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Deutschsprachige
Zusammenfassung

Lieferanten nutzen Service Levels, um ihre Leistung gegenüber ihren Kun-
den zu überwachen. Um der Unterschiedlichkeit der Kunden gerecht zu werden,
streben sie häufig unterschiedliche Leistungsstufen gegenüber ihren Kunden an.
So erhalten beispielsweise Kunden mit einer hohen strategischen Bedeutung für
den Lieferanten oder einer höheren Zahlungsbereitschaft einen besseren (d.h. zu-
verlässigeren) Service als andere. Diese Kundendifferenzierung ist insbesondere
wichtig, wenn die Kapazitäten oder Bestände knapp werden und der Lieferant ent-
scheiden muss, welche Kunden er noch bedient und welche Aufträge er verschiebt
oder gar ablehnt.

Diese Differenzierung und Priorisierung erfolgt in Unternehmen meist durch
eine Allokationsplanung, bei der geplante Kapazitäten/Bestände einzelnen Kun-
den oder Kundengruppen zugeordnet werden. Bestellungen der Kunden werden
dann solange angenommen und erfüllt, bis die dem jeweiligen Kunden zuge-
ordnete Allokation aufgebraucht ist. In der Praxis erfolgt diese Allokationspla-
nung zumeist nicht durch einen zentralen Planer, sondern entlang der hierarchi-
schen Struktur der Vertriebsorganisation. So werden die gesamt verfügbaren Ka-
pazitäten schrittweise weiter heruntergebrochen bis schlussendlich die Allokatio-
nen zu den Kunden bestimmt werden. Diese schrittweise und dezentrale Planung
erfolgt üblicherweise mittels einfacher Regeln, auch da die meisten der in der Lite-
ratur vorgeschlagenen Modelle nicht für diese dezentrale Planung geeignet sind.

Motiviert von dieser Implementierungslücke, befasst sich diese Dissertation mit
der dezentralen Allokationsplanung in Unternehmen. In vier abgeschlossenen Ka-
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Deutschsprachige Zusammenfassung

piteln werden verschiedene Aspekte dieser unternehmerischen Planungsaufgabe
beleuchtet.

In Kapitel 2 wird zunächst ein einperiodiges Model untersucht, in dem der
Lieferant seine Kunden durch Alpha-Service Level differenziert. Für dieses Model
wird gezeigt, wie optimale Allokationen zentral und dezentral errechnet werden
können. Da die dezentrale optimale Lösung sich jedoch als impraktikabel heraus-
stellt, werden die heute weit verbreiteten einfachen Allokationsregeln untersucht.
Mathematische Untersuchungen ergeben, dass diese einfachen Regeln typischer-
weise zu suboptimalen Allokationen führen. Daher werden zwei neue Ansätze
entwickelt, für die analytisch und numerisch gezeigt wird, dass ihre Allokationen
nahe dem zentralen Optimum sind.

Kapitel 3 untersucht ein ähnliches Model; hier unterscheiden sich die Kunden
jedoch in ihrer Zahlungsbereitschaft. Der Fokus der Analyse in Kapitel 3 liegt auf
der Art von Informationen, die innerhalb der Organisation geteilt werden müssen,
um gute Allokationen zu erhalten. Durch eine weitgreifende numerische Analyse
kann gezeigt werden, dass Informationen über die Heterogenität der Zahlungsbe-
reitschaft der Kunden und Informationen über die Nachfrageunsicherheit beson-
ders relevant sind. Es werden zwei neue Methoden entwickelt, die ”Stochastische
Theil-index Methode“ und die ”Clustering Methode“, welche auf eben diese Infor-
mationen zurückgreifen und deren Allokationen nahezu optimal sind.

Kapitel 4 betrachtet die Allokationsplanung für Lieferanten, die einen bestimm-
ten Typ von Service-Level-Vertrag mit ihren Kunden abgeschlossen haben, welcher
besonders in der Industrie verbreitet ist. Hierbei einigen sich die Vertragspart-
ner auf ein bestimmtes Leistungsniveau, das der Lieferant über einen definierten
Zeitraum (Berichtszeitraum) erreichen muss. Unterschreitet der Lieferant das ver-
einbarte Leistungsniveau, wird eine Strafzahlung fällig, die sich nach der Höhe
der Abweichung richtet. Nach der Modellierung des Problems wird die optimale
Allokationspolitik für den Lieferanten als dynamisches Programm charakterisiert.
Wegen der großen Komplexität und des einsetzenden ”Curse of Dimensionality“
kann diese Politik jedoch nicht numerisch berechnet werden. Dennoch können aus
der Analyse Anforderungen abgeleitet werden, die eine gute Politik erfüllen sollte.
Anhand dieser Anforderungen werden bisherige Ansätze aus Literatur und Pra-
xis evaluiert, insgesamt vier neue Allokationspolitiken entwickelt und in einem
Simulationsexperiment auf ihre Leistung überprüft.

Während Kapitel 4 noch von einem zentralen Planer ausgeht, wird in Kapi-
tel 5 eine dezentrale Planung entlang der Vertriebsorganisation angenommen. Es

2
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wird gezeigt, dass sich das Problem in zwei hierarchisch verbundene Teilprobleme
separieren lässt. Das eine Teilproblem umfasst die Planung auf der untersten Ebe-
ne der Vertriebshierarchie, wo die Zuordnung der Kapazität zu einzelnen Kunden
geschieht. Hier können die in Kapitel 4 entwickelten Methoden direkt angewen-
det werden. Das zweite Teilproblem umfasst die Planung auf höheren Ebenen der
Hierarchie bei der noch keine direkte Zuordnung zu Kunden geschieht. Für dieses
Problem wird gezeigt, wie mit einigen Modifikationen die in Kapitel 3 entwickelten
Methoden für die Planung verwendet werden können. Die entstehenden Allokati-
onssysteme (bestehend aus den Lösungsansätzen für beide Teilprobleme) werden
erneut in einem Simulationsexperiment überprüft. Die Resultate zeigen, dass bei
Verwendung von geeigneten Ansätzen auf höheren Ebenen ähnliche Allokationen
wie unter zentraler Planung erreicht werden können.

Kapitel 6 ordnet die Ergebnisse der einzelnen Kapitel ein und gibt Anregungen
für weitere Untersuchungen.

3





Chapter 1

Introduction

Many suppliers use service levels to monitor their performance towards their
customers. Because customers differ in their service preferences, profitability and/
or strategic importance for the supplier, a supplier will oftentimes pursue different
service levels for different customers. Especially in situations where supply or
capacity is scarce, these customer-specific service-level targets allow the supplier to
differentiate its customer-faced performance and prioritize demands of customers
with higher importance.

In state-of-the-art advanced planning systems (APS) this prioritization in de-
mand fulfillment is realized by a two-stage process: In the first step, “allocation
planning,” the supplier allocates the planned supply from master planning and/or
production planning to individual customers or groups of customers (cf. Kilger
and Meyr, 2015). These dedicated allocations are the input to the second step,
“order promising” (Ball et al., 2004). During order promising the customers’ or-
ders arrive and are fulfilled by the supplier until the corresponding allocations
are consumed. Consequently, allocation planning crucially affects the supplier’s
performance towards its customers: If an allocation is chosen too high, valuable
supply may be left unconsumed and is missing for fulfilling the demands of other
customers; choosing an allocation too small leads to unfilled demand that results
in profit losses, penalty payments, or, at least, unsatisfied customers.

The literature on allocation planning can be broadly divided in profit-based
and service-level-related literature. Profit-based models reflect the differences in
customer importance by customer-specific unit-profits and, thus, the objective is to
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1 Introduction

maximize the supplier’s revenue. Ball et al. (2004), who refer to allocation plan-
ning as “Push-based ATP,” propose first stochastic and deterministic models for
profit-based allocation planning. They point out, that stochastic allocation plan-
ning can be regarded as a special case of quantity based revenue management.
Meyr (2009) shows on an ordered data set from the lighting industry that deter-
ministic allocation planning significantly increases profits as compared to fulfilling
orders first-come-first-served. Quante et al. (2009a) consider stochastic demand
and propose a stochastic dynamic programming model that allocates supply to
customers who differ in their unit profits. They benchmark their approach against
that of Meyr and show that it leads to significantly higher profits at higher levels
of demand uncertainty. Eppler (2015) extends the approach to incorporate nesting
among different customer classes.

Although most research on allocation planning focuses on profit-maximization,
some researchers also consider service-levels. For instance, Pibernik and Yadav
(2008) and Pibernik and Yadav (2009) determine allocations for a planner that
wants to ensure a minimum service level for a high priority customer group.

The literature on inventory rationing shares some similarities with allocation
planning: both address the question of how to optimally allocate supply to groups
of customers. (See, i.e., Deshpande et al., 2003; Arslan et al., 2007; Schulte and
Pibernik, 2016.) The difference between the two streams is in the way supply is
treated: In inventory rationing supply is a decision variable and can be freely
adjusted by the planner; in allocation planning supply is given by master plan-
ning/production planning and is, thus, fixed in the short term and cannot be ad-
justed.

A common assumption across publications on allocation planning is that there
is a single planner with the ability to decide on the allocations to all customers si-
multaneously. We refer to this as the central allocation planning problem. In many
companies, however, there does not exist a central planner and, instead, allocation
planning is a decentral process aligned with the company’s multi-level hierarchical
sales organization (“sales hierarchy”) (Kilger and Meyr, 2015). For instance, in a
company with a geography-based hierarchy, first, high-level sales managers will
decide how to share the supply among different regions (i.e., America, Europe,
Asia). Then regional planners may further disaggregate supply and allocate it to
country managers (responsible for, i.e., USA or Canada). At some point, plan-
ners in local sales organizations (LSOs) assign the received supply to individual
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customers or groups of customers. We refer to this as the decentral allocation
planning problem.

This gap between the central planning assumed in the literature and the de-
central planning in companies has first been observed by Roitsch and Meyr (2015)
in a case study from the oil industry. Currently, companies typically resort to
simple rules for allocation planning. An example for such a simple rule is per
commit, under which supply is shared evenly among the customers based on their
expected demand (Kilger and Meyr, 2015). While the approach is easy to use, it
does not prioritize and suppliers can typically not achieve the desired service dif-
ferentiation. Vogel and Meyr (2015) are among the first to address this problem of
decentral allocation planning in sales hierarchies. For a single-period setting with
deterministic demand they show that the simple rules used in practice lead to a
detrimental performance. Consequently they propose a new allocation approach
that uses the Theil index (a measure of income inequality from the economic litera-
ture) to measure the profit heterogeneity between the customer groups. This leads
to a better prioritization of demands from customers with higher profits. Recently,
Cano-Belmán and Meyr (2019) have extended the approach to consider multiple
planning periods.

While Vogel and Meyr (2015) and Cano-Belmán and Meyr (2019) provide valu-
able insights into decentral allocation planning, their approaches are still limited in
that they only consider a deterministic setting. This dissertation is part of a larger
DFG-sponsored project with research teams from the University of Mannheim and
the University of Hohenheim to analyze decentral allocation planning in-depth
and under different objectives. In particular, this dissertation addresses allocation
planning in multi-level sales hierarchies as described above with the objective of
achieving customer-specific service-level targets.

Our objectives are to 1) develop new decentral allocation approaches for our
specific setting, 2) quantify the performance gap of the simplistic approaches cur-
rently applied in APS and of our new-developed allocation approaches compared
to central planning, and 3) identify the information crucial to good decentralized
allocation decisions. We pursue these objectives in two steps: Chapter 2 and 3 ad-
dress decentral allocation planning in a simpler single-period setting. In contrast to
previous research, botch chapters consider the stochasticity of customer demand.
The reduced complexity of the single-period setting allows us to obtain analyt-
ical results on the performance of different allocation approaches and structural
insights on which information is required for obtaining good allocations. Chap-
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1 Introduction

ter 4 and 5 analyze a more realistic setting, where allocation planning is carried
out over multiple-periods and the supplier is engaged in so-called service-level
contracts with its customers.

More specifically, Chapter 2 or Kloos et al. (2018) analyzes the decentral allo-
cation problem in a single-period setting where planners aim to achieve customer-
specific alpha-service-level targets. We show how to compute optimal (central)
allocations and prove that the optimal allocation can also be achieved by decentral
planning. However, the extensive information sharing required for the decentral
optimal allocation makes it infeasible for most practical applications. Based on our
insights from the central problem, we analyze the allocations generated by con-
ventional allocation rules and develop two new allocation approaches, the “hybrid
approach” and the “service-level aggregation approach.” Based on a rigorous an-
alytical and numerical analysis, we find that two types of customer heterogeneity
are decisive for the performance of the allocation approaches. With “within hetero-
geneity” we describe the heterogeneity that occurs between customers within the
same sub-tree, while with “between heterogeneity” we account for the differences
between the individual sub-trees of the sales hierarchy. If between and within het-
erogeneity are low, the per commit rule we described earlier already leads to close-
to-optimal allocations; if only between heterogeneity is low, our newly developed
hybrid approach shows the best performance; under low within heterogeneity the
service-level aggregation approach leads to allocations that are almost optimal.
In hierarchies that exhibit both high within and high between heterogeneity our
new approaches still perform significantly better than conventional approaches
but decision makers may want to use allocation approaches that guarantee optimal
allocations.

Based on our collaboration within the research project we identified a strong
structural similarity between the problem analyzed in Chapter 2 and the prob-
lem of maximizing the suppliers profit in the single-period setting. Consequently
Chapter 3 or Fleischmann et al. (2019) is joint work with the team from Univer-
sity of Mannheim. While it addresses maximizing customers’ profits, the focus of
the analyses presented in this chapter is on the information sharing required by
different allocation approaches and their respective performance. Besides, again,
analyzing per commit as a minimal-information benchmark, we develop and evalu-
ate three more advanced allocation approaches: the “deterministic Theil approach”
from Vogel and Meyr (2015), the “stochastic Theil approach,” a stochastic extension
of the approach developed by Vogel and Meyr and the “clustering approach,” in
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which the customers are clustered according to their respective profits. By com-
paring the approaches numerically, we identify four types of information relevant
for obtaining “good” allocations: mean demand, demand uncertainty, profits and
profit heterogeneity. Both the stochastic Theil approach and our clustering ap-
proach use this information and, consequently, their performance is close to op-
timal independent of the specific setting. Especially our results on the clustering
approach are highly relevant: They suggest that a relatively simple clustering logic
with three clusters (high, average and low profit customers) and some additional
information on the aggregated demand distributions of the clusters is sufficient to
obtain virtually the same profit as a centralized full-information approach, which
is typically not feasible in practice.

As Sieke et al. (2012) explain, service-level contracts become more and more
important in the B2B relationships between manufacturers and their customers. So
instead of implicit service-level targets that result from the suppliers evaluation of
its customers’ importance, under a service-level contract the supplier and its cus-
tomer explicitly agree on the desired performance level, specify a time period over
which the performance is reviewed and penalties for deviations. While service-
level contracts have been addressed in the literature before, they have so from an
inventory management perspective and as such, supply is part of the planner’s
decision. Chapter 4 and 5 analyze service-level contracts from the perspective of
allocation planning, where supply is essentially fixed and cannot be adjusted.

Chapter 4 or Kloos and Pibernik (2020) analyzes allocation planning under
service-level contracts in a central setting, where there is a single planner with
complete information on all the customers’ past performance and service-level con-
tracts. We formalize the problem as a stochastic dynamic program and characterize
its optimal solutions. Due to the ensuing “curse of dimensionality,” however, com-
puting the optimal policy is infeasible. Nonetheless, our analytical insights allow
us to identify the factors that affect the optimal decision: The customers’ fill-rate
targets and penalties, the companies performance toward the customer in the past
and the customers’ demand distribution in the current and all future allocation
periods. Based on these factors we propose several deterministic and stochastic
policies, compare them with myopic approaches that have been suggested in the
relevant literature and evaluate their performance numerically. Our results show
that a stochastic myopic allocation typically outperforms competing approaches
and leads to relatively small gaps compared to an ex-post optimization.
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In Chapter 5 or Kloos (2019) we extend the problem from Chapter 4 to a hier-
archical setting with decentral decision. To this end, we decompose the allocation
problem into two interrelated sub-problems: The first problem is that of the LSOs
at the lowest level of the sales hierarchy which have complete information on their
customers’ service-level contracts but are constrained in their allocations by the
supply they receive from higher levels of the hierarchy. We call this the customer
allocation problem (CAP) and we can straightforwardly apply the approaches from
Chapter 4. The second problem is that of the planners in the hierarchy, who have
only aggregate information on the service-level contracts and only decide on the
allocations to the LSOs. We call this the hierarchy allocation problem (HAP). As
the objectives differ, the approaches developed in Chapter 2 and 3 cannot be read-
ily applied to the HAP. We are, however, able to extract relevant information from
the service-level contracts and develop two approaches that allow to use the clus-
tering method (from Chapter 3) for the HAP. We evaluate the performance of the
resulting allocation systems (comprised of the approaches applied for the CAP and
the HAP) in two settings. In the first setting, we assume that leftover inventory or
backlog are cleared centrally. In this setting, our results in-line with our obser-
vations from Chapter 3: When applying a suitable decentral allocation approach,
there is little to no difference between decentral and central allocation planning.
In the second setting, the LSOs are responsible for clearing inventory and backlog.
Then, we see a significant difference between central and decentral planning as
inventories and backlog build up in individual LSOs.

The results presented in the four main chapters of the dissertation have im-
mediate relevance to suppliers performing decentral allocation planning: Decision
makers can learn when the currently applied simple rules have a negative impact
on the performance of the company and which alternative rules they can use that
promise a superior performance. In addition, Chapter 4 is relevant to suppliers
having entered service-level contracts and provides decision makers with policies
that can drastically reduce the penalties resulting from service-level deviations.

Table 1.1 provides an overview of the scientific contribution of the four main
chapters in this dissertation.

10



Ta
bl

e
1.

1:
O

ve
rv

ie
w

of
sc

ie
nt

ifi
c

co
nt

ri
bu

ti
on

A
ll

oc
.P

la
n.

in
Sa

le
s

H
ie

ra
rc

hi
es

w
.S

to
ch

.
D

em
an

d
an

d
SL

-T
ar

ge
ts

Si
ng

le
-P

er
io

d
St

oc
h.

D
em

an
d

Fu
lfi

ll
m

en
t

in
C

us
t.

H
ie

ra
rc

hi
es

A
ll

oc
.P

la
n.

un
de

r
SL

-C
on

tr
ac

ts
M

an
g.

SL
-C

on
tr

ac
ts

in
Sa

le
s

H
ie

ra
rc

hi
es

C
ha

pt
er

2,
p.

13
C

ha
pt

er
3,

p.
63

C
ha

pt
er

4,
p.

95
C

ha
pt

er
5,

p.
14

5

A
na

ly
tic

al
m

od
el

•
M

in
im

iz
e

de
vi

at
io

ns
fr

om
al

ph
a-

se
rv

ic
e-

le
ve

l
ta

rg
et

s
•

Si
ng

le
-p

er
io

d
•

M
ul

ti
-l

ev
el

hi
er

ar
ch

y

•
M

ax
im

iz
e

pr
ofi

t
•

Si
ng

le
-p

er
io

d
•

M
ul

ti
-l

ev
el

hi
er

ar
ch

y

•
M

in
im

iz
e

pe
na

lt
ie

s
fr

om
se

rv
ic

e-
le

ve
lc

on
tr

ac
ts

•
M

ul
ti

-p
er

io
d

•
C

en
tr

al
Pl

an
ni

ng

•
M

in
im

iz
e

pe
na

lt
ie

s
fr

om
se

rv
ic

e-
le

ve
lc

on
tr

ac
ts

•
M

ul
ti

-p
er

io
d

•
M

ul
ti

-l
ev

el
hi

er
ar

ch
y

M
et

ho
do

lo
gi

ca
l

co
nt

ri
bu

tio
n

•
Fi

rs
t

st
ud

y
to

ad
dr

es
s

hi
er

ar
ch

ic
al

al
lo

ca
ti

on
pl

an
ni

ng
un

de
r

se
rv

ic
e-

le
ve

lc
on

tr
ai

nt
s.

•
A

na
ly

ti
ca

la
na

ly
si

s
of

po
pu

la
r

al
lo

ca
ti

on
ru

le
s.

•
Tw

o
ne

w
al

lo
ca

ti
on

he
ur

is
ti

cs
th

at
im

pr
ov

e
pe

rf
or

m
an

ce
.

•
Ex

te
nd

s
hi

er
ar

ch
ic

al
al

lo
ca

ti
on

pl
an

ni
ng

to
st

oc
ha

st
ic

de
m

an
d.

•
Fo

rm
al

iz
es

in
fo

rm
at

io
n

sh
ar

in
g

in
de

ce
nt

ra
l

pl
an

ni
ng

se
tt

in
gs

.
•

Tw
o

ne
w

al
lo

ca
ti

on
m

et
ho

ds
th

at
on

ly
re

qu
ir

e
lim

it
ed

in
fo

rm
at

io
n

sh
ar

in
g.

•
Fi

rs
t

st
ud

y
to

ad
dr

es
s

al
lo

ca
ti

on
pl

an
ni

ng
un

de
r

se
rv

ic
e-

le
ve

lc
on

tr
ac

ts
.

•
C

ha
ra

ct
er

iz
at

io
n

of
th

e
op

ti
m

al
al

lo
ca

ti
on

po
lic

y.
•

N
ew

m
yo

pi
c

al
lo

ca
ti

on
po

lic
y

si
gn

ifi
ca

nt
ly

re
du

ce
s

ex
pe

ct
ed

pe
na

lt
ie

s.

•
D

ec
om

po
si

ti
on

of
th

e
hi

er
ar

ch
ic

al
al

lo
ca

ti
on

pr
ob

le
m

in
tw

o
su

b-
pr

ob
le

m
s.

•
N

um
er

ic
al

an
al

ys
is

of
th

e
pe

rf
or

m
an

ce
lo

ss
es

fr
om

de
ce

nt
ra

lp
la

nn
in

g
fo

r
se

ve
ra

la
llo

ca
ti

on
ap

pr
oa

ch
es

.

C
on

ce
pt

io
na

l
fin

di
ng

s
•

O
pt

im
al

al
lo

ca
ti

on
s

ca
n

be
ac

hi
ev

ed
w

it
h

de
ce

nt
ra

l
pl

an
ni

ng
•

Tw
o

fo
rm

s
of

he
te

ro
ge

ne
it

y
(b

et
w

ee
n

an
d

w
ith

in
he

te
ro

ge
ne

it
y)

ar
e

de
ci

si
ve

fo
r

th
e

pe
rf

or
m

an
ce

of
de

ce
nt

ra
l

al
lo

ca
ti

on
ap

pr
oa

ch
es

.

•
In

fo
rm

at
io

n
on

th
e

cu
st

om
er

s’
he

te
ro

ge
ne

it
y

an
d

de
m

an
d

st
oc

ha
st

ic
it

y
ar

e
de

ci
si

ve
to

ob
ta

in
“g

oo
d”

al
lo

ca
ti

on
s.

•
Th

e
cl

us
te

ri
ng

ap
pr

oa
ch

le
ad

s
to

cl
os

e
to

op
ti

m
al

al
lo

ca
ti

on
s

in
de

pe
nd

en
t

of
th

e
sp

ec
ifi

c
se

tt
in

g.

•
In

fo
rm

at
io

n
on

th
e

cu
st

om
er

s
de

m
an

d
di

st
ri

bu
ti

on
an

d
th

ei
r

pe
na

lt
y

he
te

ro
ge

ne
it

y
ar

e
m

os
t

im
po

rt
an

t
fo

r
go

od
al

lo
ca

ti
on

s.
•

O
ur

m
yo

pi
c

st
oc

ha
st

ic
al

lo
ca

tio
n

po
lic

y
si

gn
ifi

ca
nt

ly
re

du
ce

s
ex

pe
ct

ed
pe

na
lt

ie
s.

•
D

ec
en

tr
al

in
ve

nt
or

y
cl

ea
ri

ng
cr

it
ic

al
ly

af
fe

ct
s

th
e

pe
rf

or
m

an
ce

of
de

ce
nt

ra
lp

la
nn

in
g

•
U

nd
er

ce
nt

ra
li

nv
en

to
ry

cl
ea

ri
ng

,d
ec

en
tr

al
al

lo
c.

pl
an

ni
ng

pe
rf

or
m

s
si

m
ila

r
to

ce
nt

ra
lp

la
nn

in
g.

11





Chapter 2

Allocation Planning in Sales
Hierarchies with Stochastic
Demand and Service-Level
Targets1

2.1 Introduction

Optimally matching supply with demand is a challenging task in many man-
ufacturing environments, especially when purchasing and production must be
planned with sufficient lead time, demand is uncertain, overall supply may not
suffice to fulfill all of the projected demand, and customers differ in their level of
importance. The particular structure of the sales organization frequently adds an-
other layer of complexity, as sales organizations often have multi-level hierarchical
structures (in brief, “sales hierarchy”) that may include multiple geographic sales
regions, distribution channels, customer groups, and individual customers (e.g.,
key accounts), each with its own priorities and profitabilities. The structure and

1This chapter was published in OR Spectrum as Kloos et al. (2018) and is co-authored by Benedikt
Schulte and Richard Pibernik.
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Industry

Region

Customer Groups

HQ

Aviation

Austria Germany ...

Lubricants

Austria Germany ...

...

(a) Oil and gas company

Country

Sales Channel

Customer Groups

Europe

Austria

Key
Accounts

Key
Industries

General
Sales

Germany

Key
Accounts

Key
Industries

General
Sales

...

(b) Technology company

Figure 2.1: Examples of sales hierarchies.

composition of such sales hierarchies can vary substantially. Figure 2.1 illustrates
two examples.

Example (a) in Figure 2.1 (cf. Roitsch and Meyr, 2015) refers to an international
oil and gas company that faces raw-material lead times that are much longer than
the planning interval, along with inflexible capacities in its refineries. Demand and
supply planning take place in a four-level hierarchy that involves industry seg-
ments (e.g., aviation, lubricants) on the second level, countries on the third level,
and individual customers (with differing characteristics in terms of demand levels,
demand uncertainty, service-level targets, etc.) on the fourth level. Example (b)
refers to a large multinational technology company that structures its sales organi-
zations by country on the second level. Within each country are sales teams, each
of which is assigned to a particular market segment: one for key accounts, one
targeting certain industries (e.g., the automotive industry), and one for “general
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2.1 Introduction

sales”—that is, for everyone else. While the number of customers and the charac-
teristics of the segments (e.g., profitabilities, service-level targets) vary significantly
among the various markets, the characteristics of each of the market segments are
similar in each country.

For demand and supply planning, the two companies in Figure 2.1 follow a
three-step approach, which is common among companies with hierarchical sales
organizations: First, available supply is planned based on aggregate demand fore-
casts and available resources for the medium term (master production planning).
Then, in the “allocation planning” step (Stadtler et al., 2015), the planned supply
is allocated throughout the hierarchical multi-level sales organization. Finally, the
allocated supply is consumed on the lowest level of the sales organization (e.g., in a
particular customer region) as actual customer orders materialize (“order promis-
ing,” cf. Ball et al., 2004).

The focus of the research presented in this paper is on allocation planning in
companies with hierarchical sales organizations and whose customers have hetero-
geneous demand characteristics and differ in their level of importance (reflected by
their individual service-level targets). In particular, we address settings in which
supply is scarce—that is, supply is not sufficient to match the service-level tar-
gets of all of the company’s customer groups. As most multi-national compa-
nies have hierarchically structured sales organizations, work with individualized
service-level targets for their various customer groups, and face periods of supply
scarcity, such a setting is often encountered in practice.

In theory, it is relatively easy to solve the hierarchical allocation planning prob-
lem if we assume an omniscient central planner who has full information about
the demand distributions and well-defined preferences over the (realized) service
levels for different customer groups. In such a case, an optimal allocation plan can
be derived by solving a stochastic knapsack problem.

However, allocation planning is typically not performed by an omniscient cen-
tral planner who has all information he or she needs. Instead, companies have
iterative planning processes in which information about customer demand is grad-
ually aggregated and then shared from lower to higher-level planners in the sales
hierarchy before the aggregated supply is gradually broken down and allocated
from higher to lower levels. For instance, in Example (a) (Figure 2.1), each country
organization reports demand forecasts and service-level targets, which are first ag-
gregated at the industry level before being communicated to the company’s head-
quarters. Subsequently, the planner in the headquarter plans the available supply
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and allocates it to the industry clusters. Then planners in the industry organiza-
tions split their allocations among the country organizations for which they are
responsible, and planners in local sales organizations perform yet another alloca-
tion to the customer groups or individual customers in their respective countries.

This iterative and largely decentralized process is supported by Advanced Plan-
ning Systems (APS), such as SAP’s APO. The systems support the planners on the
various levels of the sales hierarchy by aggregating demand information (bottom-
up) and providing recommendations for the allocations (top-down). As Kilger and
Meyr (2015) explain, APS usually employ relatively simple allocation approaches
(rules) that are based on limited information about the levels of the sales hierarchy.
The most commonly used allocation rules are per commit and rank based. Under per
commit supply is allocated proportionally to the demand forecast. Under rank based
the customer groups are first ranked according to some priority measure; supply
is then allocated in ascending order of the rank. (See Section 2.5 for a formal de-
scription and discussion.) The key benefits of these rules are that they are easy
to understand, communicate, and put into practice, and they require only limited
information to be shared throughout the hierarchy. However, these benefits come
at a cost, as these allocation rules usually lead to significantly lower performance
as compared to the theoretical optimum that would be achieved by an omniscient
central planner.

Therefore, the first objective of our research is to determine when these con-
ventional allocation rules lead to optimal (or at least acceptable) results and to
characterize their optimality gap relative to the theoretical optimum. Our analysis
suggests that the conventional allocation rules lead to optimal results only under
very restrictive conditions and that the loss in optimality is often substantial. This
result leads us to pursue our second objective: to find alternative (decentral) alloca-
tion approaches that generate acceptable performance under conditions in which
the conventional allocation rules lead to poor results. Based on our results and
findings, we develop two advanced allocation approaches that exploit more of the
relevant information about the customer groups. We term them hybrid approach
and service level aggregation approach. We provide a formal characterization of the
two approaches and show under what conditions they lead to optimal allocations.
Based on numerical analyses, we find that these alternative approaches outperform
the conventional allocation rules, independent of the conditions under which they
are used.
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2.1 Introduction

Certainly, our advanced allocation approaches are not as simple and intuitive
as the conventional allocation rules are. Practitioners can benefit from knowing
when it is “safe” to rely on conventional allocation rules and when it is worth us-
ing our more sophisticated approaches. Our analytical and numerical results shed
light on this question: We find that two forms of customer heterogeneity in the
sales hierarchy are decisive. We term these “between heterogeneity” and “within
heterogeneity.” In Example (a) in Figure 2.1, heterogeneity occurs mostly on the
highest level, where the priority and (service-level) requirements of different in-
dustry segments differ widely, while differences between countries (in the same
industry segment) are less pronounced. Thus, the individual sub-trees of the hier-
archy vary substantially in terms of their heterogeneity (they exhibit high between
heterogeneity), while each sub-tree is relatively homogeneous in itself (low within
heterogeneity). On the other hand, in Figure 2.1’s Example (b), heterogeneity oc-
curs mostly on the lowest level (e.g., key accounts are more important than general
sales). In this case, there is a hierarchy with multiple similar sub-trees—that is, low
between heterogeneity—but very heterogeneous customers in the sub-tree—that is,
high within heterogeneity. In our numerical analyses we systematically vary these
two types of customer heterogeneity and compare the results of the allocation ap-
proaches to the theoretical optimum. Our results suggest that the conventional
per commit rule should be employed only under conditions of low (overall) hetero-
geneity, while the hybrid approach (the service level aggregation approach) works well
when there is low between (low within) heterogeneity. Although our new alloca-
tion rules perform reasonably well in settings that are characterized by high within
and high between heterogeneity, the company may, under certain conditions, want
to use an approach that guarantees optimal allocations in order to further increase
the performance of allocation planning. Therefore, we also show how optimal al-
locations can be determined in a decentralized fashion without having to assume
an omniscient central planner. This, however, comes at the expense of extensive
information-sharing and involved computations on the various levels of the sales
hierarchy.

The remainder of this paper is organized as follows: Section 2.2 provides an
overview of the relevant literature and positions our contribution in relation to pre-
vious work. We introduce our basic analytical model in Section 2.3. In Section 2.4
we explain how to compute optimal allocations in the case of an omniscient central
planner and when allocation planning is carried out in a decentralized fashion. In
Section 2.5 we use our previous results to analyze when the conventional alloca-
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tion rules lead to optimal allocations and then develop two advanced allocation
approaches (the hybrid approach and the service level aggregation approach), which
are optimal under less restrictive conditions. In Section 2.6, we investigate the
performance of these rules outside their domain of optimality using an extensive
numerical analysis. Based on our analytical and numerical analyses, we develop
recommendations on when to employ which approach for allocation planning. Sec-
tion 2.7 summarizes our research contributions and discusses the limitations of our
research as well as possible avenues for further research.

2.2 Literature Review

According to Kilger and Meyr (2015), demand fulfillment can be broadly char-
acterized as a three-step process: demand planning, where forecasts are generated
at lower levels of the sales hierarchy and then aggregated on higher levels; al-
location planning, where aggregated supply is disaggregated and allocated from
the top of the hierarchy to the lowest planning levels; and order promising/order
fulfillment where the allocations on the lowest planning level are used to fulfill
customer orders based on pre-defined rules.

A number of authors propose and discuss rules for allocation planning in flat
hierarchies (that is, without considering the multi-level hierarchal structure of the
sales organization). These approaches are frequently referred to as allocated Avail-
able to Promise (aATP) or Push-based ATP—see Ball et al. (2004) and Quante et al.
(2009b) for reviews and Pibernik (2005) and Framinan and Leisten (2010) for clas-
sifications. Meyr (2009) uses a linear programming approach to allocate ATP to
higher-profit customers and shows in an extensive simulation experiment that the
approach can lead to close to optimal results compared to an ex-post optimiza-
tion. Meyr finds that allocation planning is most beneficial if customers’ profits are
heterogeneous and demand forecasts are accurate.

To the best of our knowledge, Kilger and Schneeweiss (2000) are the first to de-
scribe the problem of allocation planning in a multi-level sales hierarchy, the prob-
lem that lies at the heart of the research we present in this paper. They consider
allocation planning as a core part of the overall demand-fulfillment process. Kil-
ger and Meyr (2015) discuss allocation rules that are common in industry practice
(per commit, rank based, and fixed split). Based on Kilger and Meyr’s work, Roitsch
and Meyr (2015), from whom we borrowed Example (a) in Figure 2.1, characterize
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the demand-fulfillment process in the downstream supply chain of a company in
the oil industry. As master planning is performed on a high level of aggregation,
and the profitabilities of individual customer groups vary widely, they stress the
importance of allocation planning in matching the planned supply with (uncer-
tain) demand, especially when supply is scarce. In their case, allocation planning
takes place in a four-level hierarchy in which allocations are determined top-down
and level-by-level such that, on each level, the customer groups with the highest
(average) profits are prioritized.

Motivated by Roitsch and Meyr (2015), Vogel and Meyr (2015) are the first to
focus solely on the problem of allocation planning in sales hierarchies. They show
for a single-period setting with deterministic demand that a decentralized profit-
based allocation leads to a significant loss in total profit compared to the global
optimum. The loss in profit occurs because the decentralized allocation approach
averages customers’ profits on each level, leading to a loss of relevant information.
As a consequence, the approach fails to prioritize customers with higher profits.
Using a measure of income inequality from the economic literature, the Theil index,
to capture the profit heterogeneity of customer groups, they develop an allocation
approach to mitigate the aforementioned problem. Based on numerical analyses,
the authors show that their approach leads to close to optimal allocations and ro-
bustly outperforms the conventional rules, at least when demand is deterministic.

While our work is similar to that of Vogel and Meyr (2015) in that we consider
allocation planning in a multi-level sales hierarchy, it differs in three primary re-
spects. First, we focus on allocation planning under uncertain demand. Second,
we assume that allocation planning is carried out with the objective of meeting
pre-defined service-level targets for customer groups, which is in line with the
current industry practice, where companies implicitly or explicitly promise their
customers certain service levels. Third, we account for various hierarchy setups—
that is, how customers are structured in the hierarchy—and show how the set-up
affects the performance of allocation rules. Doing so allows us to identify and
study the effects of within and between heterogeneity.

We also provide five methodical contributions. First, we formalize the problem
of allocation-planning in a multi-level sales hierarchy with uncertain customer de-
mand and characterize the optimal solution for an omniscient central planner. Sec-
ond, we show how an optimal allocation can be obtained in a decentralized fashion
and discuss its feasibility in practical settings. This approach can be viewed as a
stochastic extension of Vogel and Meyr (2015), although we do not approximate a
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profit function. Third, we establish the conditions under which the conventional
allocation rules lead to optimal allocations. Fourth, we use these insights to de-
rive and analyze two new approaches, which are relatively easy to implement but
whose results are superior to those of the conventional rules because they exploit
more of the relevant information about the individual customer groups. Finally,
we carry out numerical analyses to obtain comprehensive insights into when the
conventional rules and our new approaches perform well relative to the optimal
solution of an omniscient central planner. As a result, we can derive useful recom-
mendations for practitioners by showing under what conditions certain allocation
approaches can be used without substantial losses in performance.

2.3 The Model

Consider a company that supplies a single product during a single sales pe-
riod to a set of diverse customers who are part of a sales hierarchy (as explained
in Section 2.1). A sales hierarchy can be represented by a rooted and balanced2

mathematical tree with a set of nodes, N . Each node belongs to one of K lev-
els. Level k = 1 contains only the root node, 0 ∈ N ; all levels k > 1 contain at
least one node; and Ik denotes the set of nodes on level k. For each intermediate
node, n ∈ N \ IK , the set of immediate successor nodes is denoted by Sn. The
root node represents the highest level of the sales hierarchy (e.g., the company’s
headquarters), and intermediate nodes represent sales regions or sales divisions.
Each leaf node l ∈ IK (i.e., a node without successor node on level K) represents
a homogeneous customer group. Figure 2.2 provides an illustration of a generic
sales hierarchy.

Section 2.1 used the notion of a sub-tree as part of the overall sales hierarchy.
The root node of a sub-tree is an intermediate node n ∈ N \ IK ; the sub-tree Nn ⊂
N consists of the (sub-tree) root node n, its successors m ∈ Sn, their successors
m′ ∈ Sm for all m ∈ Sn, and any further successors until the leaf nodes. (See
Figure 2.2 for a visualization.) In particular, the leaf nodes of the sub-tree to n are
Ln = Nn ∩ IK .

The nodes on level K − 1 represent the lowest level of the sales organization,
which is responsible for forecasting and fulfilling the customer groups’ individual

2Assuming the tree is balanced (i.e., all leaf nodes have the same distance to the root) is without
loss of generality; any unbalanced tree can be transformed into a balanced tree by adding “dummy
nodes.”
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Figure 2.2: Formal representation of a general sales hierarchy.

demands (represented by leaf nodes l ∈ IK). Dl denotes the uncertain demand of
customer group l ∈ IK , and we assume that it follows a demand distribution with
cumulative distribution function (cdf) Gl , a mean µl , and a coefficient of variation
(CV) CVl . We also assume that an alpha-service-level target is defined for each
customer group, which we denote by αl .

We assume the supply for the planning period, denoted by x0, is deterministic
and given by the master production plan. Prior to the sales period (during alloca-
tion planning), the company allocates this supply to the nodes of the sales hierar-
chy. We denote by xn the amount of supply that is allocated to node n ∈ N\{0}.
In a sales hierarchy, each node’s supply allocation is an upper bound of the sum of
allocations to its successor, which leads to Definition 2.1. Here and in the following
we use bold characters to represent vectors.

Definition 2.1 (Feasible allocation). An allocation x ∈ R|N \{0}| is a feasible allocation
if xn ≥ 0 for all n ∈ N\{0} and ∑m∈Sn

xm = xn for all n ∈ N\IK . The set of feasible
allocations is F = {x ∈ R|N \{0}|| x is feasible}.

The feasibility condition ∑m∈Sn
xm = xn implies that all initial supply x0 is

allocated and that there are no other sources of supply at lower levels of the hier-
archy. (In a single period model there is no reason to retain unallocated supply.)
In particular, any feasible allocation fulfills ∑l∈IK

xl = x0, which follows from a

21
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straightforward induction. Reflecting that a sales hierarchy typically involves dis-
persed geographies and separate business divisions with individual profits and
losses, supply that is allocated to a customer group l ∈ IK can be consumed only
by this customer group. In other words, we do not consider transshipments or
other forms of inventory/supply-sharing (e.g., nesting).

For a given allocation x, we are able to compute basic performance measures:

Proposition 2.1 (Basic performance measures). Denoting expected fulfilled demand
for customer group l by x̂l , expected unfulfilled (lost) demand by Ll , and the corresponding
alpha-service level by α̂l , we have

1. x̂l(xl) =
∫ xl

0 (1− Gl(t)) dt

2. Ll(xl) =
∫ ∞

xl
(1− Gl(t)) dt

3. α̂l(xl) = Gl(xl)

The proof of Proposition 2.1 and the subsequent proofs can be found in Ap-
pendix A.1.

Based on Definition 2.1 and the results stated in Proposition 2.1, we can express
the company’s allocation planning problem as:

Problem 2.1a (Allocation planning problem). For a given vector of service-level
targets α = (αl)l∈IK , determine the allocation x ∈ F that minimizes [α− α̂(x)]+,
where [v]+ = (max{v1, 0}, max{v2, 0}, . . .).

It is straightforward to compute the allocation required at each node in order
to meet the corresponding customer groups’ service-level targets. We denote this
allocation by xr

l . For l ∈ IK , xr
l = G−1

l (αl), where G−1
l : [0, 1] → R denotes the left

inverse of Gl . For n /∈ IK , the corresponding xr
n can be computed inductively by

summing the allocations of all successor nodes l ∈ Sn. In particular, the required
allocation to fulfill the service-level targets of all customer groups—that is, xr

0 =

∑l∈IK
xr

l —depends only on the demand distributions and service-level targets of
the customer groups and is not influenced by the hierarchy’s structure.

Because it is trivial to solve Problem 2.1a for x0 ≥ xr
0, we focus on situations in

which supply is scarce (i.e., x0 < xr
0). Determining an optimal allocation is chal-

lenging for several reasons whenever supply is scarce. First, because [α− α̂(x)]+ is
an |IK |-dimensional objective function, Problem 2.1a is a multi-objective decision-
making problem. Second, while a solution to Problem 2.1a is typically determined
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iteratively in a decentralized fashion, in practice, the allocation vector and, there-
fore, the service-level deviations result from the entirety of all of the local planners’
decisions. For each intermediate node n ∈ N\IK there is a dedicated planner who
receives allocation xn from the parent node (the root node “receives” x0), which
the planner then splits, based on his or her individual preferences, between the
successor nodes in Sn (cf. Figure 2.2).3 Therefore, in this case, Problem 2.1a is a
decentralized multi-objective planning problem in which multiple planners make
(local) allocation decisions based on their individual preferences with respect to
the service-level deviations of their successor nodes.

While we can identify the set of pareto-optimal allocations for Problem 2.1a, it
is not clear which of the pareto-optimal allocations to choose if we do not know
the planners’ preferences regarding service-level deviations [αl − α̂l(xl)]

+ for the
customer groups l ∈ IK . We cannot compare the performance of the various
methods for allocation planning unless we transform the multi-objective problem
into a scalar-valued problem. To this end, we first state an alternative formulation
of Problem 2.1a.

Problem 2.1b (Allocation planning problem with expected shortfall). For a given
vector of required allocations xr = (xr

l )l∈IK , determine the allocation x ∈ F that
minimizes

( [
Ll(xl)− Ll(xr

l )
]+ )

l∈IK
.[

Ll(xl)− Ll(xr
l )
]+ is the additional expected shortfall of customer group l,

which is calculated as the difference between the expected shortfall when customer
group l receives xr

l , based on the service-level target αl , and the expected shortfall
when it receives an allocation xl . From Proposition 2.1 (parts 1 and 2) we know,
without the need for additional proof, that the set of pareto-optimal solutions to
Problem 2.1a contains all pareto-optimal solutions to Problem 2.1b.

