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Abstract: Polyphenols exert beneficial effects in type 2 diabetes mellitus (T2DM). However, their mechanism
of action remains largely unknown. Endothelial Akt-kinase plays a key role in the pathogenesis
of cardiovascular complications in T2DM and therefore the modulation of its activity is of interest.
This work aimed to characterize effects of structurally different polyphenols on Akt-phosphorylation
(pAkt) in endothelial cells (Ea.hy926) and to describe structure-activity features. A comprehensive
screening via ELISA quantified the effects of 44 polyphenols (10 µM) on pAkt Ser473. The most
pronounced inhibitors were luteolin (44 ± 18%), quercetin (36 ± 8%), urolithin A (35 ± 12%), apigenin,
fisetin, and resveratrol; (p < 0.01). The results were confirmed by Western blotting and complemented
with corresponding experiments in HUVEC cells. A strong positive and statistically significant
correlation between the mean inhibitory effects of the tested polyphenols on both Akt-residues Ser473
and Thr308 (r = 0.9478, p = 0.0003) was determined by immunoblotting. Interestingly, the structural
characteristics favoring pAkt inhibition partially differed from structural features enhancing the
compounds’ antioxidant activity. The present study is the first to quantitatively compare the influence
of polyphenols from nine different structural subclasses on pAkt in endothelial cells. These effects
might be advantageous in certain T2DM-complications involving over-activation of the Akt-pathway.
The suggested molecular mode of action of polyphenols involving Akt-inhibition contributes to
understanding their effects on the cellular level.
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1. Introduction

Polyphenols are plant secondary metabolites which are ubiquitously present in human food,
such as fruits, vegetables, nuts, spices and beverages [1]. These structural diverse phytochemicals are
important micronutrients in the human diet. According to their scaffolds, polyphenols are typically
classified as flavonoids, stilbenoids, lignans, and phenolic acids [2] (Figure 1).
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Figure 1. Classification of monomeric polyphenolic compounds according to Zhang et al. 2016 [2], 
with some modifications. Polyphenols are plant-derived compounds of four main structural 
subclasses: Phenolic acids, stilbenoids, flavonoids, and lignans. Phenolic acids are derivatives of 
benzoic or cinnamic acids (i.e., caffeic acid). Stilbenoids are hydroxylated stilbene derivatives (i.e., 
resveratrol). Lignans are diphenolic compounds (i.e., lariciresinol). Flavonoids are phenylchromone 
derivatives, which are subgrouped into flavanones, flavonols, flavanols, flavones, isoflavones, and 
others (anthocyanidins, chalcones, and neoflavonoids). Some authors classify phenolic amides (i.e., 
capsaicin) and ellagic acid derivatives [3] as additional polyphenol groups. 

The group of flavonoids (phenylchromones) comprises the highest number of representatives 
(around 4000), which are further subdivided into flavones, flavonols, flavanones, flavanols, 
isoflavonoids, anthocyanidins, neoflavonoids and chalcones. A multitude of substitution patterns in 
the A and B rings yields various derivatives within each subclass of flavonoids. Typical substituents 
are hydroxyl and methoxy groups, O-glycosides, sulfates, and glucuronides [4]. 

After ingestion of high molecular weight polyphenols, low molecular weight metabolites can be 
produced by the intestinal microflora [5]. Thereby, compounds might undergo bio-activation and 
exhibit stronger effects than their direct metabolic precursor molecule [6]. This has been shown for 
the procyanidin and ellagitannin metabolites δ-(3,4-dihydroxy-phenyl)-γ-valerolactone and 
urolithins, respectively [7,8]. 

Various in vitro [9], in vivo [10–12], and clinical studies [13–15] suggested that polyphenols 
might have beneficial effects regarding diabetes-induced complications of the cardiovascular 
system. In certain cases, it was described that these effects are mediated through Akt-kinase [10,11]. 

PI3K/Akt is a key signaling pathway responsible for fundamental and mainly anabolic cellular 
processes, such as protein synthesis, glucose uptake and metabolism, proliferation and cell survival 
[16]. This pathway mediates insulin metabolic effects on the cellular level and comprises a cascade of 
signal molecules such as insulin receptor, insulin receptor substrates, phosphoinositide-3-kinase 
(PI3K), phosphoinositide-dependent kinase 1 (PDK1), and Akt (also known as Protein Kinase B, 
PKB, Figure 2). 

Figure 1. Classification of monomeric polyphenolic compounds according to Zhang et al. 2016 [2],
with some modifications. Polyphenols are plant-derived compounds of four main structural subclasses:
Phenolic acids, stilbenoids, flavonoids, and lignans. Phenolic acids are derivatives of benzoic or cinnamic
acids (i.e., caffeic acid). Stilbenoids are hydroxylated stilbene derivatives (i.e., resveratrol). Lignans
are diphenolic compounds (i.e., lariciresinol). Flavonoids are phenylchromone derivatives, which are
subgrouped into flavanones, flavonols, flavanols, flavones, isoflavones, and others (anthocyanidins,
chalcones, and neoflavonoids). Some authors classify phenolic amides (i.e., capsaicin) and ellagic acid
derivatives [3] as additional polyphenol groups.

The group of flavonoids (phenylchromones) comprises the highest number of representatives
(around 4000), which are further subdivided into flavones, flavonols, flavanones, flavanols,
isoflavonoids, anthocyanidins, neoflavonoids and chalcones. A multitude of substitution patterns in
the A and B rings yields various derivatives within each subclass of flavonoids. Typical substituents
are hydroxyl and methoxy groups, O-glycosides, sulfates, and glucuronides [4].

After ingestion of high molecular weight polyphenols, low molecular weight metabolites can
be produced by the intestinal microflora [5]. Thereby, compounds might undergo bio-activation and
exhibit stronger effects than their direct metabolic precursor molecule [6]. This has been shown for the
procyanidin and ellagitannin metabolites δ-(3,4-dihydroxy-phenyl)-γ-valerolactone and urolithins,
respectively [7,8].

Various in vitro [9], in vivo [10–12], and clinical studies [13–15] suggested that polyphenols
might have beneficial effects regarding diabetes-induced complications of the cardiovascular system.
In certain cases, it was described that these effects are mediated through Akt-kinase [10,11].

