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 During the pre-banding era of cytogenetics, very few 
studies included tropical glass frogs (family Centroleni-
dae). These were confined to 4 species  (Cochranella gra-
nulosa, Espadarana prosoblepon, Hyalinobatrachium 
fleischmanni,  and  Sachatamia albomaculata)  and were 
carried out using classical squash techniques and uni-
formly stained chromosomes in the diakinesis stage of 
male meiosis ( table 1 ). The early studies did demonstrate 
the existence of a strikingly low chromosome number
(n = 10, 2n = 20) in centrolenids. A single further study 
on somatic tissues of  Vitreorana eurygnatha  revealed that 
all 10 chromosomes have a biarmed (metacentric or sub-
metacentric) morphology ( table 1 ). No cytogenetic stud-
ies have previously been published for the sister taxon of 
the Centrolenidae, the family Allophrynidae.

  Banding analyses were only applied to 2 males and 2 
females of the Venezuelan centrolenid species  Vitreorana 
antisthenesi  which revealed XY ♂ /XX ♀  sex chromosomes 
in an initial stage of morphological differentiation and 
unusually large amounts of brightly labeled, AT-rich con-
stitutive heterochromatin in the centromeric and peri-
centromeric regions of all autosomes and in the X chro-
mosome [Schmid et al., 1989].

  A new phylogenetic taxonomy, based on molecu-
lar, morphological, anatomical, behavioral, and biogeo-
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 Abstract 

 The mitotic chromosomes of 11 species from the anuran 
families Centrolenidae and Allophrynidae were analyzed by 
means of conventional staining, banding techniques, and in 
situ hybridization. The amount, location, and fluorochrome 
affinities of constitutive heterochromatin, the number and 
positions of nucleolus organizer regions, and the patterns of 
telomeric DNA sequences were determined for most of the 
species. The karyotypes were found to be highly conserved 
with a low diploid chromosome number of 2n = 20 and mor-
phologically similar chromosomes. The sister group relation-
ship between the Centrolenidae and Allophrynidae (un-
ranked taxon Allocentroleniae) is clearly corroborated by the 
cytogenetic data. The existence of heteromorphic XY ♂ /XX ♀  
sex chromosomes in an initial stage of morphological differ-
entiation was confirmed in  Vitreorana antisthenesi . The ge-
nome sizes of 4 centrolenid species were determined using 
flow cytometry. For completeness and for comparative pur-
poses, all previously published cytogenetic data on centro-
lenids are included.  © 2014 S. Karger AG, Basel 
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graphical data, has been proposed for the Centrolenidae 
[Guayasamin et al., 2008, 2009]. These studies recognized 
the evolutionary proximity of the families Centrolenidae 
and Allophrynidae and combined both into the unranked 
taxon Allocentroleniae. The family Centrolenidae in-
cludes the subfamilies Centroleninae and Hyalinoba-
trachinae and comprises 11 genera:  Centrolene  (34 spe-
cies),  Chimerella  (1 species),  Cochranella  (24 species), 
 Espadarana  (3 species),  Nymphargus  (30 species),  Ruly-
rana  (8 species),  Sachatamia  (3 species),  Teratohyla  (4 
species),  Vitreorana  (8 species),  Celsiella  (2 species), and 
 Hyalinobatrachium  (27 species). The genus  Ikakogi  (1 
species) was described by Guayasamin et al. [2009] and, 
because it could not be assigned with confidence to either 
subfamily, was included as incertae sedis in the Centro-
lenidae. The family Allophrynidae contains the single ge-
nus  Allophryne  (3 species). Two of these species were only 
recently described [Castroviejo-Fisher et al., 2012; Cara-
maschi et al., 2013].

  Glass frogs are distributed throughout the Neotropics, 
from Mexico to Bolivia, including the Caribbean island of 
Tobago, with highest species diversity in the northern 
Andes (Colombia and Ecuador), and with a large hiatus 
in the lower Amazon basin. An isolated group of species 
occurs in southeastern Brazil and northeastern Argenti-
na [Duellman, 1977; Cannatella and Duellman, 1982; 
Guayasamin et al., 2009]. They live mainly in cloud and 
rain forests and are nocturnal and arboreal. Females de-
posit egg clutches on the underside of leaves, or on rocks, 
above running water. After hatching, the tadpoles fall into 
the water to complete their development. Some species, 
however, are also known to occasionally breed in ponds. 
As a further diagnostic character, the skin and flesh of the 
ventral surfaces are partially or completely transparent 
owing to the scarcity of pigments. This allows the viscera 
to be observed through the abdominal wall [Duellman 
and Burrowes, 1989; Ruiz-Carranza and Lynch, 1991; 
Duellman and Trueb, 1994; Cisneros-Heredia and McDi-
armid, 2007; Kubicki, 2007; Guayasamin et al., 2009]. As 
pointed out by Guayasamin et al. [2009], glass frogs rep-
resent one of the most interesting neotropical anuran 
groups because of their morphological and ecological 
characteristics, as well as their phylogenetic and biogeo-
graphic complexity.

  The 3 described species of the family Allophrynidae oc-
cur from the Guiana region of South America (Venezuela, 
Guyana, Surinam, French Guiana, northern central Bra-
zil) to central Brazil, northeastern Amazonian Peru and 
the Atlantic rain forest of eastern Brazil [Langone and Se-
galla, 1997; Caldwell and Hoogmoed, 1998; Guayasamin 

et al., 2009; Castroviejo-Fisher et al., 2012; Caramaschi et 
al., 2013]. Allophrynids live in forests and flooded forests. 
They are arboreal or semi-arboreal and nocturnal.

  The present study examines the mitotic chromosomes 
of 10 species in the family Centrolenidae and 1 species in 
the family Allophrynidae and provides results for several 
banding techniques and fluorescence in situ hybridiza-
tion (FISH) experiments that were applied to the chro-
mosomes of 8 species of Centrolenidae. The amount, 
chromosomal location and composition of the constitu-
tive heterochromatin, the number and location of nucle-
olus organizer regions (NORs) as well as the patterns of 
repetitive telomeric DNA sequences were determined. 
The existence of heteromorphic XY ♂ /XX ♀  sex chromo-
somes in an initial stage of morphological differentiation 
was confirmed for  V. antisthenesi . The genome sizes of 4 
centrolenid species were determined using DNA flow cy-
tometry. For completeness and for comparative purpos-
es, all previously published cytogenetic data on centrole-
nids are included and re-evaluated.

