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2 INTRODUCTION 

2.1 CARDIOVASCULAR DISEASES - THE LEADING CAUSE OF DEATH WORLDWIDE 

Cardiovascular diseases including heart attacks, strokes, heart failure and their 

complications are the leading cause of death worldwide. In 2016 they were responsible 

for 17.9 million deaths 1. Notably, not only life expectancy is affected by cardiovascular 

diseases, but patients suffering from heart diseases also show a poorer quality of                

life 2,3. 

On one hand, behavioral risk factors like unhealthy diet, physical inactivity, 

tobacco use and immoderate consumption of alcohol favor the genesis of raised blood 

pressure, raised blood glucose, dyslipidemia, and obesity which are major risk factors 

for the development of cardiovascular diseases 4. On the other hand, aging is a crucial 

factor that increases the risk to suffer from cardiovascular diseases 5. From 2011 to 2014 

the prevalence of cardiovascular diseases in the U.S. was 41.4 % in the age group  of 40-

59 year old males (39.4% of females), 69.6% in the group of 60-79 year old males (68.6% 

of females), and 84.4% in the age group of males older than 80 years (86.5% of females) 

reflecting a distinct increase with age (Fig. 1) 6. Even without correlating risk factors, 

intrinsic cardiac aging causes structural changes of the heart and functional decline in 

the elderly population 5,7 .  

Given the world population growing continuously older, a rising number of 

people suffering from heart diseases and thus a need of new treatments, the role of 

aging in cardiac diseases is a field of future relevance and interest. 
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Fig. 1: Prevalence of cardiovascular disease in adults ³ 20 years of age 
Data including coronary heart disease, heart failure, stroke, hypertension. Presented data were 
collected for the NAHNES (National Health and Nutrition Examination Survey) between 2011 and 
2014 6. 
 

 

2.2 COMPONENTS OF THE CARDIAC AGING PROCESS 

Cardiac aging is a multifactorial process characterized by functional decline as well 

as structural, cellular, and molecular changes that proceeds even in the absence of 

concomitant cardiovascular diseases and systemic risk factors 8,9.  

Left ventricular hypertrophy, increased cardiomyocyte size, a reduced number of 

cardiomyocytes, and an increasing total amount of collagen resulting in fibrosis are 

structural characteristics of an aging heart 8. Structural transformations together with 

molecular alterations contribute to an increased ventricular stiffness and impaired 

ventricular relaxation, which is considered to be causative for diastolic functional 

deterioration 9-12. In elderly, the prevalence of left ventricular diastolic dysfunction is 

considerably increased compared to young individuals. The early diastolic filling rate 

impairs as early as from an age of 20 years, leading to a decreased E:A ratio in 
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echocardiographic doppler, which can be interpreted as decreased diastolic             

function13-16. To maintain a sufficient ventricular filling, the atrial contraction, 

responsible for late diastolic filling, is intensified.  In long term this causes atrial 

hypertrophy and enlargement. As a consequence, remodeling processes can promote 

the  development  of  atrial  fibrillation  which  is  more  prevalent  in the aged   

population 7,8,17. In contrast to reduced diastolic function, systolic function measured by 

ejection fraction (EF) remains preserved during aging and functional alterations are 

rarely observed at rest 8. However, during exhaustive exercise aged hearts show a lower 

maximum EF and heart rate, indicating a reduced cardiovascular reserve 8,18. Therefore, 

the heart becomes more vulnerable to stress and predisposed to heart failure 17,18.   

Numerous approaches exist to elucidate the molecular processes behind 

structural changes and functional deterioration with aging, comprising altered calcium 

homeostasis, extracellular matrix remodeling, activation of neurohumoral signaling, a 

deficient b-adrenergic, sympathetic regulation, aging and loss of cardiac stem cells, and 

finally mitochondrial dysfunction linked to the effect of reactive oxygen species 5,19-25. 

Additionally, myocardial aging is associated with cardiomyocyte damage, causing an 

increased release of intracellular molecules and heart specific antigens. Those can be 

recognized by immune cells, resulting in an immune response that might consequently 

lead to an inflammatory state 26. Current evidence indicates, that inflammation might 

be the underlying mechanism for many molecular alterations associated with aging and 

that chronic inflammation increases the risk for cardiac diseases in elderly 26-30. 
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2.3 THE IMMUNE SYSTEM 

Historically, the immune system’s most established role was the protection of an 

individual against foreign pathogens, harmful substances and the damage they          

cause 31.  Continuative knowledge developed in the last decades. Besides this canonical 

role, accumulating evidence revealed that the immune system is also crucial for 

maintaining tissue homeostasis under baseline conditions. Immunological activities 

modulate physiological processes such as wound healing and tissue repair, prevention 

of malignancies or cardiac electrical conduction 31-33. In recent years, the impact of the 

immune system on different organ systems became progressively evident and is focus 

of ongoing research.  The complex immune network is basically divided into two parts, 

the innate and adaptive immunity, consisting of numerous cells, organs, molecules and 

messengers. Innate and adaptive immunity work hand in hand and ensure a balanced 

function by continuous interaction 31.  

 

 

2.3.1 Innate immunity 

The innate immune system is the first line of defense against intruders, 

immediately available and acting rapidly. It is composed of mechanical barriers like skin 

and mucosal epithelia, humoral factors like complement or antimicrobial molecules and 

cellular components including monocytes, macrophages, dendritic cells, natural killer 

cells and neutrophilic, eosinophilic and basophilic granulocytes 31. The presence of 

pathogen specific molecules, referred to as pathogen-associated molecular patterns 

(PAMPs) is detected by germline-encoded receptors (pattern recognition 

receptors=PRRs) which are continuously expressed on innate immune cells and can 

induce their activation 31.  PRRs are moreover capable of identifying damage associated 

molecular patterns (DAMPs), self-molecules released during cell stress and tissue injury 

with immuno-stimulatory properties on neutrophil granulocytes (=neutrophils), 

dendritic cells or macrophages 34.  
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Macrophages, granulocytes and dendritic cells are phagocytes 31. Macrophages 

populate the tissue since the early embryonic development and are recruited from 

circulating blood monocytes under inflammatory conditions 35. In the context of 

immediate immune defense, macrophages eliminate invading pathogens by 

phagocytosis and digestion. Antigens are processed and presented on major 

histocompatibility complexes (MHC), which constitutes a requirement for T-cell 

activation 31. Macrophages thereby form a link to the adaptive immune system. The 

activation of macrophages results in a release of cytokines and chemokines, creating an 

environment of inflammation and initiating an inflammatory response 31. 

Pro-inflammatory mediators like TNF, IL6 and IL1β as well as products of tissue 

damage attract neutrophils 36. Neutrophils are the first and most numerous cells that 

accumulate at the side of infection or injury and have a highly potent phagocytic activity. 

Their capability of eliminating pathogens is remarkably effective, however, the defense 

mechanisms are rather unspecific and can cause collateral damage of the surrounding 

healthy tissue 37,38.  

Immature dendritic cells (DCs) represent the third class of phagocytes. DCs are 

the most potent antigen presenting cell and are competent to prime naïve T-cells. A 

more detailed picture about their functionality is given in chapter 2.3.2.3.  

Besides its function as host defense system, the innate immune system plays a 

fundamental role in tissue homeostasis and repair. Activated innate immune cells 

contribute substantially to clearance of cell debris and affect the regulation of local 

metabolism.  By producing growth factors and pro-angiogenic mediators they provide 

essential conditions to the development process and wound healing 37,39,40. 

Furthermore, secreted cytokines initiate fibroblast proliferation and collagen synthesis, 

thereby regulating tissue remodeling 41.   
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2.3.2 Adaptive immunity  

The adaptive immune response is closely connected to the innate immune 

system. In case of pathogen defense and inflammation, both form a cross-linked system 

and work hand in hand. Other than the innate immunity, the adaptive part reacts after 

a time delay 31. However, after activation it provides an immunological highly specific 

immune response and is characterized by selective antigen recognition. The cellular 

components are B- and T-lymphocytes 42. Following antigen contact, the adaptive 

immune system imprints an immunological memory with the potential to remember 

previous encountered pathogens, thereby providing a long-lasting protection against 

recurring disease. Upon re-exposure to a familiar antigen, an immune response can be 

executed faster and in an amplified manner 42,43.  Finally, the adaptive immunity is 

involved in the development of autoimmune processes. As it loses the competence to 

distinguish between self and foreign antigens, autoimmunity results 31.  

 

 

2.3.2.1 B-Cells 

B-cells produce specific antibodies, so called immunoglobulins, which are central 

players of the adaptive humoral immune response 43. B-cells originate from 

hematopoietic stem cells in the bone marrow. During the developmental episode they 

generate a functional B-cell receptor with multiple antigen specificities 31,44. Before 

emigration from the bone marrow, B-cells have to pass immunological checkpoints that 

sort out cell without sufficient surface Ig-signaling or, on the other hand, potentially 

autoreactive cells 45,46. After maturing entirely in the spleen, B-cells circulate through 

the body as fully competent immune cells47. Antigenic contact at this stage will induce 

B-cell activation and differentiation. During a process called germinal center reaction, B-

cells undergo clonal expansion, somatic hypermutation, affinity maturation, and isotype 

switch of the antibody, resulting in the formation of a highly specific memory B-cell 

compartment 31,46.  Successful B-cell activation and differentiation into plasma cells 

leads to the production of highly specific antibodies.  
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Antibodies contribute to the immune defense via neutralization, opsonization, 

and binding complement, which enhances phagocytosis or induces lysis of a 

microorganism 48. Different immunoglobulin classes ensure versatile functions. While 

IgM and IgD are expressed on all naïve B-cells, switched IgA and IgG are the predominant 

antibody classes 31. 

B-cells play a protective, indispensable role in immune defense, but they can also 

have harmful effects and induce damage in autoimmune disease or after myocardial 

infarction 46,49. The production of autoantibodies, the presentation of self-antigens to T-

cells and the release of proinflammatory cytokines induce and maintain self-reactive 

activity 50,51. B-cells have to pass a number of checkpoints in the course of development, 

each providing different strategies to eliminate cells with deficient self-tolerance and an 

inappropriate affinity against self-molecules 52. When regulating strategies fail due to 

alterations in gene expression, variations in signaling pathways or an imbalance 

between activating and inhibitory signals, B-cells become a player in autoimmune 

diseases 53.  

 

 

2.3.2.2 T- cell development and maturation 

T-cells are key players of the cellular adaptive immunity. They secrete mediators 

to regulate an immune response, help B-cells producing effective antibodies and provide 

signals for further cell activation. Cytotoxic T-cells can induce death of cells infected by 

viruses or other pathogens as well as damaged or dysfunctional cells  31.  

T-cells originate from multipotent hematopoietic stem cells (HSC) residing in the 

bone marrow. HSC-derived lymphoid progenitors emigrate from the bone marrow and 

populate the thymus, the major site of T-cell differentiation and maturation 54. The 

thymus is a multi-lobular organ subdivided in cortex and medulla. Each area provides a 

specialized environment of cells and signaling molecules required for T-cell 

development. T-cell progenitors, called thymocytes, have to undergo a number of 

maturation steps before leaving the thymus as immune competent T-cell 55.  



 - 8 -  

The cortex is place of thymocyte proliferation by cell division. During stages of 

development T-cells first do not express one of characteristic T-cell co-receptors CD4 or 

CD8, later carry both CD4 and CD8 and finally, after successful recombination and 

somatic recombination, express an antigen specific T-cell receptor (TCR) 31,56. If this 

process fails, T-cells die. The emerging, highly diverse TCR repertoire still contains 

inoperable and potentially autoreactive receptors. Therefore, thymocytes soon enter 

the process of positive selection to identify the most convenient lymphocytes and the 

process of negative selection to sort out potentially harmful, autoreactive T-cells. 

Meanwhile they lose either CD4 or CD8 and become single positive cells 57.  

For the final differentiation step of negative selection, single positive thymocytes 

enter the thymic medulla. In case of immoderate, strong interaction of the TCR to self-

peptides presented by medullary thymic epithelial cells, dendritic cells or macrophages, 

thymocytes die by apoptosis 57. A fraction of cells bears a TCR of intermediate-high 

affinity to self-molecules. Those cells develop to naturally occurring, thymus derived, 

Foxp3+, CD4+ regulatory T-cells (tTregs) 58.  

During the process of T-cell maturation, the majority of T-cell progenitors dies. 

Those who survive leave the thymus as immune competent, mature T-cells, qualified to 

recognize specific antigens 59. 

 

 

2.3.2.3 Antigen presenting cells and T-cell priming 

After emigration from the thymus, T-cells populate secondary lymphoid organs 

and enter a continuous process of recirculation; T-cells migrate into lymphnodes via high 

endothelial venules, leave it via efferent lymph vessels, reentry the vascular system via 

thoracic duct and finally, recirculate to lymphoid tissue 31 . Circulating T-cells that did 

not encounter their antigen (Ag) yet, are called naïve T-cells 60. The recirculation process 

is highly important and ensures that rare antigen-specific, naïve T-cells get contact to 

new antigens, triggering their activation and participation in the immune response 61. 

This first activation, also referred to as T-cell ‘priming’, takes place in secondary 
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lymphoid organs. Naïve T cells are not able to enter the side of infection, whereas 

effector T cells are 62.  

In secondary lymphoid organs peptides of antigens are presented to T-cells. They 

are bound to major histocompatibility complexes (MHC) on the surface of specialized 

antigen presenting cells (APC), particularly dendritic cells (DC). Beside DCs, 

macrophages, monocytes, and B-cells operate as APCs, but are less important for T-cell 

priming 31. APCs phagocyte an antigen at side of infection, process it, and present 

peptides on MHC I and MHC II molecules 63. Binding of a foreign or self-antigen as well 

as contact to necrotic cells results in APC activation 64. Activated APCs modify their 

surface molecules, start synthesizing cytokines required for T-cell activation and 

differentiation and migrate to secondary lymphoid tissue. While migrating to the T-cell 

zone of lymphoid tissues, APCs mature and arrive fully developed 63.  

Circulating, naïve T-cells move selectively through T-zones, where they can bind 

to APCs. In absence of a specifically matching presented antigen, T-cells return to the 

circulation. As soon as the matching peptide:MHC complex is recognized, a tight ligation 

is formed. Thereby, T-cells are immobilized by APCs, a process called T-cell ‘trapping’ 65. 

CD8+ T-cells recognize antigens in context with MCH I receptors, whereas CD4+ T-cells 

need antigen presentation by MHC II receptors 31. 

APCs (DCs) provide different kinds of signals required for naïve T-cell activation 

and differentiation 63. Depending on environmental conditions in which APCs were 

activated, different cytokines are produced inducing the differentiation of various T-cell 

effector subsets 66. Moreover, the strength of TCR interaction with the peptide:MHC 

complex might be relevant (Fig. 2)67. Differentiated effector T-cells feature all 

competences to independently perform an immune response against a target cell. No 

co-stimulation is needed 31.  
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Fig. 2: T-cell priming 
After emigration from the thymus, naïve T-cells recirculate between secondary lymphatic organs. 
Immature DC precursors are spread all over the body. APCs phagocyte the antigen at side of infection, 
degrade and process it intracellularly and present peptides on MHC I and MHC II molecules. Simultaneous 
interaction of PAMPs or DAMPS with the TLR induces APC activation, which results in the upregulation of 
B7 surface molecules, required for T-cell activation, and the simulation of cytokine synthesis. Finally, 
migration to secondary lymphoid tissue is initiated.  APCs (DCs) provide different kinds of signals required 
for naïve T-cell activation and differentiation: 1. Engagement of TCR with the antigen peptide:MHC 
complex assisted by CD4 and CD8 coreceptors. 2.  Co-stimulation by molecule B7 which is upregulated on 
activated APCs, interacts with the CD28 surface molecule on T-cells and induces interleukin-2 (IL2) 
synthesis as well as high affinity IL2 receptor expression. This is essential for T-cell survival. 3. Different 
cytokines released by activated APCs induce T-cell differentiation 31,63. 
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2.3.2.4 Conventional T-Cell subsets and function 

After successful T-cell priming, different subsets are established. Figure 3 gives 

an overview of the major T-cell subsets and cytokines that induce their differentiation 

and function. CD8+  as well as CD4+ TH1, TH2, TH17 and TFH-cells are part of a collective 

called `conventional T-cells´ (Tconv), promoting immune response and providing 

activation of their target cell 68. 
 

 
 

Fig. 3: T-cell subsets, cytokine impact and functions 
CD8+ T-cells differentiate into cytotoxic T-cells, specialized in destruction of target cells either being 
infected with intracellular pathogens (primarily viruses) or malignant cells. Peptide fragments are 
presented on MHC I molecules on the surface of infected cells. Identification of the foreign antigen leads 
to release of zytolysin, perforins and granzymes perforating the target cell and inducing cell death. IL12 
and interferon-γ (INF-γ) are required for differentiation towards TH1-cells. TH1 cells itself produce the 
proinflammatory cytokines INF-γ and TNF and contribute to macrophage activation.  TH2-cells can be 
characterized by synthesis of IL4, IL5 and IL13. Their differentiation is triggered by IL4 and TH2 cells are 
functionally involved in antibody class switch of B-cells towards IgE.  TGF-ß and IL6 polarize differentiation 
towards TH17-cells that secret IL17.  IL17 mediates local cells to produce cytokines recruiting neutrophils, 
mainly for the protection against extracellular bacteria and fungi.   A rather new identified subset is the 
population of TFH-cells.  They are produced in presence of IL21 and IL6. TFH secrete  cytokines  characteristic  
for  other subsets such as INF-γ or IL4, both providing support to maturing B-cells and for the generation 
of high-affinity antibodies 31,66,68. 
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2.3.2.5 Regulatory T-cells 

Besides the conventional T-cell compartment, a further class of CD4+ T-cells, 

called regulatory T- cells (Tregs), can be identified in the periphery. Unlike conventional 

T-cells they exhibit primarily immunoregulatory properties. 

