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Abstract 

Chlamydia infect millions worldwide and cause infertility and blinding trachoma. Chlamydia 

trachomatis (C. trachomatis) is an obligate intracellular gram-negative pathogen with a 

significantly reduced genome. This bacterium shares a unique biphasic lifecycle in which it 

alternates between the infectious, metabolically inert elementary bodies (EB) and the non-

infections, metabolically active replicative reticular bodies (RB). 

One of the challenges of working with Chlamydia is its difficult genetic accessibility. In the 

present work, the high-throughput method TagRNA-seq was used to differentially label 

transcriptional start sites (TSS) and processing sites (PSS) to gain new insights into the 

transcriptional landscape of C. trachomatis in a coverage that has never been achieved before. 

Altogether, 679 TSSs and 1067 PSSs were detected indicating its high transcriptional activity 

and the need for transcriptional regulation. Furthermore, the analysis of the data revealed 

potentially new non-coding ribonucleic acids (ncRNA) and a map of transcriptional processing 

events. Using the upstream sequences, the previously identified σ66 binding motif was 

detected. 

In addition, Grad-seq for C. trachomatis was established to obtain a global interactome of the 

RNAs and proteins of this intracellular organism. The Grad-Seq data suggest that many of the 

newly annotated RNAs from the TagRNA-seq approach are present in complexes. Although 

Chlamydia lack the known RNA-binding proteins (RBPs), e.g. Hfq and ProQ, observations in 

this work reveal the presence of a previously unknown RBP.  

Interestingly, in the gradient analysis it was found that the σ66 factor forms a complex with the 

RNA polymerase (RNAP). On the other hand, the σ28 factor is unbound. This is in line with 

results from previous studies showing that most of the genes are under control of σ66. The 

ncRNA IhtA is known to function via direct base pairing to its target RNA of HctB, and by doing 

so is influencing the chromatin condensation in Chlamydia. This study confirmed that lhtA is 

in no complex. On the other hand, the ncRNA ctrR0332 was found to interact with the SNF2 

protein ctl0077, a putative helicase. Both molecules co-sedimented in the gradient and were 

intact after an aptamer-based RNA pull-down. The SWI2/SNF2 class of proteins are 

nucleosome remodeling complexes. The prokaryotic RapA from E. coli functions as 

transcription regulator by stimulating the RNAP recycling. This view might imply that the small 

ncRNA (sRNA) ctrR0332 is part of the global regulation network in C. trachomatis controlling 

the transition between EBs and RBs via interaction with the SNF2 protein ctl0077. 
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The present work is the first study describing a global interactome of RNAs and proteins in 

C. trachomatis providing the basis for future interaction studies in the field of this pathogen.  
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Zusammenfassung 

Chlamydien verursachen jährlich Millionen Neuinfektionen weltweit und können zu 

Spätschäden wie Unfruchtbarkeit und Erblindung führen. Chlamydien sind obligat 

intrazelluläre, gram-negative Pathogene mit einem stark reduzierten Genom. Sie besitzen 

einen einzigartigen biphasischen Lebenszyklus, bei dem der Erreger zwischen den metabolisch 

inaktiven, infektiösen Elementarkörperchen (EBs) und den nicht infektiösen, metabolisch 

aktiven und replikativen Retikularkörperchen (RBs) alterniert. 

Eine Problemantik beim Arbeiten mit Chlamydien ist die Schwierigkeit der gezielten 

genetischen Manipulation des Pathogens.  

In der vorliegenden Arbeit wurde die Hochdurchsatz-Sequenziermethode TagRNA-Seq 

genutzt, um die transkriptionelle Organisation von Chlamydia trachomatis (C. trachomatis) zu 

analysieren und besser zu verstehen. Transkriptionelle Start Stellen (TSS) und 

Prozessierungsstellen (PSS) werden dabei unterschiedlich markiert, sodass eine zuverlässigere 

und genauere Auflösung erreicht wird als bisher durch in anderen Studien verwendete 

Methoden. Insgesamt konnten so 679 TSSs und 1067 PSSs detektiert werden. Es konnte 

gezeigt werden, dass das Transkriptom von C. trachomatis weitaus aktiver ist als bisher 

angenommen und eine Regulation auf transkriptioneller Ebene bedarf. Die Methode erlaubte 

zudem die Identifizierung von potenziell neuen nicht-kodierende RNAs sowie die Kartierung 

von transkriptionellen Prozessierungsereignissen. Unter Verwendung der 5’-

upstreamliegenden Sequenzen konnte außerdem das in anderen Bakterien bereits bekannte 

σ66-Bindemotiv detektiert werden. 

In der vorliegenden Arbeit wurde zudem die Methode Grad-Seq in C. trachomatis etabliert, 

um ein globales Interaktom für RNAs (engl. ribonucleic acid) und Proteine des intrazellulären 

Organismus zu erstellen.  

Für viele der im TagRNA-Seq Ansatz identifizierten und neu annotierten RNAs konnte so eine 

Komplexbildung beobachtet werden. Dies deutet auf das Vorhandensein eines bislang 

unbekanntes RNA-Bindeprotein (RBP) hin, da Chlamydien keines der bekannten RBPs, z.B. Hfq 

oder ProQ, besitzen. 

Die Gradienten-Analyse ergab, dass der σ66-Faktor in einem Komplex mit der RNA-Polymerase 

(RNAP) vorliegt und dass der σ28-Faktor ungebunden ist. Diese Beobachtung entspricht den 

Ergebnissen vorheriger Studien, die zeigten das die meisten Gene durch σ66 kontrolliert 

werden. Die Daten bestätigen außerdem, dass IhtA, eine ncRNA (engl. non-coding ribonucleic 
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acid), die über direkte Basenpaarbindung mit ihrem Ziel-RNA von hctB interagiert, nicht in 

einem Komplex vorliegt. Für die ncRNA ctrR0332 hingegen konnte das SNF2-Protein ctl0077 

als Interaktionspartner identifiziert werden. Beide Moleküle co-sedimentieren im Gradienten 

und konnten mittels eines Aptamer-basierenden RNA Pull-Downs in intakter Form isoliert 

werden. Die Klasse der SWI2/SNF2-Proteine gehört zu den Nukleosomen-Remodeling-

Komplexen. In Prokaryoten konnte für das in E. coli vorkommende RapA, welches ebenfalls zu 

den SWI2/SNF2-Proteinen zählt, die Funktion eines Transkriptionsregulators nachgewiesen 

werden, indem die RNAP-Wiederverwertung stimuliert wird. Dies könnte bedeuten, dass die 

ncRNA ctrR0332 ebenfalls Teil eines globalen Regulationsnetzwerks ist, welches durch 

Interaktion mit dem SNF2-Protein ctl0077 die Transition zwischen dem RB- und EB-Stadium 

reguliert.  

In der vorliegenden Arbeit konnte erstmals ein globales Interaktom von RNAs und Proteinen 

in C. trachomatis erstellt werden, welches als Grundlage für zukünftige Interaktionsstudien 

des Pathogens genutzt werden kann.  
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1. Introduction 

1.1. Chlamydia 

Chlamydia are gram negative obligate intracellular pathogens within a wide range of host 

species. In 1907, Halberstaedter and his colleague Prowazek showed that the symptoms of 

trachoma are experimentally transferable from humans to apes. Using Giemsa staining, they 

identified intracytoplasmic vacuoles in the cells of conjunctival smear and described them as 

the cause of trachoma. These organisms were described as intermediates between virus and 

bacteria and the name Chlamydozoa was proposed (Halberstädter and Prowazek, 1907). The 

word Chlamydiae derived from the Greek word “chlamys”, which is an ancient Greek term for 

cloak. In the years after the original discovery, similar inclusion bodies were found in 

new-borns suffering from conjunctivitis, in the cervical smear of their respective mothers as 

well as in male urethral swab (Halberstädter and Prowazek, 1907). In the 1960s, Chlamydiae 

were classified as bacteria with the help of molecular methods and the development of 

electron microscope and ultramicrotome (Moulder, 1966). 

Originally, the family of Chlamydiaceae was composed of two species, C. trachomatis and 

Chlamydia psittaci (C. psittaci). This was based upon their glycogen acquisition in the inclusion 

(Gordon and Quan, 1965) and their resistance to sulfadiazine (Lin and Moulder, 1966). In the 

years to follow, new organisms were found, e.g. Chlamydia pneumoniae (C. pneumoniae) 

(Grayston et al., 1986), Chlamydia pecorum (Fukushi and Hirai, 1992) and chlamydia-like 

bacteria e.g. Simkania negevensis (Kahane et al., 1995), and Parachlamydia acanthamoebae 

(Amann et al., 1997). 

With advancing DNA (Deoxyribonucleic acid) techniques and the need for revision of the 

phylogenetic Chlamydia tree, Everett and colleagues used 16S and 23S rRNA analysis to 

redefine the taxonomy of the Chlamydia. Chlamydia is now the order followed by the family 

Chlamydiaceae which is in return composed of the two genera of Chlamydophila and 

Chlamydia (Everett et al., 1999)(Figure 1). 
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Figure 1: Taxonomy of the order Chlamydiales. The tree is based on ribosomal DNA sequence data. The order 
of Chlamydiales is composed of four families. The Chlamydiaceae family includes two genera containing nine 
species in total. Figure modified after (Bush and Everett, 2001). 

1.2. Development and lifecycle 

Chlamydia have a unique biphasic lifecycle, which was first described by Bedson and Bland, 

who analysed the replication of a causative agent (Bedson and Bland, 1932). Electron 

microscopy showed two morphological distinct forms of Chlamydia; the elementary bodies 

(EBs) and the reticulate bodies (RBs) (Constable, 1959, Gaylord, 1954). EBs are spore-like 

particles with a diameter of 0.3 µm (Eb et al., 1976). This form is extracellular, able to infect 

susceptible cells and, until recently, has been assumed to be metabolically inactive, since the 

chromatin at this stage is highly condensed by the histone-like proteins HctA and HctB 

(Brickman et al., 1993). Recent work indicated that EBs show metabolic and biosynthetic 

activity (Omsland et al., 2012). Initially, EBs attach to the cell by electrostatic interactions (Kuo 

et al., 1972, Kuo et al., 1973). In a second step of adhesion several Chlamydia membrane 

proteins are suggested to play a role including outer membrane proteins OmpA, outer 

membrane complex B protein OmcB or the polymorphic outer membrane protein (pmp) 

(Grimwood et al., 2001). The current hypothesis is that the OmpA of Chlamydia and heparan 
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sulphate on the cell side interact with each other (Zhang and Stephens, 1992, Swanson and 

Kuo, 1991, Su et al., 1996). While the electrostatic interaction is reversible, the second step of 

adhesion is irreversible and to date not completely understood (Carabeo and Hackstadt, 

2001). 

There are several hypotheses circulating about the EB internalization after adhesion, however, 

the exact mode of internalisation of the EBs is still not understood in its entirety (Scidmore-

Carlson and Hackstadt, 2000). Receptor mediated endocytosis is the predominating 

hypothesis (Wyrick et al., 1989, Hodinka et al., 1988). A variety of host receptors were found, 

e.g. heparin sulphate, mannose receptor, mannose 6-phosphate receptor and the estrogen 

receptor (Puolakkainen et al., 2005, Kuo et al., 2002, Davis et al., 2002). Alternative 

hypotheses postulate that Chlamydia enter the cell via clathrin-independent endocytosis or 

that lipid rafts are involved in their entry (Jutras et al., 2003, Stuart et al., 2003). After 

adhesion, the Chlamydia effector protein TARP (translocated actin recruiting phosphoprotein) 

is secreted into the host cell (Subtil et al., 2000). TARP gets phosphorylated and initiates actin 

polymerisation with Rho GTPases (Jewett et al., 2006, Carabeo et al., 2004, Clifton et al., 2004). 

In the following, several host tyrosine kinases are activated (Kim et al., 2011, Fawaz et al., 

1997, Elwell et al., 2008, Birkelund et al., 1994) leading to cytoskeletal rearrangements and 

eventually to the uptake of the EBs into the non-phagocytic cells (Dautry-Varsat et al., 2005, 

Carabeo, 2011). The internalized EBs are located in membrane-bound vesicles derived from 

the endolysosomal pathway. These vesicles are called inclusions and Chlamydia will stay in 

these compartments for the rest of its developmental cycle (Moulder, 1991). The vesicles bear 

no markers for the lysosomal pathway and block fusion with endosomes and lysosomes 

(Hackstadt, 2000, Al-Younes et al., 1999). Within the first eight hours post infection (hpi), the 

EBs start to differentiate to RBs. The RBs are metabolically active, bigger in size (1 µm) and 

undergo binary fission for their replication. At this stage, the Chlamydia has an inner and outer 

membrane, like gram-negative bacteria, and are non-infectious. After several divisions, the 

binary fission becomes asynchronous (McClarty, 1994, Moulder, 1991). Most of the RBs begin 

to differentiate into EBs, followed by their release either by cell lysis or extrusion. These 

released EBs infect the surrounding cells. The regulation of the RB-EB transition is not 

completely understood, but it has been hypothesized that factors like space limitation play a 

role (Hackstadt et al., 1997, Bavoil et al., 2000). On a molecular level, the DNA condensation 

is regulated by histone-like proteins HctA (Hc1) and HctB (Hc2), which are expressed during 
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the late phase of the RBs and are thought to initiate condensation of the DNA to the state 

observed in EBs (Perara et al., 1992, Hackstadt et al., 1991). 

Several stimuli can cause Chlamydia to go into persistence. This state can be triggered by 

stress factors, such as interferon gamma (IFN-γ) (Shemer and Sarov, 1985), viral co-infection 

(Vanover et al., 2008, Deka et al., 2006), tryptophan starvation (Beatty et al., 1994) and 

antibiotics like penicillin (Skilton et al., 2009). During these stimuli, Chlamydia differentiates 

into aberrant bodies (ABs). These ABs are, similar to the RBs, not infectious but can be 

transferred via cell division. ABs are larger in size due to multiple copies of the genome and 

can re-differentiate back to RBs after removal of the stimuli (Byrne and Ojcius, 2004, Moulder 

et al., 1980)(Figure 2). 

 

Figure 2: C. trachomatis lifecycle. Infectious elementary bodies (EBs) attach to the host cell. The EB is 
endocytosed into a membrane-bound compartment, the inclusion. EBs than differentiate into reticulate 
bodies (RBs) followed by intracellular growth and division of RBs in the inclusion. After re-differentiation of 
RBs into EBs, EBs are released from the host cell by lysis or extrusion. Under stress conditions, RBs enter a 
persistent state and differentiate into enlarged persistent bodies (PBs). Reactivation of the bacteria can be 
achieved by removal of the stress stimuli. Figure modified after (Byrne and Ojcius, 2004). 
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1.3. Chlamydia trachomatis pathogenesis 

Under the whole Chlamydiaceae family, C. trachomatis and C. pneumoniae are the two major 

species infecting humans.  

C. pneumoniae is a pathogen causing respiratory infections like acute pneumonia, bronchitis, 

sinusitis and pharyngitis (Kern et al., 2009). It accounts for up to 10% of community acquired 

pneumonia (Elwell et al., 2016). Besides respiratory diseases, C. pneumoniae was also linked 

to atherosclerotic processes (Kuo et al., 1993). 

C. trachomatis is the most common cause of sexually transmitted diseases worldwide with 

around 131 million estimated new infections annually (WHO, 2019). C. trachomatis strains are 

divided into three biovars including the trachoma biovar, the genital tract biovar and the 

lympho granuloma venerum (LGV) biovar. The biovars are further subdivided by serovar. The 

trachoma biovar, which includes the serovars A-C, is the causative agent of a recurrent disease 

affecting the conjunctiva and cornea of the eye and the leading cause of non-congenital 

blindness primarily in developing nations (Elwell et al., 2016). 

Sexually transmitted infections of the urogenital tract are caused by C. trachomatis serovars 

D-K. In females, the infection manifests as endocervicitis (Malhotra et al., 2013). 70-80% of 

female infections are asymptomatic or only have slight symptoms and therefore are not 

treated and can ascend to the upper genital tract (Elwell et al., 2016). Non-treatment of these 

infections can thus lead to salpingitis, endometritis, pelvic inflammatory disease, ectopic 

pregnancy and tubal factor infertility (Malhotra et al., 2013). New-borns can get infected 

during birth via an affected birth passage. In most cases, these new-borns than suffer from 

conjunctivitis, and more rarely from otitis media (RKI, 2010). Genital infections in males first 

manifest as urethritis with symptoms like pain when urinating(RKI, 2010). Since up to 50% of 

men also have asymptomatic infections, which are not treated, the infections can ascend to 

the prostate and further into the epididymis (Malhotra et al., 2013, RKI, 2010). Chlamydial 

infections causing prostatitis are also discussed to result in male infertility (Stojanov et al., 

2018, RKI, 2010). 

The serovars L1-L3 cause LGV, a sexually transmitted infection mainly occurring in the tropics, 

manifesting as an inflammation in the lymph nodes (RKI, 2010). Infection with C. trachomatis 

is also associated with an increased risk of HIV (human immunodeficiency virus) transmission 

and with the development of cervical carcinoma (Malhotra et al., 2013).  
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The Centres for Disease Control and Prevention recommends treating chlamydial infections 

with azithromycin or doxycycline. Alternate regimens include, amongst others, erythromycin 

or ofloxacin. Altogether, the treatment is dependent on different factors including the site of 

infection, age of the patient, an existing pregnancy and complexity of infection (Malhotra et 

al., 2013, CDC, 2015). Until now, there is no protective vaccination available to control 

chlamydial infections, despite different attempts to develop one (Malhotra et al., 2013). 

 

1.4. Chlamydial Genomes 

Chlamydial genomes are about 1 Mb in size with about 850-1100 genes (Stephens et al., 1998). 

Due to the relatively small genome size, Chlamydia were prime candidates for whole-genome 

sequencing. In 1998, the C. trachomatis serovar D genome was published (Stephens et al., 

1998). In the years that followed, several other Chlamydia were sequenced including 

C. pneumoniae CWL029 (Kalman et al., 1999), C. muridarum Nigg (Read et al., 2000), 

C. pneumoniae AR039 (Read et al., 2000) and C. pneumoniae J138 (Shirai et al., 2000). Up to 

date, advances in next-generation sequencing enabled the assembly of over 170 genomes for 

C. trachomatis, 68 genomes for C. psittaci and 28 genomes for C. muridarum. The obligatory 

intracellular lifestyle of Chlamydia reflects itself in their genomes which all are highly reduced 

in size and show a reduced gene content in comparison to other bacteria e.g. E.coli (Trevors, 

1996). The evolution of the chlamydial genomes or any prokaryotic genomes can be explained 

by six fundamental processes (as summarised by (Koonin and Wolf, 2008)): 1) genome 

streamlining, 2) genome degradation, 3) complexification by gene duplication, 4) operon 

shuffling, 5) complexification via horizontal gene transfer and 6) propagation of mobile 

elements (Koonin and Wolf, 2008). In most pathogens genomic simplification and reduction 

are associated with genomic degradation (Moran, 2002). In Chlamydia, it appears that the 

genomic reduction and simplification are the result of genomic streaming (Sigalova et al., 

2019). Chlamydia only harbour up to 15 predicted transcription factors (Domman and Horn, 

2015). Due to the high number of genome assemblies for this genus, pan-genomic analyses 

have been performed, revealing that chlamydial species only possess a low number of 

pseudogenes (Bachmann et al., 2014, Nunes and Gomes, 2014). Furthermore, it was shown 

that the genome is highly conserved outside the plasticity zone, which was shown to be 

located in the regions of ~160  kb (C. pneumoniae) and ~50 kb (C. trachomatis) around the 

termination origin, where a higher rate of DNA-reorganisation occurs (Read et al., 2000). The 
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Gene content across Chlamydia species is conserved, and the majority is shared across the 

phylum (Collingro et al., 2011). Chlamydia lack destructive mobile elements with the 

exceptions of fragments of IS (insertion)-like elements, e.g. the IS-associated tetracycline 

resistance in Chlamydia suis, and prophages in a variety of chlamydial genomes (Nunes and 

Gomes, 2014, Sachse et al., 2014, Vorimore et al., 2013, Sachse et al., 2015). Altogether, these 

genome are characterised by streamlining and are generally highly adapted, yet they provide 

a basis for bacteria of the genus Chlamydia to explore broad host specificities and tissue 

tropisms (Sachse et al., 2014, Vorimore et al., 2013, Sachse et al., 2015). 

 

1.5. Sigma-factors and transcriptional regulation 

The chlamydial RNA transcriptional apparatus consists, similar to other eubacteria, of the α, β 

and β’ core RNA apparatus and the exchangeable σ(sigma)-factors (Koehler et al., 1990, Gu et 

al., 1995, Engel et al., 1990). σ-factors play a crucial role in transcription initiation in bacteria 

und are used to adjust the transcriptome in response to different stimuli e.g. stress or different 

environmental signals. The major σ-factor is σ66, encoded by the gene RNA polymerase sigma 

factor rpoD. In addition, Chlamydia are using two other factors for their gene expression, σ28, 

encoded by the gene rpoD, and σ54 encoded by the gene rpoD (Kalman et al., 1999, Stephens 

et al., 1998). Alternative σ-factors play a crucial role in the regulation of virulence genes in 

other bacteria (Kazmierczak et al., 2005, Fang, 2005). In Chlamydia, it was proposed that the 

temporal gene expression is under control of alternative σ-factors, even before they were 

found (Plaunt and Hatch, 1988, Engel et al., 1990, Fahr et al., 1995). The two alternative σ-

factors have homologs in other bacteria, e.g. Bacillus subtilis (Stephens et al., 1998). In 

Chlamydia, the σ-factors are not adjacent to their regulatory genes, as in Bacillus subtilis, 

instead they are spread across the genome (Stephens et al., 1998, Kalman et al., 1999). Both 

factors have orthologs in all Chlamydia, except σ28 is missing in Protochlamydiaceae (Horn et 

al., 2004). 

In other bacteria, it is shown that the σ54-factor is regulating nitrogen metabolism (Merrick, 

1993) and the σ28-factor regulates the genes of flagellar synthesis, chemotaxis and motility 

(Haldenwang, 1995). The alternative σ-factor in Chlamydia recognizes a subset of genes in the 

late lifecycle of Chlamydia (Yu and Tan, 2003, Yu et al., 2006). Interestingly, late expressed 

genes are always either expressed by the σ66 RNA polymerase (RNAP) or the σ24 RNAP (Yu and 

Tan, 2003, Fahr et al., 1995, Mathews et al., 1993). Yu and colleges showed that the histon-like 
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proteins HctB and HctA are either σ24 or σ66 regulated, which might suggest that the RB-EB 

transition is controlled by more than just one regulatory networks (Yu and Tan, 2003), since 

these proteins condense the DNA during RB-EB-transition (Brickman et al., 1993). 

The σ24-factor itself appears to be regulated by alternative means. The σ-protein is already 

expressed during the middle of the chlamydial lifecycle, but the genes expressed by the 

σ-factor, such as HctB, are present in the late stage of the chlamydial lifecycle (Shen et al., 

2004, Douglas and Hatch, 2000). 