PI3K/Akt is a key signaling pathway responsible for fundamental and mainly anabolic cellular
processes, such as protein synthesis, glucose uptake and metabolism, proliferation and cell survival [16].
This pathway mediates insulin metabolic effects on the cellular level and comprises a cascade of
signal molecules such as insulin receptor, insulin receptor substrates, phosphoinositide-3-kinase (PI3K),
phosphoinositide-dependent kinase 1 (PDK1), and Akt (also known as Protein Kinase B, PKB, Figure 2).
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Figure 2. Simplified scheme of the PI3K/Akt signaling pathway. Insulin or insulin-like growth 
factor-1 (IGF) binds and activates receptor tyrosine kinases (RTK; i.e., insulin receptor). In turn they 
activate an intracellular signal transduction cascade consisting of several enzymes: Insulin receptor 
substrate-1/2 (IRS-1/2), phosphoinositide-3-kinase (PI3K), phosphoinositide-dependent kinase 1 
(PDK1) and Akt/PKB. 

In general, insulin- or insulin-like growth factor (IGF)-induced Akt activation is governed by 
PI3K, which is directly phosphorylated and activated by insulin receptor substrate-1/2 (IRS-1/2). In 
turn, PI3K produces the lipid second messenger phosphatidylinositol-(3,4,5)-trisphosphate (PIP3). It 
activates PDK1 and interacts with the pleckstrin homology domain of Akt resulting in its 
recruitment to the plasma membrane. PDK1 phosphorylates Akt at a threonine (Thr308) site and 
thus initiates its activation [17]. 

Presently three Akt isoforms, Akt1/PKBα, Akt2/PKBβ, and Akt3/PKBγ, are known. They are 
structurally similar, but functionally different [18]. Insulin has differential effects on the subcellular 
distribution of Akt1 and Akt2, which indicates distinct physiological functions for the two isoforms. 
Akt2 showed a more pronounced accumulation in the membrane compartment compared to Akt1. 
This correlates with the specific role shown for Akt2 regarding the regulation of GLUT-4 (glucose 
transporter type 4) trafficking and insulin-mediated glucose transport [19]. 

Akt-kinase contributes in mediating intracellular effects of insulin and is therefore involved in 
the pathophysiology of diabetes and its vascular complications [20]. There is evidence that the 
Akt-signaling pathway might be altered in T2DM and this might contribute to insulin resistance 
[21]. In this pathological state an imbalance characterized by a prevalence of the mitogen-activated 
protein kinase (MAPK) signaling over PI3K/Akt pathway has been described [22]. 

In addition, Akt can affect further processes associated with T2DM and its long-term 
consequences. These include glucose transport, glycogen synthesis [23], apoptosis [24], endothelial 
dysfunction [22], and angiogenesis [25]. Therefore, modulators of Akt-phosphorylation and 
respectively activity are extensively investigated as pharmacological tools [26]. 

Akt is activated through phosphorylation at various sites, the most important are the amino 
acids threonine 308 (Thr308) and serine 473 (Ser473). The direct upstream kinase responsible for 
Thr308 phosphorylation is PDK1, while Ser473 phosphorylation is primarily mediated through the 
mTORC2 (mechanistic target of rapamycin complex 2) pathway [17]. 

In addition to its pro-survival effects, Akt is involved in angiogenesis, vasorelaxation and 
vascular remodeling processes [26]. The Akt1 isoform is predominantly expressed in the 
endothelium. It has been reported that activation of Akt-kinase in endothelial cells (EC) contributes 
to the cardio-metabolic homeostasis by subsequent activation of eNOS and release of NO, and has 
protective properties regarding long-term vascular complications of T2DM [27]. 

Pathological neovascularization has been observed in patients with metabolic syndrome, 
indicating progression of microvascular complications such as nephropathy and retinopathy [28,29]. 
Excessive neo-angiogenesis was also described to contribute to atherosclerotic plaque formation and 
vulnerability [30]. Since Akt-kinase participates in angiogenesis [25,31], it is conceivable that 

Figure 2. Simplified scheme of the PI3K/Akt signaling pathway. Insulin or insulin-like growth
factor-1 (IGF) binds and activates receptor tyrosine kinases (RTK; i.e., insulin receptor). In turn they
activate an intracellular signal transduction cascade consisting of several enzymes: Insulin receptor
substrate-1/2 (IRS-1/2), phosphoinositide-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1)
and Akt/PKB.

In general, insulin- or insulin-like growth factor (IGF)-induced Akt activation is governed by PI3K,
which is directly phosphorylated and activated by insulin receptor substrate-1/2 (IRS-1/2). In turn, PI3K
produces the lipid second messenger phosphatidylinositol-(3,4,5)-trisphosphate (PIP3). It activates
PDK1 and interacts with the pleckstrin homology domain of Akt resulting in its recruitment to the
plasma membrane. PDK1 phosphorylates Akt at a threonine (Thr308) site and thus initiates its
activation [17].

Presently three Akt isoforms, Akt1/PKBα, Akt2/PKBβ, and Akt3/PKBγ, are known. They are
structurally similar, but functionally different [18]. Insulin has differential effects on the subcellular
distribution of Akt1 and Akt2, which indicates distinct physiological functions for the two isoforms.
Akt2 showed a more pronounced accumulation in the membrane compartment compared to Akt1.
This correlates with the specific role shown for Akt2 regarding the regulation of GLUT-4 (glucose
transporter type 4) trafficking and insulin-mediated glucose transport [19].

Akt-kinase contributes in mediating intracellular effects of insulin and is therefore involved
in the pathophysiology of diabetes and its vascular complications [20]. There is evidence that the
Akt-signaling pathway might be altered in T2DM and this might contribute to insulin resistance [21].
In this pathological state an imbalance characterized by a prevalence of the mitogen-activated protein
kinase (MAPK) signaling over PI3K/Akt pathway has been described [22].

In addition, Akt can affect further processes associated with T2DM and its long-term consequences.
These include glucose transport, glycogen synthesis [23], apoptosis [24], endothelial dysfunction [22],
and angiogenesis [25]. Therefore, modulators of Akt-phosphorylation and respectively activity are
extensively investigated as pharmacological tools [26].

Akt is activated through phosphorylation at various sites, the most important are the amino acids
threonine 308 (Thr308) and serine 473 (Ser473). The direct upstream kinase responsible for Thr308
phosphorylation is PDK1, while Ser473 phosphorylation is primarily mediated through the mTORC2
(mechanistic target of rapamycin complex 2) pathway [17].

