detect the garments
customers bring into individual cabins and (ii) identify the garments they are currently
interacting with. We are again focused on building a system that can be easily integrated
into existing (and, over time, constantly changing) fashion store environments. Instead of
using (i) shielding measures and (ii) multiple RFID systems, we therefore want to investigate
the applicability of machine learning models to achieve these objectives.

6.2.1 System Architecture and Data Understanding

The architecture of the artifact consists of hardware and software components (see Figure 6.1).
We propose the use of an off-the-shelf, ceiling-mounted RFID system with multiple far-field
antenna beams mounted in one housing. Recently, several such systems have been developed.
Examples are Impinj’s xArray (Impinj Inc. 2017b), Nedap’s ID AR series (Nedap Retail
2018), and Nordic ID’s ID TOP (Nordic ID 2018). The sensor infrastructure collects the
data, which is then processed by the software components. The first software component
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uses machine learning techniques to reliably and instantaneously detect items that are
carried into fitting room cabins by customers; the second distinguishes between items
customers are currently interacting with (e.g., items they are currently trying on) and
others (e.g., items hanging on coat hooks in the cabins). The items within the cabins that
are currently of the highest relevance to the customers are the output of the artifact.
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Figure 6.1: Architecture of the smart fitting room artifact

Table 6.1 provides a representative excerpt from raw data gathered with an Impinj
xArray (Impinj Inc. 2017b). Each row reflects a single tag read event triggered by one of the
reader’s antenna beams. Here, EPC is the unique identifier of the RFID tag, Timestamp is
the Unix timestamp indicating when the tag was read, RSSI indicates the radio signal’s
power measured in dBm, Phase Angle is the current state of the back-scattered sinusoidal
wave, and Antenna is the unique ID of the antenna that read the tag.

Table 6.1: Representative low-level RFID data excerpt

EPC Timestamp Antenna RSSI Phase Angle
3032D58E4729FF00000000D1 1453989765.34 17 -58.0 3.21
3032D58E4729FF00000000D1 1453989765.34 17 -58.5 3.18
3032D58E4729FF000000007D 1453989765.35 17 -56.0 3.06
3032D58E4729FF00000000D1 1453989765.36 17 -66.0 5.06

6.2.2 Item Detection Approach

The RFID infrastructure in prior research on RFID-based transition detection systems
consists of systems with gate-mounted antennas (see Section 2.3). The antennas are thus
directly located at the transition point. Prior research has shown that this infrastructure
results in characteristic RSSI profiles for tagged items that are carried through the gate,
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which can be leveraged in the feature engineering process (e.g., Keller, Thiesse, and Fleisch
2014a). This is because the signal strength increases steeply when a person with a tagged
item approaches the gate. Also, the maximum signal strength is usually measured when the
person with the tagged item is closest to the antennas, that is, when the person is standing
right in the middle of the gate. Prior research (including the studies presented in the
previous two chapters) has shown that features that are built based on such observations
help to reliably distinguish between tagged items that are moved through an RFID gate and
others. In Chapter 4 we consider, for example, the temporal shift between the maximum
RSSI values of the antennas on each side of the gate. The rationale here was that carrying
tagged items through the gate results in very low temporal shifts, as the antennas should
detect the items simultaneously. Similarly, Keller, Thiesse, and Fleisch (2014a) considered
so-called logical attributes, which provide a means by which to analyze the order in which
items were detected by the antennas of RFID transition portals with two pairs of antennas
on each side of the portal, one mounted behind the other.

The antennas of the RFID infrastructure proposed in this chapter are not located at
the transition areas (i.e., the transitions from outside the cabins into the individual fitting
room cabins). In addition, we want to use only one RFID system for distinguishing between
different transitions. As a result, we cannot observe the characteristic RSSI profiles in the
data described in the last paragraph. Therefore, many features that have proven useful in
previous studies (including the features proposed in the two previous chapters) do not help
us to detect the individual cabin transitions. We thus propose a different approach: Instead
of focusing on features that help detect the transition of a tagged item, we focus on features
that help determine the location of an item and define transition detection time as the
time at which the item changed its location from outside the fitting room cabins into one
of them. This requires data to be labeled differently than in previous studies. Figure 6.2
illustrates the differences between our approach and the approach presented in the last
chapter (considering in both cases exemplary movement paths of customers with one tagged
item). To enable real-time classification, the RFID data streams in both cases are split into
data chunks—usually referred to in the literature as ‘sliding windows’—before the data
is aggregated to extract predictive features. Sliding windows are windows of certain size
(e.g., detection events of the last two seconds) that contain only detection events from one
particular tagged item within the RF field. In the study presented in Chapter 5, we labeled
the window sampled while the item was moved through the gate as ‘moving through the
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gate’ and developed data mining models that aimed at classifying the window accordingly.
In this chapter, we aim to predict the current location of an item and regard its transition
time as the time at which it gets classified into one of the individual cabins (and label the
associated windows accordingly).
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Figure 6.2: Comparison of our data labeling approach (right) with previous studies (left)

Data Preprocessing

We aim to detect the transition of a tagged item at the very moment it is carried into a
fitting room cabin. To this end, we first apply a sliding window approach, then aggregate the
windows’ data to extract predictive features, and finally feed these features into classification
models. In contrast to prior research experimenting with fixed windows (e.g., Parlak and
Marsic 2013), we propose windows that contain only detection events from one collection
cycle covering all successively activated antenna beams of the ceiling-mounted RFID system
(similar to the approach presented in Section 5.2.4). Considering time intervals of equal
length would have the drawback of some antenna beams not having been activated yet.
This would lead to areas not covered by the system, thus resulting in undetected items. The
duration of the physical cycles depends on the number of tags in the RF field and therefore
varies over time. Despite the varying cycle durations, shifts of arbitrary length between the
windows are possible. We choose to evaluate our models every second to ensure regular
and frequent item location updates.
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Modeling Techniques and Feature Engineering

Similar to previous research on RFID-based transition detection systems (including the
studies presented in the previous two chapters), we approach the classification problem
using a set of standard algorithms. To train them, features need to be generated from
the low-level RFID data that encode the information from observed real-world events. An
extensive evaluation of different RSSI-based features (e.g., standard deviation, mean, or
median of RSSI measurements) suggests that the maximum measurements of individual
antenna beams are well suited to solving the classification task. We attribute this mainly
to the fact that maximum values originate from measurements with the most direct path
between RFID tags and antennas. In contrast, tag events with low RSSI measurements
are often the result of reflections, refractions, diffractions, or absorption of the radio signal
(Brusey et al. 2003). Because—in contrast to earlier research on RFID-based transition
detection (including the studies presented in the previous two chapters)—we do consider
features that take into account the arrangement of the RFID antennas, our approach is
based on comparatively simple features and shows a higher level of generalization.