In Bacillus subtilis (B. subtilis), the anti-σ-factor RsbW binds to the σ-factor σ24 so that the σB 

RNAP is inhibited (Price, 2002). This has been called partner-switching mechanism, because 

the RsbW binds either to the σ-factor or to its anti-anti-σ-factor RsbV (Price, 2002). When RsbV 

binds to RsbW, the σ-factor is released, and the RNAP is functional (Price, 2002). RsbV can 

bind to RsbW only in its unphosphorylated state, while RsbW can phosphorylate RsbV. RsbU, 

an upstream regulator, can dephosphorylate RsbV (Price, 2002).  

Chlamydia possess RsbV orthologs, two proteins named RsbV1 and RsbV2, which are 

sequence-similar to RsbV of B. subtilis and two orthologs of RsbU from B. subtilis, CT589 and 

RsbU (Stephens et al., 1998, Hua et al., 2006). 

The current proposed model for σ24-factor in Chlamydia is that the σ-factor is expressed at 

16 hpi (Shen et al., 2004), but its anti-σ-factor RsbW is already expressed at 3 hpi (Belland et 

al., 2003), hindering premature expression of late genes under σ24-factor influence. The two 

anti-anti-σ-factors are expressed during the mid-phase genes (Belland et al., 2003), which 

would allow σ24 to regulate its late gene expression. RsbU and CT589 could use their predicted 

extracytoplasmic region to sense external stimuli and regulate the σ-factor via parallel 

pathways. 

Late genes, which are not under control of σ24, like omcAB and hctA, are expressed by the σ66 

RNAP, but this RNAP also expresses genes in the early and midcycle (Fahr et al., 1995).  There 

is evidence that EUO functions as a repressor for late genes, which are expressed by the σ66 

RNAP, as it is expressed at 1 hpi with Chlamydia and is bound by the promotor region of the 

omcAB operon (Wichlan and Hatch, 1993). EUO binds to the AT-rich sequences (Zhang et al., 

2000, Zhang et al., 1998) and selectively represses late promotors (Rosario and Tan, 2012). It 

is still unclear, how EUO is released from its binding sites. During the infection cycle, the EUO 

protein levels decrease and the protein is absent during the late phase or EBs (Zhang et al., 

1998). Zhang and colleagues showed that in C. psittaci EUO transcripts were only present at 1 
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hpi to 20 hpi with a maximum at 15 hpi but could not explain how the EUO levels are controlled 

during the chlamydial lifecycle (Zhang et al., 1998). 

In contrast to the EUO, the levels of Scc4 increase during the late lifecycle of Chlamydia (Rao 

et al., 2009a). It was proposed that Scc4 inhibits the σ66 RNAP and facilitates the σ24 RNAP (Rao 

et al., 2009a). Scc4 also acts as a potential σ66 RNAP inhibitor in EBs, where its level is more 

abundant than in RBs (Rao et al., 2009a). Moreover, Scc4 was proposed to function as a 

chaperon for the type III secretion system and to interact with another type III chaperon (SccI) 

(Spaeth et al., 2009, Betts-Hampikian and Fields, 2010). 

It was long proposed that EBs are transcriptionally inactive, although the σ66 RNAP is present 

(Skipp et al., 2005, Sixt et al., 2011, Shaw et al., 2002). The respective messenger RNA (mRNA) 

was found in EBs but is most likely produced in RBs at the late stage before transition of RBs 

into EBs (Belland et al., 2003, Maurer et al., 2007). Furthermore, the translation in extracellular 

EBs was recently described (Haider et al., 2010). The two histone-like proteins HctA and HctB, 

which are only transcribed in the late phase by either the σ66 RNAP (Fahr et al., 1995) or later 

by the σ28 RNAP (Yu and Tan, 2003), are proposed to inhibit the overall transcription and 

translation by chromatin condensation (Pedersen et al., 1996, Pedersen et al., 1994, Barry et 

al., 1993). While HctA binds to supercoiled DNA and creates compacted nucleoid (Barry et al., 

1992, Brickman et al., 1993), HctB binds to RNA and linear DNA (Pedersen et al., 1995) and is 

not present in environmental Chlamydiae (Collingro et al., 2011). Finally, it has been proposed 

that transcription is regulated by the supercoiling-responsive promoters of histone-like 

proteins (Barry et al., 1993). 

 

1.6. Classes of non-coding RNAs and gene regulation by non-coding RNAs in 

bacteria 

Besides alternative σ-factors and transcription factors, non-coding RNAs (ncRNAs) play a 

crucial role in bacterial gene regulation with profound effects on cell physiology (Gottesman, 

2005). There are different types of ncRNAs including ribosomal RNAs(rRNAs), transfer RNAs 

(tRNA) and small RNAs (sRNAs). sRNAs are the largest and best-studied group of ncRNAs. In 

general, sRNAs are around 100 nucleotides in length, specifically controlling the expression of 

targets via different strategies (Gottesman, 2005). They act as regulators on multiple levels of 

gene expression including translation, transcription, DNA maintenance or silencing, and mRNA 

stability (Ahmed et al., 2016). sRNAs either bind to proteins and affect their activities or they 
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act by base-pairing with their target mRNA leading to formation of RNA duplexes (Repoila and 

Darfeuille, 2009). Interactions of sRNAs with mRNA can be divided into two groups: 

cis-encoded sRNAs and trans-encoded sRNAs (Figure 3). 

Cis-encoded RNAs or true antisense sRNAs are a class of sRNAs that share extensive 

complementarity with their target mRNAs. Generally, the sRNA and its target are encoded by 

the same region of the DNA but are transcribed from opposite strands of the gene they 

regulate (Tan and Bavoil, 2012). Most of the cis-encoded sRNAs are involved in the control of 

replication, conjugation and stability of plasmids, in the regulation of transposition of 

transposons as well as in the fine-tuning of the decision between lysis or lysogeny in 

bacteriophages (Brantl, 2012b). Besides residing on plasmids or other mobile genetic 

elements, some cis-encoded sRNAs were found to have chromosomal origin (Waters and 

Storz, 2009). These sRNAs act as antitoxins and are involved in the alteration of metabolism 

under stress conditions (Brantl, 2002). There are different regulatory mechanisms employed 

by cis-encoded sRNAs with direct blocking of the ribosome binding site being one of the 

simplest and most commonly used. This process results in translation inhibition and has been 

found to be involved in the control of plasmid replication and maintenance and to be used, 

amongst others, in the FinOP repressor systems (Brantl, 2007, Koraimann et al., 1996). Here, 

expression of traJ, which is an activator of plasmid F, is controlled by the antisense RNA FinP 

and RNA-binding protein (RBP) FinO (Gubbins et al., 2003). FinO protects FinP from decay and 

promotes duplex formation between FinP and traJ mRNA (Jerome et al., 1999). Binding of FinP 

to traJ sequesters the traJ ribosome binding site leading to prevention of translation and 

repression of plasmid transfer (Koraimann et al., 1996).   

In 2007, Brantl extensively reviewed other known regulatory mechanisms, such as 

transcription attenuation, inhibition of primer attenuation, inhibition of pseudoknot 

formation, mRNA degradation, and mRNA stabilization (Brantl, 2007). 
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Figure 3: Overview of cis- and trans-encoded small RNAs. Cis-encoded sRNAs are encoded by the same region 
of the DNA as their target mRNA and share extensive complementarity with it, whereas trans-encoded sRNAs 
are encoded at a different genomic location than its target and share only limited complementarity with it. 
Antisense RNAs are displayed in red and sense RNAs in blue. Black rectangles indicate promoters. Figure 
modified after (Brantl, 2012a). 

In contrast to the group of cis-encoded sRNAs, trans-encoded sRNAs are encoded at different 

genomic locations than their targets and share limited complementarity with them. 

Trans-encoded RNAs are capable of multiple base pairing interactions since the pairing regions 

are only around 10-25 nt long. Thus, partial and discontinuous patches between sRNA and 

target mRNA are made (Waters and Storz, 2009). Trans-encoded sRNAs can act negatively as 

well as positively. Many sRNAs inhibit translation by binding and blocking the ribosome 

binding site (Gottesman and Storz, 2011). Other sRNAs bind their target mRNAs and stimulate 

translation initiation by preventing the formation of an inhibitory secondary structure. These 

alterations of the ribosome binding site structure facilitate access by the translational 

machinery (Gottesman and Storz, 2011, Waters and Storz, 2009, Tan and Bavoil, 2012) Most 

of the trans-encoded sRNAs are expressed in response to specific environmental conditions 

like iron limitation (RhyB), oxidative stress (OxyS), low temperature (DsrA) and others (Repoila 

and Gottesman, 2003, Masse and Gottesman, 2002, Masse et al., 2003, Altuvia et al., 1998, 

Altuvia et al., 1997).  

Pairing of sRNAs with their target mRNA often requires the RNA chaperone Hfq because of 

limited complementarity between sRNA and target mRNA (Gottesman and Storz, 2011, 

Updegrove et al., 2015). 

As mentioned above, sRNAs can also interact with proteins and change their activities. sRNAs 

are mimicking other nucleic acids and compete with their natural counterparts for binding 

positions to the protein (Gottesman and Storz, 2011, Tan and Bavoil, 2012). The two 
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best-characterized examples of regulatory sRNAs that act in this way are the 6S RNA from 

Escherichia coli (E. coli), mimicking a DNA promotor open complex and interacting with the 

RNAP, and the CsrA (carbon storage regulator)/RsmA (ribosomal small subunit 

methyltransferase A) family regulators that act by titrating their target away from their 

mRNA-binding sites (Wassarman, 2007, Duss et al., 2014). 

In the last years, another class of RNA regulator was found in bacteria, the so-called CRISPR 

(Clustered Regularly Interspaced Short Palindromic Repeats) RNAs. Together with a group of 

associated proteins, the CRISPR RNAs provide bacteria acquired resistance to bacteriophages 

and plasmids by recognition and degradation of exogenous DNA (Perez-Reytor et al., 2016, 

Ahmed et al., 2016). The CRISPR arrays are comprised of conserved short DNA repeat 

sequences originating from foreign DNA that are separated by unique spacers (Waters and 

Storz, 2009). The CRISPR arrays are transcribed as long RNAs, which are processed to crRNAs 

(Sorek et al., 2008). Through base pairing of these sRNAs with foreign nucleic acid, degradation 

is initiated (Sorek et al., 2008). 

 

1.7. RNA-binding proteins in bacteria  

As mentioned above, sRNAs are modulators of gene expression, but their action needs the 

presence of helper proteins. In bacteria, three RNA-binding proteins (RBP) – CsrA, ProQ and 

Hfq – are known.  

CsrA, the carbon storage regulator, is a translational regulator that is present in many bacteria 

affecting different biological processes such as biofilm formation, carbon metabolism and 

quorum sensing (Sabnis et al., 1995, Lenz et al., 2005, Jackson et al., 2002). The CsrA protein 

binds to the ribosome binding site region of mRNA thus preventing gene expression 

(Majdalani et al., 2005). The CsrB RNA competes with the target mRNA for CsrA protein 

binding (Majdalani et al., 2005). If CsrB RNA is present, CrsA is preferentially bound by CsrB, 

so that the ribosome binding site is not sequestered by CsrA and translation is started 

(Majdalani et al., 2005). 

ProQ is a chromosomal homologue of FinO and was originally identified as an osmoregulatory 

factor that is needed for regulation of the proline channel protein ProP (Kunte et al., 1999, 

Chaulk et al., 2011). However, ProQ is now known to target more than 70 sRNAs (Smirnov et 

al., 2017). Its function is not only to stabilize these sRNAs, but also to promote RNA duplex 

formation (Chaulk et al., 2011, Smirnov et al., 2017). ProQ preferentially binds transcripts that 
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are characterized by a complex structure indicating that ProQ targets a distinct class of RNAs 

compared to CsrA and Hfq which both bind to single-stranded RNAs (Smirnov et al., 2016b). 

As aforementioned, the RNA chaperone Hfq is a major player in gene regulation mediated by 

sRNAs that act via limited base pairing. Hfq can be found in many bacterial species in which it 

promotes fast base-pairing of sRNA and target mRNA allowing an immediate response when 

intra- or extracellular conditions change (Wagner, 2013). Hfq was identified around 50 years 

ago as a host-factor for bacteriophage Qβ replication in E. coli. (Franze de Fernandez et al., 

1968). Proteins within the Hfq family are thermostable and compromise between 70 and 110 

amino acids (Brennan and Link, 2007). Hfq forms a homohexameric doughnut-shaped 

structure with two binding sites, one proximal and one distal, with both having distinct binding 

preferences. The distal site of Hfq preferentially binds poly(A) tracts, whereas the proximal 

site was found to bind AU-rich sequences in single stranded regions (Schumacher et al., 2002, 

Olejniczak, 2011, Link et al., 2009). In addition, a third binding site has been identified, the 

lateral site, which is responsible for binding the sRNA body (Sauer et al., 2012). Since there are 

different binding sites, simultaneous binding of sRNA and mRNA to Hfq is possible promoting 

the interaction between these two (Van Assche et al., 2015).  

The Hfq homohexamer is similar to the eukaryotic Sm and Sm-like proteins, that are central 

components of the splicing machinery and therefore also involved in post-transcriptional 

regulation (Vogel and Luisi, 2011). There are different aspects of how Hfq can facilitate base 

pairing including facilitation of sRNA to the 5`-end of the target mRNA, thus inhibiting 

translation (Vogel and Luisi, 2011). In return, Hfq can guide sRNA to disruptive secondary 

structures in the 5’-end of the mRNA enabling translation (Vogel and Luisi, 2011). Another 

mode of action is the protection of sRNAs from ribonucleases as RNA cleavage is prevented 

when they are bound by Hfq (Vogel and Luisi, 2011). Hfq can also facilitate the 3`-5`-

exonucleolytic degradation by presenting the 3`-end of the RNA for polyadenylation (Vogel 

and Luisi, 2011).  

In Chlamydia, Hfq or other RNA-binding proteins are not known. Nevertheless, the previous 

identification of sRNAs in Chlamydia strongly suggests that RNA-binding proteins play a role 

in chlamydial gene regulation. 
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1.8. Small RNAs in Chlamydia  

Not much is known about sRNAs in Chlamydia as only a few previous studies focused on them. 

Interestingly, none of the canonical RBPs, like Hfq, ProQ or CsrA, are encoded on the 

chlamydial genomes. Therefore, it is interesting how the small RNAs present in Chlamydia 

would function. 

One of the known sRNAs in Chlamydia is IhtA (inhibitor of hctA). IhtA is a trans-encoded sRNA, 

which was found to inhibit the translation of hctA (Grieshaber et al., 2006a, Grieshaber et al., 

2006b). Interestingly, it was shown that this sRNA functions by direct base paring to its target 

RNA (Tattersall et al., 2012). HctB is not affected by this sRNA, indicating the specificity of IhtA 

(Grieshaber et al., 2006a, Grieshaber et al., 2006b). It was also shown that IhtA is expressed 

during the early stage of the chlamydial lifecycle and that the protein levels of HctA are low in 

RBs in the presence of IhtA (Grieshaber et al., 2006a, Grieshaber et al., 2006b). This finding 

also would make IhtA a regulatory factor in addition to the previously discussed temporal 

regulatory systems. 

With the advent of Next-generation sequencing technologies, two complete chlamydial 

genomes (C. trachomatis and C. pneumoniae) were screened for sRNAs (Albrecht et al., 2011, 

Albrecht et al., 2010). Several new sRNAs were found in C. trachomatis and C. pneumoniae 

with a high variation of abundance depending on the life stage of the two Chlamydia species 

(Albrecht et al., 2011, Albrecht et al., 2010). One of the sRNAs re-annotated as ctrR0332 

(previously annotated as CTLon_0332) is located downstream of ltuB (Albrecht et al., 2011, 

Albrecht et al., 2010). Interestingly, this RNA makes up 78% of the previously published EB 

transcriptome and 20% of the total transcripts in RBs. Hence, it appeared to be the most 

abundant transcript in C. trachomatis and C. pneumoniae (Albrecht, 2011) and homologs for 

this sRNA could only be found in Chlamydia spp. (Albrecht et al., 2011, Albrecht et al., 2010). 

Due to varying abundance throughout the chlamydial lifecycle, due to its chlamydial specificity 

and due to the lack of known RNA chaperons, this small RNA could be another major regulator 

in the chlamydial system. These previous results indicate, that the chlamydial transcriptome 

is regulated on several levels with the exact modes of action remaining unknown. 

 

1.9. Current state of Next-generation sequencing 

There were two fundamental findings laying the foundation for the development of 

Next-generation Sequencing: the discovery of the DNA´s structure and the introduction of 
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methods allowing to determine the nucleic acid sequence (Wu and Kaiser, 1968, Watson and 

Crick, 2003, Sanger et al., 1977, Maxam and Gilbert, 1977). The first direct sequencing 

approach was done by Wu and Kaiser using DNA polymerase to determine the 12 bp 

nucleotide sequence of the cohesive ends of bacteriophage lamda (Wu and Kaiser, 1968). In 

the years to follow, Maxam and Gilbert used a chemical procedure for DNA sequencing 

(Maxam and Gilbert, 1977). With the development of dideoxynucleotide chain termination in 

the mid-1970s, Frederick Sanger and his colleagues revolutionized the sequencing area 

(Sanger et al., 1977). With earlier methods being time consuming, work intensive and error 

prone, the Sanger sequencing technique was faster and more efficient in these years (Th and 

Ma, 2015).  

Although Sanger sequencing, which is considered to be the “first generation” of DNA 

sequencing, is still a useful application for targeted sequencing today, the method has 

restricted applications because of technical limitations (Rizzo and Buck, 2012). The main bottle 

neck is sequencing volume or throughput, meaning the amount of DNA fragments that can be 

sequenced at a time (Rizzo and Buck, 2012). Second-generation sequencing technologies 

overcomes these limitations. Second-generation sequencing technology is massively parallel, 

sequencing millions of fragments simultaneously in a short period of time. Also known under 

the name “high throughput” sequencing, the biggest advantages of second-generation 

sequencing technologies over Sanger sequencing are the speed, the lower costs and the 

sequencing output (Kchouk et al., 2017).  

Although many sequencing platforms are available, Illumina is currently the market leading 

company in the sequencing industry. Illumina´s sequencing workflow includes four steps. In 

library preparation, the DNA is fragmented and specific adapters on both ends are ligated 

allowing hybridization to the flow cell surface. Cluster generation occurs on a flow cell, a glass 

slide with lanes that are randomly coated with oligos that are complementary to library 

adapters. Through bridge amplification, each fragment is amplified into clonal clusters. After 

cluster generation, the next step is to determine the nucleotide sequence. For this, Illumina 

uses the Sequencing by synthesis (SBS)-technology. Fluorescently labelled dNTPs and other 

sequencing reagents are added, and the first base is incorporated. The method employs 

reversible terminators to detect single bases directly after incorporation during each cycle. 

Excited by a laser, each of the four DNA bases emits an intensity of a unique wavelength for 
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identification. The cycle is repeated until acquired read length is achieved. After data 

acquisition the generated short reads are analysed using different bioinformatic tools. 

There are two sequencing read types, single end sequencing, which involves sequencing the 

DNA from only one end, whereas paired-end sequencing allows to sequence both ends of the 

fragment (Illumina, 2019, Illumina, 2013, Illumina, 2015). 

Besides Illumina, there are two other major sequencing platforms, Roche 454 and Ion torrent 

sequencing. Roche 454 uses pyrosequencing technique that is based on pyrophosphate 

detection to report whether a particular base was incorporated in the growing DNA strand, 

whereas in the Ion torrent semiconductor sequencing technology a hydrogen ion is released 

when a correct nucleotide is incorporated leading to a change in pH (Kchouk et al., 2017, Slatko 

et al., 2018).  

In the last decade, NGS technologies were continuously improved so that today, the 

application of second-generation sequencing has a broad range, from the analysis of a few 

genes using gene panels to exome sequencing or whole genome sequencing. Furthermore, 

additional applications are transcriptome analysis using RNA-sequencing (Voelkerding et al., 

2009) or DNA methylation analysis (Barros-Silva et al., 2018). 

Second-generation sequencing technologies for transcriptome analysis are commonly used to 

compare gene expression profiles of organisms. Furthermore, it can be used to annotate the 

transcript boundaries by enriching primary transcripts through digestion of 

5’polyphosphatetranscripts. This technique is called dRNA-seq and gives global maps of 

transcriptional start sites (TSSs) (Sharma et al., 2010). Another approach, which is known 

under the name TaqRNA-seq, uses differential labelling of transcripts by their 5’RNA ends to 

identify not only TSSs, but also processing sites (PSSs) (Innocenti et al., 2015). By using a 

glycerol gradient to separate complexes from an organism by their density and analysing the 

occurrence of RNA molecules by high-throughput sequencing technologies throughout the 

gradient, insights into RNA complexes and RNA interaction partners can be obtained 

(Rederstorff et al., 2010). In Grad-Seq, this approach is extended by mass spectrometry to 

measure the distribution of proteins in the gradient so that new RNA-protein complexes can 

be found (Smirnov et al., 2016). 

However, all second-generation technologies only produce short reads making it difficult to 

analyse complex genomic regions as repetitive sequences or structural variations (Pollard et 

al., 2018). Another source of misrepresentation of reads in second-generation data comes 
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through PCR bias during sample preparation, which leads to a distortion of the sequencing 

result (Kebschull and Zador, 2015). 

Several of these limits can be overcome by third-generation sequencing, which is also known 

under the name long-read sequencing. The idea of third-generation sequencing is to produce 

long fragments exceeding several kilobases using easy sample preparation without PCR 

amplification at lower costs and in less time than second-generation sequencing (Kchouk et 

al., 2017). 

The currently available approaches of third-generation sequencing are the Single molecule 

real time sequencing approach (SMRT) that is commercialized by Pacific Biosciences and 

Nanopore Sequencing that was released by Oxford Nanopore Technologies in the form of the 

MinION Instrument. SMRT technology uses a single DNA polymerase immobilized in a well 

called zero-mode waveguides. Here, the incorporation of fluoresce labelled nucleotides can 

be measured in Realtime (Shendure et al., 2017). On average, reads with a length of 10-30 kb 

can be produced but can exceed over 80 kb (van Dijk et al., 2018). Nanopore sequencing 

measures the ionic current when the DNA is passing through a single pore embedded in a 

membrane (Kasianowicz et al., 1996). Nanopore sequencing has the potential to generate 

ultra-long reads over 800kb (Jain et al., 2018) 

Both technologies generate long reads overcoming the problems of short reads and are 

beneficial for repetitive sequences or structural variant identification, making these 

technologies prime candidates for genome assembly. However, both techniques are prone to 

higher error rates compared to second-generation sequencing techniques (Korlach, 2013, 

Laver et al., 2015). 
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1.10. Aim of the work 

C. trachomatis is a prevalent human pathogen causing urethritis and blindness. Since the 

genetical manipulation of C. trachomatis is still in early stages and is unreliably, the aim of the 

present work was to resort to global screens to analyse the interactome of C. trachomatis and 

to further deepen the knowledge of the pathogen’s transcriptome. Therefore, Grad-Seq was 

used to separate the complexes of C. trachomatis by density in a glycerol gradient. Using 

high-throughput methods for each fraction of the glycerol gradient will help to determine 

which molecules are potentially interacting with one another or which molecules form 

complexes. Additionally, TagRNA-seq was performed to gain further knowledge about the 

transcriptomic landscape of C. trachomatis. Here, RNA species are differentially labelled by 

their 5’ end to differentiate between TSS and PSS. Combining these methods will gain new 

insights about small RNAs in Chlamydia and the potential RBPs as well as insights in the 

regulation of the Chlamydial transcriptome. 
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2. Material and Methods 

2.1. Material 

2.1.1. Bacterial Strains 

 

Experiments in the present work were performed using C. trachomatis L2/434/bu, which was 

obtained from ATCC® VR-902B™. Different E. coli strains were used for molecular work (Table 

1). 