  Materials and Methods 

 Animals 
 Individuals representing 11 species belonging to the genera  Co-

chranella (C. granulosa), Espadarana (E. prosoblepon), Hyalinoba-
trachium (H. colymbiphyllum, H. duranti, H. fleischmanni, H. fra-
gile, H. orientale, H. valerioi),   Vitreorana (V. antisthenesi, V. eury-
gnatha)  (family Centrolenidae) ,  and  Allophryne (A. ruthveni) 
 (family Allophrynidae) were collected during various expeditions 
to Costa Rica, Venezuela, Brazil and the island of Tobago ( table 1 ). 
The chromosomes of the Venezuelan species were prepared in a 
temporary cytogenetic laboratory in the field station Estación Bio-
lógica de Rancho Grande located in the Henri Pittier National 
Park, Aragua State. The Costa Rican specimens were prepared in 
a temporary cytogenetic laboratory in the Departamento de Bio-
logía, University of Costa Rica, San José. Tissue obtained for chro-
mosomes was transferred to 1.8-ml plastic tubes (Nunc), stored at 
4   °   C or –20   °   C and transported to the laboratory in Würzburg 
(Germany), either packed in dry ice or at room temperature. Frogs 
collected in Tobago were carried alive to Würzburg where their 
chromosomes were prepared. Chromosomes of the specimens 
sampled in Brazil were prepared in the field. All procedures with 
the living animals strictly conformed to the guidelines established 
by the Animal Care Committees of the respective countries.

  Chromosome Preparations 
 Mitotic chromosomes were prepared directly from the bone 

marrow, intestines or the cornea of the eye after in vivo colchicine 
treatment. Meiotic chromosomes were obtained from testes. De-
tailed techniques used for squash preparations (cornea) and cell 
suspensions (bone marrow, intestine, testes), as well as the hypo-
tonic treatment and fixation of the cells have been previously de-
scribed [Schmid et al., 2010].
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Table 1.  Species from the families Centrolenidae and Allophrynidae cytogenetically examined in the present study and in previous re-
ports

Speciesa Country Speci-
mensb

Localityc Geographical 
coordinatesd

2n/FNe

Family Centrolenidae, subfamily Centroleninae
Cochranella granulosa*

Present study Costa Rica 1♂ Carara National Park, Puntarenas Province 09°44′N/84°37′W 20/40
1♂ Río Sucio, Braulio Carrillo National Park, Limón Province 10°09′N/83°58′W 20/40

Duellman, 1967 Nicaragua 2♂ Finca Tepeyac, 10.5 km N, 9 km E Matagalpa, 960 m, Matagalpa Department 11°58′N/86°05′W 20‡/n.i.

Espadarana prosoblepon*
Present study Costa Rica 7♂ 1♀ Alto de la Palma, Limón Province 10°02′N/83°59′W 20/40
León, 1970 & pers. commun. Costa Rica n♂ Campus of the University, San José 09°56′N/84°02′W 20‡/n.i.
Duellman, 1967 Panama 1♂ Finca Ojo de Agua, SE slope of Cerro la Pelota, 1440 m, Chiriqui Province 08°54′N/82°42′W 20‡/n.i.

Sachatamia albomaculata
Duellman, 1967 Panama 1♂ Southern slope of Cerro La Campana, 850 m, Veraguas Province 08°26′N/81°17′W 20‡/n.i.

Vitreorana antisthenesi
Present study Venezuela 19♂ 4♀ Henri Pittier National Park, small mountain stream at km 29 on road to

Ocumare de la Costa, 650 m, Aragua State
10°24′N/67°45′W 20/40

Schmid et al., 1989 Venezuela 2♂ 2♀ Henri Pittier National Park, small mountain stream at km 29 on road to
Ocumare de la Costa, 650 m, Aragua State

10°24′N/67°45′W 20/40†

Vitreorana eurygnatha
Present study; Bogart, 1973 Brazil 1♂ Tijuca forest at Bom Retiro, Guanabara, Rio de Janeiro State 22°53′S/43°13′W 20/40

1u Teresópolis, Serra dos Órgãos National Park, Rio de Janeiro State 22°22′S/42°45′W 20/40

Family Centrolenidae, subfamily Hyalinobatrachinae
Hyalinobatrachium colymbiphyllum*

Present study Costa Rica 13♂ 3♀ Tropical Science Center, Rincón de Osa, 20 m, Puntarenas Province 09°35′N/85°04′W 20/40
1♂ Carara National Park, Puntarenas Province 09°44′N/84°37′W 20/40

Hyalinobatrachium duranti*
Present study Venezuela 2♂ Monte Zerpa, 2200 m, Mérida State 08°37′N/71°10′W 20/40

Hyalinobatrachium fleischmanni*
Present study Costa Rica 2♂ 1u Paraíso, Valle de Orosi, Cartago Province 09°48′N/83°51′W 20/40
León, 1970 & pers. commun. Costa Rica n♂ Campus of the University, San José 09°56′N/84°02′W 20‡/n.i.
Duellman and Cole, 1965 Nicaragua 2♂ Finca Tepeyac, 10.5 km N, 9 km E Matagalpa, 960 m, Matagalpa Department 11°58′N/86°05′W 20‡/n.i.

1♂ 16 km S Matagalpa, 660 m, Matagalpa Department 11°55′N/86°05′W 20‡/n.i.

