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We review the role of oscillations in the brain and in the auditory system showing

that the ability of humans to distinguish changes in pitch can be explained as a

precise analysis of temporal information in auditory signals by neural oscillations. The

connections between auditory brain stem chopper neurons construct neural oscillators,

which discharge spikes at various constant intervals that are integer multiples of 0.4 ms,

contributing to the temporal processing of auditory cochlear output. This is subsequently

spatially mapped in the inferior colliculus. Electrophysiological measurements of auditory

chopper neurons in different species show oscillations with periods which are integer

multiples of 0.4 ms. The constant intervals of 0.4 ms can be attributed to the smallest

synaptic delay between interconnected simulated chopper neurons. We also note the

patterns of similarities between microcircuits in the brain stem and other parts of the

brain (e.g., the pallidum, reticular formation, locus coeruleus, oculomotor nuclei, limbic

system, amygdala, hippocampus, basal ganglia and substantia nigra), dedicated to the

processing of temporal information. Similarities in microcircuits across the brain reflect

the importance of one of the key mechanisms in the information processing in the brain,

namely the temporal coupling of different neural events via coincidence detection.

Keywords: canonical microcircuits, cochlear nucleus, locus coerulus, limbic system, amygdala, hippocampus,

basal ganglia, substantia nigra

1. INTRODUCTION

Oscillations are defined as periodic temporal changes in the state parameters of a system and
characterize stable states in the non-linear neural dynamics of the brain. The study of oscillations
in the human brain began in the early part of the last century, when neural oscillations were
recorded by electroencephalography (EEG) in 1924 byHans Berger at the University of Jena. Neural
oscillations in the EEG recordings are classified according to their frequency in different bands.
However, EEG signals are only the summed electrical activity of the brain, as they are measured at
the surface of the skull. This averaged activity wouldmaskmechanisms, subserved by oscillations in
smaller subpopulations of neurons. Furthermore, invasive single unit recording (extracellular and
intracellular) as well as the recording of local field potentials reveal the presence of oscillations.
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2. THE ROLE OF OSCILLATIONS IN
COUPLING NEURAL ACTIVITIES IN THE
BRAIN

Neural oscillations are observed in various parts of the brain
involving different sensory systems, such as the visual, olfactory,
motor, and auditory system. In the midbrain, the presence
of neural oscillations in electrophysiological recordings in the
auditory system was discovered by Langner (1978), which
led to the model of auditory temporal processing and neural
oscillators by Langner (1981). Later, neural oscillations became
a hot topic of research in the visual system. Studies of Gray
and Singer (Gray and Singer, 1989; Gray, 1994), and others
(Eckhorn et al., 1988) linked oscillations in the visual system
to the binding of various percepts. It was shown that neural
oscillations, resulting from the synchronization of spatially
segregated retinal ganglion cells evoked by stationary andmoving
visual stimuli, are reliably transmitted by the lateral geniculate
nuclei, which suggests the importance of maintaining temporal
coupling of neural activities in processing the perception of global
stimulus properties such as size and continuity of spatial features
(Neuenschwander and Singer, 1996). The temporal coupling of
peripheral neural activities between adjacent retinal ganglion
cells is due to the presence of intercellular gap junctions (Roy
et al., 2017). Studies of olfactory responses has also revealed
temporal coupling of neuronal activities. Gilles Laurent and his
colleagues observed that during an oscillatory response to odor in
locusts, different neurons in the olfactory antennal lobe showed
a higher probability of coincidental firing in a pair of neurons
in some cycles but not in other cycles of the oscillatory response
(Wehr and Laurent, 1996). Furthermore, neural oscillations play
a pivotal role in various timing functions of the brain, including
time perception (Buhusi and Meck, 2005; Gupta, 2014). In a
recent study, recordings from the medial prefrontal cortex in
monkeys, who produced different time-intervals using hand
or eye movements, showed that the firing rate profiles were
temporally scaled to match the produced intervals (Wang et al.,
2018). This finding could be explained by the differences in
the activation profiles of temporally-coupled subsets of neurons
during the production of short and long intervals. Moreover,
this study is consistent with the idea that the time course of
the temporal coupling of neurons is responsible in part for the
conscious time-interval production, while the scaling of the time
course is correlated to the length of produced intervals.

3. OSCILLATIONS IN THE AUDITORY
BRAIN STEM AS A TEMPORAL SCALE

Oscillations in the auditory pathways are observed in the
cochlear nucleus and the inferior colliculus (Figure 1) among
others. These oscillations are attributed to a class of neurons
in the cochlear nucleus, called “chopper neurons” (see e.g.,
Blackburn and Sachs, 1989). Chopper neurons, which exhibit
a unique response pattern, project to the inferior colliculus.
They generate oscillations with a frequency, which is relatively
independent of the changes of important stimulus parameters

FIGURE 1 | This schematic depicts key brain structures for processing

auditory inputs. The cochlear nucleus in the brain stem is the initial processing

center for auditory inputs and contains a variety of neurons capable of

temporal processing. One such class of neurons, called chopper neurons,

show a characteristic post stimulus time histogram, with ISIs (interspike

intervals) which remain relatively constant and is unrelated to the stimulus

frequency.

