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Extracellular Matrix in the Tumor
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Cancer Therapy
Erik Henke*, Rajender Nandigama and Süleyman Ergün
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Solid tumors are complex organ-like structures that consist not only of tumor cells but

also of vasculature, extracellular matrix (ECM), stromal, and immune cells. Often, this

tumor microenvironment (TME) comprises the larger part of the overall tumor mass.

Like the other components of the TME, the ECM in solid tumors differs significantly

from that in normal organs. Intratumoral signaling, transport mechanisms, metabolisms,

oxygenation, and immunogenicity are strongly affected if not controlled by the ECM.

Exerting this regulatory control, the ECM does not only influence malignancy and growth

of the tumor but also its response toward therapy. Understanding the particularities of

the ECM in solid tumor is necessary to develop approaches to interfere with its negative

effect. In this review, we will also highlight the current understanding of the physical,

cellular, and molecular mechanisms by which the pathological tumor ECM affects the

efficiency of radio-, chemo-, and immunotherapy. Finally, we will discuss the various

strategies to target and modify the tumor ECM and how they could be utilized to improve

response to therapy.

Keywords: extracellularmatrix, cancer therapy, drug transport, immunotherapy, chemotherapy (CH), radiotherapy,

tumor microenvironment, ECM

INTRODUCTION

The last 25 years saw a massive shift in our approach to understand the biology of solid
tumors. While research centered for a long time nearly exclusively on the individual tumor cells,
the processes leading to their transformation, or conveying their malignancy, the tumor
in its entirety and full complexity moved more and more the focus of cancer research.
Starting from the concept of viewing the tumor as a complex organ, we meanwhile use the
term tumor microenvironment (TME) to describe the entirety of the tumor components
that are not malignant by themselves. Thus, the TME consists of the tumor’s vasculature,
connective tissue, infiltrating immune cells, and the extracellular matrix (ECM), and
increasingly, all these individual components of the TME became the focus of new research
communities within the fast-growing cancer field. These research efforts already resulted in
the development and successful clinical implementation of TME-targeted drugs, starting with
antiangiogenic agents and the potentially game-changing introduction of immunotherapeutics
(Hurwitz et al., 2004; Robert et al., 2015)1,2. Although the ECM is probably the
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component of the TME that initially received the least attention,
this also has changed considerably over the last decade,
and numerous articles have bit by bit complemented our
understanding of the tumor ECM and its role in malignancy and
response to therapy.

In this article, we will focus on the impact of the ECM on
the various forms of cancer therapy and on recent efforts to
modulate the ECM for improved therapeutic efficacy. Of course,
the ECM not only affects our efforts to treat cancer but also is
directly involved in tumor establishment and disease progression.
Effects of ECM-targeted approach on the efficacy of antitumor
therapy often cannot be distinguished from direct effects on
tumor behavior or progression. Therefore, it will be necessary to
also discuss to a certain degree the immediate involvement of the
ECM in malignancy and how its modification affects the course
of the disease. However, to establish a base for the following
review of our current efforts to include ECM targeting in the
management of malignant diseases, we will first recapitulate the
particularities of the ECM in solid tumors.

TOO MUCH, TOO DISORDERED: THE
EXTRACELLULAR MATRIX IN THE TUMOR
MICROENVIRONMENT

Many solid tumors express high levels of various ECMmolecules
like fibrillar collagens, fibronectin, elastin, and laminins
(Provenzano et al., 2008; Mammoto et al., 2013). In addition,
some cancers, that is pancreatic ductal adenocarcinomas
(PDACs), are particularly rich in hyaluronan (Provenzano and
Hingorani, 2013). In many tumors, the ECM compromises up
to 60% of the tumor mass. Source of these ECM molecules
are the tumor cells themselves, but to an even larger degree
cancer-associated fibroblasts (CAFs) (Casey et al., 2009; Naba
et al., 2012). Indeed, the infiltration of fibroblasts/myofibroblasts
and the subsequent accumulation of significant amounts of
collagenous ECM is observed in many solid tumors. This
process, called desmoplasia, is strongly linked to poor prognosis
and resistance to systemic therapy (Conti et al., 2008; Schober
et al., 2014). By supporting tumor cells via paracrine stromal
cell-derived factor-1 (SDF1) and transforming growth factor
beta (TGFβ) signals, CAFs further contribute not only to a
more malignant tumor phenotype by driving epithelial-to-
mesenchymal transition (EMT) but also induce production
of collagen and other ECM molecules (Zode et al., 2009;
Porsch et al., 2013; Garcia et al., 2016). All components of the
TME vary significantly from their respective counterparts in
non-malignant tissues. Consequently, also the tumor ECM
diverges strongly not only in amount of deposition but also in
composition, organization, and post-translational modification
from the ECM in surrounding normal tissue. In invasive ductal
carcinomas, collagen production is shifted toward Col I and
Col III compared to benign mammary lesions (Deak et al.,
1991; Kauppila et al., 1998). The increased expression is mainly
observed in the stromal part of the tumor. As the benign lesions
also consist mainly of cells with fibroblastic characteristics, this
demonstrated the tendency and capacity of breast tumor cells to

shift the secreted matrisome of its stroma. In the desmoplastic
stroma of breast carcinomas, up to 15% of the collagenous
matrix consists of Col V, a collagen isoform of low abundance
in normal and fibrocystic (<0.1%) breast tissue (Barsky et al.,
1982). Experiments like second harmonics observation of fiber
formation indicate that increasing the Col V/Col I ratio reduces
length and organization of collagen fibers (Ajeti et al., 2011).
At higher ratios, fiber formation can be completely inhibited,
resulting in a gel-like ECM (Pucci-Minafra and Luparello,
1991). Col IV, on the other hand, is downregulated in ovarian
carcinomas compared to benign tissue, and the expression
is inversely correlated with stage and markers of malignancy
(Bar et al., 2004). The same pattern of enhanced Col I/Col
III expression and reduced Col IV expression is observed in
human lung tumors (Fang et al., 2019). In melanoma, increased
Col I expression is observed and correlated with invasiveness,
angiogenesis, and reduced survival (van Kempen et al., 2008;
Miskolczi et al., 2018). High collagen messenger RNA (mRNA)
expression, the aberrant form of fibrous collagen spindles, and
the increased expression of matrix proteases are signs of an fast
turnover of the collagen in tumors (Kauppila et al., 1998).

Collagens
The synthesis and maturation of collagens is a complex
process. The increased collagen production in the TME requires
not only increased transcription and translation of collagen
encoding genes but also the upregulation of enzymes that are
necessary for proper post-translational processing and secretion
of collagen molecules. Indeed, collagen-processing enzymes like
lysyl hydroxylases and prolyl hydrolases are often strongly
expressed in the TME (Erler et al., 2006; Gilkes et al., 2013; Xiong
et al., 2014). Lysyl oxidases are also significantly upregulated
in many tumors, especially in desmoplastic cancers (Peyrol
et al., 1997; Erler et al., 2006; Barry-Hamilton et al., 2010).
This leads to an increased cross-linking of collagens and
elastin, rendering the tumor more rigid and contributing—in
combination with the already increased ECM deposition—to its
palpability. The highly cross-linked collagenous matrix increases
mechanical stress and focal adhesion kinase (FAK)-mediated
signaling and reduces overall supply with oxygen and in the
TME (Levental et al., 2009; Taylor et al., 2011; Baker et al., 2012;
Rossow et al., 2018). Prolyl-4-hydroxylases (P4HAs) are ascorbic-
acid-dependent enzymes that modify collagens intracellularly
(reviewed in Gorres and Raines, 2010). The formation of
hydroxyproline in this process is necessary to increase stability
of helical collagen under physiological conditions. High P4HA
expression increases intratumoral collagen deposition (Xiong
et al., 2014). It is also strongly correlated with resistance to
chemotherapy and reduced survival in triple-negative breast
cancer patients (Xiong et al., 2018).

Proteoglycans
Similar to collagens, proteoglycans (PGs), also constituting
an important part of the ECM, require enzymes for correct
production and assembly. PGs consist of a core protein,
which is heavily glycosylated with longer shorter chains of
glycosaminoglycans (GAGs). The attachment of the GAGs

Frontiers in Molecular Biosciences | www.frontiersin.org 2 January 2020 | Volume 6 | Article 160

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Henke et al. ECM: Impact on Cancer Therapy

happens in the Golgi apparatus, where the core protein is
translocated. Glycosyltransferases first attach a tetra saccharide
to a serine of the core protein that functions as linker. Other
glycosyltransferases then conjugate monosaccharides to the
growing GAG chain. In addition to various glycosyltransferases,
sulfotransferases and epimerases are needed for proper chain
modification. The GAGs consist of repetitive disaccharide
patterns. Depending on the composition of these disaccharides,
GAGs are distinguished in chondroitin sulfate, dermatan sulfate,
heparan sulfate, and keratan sulfate. PGs can differ significantly
in molecular weight. Together with collagens—mainly Col II—
PGs are the constituents of cartilage, underlining their capacity
to contribute to tissue stiffness and sturdiness. In many tumors,
increased levels of PGs are observed, but the story seems to be
more complex as the changes in PG content between normal
and malignant tissue lie mainly in shifts between various PGs
often between low- and high-molecular weight PGs. Comparing
prostate cancer to normal prostate tissue, Suhovskih et al. found
increased expression of aggrecan andCSPG4 but reduced decorin
levels (Suhovskih et al., 2013), while gastric cancers showed a
doubling of overall GAG content and an increase in versican
and decorin expression (Theocharis et al., 2003). Similarly, in
squamous cell laryngeal carcinoma, versican and decorin are
stronger represented than in normal tissue, while aggrecan is
completely downregulated (Vynios et al., 2008). Brown et al.
found breast carcinoma stroma to be strongly enriched in both
versican and decorin expression along with Col I and fibronectin
(Brown et al., 1999). In prostate cancer, decorin, lumican, and
versican were strongly overexpressed, although this study relied
on mRNA expression data of the core proteins; thus, conclusions
about the actual PG content are difficult (Koninger et al.,
2004). In peritumoral stroma of melanoma, versican is enriched
compared to benign nevi (Gambichler et al., 2008). Sulfation
patterns of GAGs also seem to change in cancer. Interestingly, it
seems that, in colorectal cancer (CRC) and gastric cancer, a shift
from 4- to 6-sulfation occurs, while in laryngeal carcinomas, the
shift is reversed with more 4-sulfattion vs. 6-sulfation in normal
tissue (Theocharis, 2002; Theocharis et al., 2003; Vynios et al.,
2008).

