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1 Introduction

Light is life. The energy provided by the sun via electromagnetic radiation constitutes
the foundation of life on earth. Photosynthetic organisms and the human vision are
just two examples, where life has perfectly adapted to the spectrum of the sunlight.

In the last years, increasing awareness of global warming has led to an expanding
need of alternative energy sources than fossil fuels, with photovoltaics being the most
direct way to convert the energy provided by the sun. In order to use solar energy as
efficiently as possible, it is extremely helpful to understand the energy-transport pro-
cesses in nature. The underlying light-matter interactions and the induced chemical
dynamics in photosynthesis and many other photoreactions happen on an ultrafast
time scale, requiring an according time resolution. Femtosecond lasers provide the
means to resolve these processes [4].

As a formal extension of pump-probe spectroscopy, coherent two-dimensional (2D)
optical spectroscopy [5–8] has emerged as a powerful tool to reveal dynamic processes
in various quantum systems [5, 7], for example delivering information about energy
transport in light-harvesting systems [9]. Apart from light harvesting, the range of
applications covers other biological phenomena [9–14], photochemical reactions [15],
semiconducting materials [16,17] or solvent effects on catalyst dynamics [18]. Origi-
nally developed for nuclear magnetic resonance techniques [19], optical coherent 2D
experiments have been suggested [20, 21] and experimentally reported for nonlin-
ear optics [22] as well as measurements of quantum dynamics with spectral ranges
from the ultraviolet [23, 24] over the visible [25–27], the near-infrared [28] and the
infrared [29], up to the THz regime [30].

Various nonlinear contributions contain information about the investigated quan-
tum system like electronic couplings and wave-packet dynamics. There are two
approaches to extract these contributions after interaction with a pulse sequence.
Either an appropriate geometry is required to spatially separate the coherent sys-
tem response in coherence-detected 2D spectroscopy [5], or the contribution-specific
phases have to be encoded in the excitation-pulse sequence in population-detected
2D spectroscopy [31]. The observable in the latter case is an incoherent signal, from
which the nonlinear contributions can be extracted via phase cycling.

Population-based 2D spectroscopy has been demonstrated on all states of matter
utilizing fluorescence [32–37], photoelectrons [38–40], and ions [41] as incoherent ob-
servables. It has recently been suggested that the information content is even higher
than in coherence-detected 2D spectroscopy, since processes can occur on a longer
time scale than just the duration of the excitation-pulse sequence [42].
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1 Introduction

The retrieval of one-quantum (1Q) contributions in population-based 2D spec-
troscopy is well established [31–40], while two-quantum (2Q) 2D spectroscopy has so
far only been carried out coherence-detected [17,43,44,44–51].

The aim of this thesis is the realization of a pulse-shaper assisted all-collinear setup
for fluorescence-detected 2D electronic spectroscopy. Shot-to-shot variation of pulses
with 1 kHz repetition rate is supposed to keep the acquisition time to a minimum. By
selecting an appropriate phase-cycling scheme, 1Q and 2Q nonlinear contributions
shall be obtained in a single measurement.

Chapter 2 shall provide an overview over the theoretical concepts and experimental
approaches that constitute the basis for this work. This includes a general descrip-
tion of nonlinear optical processes and how they can be revealed by coherent two-
dimensional (2D) spectroscopy. Different approaches of coherent 2D spectroscopy
in noncollinear and collinear geometry are reviewed and compared. The principles
of phase cycling are presented which are indispensable for population-based spec-
troscopy. Furthermore, the utilized experimental techniques, including pulse genera-
tion and pulse shaping, are introduced.

In chapter 3 the implementation of the experimental techniques is described. The
experimental setup is presented, with an emphasis on pulse generation and shaping
as well as signal detection. An evaluation of pulse-generation techniques is given
with respect to the requirements of the conducted experiments. We finally review
possible artifact sources and show how to either avoid or correct them.

In chapter 4, we show the results of a 2D experiment on cresyl violet in ethanol as
a proof of principle. All data-acquisition and analysis steps are presented in detail
to provide a guideline for future experiments with this setup. Various nonlinear
contributions are extracted during a single measurement, where shot-to-shot variation
of excitation pulses is exploited for rapid data acquisition. The well-known rephasing
and nonrephasing 1Q contributions are used to reproduce oscillatory behavior during
the population time. We furthermore evaluate the error evolution with respect to
the amount of averaging that is needed to obtain decent data, and by that give an
estimation of the setup’s potential concerning the acquisition speed.

In chapter 5, the setup is extended to broadband excitation. We obtain two types
of 2Q coherence contributions of cresyl violet in a single measurement and show the
first experimental data of the theoretically predicted 1Q-2Q contribution. The results
are discussed and validated on the basis of simulations via the Lindblad quantum
master equation. The simulations are used to evaluate the influence of the excitation
spectrum on the obtained 2D data, to reveal the effect of Liouville pathway cancella-
tion, and furthermore to determine the correlation energy of the doubly-excited state
with a higher accuracy than with just the experiment.

The presented 2D fluorescence setup is evaluated in chapter 6 by providing a sum-
mary of this thesis’ findings, as well as a perspective on possible future experiments.
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2 Ultrafast Spectroscopy

The principles of ultrafast spectroscopy, ranging from the theoretical description of
light-matter interaction to state-of-the-art experimental implementation, are summa-
rized in this chapter. Section 2.1 will provide a basic description of nonlinear polar-
ization and density matrix formalism. On that basis, a review of different approaches
to coherent 2D spectroscopy is given in section 2.2, including the most commonly ap-
plied coherence-detected 2D spectroscopy in section 2.2.1 and the population-based
method utilizing phase cycling in section 2.2.2. Since phase cycling is a key method to
this work, detailed information about phase-cycling schemes for three- and four-pulse
sequences will be provided alongside with Liouville-pathway selection via Feynman
diagrams. Relevant experimental techniques, ranging from pulse generation (2.3.1)
over pulse shaping (2.3.2) to resulting experimental opportunities like pulse com-
pression, rotating-frame measurements and the economy of scan schems will be in-
troduced in section 2.3.

2.1 Nonlinear spectroscopy

The following examination of the theoretical concepts has been adapted from text-
books [8, 21]. Upon light-matter interaction with an electric field E, a material
polarization is induced which can be described by the perturbative power series

P (t′) =
∞∑
n

ε0
(
χ(n)En(t′)

)
= ε0

(
χ(1)E(t′) + χ(2)E2(t′) + χ(3)E3(t′) + ...

)
(2.1)

with vacuum permittivity ε0 and the electric susceptibility χ of n-th order and as-
suming infinitesimal short electric fields for simplicity. The dependency of P (t′) on
the wave vector k is omitted for brevity. Note that absolute times are denoted as
t′ because in two-dimensional spectroscopy t is reserved for the signal time or the
second coherence time, respectively.

For weak fields, only the first-order polarization term P (1)(t′) = ε0χ
(1)E(t′) is

accessible, yielding the linear absorption (imaginary part) and the refractive index
(real part) of a material. Increasing the intensity of the incident light field, however,
gives rise to higher-order nonlinear polarization terms P (n)(t′) with n 6= 1. Ultrashort
laser pulses provide the means to reach such intensities. Susceptibilities of an even
order always equal zero for isotropic media, and thus the lowest nonlinear response
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2 Ultrafast Spectroscopy

for isotropic media is given by χ(3). Polarization upon light-matter interaction up to
the third order plays a key role for for coherent 2D spectroscopy (section 2.3.1) as
well as for ultrashort pulse generation (section 2.3.1).

Density matrix formalism

Apart from single-molecule experiments, nonlinear spectroscopy is performed on sta-
tistical ensembles of molecules, where each molecule of the ensemble has a different
microscopic environment and therefore a different wave function. In order to account
for this circumstance, the density matrix formalism is introduced, with the density
matrix given by

ρ(t′) =
∑
k,l

pkl |ψk(t′)〉 〈ψl(t′)| , (2.2)

with pkl (with k = l) being the probability of a molecule located in state |ψk(t′)〉.
For the total ensemble

∑
k,l pkl = Tr [ρ(t′)] = 1, k = l holds. The diagonal elements

of a density matrix correspond to populations, and off-diagonal elements denote co-
herences [52, 53].

The time-dependent density matrix in Liouville-von Neumann equation is given
by

δρ(t′)

δt′
= − i

~
[H(t′), ρ(t′)] = − i

~
[H0, ρ(t′)]− i

~
[HI(t

′), ρ(t′)] (2.3)

with the system Hamiltonian H0, and the time-dependent interaction Hamiltonian
HI(t

′). The time-dependent density matrix can be expanded in a perturbative power
series analogously to the polarization via

ρ(t′) =
∞∑
n

ρ(n)(t′), (2.4)

where H0 acts on ρ(0) assuming a thermal equilibrium, and HI applies to ρ(n) with n 6=
0. The macroscopic observable of the n-th order perturbation ρ(n)(t′) is the nonlinear
polarization P (n)(t′) after the last perturbation from an off-diagonal coherence of the
density matrix, given by the expectation value of the dipole operator µ̂

P (n)(t′) = Tr
(
µ̂ρ(n)(t′)

)
(2.5)

The time dependent polarization of n-th order is a convolution of an n-th-order
response function S(n) with n light fields E
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2.1 Nonlinear spectroscopy

P (n)(t′) =

∫ ∞
−∞

dtn

∫ ∞
−∞

dtn−1...

∫ ∞
−∞

dt1S
(n)(tn, tn−1, ..., t1)

E(t′ − tn)E(t′ − tn − tn−1)...E(t′ − tn − tn−1...− t1).

(2.6)

where ti are the times at which a light-matter interaction occurs. In contrast to
eq. (2.1), it is accounted for the non-zero duration of the electric fields.

In coherence-detected 2D experiments, the third-order polarization is probed. Ac-
cordingly, three successive interactions with electric fields E at ti induce the third-
order polarization

P (3)(t′) =

∫
dt3

∫
dt2

∫
dt1S

(3)(t1, t2, t3)

E(t′ − t3)E(t′ − t3 − t2)E(t′ − t3 − t2 − t1),

(2.7)

corresponding to the third-order perturbation term of the density matrix.
The polarized system can emit a coherent signal as an electric field ES ∝ P (3).

The manifold of response functions S can be obtained by bookkeeping of all possi-
ble pathways through the density matrix, called Liouville pathways. Double-sided
Feynman diagrams can be used to describe these pathways in an illustrative manner.
The principles of Feynman diagrams and relevant pathways for this thesis will be
discussed in section 2.2.2.

Adding a further light-matter interaction leads to a fourth-order population, which
is of interest in the population-based approach of 2D spectroscopy. Instead of a
coherent field, the observable is an incoherent signal like fluorescence, ions or pho-
toelectrons, while the information content is analogous. For clarity, the fourth-order
population will be written as p(4), corresponding to a fourth-order perturbation of
the density matrix ρ(4):

p(4)(t′) ≡ρ(4)(t′)

=

∫
dt4

∫
dt3

∫
dt2

∫
dt1Q

(4)(t1, t2, t3, t4)

E(t′ − t4)E(t′ − t4 − t3)E(t′ − t4 − t3 − t2)E(t′ − t4 − t3 − t2 − t1).

(2.8)

where the response function is written as Q for the sake of distinguishability from
the response function S in eq. (2.7).
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2 Ultrafast Spectroscopy

2.2 Coherent two-dimensional optical spectroscopy

An intuitive approach of measuring the time evolution of a quantum system is con-
stituted by pump-probe spectroscopy. A pump pulse excites the system and a second
pulse probes the system evolution after a population time T . This method has been
extensively used on a vast variety of chemical systems, delivering insights in chemical
dynamics with a femtosecond time resolution.

As in pump-probe spectroscopy, coherent two-dimensional (2D) spectroscopy can
reveal the evolution of a chemical system. Due to the equivalence between time and
frequency via Fourier transform, spectral information can be obtained with time-
dependent measurements. To that purpose, two pump pulses are applied and delayed
incrementally. Only system responses resulting from third-order polarization (or
fourth-order population) shall be considered, since most reported 2D experiments as
well as this thesis investigate such signals. Higher-order polarization can be used to
investigate, e. g., exciton-exciton interactions [54, 55]. The higher the order of the
induced polarization, the larger the amount of possible pathways becomes.

There is a variety of methods to perform 2D spectroscopy. This section shall pro-
vide an overview over existing approaches, comparing the phase-matching approach
in a noncollinear geometry with the population-based approach, where coherent sys-
tem information is obtained via an incoherent signal and extracted via phase cycling.
Since this work follows the population-based approach, phase-cycling theory will be
examined in more detail in order to provide an understanding for the experiments
that will be discussed in chapters 3, 4 and 5.

2.2.1 Coherence-detected 2D spectroscopy

Many 2D experiments employ three excitation pulses, and the coherently emitted
nonlinear four-wave-mixing signal is measured in amplitude and phase. Extracting
the desired signal component of a certain nonlinear order (such as the photon-echo
contribution) is generally achieved in the noncollinear box geometry under a suitable
phase-matching condition, i.e., choosing an appropriate excitation and detection ge-
ometry [5]. By employing a noncollinear geometry, signal ambiguities are excluded
by spatially separating the desired nonlinear signal from the excitation pulses as well
as from other nonlinear signal components.

The excitation scheme of a quantum system with electronic states |i〉 and |j〉 is
as follows. Each pump pulse interacts once with the system, where the first pulse
converts the system into a coherent state |j〉 〈i| with i 6= j. During the coherence
time τ , the induced coherence decays within tens to hundreds of femtoseconds. The
second pump pulse creates a population |j〉 〈j| that can undergo relaxation during
the population time T via internal conversion (IC), intramolecular vibrational energy
distribution (IVR), intersystem crossing (ISC), conical intersections (CI) or fluores-
cence. The third pulse probes the system by again creating a coherence, which can
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2.2 Coherent two-dimensional optical spectroscopy

Sample

1 2

3 Signal + LO

1
2

3
4 Sample

a) b)

Figure 2.1: Schematic illustration of approaches to 2D spectroscopy. a) In
the coherence-detected approach the excitation pulses 1, 2, 3 are non-
collinearly focused on the sample and the coherent signal from third-order
polarization is extracted via heterodyne detection with a local oscillator
(LO). b) In the population-based approach, a collinear pulse sequence
excites the sample and induces a fluorescence signal of a fourth-order
population. The coherent information is encoded in the phases of the
excitation-pulse sequence and the signal is extracted via phase cycling
(not shown).

emit a measurable electric field ES after the signal time t. A fourth pulse acts as
a local oscillator and is used for heterodyne detection of the coherent field ES on a
spectrometer, resulting in a frequency axis ωt. Figure 2.1 a) illustrates schematically
the noncollinear box geometry.

