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Abstract

The multistate metadynamics for automatic exploration of conical intersection

seams and systematic location of minimum energy crossing points in molecular sys-

tems and its implementation into the software package metaFALCON is presented.

Based on a locally modified energy gap between two Born-Oppenheimer electronic

states as a collective variable, multistate metadynamics trajectories are driven towards

an intersection point starting from an arbitrary ground state geometry and are subse-

quently forced to explore the conical intersection seam landscape. For this purpose, an

additional collective variable capable of distinguishing structures within the seam needs

to be defined and an additional bias is introduced into the off-diagonal elements of an

extended (multistate) electronic Hamiltonian. We demonstrate the performance of the
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algorithm on the examples of the 1,3-butadiene, benzene and 9H-adenine molecules,

where multiple minimum energy crossing points could be systematically located using

the Wiener number or Cremer-Pople parameters as collective variables. Finally, on

the example of 9H-adenine we show that the multistate metadynamics potential can

be used to obtain a global picture of a conical intersection seam. Our method can be

straightforwardly connected with any ab initio or semiempirical electronic structure

theory that provides energies and gradients of the respective electronic states and can

serve for systematic elucidation of the role of conical intersections in the photophysics

and photochemistry of complex molecular systems, thus complementing nonadiabatic

dynamics simulations.

1 Introduction

The concept of adiabatic potential energy surfaces (PES), the source of the fundamental

concepts of chemistry, is rooted in the Born Oppenheimer (BO) approximation. For the

majority of chemical reactions taking place in the ground electronic state, the latter allows

for the theoretical treatment of reactivity, the identification of reaction mechanisms as well

as the prediction of kinetic parameters.

However, in photochemical processes involving electronically excited states the character

of the electronic wavefunction may rapidly change with the nuclear configuration as the reac-

tion proceeds, leading to the complete breakdown of the BO approximation. The change of

the character of the electronic wavefunction leads to a large nonadiabatic coupling being re-

sponsible for efficient non-radiative transitions between electronic states. These couplings are

largest in the vicinity of conical interesections (CIs) between the adiabatic potential energy

surfaces.1–4 The role of CIs in photochemistry, photophysics and photobiology is reflected in

countless examples, such as vision,5,6 the photostability of DNA,7 organic photochemical syn-

thesis8 as well as the functionality of photovoltaic devices,9 and a significant effort has been

undertaken to identify them experimentally using various spectroscopic techniques.6,10,11
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Therefore, in order to predict the fait of an electronically excited molecule it is crucial

to theoretically characterize structure, energetics and reaction pathways leading to conical

intersections. Several strategies have been applied for the optimization of minimum energy

crossing points (MECP) based on penalty functions,12 gradient projection13 or Lagrange-

Newton techniques.14 All these methods require the knowledge of a reasonable initial guess

that can be generated either by chemical intuition or, for example, by running nonadiabatic

dynamics simulations. Although even an inaccurate guess may lead to some MECP, it is not

clear which role this structure plays in the context of the complete crossing seam. Attempts

to characterize the full intersection seam instead of individual geometries have so far relied

on symmetry considerations15 or the use of algorithms such as the nudged elastic band

(NEB) method16 or anharmonic downward distortion following (ADDF).17–20 Furthermore,

transition states on the intersection seam have been adressed by an analytical second-order

description of the intersection seam and used for linking multiple crossing points.21,22

In order to drive a molecule from a ground state minimum to the lowest intersection

points, the energy has to be raised by several eV, which is in the scope of what can be

achieved by accelerated molecular dynamics (MD) techniques. The metadynamics intro-

duced by Parrinello and coworkers23–28 represents an enhanced sampling approach that is

both easy to use and efficient. This recently lead us to introduce a multistate extension

of the metadynamics that is suitable for a fully automatic exploration of conical intersec-

tion seams.29 Usually, the main challenge in applying the metadynamics method is to find

suitable collective variables (CV) capable of driving transitions between different basins on

the PES. Consequently, much effort has been put in the definition of suitable CVs, that

can in principle be as simple as a single bond length but sometimes even require advanced

techniques such as machine learning or dimensionality reduction to be generated.27,30

In our multistate metadynamics, we use a locally modified energy gap as CV, which

is applicable to any molecular system, augmented by an additional geometric CV which

drives seam exploration. In this article, we first provide a detailed formulation of the mul-
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tistate metadynamics and its implementation within our newly developed metaFALCON

package. In order to illustrate the method and test its robustness with respect to the choice

of the simulation parameters we apply it to the well studied 1,3-butadiene and benzene

molecules whose intersection seams have been thoroughly characterized before.15,31–37 Fi-

nally, we demonstrate on the example of the DNA base 9H-adenine that a full intersection

seam can be reconstructed based on the multistate metadynamics.