Regulatory T-cells display CD25 on their surface and express transcription factor 

forkhead box protein 3 (FoxP3). FoxP3 plays an important role for the development and 

suppressive function of Tregs 69,70.  Tregs are specialized in maintaining peripheral 

tolerance, suppression of an ongoing immune response, and prevention of auto-     

immunity 31,58. In chronic inflammation and autoimmune disease, an inadequate 

activation of Tregs can be observed often 71,72. Whereas immunoregulatory functions are 

usually  beneficial,  they can be unfavorable for example in limiting anti-tumor   

immunity 73.    

Based on their development, two different types of regulatory T-cells are 

distinguished; first, thymus-derived, naturally occurring regulatory T-cells (tTregs) and 

second, peripheral regulatory T-cells (pTregs), induced in the periphery 74. As described 

above, tTregs are selected during maturation in thymus by TCR binding with 

intermediate-high affinity towards self-peptide:MHC complexes, consequently being 

potentially self-reactive 58. They are considered to be important for tolerance to self-

antigens 75. Polarization toward pTregs occurs when naïve T-cells are activated in the 

presence of TGF-ß and retinoid acid, but in the absence pro-inflammatory cytokines such 

as IL6 76. For a long time it was assumed that pTregs limit primarily immune responses to 

foreign, non-self-antigens such as allergens, dietary antigens and bacteria. Recent 

studies showed that tTregs were unable to suppress autoimmunity against self-antigens 

in the absence of pTregs, indicating a close collaboration of both subsets  77,78.  

Regulatory T-cells feature a repertoire of mechanism to control and suppress 

immune activity. They produce regulatory cytokines like IL10, TGF-ß or IL35, interact 

with DC and interfere with sufficient T-cell activation 72,79-81. Moreover, Tregs compete 

with Tconvs for available IL2 molecules, leading to reduced immunogenic effector T-cells 

or even cell death 58,82. These regulatory sequences are only some examples, how Tregs 
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provide regulatory properties. Immunosuppression by Tregs is a field of scientific interest 

and further mechanisms are already identified or subject of current research.  

 

 

2.3.2.6 Development and Maintenance of T-Cell memory 

Immunological memory is essential for an immediate immune response to 

previously encountered pathogens and it is the underlying mechanism of vaccination 31. 

As mentioned above, antigen contact as well as vaccination usually cause a dramatic 

increase of effector T-cells that become dispensable after termination of the immune 

response. Therefore, most activated T-cells die, with exception of a small amount 

migrating to lymphoid or nonlymphoid tissues. This minority represents the long-living 

population of memory T-Cells including the two subsets of central memory T-cells (TCM) 

and effector memory T-cells (TEM). Both, CD4+ and CD8+ T-cells can differentiate into 

memory T-cells 31,83. 

The conditions and processes determining the destiny of a stimulated T-cell to 

become either an effector T-Cell and die or, a long-living memory T-cell belonging to the 

TCM or TEM subset have been long discussed. One important factor which determines T-

cell differentiation is, for example, the signal strength for TCR activation 83.  

TEM-cells and TCM-cells show a low activation threshold against antigens 

compared to naïve cells, but present phenotypically and functionally different. TEM-cells 

lost lymph node homing receptors, but recognize proinflammatory cytokines, migrate 

to inflamed tissue, mature rapidly to effector T-cells when targeting an antigen, and 

provide immediate effector function 65,83,84. Human TCM-cells do express receptors for 

lymph node homing, show a slow turnover and reside in T-zones of lymphoid tissue 65,84. 

Compared with naïve T-cells, the activation threshold is distinctly lower, the affinity of 

TCR is increased and less co-stimulation is needed to trigger differentiation. TCM-cells 

show a high responsiveness to antigenic stimulation; nevertheless, their transformation 

into effector T-cells is slower than it is for TEM-cells and the cytokine production is less. 

The function of TCM-cells is rather providing reactive memory in terms of maintaining 

the size of the memory compartment and replacing lost TEM-cells than direct, protective 
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memory. The size of the memory compartment remains almost stable during life. In the 

rare event of naïve T- cell numbers decreasing below a certain threshold, memory T cells 

can proliferate and fill this gap 65,83-85.  

Recent studies identified a third population, tissue resident memory T-cells (TRM), 

that colonizes tissues without recirculation. TRM -cells were, so far, shown to reside in 

frontlines of infection and mediate protection in a number of different tissues such as 

the skin, gut and lungs 85. 
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2.4 THE IMPACT OF AGING ON THE IMMUNE SYSTEM - IMMUNOSENESCENCE  

The aging process has a fundamental impact on living organisms and results in 

various alterations of function and homeostasis of different organ systems. The immune 

system is no exception. It has been long recognized and many times described that aging 

of the immune system goes along with major and determining changes leading to an 

imbalanced function. The mainly described and most decisive changes of the aged 

immune system are 86-90: 

a) Age dependent decline in immune competence against pathogens  

b) Increased prevalence of cancer  

c) Extenuated response against vaccination  

d) Increased susceptibility to autoimmune disease 

e) Chronic low-grade inflammation 

f) Defective wound healing 

g) Decreased CD4:CD8 ratio 

h) Skewing of the T-cell repertoire 

i) Clonal hematopoiesis 

So far, the underlying mechanisms are not entirely decoded, but in recent years shifts in 

cell composition, signaling or DNA expression have been identified to be involved in age 

related alterations. A number of studies indicated an association between persistent 

CMV (cytomegalovirus) infections and aging of the immune system as well as age 

associated diseases 87.  In a recent clinical trial with more than 700 octogenarians, CMV 

seropositivity and resulting T-cell senescence were linked to increased cardiovascular 

mortality 91.  Heart failure patients with positive CMV serology exhibited lower ejection 

fraction and a more advanced T-cell senescence phenotype compared to CMV negative 

patients 92.  

Still, many questions remain unanswered. Although the adaptive immunity has 

been reviewed more extensive regarding this topic, age-related changes apply to both, 

innate and adaptive immunity. 
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2.4.1 Age-associated alterations of the adaptive immune system 

2.4.1.1 Conventional T-cells and aging 

Commonly, a shrinking naïve T-cell compartment and a narrowed TCR repertoire, 

causing for example impaired ability to respond to new antigens, are linked with 

deteriorations of immune function. Thymus involution, unavoidable during aging, is 

often regarded as origin of T-cell changes 89. Whereas this is applicable for mice in which 

the entire naïve T-cell compartment is thymus derived and contracts after thymic 

involution, a translation of this principle into human is not offhandedly possible 93,94.  

In men, the size of the naïve T-cell compartment is largely preserved by 

homeostatic proliferation (by division) of peripheral T-cells 94. It has been observed, that 

the absolute number of naïve CD4+ T-cells only slightly decreases with aging, whereas 

the number of naïve CD8+ T-cells shrinks in opposite to a growing CD8+ memory 

compartment 95,96.  Moreover, a sufficient TCR repertoire, ensuring response to all kind 

of peptides, is highly preserved up to the eight decade of life, probably due to a sufficient 

initial clonal size and quantity of varying TCRs in young age together with steady 

homeostatic T-cell proliferation 97-99. However, a skewing TCR-repertoire in elderly 

individuals can be observed in the CD4+ T-cells, most likely due to peripheral selection 

rather than ceasing T-cell output (by thymus) 100. 
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Fig. 4: The naïve T-cell compartments and homeostasis during aging 
Although thymic output decreases with aging, the naïve T-cell compartment is maintained by homeostatic 
T-cell proliferation in adult humans. This kind of reproduction can entirely maintain the richness of the 
TCR repertoire. Nevertheless, richness decreases with aging and clonality increases, probably due to 
peripheral selection. The naïve CD8+ T-cell compartment is affected more than the CD4+ T-cell 
compartment. Furthermore, shrinkage of the CD4+ and CD8+ T-cell compartment can be observed in old 
adults 89,101.  
 

Those alterations are not only causative for a debilitated immune response 

against exogenous antigens, but are also regarded as a possible reason for developing 

autoimmune processes 102. Peripheral selection pressure could lead to accumulation of 

an autoreactive TCR repertoire 102. In murine models increased homeostatic 

proliferation has been shown to cause selection of T-cells with higher affinity for self-

peptides 103,104.  Additionally, variations of signal regulation for negative thymic 

selection, generally outsourcing T-cells with high affinity self-recognition, were found 

with aging 105. Furthermore, uneven distribution of clonal sizes is a determinant of 

function. On one hand infrequent clones might go along with decreased response to 

immune challenges. On the other hand, expanded clones can cause increased 

responsiveness, in case of high affinity to self-peptides resulting in autoimmunity 97,106.  

Moreover, intracellular processes influence T-cell effectivity. A reduced activity 

against foreign antigens can be explained by a decrease of T-cell sensitivity to respond 

to stimuli. In CD4+ T-cells, changes in gene expression have been observed, causing 

alterations in signaling pathways. Subsequently, the threshold for signal transduction is 
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Homeostatic T-cell proliferationThymic output
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too high and under suboptimal activation conditions, priming of naïve T-cells will fail 86. 

Interestingly, in several models reduced TCR signaling induces autoimmunity, possibly 

explained by adaptation of the signaling to reduced input, thereby being more 

susceptible to spontaneous activation 102. 

Aside its impact on naïve T-cells, aging entails deterioration of T-cell memory. A 

reduced response to vaccination, recurrence of chronic infections such as VZV and lower 

activation  levels  during  contact  to previously  encountered antigens has been 

observed 86,107.  Again, contraction of the existing memory T-cell repertoire and age 

associated changes in clonality of the memory compartment can be called in account 97. 

As mentioned above, chronic infections such as CMV are discussed to be involved in this 

process 97. A deviation of metabolic elements in aged memory T-cells can cause a 

reduced cytokine production and restricted expression of functional molecules like 

CD40L, which are important for B-cell activation. As a consequence, clonal B-cell 

expansion, immunoglobulin class-switch, recombination, and hypermutation are 

diminished 86. Furthermore, the expression pattern of regulatory receptors on cell 

surfaces, mostly affecting CD8+ memory T-cells, has been observed to be altered with 

aging 86. While most of the “new” molecules exhibit inhibitory properties, some are 

stimulatory and can provide activation signals even in absence of antigen, causing a 

higher immune response or even autoimmune activity 102. 

 

 

2.4.1.2 Regulatory T cells and aging 

As Tregs are a key player in maintenance of immune homeostasis and suppression 

of autoreactivity, gain of Treg function implicates reduced defense against infections and 

malignancies, whereas loss of function is associated with higher risk for autoimmunity 

and chronic inflammation 108.  Comparable with conventional T-cells, thymic output of 

natural regulatory T-cells is reduced during thymic involution while the overall 

compartment size is maintained by homeostatic proliferation and peripheral 

recruitment 97. The entirety of CD4+ and CD8+ Tregs has, beyond that, shown to be 

increased in elderly mice and humans 109,110.  Regarding the Treg differentiation, a decline 
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of  naïve  CD4+  and  CD8+ Tregs was observed together with an increase of memory Treg-

cells 108.  

In contrast to accumulating tTregs in aging, the pTreg compartment shrinks and the 

peripheral induction of Tregs was shown to be impaired in elderly. This is regarded as one 

reason for failing tolerance and inflammatory control 108,111. Another study showed a 

misaligned balance between effector and regulatory CD4+ T-cells with shift towards 

increased Treg compartment in elderly 112.   

If the regulatory function is maintained or reduced in old individuals is still 

unclear and diverging findings lead to an ongoing discussion. Some studies revealed 

identical suppressive functions of CD4+ Tregs with aging. FoxP3 expression was stable or 

even increased indicting an augmented suppressive function 109,113,114. In contrast, other 

groups showed reduced regulatory capacities of CD4+ Tregs and reduced FoxP3 

expression levels in CD8+ Tregs 115,116 . Finally, more studies are necessary to examine age 

related functional alterations of regulatory T-cells and underlying mechanisms. 

 

2.4.1.3 B-cells and aging 

As expected, not only T-cells, but also B-cells are affected by aging. Regarding B-

cells, a reduction of progenitor cells, diminished cell generation and bone marrow 

output has been observed 117,118. While total numbers of circulation B-cell in the 

periphery appear to remain equal, subset sizes shift significantly with age and the B-cell 

repertoire is in increasingly skewed 119,120. Furthermore, both T-cell independent and T-

cell dependent antibody responses are limited in elderly, the latter causing less germinal 

center reaction 119. This in turn is considered to be one reason for reduced B-cell 

receptor diversity, specificity and affinity. Furthermore, totals antibody titers are 

increased in elderly while they are less protective due to lower affinity 118,121. However, 

alterations in the aged B-cell population are called to account for increased susceptibility 

to infections or cancer, an increased incidence of autoimmune disease and poor 

response to vaccinations in elderly, whereupon the latter might be consequence of age 

associated T-cell changes and less T-cell help 122.    
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2.4.2 Age associated changes of the innate immune system 

Although investigations regarding age dependent changes of immune function 

focus primarily on the adaptive immune system, alterations in number, migration, 

function,  and   signaling   of   diverse   innate    immune  cell lineages have been   

described 123-125.   

Neutrophil numbers remain equal in elderly while their performance as fast 

acting phagocytes is impaired 126. Cell migration was shown to be decelerated and 

chemotaxis occurs to be less precise, causing more collateral damage of healthy tissue 

and leading to delayed wound healing 127,128. Moreover, phagocytosis is compromised 

and the efficiency of intracellular and extracellular killing of pathogens diminished 129,130. 

Thereby, clearance of cell debris is less effective as well. Neutrophils undergo apoptosis 

after completing their task. As phagocytosis is not only impaired in neutrophils during 

aging, but also in macrophages, the clearance of neutrophils is deficient. Numbers of 

dead cells remain in the tissue, being a pro-inflammatory stimulus 128,131.  

Macrophages exhibit further defects in effector function. Antigen presentation 

is reduced in aged macrophages, possibly due to lower MHC II expression, causing an 

altered communication between innate and adaptive immunity 132,133. As a result of 

dysregulated TLR expression and modified intracellular signaling pathways, the 

production of co-stimulatory molecules, important for the efficiency of antigen 

presentation, and the production of pro-inflammatory cytokines as well as chemokines 

appear to be inappropriate with aging 134,135. 

Similar findings of altered signal transduction and receptor characteristics have 

been reported for dendritic cells of aged individuals, generating an unbalanced 

activation state 125,136. There is evidence that the basal cytokine production is increased 

in elderly while the response to stimuli by foreign antigens is decreased  137,138. 

Furthermore, the efficiency to prime and recruit T-cells is reduced and maintaining 

peripheral tolerance becomes less sufficient 125,139,140.  

Conclusively, several cellular alterations and signaling variances contribute to an 

unbalanced immune function in elderly.  
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2.5 CHRONIC LOW-GRADE INFLAMMATION IN ELDERLY – INFLAMM-AGING 

Aging is characterized by a progressive, chronic, low-grade inflammatory state, a 

condition also referred to as ‘inflamm-aging’ 30. Several studies describe a rising amount 

of pro-inflammatory cytokines particularly IL6 and TNF during aging. However, some 

anti-inflammatory cytokines were revealed increased as well, pointing to a generally 

more activated inflammatory system 141-144.  

First, persistent chronic infections such as CMV were considered the causal 

stimulus for this ongoing inflammation, but then endogenous processes became more 

apparent to be the decisive trigger for inflammatory responses 144,145.  Aging is attended 

by various cellular alterations increasing the probability for cell damage or death such 

as the accumulation of metabolism end-products, misfolded proteins and dysfunctional 

organelles, decreased autophagy, dysfunctional telomeres, DNA-damage, and the 

exposure to reactive oxygen species 144,146. Consequences of cell damage are, among 

others, a release of self-molecules and organelles, the emergence of misplaced 

molecules in unaccustomed compartments, and the accumulation of cell debris 144,147. 

Usually, cell debris is promptly eliminated by professional phagocytes in order to 

maintain tissue homeostasis preventing thereby the production of antigenic molecules 

causing inflammatory response 148,149. A reduced capability for adequate clearance in 

combination with augmented accumulation of cell debris and misplaced self-molecules 

might cause an intensified recognition of these particles by the immune system 150.  As 

explained in chapter 2.3.1, pattern recognition receptors (PRR) are continuously 

expressed on innate immune cells and are capable of identification and reaction towards 

self-molecules (DAMPs). The detection of stressed respectively dying cells, organelles or 

misplaced self-molecules by PRRs provokes an autoimmune, inflammatory response 

against these self-structures 144. Moreover, senescent cells secrete pro-inflammatory 

cytokines and signaling molecules that do not only affect the immediate environment 

but are able to spread and cause systemic inflammatory effects 144,146.   

Finally, the inflammatory response is primarily initiated by chronic stimulation of 

innate immune cells (like macrophages), subsequently inducing the secretion of pro-

inflammatory cytokines by cells of the innate and adaptive immune system 151. This 
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systemic inflammatory status on one hand interferes with the immune system, on the 

other hand causes tissue degradation and has been numerous times described to be a 

critical risk factor for chronic diseases like neurodegenerative diseases, atherosclerosis 

or diabetes type II 28,147,151.  

 

 
 
Fig. 5: Inflamm-aging 
With aging, the number of stressors and harmful factors increases. Macrophages are continuously 
stimulated by exogenic stressors and molecular garbage which results in the release pro-
inflammatory cytokines or further mediators. Additionally, extracellular garbage, generated by 
progressive cell death, accumulates and finally exceeds the clearing competences of macrophages. 
This leads to a local inflammatory response that can expand to a global pro-inflammatory state. 
Senescent cells secret factors that affect neighboring cells and can finally cause a disruption of tissue 
homeostasis. Furthermore, cellular garbage, organelles released during cell death, and signaling 
molecules circulate in body fluids. They spread all over the body and reach distant tissues or organs 
where misplaced molecules can cause and promote further pro-inflammatory activity 30,144,146.  
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2.6 CARDIAC LEUKOCYTE POPULATIONS AND THEIR ROLE IN HOMEOSTASIS, 

PATHOGENESIS AND REPAIR OF HEART DISEASES 

The cardiac tissue is composed of manifold cell populations including - besides 

cardiomyocytes - fibroblasts, endothelial cells, and leukocyte populations residing in the 

myocardium 152. Their presence has been described in recent years and their role in 

myocardial homeostasis and repair is subject of ongoing research 152-155. 