Working with additional expected shortfalls instead of service levels is con-
venient for multiple reasons. It allows us to capture the highly non-linear re-
lationship between allocations and service levels, and it is reasonable to assume
that each unit of additional expected shortfall for a particular customer group
l induces the same negative consequences for the company. With this assump-
tion, we can introduce constant weights wl that reflect the planner’s preferences
regarding the additional expected shortfalls [Ll(xl) − Ll(xr

l )]
+ of the customer

3The planner’s decision is typically based on a selection of information that is specific to node
n. (We refrained from formalizing this specific information to avoid unnecessary and potentially
confusing notation.) In Section 2.5, we describe examples of such selections of information.
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groups l, and derive a (scalar-valued) surrogate objective function that takes the
form W(x) = ∑l∈IK

wl
[
Ll(xl)− Ll(xr

l )
]+. Based on this function, we can formu-

late the following surrogate (single-objective) optimization problem:

Problem 2.1c (Single-objective allocation planning problem). For a given vector of
required allocations xr = (xr

l )l∈IK , determine the allocation x ∈ F that minimizes
W(x).

Clearly, this problem formulation prompts the question concerning how to de-
termine the weights wl . In theory, one could use well-established methods for
eliciting the planner’s preferences or, in the decentralized case, the preferences of
multiple planners to obtain these weights. For example, one could derive weights
from pairwise comparison matrices. Apart from the apparent problems and dif-
ficulties (effort, potential inconsistencies across planners), deriving weights in this
way would have a methodological drawback. As the service-level targets αl already
contain information regarding the relative importance of customer groups, eliciting
essentially the same information using, for example, pairwise comparison matri-
ces, is not only redundant but also likely to lead to inconsistencies. Therefore,
we exploit the information contained in the target service levels αl for customer
groups l to determine the weights wl . In traditional inventory theory a (single)
service-level target reflects a ratio of (per-unit) overage and underage costs. Re-
call the derivation of the optimal alpha-service level in the standard newsvendor
model: one obtains coverage · α = cunderage · (1− α) by equating expected marginal
overage costs and expected marginal underage costs. This gives the well-known
identity α = cunderage/(coverage + cunderage) (cf. Chopra and Meindl, 2010). However,
in our model, the service-level targets for the customer groups contain information
beyond the ratio of underage and overage costs for a single customer group. If
the service-level targets αl are set correctly, they also inform us about differences
in underage and overage costs between the customer groups l. At first, one may
think that the overage costs are the same across all customer groups such that an
unsold unit has the same negative consequences, regardless of the customer group
to which it was allocated or the available supply x0. In this case, the differences in
αl could be attributed to differences in underage costs, and it would be simple to
infer a per-unit weight wl that reflects the negative consequences of being one unit
short for customer group l. Section 2.4.1 shows that for scarce supply (i.e. when
x0 < xr

0) this inference holds true only in the optimum. Otherwise, the expected
marginal overage costs that are associated with allocating one incremental unit to a
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customer group are equal to the reduction in expected marginal underage costs of
allocating this unit to another group. Thus, they depend on the current allocation,
and we cannot directly employ the logic described above. However, in the opti-
mum, the marginal weighted expected shortfalls of allocating an additional unit
are equal across all customer groups as long as x0 ≤ xr

0. Therefore, assuming con-
stant weights wl , we need only one optimal solution to derive the weights wl . We
know that, for x0 = xr

0, the optimal solution is x = xr, and we can show that this
optimal solution will be obtained only if we set wl = 1/(1− αl). (See Lemma 2.2 in
Section 2.4.1.) Therefore, we use this definition of wl to derive an optimal solution
to Problem 2.1c—which will serve as a best-case benchmark—in Section 2.4 and to
compare the various heuristics for decentralized allocation planning in Section 2.5
and Section 2.6.

2.4 Optimal Allocation of Supply

We first solve Problem 2.1c from the perspective of an omniscient central plan-
ner and, most important, derive structural insights that guide our further analyses
(Section 2.4.1). In Section 2.4.2, we use these insights to develop an approach to
achieve optimal allocations even when allocation planning is carried out in a de-
centralized fashion.

2.4.1 Optimal Central Allocation

In this section we consider the case of an omniscient central planner, located at
the root node, who decides upon the allocations to all intermediate nodes and leaf
nodes in the sales hierarchy. Assuming that the planner’s preferences can be rep-
resented by weights wl , the planner solves Problem 2.1c. The optimal solution for
this setting serves as a benchmark throughout the remainder of our upon analyses
and reveals important insights into what makes an allocation optimal (or at least
good).

As a first step in developing a solution approach for Problem 2.1c, we prove
the convexity of the objective function.

Lemma 2.1 (Convexity of the objective function).
W(x) = ∑l∈IK

wl
[
Ll(xl)− Ll(xr

l )
]+ is convex in x.
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Lemma 2.1 ensures that local extrema of W are minima, so using (non-linear)
Lagrangian methods (cf. Ruszczyński, 2006), we can describe each solution for
Problem 2.1c by means of a Lagrangian multiplier λ, as Theorem 2.1 shows.

Theorem 2.1 (Characterization of solutions). x∗ ∈ F is optimal if and only if there
exists a value λ > 0, such that, when using

Aλ = {l | l ∈ IK , λ ≥ wl(1− Gl(0))} , (2.1)

the following hold

−λ/wl ∈ ∂Ll(x∗l ) for all l ∈ IK \ Aλ (2.2)

x∗l = 0 for all l ∈ Aλ. (2.3)

In addition, for any optimal x∗

∑
l∈IK

x∗l = x0. (2.4)

Allow us a technical note before we discuss the intuition behind Theorem 2.1.
(2.2) specifies that −λ/wl is part of the sub-differential of Ll at the point x∗l . Us-
ing the concept of sub-differentiability allows us to also cover instances in which
Ll is not differentiable (e.g., discrete demand distributions). Whenever Ll is dif-
ferentiable in x∗l , (2.2) reduces to λ/wl = −L′l(x∗l ) = 1 − Gl(x∗l ), as we discuss
in more detail in the proof of Corollary 2.1, below. In addition, using Propo-
sition 2.1 part 3 and the fact that Ll is real-valued, we can formulate (2.2) as
lim

x↗x∗l
Gl(x) ≤ 1 − λ

wl
≤ lim

x↘x∗l
Gl(x), where lim

x↘x∗l
Gl(x) = Gl(x) as a consequence

of Gl ’s being càdlàg.
In Theorem 2.1 the set of customer groups is split into two sets: the set of cus-

tomer groups (IK \ Aλ) who receive an allocation and the set of customer groups
(Aλ) who do not receive an allocation. For the first set the incremental reduction
in weighted shortfalls per additional unit of supply is equal across all customer
groups. This is best observable when Gl is differentiable: Then, (2.2) is equiva-
lent to λ =

[
1− Gl(x∗l )

]
·wl , where 1− Gl(x∗l ) is the probability that an additional

marginal unit of supply is consumed. Consequently, the Lagrangian multiplier λ is
the marginal reduction in weighted shortfalls at the point at which the entire sup-
ply is allocated. Similar results have been obtained by Allen (1985) who showed
that (for homogeneous customer groups) supply should be allocated such that all
customer groups have the same probability that an additional unit of supply is
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Figure 2.3: Examples of sales hierarchies.

consumed. Avrahami et al. (2014) obtained similar structural results for a problem
of allocating supply to different retailers. Because we are using weighted shortfalls
the customer groups’ maximal marginal reduction in weighted shortfalls differs.
As a consequence, customer groups whose maximal shortfall reductions are lower
than λ receive no supply (2.1). As more supply becomes available λ decreases,
more and more customers receive an allocation (and the cardinality of the set Aλ

decreases).

Our setting is also very close to a special case of a divergent multi-echelon
inventory system where intermediate stockpoints may not hold inventories, lead
times are zero, backorder costs are linear and holding costs are zero. Diks and
de Kok (1998) studied the optimal control of divergent multi-echelon inventory
systems and obtained similar structural results as those presented in Theorem 2.1.

It is worth noting that the optimal allocations as characterized by Theorem 2.1
only depend on properties of the customer groups (leaf nodes). Thus, the optimal
allocations are independent of how the customer groups are arranged in the sales
hierarchy. Consider, for instance, the example illustrated in Figure 2.3, which is
inspired by our the example shown in Figure 2.1. The leaf nodes (customer groups)
are the same in both sales hierarchies, but they are grouped differently into sub-
trees. In both hierarchies the optimal allocations to the customer groups are the
same. However, we will see later that this is not the case for some decentralized
planning approaches, where the hierarchy’s structure affects the outcomes.

Figure 2.4 illustrates the allocation logic for a sample problem instance, show-
ing the sequential nature of the allocation. While at first only customer group 1

(the one with the highest service-level target and weight) receives an allocation, the
other customer groups are gradually added and any additional supply is shared
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between the customer groups.4 Typically, a customer group that has just been
added (i.e., removed from Aλ) receives the majority of the additional allocation—
that is, the slope of the allocation curve for this group is the steepest—since the
probability that an additional unit will be consumed is high when the allocation is
still small.

In addition, the part of Figure 2.4 which displays the value of λ (i.e., the
marginal weighted shortfall reduction) depending on the available supply, is highly
intuitive. When only a few units of supply are available, the probability that an
allocated unit is consumed is high, so the weighted shortfall reduction is close to
the weight. However, the more is allocated to a particular customer group, the
less likely it is that an additional unit allocated to this customer group will be con-
sumed, so the expected (marginal) shortfall reduction decreases. At the point at
which the expected (marginal) shortfall reduction is as low as the initial expected
reduction of the weighted shortfall of the next lower customer class (which equals
the corresponding weight wl if Gl(0) = 0), this class also receives an allocation.

While Theorem 2.1 might still seem abstract, assuming that all Gl are continu-
ous and strictly increasing allows us to translate the intuition developed above into
a set of formulae for straightforward computation of an optimal solution.

Corollary 2.1 (Continuous and strictly increasing cdf). Assume that Gl is continuous
and strictly increasing on {Gl < 1} for all l ∈ IK ; then there is a single optimal solution
of Problem 2.1c that is defined by

x∗l (λ) =


0 if λ ≥ [1− Gl(0)] · wl

G−1
l (1− λ

wl
) else.

Section 2.3 provided a loose explanation for how to derive weights wl from
service-level targets αl . Theorem 2.1 and its proof confirm that, in the optimum, an
incremental unit’s marginal benefit is equal across all customer groups, equaling
λ(x0). As simultaneous scaling of all weights—and, thus, λ(x0)—does not impact

4The points at which a customer group l receives the first allocation (the kinks in the graphs)
can be computed up front: At the point at which customer group l receives the first allocation,
we have λl = [1− Gl(0)] · wl . The corresponding allocations are xl

k = 0 if λl ≥ [1− Gk(0)] · wk

and xl
k = G−1

k (1 − λl /wk) in all other cases. The corresponding total supply is xl
0 = ∑k∈IK

xl
k .

The possibility to calculate xl
0 and λl for all l ∈ IK helps to determine the order in which customer

groups are served (i.e., in order of decreasing λl) and to compute optimal solutions for Problem 2.1c.
More precisely, if xl

0 ≤ x0 ≤ xk
0, then λl ≤ λ∗ ≤ λk . We use this property in our numerical algorithm

in Section 2.6.
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the results, we can assume without loss of generality that λ(xr
0) = 1. Therefore,

xr
l = G−1

l (1− 1/wl), which leads to wl = 1/(1− αl), which, following the rea-
soning described in Section 2.3, is the natural way to convert given service-level
targets to weights.

Lemma 2.2 confirms that this conversion fulfills the conditions one would natu-
rally posit: the weights for customer groups should be chosen such that customers
with higher service-level targets achieve higher service levels for all levels of sup-
ply, and when supply is sufficient, all service-level targets are fulfilled.

Lemma 2.2 (Linking service-level targets and weights). Assume that Gl(0) = 0 for
all l ∈ IK and set wl = 1/(1− αl). Then

1. For any l, k ∈ IK and for any x0 > 0, αl ≥ αk ⇒ α̂l ≥ α̂k.

2. If x0 = xr
0, then the optimal allocation fulfills α̂l = αl .

Lemma 2.2 shows that the conversion αl 7→ wl = 1/(1 − αl) preserves the
main information of the service-level targets—that is, the relative importance of
the customer segments and the optimal allocation when there is sufficient supply.5

Figure 2.4 shows the expected service levels if this conversion is used when α1 =

0.95, α2 = 0.94, α3 = 0.8, and α4 = 0.5 (i.e., the case that corresponds to the setting
depicted in Figure 2.3). Clearly, the relative importance of the customer groups is
reflected in the expected service levels.

2.4.2 Optimal Decentral Allocation

In a decentralized planning regime there is a planner at the root node and
at each intermediate node. These planners determine the allocations to their im-
mediate successor nodes. Vogel and Meyr (2015) show for a deterministic profit-
maximization problem that the optimal central solution can also be achieved in
decentralized planning regimes when each planner knows the (piecewise-linear)
profit functions of his or her successor nodes. In the following, we extend this logic
to our stochastic setting, formalize a fully decentralized version of Problem 2.1c
and then use dynamic programming techniques to show that it is sufficient for the

5Although doing so is not only intuitive but also convenient from a technical perspective, as-
suming Gl(0) = 0 for all l ∈ IK in Lemma 2.2—is more restrictive than necessary. In order to prove
part 1 it would, for instance, be sufficient to assume that Gk(0) = 0 for the one k in question or
to assume that x0 is large enough to warrant x∗l > 0 for all l ∈ IK . In order to prove part 2, an
alternative condition could be, for instance, αl > Gl(0).
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planners to know the (nonlinear) objective functions of their successor nodes. Fi-
nally, building on these insights, we discuss whether and how such a decentralized
approach could be implemented in practice.

A planner at node n ∈ N \ IK seeks to find the allocations xm to his or her
successor nodes m ∈ Sn that minimize the planner’s total expected weighted
shortfall. Suppose the planner knows the expected weighted shortfall functions
Wm(xm) for each successor node m ∈ Sn. Then he or she can determine the optimal
allocation to the successor nodes by solving Problem 2.2, a non-linear knapsack-
problem where xn = (xm)m∈Sn denotes the allocation vector and R

|Sn |
≥0 the set of

non-negative real-valued |Sn| dimensional vectors.

Problem 2.2 (Decentral allocation planning problem).

min
xn∈R

|Sn |
≥0

∑
m∈Sn

Wm(xm)

subject to

∑
m∈Sn

xm ≤ xn.

The weighted shortfall functions Wm in Problem 2.2 for level K can be directly
computed from the loss functions and the weights of the corresponding customer
groups. At higher levels of the sales hierarchy they must be derived iteratively
from the successor nodes by solving Problem 2.2 for all possible allocations xm,
which results in the following definition of the weighted shortfall functions:

Wm(xm) =


wm [Lm(xm)− Lm(xr

m)]
+ if m ∈ IK

min
y∈R

|Sm |
≥0 ;‖y‖1≤xm

∑l∈Sm
Wl(yl) else.

Let xd denote a solution to the decentralized allocation problem. Then xd can
be determined using Algorithm 2.1.
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2 Allocation Planning in Sales Hierarchies with Stochastic Demand...

Algorithm 2.1 Decentral allocations

xd
0 ← x0

for i ∈ Ik, k = 0, . . . , K− 1 do
Solve Problem 2.2 with n = i and xi = xd

i
xd

m ← xi
m for all m ∈ Si

end for
return xd

As Problem 2.2 is a subproblem to Problem 2.1c, reformulating Bellman’s (1957)
principle of optimality gives rise to Lemma 2.3.

Lemma 2.3. Assume xn = x∗n and let y∗ ∈ R
|Sn |
≥0 be a solution of Problem 2.2; then there

exists a solution x∗ of Problem 2.1c with y∗m = x∗m for all m ∈ Sn.

Proposition 2.2, as a straightforward consequence of Lemma 2.3, shows that xd

is optimal.

Proposition 2.2. xd is an optimal solution to Problem 2.1c, i.e. xd = x∗.

We observe that the hierarchical allocation problem can be solved optimally
in a decentralized fashion—that is, without an omniscient central planner. More
precisely, the joint decisions of dedicated planners for each node, each of which has
information only about the allocation a node receives from its predecessor node
and the weighted shortfall functions of its successor nodes, lead to an optimal
allocation for the entire sales hierarchy.

However, this approach is mostly theoretical and for two primary reasons is
unlikely to be implemented in practice. First, the information that must be commu-
nicated from each node to its predecessor is an entire real-valued function without
an explicit expression. While it is possible to communicate an approximation of
this function (e.g., based on the Lorenz-curve approximation used by Vogel and
Meyr, 2015), the transmitted information will be difficult to interpret, especially
compared to the relative ease of current methods that require communication of
only one or two values (e.g., mean demand and service level) that are easy to
understand. Second, Problem 2.2 must be solved for each node, even when the
objective function is approximated. While doing so is computationally feasible,
solving a non-linear knapsack problem is a difficult task that requires involved
computations and may result in low levels of acceptance from the planners.
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2.5 Heuristic Allocation Rules

The next section builds on the insights developed in this section and develops
two new decentralized allocation approaches that are easier to implement but still
provide acceptable results (if they are used properly).

2.5 Heuristic Allocation Rules

In this section we first address the optimality of the conventional allocation
rules per commit and rank based (Kilger and Schneeweiss, 2000). As these rules are
optimal only under very restrictive conditions, we propose two advanced allocation
approaches, show under what conditions they lead to optimal results, and derive
first insights into how they perform relative to the conventional rules.

2.5.1 Conventional Allocation Rules

In this section we discuss the per commit and rank based rules. In particular,
we present a formalization for each of the rules, the information they require,
an example of their use, and an analysis (based on Theorem 2.1) of when these
allocations are optimal.

Per Commit Under per commit, scarce supply is allocated proportionally to fore-
casted demand, as formalized by Definition 2.2.

Definition 2.2 (Per commit). The per commit allocation from intermediate node n ∈
N\IK to a successor node m ∈ Sn is xPC

m = xnµm/µn, where µm = ∑m′∈Sm
µm′ and

µn = ∑m∈Sn
µm are the total mean demand of node m and n, respectively.

Per commit has a property that is relevant to our further analysis. From Defini-
tion 2.2 we infer that the allocation to each customer group l ∈ IK is xPC

l =
µl
µ0

x0,
where µ0 = ∑l∈IK

µl . Thus, the allocations are independent of the structure of
the hierarchy. We also see that per commit requires that only limited information
is shared in the hierarchy, as it is sufficient for each node n to know only the total
demands µm of its successors m ∈ Sn.

To provide more insight regarding the allocation logic of per commit, Figure 2.5
plots the expected service levels of a per commit allocation for various levels of
supply and compares them with the optimal allocation for the examples from Fig-
ure 2.3. As all customer groups have the same demand, and per commit does not
prioritize, each customer group receives the same allocation and, thus, the same
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Figure 2.5: Expected service level per customer group of per commit (black) compared to optimal
allocation (gray).

service level. For this reason, the individual service levels in Figure 2.5 cannot be
distinguished.

Because allocations are based only on the mean demand and do not depend
on other characteristics, the service levels in our example differ substantially from
the target service levels. More important, even if supply is sufficient, some of the
service-level targets are not met, which raises the question concerning whether and
under what conditions per commit allocates optimally.

Proposition 2.3 (Optimality of per commit allocations). Assume that Gl is continuous
and strictly increasing in [0, xr

l ] for all l ∈ IK . A per commit allocation is optimal—that
is, xPC

l = x∗l for all x0 ∈ [0, xr
0]—if and only if

wl′

wl′′
=

1− Gl′′ (µl′′χ)

1− Gl′ (µl′χ)
for all l′, l′′ ∈ IK , χ ∈

(
0,

xr
l′

µl′

]
. (2.5)

An instance in which Condition (2.5) is fulfilled is when the service-level targets
and demand distributions are identical for all customer groups. However, it is
not sufficient that the demand of the customer groups follow the same type of
distribution, even when all weights are identical. Assume, for instance, that Gl′ and
Gl′′ are z-transformations of a common distribution, with cdf G(z) (i.e., Gl′ (x) =

G
(

x/µl′−1
CVl′

)
and Gl′′ (x) = G

(
x/µl′′−1

CVl′′

)
); then Condition (2.5) is fulfilled only if all

customers have the same CV.
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2.5 Heuristic Allocation Rules

Hence, assuming that demand distributions belong to the same class, per com-
mit allocates optimally only when there is no heterogeneity among the service
levels, and demand forecasts have the same accuracy across customer groups—
that is, when there is no forecast heterogeneity. We can assume that increasing
heterogeneity in terms of service-level targets and/or forecast accuracy degrades
the performance of per commit.

Under per commit, a customer group typically cannot fulfill its service-level tar-
gets even if there is sufficient supply. Therefore, we introduce a largely straightfor-
ward modification of the conventional per commit rule that remedies this problem
and term this modified version extended per commit. Extended per commit is also a
building block for one of our new allocation approaches that we propose in Sec-
tion 2.5.2. Definition 2.3 provides a formal characterization.

Definition 2.3 (Extended per commit). The extended per commit allocation from inter-
mediate node n ∈ N\IK to successor node m ∈ Sn is xePC

m = xn · xr
m/xr

n, where xr
m is

the required allocation of node m and xr
n = ∑m∈Sn

xr
m.

In essence, extended per commit uses the required allocation xr
l of a customer

group l instead of its mean demand µl in determining the group’s allocation. On
level K− 1 extended per commit uses information about the demand distributions of
the customer groups and their service-level targets, so it exploits more information
than conventional per commit does. However, only a single value, the aggregated
required allocation xr

m = ∑l∈Sm
xr

l , is shared with the predecessor node. Because
extended per commit follows the same general allocation logic as conventional per
commit, its results are independent of the structure of the hierarchy.

Proposition 2.4 (Optimality of extended per commit allocations). Assume Gl is con-
tinuous and strictly increasing in [0, xr

l ] for all l ∈ IK ; then the following hold:

1. If x0 = xr
0, then xePC

l = x∗l for all l ∈ IK .

2. xePC
l = x∗l for all l ∈ IK and all x0 ∈ [0, xr

0] if and only if

wl′

wl′′
=

1− Gl′′ (µl′′χ)

1− Gl′ (µl′χ)
for all l′, l′′ ∈ IK , χ ∈

[
0,

xr
l′

µl′

]
. (2.6)

Part 2 of Proposition 2.4 shows that extended per commit is optimal, indepen-
dent of the level of supply if and only if (2.6) holds. As (2.6) is equivalent to (2.5),
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2 Allocation Planning in Sales Hierarchies with Stochastic Demand...

extended per commit is optimal whenever per commit is optimal. Part 1 of Proposi-
tion 2.4 shows that extended per commit is also optimal whenever supply is sufficient.
Hence, it is reasonable to assume that extended per commit leads to acceptable allo-
cations when supply levels are high—that is, x0 is close to xr

0. Therefore, it should
always be preferred over conventional per commit.

Rank Based Allocation Under a rank based allocation, customer groups are or-
dered (ranked) according to some priority measure. The available supply is then
allocated in ascending order according to the rank; that is, the customer group
with rank 1 receives its required allocation first, after which the customer group
with rank 2 receives its required allocation, and this sequential allocation contin-
ues until the available supply is exhausted. More formally, we define the rank based
allocation as shown in Definition 2.4:

Definition 2.4 (Rank based allocation). Assume that the set of successor nodes of n,
Sn = {m1, m2 = m1 + 1, . . . , m|Sn |}, is priority-ordered—that is, the priority of m1 is
higher than m2, etc. The rank based allocations from an intermediate node n ∈ N\IK to
its successors m ∈ Sn are

xRB
m =


0 xn ≤ ∑m−1

j=m1
xr

j

xn −∑m−1
j=m1

xr
j ∑m−1

j=m1
xr

j ≤ xn ≤ ∑m−1
j=m1

xr
j

xr
m else,

where xr
m = ∑m′∈Sm

xr
m′ is the total required allocation of node m.

Rank based requires more information-sharing between the nodes and their pre-
decessors than per commit does: In addition to the successor nodes’ total mean
demand, some ordinal measure of priority must be transmitted; that is, node n re-
quires information before it can priority-order its successor nodes m ∈ Sn. At first
glance, this requirement does not appear to be particularly restrictive because on
level K− 1 the priority can be directly inferred from the known service-level targets
of the customer groups l ∈ IK . However, establishing a priority order for nodes on
higher levels (i.e., K − 2, . . . , 1) is not straightforward and requires a specific rule.
Consider the hierarchies illustrated in Examples (a) and (b) (cf. Figure 2.3). While
in (a), node 1 should clearly be prioritized over node 2, the priority order is not
so obvious in (b). If node 1 is prioritized, then customer group C3 will receive
an allocation before customer group C2 does, and if node 2 is prioritized, then C2
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2.5 Heuristic Allocation Rules

and C4 receive their allocations before C1 and C3 do. Clearly, the performance of
the rank based allocation depends on how the priority order is established on levels
K − 2, . . . , 1, which also suggests that, in contrast to per commit, the outcome of a
rank based allocation depends on the hierarchy’s structure.

Rank based allocations’ dependence on rules for establishing the priority order
and the structure of the sales hierarchy make it difficult to derive general results
regarding the allocations’ performance. To obtain formal results without having to
account for the dependence on the prioritization rules and the hierarchy’s struc-
ture, we introduce what we term centralized rank based allocation. In this variant of
the rank based allocation, the planner at the root node directly allocates the available
supply to the customer groups in descending order of their service-level targets.
In formal terms, the centralized rank based allocation can be defined as shown in
Definition 2.5:

Definition 2.5 (Centralized rank based allocation). Let IK = {l1, l2 = l1 + 1, . . . , l|IK |}
denote the set of customer groups that are ordered according to their service levels, such that
αl1 > αl2 > . . . > αl|IK |

. The centralized rank based allocation from node 0 to customer
group l ∈ IK is

xcRB
l =


0 x0 ≤ ∑l−1

j=l1
xr

j

x0 −∑l−1
j=l1

xr
j ∑l−1

j=l1
xr

j ≤ x0 ≤ ∑l
j=l1 xr

j

xr
l else.

(2.7)

The allocations to intermediate nodes n ∈ N\IK are xn = ∑m∈Sn
xm.

This approach does not require that assumptions be made about how priori-
ties are determined for nodes on intermediate levels, as it is independent of the
structure of the sales hierarchy, so it serves as a benchmark for our analysis of the
optimality of rank based allocation.

Proposition 2.5 (Optimality of centralized rank based allocations). For a centralized
rank based allocation, the following hold:

1. If x0 = xr
0, then xcRB

l = x∗l for all l ∈ IK .

2. xcRB
l = x∗l for all l ∈ IK and all x0 ∈ [0, xr

0] if and only if

wl

(
1− lim

xl↗xr
l

Gl(xl)
)
≥ wl+1

(
1− Gl+1(0)

)
for all l ∈ IK\{l|IK |}. (2.8)

37



2 Allocation Planning in Sales Hierarchies with Stochastic Demand...

Proposition 2.5 states that (for x0 < xr
0) the centralized rank based allocation is

optimal only if the marginal weighted shortfall reduction that occurs by allocating
the xr

l -th unit to l is larger than the marginal weighted shortfall reduction that is
associated with allocating the first unit to l + 1.

Because the weights wl are inferred from the service levels (see Lemma 2.2) the
marginal weighted shortfall reduction [1− Gl(xl)] · wl is ≤ 1 for xl = xr

l and > 1
for xl < xr

l . Hence, (2.8) can hold only if Gl is non-continuous and has a sufficiently
large step at xr

l . In particular, (2.8) requires

lim
xl↗xr

l

Gl(xl) ≤ 1−
[
1− Gl+1(0)

]
· wl+1

wl
, (2.9)

while from the definition of xr
l , it follows that Gl(xr

l ) ≥ αl . Thus, the centralized
rank based allocation is always optimal if demand is deterministic.

For stochastic demand we observe that increasing differences in service-level
targets decrease wl+1

wl
(because wl increases in αl), so Condition (2.9) becomes less

restrictive. Hence, we can assume that the performance of centralized rank based
allocation improves with increasing heterogeneity among the service levels.

As centralized rank based allocations are optimal for deterministic demand, we
can surmise that decreasing the forecasting accuracy (increasing uncertainty) low-
ers centralized rank based allocations’ performance. Assume that Gl and Gl+1 are
continuous, that Gl(x) = F( x−µl

σl
), and for reasons of analytical tractability, that

Gl+1(0) = 0. While under a centralized rank based allocation, customer group l re-
ceives an allocation of xr

l = G−1
l (αl) before the next customer group l + 1 receives

its first allocation, the optimal allocation to l before the first allocation to l + 1 is
G−1

l
[
(αl − αl+1)/(1− αl+1)

]
(cf. Corollary 2.1). Thus, we can express the excess

allocation to customer group l as σl
[
F−1((αl − αl+1)/(1− αl+1))− F−1(αl)

]
, which

clearly increases in the standard deviation σl . This supports our conjecture that the
optimality gap increases if forecast accuracy decreases.

Overall, the conditions for optimality of the somewhat optimistic case of the
centralized rank based rule are also very restrictive. In contrast to per commit, the rank
based allocation appears to benefit from increasing service level heterogeneity. As
the centralized rank based rule can be seen as a best-case reference for the (decentral)
rank based allocation, we assume that the latter is affected by the service levels’ het-
erogeneity and forecast accuracy in a similar way. Section 2.6 provides numerical
evidence for these conjectures.
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2.5.2 Advanced Allocation Rules

Our previous analyses revealed that the frequently used conventional allocation
rules lead to optimal allocations only under highly restrictive conditions. Compa-
nies that use these rules should expect suboptimal results, especially when supply
is scarce and service levels and forecast accuracy are heterogeneous. In this section,
we develop two new approaches—the hybrid approach and the service level aggrega-
tion approach—based on the insights from Sections 2.4 and 2.5.1 with the intention
to strike a balance between practical feasibility and performance.

Hybrid Approach Under optimal allocation, supply is allocated to the customer
groups in descending order of their service-level targets (similar to the rank based al-
location) and based on the probability that customer groups will actually consume
the allocated supply (cf. Section 2.4.1). Hence, decentral allocation approaches
should exploit more of the information about the customer groups in order to prior-
itize them according to their service-level targets and the probability that allocated
units are actually consumed. Depending on the hierarchy’s structure, prioritiza-
tion is important on different levels. For example, when sub-trees on higher levels
of the sales hierarchy are similar, while differences between the customer groups
occur at lower levels of the hierarchy (i.e., when there is low between heterogeneity
as in Example (b) in Figure 2.1), prioritization will be less important at the higher
levels, while lower-level allocations should reflect the differences in service-level
targets and demand distributions. Thus, under conditions of low between hetero-
geneity, a combination of (extended) per commit to determine allocations for higher
levels of the hierarchy and a local optimal allocation for the lower levels is likely
to lead to good overall performance. We call this the hybrid approach, which we
formalize in Definition 2.6.

Definition 2.6 (Hybrid allocation). The hybrid allocation from intermediate node n ∈
I1 ∪ . . . ∪ IK−2 to its successor m ∈ Sm is xH

m = xnxr
m/xr

n. The vector of allocations
xH

m = (xl |l ∈ Sm) from intermediate node m ∈ IK−1 to its successor (leaf) nodes l ∈ Sm

is
xH

m = argmin
y∈R

|Sm |
≥0 ;‖y‖1≤xm

∑
l∈Sm

Wl(yl),

where Wl(yl) = wl
[
Ll(yl)− Ll(xr

l )
]+.
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Because extended per commit is employed on levels 1, . . . , K − 2, allocations on
these levels are based on total required allocations xr

n of the successor nodes. (See
Definition 2.3.) Only on level K − 1 are allocations determined by solving the de-
centralized optimal allocation problem for each node using the demand distribu-
tions and service-level targets of each successor node (customer group) on level K.
Therefore, while the information used and shared throughout the hierarchy under
the extended per commit and the hybrid approaches is identical, the hybrid approach
uses the information about the individual customer groups on level K more effi-
ciently. Implementing the hybrid approach is only slightly more challenging than
implementing per commit because it requires the planners of nodes K− 1 to employ
local optimization techniques. However, even from a practical point of view, this
requirement does not appear to be a major obstacle; as the term suggests, the lo-
cal optimization can be carried out decentrally and independent of other planners,
and we can assume that the planners of level K − 1 have access to the required
information (service-level targets and characteristics of the successor nodes’ de-
mand distribution) and the current planning logic of APS can easily be extended
to determine local optimal allocations for the customer groups.

Figure 2.6 compares the resulting expected service levels of the hybrid approach
with the service levels of an optimal allocation for Examples (a) and (b) from Fig-
ure 2.3. As the hybrid approach is designed for hierarchies that have low between
heterogeneity, the resulting expected service levels are closer to the optimum for
Example (b) than they are for Example (a). In Example (b), the customer groups
with the highest service-level targets (C1 and C2) receive high service levels even
when there is relatively scarce supply, while the less important customer groups
(C3 and C4) receive their first allocations much later. In Example (a), when there is
a medium supply rate, the low-priority customer group C3 receives an allocation
much too early and achieves higher service levels than customer group C2 because
in Example (a) overall heterogeneity results from differences between the sub-trees
on the first level (i.e., from between heterogeneity). On this level, hybrid uses ex-
tended per commit to allocate supply to the individual nodes and does not account
for the service levels’ heterogeneity.

These results suggest that the performance of the hybrid approach depends on
between and within heterogeneity. Proposition 2.6 formalizes the conditions under
which the hybrid approach leads to optimal allocations.
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Proposition 2.6 (Optimality of hybrid allocations). Assume Gl is continuous and
strictly increasing for all l ∈ IK ; then the following hold:

1. If x0 = xr
0 then xH

l = x∗l for all l ∈ IK .

2. xH
l = x∗l for all l ∈ IK if

x∗n′ (λ)
x∗n′′ (λ)

=
xr

n′

xr
n′′

for all n′, n′′ ∈ IK−1, λ ∈
{

λ | 0 ≤ ∑
l∈IK

x∗l (λ) ≤ xr
o

}
. (2.10)

Proposition 2.6 shows that the optimality of the hybrid approach hinges on
the optimality of the allocations to the nodes n ∈ IK−1 on level K − 1—that is,
the level at which we “switch” from extended per commit to a decentral optimal
allocation. Therefore, if (extended) per commit is optimal, the hybrid approach is
also optimal. However, (2.10) imposes a much milder condition, as it requires only
that the sub-trees on level K− 1 have no between heterogeneity. Assume, without
loss of generality, a hierarchy with two sub-trees Nn′ and Nn′′ on level K − 1 that
have no between heterogeneity, so there exists a bijective function f : Ln′ → Ln′′

that maps the leaf nodes below n′ to n′′ such that l′ ∈ Ln′ and l′′ = f (l′) ∈ Ln′′

have the same service level and the same scaled demand distribution—that is,
αl′ = αl′′ and Gl′ (xl′ ) = Gl′′ (axl′ ) for all xl′ ∈ [0, xr

l′ ] and some a > 0. In that case,
the required allocations are scaled by a = xr

n′/xr
n′′ , so the optimal allocations to l′

and l′′ have a fixed ratio; that is, x∗l′′ = x∗l′ · xr
n′′/xr

n′ . Therefore, it is straightforward
that (2.10) holds, the hybrid allocation is optimal, and the optimality of hybrid is
independent of the within heterogeneity of the sub-trees on level K− 1.

However, for increasing levels of between heterogeneity, the deviation between
the extended per commit allocations to the nodes of level K − 1 and the optimal
allocations increases. Hence, we can expect that the hybrid approach’s overall per-
formance degrades as between heterogeneity increases. Nevertheless, because a
local optimization determines allocations to level K, the hybrid approach leads to
(weakly) lower weighted shortfalls than the extended per commit allocation does. We
formalize this result in Proposition 2.7.

Proposition 2.7 (Total weighted shortfall of hybrid and extended per commit). For
any x0, W(xH) ≤W(xePC).

Proposition 2.7 shows that the hybrid approach should always be preferred over
an extended per commit allocation. In Section 2.6 we carry out extensive numerical
analyses to demonstrate the performance of the hybrid approach.
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Figure 2.6: Realized service levels of the hybrid and the service level aggregation approach (black)
compared to optimal allocation (gray) for two sales hierarchies.

Service Level Aggregation Approach Our previous analysis revealed that the hy-
brid approach is not appropriate under conditions of high between heterogeneity.
In such a setting, the sub-trees of the hierarchy at lower levels are similar in terms
of their service-level targets and demand distributions and the differences between
the customer groups occur on higher levels of the hierarchy. So we propose an allo-
cation approach termed the service level aggregation approach that uses aggregated
information on the service levels and demand distributions of the customer groups
to prioritize allocations to sub-trees on these higher levels. The rationale behind
the service level aggregation approach is that similar customer groups can be aggre-
gated into and represented by a single set of parameters (i.e., the aggregate mean,
standard deviation, and a service-level target). This aggregated information is then
passed on to the predecessor node’s planner, who solves a local optimization prob-
lem to determine allocations to its successor nodes. Definition 2.7 formalizes the
approach.

Definition 2.7 (Service level aggregation approach). Let F(t) be the cdf of a standard-
ized continuous distribution function with mean 0 and standard deviation 1, and let F−1(t)
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denote its inverse. Choose λn for all n ∈ I1 ∪ . . . IK−1 such that xn = ∑m∈Sn
xsl

m(λn)

with

xsl
m(λn) =

0 if λn ≥ [1− F(−µm
σm

)] · wm

σmF−1(1− λ
wm

) + µm else
∀m ∈ Sn,

(2.11)

where µm = ∑l∈Sm
µl , σm = ∑l∈Sm

σl , xr
m = ∑l∈Sm

xr
l are the aggregate parameters for

sub-tree m, and wm = 1/(1− αm) and αm = F
( xr

m−µ
σm

)
. Then the service level aggregation

allocation of intermediate node n to its successor m ∈ Sn is xsl
m(λn).

As F(t) is, by definition, continuous and strictly increasing in t, xsl
m(λn) is

continuous and increasing in λn. Hence, there is exactly one λn that fulfills xn =

∑m∈Sn
xsl

m(λn), so Definition 2.7 is well-defined.
The service level aggregation approach builds on the results established in Corol-

lary 2.1 but uses aggregated parameters for the demand distributions and shortfall
weights for nodes l ∈ Sm. While determining the aggregated mean µm and stan-
dard deviation σm is comparatively straightforward, there is no single right way
to determine the aggregated service level. By inferring service levels from the re-
quired allocations of the sub-trees (i.e., αm = F

( xr
m−µm

σm

)
), we ensure that under

sufficient supply allocations are optimal.
While it was necessary in the decentralized optimal allocation to share an entire

real-valued objective function, the service level aggregation approach requires only
(total) mean demand µm, standard deviation σm, and required allocations xr

m to
be shared with planners on the next-higher level. Any other information (e.g., the
aggregated service level and corresponding weights) can be inferred from these
parameters. Calculating the allocation itself is then based only on local information
and it can be solved efficiently, so it can be incorporated into the planning logic of
APS.

In Figure 2.6 we compare the expected per-group service levels associated with
the allocations that are based on the service level aggregation approach6 with the
optimal service levels for Examples (a) and (b) in Figure 2.3. We observe that
the resulting service levels of Example (a) are close to optimal, while in Example
(b) the difference is significant. Because in Example (b) the sub-trees have a high
within heterogeneity, the single set of parameters does not represent the sub-trees

6We use the standard normal distribution (i.e., F(z) = Φ(z)) to calculate the allocations, as the
demand of the customer groups follows a normal distribution.
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correctly. Consequently, the sub-tree with customer groups C1 and C3 is priori-
tized over the sub-tree with groups C2 and C4, which results in C2’s receiving its
allocation too late and reaching acceptable service levels only at very high supply
rates. In Example (a), the within heterogeneity is low and the aggregated informa-
tion represents the customer groups within each sub-tree accurately. Therefore, the
sub-tree that contains the high service-level customer groups C1 and C2 is correctly
prioritized.

This example shows that the performance of the service level aggregation ap-
proach depends on the sales hierarchy’s structure. Proposition 2.8 describes the
conditions under which the service level aggregation approach allocates optimally.

Proposition 2.8 (Optimality of service level aggregation allocations). For a service
level aggregation allocation, the following hold:

1. If x0 = xr
0 then xsl

l = x∗l for all l ∈ IK .

2. xsl
l = x∗l for all l ∈ IK and all x0 ∈ [0, xr

0] if, for all intermediate nodes n ∈ I1, the
following hold:

Gl(xl) = F
(

xl/µl − 1
CVn

)
for all l ∈ Ln, xl ∈ [0, xr

l ]

αl = αn for all l ∈ Ln.

Proposition 2.8 shows that the service level aggregation approach leads to optimal
allocations under scarce supply if all demand distributions are based on the same
standardized distribution F(·) and the customer groups in each sub-tree on the
first level of the sales hierarchy have homogeneous service-level targets.7 In this
case, the objective functions of the intermediate nodes n are accurately represented
by distributions F

( xn−µn
σn

)
and service levels αn, so the resulting allocations are op-

timal. When within heterogeneity increases, the differences between the objective
functions and their approximations increase, and we can expect a decreasing per-
formance of the service level aggregation approach. Section 2.6 quantifies the impact
of within heterogeneity on the service level aggregation approach and compares it
with the other allocation rules that have been proposed in this section.

7The proposition demands a constant CV for the demand distributions in a sub-tree. This de-
mand is only a technical assumption since, in practice, Gl(0) = F(−1/CVl) ≈ 0 , so allocations are
(close to) optimal for heterogeneous CVs.
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Table 2.1: Performance drivers of decentral allocation rules.
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Per commit – –
Extended per commit + – –
Centralized rank based + + +
Rank based + + +
Hybrid + –
Service level aggregation + –

“+”/“–” indicates a positive/negative impact on the allocation’s performance.

2.6 Numerical Analysis

Section 2.5 identified a number of drivers that impact the performance of the
conventional allocation rules and our new allocation approaches. Table 2.1 pro-
vides a high-level overview of these drivers and how they affect overall perfor-
mance. In this section we carry out a numerical study to compare the performance
of the allocation approaches and to quantify the impact of these performance
drivers. Our first objective is to shed light on the optimality gap of the individual
allocation rules and how this gap depends on the performance drivers listed in
Table 2.1. Our second (and more important) objective is to integrate these results
into a comprehensive framework that allows decision-makers to assess when and
under what conditions they can or should employ certain approaches for allocation
planning.

In Section 2.6.1 we show how we operationalize the performance drivers de-
scribed in Table 2.1, and in Section 2.6.2 we show how we measure the allocation
approaches’ performance. Section 2.6.3 outlines how we conducted our numer-
ical experiments, in which we vary forecast accuracy, overall heterogeneity, and
between and within heterogeneity. In the subsequent sections we compare the ap-
proaches’ performance in each scenario and quantify the impact of the performance
drivers on the performance of the allocation rule.
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2.6.1 Operationalization of Performance Drivers

This section explains how we operationalized the performance drivers summa-
rized in Table 2.1.

Supply rate. As in Section 2.5, we measure the supply rate as x0/xr
0.

Forecast accuracy. From a practical perspective, we want to capture differences
in forecasting performance. In our setting, the coefficient of variation (CVl) is an
appropriate proxy for the forecast performance of customer group l.

As outlined in Section 2.5, heterogeneity can occur in the form of differences
in the ability to forecast the individual customer groups’ demand and service-level
targets. To isolate the effects of these two types of heterogeneity, we introduce
measures that capture forecast heterogeneity and the service levels’ heterogeneity
separately.

Forecast heterogeneity. We measure the forecasts’ heterogeneity using the demand-
weighted standard deviation of the CV, relative to the average CV, to ensure that
the measure is robust against scaling of the forecasts’ accuracy:

Definition 2.8 (Forecast heterogeneity). The forecast heterogeneity for customers l ∈
IK is

HCV =
1

CV

√
∑l∈IK

µl(CVl − CV)2

µ0
,

where CV = ∑l∈IK

µl
µ0

CVl is the demand-weighted average of the CV.

