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Gonorrhea is the second most common sexually transmitted infection in the world

and is caused by Gram-negative diplococcus Neisseria gonorrhoeae. Since N.

gonorrhoeae is a human-specific pathogen, animal infection models are only of

limited use. Therefore, a suitable in vitro cell culture model for studying the complete

infection including adhesion, transmigration and transport to deeper tissue layers is

required. In the present study, we generated three independent 3D tissue models

based on porcine small intestinal submucosa (SIS) scaffold by co-culturing human

dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male

uroepithelial cells. Functional analyses such as transepithelial electrical resistance (TEER)

and FITC-dextran assay indicated the high barrier integrity of the created monolayer.

The histological, immunohistochemical, and ultra-structural analyses showed that the

3D SIS scaffold-based models closely mimic the main characteristics of the site of

gonococcal infection in human host including the epithelial monolayer, the underlying

connective tissue, mucus production, tight junction, and microvilli formation. We infected

the established 3D tissue models with different N. gonorrhoeae strains and derivatives

presenting various phenotypes regarding adhesion and invasion. The results indicated

that the disruption of tight junctions and increase in interleukin production in response

to the infection is strain and cell type-dependent. In addition, the models supported

bacterial survival and proved to be better suitable for studying infection over the course

of several days in comparison to commonly used Transwell® models. This was primarily

due to increased resilience of the SIS scaffold models to infection in terms of changes in

permeability, cell destruction and bacterial transmigration. In summary, the SIS scaffold-

based 3D tissue models of human mucosal tissues represent promising tools for

investigating N. gonorrhoeae infections under close-to-natural conditions.
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INTRODUCTION

Neisseria gonorrhoeae is a Gram-negative diplococcus and a
causative agent of the secondmost prevalent sexually transmitted
infection in the world. More than 78 million new infections per
year and the rapid increase in antibiotic resistance make it a
serious threat to the public health worldwide (Ohnishi et al.,
2011; Wi et al., 2017).

Infection with N. gonorrhoeae takes place at the mucosal
surfaces of the female cervix and themale urethra, as well as at the
anorectal, pharyngeal, and conjunctival mucosa. The infection
can ascend, causing salpingitis, pelvic inflammatory disease, and
bacteremia. In a small number of cases, the bacteria can cross the
endothelial barrier leading to disseminated gonococcal infection
(DGI) (Eisenstein and Masi, 1981).

N. gonorrhoeae contain different types of virulence factors
including lipooligosaccharide (LOS), type IV pili, opacity-
associated (Opa) proteins, and an outer membrane porin
PorB, which enable the bacteria to attach to the epithelial
cells, invade them, or survive in the presence of serum. LOS
are modified through sialylation during infection and play
a role in molecular mimicry, because they resemble host
glycosphingolipids (Mandrell and Apicella, 1993; Moran et al.,
1996). Pili mediate adhesion to epithelial cells, twitching motility,
and microcolony formation of N. gonorrhoeae (Punsalang and
Sawyer, 1973; Craig et al., 2004). After the initial contact, Opa
proteins mediate an efficient invasion into the host cells (Makino
et al., 1991). Additionally, N. gonorrhoeae express one of the two
subtypes of PorB, PorBIA, or PorBIB, of which PorBIA has been
implicated in gonococcal resistance to serum and in DGI (Ram
et al., 1999; Rechner et al., 2007).

The immune reaction upon infection differs between different
tissues, as well as between females and males (Edwards and
Apicella, 2004). In the male urethra primary cell model, the
levels of interleukin (IL)-6 and -8 increase upon challenge
with gonococci (Harvey et al., 2002). In female cervical cells,
upregulation of IL-8 and IL-6, as well as of the intercellular
adhesion molecule 1 (CD54), and the non-specific cross-
reacting antigen (CD66c) has likewise been observed (Fichorova
et al., 2001). There is evidence for upregulation of IL-8,
tumor necrosis factor alpha (TNFα) and chemokine (C-C
motif) ligand 20 (CCL20), but not of IL-6 in endometrial
cell models, which requires living bacteria and appears to be
pilus-dependent (Christodoulides et al., 2000; Łaniewski et al.,
2017). Whereas TNFα secretion was increased upon infection
independently of pilus expression, pilus-positive gonococci
caused an increase in IL-8 and suppression of IL-6 secretion
(Christodoulides et al., 2000).

N. gonorrhoeae has also been shown to cause a disruption of
the apical junction of infected cells. Apical junction complexes
enable strong adhesion between epithelial cells and serve to
protect the integrity of the underlying compartments. They
include the apical most tight junction, also known as zonula
occludens, and the adherens junction, or zonula adherens
(Wang and Margolis, 2007). Upon gonococcal infection, the
redistribution of adherens junction proteins E-cadherin and

β-catenin takes place. Tight junction proteins Occludin and
Zonula Occludens Protein 1 (ZO-1) were reported not to be
modified in non-polarized cells (Rodríguez-Tirado et al., 2012),
whereas a redistribution of ZO-1 was observed for polarized
cells infected with gonococci (Edwards et al., 2013). Since the
formation of apical junction is related to cell polarization,
it is obvious that the usage of appropriate models when
studying gonococcal infection greatly affects the relevance of the
obtained data.

Regarding models, human cancer cell lines of epithelial
tissues have often been used to investigate the host cell side
during the contact with N. gonorrhoeae, although animal studies
on chimpanzee and especially transgenic mouse opened new
opportunities for understanding the gonococcal infection (Rice
et al., 2017). These models were successful in recreating the early
stages of infection, but show differences in susceptibility and
immune response (Packiam et al., 2010).

The examples of human tissue and polarized cell models
include endocervical tissue explants and epithelial cells grown
on Transwell R© inserts, which were used to show effects of
N. gonorrhoeae on immune response, disruption of apical
junction and shedding of epithelial cells (Buckner et al., 2011;
Stein et al., 2015; Wang et al., 2017). Furthermore, three-
dimensional (3D) models of human endometrial epithelial tissue
in rotating wall vessel bioreactor could be successfully infected
for studying gonococcal pathogenicity (Łaniewski et al., 2017).
Apart from tissue explants, all other models are limited in
terms of morphology or absence of other cell types besides
epithelial cells.

To generate 3D tissue models, natural scaffolds such
as decellularized tissue have been successfully used. Such
scaffolds keep extracellular matrix characteristics of the
native organ and provide suitable conditions for cell
proliferation and differentiation (Costa et al., 2017).
Among them, porcine small intestinal submucosa (SIS)
scaffold has been widely used in many studies in order
to establish a human tissue barrier for drug delivery
investigations (Liu et al., 2017; Schweinlin et al., 2017).
This type of biological scaffold supported by cell crowns
is comparable to the commonly used Transwell R© insert
system, with two separated compartments being present
(Schweinlin et al., 2016).