Cardiac macrophages represent the majority of cardiac leukocytes and are a 

heterogenous population with different ontogenetic and phenotypic              

characteristics 153,155,156.  With aging, the composition of the macrophage population 

changes even in the absence of disease and inflammation 157. During the neonatal 

period, cardiac macrophages promote tissue development and are essential for the 

regenerative capacity of neonatal hearts after injury 158,159.  After ischemic injury, they 

are critical for healing and reconstitution of tissue integrity by playing a crucial role in 

scar formation, left ventricular remodeling and angiogenesis 156,160-162. 

Dendritic cell populations have been found in the myocardium with niches near 

cardiac valves 163. Under steady state conditions DCs sample antigens and present 

cardiac antigens  such  as  α-myosin  heavy  chain to T-cells in heart draining lymph   

nodes 164. Cardiac injuries like myocardial infarction cause an increased DC infiltration 

of the heart. DCs get activated and attain a mature state resulting in the induction of 

autoreactive T-cells 164.  

Neutrophils are rare in the healthy, steady state myocardium, but they are 

rapidly recruited after ischemic injury or pressure overload 156. By clearing cell debris 

and secreting chemokines to attract further leukocytes, neutrophils might contribute to 

inevitable conditions for healing 165. However, since neutrophils release inflammatory 

mediators and cytotoxic substances like proteolytic enzymes and reactive oxygen 

species, they maintain a sterile injury resulting in damage of surrounding cells 165,166. 

Therefore, they are regarded as harmful in the context of myocardial healing. 

Besides the innate immune system, adaptive immune cells participate in 

myocardial physiology. While the knowledge about cardiac B- and T-cells and their role 

in cardiac homeostasis is limited, diverse effects on inflammatory conditions and 
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modulating impact after injury have been reported 156. Viral and parasitic infections of 

the heart can cause a loss of self-tolerance of lymphocytes against cardiac antigens 

resulting in an induction of autoimmune myocarditis 167. T-cells specific for cardiac 

myosin were shown to be mediators of this autoimmune disease 168,169.   

However, it was shown that non - infectious injuries are modulated by T-cells, 

too. Sterile cardiac injuries like ischemia and myocardial infarction initiate lymphocyte 

activation directed against cardiac antigens 170,171. CD4+ T-cells became evident to have 

a protective function during cardiomyocyte damage, promote tissue repair and improve 

wound healing after myocardial infarction 172,173. Furthermore, Tregs were shown to play 

a particular role in sufficient scar formation and have a beneficial effect on remodeling 

by modulating macrophage, monocyte and fibroblast function 174-176. On the contrary, 

in ischemia- reperfusion models pro-inflammatory CD4+ T-cells can be deleterious and 

contribute to myocardial injury 170,177.   

Moreover, different hemodynamic conditions such as pressure overload, causing 

only minimal tissue damage and low-grade inflammation, are sufficient to trigger T-cell 

response 173,178.  In this context T-cells were shown to be involved in chronic cardiac 

remodeling and contribute to development and progression of heart failure 178-180.  

 

 

 

Taken together, the heart is an immunological active site and leukocytes contribute 

to cardiac homeostasis under physiological conditions. Although recent evidence 

identified lymphocytes, particularly T-cells, to be involved in pathogenesis of 

inflammatory processes and repair of myocardial tissue damage, their function in the 

steady state remains largely unknown. Furthermore, immunological processes are 

affected by aging, a state of increased inflammatory tone. Contemporaneous, aging is a 

mayor risk factor for heart disease. Based on these considerations, it was objective of 

this study to investigate the correlation between immunosenescence and the 

myocardial aging process.  
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3 MATERIALS AND METHODS 

3.1 MATERIALS 

3.1.1 Fine chemicals and reagents 

The chemicals and reagents listed here were used in different experiments. The 

substances were aquired from eBioscience (Waltham, USA), B.Braun (Melsungen, 

Germany), cp-pharma (Burgdorf, Germany), Carl Roth GmbH (Karlsruhe, Germany), Life 

Technologies (Carlsbad, USA), Merck (Darmstadt, Germany) , Roche Diagnostics (Basel, 

Schweiz), Ratiopharm (Ulm, Germany), Sigma-Aldrich (Steinheim, Germany) and Vector 

Laboratories (Burlingame, USA). 

 
 

Aqua as injecatabilia 
Aqua destillata 
BSA (Bovine serum albumin) 
Benzyl alcohol 
Benzyl benzoate 
Calcium chloride 
DAPI (4´6-diamino-2-phenylindole) 
Disodiumhydrogenphosphate 
Dry milk, fat free 
Ethanol 
FCS (Fetal Calf Serum) 
Formaldehyde 
Glycerol 
Hematoxylin 
Heparin-Natrium 25000 
n-Hexan 
Hydrogen peroxide 
Horseradish peroxidase streptavidin (HRP)  
Ionomycin  
Isopropyl alcohol 
Isoflurane 
Isopentane 
Liquid nitrogen 

Methanol 
Monensin 
Mowiol 
Normal Goat Serum 
Picric acid 
Phorbol-12-myristate-13-acetate  
Rotihistol A+B 
Sirius red (Direct Red 80) 
Sodium azide 
Sodium chlorid (NaCl 0,9%) 
Sodiumdihydrogenphosphat 
Sodiumpyruvat 
Tetramethylbenzidine 
Tris (Tris(hydroxymethl)aminomethane 
Triton X 
Tween 20 
Xylene 
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3.1.2 Antibodies  

Fluorophore labeled antibodies (against mouse antigens) for flow cytometry  
All antibodies were produced by BioLegend (San Diego, USA) or ThermoFisher Scientific 

(Waltham, USA). The fluorophore-conjugated antibodies indicated below were used in 

different combinations, depending on the experimental setup. 

 
 Antibody  Color   Clone 

anti-CD3ε  Efluor 450  145-2c11  

anti-CD4  Alexa®647  RM4-5   

anti-CD8  PE-Cy7   53-6.7   

anti-CD11b  PE   M1/70   

anti-CD25  PE   PC61    

anti-CD44  APC Fire  IM7 

anti-CD45  BV421   30-F11 

anti-CD45  FITC   30-F11 

anti-CD45  Efluor 450  30-F11 

anti-CD45/B220  Alexa®647  RA3-6B2  

anti-CD62L  Alexa® 488  MEL-14 

anti-CD206  Alexa®647  C068C2 

anti-Foxp3  APC   MF-14 

anti-Ki67  PE   16a8 

anti-Ly6g  APC/Cy7  1a8 

anti-Ly6c  PE-Cy7   Hk1.4 

 
Antibody for Light Sheet Microscopy 
 

anti-CD45  Alexa®647   30-F11   
 
Antibodies for intracellular cytokine staining 
 
 anti-TNF  Pacific Blue  mp6-xt22 

anti-IFN-g  PE   xmg1.2 

anti-IL-10  PE   jes5-16e3 

anti-IL-13  e450    ebio13a  
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Fluorophore labeled antibodies (against mouse antigens) for immunofluorescence  

 Primary Antibodies  Color  Clone  Supplier 
anti-CD68    MCA1957 BioRad Serotec (Hercules, USA) 

 anti-B220    RA3-6B2  Biolegend (San Diego, USA) 

anti-CD3ε    145-2c11  Biolegend (San Diego, USA) 

anti-CD4    GK1.5   Biolegend (SanDiego, USA)  

anti-CD8a    53-6.7   Biolegend (SanDiego, USA) 

Phalloidin   Atto-488   SigmaAldrich  

(Steinheim, Germany) 

WGA    Alexa® 647    ThermoFisher Scientific  

(Waltham, USA) 

 
 
Secondary Antibodies for immunofluorescence 
Secondary antibodies were produced by ThermoFisher Scientific (Waltham, USA). 
 
Anti-mouse IgM  Alexa® 555 polyclonal  
Anti-mouse IgG Alexa® 488 polyclonal  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 - 28 -  

3.1.3 Buffers and solutions  

Buffers and solutions were prepared in desalted water. 

 

PBS   NaCl (pH 7.4)  137.0 mM 
   Na2HPO4   10.0 mM 
   KCl    2.6 mM   
   KH2 PO4  10.0 mM 
 
 
FACS buffer  NaCl (pH 7.4)  137.0 mM 
   Na2HPO4  10.0 mM 
   KCl    2.6 mM   
   KH2 PO4  1.8 mM 
   BSA   0.1% 
   NaN3   0.1% 
 
 
BSS/(BSA)  KCl    5.33 mM 
   KH2 PO4  0.44 mM 
   NaCl   138.0 mM   
   NaHCO3  4.0 mM 
   Na2HPO4  0.3 mM  
   (BSA)   (5%) 
 
 
Mayer´s Hematoxylin 
   Acetic acid   2% 

Glycerol   30% 
Hematoxylin   1% 
Aluminium sulfate  5% 

 

 

Picro-sirius red Picric acid  1.5% 
   Sirius red  0.1% 
 
 
 
 
 



 - 29 -  

3.1.4 Ready for use kits and solutions 

 
Kit/Solution     Supplier 

Carbo-Free Blocking Solution®   Vector Laboratories (Burlingame, USA) 

Carbonate coating Buffer    Biolegend (San Diego, USA) 

CountBrightTM Absolute Counting Beads Invitrogen (Carlsbad, USA) 

DNase1 Amplification Grade, AMP-D1 Sigma-Aldrich (Steinheim, Germany) 

FoxP3 Transcr. Factor Staining Buffer Set eBioscience (Waltham, USA) 

iScript cDNA Synthesis Kit   Bio-Rad (Munich, Germany) 

RNeasy Micro Kit    Qiagen (Venlo, The Netherlands) 

RNeasy Mini Kit    Qiagen (Venlo, The Netherlands) 

RNAlater Solution    ThermoFisher (Waltham, USA) 

TaqMan Master Mix    Life Technologies  

(Darmstadt, Germany) 

 

 

3.1.5 TaqMan probes   

All probes for Real Time PCR analyses were purchased from Life Technologies 

(Darmstadt, Germany): 

 

house-keeping genes (Probe number) 

Gusb   (Mm01197698_m1)  Gapdh   (Mm033002249_g1)  

Actb   (Mm00607939_s1) 

tissue stress/ myocardial damage genes (probe number) 

Hspd1   (Mm00849835_g1)  Hspa4   (Mm00434038_m1) 

Hspa1a  (Mm01159846_s1)  Hif1a   (Mm01198376_m1) 

Gata4   (Mm00484689_m1)  Hmox1  (Mm00468922_m1) 

Tlr2   (Mm00442346_m1)  Tlr4   (Mm00445273_m1) 

Myd88  (Mm00440338_m1)  Casp1   (Mm00438023_m1) 

Nfkb   (Mm00476361_m1)  Rela p65  (Mm00501346_m1) 



 - 30 -  

Myh6   (Mm00440359_m1)  Myh7   (Mm01319006_g1) 

Anp   (Mm00435329_m1)  Adrb1   (Mm00431707_s1) 

pro-inflammatory genes (probe number) 

Il1b   (Mm00434228_m1)  Il6   (Mm00446190_m1) 

Tnf   (Mm99999068_m1)  IFN-γ  (Mm01168134_m1)  

Il17a   (Mm00439618_m1)  Nos2   (Mm00440488_m1)  

Ccl2   (Mm00441242_m1)   Ccl5   (Mm01302427_m1) 

Nox1   (Mm00549170_m1)  Cxcl13   (Mm04214185_s1) 

Cd80   (Mm00711660_m1)  

anti-inflammatory genes (probe number) 

Il10   (Mm00439614_m1)  Mrc1   (Mm00485148_m1) 

Foxp3   (Mm00475162_m1)  Pparg   (Mm01184322_m1) 

Pdl1   (Mm00452054_m1) 

angiogenesis/ extracellular matrix remodeling genes (probe number) 

Vegfa   (Mm00437304_m1)  Vwf   (Mm00550376_m1) 

Col3a1  (Mm01254476_m1)  Col1a1  (Mm00801666_g1) 

Mmp2   (Mm00439498_m1)  Mmp9   (Mm00442991_m1) 

Agtra1   (Mm00616371_m1)  Tgfb1   (Mm01178820_m1) 

Tgfb3   (Mm00436960_m1)  Timp1   (Mm00441818_m1) 

Timp2   (Mm00441825_m1)  Spp1   (Mm00436767_m1) 

Vim   (Mm01333430_m1) 

 

 

3.1.6 Enzymes and Sera 

Collagenase Type 2    Worthington Biochemical  

(Lakewood, USA) 

DNase I     Sigma-Aldrich (St. Louis, USA) 
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3.1.7 Animals 

Mouse strain       Supplier 

C57BL6/J mice   (stock No. 000664)  Jackson laboratory 

CD4KO mice   (stock No. 002663)  Jackson laboratory 

MHC-II-deficient mice (stock No. 003584)   Jackson laboratory 

OT-II mice   (stock No. 004194)  Jackson laboratory 

µMT mice   (stock No. 002288)  Jackson laboratory 

 

Mice in the age of 2 months to 15 months were examined in this study. All selected 

mouse strains are on the same genetic background (B6/J) and suitable wild type mice 

(C57BL6/J) were chosen as control animals. The mice were permanently housed under 

specific pathogen free conditions (SPF) with a controlled 12-hours light-dark cycle. A 

standard diet was used for feeding. 

All experiments which included animals were performed according to the provisions of 

the Animal Welfare Act and were approved by the Regierung von Unterfranken in 

Tierversuchsantrag (TVA) 65/13.  
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3.1.8 Consumables 

 

Consumable     Supplier 

 Cell Strainer (70 + 100µm mesh)  BD Bioscience (Franklin Lakes, USA) 

 Centrifuge Tubes    Greiner (Frickenhausen, Germany) 

 Cover Slips 24 x 50mm   Fisher Scientific (Pittsburgh, USA) 

Cryo tube (1.8ml)    Nunc (Roskilde, Denmark) 

Entellan     Merck (Darmstadt, Germany) 

Elisa plates     R&D (Minneapolis, USA) 

FACS tubes     BD Bioscience (Franklin Lakes, USA) 

ImmEdgeTM Hydrophobic Barrier Pen Vector Laboratories (Burlingame, USA) 

Microseal film for PCR plates   Bio-Rad (Munich, Germany) 

 Feather® Microtome blades S35  pfmmedical (London, England)  

 Needles (25 gauge and 19 gauge)   B.Braun Melsungen AG  

(Melsungen, Germany) 

 Object slide, Super Frost Ultra plus  R. Langenbrinck  

(Emmendingen, Germany) 

 PCR Tubes (0.2ml)    Eppendorf (Hamburg, Germany) 

 Pipette tips (10µl, 200µl, 1000µl)  Starlab (Hamburg, Germany) 

 Reaction tubes (1.5ml and 2ml)  Eppendorf (Hamburg, Germany) 

 Scalpel      Hartenstein (Würzburg, Germany) 

Sterilium     Bode Chemie (Hamburg, Germany) 

 Suture Silk Black 6/0    FSSB GmbH (Jestetten, Germany) 

Terralin®     Schülke (Norderstedt, Germany) 

Tissue Ruptor Disposable Probes  Qiagen (Venlo, The Netherlands) 

TissueTek®     Sakura Finetek (Torrance, USA) 

96-well plates (U-bottom, V-bottom) Greiner (Frickenhausen, Germany)  

96-well PCR plates     Bio-Rad (Munich, Germany) 
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3.1.9 Instruments 

The following instruments were used for preparation, measurements and analyzes: 

 

Instrument     Supplier 

Visual Ultrasonic Vevo 1100   Fujifilm Visualsonic Inc.  