Hyalinobatrachium fragile*
Present study Venezuela 1♂ 2u Henri Pittier National Park, small mountain stream at km 29 on road to

Ocumare de la Costa, 650 m, Aragua State
10°24′N/67°45′W 20/40

Hyalinobatrachium orientale*
Present study Tobago 3♂ 7u 1.5 km SW Charlotteville 11°19′N/60°32′W 20/40

Hyalinobatrachium valerioi*
Present study Costa Rica 1♂ Tropical Science Center, Rincón de Osa, 20 m, Puntarenas Province 09°35′N/85°04′W 20/40

Family Allophrynidae
Allophryne ruthveni*

Present study Brazil 6♂ near A-Ukre on the Rio Xingu, Pará State 07°39′N/51°21′W 20/40

 a Mitotic chromosomes of the species labeled with * are published here for the first time. The identification of Hyalinobatrachium duranti is not confirmed. The specimens of Vi-
treorana eurygnatha published by Bogart [1973] are included in the present study.

b n = Unknown number of male specimens; u = sex unknown.
c Localities of specimens were obtained from collector’s field books, personal communication with the collectors, as well as information from museums where the cytogenetically 

examined voucher specimens are deposited. m = Meters above sea level.
d Geographic coordinates were determined either directly in the field using Global Positioning Systems (GPS), or by consulting the ‘Directory of Cities and Towns in World’ data-

base (http://www.fallingrain.com/world/), Google Earth, or are based on extrapolations from geographical maps.
e n.i. = Not indicated. ‡ Diploid chromosome number inferred from chromosome counts in meiosis. † The fundamental number is not explicitly mentioned in the text of the cor-

responding publication but inferred from the chromosome illustration or text.
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  Banding Analyses and FISH 
 Conventional chromosome staining, C-banding, staining with 

quinacrine mustard, DAPI (4 ′ ,6-diamidino-2-phenylindole) or 
Hoechst 33258, fluorescence counterstaining with distamycin A/
mithramycin or actinomycin D/DAPI, and labeling of the NORs 
with AgNO 3  were performed according to the methods in Schmid 
et al. [2010].

  For the detection of the canonical (5 ′ -TTAGGG-3 ′ ) n  telomeric 
repeats, a fluorescein-conjugated peptide nucleic acid (PNA) 
probe (Telomere PNA FISH kit/FITC, K5325; Dako Cytomation, 
Denmark) was used. Detailed procedures for in situ hybridization 
and signal detection are provided by the manufacturer.

  Microscopic analyses were conducted using Zeiss photomicro-
scopes III, Zeiss fluorescence microscopes and Zeiss Axiophot mi-
croscopes equipped with incident HBO 50W mercury lamp illu-
mination. The various filter combinations necessary for the analy-
ses of metaphases stained with the different fluorochromes or for 
FISH were described by Schmid et al. [2010].

  DNA Flow Cytometry 
 Blood samples were obtained by cardiac puncture and were im-

mediately fixed in 70% ethanol. The fixed samples were transferred 
to 1.8-ml plastic (Nunc) tubes and stored at –20   °   C. Thawed sam-
ples were centrifuged (800 rpm, 10 min) in a laboratory centrifuge, 
and the erythrocyte pellets were resuspended and incubated in
1 ml pepsin solution (0.5% in 0.1  M  HCl) at room temperature for 
15 min. After the addition of 5 ml staining solution (2 μg/ml DAPI 
in 0.2  M  sodium citrate), the erythrocyte suspensions were kept at 
room temperature for 3 h [Otto, 1994], and were then mixed with 
chicken erythrocytes. Flow cytometric analyses were carried out 
with an epi-illumination flow system (Partec Cell Analyzer CAII) 
at 365 nm (filter combination KG1/BG38/UG1 for excitation, 
TK420 as dichromatic mirror, and GG435 as the barrier filter). 
Several measurements were performed for each sample. The nu-
clear DNA content of the frogs was calibrated against the known 
genome size of chicken erythrocytes (2.33 pg DNA/nucleus).

  Results 

 Karyotypes 
 All 10 centrolenid species analyzed in the present and 

previous studies, as well as  Allophryne ruthveni  have a 
conserved diploid chromosome number of 2n = 20 ( ta-
ble 1 ;  figs. 1 ,  3 a). Only male meiotic metaphases, in the 
stage of diakinesis, were analyzed for  S. albomaculata  
[Duellman, 1967], and no more information on this 
karyotype is available. The other 10 species possess a fun-
damental number of FN = 40, with 20 biarmed chromo-
somes ( fig. 1 ). Only a few mitotic metaphases of moderate 
quality could be obtained for  H. valerioi , but these were 
sufficient to evaluate the chromosome morphology 
( fig. 3 ). Centrolenid chromosomes have a metacentric or 
submetacentric morphology ( figs. 1 ,  3 a). In most species, 
chromosome pairs 1–8 decrease slightly in their lengths, 
with only small size differences between adjacent pairs, 

whereas pairs 9 and 10 are distinctly smaller ( fig. 1 a–h). 
 H. orientale  is an exception because all 10 chromosome 
pairs decrease gradually in size ( fig. 1 i). In the karyotype 
of  A. ruthveni , chromosome pairs 1–6 decrease gradually 
in size and are larger than the pairs 7–9, which share sim-
ilar lengths. Pair 10 is distinctly smaller ( fig. 1 j). Distinct 
nucleolar constrictions are visible in the short arms of 
chromosomes 2 in  V. antisthenesi  and  H. colymbiphyl-
lum , as well as in chromosomes 1 in  H. duranti  and  A. 
ruthveni  ( fig. 1 c, e, f, j). A comparison between the differ-
ent karyotypes suggests that centrolenid and allophrynid 
species have maintained a considerable degree of chro-
mosome homeology.

  In all 19 male specimens of  V. antisthenesi  examined, 
chromosome pair 6 was found to be heteromorphic after 
conventional staining ( fig. 1 c) and banding analysis (see 
below). Although both of these chromosomes have about 
the same length (6.0–6.5 μm), one of them (Y chromo-
some) is distinctly more submetacentric than the other (X 
chromosome) in all examined metaphases. The arm ratio 
(long arm length:short arm length) is approximately 3.5 
for the Y chromosome and 2.3 for the X chromosome. In 
all female individuals, chromosome pair 6 is homomor-
phic, and both homologs have the same arm ratio of 2.3 
as does the X chromosome in the male karyotype. The fact 
that the heteromorphism of chromosome pair 6 in  V. an-
tisthenesi  is restricted to males demonstrates that the 
XY ♂ /XX ♀  type of chromosomal sex determination oper-
ates in this species. This confirms preliminary results ob-
tained by Schmid et al. [1989] from  V. antisthenesi  that 
were collected in the same population as the specimens 
sampled for the present study. There is no evidence for 
the existence of heteromorphic sex chromosomes in the 
karyotypes of the other species.

