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Enteric pathogens often cycle between virulent and saprophytic lifestyles. To endure these
frequent changes in nutrient availability and composition bacteria possess an arsenal
of regulatory and metabolic genes allowing rapid adaptation and high flexibility. While
numerous proteins have been characterized with regard to metabolic control in pathogenic
bacteria, small non-coding RNAs have emerged as additional regulators of metabolism.
Recent advances in sequencing technology have vastly increased the number of candidate
regulatory RNAs and several of them have been found to act at the interface of bacterial
metabolism and virulence factor expression. Importantly, studying these riboregulators
has not only provided insight into their metabolic control functions but also revealed new
mechanisms of post-transcriptional gene control. This review will focus on the recent
advances in this area of host-microbe interaction and discuss how regulatory small RNAs
may help coordinate metabolism and virulence of enteric pathogens.
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INTRODUCTION
Bacteria colonize almost every niche on earth. Accordingly, they
have developed complex regulatory systems to respond to their
environment. In particular, the right choice of nutrients is cru-
cial to thrive in conditions of stress or competition. Pathogenic
bacteria are no different in this respect. At the very heart of most
infections, the host presents an exquisite source of nutrients for
the pathogen. However, the immune response of the host can
create a hostile environment demanding precise coordination of
stress-related and metabolic genes.

Transcription factors have long been known to link metabolic
pathways and virulence gene expression. The highly conserved
cAMP receptor protein (CRP) transcription factor, for exam-
ple, coordinates the uptake and utilization of alternative carbon
sources in a process termed carbon catabolite repression (CCR)
(Gorke and Stulke, 2008). Mutations in CCR components often
have drastic consequences for virulence gene expression (Poncet
et al., 2009) and loss of CRP activity, either by mutation or
low intracellular cAMP levels, strongly reduces the virulence of
Salmonella enterica (Curtiss and Kelly, 1987; Teplitski et al., 2006),
Vibrio cholerae (Skorupski and Taylor, 1997), and Yersinia species
(Petersen and Young, 2002; Kim et al., 2007).

Besides protein-dependent transcriptional control, RNA-
controlled mechanisms have turned out to play important
roles in regulating virulence genes (Papenfort and Vogel, 2010).
Regulatory RNAs operate at all layers of gene expression, ranging
from transcription initiation to translation control and protein
activity (Waters and Storz, 2009). The majority of the regula-
tory RNAs characterized to date act by base-pairing with target
mRNAs and are commonly referred to as small regulatory RNAs
(sRNAs). This group can be further divided into sRNAs encoded

on the opposite strand of the regulated RNA (cis-encoded) and
those that are transcribed distantly from their targets (trans-
encoded). These sRNAs have been documented to regulate
numerous important processes in bacterial pathogens includ-
ing outer membrane homeostasis (Papenfort et al., 2006, 2010;
Song et al., 2008; Corcoran et al., 2012; Fröhlich et al., 2012),
quorum sensing (Lenz et al., 2004; Shao et al., 2013), iron home-
ostasis (Murphy and Payne, 2007), biofilm formation (Monteiro
et al., 2012; Zhao et al., 2013), host-cell contact (Heroven et al.,
2008; Sterzenbach et al., 2013; Gruber and Sperandio, 2014), and
amino-acid metabolism (Sharma et al., 2011).

Other classes of riboregulators are riboswitches (Serganov
and Nudler, 2013) or RNA thermometers (Kortmann and
Narberhaus, 2012). Both describe RNA elements typically found
in the 5′ UTR (untranslated region) of mRNAs regulating gene
expression via structural rearrangements of the RNA. Whereas
riboswitches respond to varying availability of metabolites or
metals in the cell, RNA thermometers function by sensing changes
in temperature. Riboswitches may also produce small RNAs
(Vogel et al., 2003) and act as trans-acting regulators on mRNAs
(Loh et al., 2009). For many pathogenic bacteria, host body
temperature is a central signal activating virulence gene expres-
sion. RNA thermometers have been shown to contribute to this
regulation in enteric bacteria such as Yersinia pseudotuberculo-
sis and Listeria monocytogenes (Johansson et al., 2002; Bohme
et al., 2012), as well as the non-enteric human pathogen Neisseria
meningitidis (Loh et al., 2013).

Due to the relatively small size of their genes or simply because
of incomplete genome annotations riboregulators were often
overlooked in traditional genetic screens for virulence determi-
nants. In addition, the fact that most regulatory RNAs may act to
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fine-tune processes and so give milder phenotypes when mutated
than regulatory proteins has also disfavored their identification in
virulence screens. However, the recent advent of next-generation
sequencing (NGS) techniques has begun to remedy some of these
limitations: NGS can provide global maps of RNA expression
at nucleotide resolution for any bacterial pathogen of interest,
and some of the newly identified sRNAs have already been doc-
umented to contribute to microbial virulence (Caldelari et al.,
2013).