2 Methods

Multistate metadynamics algorithm. The idea of the multistate metadynamics29 is to

use the energy gap between the ground and excited electronic states as a collective variable

serving to drive the molecule toward the CI seam starting from an arbitrary ground state

structure (e.g. the ground state minimum). The system is propagated using the Newtonian

equations of motion augmented by an additional history-dependent bias potential VG(t),

which for the i-th particle read:

miR̈i = −∇i(Eg + VG(t)). (1)

Here, Eg represents the ground state BO PES. The history-dependent bias potential is

updated at regular time steps τG by adding Gaussian-shaped functions along the energy gap

CV defined further below:

VG(t) =
t∑

t′=τG,2τG,...

w exp

(
−(∆Emeta(t)−∆Emeta(t

′))2

2δs2

)

×Θ(∆Emeta(t
′)− ε),

(2)

The bias potential is dependent on the modified energy gap ∆Emeta, and w and δs represent

the fixed height and width, respectively. An important feature of the algorithm is that the

bias potential is updated only if the value of the gap is larger than a numerical threshold ε.
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Figure 1: Scheme of the algorithm. (a) The bias potential VG is constructed in order to
drive the system from lower-energy regions on the ground state PES toward the intersection
seam (yellow trajectory). (b) Upon reaching the seam, an off-diagonal coupling Vge (red) is
added to the electronic Hamiltonian, opening the effective energy gap. The metadynamics
subsequently reduces the impact of Vge which leads to the next intersection point. The
addition of the further bias potentials V

′
ge (c) and V

′′
ge (d) enables the complete exploration

of the CI seam.
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This is enforced by the presence of the Heaviside theta function Θ(∆Emeta − ε) in Eq. 2.

Starting a molecular dynamics simulation e.g. from a minimum on the ground state PES,

the bias potential will force the system to move toward the CI seam by systematically lowering

the value of the energy gap (see Fig. 1a for illustration). Upon reaching the intersection seam

for the first time, the molecular electronic Hamiltonian, which is initially diagonal in the BO

approximation, is extended by introducing a further biasing potential Vge into the off-diagonal

elements according to

HBO =



Eg 0

0 Ee


→ Hmeta =



Eg Vge

Vge Ee


 . (3)

This is a crucial element of our algorithm, leading to a local modification of the PES, which

is obtained by diagonalization of Hmeta. The metadynamics continues to run on a such

locally modified potential energy surface with the effective energy gap

∆Emeta =
√

(Eg − Ee)2 + 4V 2
ge. (4)

The gap between the eigenstates of the modified Hamiltonian is enhanced by the contribution

of the off-diagonal bias Vge. Due to the Θ-function in Eq. 2, VG is constructed such that

large values of ∆Emeta are biased and the metadynamics drives the system to the next

intersection point. This requires that Vge is made dependent on an additional collective

variable sCI . If the latter is chosen in a way that it is able to distinguish between different

molecular configurations, the return to the previously sampled regions of the CI seam is

prevented. Complementary to VG, Vge is updated only if the energy gap ∆Emeta is below ε

by addition of a Gaussian potential according to

Vge(t) =
t∑

t′=τG,2τG,...

w exp

(
−(sCI(t)− sCI(t′))2

2δs2

)

×Θ(ε−∆Emeta(t
′)).

(5)
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As illustrated in Fig. 1a, ∆Emeta exactly equals the BO gap ∆EBO as long as no Gaussians

have been added to the off-diagonal bias Vge, since Hmeta reduces to HBO. During the

starting phase, ∆Emeta is by far larger than ε, meaning that VG is periodically updated

and drives the system toward the intersection seam. Only when VG is strong enough to

persistently force the system to the vicinity of the CI seam, Vge is updated (see Fig. 1b).

Diagonalization of Hmeta enlarges the effective energy gap and the dynamics is continued

on the modified PES. Vge generates a force to change the current value of the collective

variable sCI , while VG pushes the system back to the intersection seam. Upon reaching the

next conical intersection, another Gaussian is added to Vge (see Fig. 1c), which is specifically

adjusted to bias the current CI-structure. This process is repeated (see Fig. 1d) until the

whole part of the intersection seam accessible by sCI is automatically “unzipped”.

Besides the BO energy gradient of the ground state that can be obtained by a whole

spectrum of electronic structure methods, the gradient of the modified energy gap is needed

in order to calculate the force in Eq. 1. The latter can be obtained from the following

expression:

∇ (∆Emeta) =
∆EBO∇ (∆EBO) + 4Vge∇ (Vge)

∆Emeta
, (6)

which additionally requires the calculation of the excited state energy gradient, as well as

differentiation of Vge with respect to the coordinates

∇ (Vge) =
t∑

t′=τG,2τG,...

w exp

(
−(sCI(t)− sCI(t′))2

2δs2

)

×Θ(ε−∆Emeta(t
′))

×
(
−sCI(t)− sCI(t

′)

δs2
∇ (sCI(t))

)
.