Every second, the data mining models consider data windows that contain detection
events from one collection cycle covering all successively activated antenna beams for every
RFID-tagged item within reading range of the antennas. We consider the first fitting room
that an RFID-tagged item gets classified into to be the fitting room the individual carrying
the item has entered. We regard a transition as correctly detected if this location is the
cabin that the individual has actually entered (otherwise we regard the transitions as not
correctly detected). In case individuals do not enter any of the fitting room cabins, on the
other hand, we consider transition detections of items that they are carrying as correct if
the localization model never maps the associated data windows into one of the fitting room
cabins (i.e., if they are always classified as being outside of the fitting room area).

6.2.3 Interaction Detection Approach

Several scholars have developed systems that detect interactions with RFID-tagged items
(see Section 2.3.2). Similar to Parlak and Marsic (2013), we aim to identify items humans are
currently interacting with based on low-level RFID data and machine learning techniques. To
this end, we rely on the same data windows as for the item detection approach (i.e., windows
that contain only detection events from one collection cycle covering all successively activated
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antenna beams of the RFID system). Similar to Li, Ye, and Sample (2015) and Parada et al.
(2015), we furthermore propose using (i) RSSI and (ii) RF phase information to detect
interactions with RFID-tagged items. In addition to the maximum RSSI measurement of
individual antenna beams, we consider the maximum phase difference (i.e., the difference
between two consecutive phase angles of the same RFID tag) of individual antenna beams.
As regards modeling, we use the same classification algorithms as for the item detection
approach. The training (and test) data must, however, be labelled as ‘moving’ (see definition
of object motion) and ‘static’ for training (and evaluation) of the models.

6.3 Evaluation

We collected large datasets in the laboratory under real-world conditions for the instantiation
and evaluation of the two software components described above. The first data set comprises
raw data traces stemming from tests with people carrying RFID-tagged objects and
simulating real world customer movements in the experimental shopping area; the second
data from tests reflecting typical behavior and activities in regular fitting rooms.

6.3.1 Evaluation Setting

We set up experimental shopping areas in two research laboratories for the evaluation of the
artifact (see Figure 6.3). This allowed for rapid experimentation and recording of training
data while avoiding major interruptions of store operations. The experimental shopping
areas comprised three fitting room cabins and an RFID system with 52 antenna beams
from Impinj (Impinj Inc. 2017b) mounted in the middle of the grid field at a height of
2.5 m. The dimensions of the experimental shopping areas were 2.4 m by 3.6 m and the
dimensions of each fitting room 1.2 m by 1.2 m. We chose the cabin layouts and dimensions
according to real-world fitting rooms at a leading German fashion retailer with whom we
were collaborating in the course of our research (see Section 1.2).

We collected low-level RFID data for training and testing of (i) the transition detection
model and (ii) the interaction detection model. For the collection of the first data set, we
conducted 30 test cases depicting typical behavior in fitting room areas (four of them are
shown in Figure 6.4). The experimental design includes different numbers of people (one
and three), different numbers of RFID-tagged objects (one and three), and combinations
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Figure 6.3: Three fitting room cabins with one ceiling-mounted RFID system

of seven distinct customer movement patterns.2 Each test lasted 30 seconds and was
performed ten times. The 30 seconds comprise, for example, test cases with three test
subjects, each entering one of the three fitting room cabins and trying on selected garments.
Garments that were not tried on were put on coat hooks attached to the interior walls of the
fitting room cabins. In the course of the data collection process, 1080 RFID-tagged items
were carried into individual fitting room cabins. The corresponding data set comprises
1 050 630 individual tag read events. To obtain precise labels concerning garment position,
we additionally installed a light barrier to identify the exact time at which a tagged garment
was moved in or out of a particular cabin. The lightbarrier information is again neither
used nor needed by the software components of the artifact.

We gathered a second data set for training and evaluation of the interaction detection
model. The test subjects tried on one of three garments for 20 seconds and then changed to
the next garment, which they tried on for another 20 seconds before changing into the last
remaining garment. The garments that were not being tried on at any given moment in
time were hanging on the coat hooks within the cabins. These experiments were performed
with one cabin and one individual, two cabins and two individuals, and three cabins and
three individuals with each of these trial runs performed 10 times. As 20 seconds is a short
period of time, we only considered shirts as the garments being tried on. To achieve more
generalized movement patterns and avoid learning specific body characteristics, there were
different individuals executing the tests. As a result, we obtained about 35 minutes of
low-level RFID data with 300 276 unique tag read events.

2The seven movement patterns comprise walking paths into the three cabins from the right and left
side of the shopping area, as well as a walking path leading past the cabins without entering any of them.
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Figure 6.4: Exemplary test cases with typical movement paths in retail stores

6.3.2 Evaluation Results

In this section, we first evaluate the item detection component, referring to the ability of
the smart fitting room to detect the items carried into the individual cabins (i) reliably and
(ii) in a timely fashion. In a second step, we assess the ability of the system to distinguish
items that are being tried on from those that hang on coat hooks.

Evaluation of the Item Detection Component

To evaluate the ability of the system to detect the items carried into the individual cabins,
we first have to assess the localization model’s ability to correctly predict the locations of
the tagged items within the RF field with possible locations in our case being inside the
(i) first, (ii) second, and (iii) third cabin, and (iv) outside the fitting room area. To ensure
representative results, we performed 10-fold cross validation (with 90 % of the data used
for training and the remaining 10 % used for evaluation in each round).

In general, the results of multiclass classification problems can be summarized in the
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form of a confusion matrix as depicted in Figure 6.5. We base our evaluation of the
localization model on the performance measures Precision and Recall. The class precision
(Precisioni) is defined as cii/

∑N

j
cij and measures whether the items predicted as being

in this class are correctly assigned to this class. The class recall (Recalli), on the other
hand, is defined as cii/

∑N

i
cij and measures the fraction of items within this class that have

been correctly predicted. The precision of the class ‘Outside,’ for example, measures what
fraction of items predicted as being outside of the fitting room area are actually outside of
this area; the recall of this class, on the other hand, measures the fraction of items outside
of the fitting room area that have been correctly predicted as being outside of this area.DISS – ANTENNEN ZOOM
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Figure 6.5: Schematic multiclass confusion matrix for N classes

The performance indicators for the classifiers under consideration are summarized in
Table 6.2 displaying the class precision values and Table 6.3 displaying the class recall values.
XGBoost, SVM, ANN, und logistic regression turned out to be well suited classifiers for
the localization model (in contrast to Naive Bayes which performed rather poorly). With
an average precision value of 96.95 % and an average recall value of 96.32 %, the XGBoost
model achieves the best classification results and was therefore chosen as the classifier for
the artifact’s item detection component.

