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In T cells, as in all other cells of the body, sphingolipids form important structural

components of membranes. Due to metabolic modifications, sphingolipids additionally

play an active part in the signaling of cell surface receptors of T cells like the T cell

receptor or the co-stimulatory molecule CD28. Moreover, the sphingolipid composition of

their membranes crucially affects the integrity and function of subcellular compartments

such as the lysosome. Previously, studying sphingolipid metabolism has been severely

hampered by the limited number of analytical methods/model systems available. Besides

well-established high resolution mass spectrometry new tools are now available like

novel minimally modified sphingolipid subspecies for click chemistry as well as recently

generated mouse mutants with deficiencies/overexpression of sphingolipid-modifying

enzymes. Making use of these tools we and others discovered that the sphingolipid

sphingomyelin is metabolized to ceramide to different degrees in distinct T cell

subpopulations of mice and humans. This knowledge has already been translated into

novel immunomodulatory approaches in mice and will in the future hopefully also be

applicable to humans. In this paper we are, thus, summarizing the most recent findings

on the impact of sphingolipid metabolism on T cell activation, differentiation, and effector

functions. Moreover, we are discussing the therapeutic concepts arising from these

insights and drugs or drug candidates which are already in clinical use or could be

developed for clinical use in patients with diseases as distant as major depression and

chronic viral infection.
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INTRODUCTION

Subsets of T cells are major contributors to adaptive immunity. In particular, CD4+ T helper and
CD8+ T cells either crucially orchestrate adaptive immune response or are direct mediators of
e.g., anti-viral immunity, respectively. In order to be able to fulfill these tasks T cell precursors
have to run through a stringent process of positive and negative selection within the thymus
[reviewed in (1)]. However, it has been clear for decades that the process of negative selection does
not completely eliminate maturing autoreactive T cells. This means that also in healthy human
individuals autoreactive T cells can be detected (2–5) which, however, only cause autoimmune
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diseases like multiple sclerosis in very few people. One reason for
this is that the thymus also generates so-called regulatory CD4+

T cells—a process coined the “third function” of the thymus (6).
These regulatory T cells (Treg) develop and are maintained

under the control of the transcription factor Foxp3 (7–9).
Expression of Foxp3 endows maturing T cells with an increased
robustness toward negative selection (10). Therefore, Foxp3+

CD4+ Treg leaving the thymus display a high degree of
autoreactivity (11, 12). By employing a wide array of molecular
mechansims Treg prevent autoreactive and autoaggressive
conventional CD4+ T helper (CD4+ Tconv) and CD8+ T cells
from attacking healthy tissue which would otherwise lead to
autoimmune disease [reviewed in (13)].

In conditions under which a protective adaptive immune
response is crucial for the host to survive, mechanisms need to
be in place which neutralize Treg-mediated immunosuppression
[reviewed in (13)]. A key mechanism here is the recognition
of pathogen-associated molecular patterns (PAMPs) via pattern
recognition receptors (PRR) like Toll-like receptors expressed by
cells of innate immunity like dendritic cells (DC) [reviewed in
(14)]. This leads to an upregulation of costimulatory molecules
like CD80 and CD86 on the surface of DC, which will trigger
CD28 costimulation of CD4+ Tconv. By this they will escape
suppression by Treg (15–17). As these signals are spatially and
timely restricted, i.e., only present in lymph nodes draining an
infection site, Treg-mediated immunosuppression will only be
neutralized there, whereas in other tissues Treg will continue to
be able to mediate protection from autoimmunity.

Unfortunately, “overshooting” or unwanted adaptive immune
responses are not always prevented successfully. This will then
lead to different forms of T [reviewed in (18–20)] or B cell-
mediated autoimmunity [reviewed in (21, 22)].

Apart from mediating protective immunity and inducing
autoimmune diseases causing a substantial amount of morbidity
and mortality, T cells have been recognized to play an important
role in maintaining or restoring tissue homeostasis after muscle
damage (23), myocardial infarction (24–26) or stroke (27).