(Pfeiffer, 1966; Blackburn and Sachs, 1989; Wiegrebe andWinter,
2001; Winter et al., 2001). The interspike interval (ISI) of
chopper neurons exhibit a distribution pattern in different
species, which is centered at integer multiples of 0.4 ms (Langner
and Schreiner, 1988; Bahmer and Langner, 2006a). In Mandarin,
a tonal language wherein word meanings change with the pitch,
periods, which are integer multiples of 0.4 ms can be found
in statistically preferred tones (Langner, 2015). Recently, the
temporal constant of 0.4 ms was found in electrophysiological
recordings of the cochlear nucleus in human auditory brain
stem implant patients (Bahmer et al., 2017). Chopper neurons
play a key role in pitch perception (Langner, 1981; Hewitt
et al., 1992; Wiegrebe and Winter, 2001). Incoming acoustical
stimuli contain information about the pitch in their temporal
modulation. Information about the temporal modulation is
transferred via the auditory nerve to the ascending auditory
pathways. The tuning of the auditory nerve fibers alone is not
sufficient to explain the precision with which humans distinguish
between pitch differences (just noticeable differences are about
0.2%, Fastl and Weinberger, 1981). Therefore, in addition to
the coarse spectral analysis of the incoming signals in the
cochlea, a subsequent temporal analysis is mandatory. Especially
for absolute listeners, an inherent scale (neural oscillations in
clock mechanism) could explain their outstanding ability to
determine absolute pitch. Candidates producing such scales
would be the chopper neurons in the cochlear nucleus of
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the brain stem. Chopper neurons have a significant role in
the periodicity analyzing model introduced by Langner (1981,
1983) including the cochlear nucleus, inferior colliculus, and
lemniscus lateralis. According to this model, a neuronal network
including different types of oscillators (Figures 2, 4) correlates
features of the input signal to each other or correlates the
features of the input signal to neuronal oscillations. In both
modes, chopper neurons provide the temporal scale (Oscillator
circuit 1, Figure 2). The function of the network is based upon
the correlation of undelayed (oscillator circuit 1) and delayed
neuronal responses (oscillator circuit 2) of the depicted neurons
(Figure 2) to envelopes of amplitude modulated (AM) signals.
These responses converge at neurons acting as coincidence
detectors. Each modulation period of an AM signal activates
the trigger neuron, which in turn activates a rapid oscillation
(oscillator potential with a predefined frequency). Via parallel
processing, the integrator neuron responds to the same cycle
of the modulation frequency but with a longer delay which
corresponds to the integration period from the integrator-like
function. Moreover, the coincidence neuron will be activated,
despite different delay intervals of the two previous units,
provided that the integration period equals the period of the AM
signal. A coincidence neuron will respond more often, when its
inputs are synchronized, i.e., when the spikes of the oscillator
and of the integrator converge synchronously. Thus, modulation
periods (periodicity; τm), m×τm, with m = 1, 2, ..., which activate
the oscillations and drive the coincidence unit, can be computed
according to the following linear equation:

m× τm = n× τc − k× τk (1)

where k, m, n are small integers. n×τc is the integration period,
which consists of n carrier periods and after this interval the
integrated input signal reaches a threshold. 1/τc is the carrier
frequency of the AM signal, 1/τk the frequency of the auditory
oscillations. Equation (1) will be referred here as coincidence
equation. The parameter m takes into account the fact that
coincidence neurons respond also to harmonics (m > 1) of
the modulation frequency of the AM signal, which implicates
ambiguity of IC neurons with respect to harmonically related
signals. A solution to this problem is proposed by an input from
the inhibitor (anatomically attributed to the lemniscus lateralis,
a spiral structure). Because of the cochlear frequency analysis,
neurons respond strongest at a characteristic frequency (CF).
In addition to the CF, the coincidence neuron is tuned to a
certain periodicity, i.e., a certain modulation frequency of an
AM signal, also called the best modulation frequency (BMF).
Therefore, different trigger, oscillator, integrator, and coincidence
units are incorporated to explain the range of periodicity of AM
signals (Langner, 2015). A detailed simulation of the periodicity
analyzing model introduced by Langner (1981, 1983) can be
found in Borst et al. (2004) and Voutsas et al. (2005). An example
of the simulation results of the periodicity model with and
without inhibition is depicted in Figure 3.