Hyaluronic Acid
Hyaluronic acid (HA) is a GAG that is not conjugated to peptides,
and in contrast to the three others, it is not synthesized in the
Golgi apparatus. Synthesis is performed by a family of three
transmembrane glycosyltransferases, hyaluronan synthetase 1–
3 (HAS1-3), which alternately conjugate gluconic acid and N-
acetylglucosamine (reviewed in Weigel and DeAngelis, 2007;
Passi et al., 2019). HASs are plasma-membrane-bound proteins,
which probably are not only responsible for the synthesis
but also for the extracellular export of the synthesized HA
macromolecule via direct extrusion through an enzymatic
pore. Some controversy exists about whether HA is exported
via ABC transporters like MRP5 or MDR1 (Schulz et al.,
2007). While treatment with ABC-transporter inhibitors like
S-decylglutathione or trequinsin reduced HA production in
human fibroblasts (Prehm and Schumacher, 2004), this approach
using various inhibitors failed to block HA release in breast

cancer cell lines that express the targeted ABC transporters
(Thomas and Brown, 2010). However, while the involvement
of ABC transporters in the production of HA is still debated,
4-methylumbelliferone (4-MU) inhibits HAS1–3 with some
specificity and is effective in blocking HA synthesis (Nakamura
et al., 1995; Kakizaki et al., 2004; Urakawa et al., 2012; Ikuta et al.,
2017; Karalis et al., 2018). HA production is increased in many
cancers, most notably in pancreatic carcinomas (Theocharis et al.,
2000; Cheng et al., 2013) but also in breast cancers (Bertrand
et al., 1992; Auvinen et al., 1997), CRC (Wang et al., 1996),
prostate cancer (Lipponen et al., 2001), and even in brain
tumors (Jadin et al., 2015). Stromal cells, i.e., fibroblasts, are
often identified histologically as the main source of HA in the
tumor, and tumor cells can increase HA synthesis in cocultured
fibroblasts (Knudson et al., 1984). HA levels, and expression of
HAS1–3, are correlated with poor prognosis (Bertrand et al.,
1992; Ropponen et al., 1998; Auvinen et al., 2000; Zhang H.
et al., 2016). HA acts as a ligand for CD44 and might thereby
play a role in EMT, resulting in increased invasiveness and
metastasis (Ghatak et al., 2010; Heldin et al., 2014). Expression
of proteins that are thought to be cancer stem cell markers
(CD90, CD133, EpCAM) are also reduced after inhibition of HA
synthesis (Sukowati et al., 2019).

Laminins
Laminins are also often stronger expressed in malignant tissue.
In normal tissue, laminins are components exclusive of the
basement membrane, resulting in a continuous well-delineated
linear staining by immunohistology. This appearance is often
distorted in tumors, or laminin appears to be ubiquitously
distributed in the stromal parts of the tumors (Gusterson et al.,
1982; Hand et al., 1985; Alon et al., 1986; Qiu et al., 2018). The loss
of adherence to a defined basementmembrane and the disruption
of this basement membrane is of course a characteristic of
invasive behavior. Conclusively, the increased laminin expression
and aberrant distribution is correlated with poor prognosis and
invasiveness, a fact that is documented since the early 1980s
(Albrechtsen et al., 1981; Siegal et al., 1981). In breast cancer,
laminin overexpression is generally observed (Alon et al., 1986).

Using a sophisticated and elaborated proteomics approach,
Naba et al. analyzed the matrisome of human melanoma
xenografts grown in severe combined immunodeficiency mice.
As the differences in amino acid sequence between murine
and human orthologs is sufficiently high for most proteins, the
approach allowed them to distinguish the contribution of the
(human) tumor cells and the (murine) stromal cells (Naba et al.,
2012). The experiments revealed that some proteins are expressed
exclusively by the tumor cells (e.g., Col7a1, Lama4, Lamb1) and
others by the stromal cells (e.g., Col5a3, Lama2, Eln). Moreover,
the ECM composition changes significantly during progression
and metastasis.

ECM Profiles as Prognostic Markers
Many cancers from the same tissue of origin can be subdivided
according to the molecular expression profile. These molecular
subtypes yield a lot of information about the tumor’s metabolism,
misregulation of survival and apoptotic pathways, presence of
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oncogenic drivers, and therefore the sensitivity and resistance
toward different treatment modalities. Not surprisingly, ECM
expression and deposition also differs significantly between
molecular tumor subtypes. Breast cancers can be subdivided
according to their expression status for estrogen receptor,
progesterone receptor, and Her2 into luminal A (ER/PR+,
Her2−), luminal B (ER/PR+, Her2+), Her2-positive (ER/PR−,
Her2+), and basal-like/triple negative (triple-negative breast
cancer, ER/PR−, Her2−) (Perou et al., 2000). Triple-negative
breast cancer and, to a lesser extent, Her2 tumors show not only
increased deposition of collagen but also enhanced invasion with
CAFs (Acerbi et al., 2015; Takai et al., 2016).

The expression profile of ECM-related genes is also in
many cancers a valuable prognostic factor. Bergamaschi et al.
were able to divide breast cancer samples in four subgroups
(ECM1–4) according to their ECM expression profile that
correlated significantly with prognosis (Bergamaschi et al., 2008).
Interestingly, the different expression subgroups correlated only
slightly with results of histological evaluation that grouped the
tumors according to the density of their appearance. A strong
correlation of elevated ECM expression and poor prognosis
was also found in luminal BCa (Riaz et al., 2012). In pediatric
osteosarcoma, a signature of high ECM turnover was found to be
highly prognostic for chemoresistance (Mintz et al., 2005) and,
in gastric cancer expression of a signature containing Col1a1,
Fn1, and Muc5a, was highly predictive of overall and disease-
free survival (Jiang et al., 2019). Besides indicators for immune
suppression, high expression of collagens Col3a1, Col4a1, and
Col5a2 is correlated with poor prognosis in glioblastoma (Chen
et al., 2018).

SHIELDING AND NURTURING: HOW THE
ECM PROTECTS THE TUMOR FROM
THERAPY

As we have seen, the ECM in tumors significantly differs
in composition and architecture from that in normal tissue.
Considering its physical properties, the tumor ECM is more
abundant, denser, and stiffer. These altered characteristics can
negatively affect response to therapy in multiple ways (Figure 1).
Most obviously, an excessive accumulation of dense and rigid
ECM, which histologically often encapsulates clusters of tumor
cells, can act as a barrier, shielding the cells from therapeutic
agents. This effect is directly linked to a reduced overall supply,
as this barrier also impairs diffusion of oxygen, nutrients,
and metabolites. Increased hypoxia and metabolic stress lead
to activation of antiapoptotic and drug resistance pathways.
Finally, cell–ECM contacts and increased tissue stiffness can
directly contribute to chemoresistance of tumor via integrin
and FAK-signaling.

The ECM Regulates EMT and Metastasis
An aspect that is necessary to mention is meanwhile understood
effect of fibrosis and CAF infiltration, and therefore also
alterations in ECM composition and accumulation, onmetastasis
and EMT. Occurrence of metastasis imminently affects treatment

FIGURE 1 | How the ECM affects the efficacy of systemic treatment.

Systemically applied drugs, independently of their nature being small

molecules or larger biomolecules, e.g., antibodies, peptides, or nucleic acids,

have to reach their target cells and cause a therapeutic response. The

abundant, highly cross-linked ECM interferes with the efficacy in both direct

and indirect ways. (A) The rigid dense ECM acts as a diffusion barrier that

impedes access of the drugs to the tumor cells, thereby acting as a shield

protecting the tumor from therapeutically effective doses. (B) The reduced

diffusion through the ECM also impairs supply with nutrients and oxygen.

Pathological signaling in response to metabolic stress and hypoxia increase

expression of drug efflux pumps and impair apoptosis and senescence,

rendering drugs that reach the undersupplied cells less effective. (C) Direct

contact with the ECM also affects these pathways that lead to a muted

response to cytotoxic stress. Integrin and FAK activation increase prosurvival

signaling, reduce apoptotic response, and help the cells to avoid cell cycle

arrest when confronted with chemotherapy-induced damage. (D) Similarly, not

only integrin and FAK but also hyaluronan induced CD44/HMMR signals can

lead to EMT. The mesenchymal state is characterized by stem-like,

chemoresistant traits. This includes again not only upregulation of ABC

transporters and reduced proliferation but also activation of cell metabolism

(cytochrome p450) that improves detoxification. That EMT also seems to

increase collagen synthesis, and production of cross-linking enzymes in tumor

cells might lead to a vicious cycle where the dense ECM induces EMT that

again drives ECM build-up.

options and therapeutic outcome. EMT is linked not only to
increased metastasis (Yang et al., 2004; Mani et al., 2007; Ocana
et al., 2012; Stankic et al., 2013) but also to chemoresistance
(Singh and Settleman, 2010; Haslehurst et al., 2012; Ren et al.,
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2013; Fischer et al., 2015; Zheng et al., 2015; Li H. et al., 2019; Li
N. et al., 2019). EMT in cancer is associated with the acquisition
of a more stem-cell-like character. Accordingly, Fisher et al.
found that the cyclophosphamide resistance of tumor cells that
acquired a mesenchymal character could be attributed to reduced
proliferation and increased expression of drug efflux pumps
(ABCC1, ABCB1) and of enzymes involved in drug metabolism,
like cytochrome p450s (Fischer et al., 2015), traits that are
characteristic for stem and progenitor populations.

Different aspects of the ECM contribute to EMT. One critical
factor is tissue stiffness. Increasing stiffness of the surrounding
ECM drives EMT in breast cancer cells by promoting TWIST1
translocalization into the nucleus (Wei et al., 2015). Rice et al.
found, by plating PDAC cells on substrates of different rigidity,
that stiffness increases nuclear localization of the transcription
factors YAP and TAZ, which can drive EMT (Rice et al., 2017).
As a result, mesenchymal markers (vimentin) were upregulated,
epithelial markers (E-cadherin) were reduced, and the cells
demonstrated increased resistance to paclitaxel. Gemcitabine
sensitivity was not affected, which was attributed to the fact
that gemcitabine reversed the mesenchymal character on the
stiff matrices as measured by normalized vimentin expression.
Different components of the ECM might also trigger or increase
EMT-like processes. The interaction of HA with hyaluronan-
mediated motility receptor (HMMR) drives epicardial EMT
during injury-induced heart regeneration in zebrafish (Missinato
et al., 2015). In gastric cancer, the HA/HMMR axis can also
be linked to EMT and 5-FU resistance (Zhang et al., 2019). In
vitro Col I secreted by hepatic stellate cells induced EMT in
hepatocarcinoma cells (Yang et al., 2014). A hallmark of EMT
is the loss of epithelial polarization, which by itself is linked to
anchorage of epithelial layers on a basement membrane (BM).
Walter et al. found that defects in the BM and of Col IV
deposition in particular can trigger EMT (Walter et al., 2018).
In proximal tubular epithelial cells, Col IV helps to maintain
an epithelial phenotype, while Col I promotes EMT (Zeisberg
et al., 2001). Reduced Col IV synthesis or incorrect assembly
and increased Col I synthesis thereby contributed to renal
fibrosis. In general, the examination of the effect of collagen
deposition on tumor EMT is complicated by the question of
which comes first: is collagen build-up inducing EMT or are cells
producing more collagen as a result of undergoing EMT. EMT
is observed under pathological fibrosis in normal organs, and
fibrotic collagen accumulation is often considered a result of the
more mesenchymal character of the affected cells (Higgins et al.,
2007; Hosper et al., 2013). This might be true for cancer, too.
It has been shown that TWIST1, one of the earliest described
transcription factors inducing EMT, is a potentially direct
regulator of Col1a5 transcription (Garcia-Palmero et al., 2016).
Similarly, the transcription factor ZEB1 positively regulates Col1
transcription and, in addition, promotes LOXL2 expression that
contributes to collagen stabilization (Ponticos et al., 2004; Peng
et al., 2017).