To fulfill all these different tasks, T cells in general mainly rely
on signals which they receive through cell surface receptors. As
such these receptors are, of course, in close contact with lipids
forming the cell membrane. About 30% of phospholipids in the
plasma membrane belong to so-called sphingolipids [reviewed in
(28)]. The importance of sphingolipids for T cell function stems
from the fact that they are not inert molecular species, but that
they are subject to metabolization [reviewed in (29)] and are
altered depending on the differentiation state and function of
the cells. This means e.g., that the most complex sphingolipid
sphingomyelin (consisting of a number of species with different
fatty acid chain lengths) can be reversibly cleaved into ceramides
and phosphocholine (Figure 1). Ceramide molecules have the
propensity to self-aggregate, thus, forming so-called ceramide-
rich platforms [reviewed in (31)]. Ceramides may, however,
also be further metabolized into sphingosine and fatty acids.
Sphingosine may then be phosphorylated to sphingosine-1-
phosphate which has very wide-ranging biological activities
mediated by a set of five different cell surface receptors, but
also by direct interaction with signaling molecules inside cells

[reviewed in (32)]. Finally, sphingosine may also be cleaved
into phosphoethanolamine and hexadecenal marking the only
non-reversible step in sphingolipid metabolism (Figure 1).

The different steps in the meta-(cata-)bolism of
sphingomyelin and its breakdown products are catalyzed
by a whole array of different enzymes. Localization of these
enzymes in different cellular compartments and the modulation
of their enzymatic activity upon T cell activation mean that their
biology is very complex. One key mediator of sphingomyelin
breakdown is the acid sphingomyelinase (mouse: Asm; human:
ASM). In resting T cells the Asm is localized in the inner leaflet
of the lysosomal membrane where the presence of Zn2+ ions
and the acidic pH ensure optimal enzymatic activity [reviewed
in (29)]. Upon activation of certain cell surface receptors,
including CD28 (33) and CD95 (34) via monoclonal antibodies,
Asm activity in lysosomes is increased and lysosomes fuse with
the cell membrane, thus exposing the Asm on the cell surface
where it might still be able to catalyze sphingomyelin cleavage
[reviewed in (29)]. Another important sphingomyelinase whose
role in T cell biology is not yet fully understood is the neutral
sphingomyelinase 2 (mouse: Nsm2; human: NSM2). In contrast
to the Asm, the Nsm2 localizes to the inner leaflet of the plasma
membrane and the cytoplasmic side of the Golgi membrane,
where it can get activated without being translocated to another
cellular compartment (35–38). Stimuli activating the Nsm2
include isolated TCR or TCR and CD28 costimulation via
monoclonal antibodies (39).

Apart frommeta- and catabolism sphingolipid concentrations
in cellular membranes are, of course, also regulated by de
novo sphingolipid generation. The “hub” of sphingolipid de
novo synthesis is ceramide [reviewed in (30)] with six different
ceramide synthases catalyzing the generation of the various
ceramide species in the endoplasmic reticulum [reviewed
in (30, 40)].

CD8+ T CELLS

Having passed thymic selection mature, MHC class I-restricted,
CD8+ T cells leave the thymus and migrate to secondary
lymphoid organs, i.e., predominantly lymph nodes and spleen.
To ensure tight immunological control of the whole body,
naïve (CD8+) T cells constantly recirculate through the
lymphatic/blood system—a process crucially regulated by high
concentrations of sphingosine-1-phosphate in efferent lymph
and blood [reviewed in (32)].

After encounter of antigen and appropriate costimulation,
CD8+ T cells differentiate into cytotoxic T lymphocytes (CTL)
expressing lytic granules [reviewed in (41)]. Upon recognition of
foreign peptides on MHC class I molecules by the CTL’s TCR
the CTL will release the content of the lytic granules toward
the target cell, i.e., into the synaptic cleft between both cells.
Lytic granules contain granzymes and perforin which generates
pores in the target cell’s membrane through which granzymes can
enter the cytoplasm and induce apoptosis by activating caspases
[reviewed in (42)]. Upon fusion of the lytic granules with the cell
membrane not only proteins like LAMP-1 which is expressed on
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FIGURE 1 | Schematic summary of sphingolipid metabolism. Adapted from Bartke and Hannun (30) with chemical structures of the sphingolipids involved (all

with C18 side chains).