Table 6.2: Precision values (%)

Classifier Cabin 1 Cabin 2 Cabin 3 Outside
ANN 96.67 95.31 93.29 94.50
LogReg 94.29 95.79 93.37 94.63
SVM 97.69 91.66 94.57 95.06
XGBoost 98.40 98.04 95.64 95.73
Naive Bayes 88.01 84.65 68.74 93.67
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Table 6.3: Recall values (%)

Classifier Cabin 1 Cabin 2 Cabin 3 Outside
ANN 95.23 93.83 91.87 96.81
LogReg 96.40 92.77 92.19 95.75
SVM 94.17 95.11 91.31 96.63
XGBoost 97.16 95.52 94.06 98.56
Naive Bayes 87.70 84.85 90.83 77.64

As described above, we consider the first cabin into which a tagged item gets classified
as the cabin the person carrying the item has entered. We regard a transition as correctly
detected if this location is the cabin that the individual has actually entered. In the case
that individuals do not enter any of the cabins, on the other hand, we consider transition
detections of items that they are carrying as correct if the localization model never maps
the associated data windows into one of the cabins. Following this approach, the system
(based on the XGBoost localization model) was able to correctly determine for 95 % percent
of the tagged items whether they were moved into a cabin and if so, which one.

Apart from reliability, the timeliness of the transition detections is important. As
described above, we define transition time as the time a tagged item changes its location
(i.e., the time it gets classified into one of the fitting room cabins by the localization model).
The detection time is thus the difference between the time at which the transition detection
component correctly classified a tagged item as being within the correct cabin and the
time at which the light barrier was triggered by the person carrying the item. Figure 6.6
visualizes the temporal distribution of the detections of the individual garments carried
into the cabins.3 The histogram reveals that the system was able to detect almost all items
within two seconds of the light barrier being triggered. The mean detection time is 0.85 s,
the median 0.79 s, and the standard deviation is 0.88 s.

Interaction Detection

The evaluation of the interaction detection model’s reliability is based on the criteria
Balanced Accuracy, Recall, and Precision. Accuracy measures the proportion of instances
that are correctly classified. We use balanced accuracy instead of accuracy because the

3For this evaluation, only test runs with items (i) that were actually carried into one of the cabins (in
contrast to test runs with items that were carried in close proximity to the cabins without entering any of
them) and (ii) whose location transition were correctly detected could be considered.
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Figure 6.6: Detection time histogram (based on the XGBoost localization model)

data originating from the tests is highly imbalanced. Precision is the share of tagged items
classified as ‘moving’ that actually were being tried on. In our application, if shirts that
were hanging on coat hooks are erroneously classified as ‘moving’, precision is diminished.
Recall, on the other hand, measures the proportion of correctly classified ‘moving’ instances.
XGBoost arguably yielded the best results and was therefore chosen as the classifier for
the artifact’s interaction detection component. This model achieved the highest balanced
accuracy at 94.9 % and the highest precision at 94.0 %. The recall of the XGBoost model,
however, was 92.5 %, the same level as that of the SVM model.

6.4 Discussion

Our study shows that current limitations (e.g., need for shielding measures) of existing smart
fitting room implementations can be tackled with software-based approaches. Our artifact
automatically (i) detects the garments within the fitting room cabins and (ii) identifies
those that are currently most relevant to the customers in the cabins (e.g., garments that
they are currently trying on). The proposed artifact is a further refinement of the artifacts
developed in the last two chapters. We particularly showed that item transitions can be
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detected with an RFID infrastructure whose antennas are not located at the transition
areas. Such infrastructures are easier to integrate into existing (and, over time, constantly
changing) retail environments and allow the use of one RFID reader for several fitting room
cabins. In addition, we show that the low-level data gathered by the RFID infrastructure
can also be leveraged to detect items customers are currently interacting with.

Naturally, there are limitations inherent to the presented research that offer opportunities
for future research. First, we again see various potential model improvements (e.g., proba-
bilistic models, ensemble methods, deep learning techniques). In addition, the integration
of additional data can again improve the item detection approach. One possibility is the
inclusion of product characteristics, which could be very useful for distinguishing items in
neighboring fitting room cabins. Finally, the empirical data considered for the evaluation of
the artifact was again not collected in the field but in a retail research laboratory. However,
we recently installed several similar smart fitting rooms in stores of a leading German
fashion retailer and are confident that the ongoing tests in these real-world environments
will help us to further improve the proposed artifact.



7 Technology Maturity and Optimal
System Configuration1

The previous three chapters focused on the development of classification models for the
detection of object transitions in the context of three frequently discussed smart fashion
store applications and different RFID infrastructures (see Figure 7.1). The assessment of the
classification performance covered the accuracy of the models in isolation, that is, ignoring
their interactions with the associated business processes. However, it is the performance
of the technical artifacts embedded in the socio-technical service system that ultimately
needs to be assessed. In particular, we want to assess the extent to which the classification
models help to meet the business objectives (see description of CRISP-DM’s evaluation
phase in Section 3.2). This is particularly important because the purely technological
assessment assumes constant, homogeneous cost factors for misclassified entities (e.g., Elkan
2001; Fan et al. 1999; Pazzani et al. 1994). As outlined in the introduction, we consider
this is a reasonable approach for static settings in which the cost of rework or penalties is
fixed (e.g., due to contractual arrangements or internal costing systems). In a retail store,
however, the error costs can vary not only according to the type of event but also according
to the state of the service system (e.g., time of day, number of customers in the store). The
complexity of assessing the economic value of a smart fashion store application is therefore
substantially higher than assessing the economic value of an isolated system.

The present chapter goes beyond purely technical performance criteria and shows how
the impact of the proposed IT artifacts regarding service quality and costs can be analyzed
by means of an analytical model of retail service operations. To exemplify the approach,
we consider the simplest transition detection model developed in the course of this thesis
(i.e., the classification model developed in Chapter 4) and two of the discussed application

1The chapter is adapted from Hauser, Flath, and Thiesse (2019) (see Section 1.5).
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Figure 7.1: Approach followed in the previous three chapters (left) and this chapter (right)

scenarios, namely EAS and automated checkout. The EAS system triggers an alarm if a
customer leaves the store with items that have not been paid for; the automated checkout
system initiates payment processes when articles leave the store. While the automated
checkout system presented in Chapter 5 aimed at (i) detecting RFID-tagged items customers
want to purchase and (ii) assigning them to customers’ shopping baskets, the present chapter
is only concerned with the first of the two tasks.2

With regard to the two application cases, the analytical model allows us to (i) determine
the costs associated with the different types of false classifications (customer dissatisfaction
and unpaid products), (ii) identify the profit-maximizing configuration of the application’s
underlying transition detection models, and (iii) assess the application’s technological

2The automated checkout system proposed in Chapter 5 is a direct extension of the EAS solution. The
checkout system not only detects all the items customers leave the store with but also assigns these items
to customers’ shopping baskets. However, a solution that only detects the items could also be installed in
fashion stores if customers are willing to leave the store one at a time in order to enable article allocation.
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maturity. To appropriately model the interdependencies between the retail environment and
the two detection systems, we take a two-step modeling approach: We first characterize the
technical capabilities of the detection system using a Detection Error Trade-off (DET) curve
(see Section 7.1). Subsequently, we embed this trade-off curve in a service operations model,
which determines optimal detection system configurations by internalizing the inherent
trade-off between system detection performance (registered true positive transitions) and
customer service quality (avoidance of false alarms) (see Section 7.2).