(7)

The algorithm as implemented in the metaFALCON package is summarized in the flowchart

given in Fig. 2. It consists of a standard MD code where the forces used for the integration

of the Newtonian equations of motion are modified as described above. A key feature of our
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no

no

no

yes

yes

yes

add Gaussian to Vge
centered at sCI(t)

start

end

initialize trajectory
set s = ∆Emeta, choose sCI

t = 0

calculate electronic structure

add Gaussian to VG
centered at s(t)

integrate Newtonian equations of motion
t = t+ 1

t = n · τG ?
n ∈ N

∆Emeta > ε ?

t > tmax ?

diagonalize Hmeta and
determine nuclear forces

on modified PES

identify plateau regions in CI energy landscape
and select structures for local MECP optimization

Figure 2: Algorithm flowchart of the multistate metadynamics. After choosing an appropri-
ate CV for the off-diagonal bias potential, a conventional molecular dynamics algorithm is
used for integrating the Newtonian equations of motion on the PES modified by VG. Finally,
local MECP optimizations are carried out for the characterization of the CI landscape.
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algorithm is the threshold ε in Eq. 2 and 5 that controls which bias potential is updated

in a given metadynamics step. Vge is only updated, when ∆Emeta is small so that it acts

only if the system is close to the CI seam. The complementary addition of Gaussians to

VG only when ∆Emeta is large ensures that there is a force leading into the direction of the

intersection seam at all times. We therefore recommend to set ε to the same value that

is used for the parameter w in Eq. 2. Plateau regions in the electronic BO energies then

correspond to the CI energy landscape if ∆EBO is low. Sampling from these periods of the

dynamics allows for local CI optimization and subsequent classification of the found MECPs

by structure and energy.

The choice of the collective variable sCI. For the determination of the metadynamics

forces, it is necessary to calculate sCI and its gradient in every dynamics step. Ideally,

sCI should be unique for any structure on the intersection seam, which would be the case

for example for the entries of the geometrical distance matrix. Unfortunately, an efficient

metadynamics sampling of the configuration space is only achieved if the number of CVs is

kept low which is definitely not the case for the complete distance matrix. Apart from that,

symmetry ambiguities arise from the fact that the atoms have to be in a pre-defined order

and commutation leads to a new matrix although the overall molecular shape is preserved.

For these reasons, a better choice is to use scalar invariants like its lowest eigenvalue or

other topological indices.38 As a most general approach in our simulations, we choose the

3D-Wiener number W 39 defined as

W =
1

2

N∑

i

N∑

j

dij, (8)

as a CV for the off-diagonal bias sCI , where N is the number of atoms and dij are interatomic

distances. It is convenient to consider only non-hydrogen distances, but we also examine the

Wiener number including distances from and to hydrogen atoms, which we denote WH . W

correlates with the molecular shape and therefore enables the efficient sampling of a large
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variety of different configurations for a given system. Due to the reduction of dimensionality,

there is no unique mapping of the Wiener number to the structure, meaning that f − 3-

dimensional isosurfaces are biased rather than single configurations on the f−2-dimensional

CI seam, where f is the number of internal degrees of freedom. However, this problem can

be adressed by running several trajectories with different initial conditions, leading to the

largest possible structural variability.

The gradient of the collective variable, ∇ (sCI(t)), is needed for the evaluation of ∇ (Vge)

according to Eq. 7 and for the 3D-Wiener number reads

∇W =
1

2

N∑

i

N∑

j

∇dij. (9)

In aromatic and heteroaromatic organic molecules, many structures corresponding to

conical intersections involve the displacement of atoms out of the ideal ring plane (ring

puckering). We have already shown for the furan molecule29 that it is possible to find some

of these structures by the use of the Wiener number. However, distinction between different

puckering motifs can only be achieved if a suitable collective variable is employed that is

able to characterize the exact type of structural deformation. Therefore, we have chosen the

systematics of Cremer-Pople ring puckering parameters which allow for the full description

of puckering in six-membered rings with only three coordinates.40 For a detailed description

of the definition of Cremer-Pople parameters and the corresponding gradients see appendix

A.

3 Computational details

The multistate metadynamics simulations on 1,3-butadiene and benzene have been per-

formed by using the ab initio complete active space self-consistent field (CASSCF) method

as implemented in the Molpro 2012 program package.41 The active space comprised all

π-orbitals with the respective number of electrons, i.e. (4, 4) for butadiene and (6, 6) for
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benzene, and state-averaging has been applied for the lowest two singlet states. We have

used the 4-31G basis set42 on butadiene and the 6-31G* basis set43 on benzene. For the

9H-adenine molecule, we employed the semiempirical OM2 Hamiltonian combined with the

GUGA MR-CI approach,44,45 taking into account all single and double excitations of the

four most important reference configurations. The computational parameters were chosen

in order to ensure comparability with previous results from the literature.15,31,46

In order to perform multistate metadynamics, ten initial conditions were generated for

each of the molecules by sampling over 2 ps trajectories propagated in the electronic ground

state. The Newtonian equations of motion were integrated using the velocity Verlet algo-

rithm47 with a time step of 0.25 fs (butadiene and benzene) and 0.1 fs (adenine). Temperature

was kept constant at 300 K using the Berendsen thermostat.48 The parameters for multistate

metadynamics were chosen such that the intersection seam is reached within short simulation

times. Correspondingly, Gaussians with a width of 0.5 eV and a height of 1.0 eV were added

to VG, while τG was set to 100 time steps (25 fs). In the case of adenine, smoother sampling

was achieved by adding Gaussians with a height of only 0.2 eV in intervals of 250 time steps.