Table 1: E. coli strains used in this work. 

E. coli strain Usage 

E. coli DH5� cloning 

E. coli Xl1blue cloning 

 

2.1.2. Cell lines 

 

Propagation and cultivation of C. trachomatis was performed in Hela229 cells, which were 

obtained from ATCC® CCL-2.1™. 

 

2.1.3. Plasmids 

 

Table 2: Plasmids used in this work. 

Vector Name origin backbone insert 

pEX-A128-T7oligoctrR0332 Eurofins pEX-A128 T7 aptamer ctrR0332 

pEX-A128-T7oligoIhtA Eurofins pEX-A128 T7 aptamer IhtA 

pEX-A128-T7oligo5s Eurofins pEX-A128 T7 aptamer 5s 

TopoT7oligotmRNA This work pCR2.1-TOPO T7 aptamer tmRNA 

TopoT7oligoRNaseP This work pCR2.1-TOPO T7 aptamer RNaseP 
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2.1.4. Oligonucleotides 

 

The following tables list oligonucleotides used for the construction of plasmids and DNA 

templates for in vitro transcription (Table 3), oligonucleotides for sequencing (Table 4) and 

probes for northern blots (Table 5). 

        
Table 3: Oligonucleotides for DNA amplification. 

Name Sequence length (nt) comment 

MK-51 gttttttttaatacgactcactataGGGAGACCTAGCC

TGGGGGTGTAAAGGTTTCGA 

58 t7olgioTMRNA fw 

MK-52 CTATGGAGGTGGAGAGAGT 19 t7olgioTMRNA rev 

MK-53 gttttttttaatacgactcactataGGGAGACCTAGCC

TCGGAAGAGTAAGGCAACCG 

58 t7oligoRNASEP fw 

MK-54 AGCTCGGAAGAGCGAGTAA 19 t7oligoRNASEP rev 

MK-041 gttttttttaatacgactcactataGGGAGACCTAGCC

TTCAAATAAAAAACTAATAAGTGGG 

63 T7-oligoaptamer-

ctrR0332 fw 

MK-042 gttttttttaatacgactcactataGGGAGACCTAGCC

TAAGTTGGTATTCTAACGCCATG 

61 T7-oligoaptamer-

ihtafw 

MK-028 AAAGCCAAGAGAACCGGAGA 20 ihta rev 

MK-024 AAAAAAAACGCAAGGCTCTGG 21 Reverse primer für 

sRNA ctrr0332 

MK-049 GTTTTTTTTAATACGACTCACTATAGGGAGAC

CTAGCCTcttggtgataatagagagagg  

61 t7oligoCTR5s fw 

MK-050 atgcttggcgacgacctac  20 t7oligoCTR5s rev 
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 Table 4: Oligonucleotides used for sequencing of the plasmids. 

Name Sequence Length (nt) comment 

MK-043 caagcccgtcagggcgcgtc 20 Eurofins A128 fw 

sequencing 

MK-044 caggctttacactttatgct 20 Eurofins A128 rev 
sequencing 

m13 fw GTAAAACGACGGCCAG  universal m13 sequencing 
primer forward 

m13 rev CAGGAAACAGCTATGAC  universal m13 sequencing 
primer reverse 

       
 

Table 5: Oligonucleotides used for northern blots. 

Name Sequence length (nt) comment 

MK-014 GACCAATATATACACCCAGGCTCC 24 CtrR0332 northern blot 

probe front region 

MK-016 GAGTCAGAAGCTATTCCATGGCGT 24 IhtA northern blot probe 

MK-035 gtgcgttcgaagtgtcgatg 20 Human 5.8S northern blot 

probe 

MK-036 caggcggtctcccatccaag 20 Human 5S northern blot 

probe 

MK-037 atactctcgtgtatagtacc 20 C. trachomatis L2/434/Bu 

5S northern blot probe 

MK-038 CCTTAGGGCTGCTACCTTCC 20 C. trachomatis L2/434/Bu 

signal recognition particle 

northern blot probe 

MK-039 GAGGCCAGCCAACGCCCTCC 20 C. trachomatis L2/434/Bu 

transfer-messenger- RNA 

northern blot probe 

MK-040 CGGACTTTCCTCTGGTACTC 20 C. trachomatis L2/434/Bu 

RNAseP northern blot 

probe 
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2.1.5. Antibodies 

 

Table 6: Primary antibodies used for western blots. 

Antibody Origin Dilution Company 

Actin mouse monoclonal 1:3,000 Sigma Aldrich 

HSP60  mouse monoclonal 1:1,000 Santa Cruz Biotech. 

Ab ββ’ rabbit polyclonal 1:2,000 Ming Tan lab 

Abσ28 rabbit polyclonal 1:5,000 Ming Tan lab 

AB1163-4 rabbit polyclonal 1:5,000 Ming Tan lab 

 

 
Table 7: Secondary antibodies used for western blots. 

Antibody Origin Dilution Company 

goat anti-mouse IgG-HRP goat 1:2500 Santa Cruz Biotech 

goat anti-rabbit IgG-HRP goat 1:2500 Santa Cruz Biotech 

 

 

2.1.6. Molecular method Kits 

 

Table 8: Commercial Kits. 

Kit Manufacturer 

GeneJET™ Gel Extraction Kit Thermo Scientific™ 

NucleoBond® PC 100 Macherey-Nagel 

NucleoSpin® Plasmid Macherey-Nagel 

QIAamp DNA Mini and Blood Mini Qiagen 

miRNeasy Mini Kit Qiagen 

ERCC RNA Spike-In Mix Invitrogen™ 

MEGAscript™ T7 Transcription Kit Invitrogen™ 

Proteomics Dynamic Range Standard Set Sigma-Aldrich 

TURBO DNA-free™ Kit Invitrogen™ 
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2.1.7. Markers 

  

Table 9: Markers used for Agarose DNA gels, Polyacrylamide RNA gels and northern blots. 

Marker Manufacturer 

GeneRuler™ 1 kb DNA ladder Thermo Scientific™ 

GeneRuler™ 50 bp DNA Ladder Thermo Scientific™ 

PageRulerTM Prestained Protein ladder Thermo Scientific™ 

RiboRuler Low Range RNA Ladder Thermo Scientific™ 

pUC Mix Marker (puc57 digested  
with HindIII/DraI and pUC19/Msp I) 

IMIB 

 

2.1.8. Buffers, Media, and Solutions 

For cell cultivation of the Hela229 cell line only RPMI 1640 from Gibco was used. Fetal calf 

serum (FCS) was obtained from Sigma-Aldrich. Detachment of cells was performed using 

TrypLE™ Express from Gibco. Washing was done using Dulbecco's Phosphate-Buffered 

Solution (DPBS) from GIBCO. 

 

Table 10: Media used for bacterial cultivation. 

Bacterial medium Ingredients 

LB medium 10 g tryptone 
5 g yeast extract 
10 g NaCl 
ad 1l dH2O 

LB medium (plate) 10 g tryptone 
5 g yeast extract 
10 g NaCl 
15 g agar 
ad 1l dH2O 

SOC 2% (w/v) bacto-tryptone 
0.5% (w/v) yeast extract 
10 mM NaCl 
2.5 mM KCl 
10 mM MgCl2 
10 mM MgSO4 
20 mM glucose 
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SPG buffer 75 g sucrose 
0.52 g KH2PO4 
1.22 g Na2HPO4 
0.72 g L-glutamic acid 
ad 1l dH2O 
adjust to pH 7.4 and sterile filter 

 

 

Table 11: Recipes of used buffers and solutions in this work. 

Buffer Ingredients 

50x TAE 242 g Tris 
57.1 ml acetic acid 
37.2 g EDTA 
ad 1 l dH2O 

SDS upper buffer 0.5 M Tris HCl pH 6.8 
0.04% (w/v) SDS 

SDS lower buffer 1.5 M  Tris HCl pH 8.8 
0.04% (w/v) SDS 

12% SDS lower gel solution  

(10 ml) 

2.5 ml SDS lower buffer 
4.0 ml 30% acrylamide 
4.1 ml  dH2O 
75 µl 10% APS 
7.5 µl TEMED 

Upper gel solution (10 ml) 2.5 ml SDS upper buffer 
1.25 ml 30% acrylamide 
6.25 ml dH2O 
100 µl 10% APS 
20 µl TEMED 

Laemmli buffer (2X) 100 mM Tris HCl pH 6.8 
4% (w/v) SDS 
20% (v/v) glycerol 
1.5% (v/v) mercaptoethanol 
0.02 g bromophenol blue 

10x SDS-PAGE running buffer 30.3 g Tris 
144.1 g glycine 
10 g SDS 

1x Semi Dry Transfer buffer 192 mM glycine 
0.1% (w/v) SDS 
25 mM Tris 
20% (v/v) methanol 



Material and Methods  

25 

10x TBS-T 60.5 g Tris 
87.5 g NaCl 
5 ml Tween 20 
adjust to pH 7.5 with HCl 

Coomassie staining solution 44% methanol 
11% acetic acid 
0.2% (w/v) Coomassie R-250 

Coomassie de-staining solution 20% methanol 
7% acetic acid 

Colloidal fixation solution 70 ml acetic acid 
400 ml methanol 
ad 1 l dH2O 

Colloidal staining solution A 19 ml phosphoric acid (85%) 
80 g ammonium sulfate 
ad 80 ml dH2O 

Colloidal staining solution B 2 g Coomassie G-250 
ad 40 ml dH2O 

Colloidal Coomassie staining solution 40 ml Colloidal staining solution A 
10 ml Colloidal staining solution B 
100 ml methanol 

Colloidal neutralization solution 6 g Tris 
500 ml dH2O 
Adjust to pH 6,5 with phosphoric acid 

Colloidal washing solution 250 ml methanol 
750 ml dH2O 

Silver stain fixer 50% ethanol 
12% acetic acid 
0.5 ml/l formaldehyde (37%) 

Silver stain sensitizer 0.2 g/l Na2S2O3 x 5H2O 

Silver stain solution 2 g/l AgNO3 
750 µl/l formaldehyde (37%) 

Silver stain developing solution 60 g/l Na2CO3 
4 mg/l Na2S2O3 x 5H2O 
0,5 ml/l formaldehyde (37%) 

Silver stain Stop solution 1% glycine 
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blocking solution 5% (w/v) BSA or milk powder in TBST-T 

ECL solution 1 100 mM Tris HCl pH 8.6 
2.5 Luminol 
0.4 mM p-coumaric acid 

ECL solution 2 100 mM Tris HCl pH 8.6 
0.02% H2O2 

10x TBE 108 g Tris 
55 g boric acid 
20 mM EDTA pH 8 
ad 1 l dH2O 

20x SSC: 3 M NaCl 0.3 M sodium citrate 
adjust to pH 7 with HCl 

Lysis buffer I 20 mM Tris-HCl pH 7.5 
150 mM KCl 
1 mM MgCl2 
1 mM DTT 
1 mM PMSF 
0.2% Triton X-100 
20 Units/ml DNaseI 
200 Units/ml RNase-inhibitor 

10% (w/v) glycerol solution 20 mM Tris-HCl pH 7.5 
150 mM KCl 
1 mM MgCl2 
1 mM DTT 
1 mM PMSF 
0.2% Triton X-100 
10% (w/v) glycerol 

40% (w/v) glycerol solution 20 mM Tris-HCl pH 7.5 
150 mM KCl 
1 mM MgCl2 
1 mM DTT 
1 mM PMSF 
0.2% Triton X-100 
40% (w/v) glycerol 

Lysis buffer II 50 mM Tris-HCl pH 8 
150 mM KCl 
1 mM MgCl2 
5% glycerol 

Wash buffer I 50 mM Tris-HCl pH 8 
300 mM KCl 
1mM MgCl2 
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 5% glycerol 

 

Wash buffer II 50 mM Tris-HCl pH 8 
150 mM KCl 
1mM MgCl2 
5% glycerol 
0.1% Triton X-100 

RNA elution buffer 1.1 M Sodium acetate 
0.1% SDS 
10 nM EDTA 

7M Urea 6% page 100 mL 10x TBE 
420 g Urea 
150 mL 40% acrylamide 
ad 1 l dH2O 

RNA loading dye GL-II (2x) 0.13% SDS 
18 μM EDTA pH 8.0 
95% formamide 
0.025% (w/v) xylene cyanol 
0.025% (w/v) bromphenol blue 

 

2.1.9. Enzymes 

Table 12: Enzymes used in this work. 

Enzyme Manufacturer 

Taq DNA polymerase Genaxxon Bioscience 

Phusion High-Fidelity DNA polymerase  Thermo Scientific™ 

T4 DNA ligase Fermentas 

DNaseI Thermo Scientific™ 

TURBO™ DNase Invitrogen™ 
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2.1.10. Chemicals 

Table 13: Fine chemicals, inhibitors and Gel loading dyes. 

Chemical Manufacturer 

Rotiphorese® Gel 40 (19:1) Roth 

Rotiphorese Gel 30 (37.5:1) Roth 

Albumin Fraction V (BSA) Roth 

Ammonium persulfate (APS) Merck 

Coomassie G-250 Roth 

Coomassie R-250 Roth 

dimethyl sulfoxide (DMSO) Roth 

Intas HD Green Intas 

Loading dye (6X) Thermo Scientific™ 

RNA Gel Loading Dye (2X) Thermo Scientific™ 

GlycoBlue Invitrogen™  

Diethyl pyrocarbonate (DEPC) Sigma Aldrich 

Roti®Phenol/Chloroform/Isoamylalcohol 

(25:24:1) (pH 4,5-5) 

Roth 

Tetramethylethylenediamine (TEMED) Sigma Aldrich 

RiboLock RNase Inhibitor Thermo Scientific™ 

Dynabeads™ M-270 Streptavidin Invitrogen™ 

Ethidium bromide solution 0,5 % Roth 

Phenylmethylsulfonylfluorid (PMSF) Roth 

 

Chemicals not listed in the table above were obtained from Sigma Aldrich, Roth and Merck. 

2.1.11. Technical equipment 

Table 14: Technical equipment used for this work. 

Equipment Manufacturer 

Hera Cell 240i incubator Thermo Scientific™ 

Hera Safe sterile bench Thermo Scientific™ 

Megafuge 1.0R centrifuge Heraeus 

CT15RE centrifuge Himac 
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PerfectBlue™ 'Semi-Dry'-Elektroblotter Peqlab Biotechnology/VWR  

PerfectBlue Dual Gel Twin PAGE chambers S Peqlab Biotechnology/VWR 

PerfectBlue™ Dual Gel Twin PAGE chambers M Peqlab Biotechnology/VWR 

PerfectBlue Dual Gel Twin PAGE chambers ExW S Peqlab Biotechnology/VWR 

DMIL light microscope Leica 

Scanjet G4010 HP 

Shaker TR125 Infors HT 

Thermo mixer comfort Eppendorf 

NanoDrop 1000 spectrophotometer Peqlab Biotechnology 

Chemiluminescence camera system Intas 

Balance ABS-80-4 Kern & Sohn 

Balance EW 1500-2M Kern & Sohn 

Thermal cycler GS1 G-STORM 

pH Electrode SenTix WTW 

Eppendorf 5415R - Mircocentrifuge Eppendorf 

Gradient station IP BioComp 

Optima L-80 XP Ultra Centrifuge Beckman Coulter 

Bioruptor® Diagenode 

NanoDrop™ 2000 spectrophotometer Thermo Scientific™ 

Typhoon FLA 7000 GE Healthcare Life Sciences 

ImageScanner III GE Healthcare Life Sciences 

dark hood DH40/50 Biostep® GmbH 

Avanti J-25T centrifuge Beckman Coulter 

Avanti J-25 XP centrifuge Beckman Coulter 

Phospho storage plates  FujiFilm 

FastPrep homogenizer MP Biomedicals 

GM-15 gradient maker VWR 
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2.1.12. Software 

Table 15: Software used for bioinformatical analysis and type setting. 

Software Publisher 

Argus x1 version 7.6.17 Biostep® GmbH 

Image J Wayne Rasband (NIH) 

ND-100 V3.7.1 NanoDrop Technologies, Inc. Wilmington 

Endnote X9 Clarivate Analytics (previously Thomson Reuters) 

Microsoft Office 365 ProPlus Microsoft Corporation 

Mendeley 1.19.3 Mendeley Ltd. 

MEME version 5.0.4 (Bailey et al., 2009) 

Windows 10  Microsoft Corporation 

Ubunutu 14.04 Canonical Foundation, Ubuntu community 

READemption (Förstner et al., 2014) 

segemehl (Hoffmann et al., 2009) 

R R Foundation for Statistical Computing 

BBMAP (Bushnell, 2014) 

python Python Software Foundation 

cutadapt (Martin, 2011) 

trimmomatic (Bolger et al., 2014) 

FastQC (Andrews, 2010) 

CorelDraw Graphics Suite X8 Corel Corporation 

Integrated Genome Browser (IGB) (Freese et al., 2016) 

ImageScanner III Labscan™ 6.0 GE Healthcare Life Sciences 
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2.2. Methods 

2.2.1. Bacterial culture methods 

2.2.1.1. Cultivation of E. coli  

E. coli were grown at 37 °C on LB agar plates or in LB medium shaken at 190 revolutions per 

minute (rpm) overnight. If selection was required, the appropriate antibiotic was 

supplemented into the plates or into the medium. 

2.2.1.2. Stock preparation 

E. coli stocks were generated by adding 150 µl Glycerol to 750 µl of E. coli overnight culture. 

2.2.1.3. Preparation of chemo-competent E. coli DH5α 

An overnight culture of E. coli DH5α was diluted by 1:100 in 100 ml LB-Medium and incubated 

at 37 °C at 190 rpm until an OD600 of 0.5 was reached. The bacteria were pelleted at 4000 rpm 

at 4 °C. The bacterial pellet was resuspended in 20 ml 0.1 M CaCl2. The resulting suspension 

was incubated for 30 minutes (min) on ice and centrifuged again. The pellet was resuspended 

in 10 ml 0.1 M CaCl2-solution with 20% glycerol. The bacterial suspension was then aliquoted 

and stored at -80 °C until use. 

2.2.1.4. Transformation of chemo-competent E. coli DH5α 

Chemo-competent E. coli DH5α were thawed on ice before adding the DNA. Thirty minutes 

after incubation on ice with the DNA, a heat shock was performed at 42 °C for 90 s followed 

by 2 min of incubation on ice. 800 µl of SOC medium were supplemented to the 

transformation and incubated for 1 hr shaking at 190 rpm and 37 °C. After incubation, the 

transformants was plated onto LB agar plates with the antibiotic required for selection. 

 

2.2.2. Cell culture methods 

2.2.2.1. Cultivation of Hela229 cell line 

Cells were grown in 75 cm2 cell culture flasks in RPMI 1640 medium supplemented with 10% 

FCS at 37 °C with 5% CO2. To maintain a cell confluence of 70-80%, cells were passaged every 

two to three days. For passaging, the cells were washed with DPBS once and incubated with 
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1 ml of Trypsin at 37 °C and 5% CO2 until the cells detached from the flask surface. Trypsin 

digestion was stopped by adding fresh 10% FCS supplemented cell culture medium. The cells 

were split into fresh flasks or 150 cm2 cell culture dishes for infection with Chlamydia. 

2.2.2.2. Preparation of cell cryo stocks  

To prepare cell culture stocks, cells at a confluence of 80% were detached as described above. 

Five millilitres cell culture medium were added, the cells were transferred into a 15 ml tube 

and pelleted at 4 °C for 5 mins. Afterwards, the cell pellet was resuspended in 5 ml of 10% 

DMSO in FCS before cooling in 1 ml aliquots to -80 °C. For long-term storage, the cells were 

frozen in liquid nitrogen. 

2.2.2.3. C. trachomatis infection 

Cells at a confluency of 70% were infected with C. trachomatis L2/434/bu by adding the 

desired volume of C. trachomatis stock to reach the targeted multiplicity of infection (MOI) of 

1. The infection was performed in medium supplemented with 5% FCS at 35 °C and at 5% CO2 

concentration. 

2.2.2.4. Preparation of C. trachomatis stocks 

Hela229 cells were grown in 150 cm2 cell culture dishes to a confluency of 70%. The cells were 

infected with the appropriate volume of C. trachomatis for a MOI of 1. The infection was 

performed in s RPMI 1640 supplemented with 5% FCS. The infected cells were incubated at 

35 °C and 5% CO2 for 48 hours (hr). Using a rubber scraper, the infected cells were detached, 

and the infectious suspension was transferred into a 50 ml tube with glass beads. The cells 

were mechanically ruptured alternating vortexing and cooling on ice. After that, the 

supernatant was transferred into a new 50 ml tube. To remove the cell debris, the suspension 

was centrifuged for 10 min at 1500 x g at 4 °C. The now containing Chlamydial supernatant 

was centrifuged at 30,000 x g at 4 °C for 30 mins. The resulting pellet was once washed with 

SPG. The washed pellet was resuspended in 1 ml SPG buffer per initial 150 cm2 cell culture 

dish. The Chlamydial suspension was passed through a 20G and a 18G needle, before aliquots 

were frozen at -80 °C for later use. 
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To determine the volume of Chlamydial suspension required for reaching a MOI of 1, cells with 

a confluency of 70% in a 12 well plate were infected with increasing volumes of a 

C. trachomatis stock. The infection of the different volumes was controlled using a bright field 

microscope. Thus, the volume of the suspension can be estimated to obtain the inclusion 

forming unit to infect every cell and to calculate the final concentration of the C. trachomatis 

stock. 

 

2.2.2.5. Preparation of C. trachomatis pellets for high-throughput methods 

Hela229 cells were grown in twenty cell culture dishes (150 cm2) as described above 

(Preparation of C. trachomatis stocks, page 32) and harvested 36 hpi. Cells were scraped and 

ruptured as stated before but washed in SPG twice before resuspending the pellet in 2 ml of 

SPG and transferring into two 1.5 ml reaction tubes. The reaction tubes were centrifuged at 

21500 x g for 30 min at 4 °C. The supernatant was discarded, and the pellet was snap frozen 

in liquid nitrogen before storage at – 80 °C. 

 

2.2.3. DNA methods  

2.2.3.1. Genomic DNA isolation 

Isolation of genomic DNA from C. trachomatis was performed with the QIAamp DNA Mini and 

Blood Mini kit (QIAGEN) according to the manufacturer’s manual for “Isolation of genomic 

DNA from biological fluids”. As described in the handbook, no RNaseA digest was performed. 

Two 100 µl aliquots of Chlamydial stocks were used for DNA extraction. The genomic DNA was 

eluted in 50 µl dH2O and concentration was measured via UV-VIS measurement. 