To explore the interplay between detection system configuration and store service quality
in a normative manner, we follow Oi (1992) and model a retailing system by means of
a queuing model in which retail service capacity is consumed by shoppers to generate
sales activity. Unlike standard queuing models, our analysis is not meant to describe a
queue in the literal sense, but rather provides a concise means of modeling a congestion-
sensitive service product (De Vany 1976). In particular, we follow the reasoning of Ho
and Zheng (2004) that customers primarily care about the overall service experience and
waiting time and we therefore subsume all retail processes in a single M/M/1 queuing
system (i.e., a system with a single server, arrivals determined by a Poisson process, and
exponentially distributed service times). System interruptions arising from false-positive
events are incorporated in the form of server breakdowns (Krishnamoorthy, Pramod, and
Chakravarthy 2014; Thiruvengadam 1963).

7.1 Performance Curve Fitting

Our results show that even a highly sophisticated classifier will still generate false-negative
and false-positive misclassifications. In order to determine the optimal trade-off between
the two misclassification events and evaluate the performance of the classification models
from an economic perspective, we obviously need to better understand their influence on
store processes. Knowledge about the actual economic impact of misclassifications can
be used to find an optimal configuration for a classifier. In case of the considered binary
classification models, a probability value for each detection event is assigned to one of two
classes depending on the discrimination threshold. For example, a threshold of 0.5 implies
that all events with a probability value smaller than 0.5 are assigned to one class (in our
case ‘not through the gate’) and the rest to the other class (in our case ‘through the gate’).
A change in the discrimination threshold results in the classifier becoming more sensitive to
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one type of misclassification, but less sensitive to the other. This way we can adjust the
classification results towards points that are more favorable for a given application (Fawcett
2006). The trade-off between the two misclassification errors can be described by a DET
curve, which Martin et al. (1997) aptly describe as “a means of representing performance on
detection tasks that involve a trade-off of error types.” While the previous three chapters
were concerned with steps that sought to improve classification performance and thus
shift the curve further towards the lower left corner, an optimization model reflecting the
respective application context allows finding the best operating point on the DET curve.

To further investigate the trade-off between false-negative and false-positive classifications
with the help of an analytical model, we need to encapsulate the empirical classification
results in an analytic object. Prior research (Grey and Morgan 1972; Gönen 2006; Pearce
and Ferrier 2000) has established ROC curve fitting as a powerful means of representing
classification trade-off characteristics. ROC curves, however, plot the true-positive rate
against the false-positive rate (see Figure 4.5 in Section 4.3). As we are mainly interested in
the trade-off between false-negatives and false-positives, we prefer the information provided
by the DET curve and put forward the idea of DET curve fitting. Leveraging the observation
of Martin et al. (1997) that DET curves are close to linear in log-log-space, we apply a
truncated power law relationship to obtain the false-negative rate β(α) as a function of the
false-positive rate α, that is,

β(α) = max
{
1(α = 1),min

{
1, a · α−k

}}
(7.1)

where the parameters a and k determine the shape of the curve while the maximum and
minimum terms ensure that β(α) takes meaningful values on the interval [0; 1].

As outlined above, we consider the transition detection models developed in Chapter 4
for demonstrating how the impact of the proposed IT artifacts on service quality and costs
can be analyzed. The fitted curves for the SVM classifier (hereafter referred to as the strong
classifier), the logistic regression classifier (hereafter referred to as the weak classifier),
and the threshold logic are shown in Figure 7.2. In determining the curve’s parameters
a and k, we focused on the bottom left corner of the DET graph, with false-positive rate
and false-negative rate smaller than 0.2, to accomplish the best possible fit for further
analysis. The fitted curves are β(α) = 0.001α−0.71 (strong classifier), β(α) = 0.005α−0.7

(weak classifier), and β(α) = 0.014α−0.9 (threshold logic).
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Figure 7.2: DET graph with fitted performance curves

7.2 Service Operations Model

The store traffic stream Λ comprises potential customers. However, this gross potential
does not directly translate into sales. Whereas the store traffic stream Λ is exogenous
(e.g., depending on the day of the week or the weather), the customer rate λ arises
endogenously from the interaction between store traffic and service quality: Individual
customers decide whether to buy from the given store after taking into account the store
brand as well as service quality as exemplified by the shopping time (Grewal et al. 2003;
Messinger and Narasimhan 1997). Customers are served through the store’s serving capacity
µ, which we normalize at unity. The effects of different classification results of the transition
detection models on store processes are different for each of the two application cases:

• In the EAS case, the detection system helps mitigate possible losses from shoplifting.
To model this effect, we consider in addition to potential customers a shoplifter
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population of size tΛ where t is the theft rate. A lack of discriminatory power for
the detection system may diminish service quality for regular customers and in turn
revenues due to false alarms. This is because false-positive events reflect the situation
of a customer triggering an alarm despite not being a thief (see Figure 7.3).
• For automated checkout, the detection system seeks to properly register purchases
while avoiding the incorrect initialization of transactions when no purchase has taken
place. An automated checkout world does not distinguish between thieves and honest
buyers as everybody just walks out of the store. Similar to the EAS application,
false-positive events again impair service quality (see again Figure 7.3).
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Figure 7.3: Event types for the EAS and automated checkout scenario

Figure 7.4 illustrates the basic elements and relationships of the service operations model.
A purchase leads to an average sales margin of m. Similarly, an undetected theft (EAS case)
or an unregistered sale (automated checkout case) result in an average loss of c. In both
settings, a false-positive detection event occurs with probability α. Leveraging a classifier’s
DET curve, we can express false-negatives β as a function of false-positives α. In the EAS
scenario, a shoplifter remains undetected with probability β(α) (false-negative event) and is
detected with probability (1− β(α)) (true-positive event). In the automated checkout case,
on the other hand, a purchase event is registered with probability (1− β(α)) (true-positive
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event) and overlooked with probability β(α) (false-negative event). The central trade-off
arises from the interplay between false-negative and false-positive events as determined by
the detection system sensitivity: Whereas undetected theft or unregistered sales result in
direct losses, the economic impact of false alarms is indirect, manifesting itself in reduced
service quality, which in turn reduces future sales. Going forward, we seek to characterize
the optimal (profit-maximizing) detection system configuration. This setup incorporates
results from Grewal et al. (2003), who empirically show that wait-time expectations have a
negative effect on store patronage decisions. The notion of service quality deterioration
follows Hayes and Blackwood (2006, p. 276), who note that false alarms from detection
systems “create collateral damage such as store disruption and customer irritation.”