According to the chosen δs, the threshold ε for the Θ-functions in Eqs. 2 and 5 was also set

to 0.5 eV. The shape of the Gaussians added to Vge has been adjusted to the respective CVs

and is discussed in detail in section 4.1.

4 Results and Discussion

4.1 1,3-butadiene

As a first example we apply our method to explore the conical intersection seam in 1,3-

butadiene. In the past decades, the role of conical intersections in the photochemistry of

butadiene has been extensively studied as a model for conjugated π-systems and photoiso-

merizations.31–33 The multistate metadynamics trajectory has been started from the ground

state equilibrium structure with the Franck-Condon excitation energy of 6.65 eV. The inser-
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tion of several Gaussians to the bias potential already induces oscillations in ∆Emeta between

4 eV and 10 eV. The pathway from the ground state minimum structure to the intersection

seam is represented by the time evolution of the energy gap ∆Emeta, depicted in Fig. 3a.

Since Vge is zero in the displayed time range, ∆Emeta equals ∆EBO. As can be seen, the

energy gap decreases within 600 fs from 6.65 eV to zero, which reflects the fact that the

trajectory reaches the intersection point between the ground and excited state for the first

time.

The shape of the metadynamics potential VG is depicted in Fig. 3b in steps of five

Gaussians (0.125 ps). Within the first 0.5 ps, VG is only slightly extended to the lower values

of the gap. However, after 25 Gaussians have been added to VG (0.625 ps), the induced forces

are strong enough to let ∆Emeta become smaller than the threshold ε. Consequently, the

Θ-function in Eq. 2 stops the addition of further Gaussians and the potential VG does not

change as long as the system stays in the vicinity of the intersection seam.

The efficiency of the CI seam exploration is dependent on the chosen collective variable

sCI to build up Vge and the respective parameters for the Gaussian shape. The CV, on the

one hand, can be essentially one of two types, either specific to a given problem or of most

possible general nature. The form of the Gaussians, on the other hand, requires the critical

choice of δs and w in a way that the simulation time can be kept low with a maximum number

of found MECP structures. In order to test the sensitivity of the method with respect to the

choice of the Gaussian parameters we have run simulations with different values of δs and

w. Since the role of conical intersections between ground and excited states of butadiene has

first been discussed in 1993,31 more than 30 different MECP structures have been reported

for this small molecule.34 Most importantly, s-transoid and s-cisoid structures have been

described, differing in their rotation angles around the central C− C bond. We therefore

concentrate on these two MECPs by setting sCI to the torsion angle φ defined by the four

carbon atoms.

A comparison of differently shaped Gaussians added to Vge when ∆EBO reaches zero for
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Figure 3: a) Energy gap ∆Emeta over time until the intersection seam is reached for the
first time. b) Metadynamics potential VG dependent on the collective variable ∆Emeta at
time steps symbolized by the dashed lines in a). The time steps are chosen corresponding
to multiples of 5 Gaussians added to VG.
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Figure 4: Comparison of trajectories with different Gaussian shapes in Vge for butadiene
employing the torsion angle φ as the CV. The Born Oppenheimer energy gap ∆EBO (black)
and the off-diagonal coupling Vge (red) are given for a) broad δs and high w, b) broad δs
and low w, c) narrow δs and high w and d) narrow δs and low w. The 25 fs of relaxation
subsequent to the insertion of the first Gaussian are highlighted in light blue.

the first time is provided in Fig. 4. In all of the four distinct combinations of w and δs,

the trajectory follows the same pathway until the addition of the first Gaussian to Vge at

0.65 ps. When Gaussian heights are of the same order of magnitude as ∆EBO and large values

for the width δs are used, the algorithm can be nicely tracked step by step (see Fig. 4a).

After the first occurrence of a non-zero Vge, the forces resulting from VG provoke a reduction

of the latter which is related to a changing torsion angle φ. This process is completed

at 0.67 ps, right before the addition of the second Gaussian. If the system returns to a

point that has been biased before, Vge increases again, as is seen around 0.69 ps. However,

these parameters correspond to a relatively coarse-grained intersection seam following, since

permanently high values of Vge support the increase of ∆EBO, meaning that the trajectory

is allowed to temporarily sheer off from the intersection seam. Therefore, it is desirable to

reduce both parameters to a minimum in order to stay in closest vicinity to the crossing

region. If only the width is decreased (see Fig. 4b), the result is an off-diagonal potential Vge

composed from very narrow Gaussians with large derivatives close to their maxima, leading
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to an overshooting of the metadynamics forces. If instead only the height is decreased (see

Fig. 4c), the system stays on the plateau-like top of the Gaussians for long times, because

the acting force is negligible. The best performance is therefore achieved by choosing small

values of w and δs simultaneously (see Fig. 4d). In the present paper, we use values of 0.1◦

for δs and 0.027 eV for w.