 

2.2.3.2. Plasmid isolation 

Plasmid isolation from E. coli was done either using NucleoSpin® Plasmid for miniprep plasmid 

isolation or NucleoBond® PC 100 for midiprep plasmid isolation. 5 ml of an E. coli overnight 

culture was used for minipreps and 50 ml of overnight cultures was used for midipreps. Both 

procedures were preformed according to the manufacturer´s instructions.  The concentration 

of the isolated DNA was measured via UV-VIS measurement. 
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2.2.3.3. Polymerase chain reaction 

Polymerase chain reactions (PCR) for amplification of DNA sequences were performed using 

Phusion High-Fidelity DNA Polymerase (Thermo Scientific™) in 50 µl reactions mixes: 

 

2.5 µl forward primer (10 µM) 

2.5 µl reverse primer (10 µM) 

10 µl 5x HF buffer 

0.75 µl DMSO 

1 µl dNTPs 

0.25 µl Phusion polymerase 

50 ng vector/template 

 ad 50 µl H20 

 

To obtain higher yields, PCR cycles were adjusted accordingly: 

98 °C 5 min  

98 °C 30 s  

repeat 39 times 58 °C 30 s 

72 °C 15 s (30 s/kb) 

72 °C 5 min  

4 °C holding  

 

The resulting PCR products were separated via agarose gel electrophoresis and visualised 

under UV light. 

 

2.2.3.4. Colony PCR 

Colony PCRs were used to screen for correct plasmid insertion in transformed E. coli. 

Therefore, material from single E. coli colonies were picked, suspended in 20 µl dH20 and 

boiled for 10 min at 94 °C. Template DNA for the reaction was crudely separated by 

centrifugation of the boiled E. coli suspension at 15,000 x g for 2 min. The supernatant was 

used as template DNA in PCR reactions composed as follows: 
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0.5 µl forward primer (10 µM) 

0.5 µl reverse primer (10 µM) 

2.5 µl 10X MolTaq buffer 

0.5 µl dNTPs 

0.25 µl MolTaq polymerase 

2.5 µl template 

 ad 25 µl H20 

Colony PCR was performed according to following program: 

94 °C 5 min  

94 °C 30 s  

repeat 25 times 50-60 °C 30 s 

72 °C 30 s (1 min/kb) 

72 °C 5 min  

4 °C holding  

The resulting products were separated via agarose gel electrophoresis and visualised under 

UV light. 

 

2.2.3.5. Agarose gel electrophoresis 

DNA was separated by size via agarose gel electrophoresis. Depending on the size of the 

expected fragments, PCR products were loaded onto a 1 - 2% agarose gel (with TAE buffer) 

containing Intas HD Green (Intas) and a voltage of 130 V was applied. The separated DNA was 

visualized using UV light. 

 

2.2.3.6. Gel extraction and PCR purification 

DNA fragments from agarose gels were excised and purified with the GeneJET™ Gel Extraction 

Kit (Thermo Scientific™) according to manufacturer´s instructions. Direct PCR product 

purification was performed by adding equal amounts of binding buffer to the reaction samples 

followed by proceeding with instructions from the Handbook. 
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2.2.3.7. TOPO blunt-end ligation 

To construct the desired TOPO vector with the insert of interest, only TOPO blunt-end ligation 

was used. Therefore, PCR products generated with the Phusion polymerase had to be 

T/A-tailed. After the initial PCR, the products were completely frozen and thawed. 1 µl of 

Moltaq was added for 10 min at 72 °C before purification with the GeneJET™ Gel Extraction 

Kit (Thermo Scientific™). The ligation was performed according to the manufacturer´s 

instructions, but with half of the amount of TOPO vector. Transformation was done with 

chemo-competent E. coli DH5α. 

 

2.2.4. Protein biochemical methods 

2.2.4.1. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE was performed to separate proteins by mass. Therefore, protein samples were 

boiled at 94 °C in 2x Laemmli buffer for 5 min. Proteins were separated under the denaturing 

conditions of a 12% polyacrylamide gel containing SDS. SDS masks the native charge of 

proteins negatively and causes their denaturation. 

 

2.2.4.2. Coomassie staining of proteins 

Visualisation of proteins separated by SDS-PAGE was performed by staining the 

polyacrylamide gel with Coomassie R-250. The gel was incubated for 30 min in Coomassie 

staining solution and de-stained by washing the Coomassie de-staining solution until bands on 

the gel were visible. Eventually, gels were scanned with ImageScanner III. 

 

2.2.4.3. Colloidal Coomassie staining Proteins 

Visualisation of proteins with lower concentration was performed by Colloidal Coomassie 

staining using Coomassie G-250. Therefore, the gel was first fixed in Colloidal fixation solution 

for 1 hr. After fixation the gel was incubated overnight in Colloidal Coomassie staining solution 

(by combining Colloidal staining solution A, Colloidal staining solution B and methanol). The 

gel was then incubated for 5 min in Colloidal neutralization solution and washed twice for 10 

min with Colloidal washing solution. De-staining was performed by washing the gel repeatedly 

with dH20 overnight. The next day, gels were scanned with ImageScanner III. 
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2.2.4.4. Silver Staining 

Proteins were visualized by silver staining of the protein gel. The gels were fixed with silver 

stain fixer for 1 hr at room temperature. Gels, which were previously Colloidal Coomassie 

stained, were not fixed again. After fixation, the gel was washed twice for 20 min in 50% 

ethanol, followed by an incubation in Silver stain sensitizer. The gel was than washed with 

dH20 three times and incubated with Silver stain solution, followed by two further washing 

steps in dH20. After the final wash step, the gel was incubated with the Silver stain developing 

solution until the protein bands became visible. Gels were placed into the silver stop solution 

to terminate staining and scanned with ImageScanner III. 

 

2.2.4.5. Western blot 

The Detection of specific proteins from an SDS-PAGE was performed by transferring the 

proteins within the gel to a PVDF membrane. The membrane was activated by incubation in 

methanol for 1 min. The membrane was then transferred into Semi Dry Transfer buffer. 

Whatman paper were soaked in Semi Dry Transfer buffer. Starting from the cathode, a 

transfer stack was assembled (Whatman paper, PVDF membrane polyacrylamide gel, 

Whatman paper). Proteins were transferred at 1 mA/cm2 membrane surface area for 2 hrs.  

After protein transfer, the proteins were detected by immunoblotting. Therefore, the 

membrane was first incubated in BSA blocking solution. The membrane was then incubated 

overnight at 4 °C with the primary antibody diluted in BSA blocking solution according to Table 

6. The membrane was washed thrice in TBS-T for 10 min each and incubated with a secondary 

antibody coupled with horseradish-peroxidase for 1 hr at room temperature. The membrane 

was again washed thrice for 10 min in TBS-T. After that, ECL mix (ECL solution 1 and ECL 

solution 2 in a 1:1 ratio) was spread evenly across the surface of the membrane. The protein 

of interest was than observed via a Chemiluminescence camera system. 

 

2.2.5. Gradient methods 

2.2.5.1. Preparation of glycerol gradients by Gradient Master Station 

A thin-walled polypropylene Tube (14 ml, 14 x 95 mm) from Beckman coulter was filled with 

10% (w/v) glycerol solution 2 mm above the centreline of the tube. 40% (w/v) glycerol solution 

was injected below the 10% solution until the interphase reached the centreline. After 
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levelling the magnetic platform of a BioComp Gradient Master Station, the tubes containing 

the gradient were placed into the metal rack from the device and onto the magnetic platform. 

To create a 10-40% linear glycerol gradient the program “10-40% (w/v) glycerol short cap” was 

used. The gradients were generated shortly before centrifugation and were stored at 4°C until 

use. 

 

2.2.5.2. Preparation of glycerol gradients by Gradient maker device 

To generate a linear gradient, a GM-15 15 ml gradient mixer was used. In both chambers of 

the mixing Gradient maker magnetic steers were used during pouring. The unit itself was 

attached to a peristaltic pump. The reservoir chamber contained the heavy 40% glycerol 

solution and the mixing chamber contained the 10% (w/v) glycerol solution. During pouring, 

the mixing valve and the outlet valve had to be opened simultaneously. The outlet from the 

peristaltic pump was raised short above the surface of the poured gradient in a thin-walled 

polypropylene tube for ultracentrifugation. 

 

2.2.5.3. Gradient profiling (Grad-seq) 

A purified Chlamydial cell pellet from forty 150 cm2 cell culture dishes was resuspended in 

500 µl lysis buffer followed by adding 750 µl of 0.1 mm glass beads. Lysis of the cells was 

performed by repeated cycles of vortexing for 15 s and cooling for 15 s on ice. Afterwards, the 

lysate was cleared by centrifugation at 13,000 rpm at 4 °C for 15 min. 10 µl of the lysate were 

removed for RNA extraction in 1 ml Trizol, further 20 µl of the lysate were supplemented with 

20 µl 5x Laemmli buffer as controls. 200 µl of a linear 10-40% (w/v) glycerol gradient was 

replaced by the rest of the cleared lysate. The gradients were then centrifuged at 100,000 x g 

for 17 hrs at 4 °C. Fractionation of the gradient was performed manually separating it into 21 

Fractions in 590 µl steps. The last fraction contained the pellet. As a control, the absorption 

was measured at 260 nm. Peaks for the major absorbance zones were exposed for the top 

region and 30S and 50S ribosomal subunits should be visible. From each fraction, except the 

fraction containing the pellet, 90 µl supplemented were supplemented with 5x Laemmli buffer 

and used for protein analysis. The 20 µl from the pellet were mixed with 20 µl 5x Laemmli 

buffer. The remaining Volume of each fraction underwent RNA isolation via P/C/I extraction 

and additional DNase digestion. The final RNA concentration quantified on a NanoDrop 2000 

via UV-VIS measurement. The RNA was used for EtBr gels and northern blots and ultimately 
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RNA sequencing. Protein loaded onto 12% PAGE Gels, which were Colloidal Coomassie or 

silver stained and additionally undergone mass spectrometry (MS). 

 

2.2.5.4. RNA isolation for the Gradient Screen 

RNA extraction for the fractions was performed as follows: to each fraction 50 µl 10% SDS was 

added and to the pellet 25 µl P/C/I was added. The SDS supplemented fractions were mixed 

for 20 s followed by addition of 600 µl of acidic P/C/I. The pellet was incubated with 300 µl of 

P/C/I. The samples were vortexed for 30 s and incubated for 5 min at room temperature. The 

lysate control was mixed with 1 ml of Trizol. Four hundred microliters of chloroform were 

added, and the lysate control was shaken by hand for 10 s. After incubation, every sample 

including the control was centrifuged for 15 min at 13,000 rpm and 4 °C. The aqueous phase 

was collected and supplemented with 1 µl of GlycoBlue as well as with 1.4 ml of an ice-cold 

mixture of 100% ethanol and 3 M sodium acetate in a ratio of 30:1. Precipitation was 

performed at -20 °C for 1 hr followed by centrifugation at 13000 rpm for 30 min at 4 °C. The 

resulting RNA pellet was washed with 350 µl of 70% ethanol and air dried. The cleaned RNA 

was eluted in 40 µl of DEPC-treated water. 

 

2.2.5.5. DNA digest for the Gradient Screen 

The RNA samples were subsequently DNA digested. Therefore, a DNase master mix was 

prepared: 

 

115 µl  DNase I buffer with MgCl2 

11.5 µl RNase-inhibitor 

92 µl  DNase I 

11.5 µl DEPC-treated water 

 

The RNA was denatured for 5 min at 65 °C. After denaturing, 10 µl of the master mix was 

added to 40 µl of purified RNA and incubated for 45 min at 37 °C. The volume was increased 

by 150 µl DEPC-H2O. Two hundred microlitres acidic P/C/I per fraction was used for a 

subsequent RNA extraction as described before, with the exception that for the precipitation 

600 µl of 100% ethanol:3M NaOAc (30:1) was used and the RNA was eluted in 35 µl DEPC-H2O. 
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2.2.5.6. Preparation of RNA and protein samples for high-throughput analysis 

RNA for high-throughput sequencing was sent to vertis Biotechnolgie AG. Three microlitre of 

RNA from a fraction was mixed with 10 µl of 1:100 diluted ERCC (External RNA Controls 

Consortium) spike-in, which was used as a reference in further analysis.  

Samples for mass spectrometry were prepared by mixing 20 µl from a fraction with 10 µl of 

UPS2 (Universal Proteomics Standard) mix. The protein samples were then homogenised using 

a Bioruptor set to “30 s on/30 s off high power”. Samples were centrifuged at 13,200 rpm for 

15 min at 4 °C and the supernatant was used for MS analysis. Both standards (ERCC and UPS2) 

were used in the downstream analysis as external references and for data correction. 

 

2.2.5.7. RNA-seq analysis of the gradient 

The RNA-seq data from gradient were trimmed with cutadapt (Martin, 2011) and checked with 

FastqQC (Andrews, 2010). The trimmed short reads were processed with READemption 

(Förstner et al., 2014), which uses the segemehl mapper (Hoffmann et al., 2009). The reads 

were mapped against the human genome, the chlamydial genome, the known ncRNAs, the 

annotation from the TagRNA-seq and the ERCC spike-in sequences.  

Correction for sequencing differences was performed by calculating the size factors for each 

fraction using ERCC spike-in as a standard in a deseq2-like approach. The data were 

normalised per gene for its maximum occurrence using Gratitude (Di Giorgio Silvia, 2017). The 

data were further analysed and clustered using a self-written script (Grad-seq analysis script, 

p. 135). Final statistical analysis and visualization was performed in R. 

 

2.2.6. RNA Methods 

2.2.6.1. Polyacrylamide gel Electrophoresis for RNA analysis 

Separation of individual RNAs was done by polyacrylamide gel electrophoresis. Therefore, 

40% polyacrylamide was diluted and supplemented with 7 M Urea. This solution was 

polymerised by adding 0.01% APS and 0.001% TEMED. RNA samples were prepared with 

2 x GLII loading buffer, boiled for 5 min at 95 °C and then loaded onto the gel. RNA was 

separated at 300 V for 1 hr and 50 min at RT. To visualize the RNA, the gel was incubated for 

15 min in ethidium bromide solution before scanning the gel on a GE Typhoon scanner. 
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2.2.6.2. Northern blot 

Denatured RNA (~5 µg) in GLII buffer was loaded onto a 7M Urea 6% PAGE and transferred to 

Hybond-XL membranes (GE Healthcare) by electro-blotting for 1 h at 50 V and 4 °C. The 

membrane was hybridized at 42 °C with gene-specific [32P] end-labelled oligonucleotide 

probe in ULTRAhyb™ Ultrasensitive Hybridization Buffer. The membrane was then exposed to 

a phosphor storage screen depending on signal strength and scanned on a GE Typhoon 

scanner. 

 

2.2.6.3. In vitro transcription 

RNAs for the RNA-aptamer-pull-down were generated using purified PCR products generated 

for the constructed vectors. The in vitro transcription was performed with the MEGAscript™ 

T7 Transcription Kit (Invitrogen™) using 500 ng of template per reaction as input. The reaction 

was performed overnight. The DNA of the reaction was digested with Turbo DNase for 15 

mins. RNA was then purified from a 7 M Urea 6% PAGE. The gel was stained with ethidium 

bromide and visualized using a UV light source. The RNA bands of interest were excised. The 

gel slices were transferred into 1.5 ml reaction tubes filled with 750 µl of RNA elution buffer. 

The gel slices rotated at 4 °C overnight. The supernatant was transferred into a new tube and 

750 µl of P/C/I were added before the mixture was transferred to a Phase lock heavy tube. 

Separation of the aqueous phase was done by centrifugation at 15,000 x g for 15 min at 4 °C.  

The aqueous phase was transferred to a new tube and a mixture of ice-cold 100% ethanol and 

3M NaOAc in a ratio of 30:1 was added. Additionally, 1 µl GlycoBlue was added. Precipitation 

of RNA was performed overnight at -20 °C. The mixture was then centrifuged at 15,000 x g for 

30 min at 4 °C and the resulting pellet was washed twice with 75% ethanol. The pellet was air 

dried and resuspended in 30 µl nuclease free water. Measurement was done via UV-VIS 

spectroscopy. 

 

2.2.6.4. RNA extraction for TagRNA-seq 

RNA extraction for TagRNA-seq was performed with the miRNasy kit (QIAGEN) according to 

the handbook without on-column DNA digestion. Pellets from twenty 150 cm2 infected cell 

culture dishes were used as initial material. DNA was digested with the TURBO DNA-free™ Kit 

(Invitrogen™). The sample was then sent to Vertis Biotechnologie AG where the rRNA 
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molecules were removed with Ribo-Zero Gold rRNA Removal Kit (Epidemiology) (Illumina). 

Preparation of cDNA for whole transcriptome sequencing including identification of TSSs and 

PSSs was done by Vertis Biotechnologie AG. Initially tagged RNA adapters were ligated to 5' 

monophosphorylated RNA, then 5' triphosphate (5'PPP) was enzymatically conversed to 5' 

monophosphate (5'P) and a second RNA adapter was ligated to the newly formed 5'P of 

primary transcripts. Then cDNA libraries for the Illumina NextSeq 500 were generated and the 

sequencing itself was performed. 

 

2.2.6.5. Bioinformatical analysis of TagRNA-Seq 

The TagRNA-seq data were provided in three libraries (untagged transcripts, tagged with PSS-

adapter and tagged with TSS-adapter). All reads were trimmed with trimmomatic (Bolger et 

al., 2014) (Supplementary information 

TagRNA-seq trimming, p. 115). The quality of the reads was checked before and after 

trimming with FastQC (Andrews, 2010). Mapping of the short reads was performed with 

BBMAP from the BBTOOLs toolkit (Bushnell, 2014). The parameters for BBMAP were chosen 

to allow only perfect alignments and to remove ambiguous alignments.  

An in-house script was written to use the reported coverage per base from BBMAP to analyse 

the coverage and to detect processing events, TSSs and untranslated regions (UTR) (TagRNA-

seq processing script, p. 115). If abrupt rises in coverage were detected by the script, the 

surrounding of this change was analysed in all three libraries and it was assessed what kind of 

processes the change in coverage caused. Therefore, the script used the reference annotation 

to generate annotations for the detected changes in coverage. The script reported the 

changes in a basic annotation (in gff3-format). Following events were reported by the script: 

UTR, UTSS (transcriptional start with unknown gene), TSS (transcriptional start site within a 

gene), PSS (processed transcript from a gene) and UPSS (processing site with unknown gene). 

By manually curating this annotation in company of the coverage data in IGB, many notations 

were changed, and another type of event was annotated: UTRP (untranslated region from 

Processing Event). 

 

2.2.6.6. Protein capture via oligo aptamer RNAs 

Pull-down of specific RNAs was performed by in vitro transcribed RNAs with a 14 bp aptamer 

at the 5’-end. Hundred microliters of streptavidin-coupled Dynabeads M-270 (Invitrogen™) 
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were washed three times with 1 ml lysis buffer II supplemented with 0.05% Tween-20. Four 

microliters of 3′-biotinylated 2′-O-methyl-RNA adapter (5′-AGGCUAGGUCUCCC-3′) were 

added to the beads and incubated for 1 hr at 4 °C. The beads with the adapter were washed 

twice with 1 ml lysis buffer II supplemented with 0.05% Tween-20. The beads were then 

suspended in 1 ml lysis buffer II with 0.05% Tween-20. Five hundred microliters of the mixture 

were stored overnight at 4 °C for later use. For RNA capture, 10 µg of RNA were incubated 

with the adapter-coupled beads over night at 4 °C while rotating. For one RNA of interest the 

chlamydial pellets of 20/ 30 cell culture plates were resuspended in 500 µl lysis buffer II with 

addition of 1 mM DTT and 1 mM PMSF. The chlamydial pellets were lysed using lysis matrix B 

tubes in a FastPrep (MP medicals) at 5 m/s for 30 s. The lysate was cleared at 13,000 rpm for 

30 min at 4 °C. If multiple samples were analysed, the different supernatants were pooled and 

mixed. The beads without the RNA of interest were used to clear the lysate by adding 500 µl 

of the lysate supernatant to the adapter-coupled beads. This mixture was rotated for 3.5 hrs 

at 4 °C. Fifteen microliters of the supernatant was taken as an input control and the rest of the 

supernatant was mixed with the RNA-coupled beads. The adapter-coupled beads, which were 

used for preclearing of the lysate, were discarded. RNA-coupled beads with lysate incubated 

for 2 hrs while rotating at 4 °C. The beads were washed with wash buffer I, wash buffer II and 

lysis buffer II each supplemented with 1 mM DTT and 1 mM PMSF. The lysis buffer was 

removed, and the beads were boiled in 2x Laemmli or 1x LDS sample buffer. Using a magnetic 

rack, the beads were removed. The protein samples were then used for SDS-PAGE and for MS.  

 

2.2.7. Mass spectrometry analysis of the Grad-seq and oligo aptamer Pull-down 

2.2.7.1. In-solution and in-gel digestion 

MS preparation and analysis were performed by employees of AG Schlosser, Rudolf Virchow 

centre for experimental Biomedicine, University of Würzburg. The gradient samples were 

digested in-solution while the samples for the oligonucleotide aptamer pull-down were in-gel 

digested. 

For the protein samples from the gradient, proteins were reduced with 125 mM DTT for 10 

min at 70 °C. Alkylation was performed for 20 min with 270 mM iodoacetamide. The proteins 

were precipitated overnight at -20 °C using the fourfold volume of acetone. The resulting 

pellet was dissolved in 50 µl 8 M urea in 100 mM ammonium bicarbonate. The proteins were 
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digested with 25 µg Lys-C (Wako) for 2 hrs at 30 °C. The samples were diluted to 2 M urea by 

adding 150 µl of 100 mM ammonium bicarbonate followed by digestion with 0.25 µg trypsin 

at 37 °C overnight. C-18 Stage Tips were used for desalting (Rappsilber et al., 2003). Elution of 

the peptides was performed with 60% acetonitrile in 0.3% formic acid. Peptides were dried 

with a laboratory freeze-dryer and sored at -20 °C. Before nanoLC-MS/MS analysis, the 

samples were dissolved in 2% acetonitrile / 0.1% formic acid. 

Proteins from the oligonucleotide aptamer pull-down were precipitated with the fourfold 

volume of acetone overnight at -20 °C. The resulting pellets were washed with acetone three 

times. The proteins were taken up in NuPAGE® LDS sample buffer (Life Technologies). The 

samples were reduced with 50 mM at 70 °C for 10 min, before they were reduced with 120 

mM Iodoacetamide for 20 min. Separation of proteins by mass was performed with a 

NuPAGE® Novex® 4-12% Bis-Tris gels (Life Technologies) according to manufacturer´s 

instructions. Visualization of the proteins was done by first washing the gel three times for 5 

min each followed by staining with Simply Blue™ Safe Stain (Life Technologies). The gel lanes 

were cut into 15 pieces after another wash step in water for 2 hrs. 

For the in-gel digestion the gel slices were de-stained with 30% acetonitrile in 0.1 M NH4HCO3 

(pH 8). The gel slices were shrunk with 100% acetonitrile. A vacuum concentrator was used 

for drying the samples. The final digestion was performed with 0.1 µg trypsin per gel band 

overnight at 37 °C in 0.1 M NH4HCO3 (pH 8). Peptides were extracted from the gel-slices with 

5% formic acid after removing the supernatant. Samples were then pooled and used for 

nanoLC-MS/MS. 

 

2.2.7.2. NanoLC-MS/MS Analysis 

The NanoLC-MS/MS analysis was performed on an Orbitrap Fusion (Thermo Scientific) for the 

gradient profiling and the aptamer pull-down. This device was equipped with a PicoView Ion 

Source (New Objective) and coupled to a liquid chromatography system (EASY-nLC 1000, 

Thermo Scientific). The samples were loaded onto capillary columns (PicoFrit, 30 cm x 150 µm 

ID, New Objective), which were self-packed with ReproSil-Pur 120 C18-AQ, 1.9 µm (Dr. 