For each population time, Fourier transform along the coherence time spans a sec-
ond axis along ωτ , corresponding to the excitation process and correlating it with
the emission spectrum along ωt. The information content of a 2D spectrum depends
on the obtained nonlinear contribution. The rephasing and nonrephasing contribu-
tion yield together the absorptive spectrum, which is analogous to signals acquired
in pump-probe spectroscopy. For example, the rephasing photon echo is emitted in
direction kS = −k1 + k2 + k3, where ki, i = 1, 2, 3, are the wavevectors of the three
excitation pulses and kS is the wavevector of the coherent signal.

From these 2D maps, coupling between states can be revealed via off-diagonal
cross peaks. The investigation of coupling between states can, e. g., be used for the
revelation of coherent energy transfer pathways in biomolecules [56]. The diagonal
peaks deliver information about homogeneous and inhomogeneous line broadening.
The homogeneous broadening effects the peak width perpendicular to the diagonal,
and is caused by population relaxation and phase randomization due to the ensemble
averaging effect. Because each molecule encounters a different microscopic environ-
ment, the peak width is also broadened along the diagonal, called inhomogeneous
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2 Ultrafast Spectroscopy

broadening. Note, that line shapes are influenced not only by the molecular re-
sponse, but also by the excitation pulses. A detailed analysis of finite-pulse effects is
given in [57] and [58] and discussed in chapter 5.

Two-quantum (2Q) coherences can be measured to determine the correlation en-
ergy between excited states. In that case, the first two interactions transfer the
system into a coherence between the ground and a doubly excited state. 2Q 2D
spectroscopy can be used to determine an energy shift ∆, of which is stated that it
may be consulted to quantify the theoretically predicted electron correlation energy
in many-electron systems [59].

In general, 2D experiments in boxcar geometry require meticulous adjustment and
effort to grant phase stability, and to achieve spatial and temporal pulse overlap.
Furthermore, due to uncertainties in pulse overlap at τ = 0, a phasing procedure
is indispensable for correct data representation [60]. Even though it is possible to
passively stabilize the phases of the noncollinear pulses [27], it is desirable to reduce
the alignment effort to a minimum, especially in laboratories with many different
experiments and frequent laser-path changes.

2.2.2 Population-based 2D spectroscopy

Instead of measuring an emitted coherent signal one can also utilize 2D action-based
spectroscopy [31, 32, 38, 39, 61, 62]. For that purpose a fourth pulse is added to the
excitation sequence, leaving the quantum system in a final population state, rather
than a coherence. This final-state population can be probed, for example, via fluores-
cence [31,32,61], electron current [38,39], or ions [41]. The additional coherence time
t has to be Fourier transformed analogously to τ to span the second frequency axis.
The coherent information is encoded in the train of excitation pulses and their phase
relations [62]. Fluorescence 2D spectroscopy in the visible regime has been demon-
strated in the gas phase [31] as well as in liquids [35] and matrices [33]. Performing
coherent 2D experiments is challenging with respect to phase and intensity stabil-
ity of the laser as well as spatial and temporal alignment of the excitation pulses.
Any drifts or fluctuations might lead to experimental artifacts, especially considering
the phase-sensitive nature of the spectroscopy method and its Fourier evaluation pro-
cess. Additionally, the high-intensity light fields that need to be applied for obtaining
nonlinear signals may lead to decomposition of the investigated quantum systems,
via, e. g., photochemical reactions resulting in permanent bleaching. Further, when
one wants to make comparative studies of a series of quantum systems via 2D spec-
troscopy, one needs to ensure that the experimental conditions remain constant. All
of these challenges make it desirable to keep the acquisition time down to a minimum.
In collinear geometry, schematically depicted in fig. 2.1 b), the different contributions
of the system response cannot be distinguished spatially, and anyway with incoherent
fluorescence detection no phase-matching condition exists. Accordingly, a different
approach for extraction of nonlinear contributions has to be applied.
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2.2 Coherent two-dimensional optical spectroscopy

One possibility is given by the phase modulation approach [32]. There, the incident
pulse is split into four beam paths, such that three of the resulting pulses can be
separately delayed via mechanical stages. Four acousto-optic modulators are used
to continuously sweep the carrier-envelope phase of each beam path with a unique
frequency before recollinearizing the pulses in front of the sample. Accordingly, each
combination of laser shots exposes an amplitude modulation due to the differing
phase combinations which can be disentangled via lock-in detectors. This approach
thus requires a rather sophisticated setup and time-consuming adjustment.

Alternatively, phase cycling can be used to obtain all nonlinear contributions, such
as rephasing, nonrephasing and two-quantum coherences [62]. For this purpose, a
pulse shaper (2.3.2) is used to apply prescribed phases to each of the excitation
pulses, and the desired signal is then obtained as a suitable linear combination of
fluorescence intensities. In order to measure a fluorescence signal, the system has to
be in an excited-state population after the fourth interaction.

Liouville pathway selection

The considerations in this section follow the description of Mukamel’s textbook [21].
Figure 2.2 illustrates the Liouville pathways of the rephasing (R, a), nonrephasing
(NR, b), 2Q (c), and 1Q-2Q (d) contributions in an electronic three-level system
with states |g〉, |e〉 and |f〉 via double-sided Feynman diagrams [63–65], with the
subsequent fluorescence signal not shown.

The time axis t′ in Feynman diagrams is running from bottom to top. Arrows
indicate a perturbation of the density matrix, with the direction representing the sign
of the pulse phase φ, or the wave vector k in noncollinear geometry, respectively. An
arrow pointing left denotes a negative sign, while a right-pointed arrow represents
a positive sign. When pointing towards the diagram they represent an excitation
and a deexcitation when pointing away. The resulting overall sign of the signal
contribution in the real-valued spectrum is given by (−1)−n, with n being the number
of interactions from the right side.

Coherences between neighbored electronic states, e. g., between ground and singly
excited state or between singly and doubly excited state are considered as 1Q co-
herences. Nonlinear contributions that contain only 1Q coherences can be rephasing
(photon echo) or nonrephasing [8], and accordingly, experiments that probe these
can be regarded as 1Q 2D spectroscopy. If a 2Q coherence is part of the pathway,
one may refer to this as 2Q 2D spectroscopy. A 2Q coherence describes a coherent
superposition of the ground state |g〉 and the doubly excited state |f〉 generated via
a two-photon process.
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2 Ultrafast Spectroscopy
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Figure 2.2: Liouville pathways of extractable nonlinear contributions in a three-level
system in population based 2D spectroscopy. Rephasing (a), nonrephas-
ing (b), 2Q-1Q (c), and 1Q-2Q (d). a) and b) describe the pathways in
a four-pulse sequence, when all 4 interactions occur at specific times ti
with i = 1, 2, 3, 4, τ = t2− t1, T = t3− t2, and t = t4− t3. c) and d) refer
to the pathways in a three-pulse sequence, where two interactions are at
the same time t1 = t2 (c) and t3 = t4 (d), respectively. The pathway
on the right in each row contributes with a positive sign, while all other
pathways contribute with a negative sign. The subsequent fluorescence
signal is omitted.
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2.2 Coherent two-dimensional optical spectroscopy

The contribution-dependent fourth-order population from eq. (2.8) for the nonlin-
ear contribution convoluted with the incident electric field can be written as

p
(4)
R (t′) ∝ QR(τ, T, t, t′)eiγ0ω0(t−T−τ)ei(−φ1+φ2+φ3−φ4), (2.9)

p
(4)
NR(t′) ∝ QNR(τ, T, t, t′)eiγ0ω0(t−T−τ)ei(+φ1−φ2+φ3−φ4), (2.10)

p
(4)
2Q(t′) ∝ Q2Q(τ, t, t′)eiγ0ω0(t−T−τ)ei(+2φ1−φ2−φ3), (2.11)

p
(4)
1Q-2Q(t′) ∝ Q1Q-2Q(τ, t, t′)eiγ0ω0(t−T−τ)ei(+φ1+φ2−2φ3), (2.12)

where the signs of the phases φi correspond to phase coefficients α, β, γ (and δ),
indicating if the interaction with the density matrix is from the left or the right
side. The wave vector dependency ei(αk1+βk2+γk3+δk4)·r for a four-pulse sequence and
ei(αk1+βk2+γk3)·r for a three-pulse sequence is neglected due to the collinearity of the
approach. The parameter γ0 is a frequency scaling factor that is implemented in
pulse-shaper-based 2D spectroscopy to realize measurements in the rotating frame
(γ0 = 0) or the laboratory frame (γ0 = 1) or an intermediate regime (0 < γ0 < 1).
The rotating-frame environment will be discussed later in section 2.3.2.

The nonlinear response functions QNL for each contribution contain terms QNL
i , the

label i of which corresponds to the Liouville pathways shown in fig. 2.2. The pathways
for a specific contribution are indistinguishable. It is apparent that only pathways
ending up in the doubly excited state |f〉 exhibit an even amount of interactions from
the right side, and thus contribute to the overall real-valued signals with a positive
sign. Hence, the sign of the real-valued 2D spectra is expected to be strongly negative.

Recapitulating Kasha’s rule [66], one may also conclude that these signal con-
tributions might be not detectable at all, because a direct fluorescence from |f〉 is
improbable for most molecules. In order to contribute to the respective measured
fluorescence signal, there has to be considerable nonradiative relaxation from |f〉 to
|e〉. If nonradiative deactivation pathways to the ground state exist, the contribution
may be noticably less than unity [33, 34, 40]. An approach to estimate the contri-
bution ratio will be presented in chapter 5. It is furthermore noteworthy that these
right pathways QNL

i (with i = 4 for NL = R,NR and i = 3 for NL = 2Q, 1Q-2Q)
exclusively contribute in the population-based approach, because they are only dis-
tinguishable from pathways QNL

i−1 by the fourth perturbation which is not present in
the coherence-detected approach.

The same principle applies for the 1Q-2Q contribution, which is solely obtainable
via population-based 2D spectroscopy. In this additional contribution, there are less
coherence combinations involved, and thus the 1Q-2Q 2D spectra should be less
congested than 2Q 2D spectra [62].

Since in Q2Q and Q1Q-2Q there are three instead of two pathways involved, identical
1Q transition frequencies will not lead to a cancellation of the overall signal as it would
be the case with coherent detection [59]. The same holds for the 1Q-2Q contribution.
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2 Ultrafast Spectroscopy

Nevertheless, pathways Q2Q
2 and Q2Q

3 (and also Q1Q-2Q
2 and Q1Q-2Q

3 ) may cancel each
other out if their contribution strengths are equal.

As written above, 2Q 2D spectroscopy can be utilized to determine the correlation
energy ∆. A detailed analysis of population-based 2Q and 1Q 2D spectroscopy on
the example of cresyl violet will be provided in chapter 5.

Note that all QNL terms as well as terms of other orders contribute to the to-
tal fluorescence signal, with the desired nonlinear contributions making up only a
small portion. In that sense, the method is not background-free and requires a high
dynamic detector range. In order to unambiguously extract any desired nonlinear
contribution, an appropriate phase-cycling scheme is required, which depends on the
amount of pulses in the excitation-pulse sequence.

Four-pulse sequence

The phase-cycling procedure follows the description of Tan [62]. The most general
approach to obtain information about the fourth-order population is given when
applying a four-pulse sequence. In this case, every perturbation of the density matrix
is induced by a single pulse, with each pulse considered separately. The delays
between the pulses are regarded as coherence time τ = t2 − t1, population time
T = t3 − t2 and signal time t = t4 − t3. Incorporating the population time allows to
observe the transient behavior of the investigated molecules.

Equations (2.9–2.12) can be generalized as

p
(4)
NL(t′) =∝ QNL(τ, T, t, t′)eiγ0ω0(t−T−τ)ei(αφ1+βφ2+γφ3+δφ4), (2.13)

with phase coefficients α, β, γ, δ.
The sum of the phase coefficients is required to be α + β + γ + δ = 0 since only

populations contribute to the fluorescence signal. As an additional condition, the
sum of their absolute values has to be |α| + |β| + |γ| + |δ| ≤ 4 to only account for
fourth- or lower order populations.

The contribution-specific fourth-order population may be represented with its
phase-coefficient dependency via

p̃(4)(τ, T, t, α, β, γ, δ) = QNL(τ, T, t, t4)eiγ0ω0(t−T−τ), (2.14)

at time t4, i. e. directly after the fourth interaction.
The total delay- and phase-dependent population including all nonlinear contribu-

tions is given by the sum over all phase coefficients

p(4)(τ, T, t, φ1, φ2, φ3, φ4) =
∑
α,β,γ,δ

p̃(4)(τ, T, t, α, β, γ, δ)ei(αφ1+βφ2+γφ3+δφ4), (2.15)

at time t4, i. e. directly after the fourth interaction.
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2.2 Coherent two-dimensional optical spectroscopy

Considering that the phases are not independent of each other, this can be further
simplified by referencing all phases φi to the first pulse φ1

p(4)(τ, T, t,∆φ21,∆φ31,∆φ41) =
∑
β,γ,δ

p̃(4)(τ, T, t, β, γ, δ)ei(∆φ21,∆φ31,∆φ41), (2.16)

with ∆φ21 = φ2 − φ1, ∆φ31 = φ3 − φ1, and ∆φ41 = φ4 − φ1.

In order to extract a specific nonlinear contributions via the phase coefficients,
eq. (2.16) has to be Fourier transformed. Given that experimentally it is not possible
to sample continuously, a discrete Fourier transform is necessary

p̃(4)(β, γ, δ) =
1

LMN

N−1∑
n=0

M−1∑
m=0

L−1∑
l=0

p(τ, T, t, l∆φ21,m∆φ31, n∆φ41)

e−ilβ∆φ21e−imγ∆φ31e−inδ∆φ41 ,

(2.17)

with p(τ, T, t, l∆φ21,m∆φ31, n∆φ41) being the measured fluorescence signals, and
L,M and N the number of sampling points, resulting in a 1×L×M×N measurement
scheme.