In this study, we have developed novel tissue models based
on SIS scaffold that are comprised of two types of cells, primary
human dermal fibroblasts (HDFib) and target epithelial cells of
N. gonorrhoeae. We show that SIS-based models demonstrate
improved charateristics in comparison to the Transwell R© models
in terms of tissue permeability and resistance to bacterial
infection. With the aid of SIS models, we show that the effects
of N. gonorrhoeae on the tissue, which we measure in terms
of bacterial transmigration, tissue permeabiliy and cytokine
response, depend both on the type of tissue, as well as on the
pathogenicity determinants present in the bacterial strain. Taken
together, our models represent a solid and reproducible tool
for studying the interaction of bacteria with host tissue during
long-term gonococcal infection.
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RESULTS

Establishment and Characterization of
SIS-Based 3D Tissue Models
We established different mucosal tissue models for gonococcal
infection: a tight epithelial barrier model with highly polarized
cells based on the colon carcinoma T84 cell line, a model
representing female reproductive tract mucosal tissue using
endometrial adenocarcinoma cell line HEC-1-B, and a model for
the male urogenital tissue consisting of the immortalized
uroepithelial cell line SV-HUC-1. Epithelial cells were
seeded on SIS scaffold that was previously populated with
HDFib for 2 days to obtain a biomimetic model (Figure 1A,
Supplemental Figure 1). Tissue models were allowed to mature
over the course of 12 to 14 days, and maturation was followed by
measuring parameters such as transepithelial electrical resistance
(TEER) or barrier permeability using FITC-dextran assay
(Figures 1C–F). In comparison, we seeded the same epithelial
cells on the apical side in combination with HDFib cells seeded
on the basal side of the Transwell R© inserts (Figure 1B). The
TEER values for the Transwell R© models showed an increase
with time, reaching the maximum of ∼320 �

∗cm2 for T84,
∼160 �

∗cm2 for HEC-1-B and ∼130 �
∗cm2 for SV-HUC-1 on

day 10 of cultivation (Figure 1B). The SIS tissue models showed
comparable values of TEER, however only after 12 days for
T84 and SV-HUC-1 cells and 14 days for HEC-1-B cells. The
introduction of shear stress to models through cultivation on
the orbital shaker only slightly improved the barrier formation
and cell polarization, and in the case of HEC-1-B cells had
even a slightly negative effect (Figures 1C–E). For this reason,
all subsequent SIS models were grown in static culture. The
permeability of both Transwell R© and SIS models was tested
using the FITC-dextran permeability assay. Mature SIS models
with epithelial cells were much less permeable with 1–2%
permeability in comparison to only SIS scaffold with HDFib
(12% permeability), but also when compared to the respective
Transwell R© models (3–5% permeability) (Figure 1F).

Histological characterization of SIS tissue models using
hematoxylin eosin (HE) staining and immunofluorescence on
tissue sections made after paraffin embeding showed amonolayer
of epithelial cells located on the appical side of the scaffold,
where occasionally fibroblasts could be observed growing within
the SIS scaffold (Figure 2). T84 polarized to a tall columnar
phenotype and were stained with E-cadherin and mucin 1
(Muc1) antibodies, demonstrating cell-cell contacts and mucus
production. Mucus could be occasionally identified in large
vesicles inside cells. HEC-1-B cells on the other hand did not
always grow in a monolayer and were not as polarized as
T84 cells, consistent with what has been described previously
(Edwards et al., 2013). In addition to Muc1, they were also
positive for E-cadherin and anti-fibroblast staining, which
is characteristic for endometrial adenocarcinoma cells that
demonstrate epithelial-to-mesenchymal transition (Mirantes
et al., 2013). Finally, SV-HUC-1 cells appeared as a flat monolayer
positive for both E-cadherin and Muc1 staining (Figure 2).

We adapted the technique for immunofluorescence staining
after paraformaldehyde fixation followed by confocal microscopy

to SIS models and analyzed the morphology of the tissues, as well
as the distribution of the tight junction marker ZO1. Whereas,
T84 cells showed a strong staining for ZO1 present at the very
apex of the cell layer (Figure 3, left hand panels), HEC-1-B cells
were less clearly stained, although still positive for ZO1 (Figure 3,
middle panels). SV-HUC-1 cells presented a continuous layer as
visualized by phalloidin staining of actin (Figure 1, right hand
panels). The ZO1 staining was also present, but was hard to
visualize by confocal microscopy on the flat sheet that SV-HUC-
1 cells formed (Supplemental Figure 2). The 3D reconstruction
of stacks of confocal images showed continuous layers of tall
(T84), medium tall (HEC-1-B) and flat (SV-HUC-1) epithelial
cells (Supplemental Movies 1–3).

We were next interested in the ultrastructure of the SIS
tissue models and analyzed them using transmission (TEM)
and scanning (SEM) electron microscopy. The SIS scaffold was
seen as a mesh of fibers (Figure 4, left hand panels). TEM
showed formation of apical junctions between the epithelial cells
(Figure 4, white arrowheads). T84 and SV-HUC-1 cells appeared
as a continuous monolayer, whereas groups of HEC-1-B cells
occasionaly protruded from the underlying monolayer. Under
greater magnification, we observed microvilli formation on the
apical surface of the cells. The microvilli were most pronounced
on T84 cells, followed by HEC-1-B cells, whereas on SV-HUC-
1 cells they were fewer and shorter (Figure 4). At the edges of
the areas where cells are seeded, a transition to the underlying
scaffold can be seen, revealing continuous contacts between the
epithelial cells (Supplemental Figure 3A).