In general, Vge is less sensitive to the choice of δs and w than VG in conventional meta-

dynamics, if the multistate metadynamics is only used to localize as many CI structures as

possible. However, if the aim is to achieve convergence to an intersection seam hypersurface

as described in section 4.3, the guidelines known from the traditional metadynamics apply.49
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Figure 5: a) Ground and excited state energies, as well as energies of optimized snapshots
for an example trajectory of 1,3-butadiene using the torsion angle φ as CV. The insets show
the most important optimized MECP structures together with their gradient difference and
non-adiabatic coupling vectors plotted as arrows. The corresponding CV φ is depicted in
b). c) Ground and excited state energies, as well as energies of optimized snapshots for an
example trajectory of 1,3-butadiene with the same initial conditions as in a) but using the
Wiener number W as CV. Again, the insets show the most important optimized MECP
structures and in d) the corresponding CV W is depicted.
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As has been pointed out before, φ is the most natural choice of s for the representation

of the well-characterized s-cisoid and s-transoid MECP structures of butadiene. The ground

and excited state energies of an exemplary trajectory using this CV are depicted in Fig. 5a.

The overall shape of Eg and Ee over time follows the energies of sampled snapshot geometries

that are obtained by local optimization using the Bearpark-Robb optimization scheme for

MECPs.13 When the intersection seam is reached after the first 1.2 ps of the simulation,

φ (see Fig. 5b) already takes values close to the torsion angle of 65.5◦ that is obtained in

optimized structures of the s-cisoid MECP (5.34 eV) and oscillates around this angle for the

next 2 ps. However, in the regions where φ takes larger values, optimization of snapshots

converge to a local minimum with similar structure compared to the lowest s-cisoid structure

with a relative energy of 5.43 eV and φ = 69.9. At 3.3 ps, another plateau is reached at lower

energy, associated to the optimized s-transoid structure with a torsion angle of 115.8◦ and a

relative energy of 5.04 eV.

The drawback of using a specialized CV like the torsion angle for butadiene is that it

requires some preliminary knowledge on the character of existing CI-structures. For this

reason, we have already shown for the furan molecule that the 3D Wiener number W is a

suitable choice of a generalized CV for multistate metadynamics.29 Here, we prove that W

is also appropriate for butadiene by comparison with the results obtained using the torsion

angle. We used a Gaussian width δs of 0.1 Å and w was set to 0.027 eV as in the previous

example.

In the trajectory given in Fig. 5c, most of the optimized structures found are the same

as in Fig. 5a. The energy pathway in the beginning after closing the gap ∆Emeta is equal

to the torsion angle CV, since the forces resulting from VG need some time to manipulate

the dynamics. Hence, the structure in this time range is of s-cisoid character, leading to

a Wiener number of 11.7 Å upon MECP optimization of dynamics snapshots. Then, with

much shorter time delay compared to the usage of the torsion angle, the transition to the

s-transoid structure is observed. The latter exhibits a Wiener number of 12.4 Å and can
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therefore reduce the off-diagonal coupling acting as a bias for low W at that time. It is

worth to note that in contrast to the application of the torsion angle as CV, the trajectory

does not return to the s-cisoid structure within the given time range. The reason for that is

that values for W are not unique with respect to different structures. From 5 ps onwards, the

Wiener number repeatedly gets similar to that of the s-cisoid structure although the overall

character is still s-transoid. As a consequence, there is no force that induces a change back

to the original torsion angle.

4.2 Benzene

In this section we discuss multistate metadynamics simulations on benzene, which serves as

a representative of the class of aromatic molecules. It exhibits a large number of MECPs be-

tween the electronic ground and excited states,15 of which a half-boat shaped ring-puckering

structure is the best known one.35

Interestingly, a number of differing MECP structures have been reported with similar ge-

ometrical arrangement of the carbon atoms, i.e. the positions of hydrogen atoms are crucial

to distinguish between them.15 Especially ring-puckering structures are typically found in the

low-energy regions of the intersection seam. For this purpose, we tested the use of the Wiener

number WH including all distances to hydrogen atoms and compared the results to these

obtained with the Wiener number W excluding hydrogens. Selected optimized structures

and their corresponding W and WH values are presented in Fig. 6. In the metadynamics

simulations we used values of 0.027 eV and 0.01 Å for the w and δs parameters, respectively.