Evidence for regulatory RNAs being important for the control
of virulence and metabolism has also come from the loss-of-
function phenotypes of two proteins, Hfq (a.k.a. HF-I protein)
and CsrA (carbon storage regulator A). The RNA chaperone,
Hfq, is required for virulence in diverse bacterial pathogens and
hfq mutants usually display pleiotropic defects such as reduced
growth rates, altered metabolic profiles and changes in virulence
gene expression (Chao and Vogel, 2010; Sobrero and Valverde,
2012). At the mechanistic level, Hfq is known to serve as a “molec-
ular matchmaker” by facilitating base-pairing of sRNAs and target
mRNAs but it also protect sRNAs from degradation by cellu-
lar ribonucleases (Vogel and Luisi, 2011). In the laboratory, Hfq
has proven as a useful tool to precipitate bona-fide sRNAs (Chao
et al., 2012 and references therein) and therefore frequently served
as starting point for the functional characterization of sRNA
regulators.

Likewise, the RNA-binding protein CsrA (a.k.a. RsmA in
some organisms) is required for virulence of many pathogens
(Lucchetti-Miganeh et al., 2008). Originally described as a
pleiotropic regulator of glycogen biosynthesis in Escherichia coli
(Romeo et al., 1993), CsrA homologs have now been annotated
in more than 1500 bacterial species (Finn et al., 2014). Binding
of CsrA occurs at GGA-rich elements in the mRNA and com-
monly results in reduced ribosome association and subsequent
mRNA decay (Romeo et al., 2013), though CsrA-mediated gene
activation has also been reported (Yakhnin et al., 2013). The
key regulators of CsrA activity are CsrB-like sRNAs which act
as decoys of the protein. These sRNAs, of which many bacteria
encode more than one copy, carry multiple high-affinity sites con-
taining the GGA motif and thereby titrate CsrA away from its
target mRNAs (Babitzke and Romeo, 2007).

Recent global studies of other gastrointinal pathogens such as
Helicobacter pylori (Sharma et al., 2010), Campylobacter jejunii
(Dugar et al., 2013), and Clostridium difficile (Soutourina et al.,
2013) have suggested a wealth of potential RNA regulators in these
organisms, but if and how these are involved in metabolic pro-
cesses and infection is mostly unclear. Therefore, in this review
we concentrated on the functions of established sRNAs in car-
bon metabolism and virulence of enteric pathogens and, where
applicable, outlined the underlying mechanisms of regulation.

GLUCOSE HOMEOSTASIS THROUGH SgrS
The facultative intracellular pathogen S. enterica serovar
Typhimurium is probably one of the best understood bacteria
when it comes to metabolic profiling during infection (Dandekar
et al., 2012). Transcriptome analyses of intracellular Salmonella
suggested a preference for glucose, glucose-6-phosphate (G-6-P),
and gluconate as primary carbon sources during infection

(Hautefort et al., 2008); the preference for glucose (though
not G-6-P) during intracellular growth was also supported
by isotopologue profiling experiments (Gotz et al., 2010). In
agreement with these observed preferences, glucose and glycolysis
are essential for the virulence of Salmonella (Bowden et al., 2009).

Glucose uptake and catabolism are strictly controlled, and
Salmonella shares many of the underlying regulatory mechanisms
with its close relative, E. coli. The transport of glucose across
the bacterial membrane is achieved by so-called phosphotrans-
ferase systems (PTS) (Jahreis et al., 2008). Gram-negative model
bacteria encode a plethora of PTS with varying substrate speci-
ficities (Deutscher et al., 2006). For glucose, the translocation
process generates G-6-P (Figure 1) which, once in the cytosol,
can enter several metabolic pathways including glycolysis or the
pentose-phosphate pathway.

Phosphosugars such as G-6-P are a double-edged sword,
though. On the one hand, they serve as a primary energy source
for generating ATP and NADH via glycolysis. On the other hand,
high levels of phosphorylated sugars can impair growth (Irani and
Maitra, 1977; Kadner et al., 1992) and may cause DNA damage
(Lee and Cerami, 1987). Importantly, many non-metabolizable
carbohydrates are invariably imported and phosphorylated by
Crr and PtsG, the major proteins for glucose uptake in E. coli
and Salmonella. The accumulation of intracellular G-6-P or
other phosphorylated sugars is often referred to as phosphosugar
stress and has been observed in many Gram negative bacteria
(Bobrovskyy and Vanderpool, 2013). Not surprisingly, intracellu-
lar glucose levels are strictly controlled and glucose homeostasis is
subject to complex transcriptional and post-transcriptional con-
trol. Six transcriptional regulators, including the two alternative
sigma-factors σS and σH, control the ptsG gene in E. coli (Jahreis
et al., 2008). Furthermore, the ptsG mRNA is destabilized in
response to high intracellular G-6-P levels (Kimata et al., 2001),
an effect which could be attributed to the activity of a phospho-
sugar stress-induced sRNA, SgrS (Vanderpool and Gottesman,
2004). Upon activation by the SgrR transcriptional regulator
(Vanderpool and Gottesman, 2004, 2007), SgrS base-pairs with
the ribosome binding site (RBS) of the ptsG mRNA to inhibit
translation initiation. Thereby SgrS reduces de novo production
of PtsG protein and limits glucose import and intracellular G-6-P
levels (Vanderpool and Gottesman, 2004) (Figures 1, 2).