For the peripheral auditory system, ISIs of neural oscillations
are argued to serve as a temporal scale (Bahmer and Langner,
2005). Absolute listeners may use this temporal scale for their

outstanding ability to determine absolute pitch of the incoming
tonal acoustic signals.

In a work presented here, we show that by simulating chopper
neurons with various oscillation frequencies these neurons may
serve a scale for a subsequent temporal analysis as for pitch
determination. Furthermore, we hypothesize that microcircuits
found in the auditory system which are dedicated to temporal
analysis are ubiquitous in the brain for an operation in the
temporal domain.

4. NEURONAL MODELING OF
OSCILLATION IN THE AUDITORY BRAIN
STEM

The simulation of the oscillatory neuronal network in the
auditory brain stem from Bahmer and Langner (2006b) are
performed in Matlab 2006 (The MathWorks, Inc., Nattick)
and NEURON (Hines and Carnevale, 1997). The differential
equations are numerically realized by the Euler method in
Matlab. Time steps of 25 µs are sufficient for the relevant time
scales of about 0.1ms. Signal, onset neuron, and chopper neurons
are implemented as script-files, and auditory nerve fiber response
is calculated within a mex-file inMatlab. Programs were executed
on a PC with 2.0 GHz and 512 MB RAM.

The inner ear, inner stereociliary hair cells and auditory nerve
fibers were modeled according to Hemmert et al. (2003). A
wave-digital filter model describes the vibrations of the basilar
membrane on the basis of the passive inner ear hydrodynamics;
it consists of 125 mass-spring resonators that are connected
by a coupling-mass (Strube, 1985; Zwicker, 1986). To simulate
the outer hair cell function, the amplitude of the vibration of
the basilar membrane is amplified and the traveling-wave along
the basilar membrane is sharpened at the low values of the
amplitude. This is performed by the second order resonators
that are added at the outputs of the cochlear filter bank. The
quality factors of the resonators are altered in all iteration
steps depending on the displacement of each resonator. Four
stages of the resonators are cascaded to achieve physiologically
plausible amplification and filter shapes. Bundles of stereocilia
of sensory hair cells are deflected by fluid motion from the
movements of the basilar membrane (Mountain and Cody,
1999). When bundles of stereocilia are deflected, ion channels
open and K+-ions diffuse into the sensory hair cells. The K+-
ion diffusion depolarizes the inner hair cell membrane. Due
to the depolarization, Ca2+-ions enter the cell through voltage
activated Ca-channels. High Ca2+-concentration within the cell
leads to the fusion of synaptic vesicles with the cell membrane
(Moser and Beutner, 2000; Beutner et al., 2001). Specific quanta
of neurotransmitter release are required to trigger the action
potential at the postsynaptic membrane. Since there is a depletion
of vesicles with release, spiking probability of the auditory nerve
diminishes after a strong stimulus (adaptation). The model also
includes a refractory period of about 1 ms (Carney, 1993). The
generation of the action potential is a stochastic process due to
the implemented random vesicle fusion. A single inner hair cell
is connected to 20 synapses of the auditory nerve. Physiological
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FIGURE 2 | The periodicity analyzing neural model from Langner (2015) consists of two oscillators driven by the incoming auditory signal (Langner, 1981, 1983).

Trigger neurons shown in this schematic are frequency-specific t-stellate cells/ chopper neurons, which give rise to tonic firing in response to phasic firing by the

auditory nerve (Oertel et al., 2011). Successful periodicity analysis in the brain stem will result when coincidence activation takes place. Coincidence activation,

projecting to the auditory cortex, can also account for sparse coding in the auditory cortex while there is tonic/phasic firing at the level of the brain stem and periphery.

FIGURE 3 | Simulation results of the periodicity model without (Left) and with (Right) an inhibitory connection. The response results from 16 periodicity models tuned

to characteristic frequencies (CF) and best modulation frequencies (BMF) with the ratio 6:1 (CF/BMF). Stimuli are 256 combinations of 16 carrier and 16 modulation

frequencies. The carrier frequency axes corresponds to the CF of one periodicity model (from Voutsas et al., 2005).

and anatomical findings have led to the following simulation
paradigm (Figure 4). (A) Two or three chopper neurons (fast)
which are connected, can activate its subsequent neighbor,
operate as a pace-maker, and project to other chopper neurons
(slow) that have a longer refractory period. The fast neurons
act as a pace-maker with a clock-rate of 0.4 ms. The slower
chopper neurons which, due to longer refractory periods, skip
short intervals while producing outputs at the long intervals,
which are multiples of 0.4 ms. This reduces the number of the
chopper neurons that are required to produce ISIs longer than
0.8 ms. (B) The first of two additional inputs are transmitted
via five synapses from the auditory nerve fibers (Ferragamo
et al., 1998a). (C) The additional input comes from the onset
neuron and activates only one of the chopper neurons in the