In addition to its pro-survival effects, Akt is involved in angiogenesis, vasorelaxation and vascular
remodeling processes [26]. The Akt1 isoform is predominantly expressed in the endothelium. It has
been reported that activation of Akt-kinase in endothelial cells (EC) contributes to the cardio-metabolic
homeostasis by subsequent activation of eNOS and release of NO, and has protective properties
regarding long-term vascular complications of T2DM [27].

Pathological neovascularization has been observed in patients with metabolic syndrome,
indicating progression of microvascular complications such as nephropathy and retinopathy [28,29].
Excessive neo-angiogenesis was also described to contribute to atherosclerotic plaque formation
and vulnerability [30]. Since Akt-kinase participates in angiogenesis [25,31], it is conceivable that
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over-activation of Akt plays a role in the pathogenesis of diabetic vascular complications. Indeed,
a study demonstrated that increased glucose levels contributed to neovascularization in diabetic
retinopathy in vivo, which was mediated through elevated basal Akt-phosphorylation and inhibition
of the latter prevented the process [32]. The use of anti-angiogenic agents in the treatment of these
complications has been proposed [29]. Since certain polyphenols have been described to exhibit
anti-angiogenic properties [33] this could contribute to their beneficial role in diabetes.

The potential relationship between health promoting properties of polyphenolic compounds and
their capability to modulate insulin signal transduction demanded a comprehensive study regarding
the effects of individual polyphenols on the phosphorylation of Akt-kinase (pAkt). The aim was to
identify subclasses and representatives of polyphenols that modulate this signaling pathway and
thus might be effective in the prevention and management of T2DM late complications. Therefore,
quantitative effects of 44 polyphenolic compounds and metabolites on the phosphorylation of Akt
(Ser473) in endothelial cells in vitro were determined via ELISA and confirmed by Western blot analysis.

2. Materials and Methods

2.1. Chemicals and Reagents

Polyphenols (listed with their purity) purchased from Tokyo Chemical Industry (TCI) Co., Ltd., Tokyo,
Japan, included resveratrol (>98%), pinostilbene (>97%), pterostilbene (>98%), 3,4′,5-trimethoxy-trans-stilbene
(>96%), piceatannol (>98%), oxyresveratrol (>95%), naringenin (>93%), apigenin (>98%), taxifolin
(≥85%), genistein (>96%), 3-hydroxyflavone (>98%), 3-methoxyflavone (>98%), 7-methoxyflavone (>98%),
3,4′-dihydroxy–flavone (>97%), 3-hydroxy-4′-methoxyflavone (>98%), kaempferol (>97%), myricetin
(>97%), chrysin (>97%), fisetin (>96%), baicalein (>98%), 6-hydroxyflavone (>98%), 6-methoxyflavone
(>98%), 7,8-dihydroxy-flavone (>98%), (−)-epigallocatechin gallate (>98%), flavanone (>98%). Urolithin A,
C and D were obtained from Newchem Technologies Ltd., Durham, UK. Urolithin B (≥95%), flavone
(≥99%), chlorogenic acid (>95%), morin (>85%), quercetin (>98%), caffeic acid (≥98%), (+)-catechin (>99%),
ellagic acid (>95%), were from Sigma-Aldrich, St. Louis, MO, USA. Luteolin (≥98%), trans-ferulic acid
(>99%), (−)-epicatechin (≥98%), baicalin (>95%), wogonoside (≥98%), (−)-gallocatechin gallate (≥98%),
(−)-epigalocatechin (≥98%) were from Aladdin, Shanghai, China. Vitexin (≥98%) was a product of TAUTO®,
Shanghai, China.

Catechin metabolites M1 [δ-(3,4-dihydroxyphenyl)-γ-valerolactone] and M2 [δ-(3-methoxy
-4-hydroxyphenyl)-γ-valerolactone] were synthesized by M. Rappold and kindly provided for use.

Stock solutions (10−2 M) of the polyphenols in DMSO were prepared and stored at –80 ◦C or
directly used for cell culture experiments.

2.2. Cell Culture

The immortalized human endothelial cell line Ea.hy926 was generously provided for use from
Dr. C.J. Edgell (University of North Carolina, Chapel Hill, NC, USA) [34]. Ea.hy926 cells were used
between passages 6 and 30. Cells were cultured according to a standard protocol [35] in Dulbecco’s
modified essential medium, high glucose (HG DMEM, 4500 mg/L glucose; Sigma-Aldrich, St. Louis,
MO, USA) without phenol red because this compound has been described to possess estrogen-like
properties [36]. Medium was supplemented with 10% heat inactivated fetal bovine serum (FBS; Batch
No. 1107A; Biochrom AG, Berlin, Germany), 3.7 g/L NaHCO3, 2 mM l-glutamine, 1 mM non-essential
amino acids (NEA), 1 mM sodium pyruvate, and a mixture of 100 U/mL penicillin with 100 µg/mL
streptomycin (1% Pen/Strep) at 37 ◦C in 5% CO2 atmosphere. Briefly, cells were seeded into 75 cm2

flasks (Sarstedt AG & Co., Nümbrecht, Germany) at a density of 2000–2500 cells/cm2. The medium was
changed every second day. When cells reached 90% confluence they were passaged. For this purpose,
they were rinsed three times with warm Dulbecco’s phosphate buffered saline (PBS) and treated with
trypsin/EDTA solution 1× (trypsin 0.05%/EDTA 0.02%; Sigma-Aldrich, St. Louis, MO, USA). Detached
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cells were resuspended in a fresh warm medium. Cell suspension was either seeded into flasks for
further cultivation or into 6-well plates at a density of 0.3 × 106 cells per well for experiments.

Primary endothelial cells HUVEC were cultivated according to the protocol described above
with some deviations. Instead of DMEM, M 199 (M3769) supplemented with 4500 mg/L glucose
(final concentration), 2.2 g/L NaHCO3, 20% heat inactivated FBS, 2 mM l-glutamine, 1% low serum
growth supplement (LSGS), and 1% Pen/Strep was used. All flasks and wells used for HUVECs were
coated with a sterile 1% gelatin solution. After trypsinization cells were mixed with growth medium
and pelleted by centrifugation (7 min, 25 ◦C, 1200 g) in order to remove the proteolytic enzyme. Then
the cells were resuspended in a fresh warm M 199 and passaged or seeded for an experiment as
indicated. Trypan blue staining was routinely performed to determine the vitality of cells.