            + 30MhZ Transducer   (Toronto, Canada) 

Automatic pipette: Pipetboy acu  Bio-Rad (Hercules, USA) 

Axioskop 2 plus     Carl Zeiss Microscopy (Jena, Germany) 

AxioCamHRc (high resolution camera) Carl Zeiss Microscopy (Jena, Germany) 

Axio Imager Z1m     Carl Zeiss Microscopy (Jena, Germany) 

Biofuge pico     Heraeus Instruments  

(Hanau, Germany) 

Centrifuge 5810 R    Eppendorf (Hamburg, Germany)  

Elisa Reader Dynex MRX Revelation TC 96  Magellan Bioscience  

(Tampa, USA)  

Flow Cytometer LSR II   BD Biosciences  

(Erembodegem, Belgium) 

Flow Cytometer FACS Canto II  BD Biosciences  

(Erembodegem, Belgium) 

iCycler       Bio-Rad (Munich, Germany) 

Incubator: BB6220    Heraeus Instruments  

(Hanau, Germany) 

Isoflurane Vaporizer    Harvard Apparatus  

(Holliston, USA)  

Light-Sheet microscope   Designed by the Heinze group 181  

(Würzburg, Germany)  

Magnetic stirrer    Labinco (Breda, The Netherlands) 

Microtome Leica CM 1850 Cryostat  Leica Microsystems  

(Wetzlar, Germany) 

MPVS-ultra foundation system   AD Instruments (Oxford, England) 

Nano Drop 2000c    Thermo Scientific (Waltham, USA) 
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Pipettes     Eppendorf (Hamburg, Germany) 

Refrigerators     Liebherr (Bulle, Switzerland) 

SPR-839 Catheter     Miliar Instruments (Houston, USA) 

Surgical instruments  B.Braun Melsungen AG  

(Melsungen, Germany) 

Thermocycler     Eppendorf (Hamburg, Germany)  

Tissue Ruptor     Quiagen (Venlo, The Netherlands) 

Vortexer IKA® MS3 basic   IKA®-Werke (Staufen, Germany)  

2100 Bioanalyzer    Agilent (Santa Clara, USA) 

 

 

3.1.10 Electronic data processing, Software 

The following software was used for data acquisition, analysis and presentation: 

 

Software   Supplier 

Axiovision 4.8   Carl Zeiss Microscopy (Thornwood, USA) 

BD FACS DivaTM  BD Bioscience (Franklin Lakes, USA) 

EndNote X7   Clarivate Analytics (Philadelphia, USA) 

FlowJo 7.6   Tree Star (Ashland, USA) 

GraphPad Prism 7.0  GraphPad software (San Diego, USA) 

Image J    NIH Softwares (Bethesda, USA) 

Imaris    Bitplane (Zuerich, Switzerland) 

Keynote   Apple Inc. (Cupertino, USA) 

LabChart   AD Instruments (Oxford, England) 

Microsoft Office 2011  Microsoft Corporation (Redmond, USA) 

Powerpoint Figure Pattern Motifolio Illustration Toolkit (Maryland,USA)  

Nice software package Toshiba Medical Systems (Ötawara, Japan) 

Zen lite    Carl Zeiss Microscopy (Jena, Germany) 
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3.2 METHODS 

3.2.1 Echocardiography  

Echocardiography is an established method to investigate function and anatomy 

of the heart. To facilitate an adequate examination, mice were kept under light 

isoflurane anesthesia (1,5%) to avoid cardio-depression. Mice were prepared in a supine 

position and a short axis echocardiography was performed using the Visual Ultrasonic 

Vevo1100 system coupled to a 30 MhZ ultrasound transducer, as previously described 

by our group 174. Two-dimensional cardiac images were recorded sonographically on 

mid-papillary and apical levels of the left ventricle. Using transversal M-Mode, luminal 

end-diastolic (EDD) and end-systolic diameters (ESD) were measured by the same 

researcher. EDD and ESD were applied for determination of left-ventricular fractional 

shortening (FS) to estimate left-ventricular contractile function. 

Left-ventricular fractional shortening was calculated as follows182: 

FS (%) = 100 x [(EDD – ESD) / EDD]  

Mice with a basal heart rate >500 bpm were included in the analysis. Echocardiography 

measurements were performed by experienced examiners. 

 

 

3.2.2 Hemodynamic measurements 

Mice were kept under anesthesia using 2% isoflurane atmosphere. To guarantee 

deep anesthesia, mice were intubated and ventilated with 100% oxygen supplemented 

with 0.8% isoflurane. The pressure-volume catheter was calibrated previously as 

described in manufacturer´s instructions to ensure an accurate measurement. The 

MPVS (Micro-Tip® Pressure Volume System) – ultra foundation system was used.  

 A heating plate was prepared, and mice were immobilized on the plate to guarantee a 

steady body temperature and to prohibit a decreased heart rate due to lower body 

temperature. The animal´s head was fixed in a position providing a stretched neck. An 

incision was made at the middle-neck and the right carotid artery was uncovered and 
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ligated without damaging the vagus nerve. After preparing the carotid artery with 

sutures, a longitudinal incision was made, and the pressure volume catheter was 

carefully inserted into the vessel.  Next, it was moved forward into the left ventricle. The 

correct position was achieved as soon as a pressure-volume signal showed up. 

Measurements were performed as described before 183.  To analyze the recorded data, 

LabChart software was used. After hemodynamic studies were completed, mice were 

euthanized, and organs were extracted as described below. 

 

 

3.2.3 Perfusion and organ preparation  

To collect the mice organs for further investigation, the animals were euthanized 

in an approved procedure and 40UI heparin were injected intraperitonally to prevent 

blood coagulation. The mice´s bodyweight was determined. A perfusion was performed 

with PBS (phosphate buffered saline) organs from blood. In the next step, the heart, 

gastrocnemius muscle, mediastinal, inguinal and popliteal lymphnodes were collected 

and processed variable. 

To follow different approaches, hearts were weighted and divided it into basis 

for histology, “middle section” used for flow cytometry and apex for RNA analysis.  The 

basis was embedded in TissueTek® (Sakura Finetek), immediately frozen with liquid 

nitrogen, and, after transferring into a cryo-conservation tube, stored at -20°C. Apical 

tissue for RNA analysis was submerged in RNA later RNA stabilization Reagent (Ambion) 

at 4°C for 24 h. After incubation, the tissue was transferred to a cryo- conservation tube, 

immediately frozen with liquid nitrogen and stored at -80°C. Cardiac tissue and 

gastrocnemius muscle collected for flow cytometry analysis were processed subsequent 

to organ extraction and prepared as described below in 3.2.4. 

Mediastinal, inguinal and popliteal lymphnodes were collected in BSS/BSA and 

prepared for flow cytometry staining in parallel to myocardial and skeletal muscle. 
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3.2.4 Flow cytometry 

Flow cytometry is a method to study cellular populations which provides the 

potential to characterize, analyze and quantify cells by immune-phenotyping 184.  

Cardiac tissue collected for flow cytometry analysis was cut into small pieces and 

digested with collagenase type II (100 IU/ml) at 37°C for 30 min. Afterwards remaining 

pieces were grinded through a cell strainer of 100 µm pore size to obtain a single cell 

solution of cardiomyocytes. The reaction was stopped by adding ice cold PBS solution 

up to a volume of 15 ml. A centrifugation step was performed and the supernatant fluid 

was discarded. Next, a cardiomyocyte suspension was generated with a small volume 

and transferred it into a 96-plate well plate for staining. Again, a centrifugation step was 

done and the supernatant discarded.  

To prevent unspecific Fc-receptor binding during the staining process, 25 µl of a 

solution containing monoclonal antibody against Fc-receptor CD16/32 diluted in FACS 

buffer was added to the cardiomyocyte suspension, mixed well and incubated at 4°C for 

15 min. Now a mixture containing all fluorescence labeled antibodies needed for the 

specific approach was prepared. Again, 25 µl of the antibody mixture were added and 

the suspension incubated at 4°C for 15 min. 

With this protocol surface characteristics are stained. If staining of intracellular 

components was not necessary for an approach, supernatant was discarded and after 

resuspension in FACS buffer, cells were prepared for measurement. 

To perform staining of intercellular components such as FOXP3, cells were not 

resuspended in FACS buffer, but in 100 µl of fixation-permeabilization buffer in order to 

fixate them. The suspension was incubated for 30 min at room temperature. After 

washing with permeabilization buffer, cells were suspended in 50 µl of a mixture 

containing all intended fluorescent labeled antibodies for intracellular staining diluted 

1:50 in permeabilization buffer and incubated for another 30 min at 4°C. Finally, cells 

are dissolved in FACS Buffer and measured under these conditions. Gastrocnemius 

muscle was used as control in some approaches and prepared identically. 

To determine the amount of spill over across different channels during 

measurement, single cell compensation was applied using oneComp eBeads 
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(ThermoFisher Scientific). Cell suspensions and compensation beads were processed 

identically. 

Lymphnodes were prepared similarly. To generate single cell suspensions, they 

were grinded through a 40 µm pore size cell strainer and stained after the same protocol 

as cardiomyocytes.  

In order to analyze intracellular cytokines, bulk lymph node derived cells were 

stimulated with ionomycin (1 µg/ml, Sigma), phorbol-12-myristate-13-acetate 

(50ng/ml, Sigma) and monensin (1:1000, BD Bioscience) over an incubation time of 5 

hours. Afterwards staining was completed as described above. 

 

 

3.2.4.1 Calculation of absolute cell numbers 

For some experiments it was important to quantify absolute cell numbers 

instead of only examining the fraction of one cell type among the cell suspension. 

Therefore, counting beads were used (CountBrightTM Absolute Counting Beads, 

Invitrogen) as recommended in the producer´s manual. A defined volume (50 µl) of the 

bead suspension was added to each sample. The CountBrightTM suspension contains a 

specific number of beads per volume. During measurement, bead events and cell 

events are counted. By comparing the ratio of bead evens to cell events, absolute cell 

numbers can be calculated for the sample: 

Concentration of sample (cells/µl) =  
𝑨
𝑩
× 𝑪
	𝑫

 

 

A = number of cell events 

B = number of bead events 

C = assigned bead count of the lot (beads/50 µl) 

D = volume of the sample (µl) 
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3.2.5 Molecular biology  

3.2.5.1 RNA isolation  

RNA isolation is the first step in a process leading to analysis of RNA expression 

in myocardial cells. In our lab the RNeasy Mini Kit (Quiagen) was used to purify RNA from 

murine cells. To get a good RNA yield, 20-30 µg of tissue were disrupted and 

homogenizing with a rotor-stator homogenizer in 600 µl of RLT lysis buffer. 

Subsequently, the lysate was centrifuged for 3 min at 10000 rpm at room temperature 

and only the supernatant was used in the following steps. 70% Ethanol was added in a 

ratio 1:1 to improve binding conditions and the sample was transferred to a RNeasy spin 

column, containing an RNA binding membrane. While the sample was centrifuged for   

15 sec at 10000 rpm, RNA was expected to bind to the membrane. Flow-through was 

discarded. To wash the membrane, 700 µl of RW1 buffer were added to the spin column 

and centrifuged for another 15 sec at 10000 rpm. Again, the flow-through was 

discarded. Two further washing steps were performed by adding 500 μl Buffer RPE 

respectively, followed by two more centrifugation steps. Finally, the spin column was 

carefully transferred into a new collection tube and 30-50 µl of RNAse-free water were 

added to solve RNA from the binding membrane during a final centrifugation step for 1 

min at 10000 rpm. Isolated RNA was stored at -80°C when not processed immediately. 

 

 

3.2.5.2 RNA quantification 

Next, a quantification of RNA content and determination of contaminants in each 

sample was performed. In order to analyze the samples, a Nanodrop Spectophotometer 

(ThermoFisher Scientific) was used. RNA concentration is calculated by analyzing the 

amount of light absorbance in the sample. Therefore, it is exposed to ultraviolet light. 

Each substance absorbs the ultraviolet light at a specific wavelength, RNA at a 

wavelength of 260 nm. Contaminants have their maximum of absorbance in different 

wavelengths, for instance proteins at 280 nm or organic contaminants at 230 nm. To 
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identify impurity, the 260/230 ratio and 260/280 ratio were calculated. A 260/280 ratio 

of 2.0 and a 260/230 ratio of 2,0 – 2,2 are considered to show pure RNA 185. 

 

 

3.2.5.3 DNA digestion (genomic DNA degradation) 

For a precise RNA measurement, it is important to prevent DNA contamination. 

The DNAse1 amplification grade kit (Sigma-Aldrich) was used for digestion and 

elimination of DNA in samples. 

For this purpose, the following contents were added to a tube cooled on ice: 

   1 µg RNA sample 

   1 µl 10x DNase 1 Reaction Buffer 

   1 µl DNase 1, Amp Grade, 1U/µl 

   Nuclease free water up to a total volume of 10 µl 

The tubes were spun down to create a homogeneous mixture and incubated for 15 min 

at room temperature. To inactivate the DNAse1, 1µl of 25mM EDTA solution was 

admixed and after centrifugation the samples were incubated at 70°C for 10 min. To 

stop the reaction, mixtures were cooled down to 4°C. . 

 

 

3.2.5.4 Reverse transcription of RNA (cDNA generation) 

To analyze gene expression with real time polymerase chain reaction (RT-PCR), 

mRNA needs to be transcribed into double-strand complementary DNA (cDNA) before. 

The generation of cDNA was realized using the iScript cDNA synthesis kit (Bio-Rad).  

Following contents were added to a tube and centrifuged to obtain an equable mixture: 

1 µg RNA  

4 µl iScript reaction mix 

1µl reverse transcriptase 

4 µl nuclease-free water  
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To synthesize cDNA, the mixture was incubated at the Thermocycler (Eppendorf) with 

the program stated below, after completion the cDNA was stored at -20°C: 

5 min  25°C 

30 min  42°C 

5 min  85°C 

(optional) hold at 4°C 

 

 

3.2.5.5 Real-time polymerase chain reaction (RT-PCR) 

RT-PCR is a method to quantify the amount of RNA within a sample. Here, the 

expression levels of genes of interest were monitored by quantitative PCR based on Taq-

man chemistry 186. 

For RT-PCR, a TaqMan probe-based system (Life Technologies) was used, 

working with a green fluorescent dye reporting DNA amplification.  The TaqMan system 

consists of sequence specific reporter probes labeled with a fluorescent dye on their 

5´end and a quencher on their 3´end, suppressing the reporter signal when in close 

proximity. Primers and probes bind to the target sequence of the template during the 

annealing step and by heating the samples DNA polymerase starts elongation of the 

primers. Attaining the probes 5´end, DNA polymerases will eliminate it through its 

intrinsic 5´to 3´exonuclease activity resulting in a spatial separation of reporter and 

quencher. Consequently, suppression of the reporter is abrogated, and the fluorescent 

signal can be monitored and reported after each cycle. Thus, increasing amounts of 

amplicons lead to a proportional increase of fluorescence intensity. 

For this approach working solutions for each target gene were prepared according to 

the manufacturer´s protocol: 

12,5 µl  TaqMan Gene expression Master Mix (BioRad) 

1,25 µl  ABI Sondenmix 

6,25 µl  nuclease free water 

96-well PCR plates were loaded with 5µl cDNA of each sample diluted 1:10 in nuclease 

free water per well, 20 µl of working solution were added and centrifuged to ensure a 
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good mixture of all contents. For the custom-made PCR array, plates containing primers 

for the genes of interest were provided by the producer and processed identically.  

RT-PCR was performed using the iCyclerTM Real Time PCR detection system (Bio-Rad) 

with a defined program: 

 Cycle 1   (1x) 

  Step 1:  50°C   2 min 

 Cycle 2   (1x) 

  Step 1:  95°C  10 min 

 Cycle 3   (40x) 

  Step 1:  95°C  15 sec 

  Step 2:  60°C  1 min  

 Cycle 4   (1x) 

  Step 1:  15°C  HOLD 

All samples were run in triplicates in order to prevent incorrect measurement. The 

reported signal was used to calculate the original DNA copy number.  

To avoid incorrect calculation, the differentiation between unspecific 

fluorescence and significant increase of the signal which represents relevant 

amplification is crucial.  Therefore, a threshold level for the detection of reporter 

fluorescence is set slightly above the background signal. The cycle at which the signal 

exceeds the threshold level is denominated threshold cycle (Ct).  Quantification of the 

initial amount of DNA was performed using the ∆Ct-method. The Ct value of a house 

keeping gene like Glycerinaldehyd-3-phosphate-Dehydrogenase (GAPDH) acts as 

reference gene for normalization of the target genes Ct value. Relative expression 

changes were presented as 2 -DCt. 
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3.2.6 Histology 

3.2.6.1 Hematoxylin and Eosin staining (HE staining) 

Hematoxylin and Eosin staining was performed to get a first impression of the 

cardiac structure, cardiomyocyte size and an idea about present cells.  

Cardiac tissue frozen in TissueTek® (Sakura Finetek) was sliced into 15µm slices 

and applied to an object slide. After drying overnight, the tissue was prepared for 

staining. Slides were submerged into PBS solution for 3 minutes to wash away Tissue 

Tec. Frozen cryosections were thawed for 1 hour in advance. Then, slides were stained 

in hemalaun solution for 10 minutes and subsequently washed in a bath of circulating, 

running tap water for another 10 minutes. After washing in Aqua destillata, slides were 

incubated in eosin for 7 min and consecutively washed again. To dehydrate the sections, 

an ascending alcohol series consisting of ethanol 50%, 75% and 90% was used and the 

tissue was incubated for 2 min respectively. Finally, slides were transferred into 

xylol/ethanol (1:1), xylol and rotihistol I+II solutions for 5 min each, before being 

mounted with Entellan and stored at room temperature. 

 

 

3.2.6.2 Picrosirius red staining (PSR staining) 

Picrosirius red is a dye binding to collagen fibers. Cardiac sections of young, adult 

and aged mice were stained to get an impression of cardiac fibrosis. 

First,  the  cardiac  tissue  frozen in TissueTek® (Sakura Finetek) was sliced into 

15 µm slices, applied to an object slide and dried overnight. Frozen cryosections were 

thawed for 4 h before staining. For the staining, slides were incubated in PSR solution 

for 20 min and subsequently washed in aqua destillata by dipping it 2 to 3 times into 3 

fresh water baths. Next, the cardiac tissue was dehydrated using ascending alcohol 

series with ethanol 50%, 75% and 99% for 2 minutes respectively.  Finally, slides were 

transferred into xylol/ethanol (1:1), xylol and rotihistol I+II for 5 min each, before being 

mounted with Entellan and stored at room temperature. 
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3.2.6.3 Immunofluorescence staining of cardiac sections 

Immunofluorescence microscopy is a method to visualize cells and cell 

components using fluorochrome- labeled antibodies binding to specific cell 

characteristics or receptors. Fluorophores are excited with light of specific wave length 

causing them to emit light in a defined quality which is recorded by a detector. With an 

appropriate combination of fluorochromes and filters, the simultaneous visualization of 

different targets and cell components is possible. 

Here, a number of immunofluorescence stainings was performed to investigate 

the lymphocyte and macrophage distribution in the heart under steady state conditions. 

Cardiac tissue frozen in TissueTek® (Sakura Finetek) was sliced into 5 µm slices, applied 

to an object slide and dried over night at room temperature. The tissue was washed in 

PBS two times for 5 min in order to remove TissueTek® (Sakura Finetek) before being 

incubated in formaldehyde (4%) for 10 min for fixation. After washing another three 

times for 5 min in PBS (from here: washing step), a blocking step preventing unspecific 

binding was performed by covering the tissue with goat serum (3%) diluted in PBS for 

30 min. For the staining, the tissue was then incubated for 1 hour at room temperature 

with the primary antibody binding to cell characteristics specific for one subpopulation. 