circuit. The onset neuron (trigger) receives its broadband input
from the auditory nerve and excites one chopper neuron (fast).
Inputs from the auditory nerve depolarize the membrane of the
chopper neurons. This change in the membrane voltage enables
chopping but does not initiate it. The reason is that the weights
of auditory nerve synapses are adjusted in such a way that the
auditory nerve input alone cannot drive the membrane voltage
to the threshold. Instead, the chopping is initialized by a spike
from the trigger/onset neuron. The onset neuron is a simplified
version of the model that was proposed by Rothman and Manis
(2003) and is based on Hodgkin-Huxley (HH) equations. The
model consists of a sodium (INa), a low-threshold potassium
(ILTK), an excitatory synaptic (IE) and a leakage (Ilk) current. The
low threshold of the potassium channel opening is responsible
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for the onset neuron behavior (Rothman and Manis, 2003).
Simulation parameters of the adapted HH-like onset neuron can
be found in Bahmer and Langner (2006b). Chopper neurons
are modeled as leaky integrate-and-fire neurons with synapses
(Bleeck, 2000). The synapses are modeled as follows. The action
potential in the presynaptic neuron leads to the fusion of
vesicles, discharging neurotransmitters into the synaptic cleft.
The emission of vesicles is simulated by use of a look-up table.
The neurotransmitter molecules traveling in the cleft to the
postsynaptic neuron is modeled by diffusion. The decay of
neurotransmitter effect is simulated by a leaky integrator. The
probability of open channels for certain ions increases as the
concentration of neurotransmitter in the synaptic cleft becomes
higher. Various ions produce either excitatory or inhibitory
postsynaptic currents. A hyperbolic tangent function controls
the channel conductance. A time delay with adjustable jitter
(parameters: mean and standard deviation) that stands for the
overall neurotransmitter diffusion time was integrated in the
simulation. Details like the neuron and synapse model equations
and simulation parameters can be found in Bahmer and Langner
(2006b). The simulation of chopper neuron soma activity is based
on a leaky integrate-and-fire model. The incoming postsynaptic
currents from the synaptic inputs are integrated and build up
a postsynaptic potential while a leakage current diminishes the
input. When the potential reaches a predefined threshold, a spike
is elicited, and the membrane potential is reset. The absolute and
relative refractory period (exponentially decreasing) ensures that
the spike generation is suppressed or needs a stronger input,
respectively, for a given period of time. The time constant of
the fast chopper neurons in the simulation is set to 0.8 ms to
ensure a fast chopping; whereas the time constants of the slow
chopper neurons is set to higher values according to their low
chopping frequencies. The summed weight of the synapses of the
nerve is on average eight times lower in the simulations than
the weights of the synapses of the chopper and onset neuron.
Excitatory postsynaptic potentials lead to the subthreshold
depolarization of the membrane to enable chopping. This weak
auditory nerve input does not mean that the overall response
of the chopper neuron is low because the input from the
network also contributes to the response. As an alternative to
the leaky integrate-and-fire chopper neuron model described in
the previous section, the HH-like chopper model of Rothman
and Manis (2003) for the simulation environment NEURON
was simulated (Bahmer and Langner, 2010). According to the
results, the model has the disadvantage that it cannot reproduce
in vivo data of subpopulations of chopper neurons showing small
ISIs (e.g., 1.4 ms, Young et al., 1988). Moreover, the dynamic
range of the spike rate of real chopper neurons is about 200–300
spikes/s in average (Frisina et al., 1990). If this physiologically
dynamic range is applied to the simulation, the corresponding
ISIs in the simulation span a range of about 5–23 ms, whereas
in vivo values of ISIs differ much less with varying levels (e.g.,
Frisina et al., 1990). Therefore, the model was adapted by means
of genetic algorithms (Bahmer and Langner, 2010) which resulted
in cell parameters in a physiologically plausible range. For the
simulation of the modified model, the currents are varied in
NEURON and the corresponding voltage responses are saved.

FIGURE 4 | Periodicity model from Langner and Bahmer (Langner, 2015,

chapter 9). (A) The model topology of the “oscillator” (red circle) contains fast

and slow chopper neurons. (B) Corresponding “neuronal recordings.” In

Figure 2, the “oscillator” corresponds to oscillator circuit 1 and the “reducer”

to oscillator circuit 2.

The voltage responses were then analyzed in Matlab and the
ISIs were plotted versus the input strength. For the neuronal
modeling II, the auditory nerve input is modeled as a signal step
and the onset neuron is modeled as a single-spike generator.