As the ECM composition within tumors itself is
heterogeneous, these effects of the ECM on cell behavior
and cell fate contribute strongly to tumor cell heterogeneity. In
addition, there is evidence that ECM components can influence

genetic instability. Deletion of the paired Col4A5 and Col4A6
genes contributes to the development of leiomyomatosis (Zhou
et al., 1993). Elevated expression of MMP3 can transform
cells in vitro, cause genomic instability in murine mammary
glands, and promote carcinogenesis in these mice (Sternlicht
et al., 1999; Radisky et al., 2005). Finally, blocking integrin
β1 signaling attenuated tumorigenesis in an inducible human
model for epidermal neoplasia (Reuter et al., 2009). Acquisition
of genetic instability is an early event in tumorigenesis. As
in these examples, ECM alterations drive tumorigenesis or
directly genetic instability, it is likely that also later changes
in ECM accumulation or composition influence genetic
instability, thereby contributing to tumor progression and
genetic heterogeneity.

Effects of the ECM on Tumor Supply and
Response to Chemotherapy
Distribution of drugs in the tumor occurs mainly by diffusion.
Owing to lack of lymphatic drainage, convection is in most solid
tumors of less importance (Welter and Rieger, 2013; Dewhirst
and Secomb, 2017). An abundant and highly condensed ECM
therefore can significantly reduce drug transport, resulting in
only a small volume of the surrounding tissue being supplied
by the individual vessels. Solid tumors are already characterized
by low microvessel density (Offersen et al., 1998; da Silva et al.,
2009). The often observed abundant, highly cross-linked ECM
further aggravates the supply situation, leading to hypoxia and
metabolic stress. Hypoxia again is directly linked to resistance vs.
various forms of cytotoxic therapy and radiotherapy (Moeller and
Dewhirst, 2004; Doublier et al., 2012; Jain, 2014; Horsman and
Overgaard, 2016; Graham and Unger, 2018).

The family of the five lysyl oxidase isoenzymes (LOX
and LOXL1–4) catalyzes the formation of cross-links between
collagen molecules and in elastin networks (reviewed in
Smith-Mungo and Kagan, 1998; Lucero and Kagan, 2006;
Siddikuzzaman et al., 2011). They are essential for stabilization
of collagen networks in a last extracellular maturation step. Thus,
increased lysyl oxidase levels affect drug distribution in two ways:
through better collagen stabilization toward degradation, they
enhance collagen accumulation and the increasing quantity of
cross-links turns the collagen network denser, further decreasing
diffusivity (Rohrig et al., 2017; Rossow et al., 2018). Stromal
fibroblasts contribute strongly to the elevated lysyl oxidase
levels observed in many cancers (Peyrol et al., 1997). Using
real-time confocal imaging of multicellular tumor spheroids,
Schutze et al. demonstrated that diffusion of chemotherapeutics
like doxorubicin is significantly hampered by LOX or LOXL2
overexpression (Schutze et al., 2015). Inhibition of lysyl oxidases
with 2-aminopropionitril reversed the effect. Lysyl oxidases
can directly confer intrinsic chemoresistance in human tumors
(Rossow et al., 2018). The initially findings of this study, that lysyl
oxidases are upregulated in a defined subgroup of intrinsically
resistant tumors of breast, ovarian, and CRC, were substantiated
by the observation that overexpression of lysyl oxidases rendered
previously sensitive and lysyl oxidase–low murine tumors
completely resistant to chemotherapeutic treatment. Inhibition
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of lysyl oxidases generally improves oxygenation (Erler et al.,
2006; Rossow et al., 2018). In response, vascular endothelial
growth factor A (VEGF-A) expression, the main angiogenic
factor, that is a Hif-1α-regulated protein, is reduced with positive
effects on tumor vascular maturation and patency (Maxwell et al.,
1997; Rossow et al., 2018). Lysyl oxidases might also have a direct
effect on VEGF-A expression via oxidation of the platelet-derived
growth factor receptor extracellular domain (Baker et al., 2013).
In addition, the increased tissue rigidity in LOXL2-high tumors
facilitates endothelial invasion of the tumor tissue, a critical step
in neo-vessel formation, presumably by increasing motility via
FAK signaling (Zaffryar-Eilot et al., 2013).

Treatment with hyaluronidases in vivo reduces HA content
and improves gemcitabine andDOXuptake inmurine pancreatic
ductal adenocarcinoma (PDAC) models (Provenzano et al., 2012;
Jacobetz et al., 2013). In osteosarcoma, xenografts uptake of
liposomal DOX could be improved with hyaluronidase treatment
(Eikenes et al., 2005). Especially, PDACs display high hyaluronan
content and can bind large amounts of water in the ECM leading
to increase in interstitial fluid pressure (PIF). Some studies
indicate that transcapillary transport and diffusion within the
tumor might be hindered by high PIF resulting from high HA
contend and/or vessel leakage. It has to be shown if also tumors
with lower hyaluronan content respond to this treatment with
better drug distribution. In two of these studies, also improved
vascular perfusion and reduced vessel collapse were observed
after hyaluronidase treatment (Eikenes et al., 2005; Jacobetz et al.,
2013). This might indicate that the high PIF in hyaluronan-
rich tumors restricts drug transport mainly by compressing the
supplying vessels and less by interfering with interstitial drug
diffusion. This would be in line with mathematical models that
indicate that PIF has only a minor effect on diffusion (Eikenberry,
2009).

In conclusion, it remains to be stated that a close connection
exists between the signaling pathways that regulate ECM
formation and angiogenesis. Especially the shared regulation via
the hypoxia-response axis results in the fact that interventions
that alter either the tumor ECM or the vasculature will likely
also affect the other. Effects on drug response and delivery
are therefore often difficult to pinpoint on a clear ECM or
vascular mechanism.

Carcinoma-Associated Fibroblasts
As carcinoma- or tumor-associated fibroblasts (CAFs) are the
main source of the ECM in tumors, it is necessary to have
a closer look at the particularities of these cells (Bagordakis
et al., 2016; Pankova et al., 2016; Pasanen et al., 2016). CAFs
are found in all solid tumors (Puram et al., 2017; Zhao
et al., 2018). They differ substantially from the quiescent,
metabolically inactive fibroblasts found in normal connective
tissue, as they are migratory, growth and immune response
promoting, and synthetically active (reviewed in Kalluri, 2016).
The source of CAFs varies strongly and often according to
tumor type. Stellate cells, bone-marrow-derived mesenchymal
stem cells, mesenchymal stem cells from adipose tissue, and
resident quiescent fibroblasts have been identified as cells
of origin for CAFs (McDonald et al., 2015; Barcellos-de-
Souza et al., 2016; Borriello et al., 2017; Ohlund et al.,

2017). Not surprisingly, given their varying origin, CAFs
are a heterogeneous cell population that can have strong
differences in morphology, cell–cell interaction, and expression
profile. However, they share common characteristics, as they
are synthetically active, mobile, and invasive, and promote
proliferation and immune response. All this is in stark contrast
to the quiescent, metabolically inactive fibroblasts found in
normal connective tissue (for a review on CAFs, see Kalluri,
2016).

CAFs already contribute to chemoresistance by themselves
via various mechanisms: PAI-1, a cytokine produced by
CAFs, activates Erk/Akt signaling and suppresses caspase-3
activation, which is necessary for tumor apoptosis following
chemotherapeutic stress (Che et al., 2018). Similarly, interleukin
6 (IL6) is also produced predominantly by CAFs and induces
expression of resistance-mediating CXCR7 in tumor cells (Qiao
et al., 2018; Xu et al., 2018). Especially under hypoxic conditions,
CAFs produce high levels of TGFβ, which induces stem cell-
like properties in tumor cells including increased resistance to
chemotherapy (Tang et al., 2018). Finally, the complex ECM
produced by CAFs interferes with therapeutic response by
forming a shielding barrier and providing prompts for protective
signaling, e.g., via interaction with integrins and cadherins (Eke
et al., 2010; Naci et al., 2012; McGrail et al., 2015; Jakubzig
et al., 2018; Naik et al., 2018). Based on these observations, it
should be possible to significantly improve drug distribution and
response to therapy by depleting CAFs in the tumor stroma.
However, CAFs seem to have an ambivalent role: depletion of
αSMA+ CAFs model induced immunosuppression in a murine
PDAC model and being strongly detrimental to the survival
of the animals (Ozdemir et al., 2014). Thus, targeting CAFs
might not be a straightforward solution. As outlined above,
CAFs are a heterogeneous cell population, with in all likelihood
different functions in the TME. Understanding these functions
might help to separate the divers CAF populations and to
develop strategies aimed at specific subgroups. Recently, it
has been shown that chemoresistance is mainly driven by a
population of CD10+GPR77+ CAFs (Su et al., 2018). Depletion
of these CAFs with an anti-GPR77 antibody increased sensitivity
to cytotoxic treatment. However, the authors pinpointed the
mechanism on IL6 and IL8 that is produced specifically by
CD10+GPR77+ CAFs and induces a stem-like phenotype in
the cancer cells including increased chemoresistance. Whether
CD10+GPR77+ CAFs also contribute disproportionally to ECM
formation needs to be seen. Another idea is to reprogram
CAFs back to a quiescent phenotype by inhibiting activating
pathways, e.g., nuclear factor kappa B (NFκb) signaling that is
increased in activated fibroblasts. Inhibition of NFκb reversed
the typical CAF phenotype and improved response to cisplatin
in ovarian cancer xenografts (Xu et al., 2018). The authors also
showed that NFκb inhibition strongly reduced the deposition of
collagen in the tumor matrix observed after cisplatin treatment.
Activated CAFs also express vitamin D receptor (Sherman et al.,
2014). Treatment with calcipotriol, a vitamin D analog, reversed
CAFs back to stellate cells, normalized the TME, and increased
gemcitabine concentration in the tumor resulting in improved
response in PDAC models (Sherman et al., 2014). CAFs display
an invasive and migratory phenotype that is also reflected in
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ROCK-pathway activation compared to quiescent fibroblasts.
The ROCK inhibitor, fasudil, reduced collagen deposition,
enhanced gemcitabine uptake, and improved treatment response
in a transgenic PDACmodel (Whatcott et al., 2017). Interestingly,
the authors were able to attribute the improved treatment
response to improved drug delivery after reduced collagen
deposition that resulted from a reversal of the CAFs to a stellate
cell phenotype.