The Course of Gonococcal Infection
Depends on the Bacterial Strain and Tissue
Type
After establishing SIS tissue models, we next compared the
infection with various strains of N. gonorrhoeae, also in
comparison to standard Transwell R© models. For infection, we
used different laboratory derivatives, as well as one clinical isolate.
The MS11 strain derivatives N927 and N924 were selected to be
Opa− and Pili− and differed only in the expressed PorB variant—
N924 expresses PorBIB, whereas N927 expresses PorBIA. For
MS11 wildtype and the related 1Opa derivative that is devoid of
any Opa proteins (Stein et al., 2015) Pili+ colonies were selected,
however subsequent western blot showed that the bacteria used
for infection were unpiliated, since they did not express pilin
(data not shown). VP1 is a clinical isolate expressing PorBIA
(Makino et al., 1991) and Opa− and Pili− colonies were selected
for this strain. Measurements show comparable growth of all
strains and derivatives, with VP1 and N927 growing slighly
slower than the rest (Supplemental Figure 4A). The infection
was performed in HEPES medium, which is phosphate and
serum free and permits host cell invasion also via the phosphate
sensitive interaction with PorBIA. As a readout for infection,
we assessed the number of bacteria that transmigrated through
the tissue model and could be detected in the medium on the
basal side. Likewise, we measured the changes in permeability of
models to FITC-dextran upon infection.
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FIGURE 1 | Establishment of mucosal tissue models on porcine small intestinal submucosa (SIS) scaffold. (A) Schematic representation of the preparation of

epithelial/fibroblast co-culture tissue models on SIS using cell crowns with an optional infection step. (B) Transwell® inserts were coated with collagen on both sides of

(Continued)
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FIGURE 1 | the membrane. HDFib were seeded on the basal side, followed by the seeding of epithelial cells on the apical side 48 h later (day 0). TEER was measured

at indicated time points. (C–E) HDFib and specified epithelial cells were seeded on the SIS as described in (A). Tissue models were grown either under static

conditions, or shaking using an orbital shaker. TEER was measured at indicated time intervals. (F) Tissue models on Transwell® or SIS were generated as described in

(A,B). Permeability was measured by 4 kDa FITC-dextran assay at day 10 for Transwell® models, at day 12 for SIS models for T84 and SV-HUC-1 cells and at day 14

for HEC-1-B cells. The graph shows fluorescence intensity from the lower compartment normalized against the fluorescence intensity obtained when empty

Transwell® or SIS were used. All graphs represent mean values ± SD from at least three independent replicates.

FIGURE 2 | Histological characterization of SIS mucosal tissue models. (A) Epithelial/fibroblast co-culture tissue models were grown as described in Figure 1A for 12

days (T84 and SV-HUC-1 cells) or 14 days (HEC-1-B cells). Tissue models were fixed, paraffin embedded, sectioned, and hematoxylin and eosin staining was

performed. (B) Tissue models were prepared as in (A) and decorated with anti-E-cadherin, anti-mucin 1 (Muc1) and anti-fibroblast antibodies. Cell nuclei were stained

with DAPI. Scale bar is 50µm.

When we infected Transwell R© models, we were able to collect
a large number of bacteria on the basal side already 6 h after
infection. The largest number of transmigrated bacteria was
obtained for 1Opa bacteria for all three types of epithelial
cells, similar to what has been previously reported (Stein et al.,
2015). Interestingly, SV-HUC-1 cells were the least permeable
for 1Opa bacteria in comparison to the other two types of

epithelial cells (Figure 5A). In case of the SIS tissue models,
for all bacteria except VP1 and 1Opa we could detect a
relatively small number of transmigrating bacteria only after 6
days (144 h) of infection. The least efficient in transmigration
were N924, and although 1Opa bacteria still transmigrated
in greater numbers than the corresponding wild type, VP1
was more efficient than 1Opa (Figure 5B). Depending on
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FIGURE 3 | Confocal microscopy of SIS mucosal tissue models. Epithelial/fibroblast co-culture tissue models were cultured for 12 days (T84 and SV-HUC-1 cells) or

14 days (HEC-1-B cells) as represented in Figure 1A. Tissue models were fixed on cell crowns, then decorated using anti-zonula occludens 1 (ZO1) antibody,

phalloidin (actin), and DAPI. Z-stacks were made using fluorescence confocal microscope from the top of the epithelial layer to the beginning of collagen scaffold and

reconstructed using FIJI. Shown are Z-projections (XY), orthogonal view (XZ), or a snapshot of a reconstructed 3D image (XYZ). Scale bar is 25µm. See also

Supplemental Movies 1–3.

the tissue, larger numbers of transmigrating bacteria for VP1
and 1Opa could be observed already after 48 h of infection.
SV-HUC-1 cells were in this case also presenting the most
resistant barrier for bacterial transmigration (Figure 5C). When
analyzed by SEM, we could confirm successful adhesion of
bacteria to the cell surface and the elongation of microvilli
(Supplemental Figure 3B). Interestingly, western blot analysis
of the gonococcal Opa phenotype before and after infection
of the SIS scaffold models showed that even though the
selection for Opa− phenotype was successful for all strains
and derivatives except VP1, transmigrated gonococci largely
switched to the Opa+ phenotype, with the exception of 1Opa
and VP1. We also observed that the exposure of bacteria
to the SV-HUC-1 models led to the lower expression of
Opa proteins and in the case of VP1 surprisingly led to the

loss of Opa expression altogether (Supplemental Figure 4B).
Importantly, the differences and delayed transmigration of
bacteria through the SIS models was not due to the association of
bacteria with the scaffold, because the empty SIS scaffold, as well
as the SIS scaffold populated with fibroblasts for 2 days, were not
presenting much of a barrier. We could collect high numbers of
bacteria from the basolateral compartment already 30min after
infection and in amounts generally similar for all strains and
derivatives (Supplemental Figure 5). In conclusion, SIS models
seem to present a better barrier to bacterial transmigration in
comparison to Transwell R© models. In addition, the efficiency
of transmigration of different gonococcal strains and derivatives
differs between Transwell R© and SIS models.

Permeability measurements of Transwell R© models showed
an increase of permeability to ∼15% upon infection, which
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FIGURE 4 | Transmission and scanning electron microscopy of SIS mucosal tissue models. Tissue models on SIS were generated as described in Figures 1A, 2, 3,

fixed with glutaraldehyde and either embedded in epoxy resin and analyzed by transmission electron microscopy (upper panels) or analyzed by scanning electron

microscopy (middle and lower panels).

was independent of cell type and of bacterial strain used
(Figure 6A, upper panel). For SIS models, longer times were
necessary for a significant change in permeability after infection
(Supplemental Figure 6). After 6 days (144 h), at the time point
when we could detect larger amounts of bacteria traversing the
SIS model, the permeability also increased, in some cases to over
50%. Interestingly, we could see clear differences in induction
of SIS model permeability for different bacterial strains, which
often, but not always, correlated to the number of transmigrated
bacteria. VP1 and N927 strains showed the greatest capacity
for increasing SIS model permeability (Figure 6A, lower panel).
To test if the permeability of SIS models was related to cell
lysis, we measured the lactate dehydrogenase (LDH) activity
in the supernatant in comparison to the non-infected control.
In general, the damage to the cells corellated with increased
permeability of models and the number of bacteria that crossed
the tissues (Figure 6B). Taken together, our results indicate that
gonococci harboring PorBIA cause the greatest damage to the SIS
tissue models, which is coupled to the increased permeability and
a comparably high number of traversing bacteria in the case of
VP1, but not N927.