A sampling resolution of L = M = N = 3 is sufficient to exclusively isolate the
rephasing QR with β = +1, γ = +1, δ = −1 and the nonrephasing QNR contribu-
tion with β = −1, γ = +1, δ = −1, corresponding to coherently-detected 1Q 2D
spectroscopy.

In principle it is possible to also extract 2Q and 1Q-2Q contributions with a four-
pulse sequence. In the case of Q2Q, the phase coefficients should be β = 0, γ = −1,
δ = −1. With a 27-fold phase-cycling scheme this contribution is not unambiguously
extractable. When applying the 2Q phase coefficients, also signals with phase coef-
ficents β = 0, γ = +2, δ = −1 and β = +1, γ = +1, δ = −1 contribute for T = 0.
In order to exclusively extract the 2Q and 1Q-2Q contribution with a four-pulse
sequence, a 1 × 4 × 4 × 4 scheme would be required, with the drawback of a huge
increase in acquisition time.

Three-pulse sequence

In order to perform 2Q 2D spectroscopy, we employ a three-pulse sequence in this
work. By definition, two interactions with the density matrix occur with one of
the three pulses while the other two pulses interact once, resulting in the conditions
α + β + γ = 0 and |α|+ |β|+ |γ| ≤ 4.
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2 Ultrafast Spectroscopy

Analogously to eq. (2.17), the desired nonlinear contribution can be extracted via

p̃(4)(β, γ) =
1

LM

M−1∑
m=0

L−1∑
l=0

p(τ, T, t, l∆φ21,m∆φ31)

e−ilβ∆φ21e−imγ∆φ31 .

(2.18)

With a three-pulse sequence and 16-fold phase cycling it is possible to unambigu-
ously extract the rephasing contribution as well as the 2Q and 1Q-2Q contributions.
The nonrephasing contribution is superimposed by contributions from second-order
density-matrix perturbation terms which are also encoded when applying the factors
α = 1, β = 0 and γ = −1. It is therefore more appropriate to regard this contribution
as a reverse transient grating.
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2.3 Experimental techniques

2.3 Experimental techniques

This section is supposed to introduce the state-of-the-art experimental techniques
that are utilized in this work, namely pulse generation with various white-light gen-
eration methods (2.3.1), pulse-shaping techniques and experimental benefits deriving
from these, and pulse compression methods (2.3.2). The employment of the respec-
tive techniques in this work is further discussed later in chapter 3 and complemented
with findings concerning their applicability for the presented experiments.

2.3.1 Pulse generation

Given a laser source with a specific fundamental wavelength, e. g., 800 nm as in
the current work, there is a variety of possibilities to create white-light pulses from
these input pulses. The two applied methods for white-light generation will be briefly
introduced in the following. Relevant nonlinear optical effects are second-harmonic
generation (SHG), self-phase modulation (SPM) and optical parametric amplification
(OPA).

The SHG process is a χ(2)-process, requiring a birefringent crystal in order to
survive destructive interference of the resulting radiation as would be the case in
an isotropic medium. An intense pulse with a frequency ωp induces a second-order
polarization P (2) in a birefringent crystal. The refractive index of the resulting field
with a frequency 2ωp differs from the the refractive index of the incident frequency.
With the right crystal angle, i. e., correct phase-matching conditions, frequency-
doubled pulses with a considerable intensity can be achieved.

SPM as a χ(3)-process can be induced in any medium via interaction with intense
light. It relies on the optical Kerr effect [67, 68], according to which the refractive
index of a material is intensity-dependent for high intensities. The effect of SPM is
the creation of lower and higher frequencies that are symmetric to the initial center
frequency ωp, which can be exploited for broadband spectrum generation.

Noncollinear optical parametric amplification

Noncollinear optical parametric amplification (NOPA) is a standard method to gen-
erate tunable pulses over a broad range covering the visible and the near infrared
(NIR) [69–71] and is indeed used in most 2D electronic spectroscopy setups [72].

For parts of this work (experiment in chapter 4), we employ a commercial two-stage
noncollinear optical parametric amplifier (TOPAS, Light Conversion), the working
principle of which shall be briefly explained. A detailed description is provided in
the TOPAS user manual [73].

The TOPAS uses a combination of SHG, SPM and OPA to generate pulses in the
visible range from an 800 nm input beam. The input beam is split with a ratio of
≈ 49 : 1. The weak part is used to generate a supercontinuum via SPM in a sapphire
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2 Ultrafast Spectroscopy

plate, while the major part is frequency-doubled in a β-barium borate (BBO) crystal
via SHG. For the OPA process, the weak beam (seed) is overlapped with the intense
frequency-doubled beam (pump) in a BBO crystal. This process is done twice in
order to provide an intense and stable output. Varying the spatio-temporal overlap
via delay stages and the BBO crystal angle adjusts the phase-matching conditions
for a certain spectrum and thus enables tunability from 500− 750 nm [73].

Filamentation

Briefly, filamentation via SPM in a hollow-core fiber (HCF) filled with a noble gas
can be used to generate a supercontinuum with a spectral broadness that can range
over more than an octave. An advantage apart from the superior broadness is a clean
and symmetric Gaussian beam profile, as well as a good compressibility of the pulses
via chirped mirrors. This is especially useful for the presented pulse-shaper assisted
2D spectroscopy. Since in this case the probe pulse is a copy of the excitation pulses,
both the pump and the probe pulses are limited by the primary white-light source
and hence, increasing the spectral broadness effects both resulting frequency axes.
The white-light generation via HCF in this work follows the description in [74].

2.3.2 Pulse shaping methods

The control of phase and amplitude of femtosecond pulses is indispensable for ul-
trafast spectroscopy, for mere pulse characterization and compression as well as for
sophisticated arbitrary pulse-sequence generation. This section shall provide ba-
sic information about the phase influence on pulse shapes and review the working
principles of the pulse-shaping methods employed in this work, ranging from pas-
sive shaping via prism and grism compression to active shaping via acousto-optical
modulation.

Electric field and phase influence

A linearly polarized time-dependent electric field E(t) can be described by [75]

E(t) = A(t) cos(Φ(t)), (2.19)

with the envelope function A(t) and the total phase

Φ(t) = ω0t+ φ(t). (2.20)

The total phase contains the center frequency ω0 and the time-dependent phase
φ(t) which is given by the Taylor series
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φ(t) =
∞∑
n=0

φn
n!
tn = φ0 + φ1

t

1!
+ φ2

t2

2!
+ φ3

t3

3!
+ ..., (2.21)

with phase coefficients φn = ∂nφ(t)
∂tn

. The first coefficient φ0 describes the carrier-
envelope phase, which is the phase of the intensity envelope with respect to the
carrier frequency. If the phase terms φn with n ≥ 2 are unequal zero, the pulse is
broadened in time, resulting in an excess of the bandwidth limit.

The bandwidth limit τG∆ω = 4 ln 2 describes the relationship between the shortest
possible Gaussian pulse duration τG and the spectral full width at half maximum
(FWHM) ∆ω.

In order to experimentally manipulate the phase coefficients of a laser pulse, the
phase has to be regarded in the frequency domain as

φ(ω) =
∞∑
m=0

φm(ω0)

m!
(∆ω)m = φ0 +

1

1!
φ1(∆ω) +

1

2!
φ2(∆ω)2 +

1

3!
φ3(∆ω)3 + ..., (2.22)

with φm = ∂mφ(ω)
∂ωm , and ∆ω = ω − ω0.

The first-order phase term, or group delay (GD), causes an equal shifting of all spec-
tral components in the time domain. The second-order phase term is called group-
delay dispersion (GDD) and causes a chirp which stretches the pulse in the time do-
main. Pre or post pulses are introduced by the third-order dispersion (TOD). Higher-
order phase terms further stretch the pulses or introduce additional pulses. Since the
speed of light in matter is different for each frequency component, a transmission
through transparent materials always introduces a frequency-dependent phase which
lengthens the pulse duration.

In ultrafast spectroscopy, however, short pulses are desirable for the sake of time
resolution, and compression to the near-bandwidth limit is a condition for that. In
the following, means of phase adjustment are introduced that are relevant for this
work.

Static compression

For a given setup, the beam path leads through a known and constant amount of
material, e. g. lenses, pulse-shaper crystal, or the sample capillary. In order to
provide near-bandwidth limited pulses at the sample position, one can use passive
pulse shaping methods for adjustment. The employed compression methods shall be
shortly introduced.

The introduction of a negative GDD can be performed with a single-prism com-
pressor [76]. In this work, the single-prism compressor is used to precompensate
for the phase that is introduced by the Dazzler crystal. Apart from an input and
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output mirrorm it consists of a prism, a retroreflector and a roof mirror. The beam
passes the prism four times, where the first run introduces an angular dispersion, the
second collimates the spectral parts and the third and fourth run correct the spatial
and angular dispersion. The introduced phase can be adjusted by the prism angle
and the distance between prism and retroreflector.

A dual grism compressor has a similar working principle but consists of two prisms
that are equipped with a grating on the outside and a roof mirror. The beam passes
the grisms twice, which is analogous to a fourfold passing through a single prism. The
combination of prisms and grating enables to introduce TOD in addition to GDD.
The amount of phase correction can be adjusted by varying the distance between
the grisms, their offset of each other perpendicular to the beam and the incident
angle. An elaborate description of the adjustment procedure can be found in the
user manual of the utilized commercial device [77].

Collinear frequency-resolved optical gating

The pulses can be further compressed and characterized by frequency-resolved optical
gating (FROG) [78]. In order to temporally resolve an event, a shorter event is
needed. In the case of ultrashort pulses, they represent the shortest event available
and are therefore used to resolve themselves, acting as gate pulses. In order to do
so, two pulses are focused on a BBO crystal and delayed with respect to each other.
In this work, collinear pulse-trains are used and hence collinear FROG (cFROG) is
applied [79]. The delay- and frequency-dependent SHG signal is measured with a
spectrometer, resulting in a two-dimensional FROG trace

ISHGcFROG(ω, τ) =

∣∣∣∣∫ ∞
−∞

[Ẽ(t′) + Ẽ(t′ − τ)]2e−iγ0ωt
′
dt′
∣∣∣∣2 . (2.23)

A genetic algorithm is used to reconstruct the obtained trace, yielding the spectral
amplitude and phase. The obtained spectral phases can be applied via a pulse shaper
for full pulse compression.

Active pulse shaping

There is a variety of femtosecond pulse shaping methods [80, 81]. Liquid-crystal
displays (LCDs) are widely used but lack the possibility to vary the pulse settings
with a kHz repetition rate, which is favorable for rapid data acquisition.

In this thesis, a commercial acousto-optical programmable dispersive filter (AOPDF,
Dazzler) is employed. The basic principle is that the incoming optical pulse interacts
with an acoustical wave in a birefringent TeO2 crystal via the elasto-optic effect [82].
For the present setup, a detailed description of the working principle is provided
by [83].
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Briefly, an arbitrary acoustic wave with MHz frequency is generated by a radio-
frequency generator and transduced on the crystal along the beam propagation direc-
tion. Due to the huge velocity difference between sonic and optical waves, the acoustic
wave can be regarded as stationary. In case of phase matching between the optical
and the acoustic wave, a part of the respective frequency component is switched
from the fast ordinary axis to the slower extraordinary axis. The difference in trans-
mission velocity between the axes enables to generate pulse sequences from a single
input pulse that are arbitrary in amplitude and phase. For small radio-frequency
intensities, the electric output field is proportional to the electric input field. The
extraordinary axis is tilted by an angle of 1° from the optical axis, which may lead
to space-time coupling effects for large delays or temporally long pulses [84,85]. For
the given pulse shaper, the acoustic wave takes about 30 µs to propagate through
the crystal, which limits the repetition rate to a few kHz. Recently, acousto-optical
pulse shapers have been developed that are capable of 100 kHz repetition rates [86].

Rotating frame

The full phase control provided by active pulse shaping enables measuring in a
rotating-frame environment. The type of frame can be adjusted by γ0, a frequency
scaling factor that has been shown in eqs. (2.9–2.12) and (2.23). In contrast to the
laboratory frame, where the carrier and the envelope phases of pulses are shifted to-
gether in time (γ0 = 1), the carrier wave is kept constant when shifting the envelope
in the rotating frame (γ0 = 0). In the laboratory frame, the system response is
convoluted with interference of the excitation pulses, leading to an oscillation of the
measured signal in time. In this case, a small step size is required to resolve these
oscillations [87,88].

In order to record only oscillations stemming from the system response [79] and
reduce the amount of measurement increments, data acquisition in the rotating frame
offers the possibility to significantly reduce the acquisition time.

The signals with a frequency ω then occur at ω− ωref . The reference frequency is
given by ωref = ω0 (1− γ0), where ω0 is the center frequency of the rotating frame.

For 2D measurements, a value γ0 = 0 results in a peak position around the origin.
In cases where it is unclear whether a certain nonlinear contribution is unambigu-
ously extracted, one can also apply a partially rotating frame with 0 < γ0 < 1.
The contributions are hereby shifted from the origin to their respective quadrants,
enabling distinguishability.

Scan schemes

The usefulness of shot-to-shot sampling for transient absorption spectroscopy has
been proven in a direct comparison between various modes of averaging [89]. This
demonstrated that measurement times can be reduced dramatically under appropri-
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ate conditions, and thus shot-to-shot rapid sampling is also beneficial in 2D spec-
troscopy.

An insightful analysis of different 2D data-acquisition schemes and the influence
on the signal-to-noise ratio and measurement time has been provided by the Zanni
group [86]. They found that shot-to-shot data acquisition reduces the measurement
time by a factor of 13 for reaching the same signal-to-noise ratio, and attributed this
circumstance to the higher correlation between subsequent laser pulses.