Cells were grown in a 3 mL medium/well until they reached confluence. Afterwards, they were
incubated with polyphenolic compounds at a concentration of 10 µM, which was considered as a
physiologically relevant concentration [37]. Due to the chemical instability of some polyphenols [38] the
incubation time was limited to 5 min. Individual polyphenols were added to cells in standard DMEM
with 10% FBS (batch 1107A) to determine their potential to antagonize the growth factor-induced
Akt-phosphorylation and to mimic physiological conditions. As a positive control cells were
incubated in a serum-free medium overnight. Absence of growth factors strongly decreased
Akt-phosphorylation [39].

2.3. Cell Lysis and Sample Preparation

After treatments cells were rinsed twice with ice-cold PBS and 300 µL precooled lysis buffer
(CelLytic™ M, Sigma-Aldrich, St. Louis, MO, USA, or lysis buffer provided with the ELISA kit),
supplemented with phosphatase and protease inhibitors (PhosSTOP™, Roche Diagnostics GmbH,
Mannheim, Germany; Protease Inhibitor cocktail for mammalian cells and tissue extracts, P8340 from
Sigma-Aldrich, St. Louis, MO, USA), were added to each well. Cellular proteins were extracted at
4 ◦C on a shaker for 15 min. Cell residues were scraped off the wells and the lysates were transferred
to 1.5 mL precooled plastic tubes and centrifuged at 4 ◦C for 10 min at 18,000 g. The supernatants
were transferred into fresh tubes, vortexed, and briefly sonicated. If needed, protein concentration in
extracts was determined via BCA assay (Pierce® BCA Protein Assay Kit) according to the protocol
provided by the manufacturer (Thermo Fisher Scientific, Waltham, MA, USA).

2.4. ELISA

For the screening of pAkt, RayBio® Human/Mause/Rat Phospho-Akt (S473) and Total Akt ELISA Kit
(Raybiotech, Inc., Peachtree Corners, GA, USA) was used according to the manufacturer’s protocol with
some deviations. Lysates were diluted 1:3 with (1×) assay diluent and were added to assay wells and
incubated overnight at 4 ◦C. In each experiment, the lysate from DMSO-treated cells (corresponding to
the 100% control) and its 1:1 dilution (50% control) were used as reference standards. The antibody
detecting pAkt (Ser473) was diluted 1:55 in (1×) assay diluent as suggested by manufacturer, while
pan (total) Akt antibody was diluted 1:220 in order to avoid readouts outside the linear range of the
assay. Based on optical density readings after blank subtraction, values (in %) for pAkt (Ser473) and
pan Akt were calculated using the reference standards. Then data for pAkt (Ser473) were normalized
with reference to pan Akt.

2.5. Western Blot

For Western blot, samples were mixed with Laemmli buffer (4×) and DTT (dithiothreitol). After
incubation for 7 min at 70 ◦C under shaking (1000 rpm) they were vortexed, shortly spun and either
directly analyzed or stored at –20 ◦C. Western blot was performed with phosphospecific antibodies
against pAkt Ser473 (dilution: 1:1000) and pAkt Thr308 (1:800, all antibodies from Cell Signaling
Technology, Inc., Danvers, MA, USA). Pan Akt (1:2000) was used as a loading control.



Biomolecules 2019, 9, 219 6 of 16

Proteins were separated by SDS PAGE (Mini-PROTEAN Tetra®, Gel-Electrophoresis Equipment,
Bio-Rad Laboratories, Inc., Grand Junction, CO, USA) using 5% stacking and 10% resolving
polyacrylamide gels (Rotiphorese Gel 30 (37.5:1) from Carl Roth GmbH + Co, Karlsruhe, Germany).
Gels were loaded with equal protein concentrations (20–30 µg/lane). Proteins were subsequently
transferred onto nitrocellulose membranes using wet blotting (Mini-Trans Blot® cell, Bio-Rad
Laboratories, Inc., Grand Junction, CO, USA). The process took one hour and was performed at
4 ◦C and 375 mA/100 V.

Membranes were blocked for one hour at room temperature using 5% BSA in TBST (Tris-buffered
saline, 0.05% Tween 20) in case of phospho-Akt (Thr308 and Ser473) and 5% low-fat dry milk
powder (J.M. Gabler–Saliter Milchwerk GmbH & Co. KG, Obergünzburg, Germany) in TBST for
pan Akt membranes. After a brief wash with TBST, primary rabbit antibodies in 5% BSA-TBST were
applied and incubated at 4 ◦C overnight on a shaker. To remove the unbound primary antibodies,
membranes were washed four times for 10 min with TBST. A secondary, HRP-linked anti-rabbit
antibody (dilution: 1:10000) was applied for two hours at room temperature (or at 4 ◦C overnight,
alternatively). To reduce signal/noise ratio, membranes were again washed four times for 10 min
with TBST. A chemiluminescent detection (Clarity™Western ECL substrate; Bio-Rad Laboratories,
Inc., Grand Junction, CO, USA) using the FluorChem FC2 Doku imaging system (Alpha Innotec
GmbH, Kasendorf, Germany) was performed. The images were quantified densitometrically using of
ImageJ [40]. After detection of pAkt, membranes were stripped/reprobed for detection of total (pan)
Akt. For this purpose, a standard stripping buffer (200 mM glycine, 0.1% (w/v) SDS, 1.0% (v/v) Tween
20 in Millipore water, pH = 2.2) was used.

2.6. Statistical Analysis

Mean values, standard deviations (S.D.), medians, and mean deviation (Mean Dev.) were
calculated with Microsoft Excel®, Version 2010. For multiple comparisons, analysis of variance
(one-way ANOVA) was utilized. The statistical significance of the differences between two samples
was examined using a two-tailed paired Student’s t-test. The significance level α was set to 0.05.
The tests were performed with the Real Statistics Add-in© (2013–2016, Charles Zaiontz) of Excel [41].
Alternatively, the freely available online web calculator Astatsa (2016, Navendu Vasavada) was used
for post-hoc Tukey HSD (honestly significant difference) test after multiple group comparisons [42].

3. Results

3.1. Screening for Short-Term Effects of Polyphenols on pAkt

The comprehensive screening regarding short-term effects of polyphenols on the phosphorylation
of Akt at Ser473 included 44 compounds with different structures and certain microbiota-generated
metabolites (Table 1).