Service level heterogeneity. To measure the service level heterogeneity, we use
the service level-inferred shortfall weights instead of the service levels themselves
because the weights reflect the differences between the customer groups more pre-
cisely. Hence, we use the demand-weighted standard deviation of the shortfall
weights, standardized relative to the (demand-weighted) average shortfall weight,
as our measure for the service level heterogeneity:

Definition 2.9 (Service level heterogeneity). The service level heterogeneity for cus-
tomers l ∈ IK is

HSL =
1
w̄

stdIK
SL,

46



2.6 Numerical Analysis

where stdIK
SL =

√
∑l∈IK

µl(wl−w̄)2

µ0
is the demand-weighted standard deviation of the service

levels’ inferred weights of nodes IK , and w̄ = ∑l∈IK

µl
µ0

wl denotes the demand-weighted
average of the shortfall-weights.

We illustrate this and the following heterogeneity measures using an example
at the end of this section.

Within heterogeneity. The within heterogeneity is the heterogeneity of the cus-
tomer groups in a sub-tree. To operationalize within heterogeneity, we modify
Definition 2.9 to measure the heterogeneity of each sub-tree’s service levels. As
we are interested in the within heterogeneity of the entire hierarchy, rather than
that of individual sub-trees, Definition 2.10 uses the demand-weighted sum of the
sub-trees’ service-level heterogeneities as a measure for the within heterogeneity.

Definition 2.10 (Within heterogeneity). Let Ln denote the leaf nodes to node n; then
the within heterogeneity of the hierarchy is

Hwithin
SL =

1
w̄ ∑

n∈I1

µn

µ0
stdLn

SL . (2.12)

In (2.12) stdLn
SL measures the demand-weighted standard deviation of the short-

fall weights in the individual sub-trees to nodes n ∈ I1 according to Definition 2.9.
Between heterogeneity. The between heterogeneity reflects the differences be-

tween sub-trees. Recall our example from Figure 2.3, where the sub-trees in Ex-
ample (a) exhibit high between heterogeneity because the individual service-level
targets in the two sub-trees differ substantially, so the sub-trees’ average service-
level targets differ. In Example (b), the sub-trees are much more homogeneous
because the service-level targets of the customer groups in sub-tree 1 are similar to
the service-level targets of the customer groups in sub-tree 2. As a consequence,
the average service level and the heterogeneity of the sub-trees are similar. This
example reveals some basic requirements that a measure of between heterogeneity
must fulfill: First, the between heterogeneity should be zero if all sub-trees are
identical in terms of their weighted average service levels and the heterogeneity of
their service levels. In this case, the sub-trees’ within heterogeneity are identical
and the overall heterogeneity can be fully explained by the sub-trees’ within het-
erogeneities of the sub-trees. Second, a measure of between heterogeneity should
increase as the individual sub-trees exhibit greater differences in terms of their
average service levels and the heterogeneity of their service levels.
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The standardized (squared) sum of differences between the sub-trees’ standard
deviation of the shortfall weights and the overall hierarchy’s standard deviation
of the shortfall weights is an adequate measure for between heterogeneity that
meets these requirements. More formally, the between heterogeneity is defined in
Definition 2.11:

Definition 2.11 (Between heterogeneity). The between heterogeneity of the hierarchy is

Hbetween
SL =

1
w̄

√
∑

n∈I1

µn

µ0
(stdLn

SL − stdIK
SL)

2.

The intuition behind this measure and the other heterogeneity measures be-
comes clearer when our two sample hierarchies from Figure 2.3 are considered:
As both use the same customer groups, the overall heterogeneity of the service
levels is 0.69 in both hierarchies. However, in Example (a) each sub-tree has a
small within heterogeneity and we obtain Hwithin

SL = 0.21, while in Example (b)
we observe Hwithin

SL = 0.98. Regarding the between heterogeneity, we calculate in
Example (a) that the two sub-trees’ weighted standard deviations of the shortfall
weights are 1.6 and 1.5, so they are substantially lower than the overall standard
deviation (7.58). Hence, Example (a) has a relatively large between heterogeneity
of 0.55. In Example (b), the two sub-trees’ weighted standard deviations are similar
(at 7.50 and 7.33) to the entire hierarchy’s standard deviation (7.58). Therefore, the
between heterogeneity is low (0.02).

2.6.2 Performance Measures

We propose two measures with which to compare the allocation approaches’
performance with that of the optimal allocation that serves as our benchmark. We
use the “absolute gap to optimality” (AGO) to compare the allocation approaches
at a specific supply rate. The AGO is defined as the absolute difference between an
allocation approach’s total weighted shortfall and the weighted shortfall associated
with an optimal allocation averaged over all hierarchy variants.

Definition 2.12 (Absolute gap to optimality). The absolute gap to optimality (AGO)
for allocation method a is

AGOa =
1
|V| ∑

v∈V
Wa

v (x0)−W∗(x0),
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Table 2.2: Parameterization of the analyses.

Performance driver setting

Analyses
Service level
heterogeneity Forecast accuracy

Forecast
heterogeneity

Baseline 0.56 0.20 0.00

Forecast accuracy 0.56 0.10, 0.20, . . . , 0.80 0.00

Forecast
heterogeneity

0.00 0.50 0.00, 0.05,. . . , 0.6

Service level
heterogeneity

0.00, 0.05,. . . , 0.65 0.20 0.00

where Wa
v (x0) and W∗(x0) denote the weighted shortfall of allocation method a and the

optimal allocation for a supply of x0, respectively, and V denotes the set of the hierarchy
variants.

The AGO allows one to compare the performance only at a specific level of sup-
ply x0. To compare the general performance of the various allocation approaches,
we define an additional performance measure, the “relative average gap to opti-
mality” (RAGO) as the average performance over all levels of supply:

Definition 2.13 (Relative average gap to optimality). The relative average gap to opti-
mality (RAGO) of allocation method a is

RAGOa =
1
|V| ∑

v∈V

∑x0∈[0,xr
0]

Wa
v (x0)

∑x0∈[0,xr
0]

W∗(x0)
− 1.

2.6.3 Experimental Design

To assess how the performance of the allocation approaches depends on the
performance drivers, we first carry out four analyses. Table 2.2 provides an overview
of these analyses and the corresponding parameters. Our baseline scenario is a set-
ting with moderate heterogeneity in service levels and constant forecast accuracy
across all customer groups. In Section 2.6.4, we use the results of this baseline anal-
ysis to provide first insights into the allocation approaches’ performance. There-
after, in Section 2.6.5, we carry out three analyses (Table 2.2) in which we vary one
performance driver at a time in order to isolate the effect each driver has on the
approaches’ performance.

Here we describe the steps in our evaluation of the allocation approaches’ per-
formance for the analyses and parameters described in Table 2.2.
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1. Determine customer parametrization: In all analyses we use six customer groups
with normally distributed demand with mean 10. To determine the stan-
dard deviation, we rearrange the formula in Definition 2.8 to give us equally
spaced CVs for each customer group, leading to the required forecast accu-
racy and heterogeneity. To determine the service-level targets we rearrange
the formula in Definition 2.9 to calculate equally spaced shortfall weights
(which can be converted to service levels) with a constant maximum of 50

(corresponding to a service-level target of 0.98) that lead to the desired het-
erogeneity of service levels.8 This approach results in a parametrization ma-
trix for each scenario that contains the shortfall weights, standard deviations,
and mean demand for all six customer groups.

2. Generate hierarchies: For our numerical experiments we use a hierarchy with
nine nodes, where node 0 is the root node, nodes {1, 2} are the intermediate
nodes, and nodes {3, . . . , 8} are the leaf nodes that represent the customer
groups. As some allocation rules (i.e., rank based, hybrid, and service level ag-
gregation) are influenced by the hierarchy’s structure, we take special care
when generating the hierarchies. Certain approaches might perform bet-
ter under some structures, diluting our results. Hence, we systematically
permute the six leaf nodes to obtain all possible structures for our nine-
node setup, leading to ten symmetric, fifteen moderately asymmetric, and
six asymmetric variants of the sales hierarchy. (See Figure 2.7 for an illus-
tration.) We then assign the parametrized customer groups to the leaf nodes
and obtain thirty-one fully specified hierarchy variants (denoted by v ∈ V).

3. Determine the allocations: We implemented all allocation approaches from Sec-
tion 2.59 and the optimal central allocation (Section 2.4.1) in Python and used
these approaches a ∈ A to obtain the allocations for each hierarchy variant
v ∈ V and supply rate s ∈ S = {0, 0.01, . . . , 1}.

4. Evaluate the performance of the allocation approaches: From the allocations de-
termined in Step 4 we determine the performance measures as described in
Section 2.6.2. In this step, we also compute the within and between hetero-
geneity for each hierarchy variant according to Definitions 2.10 and 2.11.

8The detailed formulae to obtain the parameters are shown in Appendix A.2.
9For the (centralized) rank based allocation, we used the average service level to determine ranks

on the intermediate levels.
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Figure 2.7: Variations of a three-stage hierarchy with six customer groups.
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Figure 2.8: AGO for all allocation methods for the baseline scenario; annotations display the relative
gap to optimality at a supply rate of 0.8 and at the maximum AGO.

2.6.4 Baseline

Figure 2.8 shows the baseline AGO for all allocation approaches, dependent on
the supply rate. At a supply rate of 1, all allocation approaches except per commit
allocate optimally (cf. Section 2.5) so they lead to an AGO of zero. Per commit leads
to a very small and, in this instance, negligible AGO of 1.71. (Because the shortfall
weights in the baseline are between 5 and 50, that suggests much less than one unit
of additional shortfall is caused by the sub-optimal allocation.)

As supply rates decrease (i.e., shortage increases), the AGOs increase across
all allocation approaches, although at different rates.10 Consider, for example, the

10The non-monotonic behavior of the AGOs that are associated with rank based allocation can be
explained by the particular sequential allocation logic: Performance increases relative to the optimal
solution whenever an additional customer with the next lower priority receives an allocation.
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situation of a moderate shortage (e.g., at a supply rate of 0.8). Here, per commit
and rank based exhibit the highest AGOs of 31.2 and 31.5, respectively, while our
advanced approaches (hybrid and service level aggregation) lead to AGOs that are still
close to zero. As we suggested in Section 2.5.1, extended per commit has a relatively
good performance at moderate shortage. Although the AGOs of rank based and per
commit appear to still be relatively low, the corresponding relative gap to optimality
is considerable (64%). For the hybrid and the service level aggregation approaches,
the gaps to optimality are only 11 percent and 3 percent, respectively.

For all allocation rules, the AGO reaches a maximum at low supply rates (be-
tween 0.2 and 0.4). However, the relative gap for the rank based and the per commit
rule is lower at low supply rates than it is for moderate shortages (e.g., for 0.4)
because, at these low levels of supply, the optimal allocation causes a substantial
(weighted) shortfall. The hybrid approach appears to be less sensitive to low supply
rates and, in contrast to the other allocation approaches, does not exhibit a clear
maximum AGO.

AGOs decrease at low supply rates; simply speaking, supply is so constrained
that the performance differences between the optimal allocation and the allocation
rules decline. Obviously, AGOs are zero when no supply is available.

The advanced allocation approaches (hybrid and service level aggregation) out-
perform the conventional rules (per commit and rank based) for supply rates that
are larger than 0.2. In fact, the AGOs of the hybrid and the service level aggregation
approaches are substantially lower when supply is strongly constrained, that is,
at supply rates of 0.2 to 0.7. Comparing the two advanced allocation approaches
shows that, for moderately constrained supply (supply rates that are larger than
0.6), the service level aggregation approach leads to higher gaps than the hybrid ap-
proach does, as the hybrid approach is robust toward the supply rate and produces
comparably low AGOs across all supply rates.

The allocations (and, presumably, the performance) of the hybrid, the service
level aggregation, and the rank based approaches are hierarchy-dependent. We now
explore for the baseline scenario how the performance of these allocation ap-
proaches depends on the structure (more specifically, the symmetry) of the hi-
erarchy (Figure 2.7). The box plot in Figure 2.9 plots the RAGOs of these allocation
approaches for asymmetric, moderately asymmetric, and symmetric hierarchies,
and contrasts them with the RAGOs of the per commit, the extended per commit, and
the centralized rank based rules, which are independent of the hierarchy. Under all
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Figure 2.9: Effect of the symmetry of the hierarchy on the RAGO (whiskers extend to the min/max,
boxes to the first and third quantile).

hierarchy structures the advanced allocation approaches outperform the conven-
tional allocation rules.

While the performance of the hybrid approach is almost unaffected by the hi-
erarchy’s symmetry, the RAGO for rank based and the service level aggregation ap-
proaches is higher for more symmetric hierarchies. However, the overall effect—
especially for the service level aggregation approach—is relatively small and does
not explain the performance differences between the hierarchy variants well. Sec-
tion 2.6.5 shows that the performance of the service level aggregation approach de-
pends on the hierarchy’s within heterogeneity, so we can assume that the hierar-
chy’s symmetry impacts the performance only indirectly. For asymmetric hierar-
chies, the size of the smallest sub-tree decreases, so the sub-tree becomes more ho-
mogeneous, decreasing the within heterogeneity and explaining the slight positive
effect on the service level aggregation approach. We conclude that the hierarchy’s
symmetry does not have a substantial direct effect on the allocation approaches’
performance.
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Figure 2.10: Effect of different levels of CV on the RAGO.

Our initial results for the baseline scenario suggest that our advanced alloca-
tion approaches may be suitable for remedying the conventional allocation rules’
shortcomings while being relatively easy to implement.

2.6.5 Influence of Performance Drivers

In this section we explore whether and how the initial results of Section 2.6.4
depend on the remaining performance drivers that were summarized in Table 2.1.

Forecasting Accuracy Figure 2.10 plots the RAGO for all allocation approaches
under varying CVs. For the rank based and the centralized rank based rule, perfor-
mance decreases in the CV, which is in line with our conjecture in Section 2.5.1.
The performance of all other allocation approaches increases in the CV. The RA-
GOs of the per commit and the extended per commit rules reduce from 0.4 and 0.38

(at a CV of 0.1), respectively, by about half to 0.25 and 0.17 (at a CV of 0.8), re-
spectively. The advanced allocation approaches show similar effects, although on
a lower overall RAGO level (from 0.08 to 0.03 for the hybrid approach and 0.10 to
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0.04 for the service level aggregation approach). It may seem counterintuitive that the
advanced allocation approaches’ performance increases relative to the optimum as
forecast accuracy declines (CVs increase). However, under high demand uncer-
tainty, misallocated supply is more likely to be consumed than under more certain
supply conditions. Hence, the effect of suboptimal allocations on the RAGO de-
clines as demand uncertainty increases. Per commit, extended per commit, and our
advanced approaches benefit from this effect. With the exception of the centralized
rank based rule at a low level of demand uncertainty (CV = 0.1), the advanced
allocation approaches outperform the conventional allocation rules.

Forecast Heterogeneity Next, we analyze the allocation approaches’ sensitivity
to the forecast heterogeneity. To rule out any confounding effects of heterogeneity
among the service levels, all customers are assigned a service-level requirement
of 0.98 (making the service levels homogeneous, cf. Table 2.2). Taking this step
suggests that we must exclude rank based allocations from this particular analysis.

In Figure 2.11 we plot the RAGO for the allocation approaches for increasing
levels of forecast heterogeneity. All allocation approaches’ RAGOs increase as the
forecast heterogeneity increases, with the exception of the service level aggregation
approach, which has a RAGO of close to zero at all levels of forecast heterogeneity.

Extended per commit and per commit have the largest sensitivity to forecast het-
erogeneity, which is in line with our results in Section 2.5.1. The RAGO of the
hybrid approach also increases at higher levels of forecast heterogeneity, albeit a
considerably lower overall increase than that of per commit. However, with a maxi-
mum of less than 0.06, the RAGOs across all allocation rules and all levels of CV are
small compared to our previous analyses. Nevertheless, our advanced allocation
approaches clearly outperform the conventional allocation rules.

Service Level Heterogeneity Figure 2.12 shows how the service level heterogene-
ity impacts the RAGOs of the allocation approaches.

When the service level heterogeneity is zero, all service levels are equal and
all allocation approaches but the rank based approach11 lead to optimal allocations
(cf. Section 2.5). When the service level heterogeneity is low, the rank based and
centralized rank based rules have a high RAGO (e.g., approximately 0.28 when the
service level heterogeneity is 0.1), which is again in line with the analytical results

11For a heterogeneity of zero, all customers are identical and no rank exists, so we cannot deter-
mine the allocations for the rank based rules.
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Figure 2.11: Effect of forecast heterogeneity on the RAGO.
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Figure 2.12: Effect of service level heterogeneity on the RAGO.
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established in Section 2.5. As the heterogeneity of the service levels increases, the
centralized rank based allocation’s RAGO strictly decreases, while for the decentral-
ized rank based allocation, the RAGO first decreases and then increases. The latter
result is caused by the interplay of two effects: rank based works better when cus-
tomers are heterogeneous in terms of their service-level requirements, which is
reflected in the centralized rank based rule’s strictly decreasing RAGO. However, the
decentralized rank based allocation requires a rank-aggregation on the intermediate
nodes (Section 2.5.1), which suggests that some of the information about the cus-
tomers’ heterogeneity is lost. With increasing heterogeneity, the negative impact
of this information loss on performance becomes more pronounced and outweighs
the former effect at some point. All other rules’ performance decreases with in-
creasing heterogeneity in service levels, although at varying rates. As predicted in
Section 2.5.1, such heterogeneity has a strong detrimental impact on per commit’s
performance. Per commit’s RAGO is zero when the service level heterogeneity is
zero, but it grows at an increasing rate as that heterogeneity increases. In contrast,
the advanced allocation approaches are less sensitive to an increase in the service
level heterogeneity. Up to a service level heterogeneity of 0.45, both hybrid and
service level aggregation perform equally well and exhibit RAGOs below 0.05. At
high levels of service level heterogeneity, the hybrid approach appears to perform
better than the service level aggregation approach. Therefore, both advanced alloca-
tion approaches outperform their conventional counterparts when the service level
heterogeneity is larger than zero.

Between and Within Heterogeneity For the hybrid and the service level aggregation
approaches, we identified between and within heterogeneity as potential perfor-
mance drivers. To determine their effects on the performance of both allocation
rules, we re-use the service level heterogeneity scenarios and calculate the between
and within heterogeneity of the thirty-one hierarchy variants for each scenario. To
illustrate how overall, within, and between heterogeneity are related in the individ-
ual instances, Figure 2.13 plots both heterogeneity measures on the x- and y-axes
and color-codes the (overall) service level heterogeneity. A radial pattern begins at
the origin (at an overall heterogeneity of 0). All instances on an individual “ray”
exhibit the same structure, with linearly increasing levels of (overall) service level
heterogeneity, as described in Section 2.6.2. The overall heterogeneity of the service
levels is associated with differing levels of within and between heterogeneity. For
example, for hierarchy variant “[145][236]” (where customer groups 1, 4, and 5 are
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Figure 2.13: Relative between and within heterogeneity of the service level heterogeneity scenarios.

in sub-tree 1, and customer groups 2, 3, and 6 are in sub-tree 2), the increase in
the overall service level heterogeneity is almost fully associated with an increase
in the within heterogeneity, while in hierarchy variant “[123][456],” the increase
is more strongly associated with an increase in the between heterogeneity. This
variation in within heterogeneity and between heterogeneity across the hierarchy
variants allows us to assess the hybrid and the service level aggregation approaches’
performance at various levels of the respective heterogeneity. The corresponding
results are displayed in Figure 2.14.

The hybrid approach (Figure 2.14a) leads to a RAGO that is close to zero for low
between heterogeneities and only to a RAGO that is higher than 0.1 if the between
heterogeneity is higher than 0.2. This result supports our conjecture that between
heterogeneity is a major performance driver for the hybrid approach. However,
when between heterogeneity is high (i.e., higher than 0.4), performance improves
at higher levels of within heterogeneity.

This seemingly counterintuitive result can be explained by the properties of the
instances in this parameter range. A hierarchy with high between heterogeneity
and zero within heterogeneity is given when all customers in one sub-tree have
equally high service-level requirements, and all customers in the other sub-tree
have equally low requirements. This scenario would be the worst case for the
hybrid approach. Increasing the within heterogeneity at the same high level of
between heterogeneity, then, is beneficial for the hybrid approach, as despite the
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Figure 2.14: Effect of within and between service level heterogeneity on the RAGOs of the hybrid and
the service level aggregation approaches. (Each tile of the heat maps represents the RAGO averaged
over all instances that fall into the corresponding range of between and within heterogeneity.)

high between heterogeneity, the hybrid approach would have “better” allocations
to the individual customers in the sub-trees. Therefore, at constant high levels of
between heterogeneity, the hybrid approach’s performance improves for increasing
levels of within heterogeneity.

We expect the service level aggregation approach’s performance to be negatively
impacted by increasing within heterogeneity, as Figure 2.14b shows. At low levels
of within heterogeneity, the RAGO is consistently below 0.1, independent of the
between heterogeneity. It increases at moderate levels of within heterogeneity (be-
tween 0.3 and 0.5) and takes on high values of up to 0.4 at high levels of within
heterogeneity (beyond 0.5). Overall, the service level aggregation approach appears
to be robust with respect to between heterogeneity.

The results for the hybrid and the service level aggregation approaches are syn-
thesized in Figure 2.15, which superimposes the individual results shown in Fig-
ure 2.14. For each combination of within heterogeneity and between heterogeneity,
we identify the superior rule (i.e., the rule that leads to the lower RAGO) and depict
the corresponding RAGO.

The results in Figure 2.15 explain which of the two advanced allocation ap-
proaches should be selected based on within heterogeneity and between hetero-
geneity. The hybrid (service level aggregation) approach should be chosen for low
to medium between (within) heterogeneity; under these conditions the “correct”
advanced allocation rule performs well, that is, they both lead to RAGOs of close
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Figure 2.15: RAGO of the best rule for vary-
ing levels of between and within heterogeneity.
(Hybrid approach in blue and marked with “H,”
service level aggregation approach in green and
marked with “S.”)
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Figure 2.16: Decision matrix for choos-
ing allocation planning approaches.

to zero. However, the hybrid and the service level aggregation approaches lead to
higher RAGOs when moderate to high levels of within heterogeneity and between
heterogeneity coincide. Even in these instances, RAGOs are still at fairly low levels
(never exceeding 0.1) compared to the results of the conventional allocation rules
(Figure 2.12).

To conclude this section, we summarize the main findings of our numerical
analyses. Our results show that rank based leads to a detrimental performance in
almost any situation and that even centralized rank based should only be used when
demands can be forecasted very accurately (CV ≤ 0.1). Per commit and extended per
commit lead to good, or at least acceptable, results when the overall service levels’
heterogeneity is low and supply rates are high. At moderate levels of heterogeneity
both lead to considerable performance losses. Under moderate to high heterogene-
ity of service levels, the decision-maker can improve performance substantially by
choosing the right advanced allocation approach: If between heterogeneity is low,
the hybrid approach will result in good allocations, and the decision-maker can ex-
pect close to optimal performance; when within heterogeneity is low, the service
level aggregation approach can be expected to yield good results. When the levels of
both types of heterogeneity are moderate to high at the same time, the advanced
allocation rules still lead to reasonable performance, although it is not close to op-
timal. Achieving even better performance will require more involved approaches,
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such as the decentralized optimal allocation described in Section 2.4.2. Figure 2.16

summarizes our findings and recommendations.

2.7 Conclusion

This paper addresses centralized and decentralized approaches to the alloca-
tion of scarce supply in a sales hierarchy with stochastic customer demand and
service-level targets. Its analytical and numerical contributions provide a number
of methodical and practical insights. First, Section 2.4 provides an analytical solu-
tion for the case in which an omniscient central planner plans allocations. It covers
a broad range of possible demand distributions, including discrete and other not-
absolutely-continuous demand distributions. Optimal solutions to this problem are
natural benchmarks for any decentralized allocation procedure. We also show that
the optimal solution can be achieved in a decentralized planning regime, although
at the cost of excessive information-sharing and somewhat involved computations.

Second, Section 2.5 provides a detailed discussion of the common decentral-
ized allocation rules, and building on the insights developed from the analysis of
the central-planner case, introduces two new decentralized allocation approaches:
the hybrid approach and the service level aggregation approach. While these new
approaches are simple enough to be implemented in a hierarchical sales organiza-
tion, they result in improved supply allocations over those of the conventional ap-
proaches because they exploit more of the information about the customer groups.

Taken together, the analytical results presented in Section 2.5 and the numer-
ical results presented in Section 2.6 show that the two new allocation approaches
typically outperform the conventional approaches. They also explain when to use
which approach: The hybrid allocation performs well under low between hetero-
geneity, and the service level aggregation approach performs well under low within
heterogeneity. These insights are especially valuable for decision-makers who work
in companies with hierarchical sales organizations, as they help them to identify
the best allocation approach for their organizations using two simple heterogeneity
measures that can be computed easily and that typically remain stable over time.

The research presented in this paper has a number of limitations. Among them,
we consider a single period setting, while allocation decisions are actually interre-
lated across multiple subsequent periods. For example, unused supply is likely
to be carried over to the next period, and unfilled demand may be backlogged
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and served later. Multi-period allocation planning models will require a number
of additional assumptions (e.g., regarding backorder-clearing mechanisms, the op-
tion of trans-shipments, supply/inventory-netting procedures) that are not difficult
to implement but that complicate the comparison of the approaches to allocation
planning and make it even more difficult to obtain analytically tractable results.
We perceive our models, approaches, and insights as a starting point for carrying
out multi-period analyses. Although developed for the single-period case, our ad-
vanced allocation rules can be enhanced by various features that are relevant to
a multi-period setting. We leave these extensions and further analyses to future
research.
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Chapter 3

Single-Period Stochastic
Demand Fulfillment in
Customer Hierarchies1

3.1 Introduction

This paper addresses the problem of allocating scarce supply to hierarchically
structured customer segments so as to maximize profitability. The problem con-
nects the supply chain planning task of profit-oriented demand fulfillment (DF) to
the business reality of multilevel customer hierarchies.

DF aims to optimally match customer orders with available resources. In make-
to-stock production systems, DF comprises fulfilling customer orders from inven-
tory. Since acceptable customer response times are shorter than production lead
times, in this setting, supply is essentially fixed when demand materializes (Fleis-
chmann and Meyr, 2004). Therefore, firms face the risk of short-term supply short-
ages, especially when demand is uncertain. Under a first-come-first-served (FCFS)
fulfillment approach, any customer may suffer from such shortages. However,
customers commonly differ in their importance and profitability. FCFS demand
fulfillment ignores these differences and therefore performs poorly under hetero-
geneous demand (Ketikidis et al., 2006; Meyr, 2009; Barut and Sridharan, 2005).

1This chapter is co-authored by Moritz Fleischmann, Maryam Nouri and Richard Pibernik.
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Revenue management (RM) approaches to demand fulfillment address this de-
ficiency (Quante et al., 2009b). Such approaches divide the overall customer base
into different segments based on profitability or strategic importance. The DF
problem is then solved in a two-stage process. First, in the allocation planning
stage, available-to-promise quantities (ATP) are determined and allocated as quo-
tas to different customer segments. Second, in the order promising stage, these
quotas are consumed by fulfilling realized orders from the corresponding cus-
tomer segments (Ball et al., 2004; Kilger and Meyr, 2008). Orders exceeding the
corresponding quota are lost or deferred to less constrained periods. This process
prioritizes more profitable orders and avoids depleting scarce supply by fulfilling
less profitable orders.

Available RM approaches to demand fulfillment rely on a one-dimensional
ranking of the customer segments. In reality, however, customer segments com-
monly have a multilevel hierarchical structure that reflects the structure of the sales
organization. A typical customer hierarchy includes different geographies, differ-
ent distribution channels, and different customer groups, similar to that shown
in Figure 3.1. Roitsch and Meyr (2015) study an example of such a hierarchy in
the downstream business of the European oil industry. The industry faces long
lead times, and after deciding about the crude oil supply, quantities cannot easily
be changed. The available supply is then iteratively allocated to different business
units in 14 different countries, producing different products for different customers
and yielding different profits.

In such hierarchies, there is no direct ranking of individual customer segments.
Instead, allocation planning is an iterative and decentralized process in which
higher-level sales quotas are disaggregated one level at a time by multiple local
planners. This hierarchical problem, although practically relevant, has barely been
studied in the academic literature. Vogel and Meyr (2015) are the first to address
the problem while assuming deterministic demand. In practice, simplistic rules of
thumb are applied to determine sales quotas, which leads to suboptimal results
(Vogel, 2014).

This paper investigates the hierarchical DF problem. Specifically, the study ad-
dresses the question of what information is required at the individual levels of the
hierarchy to allow for an effective allocation. Mathematically, the optimal decision
in each allocation step depends on the projected demand distributions of all in-
dividual customer segments. While technically feasible, sharing this fine-grained
information across the levels of the decision-making hierarchy is undesirable from
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a managerial perspective because it overloads higher-level decision makers with
potentially insignificant details and makes the resulting allocation decisions dif-
ficult to communicate. Therefore, companies commonly aggregate the demand
information propagated along the levels of the hierarchy. While aggregation sim-
plifies the decision process, overly coarse information may result in ineffective
allocation decisions. To strike the right balance, it is crucial to identify those pieces
of information that yield the greatest benefits in terms of steering the consecutive
allocation steps towards an overall optimum.

Our paper is meant to provide insight into this information-performance trade-
off. In contrast to Vogel and Meyr (2015), we assume stochastic demand. Therefore,
potentially relevant information about customer segments can be broadly divided
into information on expected demand, demand uncertainty, and unit profits. We
investigate the role of each of these dimensions in hierarchical allocation planning
for demand fulfillment.

In summary, our paper makes the following contributions:

• We formalize the allocation planning problem in customer hierarchies by
defining information aggregation and allocation functions;

• We characterize the optimal centralized solution to the stochastic allocation
problem;

• We develop robust and near-optimal decentralized allocation methods for
the hierarchical stochastic DF problem;

• We compare the numerical performance of the proposed methods with bench-
marks commonly applied in APS and investigate the parameters driving the
respective gaps;

• We reflect on the role of information sharing in hierarchical demand ful-
fillment and identify crucial information for good decentralized allocation
decisions.

The paper proceeds as follows. In Section 3.2, we review the related literature
and position our contribution. In Section 3.3, we formalize the hierarchical DF
problem. In Section 3.4, we explain the best-case and worst-case benchmarks for
the problem, including the optimal centralized solution. We present our new de-
centralized heuristics in Section 3.5 and evaluate their performance in extensive
numerical experiments in Section 3.6. In Section 3.7, we provide our conclusions
and managerial insights.
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3.2 Literature Review

Demand fulfillment matches customer orders with available resources (Lin and
Shaw, 1998; Stadtler and Kilger, 2008) and thereby provides an additional short-
term lever to maximize performance for given supply and demand. Croxton (2003)
provide an introduction to DF, including an analysis of its components, require-
ments, and goals.

The potential of DF to increase profitability has attracted a growing stream of
research (Chen and Dong, 2014). The relevant literature can be subdivided by the
type of production system considered. In this paper, we consider a make-to-stock
(MTS) system; thus, inventory is the relevant resource for supply-and-demand
matching. For DF in make-to-order (MTO) systems, we refer to Chiang and Wei-
Di Wu (2011), and for assemble-to-order (ATO) systems, to Guhlich et al. (2015).

Quante et al. (2009b) further classify DF models based on demand manage-
ment levers and the degree of supply flexibility. In the present paper, we assume
exogenous prices and exogenous supply. DF then relies on segmenting the cus-
tomer base and optimizing the supply quotas allocated to the individual customer
segments.

Table 3.1 summarizes the relevant literature on DF in MTS systems. Single-
period models consider a single replenishment cycle, analogous to traditional RM
in service industries. Corresponding deterministic demand models essentially rank
customer segments by unit profit (Jeong et al., 2002; Vogel, 2014). Stochastic de-
mand models estimate opportunity costs to balance current sales revenues and
future sales opportunities (Caldentey and Wein, 2006; Samii et al., 2012). Mul-
tiperiod models consider multiple exogenous replenishments simultaneously and
thus are faced with a multicommodity allocation task. Inventory holding and back-
order costs differentiate the profitability of different replenishments for fulfilling a
given customer order. Deterministic models typically use LP to optimize these
allocations (Ketikidis et al., 2006; Meyr, 2009; Jung, 2010; Alemany et al., 2013),
whereas stochastic models commonly rely on stochastic dynamic programming
(Quante et al., 2009a; Pibernik and Yadav, 2009; Tiemessen et al., 2013; Yang and
Fleischmann, 2013; Gössinger and Kalkowski, 2015).

In this paper, we consider a single replenishment cycle and assume stochastic
demand. A major distinction between our work and that discussed above is that
we consider a multilevel hierarchical allocation, whereas all the aforementioned lit-
erature assumes a “flat” customer structure, i.e., a single allocation level. Vogel and
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Table 3.1: Literature on demand fulfillment in MTS production systems.

Deterministic

Single-period Multi-period

Flat Jeong et al. (2002) Ketikidis et al. (2006)
Vogel (2014) Meyr (2009)

Jung (2010)
Alemany et al. (2013)

Hierarchy Vogel and Meyr (2015) Cano-Belmán and Meyr (2019)

Stochastic

Single-period Multi-period

Flat traditional RM Quante et al. (2009a)
Caldentey and Wein (2006) Pibernik and Yadav (2009)
Samii et al. (2012) Tiemessen et al. (2013)

Yang and Fleischmann (2013)
Gössinger and Kalkowski (2015)

Hierarchy Kloos et al. (2018)
this paper

Meyr (2015) are the first to investigate hierarchical DF. Assuming deterministic de-
mand, their work devises an aggregate measure of customer heterogeneity, which
enables the hierarchical problem to be decomposed into a sequence of single-stage
continuous knapsack problems. Vogel and Meyr (2015) propose using Theil’s in-
dex for this purpose, thereby approximating the cumulative revenue function by
a Lorenz curve. Their approach results in a decentralized allocation rule with a
nonlinear objective function. The authors show that their rule performs very well
when demand is deterministic. Demand uncertainty, however, degrades the per-
formance relative to the considered benchmarks. Cano-Belmán and Meyr (2019)
extend Vogel and Meyr’s result to a multiperiod setting.

The work presented in this paper intends to overcome the limitations of the
aforementioned approaches by developing and analyzing new approaches to hi-
erarchical DF that account for demand uncertainty and profit heterogeneity. In
addition, we address the question of which information has to be shared to obtain
effective decentralized allocation decisions.

To the best of our knowledge, the only other paper that analyzes hierarchical
demand fulfillment under demand uncertainty is Kloos et al. (2018). Their setting
differs from ours in that they consider customer segments that are differentiated
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by different α-service-level targets and seek to determine allocations that minimize
deviation from these targets.

Related hierarchical allocation processes have also been studied outside of the
field of supply chain management, in particular, in the economics literature. Simi-
lar decentralized problems arise, e.g., in capital budgeting and in the regulation of
public utilities. Van Zandt (1995) and Van Zandt (2003) consider information pro-
cessing from an organizational theory perspective and explain the upward flow
of information and the downward disaggregation of allocations in hierarchies.
Van Zandt and Radner (2001) show the effects of decentralized information pro-
cessing on returns to scale of organizations. Mookherjee (2006) provides a review
of the costs and benefits of decentralized decision making in hierarchical orga-
nizations, focusing mainly on incentives and coordination. How information is
aggregated is considered as given in the above literature, and different information
aggregation alternatives are not compared. What distinguishes our research is that
we explicitly consider information aggregation functions and evaluate different
decentralization methods.

3.3 Problem Definition

Our research addresses the DF problem of a manufacturer operating a make-
to-stock system and seeking to maximize expected profits by serving demand from
hierarchically structured customer segments. We formalize this problem as follows.

Figure 3.1: Hierarchical customer structure (adapted from Vogel and Meyr, 2015).
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Let N denote the set of nodes in a customer hierarchy encompassing M + 1
levels, as depicted in Figure 3.1. Im denotes the set of all nodes on level m ∈
1, . . . , M. Specifically, 0 ∈ N denotes the root node on Level 0, and L = IM

denotes the set of leaf nodes, which represent the base customer segments, i.e.,
the most disaggregated type of customer segment considered. Moreover, for each
node n ∈ N , let Sn be the set of successor nodes. Given the hierarchical structure
of the segments, each successor node has a unique parent node.

We consider a single replenishment cycle and assume that the available supply
of inventory S is exogenous to the fulfillment problem and known. The supply
quantity results from the company’s production planning, which has a lead time
longer than the accepted customer response time. Therefore, the supply quantity
cannot be adjusted once demand materializes.

Demand is stochastic and materializes at the leaf node level, i.e., it originates
from base customer segments. Let Dl denote the demand from customer segment
l ∈ L with cdf Fl , pdf fl , mean dl , and standard deviation σl . Demands from dif-
ferent segments are mutually independent and independent of S. Unit profits are
homogeneous within base customer segments but heterogeneous across segments.
Let pl denote the unit profit generated by serving the demand of customer segment
l.

The available supply is allocated sequentially, level by level, top-down, from
the root node to the base customer segments. That is, at each node n, a planner
decides how to allocate the supply available at that node xn to the respective suc-
cessor nodes in Sn. At the leaf node level, the amount of supply allocated to a given
base customer segment is the quantity available for satisfying demand from that
segment. Excess demand is lost. We do not consider nesting since it may require
transshipments between different geographical regions and complicates communi-
cation in the decentralized allocation process by not providing firm commitments
of quota availability.

To make the allocation decision, each planner uses demand information pro-
vided by the corresponding successor nodes. Let the information vector In describe
the demand-related information available for the allocation decision at node n. The
most detailed demand information is available on the leaf node level and concerns
the demand distributions ( fl) and unit profits (pl) of the base customer segments.
This information is then transmitted in an aggregated fashion bottom-up across the
hierarchy; that is, the planner at a given node aggregates the information available
from all direct successors and transmits the information to the predecessor node.
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The question of how to aggregate the relevant demand information and how to
use the aggregated information in an effective allocation rule is at the heart of our
research. To formalize this question, we introduce the concepts of an information
aggregation function and an allocation function.

Definition 3.1 (Information aggregation function). The information aggregation func-
tion Fk maps the information vector (Ik) of node k ∈ Sn to the information vector In of
node n, such that In = (Fk(Ik))k∈Sn

. Let F denote the set of feasible aggregation functions.

Definition 3.2 (Allocation function). The allocation function An maps the supply xn

and information vector In available at node n to the allocations xk of the successor nodes
k ∈ Sn, such that (xk)k∈Sn = An(xn, In). Let A denote the set of feasible allocation
functions.

The functions Fn and An describe the bottom-up aggregation of demand infor-
mation and the top-down disaggregation of the available supply in the hierarchical
fulfillment process. By means of these concepts, we can express the company’s
hierarchical demand fulfillment problem as follows.

Problem 3.1 (Decentralized hierarchical allocation problem).

maximize
F1,...,F|N|∈F

A1,...,A|N \L|∈A
∑
l∈L

pl ·E[min(xl , Dl)] (3.1)

s.t.

x0 = S (3.2)

xn ≥ 0 ∀n ∈ N (3.3)

xn ≥ ∑
k∈Sn

xk ∀n ∈ N\L (3.4)

In = (Fk(Ik))k∈Sn
∀n ∈ N\L (3.5)

(xk)k∈Sn = An(xn, In) ∀n ∈ N\L (3.6)

The company seeks to maximize the total expected profit (3.1), which is equal to
the sum of the expected profits generated at the leaf nodes. Constraint (3.4) ensures
that the amount allocated to the successor nodes does not exceed the allocation to
the respective parent node. Constraint (3.5) defines the information available to
node n dependent on the information aggregation function, and Constraint (3.6)
describes how allocations on level n are transformed into allocations on level k,
given information vector In.
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Problem 3.1 provides a formal description of the fulfillment problem outlined
in Section 1. However, note that this formulation optimizes over two sets of in-
terrelated functions; therefore, it does not easily lend itself to computational ap-
proaches. In addition, the formulation requires a specification of the feasible sets
F and A, which raises conceptual issues beyond what we deem meaningful for
the purpose of our investigation. Therefore, we do not seek to solve Problem 3.1
but rather use it as a framework for a unified description of potential approaches.
Specifically, we characterize several fulfillment approaches in terms of their under-
lying information aggregation and allocation functions and evaluate and compare
their performance. We start by investigating two benchmark approaches in Sec-
tion 3.4 and then present two new heuristics in Section 3.5.

3.4 Full and Minimum Information-Sharing Bench-
marks

We seek to investigate the information-performance trade-off in hierarchical
DF. To assess the effectiveness of our proposed methods, we introduce two bench-
marks based on full and minimum information sharing. To this end, we investi-
gate centralized allocation planning, which optimizes allocated quotas based on
full demand information and per commit allocation, which is a simple heuristic
requiring very limited information sharing. These methods represent upper and
lower bounds for the degree of information aggregation in the customer hierarchy.
Their relative performance provides insights into the dependence of effective DF
on information availability. Moreover, they serve as benchmarks for heuristics that
use some intermediate level of information aggregation.

3.4.1 Full Information: Centralized Allocation

Although transmitting full information on all base customer segments through
the levels of the hierarchy is practically infeasible, this approach does provide an
insightful benchmark. The corresponding information aggregation function Fc

n is
an identity function for all n. Thus, starting at the leaf nodes, the demand distri-
butions and unit profits of all underlying customer segments are transmitted from
any node to its respective parent node. In this case, the total available supply S
can be directly allocated to the leaf nodes. Allocations to intermediate nodes do
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not matter. If desired, they can be determined by simply summing the allocations
to the respective successor nodes. Thus, full information transmission results in
a single-level allocation planning problem, which we denote as centralized alloca-
tion. For this case, Problem 3.1 reduces to the following.

Problem 3.2 (Centralized allocation).

maximize
(xl)l∈L

P = ∑
l∈L

pl ·E[min(xl , Dl)] (3.7)

s.t.

∑
l∈L

xl ≤ S (3.8)

xl ≥ 0, ∀l ∈ L (3.9)

This is a nonlinear continuous knapsack problem. We can easily characterize
its solution using known results from the literature. The proofs of Lemma 3.1 and
Proposition 3.1 are given in Appendix B.1.

Lemma 3.1. The objective function (3.7) is concave and increasing in xl .

Proposition 3.1 (Optimal allocation). There exists a constant γ ≥ 0, such that the
following set of equations yields an optimal solution to Problem 3.2.

xl =

0 i f Sl > S

Fl
−1(1− γ

pl
) i f Sl ≤ S

∀l ∈ L

∑
l∈L

xl = S

where Sl is defined by:

Sl = ∑
{i∈L | pl(1−Fl(0))≤pi(1−Fi(0))}

Fi
−1
(

1− pl(1− Fl(0))
pi

)
(3.10)

If Fl(·) is strictly increasing for all l, the solution is unique.

Proposition 3.1 shows that for each node l, there is a supply threshold value
beyond which that node receives a nonzero quota under optimal centralized alloca-
tion and that expected profits for all nodes receiving a nonzero quota are balanced.
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These properties implicitly define the allocation functions Ac
n for the centralized

allocation approach. Because this approach maximizes the expected profit under
full information transmission, it provides an upper bound on the expected profits
that can be achieved under aggregated information.

We conclude this subsection by illustrating the relationship between the maxi-
mum expected profit and available supply. This perspective is instructive because
the decentralized methods introduced in Section 3.5 can be associated with differ-
ent ways of approximating this profit curve. We denote by Pk(S) the maximum
objective value of Problem 3.2 dependent on the available supply S, with L re-
stricted to the set of leaf nodes in the subtree below node k.

Consider the customer hierarchy consisting of six nodes on two levels displayed
in Figure 3.2(a). The leaf nodes have identical demand distributions but differ in
their unit profits. We define the supply rate as the available supply quantity, scaled
by total expected demand. Figure 3.2(b) then shows the quantities allocated to
the five base customer segments by the centralized approach as a function of the
supply rate. The allocation curves reflect the aforementioned properties of Fc

n. In
particular, we observe the threshold supply values at which we start supplying
another node. The solid line in Figure 3.2(c) shows the corresponding expected
profits, i.e., P0(S). The curve is piecewise nonlinear, concave and increasing, with
breakpoints at the aforementioned supply threshold levels. The two remaining
curves in Figure 3.2(c) reflect the per commit allocation method, which we intro-
duce in the next subsection.