5. SIMULATION OF A SMALL NETWORK
OF FAST PACEMAKER NEURONS IN THE
AUDITORY SYSTEM

Blackburn and Sachs (1989) classified (anterior ventral) cochlear
nucleus neurons using regularity analysis of ISIs. Important
parameters of this analysis were mean and standard deviation.
The coefficient of variation value (CV, ratio: standard deviation
to the mean of ISIs) enables a comparison of different units
of chopper neurons and different stimulus levels. The CV is
computed as a function of time. Sustained chopper neurons
are a subtype of chopper neurons and classified by a small
CV, indicating their highly regular ISIs. Figure 5 shows the
simulation results of the multi-oscillator and physiological data
of a sustained chopper neuron in the CN (Bahmer, 2007). Firing
rate and ratio of peak heights match their known physiological
properties. The data obtained after the simulation, such as firing
rate, number of peaks, and ratio of peak heights are similar to
electrophysiological data. Even the regularity analysis could be
matched to i data. In this simulation, a jitter (standard deviation
0.26 ms) is added to the synaptic delay of the interconnections of
the fast chopper neurons.

6. SIMULATION OF A SMALL NETWORK
OF SLOW PACEMAKER NEURONS IN THE
AUDITORY SYSTEM

Simulation with the adapted model (Figure 6, see also Bahmer,
2007) shows oscillations with ISIs of 0.8 ms duration. Two of
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FIGURE 5 | “Oscillator” response from Figure 4: Simulated chopper neuron (A,B) and recording of a sustained chopper neuron (C,D) in the CN of the cat (Blackburn

and Sachs, 1989). (A,C) Peri-stimulus time histogram (PSTH) response to 500 stimuli (bin width: 0.3 ms). (B,D) Regularity analysis: mean (µ), standard deviation (σ ),

and coefficient of variation (CV) of interspike intervals. For simulated and in vivo responses, stimuli were short tone bursts (25 ms, 1.6 ms rise and fall time) with

frequency at the CF of the chopper neuron (2.89 kHz), 30 dB above threshold.

FIGURE 6 | A set of chopper neurons provides time intervals that are multiples

of 0.4 ms by reducing a high-frequency input from a pacemaker micro-circuit.

these adapted neurons can mutually excite each other and act as
pacemaker. This pacemaker projects to other chopper neurons
that have slower time constants and, therefore, skip a certain
number of spikes. Nevertheless, the skipping results in ISIs with
are integer multiples of 0.4 ms (Figure 6). In the simulation, the
post synaptic current (Figure 7 left, PSC) drives the membrane
voltage of the slow chopper neuron to the threshold but due to
the refractory period several supra-threshold inputs are skipped.
Only action potentials at every third supra-threshold input are
elicited. Thus, action potentials are only elicited at every third
supra-threshold input (ISI: 1.2 ms). For a set of slow chopper
neurons, action potentials with various ISI (integer multiples of
0.4 ms) are generated which depends on the refractory period.
Note that the refractory period is not necessarily an integer
multiple of 0.4 ms, but is a continuous variable; however, ISIs are
integer multiples of 0.4 ms, corresponding to the periodic inputs
from the fast chopper neurons.

As it can be noted from equation 1, the solution for
the correlation of the integration period of the carrier, the

modulation frequency, and frequency of auditory oscillations is
constrained by integer values of m, k and n. The integer values
of m, k and n would represent the number of oscillations, which
are reached in respective circuits before integration, a correlate
of perception occurs. In fact, as discussed later, circuit patterns
found in the auditory system for an effective analysis of high
temporal informational content can be found throughout the
entire brain (Oertel and Young, 2004; Langner, 2015). We review
literature, which shows that many microcircuits, which employ
coincidence detection mechanism to temporally couple neural
events, are found across the brain.

7. INHIBITION OF THE SELF-EXCITING
OSCILLATOR MICROCIRCUIT IN THE
AUDITORY BRAIN STEM

The simulation of a cluster of chopper neurons shows that
oscillations with precise ISIs can be generated with the help of a
few neurons. Two or three interconnected fast chopper neurons
act as a pacemaker with a smallest temporal resolution of 0.4
ms projecting to the slow chopper neurons. The slow neurons
can skip supra-threshold inputs and generate outputs at longer
ISIs. In physiological measurement ISIs span a wide range of
durations (Young et al., 1988). In the simulation from Bahmer
and Langner (2006b), chopper neurons can excite each other as
observed in T-stellate cells (Ferragamo et al., 1998b). T-stellate
cells also receive an inhibitory input from D-stellate cells. This
input, in the presence of the input from the auditory nerve,
can inhibit the self-excitation of the network. In the simulation
from Bahmer and Langner (2006b), the offset at the end of
the input from the auditory nerve was sufficient to stop the
excitation of the network. In a future version, the input from D-
stellate cells shall be included as excitation must be balanced by
inhibition especially if the network contains more interconnected
chopper neurons. Furthermore, a combination of inhibitory and
excitatory inputs enhances the signal detection and provides
means of gain control by reducing noise by inhibition (Caspary
et al., 1994; Josephson and Morest, 1998).