7.2.1 Notations

The notations used throughout the paper are as follows:

Λ Raw customer stream
b0 Customer base utility
bQ Customer service quality sensitivity
U Customer utility
λ Realized store traffic
µ Service capacity
η Arrival rate
θ Service restoration rate
W Sojourn time
π Profit
P Purchase probability
L Service queue length
λ Arrival rate
m Average sales margin
c Average loss from theft (EAS) or unregistered sale (automated checkout)
t Theft rate
γ Capture rate
α Probability of false-positive classification
β(α) Probability of false-negative classification as function of α
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7.2.2 Average Queue Length Determination

In our model, the service queue length L is impacted by two special effects—system
interruptions and customer choice. Assuming independent behavior of store customers, it is
reasonable to assume that false-positive events constitute a Poisson arrival process with
arrival rate η(α) = Λα, where α is the probability of an false-positive event triggered by
the detection system. The false-positive probability α obtains from the detection system
configuration. Naturally, any choice of α fixes the corresponding value for the false-negative
probability β(α) according to the DET function. To retain a lightweight model, the incident
management time is assumed to be exponentially distributed with mean 1/θ.

The assumption of a Poisson structure for the occurrence and clearance of interruption
events allows us to leverage the PASTA property (Wolff 1982) to determine queuing
metrics without knowledge of the state probabilities. Specifically, we adapt the solution
characterization provided by Adan and Resing (2015, pp. 102-103). We can observe that
a customer who decides to shop at the store and thus joins the store service system will
expect the average queue length L. Each customer in the queue will require a mean
(non-interrupted) service time 1/µ = 1. As noted before, service interruptions due to
false-positive events occur with a rate of η(α). Consequently, each customer will on average
experience η(α)L (α, λ) breakdowns with an average incident management time of 1/θ.
False-positive events are driven by store traffic Λ and hence may occur even in moments at
which there is no store service queue. This leads to an additional service time increase of

θ
(1+η(α)/θ) , which allows us to express the expected sojourn time W as

W (α, λ) = 1 + L (α, λ)︸ ︷︷ ︸
Time waiting for others to be served

+ η (α)L (α, λ)
θ

+ θ

1 + η(α)
θ︸ ︷︷ ︸

Waiting time caused by service disruptions

. (7.2)

Applying Little’s law, which states that the long-term average number L of customers
in a stationary system is equal to the long-term average effective arrival rate λ multiplied
by the average time W that a customer spends in the system, gives us a direct expression
for the average queue length L(α, λ):

L (α, λ) = λ (η (α) (η (α) + 1) + 2η (α) θ + θ2)
(η (α) + θ) ((1− λ) θ − η (α)λ) (7.3)
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Lemma 1. Queue length L is strictly increasing in α.

Proof. Replacing η (α) in Equation (7.3) by α ·Λ and taking the first derivative with respect
to α yields

∂L

∂α
= Λλ (α2Λ2 (λ+ θ) + 2αΛθ2 + θ2 (−λ+ θ + 1))

(αΛ + θ)2 (αΛλ+ (λ− 1) θ)2 . (7.4)

The denominator is a sum of quadratic terms and consequently is positive. The same
applies to the nominator because λ < 1.

7.2.3 Demand Equilibrium

We use the logit choice model proposed by Ho and Zheng (2004) and assume the represen-
tative customer’s utility function for buying at the store to be given by

U(L) = b0 − bQL. (7.5)

Parameter bQ reflects customer sensitivity to store service quality (captured by the service
queue length L).3 The other parameter b0 subsumes the base utility offered by the store’s
other characteristics (i.e., the utility in the case of perfect service quality). Applying
a standard logit choice model (Train 2009), the purchase probability P (L) obtains as
P (L) = 1

1+e−U(L) and the store’s realized customer stream is given by

λ (α) = P (L) Λ. (7.6)

Ho and Zheng (2004) established that a raw customer stream, combined with a service
quality-aware choice function, requires the derivation of a demand rate equilibrium to
link the customer rate λ with store traffic Λ. To this end, we use the queue length
characterization L(α, λ) and reformulate the store choice formulation:

λ = P (L (α, λ)) Λ (7.7)

Any value of λ∗ which equates the right-hand side of Equation (7.7) with itself constitutes
a demand rate equilibrium with respect to the chosen false-positive rate α. It can be

3Following Messinger and Narasimhan (1997), the key metric is of course waiting time and not queue
length. However, following Little’s law the two can be used interchangeably and using queue length
simplifies some of the formulations.
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shown that such a value can always be identified, potentially using numerical methods.
Furthermore, the relationship between α and λ∗ can be characterized and it obtains that a
more sensitive transition detection system will result in a strictly lower customer rate.

Proposition 2. For any α choice, a unique λ∗(α) exists such that Equation (7.7) holds.

Proof. The proof is analogous to Proposition 1 in Ho and Zheng (2004). The function
P (Λ (α, λ)) Λ is decreasing and continuous in λ with P (Λ (α, λ)) Λ > 0. Therefore, g(λ) =
P (Λ (α, λ)) Λ− λ is strictly decreasing in λ with g(0) > 0 and g(∞)→ −∞.

Lemma 3. The equilibrium demand rate λ∗ is strictly decreasing in α.

Proof. Following Lemma 1, queue length L is increasing in α, and in turn, P (L (α, λ)) is
decreasing in α. Revisiting the proof of Proposition 2, for a given Λ value the corresponding
λ∗ realization will be strictly smaller for a ceteris paribus higher choice of α. Figure 7.5
illustrates the mechanics of this proof.
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Figure 7.5: Demand rate equilibrium for different α values (Λ=0.95, bQ=1, b0=1, θ= 0.5)

In the following we drop λ from L(α, λ), implicitly assuming λ∗(α).

7.2.4 Profit-maximizing System Configuration

In both scenarios, the store profit function internalizes the trade-off between interruptions
of store operations due to false alarms (driven by L (α) being increasing in α) and the
direct costs of undetected theft or unregistered sales (driven by β (α) being decreasing in α).
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Assuming the average customer contribution margin m the average loss per theft c, and a
capture rate γ, the store’s profit stream for the EAS case is

π (α) = ΛmP (L (α))︸ ︷︷ ︸
sales

−Λct (β (α) + (1− β (α)) (1− γ))︸ ︷︷ ︸
theft

. (7.8)

For the sake of exposition, we assume a perfect capture rate γ = 1. For the automated
checkout scenario, on the other hand, the store’s profit stream is given by

π (α) = ΛP (L (α))m (1− β (α))︸ ︷︷ ︸
registered sales

−ΛP (L (α) cβ (α))︸ ︷︷ ︸
unregistered sales

. (7.9)

Here, we assume that the payment process can be initiated and carried out correctly
for each of the detected items. The optimal (profit-maximizing) transition detection
configuration obtains as a maximization problem of π with respect to α.

Proposition 4. There exists a unique profit-maximizing choice of α.