Antibodies were chosen depending on the approach and diluted in goat serum (3%). CD 

68 (1:100) was used to detect macrophages, B220 (1:100) for B-cells, and CD3ε (1:50) 

for T-cells. Afterwards a washing step followed. To visualize the cells, a fluorescence 

labeled secondary antibody binding to the primary one was applied to the slides next. 

Besides Anti-mouse IgM (Alexa 555) and Anti-mouse IgG (Alexa 488), phalloidin-Atto 488 

(1:200) was used to stain fibrillar actin in order to illustrate cardiomyocyte background. 

After 25 min, a drop of DAPI solution was added for nuclear staining, surplus solution 

was washed away. In the end, sections were mounted with Mowiol and stored in the 

dark at -4°C.  
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3.2.6.4 Wheat Germ Agglutinin staining 

WGA (wheat germ agglutinin) staining was performed to assess cardiomyocyte 

size. WGA is a lectin binding to cardiomyocytes surface, in our approach labeled with a 

fluorophore to make it visible in fluorescence microscopy.  

A fixation step was performed as described in “immunofluorescence staining” 

above. To prevent false positive binding the tissue was covered with Carbo-Free Blocking 

Solution® (Vector Laboratories) diluted 1:10 for 30 min. To remove blocking solution, a 

washing step was performed. Next, the sections were covered for 30 min with WGA 

conjugate diluted 1:5000 in blocking buffer and fluorophore-labeled phalloidin to 

visualize fibrillar actin. To stain the nuclei, a drop of DAPI solution was added 5 min 

before the end of incubation time. Before mounting the sections with Mowiol, tissue 

was washed for the last time. The slides were stored in the dark at 4°C. 

 

 

3.2.6.5 Light Sheet Fluorescence Microscopy 

One aim of our study was to learn about the lymphocyte distribution in a 

physiological, healthy heart at different ages.  Therefore, we performed light sheet 

fluorescence microscopy as a method offering the possibility to examine a whole, 

unsliced organ histologically. 

To prepare the hearts, mice were anesthetized and euthanized and 40IU heparin 

were injected intaperitoneally to prevent blood coagulation.  Hearts were excised 

entirely preserving the aortic arch.  Subsequently, organs were perfused retrograde via 

aorta, first with PBS  to clean them from blood and second with formaldehyde 4%  for  

2 h for fixation of the tissue. Next, the hearts were washed in PBS for 15 min twice. For 

further preparation, hearts were bleached for 30 min using 15% hydrogen peroxide in 

methanol followed by a washing step in PBS. Then the tissue was blocked with 2% FCS 

(in PBS) and in 0.1% Triton-X (in PBS) for 24 h in 4°C. Hearts were again washed with 

PBS. Next, samples were incubated with anti-CD45-Alexa®647 (1:100 in PBS with 0.1% 

Triton X) for 72 h in order to stain leukocytes before washing in PBS again. The tissue 
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was then dehydrated in an ascending alcohol series consisting of ethanol 30%, 50%, 75% 

and 90% at room temperature for 2 h respectively. In the end, it was left in 100% ethanol 

overnight.  Afterwards a solution of Benzyl alcohol and Benzyl benzoate (1:2, BABB) was 

prepared. Hearts were put into a Falcon with n-Hexan for 2 h. n-Hexan was then 

stepwise replaced by BABB. Hearts were incubated in BABB for at least 24 h. The result 

is an optically transparent organ which is stuck to a glass rod and positioned on a 

movable stage.  

 

 

3.2.6.6 Measurement of cardiomyocyte size 

To measure cardiomyocyte size, tissue slices where stained with HE and pictures 

of the tissue were recorded using the Axioskop microscope and a high-resolution 

camera. Afterwards, measurements were conducted using Image J. The circumference 

of 15-20 cardiomyocytes per slice was measured and the cross-section area calculated. 

Five slices per animal were analyzed. The average cross-section area was calculated for 

each animal. All measurements were performed by the same person. 

 

 

3.2.6.7 Image acquisition 

Bright field microscopy to examine tissue stained with HE, PSR or WGA staining 

was performed using an Axioskop 2plus (Zeiss). Immunofluorescence images were 

acquired using an Axio Imager Z1m (Zeiss) epifluorescence microscope with appropriate 

filter sets.   

 

 

 



 - 47 -  

3.2.7 Detection of autoantibodies 

Two different experimental setups were performed investigating the existence 

of heart specific autoantibodies. First, autoantibodies were visualized in a histological 

approach using fluorescent dyes. Second, indirect Enzyme-linked Immunosorbent Assay 

(ELISA) was practiced to detect myosin-specific autoantibodies. 

 

3.2.7.1 Immunofluorescence detection of heart-specific autoantibodies 

For the detection of heart-specific autoantibodies via immunofluorescence 

histology, hearts from B-cell deficient mice were used. The resulting absence of 

antibodies was required to prevent falsification of the results by binding through donors’ 

antibodies.   

Cardiac sections were prepared for staining as described in 3.2.6.3, fixated with 

formalin 4% for 10 min at room temperature and then blocked with Carbo-Free Blocking 

Solution® (Vector Laboratories) for 30 min. Plasma obtained from tested animal groups 

was diluted 1:20 in blocking buffer and subsequently added to the sections for 1 h at RT. 

After a washing step, the heart slices were incubated with anti-mouse IgM-Alexa®555 

(1:200) and anti-mouse IgG-Alexa®488 (1:200) for 1 hour at room temperature to detect 

the different autoantibodies reacting against cardiac antigens present in the plasma of 

young versus aged mice. For visualization of the cardiomyocyte surface, WGA-

Alexa®647 (1:500) was utilized. All images were acquired using the Axio Imager Z1m 

(Zeiss) with the same exposure time to provide comparable conditions. 

 

 

3.2.7.2 Enzyme-linked Immunosorbent Assay (ELISA) 

Next, we performed indirect ELISA to assess the myosin-specific antibody titers 

in the plasma of young versus aged mice. 

ELISA plates (R&D) were coated with 4 µg myosin per well, diluted in 100 µl PBS 

containing Carbonate coating Buffer pH 9,5 (Biolegend), overnight at 4°C.  After 
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incubation, plates were washed using PBS with 0,05% Tween®20 (Sigma-Aldrich), from 

here washing solution, and subsequently blocked with PBS containing 1% non-fat dry 

milk for 1 h at room temperature. The blocking solution was discarded, and mouse 

plasma diluted in PBS with 1% non-fat dry milk was added into the wells in serial 

dilutions of 1:200, 1:400, 1:800, 1:1600, 1:3200, 1:6400, 1:12800 and 1:25600 for an 

incubation time of 1 hour. Afterwards, plates were washed 6 times to ensure elimination 

of serum before adding a biotinylated goat-anti-mouse IgG antibody conjugated with 

horseradish peroxidase streptavidin (HRP) in a dilution of 1:6000 for 1 h at RT. To remove 

unbound IgG antibodies, the plate was washed 5 times. Next, we added 

Tetramethylbenzidine, an HRP substrate to develop a colorimetric reaction as read out 

for myosin- specific antibodies. After 20 min the reaction was stopped with sulfuric acid, 

turning the color from blue to yellow.  

For the quantification of antigen-antibody complexes, representing the amount 

of anti-myosin antibodies in murine serum, extinction was measured at 450nm in a 96-

well plate ELISA reader (Dynex MRX Revelation TC 96 (Magellan Bioscience)). 

 

 

3.2.8 Statistics  

Statistical analyses were performed using Graph Pad Prism (7.0.).  The graphs present 

results in mean ± SEM (standard error of mean) obtained from n animals (n is indicated 

in each figure legend).  

For the comparison of two groups, an unpaired t-test was performed. For multiple 

comparisons, one-way ANOVA followed by Dunnett´s post hoc test was conducted when 

one independent variable in different groups had to be compared. Two-way ANOVA 

followed by Turkey post hoc test was used when two independent variables had to be 

analyzed in different groups.  

Values were considered significantly different at P<0.05.   

 

 



 - 49 -  

3.2.9 Permissions  

Some graphs or pictures containing results were published in the journal 

‘Proceedings of the National Academy of Sciences” before. The journal provides 

permission for authors to include published data as part of their dissertation. Further 

figures were created by the author. For some figures, patterns provided by Motifolio 

Illustration Toolkit (Maryland, USA) were used. 
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4 RESULTS 

4.1 THE HEALTHY MYOCARDIUM HARBORS ALL MAJOR LEUKOCYTE POPULATIONS 

UNDER STEADY-STATE CONDITIONS  

To investigate the presence of different leukocyte populations in the myocardium 

under physiological conditions, primarily flow cytometry analyses were performed. Cell 

suspensions from murine hearts were prepared as described above and compared with 

suspensions from murine skeletal muscle (M. gastrocnemius) which were processed 

identically. 2-3 months old mice were examined. A considerable population of 

leukocytes representing all major subsets was detected in the heart. In order to 

determine absolute cell numbers, a bead-based flow cytometry strategy was used and 

the acquisition of approximately 103 leukocytes per milligram cardiac tissue appeared to 

be possible. Comparing cardiac to skeletal muscle, 12-fold more leukocytes per mg 

tissue were found to be located in the heart than in periphery (Fig. 6A). 

For a more detailed differentiation of the leukocyte population, a gating strategy 

for flow cytometry analysis was established, facilitating to distinguish between cardiac 

leukocyte subsets among all single cells. Overall, monocytes/macrophages (defined as 

CD45+, CD11b+, Ly6G-),  granulocytes (defined  as CD45+, CD11b+, Ly6G+),      B-cells 

(defined as CD45+, CD11b-, Ly6G-, B220+) and T-cells (defined as CD45+, CD11b-, Ly6G-, 

CD3ε+) were identified and monocytes/macrophages represented the main fraction of 

cardiac leukocytes followed by B-cells, T-cells and granulocytes  (Fig. 6B). 
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Fig. 6: Leukocyte populations within the healthy, steady-state myocardium of 2-3 months old mice 
analyzed with flow cytometry 
A: Cardiac muscle contains an abundant leukocyte population compared to skeletal muscle, the same 
digestion and staining protocol was applied to both tissue samples (n=6-8). B: Subset analysis revealed 
macrophages as the most frequent leukocyte subset (614 ± 74 cells/mg of tissue), followed by B-cells (180 
± 28 cells/mg tissue), T-cells (38 ± 6 cells/mg of tissue), and granulocytes (19 ± 2 cells/mg of tissue)          
(n=6-8). C: Gating strategy applied to examine cardiac resident leukocyte populations. CD45+ cells were 
subdivided using CD11b and Ly6G expression. The population of CD11b- and Ly6G- cells was further split 
up into CD3ε+ cells and B220+ cells. Leukocyte subsets were defined as macrophages = CD45+, CD11b+, 
Ly6G-, granulocytes = CD45+, CD11b+, Ly6G+, T-cells = CD45+, CD11b-, Ly6G-, CD3ε+ and B-cells = CD45+, 
CD11b-, Ly6G-, B220+. *P<0,05  
 

 

Knowing the heart to be a well perfused organ and considering a defined 

population of leukocytes in blood, a two-stage staining was performed to distinguish the 

fraction of leukocytes that may be in contact with the coronary circulation and those, 

which are truly located in the myocardial parenchyma. First, an anti-CD45-antibody 

(labeled with fluorochrome eF450) was applied to stain intravascular leukocytes by 

perfusion of an isolated heart. Second, hearts were digested according to our protocol 

and stained with an anti-CD45-antibody marked to a different fluorochrome (FITC) to 

allow a precise discrimination of leukocyte localization. Flow cytometry analysis 
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revealed only about 13% of all cardiac leukocytes to be in direct contact with the 

circulation (Fig. 7B).  

To further determine the leukocyte distribution within the myocardium, 

immunofluorescence microscopy was performed. Leukocytes turned out to be widely 

spread in the entire myocardium. Supporting previous findings, macrophages turned out 

to be the major represented group, but also smaller numbers of B-cells and T-cells were 

detectable. Visually, there was no general accumulation of leukocytes at any localization 

although monocytic cells were suggestive of being increased close to mitral valves (Fig. 

7C).  

 

 
Fig. 7: Distribution of cardiac leukocytes   
A: Murine hearts were stained in two steps utilizing differently labeled anti-CD45+-antibodies to achieve 
discrimination between circulating and resident leukocytes. Intravascular leukocytes were defined as 
CD45-eF450+ CD45-FITC- cells, whereas parenchymal leukocytes were CD45-eF450- CD45-FITC+ cells. B: 
Flow cytometric measurement revealed about 13,1% of all leukocytes having intravascular origin.  
C: Representative images of immunofluorescence microscopy studies of murine hearts. Cardiomyocytes 
were stained with Phalloidin-Atto 488 (green), nuclei using DAPI (blue) and leukocyte subsets appear 
red/magenta. The white arrows highlight leukocytes. Macrophages were defined as CD68+, T-cells as 
CD3ε+, B-cells were CD45/B220+. Magnification: CD68 and CD3ε, 200 x; CD45/B220, 400×. 
 

 

 

Flow cytometry analysis
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CD68 CD68 Mitral valve

CD 3 B 220
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Standard histological methods only allow to examine a small section of 

myocardial tissue. Moreover, cell loss was expected to happen during cardiac tissue 

preparation and the staining process previous to flow cytometric measurements. To 

obtain a more accurate impression of absolute cell numbers, to achieve a more 

extensive view of the leukocyte distribution in the whole heart, and to investigate if 

leukocytes accumulate at specific areas, light sheet fluorescence microscopy (LSFM) was 

implemented. Unsliced entire hearts of non-manipulated, healthy mice were scanned, 

and 3D reconstructions were generated. Indeed, 3D reconstructions clearly depicted a 

wide, constant leukocyte distribution in the whole heart (Fig. 8). No myocardial areas 

with an outstanding accumulation of leukocytes were observed. In fact, one advantage 

of the LSFM approach was a reduction of cell loss during the preparation process. An 

absolute cell number of more than 3000 CD45+ cells per mm3 intact myocardium was 

measured, exceeding the recruitment in flow cytometry analysis where about 800 

cells/mg tissue were counted. 
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Fig. 8: Detection of cardiac leukocytes using light sheet fluorescence microscopy (LSFM) 
A: Representative LSFM pictures of whole murine hearts stained with anti-CD45 antibodies. A Z-stack 
reconstruction spanning large myocardial areas in the longitudinal axis shows abundant resident 
leukocyte populations (Left, 150-μm Z axis, 5× magnification; Right, 1.5-mm z axis, 26× magnification). 
Scale bars: 50μm. RV= right ventricle, LV= left ventricle. B: Cell numbers of cardiac-resident leukocytes 
(CD45+) detected either using a tissue digestion–flow cytometry protocol or LSFM (n=4-12). C: 3D 
reconstruction of the heart based on a calculation using single pictures as shown under A. Lymphocytes 
are visualized in green color (5x magnification, grid size 500µm per mesh). The reconstruction was 
generated by the group of Prof. K. Heinze, Würzburg.  
 
 

 

 

 

C 
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4.2 THE TISSUE RESIDENT LEUKOCYTE COMPOSITION SHIFTS DURING THE 

MYOCARDIAL AGING PROCESS 

In order to investigate possible differences between the leukocyte compositions 

in young and aged hearts, myocardial tissue from 2-3 months old mice (young animals),   

6-8 months old mice (adult animals) and 12-15 months old mice (aged animals) was 

analyzed. Flow cytometry experiments showed distinct changes in the myocardial 

leukocyte composition during aging. A significant decrement of the total macrophage 

population in aged mice was observed, whereas the frequency of F4/80+/CD206+ and 

F4/80+/206- macrophage subsets remained unaltered (Fig. 9A-C). Besides, the CCR2 

expression on cardiac macrophages within the 12-15 months old group was slightly 

increased compared to the young group, indicating a potential replenishment of tissue 

resident macrophages by monocyte derived cells (Fig. 9D+E). Contemporaneous, the 

number of granulocytes in the myocardial tissue increased significantly with aging (Fig. 

9A). 

 
Fig. 9: Age related fluctuations in myocardial macrophage and granulocyte populations    
Phenotypic characterization of cardiac resident leukocytes using flow cytometry. A: The total amount of 
macrophages and neutrophils shifts during aging. B-E: More detailed analysis of macrophage populations. 
B: Monocytic CD11b+ Ly6g-cells were further gated into F4/80+ CD206- (M1) and F4/80+ CD206+ (M2) 
macrophages. C: Frequency of M1 and M2 macrophages among monocytic cells. D and E: Representative 
histogram and analysis depict the surface expression of CCR2 on cardiac macrophages at different times 
(n=5-8).  *P<0,05, ** shows P<0,05 for overlapping lines. 
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Investigating the B-cell and T-cell populations, no important alterations 

regarding the absolute amount were found during the aging process. A more detailed 

characterization of the T-cell subsets revealed a higher frequency of CD8+ cells, whereas 

the CD4+ T-cell portion was reduced, resulting in an age-related decrease of CD4:CD8 

ratio (Fig. 10D). For a more precise analysis of the B-cell compartment, IgM/IgD 

expression was used for phenotypic characterization and discrimination of the two 

major subtypes of mature follicular B-cells (defined as IgDhighIgMlow) and immature 

marginal zone B-cells (defined as IgDowIgMhigh). Constant frequencies of the subtypes 

were measured in all ages (Fig. 10B). 