SgrS has many characteristics of an Hfq-dependent sRNA: it
co-immunoprecipitates with Hfq (Zhang et al., 2003) and muta-
tion of the hfq gene impairs the intracellular stability of SgrS and
its ability to repress the ptsG mRNA (Kawamoto et al., 2006).
Recent work showed that Hfq binds at the Rho-independent tran-
scriptional terminator hairpin at the 3′ end of SgrS (Otaka et al.,
2011; Ishikawa et al., 2012). SgrS has also been a model sRNA
in establishing general mechanisms of sRNA activity in bacteria.
For example, the Aiba group showed that successful repression
of ptsG by SgrS required a very short seed pairing, involving
as few as six essential base-pairs (Kawamoto et al., 2006; Maki
et al., 2010); that regulation may occur at the inner membrane
(Kawamoto et al., 2005); and crucially involves RNase E (Morita
et al., 2005). Interestingly, although SgrS induces ptsG mRNA
decay (Morita et al., 2005), RNA duplex-formation alone suffices
for translational repression (Morita et al., 2006).
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FIGURE 1 | Hfq-dependent sRNAs regulating carbon metabolism. Small
RNA controlled carbohydrate metabolic pathways for uptake and metabolism
of glucose, mannose, and chitosugars. Spot 42 sRNA acts as a global
regulator of secondary carbon metabolism. SgrS sRNA controls uptake and

secretion of various carbohydrates. The GlmYZ sRNAs control the expression
of glucosamine-6-phosphate synthetase (GlmS) in response to its product,
GlcN-6-P. Enzymes and transporters are depicted in bold and the
transcriptional regulators SgrR and CRP are shown in gray.

Additional mRNA targets of SgrS have been identified
(Papenfort et al., 2012). The manXYZ transcript encodes a
mannose-specific uptake system and is also repressed by SgrS
(Figures 1, 2; Rice and Vanderpool, 2011). However, different
from the ptsG mRNA, the manXYZ transcript contains two
functional SgrS binding sites (Rice et al., 2012).

In Salmonella, SgrS also represses the sopD mRNA (Figure 2)
(Papenfort et al., 2012) which encodes a Salmonella-specific effec-
tor protein that is injected into host cells (Brumell et al., 2003). In
the host, SopD contributes to phagosome formation (Bakowski
et al., 2007) and fluid secretion (Jones et al., 1998). Intriguingly,
repression of the sopD mRNA requires base-pairing of SgrS to the
RBS with the same conserved seed sequence that targets ptsG and
manXYZ (Kawamoto et al., 2006; Papenfort et al., 2012; Rice et al.,
2012). Thus, the SgrS seed sequence underlying the regulation of
sugar transport mRNAs has been recruited to control the mRNA
of a horizontally acquired virulence gene.

The study of this non-sugar stress related sopD target has
revealed the exceptional fidelity by which SgrS recognizes
mRNAs. That is, many Salmonella isolates carry a duplication of
the sopD gene termed sopD2 (Brumell et al., 2003); the SopD2
protein is also secreted into host cells and is required for virulence
in mice (Jiang et al., 2004). However, despite extensive sequence
homology between the two virulence factor mRNAs, the sopD2
mRNA is not regulated by SgrS. Genetic and biochemical analy-
ses of the underlying mechanism revealed that a single-nucleotide
variation between the two mRNA sequences is sufficient to pre-
vent SgrS from targeting sopD2. This single nucleotide difference

renders a stable G-C pair in the productive SgrS-sopD interaction
into a silent G-U pair which prevents SgrS from regulating sopD2.
Although the G-U pair is predicted to make only a minor differ-
ence in RNA-duplex stability, its crucial location at the proximal
end of the RNA seed interaction prevents sopD2 from becoming
an SgrS target (Papenfort et al., 2012). In other words, a single
hydrogen bond (G-C vs. G-U pair) determines which of these two
virulence factor mRNAs is regulated by SgrS.