Maisch). The peptides were separated with a 30-minute linear gradient from 3% to 30% 

acetonitrile and 0.1% formic acid. The flow rate was 500 nl/min.  

The MS and MS/MS measurements were performed on the Orbitrap Fusion (Thermo 

Scientific). The resolutions for the MS and MS/MS scans were 60,000 and 15,000. HCD 
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fragmentation with 35% normalized collision energy was applied. A Top Speed data-

dependent MS/MS method with a fixed cycle time of 3 s was used. Dynamic exclusion was 

done with a repeat count of 1 and the exclusion duration was 30 s. Single charged precursors 

were excluded from the selection. The minimal signal threshold for precursor selection was 

50,000. Predictive AGC was used with target value of 2e5 for MS scans and 5e4 for MS/MS 

scans. EASY-IC was used for internal calibration. 

 

2.2.7.3. MS data analysis 

The Data acquired from the measurements were analysed with MaxQuant version 1.6.2.2 (Cox 

and Mann, 2008). Andromeda was used within MaxQuant to perform the database search 

against a UniProt C. trachomatis database, the UniProt Human database and a database with 

common contaminates. Additionally, the gradient measurements were searched against a 

database containing proteins from the UPS2 proteomic standard. The tryptic cleavage 

specificity for the search allowed 3 mis-cleavages. 

Protein identification was controlled by a false-discovery rate of 1% for protein and peptide 

levels. Altered from the default settings of MaxQuant following modifications were allowed: 

Protein N-terminal acetylation, Gln to pyro-Glu formation (N-term. Gln) and oxidation (Met). 

Carbamidomethyl (Cys) was set as fixed modification. Proteins were quantified by LFQ 

intensities (Cox et al., 2014), but proteins with less than two identified razor/unique peptides 

were dismissed.   

The results from the aptamer pull-down were further analysed with a R script developed by 

AG Schlosser. Median intensities were calculated to discriminate for non-specifically enriched 

proteins. If the LFQ intensities in the control samples were missing, values close to the baseline 

were imputed. Identification of boxplot outliers in intensity bins of at least 300 proteins were 

used to describe enriched proteins. The log2 transformed protein ratios between sample and 

control were considered significantly enriched if the ratios were values outside a 1.5x 

(potential) or 3x (extreme) interquartile range (IQR). 
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3. Results 

3.1. Analysis of TagRNA-Seq 

The reference annotation of the chlamydial genome accounts for 937 genes and the plasmid 

codes for 8 genes. IhtA was the only well previously studied small ncRNA. 

Previous transcriptomic studies of C. trachomatis focused either on total RNA or on TSSs. In a 

previous dRNA-Seq analysis by Albrecht and colleagues 338,678 reads were mapped to the 

chlamydial genome and the plasmid. By characterization of transcriptional start sites (TSSs), 

nine new ncRNAs were identified with 8 being found on the genome and one on the plasmid 

(Albrecht et al., 2011, Albrecht et al., 2010). 

The aim of the present work was to characterize the intergenic regions of the 1.04 Mb 

chlamydial genome. Therefore, TagRNA-seq of C. trachomatis L2/434/bu was performed to 

observe the different transcripts originating from TSSs and processing sites (PSSs). 

After trimming and mapping, 13,270,884 reads were mapped against the chlamydial genome 

and the plasmid. Out of the 13,270,884 reads, 2,017,491 reads originated from TSSs and 

529,679 came from processing events. Furthermore, 10,723,714 reads were not the result of 

the labelled RNA species and showed the total RNA distribution within this RNA sample.  

The library with the unassigned reads (10,723,714 reads) had the highest number of reads and 

a high sequencing depth (Figure 4). In contrast, the other two libraries didn’t obtain a high 

sequencing depth and had less reads. The TSS library had a higher read count and more 

regions with a high coverage compared to the PSS library. 
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Figure 4: Coverages of the three libraries enriched for processing events (green line), transcriptional start sites 
(orange line) and unassigned RNAs (blue line). 

After mapping, a program (TagRNA-seq processing script, p. 115) for initial analysis of the 

resulted coverage files from the PSS-, TSS- and total RNA libraries (TagRNA-seq processing 

script, p.115) was written. This program assessed if sudden rises could be associated with a 

TSS or a PSS. If multiple abrupt changes were in close vicinity, only the signal of the strongest 

intensity was used. These signals were then associated with the genes from the reference 

annotations (references: AM884176.1 & AM886278.1 from NCBI genomes). TSS signals within 

a gene resulted in a new annotation, starting with the TSS signal and ending with the original 

gene end. A TSS present within 100 bp upstream of an annotation, resulted in an annotation 

starting from the TSS signal to gene start marked as 5’ untranslated region (UTR). PSS events 

within genes resulted in annotations broken up into slices by the processing events. Processing 

events in intergenic regions resulted in an annotation +/- 20 bp from the signal.  

Taken together, this resulted in 2,250 annotations (Table 16). These annotations were then 

manually curated and annotations that overlapped with the reference annotation were 

removed. 
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Table 16: Type and number of new annotations based on the TagRNA-seq data after initial analysis using the 
self-developed python script. 

Type of new annotation Number of new annotations 

UTR (5’ untranslated region) 270 

TSS (transcriptional start site within a gene) 361 

UTSS (transcriptional start with unknown gene) 197 

UPSS (processing site with unknown gene) 239 

PSS (processed transcript from a gene) 1183 

 

As a result, 1,746 new annotations remained. Out of these, 576 were in intergenic regions and 

were previously not described. The following table shows the distribution of the new 

annotations based on their affiliation (Table 17). Additionally, a new annotation type was 

created: UTRP (5’ untranslated region from processing event). 

 

Table 17: Type and number of new annotations based on the TagRNA-seq data after initial analysis with the 
self-developed python script and manual curation. 

Type of new annotation Number of new annotations 

UTR (5’ untranslated region) 290 

UTRP (5’ untranslated region from processing event) 57 

UTSS (transcriptional start with unknown gene) 154 

UPSS (processing site with unknown gene) 75 

PSS (processed transcript from a gene) 935 

TSS (transcriptional start site within a gene) 235 

 

The intergenic types were analysed for their length and GC content (Table 18). The 

5’ untranslated region originating from PSSs were the fewest and longest but were varying the 

most. Unknown TSSs were on average the longest and are closest with their GC content to 

global GC content (41.3%). The other annotated sequences were below the global GC content. 
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Table 18: Sequence statistics for the intergenic sequences found by TagRNA-seq. 

 Sequence length GC-content in % 

Type min max mean median min max mean median 

UTRP 5 2441 120.11 ± 353.82 40 19.05 55.56 35.25 ± 7.83 36 

UTR 9 832 70.56 ± 70.81 50 11.11 61.11 36.3 ± 8.27 37.3 

UPSS 41 179 48.89 ± 24.75 41 19.51 51.22 37.9 ± 6.76 39.02 

UTSS 52 1056 157.7 ± 129.73 101 29.7 53.33 41.53 ± 4.51 41.78 

 

Most of the RNAs have an average length of 157 bp, which ideally characterise them as sRNAs. 

The longest identified RNA with 1056 bp is located on the opposite strand of recD, which 

encodes a 5`-3` helicase and is part of the RecBCD holoenzyme, and CTL0289, which is a 

putative membrane transport/efflux protein. Due to the composition of the reads, two RNAs 

were annotated in this locus. A highly transcribed region which overlaps the 3’-end of recD 

and extends 35 bp over the end, was detected and makes up a shorter transcript. In addition, 

a transcribed region reaching into the middle of the upstream gene of recD, CTL0289, was 

observed and makes up the longer transcript (Figure 5). 

 

 

Figure 5: Visualization of the reads from the TagRNA-seq Data with the reference annotation in blue and the 
TSS annotation in red at the locus between recD and CTL0289. The graphs represent the mapped reads in the 
respective labelled library. Unlabelled reads are represented in blue, reads associated with Transcriptional 
start sites (TSS) are shown in red and green are reads from processing events (PSS) in the transcriptome. 

 

The small RNA IhtA is transcribed with the downstream outer membrane ring protein sctC. 

ihtA possess, in addition to the TSS of the downstream gene, its own TSS. With the second TSS 

the abundance of the ihtA reads strongly increase in this locus (Figure 6). 
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Figure 6: Visualization of the reads from the TagRNA-seq Data with the reference annotation in blue at the 
locus of small RNA ihtA. The graphs represent the mapped reads in the respective labelled library. Unlabelled 
reads are represented in blue, reads associated with Transcriptional start sites (TSS) are shown in red and 
green are reads from processing events (PSS) in the transcriptome. 

 

The small RNA CtrR0332 shows to have two sites for primary transcripts and two processing 

sites, making this locus a highly active and transcriptional complex region. The two identified 

regions of the transcripts define the known processed forms of CtrR0332. 

 

 

Figure 7: Visualization of the reads from the TagRNA-seq Data with the reference annotation in blue and the 
PSS annotation in green at the locus the small RNA ctrR0332. The graphs represent the mapped reads in the 
respective labelled library. Unlabelled reads are represented in blue, reads associated with Transcriptional 
start sites (TSS) are shown in red and green are reads from processing events (PSS) in the transcriptome. 

 

Furthermore, the intergenic sequences were analysed with the MEME suit. Additionally, every 

sequence 40 bp upstream from the annotation was analysed. 

Analysis of the 40 upstream sequences of the new intergenic annotations identified four 

motifs. The first motif (Figure 8) was found in 81 sequences from the newly annotated 

intergenic regions.  
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Figure 8: The first motif logo generated by the MEME suit from 40 bp upstream sequences of all new annotated 
intergenic sequences. 

 

The highest association for this motif in the database is with rpoD (σ70 factor from E. coli). 

Albrecht and colleagues observed a similar sequence logo in their studies, while mapping TSSs 

with dRNA-seq data. The authors associated this motif to the σ66 promoter sequence (Albrecht 

et al., 2011, Albrecht et al., 2010). In addition, many motifs were associated with ferric uptake 

(Table 19). 

 

Table 19: Results from tomtom from the MEME tool suit searched against all prokaryotic DNA databases for 
the first motif found using the 40 bp upstream sequences from the new annotated intergenic regions. 

Motif (Database entry) p-value E-value q-value 

rpoD (rpoD17) 3.91E-04 1.93E-01 3.86E-01 

DegU (MX000168) 8.26E-04 4.08E-01 4.07E-01 

PhoP (MX000057) 1.40E-03 6.94E-01 4.62E-01 

Fur N. gonorrhoeae (EXPREG_00000ec0) 2.83E-03 1.40E+00 6.93E-01 

MetR (MX000158) 4.22E-03 2.08E+00 6.93E-01 

CcpA C. difficile (EXPREG_00000d10) 6.03E-03 2.98E+00 8.50E-01 

MtrB (MX000015) 9.55E-03 4.72E+00 9.99E-01 

ComK (MX000023) 1.57E-02 7.74E+00 9.99E-01 

ScrR (Gammaproteobacteria) 1.69E-02 8.36E+00 9.99E-01 

Fur H. pylori (EXPREG_00000340) 1.76E-02 8.69E+00 9.99E-01 

Fur E. coli (EXPREG_000007c0) 1.76E-02 8.70E+00 9.99E-01 

 

The second motif, found in 77 of the sequences, was like the first one, only shifted and 

shortened to 21 positions, with an adenine stretch in the middle (Figure 9).  
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Figure 9: The second motif logo generated by the MEME suite for the 40 bp upstream sequences of all new 
annotated intergenic sequences. 

 

Using tomtom, similar sequences were identified (Table 20). Many of these motifs were 

associated with σ-factors or response regulator binding motifs. 

 

Table 20: Results from tomtom from the MEME tool suit searched against all prokaryotic DNA databases for 
the second motif found using the 40 bp upstream sequences from the new annotated intergenic regions. 

Motif (database entry) p-value E-value q-value 

MogR L. monocytogenes 1.46E-05 7.20E-03 1.43E-02 

CovR (MX000041) 2.97E-04 1.47E-01 9.69E-02 

CodY S. pyogenes (EXPREG_00000330) 7.79E-04 3.85E-01 1.53E-01 

NagC (MX000150) 2.42E-03 1.20E+00 3.45E-01 

SigL (MX000078) 2.55E-03 1.26E+00 3.45E-01 

Fnr (MX000004) 3.35E-03 1.65E+00 3.45E-01 

LexA S. meliloti (EXPREG_00001480) 3.48E-03 1.72E+00 3.45E-01 

ExsA (MX000103) 4.37E-03 2.16E+00 3.45E-01 

CodY L. lactis (EXPREG_000001b0) 4.56E-03 2.25E+00 3.45E-01 

SigB (MX000073) 4.58E-03 2.26E+00 3.45E-01 

MetR (MX000158) 6.76E-03 3.34E+00 4.73E-01 

Fnr (Fnr_Gammaproteobacteria) 9.72E-03 4.80E+00 5.94E-01 

RofA (MX000039) 9.80E-03 4.84E+00 5.94E-01 

PhoP Y. pestis (EXPREG_00000050) 1.03E-02 5.09E+00 5.94E-01 

OmpR (MX000142) 1.30E-02 6.41E+00 6.31E-01 

lrp (lrp) 1.33E-02 6.59E+00 6.31E-01 

rhoD (rpoD16) 1.36E-02 6.71E+00 6.31E-01 

RpoE-SigE (MX000037) 1.42E-02 6.99E+00 6.31E-01 

rhoD (rpoD15) 1.58E-02 7.81E+00 6.54E-01 

SigB (MX000075) 1.60E-02 7.92E+00 6.54E-01 

LexA C. crescentus (EXPREG_000014f0) 1.82E-02 9.00E+00 6.86E-01 

Zur P. protegens (EXPREG_00000e20) 1.89E-02 9.33E+00 6.86E-01 

HexR S. oneidensis (EXPREG_000012b0) 1.89E-02 9.33E+00 6.86E-01 
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The third motif, which was found in the 40 bp upstream sequences, was present in eight 

sequences and had a high association with the fur (ferric uptake regulation) binding motif 

(Appendix table 23, Figure 10). 

 

Figure 10: The third motif logo generated by the MEME suite for the 40 bp upstream sequences of all new 
annotated intergenic sequences. 

 

One further identified motif was generated from 6 sequences (Figure 11) and was mostly 

associated with LexA-type motifs (Appendix table 24). 

 

Figure 11: The last motif logo mostly associated with LexA-type motifs. The logo was generated by the MEME 
suite for the 40 bp upstream sequences of all new annotated intergenic sequences. 
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3.2. Establishment of Grad-seq 

Gradient profiling by Sequencing (Grad-seq) was previously performed only in free-living 

bacteria (e.g. Salmonella) (Smirnov et al., 2016b). Therefore, the aim of this work was to 

establish the conditions for successful gradient profiling coupled to high-throughput methods 

for C. trachomatis. Four parameters had to be adjusted: 1) input concentration of 

C. trachomatis for the experiment; 2) the lysis of C. trachomatis; 3) generation of the glycerol 

gradient; and 4) how to inspect the resulting gradient.  

The first three gradients were performed with pellets from 30 plates of cells infected with 

C. trachomatis L2/434/Bu with gradients ranging from 1% - 40% (w/v) glycerol using a gradient 

maker device. Only 20 fractions were taken for analysis, with the heaviest fraction containing 

the pellet. Only protein gels and western blots were performed for this experiment. Lysis was 

performed at 6.5 m/s for 20 s repeated for 5 times before the lysate was cleared.  

The gradient showed a partial separation (Figure 12). Most proteins were in the lighter 

molecular weight fractions (1-12), as seen in the protein gel (Figure 12A). Actin only appeared 

in the very light fractions of the gradient (1-5), while the heat shock protein 60 spanned across 

10 fractions in the middle of the gradient. Since a single protein itself would be present only 

in very light fractions, one can conclude that this is a complex. In E. coli, GroEL, which belongs 

to the chaperonin family, forms a tetradecamer (Braig et al., 1994) while in other organisms 

the paralog can function as a dimer (Qamra et al., 2004). This spread of GroEL can be explained 

by either fragmentation of the homo complex, by the formation of a complex of GroEL with 

other subunits of the folding machinery, or it is functioning as a chaperon with other proteins. 

The σ66-factor has also been detected in these fractions. This σ-factor plays a key role in the 

regulation of most chlamydial proteins (Koehler et al., 1990, Lonetto et al., 1992, Paget and 

Helmann, 2003) and directly interacts with the β-subunit of the RNAP (Rao et al., 2009b). This 

interaction is indicated by the shift of the β’ subunit in the western blot. The σ-factor and the 

RNAP subunit larger signal can be observed in the same fractions. The northern blot analysis 

of the small RNA ctrR0332 showed a signal present in all fractions. The strongest signal of the 

probe was overserved in the fractions 5 - 8. The strong signals indicate a complex for this sRNA. 
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Figure 12: Pellets from thirty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed in a FastPrep 
for 5 times at 6.5 m/s for 20 s and separated on a 1%-40% glycerol gradient that was made by a gradient maker 
device. (A) Proteins were separated using a 12% SDS-PAGE and visualised via colloidal Coomassie. The first 
lane shows the marker (M) and the following lanes are the fractions from the gradients collected from top to 
the pellet (P). (B) Proteins were separated by a 12% SDS-PAGE. Actin, the chlamydial HSP60, the chlamydial 
σ28 and σ66 factor and the ββ’ subunit of the RNA polymerase were analysed by immunoblotting. (C) northern 
blot of the ctrR0332 transcript of the gradient in descending order from top of the gradient to the pellet of the 
gradient. 

 

The gradient was repeated twice with 30 dishes of cells infected with Chlamydia but results 

from the western blots showed different patterns (Figure 13). Actin showed a similar pattern 

except for its location in the gradient. The signal was detected in fraction 7 (Figure 13A) or in 

fraction 8 (Figure 13B) for the other replicate. Heat shock protein (HSP60) in these gradients 
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shifted towards a lighter fraction starting in fraction one (fraction for the lightest 

complexes/molecules) and ending in the middle of the gradient. The β´-subunit of the RNAP 

is present only in one gradient without the lighter observable band (Figure 13A). In the other 

gradient (Figure 13B), degradation of the polymerase was observed, although the presence of 

the signals was in line with the first gradient (Figure 12B). The σ66-factor was detected in each 

fraction of one  gradient (Figure 13A) while in the other gradient, it was only present in the 

factions 6, 7 and 8 (Figure 13B). In these fractions the highest signal intensity was observed 

for one of the gradients (Figure 13A). The σ28-factor was observed only in the first two 

gradients. In the western blot analysis of the first gradient (Figure 12B), it was present in the 

factions 9 to 13, while in the next gradient it was only detected in the first five fractions. 

 

 

Figure 13: Pellets from thirty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed in a FastPrep 
for 5 times at 6.5 m/s for 20 s and separated on a 1%-40% glycerol gradient that was made by a gradient maker 
device. Analysis was done via immunoblotting (A) Second replicate and (B) third replicate of the gradient with 
following proteins being specifically analysed: actin, chlamydial HSP60, ββ’-subunit of the RNA polymerase 
and chlamydial σ66-factor. In the second replicate, also σ28-factor was analysed. 
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For the next gradient, the speed of the FastPrep for the lysis was decreased from 6.5 m/s to 

6 m/s repetitions, but time stayed the same as before. The gradient was similar to the first 

gradients. The stained gel, although similar to the first shown gel, revealed the lack of bands 

in the pellet lane and the distinguishable strong bands in the middle of the gradient. The 

western blots results were also like the previous gradients. Only the β’-subunit showed 

distinctly smaller bands (Figure 14). 

 

 

Figure 14: Pellets from thirty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed in a FastPrep 
for 5 times at 6.0 m/s for 20 s and separated on a 1%-40% glycerol gradient that was made by a gradient maker 
device. (A) Proteins were separated using a 12% SDS-PAGE and visualised via colloidal Coomassie. The first 
lane shows the marker (M) and the following lanes are the fractions from the gradients collected from top to 
the pellet (P). (B) Proteins were separated by a 12% SDS-PAGE. Actin, the chlamydial HSP60, the chlamydial 
σ66 factor and the ββ’-subunit of the RNA polymerase were analysed by immunoblotting. 
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For the following gradients, instead of a gradient maker device, a gradient master station was 

used to automatically mix the gradients and thus get more reproducible results. Additionally, 

the lysis procedure was changed by removing the repetitions in the FastPrep, so that the 

samples were in the FastPrep only once. 

In order to avoid inconsistencies from western blots, northern blots to analyse specific RNAs 

were performed. The subsequent gel was prepared using the above-mentioned method for 

gradient generation. The lysis was done at 5 m/s for 20 s. In the silver stained protein gel, 

possible ribosomal proteins were detected in the heavy fractions. Furthermore, in the pellet, 

the signal was so strong, individual protein bands were not detectable anymore, indicating an 

improved separation of the lysate in the gradient (Figure 15A). The RNA gel also showed a 

clear separation of abundant RNA species. rRNAs were seen as bands in fraction 7 to 20 and 

in the pellet (Figure 15B). 16S and 23S RNAs were detected below the loading pockets of the 

gel indicating their high molecular weights. 16S RNA was below the 23S RNA and was only 

detectable in the fractions 8 to 13 of the gradient. The 5S RNA was detectable only in the 

heavy fractions starting from fraction 13 and additionally in the pellet. The 5.8S RNA was seen 

above the 5S RNA but showed a less intense signal. Only in the very light fraction of the 

gradient (below 100 bp), tRNAs were observed (Figure 15B). 

All fractions were screened for the presence of ctrR0332 and IhtA as indicators of sRNAs. IhtA 

was detectable in the light fractions (1 to 8), having its highest signal intensity in fraction 1, 

indicating that it is not present in a complex. Due to our probe for ctrR0332 the full-length 

sRNA and the 80 bp processed 5’ fragment, which was called ctrR0332’, were detectable. Both 

fragments were observed across the gradient and had their peak in the fractions 7 and 8 as 

well as in the pellet. 
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Figure 15: Pellets from thirty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed in a FastPrep 
at 5.0 m/s for 20 s once. The lysate was separated on a 10%-40% glycerol gradient before samples were taken. 
(A) Proteins were separated using a 12% SDS-PAGE and visualised via silver staining. The first lane shows the 
protein marker (M) followed by a lysis control and the samples from the different fractions of the gradient 
collected from top (1) to pellet (P). (B) RNAs were loaded onto 7M Urea 6% PAGE and visualized via ethidium 
bromide. The first lane shows Riboruler Low range, followed by the lysis control and the samples of the 
different fractions of the gradient collected from top (1) to pellet (P). (C) RNAs were again separated on a 7M 
Urea 6% PAGE but then transferred to a nylon membrane before probing for the RNAs: ctrR0332 and IhtA. The 
processed form of ctrR0332 was detected at ~80 bp (ctrR0332’). The order of the samples is as before, but 
without marker. 
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To further improve the gradients the speed of the FastPrep was decreased to 4.5 m/s and 

further to 4 m/s. In addition to quality control via gel, a nanodrop spectrophotometer was 

used to measure the absorbance at 260 nm for each fraction after centrifugation (Figure 16). 