Overall, 26 compounds revealed some inhibitory potential. Among them, 11 substances showed
pronounced (> 20%), 10 compounds lower, but still distinguishable (between 10% and 20%), and five
compounds weak (less than 10%) inhibitory activity. The other 18 polyphenols did not inhibit pAkt
(Supplemental Materials; Table S1). The inhibitory activity was expressed as percent compared to
vehicle-treated negative controls ± standard deviation (100%–residual phosphorylation).

Flavones and flavon-3-ols caused the clearest inhibition of Akt-phosphorylation (Figure 3).
The most active compound was luteolin (44 ± 18%, n = 6), followed by quercetin (36 ± 8%, n = 6),
apigenin (32 ± 6%, n = 5), fisetin (28 ± 9%, n = 3), 6-hydroxyflavone (27 ± 8%, n = 2), 6-methoxyflavone
(25 ± 10%, n = 2), and flavone (22 ± 3%, n = 2). The subclass of flavanols possessed no inhibitory effects
with the exception of (–)-gallocatechin gallate (12%). The representatives of flavanones (naringenin),
isoflavones (genistein), and flavanonols (taxifolin) showed no considerable inhibition and were not
further investigated. Among the group of stilbenoids, resveratrol (26 ± 5.6%, n = 5) and pinostilbene
(19 ± 14, n = 2) were active, unlike pterostilbene, 3,4′,5-trimethoxy-trans-stilbene and piceatannol
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which did not inhibit pAkt. All three structural analogues from the subclass of phenolic acids (caffeic,
ferulic and chlorogenic acids) showed no inhibitory effects. Notably, in the group of ellagic acid
metabolites only urolithin A (35 ± 12%, n = 6), but not urolithin B, C or D inhibited pAkt.

Table 1. List of polyphenolic compounds and intestinal microbiota-generated metabolites included in
the screening regarding their effects on phosphorylation of Akt at Ser473 site. Classification according
to Zhang et al. 2016 [2].

Chemical Subclass Individual Compounds Number

Flavones *

Luteolin *, apigenin, flavone, 6-hydroxyflavone,
3-hydroxyflavone, 6-methoxyflavone, 7-methoxyflavone,

7,8-dihydroxyflavone, chrysin, baicalein, baicalin,
3-methoxyflavone, 3,4′-dihydroxyflavone,

3-hydroxy-4′-methoxyflavone, vitexin, wogonoside

16

Flavon-3-ols (Flavonols) quercetin, fisetin, kaempferol, myricetin, morin 5

Stilbenoids resveratrol, pinostilbene, pterostilbene,
3,4′5-trimethoxy-trans-stilbene, piceatannol 5

Flavan-3-ols (Flavanols) (+)-catechin, taxifolin, (−)-epicatechin, (−)-epicatechin
gallate, (−)-epigallocatechin gallate, (−)-gallocatechin gallate 6

Isoflavones genistein 1

Flavanones naringenin 1

Phenolic acids caffeic acid, trans-ferulic acid, chlorogenic acid 3

Catechin metabolites M1, M2 2

Ellagic acid and its metabolites ellagic acid, urolithin A, B, C, D 5

* Subclasses and representatives, which were additionally investigated by Western blot analysis, are marked in bold.

(+)-Catechin, (−)-epicatechin, ferulic acid, M2, naringenin and all investigated glycosides (vitexin,
wogonoside, baicalin) exhibited a non-statistically significant tendency to slightly augment pAkt Ser473.
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* Subclasses and representatives, which were additionally investigated by Western blot analysis, are 
marked in bold. 
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Figure 3. Polyphenols from different subclasses showing more pronounced pAkt-inhibition. The 
columns represent means of the residual phosphorylation (in %) with standard deviations. 
Statistically significant inhibitions were observed for the flavones luteolin and apigenin, the 
flavonols fisetin and quercetin, the dibenzo-α-pyrone urolithin A and the stilbenoid resveratrol (n = 
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Figure 3. Polyphenols from different subclasses showing more pronounced pAkt-inhibition. The columns
represent means of the residual phosphorylation (in %) with standard deviations. Statistically significant
inhibitions were observed for the flavones luteolin and apigenin, the flavonols fisetin and quercetin,
the dibenzo-α-pyrone urolithin A and the stilbenoid resveratrol (n = 3–6), ** p < 0.01. The difference
between the effects of luteolin and resveratrol was statistically significant as well, ## p < 0.01 (one-way
ANOVA with Tukey HSD test).
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Statistical significant effects of luteolin, urolithin A, apigenin, quercetin, fisetin, and resveratrol
(p = 0.001) were determined by one-way ANOVA with the Tukey HSD test [42]. The statistical
analysis also revealed a statistically significant difference between the effects of luteolin and resveratrol
(p = 0.008; Figure 3).

3.2. Structure-Activity Relationship: Key Features

Based on the results of the comprehensive screening, a semi-quantitative assumption for the
structural determinants influencing the polyphenols’ inhibitory activities on Akt phosphorylation at
Ser473 was developed (Figure 4, Table 2).
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stilbenoids (B). Structural features decreasing the inhibition of Akt-phosphorylation are marked in
green color. Structural characteristics increasing the inhibitory potential of polyphenolic compounds
are shown in red. For more details please refer to the text and Table 2.

Several molecular sites of the polyphenols appeared to be important for the inhibition of
Akt-phosphorylation. The presence of a double bond C2=C3 (ring C) appeared to be essential
for the inhibitory activity of flavones and flavon-3-ols. This was concluded from the comparison
of the inhibitory effects caused by quercetin (36 ± 8%) compared to taxifolin (9%), and apigenin
(32 ± 6%) compared to naringenin (−7%). Hydroxylation at C3 in the C-ring reduced the inhibitory
potential of flavones/flavon-3-ols. Evidence for that were the differences between the effects of
luteolin (44 ± 18%) compared to quercetin (36 ± 8%), and apigenin (32 ± 6%) compared to kaempferol
(17 ± 12%). Methylation of the hydroxyl group (C3) partially prevented the decrease of the inhibitory
activity as seen by comparing the effects of 3-methoxyflavone (13%) compared to 3-hydroxyflavone
(6 ± 4%). Compounds featuring a single hydroxylation or methylation at C6-position in the A-Ring
also possessed distinguishable inhibitory activities (>20%: 6-hydroxyflavone and 6-methoxyflavone).
On the other hand, the most active flavones (luteolin, apigenin) were hydroxylated at the C5- and
C7- position of the Ring A, which suggested that these structural features were important for the
inhibitory potential. Since the Ring B of the most active flavones/flavon-3-ols (e.g., luteolin, fisetin,
apigenin, quercetin) was hydroxylated, the OH groups (Ring B) obviously contributed to the inhibitory
effects. The presence of a meta- and a para-OH groups appeared to be optimal for the activity as
seen for luteolin (m, p-OH) > apigenin (p-OH) > chrysin (Ø OH); 3,4′-dihydroxyflavone (p-OH) >