 

 
Fig. 10: Trends for cardiac T-cell and B-cell populations during aging 
Characterization of T- and B-cells via flow cytometry. A: Time dependent fluctuations of absolute T-cell 
and B-cell numbers (n=5-8). B: B-cells were split into IgDhighIgMlow (mainly follicular, mature B-cells) and 
IgGlowIgMhigh (mainly immature B-cells) subsets. Stable frequencies were observed (n=5).                                          
C: Representative plot showing differentiation of CD4+ and CD8+ T-cells. D: Frequencies of CD4+ and CD8+ 
cells among T-cells during aging (n=4-6).  
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4.3 SHIFTS IN MYOCARDIAL LEUKOCYTE COMPOSITION OCCUR SIMULTANEOUSLY 

WITH FUNCTIONAL AND STRUCTURAL CARDIAC ALTERATIONS 

A number of tests investigating functional characteristics and structural features 

were performed to determine the cardiac development during aging. Echocardiographic 

examinations of functional parameters revealed an age related decrease of fraction 

shortening (FS) (young animals: 63.76 ± 1.35% vs. aged animals: 51.22 ± 3.51%, P<0.05), 

in combination with an increase of end-diastolic anterior wall thickness (young animals: 

0.067± 0.003mm vs. aged animals: 0.084 ± 0.005mm, P<0.05) and end-diastolic area 

(young animals: 7.43 ± 0.41mm vs. aged animals 9.58 ± 0,35mm, P<0.05), pointing to a 

reduction of cardiac contractibility, augmented stiffness and higher volume stress in 

aged mice (Fig. 11A-E). 15,7% of the elderly mice presented with a FS<40% which is 

regarded as a clinically significant phenotype. These findings were strengthened when 

measuring end-diastolic volume (EDV) and ejection fraction (EF) by using a pressure- 

volume conductance catheter positioned in the left ventricle chamber. The results 

reported a lower EF (young animals: 58.57 ± 4.18% vs. aged animals: 39.27 ± 4.61%) and 

a higher EDV (young animals: 42.3 ± 2.01µl vs. aged animals: 64.92 ± 5.55µl) in aged 

animals (Fig. 11F-G). 
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Fig. 11: Impact of myocardial aging on cardiac function (Myocardial function Folder) 
A and B: Representative echocardiographic M-mode images of 2-3 month (A) and 12-15 month (B) old 
mice. C-E: Parameters of cardiac function investigated via echocardiography. Fraction shortening (C) was 
significantly reduced in elderly mice, whereas end diastolic area (D) and wall thickness (E) presented 
increased (n=6-19). F-G: Hemodynamic measurements revealed a higher end diastolic volume and lower 
ejection fraction in old compared to young mice (n=5-9). *P<0,05 in comparison to young animals.   
 

 

As cardiac functional deterioration originates from structural changes, 

myocardial structure was assessed with histological approaches. An increase of 

interstitial collagen in the myocardium and the enlargement of cardiomyocyte cross 

sectional area in senescent hearts were observed (Fig. 12B-D). In accordance with this, 

a higher heart weight/ tibia length ratio indicating cardiac hypertrophy was measured 

in elderly mice (Fig. 12A). 
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Fig. 12: Age-related structural alterations of the heart (Myocardial function Folder) 
A: Heart weight/tibia length ratio was measured at three time points in a 15 months period, indicating 
alterations towards cardiac hypertrophy (n= 5-9). B: Results of cardiomyocyte cross-section area 
measurements (n=3-4). C-D: Representative pictures of sliced hearts stained with Picrosirius red to 
visualize collagen (C) and WGA staining to show cardiomyocyte surface (D). Scale bars 50µm. *P<0,05 in 
comparison with young controls.   
 

 

The structural and histological changes prompted to investigate if the expression 

of related genes reflected similar changes. In accordance with the histological findings, 

gene expression levels of pro- hypertrophic and pro- fibrotic genes were upregulated 

significantly in aged mice (Fig. 13).  

Concluding, structural remodeling and functional decline occur at the same time as 

leukocyte compositions shift in the myocardial tissue, indicating a possible correlation 

between both.  
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Fig. 13: Expression levels of structure associated genes measured with qPCR      
A: Myocardial Transforming growth factor beta 3 (Tgfb 3) gene expression level increases during aging.    
B: Myosin heavy chain 7 (Myh7) to Myosin heavy chain 6 ratio is higher in elderly mice. (n=4-8). *P<0,05 
compared to young controls.  
 

 

 

4.4 GENE EXPRESSION ANALYSIS INDICATE INCREASED INFLAMMATORY STATUS IN 

ELDERLY MICE 

Considering changes in function, structure, leukocyte composition and first 

evidence of gene expression alterations, further investigations were done to analyze the 

molecular myocardial environment with focus on gene expression. A custom 

quantitative PCR (qPCR) array was designed to measure the expression levels of 45 

selected, potentially relevant genes. Representative genes were chosen for different 

sectors including cardiac physiology and cell stress, inflammation and immunity, 

angiogenesis, and fibrosis. Later on, standard qPCR approaches with additional 

replicates were done to confirm the results.  

The expression level of TNF, reflecting a pro-inflammatory status, was significantly 

higher in myocardial tissue of 12-15 months old mice compared to young animals. 

Similarly, Ccl2 (C-C motif chemokine ligand 2) related to monocyte recruitment and 

Cxcl1 (C-X-C motif ligand 1), a chemokine with neutrophil attracting properties, were 

significantly increased in elderly. Moreover, the gene expression of lymphocyte chemo 

attractants Cxcl13 (C-X-C motif chemokine ligand 13) and Ccl5 (C-C motif chemokine 

ligand 5), as well as of INF-γ (Interferon gamma), a key player in adaptive immunity, 

were significantly upregulated, pointing to a possible involvement of lymphocytes in the 
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myocardial aging process. Summarized, an increased immune activity and a pro-

inflammatory status were observed in elderly (Fig. 14).  

 
Fig. 14: Expression levels of genes linked to cell stress and inflammation in the myocardial environment  
A: Scatter plot depicting normalized myocardial gene expression levels (Log2 relative gene expression) of 
naïve young (2-3 months) compared to old (12-15 months) mice. With a custom-made qPCR array 45 
target and 3 housekeeping genes were examined. Pooled myocardial samples were testes in a single 
experiment (n=3). B and C: Representing inflammation associated genes mRNA expression levels of TNF 
and INF-γ were further tested with additional replicates. D and E: mRNA expression levels of chemokines 
related to adaptive immunity were further tested with additional replicates. B-E: qPCR was performed 
using samples from at least two independent experiments (n= 3-6).  *P<0,05 in comparison with young 
controls 
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To assess which sort of environmental changes and cell stress situations might 

trigger or reinforce the process of myocardial aging and may contribute to senescence, 

cell stress genes were measured at different time points. The earliest alteration 

observed in 6 to 8 months old mice was a higher expression of GATA-binding protein 4 

(Gata-4), which is upregulated under loading stress conditions 187.  Gene expression 

levels of Sirtuin 1 (Sirt1), responsive to redox stress, rose progressively during aging and 

Hspa1a (heat shock protein family a member 1a), associated with different cell stress 

conditions such as heat or tissue remodeling, were detected to be significantly higher in 

12-15 months old mice compared to young animals. In contrast, no alteration of Hif1α 
(hypoxia inducible factor 1 alpha subunit) gene expression in myocardial tissue became 

apparent at any time suggesting that hypoxic stress might not be a mediator of 

myocardial senescence (Fig. 15). Altogether, age related cardiac functional impairment 

is associated with the gain of in situ inflammation and cell stress within the myocardium. 

 

 
Fig. 15: Expression levels of cell stress related genes measured with qPCR 
A and B: mRNA expression levels of heat shock protein family a member 1a (Hspa1-α), GATA-binding 
protein 4 (Gata4) (A), Sirtuin 1 (Sirt 1) and hypoxia inducible factor 1 alpha subunit (Hif 1a) (B) vary at 
different ages (n=4-8). *P<0,05 compared with young controls   
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4.5 SPONTANEOUS CD4+ T-CELL ACTIVATION IN MEDIASTINAL LYMPH NODES OF 

AGED MICE 

So far, a resident lymphocyte population under steady state conditions in the 

myocardium of healthy mice and rising levels of genes associated with inflammation and 

adaptive immunity had been observed during aging. Further experiments were arranged 

to further investigate the role of leukocytes in the context of myocardial senescence 

concrete. As lymph nodes are the major scene of lymphocyte activation, mediastinal 

heart draining lymph nodes were harvested from differently aged mice and lymphocyte 

populations were characterized carefully. As control, popliteal lymph nodes primarily 

draining hind limb skeletal muscle were examined.  

At first sight, a macroscopic larger size of mediastinal lymph nodes compared to 

popliteal lymph nodes was conspicuous, most notably in aged mice. Measurements of 

the absolute cell numbers revealed distinctly higher values in mediastinal lymph nodes 

of aged mice compared to young ones, but also in comparison with cell numbers 

measured in popliteal lymph nodes. No increased cellularity was measured in popliteal 

lymphnodes. These findings suggest the immune activation occurring in elderly being a 

process with local focus on the heart (Fig. 16A). A more accurate characterization of the 

T-cell compartment showed a similar distribution of the overall T-cell population on 

CD4+ and CD8+ T-cells in both, mediastinal and popliteal lymph nodes of either age group 

(Fig. 16B+C). CD4+ T-cells were beyond that divided into a subset of conventional T-cells 

(Tconv) and FoxP3+ regulatory T-cells (Treg). CD4+ T-cells isolated from mediastinal lymph 

nodes were to a higher extent differentiated towards Tconv-cells in young and old mice 

respectively, implicating the Treg-subset remaining rather small (Fig. 16D). In contrast, 

examinations of CD4+ T-cells obtained from popliteal lymph nodes showed a significantly 

smaller portion of  Tconv -cells  with  aging, whereas Treg-frequencies were increased in 

12-15 months old mice (Fig. 16E).  
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Fig. 16: Flow cytometry analyses of cell numbers and differentiation in mediastinal and popliteal lymph 
nodes  
A: Total cell numbers isolated from mediastinal and popliteal lymph nodes of 2-3 months and 12-15 
months old mice (n=8-9). B and C: Frequencies of CD4+ T-cells and CD8+ T-cells among the total T-cell 
population in mediastinal lymphnodes (B) and popliteal lymphnodes (C) of young and aged mice (n=3-5). 
D and E: Distribution of CD4+ T-cells on conventional T-cells (Tconv) and regulatory T-cells (Treg) regarding 
the mediastinal lymph node population (D) and popliteal lymph node population (E) at different times (n= 
4-8). *P< 0,05 compared to young group or as indicated 
 

 

Further flow cytometry analyses were performed to determine the activation 

status of above described T-cell populations. CD4+ cells were differentiated by CD44 and 

CD62L surface expression, whereupon CD44high CD62Llow CD4+ T-cells were regarded as 

antigen experienced activated effector memory phenotype. In 12-15 months old mice, 

an obvious accumulation of CD44high CD62Llow CD4+ T-cells was observed in both lymph 

node stations that was more accentuated and significantly higher in mediastinal lymph 

nodes compared to popliteal lymph nodes (Fig. 17A+C). Among the antigen experienced 

T-cells, the frequency of FoxP3+ T-cells was significantly reduced in mediastinal lymph 

nodes of aged mice, resulting in an altered Treg:Tconv ratio shifted towards the Tconv 

subpopulation. A more precise examination revealed a significant increase of antigen 

experienced Tconv-cells being causative for this condition rather than a decrease of 

activated effector memory Treg-cells (Fig. 17E+F).   
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Regarding popliteal lymphnodes, no changes in the portion of effector memory 

Tconv-cells became evident during time, whereas the ratio of activated effector memory 

Tregs was elevated in old mice. The majority of activated effector memory T-cells in both 

lymph node compartments were continuously Foxp3+ regulatory T-cells suggesting an 

elevated necessity of regulatory, anti-inflammatory performance during the aging 

process in both localizations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: CD4+ T-cell populations and development during aging. 
A: Representative flow cytometry plot reflecting the gating strategy to distinguish between CD44 and 
CD62L expression or absence on CD4+ T-cells. B-F: Flow cytometry analysis of T-cell populations.  
B: Quantitative analysis depicting the frequency of FoxP3+ T-cells among CD4+CD44+CD62L- T-cells.                   
C: Frequencies of CD44+CD62L- T-cells (activated effector memory T-cells) among all T-cells in young and 
aged animals in both lymph node stations representing an accumulation of activated effector memory T-
cells in elderly (n= 10-18). D: Analysis of FoxP3+ regulatory T-cell frequencies among CD44+CD62L- T-cells 
show a significant lower ratio of Tregs in mediastinal lymph nodes of 12-15 months old mice, whereas the 
ratio in popliteal lymph node remained stable (n= 4-8). E and F: Frequencies of CD44+ T-cells among Tconv 
and Treg were analyzed in mediastinal (med LN, E) and popliteal (pop LN, F) lymph nodes of young and old 
mice (n= 4-8). *P<0,05 compared to young controls or as indicated 
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In order to compare the findings observed in mediastinal lymph nodes with an 

additional lymph node side, the T-cell compartment of sub-iliac lymph nodes of young 

and aged mice was characterized. Similar to popliteal lymph nodes, aging was not 

accompanied by increased cellularity in sub-iliac lymph nodes. Moreover, age related 

alterations regarding the surface expression of CD44 and CD62L were closer to 

observations made for popliteal lymph nodes and divergent to findings made in 

mediastinal lymph nodes. In sub-iliac lymph nodes, the CD44+CD62L- T-cell population 

was augmented in elderly and the ratio of FoxP3+ Tregs among the effector memory 

compartment was not diminished but stable. Furthermore, the frequency of cells 

expressing the surface marker CXCR3, a chemokine receptor primarily detected on 

activated Th1-cells, was increased in old mice.  

In summary, the results of sub-iliac lymph node analysis were more comparable to what 

was seen in popliteal lymph nodes than in mediastinal lymph nodes, reinforcing the 

consideration of shifts in mediastinal lymph node cell composition being site specific. 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18.: Characterization of the CD4+ T-cell compartment in sub-iliacal lymph nodes  
A: Total cell numbers isolated from sub iliac lymph nodes of young and old mice. B: Frequencies of CXCR3+ 
expressing CD4+ T-cells increase with aging. C and D: Analysis of the CD44+CD62L- T-cell subset with aging 
(C) and Fox P+ Tregs among those (D) (n= 4-6). *P<0,05.  
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4.6 IN-VITRO STIMULATION REVEALS A PRO-INFLAMMATORY DIFFERENTIATION OF 

MEDIASTINAL T-CELLS 

T-Cells were isolated from mediastinal and popliteal lymph nodes of young and 

aged mice and stimulated in vitro with phorbol 12-myristate 13 acetate (PMA) plus 

Ionomycin. CD4+ T-cells harvested from mediastinal lymph nodes showed a significantly 

higher INF-g production in aged animals compared to young animals and popliteal LN 

cells, where no increase was detected. Regarding the CD8+ T-cell compartment, 

significantly higher numbers of INF-g secreting cells were observed in both LN stations 

over time. Still, mediastinal lymph nodes contained significantly more INF-g producing 

cells (Fig. 19 A+G).  

In contrast, CD4+ and CD8+ T-cells from pop LN of aged mice showed most notable 

IL-10 response, whereas only a minor response in mediastinal LN and young animals has 

been measured. IL13 secretion after stimulation was hardly detectable regarding CD4+ 

and CD8+ T-cells in both LN stations.  

The TNF production was slightly increased in T-cells of all LN stations in aged mice, 

indicating a slight generalized inflammation in old animals. 

Furthermore, the surface expression of CXCR3 was upregulated in the elderly 

group in mediastinal lymph nodes and popliteal lymph nodes respectively. Still, the 

frequency of CXCR3+ T-cells in mediastinal LN of old mice was nearly three times higher 

compared to popliteal lymph node populations of the same age, suggesting a 

polarization towards Th1-cell population.  
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Fig. 19: Cytokine production of T-cells after stimulation with PMA plus ionomycin 
T-cells were isolated from mediastinal and popliteal lymphnodes of young and aged mice and stimulated 
in vitro with PMA plus ionomycin. Frequencies of cytokine secreting cells were analyzed with flow 
cytometry. A-F show findings for CD4+ T-cells, whereas G-J represent results for CD8+ T-cells. A: CD4+ T-
cells harvested from mediastinal lymphnodes (med LN) of 12-15 months old mice produce distinctly 
higher levels of INF-γ compared with 2-3 months old mice and T-cells from popliteal lymph nodes (pop 
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LN). B, D, H, J: Representative flow cytometry plots showing INF-γ and TNF secretion (B and H) or IL10 and 
IL13 secretion (D and J). C: IL10 production was significantly increased in CD4+ T-cells isolated from pop 
LN of aged mice. E: Frequencies of CXCR3 expressing CD4+ T-cells was significantly upregulated in old mice.  
F: Representative flow cytometry plot for CXCR3 dependent cell count. G: CD8+ T-cells isolated from 12-
15 months old mice produce significantly higher levels compared with 2-3 months old mice. The 
production of med LN derived cells was additionally significantly higher than in T-cells from pop LN. I: IL10 
production was significantly increased in CD8+ T-cells isolated from pop LN of aged mice. (n= 5-8 per 
group). *P<0,05 compared as indicated.  
 

 

 

4.7 HEART DIRECTED AUTOREACTIVITY ARISES WITH AGING 

The observation that IFN-γ-producing CD4+ effector T-cells accumulate in 

mediastinal lymph nodes raised the hypothesis of spontaneous heart directed 

autoimmunity being involved in myocardial aging. To detect heart specific IgM and IgG 

autoantibodies, plasma of young and old mice was incubated with heart slices from B-

cell deficient and thereby antibody deficient mice. Autoantibodies binding to target 

antigens were visualized with green (IgG) and red (IgM) fluorochromes. Only minor 

autoreactivity was detected in young animals, whereas higher color intensity 

represented elevated levels of antibodies directed against cardiac antigens in plasma of 

aged mice. Images in high magnification indicate that most IgGs, which spontaneously 

arise with aging, target intracellular sarcomeric antigens, but do not bind to 

cardiomyocyte surface antigens.  