The most recent addition to the list of SgrS target genes is
the yigL mRNA (Papenfort et al., 2013) (Figure 1). Different
from the hitherto known negative regulations, SgrS activates
the synthesis of YigL protein (Figure 2). Importantly, the yigL
gene is expressed as part of a di-cistronic pldB-yigL mRNA
but the activation by SgrS is restricted to the yigL part of the
transcript. The underlying activation mechanism involves base-
pairing of SgrS to a processed monocistronic yigL mRNA species
in which SgrS sequesters a RNase E cleavage site. This site-
specific inhibition of RNase E-mediated decay increases tran-
script stability and YigL protein synthesis (Papenfort et al.,
2013). This novel mode of post-transcriptional activation com-
plemented previously observed mechanisms of positive regula-
tion (Fröhlich and Vogel, 2009) and was subsequently reencoun-
tered in the activation of cfa mRNA by RydC sRNA (Fröhlich
et al., 2013).

The SgrS-mediated activation of yigL plays an important
biological role during glucose-phosphate stress. Since it occurs
within minutes, it can be considered to be part of an immedi-
ate stress response program (Papenfort et al., 2013). The yigL
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FIGURE 2 | SgrS controls carbon metabolism and virulence factor

production. The SgrS sRNA regulates the ptsG and manXYZ, yigL and sopD
mRNAs via direct base-pairing with the respective transcripts. Activation of
yigL requires inhibition of endonucleolytic degradation through sequestration
of a RNase E cleavage site. The ptsG and manXYZ mRNAs encode

carbohydrate transporters for glucose and mannose, respectively. The yigL
gene encodes a potent phosphatase which removes phosphate residues
from intracellular carbohydrates which allows export. The sopD gene is
specific to Salmonella and its translation results in a secreted virulence factor
that enters the mammalian host cell.

gene encodes a potent phosphatase which catalyzes the removal of
phosphate residues from intracellular carbohydrates (Kuznetsova
et al., 2006; Papenfort et al., 2013). Since the negative charge of
the phosphate normally prevents the toxic carbohydrates from
crossing the bacterial membrane, the dephosphorylation by YigL
enables efficient export and detoxification (Papenfort et al., 2013;
Sun and Vanderpool, 2013). Whether the RNA-based activation
of yigL is important for Salmonella infection remains to be seen.
However, we note that the yigL gene is required for pathogenicity
of the insect pathogen Xenorhabdus nematophila (Richards et al.,
2009).

Another relevant element for instant stress relief is the SgrT
peptide. In contrast to most other Hfq-binding sRNAs, SgrS does
not strictly act as a non-coding regulator. The proximal part of the
molecule encodes the ∼40aa SgrT peptide which can inhibit car-
bohydrate import, likely by blocking the glucose channel (Wadler
and Vanderpool, 2007). SgrT is not required for the regulation of
target mRNAs (Balasubramanian and Vanderpool, 2013) and not
necessarily conserved in sgrS homologs of other species (Horler
and Vanderpool, 2009).

In order to fully understand the function of SgrS in
metabolism and virulence, it will be important to identify the
cause of glucose-phosphate stress and the molecule(s) involved
in SgrS induction in pathogenic organisms. Suppressor studies

in non-pathogenic E. coli have suggested a connection of phos-
phate metabolism and glucose-phosphate stress (Richards and
Vanderpool, 2012) and experiments from Aiba and Vanderpool
groups indicated that G-6-P itself is not causing toxicity. Rather,
the depletion of glycolytic intermediates induces growth arrest
(Morita et al., 2003; Richards et al., 2013) but how this ties in with
virulence factor control such as the observed repression of SopD
synthesis in Salmonella remains to be understood.

Along the same line, robust virulence-related phenotypes of
sgrS mutants are yet to be identified in Salmonella (Santiviago
et al., 2009; Papenfort et al., 2012). Given the massive competi-
tion for glucose by other microbes in the intestine it is likely that
SgrS-mediated gene regulation is most relevant when Salmonella
has entered the host cell. Here, glucose is plentiful and serves as
the primary carbon source for intracellular replication (Dandekar
et al., 2012). When Salmonella disseminates systemically into
the liver and spleen it continues to grow within macrophage
where glycolysis and glucose metabolism remain highly relevant
(Bowden et al., 2009). Therefore, regulation of glycolytic flux and
virulence factor production by SgrS could be important under
these conditions. In this context it is interesting to note that in
V. cholerae a related sRNA, TarA, is required for infant mouse col-
onization by this pathogen. Similar to SgrS, TarA represses the
production of PtsG; different from SgrS, though, the expression
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of TarA is directly controlled by a major virulence transcription
factor, ToxT (Richard et al., 2010).