In order to account for the larger changes in the values of WH compared to W , δs was in-

creased to 0.05 Å, when hydrogen atoms were taken into account. The simulations show that

both collective variables are appropriate for the efficient localization of the low-energetic and

most important ring-puckering structures at 5.49 eV and 5.76 eV. In most trajectories, the

intersection seam is first reached close to the higher energy structure and after a short time,

relaxation to the lower-energetic one with the hydrogen atom in equatorial position takes
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Figure 6: Optimized MECP structures of benzene obtained with multistate metadynamics
followed by local MECP optimization. The gradient difference and non-adiabatic coupling
vectors are displayed as arrows. Energies are given relative to the optimized ground state
structure and the Wiener number is provided by calculation with and without consideration
of hydrogen atoms. Numbers highlighted in blue mean that the structure has been obtained
by application of the respective CV.
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place. A similar structure with reduced symmetry is found at 5.87 eV in some trajectories.

Since the Wiener number has a natural lower bound, long simulation times usually lead to

increasing values. Therefore, compared to WH the use of W excluding hydrogens tends to

favor geometrical rearrangements and fragmentations of the carbon scaffold at longer times.

In the example of benzene, 5-membered ring structures and ring-openings are found in the

range above 6.42 eV. Another frequently observed channel leading to the damage of benzene

is the dissociation of an acetylene unit.

Since the Wiener number is defined as the sum over all interatomic distances, its value is

larger the more atoms are included. Furthermore, non-bonding H− H and C− H distances

are generally larger than C− C distances, since hydrogen atoms are located at the outside

of the benzene ring. For this reason, the impact of C− C distances on changes in WH is

generally lower than for distances including hydrogen atoms. Forces to change the Wiener

number may therefore lead to irreversibly large displacements of hydrogen atoms, while more

subtle changes in the geometry can be overlooked. The ensemble of higher-energetic MECP

structures obtained with the hydrogen-including WH hence contains mainly modifications

of ring-puckering structures with dissociated hydrogen atoms. However, the application of

WH also enabled the characterization of a planar ring structure (see first structure in Fig. 6)

generated by hydrogen transfer of two neighboring carbon atoms that, interestingly, lies more

than 0.6 eV below the equatorial ring-puckering (see second structure in Fig. 6).

4.3 9H-adenine

The previous sections have demonstrated that the outcome of the multistate metadynamics

is mainly dependent on which collective variable is employed. The metadynamics method,

however, also allows one to use multiple CVs, if the Gaussian functions in Eq. 5 are re-

placed by products of Gaussians with different sCI . If a set of CVs is defined such that it

approximately spans the branching plane perpendicular to the intersection seam, the neg-

ative multistate metadynamics potential can be used to reconstruct the intersection seam
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hypersurface just like standard metadynamics yields the free energy surface. This will be

illustrated here on the example of 9H-adenine. It is worth noting that nonradiative decay

upon photoexcitation does not need to proceed through a MECP but can also be probable

from higher energy regions, depending on the magnitude and direction of nuclear velocities.

Since the obtained hypersurface is spanned over the complete CV space, it is a more gen-

eral representation of the CI seam than methods which rely only on MECP optimization

and connecting pathways. DNA nucleobases are a paramount example of molecules whose

deactivation processes proceed through conical intersections, which prohibits their damage

upon UV-excitation.7 The key MECPs found in these molecules are characterized by het-

eroaromatic ring-puckering structures. For example, in the case of adenine, a great number

of ring-puckering MECPs has been found and characterized,50 most of them lying more

than 5 eV above the ground state minimum. However, deformation of the six-membered

pyrimidine ring system leads to the four low-energetic MECPs 1-4,51 with the NH2-group

or the H-atom arranged nearly 90◦ with respect to the ring plane, respectively (cf. Fig. 7a).

Such ring-puckering structures can be characterized and distinguished by the Cremer-Pople

parameters40 that allow the precise characterization of six-membered rings with only three

variables. Besides an amplitude Q, two angles φ and θ are calculated from the displacement

of the ring atoms out of the plane, as described in detail in the Appendix A. Their large

flexibility paired with structural unambiguity makes Cremer-Pople parameters the perfect

CVs for investigating the conical intersection seam of cyclic structures such as adenine. Such

multiple CVs for the construction of Vge in multistate metadynamics can be implemented

analogously as in conventional metadynamics. Here, we use the multistate metadynamics

with Q, φ and θ as CVs aiming to obtain a complete picture of the intersection seam in

adenine with respect to ring-puckerings in the pyrimidine unit.

The exemplary multistate metadynamics trajectory for adenine shown in Fig. 8 leads to

the formation of three out of four expected CI structures. As can be seen, starting from the

ground state structure, after 1.5 ps, ∆Emeta drops close to zero and the intersection seam is
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Figure 7: a) Literature-known optimized MECP structures of adenine 1 to 4 together with
their energies referenced to the ground state equilibrium and Cremer-Pople parameters.
b) Relative intersection seam hypersurface obtained with multistate metadynamics using
Cremer-Pople parameters as CVs. The MECPs are marked with white crosses and the white
arrows symbolize MECP-connecting pathways on the surface. Energies have been shifted by
a constant C such that the lowest MECP 1 lies at 0 eV.

reached through a NH2-puckered structure that can be assigned to structure 2 in Fig. 7a.