Further investigations using indirect ELISA to quantify anti-myosin antibody titers 

confirmed previous findings and revealed significantly increased titers in 12-15 months 

old mice. As it is well understood that CD4+-T-cells are involved in B-cell activation and 

required for class switch towards IgG antibody production, specific IgGs also reflect T-

cell specificity for antigens. Therefore, these findings suggest that not only B-cell 

dependent, but also CD4+-T-cell dependent heart directed autoimmune reactivity might 

arise in elderly mice. 
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Fig. 20: Spontaneous autoreactivity arises with aging 
A-F: Representative pictures of histological heart slices from B-cell deficient mice after incubation with 
plasma obtained from 2-3 months (B and E) and 12-15 months (C and F) old mice and visualization with 
secondary antibodies labeled to fluorochromes. IgGs targeting cardiac antigens appeared green while 
heart directed IgMs are depicted in red. As control, samples were solely incubated with secondary 
antibodies (A and D). Magnification 400x. G: IgGs emerging with age were found to target primarily 
intracellular sarcomeric antigens rather than reacting against surface antigens. Magnification 1000x. H:  
Myosin-specific antibodies quantified via indirect ELISA (n= 6-8). *P<0,05  
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4.8 ELDERLY CD4+ DEFICIENT AND OVA-TCR TRANSGENIC MICE EXHIBITED 

ATTENUATED CARDIAC INFLAMMATION AND DYSFUNCTION AS COMPARED TO 

WILD TYPE MICE 

To evaluate more precisely the impact of different immune cells on myocardial 

aging, a comprehensive cardiac phenotyping of genetic different mouse strains was 

performed. Following genotypes representing particular lymphocyte deficiencies were 

included and compared with wild type mice (WT): 

First, CD4+ T-cell deficiency was investigated on CD4 knockout mice (CD4KO) and 

MHCII receptor knockout mice (MHC-IIKO), the latter lacking functional CD4+ T-cells as 

MHCII-receptors are indispensable for CD4+ T-cell activation. Furthermore, cardiac 

parameters were examined in mice with CD4+ T-cells expressing transgenic T-cell 

receptors (TCR) that recognize irrelevant ovalbumin323-339 peptides presented in MHCII 

context (OT-II mice).  Second, to assess the role of B-cells, mice lacking mature B-cells 

(µMT mice) were included in the analysis. All mouse strains descend from the same 

genetic background and were housed under identical conditions. 

Initially, cardiac function of 2-3 months and 12-15 months old mice was 

examined using echocardiography. In contrast to WT mice, aged MHC-IIKOs exhibited 

preserved fraction shortening and end diastolic area with similar values observed in 

young counterparts. Additionally, no MCH-IIKO mice developed fraction shortening of 

less than 40%, as it was detected in WT mice. Old B-cell deficient µMT mice presented a 

slight reduction of fraction shortening and a distinct age-related increase of end diastolic 

area comparable to WT mice (Fig. 21). Given these findings, cardiac dysfunction in 

elderly might be predominantly T-cell, but to a smaller extent B-cell related.  
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Fig. 21: Echocardiographic analysis of cardiac function in genetic different mouse strains 
A: Age- related fraction shortening of wild type (WT), B-cell deficient (µMT), and CD4+ deficient (MHCIIKO) 

mice. B: End diastolic area of 3 genotypes measures in young and old mice (n=5-19). # p< 0,05 compared 

with age matched WT mice. *p<0,05 compared with genotype matched young controls. 

 
As the detailed mechanistic background of functional preservation specifically in 

CD4+ T-cell deficient mice was unclear, gene expression of different mouse strains was 

analyzed to understand how T-cell deficiency is associated with cardiac function. 

Therefore, myocardial samples of 12-15 months old mice of all genotypes were probed 

for the expression of 45 target genes using the same custom-made PCR array mentioned 

in chapter 4.4 and immunodeficient mouse strains were matched to WT mice. Cardiac 

samples obtained from both, CD4KO and MCH-IIKO mice showed reduced gene 

expression levels of the pro-inflammatory cytokines TNF and IL1b compared to WT mice 

(Fig. 22). Although CD4+ T-cells are missing in both mouse strains, these findings were 

even more pronounced in CD4KO in which, beyond that, the expression of INF-y, IL6 and 

CCL2 was down regulated. Furthermore, the cell stress marker Hspa1a (heat shock 

protein family a member 1a) was lower in CD4KO mice in relation to the comparison 

group. Analysis of heart samples obtained from TCR deficient OT-II mice revealed similar 

gene expression levels as measured in CD4KO, indicating that autoantigen recognition 

by CD4+ T-cells via TCR is important for their activation (Fig.22). In contrast, 12-15 

months old B-cell deficient mice developed a gene expression profile nearly identical to 

WT mice, suggesting that the pro-inflammatory trend perceived in the myocardium is 

greatly associated with T-cell presence and less dependent on B-cells.  
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Fig. 22: Myocardial gene expression levels of different aged lymphocyte deficient mice compared 
to old wild type mice. 
Representative scatter plots depicting normalized myocardial gene expression levels (Log2 relative gene 
expression) of 45 genes and 3 housekeeping genes in lymphocyte deficient mouse strains compared to 
age matched wild type (WT) animals. A-C: CD4+ T-cell deficient mice express lower levels of pro-
inflammatory genes compared to WT mice. These findings were more evident in CD4 T-cell knockouts 
(CD4KO) (A) and mice with T-cell receptors for irrelevant antigens (OT-II) (C) than in MHCII receptor 
knockout mice (MHC-IIKO) (B). D: No important differences were observed comparing gene expression of 
B-cell deficient mice (µMT) and WT mice. (n=3). 
 

 

Based on the observations made during qPCR array analysis, some relevant 

target genes were analyzed with additional biological and technical replicates to validate 

the major findings and check for statistical significance. It was confirmed, that in CD4KO, 

MHC-IIKO and OT-II mice TNF expression levels in myocardial tissue are kept down and 

significantly lower compared to WT animals, whereas its expression in B-cell deficient 

mice was higher and closer to WT levels (Fig. 23A).  The gene expression levels of Tgfb3 

(Transforming growth factor beta 3) and Myh7 (myosin heavy chain 7), which were 

demonstrated to be upregulated during aging in hearts of WT mice, were identified to 

be nearly equal in old mice of all genotypes possibly being a hint that structural cardiac 

changes might be apparent in all genotypes (Fig. 23C). Moreover, the IL-6 gene 
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expression level was assessed as IL6 is associated with a more proinflammatory tone. Its 

general expression level presented on a low level, however, it was slightly less in aged 

CD4KO and OT-II mice compared to the WT and µMT group. 

 

 
Fig. 23: Myocardial gene expression analysis of different aged mouse strains 

A-C: Gene expression levels of tumor necrosis factor- alpha (TNF) (A), Myosin heavy chain 7 (Myh7) 

(B) and transforming growth factor 3 (tgfb3) (C) in WT, CD4 T-cell deficient (MHC-IIKO, CD4KO, OT-

II) and B-cell deficient (µMT) mice. D: IL-6 expression in WT, µMT, CD4KO and OT-II mice. (n=3-6). 

*P<0,05 compared to WT. 
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5 DISCUSSION 

5.1 LYMPHOCYTE POPULATIONS ARE CONSTANTLY PRESENT IN THE HEALTHY 

MYOCARDIUM  

Leukocytes and their behavior are best characterized in blood, lymphatic tissue 

and lymphoid organs. In the last years, research turned to investigate the leukocyte 

distribution in non-lymphoid organs. Macrophages and their diverse appearances were 

the first to be described in various tissues, leading to progressive insight in their essential 

functions in tissue homeostasis and maintenance 188,189. However, different tissue 

resident lymphocyte populations have been identified in recent years, modulating the 

molecular milieu and orchestrating further cell types 190-193. Tissue resident memory T-

cells have been described in several organs, not only after antigen contact, but also 

under steady state conditions, including barrier tissue like skin, female reproductive 

tract, intestines, lungs and even non-barrier organs like kidney, brain or liver 194-196.  

Furthermore, Tregs regulate non-immunological processes like glucose metabolism in fat 

tissue or contribute to muscle regeneration by mediating satellite cells 197-199.  

This work confirmed the assumption that all leukocyte types can be found in the 

uninjured heart and proved the presence of macrophages, granulocytes, B -cells and T-

cells.  Beyond that, the myocardial leukocyte population was directly compared to that 

one in skeletal muscle, examining both simultaneously using identical methods. A higher 

leukocyte number was detected in the myocardium, suggesting a higher immunological 

activity. As mentioned before, cardiac macrophages are no novelty, but have been 

studied before. They colonize the heart in the early neonatal period and later affect 

cardiac physiology in terms of electrical conduction, tissue homeostasis and      

remodeling 33,154,155,159. Also, dendritic cells were detected in the heart and shown to 

present cardiac antigens in adjacent lymphnodes to T-cells, resulting in T-cell      

activation 163,164.  

In contrast, the role of cardiac B- or T-cells has only been analyzed in detail under 

pathological conditions while their role under physiological conditions has been 

disregarded. So far, few comprehensive studies showed the presence of lymphocytes in 
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the healthy myocardium but did not provide a precise characterization 152,200. This study 

supports the finding, that macrophages represent the major fraction of cardiac 

leukocytes and moreover illustrates that a small population of B- and T-cells can be 

consistently found in healthy hearts. The small numbers of detected cardiac 

lymphocytes might have been one reason to underestimate their importance in cardiac 

physiology in the past. However, the low recovery of tissue resident leukocytes due to 

methodological challenges is a well-known problem and should not be                     

overlooked 201,202.  Here we used a refined 3D imaging approach that prevents cell loss 

during tissue digestion and preparation and therefore allows to obtain more accurate 

leukocyte numbers. About three-fold more leukocytes were detected, showing that the 

cardiac leukocyte population is larger than assumed. One further advance is the 

visualization of global cardiac tissue distribution of CD45+ cells. Thereby, no myocardial 

area with an outstanding accumulation of leukocytes was observed. However, to find 

out if leukocyte subtypes are unequally distributed, further experiments must be 

performed. 

Beyond that, this work includes a detailed characterization of cardiac leukocytes 

performed at different ages and in a number of mouse strains with lack of single 

lymphocyte subtypes that enables to draw new conclusions about immunological 

activity in the heart.  

 

 

5.2 MYOCARDIAL AGING IN THE CONTEXT OF AN INCREASED INFLAMMATORY TONE 

Myocardial aging is characterized by structural and functional changes including 

hypertrophy, fibrosis, ventricular stiffness and deterioration of diastolic function 8. 

The mice studied here developed aforesaid characteristics and provided the basis for an 

investigation of the immune system´s impact regarding age-related alterations. 

Simultaneous changes of gene expression levels, immune cell composition and 

activation were observed, indicating myocardial und immunological aging being 

interrelated events.  
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Examining the myocardial tissue, a significant decline of macrophage numbers in 

advanced age is conspicuous. A more accurate investigation indicated a replacement of 

tissue resident macrophages by monocyte derived cells (defined as CCR2+ cells). While 

for many tissues the local macrophage populations maintain themselves without 

replenishment by monocyte derived cells under steady state conditions, a replacement 

of cardiac embryo-derived macrophages by monocyte derived cells has been described, 

even without any tissue damage and injury 157,203.  Furthermore, monocyte derived cells 

have been detected to coordinate cardiac inflammation and have an increased 

inflammatory potential 155. Under stressful conditions as for example hemodynamic 

pressure, their fraction increases, which is again associated with cardiac remodeling 204. 

This work reinforces previous findings, as gene expression analysis reveal an increase of 

loading and cell stress parameters in the same temporal sequence as cellular alterations. 

Nevertheless, it did not focus on macrophages and does not provide further 

investigation allowing a more detailed picture of ongoing mechanisms. 

By analyzing gene expression levels of proinflammatory cytokines and 

chemokines in the myocardium at different ages, it was possible to draw conclusions 

about the dynamics during aging. This is an advantage to having only one random 

sample at any time in the mice life on which conclusions have to be made. As a result, 

TNF and INF-g increase during time and are significantly higher in elderly mice. Similar 

trends were observed for chemokines modulating the adaptive immune system.  To 

date, several studies analyzed the molecular environment in aged individuals and 

detected elevated global IL6 and TNF levels 205. Additionally, there is evidence that INF-

g induced inflammation occurs with aging 206. One could argue, that inflamm-aging is an 

established concept and the aging heart is only part of the whole. Consequently, an 

increased inflammatory tone would be no surprise. This might be partly applicable. In 

fact, we detected TNF slightly increased at distributed measuring points within the body 

of aged mice. However, it was shown here that age dependent immunological activity 

arises with local focus on the heart. First, with age cellularity in mediastinal lymphnodes 

is increased, whereas cells numbers remain unaltered in further lymph node stations. 

Second, stimulation of isolated T-cells showed a significantly higher amount of secreted 
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pro-inflammatory cytokines in mediastinal and anti-inflammatory cytokines in popliteal 

lymphnodes. Third, cell markers indicated a significantly shifted polarization towards 

activated Th1 cells in mediastinal lymph nodes compared to popliteal and sub-iliac 

lymph nodes.  Additionally, previous work has detected region specific variation in the 

antigen  repertoire  of  different  lymph  node stations even  under  steady  state 

conditions 207,208.  

Lymph nodes are points of immunological response towards numerous antigens 

carried in the lymph. Lymph collected from one organ represents its individual proteome 

and degradome, mirroring the organs physiological and pathological conditions 209. 

Considering aforesaid knowledge and our findings, it is likely that the myocardial output 

contains immune-stimulatory content. Gene expression analysis revealed genes 

connected to different cell stress conditions to be increased with aging. As cell stress 

conditions are characteristics of the inflamm-aging process, leading to cell death and 

release of antigens, the circuit could be completed.  

However, although cell stress and leukocyte alterations were measured at 

different time points, the results do not allow to define a clear sequence. If myocardial 

cell stress triggered by different factors and antigen release stimulate inflammation, or 

if inflammation causes cell stress and antigen release remains vague. A combination of 

both is likely. 

 

 

5.3 THE MEDIATING ROLE OF T-CELLS IN CARDIAC AGING 

Primary examinations of cardiac lymph nodes indicated alterations in the T-cell 

differentiation and function with aging. Regarding the impact of aging, T-cells are the 

best analyzed lymphocyte compartment so far and senescence was shown to have 

tremendous effect on T-cell immunity 97,98. That cardiac antigens are presented to T-

cells under physiological conditions has been reported earlier 210. Furthermore, cardiac 

T-cells modulate stressful and pathological conditions like ischemia or myocarditis and 

can contribute to the development of cardiac disease 179,211,212. Consequently, T-cells are 

suspicious to be involved in the myocardial aging process.  
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To enable a more differentiated statement and to investigate the impact of individual 

leukocytes on cardiac aging, a comprehensive cardiac phenotyping of different aged 

lymphocyte- deficient mouse strains was performed.  

Functional analysis revealed a preserved cardiac performance in mice lacking 

activated CD4+ T-cells, whereas WT and B-cell deficient mice developed a comparable 

cardiac dysfunction. The expression of proinflammatory cytokines like TNF was reduced 

in mice lacking activated CD4+ T-cells or total absence of CD4+ T-cells whereupon 

differences were more pronounced in case of total CD4+-T-cell deficiency. The same 

applies for cell stress gene expression. Comparable findings were observed in mice 

which do indeed generate CD4+ T-cells that, however, do only carry a receptor 

recognizing irrelevant antigens. Latest finding indicates, that (auto-) antigen 

presentation might be important for an immune response with impact on cardiac aging. 

Again, the gene expression profile of B-cell deficient mice was comparable with WT 

mice. Conclusively, those findings underline the assumption of T-cells but not B-cells 

being required for a pro-inflammatory trend and functional decline during cardiac aging. 

It is worth mentioning that genes related to structural alterations and remodeling were 

similarly increased in old mice of all mouse strains. Therefore, a certain degree of 

remodeling and age-related alteration might occur independently of the presence or 

absence of cardiac immune cells.  

Our group performed an extended adoptive cell transfer experiment to assess 

the pathogenic potential of lymphocytes harvested from mediastinal lymph nodes 213. 

Cells harvested from mediastinal lymphnodes of young and old mice were transferred 

into young lymphocyte deficient mice. Analysis of the cardiac cell composition revealed 

significantly increased frequencies of myocardial B- and T-cells in recipients that 

received cells harvested from old donors. T-cells were the mayor infiltrating cell 

population, manly exhibiting an effector memory phenotype. Thereby, cardiotropism 

was demonstrated to develop with a clear dependency on age. Functional analysis 

detected no effect of the donors age on cardiac function of recipient mice 213. These 

findings substantiate the hypothesis that T-cells are involved in the cardiac aging process 
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and required for the development of age dependent alterations, but are not able to 

cause senescence associated myocardial transformation.    

What exactly changes in the T-cell compartment with aging? A more detailed 

analysis of the T-cell populations in different lymph node stations was performed in this 

work. As expected in the context of immunosenescence, an accumulation of antigen 

experienced activated effector memory T-cells was observed in different lymph node 

stations with aging. However, the ratio of antigen experienced activated effector 

memory T-cells was significantly higher in mediastinal lymph nodes compared to 

popliteal lymphnodes, indicating an augmented reactivation due to ongoing or repeated 

antigenic load.  Among the memory T-cell compartment, the fraction of regulatory              

T- cells was reduced in mediastinal lymphnodes of aged mice due to a gain of 

conventional memory T-cells. Memory Tregs, just as effector Tregs, have high 

immunosuppressive potential and persist in absence of antigen or low-level antigen 

exposure 214. A recent study found that the T-cell repertoire and differentiation can vary 

across different lymph node stations and suggested that activated memory T-cells 

recognize self-antigens and control autoimmune disease 215. In case of an inflammatory 

response towards re-infection with a pathogen, memory Treg-cells were shown to 

suppress pro-inflammatory effector memory T-cells and prevent collateral damage to 

affected tissue 216. Considering this, memory Tregs could be helpful to suppress heart 

directed T-cell immunity during repeated stimulus. As the ratio shifts toward 

conventional T-cells with aging, the capacity of available Tregs might be insufficient to 

control pro-inflammatory T-cell response. If this problem finally relies on an inadequate 

total number of Tregs or their efficiency in antigen recognition cannot be specified here.  