20



3 Experimental implementation

This chapter shall describe the experimental setup and the implementation of ex-
isting techniques. The main setup is set out in section 3.1. The implementation
and limitations of the used pulse shaper are explained in section 3.2. White-light
generation methods via noncollinear optical parametric amplification and filamenta-
tion in a hollow-core fiber are compared and qualitatively discussed in section 3.3.
In section 3.4, the requirements and possible issues concerning signal detection are
considered. Artifacts that can occur due to data analysis, the pulse shaper and the
applied photodetector are discussed in section 3.5.

3.1 Experimental setup

The experimental setup is shown in fig. 3.1. Some parts varied for the population-
evolution one-quantum experiments (see chapter 4) and the two-quantum experi-
ments (see chapter 5). Nevertheless, the beam path and working principle was the
same for all 2D experiments. For clarity, the setup is therefore described in general
in this section. When providing values, the respective values for chapter 5 will be
given in square brackets.

The laser source was a commercial Ti:Sa amplifier system (Spitfire, Spectra Physics),
that generates 120 fs [35 fs] pulses centered at 800 nm with a repetition rate of 1 kHz.
1 mJ [400 µJ] of this beam was used to create white light via noncollinear optical
parametrical amplification (TOPAS, Light Conversion), or an argon-filled hollow-
core fiber (HCF, UltraFast Innovations), respectively. Optionally, the incoupling
of the 800 nm beam could be improved by utilizing an active beam stabilization
system (Aligna, TEM Messtechnik GmbH). Active pulse-shaping, including pulse
compression and multi-pulse-sequence generation on a 1 kHz shot-to-shot basis was
performed with an acousto-optical programmable dispersive filter (AOPDF) (Daz-
zler, Fastlite). Before entering the Dazzler, the short pulses of variable frequencies
had been pre-compressed by a single-prism compressor [1, 79] or a dual grism com-
pressor [2] in order to correct for the positive group-delay dispersion of 20000 fs2 that
is introduced by the Dazzler crystal.

The pulses were characterized and compressed close to the bandwidth limit via
pulse-shaper-assisted collinear frequency-resolved optical gating (cFROG) [78]. For
the 2D experiments, four-pulse [three-pulse] trains have been generated by the Daz-
zler and focused into a capillary-type flow cell with square cross section (250 ×
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Figure 3.1: General setup. Setup for rapid-scan 2D fluorescence spectroscopy, con-
sisting of a Ti:Sa laser, white light generation via nonlinear optical para-
metrical amplification (NOPA) or hollow-core fibre (HCf), respectively, a
precompression unit (prism or grism compressor), a pulse shaper and an
avalanche photodiode (APD). The core item is the pulse shaper based on
an acousto-optical programmable dispersive filter (AOPDF), facilitating
compression of the incoming pulses as well as the generation of multiple-
pulse sequences with arbitrary phases and delays on a shot-to-shot basis.
Adapted and modified from [1].

250 µm2, 131.310-QS, Hellma) and four polished sides, with a focus diameter of
60 µm. The focus diameter has been determined using a web cam. In order to provide
fresh sample molecules for each shot, the sample was pumped through the capillary
using a micro annular gear pump (mzr-2942-cy, HNP Mikrosysteme GmbH). The
actual measurement signal was fluorescence, which has been collected with a com-
bination of two 0.25 NA microscope objectives (04OAS010, CVI Melles Griot) and
imaged on a 0.22 NA multimode glass fiber with a core diameter of 400 µm (QP400-
2-SR, Ocean Optics). The signal has been measured in a 90° angle with respect to
the excitation beam. Since the excitation polarization was set in the direction of the
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fluorescence detection, this geometry enabled scattering prevention.

The glass fiber can be used to lead the fluorescence signal to a freely selectable de-
tection device. We used a spectrometer (HR 4000, Ocean Optics) to confirm that only
fluorescence signal is detected without scattering contributions from the excitation
light. For the 2D measurements, a sensitive avalanche photodiode (APD) (A-Cube
S500-3, Laser Components) [APD410A2, Thorlabs] was used while attenuating the
signal to a level which was still in the linear detection regime with absorptive neutral
density filters (FS-3R, Newport). The signals were digitized with a data acquisition
unit (ADQ14, Signal Processing Devices Sweden AB) and processed on a personal
computer. The data-analysis process is described in detail in chapter 4.

The setup is fully collinear with no movable parts like, e. g., translation stages,
offering an inherent phase stability and an easy alignment.

3.2 Pulse shaper implementation

Pulse shaping plays a pivotal role for this work, since all inter-pulse phases and delays
are generated with an AOPDF. The principles of pulse shaping have been described
in the previous chapter in section 2.3.2, including active (via the AOPDF) and passive
(via prism and grism compression) approaches. In the following, we provide a short
software and experimental implementation overview in order to provide the user basis
for the 2D experiments in the following chapters 4 and 5.

Shaping window

The maximum delay is limited by the Dazzler crystal size to 8000 fs. This limit can
be reached in case of perfectly pre-compressed pulses by prism or grism compression
(see section 2.3.2). In this case, however, the peak intensities become very high at
a certain position in the Dazzler crystal, decreasing the overall shaping efficiency
dramatically. Furthermore, artifacts in the 2D spectrum can occur, deriving from
shaper nonlinearities at these peak intensities. These artifacts will be discussed in
section 3.5.2. Coherence times in liquid-phase 2D experiments usually decay within
few hundreds of femtoseconds or less [6]. Thus, it is not necessary to use the full
shaping window of 8000 fs. The optimum solution rather includes a balance between
shaping window and shaping efficiency in order to provide both a sufficient delay
range and pulse energy. If one wants to investigate longer population times, one could
combine two AOPDFs and sample the population time via a mechanical delay stage
[90,91]. That approach offers the possibility of additional polarization pulse shaping
at the cost of giving up the single-beam-path geometry and inherent phase stability
between all four pulses. Phase drifts could still be compensated automatically in
such an arrangement using the pulse shapers [92].
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Calibration procedure

The intensity of the acoustical wave at each crystal position has to be calibrated in
order to ensure a constant output intensity over the shaping window. The calibration
is very sensitive to changes in the beam incoupling and thus the beam path through
the crystal. The procedure is described in detail in [83].

Briefly, a second-order phase of −100 fs2 was applied while all other phase terms
were set to zero, and the acoustical wave was moved incrementally through the
crystal, corresponding to a movement of the optical output pulse in time. The small
phase term grants a high spatial resolution, since the acoustical wave then covers only
a small part of the crystal. The output spectra were recorded with a spectrometer,
ensuring that the spectral shape was constant and enabling to integrate the spectra
for further data processing. The integrated spectra were fitted polynomially, yielding
a correction factor for each crystal position. The correction factors were applied via
the commercial Dazzler software.

Software implementation

The commercial Dazzler software allows the generation of completely customized and
arbitrary wave forms with full amplitude and phase control. It is possible to either
apply a constant wave form or to vary the wave forms with a 1 kHz shot-to-shot rate
in the advanced sequence mode.

The desired pulses or pulse sequences are defined by the user and transferred to
the Dazzler software, where the acoustical waves are calculated that are necessary
to realize the desired output. The pulse definition can be carried out numerically or
polynomially.

With the numerical working mode, an array with a numerical amplitude and phase
for each wavelength is transferred to the Dazzler software. With the polynomial
mode, an array with information on the number of pulses, their central wavelength,
spectral width, absolute phase and phase coefficients from first to fourth order of the
Taylor series in equation (2.22) is transferred to the Dazzler software, out of which
the numerical amplitude and phase for each wavelength component are calculated by
the Dazzler software. The phase coefficients can be retrieved from a polynomial fit
of the experimentally determined phases from cFROG measurements. The precision
of the numerical mode is naturally higher, because each wavelength component can
be adjusted directly without a polynomial fit as an error source. Nevertheless, it
is apparent that significantly less memory is needed for the polynomial transfer,
since vastly less values need to be transferred. Given a required wavelength range
of > 100 nm with a resolution of 0.2 nm, the numerical approach is quite memory-
expensive.

This becomes crucial when not only a specific wave form is supposed to be em-
ployed, but sequences of wave forms, as is done in 2D experiments. On a 32 bit
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3.3 Comparison of white-light generation methods

basis we observed that it was possible to stream only < 1000 wave forms with the
numerical approach, while with the polynomial approach > 100000 wave forms were
feasible. For 2D experiments with phase cycling, a large amount of wave forms have
to be streamed continuously. Accordingly, the polynomial approach has been applied
for all experiments. The performance of the setup concerning the amount of stream-
able wave forms can be improved significantly by employing a 64 bit system in the
future.

Trigger scheme

In the advanced sequence mode, an exact synchronization is essential for a cor-
rect data acquisition. The previously calculated waveforms for a measurement are
streamed in a sequence consisting of cycles. The Dazzler sends a trigger every ms,
and a gate signal when streaming a sequence, or a cycle, respectively. A logical gate
box combines gate and Dazzler trigger, forwarding only the trigger signals when a
sequence is streamed. The digitizer card has been programmed such that it records
exactly the amount of previously defined waveforms when receiving trigger signals.

3.3 Comparison of white-light generation methods

A tunable pulse source is important for applicability to a broad range of molecules
with different absorption frequencies. Which pulse-generation technique is most suit-
able depends on various parameters which will be discussed in this section.

If one wants to excite multiple electronic transitions at once, a broadband spectrum
is indispensable. Increasing the spectral bandwidth additionally offers a higher time
resolution.

The spectral shape of the linear excitation spectrum has an influence on the mea-
sured 2D spectra. A smooth Gaussian spectral shape facilitates data analysis while
it can be difficult to differentiate between peaks deriving from molecular response
and those deriving from a modulated excitation spectrum.

The TOPAS offers smooth Gaussian spectral shapes with the drawback of limited
broadness due to a naturally limited spatio-temporal overlap in the nonlinear crystal.
The HCF offers very broad spectra with non-Gaussian spectral shapes. A possibility
of disentangling the influences of molecular response and spectral shape on the 2D
spectrum is given by the use of simulations which we present in chapter 5.

Long-term stability is important for data acquisition that requires a high amount
of averaging, i. e., for weak signal intensities. This can be ensured by active beam
stabilization which we used for the experiments in chapter 5.

We could achieve maximum pulse energies at the sample position of ∼ 100 nJ
when using the TOPAS, and ∼ 60 nJ with the HCF. However, third- (or higher)
order nonlinear contributions require a high energy density at the transition fre-
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Figure 3.2: Laser spectra. The grey area depicts the HCF spectrum in the visible
regime, corresponding to 477− 689 nm. The red (green) curve shows the
chosen TOPAS (HCF) spectrum after the pulse shaper.

quency. Measuring the pulse energy for a whole spectrum therefore has only limited
meaningfulness to determine if the excitation energy is sufficient at the transition
frequency.

Figure 3.2 depicts the linear spectra that were generated via TOPAS (red) and
HCF (green) after passing the pulse shaper. The total spectral range of the HCF
is broader [74], but could not be used completely due to the limited pulse-shaping
window of the Dazzler.

Summarizing, the HCF is more suited for experiments where coupling between
electronic states is to be observed, as well as for experiments that require a high
time resolution, while using the the TOPAS is more appropriate when pulse ener-
gies at specific frequencies are needed. In perspective, the HCF will be suitable for
multi-color spectroscopy, where a pulse sequence consists of pulses with varying cen-
ter frequency [93]. Considering two-environment experiments that apply the same
pulse sequence to liquid and gas-phase samples simultaneously, pulse generation via
TOPAS seems to be the method of choice due to the higher achievable pulse energies.

As mentioned before, the pulse characterization and compression to near-bandwidth
limit has been performed via cFROG. Using the Dazzler, a double pulse was created
and the delay between the pulses was incremented in 1 fs steps from −300 fs to 300 fs
in a partly rotating frame with γ0 = 0.3.
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3.4 Signal Detection

3.4 Signal Detection

This section will provide information about the requirements of the detection unit.
Furthermore, ensuring detector linearity is described and supported with correspond-
ing measurements that have to be carried out before the 2D experiments.

Detector requirements

The measured incoherent fluorescence signal includes a broad range of signal con-
tributions stemming from the observed molecular ensemble. The desired third-order
signal is small compared to the static first-order contribution to the total fluorescence
signal. Hence, the dynamic detector range should be as large as possible.

Since the possibility of acquiring all information without averaging in the 2D ex-
periments is desirable, the detector must not be a photon-counting device, but rather
detect many photons at once and enable a quantification via signal integration. By
integrating over many photons, all of the ensemble responses can be obtained after
one shot of each wave form.

The small probe volume of 60× 60× 250 µm3 necessitates a high sensitivity, both
absolute and frequency-dependent. This becomes especially important in perspective,
when molecules with a low quantum quantum yield or low concentrations are to be
investigated. Additionally, a large part of the induced fluorescence signal is lost
because one can only collect it from one direction.

We utilized APDs that fulfill the listed requirements; for the experiments presented
in chapter 4 we used the A-Cube S500-3 by Laser Components, and for those in
chapter 5 the APD410A2 by Thorlabs. We switched to the APD410A2 because it
reveals sensitivity also in the UV, which enhances the possible observation spectrum.
Additionally it offers a higher dynamic range as will be shown in the following section.

Linearity check

The most precise way to check for detector linearity is to increment the attenuation
via a fixed polarizer and a λ/2-plate which is rotated by an automatized rotation
mount and fit the resulting sine curve. The condition for that approach is a po-
larized light source. Additionally, since every detector has a frequency-dependent
sensitivity, the linearity has to be checked in the frequency regime of the fluorescence
signal. In order to check for the (non-)linearity in the specific frequency regime of
the fluorescence signal, the method is unsuitable due to the isotropic nature of flu-
orescence. In the optimized fluorescence-collection setup there is no space for two
polarizers and a λ/2-plate, which could circumvent the isotropic issue.

Since for the linearity measurement and the 2D experiment the same geometrical
properties are desirable, we chose a different solution, which is not as precise as the
automatized approach with respect to the intensity resolution. However, the chosen
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method probes the linearity for the exact frequency that later is detected in the
actual experiment.