For the fast chopper neurons, this input enables chopping;
it is a condition for starting and stopping the chopper neurons
and is necessary in a self-exciting network (Bahmer and Langner,
2007). But, in the context of the current model, this does not
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FIGURE 7 | (Left) Simulation of slow chopper neuron that receives input from two fast chopper neurons and the auditory nerve. (Right) Various integer multiples of

0.4 ms can be provided by a small number of chopper neurons, which receive an input from the same pacemaker.

seem to be necessary for the slow chopper neurons because
this functional role is substituted by the projection of the fast
chopper neurons. On the other hand, if an additional inhibition
of chopper neurons is included (see above: functional role of
inhibition of D-stellate cells) this input again seems reasonable.
However, if the inhibition is strong enough to mute the circuit,
the onset neuron would not activate the chopper neurons. With
the help of the excitatory inputs from the auditory nerve, the
inhibition is balanced, and the onset neuron is able to activate the
chopper neurons. Moreover, the integration of inhibition in this
model can plausibly enhance dynamic processing (Eguia et al.,
2010).

8. TRANSFORMATION OF INCOMING
AUDITORY INFORMATION INTO A SPARSE
CODE

Psychoacoustical studies in the past have indicated that the
perception of speech is not adequately accounted by place
frequency mechanisms (Rosen, 1992). The temporal information
represented in sounds is also important in the perception
of speech (Rosen, 1992). Therefore, it is noteworthy that a
recent theoretical work and a growing number of experimental
studies indicate that time-dimension is an integral part of
information processing underlying various perceptual functions
(Gupta, 2014; Gupta and Chen, 2016). Most natural sounds
are modulated in amplitude (Joris et al., 2004; Eguia et al.,
2010), and, thus, they are represented by two frequencies: a fast
frequency, which represents fine oscillations of sound waves and
a slow frequency of the amplitude modulation. The oscillations
of both frequencies, forming the structure of AM signals of
natural sounds processed by cochlea, help to represent physical
time-dimension (Gupta, 2014). The spike structure of the AM
signals is phase locked to the movements of inner hair cells,
which directly results from the pressure changes produced by
amplitude-modulated sound waves. Thus, oscillatory structure

of AM signals inputs temporal information into neural circuits
when they are processed by trigger neurons (Figure 2).Moreover,
this is consistent with the discussion of equation 1, based on
the periodicity analyzing model (Langner, 1981, 1983) which
suggests that both the carrier frequency of sounds as well as
its modulation frequency are responsible for the integration
underlying perception. The coincidence detection (Figure 2),
responsible for integration would result in a sparse code (Harris
et al., 2011), which would be processed in the cortical auditory
areas to create the perception of sound.

9. COINCIDENCE DETECTION VIA
DISTRIBUTED MICROCIRCUITS IS A KEY
MECHANISM FOR CONSCIOUS BRAIN
FUNCTIONS

Neural oscillations are hypothesized to play a pivotal role
in decoding the temporal information in ramping neuronal
activities (Gupta, 2014) that are commonly observed in the
cortex (Leon and Shadlen, 2003; Durstewitz, 2004; Lebedev
et al., 2008; Schneider and Ghose, 2012; Narayanan, 2016).
As discussed in the Introduction, temporal coupling of neural
events is important for various cognitive functions of the brain.
Moreover, the temporal coupling can be realized by coincidental
activation of neural circuits. Furthermore, our models support
the role of coincidence detection in the analysis of temporal
information in auditory signals. Coincidence detection would
play a key role in generating the information that produces
a consciously timed behavior. According to the schematic
in Figure 8, this information is processed when coincidence
detector neuron is stimulated by both, excitatory presynaptic
terminals controlled by gamma oscillations (Fries, 2015) as
well an increasing excitatory input coming from a ramping
neuronal activity. In this mechanism, the ramping activity of
neurons resembles an integrator and the oscillators periodicity
determine the limit of integration. A coincidence detection
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model (Figure 8), based on the periodicity analyzing model
for auditory signals proposed by Langner (2015), can provide
a basis for decoding the information coded by the pattern
of ramping activity. As argued by Gupta and Chen (2016),
action and perception are temporally coupled by hierarchical
neural oscillations. Consistent with this, a coincidence detection
of three events is depicted in Figure 8. Two of these events
are fast-(gamma) oscillations nested in the excitation phase of

a slow-oscillation (Figure 8C). The third event is the ramping
activity of a neuron (Figure 8A). The output of the neuron
with the ramping activity stimulates the neuron (Figure 8B)
in the brain area synchronized with the nested oscillation.
The neuron in (Figure 8B) will be stimulated when ramping
activity reaches the threshold, coinciding with the nested gamma
oscillations. The time-period from the start of the ramping
activity, called Integration Period, will encode the timing of the
action.