  Constitutive Heterochromatin 
 The patterns of constitutive heterochromatin in cen-

trolenid chromosomes are like those in the karyotypes of 
most other anurans [Schmid, 1978a, b; Schmid et al., 
1987, 2010, 2012]. C-bands are preferentially located in 
centromeric and pericentromeric regions of the chro-

  Fig. 1.  Conventionally stained karyotypes of the examined species 
of Centrolenidae and Allophrynidae. The XY sex chromosomes of 
 V. antisthenesi  are framed ( c ). Material was obtained from bone 
marrow except for  V. eurygnatha  ( d ) and  A. ruthveni  ( j ) whose 
chromosomes were obtained from squashed corneal epithelial 
cells and photographed unstained using phase-contrast optics. 

(For figure see next page.)
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  Fig. 2.  C-banded karyotypes of the centrolenid species analyzed. Note the large amounts of centromeric and para-
centromeric heterochromatin in  V. antisthenesi  ( c ,  d ),  H. fleischmanni  ( f ) and  H. fragile  ( g ). The heteromorphic 
XY sex chromosomes of  V. antisthenesi  are framed ( c ,  d ). Material obtained from bone marrow. 
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mosomes ( figs. 2 ,  3 b). The small chromosomes usually 
contain just as much constitutive heterochromatin as do 
the largest chromosomes. Very large centromeric and 
pericentromeric C-bands are located in the chromo-
somes of  V. antisthenesi, H. fleischmanni  and  H. fragile  
( figs. 2 c, d, f, g,  5 d). The smallest amounts of centromer-
ic and pericentromeric heterochromatin are found in 
the karyotypes of  E. prosoblepon  and  H. orientale  ( fig. 2 b, 
h). Intercalary C-bands are positioned in the chromo-
some 1 long arm and chromosome 7 short arm of  E. pro-
soblepon  ( fig.  2 b), in the chromosomes 2 and 3 short 
arms and the chromosomes 1, 2 and 10 long arms of  V. 
antisthenesi  ( fig. 2 c, d), and in the chromosome 8 long 
arm of  H. orientale  ( fig. 2 h). With the exception of  V. 
antisthenesi  ( fig.  2 c, d), the amount of telomeric and 
NOR-associated heterochromatin in the centrolenid 
karyotypes is rather small when compared with other 
anuran species. It should be emphasized that the XY sex 
chromosomes of  V. antisthenesi  contain the same 
amounts of centromeric and pericentromeric hetero-
chromatin ( figs. 2 c, d,  5 d). However, in many of the C-
banded metaphases, the constitutive heterochromatin in 
the X appears more darkly stained than in the Y (not 
shown). Furthermore, the telomeric heterochromatin in 

the Y long arm seems to be distinctly larger than in the 
X long arm ( fig. 2 d).

  As expected from the results obtained in the chromo-
somes of other anuran families [for reviews, see Schmid 
et al., 2010, 2012], staining with the fluorochrome quina-
crine mustard shows that the large euchromatic segments 
of centrolenid chromosomes fluoresce with a uniform 
and moderate intensity ( figs. 4 ,  5 a–c). All chromosome 
regions fluorescing either distinctly brighter or distinctly 
weaker than the euchromatin consist of constitutive het-
erochromatin or NORs (as confirmed, respectively, by C-
banding and Ag-staining).

  The quinacrine-stained karyotype of  V. antisthenesi  is 
remarkable because of the large amounts of quinacrine-
positive (Q + ) heterochromatin in the centromeric and 
pericentromeric regions of all autosomes and in the X 
chromosome ( figs. 4 c,  5 a–c). The Y chromosome con-
tains the least amount of Q +  heterochromatin in the 
karyotype. Only 2 very small Q +  bands, one in the centro-
meric region and the other in the long arm telomeric
region can be recognized in the Y. Neither in the X chro-
mosome, nor in the autosomes is Q +  heterochromatin
located in the telomeric regions ( figs. 4 c,  5 a–c). In meta-
phases prestained with quinacrine and subsequently C-

a b

c d

  Fig. 3.   a–c  Metaphase chromosomes of
 Hyalinobatrachium valerioi  after conven-
tional staining ( a ), C-banding ( b ) and Ag-
staining ( c ). The 4 NORs are marked by ar-
rowheads.  d  Ag-stained interphase nuclei 
of  H. valerioi  cells showing the presence of 
4 labeled nucleoli. Material obtained from 
bone marrow.             
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  Fig. 4.  Karyotypes of the centrolenid species after quinacrine mustard staining. Note the quinacrine-bright cen-
tromeric and pericentromeric heterochromatin in all autosomes and in the X chromosome of  V. antisthenesi  ( c ), 
and the quinacrine-bright interstitial heterochromatic bands in chromosome pair 10 of        C. granulosa  ( a ), as well 
as in the chromosome pairs 3, 5, 8, and 10 of  H. fleischmanni  ( f ). The heteromorphic XY sex chromosomes of
 V. antisthenesi  are framed ( c ). Material obtained from bone marrow.   
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banded, the very bright Q +  bands in the autosomes and in 
the X chromosome colocalize with the dark C-bands. In 
the Y chromosome, however, the centromeric and peri-
centromeric C-bands are distinctly larger than the Q +  
bands ( fig. 5 c, d). A close comparison of Q- and C-band-
ed metaphases revealed that only a small band at the Y 
centromeric region is Q + , whereas all of the pericentro-
meric heterochromatin is not specifically labeled by quin-
acrine mustard. The comparison of Q-banded Y chromo-
somes of the 19 males examined showed that there exists 
a slight size variation of their Q +  centromeric heterochro-
matin. Finally, the small telomeric Q +  band located in the 
Y long arm ( figs. 4 c,  5 a–c) is labeled by C-bands ( figs. 2 d, 
 5 d).