For that purpose, the setup was used as described in section 3.1, with the pulse
shaper set to a constant radio-frequency (RF) intensity to generate a constant flu-
orescence intensity of the molecules of interest. The pulse shaper’s RF intensity
and by that the induced fluorescence intensity was set such that the APD is in the
saturation regime, with the digitizer parameters being set to the same values as
in the 2D experiments (compare 4.1.2). The linearity measurements were carried
out by placing different combinations of absorptive neutral density filters (FS-3R,
Newport) between the two microscope objectives for incremental attenuation of the
collected fluorescence. For each attenuation increment the intensity at the detec-
tor was measured and averaged for 10 s. The resulting linearity curves for the two
utilized APDs (A-Cube S500-3, Laser Components and APD410A2, Thorlabs) are
provided in fig. 3.3. The x-axis values are calculated relative intensities with 1 for no
attenuation with a highly saturated detector. It is apparent that the upper thresh-
old of the linear regime is limited to a value of ∼ 80000 and ∼ 100000, respectively.
A discussion of nonlinear detector effects is provided in section 3.5.3, as well as a
suggestion for data correction when measuring beyond the linear regime.
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3.5 Artifact sources and correction

3.5 Artifact sources and correction

There are several artifact sources to consider for fluorescence-detected 2D spec-
troscopy. This section will list the observed artifacts, explain their origin, and show
how to either avoid or correct them.

3.5.1 Fourier-transformation artifact
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Figure 3.4: Time-domain data correction according to trapezoidal rule [53]. Time
domain data of rephasing and nonrephasing 1Q contribution (top) and
resulting absorptive 2D spectra (bottom) before (left) and after correction
(right). The cross artifact in the absorptive 2D spectrum disappears
after data correction, leaving only the features that stem from molecular
response. The data is adopted from the experiment in chapter 4.

The following artifact discussion is adapted from a textbook by Hamm [53]. Ob-
taining 2D frequency spectra from time-domain data requires a subsequent Fourier
transformation. Given the finite amount of sampling points N along both coherence
time axes τ and t, the Fourier transform is discrete. The measured signals are single-
sided response functions which have large values for τ = 0 and t = 0 but a value of
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zero for τ, t < 0, leading to a strong discontinuity. The effect of this discontinuity
is illustrated by the cross artifact in the 2D absorption spectrum on the left side of
fig. 3.4. The data is taken from the data set that will be presented and discussed in
chapter 4.

Small sampling sizes lead to large artifacts, which is the case for the given sampling
size of Nτ = Nt = 15. The resulting cross artifact along both axes is clearly visible
and can be attributed to the error of the discrete Fourier transformation as discussed
above. It is obvious that there should be no signal along the axes, because there is
neither molecular absorption nor laser spectrum at these energies (see fig. 3.2).

In order to account for this effect, we used the trapezoidal rule [94], according
to which the first and last summands of the discrete Fourier transform have to be
multiplied by 1/2. For the given case, this means applying the correction factor of
1/2 on the time-domain data for all points with τ = 0 and t = 0 (i. e. 1/4 for
τ = t = 0), visible in the time domain data on the top right of fig. 3.4. The bottom
right side of fig. 3.4 illustrates how the cross artifact in the 2D absorptive spectrum
disappeared, leaving only the actual signal amplitude 6= 0. This correction scheme
has been applied for all data analyses in chapters 4 and 5.

3.5.2 Pulse-shaper artifact

Depending on the specific wave-form parameters (i. e. RF intensity and phase
coefficients), a characteristic artifact pattern can occur in the obtained 2D spectra.

For illustration, fig. 3.5 a) shows the time (top) and frequency (bottom) domain
data of the rephasing contribution for increasing RF intensities from RF= 0.02 to
RF=0.10 with a specific wave-form-parameter set. The measurement was carried out
on cresyl violet following the procedure described later in chapter 4. When inspecting
the time domain data, it is clearly visible that the amplitude in the region for which
the nonlinear signal should have decayed cannot be attributed to molecular response,
and that this artifact is increasing with increasing RF intensity. The impact on the
frequency maps is a narrowing of the signal peak and an introduction of wiggles.

The artifact originates from pulse-shaper nonlinearities as can be shown by simula-
tions of a photodiode response. For that purpose, the spectral interference E(j, n,m)
of three pulses in a three-pulse sequence was simulated via

E(j, n,m) =
(
E(ω)e−iφ1,j+ω + E(ω)e−iφ2,j+ωτn + E(ω)e−iφ3,j+ω(τn+tm)

)1.1
, (3.1)

with an identical central frequency ω, their respective phases φi and coherence times
τ and t. Index j describes the phase-cycling increment and indices n and m describe
the respective coherence time increments of τ and t. For the 2D map, the spectral
interferences were calculated according to the experimental phase-cycling scheme and
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Figure 3.5: a) Pulse-shaper artifact with increasing RF intensity from RF= 0.02 (left)
to RF= 0.10 (right). The diagonal artifact in the time-domain maps in-
creases (top), causing a spectral narrowing and the introduction of wiggles
in the frequency-domain maps (bottom). The spectra are individually
normalized to their maximum absolute value. b) Simulation of a pho-
todiode response to the respective pulse sequence including pulse-shaper
nonlinearity.

coherence-time incrementation. The intensity Idet at the detector was modeled via

Idet(j, n,m) =
∑
j,n,m

E(j, n,m) · E(j, n,m)∗. (3.2)

The red-marked exponent in eq. (3.1) is responsible for the artifact in the simulated
2D maps that are shown in fig. 3.5 b). Without that exponent, one would expect
perfect cancellation of the photodiode responses after weighting.

The RF dependency suggests that it is desirable to keep the RF intensity to a
minimum. There are two issues with that argumentation, though. First, even with
very low RF intensities there can be a dominant artifact, depending on the other
parameters. This especially holds for the case of high peak intensities in the Dazzler
crystal, i. e., when the phase coefficients have low values. However, low phase coef-
ficients are desirable in order to obtain a maximum delay-shaping window. Second,
one often needs a high excitation energy and thus a high shaping efficiency in order
to observe a nonlinear molecular response in population-based 2D spectroscopy.

In cases where it is not possible to keep the RF intensity low enough to avoid the
pulse-shaper nonlinearities while still being able to obtain the desired nonlinear sig-
nal, it is necessary to correct the artifact. Our observations show that this especially
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applies when using the HCF due to the lower pulse energy at specific frequencies
when compared to the TOPAS.

One possibility for artifact correction is an amplitude correction for each pulse com-
bination in a 2D pulse sequence [83]. However, this method is very time-consuming
in the common case where there are several thousand different wave forms that have
to be corrected.

Another possibility is the acquisition of an additional 2D data set where the exci-
tation pulses are attenuated by a high factor of, e. g., 1000 before the sample, but
after the pulse shaper [95]. This low-power measurement can then be taken as a refer-
ence to subtract the artifact from the high-power measurement. The idea is that the
pulse-shaper nonlinearities are the same in both measurements while the nonlinear
molecular response can only be obtained by the high-power measurement. The inten-
sity at the detector has to be the same in order to exclude additional detector-related
artifacts (see next section). This circumstance requires a highly sensitive detector,
because it diminishes the effective sensitivity for the complete measurement including
the correction by the attenuation factor above.

For the results that are presented in this work, none of the two correction schemes
have been applied. In the 1Q experiments in chapter 4 the artifact was negligibly
small thanks to a high pulse energy from the TOPAS and consequently low necessary
RF intensities. The artifact could also be neglected for 2Q spectroscopy in chapter 5
because experimentally it is only visible in the rephasing 1Q contribution. Neverthe-
less, the correction schemes might be useful for future experiments and therefore are
pointed out for the sake of completeness.

3.5.3 Detector artifact

Especially for weak nonlinear signals like the 2Q contribution it is important to ensure
that the acquired signals originate from the molecular response. It can be shown that
detector artifacts can occur that resemble the desired molecular response.

The origin of this effect can be simulated by calculating all spectral interferences
for a pulse sequence analogously to eq. (3.1) without an exponent as follows:

E(j, n,m) =
(
E(ω)e−iφ1,j+ω + E(ω)e−iφ2,j+ωτn + E(ω)e−iφ3,j+ω(τn+tm)

)
, (3.3)

The nonlinearity of the detector intensity Idet is then introduced by the exponent
marked in red via

Idet(j, n,m) =

(∑
j,n,m

E(j, n,m) · E(j, n,m)∗

)0.9

. (3.4)

It is therefore of immense importance to stay in the linear detector range. As
an additional test if the signal in measured 2D spectra originates from the mea-
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sured molecules, one can perform high- and low power measurements as described in
the precedent section 3.5.2. A comparison of the non-normalized weighted 2D signals
should reveal that the high-power measurement exhibits higher absolute signal ampli-
tude, with the optimum case that there is only noise in the low-power measurement.
Following this procedure, we validated that the data in chapter 5 originated from the
molecules and supported this conclusion with simulations. For the data presented
in chapter 4, we took the reproduction of a reported quantum beating frequency as
proof that the signals indeed stemmed from molecular response and not a saturated
detector.

However, for very weak signal contributions or for molecules, where multiple av-
eraging is not possible due to a high degradation rate, obtaining these contributions
while staying in the linear detector regime may not always be possible. As will be
shown in the following chapter, most of the signals in a 2D measurement are far away
from the nonlinearity threshold, if the maximum signal of a measurement is adjusted
such that it is close to this threshold. Enhancing the intensity of the major part of
signals closer to the threshold potentially increases the signal-to-noise ratio with the
drawback of partial nonlinear detector effects.

We therefore suggest a correction scheme for the raw data. During a 2D measure-
ment a signal p(τ, T, t, β, γ, δ) is acquired with a specific intensity at the detector
Idet(p) for each pulse combination.

As shown in fig. 3.3, the integrated fluorescence signal at the detector Idet can
be plotted against the illumination intensity Iill, which corresponds to the actual
intensity at the detector with arbitrary unit. The first step of the correction procedure
is to apply a linear regression to the linear regime of the linearity curve Idet, yielding
the equation for the optimum intensity Ilin(Iill) at the detector in the linear case.
Additionally an appropriate fit (e. g. polynomial) is applied to the nonlinear regime
of the linearity curve, yielding Idet(Iill).

The dependency can be inverted to Iill(Idet) by swapping the axes and again fitting
the resulting curve with an appropriate fit function. For every measured signal Idet(p)
in a 2D experiment it is then possible to determine the expected illumination intensity
Iill, with which the corrected signal value can be obtained by inserting into the linear
fit equation Ilin(Iill).

3.6 Summary

We presented a setup for single-beam fluorescence-detected 2D spectroscopy with no
movable parts like, e. g., mechanical delay stages. The single-beam geometry offers
the advantage of compactness, inherent phase stability and ease of alignment. The
collinear excitation-pulse sequences can be arbitrarily generated with a commercial
AOPDF on a 1 kHz shot-to-shot basis. We discussed the implementation of the pulse
shaper, and concluded that a polynomial phase adjustment is beneficial in the current
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setup configuration for shot-to-shot pulse-sequence variation. White-light generation
via NOPA and HCF has been compared and their respective advantages concerning
spectral broadness and pulse energies have been evaluated. For fluorescence detec-
tion, we determined the dynamic detector range. Finally, artifact sources have been
identified that may arise from different sources, including data processing, the pulse
shaper and the detector, and correction procedures for all artifact types have been
provided.
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4 One-Quantum Two-Dimensional
Spectroscopy

As a proof-of-principle experiment, a 2D measurement series was conducted using
commercially available cresyl violet (Radiant Dyes GmbH) in ethanol with a con-
centration of 0.1 mM at ambient conditions. Cresyl violet is a well-characterized
laser dye that exhibits an oscillatory behavior during the population time. Ultra-
short pulses were generated by the TOPAS and shaped to pulse sequences via the
Dazzler. As discussed in section 3.3, the TOPAS offers a stable and intense white-
light generation with the drawback of a limited bandwidth compared to a HCF. The
TOPAS bandwidth is not sufficiently broad to access different electronic states, but
enough to access the vibrational sublevels that are responsible for the oscillatory be-
havior of cresyl violet. Consequently, a four-pulse sequence is well suited in order to
validate the technique. For clarity, the whole data acquisition and analysis process
is described in section 4.1. A major advantage of the presented setup is the rapid
data acquisition granted by 1 kHz shot-to-shot pulse incrementation via the Daz-
zler and signal detection via an APD. The opportunity of acquisition-time reduction
is discussed quantitatively in section 4.2, followed by a summary of the findings in
section 4.3. The results of this experiment have been published in Optics Express [1].

4.1 Data acquisition and analysis

Since there are several steps between data acquisition and final analysis, it seems vital
to list every step in order to identify possible error sources as well as to ensure reliable
and reproducible results. Possible error sources are of interest for the identification
and correction of artifacts, which have been discussed in section 3.5.

4.1.1 Experimental parameter settings

As set out in section 2.2.2, a 1× 3× 3× 3 = 27-fold phase-cycling scheme is needed
in order to obtain the rephasing and nonrephasing 1Q nonlinear contributions in a
four-pulse 2D experiment. The phase differences ∆φi1 between pulse i and pulse
1 were cycled through 0, 2/3π and 4/3π. The number of sampling points along
the coherence time axes τ and t could be significantly reduced by employment of
a rotating-frame environment while still fulfilling the Shannon-Nyquist limit (see
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section 2.3.2). The data acquisition in a completely rotating frame with γ0 = 0,
centered at the excitation spectrum maximum at 2.10 eV, enabled us to sample the
coherence times in 15 steps of 6 fs from 0 to 84 fs, yielding a total of 225 wave
forms for coherence-time scanning. Combined with the 27 phase-cycling steps this
resulted in 6075 different wave forms for a complete 2D spectrum. Additionally, the
time evolution during population time T was measured in 31 steps of 10 fs from 0 to
300 fs. Consequently, the entire 2D data set was covered by a total of 188325 different
pulse combinations. For improvement of signal-to-noise, the measurement has been
repeated 400 times for averaging. Shot-to-shot temporal pulse shifting and phase
cycling was performed by the Dazzler with a 1 kHz repetition rate. The acquisition
time for a 2D spectrum including all nonlinear contributions at one population time
thus took 6 s and 3 min for all 31 population-time increments.

4.1.2 Fluorescence signal
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Figure 4.1: Fluorescence signal decay in time after molecule interaction with an ex-
emplary single pulse sequence. The red highlighted areas correspond to
the ROIs with a size of 8 µs for noise background (left) and fluorescence
signal (right).