CRP-CONTROLLED sRNAs
Spot 42 (encoded by the spf gene) was one of the first bac-
terial riboregulators identified (Ikemura and Dahlberg, 1973)
and it is also one of the most conserved sRNAs (Hansen et al.,
2012). Transcription of Spot 42 is repressed by cAMP-bound CRP
(Polayes et al., 1988) and the over-expression of this sRNA reduces
growth on various carbon sources (Rice and Dahlberg, 1982;
Beisel and Storz, 2011). Direct targets of Spot 42 remained elusive
until in 2002, when the Valentin-Hansen lab discovered that Spot
42 associated with Hfq (Moller et al., 2002a) and regulated galac-
tose metabolism in E. coli (Moller et al., 2002b). Specifically, they
showed that Spot 42 targets the distal part of the galETKM operon
mRNA by base-pairing to the RBS of the galK cistron, demon-
strating for the first time that sRNAs can post-transcriptionally
modulate specific genes within multi-cistronic transcripts. Such
discoordinate operon expression, resulting in selective repression
or activation of internal cistrons, has recently been described
for other sRNAs, too (Balasubramanian and Vanderpool, 2013;
Papenfort et al., 2013).

Searches for additional Spot 42 target mRNAs have since
revealed a more global role for Spot 42 during glucose catabolism
(Beisel and Storz, 2011; Beisel et al., 2012). Nineteen more
repressed transcripts were discovered, most of which have doc-
umented functions in the transport and metabolism of secondary
carbon sources. Intriguingly, many of them are regulated by CRP
at the transcriptional level, suggesting that CRP and Spot 42 form
a complex feed-forward loop which reinforces CCR. Here, Spot
42 directly inhibits the translation of mRNAs involved in the
utilization of secondary carbon sources, the same genes which
are also regulated by CRP at the transcriptional level (Beisel
and Storz, 2011; Papenfort and Vogel, 2011). Since many tar-
get interactions of Spot 42 seem conserved in various enteric
pathogens (Wright et al., 2013), Spot 42 may be relevant as carbon
source composition change rapidly in the course of an infection
process.

CyaR is another CRP-controlled sRNA which binds Hfq and is
highly conserved among the enterobacteria (Zhang et al., 2003).
In contrast to Spot 42, which is repressed by CRP, CyaR is acti-
vated by the CRP-cAMP complex. One conserved target of CyaR
is the ompX mRNA which encodes a major outer membrane pro-
tein of Salmonella and E. coli (Johansen et al., 2008; Papenfort
et al., 2008; De Lay and Gottesman, 2009). Additional targets of
CyaR include the transcripts of yqaE, nadE, and luxS (De Lay and
Gottesman, 2009) as well as ptsI, yobF, and sdhA (Wright et al.,
2013), in other words, transcripts of genes that relate directly or
indirectly to metabolic functions. For example, the luxS gene is
required for the production of the common autoinducer AI-2 and
repression by CyaR suggests a link between carbon metabolism
and population behavior (De Lay and Gottesman, 2009). Recent
studies revealed the expression of several CRP-dependent sRNAs
(including CyaR) in Yersinia pestis -infected lungs, suggesting a
potential role for carbon metabolism and sRNAs in pathogenic-
ity (Koo et al., 2011; Yan et al., 2013). Indeed, in Y. pestis
Crp expression itself depends on the Hfq chaperone which is

revelant for the development of pneumonic plague (Lathem et al.,
2014).

CHITIN UTILIZATION THROUGH sRNAs
Chitin is a solid polymer made of N-acetylglucosamine (GlcNAc)
and one of the most abundant biomaterials on Earth. Thanks
to its inert structure chitin requires specialized enzymes, termed
chitinases, to be utilized (Bhattacharya et al., 2007). Interaction
with chitin can be important during multi-species biofilm for-
mation with fungal partners and may also affect the virulence of
individual bacterial pathogens (Brandl et al., 2011 and references
therein). Ecologically, chitinases play an important role in the
lifestyle of many marine bacteria, e.g. V. cholerae (Meibom et al.,
2004) where GlcNAc induces the expression of the competence-
regulating TfoR sRNA (Yamamoto et al., 2011). Further, chiti-
nases are also encoded by non-marine enteropathogens such as
Salmonella (McClelland et al., 2001).

In E. coli and Salmonella chitin utilization is regulated by
a complex mechanism involving the sRNA ChiX (a.k.a RybC,
MicM, or SroB) and a decoy mRNA transcript (Mandin and
Gottesman, 2009). In the absence of chitosugars, ChiX sRNA con-
tinuously binds to and represses the chiP mRNA which encodes
a chitoporin required for the uptake of chitooligosaccharides
(Rasmussen et al., 2009) (Figure 1). Genetic screens for relief
of chiP repression by ChiX hinted at another layer of post-
transcriptional control (Figueroa-Bossi et al., 2009; Overgaard
et al., 2009). Here, expression of the chb operon (encoding genes
for chitosugar utilization) is induced in the presence of chito-
biose via the ChbR transcriptional regulator (Plumbridge and
Pellegrini, 2004). Through a base-pairing interaction, the chb
mRNA titrates the ChiX sRNA, inducing a rapid degradation
of this repressor. This decoy function of chb indirectly increases
the synthesis of the ChiP porin, adjusting its levels to the avail-
ability of the enzymes for chitosugar processing (Figueroa-Bossi
et al., 2009; Overgaard et al., 2009). In addition, when chito-
sugar concentrations are low ChiX activity is accompanied by
transcriptional repression of the chiP and chb genes by NagC.
However, when chitosugars enter the cell repression by NagC is
alleviated and chb can act as a decoy for ChiX (Plumbridge et al.,
2014).