the inner membrane leaflet of lytic vessels and protects CTL and
Natural Killer cells from degranulation-associated damage (43),
but also the Asm will be exposed on the cell surface [reviewed in
(29, 44)]. Due to the size of the lytic granules sufficient extrusion
of their content requires changes to the biophysical properties
of their membranes (45). These changes are mediated by the
Asm generating ceramide at the inner membrane leaflet of the
vesicles. Vesicles containing the chemokine RANTES which also
exist in CD8+ effector T cells are about 10-fold smaller than
lytic vesicles. Therefore, chemokines are efficiently released from
these vesicles even without changes to the biophysical properties
of their membranes (45). Reduced release of lytic content from
vesicles was associated with reduced killing by CTL from Asm-
deficient vs. wild-type mice (45). These data were confirmed by
pharmacologically inhibiting Asm activity with imipramine in
CTL (45).

Can these insights be used and translated to humans? A
direct consequence of the aforementioned observations in mice
is that inhibition of Asm activity with clinically approved

antidepressants like amitriptyline, imipramine, or sertraline
could reduce unwanted CTL activity. This would, of course,
lead to unspecific partial immunosuppression. It might, thus,
be envisaged as a form of comedication e.g., in patients
suffering from pulmonal immunopathology due to overshooting
CTL activity against e.g., Influenza A virus-infected alveolar
epithelial cells [reviewed in (46)]. In addition to reducing CTL
activity, inhibition of the ASM in humans may also directly
stabilize pulmonal function as it has been observed in animal
models (47–49). In fact it is this latter indication for which
ASM inhibitors are currently investigated in children with
cystic fibrosis suffering from bacterial infections of the lung
(ClinicalTrials.gov Identifier: NCT00515229).

A caveat in the outlined scenario is that, so far, the role of the
Asm in lytic granule release from CTL has only been studied in
mice. Data for human CD8+ CTL are still lacking. As it is very
likely that the ASM is also expressed by human CD8+ T cells
it seems plausible that also in humans ASM activity enhances
release of cytotoxic content from CTL vesicles.
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Apart from the ASM, the NSM2 also constitutes a
therapeutically interesting target to modulate CTL function
in humans. This is the case as stimulation of the T
cell receptor complex (with monoclonal antibodies) is
sufficient to increase NSM2 activity (39) and for target cell
recognition the CTL only needs to receive an activating
signal through the TCR complex. Therefore, inhibition
of the NSM2 may also be suitable to reduce unwanted
CTL activity.

CONVENTIONAL CD4+ T CELLS

Compared to CD8+ T cells and CTL, the body of literature
on the impact of sphingolipid metabolism on the function of
conventional, i.e., Foxp3−, non-regulatory T cells (CD4+ Tconv)
is much bigger (50–52). In particular, researchers have focused
in recent years on the modulation of effector cell differentiation
and cytokine secretion by human CD4+ T cells by the ASM
(52, 53).

An early report comparing cells from Asm-deficient and
wildtype mice indicated that secretion of Interleukin-2 (IL-2)
by Concanavalin A-stimulated splenocytes among which CD4+

Tconv are probably the main, followed by CD8+ T cells, source of
IL-2 [reviewed in (54)], was higher in wild-type than in mutant
mice (55).More recently, experiments using humanCD4+ T cells
have revealed a positive role for the ASM in promoting Th17 cell
differentiation and IL-17 secretion (52). Here, pharmacological
inhibition of the ASMwas used to study the impact of the enzyme
on CD4+ T cell differentiation and cytokine secretion.