At these absorptions a bulk peak, a 30S peak, 50S peak and peak for the pellet in the respective 

fractions were expected. Although the protein concentrations in the gradients were suitable, 

their absorption spectra and results of RNA gels indicated an insufficient separation and RNA 

degradation. 

 

 

Figure 16: Absorbance of all collected fractions (1-P) measured at 260 nm via NanoDrop spectrophotometer. 
Pellets of thirty 150 cm2 dishes of cells infected with Chlamydia were used and lysed at (left) 4 m/s for 20 s 
once and (right) at 4.5 m/s. 

 

For the following gradient, the speed during lysis with the fastprep was 4 m/s. To increase the 

yield of usable sample of each fraction material of forty 150 cm2 dishes of C. trachomatis 

infected Hela229 cells were used. Instead of a silver-stained protein gel, coolidal Coomassie 

staining was used to detect proteins. With that, the bands of the lighter fractions were 

preserved and ribosomal proteins were seen (Figure 17A). Due to the increased input, signal 

strenght in RNA gels increased (Figure 17B). Furthermore, the 16S RNA and the 23S RNA 

separated more clearly. 

All nothern blots showed an intense signal in fraction 4, which was due to the high yield 

resulting from RNA extraction for this fraction. In contrast, fraction 18 seemed to have a lower 

yield and fraction 11 was not even detectable via northern blot. In addition to the probes for 

ctrR0332 and IhtA, futher probes for the signal recognition particle (SRP), transfer messenger 

RNA (tmRNA) and the 5S RNA were included (Figure 17C). CtrR0332 was detectable 

throughout the gradient, while ctrR0332’ intensity was not as present as in the previous 
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gradient. IhtA and SRP showed a similar course in the gradient with their intensities rising until 

fraction 4 and then dropping to a faint signal. The signal for tmRNA was abundant in the lysate, 

and started appearing in fraction 4 (due to the high RNA yield resulting from extraction) and 

then slowly decreased until no signal was visible in fraction 16. The highest signal intensity of 

the 5S RNA was detectable in the fractions 12 to 14 while another intensity peak was seen in 

the light fractions from 1 to 4. 5S RNA was expected to be concentrated in the heaviest 

fractions of the gradient.  
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Figure 17: Chlamydial pellets from forty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed 
in a FastPrep at 4.0 m/s for 20 s once. The lysate was separated on a 10%-40% glycerol gradient before samples 
were taken. (A) Proteins were separated using a 12% SDS-PAGE and visualised via colloidal Coomassie staining. 
The first lane shows the protein marker (M) followed by a lysis control and the samples from the different 
fractions of the gradient collected from top (1) to pellet (P). (B) RNAs were loaded onto 7M Urea 6% PAGE and 
visualized via ethidium bromide. The first lane shows RiboRuler Low range, followed by the lysis control and 
the different fractions of the gradient collected from top (1) to pellet (P). (C) RNAs were again separated on a 
7 M Urea 6% PAGE but then transferred to a nylon membrane before probing for the RNAs: ctrR0332 and IhtA, 
signal recognition particle (SRP), transfer-messenger RNA (tmRNA) and the 5S RNA. The processed form of 
ctrR0332 was detected at ~80 bp (ctrR0332’). The order of the samples is as described in B, but without marker. 
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In addition, a nanodrop spectrophotometer was used to measure the absorption (A260) of each 

fraction. Using this, the general distrubution of the complexes in the gradient can be observed 

as described in a previous study for Salmonella (Smirnov et al., 2016b). The highest peak was 

seen in fractions 2 and 3. 30S and 50S bulk peaks were mergin into a single peak without 

showing a strong separation, while the pellet or 70S peak were not as strong as described in 

the orignal method and were only a fraction of the 50S (Figure 18). 

 

 

Figure 18: Absorbance of all collected fractions (1-P) measured at 260nm via NanoDrop spectrophotometer. 
Pellets of forty 150 cm2 dishes of cells infected with Chlamydia were used and lysed at 4 m/s for 20 s once. The 
lysate was separated using a 10%-40% glycerol gradient before samples were taken. 

 

To improve the separation, the latest described conditions were repeated twice with similar 

results (Appendix figure 39 to Appendix figure 42). The absorption spectra indicated a similar 

distribution of the complexes in these gradients. 

For the last gradient performed with the FastPrep, the lysis time was decreased to 15 s at 

4 m/s. The decreased processing time resulted in a gradient, which was closest to the ideal 

separation as described in the original Grad-seq publication (Smirnov et al., 2016b) according 

to A260-values of the fractions after fractionation. There was a clear bulk peak in fraction 2, a 

peak representing the 30S subunit in the fractions 10 to 12, a 50S subunit peak from fraction 

14 to 17 and a major increase in absorption in the pellet (Figure 19). 
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Figure 19: Absorbance of all collected fractions (1-P) measured at 260nm via NanoDrop spectrophotometer. 
Pellets of forty 150 cm2 dishes of cells infected with Chlamydia were used and lysed with a fastprep at 4 m/s 
for 15 s once. The lysate was separated using a 10%-40% glycerol gradient before samples were taken. 

The colloidal Coomassie stained protein gel and the RNA gel reflected the results from the 

absorption measurement. The RNA gel showed the tRNAs in the light fraction, where the bulk 

peak resides and no big complexes are expected. The fractions of the RNA gel for 16S RNA and 

23S RNA coincide with the peaks from the absorption measurement (Figure 20B). Additionally, 

this gradient included a lysis control for the protein samples to estimate if enough protein was 

present for separation and to observe the general distribution of proteins after lysis. GroEL 

was distinctly observed at ~60 kDA from fraction 7 to fraction 12. The ribosomal subunit alpha 

was detected at ~42 kDa in the fractions 1 to 4. Ribosomal proteins were expected to be in 

the heavy fractions in the molecular light regions of the gel (Figure 20A). In addition to the 

previously used northern blot probes, which had shown a similar distribution across the 

gradient, we included two probes for the human host, since cultivation of Chlamydia was done 

in Hela229 cells. The previously used probes showed the same characteristics as in the last 

gradient. The human 5S RNA was concentrated in the heaviest fractions of the gradient and 

the 5.8S RNA shared this distribution. The chlamydial and the human 5S RNA shared both 

signals in the light fractions of the gradient (Figure 20C).  
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Figure 20: Chlamydial pellets from forty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed 
in a FastPrep at 4.0 m/s for 15 s once. The lysate was separated on a 10%-40% glycerol gradient before samples 
were taken. (A) Proteins were separated using a 12% SDS-PAGE and visualised via colloidal coomassie staining. 
The first lane shows the protein marker (M) followed by a lysis control and the samples from the different 
fractions of the gradient collected from top (1) to pellet (P). (B) RNAs were loaded onto 7M Urea 6% PAGE and 
visualized via ethidium bromide. The first lane shows RiboRuler Low range, followed by the lysis control and 
samples from the different fractions of the gradient collected from top (1) to pellet (P). (C) RNAs were again 
separated on a 7 M Urea 6% PAGE but then transferred to a nylon membrane before probing for the RNAs: 
ctrR0332 and IhtA, signal recognition particle (SRP), transfer-messenger RNA (tmRNA), chlamydial 5S RNA, 
human 5S RNA and human 5.8S RNA. The processed form of ctrR0332 was detected at ~80 bp (ctrR0332’). The 
order of the samples is as described in B, but without marker. 
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Instead of using the FastPrep for lysis preparation, in a next step, 0.1 mm silica beads were 

used. This procedure included 15 s of vortexing and 15 s of cooling for 5 times before loading 

the samples onto the glycerol gradient prepared with a gradient master station. This resulted 

in similar absorption spectra as the gradient performed at 4 m/s for 15 s with the FastPrep. 

The bulk peak was clearly identifiable at fraction 2 and 3, decreasing slowly to the lowest value 

at fraction 8. This was followed by the 30S RNA peak from the fractions 10 to 13, and the 

stronger 50S subunit peak from fraction 14 to 17. The gradient ended with high absorption in 

the pellet fraction (Figure 21). 

 
Figure 21: Absorbance of all collected fractions (1-P) measured at 260nm via NanoDrop spectrophotometer.  
Pellets of forty 150 cm2 dishes of cells infected with Chlamydia were lysed using 0.1 mm silica beads by 15 s of 
vortexing and 15 s of cooling on ice for 5 times. The lysate was separated using a 10%-40% glycerol gradient 
before samples were taken. 

 

The protein gel clearly showed a band representing GroEL at ~ 60 kDa in the middle of the 

gradient, where medium sized complexes are expected and a band representing RpoA at 

~40 kDa in the light fractions of the gradient where small complexes are expected. Ribosomal 

proteins are usually small but due to forming complexes they were observed in the heavy 

fraction (Figure 22A). The RNA gels showed the same results as the previously performed RNA 

gels of the other gradients (Figure 22B). In addition, the results of the northern blots were 

similar to the results of northern blots from the gradients as shown above. This indicates that 

the two used methods give the same results (Figure 22C). This method of lysis was replicated 

twice with identical results (Appendix figure 43 and Appendix figure 44). 

After incremental steps of fine tuning the lysis of chlamydial and adjustments of sample input, 

the last-mentioned conditions were identified as ideal for sample preparations for 

high-throughput methods (e.g. RNA-seq and MS of each fraction). 
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Figure 22: Chlamydial pellets from forty 150 cm2-dishes of infected Hela229 cells were lysed using 0.1 mm silica 
beads by 15 s of vortexing and 15 s cooling on ice for 5 times. The lysate was separated on a 10%-40% glycerol 
gradient before samples were taken. (A) Proteins were separated using a 12% SDS-PAGE and visualised via 
colloidal Coomassie staining. The first lane shows the protein marker (M) followed by a lysis control and the 
samples from the different fractions of the gradient collected from top (1) to pellet (P). (B) RNAs were loaded 
onto 7 M Urea 6% PAGE and visualized via ethidium bromide. The first lane shows Riboruler Low range, 
followed by the lysis control (L) and samples from the different fractions of the gradient collected from top (1) 
to pellet (P). (C) RNAs were again separated on a 7 M Urea 6% PAGE but then transferred to a nylon membrane 
before probing for the RNAs: ctrR0332 and IhtA, signal recognition particle (SRP), transfer-messenger RNA 
(tmRNA), chlamydial 5S RNA, human 5S RNA and human 5.8S RNA. The processed form of ctrR0332 was 
detected at ~80 bp (ctrR0332’). The order of the samples is as described in B, but without marker. 



Results  

68 

3.3. Analysis of Grad-seq 

In this study, high-throughput methods were used to globally screen for complexes formed in 

Chlamydia. The remaining samples of the gradient, with the lysis performed by vortexing 

instead of preparation with the FastPrep, were used as input. The RNA samples were 

supplemented with ERCC spike-ins before sequencing. The protein samples were 

supplemented with UPS2 proteomic standard before homogenises and MS (see Preparation 

of RNA and protein samples for high-throughput analysis, p. 40). 

The output per library was adjusted according to the RNA species that were expected and to 

the absorption spectrum (Figure 21), so that the rRNAs do not overshadow other RNA species. 

More reads than requested were obtained and FastQC revealed that most of the reads were 

of good quality. After trimming with cutadapt (Grad-seq trimming, p. 135) less than 1% of the 

reads were removed, confirming the high-quality output during sequencing (Table 21). 

 

Table 21: Distribution of reads per library before and after quality control (QC). 

Fraction requested in Millions reads pre-QC reads post-QC reads survived after QC (%) 

00L 20 28217560 28145158 99.74 

1 15 29129946 29063012 99.77 

2 10 14346244 14319563 99.81 

3 10 12443994 12421285 99.82 

4 7 9342322 9322315 99.79 

5 7 9474507 9461128 99.86 

6 7 8036626 8022406 99.82 

7 7 7767417 7747658 99.75 

8 7 7493274 7483196 99.87 

9 10 11243881 11224487 99.83 

10 25 26459531 26394149 99.75 

11 30 31384063 31310467 99.77 

12 25 25767821 25723322 99.83 

13 20 21466558 21426256 99.81 

14 35 37221256 37159546 99.83 

15 40 40080348 39964045 99.71 

16 35 37836544 37773935 99.83 

17 35 35951755 35886506 99.82 

18 25 27024276 26973934 99.81 

19 20 21302461 21264831 99.82 

20 20 21489660 21452942 99.83 

21P 15 17387381 17362497 99.86 
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The trimmed reads were then used in the READemption pipeline (Förstner et al., 2014) to 

perform mapping using the segemehl mapper (Hoffmann et al., 2009) and gene quantification 

with the build-in subcommand of the pipeline. On average, 92% of our input reads were 

mapped to the human reference genome (GRCh38.p10), the chlamydial reference genome 

(Genome: AM884176.1, Plasmid: AM886278.1) and the sequences of the ERCC spike-in. 

Towards the heavy fractions, the amount of uniquely aligned reads dropped significantly. As 

expected, these fractions are mainly composed of ribosomal transcripts, since ribosomal 

depletion was not performed. The light fractions proportionally showed more uniquely 

mapped reads indicating a wider variety of transcripts (Table 22).
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Table 22: Mapping statistics from the RNA-seq for the 22 libraries of the gradient. 
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00L 28145158 32317 28112841 26745853 1366988 4998595 91140095 95.03 95.14 18.69 

1 29063012 212419 28850593 25438651 3411942 21585449 36469854 87.53 88.17 84.85 

2 14319563 45695 14273868 13032048 1241820 7882594 22904884 91.01 91.3 60.49 

3 12421285 33636 12387649 11428036 959613 6204216 22112843 92 92.25 54.29 

4 9322315 36775 9285540 8553330 732210 4751587 17042703 91.75 92.11 55.55 

5 9461128 12474 9448654 8825265 623389 3815581 17947748 93.28 93.4 43.23 

6 8022406 16839 8005567 7549256 456311 3000866 15449222 94.1 94.3 39.75 

7 7747658 23312 7724346 7245327 479019 2790188 15017323 93.52 93.8 38.51 

8 7483196 13338 7469858 7091778 378080 2405586 15166607 94.77 94.94 33.92 

9 11224487 12041 11212446 10849876 362570 2766380 23212287 96.66 96.77 25.5 

10 26394149 15084 26379065 25656331 722734 3565543 54396975 97.2 97.26 13.9 

11 31310467 20656 31289811 30413978 875833 4504340 67496507 97.14 97.2 14.81 

12 25723322 10489 25712833 25106381 606452 4104953 60992228 97.6 97.64 16.35 

13 21426256 9599 21416657 20889682 526975 2193262 51880401 97.5 97.54 10.5 

14 37159546 14684 37144862 36280146 864716 2206424 85799420 97.63 97.67 6.08 

15 39964045 27430 39936615 38830433 1106182 1412293 98490436 97.16 97.23 3.64 

16 37773935 15133 37758802 36723880 1034922 1120301 112844813 97.22 97.26 3.05 

17 35886506 15697 35870809 34840597 1030212 1158632 116110278 97.09 97.13 3.33 

18 26973934 12730 26961204 25965899 995305 900526 96830119 96.26 96.31 3.47 

19 21264831 8453 21256378 20309655 946723 864770 102887320 95.51 95.55 4.26 

20 21452942 11028 21441914 20462498 979416 1113878 134115448 95.38 95.43 5.44 

21P 17362497 9375 17353122 16480878 872244 1534874 116699203 94.92 94.97 9.31 
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The distribution of the coverage across the genome for the single fractions showed that the 

lighter fractions and the lysis control had a higher percentage of regions covered in the 

genome with a sequencing depth up to 400. In contrast, heavier fractions from the bottom of 

the gradient tend to have percentwise only a few regions with a coverage up to 400 (Figure 

23). For these fractions few regions in the genome with a very high coverage were found. 

 

Figure 23: Coverages of the references per fraction. The read depth is plotted against the fraction of targeted 
bases (e.g. the genome references and the ERCC spike-in sequences). 

 

The gene quantification build-in from READemption was used to count the reads per 

annotation. Therefore, the reference annotation of the genomes and the annotation from the 

TagRNA-seq analysis were used. The number of quantified reads corresponded to the number 

of reads mapped in the libraries. The lysis control represents the distribution of RNA classes 

in Chlamydia, with rRNAs being the most abundant transcripts. In the gradient, the most 

abundant RNA class was rRNAs, except for the first fraction which was dominated by tRNAs. 
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The number of tRNA reads decreased with increasing fraction number, while the number of 

reads of rRNAs increased from fraction two on, dominating the other RNA species. The other 

RNA classes all slowly decreased with increasing fraction number. Human transcripts (hCDS) 

started to increase in the late fractions again. Chlamydial coding transcripts (CDS) peaked in 

fraction 11 (Figure 24). 

 

Figure 24: Number of reads per RNA class per sequencing library from the reference annotation with addition 
of the TagRNA-seq established new annotation. 

 

The different sequencing depths of the libraries were corrected with the statistics from the 

ERCC spike-ins as references. Quantified transcripts were then normalised to their maximum 

value and represented in heatmaps.  

In a global representation of the chlamydial RNAs and proteins, it was seen that based on the 

observed type of molecule different distributions were measured. RNAs tended to be more 

focused in the top half of the gradient while proteins were more spread throughout the 

gradient. The RNAs from Chlamydia were abundant in fractions 2 to 12, with numerous RNAs 

peaking in fraction 6 and 11. Furthermore, many RNAs were present in the pellet of the 

gradient (Figure 25A). On the other hand, proteins were distributed across the gradient with 

the fractions 17 to 20 only having a few quantified proteins (Figure 25B). Most of the proteins 

were present in the light fractions 1 to 4, as well as in the pellet fraction. In contrast, many 

RNAs also appeared in the middle fractions of the gradient.  
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Figure 25: Quantified RNAs/Proteins represented as heatmaps normalised to their maximum value. Red 
indicates high abundance with a value close to 1, while blue represents a value close to 0 indicating low 
abundance. (A) Representation of RNAs from the reference annotation and the annotation from TagRNA-seq 
analysis. (B) Proteins from mass spectrometry analysis for all detectable chlamydial proteins. 

 

Using a principle component analysis (PCA), a clear separation between chlamydial proteins 

(green in Figure 26A) and the coding RNAs (red in Figure 26A) was seen. The proteins were 

themselves split into two clusters. This separation was not dependent on protein function or 

structure. While tRNAs were exclusively present in one of the protein’s clusters, rRNAs were 

present in both protein clusters. sRNAs were present in the clusters formed by coding RNAs 
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and proteins, with the most of them being present in the border area between these two 

clusters (Figure 26A). 

Using only the RNAs from the reference annotation and the generated TagRNA-seq 

annotation, most of the quantified RNAs were seen in one cluster, while the tRNAs formed 

their own cluster. The known sRNAs were present in the fringes of the cluster that was formed 

by the majority of the RNAs. 
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Figure 26: Principle component analysis (PCA) of the first two principle components of the quantified and 
normalized molecules from the Grad-seq approach. (A) PCA of the reference annotation of the RNAs and the 
proteins. (B) PCA of reference RNAs and the RNA annotation from the TagRNA-seq analysis. 

 

Heatmaps were used to visualize the presence of different rRNAs (Figure 27A) in the different 

fractions. A similar distribution of rRNAs as in the northern blots and RNA gel analyses was 

observed (Figure 22B and C). In the reference annotation, each RNA was doubly present in the 

genome. The quantification between the two rRNA copies showed no difference. tRNAs were 
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mostly present in the light fractions of the gradient, which was also confirmed by the RNA gel 

of the gradient (Figure 22B). Although tRNAs have multiple copies the copies themselves have 

different characteristics. Most of the tRNAs were highly abundant in the second fraction and 

many of them also had a second peak in fraction 4. Furthermore, a few tRNAs were seen in 

fraction 6. Neither rRNAs nor the tRNAs were present in the pellet (Figure 27). 

 

Figure 27: Quantified RNAs from the reference annotation represented as heatmaps normalised to their 
maximum value. Red indicates high abundance with a value close to 1, while blue represents a value close to 
0 indication low abundance. (A) Quantification of ribosomale RNAs. (B) Quanification of tRNAs. 

 

Heat map analysis of the intergenic annotation from TagRNA-seq revealed that these regions 

were also quantifiable and that the majority of the RNAs had highest values in fraction 6 

(Figure 28). The intergenic transcripts had peaks in the fractions 2 and 6 (Figure 28A and C) 

while the UTR were highly abundant in fractions 6 and 11 (Figure 28B and C). 
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Figure 28: Quantified intergenic annotations from the TagRNA-seq analysis represented as heatmaps 
normalized to their maximum value. Red indicates high abundance with a value close to 1, while blue 
represents a value close to 0 indication low abundance. (A) Quanitfication of the unknown intergenic 
transcriptional start sites. (B) Heatmap of the the quanified 5’-untranslated regions of RNAs. (C) Quanitfication 
of the unknown intergenic processing sites. (D) Heatmap of the the quanified 5’-untranslated regions of RNAs 
orginating from processing events. 

 

Analysis of rRNAs encoding ribosomal proteins as well as quantification of the ribosomal 

proteins themselves showed a vastly different picture. The rRNAs were abundant in the first 

half of the gradient with high values in fraction 6 and 11 (Figure 29A). In contrast, ribosomal 

proteins were exclusively present in the fractions with rRNAs indicating that the ribosomal 

complexes are intact (Figure 29B,Figure 27A). Four proteins which associate with the ribosome 

were only present in the very light fractions of the gradient. These are: 50S ribosomal protein 

L7/L12 (rplL), Ribosome-binding factor A (rbfA), Ribosome-binding ATPase (ychF) and 

Elongation factor G (fusA). 
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Figure 29: Quantifiction of the RNAs encoding ribosomal proteins from (A) the RNA-seq of the Grad-seq 
approach and (B) quanification of the ribosomal proteins by mass spectrometry represented as heat maps 
normalized to their maximum value. Red indicates high abundance with a value close to 1, while blue 
represents a value close to 0 indication low abundance.  

 

The RNAs encoding σ-factors and the RNAP subunits were abundant in fraction 6 (Figure 30A), 

while the associated proteins show a different fractional distribution (Figure 30B). The 

σ-factors are present in the first two fractions, while the RNAP subunits are mostly in fraction 

6 and the pellet. The alpha subunit is spread across several fraction (2-8) (Figure 30).  

 

Figure 30: Quantifiction of the RNAs encoding σ-factors and RNA polymerase from (A) the RNA-seq of the Grad-
seq approach and (B) quanification of the proteins encoded by the RNAs by mass spectrometry represented 
as heat maps and normalized to their maximum value. Red indicates high abundance with a value close to 1, 
while blue represents a value close to 0 indication low abundance. 

 

Analysis of ncRNAs revealed that these RNAs had their highest values in the same fractions as 

previously observed for other RNAs (2, 4 and 6). The sRNA IhtA acts by direct base pairing and 

is believed to not require a chaperon. IhtA was only present in the fractions 2 to 4. The sRNA 

identified by Albrecht and colleagues, ctrR0332 (Albrecht et al., 2011, Albrecht et al., 2010), 

was highly present in fractions 2 to 12. This RNA has a processing site generating a ~80 bp 
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(ctrR0032f) and a ~160 bp (ctrR0032b) transcript. Overall, ctrR0032b was not as abundant as 

ctrR0032f being present also in the fractions 8 to 11 (Figure 31A). In the pellet fraction, only 

the sRNA ctrR8 was detected. tmRNA and SRP appeared in the same fraction as in the northern 

blots. The protein of Ctl0077 peaked in fraction 4 with the respective RNA peaking in fraction 

6. These are the same fractions in which ctrR0332 shows its maximum abundance. The RNA of 

ctl0077 and sRNA ctrR0332 have a similar slope in the gradient, while the proteins decrease 

very rapidly and are almost undetectable in fraction 12 (Figure 31B).  