Chitin utilization is also important in the Gram positive
bacterium, L. monocytogenes. Recent studies suggested that the
chitinolytic activity of this pathogen could have important
functions during immune evasion; in addition, mutations in
the chitinase-encoding gene chiA reduced virulence (Chaudhuri
et al., 2013b). Interestingly, expression of the chiA/B genes is
controlled by the master virulence regulator PrfA (Larsen et al.,
2010), but the levels of the chiA mRNA are additionally con-
trolled by the Hfq-dependent LhrA sRNA (Nielsen et al., 2011).
LhrA represses the translation of at least three genes, i.e., chiA,
lmo0302 (hypothetical protein), and lmo0880 (cell wall associ-
ated protein). Expression of LhrA has a negative effect on the
chitonolytic activity of L. monocytogenes, however, it is not yet
clear if this function is also relevant for virulence. Note that
LhrA was the first example of a sRNA from a Gram positive
bacterium that requires Hfq for target regulation (Nielsen et al.,
2010).
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THE GlmY/Z sRNAs ACT BY SEQUESTRATION AND
BASE-PAIRING
The two homologous sRNAs, GlmY and GlmZ, are highly con-
served among the enterobacteriae. Both sRNAs activate produc-
tion of GlmS (Figure 1), although only GlmZ directly base-pairs
with the glmS transcript. The glmS mRNA accumulates as the dis-
tal part of the glmUS dicistronic transcript, and is separated from
the glmU ORF by an RNase E mediated cleavage event (Kalamorz
et al., 2007). Following this processing, the glmS mRNA remains
translationally inactive because of an intrinsic inhibitory struc-
ture within its 5′ UTR. Binding of GlmZ to the glmS 5′ UTR
resolves this structure, which releases the RBS of this transcripts
and increases synthesis of the GlmS protein (Reichenbach et al.,
2008; Urban and Vogel, 2008).

The enzymatic product of GlmS is glucosamine-6-phosphate
(GlcN6P), a central aminosugar required for cell wall biosyn-
thesis. Low levels of GlcN6P induce the expression of GlmY
which indirectly activates GlmS production through GlmZ and
the accessory protein, RapZ (a.k.a. YhbJ). Due to its structural
similarity with GlmZ, GlmY can function through molecular
mimicry to interfere with GlmZ degradation by RNase E and
RapZ. The latter protein is a specialized adapter that targets GlmZ
for RNase E-mediated decay. Recognition by RapZ is guided by a
RNA element shared between GlmZ and GlmY and high levels of
GlmY titrate the RapZ protein from GlmZ, thus stabilizing the
GlmZ sRNA. GlmY itself does not bind Hfq, suggesting that it
acts as a specific decoy for GlmZ rather than regulating mRNAs
expression on its own (Gopel et al., 2013). Taken together, these
two well-conserved sRNAs act hierarchically in a complex reg-
ulatory cascade to adjust the translation of the glmS mRNA to
physiological needs.

In Salmonella and other enterobacteria, transcription of GlmY
and GlmZ is regulated by two overlapping promoters controlled
by either σ70 or σ54 although this may vary between species
(Urban et al., 2007; Reichenbach et al., 2009; Gopel et al.,
2011). GlmY expression also requires binding of the global tran-
scriptional regulator, IHF (Gopel et al., 2011). In addition, the
expression of the glmY/Z genes by the σ54 version of RNA poly-
merase requires the QseF and QseE proteins (a.k.a. GlrR/GlrK)
(Reichenbach et al., 2009; Gopel et al., 2011). Intriguingly, QseF
and QseE constitute a two-component system that is impor-
tant for the virulence of Y. pseudotuberculosis (Flamez et al.,
2008) and enterohemorrhagic E. coli (EHEC) (Reading et al.,
2007) indicating that GlmY/Z might have a function in viru-
lence.