Using confocal microscopy we analyzed the early and late
stages of infection of T84 SIS models with the least and the most

aggressive bacteria, N924 and VP1, respectively. After 24 h, the
cell layer and tight junctions appeared still conserved, whereas
at the later stage of infection after 144 h we observed significant
cell lysis and destruction of tight junctions in SIS models infected
by VP1, but not so much when N924 gonococci were used.
Interestingly, whereas N924 bacteria seem to be distributed
more in the middle of the cells, VP1 localize in the areas of
cell-cell contacts. In the orthogonal views of the samples, we
observe bacteria only at the surface of the models (Figure 7A).
We repeated the experiments, this time simultaneously assessing
the number of transmigrated, as well as adherent, bacteria.
VP1 strain showed again high capacity for transmigration, and
the number of VP1 bacteria associated with the model greatly
increased after 6 days of infection, whereas the number of N924
bacteria remained approximately the same (Figure 7B).

Tissue Response to Infection Is Strain- and
Cell Type-Dependent
To determine the tissue response to infection with N.
gonorrhoeae, we have measured the amount of pro-inflamatory
cytokines IL-6 and TNFα, and chemokine IL-8 released into the
apical medium 24 h post infection. We assessed the levels in both
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FIGURE 5 | Bacterial transmigration through the Transwell® and SIS tissue models. (A) Tissue models on Transwell® inserts were prepared using HDFib and

designated epithelial cell lines as described for Figure 1. Eleven days after seeding of the epithelial cells, models were infected with indicated strains of N.

gonorrhoeae at MOI 20 for 24 h and the number of bacteria in the lower compartment was determined by plating and counting colony forming units (CFU). (B) SIS

tissue models were generated as described in Figure 1A. Thirteen (T84 and SV-HUC-1 cells) or 15 (HEC-1-B cells) days after seeding of epithelial cells, models were

infected with indicated strains of N. gonorrhoeae at MOI 20 for 144 h (6 days) and the number of bacteria present in the medium from the lower compartment was

determined. (C) SIS tissue models were prepared as in (B), infected with N. gonorrhea VP1 or 1Opa at MOI 20 and the number of bacteria in the medium from the

lower compartment was determined at indicated times post infection. All graphs represent mean values ± SD from at least three independent replicates.

Transwell R© and SIS scaffold models. Upon infection, SIS models
produced much more IL-6 in comparison to Transwell R© models.
Tissue models with T84 and HEC-1-B cells produced less IL-
6 than those with SV-HUC-1 cells, and we observed no greater

differences between the bacterial strains and derivatives used for
infection, except for N927 in the Transwell R© model (Figure 8A).

The production of IL-8 was somewhat greater for SIS scaffold
models in comparison to Transwell R© models, especially for T84
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FIGURE 6 | Barrier permeability and cell death in mucosal tissue models upon infection with N. gonorrhoeae. (A) Tissue models were prepared and infected with

different strains of N. gonorrhoeae for 24 h (Transwell® models) or 144 h (SIS models) as described for the Figure 5. Permeability of the models was measured by 4

kDa FITC-dextran assay. The graphs represent mean values ± SD from at least three independent replicates. Statistical significance of permeability change in

comparison to non-infected control was tested by one-way ANOVA: nsp > 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. (B) SIS scaffold models infected for 144 h

were assayed for cytotoxicity using lactate dehydrogenase (LDH) assay. The graphs represent mean values ± SD from at least three independent replicates.

cells. Again, we observed that uroepithelial models using SV-
HUC-1 cells produced more IL-8 than those using other cells,
but also that their response was highly significant. Here as well
we observed no differences for different gonococcal strains and
derivatives (Figure 8B).

We detected relatively low levels of TNFα expression in
infected tissuemodels, which were higher for SIS scaffold than for
Transwell R© models. SV-HUC-1 models produced more TNFα

upon infection, and N927 and VP1 strains were the most
potent inducers of TNFα secretion (Figure 8C). Overall, our
results show that SIS models are capable of secreting more
IL-6, IL-8, and TNFα when challenged by N. gonorrhoeae than
Transwell R© models, that SV-HUC-1 uroepithelial cells react
more pronounced to infection than T84 or HEC-1-B cells, and
that there are no major differences in cytokine levels produced in
response to different gonococcal strains and derivatives.
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FIGURE 7 | Confocal microscopy and analysis of infected T84 SIS tissue models. (A) Tissue models with T84 epithelial cells were prepared and infected with N924 or

VP1 strains of N. gonorrhoeae for 24 or 144 h, as described for the Figure 5. The infected models were fixed on cell crowns and decorated using anti-zonula

occludens 1 (ZO1) and anti-N. gonorrhoeae antibody, and DAPI. Z-stack images were made using fluorescence confocal microscope beginning at the top of the

epithelial layer to the collagen scaffold. The images were analyzed and reconstructed using FIJI. Shown are Z-projections (XY) and orthogonal view (XZ). Scale bar is

25µm. See also Supplemental Movies 4–7. (B) Tissue models with T84 epithelial cells as in (A) were infected with N924 or VP1 strains of N. gonorrhoeae for 6, 24,

or 144 h. Number of transmigrated bacteria in the basolateral medium, and adherent bacteria upon saponin solubilization of the tissue were assessed by plating and

counting colony forming units (CFU). The graphs represent mean values ± SD from at least three independent replicates.

DISCUSSION

Our goal in this work was to mimic human mucosal and
uroepithelial tissues, which represent the site of initial contact
with N. gonorrhoeae and other sexually transmitted pathogens.
Using these models, we studied different aspects of infection

including bacterial attachment and transmigration to deeper
tissue layers, destruction of the epithelial barrier, and elicited
inflammatory response.

One of the main characteristics of successful epithelial tissue
models is polarization of cells and formation of tight junctions, a
process that go hand in hand. Polarization of cells does not only
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FIGURE 8 | Measurement of the interleukin 6 and 8 and TNFα production of the Transwell® and SIS tissue models upon infection with N. gonorrhoeae. (A–C) Tissue

models were prepared on Transwell® inserts or SIS as described for the Figure 1 and after maturation infected with different strains of N. gonorrhoeae for 24 h.