In summary, the effects of the ECM and of CAFs on
response to chemotherapy are multifaceted: forming a protective
barrier that impedes drug diffusion, increased antiapoptotic
effects through integrin and FAK signaling, and activation
of drug resistance pathways by hypoxia and metabolic stress
caused by reduced supply. In addition, ECM-targeting drugs
can have toxic effects on the tumor cells themselves. Thus,
an improved response to therapy after ECM targeting by itself
cannot be attributed to a clear mechanism. In general, additional
experiments have to be planned into the studies to prove that the
ECM also directly blocks access of antineoplastic drugs to the
tumor cells. The studies that were able to demonstrate a direct
effect of the ECM on drug delivery and distribution within the
tumor are summarized in Table 1.

Tumor Cell–ECM Interaction and
Resistance to Chemotherapy
Cells sense their direct environment via various cell surface
receptors, most notably integrins (reviewed in Kechagia et al.,
2019). These surface-derived signals enable complex cellular

TABLE 1 | Effect of ECM components on tumor drug delivery.

ECM

component

Strategy Drug References

Collagen

synthesis

Fasudil treatment

(ROCK inhibitor)

Gemcitabine Whatcott et al., 2017

Collagen Systemic treatment with

collagenase

Anti-tumor

antibody

Eikenes et al., 2004

Collagen Systemic treatment with

collagenase

DOX Wang et al., 2018

Collagen Treatment with

TGFβ-inhibitor

DOX Liu J. et al., 2012

Collagen and HA

synthesis

Treatment with losartan 5-FU, DOX Diop-Frimpong et al.,

2011; Chauhan et al.,

2013

Hyaluronic acid Systemic treatment with

hyaluronidase

Gemcitabine Provenzano et al.,

2012; Jacobetz et al.,

2013

Hyaluronic acid Systemic treatment with

hyaluronidase

Liposomal

DOX

Eikenes et al., 2005

Hyaluronic acid HAS inhibition with

4-MU

Liposomal

DOX

Kohli et al., 2014

Hyaluronic acid HAS inhibition with

4-MU

5-FU Yoshida et al., 2018

Lysyl oxidases Overexpression of LOX

or LOXL2,

LOX(L)-inhibition with

βAPN

DOX Schutze et al., 2015

responses to changes in ECM composition and stiffness,
which may include responses that alter the cells sensitivity
to therapeutics.

Already 20 years ago, it was shown that adherence to ECM
via integrin β1 can protect SCLC cells from etoposide-induced
apoptosis by blocking proteolytic caspase-3 activation (Sethi
et al., 1999). In addition to this PI3K-mediated antiapoptotic
effect, ECM–integrin β1 interaction prevents G2/M arrest in
response to radiation or chemotherapy by upregulation of p21
and p27 and downregulation of cyclins A, B, and E (Hodkinson
et al., 2006). The authors showed that both fibronectin as well
as laminin can interact with integrin β1 and cause the protective
effect. A third effect of fibronectin–integrin β1 interaction might
be the upregulation of survival signals via ILK/Akt/NF-κB, as
proposed by another research team that demonstrated protection
vs. 5-FU-induced apoptosis in oral squamous carcinoma cells
(Nakagawa et al., 2014). Cells sense tissue stiffness through signals
from FAK that again cooperates with integrins. FAK signals
increase pro-survival pathways like AKT and MAPK. This has
been shown to confer resistance to rapamycin anmTOR inhibitor
(Yoon et al., 2017). Silencing of FAK with small-interfering RNA
(siRNA)/short hairpin RNA (shRNA) reinstated sensitivity to
docetaxel in OvCa cells and to 5-FU in CRC cells (Halder et al.,
2005; Chen et al., 2010).

Recently, Xiao et al. were able to demonstrate that resistance
to therapy can have even more complex causations, involving a
combination of various ECM components and their respective
receptors (Xiao et al., 2019). The authors used a biomatrix
model that enabled them to expose glioblastoma cells to
differentlymodifiedmatrixes in a 3D setting. Thereby, they found
that cooperation of HA/CD44 interaction and RGD-triggered
integrin αv signaling increases resistance through coactivation of
SRC and reduction in proapoptotic BCL-2 expression. Similarly,
Nguyen et al. found that increased stiffness on a hydrogel
screening platform only in cooperation with collagen-integrin β1
triggered JNK expression-mediated resistance toward sorafenib
(Nguyen et al., 2014).

Effects of the ECM on Radiotherapy
Radiotherapy is considered as one of the potentially curative
modalities for cancer. However, preclinical studies suggested
that tumor ECM might play a pivotal role in resistance and
recurrences to radiotherapy in different cancers (Cordes and
Meineke, 2003; Sandfort et al., 2007; Ou et al., 2012). Tumor
hypoxia or increased inflammation in TMEmodifies tumor ECM
components and increases collagen deposition, ECM density,
and stiffness (Hui and Chen, 2015; Willumsen et al., 2018). In
addition, it is known that adhesion to the dense ECM modifies
radiation sensitivity of cancer cells (Onoda et al., 1992).

Not only cell adhesion to the ECM but also ECM-
induced signaling is mediated largely by integrins, a family
of heterodimeric cell surface receptors that directly interact
with the ECM (reviewed in Desgrosellier and Cheresh, 2010;
Hamidi and Ivaska, 2018). Integrins play a crucial role in cell
survival, proliferation, morphogenesis, tumorigenesis, and
angiogenesis (Aumailley and Gayraud, 1998; Hapke et al.,
2003; Reginato et al., 2003; Demircioglu and Hodivala-Dilke,
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2016). Cell survival by integrins is mediated by several signaling
pathways such as FAK, Src kinases, PI3K/Akt, MAP kinase
signaling, NFκB signaling, p130cas/paxillin, and upregulation of
Bcl2-family antiapoptotic proteins (Uhm et al., 1999; Damiano
et al., 2001; Cordes et al., 2006; Hehlgans et al., 2007; Serebriiskii
et al., 2008). It has also been shown that by altering integrin
expression and increasing secretion of survival-promoting
ECM molecules, tumor cells develop resistance to anoikis and
improve survival in inappropriate ECM environments (Khwaja
et al., 1997; Gilmore, 2005). Given their role in cancer cell
survival, it is not surprising that integrins, and therefore the
ECM-molecules they interact with, are also strongly involved
in regulating resistance to radiotherapy: recent studies reported
that β1 integrins are upregulated after radiotherapy and
play a role in mediating resistance to radiotherapy (Onoda
et al., 1992). Experiments in melanoma and sarcoma cells
showed that downregulation of the p53 tumor suppressor gene
resulted in increased survival following cell detachment and
resistance to apoptosis (Lewis et al., 2002; Hazlehurst et al.,
2003). Blocking ECM-induced signaling by targeting either
β1 integrins or downstream PI3/AKT signaling enhanced
the efficacy of radiotherapy in cultured breast cancer cells
and implanted BCa xenografts (Liang et al., 2003; Park et al.,
2006, 2008). Another study performed on A549 lung cancer
cells demonstrated that cell adhesion to the ECM protein
fibronectin promotes resistance to radiotherapy (Cordes and
Beinke, 2004). The protective function of fibronectin is mediated
by α5β1 integrin, as shown in A549 and H1299 lung cancer
cells, where the increased fibronectin synthesis after cetuximab
treatment attenuated cytotoxic and radio sensitivity (Eke et al.,
2013). Similarly, in matrigel-embedded 3D cultures of human
malignant human breast cancer cells targeting the interaction
between fibronectin and α5β1 integrin enhanced radioresponse
by promoting apoptosis (Nam et al., 2010). Further studies also
revealed that integrin α5β3 is upregulated after radiotherapy
and that treatment with an α5β3 antagonist enhanced
radiosensitivity (Abdollahi et al., 2005).

Matrix metalloproteinases (MMPs) are involved in turnover
and modulation of ECM components. The MMP-caused
fragmentation of ECM components observed in many cancers
in TME is generally associated with poor prognosis (Noel et al.,
2012). In vitro studies have demonstrated that increased MMP
activity and ECM proteolysis leads to enhanced migration,
angiogenesis, and metastasis after radiotherapy, and breast
cancer cells showed increased invasion capacity with increased
expression of MMP2-activating molecules MT1-MMP and
TIMP-2 (Paquette et al., 2007; Artacho-Cordon et al., 2012).
MMPs also promote angiogenesis by degradation of ECM
components and basement membrane, which furthermore can
affect outcome of radiotherapy in particular by enhancing
escape from stress after the treatment (Nambiar et al., 2015).
Furthermore, in preclinical studies, pretreatment with MMP2
inhibitors enhanced sensitivity to radiotherapy (Qian et al.,
2002; Kaliski et al., 2005; Badiga et al., 2011). Similarly,
MT1-MMP blockade in murine breast carcinomas with a
neutralizing antibody enhanced radiosensitivity via increased
tumor perfusion (Ager et al., 2015). Interestingly, this was likely
caused by a shift from proangiogenic M2 to a phagocytic M1

macrophage phenotype. Other studies also reported that NF-
κB causes resistance to radiotherapy by inducing MMP2/9,
which promote tumor metastasis and invasion. These studies
also showed that treatment of CRC cells with nafamostat
mesilate (FUT175), a synthetic serine protease inhibitor, results
in downregulation of NF-κB and enhances sensitivity to
radiotherapy by inhibiting MMP2/9 (Sugano et al., 2018).

TGFβ signaling modulates the TME by stimulation of
myofibroblasts and other stromal cells and by increasing collagen
cross-linking enzymes, particularly lysyl oxidases (Egeblad et al.,
2010). Both TGFβ and lysyl oxidases can be targeted to improve
response to radiotherapy: inhibition of TGFβ signaling enhances
radiation sensitivity of non-small-cell lung cancer (NSCLC) cells
in vitro and in a Lewis lung carcinoma mouse model (Kirshner
et al., 2006; Du et al., 2015; Zhao et al., 2016). While radiotherapy
increases LOX secretion in several tumor cell types and in in
vivo lung adenocarcinoma xenograft models (Shen et al., 2014),
knockdown of LOX2 in DU145 prostate cancer cells using a
siRNA approach enhanced their radiosensitivity not only in vitro
but also in a xenograft model (Xie et al., 2019). P4HA is another
enzyme necessary for correct collagen deposition and directly
responsible for increased collagen deposition in tumors (Xiong
et al., 2014). Its expression is strongly correlated with response to
radiotherapy in breast cancer patients (Toss et al., 2018).