  In  C. granulosa , Q +  heterochromatin is present in both 
arms of chromosomes 10 ( fig. 4 a). In the karyotype of  H. 
fleischmanni , distinct Q +  heterochromatin is located in 
the short arms of chromosomes 3, 5, 8 and 10 as well as 
in the long arms of chromosomes 5 and 10 ( fig. 4 f). In one 
of the males, the Q + -band in the chromosome 5 long arm 
is absent in one of the homologs ( fig. 4 f), whereas in the 
other male and an unsexed individual it is present in both 
homologs (not shown). Other brightly fluorescing Q-

bands were not detected in the karyotypes of the studied 
centrolenids.

  Direct staining of centrolenid chromosomes with the 
fluorochromes DAPI and Hoechst 33258 or counter-
staining with actinomycin D/DAPI yield the same band-
ing patterns as induced by quinacrine. After counter-
staining with distamycin A/DAPI, the heterochromatic 
regions fluoresce slightly more brightly than the euchro-
matic segments of the chromosomes. AT-rich DNA se-
quences are known to enhance the intensity of quina-
crine, DAPI and Hoechst 33258 fluorescence [Weisblum 
and de Haseth, 1972; Weisblum, 1973; Comings, 1975; 
Müller and Gautier, 1975; Lin et al., 1977]. Therefore, het-
erochromatic regions in amphibian metaphase chromo-
somes that show bright fluorescence with any of these 
fluorochromes are believed to be rich in AT base pairs 
[for reviews, see Schmid et al., 2010, 2012].

  As expected from the complementarity of quinacrine 
and mithramycin staining, the distinct Q +  heterochro-
matic regions located in the karyotypes of  V. antisthenesi,  
 H. fleischmanni  and  C. granulosa  are always mithramy-
cin-negative. This is especially evident in the chromo-
somes of  V. antisthenesi  in which the prominent centro-
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  Fig. 5.  Karyotypes of female ( a ) and male ( b–d )  Vitreorana anti-
sthenesi  after quinacrine mustard staining ( a–c ) and C-banding 
( d ). The quinacrine-stained chromosomes in  c  were subsequently 
C-banded in  d . The sex chromosomes are framed. Note the large 
amounts of quinacrine-bright centromeric and pericentromeric 
heterochromatin in all autosomes and in the X chromosome. In 

the Y chromosome, all the C-band-positive pericentromeric het-
erochromatin is quinacrine-negative, whereas the small region of 
centromeric heterochromatin and the long arm telomeric hetero-
chromatin is quinacrine-positive. Material obtained from bone 
marrow.               
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meric and pericentromeric heterochromatin in all chro-
mosomes shows a distinctly quenched mithramycin 
fluorescence ( fig. 6 ).

  Nucleolus Organizer Regions 
 Specific silver (Ag-) staining showed that, with the ex-

ception of  H. valerioi , all analyzed centrolenids have a 
single pair of NORs in their karyotypes ( fig. 7 ). In most 
species  (C. granulosa, V. antisthenesi, H. colymbiphyllum, 
H. duranti, H. fleischmanni, H. fragile) , the NORs are lo-
cated in short arm paracentromeric regions of chromo-
somes 1, 2, 4, and 8. In  E. prosoblepon , NORs are located 
in the long arm telomeres of chromosomes 10 ( fig. 7 b), 
and in  H. orientale , they are found in an interstitial posi-
tion in the long arms of chromosomes 8 ( fig. 7 h).

  In the single specimen of  H. valerioi  that was analyzed, 
the standard NOR pair is located interstitially in the long 
arms of chromosomes 9 ( fig. 3 c). Additionally, ectopic 
NORs are detected in a telomeric position of 2 other non-
homologous chromosomes. Because of the few meta-
phases available for analysis, the 2 chromosomes with 
ectopic NORs could not be identified with certainty. As 
expected, in the bone marrow and intestine cells of this 
male individual, 4 Ag-stained nucleoli are present 
( fig. 3 d). Accordingly, in the cells of male meiotic pro-

phase, 1 major and 2 smaller nucleoli can be detected 
(not shown).

  Telomeric DNA Sequences 
 The patterns of telomeric DNA sequences were exam-

ined by FISH in 4 species of centrolenids  (C. granulosa, 
V. antisthenesi, H. colymbiphyllum, H. fleischmanni) . In 
general, the patterns of chromosomal distribution of the 
canonical (TTAGGG) n  repeats are consistent with those 
in the karyotypes of other amphibians and in a variety of 
other vertebrates [for reviews, see Schmid et al., 2010, 
2012]. In all chromosomes, the (TTAGGG) n  repeats are 
located in the telomeric regions of both chromatids 
( fig. 8 ). In the short arms of the smaller chromosomes 9 
and 10, the 2 hybridization signals come together very 
closely and frequently fuse into a single signal (e.g.  fig. 8 b, 
left homolog of chromosome pair 10).

  In all analyzed   specimens of  V. antisthenesi , distinct 
heterochromatic intrachromosomal telomeric sequences 
(het-ITSs) are located in the constitutive heterochroma-
tin adjacent to the NOR in the short arm of chromosome 
2, and in the paracentromeric heterochromatin of the 
long arm in one of the homologs 6 (X chromosome). het-
ITSs are not found in the Y chromosome or the other au-
tosomes ( fig. 8 b).

1 4 52 3

9 106 7 86

X Y

a b

c

  Fig. 6.  Diploid ( a ) and tetraploid ( b ) sper-
matogonial metaphases of male  Vitreorana 
antisthenesi  after distamycin A/mithramy-
cin counterstaining. Chromosomes in  b  
are arranged as a karyotype in  c . Note the 
mithramycin-negative centromeric and 
pericentromeric heterochromatin in all au-
tosomes and in the sex chromosomes. Ma-
terial obtained from testes.                   
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  Male Meiosis 
 As in the male meiosis of almost all highly evolved an-

urans [Morescalchi, 1973; Schmid et al., 2010, 2012], the 
diakinetic bivalents of centrolenids are strongly contract-
ed, and most of them show a ring-like or dumb-bell-
shaped morphology [Duellman and Cole, 1965; Duell-