Apart from cytokine secretion, migration of effector/memory
CD4+ Tconv also crucially contributes to their function in vivo.
Studying mouse CD4+ T cells in vitro and in vivo as well as
human CD4+ T cells in vitro, it has been recently shown that
migration and adhesion to activated endothelial cells requires
NSM2 activity (56). Moreover, migration of T cells toward SDF-
1α, a chemokine recognized by CXCR4, also depends on NSM2
activity (56). Therefore, two crucial steps in CD4+ effector cell
function, i.e., extravasation at sites of endothelial inflammation,
and migration along chemokine gradients necessitates NSM2
activity. For extravasation integrin leukocyte function-associated
antigen (LFA)-1 on T cells needs to bind to intercellular adhesion
molecule (ICAM)-1 on endothelial cells. Therefore, reduced LFA-
1 clustering in the absence of NSM2 activity (56) should impact
all T cell subsets. Similarly, the broad expression of CXCR4 by
(CD4+) T cells [reviewed in (57)] also means that targeting
NSM2 in T cells affects early as well as advanced stages of T
cell differentiation. Apart from its impact on T cell migration
NSM2 activity also supports early signaling events in Jurkat
and primary human CD4+ T cells (58). In the absence of
NSM2 activity, T cell receptor signaling is initiated as in wild-
type T cells, but signaling is not sustained due to deficient
protein kinase Cς activation. Together, this means that the
NSM2 might qualify as a novel therapeutic target for suppressing
unwanted immune responses. Currently, there is, however, no
data concerning the immunomodulatory activities of NSM2
inhibitors in humans in vivo.

Another critical aspect of T cell biology is the tight
homeostatic control of the compartment size through induction
of different forms of cell death [reviewed in (59)]. Most notably,
activation of naïve (CD4+) T cells is followed by massive
expansion of reactive clones. After resolution of inflammation
the effector T cell pool again collapses with only few memory
T cells surviving long-term [reviewed in (60, 61)]. The collapse
of the acute immune response is due to different mechanisms
of cell death with apoptosis induction by Fas (CD95)-Fas ligand
being the best studied pathway, but other forms of cell death
like necroptosis are increasingly recognized to also play a role
here [reviewed in (59, 62)]. Ligation of Fas on activated T cells
stimulates Asm activity leading to ceramide production and, as
a consequence, to the induction of cell death (63–65). Therefore,
and evenmore generally, ceramide production has been linked to
induction of cell death [reviewed in (29)]. Seemingly in contrast
to this notion we observed that pharmacological inhibitors of the
Asm also induced cell death in Tconv of mice (66) and at slightly
higher concentrations also in human CD4+ Tconv (Dennstaedt,
Schneider-Schaulies, Beyersdorf, unpublished). The availability
of Asm-deficient mice allowed to confirm that cell death induced
by amitriptyline or desipramine was due to their impact on the
Asm and not the acid ceramidase which they also inhibit (66, 67).
This has, as discussed in the following paragraph, an impact on
the balance of CD4+ Tconv and Treg.

In patients treated with antidepressants inhibiting ASM
activity like amitriptyline or sertraline (68) no (CD4+)
lymphopenia has been reported. This might be due to the
relatively low concentrations of ASM-inhibiting antidepressants
in peripheral blood of humans (about 1µM) (69). In secondary
lymphoid organs it is, however, assumed that up to 10-fold
higher concentrations are reached (69). As ASM inhibitors are
sufficient to kill human CD4+ Tconv in vitro this indicates that
ASM inhibitors might also induce cell death in human CD4+

Tconv in secondary lymphoid organs in vivo. For mice we had
observed that the negative effects on CD4+ Tconv cell numbers
in spleen and lymph nodes after Asm inhibition in vivo were
less pronounced than after in vitro treatment of mouse T cells
(66). Similar to patients, serum concentrations of amitriptyline
in these mice were also in the order of 1µM (70). This might
indicate that there are pro-survival factors present in vivo which
were lacking in the in vitro cell cultures. But despite such
putatively beneficial factors, a reduction in CD4+ Tconv numbers
in spleens and less so in lymph nodes was observed (66), which
is best explained by induction of cell death in a fraction of these
cells. Therefore, in humans in vivo CD4+ Tconv depletion might
also take place on a small scale. Due to the long-term use of
antidepressants by patients and the very low output rate of the
thymus in adults (71) it may well be that these patients gradually
become lymphopenic over time.