 

 

Figure 31: (A) Quantification of known noncoding RNAs from Grad-seq represented as heat map. Red indicates 
high abundance with a value close to 1, while blue represents a value close to 0 indication low abundance. (B) 
Vizualization of the possible complex of the small RNA ctrR0332 and the protein and RNA of ctl0077. 

 

3.4. Validation of complexes by In vitro oligo aptamer pull-down 

The oligo aptamer pull-down was performed to validate the results of the sRNA ctrR0332 – 

ctl0077 interaction, which was detected via gradient profiling. Furthermore, the analysis was 

done to identify a possible interaction between IhtA and proteins. Grieshaber and co-workers 

postulated in 2006 that IhtA may be a trans-encoded antisense sRNA, having no Sm-like 

protein as Hfq to mediate its RNA-RNA interaction (Grieshaber et al., 2006a).  
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The initial pull-down was performed with pellets obtained from 120 petri dishes (150 cm2) of 

Hela229 cells infected with Chlamydia (20 dishes/RNA bait). The pull-down was performed as 

described above (Protein capture via oligo aptamer RNAs, p. 42). After lysis, an input control 

was taken. In addition to the RNAs of interest, the reverse complement of the adapter bound 

to the beads was used as a negative control. Positive controls were RNAseP, tmRNA and 

5S RNA from C. trachomatis. IhtA and CtrR0332 were the RNAs of interest. To test whether 

proteins were successfully captured via the RNA baits, the samples were loaded onto to a 

12%-SDS PAGE gel and visualized via silver staining (Figure 32). Compared to the rest of the 

samples, only a few faint bands were observed for the negative control. In all other samples 

clearly distinguishable bands were detected. RNAseP had the largest protein band at 

~130 kDa. For IhtA, a strong band at 25 kDA was detected and not present in the other 

samples. In the lane of ctrR0332, a protein band at 130 kDA was observed. The tmRNA had a 

similar band pattern as the negative control, but with higher signal intensity. IhtA and 

ctrR0332 lacked the band at ~20 kDa, which was present in the lanes for RNAseP, tmRNA and 

5S RNA control. 

 

Figure 32: Silver stained 12 % SDS-PAGE-Gel with samples of the oligo aptamer pull-down. Loaded from left to 
right with one empty lane between each sample: marker, input after lysis, negative control bait, RNAseP bait, 
tmRNA bait, 5S RNA bait, IhtA bait and ctrR0332 bait. Per bait, twenty 150 cm2 dishes of Hela229 cells infected 
with C. trachomatis L2/434/bu were used. 

 

A second pull-down was performed from thirty 150cm2 petri dishes of Chlamydia infected cells 

per RNA bait. This second time, only the negative control, 5S RNA, IhtA and ctrR0332 baits 

were used. To further increase the material concentration, no gel was made, and the samples 

were directly prepared for MS. RNaseP and tmRNA were excluded because the baits did not 
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capture their specific interaction partners. The MS results from both capture assays were 

statistically analysed. All samples captured pnp (Polyribonucleotide nucleotidyltransferase) 

and UvrD, a helicase with DNA-dependent ATPase activity. The 5S RNA captured significantly 

more ribosomal proteins compared to the negative control (Figure 33).  

 

Figure 33: Results of the oligonucleotide pull-down with 5S RNA compared to the results from the negative 
control. The Y-axis indicates the intensity of the signal and the X-axis shows the ratio between 5S RNA and the 
negative control. The further right a signal is the more it is enriched compared to the negative control. The size 
of the signals indicates how many unique razor entries were found. The colour indicates the significance of the 
signal. 

 

The pull-down with IhtA had no significantly enriched proteins besides pnp and UvrD (Figure 

34), indicating that no unique interaction partner were present. In addition to the chlamydial 

proteins, host proteins were present in the samples. These were ignored, because the RNA 

baits should not be in contact with the host under natural circumstances. Therefore, these 

interactions were categorized as unspecific.  
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Figure 34: Results of the oligonucleotide pull-down with IhtA compared to the results from the negative 
control. The Y-axis indicates the intensity of the signal and the X-axis shows the ratio between IhtA and the 
negative control. The further right a signal is the more it is enriched compared to the negative control. The size 
of the signals indicates how many razor unique entries were found. The colour indicates the significance of the 
signal. 

 

Figure 35: Results of the oligonucleotide pull-down with ctrR0332 compared to the results from the negative 
control. The Y-axis indicates the intensity of the signal and the X-axis shows the ratio between ctrR0332 and 
the negative control. The further right a signal is the more it is enriched compared to the negative control. The 
size of the signals indicates how many razor unique entries were found. The colour indicates the significance 
of the signal. 
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The RNA capture pull-down of ctrR0332 showed an interaction with several non-ribosomal 

proteins including the previously identified protein ctl0077 (Figure 35).  

Ctl0077 is a highly specific chlamydial protein. Blast results show that it is highly conserved 

across Chlamydia but cannot be found in other organisms of the RefSeq Database. The protein 

contains three defined domains: the SWIM domain, a helicase ATP-binding domain and a 

helicase C-terminal domain. The SWIM domain is a zinc finger-like domain and is predicted to 

promote DNA binding and protein-protein interactions (Makarova et al., 2002). The protein 

belongs to the superfamily 1 and 2 helicases and is proposed to be a DEAD/DEAH box protein. 

Besides Ctl0077, Ctl0766 was detected using the pull-down. Ctl0766 is annotated as a 

hypothetical protein. Bao and colleagues showed that ctl0766 interacts with a non-conserved 

region of σ66 and plays a central role in transcription activation. Accordingly, it was renamed 

as grgA (general regulator of genes A) (Bao et al., 2012). 

Additionally, a part of the RNAP β’-subunit was found to interact with ctrR0332 and with the 

transcriptional elongation factor GreA, which interacts with RNAP. Toulmé and colleagues 

described that GreA restarts the RNAP when it’s stalled during ATC/TAG repetitive sequences 

(Toulmé et al., 2000). Since RNA was used as a bait in this work instead of DNA, it can be 

assumed that the discovered interactions are truly RNA-based and represent a novel mode of 

action. 
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4. Discussion 

4.1. Analysis of TagRNA-seq 

Previous studies on C. trachomatis and Chlamydia pneumoniae utilized 5’P-dependent 

terminator exonuclease to degrade 5’ RNAs, enriching the sample for primary transcripts 

(Albrecht et al., 2011, Albrecht et al., 2010). This method was first applied in 

Helicobacter pylori (Sharma et al., 2010). In a study by Albrecht and colleagues, 565 TSSs were 

mapped for C. pneumoniae and 363 TSS for C. trachomatis (Albrecht et al., 2011, Albrecht et 

al., 2010). In addition, the authors semi-quantified the transcripts of EB and RB and thus 

identified ctrR0332 as a highly abundant and differently expressed RNA (20% in RBs and 78% 

in EBs of all RNAs in C. trachomatis) (Albrecht et al., 2010). This work was based on the 

454-sequencing technology and only had a low read yield in contrast to the possibilities of the 

current generation of next-generation sequencers. 

In the present work, differential labelling of chlamydial 5’ RNA ends was used to differentiate 

between primary and processed 5’ RNA ends. The same method was previously used by 

Innocenti et al. to analyse the transcriptional organizations in Enterococcus faecalis. The 

authors successfully detected 559 TSSs and 352 PSSs (Innocenti et al., 2015). Although 

Chlamydia has a small genome (~1 Mb) it has several intergenic regions creating space for 

previously undetected transcripts as well as for UTRs which were previously not annotated in 

the chlamydial genome. In total, 679 TSSs (excluding TSSs that share an identical start with 

genes from the reference annotation) were detect in this work of which 235 were within 

genes. In addition, 290 5’ UTRs and 154 possible new transcripts in the non-coding regions 

between genes or on the anti-sense strand of genes were identified. Two of these possible 

new transcripts were larger versions of the two previously annotated loci infA2 (interferon 

alpha-2) and tRNA leucin.  

Furthermore, it was shown that the well-established RNA IhtA utilizes its own TSS. The 

transcription from clt0043 upstream of IhtA flows into the sRNA and is possibly further 

processed, either by eliminating the 3’UTR region or by further increasing the transcriptional 

levels of IhtA (Figure 6). 

The received data for the locus previously annotated as the hypothetical protein CTL0337 and 

later reannotated by Albrecht and co-workers as ctrR0332 confirm the presence of a shorter 

transcript (Albrecht et al., 2011, Albrecht et al., 2010). Adding the reads of the PSS, reveals 

where the processed transcripts give rise to the two shorter forms of the full-length transcript 
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(Figure 7). Until recently, it was unknown whether this RNA is encoded as a part of the 3’ UTR 

of late transcription unit B ltuB or if it has its own transcriptional start site. The TagRNA-seq of 

the present work shows that this RNA is highly processed. A specific signal for the longer 

transcript was not detected in northern blots and in the RNA gel. It is conceivable that the long 

transcript is highly unstable or that it is directly processed, which would make it difficult to 

detect with the applied methods. The locus of ctrR0332 also has a significant number of 

primary transcripts although the read number is lower than the number of reads from the PSS 

library. This would imply the potential presence of a trans-acting sRNA. As already mentioned 

above, reads covering this locus are highly abundant. Further up- and downstream of the 

ctrR0332 region, reads in all three libraries were diminished, which further indicates that this 

RNA is an individual transcript, but highly processed. Another possibility is that this RNA is a 

3’ UTR-derived sRNA from ltuB, which is highly stabilised and a highly abundant transcript. 

The motif analyses of the 40 bp upstream sequences of the newly annotated intergenic 

regions revealed several motifs. The most abundant sequence motif, which was found in 81 

sequences upstream of the intergenic annotations, shares similarities to the σ66 factor that 

was also observed by Albrecht and colleagues in their dRNA-seq study (Albrecht et al., 2011, 

Albrecht et al., 2010). This σ-factor shares high similarities to the σ70 factor of E. coli. The 

analysis with tomtom from the MEME toolset searched against known prokaryotic motifs and 

revealed an association with σ70 (rpoD). This motif has the TATAAT -10 box and an A/T rich 

stretch between the -10 and the -35 box. A high adenine concentration in the -35 box was 

observed in the sequences used for this analysis. Tan et al. postulated that this A/T rich region 

in the promotor could be used as a non-standard confirmation of the DNA strands and might 

be recognised by Chlamydia RNAP or by another factor or it may play a role in melting of these 

DNA regions (Tan et al., 1998). The Tomtom analysis further revealed associations with several 

other motifs of other regulatory functions. Due to the low conservation of chlamydial 

sequences outside the species, these motifs are probably false positives. Interestingly, the 

second most abundant motif found in the upstream sequences of newly annotated regions 

had a high similarity with the mogR (motility gene repressor) binding motif of Listeria 

monocytogenes. In a study by Gründling and co-workers, it was shown that MogR regulates 

flagellar motility gene expression in a temperature-dependent manner (Grundling et al., 

2004). Although Chlamydia is generally considered to be non-motile and does not possess 

flagella, a motility apparatus in marine Chlamydia has recently been identified (Collingro et 
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al., 2017). Chlamydia shows restricted export of inclusion membrane protein IncA at 32 °C 

(Fields et al., 2002) and has a temperature activated HtrA protease which acts both as a 

chaperone and a protease at 37 °C (Huston et al., 2007). Thus, the newly identified motif in 

the present work could be either a temperature-dependent promotor sequence or the 

remainder of the flagella regulon described by Collingro and group (Collingro et al., 2017).  

The present results show that a large part of the transcriptome remained uncharacterised in 

earlier studies. Due to advancements in high-throughput sequencing technology, new 

regulatory sequences and new previously un-annotated transcripts as well as potentially 

marginally abundant long ncRNA were identified. In addition, this work provides new 

knowledge about the organisation of the highly processed transcriptome of C. trachomatis. 
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4.2. Establishment and analysis of the Gradient  

In addition to transcriptome profiling, in this study the gradient profile of C. trachomatis lysate 

coupled to high-throughput methods was established and analysed. This procedure coined 

Grad-seq and was first successfully applied in Salmonella by the group around Smirnov. The 

authors were able to characterize ProQ as a major new sRNA-binding protein in a global 

approach (Smirnov et al., 2016b). In Grad-seq, a glycerol gradient is used to separate 

complexes by shape and size (Erickson, 2009, Rederstorff et al., 2010). ProQ or its homolog 

FinO are known RNA chaperones in E. coli (Arthur et al., 2011) and Legionella pneumophila 

(Faucher and Shuman, 2011). Interestingly, the obligate intracellular pathogen C. trachomatis 

does not have any protein homolog to this new RNA chaperon and the previously well 

characterized RNA chaperons Hfq or CsrA.  

To establish Grad-seq for Chlamydia, first, conventional gel electrophoresis-based methods 

were used to find the optimal conditions for this approach. Therefore, several factors had to 

be adjusted: (a) the input amount of Chlamydia, (b) lysis methods the chlamydial pellets were 

treated with, (c) the conditions for a good reproducibility of the glycerol gradient and (d) finally 

how to assess the resulting gradients. After switching from a gradient maker device to the 

gradient master station and increasing the input amount of Chlamydia to forty 150 cm2 cell 

culture dishes, a reproducible gradient was established that provided enough material to 

perform the analysis. These two changes and decreasing the lysis time collectively provide 

optimal conditions to obtain gradients with great reproducibility. These also showed the 

expected characteristics of ribosomal complexes and sRNAs. Another important step was to 

move away from protein-based methods, which were characterised by low reproducibility 

even after keeping conditions stable. The alternative RNA-based approaches were northern 

blots for identification of specific RNAs and RNA gels to observe the major RNA species in 

Chlamydia.  

The optimization of gradient conditions allowed a reliable sample preparation for 

high-throughput sequencing and MS. The final gradient in this work provided similar results 

to those obtained by Smirnov and colleagues generated with a Grad-seq study in Salmonella 

(Smirnov et al., 2016b). The references used in the present work behaved similarly as in the 

study of Smirnov showing peaks for the 30S and 50S subunit and a similar distribution of 

proteins and RNAs in the RNA-gel (Smirnov et al., 2016b). 
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In one of the non-ideal gradients, where the lysis was not optimised, the RNAP ββ’-subunit 

was detected in the same fractions as the sRNA ctrR0332. Albrecht and co-authors 

hypothesized that ltuB and the sRNA are regulated by σ28. A putative promotor for σ28 was 

identified upstream of ltuB (Albrecht, 2011, Miura et al., 2008). In the work by Albrecht it was 

observed that the analogue of the C. pneumoniae ctrR0332, CPn332, does not co-sediment in 

the same fractions as this σ-factor σ28 (Albrecht, 2011).  

Due to the isolation procedure a lot of host contaminants remained in the gradients, which 

were observed in northern blots with probes specifically designed for the human ribosome. 

The human material was mostly concentrated in the heavy fractions of the gradient. The 

chlamydial rRNA was present in the fractions above the human rRNAs, indicating that the used 

technique not only separates intact chlamydial complexes, but also separated the residual 

human complexes originating from the host cells. 

For the gradient profiling with high-throughput methods, the obtained reads had to be 

adjusted according to the RNA species in the fractions. Since rRNAs were necessary for 

quantification and as a reference, the reads for the libraries with predicted high concentration 

of rRNAs were increased. This effort allowed the generation of enough reads to quantify other 

RNA species. To counteract the different sequencing depths, an RNA standard was used to 

calculate the size factors in post-analysis and to adjust the results from the gene 

quantification. 

The RNA sequencing results confirmed the increase of human transcripts in the high glycerol 

composed fractions. Coverage analysis for each sequencing library revealed that the reads in 

the light fractions were more homogenous distributed. The higher the glycerol content in the 

gradient was, the bigger was the size of the complexes. Furthermore, reads were found to 

accumulate in small regions of the genome, while the rest of the genome had a small coverage. 

Gene quantification revealed that the highly covered regions were the expected chlamydial 

rRNAs. The composition of the pellet further supported this fact, since the main RNA species 

originate from rRNAs and human transcripts were observed. A similar distribution of tRNA and 

rRNA in a 10 % - 30 % glycerol gradient of human and mouse brain cells was described by the 

group around Rederstorff (Rederstorff et al., 2010). The authors managed to identify the 

function of small ncRNAs involved in the ribonucleo-protein particle formation (Rederstorff et 

al., 2010). 
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Altogether, the RNAs accumulated in the upper half of the gradient, while proteins were more 

spread across the gradient, with the majority of the proteins rather accumulating in the upper 

half of the gradient. An explanation for this observation might be the RNA interactions within 

Chlamydia. It appears that most of chlamydial RNA complexes are rather light compared to 

protein complexes consisting of several subunits. The exceptions are rRNAs in ribosomal 

complexes. It has been observed that rRNAs and the respective ribosomal proteins from one 

ribosomal subunit accumulate in the same gradient fraction confirming that the ribosomal 

subunit is intact. The sRNA IhtA and the 5S RNA had a similar length but IhtA accumulated in 

the light/upper fractions of the gradient, indicating no complex formation, while the 5S RNA 

accumulated in fraction 15, as it is part of large ribosomal complexes. Some of the ribosomal 

proteins were in the pellet of the gradient indicating the complete 70S ribosome.  

The RNAP proteins were also highly abundant in the pellet and peaked within the gradient 

fractions 5 and 6, while the σ-subunits were present in the very light fractions. The gradient 

clearly showed that the RNAP holoenzyme is intact and the primary σ-factor σ66 is in a complex 

with the holoenzyme. In contrast, σ28 and the anti-σ-factors were not in a complex. It was 

previously assumed that σ-factors have to dissociate upon transcription elongation (Hsu, 

2002). Kapanidis and colleagues showed that σ70 can remain in a complex throughout 

elongation (Kapanidis et al., 2005). The σ66-factor of C. trachomatis is related closer to the 

σ70-factor of E. coli than to the chlamydial σ28-factor. The observed complex formation of 

RNAP with σ66 can be explained either by the latter being the major σ-factor (Hua et al., 2009, 

Douglas and Hatch, 1995, Koehler et al., 1990, Mathews and Stephens, 1999, Nicholson et al., 

2003) or σ66 is, as described for the σ70, part of the mature RNAP. The lysate did not contain a 

high percentage of Chlamydia differentiating from RB into EB, which could explain why the σ28 

is not bound to the RNAP, since this differentiation is regulated by the σ28-factor (Brickman et 

al., 1993, Shen et al., 2004, Yu and Tan, 2003). Furthermore, there was no stress induction 

during infection, which would be a second circumstance requiring the presence of σ28 (Shen 

et al., 2004, Yu et al., 2006). Although the RsbW of C. trachomatis could function as a potential 

anti-σ28-factor (Hua et al., 2009), no direct inhibitory effect was observed (Hua et al., 2006, 

Karlinsey and Hughes, 2006). The results show that σ28 and the RsbW did not form complexes 

which further indicates that RsbW is not inhibiting σ28. Additionally, the elusive σ54 was 

detectable in our gradient. This σ-factor is only predicted in chlamydia. 
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PCA revealed that RNA and proteins were clearly separated due to their above discussed 

different distribution in the gradient, except for the tRNAs. The C. trachomatis bulk of mRNA 

accumulated in one cluster with the sRNAs being in the fringes of this cluster but spread across 

a large region. This indicates that there are different kinds of separation characteristics, which 

in return suggests that the RNA is part of different types of complexes. On the other hand, 

proteins were separated from the RNAs und were subdivided into two clusters. In one of those 

clusters the tRNAs were detected whereas the other cluster contained some rRNAs. This 

pattern can be explained by the separation in the gradient. Ribosomal proteins were observed 

in the cluster with the rRNAs, revealing these as the only functional complexes visible. The 

separation in the second principle component reflects the separation of the complexes in the 

gradient according to their density, explaining the gap between the two protein classes. 

PCA of the RNA species including the newly annotated transcripts, showed that the gap 

between the tRNA cluster and the RNA bulk cluster is filled with several new transcripts. 

The newly annotated transcripts from TagRNA-seq were distributed like the known 

transcripts, which implies that several of them are not in a complex. However, most of them 

are in a complex suggested by their enrichment in the fractions 6 and 11. In fraction 6 the 

RNAP was also present, indicating that these RNAs are transcripts. Furthermore, parts of the 

ribosome were detected in fraction 11 which in return suggests that these RNAs are 

translated. Taken together, these observations indicate that specific character and function of 

several transcripts in C. trachomatis remain unresolved and further research is required.  

The analyses used in this study also confirmed the previous findings by Grieshaber and 

Tattersall who showed that the sRNA IhtA functions by direct base pairing (Tattersall et al., 

2012). The authors postulated that no RNA chaperon is used for the interaction with the RNA 

of the histone like protein HctB (Tattersall et al., 2012). Ihta is accumulating with the other 

unbound RNAs in the bulk peak in fraction 2. In this fraction, the RNA of HctB is highly 

enriched. HctB reaches its highest abundance in fraction 6. The transcript of HctA on the other 

hand is not accumulating in fraction 2 and, in addition to the peak in fraction 6 with HctB, it is 

highly enriched in fraction 11. These findings are in line with previous studies showing that 

IhtA and RNA of HctB are specific binding partners and that RNA of HctA is not a target of sRNA 

IhtA. This is reflected by the enrichment of IhtA and HctB transcripts in fraction 2, potentially 

showing RNA-RNA direct base pairing and a decrease of HctB compared to HctA in fraction 11, 
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where actively translated RNAs were expected (Grieshaber et al., 2006a, Grieshaber et al., 

2006b, Grieshaber et al., 2015, Tattersall et al., 2012) (Figure 36).  

 

 

Figure 36: Vizualization of the normalized transcripts across the gradient of the small RNA and the transcripts 
of hctA and hctB (hct2).  

 

Another transcript that was analysed in-depth is the sRNA ctrR0332, which was observed in 

the same fraction in which the protein CTL0077 peaked while its transcript was accumulating 

in the first peak of ctrR0332 (Figure 31B). With the oligo aptamer RNA pull-down, RNA-specific 

proteins were isolated, and it was validated that the sRNA ctrR0332 is in complex with the 

protein CTL0077. While it was discovered that IhtA does not have an interaction partner 

except for its target and the 5S RNA interacted with other rRNAs. For all the other RNA baits 

the pnp and the UvrD were observed. Both can be part of the degradosome, stress response 

or repair response (Epshtein et al., 2014, Rosenzweig and Chopra, 2013) and are non-specific 

binding partners in the pull-down. In addition, the RNAP ββ’ and the GreA elongation factor 

were also pulled down when ctrR0332 was used as a probe for the pull-down. This reflects 

similar observations which were made for the ncRNA CsrB in E. coli. Windbichler and 

colleagues showed in their studies that several sRNAs are bound by the RNAP β-subunit, while 

CsrB binds the β’- and α-subunit as well (Windbichler et al., 2008). The protein CTL0077 is 

highly conserved across Chlamydia. It possesses a conserved C-terminal SNF2 region and a 

N-terminal zinc-finger. In E. coli it was previously shown that HepA, a SNF2 protein, associates 

with the RNAP. In addition, it binds to the RNAP competing over the binding site against the 

σ70 factor (Muzzin et al., 1998). The CTL0077 protein in Chlamydia could be part of the 

regulatory network of the EB to RB transition and vice versa, providing a protein-RNA-

chaperon or a protein for the sRNA ctrR0332. 
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In this study it was shown that Grad-seq can be utilized for intracellular organisms as 

C. trachomatis. Not only previously known complexes were validated, but also a new potential 

RBP was identified. Taken together, utilizing modern technologies, like TagRNA-seq and 

Grad-seq in the present study, revealed that the chlamydial transcriptome is even more 

complex than previous studies suggested. 
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5. Outlook 

In this work it was shown how current technologies and methods can be used to identify new 

transcripts and to obtain a global interactome of proteins and RNAs. Although a global 

interactome was characterized, specific RNA-Protein interactions must be individually 

confirmed. The interactome data presented here give a reference map of potential interaction 

patterns. One crucial and restricting factor when working with Chlamydia is that human or 

host contaminations cannot be eliminated by the current methods to purify Chlamydia in large 

amounts. To overcome this limitation due to the nature of the pathogen’s lifecycle, first steps 

were made by developing a cell-free (axenic) culture system for Chlamydia. By using this, EBs 

as well as RBs are viable, but they will not replicate nor differentiate (Omsland et al., 2012). 