Regarding the effector regulatory T-cell compartment, the frequency of regulatory 

T-cells was much smaller than the frequency of conventional T-cells, in both young and 

old animals. The importance of Tregs for muscle homeostasis and repair during aging and 

under inflammatory conditions has been reported several times 217-220. Other than in 

mediastinal lymph nodes, the frequency of Tregs was significantly increased in popliteal 

lymph nodes of elderly mice. As the inflammatory tone appeared lower in popliteal 



 - 81 -  

lymph nodes, these findings might help to explain alterations in cardiac homeostasis 

with aging. 

 

 

5.4 AUTOIMMUNITY IN CARDIAC AGING 

When talking about cardiotropism of T-cells, reduced numbers of regulatory T-

cells and a limited control of pro-inflammatory immune activity, the assumption that 

autoimmunity might be relevant in myocardial aging is obvious. T-cells with specificity 

to cardiac antigens are generated after myocardial infarction, but are also involved in 

the development of heart failure even without cardiac injury 164,180.  

Regulatory T-cells can suppress autoreactive T-cells, are key players in maintaining 

peripheral tolerance towards self-structures and insufficient function has been 

demonstrated in several autoimmune disease 58,221 . For many years, the basic idea 

allocated tolerance against self-antigens as a task of tTregs, whereas pTregs should be 

responsible for limitations of immune responses against foreign antigens. However, in 

the last years there is new knowledge that tolerance against self is incomplete and 

deficient without pTregs and that pTregs allow the development T-cell repertoire adapted 

to evolving antigens encountered in the periphery 78,222. Harbihai et al. discuss the 

expansion of TCR diversity by pTregs as one mechanism 78. With aging, the induction of 

peripheral Tregs was shown to be impaired and tTregs accumulate while the pTreg 

compartment shrinks 108,111. Consequently, an age dependent decline of the TCR 

repertoire is expected with age causing a restriction of response to antigens.  Myocardial 

aging is accompanied by remodeling and increased cell death causing an increased 

exposure of heart specific antigens. Considering that antigens may occur for the first 

time, it is supposable that a newly emerging autoreactive immune activity against 

cardiac antigens fails to be controlled.  

Beside the cellular components of the immune system, antibodies play a well-

established role in inducing autoimmune disease. Again, autoantibodies targeting 

cardiac antigens have been described in different heart failure conditions 223. In this 

study the presence of heart specific antigens was proven. IgM and IgG antibodies were 
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detected. As class switch relies on T-cell help, this result reinforces for one more time 

the participation of T-cells in age dependent immune response.  The antigens detected 

in mice´s plasma with increasing amounts during the aging process were found to bind 

to intracellular antigens, but do not target cardiomyocyte surface markers. Previous 

studies revealed autoantigens to be from clinical relevance when targeting surface 

receptors from functional importance 224,225. Therefore, it is unlikely that the antibodies 

detected here induce or promote myocardial alterations or aging. This conclusion is 

strengthened by the finding that B-cell deficient and hence antibody deficient mice 

exhibit age related alterations comparable to WT-mice. It is more likely, that detected 

antibodies are result of life long antigenic exposure particularly to intracellular antigens 

released during cell stress and death.   

However, it should not be disregarded that the medium which was analyzed for 

autoantibodies and the presence of myosin specific antibodies was plasma. The lymph 

was shown to carry an expanded self-antigen repertoire compared to plasma 226. 

Therefore, analysis of the murine and human antigen compartment in the plasma might 

give first insights, but not provide an entire overview. Finally, the repertoire and 

significance of cardiac autoantibodies and their role in the aging process is far from 

being settled. 

Autoreactivity might modulate the myocardial aging process, but in this study no 

evidence for autoimmunological processes being the basic cause for age related 

alterations could be detected. 

 

 

5.5 FUTURE POTENTIAL FOR CONTINUATIVE RESEARCH 

This study provides a first basic characterization of leukocytes in context of the 

myocardial aging process by doing baseline analysis in aged animals and by using 

different lymphocyte-deficient mouse models to study impact of singe cell types. It gives 

first evidence, that CD4+ T-cells mediate cardiac aging, a condition of increased immune 

activity and sterile inflammation. While this work explains some underlying alteration 
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and contributes to the understanding of ongoing mechanisms, it is beyond that a link 

for future work and raises new questions. 

The experiments were done in up to 15 months old mice. Experiments to 

investigate cardiac pathologies in other groups have been performed in even older 

rodents 227. Although it requires higher methodological effort, it might be reasonable to 

conduct further research in older mice, assuming that age related changes will be more 

distinct. Moreover, experiments performed herein focused on age related alterations 

and their impact on the steady state condition. Still, it remains elusive how alterations 

in cardio-immune cross talk in elderly modulate age associated cardiovascular diseases 

as heart failure and myocardial infarction. Previous studies showed that basic cellular 

and molecular conditions change with aging and that these alterations have an effect 

on myocardial infarction and healing 228,229. It was shown here that the immunological 

cardiac milieu changes significantly with aging and lymphocytes were shown to 

influence structural and functional alterations 170. Therefore, myocardial infarction and 

healing in young and old individuals might be basically different. To date, research on 

myocardial infarction is primarily conducted in young mice. Considering afore 

mentioned aspects and the knowledge that myocardial infarction is a disease of the 

aging population, the use on older experimental models could provide more realistic 

fundament for future research.  

One entire chapter of this work deals with autoimmunity. As mentioned before, 

autoantibodies have been identified under heart failure conditions and for example 

myosin, as one of the best studied cardiac antigens, has been detected in several heart 

diseases 230.   Furthermore,   cardiac  injury  induces  the  generation  of  autoreactive   

T-cells 164. Still, the targeted structures and released antigens are widely unknown. 

Identification of those could help to decode mechanisms and reveal potential targets 

for future therapies. Considering previous findings, research should not be restricted to 

plasma but also pay heed to lymphatic fluid 226. 

Finally, the transferability of findings from bench to bedside is subject of 

permanent discussions. Although mice are the typical model for cardiac and 

immunological research, the immune systems is not 100% identical to the human one 
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and differences apply during aging 86,231.  In the end, hypotheses that developed from 

murine research have to be tested und verified for human beings.  
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6 SUMMARY 

The prevalence of cardiovascular diseases (CVD) increases dramatically with age. 

Nevertheless, most of the basic research in cardiology has been conducted on young 

healthy animals which may not necessarily reflect the situation observed in the clinic. 

The heart undergoes profound changes in elderly, including molecular alterations, 

myocardial hypertrophy, interstitial fibrosis and functional decline. To date, numerous 

approaches exist to explain mechanisms of the cardiac aging process whereupon 

inflammation and immune activity are of increasing interest. Myocardial aging is 

temporally associated with chronic low-grade systemic inflammation and accumulation 

of memory T-cells. However, a possible causal relationship between these two 

phenomena has not yet been investigated. Thus, aim of the present study was to assess 

how immunological mechanisms contribute to the myocardial aging process. 

Herein, the healthy murine heart was found to harbor all major resident leukocyte 

populations, including macrophages (CD45+CD11b+Ly6G-), granulocytes (CD45+ 

CD11b+Ly6G+), T-cells (CD45+CD11b-CD3e+), B-cells (CD45+CD11b-B220+) at frequencies 

that largely surpass those found in skeletal muscles. Age-related structural alterations 

and functional impairment occur simultaneously with significant shifts of the tissue 

resident leukocyte composition. Gene expression analyses performed on bulk 

myocardial samples revealed higher expression levels of TNF and INF-g suggesting that 

in situ inflammation plays a role in the myocardial aging process. Aging was furthermore 

accompanied by a significant increase in size and cellularity of mediastinal, heart 

draining lymph nodes (med LN). Moreover, the med LNs harvested from aged mice 

showed a strong accumulation of effector-memory T-cells (CD44+CD62L-), mainly 

exhibiting a pro-inflammatory phenotype (Foxp3-, TNF+, IFN- γ+). None of these 

alterations were observed in popliteal lymph nodes of aged mice, indicating that they 

might be site-specific. 

Next, to go beyond mere associative evidence and examine underlying 

mechanisms, the myocardial aging process was comprehensively characterized in mice 

lacking B- (µMT) or CD4+ T-cells (CD4ko). Our analyses revealed that aged CD4+ T-cell-

deficient, but not B-cell-deficient mice, exhibit a lower in situ inflammatory tone and 
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preserved ventricular function, as compared to age-matched wild type controls. No 

differences in the expression levels of genes related to fibrosis were observed in the 

groups. 

Taken together, the results of this study indicate that heart-directed immune 

responses may spontaneously arise in the elderly, even in the absence of a clear tissue 

damage or concomitant infection. The T-cell-mediated immunosenescence profile 

might be particularly associated with age-related myocardial inflammation and 

functional decline, but not with tissue remodeling. These observations might shed new 

light on the emerging role of T cells in myocardial diseases, which primarily affect the 

elderly population.  
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7 ZUSAMMENFASSUNG 

Die Prävalenz kardiovaskulärer Erkrankungen nimmt mit dem Alter dramatisch zu. 

Dennoch wurde der größte Anteil der kardiologischen Grundlagenforschung bisher an 

jungen, gesunden Tieren durchgeführt. Dies spiegelt nicht zwangsläufig die in der Klinik 

beobachtete Situation wieder. Das Herz durchläuft während des Alterns einen 

tiefgreifenden Wandel, einschließlich molekularer Veränderungen, Hypertrophie des 

Myokards, interstitieller Fibrose und funktioneller Verschlechterung. Bis heute gibt es 

zahlreiche Ansätze, um die Mechanismen hinter dem kardialen Alterungsprozess zu 

erklären. Insbesondere Inflammation und Immunaktivität sind von zunehmendem 

Interesse. Das Altern des Myokards korreliert zeitlich mit geringer chronischer, 

systemischer Entzündungsaktivität und einer Akkumulation von Gedächtnis-T-Zellen. 

Trotzdem wurde ein kausaler Zusammenhang zwischen beiden Vorgängen bisher nicht 

tiefergehend untersucht. Ziel dieser Studie war es festzustellen, wie immunologische 

Mechanismen zum kardialen Alterungsprozess beitragen. 

Im Rahmen dieser Arbeit konnte gezeigt werden, dass gesunde Maus Herzen alle 

bedeutenden, gewebeansässigen Leukozyten einschließlich Makrophagen 

(CD45+CD11b+Ly6G-), Granulozyten (CD45+ CD11b+Ly6G+), T-Zellen (CD45+CD11b-CD3e+) 

und B-Zellen (CD45+CD11b-B220+) beherbergen und dies in einer deutliche höherer 

Anzahl als die Skelettmuskulatur. Altersabhängige, strukturelle Veränderungen und 

funktionelle Verschlechterung treten zeitgleich mit signifikanten Veränderungen in der 

Zusammensetzung der ansässigen Leukozyten auf. Untersuchungen der Genexpression 

an Myokardproben ergaben ein erhöhtes Level der TNF und INF-g Expression, was 

darauf hinweist, dass in-situ Inflammation eine Rolle im myokardialen Alterungsprozess 

spielt. Darüber hinaus zeigten mediastinale Lymphknoten im Alter eine deutliche 

Größenzunahme sowie einen signifikanten Anstieg der Zellzahl. In mediastinalen 

Lymphknoten von alten Mäusen konnte außerdem eine starke Akkumulation von 

Effektor-Gedächtnis-T-Zellen (CD44+CD62L-) nachgewiesen werden, welche vorwiegend 

einen pro-inflammatorischen Phänotyp (Foxp3-, TNF+, IFN-γ+) aufwiesen. Keine dieser 

Veränderungen konnte in poplitealen Lymphknoten gezeigt werden, was darauf 

hindeutet, dass es sich um einen ortsspezifischen Prozess handeln könnte.  



 - 88 -  

Um über eine rein assoziative Evidenz hinaus zu gehen und zugrundeliegende 

Vorgänge zu analysieren, wurde der myokardiale Alterungsprozess umfassend an 

Mäusen ohne B- Zellen (µMT) oder CD4+ T-Zellen (CD4ko) charakterisiert. Die 

Untersuchungen ergaben, dass alte Mäuse ohne CD4+ T-Zellen verglichen zu 

gleichalterigen Wildtyp Tieren einen geringeren inflammatorischen Tonus in-situ 

entwickeln. Diese Veränderung war für Mäuse ohne B-Zellen nicht zu beobachten. 

Keinen Unterschied gab es in den Versuchsgruppen hingegen bei der Expression von 

Genen, die mit Fibrose assoziiert sind. 

Zusammenfassend weisen die Ergebnisse dieser Arbeit darauf hin, dass auf das Herz 

gerichtete Immunantworten im Alter spontan, auch ohne eindeutigen Gewebeschaden 

oder eine begleitende Infektion, auftreten können. Das T-Zell vermittelte Profil des 

alternden Immunsystems kann teilweise mit der altersabhängigen Entzündung des 

Myokards sowie funktionellen Einschränkung assoziiert sein, weniger jedoch mit dem 

Remodeling Prozess. Diese Beobachtungen geben neuen Aufschluss über die 

aufkommende Rolle von T-Zellen in Erkrankungen des Myokards, welche vor allem die 

ältere Bevölkerung betreffen.  
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9 APPENDIX 

9.1 ABBREVIATIONS 

°C   Degrees Celsius  
3D   Three dimensional 
a.u.   Arbitrary unit 
Ab   Antibody 
Ag   Antigen 
AICD   Activation induced cell death  
ANOVA  Analysis of variance 
APC   Antigen presenting cell 
BABB   Benzyl alcohol + Benzyl benzoate 
BSA   Bovine Serum albumin 
BSS   Balanced salt solution 
Ccl   C-C motif ligand 
CCR   Chemokine receptor type 
CD   Cluster of differentiation 
cDNA   Complementary deoxyribonucleic acid 
CMV   Cytomegalovirus 
Ct   Threshold cycle 
Cxcl   C-X-C motif Ligand 
DAMP   Damage associated molecular pattern 
DAPI    4´6-diamino-2-phenylindole 
DC   Dendritic Cell 
DNA   Deoxyribonucleic acid 
EDD   End-diastolic diameter 
EDV   End-diastolic volume 
EF   Ejection fraction 
EF   Ejection fraction 
ELISA   Enzyme-linked immunosorbent assay 
ESD   End-systolic diameter 
et al.   et alteri 
FACS   Fluorescence activated cell sorting 
FC   Fragment crystallizable 
FCS   Fetal Calf Serum 
Fig.   Figure 
FITC   Fluorescein isothiocyanate 



  

FoxP3   Forkhead Box Protein 3 
FS   Fraction shortening 
GAPDH  Glycerinaldehyd-3-phosphate-Dehydrogenase  
Gata-4   GATA 4 binding protein 
h   Hour 
HE   Hematoxylin and Eosin 
Hif   Hypoxia inducible factor  
HRP   Horseradish peroxidase streptavidin 
HSC   Hematopoietic stem cell 
Hsp   Heat shock protein 
Ig   Immunoglobulin 
IL   Interleukin 
INF- γ   Interferon Gamma 
IU   International units 
KO   Knock-out 
L   ligand 
LN   Lymph node 
Log   Logarithm 
LSFM   Light sheet fluorescence microscopy 
LV   Left ventricle 
Ly6C   Lymphocyte antigen 6 complex, locus C 
Ly6G   Lymphocyte antigen 6 complex, locus G 
M.   Muscle 
med   Mediastinal 
mg   Milligram 
MHC   Major histocompatibility complex 
MhZ   Megahertz 
min   Minute 
ml   Milliliter 
mM   Milli Mol 
mm3   Cubic millimeter 
Mmp   Matrix-Metalloprotease 
mo   Months 
MPVS   Micro-Tip®Pressure Volume System 
mRNA   Messenger ribonucleic acid 
Myh   Myosin heavy chain 
NAHNES   National Health and Nutrition Examination Survey 
nm   Nano meter 
NS   Not significant 
OVA   Ovalbumin 



  

PAMP   Pathogen associated molecular pattern 
PBS   Phosphate buffered saline  
PMA   12-myristate 13 acetate  
PNAS    Proceedings of the National Academy of Science 
pop   Popliteal 
PRR   Pattern recognition particle 
pTreg   Peripheral, induced regulatory T-cells 
qPCR   Quantitative polymerase chain reaction 
RNA   Ribonucleic acid 
rpm   Rounds per minute 
RT-PCR   Real time polymerase chain reaction 
RV   Right ventricle 
sec   Seconds  
SEM   Standard Error of mean 
Sirt   Sirtuin 
SPF   Specific pathogen free 
TCM   Central memory T-cells 
Tconv   Conventional T-cells 
TCR   T-cell receptor 
TEM   Effector memory T-cells 
TGF - ß   Transforming growth factor beta 
Tgfb   Transforming growth factor beta  
Th   T-helper cell 
TNF   Tumor necrosis factor  
Treg   Regulatory T-cell 
TRM   Tissue resident memory T-cells 
tTreg   Thymus derived, naturally occurring, regulatory T-cells 
TVA   Tierversuchsantrag  
U.S.   United states 
vs.   Versus 
VZV   Varicella zoster virus 
WGA   Wheat Germ Agglutinin 
WT   Wild type 
µg   Microgram 
µl   Microliter 
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