Medium was collected and the concentration measurement of IL6, IL8, and TNFα was performed using Luminex assay. The graphs represent mean values ± SD from

at least three independent replicates. Statistical significance of the changes in interleukin concentration in comparison to non-infected control was tested by one-way

ANOVA: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

imply different protein content in the apical vs. the basolateral
area of the plasma membrane, but includes alteration in lipid
composition, most notably of phosphoinositides (Wang and
Margolis, 2007). All this contributes to significant differences in
the interaction of bacteria with polarized cells in comparison to
classical 2-D tissue culture. So far, polarized epithelial cell models

for research of gonococcal infection have been generated using
Transwell R© membranes or similar artificial porous supports, as
exemplified by T84 and HEC-1-B Transwell R© models (Stein
et al., 2015; Wang et al., 2017). We aimed at increased model
complexity by not only inducing the polarization of cells, but
also by reconstructing the underlying layer of connective tissue.
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To this purpose we employed SIS scaffold, which represents
an acellular biological extracellular matrix derived from porcine
small intestinal submucosa. Primary constituents of SIS are
collagen, elastin and fibronectin, but different growth factors are
present, as well. The pore size of the SIS scaffold ranges from 20
to 30µm, in comparison to only 3µm in Transwell R© membranes
(Shi and Ronfard, 2013).We introduced fibroblasts to SIS scaffold
to mimic the connective tissue. The presence of fibroblasts in
addition to epithelial cells has been shown to have a positive effect
on cell polarization due to the secretion of different components,
which are important for the basal membrane formation
(Steinke et al., 2014).

Wemeasured the barrier integrity by TEER and FITC-dextran
permeability assays, obtaining somewhat different results for
TEER than already reported (Stein et al., 2015), and yet in
concordance with results published by other groups (Navabi
et al., 2013). TEER values, however, are reported to widely differ
depending on the temperature, medium and type of electrode
used for measurement (Srinivasan et al., 2015). Considering that
TEER values we obtained were consistent and were related to
low permeability of tissue models to FITC-dextran (Figure 1),
as well as positive morphological characteristics (Figures 2–4),
we presumed that tissue models were mature when they reached
∼320 �

∗cm2 for T84 cells, ∼160 �
∗cm2 for HEC-1-B, and

∼135 �
∗cm2 for SV-HUC-1 cells in Transwell R© models and

∼340 �
∗cm2 for T84, ∼180 �

∗cm2 for HEC-1-B and ∼135
�

∗cm2 for SV-HUC-1 cells in SIS scaffold models. Our results
therefore showed generally higher TEER values and two to three
times lower FITC-dextran permeability for mature SIS models in
comparison to Transwell R© models in spite of the larger pore size
(Figure 1). This is probably to be contributed to the presence
of the basement membrane and fibroblasts in a thick layer of
collagen and elastin fibers that constitute SIS as opposed to
relatively thin polycarbonate membrane in Transwell R© inserts.

Morphological characterization of SIS models shows that
the cells polarize, as demonstrated by the presence of tight
junctions and microvilli on the surface (Figures 3, 4). The mucus
production is also present as observed in the form of a relatively
thin mucus layer, which, in addition to mucus bubbles, has
already been reported to be characteristic for polarized T84 cells
(Navabi et al., 2013). Both HEC-1-B and SV-HUC-1 cells also
exhibit a thin Muc1 layer (Figure 2B). Such layer for HEC-
1-B models is comparable to the one identified in the mouse
uterine tissue (DeSouza et al., 1999). The mucin layer in general
and Muc1 in particular play a key role in protection of female
reproductive tract from microbial infection (DeSouza et al.,
1999). Therefore, it would be of interest to observe if and how
the expression of mucin genes alters in tissue models in response
to infection, as was done for human endocervical epithelial 3D
tissue models (Radtke et al., 2012).

We used SIS models to study the outcome of infection
depending on different pathogenicity factors in N. gonorrhoeae
and different cell types. We could reproduce previously made
observations that the lack of Opa proteins in N. gonorrhoeae
enhances the transmigration of bacteria across the layer
of polarized epithelial cells (Stein et al., 2015). Indeed, in
Transwell R© models after 6 h of incubation 1Opa were by far the

fastest bacteria to transmigrate (Figure 5A). This observation,
however, depended on the model used—in the SIS scaffold
model, the clinical isolate VP1 (PorBIA, Opa

−, Pili−) was faster
than 1Opa when it came to crossing of the tissue barrier
(Figures 5B,C). The observed loss of Opa protein expression in
VP1 upon exposure to SIS scaffold models might explain its
transmigration efficiency (Supplemental Figure 4B). However,
it is difficult to reconcile the relatively high transmigration of
N927 and MS11 bacteria and their apparent switch to an Opa+

phenotype (Figure 5, Supplemental Figure 4B). This indicates
that we are still far from understanding the connection between
the Opa phenotype and the ability of gonococci to transmigrate
through tissue layers.

Pili play a central role in the attachment of gonococci to the
tissue during infection (Punsalang and Sawyer, 1973). Although
we selected MS11 and 1Opa bacteria for the presence of pili, our
later western blots showed that none of the bacteria expressed
pilin either at the point of infection or afterwards (data not
shown). Therefore, we are not at this stage able to discuss
the observed differences in adherence and transmigration as a
consequence of the piliation status. Also, we infected the tissue
models under static conditions, and the importance of pilus
might become obvious mostly when the shear stress is introduced
through the circulation of the medium, which would require
experimental adjustments and the usage of perfusion bioreactors,
something that we plan to do in the future.

Overall, SIS models showed a much greater resilience to
bacterial transmigration, giving us the opportunity to study the
infection over the course of several days as opposed to several
hours, as is the case for Transwell R© models. For some strains
the first bacteria transmigrating over the SIS scaffold models
were detected only 6 days after infection, which can probably
be contributed to the presence of the connective tissue-like layer
beneath the epithelial cells. We could also show that the epithelial
cell type influenced bacterial transmigration, with SV-HUC-1
cells allowing the lowest numbers of bacteria to traverse the
barrier. This could be related to the flat appearance of these cells
that overlay each other and do not offer bacteria an easy access to
the area of cell-cell contacts (Figure 4).