TREG

Treg differ from CD4+ Tconv and CD8+ T cells in that, due to
their autoreactivity (11, 12), they constantly receive activating
signals through their T cell receptor—even in healthy subjects.
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Apart from the T cell receptor, signaling through CD28 and
the high affinity IL-2 receptor are crucial to maintain Treg
numbers and function (72–77). For CD28 it has been shown
that ligation with monoclonal antibodies strongly increases
ASM activity in human T cells (33). In line with their
dependence on CD28 signaling for survival, both mouse (66)
and human Treg (Dennstaedt, Schneider-Schaulies, Beyersdorf,
unpublished) show constitutively higher ASM activity than
CD4+ Tconv and for mouse Treg it has been shown that they
also contain increased amounts of ceramide compared to CD4+

Tconv (66, 78).
Apart from the Asm, underexpression of the sphingomyelin

synthase 1 (Sms1) in Treg vs. CD4+ Tconv contributes to the
increased ceramide content of Treg vs. CD4+ Tconv (78). The
increase in ceramide induced by this lack of Sms1 maintains
suppression of the Akt/mTOR pathway in Treg through the
phosphatase PP2A. Suppression of Akt/mTOR signaling is
crucial for Treg to be able to inhibit CD4+ Tconv (78).

Currently, it is unclear whether or how much the ceramide
pools regulated by Asm and Sms1 activity overlap. This is
of importance as for the activation of the phosphatase PP2A
its inhibitor SET needs to bind to ceramide (79). The Asm
is expressed in the inner leaflet of the lysosomal membrane
and translocates to the outer leaflet of the cell membrane
upon T cell activation and fusion of the lsysome with the
cell membrane. Therefore, Asm activity generates ceramide in
the inner leaflet of the lysosome and the outer leaflet of the
cell membrane. However, ceramide spontaneously flips from
one membrane leaflet to the other and for other sphingolipid
species “filppase”-mediated exchange between membrane leaflets
has been described [reviewed in (29)]. As ceramide generated
by the Asm may, thus, also accumulate in the cytosolic leaflet
of membranes Asm activity might enhance PP2A activity in
Treg. Genetic deficiency for the Asm in mice led to an increase
in the proportion of Treg among CD4+ T cells (66), which
would be in line with this hypothesis. However, the suppressive
activity of Treg was increased on a per-call basis as read out
in surrogate in vitro suppression assays (66). This suggest that
ceramide generated by the Asm may not be critical for PP2A
activity as otherwise suppression by Treg would have been lost
(78). More definite conclusions regarding the ceramide pools
regulated by the Asm vs. the Sms1 are not possible as the changes
in sphingolipid composition in cells of Asm-deficient compared
to wildtype mice are very complex. Despite their Asm deficiency,
T cells, and other cells, display strongly increased ceramide levels
(66, 80, 81). In parallel, the sphingomyelin content of these
cells is even further increased (66, 80, 81). This means that the
substrate/product ratio for the Asm is reduced in these animals
as might be expected due to the Asm deficiency. However, it is
currently unclear what exactly drives the changes we observed
in these animals with regard to Treg: Whether it is the overall
amount of sphingolipids found in these cells or whether it is the
sphingolipid composition of membranes.

For Treg a plethora of different molecular mechanisms has
been described by which they might inhibit other T cells
[reviewed in (13)]. A crucial effector molecule, mediating
cell contact-dependent suppression by Treg is the checkpoint

molecule CTLA-4 (82–85). Being strongly activated we observed
higher CTLA-4 expression in Treg of Asm-deficient vs. wildtype
mice (66). CTLA-4 functions as an immune checkpoint by
removing costimulatory molecules from the surface of antigen-
presenting cells like dendritic cells or B cells (83, 84). This
process is called transendocytosis. As the costimulatory receptor
CD28 and CTLA-4 share the ligands CD80 and CD86,
CTLA-4-mediated transendocytosis leads to a net reduction in
T cell costimulation and, thus, immunosuppression. During
transendocytosis, the complex of CTLA-4 and bound ligand
is internalized and degraded within the lysosome [reviewed in
(84)]. In fact, endo-lysosomal vesicles contain the vast majority
of CTLA-4 molecules expressed by a T cell under steady-state
conditions. Only upon activation CTLA-4 surface expression
is increased, primarily within the immunological synapse (86).
The low CTLA-4 surface expression is the consequence of
shuttling from endo-lysosomal compartments to the cell surface
followed by rapid internalization in the absence of ligand binding
[reviewed in (84)]. Therefore, the biological activity of CTLA-4
is governed by this complex expression pattern. Using a so-called
“capture assay” wemonitored CTLA-4 turn-over between the cell
membrane and cellular compartments in Treg from wild-type
and Asm-deficient mice (66). Here, we observed that Treg from
Asm-deficient mice showed a higher turn-over than Treg from
wild-type mice.