man, 1967; Schmid et al., 1989]. This results from telo-
merically located chiasmata. In the pachytene stage of 
prophase in mammalian male meiosis, a sex vesicle is 
formed by the XY sex chromosomes. A similar vesicle is 
not found in amphibians.
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  Fig. 7.  Ag-stained karyotypes of the centrolenid species examined. The NORs are marked by arrowheads. The 
heteromorphic XY sex chromosomes of    V. antisthenesi  are framed ( c ). Material obtained from bone marrow.                     
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  In  V. antisthenesi , the diakinetic XY bivalent can eas-
ily be identified by the unequally-sized Q +  heterochroma-
tin in their centromeric and paracentromeric regions 
( fig. 9 a–e). One half of the bivalent (X) is brightly labeled 
by quinacrine, and the opposite half (Y) is characterized 
by a dull fluorescence. In none of the diakineses observed 
did the XY chromosomes show an end-to-end associa-
tion like that found in the male meiosis of several other 
amphibian species possessing heteromorphic XY chro-
mosomes [for reviews, see Schmid et al., 2010, 2012]. Al-
though the morphology and banding patterns of the X 
and Y chromosomes of  V. antisthenesi  are distinctly het-
eromorphic, they still show the same pairing configura-
tion as the autosomal bivalents. This could indicate that 
the euchromatic segments in the XY chromosomes of  V. 
antisthenesi  are still genetically homologous and that 
pairing and crossing over occur along them during mei-
otic prophase. Differentiation among the 9 autosomal bi-
valents can be achieved by comparing their relative sizes. 
In the leptotene stage, the Q +  heterochromatic chromo-
some regions can be clearly discerned as individual 
brightly fluorescing blocks ( fig. 9 f, g). In contrast to the 
nuclei of somatic tissues ( fig. 10 ), these heterochromatic 
regions do not fuse into larger chromocenters. As expect-
ed, in the round spermatid nuclei, a maximum of 10 

brightly fluorescing heterochromatic regions are present 
( fig. 9 h).

  Somatic Interphase Nuclei 
 In the majority of interphase nuclei from bone marrow 

and intestine of  V. antisthenesi , the 20 large centromeric 
and paracentromeric heterochromatic regions of the 
chromosomes are fused into a few chromocenters 
( fig.  10 a–d). As was first shown in Hemiptera [Slack, 
1938; Schrader, 1941], one of the general features of con-
stitutive heterochromatin is its tendency for different het-
erochromatic regions to enter into non-specific tempo-
rary or permanent associations. In polytene  Drosophila  
nuclei, the pericentromeric heterochromatin of all chro-
mosomes becomes permanently fused to form a large 
chromocenter, and many intercalary heterochromatic 
bands demonstrate so-called ‘ectopic pairing’ [Slizynski, 
1945; Kaufmann and Iddles, 1963]. Ectopic pairing of 
heterochromatic regions also exists in mammalian inter-
phase nuclei [Hsu et al., 1971; Rae and Francke, 1972], 
including metaphases of human chromosomes [Schmid 
et al., 1975, 1981, 1983]. Ectopic pairing occurs most fre-
quently between the heterochromatin of homologous 
chromosomes but can also occur between non-homolo-
gous chromosomes, although the first type is, in statistical 
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  Fig. 8.  Karyotypes of 4 centrolenid species showing the FISH patterns of the telomeric (TTAGGG) n  repeats. Note 
the het-ITSs in the short arms of chromosomes 2, and in the long arm pericentromeric heterochromatin of the 
X chromosome of    V. antisthenesi  ( b ). The heteromorphic XY sex chromosomes of        V. antisthenesi  are framed. 
Material obtained from bone marrow.             
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terms, more frequent [Haaf et al., 1986]. The existence of 
repetitive DNA-containing physical connections be-
tween metaphase chromosomes has been demonstrated 
to occur in mouse and human cell lines by Kuznetsova et 
al. [2007]. In mitotic metaphase chromosomes of the ter-
raranan frog  Pristimantis fenestratus , chromatin connec-
tions were found between heterochromatic regions in 
telomere-telomere, centromere-centromere and centro-
mere-telomere configurations [Siqueira et al., 2009]. It 
seems conceivable, but not yet experimentally proven, 
that the phenomenon of ectopic pairing is mediated by a 
complete (or at least partial) homology of the base pairs 
in the repetitive DNA of heterochromatin.

  In some of the bone marrow interphase nuclei of  V. 
antisthenesi , the large compact heterochromatic chromo-
centers have split up into smaller ones with diffuse bound-
aries ( fig. 1 0e–h). The most plausible explanation is that 
these nuclei are in the S-phase of the cell cycle in which 
the compact structure of the constitutive heterochroma-
tin decondenses in order to facilitate replication.

  Genome Sizes 
 The genome sizes of 4 centrolenid species  (V. anti-

sthenesi ,  H. colymbiphyllum ,  H. fleischmanni,  and  H. orien-
tale)  were determined in the present study. All measure-

ments were performed using DNA flow cytometry of
DAPI-stained erythrocytes obtained from male specimens. 
As examples of these measurements, the histograms ob-
tained for  V. antisthenesi  and  H. orientale  are shown in 
 figure 11 .  V. antisthenesi  has the lowest genome size (6.20 
pg DNA/nucleus), whereas those of  H. colymbiphyllum ,  H.
fleischmanni  and  H. orientale  are distinctly higher (10.65, 
8.98 and 8.70 pg DNA/nucleus, respectively). The coeffi-
cient of variation of the measurements ranged between 2 
and 2.7%.