3.4.2 Minimum Information: Per Commit Allocation

Per commit allocation is a decentralized allocation method commonly used
in DF modules of APS (cf. Kilger and Meyr, 2015). This method allocates scarce
supply to the successor nodes proportional to their expected demand, which is
the only information transmitted across the levels of the hierarchy. Information
on demand uncertainty and unit profits is disregarded. We formally define this
method in terms of the previously introduced aggregation and allocation functions.

Definition 3.3 (Per Commit). Per commit allocation uses the information aggregation
functions Fpc

n and allocation functions Apc
n , defined as
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(a) Customer configuration
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Figure 3.2: Illustration of the optimal allocation and profit function approximation.
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F
pc
n (In) =

F
pc
n ((Fk, pk)k∈Sn ) = ∑k∈Sn

dj = dn f or n ∈ IM−1

F
pc
n ((dk)k∈Sn ) = ∑k∈Sn

dj = dn f or n ∈ Im, m < M− 1

A
pc
n (xn, In) = A

pc
n (xn, (dk)k∈Sn ) =

(
dk

∑k∈Sn
dk
· xn

)
k∈Sn

Per commit ignores demand uncertainty and unit profit heterogeneity and can
thus be interpreted as assuming deterministic demand from homogeneous cus-
tomers. The corresponding assumed profit curve is a simple linear line, as shown
in Figure 3.2(c). The figure also displays the actual expected profits of a per commit
allocation under heterogeneous stochastic demand. The fact that the per commit
method is based on a simplistic profit approximation results in a performance gap
relative to the optimal centralized allocation. This gap defines the improvement
potential of the smarter decentralized allocation heuristics presented in the next
section. In our example, the maximum absolute profit gap is given at a supply
rate of 36.7 percent and amounts to 33.4 percent. Not surprisingly, the absolute
profit gap diminishes for high supply rates. If supply is not scarce, the allocation
problem disappears. Note, however, that even for a supply rate of 100 percent, a
per commit allocation still results in a profit gap of 5.3 percent.

3.5 Decentralized Allocation Heuristics

In the previous section, we have seen that the popular yet simplistic per com-
mit allocation method may yield poor performance for relevant supply rates. In
this section, we propose two novel allocation heuristics that aim to overcome this
deficit while respecting the decentralized and iterative nature of the allocation pro-
cess. The first method, presented in Subsection 3.5.1, uses the concept of a het-
erogeneity index; the second method, presented in Subsection 3.5.2, relies on clus-
tering. Unlike per commit, both of these methods transmit and use information
on profit heterogeneity and demand uncertainty, albeit in an aggregated manner.
Specifically, both methods approximate the piecewise nonlinear profit curve of the
centralized problem (see Figure 3.2(c)) and then use an optimal allocation given
that approximation.
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3.5.1 Stochastic Theil Index Method

In a deterministic setting, Vogel and Meyr (2015) introduce the idea of trans-
mitting information on unit profit heterogeneity by means of a heterogeneity in-
dex. Specifically, they use Theil’s index, established in the economics literature
for approximating a single-parameter Lorenz curve by Chotikapanich (1993). In
the deterministic hierarchical DF problem, the profit function at each intermediate
node k is piecewise linear and concave. Theil’s index approximates this function
by means of a smooth nonlinear flipped Lorenz curve. Formally, Theil’s index at
node k is calculated recursively as

Tk = ∑
j∈Sk

dj

dk
·

pj

pk
· Tj + ∑

j∈Sk

dj

dk
·

pj

pk
· ln
( pj

pk

)
, with Tj = 0 ∀j ∈ L. (3.11)

The Theil index (Tk) implies a Lorenz curve parameter (θk) through

ln
(

θk
(eθk − 1)

)
+

θk
(eθk − 1)

+ θk − 1− Tk = 0. (3.12)

The resulting Lorenz curve approximation of the profit function at node k is
then

πk(xk, θk) =
eθk · xk

dk − 1
eθk − 1

· dk · pk. (3.13)

Vogel and Meyr (2015) use these concepts to define a decentralized allocation
method that transmits aggregated mean demand (dk), weighted average unit profit
(pk) and Theil’s index (Tk) along the hierarchy. Given these inputs, they determine
the optimal allocation under the assumption of profit functions, as in (3.13).

Vogel and Meyr (2015) show that this method performs very well for determin-
istic demand but degrades for stochastic demand. To understand this observation,
consider the deterministic versus stochastic profit curves in Figure 3.3 for the same
example as in Figure 3.2. While the Lorenz curve approximates the piecewise linear
deterministic profit curve, it systematically deviates from the piecewise nonlinear
stochastic profit curve and therefore may result in an inefficient allocation in the
latter case.

We build on this observation and construct a Theil index-based approximation
of the stochastic profit curve. Note that all stochasticity arises at the leaf nodes.
This suggests that if we capture the effects of uncertainty appropriately at the leaf
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Figure 3.3: Illustration of Lorenz curve approximation.

node level, we can proceed as in the deterministic problem at the higher levels of
the hierarchy. To implement this idea, we approximate the expected profit curve
of any leaf node l by a piecewise linear function. We then apply the method in
Vogel and Meyr (2015) to approximate these piecewise linear functions by Lorenz
curves and to propagate the corresponding parameters upwards in the hierarchy.
Different methods can be used to create the initial piecewise linear functions. We
asses several options in our numerical study in Section 3.6. Figure 3.3 shows the
resulting Lorenz curve in our example when using three equidistant points on the
expected profit curves of the leaf nodes.

We conclude this section by defining the stochastic Theil method in terms of its
aggregation and allocation functions.

Definition 3.4 (Stochastic Theil method). The stochastic Theil method uses the infor-
mation aggregation functions FTh

n and allocation functions ATh
n , defined as follows.

Assume that for any node k the available information vector is (dj, pj, Tj)j∈Sk
. Then,

the stochastic Theil method aggregates this information as follows:

Fk
Th((dj, pj, Tj)j∈Sk

) = ∑
j∈Sk

dj,
∑j∈Sk

dj · pj

∑j∈Sk
dj

, ∑
j∈Sk

dj

dk
·

pj

pk
· Tj + ∑

j∈Sk

dj

dk
·

pj

pk
· ln
( pj

pk

) =: (dk, pk, Tk)

77



3 Single-Period Stochastic Demand Fulfillment in Customer Hierarchies

For nodes k ∈ IM−1, we initialize the aggregation procedure by setting Tj = 0 for
all j and defining (dj, pj) through a piecewise linear approximation of the expected profit
function Pk(S). To this end, we replace Sk in the above definition of the aggregation
function FTh

n with S̃k := {0, ..., n}, where n is the number of line segments of the piecewise
linear approximation. Letting x0, ..., xn denote the intersection points of the approximation
function with the expected profit curve, we set dj = xj − xj−1 and pj = (Pk(xj) −
Pk(xj−1))/dj for j = 1, ..., n.

Given these information vectors, the allocation functions ATh
n are defined implicitly

through the solution of the following nonlinear optimization problem, using πk defined in
(3.13):

maximize
(xk)k∈Sn

∑
k∈Sn

πk(xk, θk)

s.t.

∑
k∈Sn

xk ≤ xn

xk ≥ 0, ∀k ∈ Sn

Since the planners at level M− 1 have detailed information about the leaf nodes, allo-
cations to the leaf nodes are determined by solving Problem 3.2.

Note that this method considers stochasticity explicitly only in the information
aggregation function on level M − 1, namely, through the piecewise linearization
of the expected profit functions on that level. For levels higher in the hierarchy, the
method is identical to Vogel and Meyr’s original approach. However, the resulting
parameter values and allocations are different because they depend on the values
propagated upwards from level M− 1 (comp. Figure 3.3).

Furthermore, note that the definition does not specify how to choose the piece-
wise linear approximation of the expected profit curve on level M1, i.e., the number
of line segments n and the corresponding break points. We asses different alterna-
tives for setting these parameters in our numerical study in Section 3.6.

3.5.2 Clustering

Clustering is a very general approach for aggregating information that is com-
monly applied, e.g., in market segmentation (Sarstedt and Mooi, 2019). Closer to
our context, Zipkin (1980a) proposes a clustering method for solving large linear
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optimization problems. Instead of the large original problem, the method solves a
smaller aggregated problem based on clustered variables and then disaggregates
the outcome over the original variables.

In our hierarchical DF problem, we apply clustering by grouping the successor
nodes of a given node into C clusters and by transmitting aggregated information
about each cluster to the next higher level in the hierarchy. In this case, the infor-
mation aggregation function Fk

cl is thus a clustering function that receives the unit
profits (pk) and demand distributions (Fk) of the successor nodes as input and re-
turns the aggregated unit profits and aggregated demand distribution parameters
of C clusters.

To define a clustering heuristic for our hierarchical DF problem, we need to
specify the clustering attributes, the number of clusters, and the evaluation metric.

The clustering attributes define which data determine whether two customer
segments will be regarded as similar, and thus potentially clustered together, or as
different. In Section 3.4.1, we saw that in the full-information benchmark, customer
segments enter the solution in the order of their unit profits; therefore, we use unit
profits as our clustering attribute. In this way, we intend to preserve relevant
information on profit heterogeneity in the aggregation process.

We treat the number of clusters C as an input parameter. Its choice is linked
to a trade-off between complexity and performance. Clustering with C = |L|
results in the full-information case. Decreasing the number of clusters reduces
the complexity but conveys a less fine-grained image of customer heterogeneity,
thereby potentially resulting in inferior allocation decisions. For the special case of
C = 1, unit profits are aggregated into a single parameter. Thus, information on
profit heterogeneity will be lost, while the aggregated demand distribution of the
successor nodes will be transmitted. We assess the impact of different values of C
in our numerical study in Section 3.6.

The general goal of clustering is to create clusters that are homogeneous within
but heterogeneous between each other. Different clustering approaches use differ-
ent metrics to operationalize this goal. Many criteria rely on some type of distance
measure. The popular K-means clustering approach minimizes the sum of the dis-
tances between the objects in each cluster and the empirical cluster centers (Jain,
2010). We adopt the K-means approach to define the aggregation function for our
clustering heuristic.
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Definition 3.5 (Clustering method). The clustering method for hierarchical demand
fulfillment uses the information aggregation functions Fcl

n and allocation functions Acl
n ,

which are defined as follows.

The information vector In available at node n is ((dkj, σkj, pkj))k∈Sn ,j=1,...,C, where
vector (dkj, σkj, pkj) denotes the aggregated mean and standard deviation of demand and
the aggregated unit profit of customer cluster j of successor node k and C is an exogenous
parameter. We use the same number of clusters on all levels of the hierarchy, except for
the leaf node level, where we set C = 1. The information aggregation function further
aggregates the available information as follows.

Fn
cl((dkj, σkj, pkj))k∈Sn ,j=1,...,C

=

 ∑
k∈Sn

j=1,...,C

vckj · dkj, ∑
k∈Sn

j=1,...,C

vckj · σkj, ∑
k∈Sn

j=1,...,C

vckj ·
dkj · pkj

dcn


c=1,...,C

=: (dcn, σcn, pcn)c=1,...,C,

where vckj = 1 when cluster j of node k belongs to cluster c of node n and is zero otherwise.

Given the information vector In = ((dkj, σkj, pkj))k∈Sn ,j=1,...,C and available supply
xn at node n, the allocation function Acl

n allocates a quantity ∑C
c=1 xck to node successor

k ∈ Sn, where xck solves

maximize
(xck)k∈Sn ,c∈{1,...,C}

∑
k∈Sn

c=1,...,C

pck ·E[min(xck, Dck)]

s.t.

∑
k∈Sn

c=1,...,C

xck ≤ xn

xck ≥ 0, ∀k ∈ Sn, c ∈ {1, . . . , C}

and Dck is a random variable with mean dck and standard deviation σck.

A few comments are in order. First, the allocation function Acl
n solves Prob-

lem 3.2 to determine the allocations to the clusters. Each successor node k then
receives the sum of the amounts allocated to its underlying clusters. Second, in
the definition of Fcl

n , we aggregate demand uncertainty within a cluster by sum-
ming the standard deviations of the underlying lower-level clusters because of the
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Figure 3.4: Illustration of the clustering approximation.

partitioned consumption of supply, which prevents risk pooling effects. Third, the
definition of Acl

n specifies only the first two moments of the probability distribu-
tion of the cluster demands Dck. In our numerical study in Section 6, we assume
normal distributions.

By relying on Problem 3.2, the cluster allocation function is optimal if the clus-
ter information is exact. In general, clustering provides a piecewise nonlinear ap-
proximation of the centralized profit function, and the number of clusters deter-
mines the number of pieces. Figure 3.4 displays the approximated profit function
using 2 clusters for the example introduced in Section 3.4.

We conclude this section by summarizing the decentralized allocation methods
introduced in Sections 3.4 and 3.5. Table 3.2 indicates the information transmitted
across the hierarchy by each of these methods. As discussed, per commit alloca-
tion represents the minimum information benchmark in that it uses only expected
demand information. The deterministic Theil approximation of Vogel and Meyr
(2015) complements this information with information on profit heterogeneity, but
it ignores demand uncertainty. Conversely, clustering with C = 1 ignores profit
heterogeneity but captures demand uncertainty. Both our modified stochastic Theil
approximation and clustering with C ≥ 2 transmit and use information about all
three attributes of the customer segments, albeit in an aggregated manner. In the
following section, we assess and compare the performance of the various methods
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Table 3.2: Information shared in decentralized allocation methods.

Method
Demand uncertainty Profit Parameters

per node
Homog. Heterog. Homog. Heterog.

Per commit, §3.4.2 – – – – 1

Deterministic Theil, §3.5.1 – – – X 3

Stochastic Theil, §3.5.1 – X – X 3

Clustering (C = 1), §3.5.2 X – X – 3

Clustering (C ≥ 2), §3.5.2 – X – X 3 · C

and relate the performance differences to the information shared and used by the
various methods, as described in Table 3.2.

3.6 Numerical Analysis

In this section, we present the results of an extensive numerical study con-
ducted to evaluate the performance of the decentralized allocation heuristics pro-
posed in Section 3.5 in comparison to the full-information benchmark (central allo-
cation) and the minimum-information benchmark (per commit) from Section 3.4.
Beyond mere performance comparisons, we also want to shed light on the role of
information sharing, as discussed in the previous section. We want to provide a
conclusive answer to the question of which information depicted in 3.2 should be
shared and utilized to ensure effective allocation planning.

In Section 6.1, we first describe our experimental setup and how we evalu-
ated the performance of the different allocation methods. Subsequently, in Sec-
tion 3.6.2, we explain how we implemented and parameterized both the stochastic
Theil method and the clustering method in our experiments. In Section 3.6.3, we
report, compare, and discuss the performance of the four different allocation meth-
ods for a baseline scenario. We provide an extensive evaluation and discussion
of the performance differences across the different allocation methods and derive
insights into the role of information sharing. In Section 3.6.4, we assess the robust-
ness of our results by extending our analysis to other scenarios, including different
customer hierarchies and different input parameters.
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3. Calculate Allocations 
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Figure 3.5: Overview of the simulation procedure.

3.6.1 Experimental Setup

In this section, we explain the simulation procedure and the data used to evalu-
ate the decentralized allocation methods from Section 3.5 and to compare their per-
formance with the full-information and minimum-information benchmarks from
Section 3.4.

Our simulation procedure follows the four-step process depicted in Figure 3.5.
In the first step, we generate the hierarchy for a specific set of experiments. We
restrict our experiments to symmetric hierarchies. Therefore, a hierarchy is fully
defined by the number of nodes on each level. Figure 3.6 illustrates the hierarchy
of the baseline scenario with M = 4 levels and |I2| = 2, |I3| = 6 and |L| = 30.

In the second step, we assign unit profits (pl), mean demand (dl) and coeffi-
cients of variation of demand (CVl) to the leaf nodes. For the baseline scenario, we
draw |I| = 100 realizations of pl from a uniform distribution with support [1, 10]
for each leaf node l ∈ L and set the mean demand to 10 and the CV to 0.2 for
all leaf nodes. This process provides 100 instances ((pi

l)l∈L, (di
l)l∈L, (CVi

l )l∈L)i∈I .
In the additional experiments of our robustness analysis, we vary the support of
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Figure 3.6: Hierarchy in the baseline scenario.

Table 3.3: Hierarchy Parametrization.

Parameter Baseline Variations

|I2| 2

|I3| 6 -
|I4| - 12

Number of Customers |L| 30 18, 60

Number of Levels M 4 3 (18 customers), 5 (60 customers)
Profits pl U[1, 10] U[1, 5], U[1, 20]
Coefficient of Variation CVl 0.2 0.1, 0.3, 0.4, 0.5, U[0.1, 0.5]
Mean demand dl 10 U[5, 15]

pl , the mean demand dl and the CV of the different leaf nodes (see Table 3.3 for
details).

The specification of the hierarchy and the instances generated in Step 2 con-
stitute the input to the third step of our procedure. For each instance i ∈ I, we
compute the optimal allocations x∗i of the centralized full-information benchmark
and the allocations xa,i of the allocation methods a ∈ A = {per commit, determin-
istic Theil, stochastic Theil, clustering}. We vary the supply levels x0 in 50 equal
steps from 0.5 · d0 to 1.5 · d0, where d0 = ∑l∈L dl is the expected total demand.

In Step 4 of our procedure, we evaluate the performance of the different allo-
cation methods. For this purpose, we use three performance measures, the relative
profit gap (rpg), the average relative profit gap (arpg) and the relative allocation
error (rae), defined as follows.

Definition 3.6 (Relative profit gap). The relative profit gap (rpg) of allocation method a
with allocation xa

i for a supply of x0 is

rpga(x0) =
1
|I| ∑i∈I

(
1− P(xa

i (x0))

P(x∗(x0))

)
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Definition 3.7 (Average relative profit gap). The average relative profit gap (arpg) of
method a evaluated for supply interval S is

arpgS =
1
|I| ∑i∈I

(
1− ∑x0∈S Pi(xa

i (x0))

∑x0∈S Pi(x∗i (x0))

)

Definition 3.8 (Relative allocation error). The relative allocation error (rae) of method
a for a supply of x0 is

raeT(x0) =
1
|I| ∑i∈I

∑l∈T(xa
i,l(x0)− x∗i,l(x0))

x0

where T = Th, Ta, Tl ⊂ L is the set of customers belonging to the tercile with high, average
and low profits, respectively.

3.6.2 Implementation and Parametrization of the Allocation Ap-
proaches

In this section, we explain how we implemented and parametrized the stochas-
tic Theil method and the clustering method introduced in Section 3.5.

To determine the Theil index for node k ∈ IM−1, we require n points on the
expected profit curve (cf. Definition 3.4). In our implementation, we choose n
equidistant points between 0 and loc · dk, where dk is the expected demand at
successor node k and loc is an exogenous input parameter. Hence, the points are
given by xkr = r loc·dk

n for r ∈ {0, . . . , n} and k ∈ IM−1. Thus, we have to specify
the input parameters loc and n.

To this end, we performed various pretests and found that the number of points
n has a negligible effect on performance for n > 2 but that the optimal choice of
the location parameter loc is affected by the supply rate. However, within a certain
range of loc, the performance differences remain very small (cf. Figure B.1 in
Appendix B.2). On the basis of these observations, we set n = 3 and loc = 1.5
throughout our numerical experiments.

When implementing the clustering method, we use the K-means algorithm as
implemented in scipy to determine the clusters. As discussed in Section 3.5.2, the
performance of the clustering method depends on the number of clusters C. More
clusters capture customer heterogeneity in greater detail and thus should enable a
more effective allocation.
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Figure 3.7: rpg of the allocation rules depending on the supply rate.

We again performed some pretests to assess the impact of C in our context.
Specifically, we ran the baseline experiment for different numbers of clusters and
found that the improvement from C = 3 to C = 4 is minimal (cf. Figure B.2 in
Appendix B.2). Therefore, we consider the clustering method with one, two and
three clusters in the remainder of our numerical analysis.

3.6.3 Results for the Baseline Scenario

In this section, we evaluate the performance of the different allocation methods
for the baseline scenario. We structure our discussion according to Table 3.2. In
Figure 3.7, we plot the relative performance (measured by rpg) of the considered
allocation methods, i.e., the per commit method, the deterministic and stochastic
Theil methods, and the clustering methods, at different levels of supply. To help
explain the observed performance gaps, we also consider the rae of the different
methods. Figure 3.8 depicts the rae of the considered allocation methods for differ-
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Figure 3.8: rae of the allocation methods depending on the supply rate.

ent customer groups and varying supply levels. Recall that rae captures deviations
from the optimal quantities allocated to different customer groups. Therefore, any
deviation from rae = 0 in Figure 3.8 can be interpreted as a “misallocation.” In the
following, we discuss the observed performance of each allocation method.

Per commit, our minimum-information sharing benchmark, leads to a substan-
tial performance gap when supply is scarce (rpg=8.9% for a supply rate of 0.8),
which decreases with increasing supply availability (rpg=2.4% (0.3%) for a supply
rate of 1.0 (1.2)). This behavior is intuitive since per commit transmits and uses
only the aggregated mean demands of the customer segments and ignores (the
heterogeneity of) unit profits and demand uncertainty. By not prioritizing cus-
tomers based on profitability, per commit consistently overserves low-profit cus-
tomers while underserving high-profit customers (see Figure 3.8). This misalloca-
tion disappears only once supply is sufficient to essentially serve all demand.

The deterministic Theil method explicitly shares and uses information on profit
heterogeneity but not on demand uncertainty. Because of its deterministic nature,
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the method does not allocate more than the respective mean demand to each cus-
tomer segment. Therefore, we report the rpg only for supply rates up to 1.0. At a
supply rate of 1.0, the deterministic Theil method coincides with the per commit
approach. For scarce supply, however, the deterministic Theil method clearly out-
performs per commit (rpg consistently below 2%). This result reflects the benefit
of sharing and using information on profit heterogeneity in the allocation process,
albeit in a deterministic fashion.

The clustering method with a single cluster (“clustering [1]”) shares and uses ag-
gregated (i.e., homogeneous) information on profitability and demand uncertainty
at each node of the customer hierarchy but ignores heterogeneity between cus-
tomer segments within a node. From Figure 3.7, we observe that clustering [1]
performs reasonably well as long as supply is not highly constrained (rpg ≤ 1%
for supply rates ≥ 0.78). Under high scarcity, however, the performance rapidly
degrades. As highlighted in Figure 3.8, this method again insufficiently prioritizes
high-profit customers under these circumstances. This result reflects the strong
information aggregation within the nodes. Yet, the fact that clustering [1] substan-
tially outperforms the per commit approach proves even this highly aggregated
information to be valuable.

It is instructive to compare the performance of clustering [1] to that of the de-
terministic Theil method. Both approaches use complementary information in the
sense that the deterministic Theil method captures profit heterogeneity within a
node but ignores demand uncertainty, whereas clustering [1] acknowledges de-
mand uncertainty but assumes homogeneous profits within a node (see Table 3.2).
In our results, the former (latter) approach is superior for supply rates below
(above) 0.76, which suggests that for allocations under low supply rates, infor-
mation on profit heterogeneity is crucial, whereas demand uncertainty becomes
more important in the allocation decision for higher supply rates. A potential ex-
planation is that for highly scarce supply, it is optimal to strongly prioritize the
most profitable customer segments. This prioritization requires information on
profit differences between customer segments. At the same time, when supply
is low, demand uncertainty is less of an issue since supply, rather than demand,
is the constraining factor. For higher supply rates, it becomes optimal to allocate
quantities larger than expected demand to high-profit customers. This requires an
allocation approach that uses stochastic demand information.

The stochastic Theil method shares and uses information on both profit hetero-
geneity and (the heterogeneity of) demand uncertainty. By doing so, the stochastic
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Theil method significantly outperforms all the previously discussed methods. The
corresponding rpg is consistently below 1 percent (see Figure 3.7). In particular,
comparison of the deterministic and stochastic variants of the Theil method (see
Figures 3.7 and 3.8) illustrates the benefit of basing the method on expected profit
curves at the leaf node level rather than on expected demand. Thus, this process
shows how to make the idea of Vogel and Meyr (2015) of a decentralized allocation
method available for stochastic demand.

The clustering methods with more than one cluster also use information on both
profit heterogeneity and demand uncertainty, but in a different way. While un-
der the stochastic Theil method, the Theil index captures the effects of both profit
heterogeneity and demand stochasticity, clustering [2] and [3] share and use ag-
gregated profits, aggregated mean demand, and the standard deviation of demand
for 2 or 3 clusters, respectively (cf. Table 3.2).

We observe that for low supply rates, the stochastic Theil method outperforms
clustering [2]. However, the performance differences are small and, as shown in
Figure 3.8, the allocations have a similar structure. The performance difference
is rooted in the fact that the Theil index provides a more accurate representation
of the true profit heterogeneity across customers than does clustering [2], which
accounts only for the aggregated profits of customers that are grouped into two
clusters—that is, high- and low-profit customers. The more accurate information
about customer heterogeneity enables the stochastic Theil method to better pri-
oritize high-profit customers. As we can see in Figure 3.8, and for the reasons
explained above, this benefit decreases as supply increases.

Compared to clustering [3], the stochastic Theil method no longer benefits from
its particular measure of customer heterogeneity. At least for the baseline scenario,
it appears to be sufficient to consider three customer clusters (with high, medium
and low profitability) and to base allocations on aggregated information per clus-
ter. Clustering [3] outperforms all other allocation approaches, and its rpg is con-
sistently below 0.5 percent in our baseline scenario.

From a practical perspective, these results are remarkable because they sug-
gest that a relatively simple clustering logic with three clusters (high-, average-
and low-profit customers) is sufficient to obtain solutions that lead to virtually
the same profit as a centralized full-information approach, which typically cannot
be implemented in practice. The stochastic Theil method leads to similar, albeit
slightly lower, performance. However, because this method aggregates informa-
tion on profit heterogeneity and demand uncertainty into a single parameter (i.e.,
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the Theil index), it requires less information to be shared and processed in the sales
hierarchy (see Table 3.2). Following our arguments in Section 3.5, this is an advan-
tage in terms of the complexity-performance trade-off. This advantage, however,
comes at a cost. First, expected profits are slightly lower than those for clustering
[3]. Second, from a practical perspective, the Theil index is more difficult to inter-
pret for different (local) planners in the sales hierarchy than are clusters of high-,
medium-, and low-profit customers. Our results suggest that both the stochastic
Theil method and clustering ([2] or [3]) yield effective allocations; companies can
choose among these approaches based on the respective implementation effort in
their particular organizational context.

In summary, our results indicate that information on both profit heterogeneity
and demand uncertainty must be shared and used in the sales hierarchy to en-
able good decentralized allocation decisions. The relative value of either of these
pieces of information depends on the level of supply. Under severely constrained
supply, it is more important to use accurate information about profit heterogene-
ity to correctly prioritize customer allocations. In situations of moderate scarcity,
information about customer demand uncertainty gains importance. However, our
results suggest that a relatively low level of granularity of this information, in
conjunction with fairly straightforward allocation logic, is sufficient to obtain very
good allocations and close to optimal performance.

3.6.4 Robustness Analysis

In this subsection, we assess the robustness of our results obtained for the base-
line scenario. To provide a conclusive answer, we conducted extensive additional
numerical analyses. Specifically, we evaluated and compared the performance of
the different allocation methods in 20 additional experiments in which we varied
both the setup of the hierarchy and all the relevant input parameters, as displayed
in Table 3.3.

In these experiments, we explore various combinations of profit heterogeneity
(achieved by varying the support of the uniform distribution from which we draw
the profits) and CVs of demand; we also analyze the effect of heterogeneous CVs
and demands by randomly drawing values of these parameters for each customer
from a uniform distribution with the support specified in Table 3.3. In these exper-
iments, we use the same 100 instances of random profits as in our baseline scenario
and combine them with 20 randomly drawn CVs/demands, resulting in |I| = 2000
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Figure 3.9: Average arpg of the allocation rules for the scenarios of the robustness analysis.
(Whiskers denote the lowest/highest arpg observed.)

individual instances. Finally, we explore whether the structure of the hierarchy has
an impact on the performance and modify the number of levels and the number of
customers in the hierarchy.

In Figure 3.9, we report the arpg for the different allocation methods averaged
across all 20 scenarios of our robustness analysis. The whiskers denote the best
and worst results. The detailed results by scenario are listed in Table B.1 in Ap-
pendix B.3 across all supply rates and in Tables B.2 and B.3 for scarce supply
(supply rate ≤ 1.0) and ample supply (supply rate ≥ 1.0), respectively.

The summarized results presented in Figure 3.9 are consistent with the re-
sults we obtained for the baseline scenario: clustering [3] leads to the lowest per-
formance gaps and strictly outperforms its contenders in all experiments. The
stochastic Theil method also produces very good results. Even though the perfor-
mance slightly trails that of clustering [3], the stochastic Theil method achieves, on
average, performance gaps of less than 0.5 percent for overall, scarce and ample
supply.

In addition to this high-level evaluation, we also assessed and compared the
performance of the different allocation methods for each individual experiment at
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different levels of supply. We found the results to be perfectly in line with the
structural insights we derived from our analysis of the baseline scenario.

3.7 Conclusion

This paper addresses the problem of allocating scarce supply to hierarchically
structured customer segments. In such hierarchies, allocation planning is an itera-
tive and decentralized process, in which higher-level sales quotas are disaggregated
one level at a time by multiple local planners. Optimal allocations depend on the
demand distributions and unit profits of all customer segments. However, sharing
such detailed information across the levels of the hierarchy is undesirable from a
managerial perspective. Therefore, companies commonly aggregate the demand
information that is propagated through the hierarchy.

By using very coarse information, however, common information aggregation
approaches, such as per commit, result in ineffective allocations. In this paper,
we address the question of what information is required on the individual levels
of the hierarchy to achieve effective allocations. We propose two corresponding
decentralized allocation methods, namely a stochastic Theil-index approximation
and a clustering approach. Both methods approximate the profit curve of the cen-
tralized problem and then solve an allocation optimization problem, given that
approximation.

To evaluate the performance of our proposed methods, we consider two bench-
marks: full information sharing, that is, centralized allocation, and minimum in-
formation sharing, that is, per commit allocation. These methods represent upper
and lower bounds for the degree of information aggregation in the customer hi-
erarchy. Our proposed heuristics represent an intermediate level of information
aggregation.

Our results allow us to assess the importance of transmitting different types
of information. We observe that to obtain good decentralized allocations, infor-
mation on both profit heterogeneity and demand uncertainty must be shared and
used in the hierarchy. However, a relatively coarse representation of this informa-
tion turns out to be sufficient. In addition, information about profit heterogeneity
is more important for correctly prioritizing customer allocations in situations of
scarcity, while information on demand uncertainty is more important in situations
of moderate scarcity.
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Our numerical analyses suggest that both the stochastic Theil-index method
and clustering with two or three customer clusters yield effective allocations; com-
panies can choose among these approaches based on the respective implementation
effort in their particular organizational context. The stochastic Theil-index method
requires less information to be shared and processed in the sales hierarchy while
resulting in slightly lower expected profits than clustering with three clusters. Ad-
ditionally, the Theil-index method is more difficult to interpret than are clusters
of high-, medium-, and low-profit customers. Even for large complicated hierar-
chies, a relatively simple clustering logic with three clusters is sufficient to obtain
solutions that lead to virtually the same profit as a centralized full-information
approach. In addition, the performance of the clustering method can always be
improved by adding more clusters, which makes this method even more appealing
for practical applications.

The research presented in this study opens opportunities for future research in
multiple directions. First and foremost, we address a single-period setting whereas
in most applications, allocation decisions have to be made repeatedly, and periods
are interconnected by inventory or backlog. It would be interesting to verify our
findings in such a multiperiod setting. It appears that our clustering approach
lends itself to an extension in that direction. Second, in the present paper we disre-
gard the effects of strategic behavior of individual planners. For example, planners
may seek to manipulate the allocation process to their advantage by transmitting
distorted information. It would be interesting to analyze how different alloca-
tion approaches encourage or discourage such strategic behavior. Vogel and Meyr
(2015) point out that one advantage of their Theil-index approach in the determin-
istic setting is that false reporting of the Theil parameters is not beneficial, as it
does not guarantee a larger allocation. Our research provides a starting point for
addressing these issues in a stochastic setting and for different allocation methods.
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Chapter 4

Allocation Planning under
Service-Level Contracts1

4.1 Introduction

Allocation planning, part of the demand fulfillment process in state-of-the-art
Advanced Planning Systems (APS), supports decision makers in assigning planned
supply to sales organizations, customer groups, and individual customers. For in-
stance, in SAP’s APO the Global Available-to-Promise module, which is responsi-
ble for demand fulfillment (cf. Pradhan and Verma, 2012), uses a two-stage hier-
archical planning process: First, planned supply, determined by master planning
and/or production planning, is allocated to customer groups or individual cus-
tomers based on a demand forecast. (We refer to this step as allocation planning.)
The supply allocations constitute an input to order promising where, in a second
step, orders are confirmed and promised a due date until the corresponding alloca-
tions are depleted. SAP’s Global Available-to-Promise module offers a number of
strategies to deal with orders from customers whose allocation is exhausted. (See
Pradhan and Verma, 2012.)

The current systems employ relatively simple rules for both allocation planning
and order promising, and the results are often “enhanced” through manual inter-

1This chapter was published in European Journal of Operational Research as Kloos and Pibernik
(2020) and is co-authored by Richard Pibernik .
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ventions by decision makers (planners). The per-commit approach is an example of
a simple rule that is frequently used in allocation planning (Kilger and Meyr, 2015).
Under per-commit, available supply is distributed evenly among the customers
based on their demand forecasts, but this approach (and other simple allocation
approaches) leads to suboptimal allocations when supply is scarce and customers
differ in terms of their profitability and importance. (See Vogel and Meyr, 2015,
and Kloos et al., 2018.) Researchers have developed and studied more sophisticated
techniques for allocation planning that can remedy the problems associated with
simple allocation rules (as discussed in Section 4.2). These new approaches allo-
cate scarce supply to customers with the objective of maximizing expected profits
or minimizing deviations from service-level targets. (See, e.g., Cano-Belmán and
Meyr, 2019, and Kloos et al., 2018.). In doing so, they assume a direct functional
relationship between the allocations in a period and the expected profit (service-
level deviation) in that period. This assumption, which appears to be reasonable
in numerous settings, has a problematic practical limitation as companies increas-
ingly engage in service-level contracts with their customers. As we explain, the
aforementioned assumption does not typically hold under service-level contracts.
As a consequence, existing approaches to allocation planning cannot account for
the particular logic and structure that underlie most service-level contracts.

Service-level contracts have become common in B2B-relationships between man-
ufacturers and their business customers (Sieke et al., 2012). The three main ele-
ments of a service-level contract are the performance level the manufacturer must
achieve, a period after which the performance is reviewed (review horizon), and
the financial consequences of missing the performance level, but the design of
service-level contracts varies with respect to these elements. An example of a
service-level contract with a per-order fill-rate target of 100 percent and a lump-
sum penalty is when the manufacturer incurs a fixed fee if it does not fulfill an
order on time in full. Alternatively, a service-level contract with a fill-rate target
measured over a finite horizon and a linear penalty-cost function is when the cus-
tomer reviews the manufacturer’s fill rate every quarter and claims a penalty for
every percentage point by which the actual fill rate falls short of the target defined
in the contract. As we explain in Section 4.2, the latter type of contract tends to be
most plausible in manufacturing industries, so our study focuses on this type of
service-level contract.

We study the allocation planning problem of a manufacturer that enters into
service-level contracts with multiple customers, where the contractually speci-
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fied fill-rates and penalties vary across customers (i.e., the manufacturer pursues
service-level differentiation), supply is known and fixed in each period up to the
review horizon, and individual customers’ demand is uncertain. At the begin-
ning of each period, the planner decides how much of her given supply she will
allocate to each customer. Then, when the customer demand materializes, it is
fulfilled up to the individual allocation the planner decided on, and demand that
exceeds the allocation is backlogged and fulfilled from the next period’s supply.
The planner’s objective is to allocate the available supply to minimize the total
penalty payments incurred at the end of the review horizon. The structure of this
problem differs significantly from the underlying structure of the allocation plan-
ning models that have been proposed in the literature: allocations and expected
profits in each period of the planning horizon do not have a direct functional re-
lationship, so instead of maximizing the sum of expected profits or minimizing
expected deviations from service-level targets in individual periods, the objective
is to minimize penalties that vary across customers with a piecewise-linear func-
tional form—zero for positive deviations from the fill-rate target and increasing for
negative deviations.

We formulate the allocation planning problem under service-level contracts as
a stochastic dynamic program and analyze its structural properties. In particular,
we derive properties of the optimal solution to this dynamic program, but because
of the large state space and the ensuing “curse of dimensionality,” we cannot derive
an optimal allocation policy. However, our analytical results do allow us to derive
the requirements that a good allocation policy must fulfill. We use these theoretical
results to provide a rigorous analysis and discussion of simple allocation rules that
have been proposed and are popular in practice and to develop and study new and
advanced allocation policies that are more complex but that lead to superior per-
formance under most conditions. In addition to our theoretical analysis, we carry
out extensive numerical analyses to quantify the performance of various policies
under various conditions and to derive recommendations for when to use which
policy.

The remainder of this paper is organized as follows: Section 4.2 provides an
overview of the literature on service-level contracts and allocation planning, ex-
plains our choice of a type of contract, and positions our contribution relative to
previous work. In Section 4.3 we describe our setting and formulate the stochastic
dynamic programming model. Section 4.4 characterizes the optimal allocation pol-
icy and derives insights on the factors that influence the optimal decision. Based on
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those insights, Section 4.5 derives a myopic policy and three multi-period heuris-
tic policies to generate “good” allocations. Section 4.6 presents the results of an
extensive numerical study that we carried out to evaluate the performance of the
various allocation policies and to derive theoretical insights and managerial rec-
ommendations.

4.2 Literature Review

The research presented in this paper is related to the literature on allocation
planning and work on the management of service-level agreements and service-
level contracts.

Most research on allocation planning focuses on determining profit-maximizing
allocations for customers who differ in terms of their profitability. Ball et al. (2004),
who refer to allocation planning as “push-based ATP,” are among the first to pro-
pose deterministic and stochastic models for allocation planning. They point out
that allocation planning can be viewed as a specific type of quantity-based rev-
enue management. Using the term “allocated Available-to-Promise,” Quante et al.
(2009b) provide a comprehensive overview of the literature and of software that
apply revenue management to demand fulfillment. They stress that demand ful-
fillment in the manufacturing industry is typically a multi-period problem, so tra-
ditional revenue management methods cannot be readily applied. Quante et al.
(2009a) propose a stochastic dynamic programming model to allocate available
supply to customers that differ in terms of their per-unit profits. Using a numeri-
cal experiment, they demonstrate that their approach leads to a significant increase
in profits over that provided by other simple rules or by promising orders on a first-
come-first-served basis. Their results also suggest that their (stochastic) approach
can significantly increase profits over those offered by a deterministic method de-
veloped by Meyr (2009). Eppler (2015) extends Quante et al.’s (2009a) approach to
incorporate nesting across allocations of multiple customer classes.

Based on a case study by Roitsch and Meyr (2015), Vogel and Meyr (2015)
address the issue of allocation planning in hierarchical sales organizations, where
local decision makers determine allocations in a decentralized fashion. For a single-
period setting with deterministic demand, the authors show that a common decen-
tralized, profit-based allocation can lead to a significantly higher loss in total profit
compared to the global optimum because the decentralized allocation approach av-
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erages customers’ profits on each level, resulting in a loss of relevant information.
As a consequence, the approach fails to prioritize customers with higher profits.
Using a measure of income inequality from the economic literature, the Theil in-
dex, to capture the profit heterogeneity of customer groups, they develop a new
allocation approach that overcomes this problem. Based on numerical analyses, the
authors show that their approach leads to close to optimal allocations and outper-
forms the conventional rules, at least when demand is deterministic. Cano-Belmán
and Meyr (2019) extend this approach to a multi-period setting.

While most research focuses on determining profit-maximizing customer allo-
cations, some also considers service-related objectives. For example, Pibernik and
Yadav (2008) and Pibernik and Yadav (2009) propose multi-period allocation and
order promising models for two customer classes and a decision maker who wants
to ensure that high-priority customers receive a minimum service level. Kloos
et al. (2018) analyze a hierarchical single-period setting, similar to that of Vogel
and Meyr (2015) but with stochastic demand and with the objective of reaching
heterogeneous service-level targets. Similar to Vogel and Meyr (2015), Kloos et al.
(2018) find that close-to-optimal allocations can be achieved by means of advanced,
decentralized allocation rules.

The literature on inventory rationing (e.g., Deshpande et al., 2003; Schulte and
Pibernik, 2016) also addresses the question concerning of how best to allocate sup-
ply (inventory) to various customer classes. As such, it shares similarities with
allocation planning, but the key difference is that allocation planning assumes that
supply is known and fixed over a given period, while inventory rationing con-
siders supply a decision variable and seeks to optimize both replenishment and
rationing decisions, which may make inventory rationing more difficult than allo-
cation planning. However, in many settings, supply that is available to a local sales
organization cannot be adjusted freely, as it is mostly fixed for a given period of
time. While long lead times are the most obvious reason, manufacturers’ current
hierarchical planning practices are the more important reason. Manufacturers that
have decentralized and hierarchical sales organizations—see Kloos et al. (2018) for
examples—commonly plan for supply on a central level (e.g., at the firms’ head-
quarters) and allocate it top-down to regional sales organizations and then to local
sales organizations. This approach is also reflected in state-of-the-art APS like SAP
APO (Kilger and Meyr, 2015). Under such a decentralized allocation logic, sales
organizations have limited flexibility in the supply they require, especially when
overall supply is scarce. Our analysis focuses on planners in local sales organi-
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zations who cannot adjust their supplies, particularly when supply is scarce so
allocation planning is highly consequential.

Our work on allocation planning under service-level contracts differs from pre-
vious research on allocation planning and that on inventory rationing in two pri-
mary ways. First, as highlighted in Section 4.1, when there is a service-level con-
tract, there is no direct functional relationship between the allocations in a period
and the expected penalties, as the penalties incurred can be determined only af-
ter all demands have materialized. Consequently, our model must track fulfilled
demand and total demand across multiple periods, whereas previous allocation
planning models track only the inventory position. Second, we assume that sup-
ply is known and fixed during the review horizon that the service-level contract
specifies, whereas inventory rationing research considers supply a decision vari-
able.

Our research is also related to previous work on service-level agreements and
service-level contracts, both of which have gained attention in operations man-
agement research. Table 4.1 provides a high-level overview of studies on service-
level contracts/agreements and their service-level measures, review horizons, and
penalty mechanisms. The literature does not use the terms service-level contract and
service-level agreement consistently, as most authors use service-level contract when
the consequences of missing the service-level targets are specified and service-level
agreement when the consequences are not explicit. Therefore, we refer to a service-
level agreement as the combination of a performance measure (e.g., a fill-rate target),
a review horizon (e.g., three months), and a service-level target (e.g., 95%) and use
service-level contract to refer to an explicit penalty assigned to deviations from the
service-level target.

Chen and Thomas (2018) study on the purchasing conditions of retailers in
the US finds that about 64 percent of the companies they surveyed use service-
level agreements in combination with some kind of penalty mechanism—that is,
a service-level contract. The most common type of contract in their study was a
single-period/per-order fill-rate-based contract with lump-sum penalties, although
most studies on service-level contracts and/or agreements assume a multi-period
review horizon (cf. Table 4.1). We attribute this to the requirements of the retail
industry, which is characterized by high service-level requirements—for instance,
73 percent of the service-level agreements in the study require a fill-rate of 100

percent—frequent orders, and flexible production (cf. Quante et al., 2009b). Orders
in the manufacturing industry are less frequent, lead-times are longer, and capacity
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is less flexible, so penalizing minor deviations from the service-level targets in the
short term is undesirable, as deviations may result from small fluctuations in de-
mand or lead times. Since a longer review horizon appears to be more appropriate
for manufacturing settings (cf. Liang and Atkins, 2013), we focus on service-level
contracts with multi-period review horizons. Clearly, such is also the more general
case, as a multi-period setting with a review horizon of one period corresponds to
a single-period setting.