The fluorescence intensity of the investigated molecules after interacting with a
multi-pulse sequence is depending on the phase relations of and time delays between
the pulses of this multi-pulse sequence. The fluorescence signal has a certain life-
time and since fluorescence-signal integration rather than photon counting has been
applied in this work, it is worth to take a look at the fluorescence decay in time.
Figure 4.1 shows an exemplary APD (A-Cube S500-3, Laser Components) signal of
fluorescence decay in time after the ensemble interaction with an exemplary pulse
sequence.

In order to determine the fluorescence intensity, two regions of interest (ROIs)
were selected, with the background ROI (left) being subtracted from the peak ROI
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4.1 Data acquisition and analysis

(right). The ROIs had the same size of 0.8µs, ensuring that the whole signal was
included. The background-free fluorescence signal was integrated and used for further
processing.

It is vital that the integrated signal lies below the nonlinearity threshold of the
detector which has been obtained as described in section 3.4. For intensity adjustment
at the APD, a pulse sequence with maximum pulse overlap has been applied to
the molecular sample, corresponding to the maximum pulse intensity during the
2D experiment. This maximum fluorescence signal intensity was then attenuated
with neutral density filters (OD = 2.6 − 3.0, depending on the excitation-pulse
energy) to below the threshold of 80000. Note that the necessity of attenuating the
fluorescence signal of cresyl violet implies the applicability of the setup to fluorophores
with a far lower fluorescence quantum yield or with lower concentrations. For a
similar concentration and in case of a similar extinction coefficient at the excitation
frequency, this means that a fluorescence quantum yield of down to 0.05% would be
sufficient to be detected with the present setup, given the cresyl violet fluorescence
quantum yield of ≈ 50% [96]. Peak jittering is determined to be not measurable with
the time resolution of the digitizer card and thus can be neglected.

4.1.3 Raw time domain data

The time-domain data acquisition is naturally carried out in a one-dimensional fash-
ion, meaning that all different increment steps are acquired in a row. For all 2D
experiments in this work, the incrementing is the same: first the phase cycling, sec-
ond the coherence time scanning, third the population time scanning (only in the
current chapter), and finally the repetition of the scheme in order to improve data
quality via averaging. As described in section 2.3.2, this scheme ensures the most
economic data acquisition.
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Figure 4.2: Quadratic scan scheme.

Since most of the signal is located around the
origin of a 2D spectrum, a quadratic instead
of a linear coherence-time scanning can further
improve the signal-to-noise ratio per measure-
ment and thus reduce the acquisition time. The
quadratic scan scheme is illustrated in fig. 4.2,
where i|j refers to the delay combination of τi
and tj. Every additional increment along both
axes improves the spectral resolution. A detailed
evaluation of error evolution is carried out in sec-
tion 4.2.

Figure 4.3 a) shows the one-dimensional raw
data set for all 31 population times. The inspec-
tion of this data is important to check whether all values are in the linear regime
of the detector (see sections 3.4 and 3.5.3). It is apparent that the data is in the
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Figure 4.3: Raw data of integrated fluorescence signals. a) 1D raw data of the com-
plete data set using the most economic scan scheme after averaging 400 ×
before reshaping to 2D spectra. The x-axis corresponds to the increment
step, the y-axis corresponds to the respective integrated signal intensity.
b) Raw data for an exemplary population time T = 50 fs. It is apparent
that the integrated signals are well below the nonlinearity threshold. c)
2D raw data for population time T = 50 fs. The single maps correspond
to the 27 phase-cycling steps with coherence time τ on the x-axis and t on
the y-axis. Note that the signal is relatively high for all increments due
to the lack of negative interference contributions in fully rotating-frame
environment.

linear regime; a large part of the data is even far below the nonlinearity threshold
and closer to the noise floor than to the nonlinear regime. It has to be considered
that most of the obtained fluorescence signal derives from an interaction of molecules
with pulses that are not in the desired time-ordering or with a number of pulses 6= 4.
The fluorescence signal stemming from the desired fourth-order populations, that are
induced by light-matter interaction with the defined pulse sequence in the right time
ordering, are significantly less intense and lie on top of this static fluorescence. If the
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4.1 Data acquisition and analysis

signals are too close to the noise floor, the desired signal may become negligibly small
and hard to extract. For the sake of a beneficial signal-to-noise ratio it is therefore
important to make use of the whole linear detector range. This circumstance has to
be considered when adjusting the fluorescence attenuation in front of the detector.
As apparent from fig. 4.3 a) and b), the linearity range has not completely been ex-
ploited for later population times. For weak contributions, one could therefore also
go beyond the linear regime for small population times in order to use the full linear
detector range for higher population times. The data part that is affected by detector
nonlinearity can then either be dismissed or corrected as discussed in section 3.5.3.

Reshaping the one-dimensional data set into 27 × 31× two-dimensional data sets
yields the time-domain data for each phase-cycling and population-time increment.
Figure 4.3 c) shows the 27 phase-cycling maps at T = 50 fs. The values of the
individual pixels are relatively high due to the fully rotating-frame environment. As
described in section 2.3.2, a fully rotating frame reduces the oscillating signal decay
to a simple signal decay to the static fluorescence baseline.

4.1.4 Phase-cycled 2D maps in time and frequency

Weighting the phase-cycling steps according to eq. (2.17) yields the rephasing (β =
−1, γ = 1 and δ = −1) and nonrephasing (β = −1, γ = 1 and δ = −1) contributions
in time domain. Note that the data becomes complex-valued due to the discrete
Fourier transformation of the phase-cycling procedure. The respective absolute-
valued, real and imaginary parts of these contributions are shown in fig. 4.4 a).
A signal concentration at the origin for both the rephasing and nonrephasing con-
tribution is apparent, substantiating the benefit of a quadratic coherence-time scan
scheme.

After data correction according to the trapezoidal rule as described in section 3.5.1,
the weighted time-domain data is Fourier transformed with five-fold zero padding,
yielding the 2D frequency domain spectra shown in fig. 4.4 b). The measurement
in the fully rotating frame, centered at 2.10 eV, which corresponds to the maxi-
mum of the excitation spectrum, leads to a location of the 2D spectrum around the
origin. The peak sign of the real part is negative, resulting from an odd amount of
interactions from the right side of the Feynman diagram as discussed in section 2.2.2.

4.1.5 2D absorptive spectra and time evolution

The purely absorptive 2D spectrum for each population time is obtained by summing
up the real parts of the rephasing and nonrephasing contribution after an inversion of
the ~ωτ axis of the rephasing contribution. In order to evaluate physically meaningful
peak positions, the spectra have to be shifted by 2.10 eV. This corresponds to the
center of the rotating frame and enables a direct comparison with measurements that
have been carried out in the laboratory frame. A selection of absorptive 2D spectra
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Figure 4.4: Absolute-valued, real-valued and imaginary 2D maps of rephasing (top)
and nonrephasing (bottom) 1Q contributions after phase cycling in time
(a) and frequency domain (b).
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Figure 4.5: a) Purely absorptive 2D spectra at selected population times (0 fs, 60 fs,
120 fs, 180 fs, 240 fs, 300 fs). The spectra are normalized to the maximum
absolute value of the absorptive map at T = 0 fs. b) Time evolution of the
signal integrated over the region of interest marked with a green square
in a). Adapted and modified from [1].

for varying population times are shown in fig. 4.5 a). We observe an off-diagonal
beating behavior. The oscillations can be analyzed by integrating a region of interest
for each population-time step, an example of which is given in fig. 4.5 b). Fourier
transform of this oscillation yields a wavenumber of 625 cm−1. Similar frequencies of
585–595 cm−1 have been reported in literature [74,97–100] and can be attributed to
a Raman mode of cresyle violet [101].
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4.2 Error evolution
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Figure 4.6: a) Absorptive 2D spectra at a population time of T = 50 fs for varying
amounts of averaging, from left to right: 1×, 10×, 400×, normalized
individually for each plot to the maximum value. The normalization
factor is further adjusted in the evaluation of the error for each A such
that e(A) is minimized. The color code is used analogously to fig. 4.5. b)
Error e(A) of the absorptive 2D maps for various amounts of averaging
A with respect to the absorptive 2D map using A = 400 as a reference
(blue) and expected errors for Gaussian statistics with e(A) = e(A=1)√

A

(red). Adapted and modified from [1].

The precedent analysis has been conducted with a data set that has been averaged
400 times. Less averaging is also possible, though, and thereby a significant decrease
of data-acquisition time. In order to evaluate the signal-to-noise-ratio evolution with
increasing averaging steps, we assumed that the data set with 400× averaging has a
negligible error, thus constitutes the optimum result and therefore can be taken as a
reference for the error evaluation. The quantitative error of a 2D spectrum consisting
of X×X pixels with an amplitude of xij in column i and row j after A-fold averaging
can then be calculated via

e(A) =

[
1

X2

X∑
i,j=1

|xij(A)− xij(A = 400)|2
]1/2

. (4.1)

Figure 4.6 a) shows 2D spectra at a population time of 50 fs for different amounts
of averaging. Even without averaging (left) the relevant features of the 2D spectrum
are visible already. Applying eq. (4.1), the error evolution of 2D spectra as a function
of averaging steps is depicted as a blue curve in fig. 4.6 b). The red curve represents
the expected error evolution for Gaussian statistics. 10-fold averaging is sufficient
to obtain an error of < 0.05. Taking into account the acquisition time of 6 s for
a single 2D spectrum, this yields a measurement time of 10 × 6 s = 1 min for all
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15×15 coherence times and 27 phase-cycling steps. This constitutes an improvement
in acquisition time by a factor of 40 compared to an acquisition time of 400× 6 s =
40 min, while still obtaining the same information.

4.3 Summary

A detailed description of data acquisition and analysis has been presented for a
collinear fluorescence-detected 2D setup. Employing phase cycling enabled us to
gather various contributions from one single data set. Literature values of quantum-
beating behavior of cresyl violet could be reproduced, yielding a wave number of
625 cm−1. By using the rotating-frame environment and 1 kHz shot-to-shot pulse
incrementation, it was possible to obtain a 2D spectrum in 6 s. The error evaluation
revealed that 1 min of acquisition time (10× averaging) is sufficient to obtain a root-
mean-square error of < 0.05 compared to 400× averaging. The rapid data acquisition
makes this method suited for molecules that undergo fast degradation.
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Having proven that the setup is working in chapter 4, we extended it to broadband
excitation by utilizing an argon-filled hollow-core fiber for white-light generation.
Using a broadband excitation enables to excite more electronic transitions at once
and additionally improves the time resolution which is important to resolve fast-
oscillating signals like 2Q coherences. A three-pulse sequence with 16-fold phase
cycling has been applied on cresyl violet (Radiant Dyes GmbH) in ethanol with a
concentration of 0.1 mM at ambient conditions in order to measure 1Q, 2Q and 1Q-
2Q coherence contributions at once. The experimental parameters are described in
section 5.1. We show and discuss the first fluorescence-detected 2Q experiment and
the first experimental data of a 1Q-2Q contribution in section 5.3. The results are
validated with simulations in section 5.3, and the effects of the excitation spectrum
and relaxation-channel distribution on line shapes and the general interpretation of
2D spectra are discussed in section 5.2. Both 2Q contributions and simulations are
used for the determination of the correlation energy ∆. The results and findings have
been published in the Journal of Physical Chemistry Letters [2].

5.1 Experimental parameter settings

The general data acquisition and analysis procedure followed the description in chap-
ter 4. Given the application of a three-pulse sequence instead of a four-pulse sequence,
we here used a 1×4×4 = 16-fold phase-cycling scheme in order to obtain the rephas-
ing 1Q, 2Q, and 1Q-2Q contributions simultaneously [62]. The phase differences ∆φi1
were cycled through 0, 1/2π, π and 3/2π. 2Q coherences oscillate with double the
frequency of 1Q coherences, demanding a higher sampling rate of the coherence times
τ and t. We therefore incremented τ and t in 31 3 fs steps from 0 to 90 fs each while
measuring in a completely rotating-frame environment. The pulses had a center fre-
quency of 2.10 eV with a duration of 12 fs, determined via cFROG. The excitation
spectrum is shown in fig. 5.1 a). A complete data set containing the mentioned non-
linear contributions took 16 s of acquisition time. However, since the 2Q and 1Q-2Q
contributions exhibit an overall smaller signal strength than the 1Q contribution and
for improvement of data quality, we performed 2000× averaging.
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Figure 5.1: a) Linear absorption (green) and fluorescence (red) of cresyl violet per-
chlorate (0.1 mM) in ethanol (absorption maximum at 2.06 eV, fluores-
cence maximum at 1.98 eV). The excitation spectrum (grey) was mea-
sured behind the AOPDF. b) Energy level scheme of a model system with
electronic states |g〉, |e〉, |f〉, vibrational sublevels |e′〉 and |f ′〉, and |erel〉
corresponding to the relaxed state from which fluorescence (red arrow)
occurs after solvent-shell relaxation. Possible excitations are indicated by
green arrows. ∆ = ~ωfg − 2~ωeg is the correlation energy. c) Feynman
diagrams for 2Q (blue) and 1Q-2Q (red) Liouville pathways. Adopted
and modified from [2].
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5.2 Simulations

5.2 Simulations

A drawback of the broadband HCF excitation is the non-Gaussian spectral shape as
mentioned in section 3.3. In order to distinguish between molecular features and fea-
tures deriving from excitation spectrum, simulations can deliver important insights.
Furthermore, a quantitative interpretation of experimental findings is enabled.

For theses purposes, we solved for different electronic systems the Lindblad quan-
tum master equation [102], according to eq. (2.4),

∂

∂t
ρ(t′) = − i

~
[H(t′), ρ(t′)] +

∑
j

1

Tj

(
Ljρ(t′)L†j −

1

2
L†jLjρ(t′)− 1

2
ρ(t′)L†jLj

)
, (5.1)

with the time-dependent density matrix ρ(t′), Lindblad operators L†j and Lj, and
time constant Tj of a specific dissipation process j. H(t′) is expressed as the sum of

a time-independent Hamiltonian H0 = ~ωm
∑M

m |m〉 〈m| and an interaction Hamil-
tonian HI(t

′) = γexE(t)
∑

m 6=n γmn (|m〉 〈n|+ |n〉 〈m|), where the overall coupling γex
of the external field E(t) was set to 0.015. Parameter γmn describes the transition
strength between a pair |m〉 and |n〉 and was partly extracted from the linear absorp-
tion spectrum and partly used as a parameter to adjust the simulations.The Lindblad
operators L†j and Lj account for environmental effects via dephasing and popula-
tion relaxation. The simulations have been carried out using a program package in
MatLab R2017b that had been programmed by Tristan Kenneweg and modified by
Matthias Hensen and Stefan Mueller.