  It should be noted that the erythrocytes were stained 
with the AT base pair-specific DAPI, and not with ethid-
iumbromide which anneals to double-stranded DNA re-
gardless of its base pair composition. Therefore, eryth-
rocyte nuclei of  V. antisthenesi , with high amounts of
AT-rich repetitive DNA in the Q +  constitutive heterochro-
matin (see above), will be more intensively labeled than 
those of species depauperate in such sequences or with en-
riched amounts of GC-repetitive DNA in their heterochro-
matic chromosome regions. If so, this would lead to a bi-
ased, somewhat higher DNA value in  V. antisthenesi . In 
spite of this, the results obtained by DNA flow cytometry 
do allow for general conclusions with respect to genome 
sizes in the Centrolenidae.
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  Fig. 9.  Diakinesis ( a ) and bivalents ( b–e ) of 4 diakineses of male meiosis in      Vitreorana antisthenesi  after staining 
with quinacrine mustard. In  a  the XY bivalent is marked by an arrow, in  b–e  the XY bivalents are framed.  f–

h  Quinacrine-stained leptotene nuclei ( f ,  g ) and early spermatid nucleus ( h ) of  V. antisthenesi . Note the brightly 
fluorescing heterochromatic chromocenters. Material obtained from testes.             
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  Discussion 

 Anuran species with a diploid chromosome number 
of 2n = 20 or lower are not very frequent [for reviews, 
see King, 1990; Green and Sessions, 2007]. The com-
parative cytogenetic analyses presented here show that 
the karyotypes of the Centrolenidae and Allophrynidae 
have been rather conserved during evolution. The mi-
nor differences existing between the chromosome 
lengths in the various species can be easily explained by 
the occurrence of pericentric inversions, unequal recip-
rocal translocations, chromosomal shifts, and changes 
in the amount of constitutive heterochromatin. Such 
mutations have been successfully fixed in a homozygous 
condition in the karyotypes since the different species 
have diverged.

  According to Morescalchi [1973], the low chromo-
some number of 2n = 20 encountered in the Centroleni-
dae can be derived from a 2n = 24 or 22 karyotype found 
in many South and Central American species of the fam-
ily Hylidae to which the Centrolenidae seemed to be phy-
logenetically related [Noble, 1931; Taylor, 1951; Lynch, 
1973]. Other studies, however, using molecular tech-
niques [Austin et al., 2002; Biju and Bossuyt, 2003; Darst 
and Cannatella, 2004; Faivovich et al., 2005; Frost et al., 
2006; Grant et al., 2006; Roelants et al., 2007] or pheno-
typical characters [Ford and Cannatella, 1993; Duellman 
and Trueb, 1994; Rueda-Almonacid, 1994; Duellman, 
2001; Haas, 2003; Burton, 2004; Wiens et al., 2005] could 

not resolve with confidence the phylogenetic position of 
the Centrolenidae within the Neobatrachia.

  Since  A. ruthveni  was first described [Gaige, 1926], it 
has been placed within the families Bufonidae, Centro-
lenidae, Hylidae, and Leptodactylidae [for a review, see 
Caldwell and Hoogmoed, 1998] or within its own family 
Allophrynidae [Savage, 1973, 1986; Goin et al.,   1978]. A 
study using DNA sequence data from 2 mitochondrial 
genes (16S + 12S ribosomal RNA) suggests that  A. ruth-
veni  is most closely allied to the family Centrolenidae 
[Austin et al., 2002]. Further molecular phylogenetic 
studies analyzing the 16S + 12S rRNA genes and the in-
tervening transfer RNA valine gene [Lourenço et al., 
2008], or the mitochondrial 16S + 12S rRNA and  NADH-
1  genes, as well as the nuclear genes  c-myc ,  POMC  and 
 RAG-1  [Guayasamin et al., 2008], have confirmed that  A. 
ruthveni  is a sister taxon to the family Centrolenidae. This 
is consistent with Noble [1931] who originally designated 
 A. ruthveni  as an edentate centrolenid. In conclusion, and 
as stated by Guayasamin et al. [2009], there are sufficient 
data to conclude that there is a close evolutionary rela-
tionship between the Centrolenidae and Allophrynidae, 
whereas the relationships of this clade with other anurans 
are still unclear.

  The sister group relationship between the Centrole-
nidae and Allophrynidae (unranked taxon Allocentrole-
niae) is clearly corroborated by the present cytogenetic 
study which demonstrates a conservation of the diploid 
chromosome number and a high degree of similarity of 

a b c d

e f g h
  Fig. 10.  C-banded interphase nuclei of          Vi-
treorana antisthenesi .  a–d  The centromeric 
and paracentromeric heterochromatic re-
gions of the chromosomes are fused into a 
few large chromocenters.  e–h            The compact 
chromocenters have split up and decon-
densed probably due to replication of the 
constitutive heterochromatin in the late S-
phase. Material obtained from bone mar-
row.             
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chromosome morphology (homeology) in all species ex-
amined. The origin of the minor changes existing in the 
chromosome morphology can be elucidated, at least par-
tially, with the help of modern molecular cytogenetic 
methods such as cross-species chromosome painting us-
ing chromosome-specific DNA probes generated from 
flow-sorted or microdissected chromosomes that are 
used as templates for DNA amplification by DOP-PCR. 
Such experiments have been successfully performed for 
comparative cytogenetic studies in mammals, birds, rep-
tiles, and fishes [e.g. Reed et al., 1995; Yang et al., 1995, 

1999, 2003; Griffin et al., 1999; Campos-Ramos et al., 
2001; Phillips et al., 2001; Rens et al., 2001, 2003, 2004, 
2006; Harvey et al., 2002; Liu et al., 2002; Guttenbach et 
al., 2003; Grützner et al., 2004; Nanda et al., 2006, 2007, 
2008; Ferguson-Smith and Trifonov, 2007; Henning et 
al., 2008; Giovanotti et al., 2009; Cioffi et al., 2013].

  Previous cytogenetic studies on NORs in Anura clear-
ly demonstrate that the overwhelming majority of species 
possess only a single ‘standard’ pair of NORs [Schmid, 
1980; King, 1990; Green and Sessions, 2007; Schmid et al., 
2010, 2012]. This is also the case in the Centrolenidae 
with the exception of  H. valerioi . Intraspecific polymor-
phisms in the number and location of the NORs have not 
been detected in the specimens examined. In the karyo-
types of the 9 species examined by Ag-staining, the stan-
dard NOR pair is located in the chromosomes 1, 2, 4, 8, 
9, or 11. Provided that all chromosome pairs of the cen-
trolenids have maintained their evolutionary homeology, 
the different NOR locations can be best explained by 
chromosomal shifts which specifically transferred the 
NORs between the chromosomes without causing gross 
alterations of their morphologies. The possible molecular 
mechanism responsible for the NOR transfer has been 
discussed in detail by Schmid et al. [2010, 2012].