Liang and Atkins (2013) compare the optimal inventory policies for lump-sum
and linear penalties under service-level contracts for a multi-period review horizon
and observe that lump-sum penalties lead to situations in which it is optimal for the
manufacturer to stop serving some customers—that is, it is cheaper for the manu-
facturer to pay the penalty than to try to reach the fill-rate target, which may still
be missed because demand in future periods is uncertain. This issue does not oc-
cur for penalty costs that are proportional to (negative) deviation from the fill-rate
target. Other authors also observe this disadvantage of lump-sum penalties un-
der multi-period review horizons and various settings (cf. Protopappa-Sieke et al.,
2016; Chen and Thomas, 2018; Sieke et al., 2012). From a theoretical perspective,
it makes sense that the optimal policy may prescribe to stop serving a customer
when lump-sum penalties are incurred, although, from a practical perspective, it
is unlikely a manufacturer will do so for fear of additional negative consequences
(e.g., contract termination). However, these consequences are difficult to quantify,
so service-level contracts with lump-sum penalties are likely either to lead to poli-
cies that a planner would not pursue or to require additional assumptions that are
difficult to justify. To avoid these methodological drawbacks, we focus on contracts
with piece-wise linear penalty cost functions—that is, penalty cost functions that
linearly increase in negative deviations from the fill-rate target and that are zero
for positive deviations from the fill-rate target.

Few studies address the problem of allocating supply under service-level con-
tracts with linear penalty mechanisms and multi-period review horizons. Abbasi
et al. (2017) consider the case of homogeneous service-level contracts—that is,
service-level contracts that are identical for all customers—and find that a myopic
policy that minimizes fill-rate deviations leads to a substantially higher probability
of reaching the customers’ fill-rate targets than does a policy that uses a simple
first-come-first-served approach.

The setting Abbasi et al. (2017) consider differs from ours in several respects.
First, their setting assumes that the manufacturer can observe demand before mak-
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ing the allocation decision, while in our setting, allocations are made before de-
mands are realized. Second, Abbasi et al. (2017) assume a base-stock policy with
zero lead-time, which implies that supply in each period is variable and inde-
pendent of the demand realizations in previous periods, while in our setting, the
supply that can actually be allocated to customers depends on the planned (fixed)
supply and the demand realized in previous periods, so the supply that can be allo-
cated is a random variable. Third, Abbasi et al. (2017) assume that the service-level
contracts are homogeneous, where we account for different penalties and fill-rate
targets. Finally, Abbasi et al. (2017) focus only on evaluating myopic policies that
do not anticipate future supply and demand realizations, while we formulate and
study a multi-period stochastic allocation problem and derive (heuristic) policies
that anticipate future supply and demand scenarios and, as such, are not myopic
but forward-looking.

Chen and Thomas (2018) analyze various service-level contracts and agree-
ments under a base stock policy with zero lead time, among them a service-level
contract with fill-rate targets and a multi-period review horizon. For this type of
contract they propose a myopic policy that maximizes the number of customers
over their fill-rate target and find that this policy outperforms other myopic ap-
proaches. Just as Abbasi et al. (2017), Chen and Thomas (2018) assume that de-
mand is known prior to the allocation decision.

Our study is the first to address allocation planning in the presence of heteroge-
neous service-level contracts. We formalize the manufacturer’s problem, establish
properties of the optimal allocation policy, derive requirements for good alloca-
tion policies based on those properties, and use these requirements to evaluate
established (“simple”) allocation rules and other approaches that are proposed in
the literature. We also develop four new advanced allocation policies and evalu-
ate their performance by means of an extensive numerical experiment so we can
generate theoretical insights and derive recommendations on when to use which
policy.

4.3 Model Description

We consider a single manufacturer selling a single product to multiple cus-
tomers l ∈ L. The manufacturer negotiates a service-level contract with each cus-
tomer that specifies a review period of R periods (which we assume to be the same
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for all customers), a customer-specific fill-rate target βl to be met at the end of
the review horizon (at time R + 1), and a customer-specific penalty cost pl that
penalizes (negative) deviations from the fill-rate target. We provide a formal char-
acterization of the manufacturer’s penalty cost structure below.

Customer l’s demand in period t is uncertain, and we model it as a random
variable, denoted by Dl,t. We assume Dl,t is continuous and iid, with known mean
µl and standard deviation σl . Let fl,t and Fl,t denote the pdf and the cdf of the
demand distribution, respectively.

We denote the manufacturer’s inventory position at the beginning of period
t ∈ {1, 2, . . . , R} by it. The inventory position can be negative (i.e., it < 0 for
any t ∈ {2, . . . , R} if some demand was backordered in the previous period, t− 1.
The manufacturer receives a supply of rt units at the beginning of each period t.
Because we assume that any backordered demand in period t− 1 has to be cleared
before any new demand (in period t) can be fulfilled, the manufacturer has a net
supply of rt + it units of the product at its disposal. When it knows the net supply,
the manufacturer determines individual allocations al,t ≥ 0 to all customers l ∈ L
in period t. We denote by at the |L|-dimensional allocation vector in period t.
(We use bold symbols to represent vectors.) Demand from any customer l ∈ L
in period t can be fulfilled only from the corresponding allocation al,t—we do
not consider nesting of any kind. If the demand realization dl,t exceeds al,t, the
customer receives al,t and the manufacturer backlogs dl,t − al,t.

In order to keep track of the realized fill rates at the beginning of period t (t ∈
{2, . . . , R + 1}), the manufacturer records the total demand xl,t of each customer
l ∈ L that materialized in periods t = {1, . . . , t− 1} and the total demand of each
customer that was fulfilled on time in periods t = {1, . . . , t − 1}. We denote the
latter by yl,t. The current customer fill rate in t is β̂l,t = yl,t/xl,t. In each period t
the sequence of events is as follows:

1. The manufacturer receives rt units of supply.

2. If it < 0, the manufacturer clears all backordered demand from the previous
period.

3. The manufacturer computes the net supply rt + it that is available for period
t.

4. The manufacturer determines the allocations at for its customers l ∈ L.

5. The manufacturer observers the demand realization dl,t for each customer
l ∈ L in period t, fulfills min{al,t, dl,t}, and backorders max{0, dl,t − al,t}.
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6. The manufacturer records the total demand xl,t+1 of each customer l ∈ L
that materialized in periods t = {1, . . . , t} and records yl,t+1, the total de-
mand of each customer that was fulfilled on time in periods t = {1, . . . , t}.

The resulting state at the beginning of period t is given by the total demands
xt = (xl,t)l∈L, fulfilled demands yt = (yl,t)l∈L, and the inventory position it.
Therefore, the state space is 2|L| + 1 dimensional. In the first period, t = 1, no
demands have yet occurred or been fulfilled, and x1 = y1 = 0. Based on this
sequence of events, we formulate the state transition in Definition 4.1.

Definition 4.1 (State transition function). Let st = (xt, yt, it) denote the state at the
beginning of period t ∈ {1, 2, . . . , R + 1}, and let u denote the state transition function,
such that st+1 = u(st, at, dt). The state transition can be characterized by the following
equations:

xl,t+1 = xl,t + dl,t ∀l ∈ L
yl,t+1 = yl,t + min{dl,t, al,t} ∀l ∈ L

it+1 = it + rt − ∑
l∈L

dl,t

In any period t ∈ {1, 2, . . . , R}, the manufacturer cannot allocate more than
the net supply rt + it. Therefore, we can define the set of feasible allocations as in
Definition 4.2.

Definition 4.2 (Set of feasible allocations). Let At(it) denote the set of feasible alloca-
tions in period t ∈ {1, . . . , R}. Then

At(it) =
{

at
∣∣ ||at||1 ≤ [rt + it]+, at ≥ 0

}
,

where [z]+ = max{z, 0}.

We assume a linear penalty cost scheme that penalizes negative deviations from
the fill-rate target βl . Accordingly, we define the penalty cost function of customer
l ∈ L as:

Cl(xl,R+1, yl,R+1) = pl [βl − yl,R+1/xl,R+1]
+. (4.1)

For the remainder of our analysis, we assume that the penalty costs are the
only monetary consequences that are associated with the allocation decision. While
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this assumption is convenient for our analytical and numerical analyses, it is also
reasonable in our setting. Because supply is fixed and all demands are either
fulfilled immediately, or backlogged and fulfilled at a later time, differences in
unit profits and holding costs are not relevant to the allocation decisions. It is
also reasonable to assume that no additional costs for backordering occur when
service-level contracts are employed, as backorder costs are already captured by
the penalty costs and the fill-rate target. Simply speaking: under a service-level
contract, some backordering is permitted but will be punished if it exceeds the
limit defined by the service-level target.

Next, we formalize the manufacturer’s decision making problem.

Problem 4.1 (Decision problem of the manufacturer).

min E

[
∑
l∈L

Cl(xl,R+1, yl,R+1)

]
subject to st+1 = u(st, at, Dt) ∀t ∈ {1, 2, . . . , R}

at ∈ At(it) ∀t ∈ {1, 2, . . . , R}.

In Problem 4.1 the objective function depends only on the realized state sR+1 at
the end of period R. However, because subsequent states are interrelated (through
the state transition function u), and the sets of feasible allocations At(it) in peri-
ods t ∈ {1, 2, . . . , R} are state-dependent, Problem 4.1 is a multi-period stochastic
optimization problem. The manufacturer wants to determine an allocation policy
αt : st 7→ at that determines an allocation at that depends on the current state st

and minimizes the total expected penalty costs at the end of the review horizon. In
the next section, we derive properties of the optimal allocation policy and discuss
their implications.

4.4 Optimal Allocation Policy

This section first provides the dynamic programming formulation for Prob-
lem 4.1 and characterizes separately the optimal allocation policies in the terminal
period R and in non-terminal periods t = 1, . . . , R− 1. It turns out that comput-
ing the optimal policy for periods t = 1, . . . , R − 1 is not feasible because of the
high dimensionality of the state space, so we resort to alternative techniques (e.g.,
approximate dynamic programming) to solve Problem 4.1. The results we obtain
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from our analysis of the optimal allocation policy will help us to develop and assess
alternative heuristics for solving the manufacturer’s problem.

We denote the value of state st in period t as Vt(st) and state the Bellman
equations for Problem 4.1 as:

VR(sR) = min
aR∈AR(iR)

E

[
∑
l∈L

Cl(Xl,R+1, Yl,R+1)

]
(4.2)

Vt(st) = min
at∈At(it)

E [Vt+1(u(st, at, Dt))] ∀t ∈ {R− 1, R− 2, . . . , 1}. (4.3)

From the Bellman equations we derive the corresponding optimal policy func-
tions α∗t (st).

α∗R(sR) = argmin
aR∈AR(iR)

E

[
∑
l∈L

Cl(Xl,R+1, Yl,R+1)

]
(4.4)

α∗t (st) = argmin
at∈At(it)

E [Vt+1(u(st, at, Dt))] ∀t ∈ {R− 1, R− 2, . . . , 1} (4.5)

In the next section, we first determine the optimal policy for the terminal period
R and then analyze the optimal policy for non-terminal periods R− 1, . . . , 1.

4.4.1 Optimal Allocation Policy in the Terminal Period

Given a certain state sR at the beginning of period R, the manufacturer has to
solve a stochastic knapsack problem to determine the optimal allocations a∗R =

α∗R(sR). Knowing the penalty cost function (4.1) and the demand distribution
fl,R(dl,R) for period R, we can derive expressions for the expected penalty costs and
the marginal expected penalty costs of customer l ∈ L, depending on the allocation
al . Recall that the penalty cost function of customer l ∈ L is piecewise linear with a
slope of zero for yl,R+1/xl,R+1 ≥ βl and a slope of pl for yl,R+1/xl,R+1 ≤ βl . At the
beginning of period R, the manufacturer knows the current fill-rate β̂l,R = yl,R/xl,R

and can calculate the minimum demand that needs to be fulfilled in period R to
meet the fill-rate target βl and avoid penalty costs. We denote this quantity as dmin,l

and compute it as dmin,l =
βl xl,R−yl,R

1−βl
. (If dmin,l ≤ 0, the current fill rate is above the

target; that is, β̂l,R ≥ βl .)
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If the manufacturer allocates less than dmin,l units of supply to customer l,
the fill-rate target βl will definitely not be reached, independent of customer l’s
demand in period R. Clearly, for any allocation al ≥ dmin,l , whether the man-
ufacturer can meet the fill-rate target βl of customer l depends on the demand
realization dl,R. For a given allocation al,R, we can calculate the maximum de-
mand of customer l at which the manufacturer still meets the fill-rate target and
does not incur penalty costs. We denote this quantity as dmax,l and calculate it as
dmax,l(al,R) =

yl,R+al,R
βl

− xl,R.

Proposition 4.1 (Expected and marginal expected penalty of a customer l in the
terminal period R).

1. E
[
Cl(Xl,R+1, Yl,R+1)

]

=



∫ ∞
dmax,l(al,R)

pl

(
βl − yl,R+al,R

xl,R+dl,R

)
fl,R(dl,R) ddl,R if β̂l,R ≥ βl∫ dmin,l

0 pl

(
βl − yl,R+dl,R

xl,R+dl,R

)
fl,R(dl,R) ddl,R

+
∫ ∞

dmax,l(al,R)
pl

(
βl − yl,R+al,R

xl,R+dl,R

)
fl,R(dl,R) ddl,R if β̂l,R < βl , al,R ≥ dmin,l∫ al,R

0 pl

(
βl − yl,R+dl,R

xl,R+dl,R

)
fl,R(dl,R) ddl,R

+
∫ ∞

al,R
pl

(
βl − yl,R+al,R

xl,R+dl,R

)
fl,R(dl,R) ddl,R if β̂l,R < βl , al,R < dmin,l

2.
d

dal,R
E
[
Cl(Xl,R+1, Yl,R+1)

]
= −λl,R(al,R)

=

−pl
∫ ∞

dmax,l(al,R)
1

xl,R+dl,R
fl,R(dl,R) ddl,R if al,R ≥ dmin,l

−pl
∫ ∞

al,R

1
xl,R+dl,R

fl,R(dl,R) ddl,R else.

Part 1 of Proposition 4.1 distinguishes three cases based on the current fill rate
β̂l,R and the allocation al,R. In the first case, the fill rate at the beginning of period R
is greater than or equal to the fill-rate target (β̂l,R ≥ βl). Since a penalty is incurred
only if demand is higher than the threshold level dmax,l(al,R), the first term captures
the expected penalty for this case. In the second case, the current fill rate is below
the fill-rate target, and the manufacturer chooses an allocation that exceeds the
minimum threshold level. In this situation, the manufacturer incurs penalty costs
for demand realizations that are either too low to achieve the fill-rate target (i.e.,
dl,R ≤ dmin,l) or too high compared to the manufacturer’s allocation (i.e., dl,R >

dmax,l(al,R)). The third case is straightforward: The manufacturer incurs a penalty
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for customer l because the current fill rate is lower than the fill-rate target, and the
allocation al,R is lower than the minimum threshold dmin,l . The realized penalty
costs are positive and decreasing (increasing) in demand realizations dl,R ≤ dmin,l

(dl,R > dmax,l(al,R)). The last expression in Part 1 of Proposition 4.1 captures the
corresponding expected penalty costs.

Based on the results presented in Proposition 4.1, we can show that the total
expected cost in period R is convex.

Lemma 4.1 (Convexity of total expected cost in the terminal period R).
E
[
∑l∈L Cl(Xl,R+1, Yl,R+1)

]
is convex in aR.

Knowing that E
[
∑l∈L Cl(Xl,R+1, Yl,R+1)

]
is convex in aR, we can apply stan-

dard Lagrangian optimization techniques to characterize the optimal allocation
decision in period R (Equation 4.4).

Theorem 4.1 (Optimal allocation in the terminal period R). a∗R = (a∗l,R)l∈L is opti-
mal if and only if there exists a value of λ > 0, such that, using

Aλ =
{

l | l ∈ L, λ ≥ λl,R(0)
}

(4.6)

the following hold

λ = λl,R(a∗l,R) for all l ∈ L\Aλ (4.7)

a∗l,R = 0 for all l ∈ Aλ. (4.8)

The results presented in Theorem 4.1 and the corresponding proof are estab-
lished in Kloos et al. (2018) for a single-period allocation problem. We review the
underlying logic and intuition because they are useful in our further analyses.

The intuition behind Theorem 4.1 is most apparent in a situation in which sup-
ply becomes available gradually, staring from zero supply. The first unit of supply
is allocated to the customer with the highest initial marginal expected penalty
(λl,R(0)), and no other customers receive an allocation, as they are contained in
the set Aλ. As more supply becomes available and is allocated to the customer
with the highest initial marginal expected penalty, the probability of reaching the
fill-rate target increases while the probability that additional units of supply will
be consumed decreases—and both reduce the marginal expected penalty. At some
point, the marginal expected penalty (λ) will be equal to the initial marginal ex-
pected penalty of another customer—who then receives its first allocation. The sup-
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4 Allocation Planning under Service-Level Contracts

Figure 4.1: Allocation, expected fill-rates and expected penalties (dashed line) under optimal al-
location for two customers with normal demand under varying levels of supply. (µ1 = µ2 = 10,
σ1 = σ2 = 3, p1 = 1000, p2 = 2000, β1 = 0.9, β2 = 0.95, x1,R = x2,R = 10, y1,R = 9, y2,R = 9.5)

ply is shared among these customers (L\Aλ) such that they have equal marginal
expected penalties (Equation 4.7). As yet more supply becomes available, λ de-
creases, and more customers receive an allocation—that is, the cardinality of set
Aλ decreases.

Figure 4.1 plots the optimal allocations and the associated expected fill rates
and penalties for an example with two customers. The figure shows the sequential
nature of the optimal allocation: As Customer 2 has a higher penalty than Cus-
tomer 1 and both customers’ demands follow the same distribution, Customer 2’s
initial marginal expected penalty is higher than that of Customer 1. At about ten
units of supply, the marginal penalty of Customer 2 is equal to the initial marginal
penalty of Customer 1, at which point the first unit of supply is allocated to Cus-
tomer 1.

Figure 4.1 plots the expected total penalty and the expected fill rates for both
customers and shows that an expected penalty that is close to zero is achieved only
when both customers’ expected fill rates are significantly above their corresponding
targets.

The expressions of the marginal expected penalties (Proposition 4.1, Part 2)
allow us to determine how the optimal allocation is influenced by the state and
other parameters. If we assume customer l ∈ L\Aλ, and |L\Aλ| ≥ 2, then, ceteris
paribus, an increasing marginal penalty λl,R(al,R) increases the allocation to this
customer. Hence, by analyzing the effect on λl,R(al,R), we can determine how a
change in parameters affects the optimal allocation.
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First, as d
dpl

λl,R(al,R) > 0, increasing the penalty parameter pl increases the
corresponding customer’s marginal expected penalty, so higher penalties lead to
increased allocations, which is highly intuitive. Second, because d

dxl,R
λl,R(al,R) < 0,

higher total demands xl,R decrease the allocation. Third, we analyze the effect of
the total fulfilled demand yl,R and observe that, when al,R ≥ dmin,l ,

d
dyl,R

λl,R(al,R) <

0, so having fulfilled more demands in preceding periods decreases the allocation
to the corresponding customer. If, however, al,R < dmin,l ,

d
dyl,R

λl,R(al,R) = 0, the
optimal allocation does not change in the fulfilled demand, suggesting that in cer-
tain situations the optimal allocation in period R does not depend on all elements
of the state space sR. We formalize this observation in Proposition 4.2.

Proposition 4.2 (Independence of the optimal allocation in the terminal period R).
Let a∗R = αR(sR) be the optimal allocation for state sR = (xR, yR, iR), and denote with
J = {l | l ∈ L, a∗l,R ≤ dmin,l} the set of customers that receive an optimal allocation
a∗l,R < dmin,l . Then a∗R = αR(s′R) is the optimal allocation for all states s′R = (x′R, y′R, i′R)
for which the following hold:

x′R = xR

i′R = iR

y′l,R ≤ βl xl,R − a∗l,R(1− βl) ∀l ∈ J

y′l,R = yl,R ∀l ∈ L\J

Proposition 4.2 allows us to generalize an optimal solution to a subset of the
state space. Although the property described in Proposition 4.2 is comparatively
straightforward, it is highly useful, as it substantially decreases the computational
effort, especially when larger areas of the state space are evaluated. We exploit this
property in the numerical analyses of our temporal aggregation heuristic that we
introduce and analyze in Section 4.5.2.

4.4.2 Optimal Allocation Policy in Non-terminal Periods

We now address the problem of determining optimal allocations in periods
t = R− 1, . . . , 1—that is, we solve Equation (4.3). We begin our analysis by char-
acterizing an allocation’s expected marginal penalty in an arbitrary (non-terminal)
period t ∈ {1, . . . , R− 1}
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Proposition 4.3 (Expected marginal penalty in non-terminal period t). The expected
marginal penalty of allocating al,t to customer l ∈ L in period t ∈ {1, . . . , R− 1} is

E

[
d

dal,t
Vt+1(u(st, at, Dt))

]
:= −λl,t(at)

= E

[ −pl
Xl,R+1

· 1[Dl,t ≥ al,t] · 1
[

Yl,R+1

Xl,R+1
≤ βl

]]
, (4.9)

where 1[exp] =

1 if exp is True

0 else.

The formula for the expected marginal penalty in Proposition 4.3 is largely
intuitive: the first term captures the expected marginal change in the penalty, and
the second and the third terms are the probabilities that the allocation is consumed
and that the fill rate is below the target fill rate, respectively. Based on (4.9) we can
show that (4.3) is convex.

Lemma 4.2. E[Vt+1(u(st, at, Dt))] is convex in at.

Because E[Vt+1(u(st, at, Dt))] is convex, we can use the Karush-Kuhn-Tucker
conditions to characterize optimal solutions to (4.3).

Theorem 4.2 (Optimal allocation in non-terminal period t). a∗t is optimal if and only
if there exists a value of λ > 0, such that, using

Aλ =
{

l | l ∈ L, λ ≥ λl,t(a∗t )
}

, (4.10)

the following hold

λ = λl,t(a∗t ) for all l ∈ L\Aλ (4.11)

a∗l,t = 0 for all l ∈ Aλ. (4.12)

The results presented in Theorem 4.2 are structurally similar to those of The-
orem 4.1: In the optimum, customers with a marginal expected penalty reduction
lower than λ receive an allocation of zero (4.12); all other customers receive an
allocation greater than zero, leading to equal marginal expected penalties (4.11).
However, finding solutions to (4.10) and (4.11) is difficult because the value func-
tion Vt+1 must be evaluated over the entire real-valued and |L|-dimensional de-
mand vector Dt to compute the expected marginal penalty λl,t(at). Even though
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we can solve the problem for period R efficiently, evaluating VR for all possible de-
mand realizations is already a computational challenge, and doing so for periods
t ∈ {1, . . . , R− 1} becomes computationally infeasible. In addition, the expected
marginal penalty λl,t(a∗t ) in (4.10) and (4.11) depends on a∗t , that is, on all (other)
optimal allocations, implying that the marginal penalties of all allocations are in-
terdependent. As a consequence, we would have to solve a knapsack problem with
convex but inseparable utilities, a problem that cannot be solved efficiently (cf.
Bretthauer and Shetty, 2002a).

Because we cannot obtain exact solutions to Equations (4.10) and (4.11), we use
heuristic approaches to find good solutions to Problem 4.1. Our previous analysis
and discussion not only revealed the mathematical problems associated with solv-
ing Problem 4.1, but also provided first valuable insights into the major require-
ments a suitable heuristic policy should meet. Next, we derive these requirements
and use them to develop practical recommendations that will be useful when we
evaluate existing policies and develop new approaches for solving Problem 4.1.

Clearly, to provide feasible allocations, any policy must consider the supply
available in the period under consideration—that is, it must consider rt + it.

From the first term in Equation (4.9) ( −pl
Xl,R+1

), we observe that an allocation
should depend on a customer’s penalty (reduction) per unit of total demand ob-
served at the end of the review period. This observation suggests that a suitable
allocation policy should explicitly account for differences in different customers’
penalties by prioritizing customers when determining their allocations. However,
allocations should also be based on an estimate of the total (uncertain) demand at
the end of the review period.

While these requirements are comparatively straightforward, the second term
(1[Dl,t ≥ al,t]) poses an additional challenge because it accounts for the fact that
the value of allocating one additional unit to a customer depends on whether the
unit will actually be consumed. Therefore, an estimate of the probability that
a customer’s demand will be at least as high as its allocation is required for each
customer in each period. Thus, the allocation policy should account for the stochas-
ticity of periodic demand.

Finally, the last term in Equation (4.9) (1
[

Yl,R+1
Xl,R+1

≤ βl

]
) requires an estimate of

the probability that the fill-rate target will be reached at the end of the review pe-
riod. This requirement is the most challenging requirement because it means that
the total fulfilled demand (Yl,R) at the end of period R must be anticipated; obtain-
ing an estimate for Yl,R is inherently difficult because Yl,R depends on the current
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state and all allocation decisions and demand realizations in periods t, . . . , R. Mat-
ters are further complicated by the fact that the allocations in individual periods
are restricted by the available supply in those periods. Hence, an allocation pol-
icy should account for the demand and supply situation in the remaining periods
t + 1, . . . , R.

We conclude that an approach to determining an allocation policy should ac-
count for the supply available in the current period, the customers’ total demand
xl,t and total fulfilled demand yl,t in the current period, the customers’ fill-rate
targets βl , the customers’ penalties pl , the stochasticity of demand in the current
period, and the demand/supply situation in remaining periods.

Of course, any heuristic approach to determining an allocation policy will ne-
glect some of these parameters and/or make simplifications in how it takes them
into account. Therefore, in evaluating alternative approaches, one must under-
stand which of these parameters can be neglected/relaxed and which are critical
to each policy’s performance.

The next section presents existing approaches to determining an allocation
policy and proposes several new approaches. We analyze and discuss these ap-
proaches in terms of the requirements derived from our previous analysis.

4.5 Heuristic Allocation Policies

This section addresses three basic allocation policies: the per-commit approach,
which is frequently used in practice, a myopic service-level-based allocation pol-
icy (MSLAP), and a myopic penalty-based allocation policy (MPAP) that we adopt
from the literature. Our analysis makes clear that these policies meet only a few
of the requirements we derived in Section 4.4. Our assumption is that these short-
comings will lead to inferior allocations and excessive penalties at the end of the
review period.

In the second part of this section we motivate, define, and discuss four alter-
native policies—a deterministic allocation policy (DAP), a randomized determin-
istic allocation policy (RDAP), a myopic stochastic allocation policy (MSAP), and
a stochastic time-aggregated allocation policy (STAP)—that rely on fewer simpli-
fications and meet more of the aforementioned requirements. Table 4.2 provides
a high-level overview of these policies and how they meet the requirements we
identified previously.
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Table 4.2: Overview of heuristic allocation policies and their properties.

Current
supply

Current
total

(filled)
demands

Fill-
rate

targets

Penalties Current
demand

stochasticity

Subsequent
supply/
demand

Per Commit X – – – – –
MSLAP X X X – – –
MPAP X X X X – –
DAP X X X X – X
RDAP X X X X (X) X
MSAP X X X X X –
STAP X X X X X (X)

“–”: requirement not fulfilled, “(X)”: requirement partially fulfilled, “X”: requirement fulfilled.

4.5.1 Basic Allocation Policies

This section describes and discusses basic heuristic allocation policies. We be-
gin with the per-commit approach, which is probably the simplest approach to
determining a feasible allocation.

Per Commit

Under the per-commit approach, customers receive their allocations based on
their expected share of the total demand (cf. Ball et al., 2004). Definition 4.3 for-
malizes the approach for our setting.

Definition 4.3 (Per commit allocation). The per commit allocation apc
l,t to customer l in

period t is
apc

l,t =
µl,t

∑m∈L µm,t
[rt − it−1]

+.

Definition 4.3 shows that the per-commit approach allocates based on the avail-
able supply and the customers’ mean demands in the current period. Hence, apart
from the available supply in the current period, none of the requirements derived
in Section 4.4.2 are met. (See also Table 4.2.) Therefore, we expect low performance
from the per-commit approach.
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Myopic Service-Level-Based Allocation Policy

Abbasi et al. (2017) analyze several allocation policies with the objective of min-
imizing deviations from fill-rate targets at the end of the review period, so they do
not account for differences in the penalties across customers. In addition, in their
setting, the allocation decision is made after the manufacturer knows the demands
of all customers. Their results suggest that, for this objective and setting, a my-
opic policy that minimizes per-period deviations from the fill-rate targets performs
well.

We explore whether such a myopic policy also leads to satisfactory results in
our setting, that is, when expected total penalties are minimized and allocations are
determined before demand is realized, so we adapt Abbasi et al.’s (2017) policy to
our setting. A formal definition of this policy, MSLAP, is provided in Definition 4.4.
(A linearized Linear Program (LP) formulation that corresponds to Definition 4.4
can be found in Appendix C.2.)

Definition 4.4 (MSLAP). The myopic service-level-based allocation in period t is

amslap
t = argmin

at∈At(it)

max

{[
β1 −

a1,t + y1,t
µ1,t + x1,t

]+
, . . . ,

[
βl −

al,t + yl,t
µl,t + xl,t

]+}
subject to al,t ≤ µl,t ∀l ∈ L (4.13)

MSLAP minimizes the maximum deviation from the fill-rate target across all
customers l ∈ L separately for each period t ∈ {1, . . . , R}. It determines allocations
in a myopic fashion for each period so the deviations from the fill-rate targets
are balanced across all customers. This approach is likely to resemble a strategy
that a planner would pursue, where the planner observes the current fill rate at
the beginning of period t, anticipates the expected demand µl,t in period t, and
allocates available supply so deviations from the fill-rate targets are expected to be
balanced at the end of period t.

MSLAP accounts for the customers’ current total demand, total fulfilled de-
mand, and individual fill-rate targets. While MSLAP fulfills more of the require-
ments than per-commit, it is myopic in that it considers only the current period and
does not account for supply and demand in future periods, and it is deterministic
and does not account for the stochasticity of demand. More importantly, it does
not consider differences in the customers’ penalties pl . We suggest that this pol-
icy will lead to (close to) optimal solutions only when penalties are similar across

116



4.5 Heuristic Allocation Policies

customers, demand uncertainty is low, and the relationship between demand and
supply is the same across the periods.

Myopic Penalty-Based Allocation Policy

We now introduce a straightforward modification of MSLAP that is likely to
remedy at least one shortfall of MSLAP. We term this policy myopic penalty-
based allocation policy (MPAP). MPAP minimizes penalty-weighted deviations
from service-level targets in each period. Like MSLAP, MPAP is still myopic, but
it accounts for different penalties pl . Definition 4.5 formalizes this policy. (See
Appendix C.2 for an LP formulation.)

Definition 4.5 (MPAP). The myopic penalty-based allocation in period t is

ampap
t = argmin

at∈At(it)
∑
l∈L

pl

[
βl −

al,t + yl,t
µl,t + xl,t

]+
.

By incorporating the penalties pl , MPAP meets one more requirement (cf. Ta-
ble 4.2) than MSLAP does.

The three allocation policies presented in this section are relatively simple and
easy to comprehend and implement, which can be considered advantages over
more sophisticated and complex allocation policies. However, we expect this ad-
vantage to come at the cost of low overall performance in the form of comparatively
high overall penalties. In Section 4.5.2, we evaluate whether and under what con-
ditions per-commit, MSLAP, and MPAP lead to satisfactory results and when a
manufacturer should resort to more advanced allocation policies.

The next section introduces four advanced allocation policies that promise re-
sults that are superior to those of the simple policies described in this section.

4.5.2 Advanced Allocation Policies

Our analysis of the dynamic program in Section 4.4 revealed that computing
optimal allocations is feasible only for the terminal period R (Theorem 4.1), not
for periods t ∈ {R− 1, . . . , 1}. The simple policies described in Section 4.4 lead
to feasible allocations, but because they are myopic and deterministic, they fail to
meet a number of the requirements we derived in Section 4.4, so we assume they
lead to sub-optimal allocations. In this section, we propose alternative policies that
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rely on established approximate dynamic programming techniques and are based
on “value function approximation” (Powell, 2011).

In value function approximation the value function Vt is replaced with some
approximation V̄t that avoids the “curse of dimensionality” and leads to a simpli-
fied optimization problem (cf. Powell, 2011):

ā∗t = argmin
at∈At(it)

V̄t(at)

Clearly, a policy’s performance hinges on the quality of the approximation of
the value function. Here we propose four variants of a value function approxima-
tion approach for our setting. First, we adopt “certainty equivalent control” (CEC)
(Bertsekas, 2005) and develop a deterministic allocation policy (DAP). Under CEC,
a policy is obtained by solving the deterministic equivalent of the problem. Second,
we use “randomized linear programming” (RLP) to extend the resulting determin-
istic problem to include demand uncertainty (Talluri and van Ryzin, 1999). Third,
we propose a myopic stochastic allocation policy (MSAP) that uses the terminal
period problem from Section 4.4.1 to approximate the value function. This pol-
icy can also be interpreted as a specific one-period look-ahead approach. Finally,
we extend MSAP to consider multiple periods. We term this the stochastic time-
aggregated allocation policy (STAP). Under STAP, the value functions Vt+1, . . . , VR

are aggregated into a single value function V[t+1,R] so we can employ the results
from Section 4.4 to obtain an allocation policy.

Figure 4.2 illustrates the original dynamic program (Equations (4.2) and (4.3))
and our advanced (but heuristic) allocation policies that are based on approximate
dynamic programming.

Next, we provide a formal definition of these allocation policies.

Deterministic Allocation Policy

The idea of DAP is to replace the stochastic problem with a deterministic prob-
lem by assuming that all uncertain quantities realize at their “typical” values (Bert-
sekas, 2005). For our problem, fixing the random demands Dl,t at their means µl,t

for l ∈ L and t ∈ {1, . . . , R} is an obvious choice. Thus, Problem 4.1 is transformed
into a deterministic LP, making it easy to determine allocations ā∗t (“offline”) for
t ∈ {1, . . . , R} at the beginning of period 1. However, this offline optimization
may lead to infeasible solutions in periods t ∈ {2, . . . , R}, depending on the real-
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Figure 4.2: Visualization of the dynamic program and the approximated dynamic program ap-
proaches for determining an allocation in period t (highlighted in gray).
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izations of Dt. Therefore, DAP has to be applied “online”; that is, in each period
t ∈ {1, . . . , R} optimal allocations ā∗t , . . . , ā∗R are calculated for the remaining pe-
riods {t, . . . , R} based on the current state st, but only ā∗t is implemented. We
formalize DAP in Definition 4.6.

Definition 4.6 (DAP). Denote with

r̄τ =

[
it +

τ

∑
k=t

rk −
τ−1

∑
k=t

∑
l∈L

µl,k

]+

the nominal supply in period τ and let ā∗t , . . . , ā∗R be the allocations that solve

min
āt ,...,āR ,(cl)l∈L

∑
l∈L

cl

subject to

cl ≥ pl

(
βl −

yl,t−1 + ∑R
τ=t āl,τ

xl,t−1 + ∑R
τ=t µl,τ

)
∀l ∈ L (4.14)

cl ≥ 0 ∀l ∈ L (4.15)

āl,τ ≤ µl,τ ∀l ∈ L, τ ∈ {t, ..., R} (4.16)

∑
l∈L

āl,τ ≤ r̄τ ∀τ ∈ {t, ..., R} (4.17)

āl,τ ≥ 0 ∀l ∈ L, τ ∈ {t, ..., R}. (4.18)

Then the deterministic allocation in period t is adap
t = ā∗t .

The LP in Definition 4.6 uses dummy variables cl and constraints (4.14) and
(4.15) to linearize the non-linear penalty for each customer. (4.16) ensures that no
more than expected demand is allocated to each customer, (4.17) limits allocations
to available supply, and (4.18) ensures allocations are non-negative.

DAP captures the trade-offs between the customers’ penalties and anticipates
the supply/demand situation, but it ignores the stochasticity of the problem, as
allocations are based only on mean demands. As this policy fulfills more of the
requirements of an optimal allocation than per-commit and the myopic policies
(MSLAP and MPAP) do, we expect it to perform better than they do and expect
relatively small deviations from the optimum when the forecast accuracy is high.
We evaluate this policy’s performance in Section 4.6.
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Randomized Deterministic Allocation Policy

To include stochasticity in the LP of DAP, we use the RLP approach and term
the resulting policy RDAP. The RLP approach was developed by Talluri and van
Ryzin (1999) to determine optimal bid prices in airline networks. The idea behind
the approach is to solve the deterministic LPs repeatedly and separately for dif-
ferent demand realizations sampled from the demand distributions and to then
determine the bid prices by averaging the individual bid prices obtained from the
dual problem of the LP. For their problem, Talluri and van Ryzin (1999) show that
these bid prices are asymptotically optimal. Quante (2009) and Eppler (2015) ap-
ply the approach to the problem of allocation planning for customers with differing
profitabilities and show numerically that the approach results in good allocations,
although the authors provide no performance guarantees.

DAP, as formalized in Definition 4.6, can be extended easily to the RLP con-
cept, as we have only to replace the mean demand µl,τ with randomly generated
demand realizationsdn

l,t for demand scenarios n ∈ {1, . . . , N}, determine the opti-
mal allocations for each demand scenario n, and average the optimal allocations of
the N scenarios to obtain the final allocation. RDAP also has to be applied online.
Definition 4.7 formalizes the policy.

Definition 4.7 (RDAP). Let adap,n
l,t be the allocation of DAP in Definition 4.6 for demand

scenario n ∈ {1, ..., N}. Then the randomized deterministic allocation for period t to
customer l is ardap

l,t = 1
N ∑N

n=1 adap,n
l,t .

As each allocation of DAP used to determine RDAP’s allocation is bounded by
the demand realization—that is, adap,n

l,t ≤ dn
l,t and E dn

l,t = µl,t—RDAP’s allocations

are bounded by the mean demand in expectation E ardap
l,t ≤ µl,t. Hence, RDAP’s

allocations will not typically exceed the corresponding customers’ mean demand.

In contrast to Talluri and van Ryzin’s (1999) approach, Definition 4.7 uses pri-
mal variables to determine allocations. Therefore, we do not claim that our ap-
proach retains the original approach’s property of asymptotic optimality, and we
limit our analysis to the numerical evaluation we perform in Section 4.6. Nonethe-
less, RDAP incorporates stochasticity in the allocation policy, so it should lead to
better solutions than DAP does.
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Myopic Stochastic Allocation Policy

MSAP, which can be considered a stochastic version of MPAP, determines al-
locations for any non-terminal period t ∈ {1, 2, . . . , R− 1} assuming that it is the
terminal period (i.e, t = R). We formalize the policy in Definition 4.8.

Definition 4.8 (MSAP). The optimal allocation under MSAP in period t is

amsap
t = arg min

at∈At(it)

E

[
∑
l∈L

Cl(Xl,t+1, Yl,t+1)

]
. (4.19)

The optimal allocation of MSAP in Equation (4.19) can be computed efficiently
because Theorem 4.1 applies.

MSAP considers the stochasticity of the individual customers’ demand more
accurately than RDAP does because it determines allocations based on the demand
distributions, rather than on samples of their realizations. In contrast to RDAP,
MSAP can lead to allocations that exceed customers’ expected demand, which is
a clear advantage in cases of high fill-rate targets because these targets typically
require allocations that are higher than the mean demand. However, MSAP is
myopic, as it does not anticipate the supply and demand in subsequent periods.
At this point, we cannot estimate how MSAP performs compared to RDAP, but
a detailed performance comparison of the two policies is part of our numerical
evaluation in Section 4.6.

Stochastic Time-aggregated Allocation Policy

STAP’s underlying rationale is illustrated in Figure 4.2. To deal with Prob-
lem 4.1’s “curse of dimensionality,” STAP converts the R − t + 1-period problem
into a two-period problem by aggregating periods [t + 1, R] into a single period
and evaluating the resulting approximated value function V̄[t+1,R](E St+1).

We denote by D̄l,[t+1,R] the aggregated demand of customer l ∈ L in peri-
ods t + 1, . . . , R, by f̄l,[t+1,R] its pdf, and by r̄[t+1,R] the aggregated supply. The

aggregate supply is calculated as r̄[t+1,R] = ∑R
τ=t+1

[
rτ +

[
īτ−1

]−]+, where īτ =

īτ−1 + rτ−1 − ∑l∈L µl,τ−1 is the expected inventory position2. The expected state
E St+1 = E qt(st, at, Dt) is given by the following set of equations:

2The aggregated supply is corrected for the expected backlog (the negative part of the inventory
position) because backlogged demand in our model is fulfilled before any new demand is fulfilled.
Supply that is used to clear backlogged demand does not contribute to the fill rate. To avoid
double-counting the backlogged demand, we use the positive part of the available supply.
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x̄l,t+1 = xl,t + µl,t

ȳl,t+1(al,t) = yl,t +
∫ al,t

0
dl,tgl,t(dl,t) ddl,t + al,t[1− Gl,t(al,t)]

īt+1 = it + rt − ∑
l∈L

µl,t.

STAP reduces the “curse of dimensionality” in two ways: first, considering only
a two-period problem instead of an R− t+ 1-period problem and by evaluating the
value function only at the expected state E St+1 in t + 1. The value function for the
aggregated period is defined as

V̄[t+1,R](E St+1) = min
a[t+1,R]

E ∑
l∈L

Cl(X̄l,R+1, Ȳl,R+1) (4.20)

subject to X̄l,R+1 = x̄l,t+1 + D̄l,[t+1,R] ∀l ∈ L
Ȳl,R+1 = ȳl,t+1 + min{D̄l,[t+1,R], al,[t+1,R]} ∀l ∈ L

∑
l∈L

al,[t+1,R] ≤ r̄[t+1,R]

al,[t+1,R] ≥ 0 ∀l ∈ L.

We are now able to provide a formal definition of STAP.

Definition 4.9 (STAP). The optimal allocation under STAP in period t is

astap
t = arg min

at∈At(it)

V̄[t+1,R](E u(st, at, Dt)) (4.21)

Next, we show how to solve (4.21). As a first step, we determine the derivative
of the approximated value function in Proposition 4.4.
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Proposition 4.4 (Derivative of the approximated value function). Denote by a∗l,[t+1,R]
the optimal solution for the aggregated period (Equation (4.20)). Then the approximated
marginal penalty of allocation al,t to customer l in period t is

d
dal,t

V̄[t+1,R](E St+1) = −λ̄l,[t+1,R](al,t)

=



−pl(1− Fl,t(al,t))
∫ ∞

dmax,l

f̃l,[t+1,R](dl,[t+1,R])
x̄l,t+1+dl,[t+1,R]

ddl,[t+1,R] if ȳl,t+1/x̄l,t+1 ≥ βl

−pl(1− Fl,t(al,t))

( ∫ dmin,l
0

f̃l,[t+1,R](dl,[t+1,R])
x̄l,t+1+dl,[t+1,R]

ddl,[t+1,R]

+
∫ ∞

dmax,l

f̃l,[t+1,R](dl,[t+1,R])
x̄l,t+1+dl,[t+1,R]

ddl,[t+1,R]

)
if a∗l,[t+1,R] > dmin,l

−pl(1− Fl,t(al,t))
∫ ∞

0
f̃l,[t+1,R](dl,[t+1,R])
x̄l,t+1+dl,[t+1,R]

ddl,[t+1,R] else,

where dmin,l =
βl x̄l,t+1−ȳl,t+1

1−βl
and dmax,l =

ȳl,t+1+a∗l,[t+1,R]
βl

− x̄l,t+1.

Based on our results in Theorems 4.1 and 4.2, we can derive an optimal solution
to Equation (4.21).

Proposition 4.5 (Optimal solution for STAP). astap
t is the optimal solution of STAP if

and only if there exists a value of λ > 0, such that, using

Aλ =
{

l | l ∈ L, λ ≥ λ̄l,[t+1,R](astap
l,t )

}
(4.22)

the following hold

λ = λ̄l,[t+1,R](astap
l,t ) for all l ∈ L\Aλ

astap
l,t = 0 for all l ∈ Aλ.

Proposition 4.5 ensures that we can apply standard gradient-based non-linear
solution techniques to find an optimal solution to Equation (4.21). Because Equa-
tion (4.22) depends on at (via the expected state), the resulting convex knapsack
is not separable, so finding the optimal solution is more involved than it is for the
allocation problem in period R (Theorem 4.1).