The effect of ionizing radiation on cells is also strongly
dependent on their oxygenation status. Hypoxia significantly
impairs the effectiveness of radiotherapy (reviewed in Griffioen
et al., 2001; Horsman and Overgaard, 2016; Graham and
Unger, 2018). Consequently, strategies to improve oxygenation
status, in tumors before radiotherapy—e.g., by pretreatment
with antiangiogenic drugs—have been devised and tested.
Although antiangiogenic drugs were initially designed to reduce
tumor growth by starving it, there might be a period after
administration when antiangiogenics briefly improve supply by
impairing non-functional vessel formation (Claes and Leenders,
2008). Dings et al. found that treatment with Avastin or the
antiangiogenic peptide anginex improved oxygenation in various
murine tumor models (Griffioen et al., 2001; Dings et al., 2007).
Scheduling radiation to line up with this improved oxygenation
window enhanced the efficacy of radiotherapy in these models.
Correspondingly, response to radiotherapy increased in murine
tumors during the improved oxygenation observed 2 days after
treatment with the VEGF-R2-inhibitor sunitinib (Matsumoto
et al., 2011). However, some evidence suggests that the protective
effect of hypoxia on radiation damage is at least in part
mediated by Hif1α controlled release of proangiogenic and
endothelial protective cytokines that restrict radiation damage
on the tumor vessels (Moeller and Dewhirst, 2004). Thus,
the beneficial effect of antiangiogenic therapy on response to
radiotherapy might not stem from reduced hypoxia but from
increased sensitivity of the growth factor signaling-deprived
endothelium. Moreover, antiangiogenic treatment leads, in most
settings, not to improved supply but to increased hypoxia,
both in murine models and in patients (Henke et al., 2007;
Keunen et al., 2011; Van der Veldt et al., 2012; Miyazaki et al.,
2014; Rohrig et al., 2017). Interestingly, Riesterer et al. showed
that fractionated radiation reversed the increased hypoxia after
Vatalinib treatment (Riesterer et al., 2006).
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Effects of the ECM on Immunotherapy
Cancer immunotherapy is a promising concept that
yielded impressive breakthroughs in recent years. The term
immunotherapy is used for a variety of therapeutic approaches
that all aim to engage the patient’s immune system against
cancer. Adoptive transfer methods are based on patient-
derived lymphocytes that are expanded, genetically modified,
or activated ex vivo before being reinfused (Robbins et al.,
2015; Lu et al., 2017). In addition, the application of antitumor
vaccination approaches have made considerable progress in
recent years (reviewed in Rammensee and Singh-Jasuja, 2013;
Accolla et al., 2019; Peng et al., 2019). The method most widely
established in the clinic is the treatment with checkpoint
inhibitors. Many tumor cells express ligands to T-cell receptors
that, upon engagement, block immune surveillance. These
ligand/receptor interactions act as inhibitory checkpoints for
the adaptive immune system to prevent indiscriminate attacks
on the hosts own cells. Currently, the interactions of the ligands
CD80/CD86 with the receptor CTLA4 and the PD-L1 with its
receptor programmed cell death receptor (PD-1) are of the most
importance in cancer immunotherapy. The therapeutic success
that draw so much attention in recent years can be mainly
attributed to the clinical introduction of inhibitory antibodies
against CTLA4 and PD-L1/PD-1 (Eggermont et al., 2018; Gandhi
et al., 2018; Paz-Ares et al., 2018)3 As a detailed discussion of
the different immunotherapeutic approaches, the regulatory
pathways, and various T-lymphocyte populations involved in
cancer immune surveillance is beyond the scope of this article,
we want to refer the reader to the many excellent review articles
that focus on these topics (e.g., Lim et al., 2018; Sharpe and
Pauken, 2018; Ganesh et al., 2019).

While some cancers, e.g., melanoma or NSCLC, respond
well to immunotherapy and checkpoint inhibition in particular
(Robert et al., 2015; Gandhi et al., 2018; Paz-Ares et al., 2018),
results in other cancers, e.g., breast carcinomas or PDACs, are less
striking (McArthur et al., 2016; Parra et al., 2017; Adams et al.,
2018; Rugo et al., 2018). Immunotherapeutic approaches need to
get both the drug and T lymphocytes deep into the tumor and
in contact with the tumor cells to be effective. A major obstacle
for the successful application of the immune therapeutics in
some cancer patients seem to be the low infiltration with T
lymphocytes, as infiltration rate is highly predictive of response
(Issa-Nummer et al., 2013). The infiltration rate is not only
determined by the degree the malignant cells are able to provoke
an immune response (hence the tumor’s immunogenicity) but
also by the ECM that can act as a protective shield. Immune
cells that are first attracted to side of tumor growth by cytokine
gradients (chemotaxis) are often diverted from this direction
when confronted with the rigid, ECM-rich encapsulation around
the tumor cell clusters. The immune cells migrate then along the
gradient of increasing rigidity and ECM-provided adhesion sites
(haptotaxis), being diverted from the tumor cells (see Figure 2 for
a detailed representation of various ways the ECM might affect

3FDA Grants Accelerated Approval to Ipilimumab for MSI-H or dMMR

Metastatic Colorectal Cance. Available online at: https://www.fda.gov/drugs/

informationondrugs/approveddrugs/ucm613227.htm.

immunotherapy). Thereby, the high density of the tumor ECM
strongly determines not only distribution of immunomodulatory
drugs but also infiltration of immune cells into the tumor
(Hallmann et al., 2015; Raave et al., 2018). Increased hypoxia and
metabolic stress that are in part a result of the poor diffusion in
ECM-rich tumors lead to an upregulation of immunosuppressive
factors like IL-10, CCL18, CCL22, TGFβ, and prostaglandin E2
and also VEGF-A (Wei et al., 2011; Xue and Shah, 2013; Schaaf
et al., 2018). Especially TGFβ acts in the TME as a suppressor
of infiltrating CD8+-cytotoxic lymphocytes (CTLs) and natural
killer (NK) cells. TGFβ exercises this effect by attracting
regulatory T cells (Tregs) and by working as a M2-polarizing
agent for macrophages (8) (Ostroukhova et al., 2006; Zhang F.
et al., 2016; Schaaf et al., 2018). Both M2-8 and Tregs negatively
regulate infiltration and activity of CD8+-CTLs (Ruella et al.,
2017). VEGF-A also is able to recruit Tregs that express NRP1,
a VEGF coreceptor, and can directly suppresses activation of T
cells (Gavalas et al., 2012; Powell et al., 2018). Consequently,
tumor ECM remodeling, stabilization, and accumulation are
increasingly recognized as crucial factors controlling infiltration
and also differentiation, activation, and polarization of immune
cells in the TME (Mushtaq et al., 2018). For the distribution
of immunomodulatory drugs, the same consideration apply as
for other antineoplastic drugs. Many immunomodulatory drugs,
meanwhile, in the clinic are therapeutic antibodies, e.g., the
CTLA-4 directed ipilimumab and PD-1 directed pembrolizumab
(Robert et al., 2015; Adams et al., 2018; Hodi et al., 2018).
Because of their large hydrodynamic diameter, diffusion of these
macromolecular drugs is even more affected by a dense, strongly
cross-linked ECM.

FIGURE 2 | How the ECM affects the efficacy of immunotherapy. (A) The

dense ECM can prevent immune cells to reach the tumor cells even in highly

immunogenic cancers. Upon contact with areas of increased stiffness,

lymphocytes are prone to follow less a chemoattractive gradient but to migrate

along the fields of elevated rigidity (haptotaxis). (B) The shielding diffusion

barrier that the ECM forms prevents also immunotherapeutic drugs, like

checkpoint inhibitory ABs, to reach the tumor. (C) The increased hypoxia that

results from poor supply behind the diffusion barrier can directly enhance

immune escape by upregulation of immunomodulatory factors like IL-10 or

TGF-β. (D) Hypoxia also increases angiogenic signals. Activated blood vessels

show reduced ICAM1 expression, impeding attachment and extravasation of

immune cells.
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Neither T cells nor dendritic cells are able to penetrate dense
fibrils in tumor ECM. Salmon et al. showed in human lung
tumor specimen that the migration and finally distribution of
T cells is dictated by the aligned collagen fibers surrounding
tumor islets and perivascular regions in the tumor stroma
(Salmon and Donnadieu, 2012; Salmon et al., 2012). This resulted
in an accumulation of T cells in the stroma, where most of
these immune cells got trapped without being able to reach
the targeted tumor cells for destruction. Collagenase treatment
ameliorated the trapping effect and increased infiltration into the
areas of malignant cells. Another study in PDAC suggested that
hyaluronan, by forming dense architecture, impedes infiltration
of effector immune cells and drugs in a similar manner as
collagen (Jacobetz et al., 2013). The clinical relevance of this
shielding function of the stromal ECM that keeps immune
cells at distance from the tumor cells was most strikingly
demonstrated by Mariathasan et al. that showed in a urothelial
cancer patient cohort that non-response to PD-L1 checkpoint
inhibition correlated with CTL entrapment in the stromal ECM
(Mariathasan et al., 2018).

Hypoxia in the TME, which is partially caused by the dense
ECM, leads to an upregulation of angiogenic factors like VEGF.
This also impairs infiltration with CTLs as endothelial cells
downregulate in response to VEGF cell surface glycoproteins,
such as selectins and cell adhesion molecules like ICAM1,
ICAM2, and VCAM1 (Griffioen et al., 1996; Achen et al., 2005;
Castermans and Griffioen, 2007; Lund and Swartz, 2010). This
results in a masking of the supplying blood vessels, as the CTLs
cannot longer attach to the endothelium void of the necessary
adhesion proteins. Other studies found that the constantly
activated tumor endothelium selectively promote transmigration
of immunosuppressive Tregs by upregulating adhesion molecules
like MadCAM1, CD62-E, CD166, and stabilin1 (Nummer et al.,
2007; Shetty et al., 2011). Voron et al. reported that VEGF-A
promotes immune escape by inducing Tregs and causing PD-
1 expression on VEGF-R2 expressing CD8+ T cells (Voron
et al., 2015). CAFs, which regulate stromal matrix and serve as
a primary source for matrix-associated proteins, also play an
essential role in the infiltration of leukocytes into the tumor
(reviewed in Turley et al., 2015).

ECM proteins collagens, laminin, and fibronectin regulate
polarization and activation of immune cells in TME (Vaday and
Lider, 2000; Simon and Bromberg, 2017; Mushtaq et al., 2018).
Transmembrane collagens like Col XVII can trigger immune
inhibitory signaling in NK cells via leukocyte associated Ig-like
receptor-1 as has be shown in multiple cell lines (Rygiel et al.,
2011). In cell culture, high molecular weight HA (in contrast
to low molecular weight HA) suppress the immune system by
increasing activity of Tregs, presumably acting as an TLR ligand
(Bollyky et al., 2009).