Indeed, the Sperandio group recently reported a crucial role
of the GlmY/Z sRNAs for the pathogenicity of EHEC, observing
that mutations of either glmY or glmZ increased pedestal for-
mation on host cells by this organisms (Gruber and Sperandio,
2014). Surprisingly, GlmY/Z did not seem to control glmS expres-
sion in EHEC. Instead, both sRNAs regulated transcripts from
the LEE4 and LEE5 pathogenicity islands as well as the mRNA
of the secreted effector protein EspFu. This regulation is reminis-
cent of the above described SgrS-sopD example (Papenfort et al.,
2012) in that conserved “core” sRNAs are recruited to regulate the
mRNAs of horizontally acquired virulence factors through Hfq
and base-pairing.

GLOBAL FUNCTIONS FOR THE RNA-BINDING PROTEIN, CsrA
CsrA-like proteins are conserved in most enteric pathogens and
deletion of the csrA gene often impairs virulence (Lucchetti-
Miganeh et al., 2008; Seyll and Van Melderen, 2013). Given
the multi-faceted phenotypes of many csrA mutant strains, one
may argue that reduced pathogenicity primarily resulted from
decreased overall fitness rather than the specific virulence func-
tions. Indeed, a Salmonella csrA mutant displayed multiple defects
in metabolic regulation and virulence factor expression (Altier
et al., 2000; Lawhon et al., 2003) and comparable phenotypes
were observed in uropathogenic E. coli (Mitra et al., 2013).
However, CsrA also regulates Salmonella pathogenicity more
directly. For example, CsrA binds to the 5′ UTR of the mRNA
of HilD repressing the synthesis of this master transcriptional
regulator of virulence (Martinez et al., 2011). Similarly, CsrA
affects biofilm formation through interaction with the mRNA
of an phosphodiesterase gene (STM3611) regulating intracellu-
lar c-di-GMP levels (Jonas et al., 2010). CsrA was also found
to coordinate the expression of two mutually exclusive fimbrial
operons in Salmonella by a putative novel mechanism of mRNA
cross-regulation (Sterzenbach et al., 2013).

The global activity of CsrA in E. coli and Salmonella is counter-
acted by the CsrB/C sRNAs whose transcription is under control
of the BarA/UvrY TCS (Gudapaty et al., 2001; Suzuki et al.,
2002). Transcriptional control of the CsrA antagonists by the
BarA/UvrY TCS seems to be a conserved principle in many bacte-
ria (Seyll and Van Melderen, 2013). While some bacteria encode
only one CsrB-like RNA, V. cholerae species encode three differ-
ent CsrA antagonists: CsrB, CsrC, and CsrD (Lenz et al., 2005).
Here, expression of the Csr-sRNAs affects virulence via regu-
lation of the quorum sensing pathway (Jang et al., 2010). In
addition, expression of CsrB-like sRNAs can also be controlled
post-transcriptionally. The CsrD RNA-binding protein of E. coli
(not to be confused with the CsrD sRNA from V. cholerae) can
bind the CsrB/C sRNAs and target them for degradation by RNase
E (Suzuki et al., 2006). CsrA also reduces the expression of CsrD
(Jonas et al., 2008) generating a negative feedback loop for robust
signaling under conditions of stress (Adamson and Lim, 2013).

The Csr system and its relevance for virulence and metabolism
have been studied in greater detail for the human enteropathogen
Y. pseudotuberculosis where a mutation of the csrA gene resulted
in complex phenotypic alterations (Heroven et al., 2008).
Transcriptomic studies revealed deregulation of ∼500 ORFs in
the csrA mutants, ∼20% of which are metabolic genes (Heroven
et al., 2012a). The Y. pseudotuberculosis genome encodes two
CsrB-like sRNAs (CsrB and CsrC) and their expression is crucial
during the initial phase of infection because sequestration of CsrA
is needed to allow the production of the host cell adhesion factor,
InvA (Heroven et al., 2008). Induction of InvA involves a com-
plex regulon including the transcriptional factor RovA (Heroven
and Dersch, 2006). Regulation via the Csr-system is further con-
trolled via CCR. The CRP protein represses the response regulator
UvrY which is required for CsrB activation. A crp mutant has
increased levels of the CsrB sRNA which promotes CsrC and
RovA repression. Not surprisingly, a Y. pseudotuberculosis mutant
lacking the crp gene is strongly impaired in virulence (Heroven
et al., 2012b).
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FIGURE 3 | Overlap of the CsrA and Hfq regulons through McaS. Both
McaS and the CsrB-like sRNAs bind to the CsrA protein via GGA-rich motifs
(orange). Binding of CsrA results in titration of CsrA from its target mRNAs
which usually activates their translation (lower panel). In addition, McaS can
also directly bind and regulate target mRNAs (e.g. csgD) through
Hfq-mediated base-pairing (indicated in red).