STAP considers all of the requirements we derived in Section 4.4.2, including
aggregated supply and demand in subsequent periods, which MSAP does not.
Hence, we expect STAP to lead to better performance than MSAP.
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4.6 Numerical Evaluation

This section presents the results of several numerical experiments we carried
out to evaluate the performance of the allocation policies presented in Section 4.5.
The purpose of these experiments is not only to quantify and compare the policies’
performance but also to assess the importance of the requirements we derived in
Section 4.4. Section 4.6.1 explains our experimental setup and the individual exper-
iments we carried out, while Section 4.6.2 describes our simulation environment
and the performance measures we use to evaluate the policies. Sections 4.6.3 to
4.6.7 present the results obtained from our numerical experiments. Finally, Sec-
tion 4.6.8 summarizes our results and points out which requirements a “good”
allocation policy should meet.

4.6.1 Experimental Setup

To analyze the performance of the allocation policies we presented in Sec-
tion 4.5 and to assess the importance of the requirements of an optimal allocation
policy (Table 4.2 in Section 4.4), we carried out a number of experiments in which
we systematically varied the allocation policies’ input parameters. We structured
our experiments according to the requirements described in Table 4.2.

First, we address the importance of incorporating into the allocation decision
information about customers’ current total demands and their total fulfilled de-
mands into the allocation decision. To exclude confounding effects from other
requirements we conduct a first set of analyses for customers that have identical
demand distributions, fill-rate targets, and penalties. Next, we vary the customers’
fill-rate targets of the customers in order to induce fill-rate heterogeneity determine
whether and at what level of heterogeneity it becomes important to incorporate
the customers’ fill-rate targets into the allocation policy (Section 4.6.4). Then, in
Section 4.6.5, we vary the customers’ penalties to determine how differences in fill-
rates and penalties jointly impact the allocation policies’ performance and whether
and when it is beneficial to consider the differences in penalties. In Section 4.6.6
we vary the coefficient of variation (CV) of the customers’ demand distributions
to determine at what level of uncertainty this information must be incorporated
into the allocation policy. Finally, we determine the importance of anticipating
the future supply and demand by adding a trend to the demand, as discussed in
Section 4.6.7, while keeping the per-period supply constant. The results of this
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Table 4.3: Parameterization of the numerical experiments.

Parameter Homog.
customers

Het. fill-rates,
homog.

penalties

Het. fill-rates,
het. penalties

Demand
uncertainty

Trend

Average
demand

10 10 10 10 10

CV 0.3 0.3 0.3 0.1, . . . , 0.5 0.3
Customers 3 3 3 3 3
Penalty
parameter

0 0 −0.5,−0.25, . . . , 0.5 0.5 0.5

Fill-rate
targets

 0.965
0.965
0.965

  0.965 . . . 0.88
0.965

0.965 . . . 0.995

  0.88
0.965
0.995

  0.88
0.965
0.995

  0.88
0.965
0.995


Review
horizon

10 10 10 10 10

Safety
buffer

25% 25% 25% 0.7%, . . . , 56.7% 25%

Trend 0 0 0 0 −0.4, . . . , 0.4

analysis allows us to identify the importance of demand/supply anticipation by
comparing the myopic policies with the multi-period (forward-looking) policies.

The parameter values for our analyses are shown in Table 4.3. All of our ex-
periments assume that per-period supply is constant and equal to the average ex-
pected demand per period (which is 30 in all of our experiments). We perceive this
assumption as realistic for the purpose of our analysis because it means that the
manufacturer produces according to its demand forecast and observes neither high
overall scarcity nor excessive supply, at least on an aggregate level. We also assume
that the manufacturer has some safety buffer to deal with demand uncertainty. In
our experiments we implement the safety buffer as the inventory that is available
at the beginning of t = 1. The first three experiments fix the safety buffer to 25

percent of the mean demand (7.5 units) and set the review horizon to R = 10. Each
experiment is repeated M = 100 times to ensure stable numerical results.

4.6.2 Simulation Environment

To carry out our experiments, we create a simulation environment in Python,
use Gurobi to solve the LPs, and use NLopt to solve the non-linear optimization
problems for MSAP and STAP. Figure 4.3 provides a high-level overview of the
simulation environment.
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Demand Generation 
Module

Allocation Module

Evaluation Module

Service-level contractsDemand distribution

Demand realizations

Allocations

Fill-rates, penalties, NAP, AAE

Figure 4.3: Overview of the simulation environment.

Our simulations are performed in three consecutive steps: First, we generate
demand realizations in the demand generation module, which takes as inputs the
mean µl,t and the coefficient of variation CVl of the demand distributions fl,t (for
all l ∈ L). We assume fl,t to be iid and that it follows a normal distribution that
is truncated at zero. The demand-generation module draws samples from fl,t for
each period t and customer l and outputs a demand matrix D with dimension
|L| × R×M, where M is the number of repetitions. To reduce the variance in our
simulation results, we employ the antithetic variates technique (Ross, 2006) which
is commonly used in Monte Carlo simulations.

The allocation module takes as input the demand matrix D, the mean µl,t, and
the coefficient of variation CVl of the demand distributions fl,t, and the parameters
of the service-level contracts—that is, the fill-rate targets βl and the penalties pl for
customers l ∈ L, and outputs allocations aq,m

1 , . . . , aq,m
R for each demand instance

m and allocation policy q. The simulation module contains implementations of the
heuristic allocation policies described in Section 4.5: per-commit, MSLAP, MPAP,
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DAP, RDAP3, MSAP, and STAP. Because the deterministic allocation approaches
and RDAP do not allocate more than the mean demand to each customer, any sup-
ply that exceeds the customers’ total mean demand remains unallocated. Clearly,
it is not optimal to retain unallocated supply when demand is uncertain, so we
account for this problem in our experiments by allocating any remaining supply
on a per-commit basis.

In addition to the allocation policies described in Section 4.5, we implement an
ex-post optimization that solves the problem defined in Definition 4.6 for realized
demands dl,t (l ∈ L, t = 1, . . . , R) instead of expected demands µl,t. The ex-post
optimization provides a theoretical upper bound on the performance that we use
for evaluation purposes.

The evaluation module takes as input the allocations aq,m
1 , . . . , aq,m

R from the
allocation module and the parameters βl and pl from the service-level contracts.
The module first calculates the achieved fill-rate β̂

q,m
l,R+1 for each customer group l,

allocation policy q and demand realization m. Based on the values of these output
parameters, the evaluation module then calculates the associated total penalty costs
Cq,m. To compare the allocation policies, we use “normalized additional penalty”
(NAP) as our main performance measure. The NAP is the absolute difference in
penalties between the allocation policy under consideration and the ex-post opti-
mization, normalized by the maximum penalty. Normalizing the NAP makes the
measure more robust towards scaling of fill-rate targets and penalties. Note, that
because we normalize by the maximum possible penalty (resulting from fulfilling
no customer demands at all), we will typically observe very small values for the
NAP. Definition 4.10 formalizes this measure.

Definition 4.10 (NAP). The NAP of allocation policy q is

NAPq =
1
M

M

∑
m=1

Cq,m − Cexpost,m

∑l∈L βl · pl
, (4.23)

where Cexpost,m is the penalty of the ex-post optimization for demand realization m.

To explain the allocation policies’ performance differences, we introduce a sec-
ondary performance measure that we term “average allocation efficiency” (AAE).
Definition 4.11 formalizes this measure.

3For RDAP, we sample twenty realizations from the demand distributions.
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Definition 4.11 (AAE). The AAE of allocation policy q is

AAEq =
1
M

M

∑
m=1

1
|Tm| ∑

t∈Tm

∑l∈Lmin{dm
l,t, aq,m

l,t }
rt + im

t
,

where Tm = {t ∈ {1, . . . , R} | rt + im
t > 0} is the set of periods for demand realization m

in which the available supply is positive.

The AAE averages how much of the allocated supply was consumed relative
to total supply in each period of the planning horizon. It takes a value of 1 for
perfect allocation efficiency—that is, when each unit of allocated supply was con-
sumed by the corresponding customer. Values that are less than 1 indicate the
extent to which supply was misallocated—that is, allocated to a customer, but not
consumed, because the realized demand was lower than the allocation.

In Definition 4.11 we divide the fulfilled demand per customer and period by
the available supply in the corresponding period. We introduce the set Tm to avoid
division by zero in periods with no available supply.

4.6.3 Homogeneous Customers

In this experiment we analyze the case of homogeneous customers, so all cus-
tomers have the same fill-rate targets, penalties, and demand distributions. From
a practical point of view, this setting is of little interest because the service-level
contracts manufacturers offer differ. However, assuming homogeneous customers
allows us to determine the importance of accounting for the system’s current state
when allocations are determined. Under homogeneous customers, differences in
the allocations al,t (for t = 2, . . . , R) to customers l ∈ L should be based only on
the current state st of the system, which is defined by the realized total demands
xt, the fulfilled demands yt, and the inventory position it. Thus, differences in the
performance of the allocation policies should, at least in theory, be attributable to
how well they account for the system’s current state.

The setting we consider in this experiment is similar to that of Abbasi et al.
(2017), although we determine allocations before demands realize, while inAbbasi
et al. (2017) the planner observes the demand before allocating supply to the cus-
tomers.

Figure 4.4a shows the NAPs of the allocation policies for homogeneous cus-
tomers. MSAP has the highest performance, with a NAP of only 0.0176, but it is

129



4 Allocation Planning under Service-Level Contracts
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Figure 4.4: NAP and AAE of the allocation policies for homogeneous customers.
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closely followed by per-commit and STAP, while DAP’s performance is the lowest,
with a NAP of 0.0212. The differences in the NAPs appear to be small because
we normalize using the maximum penalties that would be incurred if zero de-
mand was fulfilled. To put the values into perspective, in this experiment MSAP’s
(DAP’s) penalties average 27 percent (33%) higher than the penalties that result
from the ex-post optimization. Hence, the performance differences across the al-
location policies can be considered substantial, even in this setting with homoge-
neous customers.

Both MSAP and STAP account for the current state and adjust their allocations
accordingly, while per-commit allocates based only on the customers’ mean de-
mands. It is somewhat counterintuitive that “simple” per-commit performs almost
as well as the more sophisticated MSAP and STAP, but because fill-rates are calcu-
lated over ten periods and demand fluctuates only moderately (with a CV of 0.3),
the realized fill rates at the end of the review period do not vary substantially and
are typically lower than the fill-rate target of 0.965 for all customers. Because penal-
ties are the same across all customers, how negative deviations from the fill-rate
targets are distributed across customers is irrelevant. Therefore, an allocation pol-
icy must avoid allocations that are not consumed, and over-fulfillment of fill-rate
targets—recall that there are no bonuses for a realized fill rate that is higher than
the target fill rate. In this respect, per-commit performs relatively well because it
leads to the same (rather conservative) allocations to each customer in each period
based on the mean demand. The almost identical performances of per-commit,
MSAP, and STAP indicate that reacting to customers’ current total demand and
total fulfilled demand does not provide an advantage in our setting.

The detrimental performance of MPAP and DAP can be explained based on
their objective functions (cf. Definition 4.5), as when all penalties and service levels
are identical, the policies prioritize customers with the lowest total demand and
allocate sequentially in order of increasing total demand. As Figure 4.4b shows,
this prioritization decreases the allocation efficiency. The somewhat better perfor-
mance of RDAP can be attributed to its accounting for the stochasticity of demand,
and, thus, allocating sequentially, giving it a higher AAE.

MSLAP’s low performance is more difficult to explain. Because the policy
equalizes the deviations from the fill-rate targets, it does not prioritize sequentially
like MPAP and DAP do. Hence, MSLAP’s AAE is higher than those of MPAP
and DAP. However, in situations of supply scarcity, the approach allocates more
to the customer with the lowest current fill-rate, regardless of the probability that
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Figure 4.5: NAP and AAE of the allocation policies for various fill-rate targets.

allocations to this customer will actually be consumed. This approach to allocation
is less efficient in supply situations in which efficient use of scarce supply is the
most important consideration. As a direct consequence, MSLAP leads to a compar-
atively low AAE and a high NAP. As a consequence, our results differ structurally
from those of Abbasi et al. (2017), who find that a myopic deterministic policy that
is similar to MSLAP performs well. MSLAP’s aforementioned issues occur only
when the allocation decision is made before demand is known, so we conclude
that, in our setting, the stochasticity of demand must be accounted for. We address
this issue in more detail in Section 4.6.6.

The results of this initial experiment suggest that accounting for customers’ cur-
rent total demand and total fulfilled demand is not crucial. Per-commit, the only
allocation policy that neglects this information, performs well when customers are
homogeneous. More important, our results indicate that, when supply is scarce,
avoiding allocations that are not consumed is an important aspect of an allocation
policy’s performance. Our subsequent analyses shed more light on these prelimi-
nary findings.
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4.6.4 Heterogeneous Fill-rate Targets and Homogeneous Penalties

Our second experiment is conducted to determine the importance of an alloca-
tion policy’s accounting for differences in fill-rate targets. To this end, we gradu-
ally increase heterogeneity in customers’ fill-rate targets and evaluate the allocation
policies’ resulting performance. More specifically, we increase the fill-rate target of
one customer and decrease the fill-rate target of another customer so the overall
supply required to meet the fill-rate targets remains the same in all instances.4

Figure 4.5 plots the allocation policies’ NAPs and AAEs for increasing differ-
ences in fill rates. We observe that MSAP’s NAP and AAE decrease with increasing
heterogeneity—that is, the approach’s performance increases while its allocation
efficiency decreases. On the other hand, per-commit shows a strongly increasing
NAP, while its AAE remains constant.

The underlying effects of the policies change in performance cannot be ex-
plained easily based on the policies’ AAEs (Figure 4.5b): Per-commit leads to the
same (high) AAE in all instances because its allocations are independent of the
fill-rate targets, but MSAP’s AAE decreases as the fill-rate heterogeneity increases
because, as it prioritizes customers with higher fill-rate targets, its allocation effi-
ciency decreases. In short, the higher allocations to customers with higher fill-rates
lead to more instances in which the allocated supply is not consumed. This does
not, however, translate into a lower overall performance. To explain the underlying
dynamics, Figure 4.6 shows the average fill-rates and the corresponding fill-rate
targets for each customer. Per-commit achieves a fill rate for Customer 1 that is
higher than the target fill-rate but does not meet the fill-rate targets of Customers 2

and 3. In contrast, MSAP avoids over-allocating supply to Customer 1 and achieves
higher fill rates for Customers 2 and 3, resulting in lower overall penalties than per-
commit sees, even though MSAP’s AAE is lower.

Although MSAP is a completely myopic policy, it outperforms STAP, which
has a similar underlying logic but incorporates (aggregated) information about
future supply and demand. The results, presented in Figure 4.6, shed light on the
performance differences between MSAP and STAP. Both policies lead to almost
identical AAEs (Figure 4.5b) and to the same average fill rates for Customer 3

(Figure 4.6), but STAP over-achieves Customer 1’s fill-rate target, thereby wasting
some of the supply, not because it is not consumed but because it does not reduce

4Based on a single-period model, we choose the fill-rate targets such that 37.5 units of available
supply (30 units + 25% safety buffer) are sufficient to fulfill the fill-rate targets in expectation.
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Figure 4.6: Average fill-rates and corresponding fill-rate targets (dotted lines) for each customer
and allocation policy for fill-rate targets between 0.88 and 0.995. (Black lines indicate the overall
fill-rate.)

the penalty. In contrast, MSAP allocates, on average, less to Customer 1 and more
to Customer 2, so it incurs substantially lower overall penalties than STAP does.

It appears that STAP’s ability to account for future supply and demand does
not translate into higher performance compared to a myopic stochastic policy (i.e.,
MSAP). On the contrary, we observe—at least in this particular setting—a nega-
tive impact on STAP’s performance relative to MSAP. The key difference between
MSAP and STAP is that, because of its myopic nature, MSAP will never allocate
more supply to a customer than what is required to achieve the customer’s fill-rate
target in the current period. However, STAP may allocate more than this quan-
tity in anticipation of future demand and supply—that is, it may assign a positive
marginal profit to overachieving a customer’s fill rate target in the current period,
which is why, in our experiments, STAP allocates more to Customer 1 than MSAP
does. However, STAP’s approximation of future supply and demand is sufficiently
inaccurate to lead to excessive allocations to Customer 1 and too-low allocations to
Customer 2, so MSAP performs better than MSAP does.

MSLAP minimizes the maximum fill-rate deviation, so it tries to equalize the
deviations from the fill-rate targets, a logic that seems particularly suitable when
fill-rate targets differ. However, MSLAP’s AAE decreases significantly as fill-rate
targets become more heterogeneous, leading to the lowest overall average fill rate
(Figure 4.6). Because of their high fill-rate targets, Customers 2 and 3 receive high
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allocations that are frequently not consumed, while Customer 1, who has a higher
probability of consuming its (lower) allocations, receives too little supply and ex-
periences fill-rates that average substantially below its (already low) fill-rate target.
By ignoring whether an allocated unit of supply is likely to be consumed and
because it prioritizes customers with high fill-rate targets, MSLAP over-allocates
and under-allocates at the same time, leading to the highest overall penalties when
fill-rate targets differ across customers. MSLAP’s poor performance is somewhat
surprising, as the policy’s presumed strength—its ability to prioritize according
to service-level targets—turns out to be a disadvantage that leads to poor perfor-
mance when fill-rate heterogeneity is high.

For MPAP, DAP, and RDAP, the fill-rate targets affect only the maximum alloca-
tion to each customer, so these policies suffer from the same problems we identified
for the case of homogeneous customers. The results presented in Figure 4.6 show
that average fill rates are almost identical across all customers for these policies;
only Customer 1’s average fill rates are slightly lower, but they are still above the
customer’s fill-rate target. Unsurprisingly, the three policies cannot prioritize ad-
equately based on differences in the fill-rate targets, so they allocate too much to
customers with low fill-rate targets and too little to customers with higher fill-rate
targets.

Again, we observe that RDAP has a higher AAE than its deterministic coun-
terpart, DAP, because RDAP accounts for the stochasticity of demand, so RDAP
performs better than DAP.

The results of this experiment demonstrate that heterogeneous fill-rate targets
should be accounted for. MSAP and STAP both fulfill this requirement, leading to
the best performance among the allocation policies. In line with the results from
our first experiment, we find that it is important to account for the probability that
allocated supply will be consumed when determining customer allocations. Deter-
ministic approaches lead to particularly unfavorable results when fill-rate targets
are heterogeneous and customer demand is uncertain. In light of the performance
of MSAP and STAP, we find no evidence that the anticipation of future supply and
demand is an important prerequisite for an allocation policy. We explore this open
issue further in Section 4.6.7.
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4.6.5 Heterogeneous Fill-rate Targets and Heterogeneous Penal-
ties

Our third experiment examines the effect of heterogeneity in fill-rate targets
and penalties, an examination that is particularly useful from a practical point of
view because manufacturers are likely to negotiate service-level contracts in which
both fill-rate targets and penalties vary across customers.

To determine the individual effects of each type of heterogeneity, we fix a high
fill-rate heterogeneity (0.88–0.995 in the experiment described in Section 4.6.4) and
increase the heterogeneity in terms of penalties. We do not report the results of
an experiment in which we set the fill-rate heterogeneity to zero and varied only
the penalty’s heterogeneity because it yielded structural results similar to those
presented in Section 4.6.4.

A priori, we do not know how fill-rates and penalties for individual customers
will be reflected in service-level contracts. It is conceivable that high fill-rates will
be associated with high penalties, but we cannot rule out the opposite relationship,
so we explore both positive and negative relationships between fill-rates and penal-
ties for individual customers. We introduce a penalty parameter ρ that measure
the additional penalty associated with the customer that has the highest fill-rate
target (Customer 3) relative to the average penalty (assigned to Customer 2) (i.e.,
p3 = (1 + ρ)p2, p1 = (1− ρ)p2). A penalty parameter ρ > 0 (ρ < 0) indicates
that the customer with the highest (lowest) fill-rate target has the highest (lowest)
penalty, while the customer with the lowest (highest) fill-rate target has the lowest
(highest) penalty. As Table 4.3 shows, we vary ρ from -0.5 to +0.5 in increments of
0.25.

Figure 4.7 plots the NAPs and AAEs of the allocation policies at different
values of ρ. The NAPs of per-commit and MSLAP increase with the penalties’
heterogeneity—that is, the more ρ differs from 0. The NAPs of MPAP, DAP, and
RDAP increase as ρ increases, while the NAPs of MSAP and STAP increase only
for ρ > 0.

The results presented in Figure 4.7 highlight that MSAP outperforms all other
allocation methods and also appears to be less sensitive to an increase in penalties’
heterogeneity than the other allocation policies are. In contrast, per-commit and
MSLAP are highly sensitive to differences in customers’ penalties, leading to steep
increases in the NAP at higher levels of heterogeneity. The underlying effects are
similar to what we observed in the experiment in which we studied the effect of
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Figure 4.7: NAP and AAE of the allocation policies for various penalty parameters.

fill-rate heterogeneity, and they can again be explained based on the AAE (Fig-
ure 4.7b): While per-commit and MSLAP retain their constant AAEs, as allocations
are independent of the penalties, MSAP (and STAP) have lower allocation effi-
ciency at higher levels of penalty heterogeneity; because they prioritize customers
with higher penalties, supply is allocated but not consumed more often. Clearly,
this effect is more pronounced at positive values of ρ, where high fill-rate targets
coincide with high penalties. The effects are asymmetric for positive and negative
values of ρ: while high penalties and high fill-rate targets (ρ > 0) both warrant
prioritization—that is, larger differences in the allocations—high penalties and low
fill-rate targets (ρ < 0) require less prioritization and more balanced allocations.
As a result, the NAP increases only for ρ values that are greater than zero.

The NAPs of MPAP, DAP, and RDAP indicate that their performance improves
as the penalties of the customers with the lowest fill-rate targets increase. This
result is intuitive, as the approaches’ allocating only up to the mean demand is less
harmful when the customer with the highest penalty has a low fill-rate target.

Structurally, the results of this experiment support our conjecture that an allo-
cation policy should account for differences in customers’ penalties (Section 4.4.2).
While this result is intuitive, penalty heterogeneity has a significant impact on
allocation policies’ performance. When penalties and fill-rate targets differ sub-
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Figure 4.8: NAP of the allocation policies under varying CV.

stantially across customers, choosing the wrong allocation policy (e.g., per-commit
or MSLAP) can have a substantially negative impact on performance.

4.6.6 Demand Uncertainty

The results of our first and second experiments (Sections 4.6.3 and 4.6.4) sug-
gest that an allocation policy should consider whether the supply allocated to a
particular customer is likely to be consumed. These results should favor MSAP,
STAP, and RDAP over their deterministic competitors. The experiment described
in this section explores the performance effect of incorporating the consumption
probability into the logic of the allocation policy. To do so, we vary the CVs of the
customers’ demand distributions (which was fixed at 0.3 in our other experiments)
and assess how doing so impacts the individual allocation policies’ performance.

Our analysis is based on the scenario with a penalty parameter of ρ = 0.5. To
ensure a fair comparison of the scenarios, we adjust the safety buffer accordingly
(0.7% for a CV of 0.1 and up to 56.7% for a CV of 0.5).

The results, shown in Figure 4.8, indicate that the performance of all alloca-
tion policies decreases with increasing CV. This result is not unexpected: as the
demand’s stochasticity increases, prioritizing the correct customers becomes more
difficult and NAPs increase.
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Figure 4.9: NAP of the allocation policies for various trend parameters.

As expected, the performances of the deterministic allocation policies, MDAP
and DAP, decrease more in the CV than do the performances of the stochastic al-
location policies, MSAP and STAP. Consequently, MSAP consistently outperforms
its competitors.

In contrast to our conjecture, RDAP has the strongest sensitivity to an increase
in the CV. While the policy outperforms STAP at a CV of 0.1, its performance is
significantly lower at a CV of 0.5 because of RDAP’s limitation to allocate only up
to the customers’ mean demand. When the CV is low, the allocations required to
achieve a certain fill-rate target decrease; hence, this disadvantage becomes less
severe for small values of the CV, and RDAP’s relative performance improves. An
unreported experiment shows that, for the same reasons, decreasing the fill-rate
targets also improves RDAP’s relative performance, although its penalty is always
higher than that of MSAP.

This experiment supports our conjecture that the stochasticity of customer de-
mand should be accounted for. While the importance of considering this stochas-
ticity increases as stochasticity increases, our results suggest that it is an important
performance driver even at very low levels of uncertainty.
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4.6.7 Demand Trend

To determine the importance of anticipating the future demand and supply sit-
uations, we perform an experiment in which we keep per-period supply constant
and add a linear trend to customer demands. We introduce the trend parameter
θ =

µl,R
1
R ∑R

t=1 µl,t
− 1, which measures the additional demand in the last period com-

pared to the average demand. Hence, θ > 0 corresponds to increasing demand
and θ < 0 to decreasing demand. Because supply remains constant, θ > 0 implies
ample supply in the first periods and scarce supply in later periods, while θ < 0
implies the opposite.

Figure 4.9 plots the AAEs of the allocation policies for various values of θ. The
AAEs are decreasing in the trend parameter θ, as, for a negative trend, supply
is scarce in the beginning and this scarcity is carried over to future periods by
the backlog, so supply is scarce in many periods, and the differences among the
policies are most pronounced. Under a positive trend, there is ample supply in
the first periods, and because unused supply is carried over to future periods,
most periods have sufficient supply, so the policies differ only slightly in terms of
performance.

The results in Section 4.6.5 suggest that STAP’s ability to anticipate future de-
mand and supply situations do not lead to performance benefits because of inac-
curate forecasts resulting from the aggregation of demand and supply across all
future periods. We now observe that this result not only holds for demand with a
constant mean but also for negative trends and for positive trends up to θ = 0.3.
Only at the high value of θ ≥ 0.4 does STAP benefit from its ability to anticipate
future demand and supply situations.

4.6.8 Summary of Numerical Results

In Section 4.4 we developed a set of requirements that an allocation policy un-
der service-level contracts should meet. Our conjecture was that, among the allo-
cation policies we introduced in Section 4.5, STAP is the only one to meet all of the
requirements, so it will outperform its competitors, particularly because of its abil-
ity to anticipate future demand and supply. This feature is particularly important
from a practical point of view: A decision-maker (planner) who is responsible for
meeting multiple heterogeneous customers’ service-level targets faces a complex
stochastic dynamic problem, so using a (myopic) heuristic to determine allocations
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period by period without anticipating what may happen in the future does not
seem to be an appropriate strategy. In contrast, our numerical results suggest that
a myopic stochastic policy (i.e., MSAP) will have satisfactory results under most
conditions, or at least more satisfactory than those of the six other policies con-
sidered in our study. However, we must be careful not to draw hasty conclusions
about the importance of considering future supply and demand. STAP’s ability to
look ahead rests on a coarse approximation of the system’s future state, and we can
expect that a more refined approximation leads to better results. However, as we
show in Section 4.4, the large state space of the original dynamic program renders
a more accurate approximation difficult, if not impossible.

Two of the requirements we derived in Section 4.4 emerged from our numeri-
cal analysis to be of particular importance: accounting for heterogeneous penalties
and incorporating demand stochasticity. Correctly prioritizing customer alloca-
tions based on penalties while avoiding unused allocations and over-achievement
of fill-rate targets appear to be most important. MSAP and STAP meet these re-
quirements, and all of the policies that ignore one or both of these requirements—
per-commit, MSLAP, MPAP, and DAP—have substantially lower performance in
any realistic setting. RDAP, the approach based on randomized linear program-
ming, also accounts for heterogeneity in penalties and, at least to an extent, for the
stochasticity of demand, but because of its inherent logic, it does not (in expecta-
tion) allocate more than the mean demand to each customer. Therefore, RDAP’s
ability to allocate “correctly” based on heterogeneous penalties and demand un-
certainty is restricted, and the policy typically performs considerably less well than
MSAP and STAP do.

How the policies account for differences in customers’ fill-rate targets turns
out to be less important than prioritizing customer allocations based on penalties
and avoiding unused allocations and over-achievement of fill-rate targets. The
results presented in Section 4.6.4 suggest that increasing heterogeneity in fill-rate
targets affects the policies’ performance. Contrary to our intuition, however, this
effect is not strong, and it is MSAP that deals best with fill-rate heterogeneity.
Heterogeneous fill-rate targets and heterogeneous penalties (Section 4.6.5) have
interaction effects. Performance differences between the allocation methods are
largest when fill-rate targets differ most and when high penalties are incurred for
customers with high fill-rate targets. In these instances, the gaps between MSAP
and its competitors are largest.
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Overall, our numerical results are in line with the findings of Abbasi et al.
(2017) and Chen and Thomas (2018), who assumed that allocation decisions can
be made after demand is known. Of course, considering stochasticity of demand
is not important when demand uncertainty is resolved before customer allocations
are determined, which is why a deterministic myopic approach works well in their
studies but not in ours. The results of our numerical analyses suggest that a myopic
stochastic approach also performs well when allocations have to be made in the
presence of demand uncertainty and differentiated service-level contracts (instead
of the homogeneous service-level contracts Abbasi et al. (2017) studied).

4.7 Conclusion

Motivated by some of the practical limitations of current demand fulfillment
systems, this study addresses the problem of allocation planning under service-
level contracts. We provide a formal definition of the allocation-planning prob-
lem under a specific type of service-level contract—that is, a contract with fill-
rate targets and linear penalties—and formulate the decision-maker’s problem as
a stochastic dynamic program. While we derive optimality conditions for the dy-
namic program, our analyses reveal that the large state space of the system makes
it impossible to derive an optimal policy for non-terminal periods. However, our
formal analysis did allow us to derive the requirements a good heuristic alloca-
tion policy should satisfy. We use these results in two ways: to provide a rigorous
discussion of the limitations of “simple” allocation rules that the literature pro-
poses and that are popular in practice, and to develop and study a number of
advanced allocation policies that have the potential to improve the performance of
allocation planning. We propose several new allocation policies, all of which are
based on approximated dynamic programming techniques. After a detailed char-
acterization and discussion of these policies with respect to the aforementioned
requirements, we carry out an extensive numerical analysis to determine whether
and under what conditions the policies lead to satisfying results.

The results of our numerical analyses provide useful insights into the require-
ments a “good” allocation policy must fulfill. The allocation policies’ performance
is predominantly driven by how well they can prioritize customer allocations based
on differences in penalties while avoiding misallocations, that is, allocations that
are not consumed because demand is too low or that lead to over-achievement of
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the service-level targets specified in the contract. Although this driver seems intu-
itive, other requirements that emerged as important from our theoretical analysis,
such as the ability to account for the current state of the system, to prioritize ac-
cording to customers’ specific fill-rate, and to anticipate future supply and demand,
turned out to have less influence or insignificant influence on the performance of
the allocation policies we studied.

Two of our advanced allocation policies outperform their contenders across
all relevant settings: a myopic stochastic policy, MSAP, and a forward-looking
stochastic policy, STAP, which is based on the solution of a two-period stochastic
program that approximates the R + 1-period problem. MSAP outperforms STAP
in all of our experiments except in the presence of a strong trend in demand that
leads to severe shortages in later periods. This result can be attributed to how
STAP approximates the system’s future states. Future research may identify better
approximations of the underlying stochastic dynamic program’s value functions,
despite the large state space of the original problem, but our results suggest that
a stochastic myopic policy—which is, of course, computationally significantly less
expensive—can lead to satisfactory results.

The research we present in this paper has several limitations, at least two of
which should be addressed by future research. First, in most of our analyses, the
performance of the policy with the ability to look ahead, STAP, was inferior to that
of a myopic policy, MSAP. This result raises questions concerning whether more
appropriate techniques for approximating the value function of the underlying
stochastic dynamic program exist, and whether these techniques can be translated
into policies that lead to better performance while being computationally feasible.
Finding such techniques is a useful avenue for future research.

Second, our analyses assumed that allocated supply is dedicated exclusively
to a particular customer, so we did not account for nesting effects. However, it
is reasonable that some form of nesting will occur in practice, as a planner who
anticipates that some customer will not make use of its allocation during an in-
dividual planning period, while another customer exhausts its allocation, is likely
to re-allocate volumes at some point during this period. Such a re-allocation is
not supported by today’s standard demand fulfillment systems, nor do our models
account for this particular form of nesting and its impact on allocation policies’ per-
formance. Nested policies are common in revenue management, so future research
on nesting in the context of allocation planning under service-level constraints
would be useful.

143





Chapter 5

Managing Service-Level
Contracts in Sales Hierarchies1

5.1 Introduction

Manufacturers often follow a three-step approach to demand and supply plan-
ning that is also implemented in state-of-the-art Advanced Planning Systems. First,
during master production planning, the supply availability is forecast for the medi-
um term based on aggregated demand forecasts. Then, during allocation planning
(Kilger and Meyr, 2015), the forecasted supply is allocated to local sales organiza-
tions (LSOs) and their customers so the manufacturer can prioritize the demands
of more important/profitable customers. Last, during order promising, customer
orders materialize and are filled until the allocated supply is exhausted (cf. Ball
et al., 2004).

As Kilger and Meyr (2015) describe, allocation planning is typically performed
throughout companies’ sales hierarchies. For example, a company may structure
its sales organization with regional managers on the first level (i.e., Europe and
North America), country managers on the second level (e.g., Germany, France),
and with multiple LSOs for branches (e.g., automotive, aviation) or areas (e.g.,
North, South) on the third level. In this setting, there is no central planner who can
determine all allocations simultaneously, so allocation planning is a decentralized

1This chapter is single-authored. The authors use of “we” is for consistency.
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process that is performed level-by-level (cf. Vogel and Meyr, 2015). In our example,
planners in the company’s headquarters would allocate the forecasted supply to
regional managers, who would distribute it among the countries for which they
are responsible. Then country managers would share the supply among the LSOs,
which would, finally allocate the supply to individual customers.

In practice, allocation planning in sales hierarchies is typically determined by
simple rules and then manually adjusted by the planners/managers (cf. Kilger and
Meyr, 2015). Per commit is an example of such a simple rule that is popular in
practice. Under per commit, supply is distributed evenly based on the expected
demand from customers. As the approach is based on the expected demands,
it requires little information to be shared in the hierarchy and is easy to under-
stand (cf. Fleischmann et al., 2019). However, the resulting allocations are often
suboptimal (cf. Kloos et al., 2018). Several recent studies develop more advanced,
decentralized approaches to improve allocations over those that result from the
simple rules currently applied. These new approaches allocate supply with the
objective of maximizing profits or minimizing deviations from service-level targets
(e.g., Cano-Belmán and Meyr, 2019; Kloos et al., 2018).

Liang and Atkins (2013) describe the increasing popularity of service-level con-
tracts in the B2B relationships of manufacturers and their customers. Service-level
contracts specify a performance target the manufacturer must achieve, the service-
level target, over a given period of time, the review horizon, and a penalty for
missing it. Under these service-level contracts, allocation planning is particularly
difficult because the service-level targets allow a certain part of demand to remain
unfilled without incurring penalties. Thus, the value of an allocation becomes clear
only when all demands have realized, the service-level is evaluated, and the penal-
ties are determined.

Kloos and Pibernik (2020) analyze this setting under a central planner who
can decide on all allocations simultaneously, and developed a myopic policy that
significantly decreases expected penalties compared to the simple rules applied in
practice and other policies from the literature.

The focus of the present study is on the decentralized allocation planning found
in companies with hierarchical sales organizations that seek to minimize the penal-
ties outlined in service-level contracts. Our objective is to develop new approaches
based on previous work on hierarchical allocation planning and to quantify their
gaps compared to those of central approaches like the myopic policy developed in
Kloos and Pibernik (2020). To this end, we decompose the hierarchical-allocation
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problem into two subproblems: the customer-allocation problem (CAP) and the
hierarchy-allocation problem (HAP). The CAP is the base-level problem and con-
cerns the LSO planners who decide how to allocate supply to their customers with
the objective of minimizing penalties. Planners on this level have complete control
over their allocations and full information about all of their customers’ service-level
contracts. Central approaches like the myopic policy can be readily applied to this
problem.

The HAP is the top-level problem. It is that of the managers/planners on higher
levels of the hierarchy, who cannot directly decide on the allocations to individual
customers. Planners on these levels receive allocations from planners at the next
higher level and decide how to distribute them among the planners at the next
lower level. Typically, planners on this level do not have full information on all
the customers’ service-level contracts assigned to the individual LSOs under their
responsibility (Fleischmann et al., 2019).

Addressing the HAP can be done based on simple rules, but these do not typi-
cally lead to optimal allocations to the LSOs (cf. Kloos et al., 2018). One could also
solve the HAP centrally and then infer the optimal allocations to the planners in-
dividually using a bottom-up-aggregation. However, this approach is not only op-
posed to the idea of decentralized allocation planning but is also likely meet resis-
tance from the planners, as the resulting allocations are usually not flexible. Other
decentralized allocation approaches from the literature are not directly applicable
to our setting, as there is no one-to-one correspondence between fulfilled demand
and penalty, so profit-based approaches cannot be employed directly. Kloos and
Pibernik (2020) find that policies that ignore the differences in customers’ penalties
lead to poor performance, so we can expect similar results from the service-level-
based methods in Kloos et al. (2018). Hence, we develop three new allocation
approaches that improve performance and significantly decrease the gap between
centralized and decentralized planning.

Our first approach is the penalty-based allocation, which infers approximated
per-unit penalties from the service-level contracts and determines allocations based
on Fleischmann et al.’s (2019) clustering method. Our second new approach, the
dynamic penalties approach, is also based on the clustering method, but it extracts
dynamic penalties from the CAP’s optimal myopic solution. Our third approach,
the smoothed dynamic penalty approach is a variation of the dynamic penalty
approach, in which we smooth the dynamic penalties to obtain more stable alloca-
tions that benefit the approach’s performance.
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We analyze the performance of these three allocation approaches in two set-
tings: one in which only allocation planning is decentralized, but inventory and
backlog are cleared centrally, and one in which the LSOs are responsible for clear-
ing remaining inventory and backlog, and allocation planning is performed only
for newly available supply.

Our numerical results show that the approaches’ performance differs signifi-
cantly between the two settings. Under central inventory/backlog and symmetric
hierarchies, applying per commit for the HAP leads to a performance close to
that of central planning, while under asymmetric hierarchies, the penalty-based
approach leads to good allocations. In this setting, we observe little benefit from
the more involved dynamic penalty approach, but that situation changes in the set-
ting with decentralized inventory and backlog-clearing, when the dynamic penalty
approach clearly outperforms the other allocation approaches.

The reminder of the paper is structured as follows: Section 5.2 provides an
overview of the literature, and Section 5.3 formalizes our setting. Section 5.4 in-
troduces our allocation approaches for the CAP and the HAP. In Section 5.5, we
test the resulting allocation systems for their performance with a numerical exper-
iment and derive suggestions for when to apply which approach. In Section 5.6
we analyze a case of decentralized inventory and backlog-clearing, adopt the al-
location approaches for this setting, and evaluate their performance numerically.
Section 5.7 summarizes and concludes the study.

5.2 Literature Review

Two streams of literature are closely related to our research: studies on the
management of service-level contracts and the literature on allocation planning in
sales hierarchies.

The problem of allocation planning in sales hierarchies goes back to Kilger and
Schneeweiss (2000), who are the first to describe allocation planning as a decentral-
ized process that must be aligned with the company’s multi-level organizational
structure. Vogel and Meyr (2015) analyze this problem for a single-period setting
with deterministic demand and formalize the sales hierarchy as a mathematical
tree. They use a numerical study to show that one can obtain close-to-optimal allo-
cations using decentralized allocation approaches. Cano-Belmán and Meyr (2019)
extend the analysis to a multi-period setting.
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Fleischmann et al. (2019) analyze profit-based allocation planning under sto-
chastic demand, show how to obtain optimal allocation centrally, and test several
decentralized allocation approaches. They propose a clustering method that uses
limited decentralized information on demand distributions and profit heterogene-
ity and show that the approach results in close-to-optimal allocations. In a setting
in which planners seek to achieve customer-specific (alpha) service-level targets,
Kloos et al. (2018) develop and analyze several decentralized allocation approaches
and show that a combination of a simple per commit allocation on the upper levels,
paired with an optimal allocation at the customer level, can lead to near-optimal
allocations when hierarchies are symmetric. While their research is similar to ours,
there are two major differences: while Kloos et al. (2018)) analyze a single period
setting, we consider multiple periods, and while Kloos et al. (2018) infer penal-
ties from the alpha-service-level targets, we consider service-level contracts with
explicit penalties and fill-rate targets.

Also relevant to our study is research on the management of service-level con-
tracts. While most of these studies assume an inventory-management setting in
which there is a central planner whose supply is unconstrained, most of their re-
sults are relevant to our setting. Thomas (2005) finds that, in practice, service levels
are not measured in real time but over a finite review horizon and shows that the
length of the review horizon impacts the likelihood of reaching fill-rate targets.
Sieke et al. (2012) and Liang and Atkins (2013) analyze the effect of linear and
lump-sum penalty schemes. Under lump-sum penalty schemes, a fixed penalty is
incurred for any deviation from the set service-level target, while under a linear
penalty scheme, increases in the deviation from the service-level target incur in-
creased penalties. Sieke et al. (2012) show that, in a setting with a single customer,
a lump-sum penalty the optimal policy for the supplier is to stop serving its cus-
tomer when reaching the service-level target becomes too costly. Liang and Atkins
(2013) observe the same effect for a setting with multiple customers and suggest
using linear penalties to incent suppliers always to serve their customers demand.

Protopappa-Sieke et al. (2016) analyze optimal allocations to customers over a
two-period setting with homogeneous service-level contracts and lump-sum penal-
ties. Because customers are assumed to be homogeneous, the first period’s alloca-
tion is trivial, as all customers receive the same share of supply. Allocations in
the second period are, as in Fleischmann et al. (2019), given by equal marginal
expected penalties. In this setting, customers whose first-period service levels are
below a certain threshold receive no allocation in the second period.
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Kloos and Pibernik (2020) analyze allocation planning in a setting with con-
strained supply, heterogeneous customers, linear penalties, and fill-rate targets on
a multi-period review horizon. To compute optimal allocations in each period, the
planner must solve a stochastic dynamic program, which turns out to be infeasible.
Instead, they propose a myopic allocation policy that substantially lowers expected
penalties compared to the conventional approaches in their numerical study.

Our research is closely related to Kloos and Pibernik (2020) from which we
adopt our general setting. However, Kloos and Pibernik assume a central planner
with complete information, where we explicitly model the multiple planners in a
multilevel sales hierarchy and the corresponding decentralized decision process.
In our setting, planners at the higher levels of the hierarchy plan with only aggre-
gated information and can decide only on the allocations to their direct successors.
Hence, our research can also be viewed as a hierarchical extension of Kloos and
Pibernik’s study.

5.3 Setting

We consider a manufacturer that supplies a single product over R periods to a
set of diverse customers who have service-level contracts. The manufacturer’s sales
organization has a hierarchical structure, where LSOs are responsible for fulfilling
the customers’ demand, and supply is provided/produced centrally at the top level
of the hierarchy. After formalizing the sales hierarchy, the customers’ service-level
contracts, and the decentralized planning process (Section 5.3.1), we introduce the
dynamics of our model and describe the sequence of events in Section 5.3.2.

5.3.1 Organizational Structure and the Planning Process

A sales hierarchy can be described as a balanced mathematical tree with nodes
n ∈ N on K levels (cf. Vogel and Meyr, 2015). Each node on levels 1 to K− 2 rep-
resents an individual planner in the hierarchy, the nodes on level K − 1 represent
the planners in the LSOs, and the nodes on level K represent the heterogeneous
customers. At level 1 there is only the root node 0 ∈ N ; all levels k ∈ {1, . . . , K}
contain at least one node n ∈ Ik ⊂ N . Figure 5.1 depicts an example of such a
sales hierarchy.

Each customer l ∈ IK on level K has a service-level contract specifying a fill-
rate target βl and a penalty parameter pl for deviations. The fill-rate is calculated
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Figure 5.1: A general sales hierarchy.
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at the end of the planning horizon R from the total on-time fulfilled demand yR+1,l

and total demand zR+1,l . Definition 5.1 specifies the linear penalty mechanism.

Definition 5.1 (Penalty of a customer). Denote the fill-rate target of customer l with
βl , the penalty parameter with pl , the total demand after period R with zR+1,l and the total
fulfilled demand with yR+1,l . Then the penalty of customer l is:

Pl(zR+1,l , yR+1,l) = pl ·
[

βl −
yR+1,l
zR+1,l

]+
,

where [x]+ = max{x, 0}.