The influence of pathway cancellation on the distinction ability between 2Q and
1Q-2Q spectra is discussed in subsection 5.2.1. Subsection 5.2.2 provides information
about simulation parameters and model assumptions for the simulations that are used
to interpret the experimental results in section 5.3. In subsection 5.2.3, the influence
of the excitation spectrum on simulation results is examined and compared with
experimental results in order to further optimize the simulation method to fit the
experimental data.

5.2.1 Influence of fluorescence quantum yield

Figure 5.1 b) illustrates Feynman diagrams of possible 2Q and 1Q-2Q Liouville path-
ways in an electronic three-level system with a ground state |g〉, an excited state |e〉
and a two-quantum state |f〉. Inspection of the pathways Q1, Q2 and Q3 leads to
several conclusions:

First, pathways Q1 and Q2 end up in a population of |e〉, while pathway Q3 has a
final population of |f〉. Considering Kasha’s rule, the fluorescence should only occur
from |e〉 for most molecules [66]. Thus, the final population of Q3 has to undergo
relaxation to |e〉 in order to be measurable with our method. In case of a complete
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nonradiative transition |f〉 → 〈g|, i. e., Φfluo,Q3 = 0, pathway Q3 will not contribute
to the total signal.

Second, pathways Q1 and Q3 probe the same coherences of |f〉 〈g| and |f〉 〈e| for the
2Q and |e〉 〈g| and |f〉 〈g| for the 1Q-2Q case, respectively. Given the different sign
of the pathways, an equal contribution of Q1 and Q3 will lead to their cancellation,
leaving only pathway Q2 with a negative sign. A complete signal cancellation of all
pathways for equal transition energies like in the noncollinear geometry [47] is not
possible, though.

Third, the 2Q contribution probes a coherence that is not probed with 1Q-2Q,
namely the |f〉 〈e| coherence. This in principle enables easier interpretation of 1Q-
2Q spectra, since there are less coherences that can convolute [62]. Table 5.1 lists
the possible coherences contained in 2Q and 1Q-2Q contributions.

Probed coherences Pathway 2Q 1Q-2Q

|e〉 〈g| −Q1 X
−Q2 X X
+Q3 X

|f〉 〈g| −Q1 X X
−Q2 X X
+Q3 X X

|f〉 〈e| −Q1 X
−Q2

+Q3 X

Table 5.1: Probed coherences for 2Q and 1Q-2Q pathways of a three-level system. In
case a coherence can be probed with 2Q or 1Q-2Q, the respective pathway
is marked with an X.

In order to evaluate and verify the prior conclusions, we conducted a series of
simulations of an electronic three-level system, which is the simplest model that can
exhibit 2Q coherences. It consists of quantum states |g〉, |e〉 and |f〉 with slightly
differing transition energies of ~ωeg = 2.00 eV and of ~ωfe = 2.05 with assumed
transition strengths γeg = γfe. The pure dephasing constants were set to T deg =
40 fs and T dfg = T dfe = 20 fs. The simulated 2D experiment was carried out with
the sampling parameters from section 5.1. As excitation sequence we applied three
bandwidth-limited Gaussian pulses with a duration of 10 fs (FWHM) and a central
energy of 2.05 eV each.

We simulated the 2Q and 1Q-2Q signals for indirectQ3 fluorescence quantum yields
of Φfluo,Q3 = 0%, Φfluo,Q3 = 50%, and Φfluo,Q3 ≈ 90%. In accordance to Kasha’s rule,
we allowed only fluorescence from |e〉, with a direct quantum yield of Φfluo,|e〉 = 100%
for simplicity. Hence, transition |e〉 → 〈g| corresponds to fluorescence emission while
transitions |f〉 → 〈g| and |f〉 → 〈e| are nonradiative. The fluorescence quantum
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5.2 Simulations

Figure 5.2: Influence of fluorescence quantum yield Φfluo,|f〉 on absolute-valued simu-
lated 2Q and 1Q-2Q spectra for a) Φfluo,Q3 = 0%, b) Φfluo,Q3 = 50%, and
c) Φfluo,Q3 ≈ 90%. For each subfigure, the right panel depicts the sim-
ulated excitation spectrum (grey) and the normalized projections along
the 2Q axis of the 2Q (blue) and 1Q-2Q (red) contribution. The dashed
lines indicate the transition energies ~ωeg and ~ωfe. It is apparent that
the difference in peak positions vanishes due to pathway cancellation with
increasing involvement of pathway Q3. Adopted from Supporting Infor-
mation of [2].
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yield of pathway Q3 was then adjusted by varying the population-relaxation time
constants for the |f〉 → 〈g| and |f〉 → 〈e| transitions. Allowing only the |f〉 → 〈g|
relaxation channel leads to Φfluo,Q3 = 0%. Adding a relaxation channel |f〉 → 〈e|
with the same population relaxation time constant, i. e., a ratio of 1 : 1 yields
Φfluo,Q3 = 50%. Increasing the time constant of |f〉 → 〈e| by a factor of 10 leads to
a ratio of 10 : 1 and Φfluo,Q3 ≈ 90%.

Figure 5.2 illustrates the results of the simulation series. With no contribution
of Q3 to the fluorescence signal, i. e., a complete nonradiative relaxation, the 2Q
and 1Q-2Q signals are well distinguishable (fig. 5.2 a)). It is clearly visible that the
1Q-2Q spectrum is less congested for this case. Nevertheless, even with only half
the |f〉 population relaxing nonradiatively to the ground state |g〉, the differences
between 2Q and 1Q-2Q become less visible (fig. 5.2 b)), vanishing almost completely
for Φfluo,Q3 ≈ 90% (fig. 5.2 c)) due to pathway cancellation.

1Q-2Q spectroscopy therefore seems to be most useful for molecular systems that
exhibit high nonradiative relaxation from higher electronic states, e. g., in the pres-
ence of conical intersections in particular and for systems with a high density of states
in general, that exhibit a high amount of relaxation channels. In this case multiple
features are expected in a 2Q signal compared to a 1Q-2Q spectrum, potentially
hindering an unambiguous interpretation.

Another detail of the simulation series worth noting is that the peak position of the
projections of both 2D spectra onto the mutual 1Q domains is offset to the expected
transition energy ~ωeg = 2.00 eV by ∼ 0.025 eV (see right panels of fig. 5.2). We
furthermore observe a tail towards higher frequencies, especially along the 1Q axes,
for both the 2Q and 1Q-2Q signals, which can be attributed to finite-pulse-duration
effects that have been discussed for noncollinear 2D spectroscopy [57,58]. This laser-
pulling effect has to be considered when interpreting 2D spectra since it can lead
to inaccurate conclusion if the exact energy detuning is not known. Reconstructing
the experimental data with simulations offers the opportunity to include these effects
among others and facilitates an accurate quantitative spectra interpretation.

5.2.2 Simulation parameters for modeling of experimental data

For reproduction of the experimental data, we considered an electronic three-level
monomer system with ground state |g〉, singly excited state |e〉 and doubly excited
state |f〉. We further assumed vibrational sublevels |e′〉 and |f ′〉 and an additional
sublevel |erel〉, representing the excited state vibrational ground state after solvent-
shell relaxation and thus the model is invoking the dynamic Stokes shift. For an
illustration of the applied model system see fig. 5.1 c).

The assumption of excited-state vibrational sublevels is necessary, because organic
dyes exhibit vibrational progression [98]. Furthermore, it has been shown that the
vibronic structure influences the line shapes of 2Q 2D spectra [44, 47]. In contrast,
the vibrationally excited ground state can be neglected since it is not involved in any
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2Q Liouville pathway. Inertial solvent-shell relaxation reportedly takes place during
a few tens of femtoseconds in ethanol [103–105].

We applied eq. (5.1) with the density-matrix elements ρ =
∑M

m

∑N
n Pmn |m〉 〈n|

with m,n ∈ {g, erel, e, e
′, f, f ′}. The energies were set to Eg = 0 eV, Eerel = 2.020 eV,

Ee = 2.058 eV, Ee′ = 2.203 eV, Ef = 4.237 eV and Ef ′ = 4.382 eV. Ee and Ee′ had
been determined from fitting the linear absorption spectrum with three Gaussian
absorption peaks, of which the two main peaks were considered to be relevant for a
simple modeling of the linear absorption. Eerel can be determined by Ee minus half
the Stokes shift energy. The same energy spacing between |e〉 and |e′〉 was assumed
for |f〉 and |f ′〉, i. e. equal excited-state vibrational frequencies [47].

For determination of Ef and Ef ′ , a simulation series has been carried out with an
initial value of Ef = 2·Ee+∆, where ∆ is the correlation energy shift ∆exp as obtained
from the experimental data. The value of ∆ was then varied in a systematic manner
in order to find the best fit for the experimental data. For this purpose, the resulting
simulated real parts of the 2Q and 1Q-2Q 2D spectra have been compared with the
experimental data via root-mean-square deviation analysis according to eq. (4.1).
The optimum result ∆ = 121 meV was used for further simulations, yielding the
above values of Ef and Ef ′ .

Taking the square root of the normalized linear absorption spectrum (see fig. 5.1 a))
at ~ωeg = 2.058 eV and ~ωe′g = 2.203 eV yields γeg = 1.0 and γe′g = 0.72 as the
individual relative transition strengths γmn of the interaction Hamiltonian HI(t

′).

For adjusting the transition strengths of the excited-state absorption |e〉 → |f〉
and |e′〉 → |f ′〉, we systematically varied γef and γe′f ′ and found that the optimum
reproduction quality is given for γef = 2.0 and γe′f ′ = 2.0.

For the employed six-level model system, the Lindblad operators L†j and Lj are

6 × 6 matrices. The dephasing processes are accounted for with Ldephj = |m〉 〈m| +
(−1) |n〉 〈n|, while the population relaxations are given by Lrelj = |m〉 〈n|. The matrix
entries in Lrelj are all zero except the ket-bra for the desired transition, where the
matrix entry is unity.

Via adjusting the time constants Tj for pure dephasing and population relaxation
processes between levels it is possible to fit the peak amplitudes and line shapes of
the experimental 2D spectra. The population-relaxation time constants T pmn were
set to T perelg = 3.2 ns, which is a typical fluorescence lifetime [106], T peerel = 10 fs,
T pe′e = T pf ′f = 100 fs and T pfe = T pf ′e′ = T pfg = T pf ′g = 200 fs. These parameters result
in a Q3 fluorescence quantum yield of ΦQ3,f luo = 50%. Pure dephasing time constants
T dmn were set to T deg = T deerel = 10 fs and T derelg = T de′g = T dfg = T df ′g = T de′erel = T de′e =

T dfe = T df ′e′ = T df ′f = 80 fs.

The simulated fluorescence signal was then obtained by calculating the integrated
density matrix element Tr{|erel〉 〈erel|} after the interaction of a simulated pulse se-
quence that corresponded to the experimental pulse sequence, which has been de-
scribed in section 5.1.
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5.2.3 Influence of excitation spectrum

As shown in subsection 5.2.1, the excitation spectrum has a non-negligible influence
on the 2D signal shapes. The experimental excitation spectrum shows modulation
(see fig. 5.1 a), which can additionally disguise the molecular signals and complicate
a correct data interpretation. In order to evaluate the influence of the spectral shape
on the obtained 2D data, we performed a simulation with the actual laser spectrum
and a simulation with a super-Gaussian fit of the laser spectrum and compared them
with the experimental data. The simulations were carried out with the parameter
set from subsection 5.2.2 and assuming a flat phase.

Figure 5.3: Influence of excitation spectrum on real-valued 2Q (top) and 1Q-2Q (bot-
tom) 2D spectra. Experimental spectra (left), simulated spectra with
super-Gaussian fit of the excitation spectrum (middle), simulated spectra
with the measured excitation spectrum (right). Adopted from Supporting
Information of [2].

Figure 5.3 illustrates the results of the comparison. The row-shaped features of
the experimental data are reproduced by both simulation approaches, leading to
the conclusion that they predominantly arise from molecular response and not the
laser spectrum alone. However, a peak splitting of the diagonal peak is observed for
the simulation with the measured laser spectrum. Since it is not present in either
the experimental data or the super-Gaussian simulation, this can be attributed to
uncertainties in measuring the linear excitation spectrum.
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5.3 Data analysis

A root-mean-square-deviation analysis applying eq. (4.1) revealed that the simula-
tion with the real laser spectrum fits the experimental data better than the simulation
with a super-Gaussian fit. Therefore, the simulation results employing the measured
laser spectrum are considered in the analysis section below.

5.3 Data analysis
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Figure 5.4: Experimental and simulated 2Q 2D (a) and 1Q-2Q (b) spectra of cresyl
violet in ethanol, both shown in absolute (top) and real values (bottom),
normalized to the highest absolute value of each plot. The diagonal of
the spectrum is marked with a line at ~ωτ = 2~ωt (a) and ~ωt = 2~ωτ
(b). Distinct features (A-C) are marked in the real-valued spectra. All
plots are drawn with nine contour lines. (c, d) Integrated 1Q projections
of 2Q and 1Q-2Q spectra (both normalized to the same absolute value)
from experimental (c) and simulated (d) absolute-valued data. Adopted
from [2].

The experiment was conducted following the procedure described in chapter 4 with
the parameters given in section 5.1. Via eq. (2.18) the 2Q contribution was extracted
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5 Two-Quantum Two-Dimensional Spectroscopy

from the raw data with weighting factors −β and −γ, and the 1Q-2Q contribution
with +β and −2γ, respectively. The rephasing 1Q contribution can also be extracted
from the same data set (+2β, −γ), but is neglected in this chapter.