3-hydroxyflavone (Ø OH). The investigated glycosides showed no effects on Akt-phosphorylation.
This modification abolished the inhibitory potential as seen when comparing apigenin (32 ± 6%)
compared to vitexin (−8.5%), baicalein (18%) compared to baicalin (−11%) and wogonoside (−5%).

For the subclass of stilbenoids, the presence of the three free OH groups in 3-, 4′-, and 5-positions
appeared optimal for the inhibitory effects. Methylation of these groups reduced or even to completely
eliminated pAkt inhibition (resveratrol (26± 5.6%) > pinostilbene (19± 14%) > pterostilbene (−6 ± 1.6%)
≈ 3,4′,5-trimethoxy-trans-stilbene (0.9 ± 10%)).
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Table 2. Summary of the semi-quantitative structure-activity relationships of flavones/flavonols and
stilbenoids regarding pAkt inhibition.

Structural Features Possible Effect Evidence

Flavones/Flavon-3-ols

1 C2=C3 double bond (Ring C) Essential Quercetin/Taxifolin; Apigenin/Naringenin

2 OH-groups (Ring B) (m-, p-) Contribution Luteolin (m, p) > Apigenin (p) > Chrysin (Ø)

3 3-p. (Ring C): hydroxylation Reduction Luteolin/Quercetin; Apigenin/Kaempferol

4 Glycosylation Abolishment Apigenin/Vitexin; Baicalein/Baicalin

Stilbenoids

1 Three free OH-groups Optimal Resveratrol > Pinostilbene > Pterostilbene
≈ 3,4′,5-trimethoxy-trans-stilbene2 Methylation of OH-groups Abolishment

In the subclass of urolithins clear differences in their inhibitory effects were observed. As seen
with urolithin A, two OH-groups at the C3 and C8 positions and lack of further substituents were
important for the activity. Thus, only minor changes, such as an addition or elimination of a hydroxyl
group were responsible for a remarkable change in the inhibition. Similar observation was valid for
flavonols: Active quercetin and slightly active morin – analogs, differing only by the position of one
phenolic OH-group in the B-ring.

To determine whether structural determinants responsible for the observed inhibitory effects
on pAkt in the present study matched published structural features enhancing the polyphenols’
antioxidant properties [43], both activities were compared (Table 3; more details are described in the
discussion section).

Table 3. Comparison of the proposed structure-activity features regarding inhibitory effects on
Akt-phosphorylation (pAkt) determined in the present study with the antioxidant properties of
polyphenols [43].

Functional Characteristic Inhibition of pAkt Antioxidant Activity

Double bond (C2=C3) Increase Increase
OH-group in ring A Increase Increase
OH-group in ring B Increase Increase

OH-group in ring C (3-OH) * Decrease Increase
Glycosyl group * Abolish/Reverse Decrease
O-Methyl group Decrease Decrease

* Functional groups entailing divergent effects are marked in bold and red.

3.3. Possible Activation through Bio-Transformation

The direct precursor compounds (+)-catechin and ellagic acid were compared with their corresponding
intestinal microbiota-generated metabolites regarding their in vitro inhibitory potential on pAkt Ser473.
(+)-Catechin caused a slight statistically non-significant increase of Akt-phosphorylation with 9± 6% (n = 3;
mean inhibition ± S.D.), while M1 (δ-(3,4-dihydroxyphenyl)-γ-valerolactone) exhibited no influence on
pAkt (n = 1), and the methylated M2 (δ-(3-methoxy-4-hydroxyphenyl)-γ-valerolactone) tended to increase
pAkt with 9 ± 9% (n = 3). This effect was not statistically significant and was not further investigated
(Figure 5, panel A). In contrast, there was a clear difference between the effects of ellagic acid and its
microbial metabolites. While ellagic acid had a little effect on Akt-phosphorylation (12 ± 4%; n = 3),
urolithin A exhibited a significant and reproducible inhibition (35 ± 12%; n = 6; p = 0.001 **). Other
urolithins (urolithin B, C, D) showed no statistically significant inhibitory effects on Akt-phosphorylation
and were not further investigated (n = 1–2, Figure 5, panel B).



Biomolecules 2019, 9, 219 10 of 16

Biomolecules 2019, 9, 219 10 of 17 

(urolithin B, C, D) showed no statistically significant inhibitory effects on Akt-phosphorylation and 
were not further investigated (n = 1–2, Figure 5, panel B). 

 
(A) 

 
(B) 

Figure 5. Investigation of a potential bio-activation of polyphenols by intestinal bacteria. (A) 
(+)-Catechin was compared with its microbiota-generated metabolites M1 and M2. (+)-Catechin and 
M2 caused non-significant (N.S.) slight increase in Akt-phosphorylation, M1 showed no activity. (B) 
Ellagic acid did not significantly influence the phosphorylation of Akt. In contrast, its microbial 
metabolite urolithin A induced a pronounced and statistically significant inhibition of 
Akt-phosphorylation compared to control (** p = 0.001, mean ± standard deviation) and compared to 
ellagic acid (** p = 0.005, one-way ANOVA/Tukey post-hoc test). Other urolithins showed only minor 
inhibitory effects (n = 3–6 for (+)-catechin, M2, ellagic acid, and urolithin A, n = 1–2 for other 
compounds). 

3.4. Immunoblotting: Effects of Polyphenols on pAkt Ser473 and pAkt Thr308 

To confirm results from the ELISA analysis, the short-term effects of eight selected polyphenols 
from five different structural subclasses (Table 1) were re-examined semi-quantitatively by the 
Western blot analysis. These compounds were investigated regarding their effects on both 
phosphorylation sites Ser473 and Thr308 in endothelial EA.hy926 cells. 