Cross-frequency coupling allows discrete packets of high
(gamma band) frequency oscillations to be formed across
larger areas of the brain synchronized by low (alpha and beta
bands) frequency oscillations (Buzsáki and Watson, 2012; Gupta
and Chen, 2016). The excitatory phase of neural oscillations
can increase the probability of coincidental firing of neurons
leading to information processing via discrete circuits in a
network. Furthermore, according to a leading modern theory
of perception, predictive coding, there is an interaction between
feedforward and feedback information (Friston, 2008). Cross-
frequency coupling would lead to integration by climbing
neuronal activities in the cortex during interaction between
feedforward and feedback circuits. Experimental evidence and
theoretical considerations, reviewed earlier (Bastos et al.,
2012), suggest that feedforward connections, predominantly
present in the superficial layers of the cortex, use higher
frequency oscillation (gamma range), compared to alpha or beta
frequency used by feedback connections in the deep cortical
layers.

Integration Period = p× τslow + q× τfast (2)

τslow and τfast are periodicities of slow- and fast-oscillations,
and p and q are integers. Ramping activities could also play
an important role in the analysis of multiple inputs that
underlies a decision process. Single cell recording from layer 5
in the primary motor cortex of rats had shown that there is
a strong modulation of specific neuronal activity when there
are unfamiliar movements, such as the right or left movements
(Cohen and Nicolelis, 2004), which is a suggestive of a decision
process. Moreover, the neurons in the cortical layer 5 send
axons to the thalamus, basal nuclei, brain stem as well as
the spinal cord to control motor movements (Crossmann and
Neary, 2010). Since the primary motor cortex receives inputs
from the prefrontal cortex and different sensory areas (Borra
and Luppino, 2017; Kheradmand and Winnick, 2017), ramping
activity may result from a variable balance of inputs from
many of these areas, which would be the basis for the decision
process.

FIGURE 8 | Coincidence detection of three events. Two of these events are

gamma oscillations nested in the excitation phase of a low-frequency

oscillation (C); the third event is a ramping activity of a neuron (A). The output

of the neuron ramping activity stimulates the neuron (B) in the brain area

synchronized with the nested oscillation. The neuron in (B) will be stimulated

when ramping activity reaches a threshold coinciding with the nested gamma

oscillations. The time-period from the start the ramping activity, called

Integration Period, will encode the timing of the action.

10. ANATOMICAL SUBSTRATES FOR
CANONICAL MICROCIRCUITS FOR
TEMPORAL PROCESSING IN THE BRAIN

The auditory system has evolved by adapting its internal
functional structures for a fast processing of incoming signals. As
outlined in the Introduction, a periodicity analysis of incoming
signals can be accomplished by simple neuronal elements
(Langner, 1981). These elements resemble components like
integrators, differentiators, and temporal coincidence detectors.
Even the occurrence of harmonics in the periodicity analysis—
the unwanted side effect of a correlation analysis see Figure 3—
is suppressed by a helical structure located in the lemnisculs
lateralis (Ochse, 2004; Voutsas et al., 2005; Langner, 2015).
Note that oscillations are ubiquitous in the brain as outlined
in the Introduction. However, in contrast to their specific
functional role as a temporal scale in the auditory brain stem,
they are rather seen as an epiphenomenon in other brain
areas, that is, no distinct meaning can be generally attributed
to a certain oscillation frequency. Nevertheless, oscillations are
a power tool for communication between neuronal networks
(Gray and Singer, 1989; Gray, 1994; Fries, 2015). Given that
temporal neuronal processing is enhanced by oscillations, it
is not surprising to find similar canonical microcircuits in
the brain (e.g., the cerebellum-like circuit pattern found in
the dorsal cochlear nucleus and pallidum, see Oertel and
Young, 2004). There are several parts of the brain that
contain helical-like structures after reconstructing from sections,
and resolved at the level of cells [Figure 9, ventral part of
the lemniscus lateralis, locus coeruleus, oculomotor nuclei,
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amygdala, hippocampus (cornu ammonis 3), and pars compacta
and reticulata of the substantia nigra, Langner (2015)]. These
structures provide plausible anatomical solutions for processing
hierarchical oscillations as there could be at least two gradients of
frequencies in ensembles of neurons: one from periphery to the
center and the other between several turns of the helix (Langner,
2015).