MMP and ADAM metalloproteinases also modulate
immune and inflammatory responses by degradation of the
ECM. The ECM acts as a reservoir of immunomodulatory
cytokines and growth factors that are released upon its
proteolytic degradation. In addition, the cleavage products of
the ECM (e.g., matrikines) can, by themselves, affect immune
surveillance. Lastly, metalloproteinases are involved in release
of immunoactive factors from the cell surface. ADAM10,

ADAM17, and MMP9, for example, are responsible for shedding
of major histocompatibility complex class I chain-related
molecule A (MICA) from tumor cells (Waldhauer et al., 2008;
Chitadze et al., 2013). MICA is a surface ligand and activates the
immunoreceptor NKG2D, effectively marking MICA-expressing
cells for elimination. Although many cancers express MICA,
the upregulation of metalloproteinases enables the tumors cells
to escape immune surveillance as has been shown in human
prostate cancer, breast cancer, and osteosarcoma cells (Barsoum
et al., 2011; Sun et al., 2011). A further link to the ECM exists
in the form that ADAM10 is hypoxia regulated, that itself
is increased by ECM accumulation (Barsoum et al., 2011).
Enzymatic proteolysis of versican results in the release of the
matrikine versikine that triggers the generation of conventional
dendritic cell in CRC, which subsequently promotes T-cell
infiltration (Hope et al., 2017). An immune-enhancing quality of
versikine was also detected in myeloma (Hope et al., 2016). Here,
however, versikine induced production of inflammatory IL1β
and IL6 from myeloma-associated macrophages that increased
infiltration of CD8+ T cells.

The ECM also directly regulates escape mechanisms, e.g., the
expression of checkpoint molecules. Inhibition of HA synthesis
by 4-MU in a mesothelioma xenograft lead to a significant
increase in both PD-1 and PD-L1 expression (Cho et al., 2017).

Tumor-associated macrophages are the most frequent
immune cells found in the TME (Lewis and Pollard, 2006).
TAMs play an important role in mediating adaptive immune
response in cancer. Interestingly, macrophages can have both
anti- and proinflammatory roles, which is often linked to their
M1 or M2 polarization status (reviewed in Tariq et al., 2017).
Various ECM components are involved in TAM polarization:
At least in cell culture, HA alone is able to strongly drive
macrophage polarization toward a protumorigenic and anti-
inflammatory M2 phenotype (Kim et al., 2019). This effect of
ECM components on macrophage polarization was reported
already much earlier for Col I that also drives M2 polarization
(Kaplan, 1983; Wesley et al., 1998). Conversely, fibronectin-rich
ECM strongly enhances the cytotoxic activity of macrophages
toward tumor cells, consistent with M1 polarization (Perri
et al., 1982). Although it has not been explicitly shown that
ECM targeting affects immune surveillance and the response
to immunotherapy by changing TAM polarization, the clear
connection between the ECM and macrophage polarization,
on the one hand, and macrophage polarization and immune
escape, on the other, strongly imply the possibility of such
an effect.

BRAKING DOWN THE BARRIERS:
DESTABILIZING THE TUMOR ECM TO
IMPROVE TREATMENT RESPONSE

Preclinical Studies
Considering the wide and negative effects of the abundant
and pathologically altered tumor ECM on various treatment
modalities, the interest in targeting the ECM to improve
therapeutic efficacy is evident. Of course, removing the
treatment-impeding ECM in situ is a major challenge.
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Nevertheless, in preclinical models, the ECM degradation
has been shown to improve drug uptake and response (Table 2).
For example, Eikenes et al. studied the possibility of enzymatic
hydrolysis of collagen in vivo: Treatment of osteosarcoma
xenografts with systemically injected collagenase increased
uptake of an antibody specific for the implanted tumor (Eikenes
et al., 2004). The collagenase treatment improved overall
accumulation of the therapeutic antibody and resulted in a more
homogeneous distribution. Wang et al. immobilized collagenase

on nanogels and used it to treat a hepatocellular mouse model,
in which it improved distribution and response to doxorubicin
(Wang et al., 2018). Similarly, hyaluronidase was used to treat
hyaluronan-rich tumors and to increase uptake and efficacy
of gemcitabine and DOX in experimental PDAC (Provenzano
et al., 2012; Jacobetz et al., 2013) and of liposomal DOX in
osteosarcoma xenografts (Eikenes et al., 2005). Currently, several
clinical trials with pegylated hyaluronidase (PEGPH20) are
ongoing (see below).

TABLE 2 | Overview on preclinical and cell culture approaches to improve response to therapy by targeting the ECM.

ECM-targeting strategy Therapeutic used in

combination

Test model References

Collagenase Model-specific ABa Osteosarcoma xenograft in mice Eikenes et al., 2004

Immobilized collagenase Doxorubicin Hepatocellular allografts in mice Wang et al., 2018

Lysyl oxidase inhibition (2-aminopropionitril) Doxorubicin 4T1 and EMT6 Breast cancer allografts in mice Rossow et al., 2018

Cisplatin LLC allografts in mice Rossow et al., 2018

P4HA inhibition (shRNA and

Ethyl-3,4-dihydroxybenzoic acid)

Docetaxel Breast cancer xenografts Xiong et al., 2018

Docetaxel and doxorubicin Breast cancer 3D spheroids in cell culture Xiong et al., 2018

Hyaluronidase, pegylated, i.v. Doxorubicin Spontaneous PDAC mouse model KPC Jacobetz et al., 2013

Gemcitabine Spontaneous PDAC mouse model KPC Provenzano et al., 2012

Hyaluronidase, intratumoral Doxilb Osteosarcoma xenograft in mice Eikenes et al., 2005

Hyaluron synthase-inhibitor [4-methylumbelliferone

(4-MU)]

Doxilb 4T1 Breast cancer allograft in mice Kohli et al., 2014

5-Fluorouracil PDAC xenografts Yoshida et al., 2018

Doxorubicin CML cells in cell culture Uchakina et al., 2016

TGFβ-inhibition (sTβRII and anti-TGFβ-ABa) Doxorubicin 4T1 Breast cancer allograft in mice Liu J. et al., 2012

Hif-1α-siRNA Doxorubicin Prostate cancer xenografts Liu X.Q. et al., 2012

Hif-1α-shRNA Cisplatin Prostate cancer xenografts Gu et al., 2017

Antifibrotic drug (Pirfenidone) Gemcitabine PDAC xenografts Kozono et al., 2013

Radiation + sunitinib LLC allografts Choi et al., 2015

Doxorubicin Giri et al., 2004

Antifibrotic drug (Ormeloxifene) Gemcitabine PDAC xenografts Khan et al., 2015

Antifibrotic drug (Losartan) 5-Fluorouracil Chauhan et al., 2013

Doxilb Pancreatic adenosquamous carcinoma xenografts

in mice

Diop-Frimpong et al., 2011

Liposomal paclitaxel Breast cancer allograft in mice Zhang F. et al., 2016

CAF reprogramming (NFκb-inh.: metformin) Cisplatin Ovarian cancer xenografts Xu et al., 2018

CAF reprogramming (Calcipotriol) Gemcitabine PDAC xenograft model Sherman et al., 2014

CAF reprogramming (ROCK-Inh.: fasudil) Whatcott et al., 2017

GRP77+ CAF depletion (GRP77–ABa) Docetaxel Patient derived breast cancer xenografts Su et al., 2018

Hyaluronidase, intratumoral Immunotherapy (shPD-L1 loaded

nanoparticles)

B16 F1 Melanoma allografts Guan et al., 2019

Immunotherapy (Ovalbumin/CpG

loaded nanoparticles)

B16 F1 Melanoma allografts Guan et al., 2018

Hyaluron synthase-inhibitor (4-MU) Immunotherapy (IL-12) +

cyclophosphamide

CRC allografts in mice Malvicini et al., 2015

TGFβ inhibition (anti-TGFβ-ABa) Immunotherapy (anti-PD-L1-ABa) EMT6 Breast cancer allograft in mice Mariathasan et al., 2018

Hyaluron synthase inhibitor (4-MU) Radiotherapy Fibrosarcoma cell culture Saga et al., 2017

LOXL2 inhibition (shRNA) Radiotherapy DU145 prostate cancer xenografts Xie et al., 2019

TGFβ inhibition (SB431542) Radiotherapy LLC allografts in mice Zhao et al., 2016

Antifibrotic drug (Pirfenidone) Radiation + sunitinib LLC allografts Choi et al., 2015

aAB: antibody.
bDoxil: liposomal doxorubicin.
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TABLE 3 | ECM-targeted drugs in combination with tumor-directed therapy in clinical trials.

Target Drug Therapy used in combination with

ECM-targeted drug

Malignancy Trial

phase

Status References

LOXL2 Simtuzumab Gemcitabine PDAC II Completed Benson et al., 2017

FOLFIRIa Metastatic CRC II Completed Hecht et al., 2017

HA PEGPH20 Gemcitabine + nab-paclitaxel Metastatic pancreatic cancer II Completed 4

Gemcitabine Stage IV pancreatic cancer II Completed 5

Eribulin mesilate Metastatic breast cancer Ib Active 5

Pembrolizumabc • NSCLC

• Gastric cancer

hyaluronan-high

Ib Active 6

Cetuximabd Pancreatic cancer I/II Completed 7

Avelumabe Pancreatic cancer I Recruiting 8

Gemcitabine + nab-paclitaxelf Advanced pancreatic ductal adenocarcinoma NA Recruiting 4

Atezolizumabg Pancreatic adenocarcinoma I/II Recruiting 9

Atezolizumabg Gastric adenocarcinoma or gastroesophageal

junction adenocarcinoma

I/II Recruiting 10

Cisplatin + Gemcitabine Cholangiocarcinoma I Active 11

Gemcitabine + nab-paclitaxel PDAC II Recruiting 12

Gemcitabine + nab-paclitaxel PDAC III Active 6

Fibrosis Pirfenidone Carboplatin + Pemetrexed, Carboplatin + Paclitaxel NSCLC I Recruiting 7

Losartan FOLFIRINOXb, Nivolumabh, Radiation therapy Pancreatic cancer II Recruiting 8

FOLFIRINOXb
+ proton beam radiation Pancreatic cancer II Active 9

Sunitinib Osteosarcoma I Announced 10

TGFβ Galunisertib

(Ly2157299)

Carboplatin + paclitaxel Ovarian and uterus carcinoma I Recruiting 13

Radiotherapy Metastatic breast cancer II Active 14

Nivolumab NSCLC, hepatocellular cancer I/II Active 15

Fresolimumab Radiotherapy NSCLC I/II Recruiting 16

aFOLFIRI: Folinic acid (leucovorin), 5-FU, irinotecan.
bFOLFIRINOX: Folinic acid (leucovorin), 5-FU, irinotecan, oxaliplatin.
cPembrolizumab: anti-PD-1.
dCetuximab: anti-EGFR.
eAvelumab: anti-PD-L1.
fnab-paclitaxel: albumin bound paclitaxel.
gAtezolizumab: anti-PD-L1.
hNivolumab: anti-PD-1.