Proof. We proceed by illustrating the EAS case. The automated checkout case obtains in
an analogue fashion. The profit function is a linear combination of a sales term (hereafter
referred to as πC) and a theft term (hereafter referred to as πT .). Due to Equation (??),
the theft term is clearly concave and strictly increasing in α on the interval (α, 1). From
Lemma 3 and Equation (7.8), we can establish that the sales term is strictly decreasing in
the α choice. Furthermore, because πC is continuous and bounded, we know that ∂πC

∂α
is

finite at both α = 0 and α = 1 based on the mean value theorem. These observations lead
to the following three generic cases:

• ∂π
∂α
|α=1 > 0: The most negative derivative of the sales term is too small to overcome

the least positive value of the derivative of the theft term at α = 1. In this setting,
the most extreme EAS configuration (α = 1, β = 0) is optimal.

• ∂π
∂α
|α=α < 0 : The most positive derivative of the theft term is too small to overcome

the least negative derivative of the sales term at α = α. Therefore, EAS is abandoned
with α = 0 and β = 1.

• ∂π
∂α
|α=α > 0 and ∂π

∂α
|α=1 < 0: Applying the mean value theorem, we know that ∂π

∂α
has

a unique root on the interval (α, 1). Observing the derivative signs, we verify this to
be the global store profit maximum.
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7.3 Technology Maturity Assessment

Any technological innovation being considered for deployment needs to demonstrate its
usefulness by answering two basic questions: (i) Does it work and (ii) how much better is it
than an alternative solution? To approach these questions, we combine the classification
models and the service operations model (with base choices for the parameter values) to
determine the store profitability for (i) the EAS application scenario (see Figure 7.6) and
(ii) the automated application checkout scenario (see Figure 7.7). This approach allows
assessing the performance of the applications embedded in retail environments and goes
thus beyond the purely technical assessment presented in the previous three chapters.

Considering the EAS application scenario, we see that the accrued benefits are strictly
increasing in detection system performance–—the best classifier (i.e., the strong classifier)
generates a 4 % profit increase over the simple threshold logic. Furthermore, the optimal
system configuration shifts towards lower false-positive rates–—the optimal α is around
5.5 % with the weak classifier and below 1 % with the strong data mining-based classifier.
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Figure 7.6: Store profitability for the EAS scenario
(t=0.01, m=0.1, c=1, bQ=0.1, b0=1, Λ=0.9, θ=0.5)

For the automated checkout scenario, the baseline threshold solution results in an
optimal false-positive rate of almost 50 % which means that every second customer in
reading range of the system must be checked manually, which essentially defeats the purpose
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of an automated checkout system. However, we see drastic improvements with regards to
profitability (an increase of 33 % for the weak classifier and of 75 % for the strong classifier)
and false-positive rate (around 23 % for the weak classifier and around 9 % for the strong
classifier) for the better transition detection systems. Yet, even for the best classifier, the
optimal false-positive rate still seems quite high (i.e., almost every tenth customer in reading
range of the system must be checked manually).
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Figure 7.7: Store profitability for the automated checkout scenario
(t=0.01, m=0.1, c=1, bQ=0.1, b0=1, Λ=0.9, θ=0.5)

The initial evaluation provides us with three key insights: (i) system configuration
matters from an economic perspective, (ii) better classification performance directly trans-
lates into enhanced business value, and (iii) the benefit increase is more pronounced for
more sophisticated application scenarios. The assessment of the technological maturity of
two application scenarios, however, is very different. While the EAS results are promising
and suggest a continued analysis of the application, the results of the automated checkout
systems are—despite the great benefits from better transition detection—insufficient for any
real-world deployment. Going ahead with the latter application will thus require improved
hardware to increase the reliability of the transition detection system.

Given these initial assessments, we focus in the remainder of the chapter on the evaluation
of the EAS application using the strong classifier.
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7.4 Numerical Analysis and Optimal Configuration

Clearly, the model setup outlined in Figure 7.4 relies on qualitatively defined relationships of
different model parameters. Because of this, we perform a sensitivity analysis that pursues
two main objectives: We want to assess (i) the model’s robustness and the effect of certain
assumptions and parameter choices and (ii) whether adapting the system configuration to
the current store situation provides benefits for retailers.

7.4.1 Effect of Incident Management Effectiveness

The first sensitivity analysis is concerned with service restoration upon false-positive events.
For higher incident management effectiveness, service restoration will take less time leading
to smaller reductions in service quality. Figure 7.8 illustrates the optimal choice of the
EAS configuration α∗ for different incident management effectiveness levels θ. For each
effectiveness level, profitability exhibits a unique maximum value. Any upward or downward
deviations from the optimal α choice result in markedly reduced store profits. The α∗ values
are decreasing in incident management times 1/θ. This is because more effective incident
management renders store interruptions less harmful with respect to service quality.
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Figure 7.8: Normalized profits for varying α and different service restoration rates θ
(t=0.01, m=0.1, c=1, bQ=0.1, b0=1, Λ=0.9)
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7.4.2 Effect of Store Profitability and Theft Rate

Figure 7.9 illustrates the profit-maximizing EAS configuration α∗ in response to varying
levels of the store’s average profit margin m for different store traffic intensity. It can
be seen that α∗ is ceteris paribus decreasing in product profitability. This is because as
margins and store traffic increase, avoidance of congestion becomes more important (at the
expense of more undetected theft). Consequently, the optimal configuration is determined
by a characteristic of the store (i.e., profitability). However, this needs to be reflected upon
as higher store margins will most likely also increase the cost of theft.
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Figure 7.9: Optimal false-positive rate α∗ for varying profit margins m
(t=0.01, c=1, bQ=0.1, b0=1, θ=0.5)

Figure 7.10 illustrates the profit-maximizing EAS configuration α∗ in response to varying
theft rates t for different store traffic intensity. The false-positive rate α∗ is unsurprisingly
increasing in the theft rate as the store improves theft protection when facing more frequent
store theft. This comes at the expense of more frequent server breakdowns. For low theft
rates, the number of customers in the store has little effect on the optimal false-positive
rate. With an increasing theft rate, however, the customer stream has a significant impact
on the optimal system configuration. If the store’s utilization level is low, the store queue
is obviously relatively short. In contrast, with increasing utilization, the queue length
increases, which impairs purchase probability due to the non-linear relationship between
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customer stream and store revenue. The higher the store utilization, the more important is
it to avoid false alarms which will further stress service quality due to server breakdowns.
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Figure 7.10: Optimal false-positive rate α∗ for varying theft rates t
(m=0.5, c=1, bQ=0.1, b0=1, θ=0.5)

7.4.3 Effect of Competitive Pressure

Besides store properties, we also consider the effect of the underlying customer choice model
to understand the effects of false alarms on store profitability. Figure 7.11 illustrates the
influence of the base conversion rate b0 on the optimal false-positive rate for different levels
of customer service quality sensitivity bQ. It turns out that the optimal false-positive rate
α∗ is decreasing in bQ. In contrast, we find a non-monotone relationship between store
base utility and α∗. This requires a more careful explanation: In the case of a lower base
conversion rate, only a small percentage of customers ultimately purchase products. In that
case, customers’ general purchase intention is so low that service queues will be extremely
rare. A case in point is exclusive department stores. Although these stores are often very
crowded, only a small fraction of the visitors are potential buyers; most of them just want
to look around. In this case, the store will optimally increase security measures because
the impact on queue length will be minimal. In contrast, situations with very high base
conversion rates reflect circumstances whereby customers want to purchase products despite