11. OSCILLATIONS AS A TARGET FOR
BRAIN-COMPUTER-INTERFACES

It has always been a vision to interface the brain with a
computer to control brain functions. In the auditory system,
computer-brain interfaces have already become reality with the
development of cochlea, brain stem, and midbrain implants.
Cochlea implants stimulate the auditory nerve in the cochlea
with electrical impulses, brain stem implants are located in the
cochlear nucleus, midbrain implants in the inferior colliculus.
These implants are still undergoing further improvements
through research, and understanding the role of the oscillations
in the cochlear nucleus may be the key to further improvements.
In addition, a resonance phenomenon may help to locate target
structures for auditory brain stem implants. Ramsden et al.
(2016) have postulated the existence of chopper neurons with a
preference for certain oscillations periods (Bahmer and Langner,
2006a,b) as a target for electrical stimulation. Based on the
idea of targeting certain neuronal networks, strategies have
been proposed in electrical stimulation of neuronal networks
for cochlear implants, auditory brain stem implants, auditory
mid brain implants, as well as for deep brain stimulation
(Bahmer et al., 2009; Bahmer, 2016, 2017; Bahmer and Schleich,
2016). These stimulation strategies and alternative pulse shapes
(Bahmer et al., 2010; Bahmer and Baumann, 2016) may also

be useful for the deep brain stimulation in psychiatric diseases
(Buzsáki and Watson, 2012).

12. OSCILLATIONS UNDERLYING
AUDITORY STEADY STATE RESPONSES:
IMPACT ON SCHIZOPHRENIA AND
DEPRESSION

Studies have shown that the perception of sound waves is
associated with an increased inter-hemispheric interaction via
synchronization long-range gamma bands (Steinmann et al.,
2014). Gamma oscillations could play a key role during the
long-distance synchronization of local circuits in this inter-
hemispheric interaction (Buzsáki andWatson, 2012; Fries, 2015).
In each gamma cycle, there is a state of excitation, lasting
3 ms, which triggers an inhibition, lasting for the remainder
of the gamma cycle (Fries, 2015). The precision of the 3 ms
excitation in the gamma cycle may help to temporally align
neural events via long-range gamma band synchronization
(Steinmann et al., 2014) in circuits, subserving the perception
of sound waves in two hemispheres. Thus, the perception of
sounds could be causally related with the temporal coupling in
cortical areas, which would result from the coincidence detection
events, similar to the processing of auditory signals in the brain
stem.

In schizophrenia, which is characterized by the impairment
of the perceptual functions, patients often suffer from
hallucinations. Thus, it is not surprising that a meta-analytic
study finds that in schizophrenia, there is a reduction in the
power as well as phase locking values of the 40 Hz gamma-range
auditory steady state responses (ASSR) (Thuné et al., 2016). This
is consistent with a reduction in the temporal coupling of neural

FIGURE 9 | (Left) Example for a helical-like structure in the hippocampus. (Right) Helical-like structures can be seen in various locations in the brain, such as the

basal ganglia (substantia nigra), reticular formation (locus coeruleus), and limbic system (hippocampus, amygdala), both reproduced from Langner (2015) with

permission.
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activities, processing sound stimuli in schizophrenia, which
would be responsible for the impairments in sound perception,
contributing to auditory hallucinations. In addition, ASSR is also
affected in bipolar disorder (Rass et al., 2010).

Depression is the most prevalent psychiatric disease (a
roughly 20% lifetime incidence in Western populations) and
the third largest amongst all illnesses in the world (Mathers
et al., 2008). Abnormal differences in oscillations after auditory
stimulation have been found between depressed patients versus
controls (Iosifescu, 2011). Treatment options are restricted,
and the medication success is often based on trial-and-error
and a relevant question is whether a particular measure can
predict the outcome of the treatment (Buzsáki and Watson,
2012). Interestingly, the loudness-dependence of auditory evoked
potentials, can determine the responsiveness to serotonergic
versus non-serotonergic antidepressants (Hegerl and Juckel,
1993; Iosifescu, 2011).

13. CONCLUSION

In this review, we discuss how temporal information in auditory
signals can be accurately analyzed by means of the oscillating
activity of chopper neurons in the brain stem. This analysis
involves the activation of coincidence neurons, which detects
the temporal coupling between the discharges by circuits of
chopper neurons with a regular firing pattern, and the integrator
neurons with a ramping activity pattern (Figure 4), which would
project to the cortex as a sparse code. Moreover, neurons

with ramping activity, resembling the integrator neurons, are
commonly found across the cortex. Mechanisms involving
coincidence detection neurons, modulated by nested gamma
oscillations may contribute to the information processing that
decodes the activity of ramping neurons (Figure 8). Additionally,
it should be noted that the coincident activation only detects
spatiotemporal convergence of neural events; however, primary
triggering events may be few milliseconds apart (Fries, 2015).
Coincidence detection of neural events, is also likely to form
the basis of a variety of perceptions, such as sensations of
smell, sound, even the spatial perception of visual objects.
As noted above, the impairments of temporal coupling could
also contribute partly to the defects of conscious functions in
schizophrenia, bipolar disorder, depression, just to name a few.
Accordingly, the future investigations of the temporal coupling
in the brain may help us develop new treatments of some of the
most socially devastating ailments.
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