For human Treg we used pharmacological inhibitors of the
ASM to study its impact on CTLA-4 function and turn-over. We
observed that inhibition of the ASM in human Treg increased
CTLA-4 turn-over as observed in Treg from Asm-deficient
mice (Wiese, Schneider-Schaulies, Beyersdorf, unpublished).
Therefore, both in mouse and in human Treg, ASM activity is
important for the turn-over of CTLA-4.

Although Treg generation is the “third function” of the
thymus, Treg may also differentiate from CD4+ Tconv in
mice under certain conditions (87). The generation of so-
called peripherally induced Treg (pTreg) is thought to be of
particular importance for immunity in humans [reviewed in
(88)]. The identification of two distinct thymic Treg precursors
in mice expressing predominantly self-reactive TCRs and TCRs
with reactivity to foreign antigen (12), however, challenges this
concept and might pinpoint to the thymus as the sole source of
bona fide Treg also in humans. Together these findings mean that
by studying conditions under which pTreg can be generated from
CD4+ Tconv in vitro one analyses the impact of certain factors
primarily on the stability of the Treg lineage. Using such in vitro
systems it was observed that Asm activity has a supportive effect
for pTreg generation from Tconv (89).

OUTLOOK

Up to now antidepressants inhibiting ASM activity are the
most widely applied drugs in humans directly impacting
on ceramide generation from sphingomyelin (prevalence
depression: 5,000/100,000) (90). As these drugs not only induce
degradation of the ASM, but also the acid ceramidase (67),
more specific direct inhibitors would be clinically desirable.
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With bisphosphonates such as zoledronate, which are used for
the treatment of osteoporosis (prevalence: about 5,000/100,000
in people in their fifties and 25,000/100,000 in octogenerians)
(91), safe drugs are available that directly inhibit ASM activity.
Currently, it is, however, unclear whether bisphosphonates,
including the very potent ASM inhibitor ARC39 (92, 93), will
also modulate ASM activity in T cells in vivo or whether their
high degree of binding to bone surfaces and osteoclasts prohibits
sufficient drug levels in secondary lymphoid organs to modulate
T cell activity.

The data obtained on the contribution of ASM and NSM2
activity to T cell function in preclinical mouse models and with
human T cells in vitro all suggest that pharmacologically blocking
these enzymes will either directly or, through biasing the CD4+ T
cell compartment toward Treg, indirectly impair T cell function.
Therefore, a potential novel indication for the use of ASM or
possibly also NSM2 inhibitors might be autoimmune diseases
such as multiple sclerosis (prevalence: about 100/100,000) (94,
95). As discussed, overshooting immunity in the course of e.g.,
an influenza A virus infection may constitute another potential
novel application for ASM inhibitors.

As sphingomyelinase deficiency impairs T cell function
boosting sphingomyelinase activity might increase their function
which could improve e.g., anti-cancer immunity. Indeed, it
has recently been shown that T cell-specific overexpression of
the ASM leads to enhanced T cell-mediated immunity against
the parasite Plasmodium yoelii (96). This suggests that also in
humans increasing ASM activity in T cells might enhance T

cell-mediated immunity. Therefore, future research should focus
on identifying suitable drugs for increasing ASM activity in
human T cells.

Growing knowledge on the role of sphingolipid metabolism in
T cell biology fuelled by the generation of novel inducible knock-
out mouse models as well as novel analytical tools will help to
define more potential therapeutic targets. For these, either small
molecule or monoclonal antibody-based therapies may allow for
specific targeting.
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