7.4 Numerical Analysis and Optimal Configuration 97

an extremely poor service offering (e.g., the sales launch of a new iPhone generation).
In this situation, the adverse effect of tightened security will certainly increase queues,
but customers do not care. For intermediate values of b0, a store can actively influence
purchase decisions through an improved service experience. Consequently, false-positive
events matter, and store security is relaxed in favor of decreased service disruptions.
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Figure 7.11: Optimal false-positive rate α∗ as a function of competitive position b0 for
different values of bQ and Λ (t=0.01, m=0.5, c=1, θ=0.25)

7.4.4 Adaptive System Configurations

The above relationships suggest a clear advantage from adapting a smart EAS configuration
to the current store situation. Of particular importance in this context is the utilization
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of the service system. This observation corresponds to the results of Mani, Kesavan, and
Swaminathan (2015), who argue that dynamic capacity management based on store traffic
information is important to the optimization of profits. However, in contrast to short-term
staffing decisions, adapting the optimal EAS gate configuration may be achieved rather
easily. Figure 7.12 provides an illustration how an integrated service optimization model
can inform such adaptive configuration decisions: Depending on current store traffic Λ (as
measured by the number of entries), profitability m (presence of costly store promotions),
and competitive pressure b0 (presence of competitor promotions) the model determines
different optimal false-positive rates α∗.
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7.5 Discussion

While the previous three chapters (as well as prior research on RFID data analytics) assessed
the performance of developed machine learning models using standard performance metrics
for predictive power in terms of accuracy, the present chapter introduced a service operations
model that allows for the evaluation of the business performance of such models embedded
into socio-technical systems. In this respect, we followed Lee and Özer (2007) and were
able to map technical detection characteristics to business-relevant metrics such as service
quality or profitability. Moreover, the service operations model allowed us to determine the
optimal configuration of the machine learning models, leveraging the models’ freedom of
fine-tuning detection sensitivity. We focused on two frequently discussed application cases,
namely (i) EAS and (ii) automated checkout. Our results highlight the importance of a
comprehensive evaluation of such smart applications: While the EAS application achieved
high operational performance with the best classification model, the automated checkout
solution failed this initial litmus test (although both applications are based on the same
underlying machine learning models for transition detection).

Naturally, there are limitations inherent to the presented research. First, we considered
only transition detection, which—despite its crucial importance for many smart applications—
is only one facet of a broader range of detection tasks. In particular, applications relying on
indoor localization cannot directly benefit from the proposed service operations model. As
a matter of fact, the chapter was only concerned with (i) the transition detection models
presented in Chapter 4 (i.e., the chapter presenting the EAS artifact) and (ii) two of the
three application scenarios discussed in this thesis. In particular, we took into account
machine learning models that were only optimized with regard to detection accuracy but
not for speed of detection. An extension of the service operations model would, however,
easily be possible—in the EAS case, for example, by adjusting the capture rate γ (i.e., by
considering a functional correlation between the speed of detection and the probability of
successfully catching a thief). Similarly, an adaptation of the service operations model to
optimally configure the underlying transition detection model of the smart fitting room
application would be possible, as the underlying optimization problem is based on a similar
trade-off between misclassification events. A product that is brought into a cabin but not
detected by the system (i.e., a false-negative event) results in missed opportunities for cross-
and up-selling; a product that is accidentally detected (i.e., a false-positive event) impairs
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service quality as it causes the system to display misleading information (e.g., additional
information on products outside the fitting room).

With regard to the actual model, we focused solely on capacity utilization as the
single measure of service quality. This is arguably a somewhat limited focus and fails
to account for “broader and non-financial consequences” (Ostrom et al. 2015). Without
access to comprehensive store data outside the experimental study, we parametrized the
service operations model in a generic fashion. Similarly, the chosen model setup may
be too restrictive for proper representation of real-world retail service systems. A richer
model could increase the number of servers, relax the distributional properties of the
stochastic processes and potentially consider a queuing network with sequential processes
(e.g., browsing, trying, buying). For instance, the theft rate may not be exogenously given,
but rather dependent on the chosen EAS configuration, that is, shoplifters respond to
the number of undetected thefts (Becker 1968; Gill 2007). Furthermore, the integration
of empirical store traffic data akin to Kesavan, Deshpande, and Lee (2014), as well as
information on margins and competitive pressure, would facilitate the calibration of model
parameters. Future research could also move away from using the model primarily for
system evaluation and instead assume an active optimization role. This would, in turn,
necessitate a more dynamic modeling approach with non-stationary arrival processes.



8 Conclusion

Digital innovation offers a wide range of opportunities in the fashion retail sector (Manyika et
al. 2015; PricewaterhouseCoopers 2015). However, the transformation of abstract concepts
into real applications is a non-trivial challenge for which turnkey solutions typically do not
exist. Reliable object detection and tracking are key capabilities for the transformation
of traditional brick-and-mortar stores into smart stores “that are able to accommodate
[customer] needs and wants when desired” (Kourouthanassis and Roussos 2003). Against
this backdrop, this thesis presented three novel smart fashion store applications that are tied
to the locations of garments on the sales floor and offer clear benefits for retail companies
and their customers: (i) an EAS system that reliably distinguishes between theft and
non-theft events, (ii) an automated checkout system that detects customers’ purchases
when they are leaving the store and associates them with individual shopping baskets to
automatically initiate payment processes, and (iii) a smart fitting room that detects the
items carried into individual cabins and identifies the items customers are currently most
interested in. The practical relevance of the EAS system is demonstrated not only by the
economic extent of losses due to theft but also by the cost reduction potential of replacing
existing proprietary EAS systems. The automated checkout system, on the other hand,
promises greater sales due to an improved customer experience and cost savings because
less store personnel is needed (Manyika et al. 2015). The smart fitting room application
represents great potential to enhance the customer shopping experience through additional
offerings such as product recommendations or omnichannel services. This thesis focused on
two interrelated challenges in the practical implementation of such applications. The first
challenge refers to the dependencies between digital services and events in the real world;
the second challenge to the optimal configuration and evaluation of such applications.

The three proposed smart applications leverage (i) RFID technology and (ii) machine
learning techniques to address the first of the two interrelated challenges. RFID is chosen
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primarily because the technology is already widely used in the fashion retail industry for the
automatic detection of logistical units in upstream and backroom processes. Consequently,
solutions that piggyback on RFID present an opportunity to (i) expand the value potential of
the technology and (ii) avoid investments in additional sensors and infrastructure. Machine
learning techniques, on the other hand, provide a means to (i) address the problem of
limited process control on the sales floor (e.g., unpredictable customer behavior, suboptimal
store layouts, lack of space) and (ii) facilitate new processes (e.g., detection of customer
interactions with RFID-tagged garments). The application of machine learning models
to improve detection accuracy was already introduced in prior research (Buffi et al. 2017;
Keller, Thiesse, and Fleisch 2014a; Keller et al. 2012; Ma, Wang, and Wang 2018). However,
this thesis proposes novel machine learning features that facilitate the reliable and timely
identification of multiple objects moving along uncontrolled paths. In doing so, this thesis
goes beyond prior research on RFID data analytics, which has almost exclusively focused
on standardized processes in controlled environments (e.g., production or logistics facilities).
Moreover, this thesis shows that machine learning techniques can be leveraged to detect
items at the very moment (or shortly after) they pass through a transition area and that,
to achieve this, the antennas do not need to be located at the transition area.