Representatives from the subclasses flavones, flavonols and stilbenoids caused a statistically 
significant decrease (p < 0.01, one-way ANOVA with Tukey HSD test) of Akt-phosphorylation level 
after short-term incubation (5 min) compared to controls. The compounds with the most prominent 
inhibitory effects on pAkt Ser473 (mean inhibition ± standard deviation) were quercetin (40 ± 5%), 
luteolin (30 ± 11%), resveratrol (26% ± 6%) and apigenin (22.6 ± 10%). In contrast, genistein (7 ± 19%), 
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Figure 5. Investigation of a potential bio-activation of polyphenols by intestinal bacteria. (A) (+)-Catechin
was compared with its microbiota-generated metabolites M1 and M2. (+)-Catechin and M2 caused
non-significant (N.S.) slight increase in Akt-phosphorylation, M1 showed no activity. (B) Ellagic acid did
not significantly influence the phosphorylation of Akt. In contrast, its microbial metabolite urolithin A
induced a pronounced and statistically significant inhibition of Akt-phosphorylation compared to control
(** p = 0.001, mean± standard deviation) and compared to ellagic acid (** p = 0.005, one-way ANOVA/Tukey
post-hoc test). Other urolithins showed only minor inhibitory effects (n = 3–6 for (+)-catechin, M2, ellagic
acid, and urolithin A, n = 1–2 for other compounds).

3.4. Immunoblotting: Effects of Polyphenols on pAkt Ser473 and pAkt Thr308

To confirm results from the ELISA analysis, the short-term effects of eight selected polyphenols
from five different structural subclasses (Table 1) were re-examined semi-quantitatively by the Western
blot analysis. These compounds were investigated regarding their effects on both phosphorylation
sites Ser473 and Thr308 in endothelial EA.hy926 cells.

Representatives from the subclasses flavones, flavonols and stilbenoids caused a statistically
significant decrease (p < 0.01, one-way ANOVA with Tukey HSD test) of Akt-phosphorylation level
after short-term incubation (5 min) compared to controls. The compounds with the most prominent
inhibitory effects on pAkt Ser473 (mean inhibition ± standard deviation) were quercetin (40 ± 5%),
luteolin (30 ± 11%), resveratrol (26% ± 6%) and apigenin (22.6 ± 10%). In contrast, genistein (7 ± 19%),
3,4′,5-trimethoxy-trans-stilbene (3-MS) (8 ± 14%) caused only a small and statistically non-significant
reduction in the phosphorylation of Akt at Ser473 compared to the negative control. Taxifolin
(0.6 ± 18%) did not reveal any activity (Figure 6).

As a positive control cells were serum-deprived overnight. Under these conditions the
phosphorylation levels at Ser473 and Thr308 strongly decreased by 92 ± 2% (n = 3) and 89 ± 5% (n = 3),
respectively. The inhibitory effect of polyphenols on pAkt Thr308 was similar for quercetin (36 ± 3%),
luteolin (27 ± 10%), resveratrol (32 ± 13%) and apigenin (28 ± 10%). A minor, not statistically significant
increase in Akt-phosphorylation at Ser473 was observed after incubation with (+)-catechin. Likewise,
genistein, taxifolin, 3,4′,5-trimethoxy-trans-stilbene and (+)-catechin showed minor and no statistically
significant effects on Thr308 (Supplementary Materials, Table S2).

In addition, short-term effects of quercetin on Akt-phosphorylation in primary endothelial cells
(HUVEC) were analyzed by Western blot. This model compound reduced the phosphorylation of Akt
at Ser473 site by 44 ± 5%. This effect was statistically significant (p < 0.01) and very similar to the effects
determined in experiments employing the immortalized cell line Ea.hy926 (Supplementary Materials,
Table S3).
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Figure 6. Effects of selected polyphenols on Akt-phosphorylation at Ser473 site in EA.hy926 cells
according to the Western blot analysis. Columns represent mean and standard deviation (%).
The flavonol quercetin, the flavones luteolin and apigenin, and the stilbenoid resveratrol, caused a
statistically significant reduction in Akt-phosphorylation compared to the control (** p < 0.01, one-way
ANOVA with Tukey HSD test, n = 3–6). On the contrary, 3,4′,5-trimethoxy-trans-stilbene (3-MS),
taxifolin, genistein and (+)-catechin revealed no inhibitory potential. Growth factors deprivation
overnight served as a positive control.

Based on the Western blot results a correlation analysis of mean inhibitory effects of the tested
polyphenols on both phosphorylation sites pAkt Ser473 and pAkt Thr308 was performed. The calculated
correlation coefficient was r = 0.9478 (R2 = 0.898) indicating a strong positive and statistically significant
(p = 0.0003) correlation between both variables (Figure 7).Biomolecules 2019, 9, 219 12 of 17 
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Figure 7. Correlation between the Ser473 and Thr308 phosphorylation status of Akt-kinase after
incubation with different polyphenols and analyzed by Western blot. The strong statistically significant
correlation (r = 0.9478, p = 0.0003, n = 3–6) suggested that the compounds exhibited similar inhibitory
effects on both phosphorylation sites. CAT: (+)-catechin, TXF: Taxifolin, GEN: Genistein, 3-MS:
3,4′,5-trimethoxy-trans-stilbene, APG: Apigenin, RSV: Resveratrol, LUT: Luteolin, QUE: Quercetin.

4. Discussion

The present study quantitatively compared the effects of polyphenols from nine different structural
subclasses on pAkt in endothelial cells and identified several active compounds. The consistence of the
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results from the ELISA and Western blot analysis substantiated their significance and provided a solid
basis for structure-activity evaluations and determination of structural key features for pAkt inhibition.

Inhibition of pAkt by quercetin, apigenin, luteolin, and resveratrol was observed in both
independent analytical approaches. Likewise, compounds that were determined to lack inhibitory
effects in ELISA were only slightly active or inactive in the immunoblotting. Comparison of the
quantitative data revealed that the results obtained in both approaches were highly similar for quercetin
(immunoblotting compared to ELISA: 40± 5% compared to 36± 8%) and resveratrol (26± 6% compared
to 26 ± 5.6%). Bigger differences were observed for luteolin (30 ± 11% compared to 44 ± 18%) and
apigenin (22.6 ± 10% compared to 32 ± 6%). However, Western blot analysis is a complex procedure
and multiple steps (transfer, stripping, and chemiluminescent detection) can contribute to variations of
results. This technique is generally considered as a semi-quantitative method [44]. For this reason,
only the data obtained from the screening via ELISA were considered in subsequent analysis of
structure-activity relationships.