Shortly afterwards, the gap increases again, but the trajectory returns to the intersection

seam and stays on the higher-lying plateau corresponding to the structure 3 for 0.7 ps.

Finally, the energy is decreased again, leading to structure 1 which is similar to 3.

A pitfall of using Cremer-Pople parameters as CVs again are dissociation events of hy-

drogen atoms that can occur during the simulation. Since ring-puckering is coupled to large

values of Q, reducing the amplitude provides an escape pathway from the already built up

bias potential Vge. Low values of Q however correspond to a flattening of the ring structure

that usually would cause an increase of ∆Emeta. The dissociation of a hydrogen atom is

the most probable pathway in such a situation, since this leads to a decreasing energy gap

also for a planar ring structure. Despite the fact that ultrafast hydrogen abstractions are

physically meaningful pathways,51 they cause an irreversible structure damage. For that rea-

son, it is unfortunately not possible to drive a single trajectory until the convergence of the
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Figure 8: Example trajectory of multistate metadynamics of adenine. Besides the a) ground
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metadynamics potential because the failure of the semiempirical SCF calculation forces the

simulation run to stop whenever a dissociation event occurs. Therefore, we ran multiple tra-

jectories with different initial conditions and, inspired by multiple walkers metadynamics,25

summed up the individually obtained Vge potentials to a single potential V ′ge. The number

of trajectories has been gradually increased until the approximate convergence of V ′ge was

achieved. Since Q is only the amplitude of the puckering processes and does not include in-

formation on the type of puckering, it was integrated out of the potential in the range from

0.13 Å to 1.06 Å for the sake of visualization. The resulting total potential from 20 trajecto-

ries depends only on φ and θ. It exhibits four maxima that can be assigned to the minimum

energy crossing points 1-4 on the intersection seam hypersurface which is depicted in Fig. 7b

as −V ′ge shifted by a constant C. As expected, the NH2-puckered structures are found to be

more stable than the H-puckered ones. An average difference of 0.24 eV is obtained from the

multistate metadynamics simulation which nicely resembles the energy difference of 0.22 eV

between optimized 1/2 and 3/4 structures. The pathway that is followed by the trajectory

in Fig. 8 can also be explained by the obtained intersection seam hypersurface. The direct

conversion from 2 to 1 is extremely unfavorable (crossed white arrow in Fig. 7b) due to the

high barrier >1 eV. The two-step pathway observed in the example trajectory (consecutive

white arrows), on the other hand, only requires the crossing of two relatively low barriers

from 2 to 3 (0.36 eV) and from 3 to 1 (0.47 eV).

5 Conclusion

A multistate metadynamics algorithm has been developed and implemented into the metaFAL-

CON program package allowing for automatic exploration of conical intersection seams be-

tween adiabatic Born Oppenheimer potential energy surfaces. In order to confine the MD

simulation to the CI seam, the multistate electronic Hamiltonian is extended by introducing

Gaussian-shaped off-diagonal bias potentials. By diagonalization of such an extended elec-
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tronic Hamiltonian and introduction of the energy gap between two states as a collective

variable, a modified PES is obtained that can be used to run molecular dynamics within

the CI seam. The algorithm can be straightforwardly combined with any ab initio or semi-

empirical electronic structure method that can provide ground and excited state energies

and their gradients.

As an illustration, multistate metadynamics has been applied to explore the CI seams in

1,3-butadiene, benzene and 9H-adenine, and the influence of the simulation parameters on

the seam exploration has been systematically investigated. Starting from the ground-state

minimum structures, we have performed simulations that show that the intersection seam

in all three systems can be efficiently reached. Special attention has been paid to the choice

of parameters that define the shape of the Gaussians contributing to the bias potential that

is included in the multistate electronic Hamiltonian. Furthermore, the problem of finding

the correct collective variable that drives the seam exploration has been addressed on the

example of 1,3-butadiene. The use of the Wiener number has proven to successfully pro-

vide a reliable map of the conical intersection landscape. The impact of including hydrogen

atoms into the calculation of the Wiener number has also been evaluated on the example of

the benzene molecule. Both variants allowed us to systematically identify a large number

of minimum energy crossing points, so we recommend using the Wiener number excluding

hydrogen atoms as the most general starting point for any system. However, depending

on the investigated system, a more specialized collective variable may be more appropriate

in order to find all crossing points that may be relevant for understanding photochemical

reaction pathways and nonradiative relaxation channels in complex molecular systems. Fi-

nally, on the example of 9H-adenine we have demonstrated that multistate metadynamics

can be used to obtain a global representation of the CI seam by converging the multistate

metadynamics potential to a stable energy hypersurface. The developed methodology has

been implemented into the program package metaFALCON that is publicly available free of

charge (https://metafalcon.chemie.uni-wuerzburg.de/).
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A Definition of Cremer-Pople parameters