4PEGPH20 Plus Nab-Paclitaxel Plus Gemcitabine Compared with Nab-Paclitaxel

Plus Gemcitabine in Subjects with Stage IV Untreated Pancreatic Cancer

(HALO-109-202). Available online at: https://clinicaltrials.gov/ct2/show/record/

NCT01839487 (accessed May 2, 2019).
5Study of Gemcitabine + PEGPH20 vs Gemcitabine Alone in Stage IV Previously

Untreated Pancreatic Cancer. Available online at: https://clinicaltrials.gov/ct2/

show/NCT01453153 (accessed May 2, 2019).
6Phase 1b Open-Label Study of PEGylated Recombinant Human

Hyaluronidase (PEGPH20) with Pembrolizumab. Available online

at: https://clinicaltrials.gov/ct2/show/NCT02563548 (accessed

May 2, 2019).
7Two Stage Study of Single Dose PEGPH20 and Cetuximab in Patients

with Pancreatic Adenocarcinoma Prior to Surgical Resection. Available

online at: https://clinicaltrials.gov/ct2/show/NCT02241187 (accessed

May 2, 2019).
8A Trial of PEGPH20 in Combination with Avelumab in Chemotherapy

Resistant Pancreatic Cancer. Available online at: https://clinicaltrials.gov/ct2/show/

NCT03481920 (accessed May 2, 2019).
9A Study of Multiple Immunotherapy-Based Treatment Combinations in

Participants with Metastatic Pancreatic Ductal Adenocarcinoma (Morpheus-

Pancreatic Cancer). Available online at: https://clinicaltrials.gov/ct2/show/

NCT03193190 (accessed May 2, 2019).
10A Study of Multiple Immunotherapy-Based Treatment Combinations in Patients

with Locally Advanced Unresectable or Metastatic Gastric or Gastroesophageal

Junction Cancer (G/GEJ) (Morpheus-Gastric Cancer). Available online at: https://

clinicaltrials.gov/ct2/show/NCT03281369 (accessed May 2, 2019).
11Study of PEGPH20 with Cisplatin (CIS) and Gemcitabine (GEM); PEGPH20

with Atezolizumab, CIS, and GEM; and CIS and GEM Alone in Participants with

Previously Untreated, Unresectable, Locally Advanced, or Metastatic Intrahepatic

and Extrahepatic Cholangiocarcinoma and Gallbladder Adenocarcinoma.Available

online at: https://clinicaltrials.gov/ct2/show/NCT03267940 (accessed May 2,

2019).
12PEGPH20, Gemicitabine and Nab-Paclitaxel for Pancreatic Ductal

Adenocarcinoma. Available online at: https://clinicaltrials.gov/ct2/show/

NCT02487277 (accessed May 2, 2019).
13Paclitaxel/Carboplatin + Galunisertib for Patients with Carcinosarcoma of

the Uterus or Ovary. Available online at: https://clinicaltrials.gov/ct2/show/

NCT03206177 (accessed May 2, 2019).
14LY2157299 Monohydrate (LY2157299) and Radiotherapy in Metastatic Breast

Cancer. Available online at: https://clinicaltrials.gov/ct2/show/NCT02538471

(accessed May 2, 2019).
15A Study of Galunisertib (LY2157299) in Combination with Nivolumab in

Advanced Refractory Solid Tumors and in Recurrent or Refractory NSCLC, or

Hepatocellular Carcinoma. Available online at: https://clinicaltrials.gov/ct2/show/

NCT02423343 (accessed May 2, 2019).
16SABR-ATAC: A Trial of TGF-beta Inhibition and Stereotactic Ablative

Radiotherapy for Early Stage Non-small Cell Lung Cancer. Available online at:

https://clinicaltrials.gov/ct2/show/NCT02581787 (accessed May 2, 2019).
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However, as the ECM in tumors is constantly remodeled,
it might not be necessary to remove already existent ECM.
The perpetual turnover is signified by concomitantly high-
level synthesis of ECM macromolecules and degradation of the
ECM by tumor-secreted hydrolytic enzymes like MMPs and
cathepsins, on the other hand. This opens the possibility to
shift the turnover toward net degradation by blocking de novo
synthesis. This can be accomplished by either reducing cues
that lead to increased expression of ECM molecules, like TGFβ
signaling or hypoxia-response pathways, or by inhibiting the
various modifying enzymes necessary for proper production,
secretion, and maturation of these ECMmolecules.

Targeting Collagen Synthesis and
Maturation
The complex post-translational modifications that collagens
have to be subjected to for proper assembly, secretion, and
extracellular maturation offer multiple possibilities to interfere
with their accumulation in the TME. These modifications are
catalyzed by enzymes that are preferred subjects for targeting
with small molecule drugs.

Inhibition of lysyl oxidases reduces tissue stiffness on overall
collagen deposition, as the maturation process in the form of
LOX-induced cross-links further stabilizes collagens and protects
them from degradation. Treatment with 2-aminopropionitrile
reduced significantly collagen deposition and drug accumulation
in various murine allograft models (Rossow et al., 2018).
In breast cancer allografts, this leads to increased sensitivity
toward DOX and improved efficacy against metastatic disease.
In Lewis lung carcinomas, it improved response to cisplatin.
Post-translational hydroxylation by collagen P4HA is necessary
for correct intracellular processing of collagen molecules. Xiong
et al. showed that inhibition of P4HA1 significantly reduced
collagen deposition in breast cancer xenografts (Xiong et al.,
2018). While inhibition of P4HA1 in these xenografts either with
shRNAs or ethyl-3,4-dihydroxybenzoic acid had no antitumor
effect on itself, it significantly improved response to docetaxel
in reducing tumor growth and pulmonal metastasis. Latest
clinical data might underline the necessity to conduct further
studies. Recently, phase II trials combining treatment with a
LOXL2-directed antibody (simtuzumab) with chemotherapy—
gemcitabine in PDAC and FOLFIRI regiment in CRC—ended
with unsatisfactory results (Benson et al., 2017; Hecht et al.,
2017). Drug scheduling in these trials were not designed to
synergistically profit from improved drug delivery after ECM
modification, but on the assumption of an additive effect of
the cytotoxic drugs with the antitumoral effect that has been
demonstrated preclinically for LOXL2 blockade by itself (Barry-
Hamilton et al., 2010; Rodriguez et al., 2010). If, as indicated in
preclinical tests, the improved drug distribution after collagen
destabilization is indeed a deciding mechanism by which LOX
targeting can improve treatment outcome, this has to be reflected
in the trial design. In patients, the changes of the ECM would
take much longer to manifest, than in the generally much faster
growing murine test models. Another problem in targeting lysyl
oxidases is the shared substrate spectrum and the completely

redundant biological activity of the five family members (Molnar
et al., 2003). Targeting LOXL2 with an inhibiting antibody
might be too specific, and using a small molecule drug that
equally inhibits all five lysyl oxidases might yield better results.
Incidentally, simtuzumab did not fare well as a stand-alone
therapeutic in the treatment for various fibrotic diseases either
(Raghu et al., 2017; Verstovsek et al., 2017; Harrison et al., 2018).

Targeting Hyaluronan Synthesis
As discussed above, hyaluronan synthases (HAS1-3) can be
inhibited by 4-MU. Treatment with 4-MU significantly reduces
HA accumulation in various murine tumor models. This already
confers antiproliferative, proapoptotic, and antimetastatic effects
in cultured tumor cells and implanted tumors (Yates et al., 2015;
Nagase et al., 2017). The antitumor effect results from reduced
CD44 activation that lowers PI3K signaling and AKT and ERK
phosphorylation (Kundu et al., 2013; Lompardia et al., 2017).
Others have shown that 4-MU increases p38 activation and
caspase-3, caspase-9, and PARP cleavage, explaining not only the
apoptotic effect but might also indicate an increased sensitivity
toward cytotoxic stress (Lokeshwar et al., 2010; Uchakina et al.,
2016). Importantly, these proapoptotic effects can be rescued by
HA addition to cultured cells, demonstrating that these are direct
results of reduction in HAS activity and not off-target effects. The
intrinsic antitumor properties of 4-MU complicate concluding
whether HAS inhibition improves therapeutic response in
cotreatment studies with chemotherapeutics and other tumor-
cell-targeted drugs. However, several studies also looked on
drug distribution and accumulation. Kohli et al. used liposome-
encapsulated 4-MU to treat 4T1 allografts, resulting not only
in HA reduction but also in a more heterogeneous distribution
of Doxil (liposomal DOX) and reduced tumor growth in
the combination treatment group (Kohli et al., 2014). 4-MU
increased intracellular accumulation of fluorouracil, indicating
an influence on either cell permeability or drug efflux and
improved response to 5-fluorouracil in PDAC xenografts
(Yoshida et al., 2018).

HA targeting also can improve immunotherapy. 4-MU
treatment in syngeneic C26 CRC allografts improved infiltration
of T lymphocytes and subsequent therapy with a combination
of cyclophosphamide and adenovirally delivered IL12 (Malvicini
et al., 2015). Intratumoral application of hyaluronidase improved
response to PD-L1-directed shRNA-based immunotherapy and
vaccination with ovalbumin/CpG in a melanoma mouse model
(Guan et al., 2018, 2019). The authors attributed the improved
response to both immunotherapy modalities to an increased T-
cell infiltration rate after the hyaluronidase treatment. A positive
effect of 4-MU treatment was also reported on the sensitivity of
fibrosarcoma cells to radiotherapy (Saga et al., 2017). Under the
trade name Hychromone, 4-MU is already marketed in Asia and
Europe as a choleretic agent (reviewed in Kudo et al., 2017). As
clinical experience with this drug already exists, application in a
different cancer treatment setting could be probably enhanced.