The observed differences among the strains and tissues might
be at this point discussed in the light of the question whether
bacteria invade the cells and cross the tissue barrier through
transcytosis, or whether they transmigrate between the cells
and require destruction of the cell junctions for crossing of
the tissue barrier. Our microscopy data do not indicate uptake
of the gonococci by the epithelial cells, but rather support
the localization of the bacteria in the area of cell-cell contacts
(Figure 7, Supplemental Figure 3). Treatment of the SIS T84
tissue models with gentamicin from the apical and basolateral
side 6 and 144 h after infection showed that all bacteria were
efficiently killed (data not shown). This would not be the case if
the bacteria were protected by being inside the cells. Therefore,
it seems more likely that bacteria mostly cross the tissue models
through transmigration, although more detailed experiments
would be necessary to answer this question with certainty.

Interestingly, although N. gonorrhoeae are sensitive when
cultured on plates or in liquid medium and are prone to autolysis
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(Garcia and Dillard, 2006), when in contact with SIS models,
viable bacteria could be collected throughout the whole 6 day
period of infection experiments (Figures 5, 7). Our results show
that whereas VP1 was able to successfully colonize the tissue and
increase its numbers rapidly throughout 6 days of infection, N924
were incapable of doing that, in spite of the comparable growth
in liquid culture (Figure 7, Supplemental Figure 4). In this
aspect as well, SIS models offer valuable tools for understanding
gonococcal interaction with host tissues.

When comparing the permeability and induced cell death of
infected models, whereas there is a relatively uniform change
in the permeability of Transwell R© models independently of
the bacterial strain or derivative used (Figure 6A), SIS models
enable us to observe fine differences in the permeability
changes depending on pathogenicity factors that bacteria exhibit
(Figure 6B). Interestingly, the number of transmigrated bacteria
does not entirely correlate to the changes in barrier permeability,
which is seen on the example of N927 gonococci in SIS scaffold
HEC-1-B and SV-HUC-1 models (Figure 6B). It would appear
that they are capable of increasing the barrier permeability
through destruction of cell-cell junctions or by host cell death,
but remaining at the same time associated with the tissue.

Confocal fluorescence microscopy offers a good tool for
observing the integrity of the SIS scaffold models and the
interaction of epithelial cells with bacteria. In our experiments
we detect bacteria only at the surface of the models. It is however
important to note that during the staining process there is a
gradient of dyes and antibodies throughout the tissue model,
which means that the staining of the structures deeper below
the surface is increasingly weaker. To address this problem,
staining should be improved and other microscopy techniques
could be implemented that would enable us to visualize the tissue
throughout its entire thickness.

The results of the Luminex assay showed that N. gonorrhoeae
significantly induced the production of interleukins in SIS tissue
models. The basal levels of produced cytokines were low in tissue
models without infection and they increased after exposure to
the gonococci. Moreover, the levels of inflammatory mediators
were cell and bacteria type dependent. Here, we also see clear
differences in comparison to the Transwell R© models, in terms
of different pattern of cytokine response to different gonococcal
strains and derivatives and in quantities of cytokines produced.
The latter might be the consequence of the presence of fibroblasts
in the SIS tissue models. Although we have also added fibroblasts
to the basal side of the Transwell R© membrane in attempt to
mimic similar cell content as in SIS models, it is possible that
the SIS scaffold environment better supports establishment and
multiplication of fibroblasts than the Transwell R© membrane.
Our results also imply much stronger and reproducible response
of male urothelium to infection with gonococci than it is the case
with endometrial epithelium represented by the HEC-1-B cells,
which might be the explanation for differences in the course of
infection in males and females (Edwards and Apicella, 2004).

Several publications show that the shedding of epithelial
cells takes place during gonococcal infection. N. gonorrhoeae
is reported to cause exfoliation of columnar epithelial cells
of the human endocervix in the model of tissue explants,

and of polarized T84 cells in the Transwell R© model (Wang
et al., 2017). Shedding of urethral epithelial cells has also
been observed in the samples obtained from male gonorrhea
patients (Apicella et al., 1996). In this work, we were not
able to reliably quantify detachment of the cells from the
surface of the SIS scaffold models, but we did observe
tissue destruction and the disturbance of the tight junction
(Figures 6, 7). This effect, however, depended on the bacterial
strain, because the MS11 derivative N924, lacking three
major virulence factors (pilus, Opa and PorBIA) had a
significantly milder effect on the tissue integrity than the clinical
isolate VP1.

For further improvement of the SIS scaffold models there are
couple of important aspects to consider. One is the introduction
of primary cells and the other is the hormone responsiveness of
the modeled tissues. The availability of primary epithelial cells
from the urogenital tract is restricted and their culturing is of
limited duration, which might be overcome by the usage of
organoid technology (Kessler et al., 2015; Boretto et al., 2017)
or stem cells (Wu et al., 2011). The role of the tissue-specific
stromal cells is also of significance, especially for endometrial
tissue, where stromal cells contribute to the growth of epithelial
cells as well as to the tissue response to hormones (Arnold
et al., 2001; Bläuer et al., 2005). Such improvement of the
models would enable us additionally to address and study
the relationship between the hormonal status of the host and
the infection.

In conclusion, we established three independent 3D co-
cultured tissue models of human HEC-1-B, SV-HUC-1, and
T84 with human fibroblast cells on a biological decellularized
scaffold. To our knowledge, this is the first report on establishing
a 3D tissue model including co-culturing of epithelial and
fibroblast cells to study neisserial infection. Our models
provide physiologically relevant conditions containing both
the connective tissue with fibroblasts and polarized epithelial
monolayer of mucosal surfaces, and as such represent a
significant advance in modeling of N. gonorrhoeae infection.

MATERIALS AND METHODS

Cell Lines
HEC-1-B, the human endometrial adenocarcinoma cell
line (ATCC R© HTB113TM), and human dermal fibroblasts
(HDFib), isolated according to the published protocol from
foreskin biopsies of healthy donors (Pudlas et al., 2011), were
cultured in Dulbecco’s Modified Eagle Medium (DMEM)
(Gibco/Thermo Fisher scientific, Massachusetts, USA). SV-

HUC-1 (ATCC R© CRL-9520
TM

), the human ureter uroepithelial
SV40 immortalized cells, were cultured in Ham’s F12 Nutrient
Mixture (Gibco/Thermo Fisher scientific, Massachusetts, USA)
and T84, the human colorectal carcinoma cells (ATCC R© CCL-