A new type of CsrA antagonist has recently been reported
in E. coli. It was observed that the Hfq-binding sRNA, McaS,
which regulates the fhlD and csgD mRNAs (encoding regulators
of motility and biofilm formation, respectively) by base pairing
interactions, impacted expression of the pgaA gene by a suppos-
edly indirect mechanism (Jorgensen et al., 2012; Thomason et al.,
2012) (Figure 3). The PgaA protein is crucial for the produc-
tion of PGA (poly-β-1,6-N-acetyl-glucosamine), an important
factor for biofilm adhesion (Itoh et al., 2008). Expression of pgaA
had been known to be subject to control by CsrA (Wang et al.,
2005), which suggested a link between McaS and CsrA. Indeed,
the McaS sRNA was found to bind the CsrA protein via two
exposed GGA motifs and thereby indirectly regulate the expres-
sion of several CsrA-target genes, including pgaA (Jorgensen et al.,
2013) (Figure 3). In summary, McaS is the first sRNA regulating
target gene expression via both Hfq and CsrA. Future studies
may reveal additional sRNAs that serve in both of these global
post-transcriptional networks.

FUTURE DIRECTIONS
The above examples of sRNA-mediated gene regulation in enteric
pathogens serve to illustrate the growing number of potential
post-transcriptional links between metabolic and virulence func-
tions in these organisms. To date, many of these links remain
inferences from functional studies of sRNA-mRNA interactions,
and how these contribute to nutritional adjustment and con-
trol of virulence factor expression requires more detailed studies.
However, it is important to note that global studies of the RNA
targets of Hfq and CsrA, two proteins that each may control up
to 20% of all mRNAs in enteric model organisms (Chao and
Vogel, 2010; Romeo et al., 2013), revealed a high number of
mRNAs from metabolic and virulence pathways, suggesting that
many more sRNAs could be involved in these pathways. In addi-
tion, the growing depths of NGS will soon allow us to extensively

profile bacterial RNA expression in complex tissue and inside host
cells, even simultaneously with gene expression of the eukaryotic
host to inform details of the pathogen’s metabolic environment
(Westermann et al., 2012).

There are more potential links between virulence and
metabolism in the available sRNA data whose physiological
importance needs to be explored. For example, the recent pro-
filing of Hfq-bound Salmonella transcripts revealed the DapZ
sRNA, which is encoded in the 3′ UTR of the well-conserved
metabolic dapB gene. In Salmonella, the horizontally acquired
virulence regulator HilD has been recruited to transcriptionally
activate the DapZ sRNA which then acts to repress the synthe-
sis of oligopeptide uptake proteins (Chao et al., 2012). Under
regular growth conditions oligopeptide uptake is controlled by
the conserved GcvB sRNA (Sharma et al., 2011) and regulation
of DapZ by HilD enables the cell to exert a similar function
under virulence-related conditions. However, why DapZ is linked
to dapB and how the metabolic function of the DapB protein,
an enzyme that produces the lysine precursor diaminopimelate,
may be interwoven with a DapZ-mediated repression of amino
acid uptake, is far from obvious. Of note, regulation of oligopep-
tide uptake through sRNAs has been observed in non-enteric
bacteria, too. The RsaE sRNA from Staphyloccus aureus, which
is also conserved in other Gram positives, directly controls the
mRNA encoding the OppB protein (Geissmann et al., 2009)
and several other transcripts of metabolic genes (Bohn et al.,
2010).

The most recent count for sRNA regulators in Salmonella
revealed ∼280 sRNAs, many of which are Hfq-dependent and
expressed under stress or virulence mimicking conditions (Kroger
et al., 2012, 2013). How many of these sRNAs are also rele-
vant for virulence is still an open question but novel approaches
such as Tn-Seq (combining transposon mutagenesis and HTPS)
could be powerful tools to evaluate the roles of sRNAs during
infection (Van Opijnen and Camilli, 2013). The same technology
can also be used to identify metabolic genes required for infec-
tion. Indeed, two recent studies using Tn-Seq in Salmonella or
V. cholerae identified several genes involved in carbon metabolism
to be required for full pathogenicity (Chaudhuri et al., 2013a; Fu
et al., 2013).

Probably one of the most exciting areas of host-microbe inter-
action today is how pathogens deal with the commensal micro-
biota of the host. It is now understood that the carbohydrate
metabolism of the microbiota significantly impacts on the viru-
lence gene expression of enteric pathogens and that carbohydrates
can function as signaling molecules in the intestine (Pacheco
et al., 2012). In contrast, close to nothing is known about how
sRNAs shape the interaction of pathogens with commensals
and we are yet to see if such sRNAs would also impact viru-
lence. Again, NGS-based metatranscriptomics of multi-species
intestinal communities could provide a valuable starting point to
address the relevance of regulatory RNAs and metabolic genes in
the context of the host microbiota (Xiong et al., 2012). These new
exciting venues at the interface of microbiology and host-microbe
interaction might become relevant for the design of alternative
anti-microbial compounds which consider both, the pathogen
and the host microbiota.
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