The demand of each customer l in period t ∈ {1, . . . , R}, Dl,t, is stochastic and
follows a continuous distribution with mean µl,t, standard deviation σl,t, pdf fl,t,
and cdf Fl,t : R+ ⇒ [0, 1].

Level K − 1 represents the LSOs m ∈ IK−1 responsible for fulfilling their cus-
tomers’ demands Dl,t. Customer demand is fulfilled from dedicated allocations
xl,t—we consider no nesting. The LSOs determine their allocations based on com-
plete information about their customers’ service-level contracts and their corre-
sponding demand distributions. The allocations are limited by the allocation xm,t

received from the higher level, that is, ∑l∈L xl,t = xm,t. We call this the customer
allocation problem (CAP):

Problem 5.1 (Customer allocation problem). The customer allocation problem for
LSO m ∈ IK−1 is

P̄m(xm,t) = min
(xl,t)l∈Sm

E

[
∑

l∈Sm

Pl(ZR+1,l , YR+1,l)

]
subject to ∑

l∈Sm

xl,t ≤ xm,t

xl,t ≥ 0 ∀l ∈ Sm

The hierarchy levels 1 to K− 2 determine the allocations to the LSOs level-by-
level: Starting from the first level, planners on nodes n ∈ Ih for h ∈ {1, . . . , K −
2} determine the allocations xj,t to their planners on the second level j ∈ Sn.
All planners have no additional sources of supply, and no supply is retained, so
the sum of allocations to the successor nodes equals the supply received from
the parent node; i.e., ∑j∈Sn

xj,t = xn,t for all n ∈ Ih, h ∈ {1, . . . , K − 2} and t ∈
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{1, . . . , K}. We call this the hierarchy allocation problem (HAP) and formalize it as
Problem 5.2.

Problem 5.2 (Hierarchy allocation problem). The hierarchy allocation problem for
planner n ∈ Ih and h ∈ {1, . . . , K− 2} is

P̄n(xn,t) = min
(xj,t)l∈Sn

∑
j∈Sn

Pj(xj,t)

subject to ∑
j∈Sn

xj,t ≤ xn,t

xj,t ≥ 0 ∀j ∈ Sn

Problem 5.1 and Problem 5.2 are connected by the expected penalty functions
P̄m of the LSOs m ∈ IK−1: The hierarchy levels must anticipate the penalty they
can expect from an allocation to the LSOs, and the LSOs’ decisions are limited by
the allocation received from the next higher level. Kloos et al. (2018) show in a
similar setting that solving the decentralized allocation problem optimally yields
the same results as solving the central problem. However, solving the decentral-
ized allocation problem requires that the planners communicate their real-valued
penalty functions P̄m with planners on the next higher level and that each planner
at the hierarchy levels solves a non-linear convex knapsack problem. While feasible
from a theoretical standpoint, we consider this approach to be impractical.

5.3.2 Model Dynamics

Supply rt is given and becomes available at root node 0 at the beginning of
each period t. The customers’ demand is fulfilled from their respective allocation
xl,t, and any demand that exceeds xl,t is backlogged and fulfilled before any new
demands are fulfilled. Excess allocations and/or backlog are collected centrally.
Therefore, the following sequence of events takes place:

1. The root node receives deterministic supply rt and the remaining inventory
i0,t.

2. Any remaining backlogged demand b0,t is cleared.

3. The supply available for allocation x0,t = [rt + i0,t − b0,t]
+ is calculated.

4. The planners n ∈ Ih on hierarchy levels h ∈ {1, ..., K − 2} determine the
allocations xn,t to their successor nodes m ∈ Sn. (They solve the HAP.)
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5. The LSOs m ∈ IK−1 determine their allocations xl,t to their customers l ∈ Sm.
(They solve the CAP.)

6. The demands Dl,t of the customers realize and the LSOs fulfill min{Dl,t, xl,t}
and backlog [Dl,t − xl,t]

+.

7. The LSOs m ∈ IK−1 update the variables for fulfilled demand yt+1,l =

min{dl,t, xl,t}+ yt,l and total demand zt+1,l = dl,t + zt,l .

8. The LSOs m ∈ IK−1 clear any backlogged demand and calculate backlog
bm,t+1 =

[
−xm,t + ∑l∈Sm

dl,t
]+ and inventory im,t+1 =

[
xm,t −∑l∈Sm

dl,t
]+.

9. The remaining backlog b0,t+1 = ∑m∈IK−1
bm,t+1 and the leftover inventory

i0,t+1 = ∑m∈IK−1
im,t+1 are reported to the root node.

In this model, we assume that no physical allocations are made and that un-
consumed allocations are available at the root node in the next period. In practice,
however, the allocations to the LSOs often result in a physical reallocation of the
supply, that is, the supply is shipped to the LSOs. This reallocation does not
necessarily contradict our model: When backlog and inventory levels are trans-
parent, they can be cleared decentrally by adjusting the physical allocations to
xp

n,t = xn,t + bn,t − in,t, where bn,t = ∑j∈Sn
bj,t and in,t = ∑j∈Sn

ij,t. However, we can
also imagine a case in which LSOs are not willing to share their inventory levels
or backlog levels with higher levels of the hierarchy. We analyze this alternative
setting in Section 5.6.

5.4 Allocation Approaches

The problem of allocating supply in sales hierarchies that we described in Sec-
tion 5.3 consists of two sub-problems: The CAP is that of the LSOs that determine
the allocations to their customers and have complete information on all their cus-
tomers’ demand distributions and service-level contracts, and the HAP is that of
planners who determine their allocations level-by-level based on local information.
The two problems are interrelated, as allocations to the LSOs limit the supply that
can be allocated to fulfill customers’ demands, and the hierarchy level relies on
the information it receives from the customer level to determine the allocations.
Given these characteristics, the allocation problem forms a hierarchical distributed
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decision-making system (Schneeweiss, 2003), which is characterized by two deci-
sion levels: a top-level and a base-level. The top-level in such a system does not
directly determine the final decision, so it must maintain some ability to antici-
pate the base-level’s decisions. As Schneeweiss (2003) explains, the performance
of these decision making systems depends not only on both levels’ isolated perfor-
mance but also on how well they interact, that is, how well the top-level anticipates
the base-level’s decision and objective. In our setting, the HAP is the top-level
problem, as its allocations only indirectly influence the performance. The CAP can
be seen as the base-level problem, as its decision space is limited by the top-level’s
decisions, but the allocations of the LSOs to the customers directly influence the
penalties.

Section 5.4.1 addresses how to determine allocations for the CAP. Then Sec-
tion 5.4.2 proposes and discusses four allocation approaches for the HAP. From
the allocation approaches on the CAP and the HAP we construct four allocation
systems, whose performance we analyze numerically in Section 5.5.

5.4.1 Customer Allocation Problem

Each LSO m ∈ IK−1 fulfills the demands of its customers l ∈ Sm by deter-
mining the allocations xl,t with the aim of minimizing the expected penalty. (See
Problem 5.1.) The LSOs have complete information about all service-level contracts,
including their fill-rate targets and penalty parameters, and about the customers’
demand distributions, the total demand zl,t, and each customer’s total fulfilled de-
mand yl,t. The supply available for allocation in the current period is known at the
time of the decision and has been determined by the hierarchy level.

Kloos and Pibernik (2020) analyze a similar setting, show that the planners’
problem can be described as a stochastic dynamic program, and identify the fac-
tors that are relevant to the decision: The planner must simultaneously balance
the probability that an allocation in the current period is consumed, the probabil-
ity that the fill-rate target is reached, and the expected penalty for the deviation.
The probability of reaching the fill-rate target depends on all allocations from the
current period t to the terminal period R, so it is difficult to obtain, as it requires
the planner to consider the available supply and the demand distributions of all
remaining periods. In our setting, reaching the fill-rate target is even more chal-
lenging, as the allocations to the LSO in future periods are not known at the time
the decision is made. Kloos and Pibernik (2020) find that the resulting stochastic
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dynamic program has a large state-space that make it infeasible to solve to optimal-
ity. Instead, they propose a myopic policy and show that this policy outperforms
previous approaches.

Under the myopic policy, allocations are determined as if fill rates are evalu-
ated and penalties are incurred directly after the demand is known. Hence, this
policy does not require information on the supply that will be available in subse-
quent periods, making it suitable for our hierarchical setting. In the following, we
describe the concept of the myopic allocation policy and show how to adopt the
approach to our setting.

Under the assumption that penalties are incurred directly after demand is
known, that is, in the subsequent period t+ 1, Kloos and Pibernik (2020) determine
explicit expressions of the expected penalties and, based thereon, characterize the
optimal solution. Definition 5.2 adopts the myopic policy to our setting.

Definition 5.2 (Myopic allocation). The myopic allocation xm
m,t = (xm

l,t)l∈Sm of sub-
sidiary m in period t is:

xm
m,t = argmin

(xl,t)l∈Sm

∑
l∈Sm

E[Cl(xl,t)] (5.1)

subject to ∑
l∈Sm

xl,t ≤ xm,t (5.2)

xl,t ≥ 0 ∀l ∈ Sm (5.3)

where

E[Cl(xl,t)] =

∫ ∞
dmax,l(xl,t)

p
(

βl − yl,t+xl,t
zl,t+dl,t

)
f (dl,t) ddl,t if β̂l,t ≥ βl∫ dmin,l

0 p
(

βl − yl,t+dl,t
zl,t+dl,t

)
f (dl,t) ddl,t + . . .

. . .
∫ ∞

dmax,l(xl,t)
p
(

βl − yl,t+xl,t
zl,t+dl,t

)
f (dl,t) ddl,t if β̂l,t < βl and xl,t > dmin,l∫ xl,t

0 p
(

βl − yl,t+dl,t
xl,t+dl,t

)
f (dl,t) ddl,t + . . .

. . .
∫ ∞

xl,t
p
(

βl − yl,t+xl,t
xl,t+dl,t

)
f (dl,t) ddl,t else.

with dmin,l =
βl zl,t−yl,t

1−βl
and dmax,l(xl,t) =

yl,t+xl,t
βl
− zl,t.

The problem that underlies Definition 5.2 is a stochastic knapsack. As Kloos
and Pibernik (2020) show, the optimal solution is characterized by the marginal
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change in the expected penalty d
dxl,t

E[Cl(xl,t)] = λl,t(xl,t) of each customer l ∈ Sn.
The marginal change in the expected penalty decreases in the allocation because,
first, as the allocation increases, the probability that the customer will consume
the whole allocation decreases; and, second, the customers’ expected fulfilled de-
mand increases with the allocation and, with it, the customers’ fill rate. As the fill
rate increases, the probability that the target will be achieved increases along with
the probability that no penalty will be incurred. Hence, the maximum marginal
change in expected penalty is achieved for the first allocated unit. Consequently,
in the optimum the customers receive an allocation such that the marginal change
in expected penalty is equal. Customers whose maximum marginal change in ex-
pected penalty is too low receive no allocation.

Thus, solutions to Definition 5.2 can be computed efficiently. (See Kloos and
Pibernik, 2020.) We use the approach in Definition 5.2 with the approaches for the
HAP we develop in Section 5.4.2.

5.4.2 Hierarchy Allocation Problem

The HAP can be viewed as the top-level problem of an hierarchical distributed
decision-making system. As Schneeweiss (2003) explains, the top level must an-
ticipate the outcome of the planning conducted on the base level. Section 5.3.2
discussed that, for an optimal allocation, the planners must know the expected
penalty for a specific allocation to the next level and that that this is not feasi-
ble in our setting. Schneeweiss (2003) suggests using the level of anticipation to
classify decision-making systems and distinguishes approaches with non-reactive,
implicit-reactive, and explicit-reactive anticipation. Approaches with non-reactive
anticipation do not anticipate the decisions made at the base level but use only
some general features to make decisions. Approaches with implicit-reactive antic-
ipation consider only parts of the of the base level’s decisions, whereas explicit-
reactive approaches explicitly model the base level’s decision, although it may be
approximated. Clearly, the higher the level of anticipation, the closer the approach
will be to a central model, and we expect performance to improve. On the other
hand, a more detailed anticipation typically increases the approach’s complexity
in terms of the top level’s decision-making and the information required from the
base level. We propose four allocation approaches that correspond to various levels
of anticipation.
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Non-reactive Anticipation Per commit, discussed in the introduction, is frequent-
ly used in practice (cf. Kilger and Meyr, 2015) and is shown to perform well for allo-
cations in symmetric hierarchies (cf. Kloos et al., 2018). As the approach determines
allocations based on expected demands, it can be viewed as a non-anticipating
model. We formalize the approach in Definition 5.3.

Definition 5.3 (Per Commit). Denote with µn,t = ∑j∈Sn
µj,t the total expected demand

of node n in period t. Then the allocation of node n in period t to its successors j ∈ Sn is

xPC
j,t = xn,tµj,t/µn,t.

As Definition 5.3 shows, per commit requires that the LSOs m ∈ IK−1 com-
municate to the next higher level only its customers’ total expected demand, so
allocations can be determined in a two-step process: The total expected demands
are calculated by bottom-up aggregation, and then the available supply is allocated
top-down and level-by-level. All calculations are simple and easy to understand,
which may be why the approach is popular in practice.

Kloos et al. (2018) analyze per commit for allocating in a sales hierarchy and
combine it with a local optimal allocation on the lowest level, terming it the “hy-
brid approach.” They show analytically that the resulting allocations are optimal
for symmetric hierarchies, but numerical results suggest that the approach’s per-
formance declines as the hierarchy becomes more asymmetric. Although Kloos
et al. (2018) consider only a single-period setting with no penalties on deviations
from service-level targets, we expect a comparable performance of the per commit
approach when the hierarchy is symmetric. In our numerical evaluation in Sec-
tion 5.5, we compare the performance of applying per commit in symmetric and
asymmetric settings.

Implicit-Reactive Anticipation The goal of an approach with implicit-reactive
anticipation is to achieve a sufficiently good performance by considering only the
most important aspects of the base model. Kloos and Pibernik (2020) compare sev-
eral allocation approaches featuring various aspects of the problem and find that
differences in penalties and in customers’ demand distributions are most decisive
in how allocation approaches perform. Hence, we expect approaches that consider
only differences in penalties to perform comparatively well. The penalty-based
allocation approach that we discuss below ignores customers’ fill-rate targets and
infers per-unit penalties from the penalties in the service-level contracts.
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Ignoring the fill-rate targets—or, rather, assuming that fill-rate targets are set
to 1—allows us to linearize the penalty function and derive a constant per-unit
penalty, thereby simplifying the problem into a penalty-minimization problem.
Because of the equivalence of profit maximization and penalty minimization, we
can then use the clustering method Fleischmann et al. (2019) propose to compute
allocations decentrally. Next we discuss how to derive the per-unit penalties and
to use the clustering method in our setting.

Assuming a customer’s service-level target is 1, any unfilled demand leads to
a penalty: Set βl = 1, and the total penalty for customer l simplifies to pl(1 −
YR+1,l
ZR+1,l

) =
pl

ZR+1,l
(ZR+1,l −YR+1,l) (cf. Definition 5.1), where pl/ZR+1,l is the per-unit

penalty for each unit of unfilled demand. While ZR+1,l is a random variable, we can
approximate it to the total expected demand in the period z̄R+1,l = zt,l + ∑R

τ=t µl,τ

and obtain the approximate per-unit penalty2 pu
l,t =

pl
z̄R+1,l

.
Based on these per-unit penalties, we can formulate a surrogate allocation prob-

lem that minimizes the total per-unit penalties in each period t. For simplicity, we
formulate it as a central problem and then discuss how Fleischmann et al.’s (2019)
clustering method can be used to solve the problem decentrally:

min ∑
l∈L

pu
l,t

∫ ∞

xl,t

(dl,t − xl,t) · fl,t(dl,t) ddl,t (5.4)

subject to ∑
l∈L

xl,t ≤ x0,t

xl,t ≥ 0 ∀l ∈ L.

The surrogate allocation problem in Equation (5.4) minimizes the expected
penalties. We can use Fleischmann et al.’s (2019) clustering method to calculate al-
locations decentrally. The clustering methods starts from the lowest level, clusters
the customers according to their per-unit penalties, and calculates the aggregated
demand distribution and the average per-unit penalty for each cluster. Then the
clusters are shared with the next higher level, which also receives clusters from all
of its successors. This level clusters the clusters again, such that the number of
clusters made at each level remains constant. This process is repeated up to the
highest level. Then the allocation process starts from the top, where each planner

2Clearly pu
l,t 6= E[ pl

ZR+1,l
], as 1/ E[ZR+1,l ] 6= E[1/ZR+1,l ]. However, because we calculate the

expectation over R periods, the differences are negligible in practical applications, so our simplified
formulation is more suitable for practical applications.
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determines the optimal allocation to the clusters and then calculates the allocations
to nodes on the next lower level. This process continues until the LSOs obtain their
allocations. Thus, the planners have to solve only relatively small problems based
on the average per-unit penalties and the clusters’ aggregated demand distribu-
tions. While the method is clearly more complex than determining allocations by
per commit, these small problems are tractable for the planners, especially com-
pared to solving the central problem.

Appendix D provides a formal algorithm for the clustering method. To focus
on the principle idea behind the penalty-based allocation approach and avoid po-
tentially confusing notation, we define the clustering allocation function as y =

C[p, x], which maps the per-unit penalties p = (pl)l∈IK and the available supply x
to the LSOs’ allocations y = (ym)m∈IK−1 .

We formalize the penalty-based allocation approach in Definition 5.4.

Definition 5.4 (Penalty-based allocation). The penalty-based allocation to the LSOs in
period t is

(xpen
n,t )n∈IK−1 = C

[
(pu

l,t)l∈IK , x0,t
]

where

pu
l,t =

pl

zl,t−1 + ∑R
τ=t µl,τ

∀l ∈ IK .

The penalty-based approach in Definition 5.4 considers differences in custom-
ers’ penalties and demand distributions but is based on the assumption that fill-rate
targets are set to 1. Therefore, we expect the approach’s performance to decline for
lower fill-rate targets. We evaluate the performance of the penalty-based approach
in our numerical experiment in Section 5.5.

Explicit-Reactive Anticipation An explicit-reactive anticipation approximates the
base levels’ characteristics explicitly. At the base level, optimal allocations are char-
acterized by an equal marginal change in all customers’ expected penalties (cf.
Section 5.4.1). Consequently, the allocation on each hierarchy level should aim to
achieve an equal marginal change in expected penalties for all customers in all
LSOs. More formally, the optimal allocations to the LSOs are x∗n,t = ∑l∈Sn

x∗l,t for
all n ∈ IK−1 for which, with Aλ = {l | λl,t(0) < λ}, the following hold: (See Kloos
and Pibernik, 2020 for a formal proof.)
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λl,t(x∗l,t) = λ ∀ l ∈ IK\Aλ (5.5)

x∗l,t = 0 ∀ Aλ. (5.6)

This characterization of optimal solutions is typically found in convex knap-
sack problems, so it is structurally similar to the single-period profit-maximizing
case Fleischmann et al. (2019) analyzes. However, in their case, λl,t(x∗l,t) can be
expressed as ρl [1− Fl,t(x∗l,t)], that is, as the per-unit profit ρl times the probability
that the allocation is consumed. We show in the following that we can approximate
λl,t(xl,t) as pd

l,t[1− Fl,t(xl,t)], where pd
l,t is a kind of dynamic penalty. With this ap-

proximation, the problem’s structural form is identical to that of Fleischmann et al.
(2019), and we can again use their clustering method to obtain allocations decen-
trally.

As a first step in developing the dynamic penalty approach, we approximate
λl,t(xl,t) around a given allocation xbase

l,t . λl,t decreases in xl,t because the proba-
bility that xl,t is consumed decreases, and the probability of not paying a penalty
increases (cf. Section 5.4.1). Because the fill rate is measured over multiple periods,
the probability of not paying a penalty is typically less sensitive to xl,t, and the
change in the probability that the allocation is consumed has the largest impact, so
changes in λl,t result mainly from the change in the probability of consumption.
Hence, we use the consumption probability to approximate the marginal change
in the expected penalty. Definition 5.5 formalizes this approach.

Definition 5.5 (Approximated marginal change in expected penalty). The approxi-
mated marginal change in expected penalty is

λ̃l,t(xl,t) = λm,t(xbase
l,t ) · 1− Fl,t(xl,t)

1− Fl,t(xbase
l,t )

. (5.7)

Definition 5.5 adjusts the marginal change in expected penalty at xbase
l,t by

1−Fl,t(xl,t)

1−Fl,t(xbase
l,t )

, the change in consumption probability. With
λm,t(xbase

l,t )

1−Fl,t(xbase
l,t )

= pd
l,t, we

obtain λ̃l,t(xl,t) = pd
l,t[1 − Fl,t(xl,t)]. With this approximation, Equation 5.5 and

5.6 have the same structure as the optimal solution in Fleischmann et al. (2019),
and we can apply the clustering method to calculate allocations. Definition 5.6
formalizes the approach.
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Definition 5.6 (Dynamic penalty approach). Denote with pd
l,t =

λm,t(xbase
l,t )

1−Fl,t(xbase
l,t )

the dy-

namic penalty in period t ∈ {1, . . . , R}, where

xbase
l,1 =

µl,1 for t = 1

xl,t−1 for t > 1.

Then the dynamic penalty approach’s allocation to LSOs m ∈ IK−1 in period t is

(xdp
m,t)m∈IK−1 = C

[
(pd

l,t)l∈IK , x0,t
]
.

The dynamic penalty approach in Definition 5.6 uses the allocation from the
previous period xl,t−1 to calculate the dynamic penalties for periods t > 1. For
the first period, the dynamic penalty is calculated for the mean demand µl,t of
customer l.

The dynamic penalty approach is a two-level approximation of the optimal
allocation to the LSOs. First, we approximate the marginal change in expected
penalties as shown in Definition 5.5. Then we employ the clustering method to
obtain allocations, instead of directly choosing the allocation that leads to equal
approximated marginal changes in penalties for all customers. Because of the two
levels of approximation, it is difficult to provide any formal bounds on the ap-
proach’s performance, but as it is directly based on the optimality condition, we
expect it to perform well, independent of the level of heterogeneity and the hier-
archy’s structure. However, the approach is more complex and more difficult to
understand than the penalty-based approach, especially for the LSOs, who now
have to derive the dynamic penalties from the myopic allocation approach. At
the hierarchy level, both the penalty-based and the dynamic penalty approach use
the clustering method, so they have the same complexity. However, the per-unit
penalty the penalty-based approach uses is easier to understand than the dynamic
penalty of the dynamic penalty approach.

When we evaluate the dynamic penalty approach numerically, we observe that
dynamic penalties and, with them, the allocations to the LSOs fluctuate, which
is detrimental to the approach’s performance. To counter this effect, we develop
in Definition 5.7 an alternative formulation of the dynamic penalty approach that
uses single exponential smoothing to “dampen” the dynamic penalties’ effect.
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Definition 5.7 (Smoothed dynamic penalty approach). Denote the smoothed dynamic
penalty in period t ∈ {1, . . . , R} with

pd
l,t =


λm,1(µl,1)

1−Fl,1(µl,1)
for t = 1

α
λm,t(xl,t−1)

1−Fl,t(xl,t−1)
+ (1− α)pd

l,t−1 for t > 1.

Then the smoothed dynamic penalty approach’s allocation to LSOs m ∈ IK−1 in period t
is

(xsdp
m,t )m∈IK−1 = C

[
(pd

l,t)l∈IK , x0,t
]
.

If we set α = 1, Definition 5.7 is equivalent to Definition 5.6, so both approaches
are similarly complex. However, we expect the smoothed dynamic penalty ap-
proach to remedy the problem observed for the dynamic penalty approach, but it
comes at a cost, as the more the penalty is smoothed, the less reactive the approach
is to the newly calculated dynamic penalty that considers updated information. For
instance, if a customer’s demand is much higher than predicted, its fill rate will
decrease, as will the probability of reaching the fill-rate target, and the dynamic
penalty in the next period will increase. Because the smoothed dynamic penalty
approach adjusts the reported penalty toward the previous dynamic penalty, the
allocation under the smoothed dynamic penalty approach will increase less than
it will under the dynamic penalty approach. Our numerical evaluation in the next
section shows whether this effect on the overall performance is positive or negative.

5.5 Numerical Evaluation

This section presents the results of several numerical experiments conducted
to evaluate the performance of the allocation approaches to the HAP, which we
developed in Section 5.4.2. Our objective is to identify when each approach leads
to a good overall performance and to quantify the losses that are due to penalties
compared to those that occur with a central allocation. These results can help
decision-makers decide when simple approaches like per commit suffice and when
a more complex approach would be beneficial.

In Section 5.5.1, we discuss which parameters and settings are relevant to our
analysis. Then Section 5.5.2 outlines how we obtained our results. Finally, Sec-
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tion 5.5.3 compares the decentralized allocations systems’ performance with a cen-
tral benchmark and derives suggestions for when to apply each approach.

5.5.1 Design

Section 5.4 presented three conjectures on the performance of our allocation
approaches:

1. Per commit will perform well when heterogeneity is low and/or the hierar-
chy is symmetric.

2. The profit-based approach’s performance will be similar to that of the central
case for high fill-rate targets.

3. The smoothed dynamic penalty approach leads to close-to-optimal alloca-
tions, independent of the setting.

From these conjectures we derive three parameters that are most relevant to
the allocation approaches’ performance: the setup of the hierarchy, the customers’
heterogeneity in penalties, and their heterogeneity in fill-rate targets. We want
our numerical evaluation to determine the isolated and combined effects of these
parameters. In the following we show how we implemented our numerical evalu-
ation.

• Set-up of the Hierarchy: To test how the hierarchical set-up impacts the
allocation approaches, we use two three-level hierarchies with six customers
and three service-level contracts (A, B, C). We analyze a symmetric set-up in
which the two sub-trees of the hierarchy are identical, and an asymmetric
set-up in which the two sub-trees have different customers. Both set-ups are
shown in Figure 5.2. We do not vary the number of customers or the levels of
the hierarchy, as the clustering method we use for our allocation approaches
is robust against these parameters (cf. Fleischmann et al., 2019).

• Fill-rate Target Heterogeneity: We analyze the fill-rate target heterogeneity
by means of two scenarios, as the relationship between fill-rate targets and
the corresponding required allocations is highly non-linear. Assume, for
instance, a single-period setting in which demand is normally distributed
with mean 10 and a standard deviation of 2. In this setting, customers with
fill-rate targets of 0.8 and 0.81 require allocations of 8.2 units and 8.3 units,
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Figure 5.2: Setup of the hierarchies analyzed in the paper.

respectively, to achieve their fill-rate targets, so the allocations are similar.
For two customers with fill-rate targets of 0.98 and 0.99, the corresponding
allocations are 11.8 units and 12.5 units, respectively, so the allocations dif-
fer substantially. Consequently, linear scaling for the fill-rate targets would
introduce additional effects that could dilute our results and make the indi-
vidual instances difficult to compare. Therefore, we use only two scenarios:
one with homogeneous fill-rate targets, where we set the fill-rate targets of
service-level contracts A, B and C to 0.965, and one with heterogeneous fill-
rate targets to which we assign a fill-rate of 0.995 to service-level contract
A, 0.965 to contract B, and 0.88 to contract C. These settings mirror those in
Kloos and Pibernik’s (2020) experiments.

• Penalty Heterogeneity: We measure the penalty heterogeneity with an ap-
proach similar to that of Kloos and Pibernik (2020): We use penalty param-
eter ρ to compare the additional penalty of the service-level contract that
has the highest fill-rate target with the average penalty. Hence, for ρ = 0,
all service-level contracts have the same penalties, but for ρ > 0 (ρ < 0)
service-level contract A has the highest (lowest) penalties. In the scenario
with homogeneous fill-rate targets, there is no difference between positive
or negative values of ρ.

All of our experiments assume that customer demand follows a zero-truncated
normal distribution with mean µl,t = 10 and standard deviation σl,t = 2 for all
customers l ∈ IK and period t ∈ {1, . . . , R}. We set the average penalty to 1000

and, where not stated otherwise, use a review horizon of R = 10 periods.
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5.5.2 Simulation Environment

We implemented all four decentralized allocation approaches for the HAP and
used the myopic allocation policy (Section 5.4.1) for the CAP, so we had four al-
location systems: The myopic approach with per commit on the hierarchy levels
(M-PC), the myopic approach with the penalty-based approach (M-P), the myopic
approach with the dynamic penalty approach (M-DP) and, the myopic approach
with the smoothed dynamic penalty approach (M-SDP). To identify the loss in per-
formance that results from the decentralized planning processes, we compare the
performance of these allocation systems with a central myopic allocation policy
(MC). As the myopic allocation policy is a heuristic, it does not result in optimal
allocations. However, the performance of the hierarchical allocation systems with
MC lets us estimate how much “optimality” we lose by using a decentralized al-
location system. As an additional performance reference, we implement a “pure”
per commit allocation (PC), which uses per commit to determine all allocations.
Because per commit does not prioritize, its performance can be interpreted as a
lower bound.

The allocation systems and the simulation environment are implemented with
Python and use NLopt to solve the non-linear optimization problems. We perform
our calculations in three steps—initialization, simulation, and evaluation.

Initialization We first draw the customers’ demands from a normal distribution
truncated at zero. For each scenario we use I = 200 individual demand realiza-
tions. As is common in Monte-Carlo experiments, we employ the antithetic variates
technique (Ross, 2006) to reduce the experiment’s variance.

We generate the customer hierarchies from the two hierarchy set-ups, parame-
terize the customers according to the scenarios’ fill-rate targets and penalties, and
then assign the demand realizations to the leaf-nodes/customers. The result is a
hierarchy that contains all information on the customers and their demand realiza-
tions, fill-rate contracts, and demand distributions.

Simulation For each hierarchy and all allocation methods our simulation iterates
through the periods of the review horizon in several steps. First, starting from the
customer level and iterating up through the hierarchy, we compute the necessary
information for each allocation approach. For instance, for per commit we calculate
the total mean demand for each node in the hierarchy, and for the penalty-based
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approach we compute the clusters’ penalties and aggregated demand distributions.
Then we clear open backlog and obtain the supply that is available for allocation
at the root node. Next, we calculate the allocations top-down until we get to the
LSOs. Finally, we solve the CAP to obtain the allocations to the customers. Based
on the allocations obtained and the demand realized, we update total demand and
total fulfilled demand and calculate the backlog and inventory levels. We store
allocations, the total demand, and the total fulfilled demand and proceed to the
next period until we reach the end of the review horizon.

Evaluation Having obtained the total fulfilled demand and the total demand for
each customer in the review period, we calculate the penalties for each demand
realization and allocation system, from which we can calculate the total penalty. To
evaluate the performance of the various decentralized allocation systems, we need
to compare the average penalties with those from central planning. Therefore, we
measure the decentralization error (DE) as the systems’ average gap relative to a
central myopic allocation. We formalize the DE in Definition 5.8.

Definition 5.8 (Decentralization Error). The decentralization error of allocation system
a is

DEa =
1
I ∑I

i=1 ∑l∈IK
Ca

l,i
1
I ∑I

i=1 ∑l∈IK
CMC

l,i
,

where Ca
l,i is customer l’s penalty in demand realization i ∈ {1, . . . , I} and allocation

system a, and CMC
l,i is the penalty under a central myopic allocation.

The performance of M-SDP is affected by the choice of the smoothing parame-
ter α. We analyze the optimal settings of α for our scenarios and find that α = 0.9
consistently offers the highest performance. Hence, we refrain from optimizing α

individually for each scenario and use α = 0.9 for all our experiments.

5.5.3 Analysis

Figure 5.3 plots for various penalty parameters the allocation systems’ DEs
that result from a symmetric and an asymmetric hierarchy and the homogeneous
and heterogeneous fill-rate scenarios. As there is no difference in the positive and
negative values for the penalty parameter ρ when fill-rate targets are homogeneous,
we depict the DE for negative values of ρ as dotted lines, as they just mirror the
results for ρ > 0.

167



5 Managing Service-Level Contracts in Sales Hierarchies

0.6 0.4 0.2 0.0 0.2 0.4 0.6
penalty parameter

0.0

0.1

0.2

0.3

0.4

0.5

de
ce

nt
ra

liz
at

io
n 

er
ro

r

PC
M-PC

M-P
M-DP

M-SDP

(a) Homogeneous fill-rate targets in symmet-
ric hierarchy

0.6 0.4 0.2 0.0 0.2 0.4 0.6
penalty parameter

0.0

0.1

0.2

0.3

0.4

0.5

de
ce

nt
ra

liz
at

io
n 

er
ro

r

PC
M-PC

M-P
M-DP

M-SDP

(b) Homogeneous fill-rate targets in asym-
metric hierarchy

0.6 0.4 0.2 0.0 0.2 0.4 0.6
penalty parameter

0.0

0.1

0.2

0.3

0.4

0.5

de
ce

nt
ra

liz
at

io
n 

er
ro

r

PC
M-PC

M-P
M-DP

M-SDP

(c) Heterogeneous fill-rate targets in symmet-
ric hierarchy

0.6 0.4 0.2 0.0 0.2 0.4 0.6
penalty parameter

0.0

0.1

0.2

0.3

0.4

0.5

de
ce

nt
ra

liz
at

io
n 

er
ro

r

PC
M-PC

M-P
M-DP

M-SDP

(d) Heterogeneous fill-rate targets in asymmet-
ric hierarchy

Figure 5.3: The allocation systems’ performance for various penalty parameters.
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Before we focus on the allocation systems’ performance, we discuss PC’s perfor-
mance. We observe that the DE increases significantly with heterogeneous penal-
ties in all scenarios, reaches 0.49 in the scenario with heterogeneous fill-rate targets,
asymmetric hierarchy and ρ = 0.6, indicating, that expected penalties are almost
50 percent higher than they are under central planning. This result is intuitive, as
the more the customers’ penalties differ, the more important it is to prioritize and
the relative performance of PC, which does not prioritize, decreases. The effect is
not as clear for heterogeneous fill-rate targets: for ρ ≥ 0, the DE of PC for scenarios
with heterogeneous fill-rate targets is higher than it is for scenarios in which the
fill-rate targets are homogeneous. However, when ρ < 0, the DE of PC for scenar-
ios with heterogeneous fill-rate targets is lower than it is for scenarios in which the
fill-rate targets are homogeneous, because PC typically achieves the same fill rates
for all customers, so deviations from the fill-rate targets are smaller for customers
who have low fill-rate targets. Consequently, when the customers who have low
fill-rate targets have the highest penalties, PC’s relative performance improves.

As Figures 5.3a and 5.3c show, the DE of M-PC for symmetric hierarchies is
close to zero (DE < 0.005), and planners can apply the per commit approach for
the HAP without losing performance. This result confirms our initial conjecture
regarding per commit’s performance: For asymmetric hierarchies, M-PC mirrors
PC’s performance, although with about 30 percent lower DEs, because M-PC’s
customer allocations are determined with the myopic allocation approach, so the
allocations are at least locally optimal, and the performance is much higher than
it would be under PC. Still, the DE is significant, so planners should refrain from
applying per commit for the HAP when the sales hierarchy is asymmetric and the
customers’ penalties are heterogeneous.

M-P’s DE is close to zero (< 0.019) in all scenarios but only under negative
ρ, heterogeneous fill-rate targets, and an asymmetric hierarchy (cf. Figure 5.3d).
In this setting, customers who have high penalties have low fill-rate targets. The
penalty-based M-P that is used to solve the HAP ignores the customers’ individual
fill-rate targets, so it over-allocates to the LSO that is responsible for customers with
low fill-rate targets and high penalties. This result suggests that, contrary to our
initial conjecture, it is sufficient for M-P that customers who have high penalties
also have high fill-rate targets.

In all scenarios M-SDP has the lowest DEs and, as suggested in Section 5.4.2,
it outperforms M-DP. We observe that M-SDP’s performance decreases under het-
erogeneous fill-rate targets and a negative ρ, which partially contradicts our initial
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Figure 5.4: Performance of the allocation systems for different review horizons for a scenario with
heterogeneous fill-rate targets, asymmetric hierarchy and ρ = 0.

conjecture that it performs well independent of the specific setting. In this situ-
ation, customers who have low fill-rate targets have high penalties. Recall that
the dynamic-penalty approach that underlies M-SDP approximates the marginal
change in expected penalties with the consumption probability and ignores the
change in the probability of reaching the fill-rate target. When fill-rate targets are
low, they are easier to achieve, so the probability of reaching them is more relevant
to the allocation decision. Hence, the approximation of the marginal change in ex-
pected penalties is less accurate for low fill-rate targets, and M-SDP’s performance
decreases. Nonetheless, the M-SDP’s DE is lower than 0.016, which is probably
sufficient for any practical application.

To see how the review horizon affects the allocation systems, we plot the DE of
the allocation systems for various lengths of the review horizon R = {5, 10, . . . , 25}
for the scenario with heterogeneous fill-rate targets, an asymmetric hierarchy, and
ρ = 0 (Figure 5.4). The figure shows that the DEs of all allocations systems de-
crease in the review horizon, while M-DP’s DE increases significantly. The general
increase in performance of most allocation systems can be traced back to the dis-
tribution of the backlog and inventory. Because supply is fixed in our setting, the
probability of an extreme backlog or large inventory increases with the review hori-
zon. In these situations, either no supply can be allocated or supply is ample and
all demands can be fulfilled, and there are no performance differences between the
allocation systems.

To explain why M-DP’s DE increases, we plot the average relative allocations
(i.e., xn,t/x0,t) to the two LSOs using a review horizon of 25 periods (Figure 5.5).
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Figure 5.5: Relative allocations to LSO 1 (solid line) and LSO 2 (dotted line) for the AS for a review
horizon of 25 periods, heterogeneous fill-rate targets, a asymmetric hierarchy and ρ = 0.

We observe that M-DP’s allocations fluctuate drastically, while those of M-SDP are
more consistent. In particular, M-SDP’s allocations are similar to those of MC after
a few periods because the dynamic penalties in the first period are calculated for an
allocation of the mean demand, after which the approaches’ allocations converge
relatively quickly toward the of central planner’s allocations (MC).

Our experiments show that the performance obtained from a decentralized al-
location planning system is close to that of a central planning system when the
right allocation approach is selected for the HAP. Our results suggest that two
parameters—hierarchy symmetry and customer heterogeneity—affect the optimal
choice of an allocation approach. If the hierarchy is symmetric and/or customers
are homogeneous with respect to their penalties, using the per commit approach
to allocate to the LSOs (i.e., solve the HAP) results in a performance that is close
to that of central planning. When M-PC does not lead to a good performance, M-P
using the penalty-based approach on the hierarchy levels can close the gap to a
central allocation. Only in the situation in which low fill-rate targets coincide with
high penalties does M-P’s performance deteriorate. Then decision makers should
resort to M-SDP, as the approach shows a good performance, independent of the
setting. While M-SDP is clearly more complex than and not as easy to understand
as per commit or the penalty-based method, the approach is still suitable for prac-
tice, as the performance improvements compared to, for instance, a per commit
approach, are significant.
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5.6 Model Extension: Decentralized Inventory

Section 5.3.2 discussed our assumption that inventory and backlog are man-
aged centrally. Now we want to analyze the effect of this assumption on the
performance of decentralized allocation planning. To this end, we formulate an
alternative setting in which each LSO is responsible for clearing its own inventory
and backlog locally and does not share the information about current inventory
and backlog levels with planners in the hierarchy. We chose this extreme case so
we could determine the maximum impact of decentralize planning on our alloca-
tion system.

Section 5.6.1 introduces the modified sequence of events, while Section 5.6.2
explains how to adopt the allocation approaches for the CAP and HAP to the
modified setting. Finally, Section 5.6.3 repeats our previous numerical experiments
with the modified setting and discusses the results.

5.6.1 Model Dynamics

In a setting in which the LSOs keep local inventory, the supply at the root node
is not affected by the realized demand, so x0,t = rt. However, when the LSOs
m ∈ IK−1 track their own inventory im,t and backlog bm,t, there is a difference
between the allocation xm,t the LSOs m ∈ IK−1 receive and the supply available for
allocation xa

m,t, leading to an adjusted sequence of events:

1. The root node receives deterministic supply x0,t = rt.

2. The planners n ∈ Ih on hierarchy levels h ∈ {1, ..., K − 2} determine the
allocations xn,t to their successor nodes m ∈ Sn.

3. The LSOs m ∈ IK−1 clear remaining backlog bm,t and calculate the supply
that is available for allocation xa

m,t = [xm,t + im,t − bm,t]
+.

4. The LSOs m ∈ IK−1 determine their allocations xl,t to their customer l ∈ Sm.

5. The customers’ demands Dl,t are realized, and the LSOs fulfill min{Dl,t, xl,t}
and backlog [Dl,t − xl,t]

+.

6. The LSOs update the variables for fulfilled demand yt+1,l = min{dl,t, xl,t}+
yt,l and total demand zt+1,l = dl,t + zt,l .
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7. The LSOs clear potential backlogged demand and calculate the remaining
backlog bm,t+1 =

[
bm,t − xm,t − im,t + ∑l∈Sm

dl,t
]+ and remaining inventory

im,t+1 =
[

xa
m,t −∑l∈Sm

dl,t

]+
.

5.6.2 Adaption of Allocation Approaches

This section discusses how we adapt the allocation approaches from Section 5.4
to the new sequence of events.

At the LSO level, we have to distinguish between the allocation received from
the hierarchy xm,t and the supply available for allocation xa

m,t. It is straightforward
to modify the myopic approach we use for the CAP to consider xa

m,t instead of xm,t.

For the CAP, the allocation approach sees almost no impact from the modified
setting, but, as we show in the following, such is not the case for the allocation
approaches for the HAP.

Per commit allocates based only on the expected demands of the customers,
which do not change with the new setting. In addition, the supply that is available
for allocation at the root node is comprised of only the deterministic replenish-
ment, so per commit’s allocations are now deterministic and can be calculated for
all periods in advance. Consequently, the allocation system separates into |IK−1|
problems, where each LSO m ∈ IK−1 has a fixed supply of xm,t =

µm
µ0

r0,t. Thus,
there is no more pooling effect among the LSOs, and it is likely that some LSOs
have backlogs while others accumulate inventory. Therefore, we expect a signifi-
cantly lower performance from per commit, as well as from M-PC under a setting
with decentralized inventory and backlog clearing.

To determine allocations to the LSOs, the penalty-based allocation uses per-
unit penalties pu

l,t derived from the service-level contracts of the customers l ∈ IK

and their total expected demand. Our definition of the penalty-based allocation
updated the total expected demand in each period based on the corresponding
customer’s actual demand realizations (cf. Definition 5.4). Hence, pu

l,t changes
slightly in each period, so we cannot calculate the allocations up front. However,
to allow all allocations to the LSOs to be calculated for the review horizon at once,
we can simply fix the per-unit penalties to a single value based on, for instance,
only the mean demand (i.e., pu

l,t = pu
l =

pl

∑R
τ=1 µl,τ

). Although we do not adjust
the penalty-based approach to allow for a fair comparison of the two settings, the
approach’s allocations do not change with the LSOs’ inventory or backlog levels,
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so we expect the approach to suffer from decentralized inventories, as it no longer
benefits from the pooling effect.

The dynamic penalty approach approximates the marginal change in the ex-
pected penalty with dynamic penalty pd

l,t at xbase
l,t = xl,t−1 (cf. Definition 5.6). This

approach works well under central inventory, as the allocation to the LSO is likely
to be similar in the next period. Under decentralized inventory, the remaining
inventory or backlog from the previous period affects the supply that is available
for allocation, so it directly impacts the marginal change in the expected penalty.
Therefore, instead of calculating the marginal change in the expected penalty for
the previous allocation, we calculate it for the allocation we are likely to get. To this
end, we add an intermediate step to the dynamic penalty approach by fixing the
allocation received from the hierarchy in the last period and correcting this alloca-
tion using the remaining backlog/inventory. We then calculate the optimal myopic
allocation of this assumed supply x̃a

m,t = xm,t−1 + im,t − bm,t to the customers and
use this allocation to obtain the dynamic penalty pd

l,t. Definition 5.9 formalizes our
approach.