248
TM

) were cultured in DMEM/F12 (Gibco/Thermo Fisher
scientific, Massachusetts, USA). All media were supplemented
with 10% heat-inactivated fetal calf serum (FCS) (Sigma/Merck,
Darmstadt, Germany) and 1% Penicillin/Streptomycin
(Gibco/Thermo Fisher scientific, Massachusetts, USA).
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Generation of the Human 3D Tissue Cell
Models
SIS scaffold models: Preparation of porcine small intestinal
submucosa scaffold and decellularization were done according
to the established protocol (Schweinlin et al., 2016). Pieces of
SIS scaffold were mounted on the plastic 6.5mm diameter cell
crowns and 100,000 fibroblasts were seeded on the apical side of
each cell crown in the appropriate medium. After 48 h, 300,000
epithelial cells were seeded on the apical side of the model.
Tissue models were cultured under submerged static conditions
or with shaking (only in experiment shown in Figure 1) on
an orbital shaker at 25 rpm for 12 days in the case of T84
or SV-HUC-1 cells, or 14 days in the case of HEC-1-B cells
at 37◦C/5% CO2 in the tissue culture incubator. The medium
was exchanged every 2 days. In case where different medium
was required for fibroblasts and epithelial cells, the models were
cultured in the medium consisting of 50:50 fibroblast:epithelial
cell medium. After maturation, tissue models were either fixed
for further staining or the medium was exchanged for the one
lacking antibiotic to enable the infection 24 h later.

Transwell R© models: 6.5mm diameter, 3µm pore size
polyester Transwell R© inserts (Corning, Lowell, MA, USA) were
coated with rat tail collagen type I, 100,000 fibroblasts were
seeded on the basal side and 48 h later 200,000 epithelial cells
were seeded on the apical side of the Transwell R© membrane.
Models were grown for 10 days under submerged static
conditions at 37◦C/5% CO2 in the tissue culture incubator prior
to further handling (fixation and staining or infection 24 h after
medium change).

Barrier Integrity
We used TEER as a measurement for the barrier integrity of the
epithelial cell monolayer (Srinivasan et al., 2015). We considered
TEER values bellow the one for the empty SIS scaffold (between
80 and 90 �

∗cm2) or empty Transwell R© insert (between 50
and 60 �

∗cm2) as a background. TEER was measured using
Millicell R© ERS-2 Volt-Ohm Meter. In addition, the integrity
of the monolayer was assessed using 4 kDa FITC-dextran
(Sigma, Darmstadt, Germany) permeability assay after 14 days of
cultivation for HEC-1-B and 12 days of cultivation for T84 and
SV-HUC-1 cell lines. To this purpose, 0.25 mg/ml FITC-dextran
was dissolved in cell culture medium and filtered. The medium
was removed from the apical and basal sides of the cell crown
or Transwell R©. One milliliter of fresh medium was added to the
basal side, and 300 µl of FITC-dextran-containing medium to
the apical side. After 30min of incubation, 200 µl from the lower
compartment were collected into a 96 well plate and fluorescence
was analyzed using TECAN reader (absorption 490 nm, emission
525 nm). The results were normalized to the sample with an
empty SIS scaffold or Transwell R© membrane.

Neisseria gonorrhoeae Strains and Culture
Conditions
Neisseria gonorrhoeae N927 (PorBIA, Opa−, Pili−), N924
(PorBIB, Opa−, Pili−), MS11 (PorBIB, Opa+, Pili+), MS11
1Opa (PorBIB, Opa−, Pili+), VP1 clinical strain (PorBIA,

Opa−, Pili−), N931 (PorBIB, Opa
50, Pili−), and N313 (PorBIB,

Opa57, Pili−) were grown on GC agar plates (Thermo Fisher
Scientific) supplemented with 1% vitamin mix for 14–17 h at
37◦C in 5% CO2. For growth curve measurements, bacteria
were grown overnight on GC-agar plate, resuspended in PPM
medium to OD550 = 0.2 and allowed to grow to OD550 between
0.5 and 0.6. All cultures were diluted to OD550 = 0.1 in
PPM medium (15 g Proteose peptone; 5 g sodium chloride;
0.5 g soluble starch; 1 g potassium dihydrogen phosphate; 4 g
dipotassium hydrogen phosphate for 1 l; pH 7.2; 1% vitamin
mix, 0.5% sodium hydrogen carbonate, 10mM magnesium
chloride, sterilized by filtration) and incubated with shaking
at 37◦C. OD550 was measured at different time points to
assess growth.

Histology
Tissue models were fixed in 4% paraformaldehyde. After
paraffin embedding, samples were sectioned to 6µm thickness.
Hematoxylin and eosin staining was performed after the
deparaffinization process in xylene (Steinke et al., 2014;
Schweinlin et al., 2017).

Immunofluorescence Analysis
Four percentage paraformaldehyde were used to fix the tissue
models for 2 h on cell crowns. The tissue models were then
washed with phosphate buffered saline (PBS), permeated using
1% Saponin (Sigma, Darmstadt, Germany), blocked with 1% BSA
in PBS and decorated with primary antibodies overnight. This
was followed by decoration with fluorophore-coupled secondary
antibodies (Dianova, Hamburg, Germany), Phalloidin (MoBiTec,
Göttingen, Germany), DAPI (Sigma, Darmstadt, Germany), and
mounting using Dako (Agilent, Santa Clara, United States). Z-
stacks of images were obtained through 25µm from the top of
the monolayer using Leica SP5 and processed by FIJI (Schindelin
et al., 2012) and FIJI Plugin 3D Viewer (Schmid et al., 2010).

Scanning ElectronMicroscopy/Transmission
Electron Microscopy
Tissues were fixed for 1 h with 2.5% glutaraldehyde (50mM
cacodylate [pH 7.2], 50mM KCl, and 2.5mM MgCl2) at
room temperature for TEM and 6.5% glutaraldehyde for SEM
microscopy. Further preparations and analysis of the samples
proceeded as already described (Spiliotis et al., 2008; Ott et al.,
2012) using JEM-2100 and JSM-7500F JEOL microscopes.

LDH Assay
Cytotoxicity Detection Kit (Roche) was used in order to quantify
the cell death and cell lysis rate based on lactate dehydrogenase
(LDH) activity in the supernatants. The experiment was
performed according to the manufacturer’s instructions.

Bacterial Infection and Colonization
Assays
After evaluating themodels for barrier integrity, the infection was
performed in the phosphate-free HEPES medium, as described
before (Kühlewein et al., 2006), using MOI 20. To assess the
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transmigration of N. gonorrhoeae across the polarized epithelial
monolayer after different infection time points, the medium
from the bottom compartment was collected. Fifty microliter of
medium were plated directly onto the GC agar plate in case of
Transwell R© inserts, or themediumwas centrifuged shortly at 100
× g, the pellet was resuspended in remaining 50 µl of medium
and plated on GC agar.