Cremer-Pople parameters as CVs in N-membered cyclic systems. In order to define

the Cremer-Pople parameters in a N -membered cyclic system, it is first necessary to shift

the molecular coordinates R with respect to the origin such that the following condition is

satisfied,
N∑

i=1

Ri = 0, (10)

and rotate them in a way that the xy-plane is the mean ring plane and the atomic positions

on the z-axis correspond to the displacements from the latter. In order to define such a plane

uniquely, the y-axis is fixed to the position vector of atom 1 and two vectors

R′ =
N∑

i=1

Ri sin [2π(i− 1)/N ] , (11)

R′′ =
N∑

i=1

Ri cos [2π(i− 1)/N ] (12)

are used to define the unit normal vector of the plane

n =
R′ ×R′′

|R′ ×R′′| . (13)

Note that R′ and R′′ are dependent on the atom-numbering. The new z-coordinates of all

atoms within the ring are then obtained by the projection of Ri on n

zi = Ri · n. (14)

Based on this set of transformed coordinates, Cremer and Pople define (N−3)/2 amplitude-

phase pairs if N is odd. Otherwise, (N − 4)/2 amplitude-phase pairs are obtained alongside

another single amplitude. A six-membered ring, for example, leads to the definition of the
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amplitude q2 and phase φ2 in the following manner:

q2 sinφ2 = − 1√
3

6∑

i=1

zi sin

(
2

3
π(i− 1)

)
=: A (15)

q2 cosφ2 =
1√
3

6∑

i=1

zi cos

(
2

3
π(i− 1)

)
=: B (16)

The additional single puckering amplitude q3 reads

q3 =
1√
6

6∑

i=1

(−1)i−1zi. (17)

Since the physical meanings of q2 and q3 are not straightforward, it is convenient to

transform the three parameters from Eqs. 15–17 into a set of spherical polar coordinates Q,

φ and θ. For this reason, q2 and q3 are expressed in polar coordinates

q2 = Q sin θ, (18)

q3 = Q cos θ. (19)

That leads, on the one hand, to the definition of the total puckering amplitude

Q =
(
q22 + q23

)1/2
=

(
6∑

i=1

z2i

)1/2

(20)

which is zero for the flat ring structure and increases for larger |zi| values. On the other

hand, the corresponding angle

θ = arctan
q2
q3

(21)

represents the puckering character, i.e. the transition from one chair (0◦) over boat / skew-
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boat (90◦) structures to the other chair form (180◦). The third parameter

φ = φ2 = arctan
A

B
(22)

can be understood as a phase angle and takes values from 0◦ to 360◦.

According to the chain rule, gradients of Cremer-Pople parameters split into the differ-

entiation with respect to the vector of zi-components z and the derivative of the latter with

respect to the cartesian coordinates R

∇Q =
∂Q

∂z

∂z

∂R
,∇φ =

∂φ

∂z

∂z

∂R
,∇θ =

∂θ

∂z

∂z

∂R
. (23)

Since Q is only dependent on the components of z directly according to Eq. 20, its derivative

takes the simple form

∂Q

∂z
=

∂

∂z

√√√√
6∑

i=1

z2i =
z

Q
. (24)

The derivative of φ with respect to z

∂φ

∂z
=

B ∂A
∂z
− A∂B

∂z

B2
(
1 + (A/B)2

) (25)

follows from Eq. 22 and requires the additional differentiation of the term A from Eq. 15

∂A

∂zi
= sin

(
2

3
π(i− 1)

)
(26)

and the term B from Eq. 16

∂B

∂zi
= cos

(
2

3
π(i− 1)

)
. (27)

For the evaluation of ∇θ, either of Eq. 18, Eq. 19 and Eq. 21 could be used, but the easiest
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approach is reached from the expression in Eq. 19

∂θ

∂z
=

((
q3
Q

)2

− 1

)−1/2
Q∂q3

∂z
− q3 ∂Q∂z
Q2

, (28)

because ∂Q/∂z is easily accessible from Eq. 24 and ∂q3/∂zi is derived from Eq. 17 as

∂q3
∂zi

=
1√
6

(−1)i−1. (29)

Finally, each component of z depends on R in Ri and n, so its derivative is given by

∂zi
∂R

=
∂Ri

∂R
· n + Ri ·

∂n

∂R
(30)

where ∂Ri/∂R is trivial and the gradient of the normed normal vector has the form

∂n

∂R
=

∂
∂R

(R′ ×R′′) |R′ ×R′′| − (R′ ×R′′) ∂
∂R
|R′ ×R′′|

|R′ ×R′′|2
. (31)

This requires the differentiation of the cross product between the vectors R′ and R′′

∂

∂R
(R′ ×R′′) =

∂R′

∂R
×R′′ + R′ × ∂R′′

∂R
, (32)

with the 3× 3 components

∂R′

∂Ri

= sin

(
1

3
π(i− 1)

)
I (33)

and

∂R′′

∂Ri

= cos

(
1

3
π(i− 1)

)
I, (34)

where I is the three-dimensional identity matrix.
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