The three proposed IT artifacts comprise different hardware and software components
(see Figure 8.1). The EAS system uses an RFID gate with a gate-mounted RFID system and
four far-field antennas, the automated checkout system an RFID gate and a ceiling-mounted
RFID system with 52 far-field antenna beams, the smart fitting room application only
a ceiling-mounted RFID system. The architecture of all three artifacts includes an item
detection software component that reliably distinguishes between items that pass through
a transition area and others (e.g., static items near the RFID reader). With increasing
requirements, the software component was continuously upgraded. While the design of the
EAS system focused on the reliable identification of tagged items leaving the shopping floor
area, the design of the automated checkout system also aimed at identifying items at the
very moment (or shortly after) they leave the store. In contrast to the design of the first
two applications, the smart fitting room is based on an RFID infrastructure with antennas
that are not located at the transition areas, an arrangement which required a different
approach to enable reliable and timely item detection and easy integration into existing
retail environments. While the reliable detection of item transitions is of utmost importance
for the developed smart applications, this thesis also showed that more information can be
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extracted from the low-level RFID data to improve the provided services. The architecture
of the automated checkout system also comprises a ‘product assignment’ component and
the smart fitting room application an ‘interaction detection’ software component. The
product assignment component assigns items leaving the store (identified by the item
detection component) to individual shopping baskets; the interaction detection component
distinguishes between items customers are currently interacting with and others.

CONCLUSION
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(c) smart fitting room application

While prior research on RFID-based transition detection systems has assessed their
performance using standard performance metrics for predictive power in terms of classifica-
tion accuracy, this thesis demonstrates how the degree to which the systems’ underlying
classification models help to meet the business objectives can be assessed. The focus on
accuracy in prior research neglects (i) the economic impact of misclassifications (which not
only depends on the type of error but also on the current state of the service system) and
(ii) the inherent trade-off between different false-negative and false-positive classification
events (i.e., configuring a classifier for fewer false-positive events typically increases the
occurrence of false-negative events and vice versa). Regarding classification models, this
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also implies that a major degree-of-freedom of these models, the detection sensitivity, is not
used. To assess the suitability of the detection results in the context of a service system,
this thesis proposed evaluating the business performance of the cyberphysical systems by
means of a service operations model. To exemplify the approach, this thesis considered the
simplest transition detection classifier developed in the course of the research and two of
the discussed application scenarios, namely EAS and automated checkout. To this end, this
thesis first introduced a mathematical approximation of the classifier’s DET curve, which
describes the ratio between false-positive and false-negative events as a function of the model
configuration. In a second step, the function was integrated into an optimization model,
which determines optimal detection system configurations by internalizing the inherent
trade-off between system detection performance and customer service quality. The results
highlight the importance of a comprehensive evaluation of smart applications. While the
EAS system achieved high operational performance with the best classification system, the
automated checkout solution failed the initial litmus test.

Beyond the specific use cases, this thesis provides contributions along different dimensions.
First, it demonstrates how data analytics techniques can be leveraged to extract valuable
information from RFID data streams. In this context, the data preparation phase has
proven particularly important. This thesis shows (i) that one should apply a sliding window
approach to enable classifications in a timely fashion and (ii) that features that augment pure
signal strength readings with spatial and temporal information help to improve detection
accuracy (e.g., temporal shifts between maximum RSSI values of different antennas).
Secondly, this thesis shows that RFID data analytics can not only be used to improve
existing RFID-based processes but also to facilitate new processes (e.g., fitting rooms
that are able to detect garments customers are currently trying on). This is particularly
interesting for retailers with RFID in productive use who can leverage the developed software
components to provide novel retail services and enhance customers’ shopping experience.
The software components can thus serve as an incubator for service innovations in the
retail industry and beyond. Finally, the thesis demonstrates (i) how technical artifacts
embedded in socio-technical systems can be optimally configured and (ii) how they can be
economically evaluated. In this context, the use of fitted performance curves establishes a
novel link between data mining results and service operations management. This thesis
followed Lee and Özer (2007) and was able to substantiate empirical results by means of a
thorough analysis of the underlying economic trade-off. This approach allowed us to map
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technical detection characteristics to business relevant metrics.
There are limitations and opportunities for future research inherent to the presented

research that go beyond the discussion sections in the individual chapters. First, this thesis
focused on the development of software components that leverage data mining techniques to
distinguish between different events based on RFID data. However, successful deployment
of the proposed smart fashion store applications necessitates additional system components.
Further tests of the automated checkout system should include consideration of the payment
initialization process; further tests of the smart fitting room application should comprise
customer services that are based on the information provided by the developed software
components (e.g., product recommendations based on the garments that are currently of
greatest interest to a customer).1 Secondly, future research should be focused on creating
entire service systems instead of designing individual system components. The software
components of the discussed artifacts can be applied in instances beyond the presented use
cases. Automated detection systems that can be implemented in environments with limited
process control, for example, offer various opportunities for additional use cases. Item
path information, on the other hand, can be used to trigger automatic stock replenishment
or to improve product recommendations as it could help answer help answer various
interesting questions (e.g., “Did the customer spend a lot of time in a particular section of
the fashion store?”, or “Which items are often tried on together?”). Such generalizations
of the developed systems are key for the successful introduction of novel cyberphysical
systems. Finally, future research should investigate whether the proposed smart fashion
store applications may be perceived as a potential privacy threat by customers.2 This is
important because introductions of new technology in retail environments in the past have
shown that a failure to sufficiently consider privacy concerns can have severe consequences
for retailers. When retailers in North America and Europe started to roll out RFID in the
early 2000s, for example, a public debate arose concerning the potential misuse of the data
that could be collected with the technology (Thiesse 2007).

1Preliminary results with regard to this issue have been published in Hanke et al. (2018). This paper is
concerned with the question of whether and to what extent the sensing capabilities of smart fitting rooms
and the integration of contextual information can improve the quality of product recommendations.

2Preliminary results with regard to this research question have been published in Weinhard, Hauser,
and Thiesse (2017). In this paper, we investigate the antecedents of customers’ usage intention towards
smart fitting rooms and the associated trade-off between the perceived benefits and the perceived privacy
costs. To this end, we propose a research model based on the most recent version of the Unified Theory of
Acceptance and Use of Technology (UTAUT2) and the Extended Privacy Calculus Theory.
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