For assessment of bacterial adhesion, the infected tissues
were incubated for 30min with 1% Saponin (Sigma, Darmstadt,
Germany) and dilution series were cultured on GC agar.

Cytokine Quantification
Highly sensitive customized Luminex assay kit was used in order
to detect and quantify TNFα, IL-6, and IL-8 in the medium from
the apical compartment of Transwell R© or SIS tissue models.

Antibodies
Antibodies used in the work are anti-ZO1 and anti-E-Cadherin
(Proteintech, Manchester, United Kingdom), anti-Fibroblast
(Novusbio, Colorado, United states), anti-Muc1 (Santa Cruz,
Texas, United states), and anti-N. gonorrhoeae (USBiological,
Swampscott, Massachusetts, USA). N. gonorrhoeae Omp85
antibodies were raised in rabbits against the full-length
His-tagged protein. The pan-Opa antibody was a kind
gift from Christof Hauck and has been already described
(Achtman et al., 1988).

Statistical Analyses
Statistical analyses were performed with one-way ANOVA,
Tukey’s multiple comparison test, using GraphPad Prism
Software (GraphPad Software, Inc.).

DATA AVAILABILITY

All datasets generated for this study are included in the
manuscript and/or the Supplementary Files.

AUTHOR CONTRIBUTIONS

VK-P, TR, HW, MSc, and MSt designed the experiments. MH
and TY conducted the experiments. MH, TR, and VK-P analyzed
the results. HW, MSc, and MSt provided the material. MH and
VK-P wrote the manuscript.

FUNDING

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) GRK 2157 3D Tissue Models
for Studying Microbial Infections by Human Pathogens to VK-P
and TR. This publication was funded by the German Research
Foundation (DFG) and the University of Wuerzburg in the
funding program Open Access Publishing.

ACKNOWLEDGMENTS

We thank C. Stigloher, D. Bunsen, and C. Gehrig from the
Imaging Core Facility, University of Würzburg for the help with

electron microscopy, E. Maier for technical assistance and K.
Ohlsen and T. Hertlein for help with Luminex measurements.
We thank C. Hauck for the pan-Opa antibody-producing cell
line. Artworks in Figure 1 were reproduced and modified from
the open source public database Servier Medical Art (https://
smart.servier.com), under a Creative Commons Attribution 3.0
Unported License.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2019.01740/full#supplementary-material

Supplemental Figure 1 | Cells used for generation of tissue models. Cells

(HDFib, primary human dermal fibroblasts; T84, human colon carcinoma cell line;

HEC-1-B, human endometrial adenocarcinoma cell line; SV-HUC-1, human

uroepithelium SV40 immortalized cell line) were grown in tissue culture flasks and

the images were made using inverted phase contrast microscope. Scale bar is

100µm.

Supplemental Figure 2 | ZO1 staining of SV-HUC-1 SIS scaffold mucosal tissue

model. Epithelial/fibroblast co-culture tissue models were prepared corresponding

to Figure 3. After fixing and decorating with ZO1 antibody (red channel) and DAPI

(blue channel), the samples were analyzed using fluorescence confocal

microscopy. Shown are Z projections of several Z-stack images. Scale bar is

25µm.

Supplemental Figure 3 | Scanning electron microscopy of HEC-1-B SIS

mucosal tissue models. (A) Tissue models on SIS scaffold were generated as

described in Figure 1 and analyzed by scanning electron microscopy. (B) The

models as in (A) were infected for 24 h with N. gonorrhoeae strain N927 and

analyzed by scanning electron microscopy.

Supplemental Figure 4 | (A) Growth curve of N. gonorrhoeae strains and

derivatives used to infect tissue models. Bacteria were grown overnight on

GC-agar plate, resuspended in PPM medium to OD550 = 0.2 and grown to

OD550 = 0.5 to 0.6. All cultures were diluted to OD550 = 0.1 in PPM medium and

allowed to grow, with OD550 being measured at indicated time points. The graph

represents mean values ± SD from three independent replicates. (B) Control

strains (N931 expressing Opa50 and N313 expressing Opa57), as well as bacteria

collected from the basolateral side after 6 days of infection of the indicated SIS

scaffold tissue models were centrifuged, lysed in Lämmli buffer and analyzed by

SDS-PAGE and western blot, using pan-Opa and Omp85 antibodies.

Supplemental Figure 5 | Traversing of the empty and SIS-HDFib scaffold by

different N. gonorrhoeae strains and derivatives. Empty SIS scaffold was mounted

on cell crowns in cell culture medium. 100,000 HDFib were introduced to the

scaffold 2 days prior to infection. Infection was performed in the HEPES medium

at MOI 20 and was allowed to proceed for 7 h. 25 µl samples were collected from

the basolateral compartment at indicated time points and plated with serial

dilutions on GC agar plates for CFU counting. CFUs were counted up to the

maximum of 100,000. The graphs show mean values ± SD from two independent

replicates.

Supplemental Figure 6 | Changes in the permeability of the SIS scaffold mucosal

tissue models after infection with N. gonorrhoeae. SIS scaffold tissue models were

generated and infected as described for the Figure 5. The barrier permeability

was measured using 4 kDa FITC-Dextran assay at indicated time points. The

graphs show mean values ± SD from at least three independent replicates.

Supplemental Movies 1–3 | 3D reconstructed images after confocal microscopy

of SIS mucosal tissue models. SIS models were generated as described for

Figure 3 using T84 cells (Supplemental Movie 1), HEC-1-B cells

(Supplemental Movie 2), or SV-HUC-1 cells (Supplemental Movie 3), fixed on

cell crowns, then decorated using anti-zonula occludens 1 (ZO1) antibody,

phalloidin (actin), and DAPI. Z-stacks were generated by fluorescence confocal

microscope from the top of the epithelial layer to the beginning of the collagen

scaffold and reconstructed using FIJI.
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Supplemental Movies 4–7 | 3D reconstructed images after confocal microscopy

of infected T84 SIS tissue models. Tissue models with T84 epithelial cells, as

described in Figures 5, 7, were prepared and infected with N. gonorrhoeae

strains N924 for 24 h (Supplemental Movie 4), N924 for 144 h

(Supplemental Movie 5), VP1 for 24 h (Supplemental Movie 6), or VP1 for

144 h (Supplemental Movie 7). The infected models were fixed on cell crowns

and decorated using anti-zonula occludens 1 (ZO1), anti-N. gonorrhoeae

antibody, and DAPI. Z-stack images were made using fluorescence confocal

microscope beginning at the top of the epithelial layer to the beginning of collagen

scaffold and reconstructed using FIJI.
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