Definition 5.9 (Dynamic penalty approach for decentralized inventory). Denote
with

x̃a
m,t =

∑l∈Sm
µl,0 for t = 1

xm,t−1 + im,t − bm,t for t > 1

the assumed supply available for allocation in period t and with x̃m
l,t the allocation of the

myopic approach to customers l ∈ L. Then pd
l,t =

λm,t(x̃m
l,t)

1−Gl,t(x̃m
l,t)

is the dynamic penalty in

period t ∈ {1, . . . , R}, and the dynamic penalty approach’s allocation to LSOs m ∈ IK−1

is

(xdp
m,t)m∈IK−1 = C

[
(pd

l,t)l∈IK , x0,t
]
.

With the modified dynamic penalty approach for decentralized inventory in
Definition 5.9, the LSOs have to calculate their optimal allocations twice: first to
obtain the dynamic penalty pd

l,t and then to calculate the actual allocation xm
l,t. This

double calculation only adds to the complexity of the approach at the LSO level,
while the allocation process at the hierarchy levels is unaffected.

As the dynamic penalty approach suffers the same problem of unsteady allo-
cation under decentralized inventory, we also formulate a smoothed version of the
dynamic penalty approach in Definition 5.10.
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Definition 5.10 (Smoothed dynamic penalty approach for decentralizes inventory).
Denote with

x̃a
m,t =

∑l∈Sm
µl,0 for t = 1

xm,t−1 + im,t − bm,t for t > 1

the assumed supply available for allocation and with x̃m
l,t the allocation of the myopic ap-

proach to customers l ∈ L. Then the smoothed dynamic penalty in period t ∈ {1, . . . , R}
is

pd
l,t =


λm,t(x̃m

l,t)

1−Gl,t(x̃m
l,t)

for t = 1

α · λm,t(x̃m
l,t)

1−Gl,t(x̃m
l,t)

+ (1− α)pd
l,t−1 for t > 1,

and the smoothed dynamic penalty approach’s allocation to LSOs m ∈ IK−1 is

(xsdp
m,t )m∈IK−1 = C

[
(pd

l,t)l∈IK , x0,t
]
.

Adopting the allocation approaches to a setting with decentralized inventory
affects their complexity. With per commit and, depending on the implementation,
with the penalty-based approach, planners can calculate the allocations for all pe-
riods of the review horizon at once, which allows planning on the hierarchy levels
to be decoupled from planning at the LSO level and reduces the effort required on
the hierarchy levels. However, the smoothed dynamic penalty approach becomes
more complex: Under decentralized inventory clearing, the LSOs have to calcu-
late the optimal allocation to their customers twice: once to obtaining the virtual
penalty and once to perform the actual allocation. However, this problem affects
the complexity only at the LSO level; on the hierarchy level, the steps to determine
an allocation with the dynamic penalty approach are unaffected.

5.6.3 Numerical Evaluation

From the four modified approaches to the HAP and the myopic approach to
the CAP we obtain four allocation systems. To evaluate these systems’ perfor-
mance in the setting with decentralized inventory and backlog-clearing, we adopt
our simulation environment for the new sequence of events. Again, we use the
central myopic allocation approach (MC) as our benchmark, so MC’s performance
is identical to that in the previous setting.

Figure 5.6 plots the DEs of the allocation systems for the four scenarios we
analyzed in Section 5.5. Observe that the DEs of all allocation systems are much

175



5 Managing Service-Level Contracts in Sales Hierarchies

0.6 0.4 0.2 0.0 0.2 0.4 0.6
penalty parameter

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

de
ce

nt
ra

liz
at

io
n 

er
ro

r

PC
M-PC

M-P
M-DP

M-SDP

(a) Homogeneous fill-rate targets in symmet-
ric hierarchy

0.6 0.4 0.2 0.0 0.2 0.4 0.6
penalty parameter

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

de
ce

nt
ra

liz
at

io
n 

er
ro

r

PC
M-PC

M-P
M-DP

M-SDP

(b) Homogeneous fill-rate targets in asym-
metric hierarchy

0.6 0.4 0.2 0.0 0.2 0.4 0.6
penalty parameter

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

de
ce

nt
ra

liz
at

io
n 

er
ro

r

PC
M-PC

M-P
M-DP

M-SDP

(c) Heterogeneous fill-rate targets in symmet-
ric hierarchy

0.6 0.4 0.2 0.0 0.2 0.4 0.6
penalty parameter

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

de
ce

nt
ra

liz
at

io
n 

er
ro

r

PC
M-PC

M-P
M-DP

M-SDP

(d) Heterogeneous fill-rate targets in asymmet-
ric hierarchy

Figure 5.6: The allocation systems’ performance for different values of the penalty parameter and
decentralized inventory.
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higher than they are in Figure 5.3. For instance, in the scenario with homogeneous
fill rates and homogeneous penalties, per commit had a DE of less than 0.01, while
in the new setting its DE is 0.17. We can attribute this loss in performance to the
LSOs’ keeping local inventory, as under per commit, allocations do not consider
the LSOs’ inventory or backlog, so some LSOs experience backlog-induced short-
ages while others have surplus supply. This reduces the amount of demand that
is fulfilled on time, decreases fill rates, and increases penalties. The same argu-
ments hold for M-PC: Its performance is slightly higher because the LSOs apply
the myopic allocation approach, but overall performance still suffers.

M-P’s performance suffers even more. Under central inventory and backlog-
clearing, the highest DE we observed was below 0.1, and M-P outperformed M-PC
in all scenarios. Under decentralized inventory and backlog-clearing, M-P exhibits
almost the worst performance in all scenarios, with a DE as high as 1.75 in the
scenario with asymmetric hierarchies. Like per commit, the profit-based allocation
on hierarchy levels does not change with the inventory or backlog levels in the
LSOs. However, because the approach prioritizes customers based on their penal-
ties, repeated prioritization of customers leads to increasing inventory levels for
the LSOs that are responsible for high-penalty customers, increasing the backlog
for the other LSOs. This effect intensifies with increasing penalty heterogeneity
and explains the high DEs we observe for these scenarios.

M-DP and M-SDP have the lowest DEs in every setting, as both approaches
adjust their allocations based on the backlog and inventory levels in the LSOs. Still,
M-SDP’s performance is much lower than it is in Figure 5.3. While the highest DE
under central inventory is 0.017, under decentralized inventory the DE reaches
0.25. In contrast to our previous setting, M-DP’s performance is not much lower
than M-SDP’s, perhaps because the LSOs keep local inventories, so the supply that
is available for LSOs’ allocations is already smoothed.

In the scenario with heterogeneous fill-rate targets and an asymmetric hierar-
chy, the approaches’ performances are highly sensitive to the penalty parameter ρ:
M-SDP’s performance strictly decreases in the penalty parameter, while DEs are
as low as 0.03 for ρ = −0.6, they reach up to 0.25 for ρ = 0.6. To determine why
M-SDP’s performance decreases in the penalty parameter, we plot in Figure 5.7 the
average total inventory levels in the review period R for the scenario with hetero-
geneous fill-rate targets and asymmetric hierarchy (Figure 5.6d) for various values
of the penalty parameter ρ. Under a large ρ, using the M-SDP leads to increased
inventory levels. In these settings, one LSO is responsible for customers who have
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Figure 5.7: Inventory of the allocation systems in period R under decentralized inventory and a
scenario with heterogeneous fill-rate targets and asymmetric hierarchy for various values of the
penalty parameter ρ.

high fill-rate targets and high penalties, so that LSO requires large allocations to
achieve the high-fill rate targets, which frequently are not consumed. Even under
MC, these allocations increase the inventory levels, although at a much lower level.
Under MC or scenarios with central inventory, any remaining inventory at the end
of each period is used to clear the backlog in other LSOs. However, under decen-
tralized inventory, allocations to the LSOs remain untouched and are not used to
clear backlog in other LSOs, so inventory levels are much higher, and performance
decreases. For ρ < 0, this effect is much less pronounced, as high penalties coincide
with low fill-rate targets, and required allocations are much lower.

Our numerical results for decentralized inventory differ substantially from our
results for the setting with central inventory. While the DEs of all allocation ap-
proaches increase significantly under decentralized inventory, they do so at dif-
fering rates. M-P shows the strongest decrease in performance and now almost
always shows the highest DEs. M-PC’s performance also decreases and now leads
to significant DEs in all analyzed scenarios. M-SDP’s performance also decreases,
although the decrease is much lower than it is for the other approaches, and its
DEs are the lowest in almost all scenarios.

Decision-makers in companies that have decentrally managed inventories can
expect low levels of performance compared to planning centrally, even when they
apply the relatively complex M-SDP approach. Therefore, they should consider
decentralizing their inventory-clearing to improve performance and allow the use
of simpler allocation approaches.
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5.7 Conclusion

5.7 Conclusion

This study analyzes allocation planning for manufacturers with hierarchical
sales organizations that have entered heterogeneous service-level contracts with
their customers. In this setting, there is no central planner with complete informa-
tion on all of the customers’ service-level contracts, but planning is decentralized
along the company’s sales hierarchy. Starting from the top, planned supply is grad-
ually disaggregated along the hierarchy and finally allocated to the LSOs, which
are responsible for fulfilling actual customer demand. The LSOs then perform yet
another allocation to their individual customers to prioritize their more important
customers’ demands. Because detailed information on the customers’ service-level
contracts are available only at the LSOs, we separate the problem into two subprob-
lems: The CAP (base-level problem), which is the allocation problem of the LSOs’
having full information, and the HAP (top-level problem), which is the problem
of the planners in the hierarchy who decide on the allocations to the planners on
the next lower hierarchy level based on some typically aggregated information that
they receive from the lower level.

Our study compared the performance loss that companies can expect from this
decentralized planning system to that of a central planning approach and develops
allocation systems that reduce or minimize this gap. As the CAP is structurally
identical to the central model, we adapt Kloos and Pibernik’s (2020) myopic allo-
cation approach under complete information to our setting. Hence, the focus of
our study is on the HAP, for which we propose and analyze four allocation ap-
proaches with differing complexity. Our first approach is per commit, a simple
allocation rule that determines allocations based on the customers’ expected de-
mands and that is popular in practice. Our second approach is the penalty-based
allocation approach which uses per-unit penalties inferred from the service-level
contracts to determine the allocations to the LSOs. Our third approach, the dy-
namic penalty approach, is based on the characterization of optimal solutions and
allocates based on dynamic penalties we infer from the optimization performed
at the LSOs. Our fourth approach, the smoothed dynamic penalty approach, a
variation of the dynamic penalty approach, uses single exponential smoothing to
reduce fluctuations in the allocations that we observe in our numerical evaluation
of the dynamic penalty approach and significantly improves performance.

From the four allocation approaches for the HAP and the myopic approach
for the CAP come four allocation systems: M-PC, M-P, M-DP, and M-SDP. We
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Table 5.1: Decision matrix for selecting a suitable decentralized allocation system.

Inventory central decentral

Hierarchy symmetric asymmetric symmetric asymmetric

ρ > 0 M-PC M-P M-SDP centralize inv.
ρ = 0 M-PC M-PC M-SDP M-SDP
ρ < 0 M-PC M-SDP M-SDP M-SDP

compare these allocation systems to the central planning approach in a numerical
experiment and evaluate two distinct settings: one in which we assume that inven-
tory and backlog are cleared centrally, and one in which we assume that the LSOs
are responsible for clearing their local inventory and backlog levels and that they
do not communicate those levels to other planners.

Our results suggest that, in a setting in which inventory and backlog are cleared
centrally, the performance of the decentralized allocation systems are comparable
to that of a central planning approach if the planner selects a suitable allocation ap-
proach for the HAP. While M-SDP always performs well, in many scenarios much
simpler approaches achieve the same performance. For instance, for symmetric hi-
erarchies and/or homogeneous service-level contracts, the per commit rule for the
HAP (M-PC) produces high performance. Under asymmetric hierarchies and het-
erogeneous penalties, M-PC’s performance decreases, but M-P, using the penalty-
based allocation, still performs well. Only in the case in which low fill-rate targets
coincide with high penalties does M-P’s performance suffer, so decision-makers
should apply the M-SDP approach in this scenario.

When inventory and backlog are cleared locally, decentralized allocation sys-
tems perform significantly worse than central planning does. While M-SDP shows
the best performance, decision-makers who use it must accept performance losses
of about 10 percent compared to a central planning approach. In settings in which
hierarchies are asymmetric and high fill-rate targets coincide with high penalties,
even M-SDP’s performance losses are significant. In such settings, decision-makers
should try to centralize the inventory-clearing process. Table 5.1 summarizes our
suggestions.

Our analysis provides three important insights for hierarchical allocation plan-
ning under service-level contracts: First, decentralized decision-making can, if it is
used with appropriate allocation approaches, achieve a level of performance that
is similar to that of centralized planning. Second, we provide a useful guideline
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for which approach a planner should apply in which situation. Third, our results
suggest that having LSOs manage inventories and clear backlog individually af-
fects the allocation systems’ performance and requires more complex planning ap-
proaches for the hierarchy levels. Therefore, decision-makers should use planning
processes in which LSOs share at least information about inventory and backlog
levels with the hierarchy.

181





Chapter 6

Conclusion

This dissertation addresses decentralized allocation planning in sales hierar-
chies with the objective of reaching customer-specific service-level targets. It is
motivated by the gap we observe between the theoretical models suggested in rel-
evant academic literature and the allocation planning as it is performed in compa-
nies and implemented in state-of-the-art APS. While most models assume a single
planner with the ability to decide on all allocations simultaneously, in practice allo-
cation planning is a decentralized process aligned with the company’s hierarchical
structure and only supported by simple allocation rules. Thus, our objective is to
develop new allocation approaches tailored toward decentralized decision making,
identify the gap of conventional allocation rules and our new approaches com-
pared to central planning and provide insight on the relevant information required
to obtain good allocations. To this end we perform our analysis in two settings.
Chapters 2 and 3 analyze the problem for a single-period setting that allows us
to gain structural insights, Chapters 4 and 5 address a more realistic setting with
service-level contracts and a multi-period planning horizon. In the following we
discuss the individual contributions of the four chapters in this dissertation.

Chapter 2 provides an approach to infer the relative importance of customers
from the service-level targets, and characterizes the central and decentralized opti-
mal allocation. Based on these analytical results we also show when conventional
allocation approaches result in optimal allocations and develop two new allocation
approaches for which we show analytically and numerically that their performance
depends on the structure of the hierarchy.

183



6 Conclusion

Chapter 3 analyses a profit-maximizing setting and focuses on the information-
sharing aspect of decentralized allocation planning. Our numerical analyzes show
that two types of information are most relevant for good allocations: the cus-
tomers’ profit heterogeneity and demand stochasticity. With the clustering and
the stochastic Theil approach we developed two new approaches that both use this
information and, thus, lead to close-to-optimal performance. For practitioners the
results for the clustering approach may be most beneficial. Our analyses suggest,
that communicating the profit heterogeneity by the means of two or three clusters
(high, medium and low profits) leads to a performance that is comparable to that
of a central approach.

In Chapter 4 we provide a formal definition of the central allocation planning
problem under a service-level-contract with fill-rate targets and a linear penalty
and formulate the corresponding stochastic dynamic program. Based on our an-
alytical analysis for the dynamic program, we identify six requirements a “good”
allocation policy should fulfill. Based on these requirements we analyze heuristics
from literature and practice and propose several new allocation policies based on
approximated dynamic programming. An extensive numerical study allows us to
quantify the importance of the requirements and compare the performance of the
allocation policies.

Chapter 5 extends the research from Chapter 4 to decentralized planning. We
decompose the resulting problem into two hierarchical sub-problems which al-
low us to combine the central approaches developed for allocation planning under
service-level contracts with the hierarchical allocation methods developed in Chap-
ter 3. In a numerical study we evaluate the performance of the resulting allocation
systems comprised of the approaches applied for both subproblems and find that,
by choosing the correct allocation approaches, performance is similar to central
planning.

Chapters 2, 3 and 5 provide important insights for the hierarchical allocation
problem in different settings. Our results show that decentralized planning does
not have to be accompanied by performance losses when applying “suitable” al-
location approaches. We also provide insight on how to select a “suitable” al-
location approach: In settings where the hierarchy is symmetric with respect to
the customers’ (service-level) requirements, simple rules such as per commit typ-
ically lead to close-to-optimal performance. Consider, for instance, a company
that structured its sales hierarchy by countries, i.e., Germany and Austria. When
the customer base in both countries is similar (with respect to their service-level
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requirements), we can advise decision makers to resort to a simple per commit
approach and expect no or only little performance losses as compared to central
planning approaches.

In other settings, however, the performance that can be expected from simple
rules as per commit is detrimental. Consider, for instance, a company having
sales organizations in countries on different continents, e.g., Germany and China.
Then the customers base in the two countries may be very different and decision
makers should put more effort in distributing their supply among the different
countries. In these settings, our advanced approaches yield superior performance
while being only slightly more complicated. For instance, the clustering method,
which we tested both in a setting under profit maximization and planning under
service-level contracts, requires the planners to cluster their customers into only
two or three clusters according to their profits/penalties.

Finally, we want to mention further avenues for research. Throughout this dis-
sertation we assume a partitioned allocation and ignore the possibility of nested
consumption, that is, we assume that allocations to a customer can only be con-
sumed by this very customer. While nesting has been shown to be very beneficial
as it allows to realize inventory pooling-effects between customers, models consid-
ering nesting are typically associated with strong assumptions on the customers’
ordering behavior (i.e., Poisson process). Data-driven modeling approaches may
allow to generate nested allocations directly from a company’s order data and
avoid problematic assumptions on the customers’ ordering behavior. This appears
as a promising direction for further investigation.

This dissertation only addresses settings where decision makers either face the
same type of service-level contracts for all customers or only regard the customers’
different profitabilities. In practice, however, it is likely that a company faces cus-
tomers both with and without service-level contracts. Such mixed allocation sys-
tems raise numerous questions that offer interesting research opportunities.
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Appendix to Chapter 2

A.1 Proofs of the Mathematical Results

Proposition 2.1. Part 1 is straightforward from x̂l(xl) = E[min(Dl , xl)].

Clearly, x̂l(xl) + Ll(xl) = E[Dl ]. Hence, combining this with part 1 yields
part 2. Part 3 holds by definition.

Lemma 2.1. As sums of convex functions are convex and Ll is independent from xk

for all k 6= l, we only show that Ll(xl) is convex in xl , which is a straightforward
consequence of the more general statement that F(x) :=

∫ ∞
x f (t) dt is convex if f

is monotonously decreasing and uniformly bounded above and below, i.e., | f | ≤ C
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for some C < ∞. In order to show the latter, note that F is continuous and fix some
−∞ < x < y < ∞. Now

F
(

x + y
2

)
=

1
2

(∫ ∞

x+y
2

f (t) dt +
∫ ∞

x+y
2

f (t) dt
)

=
1
2

(∫ ∞

x
f (t) dt−

∫ x+y
2

x
f (t) dt +

∫ y

x+y
2

f (t) dt +
∫ ∞

y
f (t) dt

)

=
1
2


∫ ∞

x
f (t) dt +

∫ x+y
2

x

[
f (t)− f

(
t +

y− x
2

)]
︸ ︷︷ ︸

≤0

dt +
∫ ∞

y
f (t) dt


≤ 1

2

(∫ ∞

x
f (t) dt +

∫ ∞

y
f (t) dt

)
=

1
2

F(x) +
1
2

F(y),

which concludes the proof.

Theorem 2.1. (2.4) follows immediately from x0 < xr
0, which can easily be seen by

contraposition: If ε := x0 − ∑l∈IK
x∗l were strictly greater than 0, then for at least

some l′ ∈ IK we would have x∗l′ < xr
l′ and, thus, replacing x∗l′ by x∗l′ + ε would

further reduce L, which contradicts optimality.

Regarding the remaining proof, note that Problem 2.1c is a non-linear opti-
mization problem with linear constraints, namely, ∑l∈sIK

xl ≤ x0 and xl ≥ 0 for
all l. Since all constraints are linear and x ≡ 0 is a feasible allocation, the refined
version of Slater’s condition (cf. Boyd and Vandenberghe, 2004) holds. In addition,
by Lemma 2.1, W(x) is convex; hence, by standard non-linear optimization theory
(cf. Ruszczyński, 2006), for any x∗ there exist λ, µl ∈ R+

0 such that for all l ∈ IK

(µl − λ)/wl ∈ ∂Ll(x∗l ) (A.1)

λ( ∑
l∈IK

x∗l − x0) = 0 (A.2)

µl x
∗
l = 0 (A.3)

and any feasible point for which λ, µl ∈ R+
0 exist such that equations (A.1) - (A.3)

hold is a solution of Problem 2.1c.
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Hence, (2.2) holds for all l with µl = 0 and (2.3) holds for all l with µl > 0. By
definition of Problem 2.1c, x0 < xr

0, that is, the constraint ∑l∈sIK
xl ≤ x0 is binding.

Accordingly, λ > 0. It remains to show that {k | k ∈ IK , µl > 0} = Aλ.
If µl > 0, then by (A.3) x∗l = 0. Furthermore, (A.1) together with the fact

that Gl is càdlàg and, therefore, Gl(0) − 1 is an upper bound for ∂Ll(0) yields
−λ/wl < µl/wl − λ/wl ≤ Gl(0)− 1. Accordingly, {k | k ∈ IK , µl > 0} ⊂ Aλ.

Conversely, if λ ≥ (1− Gl(0))wl , then for all t ≥ 0 we have −λ/wl ≤ Gl(0)−
1 ≤ Gl(t)− 1, where we used the monotonicity of Gl and which immediately yields
µl > 0 as (A.1) entails µl/wl − λ/wl ≥ Gl(x∗l )− 1 (where we again used Gl ’s being
càdlàg). Hence, also {k | k ∈ IK , µl > 0} ⊃ Aλ, which concludes the proof.

Corollary 2.1. If Gl is continuous, then by the first fundamental theorem of calculus
L is differentiable with respect to xl and d

dxl
L(xl) = Gl(xl)− 1. Hence, (2.2) reduces

to λ/wl = −L′l(x∗l ) = (1−Gl(x∗l )), which—as Gl is strictly increasing on {Gl < 1}
and, by Theorem 2.1, λ > 0—implies the assertion.

Lemma 2.2. To avoid the use of obfuscating notation, we provide the proof for the
case where Gl is continuous and strictly increasing.

1. Fix l, k with αl ≥ αk and note that, in this case, wl ≥ wk. Now, let x∗ be the
optimal allocation and let λ∗ be the corresponding supply parameter. We
distinguish three cases depending on the relation between wl , wk and λ∗:

• λ∗ > wl ≥ wk: In this case x∗k = x∗l = 0 and the assertion holds.

• wl ≥ λ∗ ≥ wk: In this case x∗l ≥ 0 = x∗k and the assertion holds.

• wl ≥ wk ≥ λ∗: In this case, α̂l = Gl(x∗l ) = 1− λ/wl = 1− λ(1− αl)

≥ 1− λ(1− αk) = Gk(x∗k ) = α̂k.

2. Without loss of generality, set λ = 1, note that

λ = 1 ≤ 1/(1− α︸ ︷︷ ︸
≥1

) · (1− Gl(0)︸ ︷︷ ︸
=1

)

and xr
l = G−1

l (αl) = G−1
l (1− 1/wl) = G−1

l (1− λ/wl). Hence, by Corollary
2.1 x∗l = xr

l is the unique solution of Problem 2.1c and, thus, the assertion
holds.
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Lemma 2.3. Lemma 2.3 is a reformulation of Bellman’s (1957) principle of optimal-
ity.

Proposition 2.2. Proposition 2.2 is a straightforward consequence of Lemma 2.3.

Proposition 2.3. We first show that if (2.5) holds xr
l′/µl′ = xr

0/µ0 for all l ∈ IK . Set
χ = xr

l′/µl′ ; then from (2.5) and the fact that wl = 1/(1 − αl) and Gl(xr
l ) = αl

follows

1− αl′′

1− αl′
=

1− Gl′′ (µl′′xl′/µl′ )

1− αl′

and thus αl′′ = Gl′′ (µl′′xl′/µl′ ). From this, by definition of xr
l′′ and the fact that

Gl′′ is strictly increasing, follows xr
l′µl′′/µl′ = xr

l′′ . As xr
0 = ∑l∈L xr

l , we derive that
xr

0 = xr
l µ0/µl . Hence xr

l′/µr
l′ = xr

0/µr
0.

With this χ ∈
(
0, xr

l′/µl′
]

is equivalent to χ ∈
(
0, xr

0/µr
0
]

and we can rearrange
(2.5) to:

w′l(1− Gl′ (x0µl′/µ0)) = wl′′ (1− Gl′′ (x0µl′′/µ0)) for all l′, l′′ ∈ IK , x0 ∈ (0, xr
0] .

As xPC
l′ = x0µl′/µ0 it follows that w′l(1− Gl′ (xPC

l′ )) = λ for all l′ ∈ IK and
x0 ∈

(
0, xr

0
]
. Replace (1− Gl(x∗l )) = −L′l(x∗l ) to see that Theorem 2.1 applies and

thus xPC
l′ is optimal.

Next we proof the inverse implication: If (2.5) does not hold, then there exits at
least one χ ∈

(
0, xr

l /µl
]

and a pair of customers l, l′ such that:

wl′ (1− Gl′ (µl′χ)) 6= wl′′ (1− Gl′′ (µl′′χ)) (A.4)

For x0 = χµ0 the per commit allocations are xPC
l = χµl for all l ∈ IK . As χ > 0,

xPC
l > 0 and hence, all customer groups receive the allocation xPC

l . By Theorem 2.1
this allocation is optimal if and only if

wl(1− Gl(xPC
l )) = λ for all l ∈ IK\Aλ

This equivalent to

wl′ (1− Gl′ (µl′χ)) = wl′′ (1− Gl′′ (µl′′χ))
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which contradicts (A.4) and, thus, completes the proof.

Proposition 2.4. The proof of part 1 is straightforward from the definition of ex-
tended per commit.

For part 2, assume the requirements of Proposition 2.4 part 2 hold. Then in
analogy to the proof of Proposition 2.3, the identity xr

0/µ0 = xr
l /µl holds. Hence

xr
0/xr

l = µ0/µl with which it is easy to show that xePC
l = xPC

l = x∗l .

Proposition 2.5. Part 1 follows directly from the definition of rank based allocations.

For part 2 we first prove that, if (2.8) holds, the rank based allocation is op-
timal. Assume, without loss of generality, there are only two customers, l′ and
l′′, with αl′ > αl′′ . Then the allocation vector xRB = (xl′ , xl′′ ) has two cases (cf.
Definition 2.5):

xRB =

(x0, 0) if x0 < xr
l′

(xr
l′ , x0 − xr

l′ ) else.

First, we regard the case that x0 < xr
l′ . Set λ = [1− lim

xl↗x0

Gl′ (xl)] · wl′ ; then (2.2)

holds for l′ and because Gl′ is increasing, λ ≥ [1− lim
xl↗xr

l

Gl′ (xl)] · wl′ . By (2.8) it is

straightforward that l′′ ∈ Aλ and the allocation is optimal.

Now we are left to show that the allocation xRB = (xr
l′ , x0 − xr

l′ ) is optimal if
x0 ≥ xr

l′ . Set λ = [1− Gl′′ (x0 − xr
l′ )]; then (2.2) holds for l′′. With (2.8) and as, by

definition, Gl′′ (x) ≤ αl′′ for all x < xr
l′′ , we can bound λ to

[1− lim
xl↗x0

Gl′ (xl)] · wl′ ≥ λ > 1.

By definition, Gl′ (xr
l′ ) ≥ αl′ and wl′ = 1/(1− αl′ ), therefore wl′ (1− Gl′ (xr

l′ )) ≤ 1.
With this it is straightforward that (2.2) holds for l′ and the allocation is optimal.

Finally, we show that if (2.8) is violated there is always at least one x0 for
which the rank based allocation is not optimal. Assume that (2.8) does not hold
for customers lk and lk+1, and set x0 = ∑l∈{l1,...,lk} xr

l . Then the corresponding
allocations are xRB

lk
= xr

lk
and xRB

lk+1
= 0 and the following holds by assumption

wlk
(1− lim

xlk
↗xr

lk

Glk
(xlk

)) < wlk+1
(1− Glk+1

(0)).
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The conditions for an optimal allocation are (cf. Theorem 2.1):

for lk: wlk

(
1− Glk

(xr
lk
)
)
≤ λ ≤ wlk

(1− lim
xlk
↗xr

lk

Glk
(xlk

))

for lk+1: wlk+1

(
1− Glk+1

(0)
)
≤ λ

It follows that λ ≤ wlk
(1− lim

xlk
↗xr

lk

Glk
(xlk

)) < wlk+1
(1−Glk+1

(0)) ≥ λ which leads to

a contradiction. Hence, the allocation is not optimal which concludes the proof.

Proposition 2.6. As xH
m = xePC

m , part 1 follows directly from Proposition 2.4.
Part 2 follows directly from Corollary 2.1 and Lemma 2.3.

Proposition 2.7. Straightforward from Proposition 2.6 part 1 and the property that
xH

n = xePC
n for all n ∈ IK−1.

Proposition 2.8. Note that (2.11) mirrors the results of Corollary 2.1. Therefore,
straightforward computations suffice to check optimality of the service level aggre-
gation approach.

A.2 Formulae to Determine Customer Parametrization
from Performance Drivers

Forecast Heterogeneity Denote with |IK | the number of customer classes, with
CV the average CV (forecast accuracy) and with HCV the targeted forecast hetero-
geneity. Then with

r =
2
√

3HCV
√
|IK | − 1CV√

|IK |+ 1

the n’th customers CV is:

CVn = CV − r
2
+ (n− 1) · r

|IK | − 1
.

Service-level Heterogeneity Let |IK | be the number of customer groups, wmax the
maximum shortfall-weight and HSL the targeted service level heterogeneity. Then
with

wmin =
2
√

3
√
(|IK |2 − 1)H2

SL + 3H2
SL − |IK | − 3H2

SL|IK | − 1

3H2
SL|IK | − 3H2

SL − 1
wmax
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the n’th customer groups shortfall weight is

wn = wmin + (n− 1)
wmax − wmin
|IK | − 1

.
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Appendix B

Appendix to Chapter 3

B.1 Proofs of Analytical Results

Proof of Lemma 3.1. dP
dxl

= pl(1− Fl(xl)) ≥ 0 therefore the objective function is in-
creasing in xl . E[min(xl , Dl)] is concave, and thus (3.7) is concave as a weighted
sum of concave functions.

Proof of Proposition 3.1. According to Lemma 3.1, Problem 3.2 is a convex continu-
ous knapsack problem. Letting γ denote the Lagrange multiplier for ∑l∈L xl ≤ S,
Bretthauer and Shetty (2002b) use the KKT conditions to show that the optimal
solution satisfies:

xl =

0 i f Fl
−1(1− γ

pl
) ≤ 0

Fl
−1(1− γ

pl
) i f 0 < Fl

−1(1− γ
pl
)

(B.1)

Thus, marginal expected profits are balanced for all nodes that receive a non-
zero allocation. Moreover, Zipkin (1980b) proves that for increasing capacity, the
non-zero variables appear in the optimal solution consecutively, in decreasing or-
der of pl(1 − Fl(0)), which is the marginal expected profit of starting to allo-
cate supply to node l. Thus, for each node l, we can define a supply thresh-
old Sl which implies a non-zero allocation to that node. For S = Sl , it follows
from (B.1) that γ = pl(1 − Fl(0)). Again (B.1) and Zipkin’s result then imply
xi = Fi

−1(1− pl(1−Fl(0))
pl

) for all i with pi(1− Fi(0)) ≥ pl(1− Fl(0)), as in (3.10).
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Since the objective function is increasing, it is always optimal to allocate all
available supply to the leaf nodes. Thus, we can assume constraint (3.8) to be
binding. Hence, γ and consequently the optimal allocations can be determined by
solving

∑
{l∈L|Sl≤S}

Fl
−1(1− γ

pl
) = S. (B.2)

The uniqueness result follows from the monotonicity of Fl .
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B.2 Additional Figures
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Figure B.1: arpg of the stochastic theil method for different number of sample R and location
parameter loc under overall (x0 ∈ [0.5d0, 1.5d0]), scarce (x0 ∈ [0.5d0, 1.0d0]) and ample supply
(x0 ∈ [1.0d0, 1.5d0]) for the baseline scenario.
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Figure B.2: arpg of the clustering method for different number of clusters C under overall (x0 ∈
[0.5d0, 1.5d0]), scarce (x0 ∈ [0.5d0, 1.0d0]) and ample supply (x0 ∈ [1.0d0, 1.5d0]) for the baseline
scenario.
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Appendix C

Appendix to Chapter 4

C.1 Proof of Analytical Results

Proof of Proposition 4.1. From Equation (4.1) and the state transitions (Definition 4.1)
we obtain the following expression of the penalty for a customer l:

Cl(Xl,R, Yl,R) = pl

[
βl −

yl,R + min{al,R, Dl,R}
xl,R + Dl,R

]+
.

From this and the demand distribution of the customer, we can obtain the
following expression for the expected penalty of a customer:

E
[
Cl(Xl,R, Yl,R)

]
= pl

∫ al,R

0

[
βl −

yl,R + dl,R
xl,R + dl,R

]+
· fl,R(dl,R) ddl,R+

pl

∫ ∞

al,R

[
βl −

yl,R + al,R
xl,R + dl,R

]+
· fl,R(dl,R) ddl,R (C.1)

The first part of Equation C.1 is only different from zero, when dl,R ≥ dmin,l =
βl xl,R−yl,R

1−βl
; the second part of is only different from zero for dl,R ≥ dmax,l(al,R) =

yl,R+al,R
βl

− xl,R. Straightforward case differentiation then leads to Proposition 4.1
Part 1.
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For Proposition 4.1 Part 2 we differentiate the elements of Part 1 separately.
The differential of a parameter-depended integral G(x) =

∫ v(x)
u(x) g(x, y) dy is

G′(x) = −g(x, u)u′ + g(x, v)v′ +
∫ v(x)

u(x)

d
dx

g(x, y) dy.

Hence, for ∫ ∞

dmax,l(al,R)
pl

(
βl −

yl,R + al,R
xl,R + dl,R

)
fl,R(dl,R) ddl,R

we have:

u′ =
1
βl

v′ = 0

g(x = al,R, y = dmax,l) = pl

(
βl −

yl,R + al,R
xl,R + dmax,l(al,R)

)
fl,R(dl,R(al,R)) = 0

d
dx

g(x = al,R, u = dl,R) = −pl
fl,R(t)

xl,R + t

Consequently, we obtain

d
dal,r

∫ ∞

dmax,l(al,R)
p
(

βl −
yl,R + al,R
xl,R + dl,R

)
fl,R(dl,R) ddl,R

= −pl

∫ ∞

dmax,l(al,R)

1
xl,R + dl,R

fl,R(dl,R) ddl,R (C.2)

Obviously,

d
dal,r

∫ dmin,l

0
p
(

βl −
yl,R + dl,R
xl,R + dl,R

)
fl,R(dl,R) ddl,R = 0. (C.3)

For

∫ al,R

0
p
(

βl −
yl,R + dl,R
xl,R + dl,R

)
fl,R(dl,R) ddl,R

we have

u′ = 0

v′ = 1
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C.1 Proof of Analytical Results

g(x = al,R, v = al,R) = p
(

βl −
yl,R + al,R
xl,R + al,R

)
fl,R(al,R)

d
dx

g(x = al,R, y = dl,R) = 0

and we obtain

d
dal,R

∫ al,R

0
p
(

βl −
yl,R + dl,R
xl,R + dl,R

)
fl,R(dl,R) ddl,R = p

(
βl −

yl,R + al,R
xl,R + al,R

)
fl,R(al,R).

(C.4)
Similarly, for ∫ ∞

al,R

p
(

βl −
yl,R + al,R
xl,R + dl,R

)
fl,R(dl,R) ddl,R,

we obtain

u′ = 1

v′ = 0

g(x = al,R, u = al,R) = p
(

βl −
yl,R + al,R
xl,R + al,R

)
fl,R(al,R)

d
dx

g(x = al,R, y = dl,R) = −pl
fl,R(t)

xl,R + t
.

This results in

d
dal,R

∫ ∞

al,R

p
(

βl −
yl,R + al,R
xl,R + dl,R

)
fl,R(dl,R) ddl,R =

− p
(

βl −
yl,R + al,R
xl,R + al,R

)
fl,R(al,R)− pl

∫ ∞

al,R

1
xl,R + dl,R

fl,R(dl,R) ddl,R. (C.5)

Case 1 of Part 1 results in (C.2); Case 2 results also in (C.2) as (C.3) is zero. This
leads to Case 1 of Part 2. Case 3 of Part 1 results in (C.4) and (C.5), which together
reveal Case 2 of Part 2.

Proof of Lemma 4.1. Sums of convex functions are convex; a continuous and a twice-
differentiable function is convex, if its second derivative is non-negative (Boyd and
Vandenberghe, 2004).
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Note that, although E Cl(Xl,R+1, Yl,R+1) is a piecewise function, it is continuous
and differentiable, because dmax,l(dmin,l) = dmin,l . Straightforward computations
from Proposition 4.1 reveal that

d
d2al,R

E Cl(Xl,R+1, Yl,R+1) =

pl
1

al,R+yl,R
fl,R(dmax(al,R)) if al,R ≥ dmin,l

pl
1

al,R+xl,R
fl,R(al,R) else.

By definition, fl,R(x) and all other parameters are non-negative. Therefore

d
d2al,R

E Cl(Xl,R+1, Yl,R+1) ≥ 0,

and E Cl(Xl,R+1, Yl,R+1) is twice-differentiable with respect to al,R, which con-
cludes the proof.

Proof of Proposition 4.2. Straightforward from the fact that d
dyl,R

λl,R(al,t) = 0 for all
al,R ≤ dmin,l .

Proof of Proposition 4.3. For now, assume t = R − 1 and, for ease of notation, set
VR+1 = Cl(xl,R+1, yl,R+1). The allocation in al,R−1 only affects the fulfilled demand
in R (cf. Definition 4.1). Thus, du

dal,R−1
is zero in all dimensions but yl,R. Conse-

quently, using the chain differentiation rule, we can show that:

d
dal,R−1

E VR(u(sR−1, aR−1, DR−1)) = E
d

dal,R−1
VR(u(sR−1, aR−1, DR−1))

= E
du

dal,R−1

d
du

VR(u(sR−1, aR−1, DR−1))

= E1[Dl,R−1 ≥ al,R−1]
d

dyl,R
VR(SR) (C.6)

Equation C.6 shows that the derivative of the penalty function in period R− 1
directly corresponds with the derivative of the penalty function in the subsequent
period R. Here, SR denotes the stochastic state in period R.

By including the state transition to period R + 1 and again applying the chain
rule together with the fact that du

dyl,R
is zero in all dimensions but yl,R+1 (cf. Defini-

tion 4.1), we can obtain a detailed formulation for d
dyl,R

VR(SR).
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d
dyl,R

VR(SR) =
d

dyl,R
E VR+1(u(SR, a∗R, DR))

= E
d

dyl,R+1
VR+1(u) +

da∗R
dyl,R

d
da∗R

VR+1(u). (C.7)

(C.7) has two parts: the first part covers how fulfilled demand directly changes the
state in R and the second part covers how the fulfilled demand in R affects the
optimal allocation in R and with it the penalty. We can show that under an optimal
allocation in period R the second part of (C.7) resolves to zero:

da∗R
dyl,R

d
da∗R

VR+1(u) = ∑
m∈L

da∗m,R
dyl,R

d
da∗m,R

Vt+2(u)

= ∑
m∈Aλ

da∗m,R
dyl,R︸ ︷︷ ︸
=0

d
da∗m,R

VR+1(u) + ∑
m∈L\Aλ

da∗m,R
dyl,R

d
da∗m,R

VR+1(u)︸ ︷︷ ︸
=λ

(C.8)

= λ ∑
m∈L\Aλ

da∗m,R
dyl,R︸ ︷︷ ︸

=0

= 0 (C.9)

(C.8) separates the customers receiving an allocation from those who’s alloca-
tion is bound to zero (set Aλ). Theorem 4.1 we know that the allocation to cus-
tomers in Aλ does not change with a marginal change in their marginal penalty,
so

da∗m,R
dyl,R

= 0. Customer receiving an allocation have the same marginal penalty,

hence, d
da∗m,R

VR+1(u) = λ. As supply is constrained, the sum of all allocations is
constant, and thus the sum of marginal changes in the allocations to the customer
is equal to zero.

Then, we can simplify (C.7) with Equation (4.1) to:

d
dyl,R

VR(SR) = E
d

dyl,R+1
VR+1(u) = E

−pl
Xl,R+1

· 1
[

Yl,R+1

Xl,R+1
≤ βl

]
.

Combining this with (C.6) gives Proposition 4.3 for period R− 1. Which proves
that Theorem 4.2 holds for R− 1. Backward induction shows that Proposition 4.3
holds for any period t < R− 1.
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Proof of Lemma 4.2. A continuous, twice differentiable function of several variables
is convex if and only if its Hessian matrix of second partial derivatives is positive
semidefinite (Boyd and Vandenberghe, 2004).

With Proposition 4.3 we know that

E
d

dal,t
Vt+1(u(st, at, Dt)) =

∫ ∞

al,t

E
−pl

Xl,R+1
1

[
Yl,R+1

Xl,R+1
≤ βl

]
· fl(dl,t) ddl,t.

Hence the second derivative can be evaluated as:

E
d

d2al,t
Vt+1(u(st, at, Dt)) =

d
dal,t

∫ ∞

al,t

E
−pl

Xl,R+1
1

[
Yl,R+1

Xl,R+1
≤ βl

]
· fl(dl,t) ddl,t

= −E
−pl

Xl,R+1
1

[
Yl,R+1

Xl,R+1
≤ βl

]
· fl(dl,t) ≥ 0. (C.10)

As all derivatives E d
dal,t

d
dam,t

Vt+1(u(st, at, Dt)) for l, m ∈ L, l 6= m are zero, the
Hessian is diagonal matrix with non-negative entries. Consequently, the matrix is
positive semidefinite which concludes the proof.

C.2 LP-Formulations

MSLAP

min Z

subject to: Z ≥ βl −
al,t + yl,t
µl,t + xl,t

∀l ∈ L

[st + it]+ ≥ ∑
l∈L

al,t

MPAP

min ∑
l∈L

Zl

subject to: Zl ≥ pl

[
βl −

al,t + yl,t
µl,t + xl,t

]
∀l ∈ L
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Zl ≥ 0 ∀l ∈ L
[st + it]+ ≥ ∑

l∈L
al,t
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Appendix to Chapter 5

D.1 Algorithm for the Clustering Allocation

for m ∈ IK do
Let Cc,m = {l | l ∈ Sm, l is in cluster c} ⊂ Sm denote the set of nodes that
belong to cluster c ∈ {1, . . . , D}, where D is the number of clusters.
Set

µc
m,t := ∑

l∈Cc,m

µl,t (D.1)

σc
m,t := ∑

l∈Cc,m

σl,t (D.2)

pc
m,t :=

1
µc

m,t
∑

l∈Cc,m

µl,t pl,t (D.3)

end for
for n ∈ Ih, h ∈ {K− 2, . . . , 0} do

Let Cc,n = {(m, c′) | m ∈ Sn, c′ ∈ {1, . . . , D}, (m, c′) is in cluster c} denote the
set of clusters of nodes m ∈ Sn belonging node n’s cluster c.
Set

µc
n,t := ∑

(m,c′)∈Cc,n

µc
m,t
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σc
n,t := ∑

(m,c′)∈Cc,n

σc
m,t

pc
n,t :=

1
µc

n,t
∑

(m,c′)∈Cc,n

µc
m,t pc

m,t.

end for
for n ∈ Ih, h ∈ {0, . . . , K− 2} do

(Determine the local optimal allocation)
Solve

min ∑
m∈Sn

∑
c∈{1,...,D}

∫ ∞

xc
m,t

pc
m,t(d

c
m,t − xc

m,t)gc
m,t ddc

m,t

s.t.

∑
m∈Sn

∑
c∈{1,...,D}

xc
m,t ≤ xn

xc
m,t ≥ 0 ∀m ∈ Sn, c ∈ {1, . . . , D}

where gc
m,t is the cluster’s aggregated demand distribution with mean µc

n,t and
standard deviation σc

n,t.
Set xm,t = ∑c∈{1,...,D} xc

m,t for all m ∈ Sn.
end for
return (xm,t)m∈IK
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