Targeting TGFβ and Hif1α
A further alternative to targeting either ECM molecules or the
enzymes necessary for their production can be to interfere with
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the signaling pathways that lead to their upregulation in the
first place. This might be an interesting strategy, as at least
some of these pathways seem to be master regulators of many
pathological alterations in the TME. TGFβ might be one of
these key factors. TGFβ signaling has been shown to induce
production of collagen, lysyl oxidases, and hyaluronan (Zode
et al., 2009; Voloshenyuk et al., 2011; Porsch et al., 2013; Xie
et al., 2013; Garcia et al., 2016). Treatment of murine syngeneic
4T1 breast carcinomas with a TGFβ inhibitor reduced Col I
content and improved accumulation and distribution of DOX
(Liu J. et al., 2012). After, establishing that TGFβ expression was a
prognostic factor for the response of urothelial cancer patients to
PD-L1 directed immunotherapy and that TGFβ correlated with
entrapment of CD8+ CTLs in the stroma of the non-responsive
tumors, Mariathasan et al. showed that concomitant TGFβ
inhibition strongly improved CTL infiltration and outcome
of checkpoint therapy in mouse models (Mariathasan et al.,
2018). Another signaling pathway that affects ECM synthesis
is the hypoxia response via Hif-1α-stabilization. Hif-1 signaling
induces collagen expression and lysyl oxidases (Erler et al.,
2009; Eisinger-Mathason et al., 2013; Schutze et al., 2015). Thus,
targeting Hif-1α could improve response to therapy, and several
approaches to inhibit Hif-1α signaling are at various stages of
development (reviewed in Hu et al., 2013). As a transcription
factor acting by protein–protein and protein–DNA interaction,
Hif-1α is notoriously difficult to target. Antisense siRNA and
shRNA strategies are mainly used to target Hif-1α in preclinical
models: in prostate xenografts, a nanocarrier approach to deliver
Hif-1α siRNA improved the efficacy of DOX treatment in rats
(Liu X.Q. et al., 2012). In addition, in prostate xenografts, the
effective downregulation of Hif-1α using salmonella to deliver
shRNA-expressing plasmids resulted in increased sensitivity to
cisplatin (CDDP) (Gu et al., 2017). However, for the improved
drug distribution and response after either TGFβ- or Hif-1α
targeting, alternative mechanisms cannot be excluded: TGFβ
does not only induce increased ECM build-up and stabilization,
but it is also an important regulator of tumor angiogenesis
(reviewed in Goumans et al., 2009; van Meeteren et al., 2011).
In the treatment study of 4T1 breast carcinomas with TGFβ
inhibitors, Liu et al. observed not only a reduction in Col I
deposition but also increased vessel maturation and improved
vascular perfusion (Liu J. et al., 2012). Similarly, Hif-1α induces
expression of the angiogenic factors VEGF-A, FGF-2, and SDF1
(Enholm et al., 1997; Tang et al., 2004; Du et al., 2008). Moreover,
as outlined above, hypoxia and subsequent Hif-1α stabilization
by itself upregulates various pathways mediating tumor cell
resistance to chemotherapy and radiation (Sullivan et al., 2008;
Kolenda et al., 2011). However, killing two birds with one stone is
far from an undesirable, and Hif-1α targeting has the potential to
simultaneously reduce metastatic and invasive behavior, sensitize
tumor cells to therapy, and ameliorate the detrimental effects of
a pathologically altered ECM and dysfunctional vasculature on
drug supply, distribution, and resistance.

Targeting CAFs
As mentioned before, stromal cells are a major source of
the vast amounts of ECM that, in many tumors, obstruct

efficient and homogeneous drug delivery. The infiltration
and often encapsulation of tumors with CAFs parallels in
many respects fibrosis under other pathological conditions.
Therefore, it is of course evident to test antifibrotic drugs
that are in clinical use for other ailments for their potential
to reduce the malignant tumor ECM and to increase drug
transport. Konzono et al. found that the efficacy of gemcitabine
in pancreas cancer xenografts was increased after treatment
with the antifibrotic drug pirfenidone (Kozono et al., 2013).
However, pirfenidone had a significant antitumor effect by
itself. Thus, it is possible that the observed increased efficacy
of the combination only reflects an additive effect. In a
trimodal combination approach, pirfenidone improved response
to radiation and sunitinib in a murine Lewis lung carcinoma
model (Choi et al., 2015). Histological analysis indicated that
the increased collagen production caused by radiation reduced
efficacy of sunitinib. This desmoplastic response was prevented
by pirfenidone, restoring sunitinib sensitivity. Pirfenidone might
have additional beneficial effects in the treatment of cancer:
DOX has significant renal and cardiac toxicity limiting its
lifetime doses in cancer patients. Pirfenidone ameliorated these
toxic effects in rats, presumably by reducing the fibrotic
reaction in the affected organs (Giri et al., 2004). Pirfenidone
has also some sensitizing effect in 2D coculture experiments,
indicating that it is not only improving therapy response by
interfering with ECM production: by treating CAF-NSCLC
cell cocultures with pirfenidone, the sensitivity of both cells
was increased (Mediavilla-Varela et al., 2016). Ormeloxifene,
an estrogen receptor modulator, in contrast to pirfenidone,
had no substantial antitumor effect in the PDAC xenografts
it was tested in Khan et al. (2015). Still, it improved the
efficacy of gemcitabine treatment. Ormeloxifene also inhibits
sonic hedgehog signaling, a pathway involved in desmoplasia in
PDAC and reduced fibroblast infiltration and Col I deposition.
Losartan, an angiotensin receptor antagonist, increased perfused
vessel density and reduced Col I and hyaluronan synthesis in
various murine tumors. This resulted in improved delivery and
efficacy of 5-FU and DOX (Diop-Frimpong et al., 2011; Chauhan
et al., 2013). Losartan also improved response to liposomal
paclitaxel in a murine model for stage IVmetastatic breast cancer
(Zhang L. et al., 2016). This study also showed that losartan
reduced TGFβ1 expression and subsequently the production of
Col I and LOX.

Clinical Trials
Considering the interesting results already obtained in preclinical
tests, it is not surprising that several of the approaches to alter the
ECM to improve response to concomitant therapy are already in
at least early clinical test phases (see Table 3 for details).

We already mentioned the completed phase II trials using
LOXL2 antibody in combination with gemcitabine and FOLFIRI
in PDAC and CRC patients, respectively (Benson et al., 2017;
Hecht et al., 2017). The furthest progress was probably the
clinical evaluation of hyaluronidase as an auxiliary treatment.
Pegylated hyaluronidase (PEGPH20) is tested in PDAC in
combination with gemcitabine, nab-paclitaxel, avelumab, and
cetuximab (Hingorani et al., 2016; Doherty et al., 2018;
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Gourd, 2018; Infante et al., 2018)17, in breast cancer with
erlotinib18 and a range of other drugs in various different
cancers. As far as the studies are completed and evaluated,
the results appear more encouraging than those from the
LOXL2 trials, and a phase III trial combining PEGPH20 with
nab-paclitaxel plus gemcitabine in PDAC started already in
early 201619. Pirfenidone plus standard of care chemotherapy
is undergoing phase I evaluation in NSCLC20. In addition,
pirfenidone is tested for its ability to ameliorate fibrosis in
cancer patients resulting from radiotherapy. As mentioned
above, the angiotensin-II inhibitor losartan might, in addition
to its vascular effects, considerably affect the ECM. It is under
clinical investigation in combination with immuno-, radio-, and
chemotherapy21,22,23.

CONCLUDING REMARKS

The ECM in solid tumors is strongly involved in determining
the course of the disease and also the results of our efforts
to treat malignancies. Interfering with the synthesis and
accumulation of ECM or related processes has the potential to
significantly improve the outcome of concomitant therapeutic
approaches, whether these are conventional cytotoxic treatments,
radiotherapy, or targeted therapy including immunotherapy.
We have already begun to explore the potential of ECM
targeting to improve response to antineoplastic therapy. These
research efforts are still mainly in the realms of basic and early
translational research and often far from reaching the clinic.

17Study of Gemcitabine, Nab-paclitaxel, PEGPH20 and Rivaroxaban for Advanced

Pancreatic Adenocarcinoma. Available online at: https://clinicaltrials.gov/ct2/

show/NCT02921022 (accessed May 2, 2019).
18Study of Eribulin Mesylate in Combination with PEGylated Recombinant

Human Hyaluronidase (PEGPH20) Versus Eribulin Mesylate Alone in Subjects

with Human Epidermal Growth Factor Receptor 2 (HER2)-Negative, High-

Hyaluronan (HA) Metastatic Breast Cancer (MBC). Available online at: https://

clinicaltrials.gov/ct2/show/NCT02753595 (accessed May 2, 2019).
19A Study of PEGylated Recombinant Human Hyaluronidase in Combination with

Nab-Paclitaxel Plus Gemcitabine Compared with Placebo Plus Nab-Paclitaxel and

Gemcitabine in Participants with Hyaluronan-High Stage IV Previously Untreated

Pancreatic Ductal Adenocarcinoma. Available online at: https://clinicaltrials.gov/

ct2/show/NCT02715804 (accessed May 2, 2019).
20Pirfenidone Combined with Standard First-Line Chemotherapy in Advanced-

Stage Lung NSCLC. Available online at: https://clinicaltrials.gov/ct2/show/

NCT03177291 (accessed May 2, 2019).
21Losartan and Nivolumab in Combination with FOLFIRINOX and SBRT in

Localized Pancreatic Cancer. Available online at: https://clinicaltrials.gov/ct2/

show/NCT03563248 (accessed May 2, 2019).
22Proton w/FOLFIRINOX-Losartan for Pancreatic Cancer. Available online at:

https://clinicaltrials.gov/ct2/show/NCT01821729 (accessed May 2, 2019).
23Losartan + Sunitinib in Treatment of Osteosarcoma. Available online at: https://

clinicaltrials.gov/ct2/show/NCT03900793 (accessed May 2, 2019).

However, there are major challenges we will face over the
next decades. First, from the view of basic scientist interested
in understanding the fundamental mechanisms behind how
the ECM influences cancer treatment, there is the problem
that targeting ECM synthesis almost always affects other
processes in the TME. Likewise, targeting other components
of the TME, e.g., angiogenesis or immune cells also affects
the ECM. This mutual interdependence of various processes in
the tumor often complicates the interpretation of experiments.

A meticulous understanding of the underlying mechanisms,
however, is often necessary for successful translation in the
clinic. Second, the ECM is a complex mixture of numerous
macromolecules, with divers characteristics, that often rely on
complicated multistep processes for synthesis. This enables
interfering with tumoral ECM accumulation in various ways and
opens the possibility for tailor-made ECM-targeting strategies
for various malignancies. However, it is also a challenge to
select from this multitude of possible points of attack, the
right ones, that promise the strongest effects and that are
least likely cause problems with the functions of the ECM in
physiological processes. Finally, although ECM destabilization
can already positively affect the course of neoplastic diseases,
by reducing invasiveness, progression, and metastasis, the
most likely application for ECM-targeted approaches is not
a stand-alone therapy but modalities where they are used
to cause synergistic improvements in combination with other
tumor-directed forms of therapy. Combining various forms
that are supposed to synergistically improve each other’s
performance asks for successively more complicated forms
of clinical evaluation, with more extensive planning, more
detailed follow-up procedures, more surrogate endpoints, and
possibly more trial arms. If we master these challenges, ECM-
targeting approaches have the potential to significantly add
to our repertoire of cancer-fighting strategies and moreover
strongly improve the performance of the therapies already at
our hand.
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