Figure 5.4 a) shows the absolute value (top) and real part (bottom) of experimen-
tal (left) and simulated (right) 2Q spectra. In contrast to coherence-detected 2D
spectroscopy, there is no nonresonant solvent response nor any scattering contribu-
tion visible [51]. All features in the presented spectra can be attributed to molecular
response that is convoluted with the employed laser spectrum, which tremendously
facilitates the interpretation.

There are two row-shaped peaks visible in the absolute-valued spectrum at ~ωt =
2.089 eV and ~ωt = 2.195 eV. These signals correspond to the two vibrational
sublevels of the singly excited state, |e〉 and |e′〉, that are also present in the linear
absorption spectrum. The peak amplitudes, however, are inverted with respect to the
expected amplitudes from the linear absorption spectrum. This may seem counter-
intuitive at first glance, but can be simulated by incorporating in the electronic three-
level model a solvent-shell relaxation along the bath coordinate to the fluorescent
state from |e〉 to |erel〉 (see section 5.2.2 and fig. 5.1 b)). We employed a time constant
of 10 fs for this transition. Similar time constants for solvent-shell relaxation have
been reported for other molecular systems [104,105].

The peaks are elongated along the 2Q axis ~ωτ because 2Q coherences dephase
with a higher rate than 1Q coherences. As expected after inspection of the involved
Liouville pathways and discussed in section 5.2.1, only negative contributions are
present in the experimental and simulated real-valued spectra. The small positive
features are part of the phase-twisted line shapes and thus do not represent any
additional Liouville pathways [46].

The absolute value (top) and real part (bottom) of experimental (left) and simu-
lated (right) 1Q-2Q spectra are depicted in fig. 5.4 b). For easier comparison with
the 2Q spectra, the frequency axes are swapped such that the 2Q axis is represented
by the x-axis in both cases.

As set out in section 5.2.1, one would expect more peaks in the 2Q spectrum than
in the 1Q-2Q spectrum. This conclusion holds even more if vibrational sublevels are
involved as is the case here. Nevertheless, we also showed that pathway cancellation
between Q1 and Q3 can diminish the effect dramatically. Given the similarity be-
tween the observed 2Q and 1Q-2Q spectra, we conclude that there is indeed a high
contribution of Q3 to the overall signal due to high internal conversion efficiency from
|f〉 into the fluorescent state |e〉.

An additional effect that can diminish the differentiation between 2Q and 1Q-2Q
spectra is a similar energy spacing between the vibrational sublevels of the respective
electronic states. Comparison of the projections of the absolute-valued contributions
onto the 1Q axis of the 2Q and 1Q-2Q spectra in figures 5.4 c) and 5.4 d) reveals
that peak intensity of the high-energy region is higher in the case of 2Q. We therefore
assume that ωe′g ≈ ωfe ≈ ωf ′e′ , leaving the only distinguishable 1Q frequencies ωeg
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and ωe′g ≈ ωfe ≈ ωf ′e′ .
Peaks A and C are then assigned to 2Q frequencies ωfg and peak B to ωf ′g. The

2Q frequencies are correlated to the corresponding 1Q frequencies ωeg (peak A) and
ωe′g ≈ ωfe ≈ ωf ′e′ (peaks B and C). Table 5.2 lists the possible 1Q and 2Q coherence
combinations and provides an assignment to the observable peaks. It is apparent that
the 1Q-2Q spectrum would indeed be less congested without the above mentioned
effects.

2Q axis
|f〉 〈g| |f ′〉 〈g|

1Q axis

|e〉 〈g| A
|e′〉 〈g| C B
|f〉 〈e| C B
|f ′〉 〈e′| C B

Table 5.2: 2Q and 1Q coherence contributions to peaks in the 2Q and 1Q-2Q spectra.
Black letters correspond to signals that are supposed to be visible in the 2Q
and 1Q-2Q spectra, red letters correspond to signals that are obtainable
via 2Q only.

Determination of correlation energy

Under the assumption that peak A corresponds to pathwayQ2, we determined ∆exp ≈
~ωfg−2~ωeg = 111 meV from both 2Q and 1Q-2Q spectra, which is in fair agreement
with literature on coherence-detected 2Q 2D spectroscopy (94± 5 meV) [44,47]. We
then used this value as a starting parameter for a simulation series where we varied ∆
and compared the results with the experimental spectra as discussed in section 5.2.2.
This approach accounts for uncertainties caused by finite-pulse-duration effects [57,
58] and by profile modulations of the excitation spectrum (see section 5.2.3). The
optimum value was determined to be ∆ = 121 meV.

5.4 Summary

We performed the first experimental fluorescence-detected 2Q 2D experiment and
the first experimental obtaining of the theoretically predicted 1Q-2Q contribution.
The presented method circumvents the issue of nonresonant solvent response and
scattering, which are inherent in coherence-detected 2Q 2D spectroscopy, by the use
of fluorescence as observable. By employing phase cycling, no additional phasing
procedure is needed that eventually complicates the data interpretation in the com-
mon nonlinear geometry. We applied the method to the well-investigated laser dye
cresyl violet in ethanol and compared the results with simulations of a simple six-
level system. The combination of experiment and systematic simulations enabled us
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5 Two-Quantum Two-Dimensional Spectroscopy

to estimate the time constant of solvent-shell relaxation and to determine an opti-
mum value of the correlation energy ∆ = 121 meV, which is in fair agreement with
literature (94 ± 5 meV) [44, 47]. Furthermore, we discussed the effects of pathway
cancellation and concluded, that 1Q-2Q 2D spectroscopy will potentially facilitate
quantitative analysis for molecular systems that exhibit a strong nonradiative relax-
ation from higher electronic states. The method has been successfully applied to
other molecular systems, e. g. Rhodamine 700 [3].
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6 Summary

In the last two decades, coherent multidimensional femtosecond spectroscopy has be-
come a powerful and versatile tool to investigate chemical dynamics of a broad variety
of quantum systems. The combination of transient information, equivalent to pump-
probe spectroscopy, with information about coupling between energetic states and the
system environment allows an extensive insight into atomic and molecular properties.
Many experimental 2D setups employ the coherence-detected approach, where non-
linear system responses are emitted as coherent electric fields which are detected after
spatial separation from the excitation pulses. As an alternative to this experimen-
tally demanding approach, population-based 2D spectroscopy has been established.
Here, the coherent information is encoded in the phases of a collinear excitation-pulse
train and extracted from incoherent signals like fluorescence via phase cycling. In
principle, the use of fluorescence as observable can boost the sensitivity down to the
single-molecule level.

The aim of this work was the realization of a pulse-shaper assisted fully collinear
fluorescence-detected 2D setup and the conducting of proof-of-principle experiments
in the liquid phase. This inherently phase-stable and compact setup has been pre-
sented in chapter 3, with the utilized pulse shaper granting amplitude and phase
modulation on a shot-to-shot basis. Two different types of white-light sources have
been applied and evaluated with regard to their respective advantages for 2D fluo-
rescence spectroscopy. A variety of artifact sources that can occur with the present
setup have been discussed, and correction schemes and instructions for avoiding these
artifacts have been provided.

In chapter 4, the setup has been demonstrated by employing a four-pulse sequence
on cresyl violet in ethanol. A detailed data-acquisition and data-analysis procedure
has been presented, where phase cycling is used for extraction of the nonlinear contri-
butions. Depending on the phase-cycling scheme, it is possible to recover all nonlinear
contributions in a single measurement. Well-known quantum-beating behavior of cre-
syl violet during the population time could be reproduced. Due to measuring in a
rotating-frame environment and 1 kHz shot-to-shot pulse incrementation, it was pos-
sible to obtain a 2D spectrum for one population time in 6 s. Via error evaluation it
has been shown that 10× averaging (1 min) is sufficient to obtain a root-mean-square
error of < 0.05 compared to 400× averaging, proving that the utilized acquisition
scheme is well suited.

The realization of the first experimental fluorescence-detected 2Q 2D experiment
and the first experimental access to the theoretically predicted 1Q-2Q contribution
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6 Summary

have been presented in chapter 5. For that purpose, a three-pulse sequence has been
employed on cresyl violet in ethanol, and the experimental results have been com-
pared with simulations of a simple six-level system. In contrast to coherence-detected
2Q 2D spectroscopy, no nonresonant solvent response and scattering contributions are
visible with the presented setup and no additional phasing procedure is needed. Via
a combination of experiment and systematic simulations, information about solvent-
shell relaxation and the correlation energy were gained. On the basis of simulations,
pathway cancellation effects have been discussed, concluding that 1Q-2Q 2D spec-
troscopy will potentially facilitate quantitative analysis for molecular systems that
exhibit a strong nonradiative relaxation from higher electronic states.

Summarizing, with the presented method it is possible to acquire all nonlinear con-
tributions with rapid data acquisition and a setup that is easy to align. The demon-
strated proof-of-principle experiments constitute an extension of the 2D spectroscopic
tool palette, and provide a profound basis for future applications like multidimen-
sional spectroscopy, multi-color 2D spectroscopy or the combination of simultaneous
liquid and gas-phase 2D experiments.
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7 Zusammenfassung

In den letzten zwei Jahrzehnten hat sich die kohärente mehrdimensionale Femtosekun-
den-Spektroskopie zu einem leistungsstarken und vielseitigen Instrument zur Unter-
suchung der chemischen Dynamik einer Vielzahl von Quantensystemen entwickelt.
Die Kombination von transienten Informationen, die der Anrege-Abrage-Spektros-
kopie entsprechen, mit Informationen zur Kopplung zwischen energetischen Zustän-
den und der Systemumgebung ermöglicht einen umfassenden Einblick in atomare
und molekulare Eigenschaften. Viele experimentelle 2D-Aufbauten verwenden den
kohä-renzdetektierten Ansatz, bei dem nichtlineare Systemantworten als kohärente
elektrische Felder emittiert und rumlich getrennt von den Anregungspulsen detektiert
werden. Als Alternative zu diesem experimentell anspruchsvollen Ansatz wurde die
populationsbasierte 2D-Spektroskopie etabliert. Hier wird die kohärente Information
in den Phasen einer kollinearen Anregungspulsfolge codiert und aus inkohärenten
Signalen wie Fluoreszenz über Phase Cycling extrahiert. Grundsätzlich kann durch
die Verwendung von Fluoreszenz als Observable eine Sensitivität bis zum Einzelmo-
lekülniveau erreicht werden.

Ziel dieser Arbeit war die Realisierung eines pulsformergestützten vollständig kol-
linearen fluoreszenzdetektierten 2D-Aufbaus und die Durchführung von Proof-of-
Principle-Experimenten in der Flüssigphase. Dieser inhärent phasenstabile und kom-
pakte Aufbau wurde in Kapitel 3 vorgestellt. Der verwendete Pulsformer ermöglicht
eine Amplituden- und Phasenmodulation von Schuss zu Schuss. Zwei verschiede-
ne Arten von Weilichtquellen wurden angewendet und hinsichtlich ihrer jeweiligen
Vorteile für die 2D-Fluoreszenzspektroskopie bewertet. Eine Vielzahl von Artefakt-
quellen, die mit dem vorliegenden Aufbau auftreten können, wurden diskutiert und
Korrekturschemata und Anweisungen zur Vermeidung dieser Artefakte bereitgestellt.

In Kapitel 4 wurde der Aufbau anhand einer Vierpulssequenz mit Cresylviolett
in Ethanol demonstriert. Es wurde ein detailliertes Datenerfassungs- und Datenana-
lyseverfahren vorgestellt, bei dem Phase Cycling zur Extraktion der nichtlinearen
Beiträge verwendet wird. Abhängig vom Phase Cycling-Schema ist es möglich, al-
le nichtlinearen Beiträge in einer einzigen Messung aufzudecken. Literaturbekannte
Oszillationen von Cresylviolett während der Populationszeit konnten reproduziert
werden. Aufgrund der Messung in einer Umgebung im Rotating Frame und einer
1 kHz Schuss-zu-Schuss Pulsinkrementierung war es möglich, ein 2D-Spektrum für
eine Populationszeit in 6 s zu erhalten. Eine Fehlerevaluierung hat gezeigt, dass eine
zehnfache Mittelwertbildung (1 min) ausreicht, um eine mittlere quadratische Ab-
weichung von < 0.05 gegenüber einer 400-fachen Mittelwertbildung zu erhalten, was
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7 Zusammenfassung

beweist, dass das verwendete Messschema gut geeignet ist.
Die Realisierung des ersten experimentellen fluoreszenzdetektierten 2Q-2D-Experi-

ments und der erste experimentelle Zugang zum theoretisch vorhergesagten 1Q-2Q-
Beitrag wurden in Kapitel 5 vorgestellt. Zu diesem Zweck wurde eine Dreipulssequenz
auf Cresylviolett in Ethanol angewendet und die experimentellen Ergebnisse wurden
mit Simulationen eines einfachen Sechs-Level-Systems verglichen. Im Gegensatz zur
kohärenzdetektierten 2Q-2D-Spektroskopie sind bei dem vorgestellten Aufbau keine
nichtresonanten Lösungsmittelsignale und Streuungsbeiträge sichtbar und es ist kein
zusätzliches Phasing-Verfahren erforderlich. Durch eine Kombination aus Experimen-
ten und systematischen Simulationen wurden Informationen über die Relaxation der
Lösungsmittelhülle und die Korrelationsenergie gewonnen. Auf der Basis von Simu-
lationen wurden Effekte der Pfadauslöschung diskutiert, die darauf schlieen lassen,
dass die 1Q-2Q-2D-Spektroskopie möglicherweise die quantitative Analyse für mo-
lekulare Systeme erleichtert, die eine starke nichtstrahlende Relaxation aus höheren
elektronischen Zuständen aufweisen.

Zusammenfassend ist es mit der vorgestellten Methode möglich, alle nichtlinea-
ren Beiträge mit einer schnellen Datenaufnahme und einem einfach einzurichtenden
Aufbau zu erfassen. Die gezeigten Proof-of-Principle-Experimente stellen eine Erwei-
terung der 2D-Spektroskopie-Werkzeugpalette dar und bieten eine fundierte Grund-
lage für zukünftige Anwendungen wie mehrdimensionale Spektroskopie, mehrfarbige
2D-Spektroskopie oder die Kombination von simultanen Flüssig- und Gasphasen-2D-
Experimenten.
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