To the best of our knowledge, the present study is the first comprehensive screening for the
effects of polyphenols on pAkt in endothelial cells. The scope of the present study was broad,
including representatives from chemical classes such as stilbenoids, urolithins, and phenolic acids,
and investigating the effects of methylation and glycosylation. As far as we know, 6-hydroxyflavone,
6-methoxyflavone, 7-methoxyflavone, and pinostilbene have not previously been described as inhibitors
of Akt-phosphorylation.

In another study, 24 flavonoids were investigated in adipocytes by Western blot regarding
their activities on multiple targets related to insulin-signaling, among which was Akt-kinase [45].
The authors showed that luteolin and kaempferol statistically significantly reduced Akt activity
compared to untreated controls. In addition, quercetin, fisetin and apigenin tended to decrease
Akt-activity, although their effects were not statistically significant. The authors proposed the insulin
receptor and PI3K as direct targets of flavonoids. This is generally in accordance with the outcome of
the present investigation showing that some flavonoids are capable to inhibit Akt and that the flavone
luteolin displayed high activity.

In a related study employing macrophages the effects of stilbenoids and their semi-synthetic derivatives
on the PI3K/Akt-pathway were examined by immunoblotting [46]. Piceatannol, monomethylpinosylvin
and pinosylvin were found to be the most potent inhibitors of Akt-phosphorylation. Similarly to the
present results, 10 µM resveratrol exhibited clear activity, while its dimethylated derivative pterostilbene
was not active at the same concentration.

As Akt is considered as a major downstream effector of PI3K [47], publications investigating
the relationships between flavonoid structure and the inhibition of this kinase were also studied.
Agullo et al. determined the effects of 14 flavonoids from different subgroups on the enzymatic
activities of purified PI3K in vitro [48]. The most active compounds were myricetin, luteolin, apigenin,
quercetin, and fisetin. This corresponds well with the data obtained in the present screening. Likewise,
flavan-3-ols, flavanones, isoflavones and morin were shown to be inactive. Another study investigating
the inhibitory activity of flavonoids against specific class I isoforms of PI3K reported similar results [49].
This might suggest that PI3K is a major molecular target of the investigated polyphenols.

Compared to most previously published papers, both phosphorylation sites of Akt (Ser473 and
Thr308) were investigated in the present study, as both sites are important for the full activation of this
enzyme [17]. The strong correlation found in the present study suggested that both phosphorylation
sites were similarly influenced by polyphenols in the utilized in vitro model. Vincent et al. postulated
that pAkt Thr308 is the more important predictor for the Akt-activity and should preferably be analyzed
rather than pAkt Ser473 [50].

A bio-activation of ellagic acid was shown for different targets such as heme peroxidases [51]
and estrogen receptors [52]. Likewise, the present data suggested a bio-activation of ellagic acid by
microbiotic metabolism regarding the diabetes relevant target Akt-kinase in endothelial cells. Among
the tested metabolites only urolithin A exhibited a clear inhibition of Akt-phosphorylation (35 ± 12%),



Biomolecules 2019, 9, 219 13 of 16

in spite of the structural homology to the other urolithins (dibenzo-α-pyrones). This suggests a specific
effect of urolithin A. Our results are consistent with a study in bladder cancer cells showing that only
urolithin A statistically significantly inhibited the phosphorylation of Akt compared to controls, while
urolithin B and C did not cause any changes [53].

Determination of semi-quantitative structure-activity relationships of the polyphenols and their
effects on Akt-phosphorylation revealed that the most active compounds belonged to the subclass
of flavones, followed by flavonols. For these two groups the structural hallmarks were the double
bond between C2 and C3 of the ring C, preferably lack of substitution at the C3 of the ring C,
and 3′,4′-catechol group in the ring B. The most active compounds were those with unsubstituted
OH-groups (no methylation or glycosylation).

The phosphorylation status of Akt was reported to be dependent on oxidative stress levels [54].
Therefore, the own assumptions on structure-activity relationships regarding Akt-phosphorylation
were compared with the antioxidant activity of polyphenols. According to the Bors’ criteria [55] a
C2=C3 double bond is beneficial for the antioxidant activity of flavonoids, as it is responsible for the
electron delocalization over all tree rings of the system and thus contributes to radical stabilization.
In addition, ortho-catechol structure in the ring B is considered important as it assures the stability of
flavonoid phenoxyl radical by hydrogen bond. Furthermore, the presence of 3-OH group (ring C) is
beneficial for the activity. Akt-phosphorylation inhibition and the antioxidant properties differed from
each other as the C-ring OH-group is favorable for radical scavenging activity [43], but negatively
influenced the inhibitory potential of polyphenols on pAkt. An additional difference was the effect
of glycosylation. It decreased the antioxidant activity compared to the aglycones [56], but seemed
to abolish and even reversed the inhibitory activity regarding pAkt in the present study. Therefore,
the polyphenol effects on pAkt cannot be solely explained by their antioxidant properties.

Moderate inhibitory effects of polyphenols as observed in the present study might be beneficial
in the case of endothelial dysfunction. It has been described that the hyperactive S6K1 (ribosomal
protein S6 kinase beta-1) in senescent endothelial cells might contribute to an increased oxidative stress
and decreased NO levels. S6K1 is a downstream target of Akt and its over-activation was reported to
contribute to insulin resistance [57]. It was shown that resveratrol inhibited Akt/S6K1-signaling and
reversed the endothelial dysfunction and hallmarks of aging [58], which is again consistent with the
present results.

5. Conclusions

The present study for the first time quantitatively compared the influence of polyphenols from
nine different subclasses on Akt-phosphorylation in endothelial cells. Quercetin, resveratrol, apigenin
and luteolin statistically significantly inhibited the phosphorylation of both Akt Ser473 and Akt Thr308.
A differential inhibitory effect on Akt-phosphorylation for urolithin A, but not for other structurally
related compounds was uncovered. A semi-quantitative structure-activity analysis suggested
functional groups important for the inhibitory activity of polyphenols on Akt-phosphorylation. It was
hypothesized that PI3K-inhibition, but not solely the antioxidant properties of those polyphenolic
compounds might play a major role for their effects on the Akt-kinase.
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