  In  V. antisthenesi , 2 interstitial clusters of the telomer-
ic hexanucleotide (TTAGGG) n  are present in the NOR-
associated heterochromatin in the short arm of autosome 
2 and in the paracentromeric heterochromatin of the X 
long arm. Such het-ITSs have also been demonstrated in 
the karyotypes of a variety of other anuran species. The 
(TTAGGG) n  repeats in het-ITSs can span up to several 
hundred kb and are predominantly located in constitu-
tive heterochromatin. It is conceivable that het-ITSs are 
relics of chromosomal repatterning that occurred during 
karyotype evolution and shifted telomeric (TTAGGG) n  
repeats into internal positions [for reviews, see Schmid et 
al., 2010, 2012]. Chromosome rearrangements, capable to 
internalize telomeric (TTAGGG) n  repeats are mainly 
centric (Robertsonian) fusions, inversions, tandem trans-
locations and insertions. Given the apparent numerical 
stability of centrolenid karyotypes, centric fusions and 
tandem translocations seem to be unlikely for the origin 
of the het-ITSs in  V. antisthenesi . Thus, either inversions 
or insertions likely caused these het-ITSs, or alternatively, 
these (TTAGGG) n  repeats are simply components of the 
highly repetitive DNA sequences of heterochromatic re-
gions. In this case, a partial or complete sequence iden-
tity of the telomeric DNA and the repetitive DNA of
the heterochromatic regions is purely coincidental. The 
(TTAGGG) n  repeat is known to be a component of the 
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  Fig. 11.  Histograms obtained by DNA flow cytometry of a mixture 
of DAPI-stained erythrocytes of chicken and male individuals of 
         Vitreorana antisthenesi  ( a ) and            Hyalinobatrachium orientale  ( b ). 
The nuclear DNA content is directly proportional to the DAPI 
fluorescence intensity, expressed as channel numbers on the x-
axis. Chicken erythrocytes (peak a) were used as internal standards 
with a known DNA content of 2.33 pg DNA/nucleus. The nuclear 
DNA content of the frog erythrocytes is calculated from the ratio 
of the peak channel number of the frog erythrocytes (peaks b and 
c) and chicken (peak a) multiplied by the known nuclear DNA 
amount of the chicken.           
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repetitive satellite DNAs of some vertebrates [Southern, 
1970; Fry and Salser, 1977; Arnason et al., 1988].

  The present data confirm the existence of heteromor-
phic XY sex chromosomes in  V. antisthenesi , initially ob-
served by Schmid et al. [1989] in 2 males and females 
( table  1 ). Cytogenetically demonstrable sex chromo-
somes, either of the XY ♂ /XX ♀  or ZW ♀ /ZZ ♂  type, are 
known to exist but are exceptional in amphibians. Ac-
cording to the Tree of Life database (http://tolweb.org/
Salientia/14938), there are 172 extant species of Gym-
nophiona, 557 species of Urodela, and 5,424 extant spe-
cies of Anura. Although approximately one third of these 
6,153 extant amphibians have been karyotyped [listed by 
Green and Sessions, 2007], only about 5% of those species 
have demonstrated morphologically distinguishable sex 
chromosomes. The most recent compilations on anuran 
sex chromosomes, including those of  V. antisthenesi , 
document the existence of only 42 species possessing mi-
croscopically detectable sex chromosomes [Schmid et al., 
2010, 2012]. The heteromorphic XY sex chromosomes of 
 V. antisthenesi  are distinguished by several features 
which, in combination, are not encountered in any of the 
other anuran sex chromosomes. They can be interpreted 
as XY chromosomes in a nascent stage of morphological 
differentiation, still of approximately the same length and 
only differing slightly in the positions of their centro-
meres. Chromosome banding analyses, however, reveal a 
conspicuous heteromorphism. Thus, there is more telo-
meric heterochromatin located in the Y long arm than in 
the X long arm. This is in agreement with most cytoge-
netic and molecular studies on lower vertebrates which 
demonstrate that the accumulation of repetitive DNA se-
quences in the Y or W chromosome is the primary step 
[Singh et al., 1976, 1980, 1981; Jones, 1984; Schmid et al., 
2010, 2012]. The centromeric and pericentromeric het-
erochromatin in the Y chromosome has a higher sensitiv-
ity to alkaline Ba(OH) 2  treatment (necessary for the dem-
onstration of C-bands) than the heterochromatin in the 
X chromosome. Finally, only the centromeric and not the 
pericentromeric heterochromatin is stained with the AT 
base pair-specific quinacrine in the Y chromosome, 
whereas both of these are brightly labeled in the X chro-
mosome and autosomes. The fact that the banding pat-
terns in the X chromosome strongly resemble those in the 
autosomes of  V. antisthenesi  indicates that it has largely 
conserved its original organization and that the structur-
ally more complex Y is evolutionarily derived.

  According to King [1990], Gregory [2005] and the An-
imal Genome Size Database (http://www.genomesize.
com), there are no data on genome sizes for any centro-

lenid or allophrynid species. The values measured in the 
present study for 4 centrolenids range between 6.20 and 
10.65 pg DNA/nucleus. The known genome sizes in the 
order Anura range from 1.90 to 19.71 pg DNA/nucleus. 
The frequencies of diploid anuran genome sizes show a 
clear unimodal distribution, with a value between 8 and 
10 pg DNA/nucleus [reviewed in Schmid et al., 2010]. 
Thus, the genome sizes of the centrolenids seem to fit 
quite well in this frequency distribution.

  The phylogenetic relationships of the Allocentroleniae 
within the Neobatrachia has not been resolved. There-
fore, it is premature to speculate on the various chromo-
some mutational events that have led from hypothetical 
ancestral anuran karyotypes with higher chromosome 
numbers to the reduced 2n = 20 karyotypes of the Cen-
trolenidae and Allophrynidae. Furthermore, the 11 spe-
cies analyzed in the present study represent only a very 
small fraction (7%) of all recognized extant species in the 
Centrolenidae (145 species) and in the Allophrynidae (3 
species). Before general conclusions can be drawn, a rep-
resentative number of species of all genera must be cyto-
genetically analyzed.
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