Another disadvantage is that common genetic tools used to analyse sRNAs and RBPs are still 

difficult to implement although most recently, it was shown that the CRISPRi system is feasible 

in Chlamydia (Ouellette, 2018). 

Obtaining an antibody for CTL0077, the binding protein of the sRNA ctrR0332, would offer the 

possibly to perform RIP-seq. Here, target transcripts of the protein are co-immunoprecipitated 

under native conditions and then sequenced. This results in a library of RNAs bound to the 

protein of interest (RIP-seq) (Zhao et al., 2010). Other similar methods utilize the 

T4 RNA ligase, encoded on a plasmid, to link the RNA of interest to the targets within the 

organism (Gril-seq) (Han et al., 2016). CLIP-seq identifies the targets of the RNA via UV 

crosslinking of the RNA complexes, trimming RNA regions outside the complex and then 

proceeding with the extraction of the RBP and the sequencing of the RNAs (Stork and Zheng, 

2016). After RNA trimming RNA fragments within the complex could be ligated and extracted 

as described for CLASH or RIL-seq (Melamed et al., 2016, Helwak and Tollervey, 2016). This 

procedure additionally shows which RNA is ligated to the target RNA, which is important if the 

RNP binds multiple sRNAs.  

To exceed information about the previously unknown PSS and TSSs obtained in this study, 

data on termination sites within the organism could provide details of the riboswitches in 

C. trachomatis (Term-seq) (Dar et al., 2016). With the use of third-generation sequencers and 

unfragmented single-molecule primary transcripts direct profiling of the transcriptome would 

be possible (Yan et al., 2018). By combining these methods, a complete transcriptome for 

C. trachomatis could be obtained.  
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Using expansion microscopy, it would be possible to identify the location of proteins and of 

the sRNAs within Chlamydia in order to uncover their mode of operation (Asano et al., 2018). 

Altogether, newly developed methods for transcriptome analyses, the third-generation 

sequencers, microscopy and the generation of CRISPRi Chlamydia will contribute to major 

advances in the years to come and thus will help to complete our understanding of the 

complex organism C. trachomatis.  
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7. Appendix 

7.1. Abbreviations 

 % percent 

 °C celsius 

 µ micro 

 α alpha 

 β beta 

 σ sigma 

 5'P 5' monophosphate 

 5'PPP 5' monophosphate 

A A adenine (nucleobase) 

 AB aberrant body 

 AgNO3  Silver nitrate 

 APS Ammonium persulfate  

 ATP Adenosine triphosphate 

B B. subtilis Bacillus subtilis  

 bp base pair 

 BSA Bovine serum albumin  

C C cytosine (nucleobase) 

 C. difficile Clostridioides difficile 

 C. muridarium  Chlamydia muridarium 

 C. pneumoniae  Chlamydia pneumoniae  

 C. psittaci Chlamydia psittaci  

 C. trachomatis Chlamydia trachomatis  

 
CaCl2 Calcium chloride 

 cDNA complementary DNA 

 CDS Chlamydial coding transcripts  

 cm2 square centimetre 

 
CO2 Carbon dioxide 

 ctr Chlamydia trachomatis  

 Cys Cysteine  

D DEPC diethylpyrocarbonate 

 
dH2O Distilled water  

 DMSO Dimethyl sulfoxide  

 DNA Deoxyribonucleic acid  

 dRNA-Seq Differential RNA-sequencing 

 DTT Dithiothreito 

E E. coli Escherichia coli  

 e.g. latin exempli gratia 

 EB Elementary body  

 ECL Enhanced chemiluminescence  

 EDTA ethylene-diamine-tetraacetic acid 

 et al. latin et alia 

 EtBr Ethidium bromide 

 EtOH Ethanol 
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F FCS Fetal calf serum  

G G guanine (nucleobase) 

 g gram 

 Gln Glutamine 

H hCDS Human transcripts  

 HCl Hydrogen chloride 

 hpi hours post infection 

 hr hour 

I IFU inclusion forming unit  

 IS insertion 

K kb kilo base pairs 

 KCl Potassium chloride 

 kDA Kilo Dalton  

 KH2PO4 Monopotassium phosphate 

L l liter 

 LB lysogeny broth 

 LGV lympho granuloma venerum  

 log Logarithm 

M M  molar  

 m/s meter per second 

 mA/cm2 milliampere per square centimetre 

 Max maximum 

 Mb  mega base pairs 

 Met Methionine 

 
MgCl2 Magnesium chloride 

 MgSO4 Magnesium sulfate 

 min minute (s) 

 min minimum 

 ml millilitre 

 mm millimeter 

 MOI multiplicity of infection  

 mRNA messenger RNA 

 MS Mass spectrometry 

N Na2CO3 Sodium carbonate 

 Na2HPO4 Disodium phosphate 

 Na2S2O3 Sodium thiosulfate 

 NaCl Sodium chloride 

 NaOAc Sodium acetate 

 ncRNA non-coding RNA 

 ng nanogram 

 nm nanometer 

 No. number 

 nt  nucleotide 

O OD600 Optical density measured at a wavelength of 600 nm  

P P/C/I  phenol/chloroform/isoamyl alcohol 

 PAGE polyacrylamide gel electrophoresis 
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 PBS phosphate buffered saline 

 PCA principle component analysis  

 PCR Polymerase chain reaction  

 pH lat. potentia hydrogeneii 

 PMSF Phenylmethylsulfonylfluorid  

 PSS processing site 

 PVDF  Polyvinylidene difluoride 

R RB reticular bodies 

 RBP RNA binding protein 

 RNA ribonucleic acid 

 RNAP RNA polymerase 

 rpm revolutions per minute 

 rRNA ribosomal RNA 

S s second (s) 

 SDS sodium dodecyl sulfate  

 SOC Super optimal broth with catabolite repression  

 SPG sucrose-phosphate-glutamate buffer 

 sRNA small RNA 

 SRP signal recognition particle 

T T Thymine (nucleobase) 

 TBS Tris buffered saline  

 TBS-T Tris buffered saline with Tween-20 

 TEMED Tetramethylethylenediamine  

 tmRNA transfer messenger RNA 

 tRNA transfer RNA 

 TSS transcriptional start sites  

U U Uracil (nucleobase) 

 UPSS processing site with unknown gene 

 UTR untranslated region 

 UTRP untranslated region from Processing Event 

 UTSS transcriptional start with unknown gene 

 UV-VIS Ultraviolet–visible 

V V volt 

 v/v volume per volume 

W w/v weight per volume 
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7.4. Supplementary information 

7.4.1. TagRNA-seq trimming 

Following command was used for trimming of the TagRNA-seq raw data: 

 
trimmomatic-0.36.jar SE 
-phred33 
ILLUMINACLIP:adapter:2:30:10 
SLIDINGWINDOW:4:15 
LEADING:3 
TRAILING:3 
MINLEN:30 
 
The adapters sequences used for trimming of the TagRNA-seq raw data: 
 
>TruSeq_3'fwd 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC 

>TruSeq-3'rev 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 

>TruSeq_5'fwd 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA 

>TruSeq5'rev 

ACACTCTTTCCCTACACGACGCTCTTCCGATCT 

>PolyA80 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA 

>PolyT80 

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTT 
 

7.4.2. TagRNA-seq processing script 

 
The following script was written for processing of the TagRNA-seq Data and annotation 
generation: 
 
from Bio import SeqIO 
import numpy as np 
import pandas as pd 
import gffutils 
import re 
import matplotlib.pyplot as plt 
get_ipython().run_line_magic('matplotlib', 'inline') 
# Daten laden Ã¼ber funktion und in ein pandas Array ziehen 
# Annotation erstellen und laden in db 
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#gffutils.create_db("AM884176.1.gff",'chlamydiadatabase.db', force=True, 
keep_order=True, merge_strategy='merge', sort_attribute_values=True) 
db = gffutils.FeatureDB('chlamydiadatabase.db', keep_order=True) 
# Dateien laden laden "tracks" TSS PSS und unassigned je plus und minus 
# Sequence laden von fasta file 
def get_fasta_sequence (fastafile): 
    fasta_sequences = list(SeqIO.parse(open(fastafile),'fasta')) 
    allletters="" 
    for fasta in fasta_sequences: 
        allletters = allletters  +fasta.seq 
    return (pd.Series(list(allletters))) 
#get_fasta_sequence("434bu_chr+pl2.fa") 
# Dateien laden laden "tracks" TSS PSS und unassigned je plus und minus 
# GroÃŸe Tabelle erstellen mit allen Rohdaten 
 
def combine_Trackdata 
(fasta,tSSplusFile,pSSplusFile,tSSminusFile,pSSminusFile,unassignedPLUSFile,unassignedMin
usFile): 
    completteDataFrame=pd.concat([fasta, 
                             tSSplusFile['#RefName'], 
                             tSSplusFile['Pos'], 
                             tSSplusFile['Coverage'], 
                             pSSplusFile['Coverage'], 
                             tSSminusFile['Coverage'], 
                             pSSminusFile['Coverage'], 
                             unassignedPLUSFile['Coverage'], 
                             unassignedMinusFile['Coverage']],axis=1) 
    completteDataFrame.columns=['letter','RefName','Pos','TSS+','PSS+','TSS-','PSS-
','Unassigned+','Unassigned-'] 
    return completteDataFrame 
     
def load_track (trackfile): 
    return pd.read_csv(trackfile ,header=0 ,sep="\t") 
 
def filter_tracktable_by_Referenz (completteDataFrame,Referenz): 
    return completteDataFrame.loc[completteDataFrame['RefName'] == Referenz] 
# GroÃŸe Tabelle filtern mit Threshold(50) 
def filter_track_data(trackdatatable,threshold): 
    for tracks in list(trackdatatable.columns.values): 
        match= re.match("[TP]SS[+-]",tracks) 
        if match: 
            trackdatatable.loc[trackdatatable[tracks] <= threshold,[tracks]]=1 
     
 
# Prozentualle Ã¤nderung messen,anhÃ¤ngen & filtern per threshold (0.7) beachten fÃ¼r 
MINUS-TRACK (-0.7) 
# Bei jedem Datenpunkt umfeld(Threshold +/- 10 bp) beachten und nur Laut Rohdaten,den 
Messpunkt mit dem maxima Ã¼bernehmen 



Appendix  

117 

def calculate_procent_change_table(trackdatatable): 
    return(pd.concat([trackdatatable['TSS+'].pct_change(), 
                      trackdatatable['PSS+'].pct_change(), 
                      trackdatatable['TSS-'].pct_change(), 
                      trackdatatable['PSS-'].pct_change()],axis=1)) 
 
def filter_procent_TSS_data(procentChangeTablle,threshold): 
    threshold=abs(threshold) 
    for tracks in list(procentChangeTablle.columns.values): 
        match= re.match("TSS[+-]",tracks) 
        if match: 
            plusOrMinus=re.match("TSS[+]",tracks) 
            if plusOrMinus: 
                procentChangeTablle.loc[procentChangeTablle[tracks] <= threshold,[tracks]]=0 
            else: 
                procentChangeTablle.loc[procentChangeTablle[tracks] >= threshold*-1,[tracks]]=0 
 
def check_surrounding_TSS_procent(procentChangeTablle,tracktable,basesAround): 
    for tracks in list(procentChangeTablle.columns.values): 
        match= re.match("TSS[+-]",tracks) 
        if match: 
            indexes = procentChangeTablle.index[procentChangeTablle[tracks] != 0].tolist() 
            count=1 
            while count < len(indexes): 
                if indexes[count] in range(indexes[count-1]-basesAround,indexes[count-
1]+basesAround,1): 
                    if tracktable[tracks].iloc[indexes[count-1]] < 
tracktable[tracks].iloc[indexes[count]]: 
                        procentChangeTablle[tracks].iloc[indexes[count-1]]=0 
                    else: 
                        procentChangeTablle[tracks].iloc[indexes[count]]=0 
                count+=1 
 
# Analyse der PSS wie TSS 
def filter_procent_PSS_data(procentChangeTablle,threshold): 
    threshold=abs(threshold) 
    for tracks in list(procentChangeTablle.columns.values): 
        match= re.match("PSS[+-]",tracks) 
        if match: 
            plusOrMinus=re.match("PSS[+]",tracks) 
            if plusOrMinus: 
                procentChangeTablle.loc[procentChangeTablle[tracks] <= threshold,[tracks]]=0 
            else: 
                procentChangeTablle.loc[procentChangeTablle[tracks] >= threshold*-1,[tracks]]=0 
     
def check_surrounding_PSS_procent(procentChangeTablle,tracktable,basesAround): 
    for tracks in list(procentChangeTablle.columns.values): 
        match= re.match("PSS[+-]",tracks) 
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        if match: 
            indexes = procentChangeTablle.index[procentChangeTablle[tracks] != 0].tolist() 
            count=1 
            while count < len(indexes): 
                if indexes[count] in range(indexes[count-1]-basesAround,indexes[count-
1]+basesAround,1): 
                    if tracktable[tracks].iloc[indexes[count-1]] < 
tracktable[tracks].iloc[indexes[count]]: 
                        procentChangeTablle[tracks].iloc[indexes[count-1]]=0 
                    else: 
                        procentChangeTablle[tracks].iloc[indexes[count]]=0 
                count+=1 
 
 
# AbhÃ¤nig von umfeld (threshold +/- 10 bp) von den Rohwerten PSS oder TSS ausgeben 
def identify_TSS_or_PSS(table,raw,basesAround): 
    TSSindexes = table.index[table["TSS+"] != 0].tolist() 
    PSSindexes = table.index[table["PSS+"] != 0].tolist() 
    count=0 
    howmany=0 
    while count < len(TSSindexes): 
        innercount=0 
        TSSrange=range(TSSindexes[count]-basesAround,TSSindexes[count]+basesAround+1,1) 
        while innercount < len(PSSindexes): 
            if PSSindexes[innercount] in TSSrange: 
                if raw["TSS+"].iloc[TSSindexes[count]] > raw["PSS+"].iloc[PSSindexes[innercount]]: 
                    table["PSS+"].iloc[PSSindexes[innercount]]=0 
                else: 
                    table["TSS+"].iloc[PSSindexes[innercount]]=0 
                howmany+=1 
            innercount+=1 
        howmany=0 
        count+=1 
 
    TSSindexes = table.index[table["TSS-"] != 0].tolist() 
    PSSindexes = table.index[table["PSS-"] != 0].tolist() 
    count=0 
    howmany=0 
    while count < len(TSSindexes): 
        innercount=0 
        TSSrange=range(TSSindexes[count]-basesAround,TSSindexes[count]+basesAround+1,1) 
        while innercount < len(PSSindexes): 
            if PSSindexes[innercount] in TSSrange: 
                if raw["TSS-"].iloc[TSSindexes[count]] > raw["PSS-"].iloc[PSSindexes[innercount]]: 
                    table["PSS-"].iloc[PSSindexes[innercount]]=0 
                else: 
                    table["TSS-"].iloc[PSSindexes[innercount]]=0 
                howmany+=1 
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            innercount+=1 
 
        howmany=0 
        count+=1 
 
def write_table(procent,outputfile,associatedGeneDistance): 
    with open(outputfile, 'w') as the_file: 
        the_file.write("Position\ttrack\tDistance to gene 
start\tcontig\tsource\ttype\tstart\tend\tscore\tstrand\tframe\tattributes\n") 
        for track in ['TSS','PSS']: 
            for direction in ['+','-']: 
                specfictrack=track+direction 
                indexes = procent.index[procent[specfictrack] != 0].tolist() 
                count=0 
                if direction=='+': 
                    while count < len(indexes): 
                        wasinloop=0 
                        for i in db.region(seqid="AM884176.1",start=(indexes[count]-
associatedGeneDistance),end=(indexes[count]+associatedGeneDistance),strand=direction,fe
aturetype="gene"): 
                            the_file.write(str(indexes[count])+"\t"+specfictrack +"\t" 
+str(indexes[count]-i.start)+"\t" +str(i)+"\n") 
                            wasinloop=1 
                        if wasinloop==0: 
                            the_file.write(str(indexes[count])+"\t"+specfictrack+"\n") 
                        count+=1 
                else: 
                    while count < len(indexes): 
                        wasinloop=0 
                        for i in db.region(seqid="AM884176.1",start=(indexes[count]-
associatedGeneDistance),end=(indexes[count]+associatedGeneDistance),strand=direction,fe
aturetype="gene"): 
                            the_file.write(str(indexes[count])+"\t"+specfictrack +"\t" +str(i.end-
indexes[count])+"\t" +str(i)+"\n") 
                            wasinloop=1 
                        if wasinloop==0: 
                            the_file.write(str(indexes[count])+"\t"+specfictrack+"\n") 
                        count+=1 
 
def write_gff_rows(procent,outputfile,genome,selector): 
    if selector == 'TSS': 
        tracklist=['TSS'] 
    elif selector == 'PSS': 
        tracklist=['PSS'] 
    else: 
        tracklist=['TSS','PSS'] 
    with open(outputfile, 'w') as the_file: 
        for track in tracklist: 
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            for direction in ['+','-']: 
                specfictrack=track+direction 
                indexes = procent.index[procent[specfictrack] != 0].tolist() 
                if direction=='+': 
                    count=0 
                while count < len(indexes): 
                    the_file.write(str(genome)+"\tEMBL\tregion\t"+ 
                                   str(indexes[count])+"\t" 
                                   +str(indexes[count])+"\t.\t" 
                                   +str(direction)+ 
                                   "\t.\tID="+str(specfictrack)+str(count) 
                                   +";gene=gene"+str(count)+"_" 
                                   +str(track)+";Name="+str(count)+"_"+ 
                                   str(track)+ 
                                   ";gbkey=Gene;gene_biotype="+str(track)+"\n") 
                    count+=1 
                else: 
                    count=0 
                    while count < len(indexes): 
                        the_file.write(str(genome)+"\tEMBL\tregion\t"+ 
                                   str(indexes[count])+"\t" 
                                   +str(indexes[count])+"\t.\t" 
                                   +str(direction)+ 
                                   "\t.\tID="+str(specfictrack)+str(count) 
                                   +";gene=gene"+str(count)+"_" 
                                   +str(track)+";Name="+str(count)+"_"+ 
                                   str(track)+ 
                                   ";gbkey=Gene;gene_biotype="+str(track)+"\n") 
                        count+=1 
 
rawdata = combine_Trackdata(get_fasta_sequence("434bu_chr+pl2.fa"), 
                           load_track("Taq-seq_ctr_TSS.trimmed.fastqperBase1.graph"), 
                           load_track("Taq-seq_ctr_PSS.trimmed.fastqperBase1.graph"), 
                           load_track("Taq-seq_ctr_TSS.trimmed.fastqperBase2.graph"), 
                           load_track("Taq-seq_ctr_PSS.trimmed.fastqperBase2.graph"), 
                           load_track("Taq-seq_ctr_unassigned.trimmed.fastqperBase1.graph"), 
                           load_track("Taq-seq_ctr_unassigned.trimmed.fastqperBase2.graph") 
                           ) 
rawdata=filter_tracktable_by_Referenz(rawdata,"AM884176.1") 
filter_track_data(rawdata,50) 
###TSS 
procentchange=calculate_procent_change_table(rawdata) 
filter_procent_TSS_data(procentchange,0.7) 
check_surrounding_TSS_procent(procentchange,rawdata,20) 
###PSS 
filter_procent_PSS_data(procentchange,0.7) 
check_surrounding_PSS_procent(procentchange,rawdata,20) 
identify_TSS_or_PSS(procentchange,rawdata,30) 
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print("FINAL TSS and PSS") 
print("TSS on plus strand :" + str(len(procentchange.index[procentchange["TSS+"] != 
0].tolist()))) 
print("TSS on minus strand :" + str(len(procentchange.index[procentchange["TSS-"] != 
0].tolist()))) 
print("PSS on plus strand :" + str(len(procentchange.index[procentchange["PSS+"] != 
0].tolist()))) 
print("PSS on minus strand :" + str(len(procentchange.index[procentchange["PSS-"] != 
0].tolist()))) 
 
write_table(procentchange,"outputfile.tsv",100) 
write_gff_rows(procentchange,"test.gff","AM884176.1","both") 
write_gff_rows(procentchange,"test_TSS.gff","AM884176.1","TSS") 
write_gff_rows(procentchange,"test_PSS.gff","AM884176.1","PSS") 
 
def make_annoation_for_TSS_with_gene(procent,outfile,UTRzone): 
    tracklist=['TSS'] 
    with open(outfile, 'w') as the_file: 
        for track in tracklist: 
            for direction in ['+','-']: 
                specfictrack=track+direction 
                indexes = procent.index[procent[specfictrack] != 0].tolist() 
                indexes_used_for_genes=[] 
                if direction=='+': 
                    for i in db.region(seqid="AM884176.1",strand=direction,featuretype="gene"): 
                            indexes_within_genes=count(indexes,i.start-UTRzone,i.end) 
                            indexes_used_for_genes.extend(indexes_within_genes) 
                            for e in indexes_within_genes: 
                                if (e<i.start): 
                                    
the_file.write("AM884176.1"+"\ttaqseq\tUTR\t"+str(e)+"\t"+str(i.start)+"\t.\t+\t.\tID=TSSp"
+str(i.attributes['Name'][0])+"_"+str(e)+";Note=TSSp"+str(i.attributes['Name'][0])+"_"+str(e)
+";gene_biotype=UTR+\n") 
                                else: 
                                    
the_file.write("AM884176.1"+"\ttaqseq\tTSS\t"+str(e)+"\t"+str(i.end)+"\t.\t+\t.\tID=TSSp"+s
tr(i.attributes['Name'][0])+"_"+str(e)+";Note=TSSp"+str(i.attributes['Name'][0])+"_"+str(e)+";
gene_biotype=TSS+\n") 
                    for e in list(set(indexes)-set(indexes_used_for_genes)): 
                        
the_file.write("AM884176.1"+"\ttaqseq\tUTSS\t"+str(e)+"\t"+str(e+UTRzone)+"\t.\t+\t.\tID=
TSSp"+str(e)+";Note=TSSp"+str(e)+";gene_biotype=UTSS+\n") 
                else: 
                    for i in db.region(seqid="AM884176.1",strand=direction,featuretype="gene"): 
                            indexes_within_genes=count(indexes,i.start,i.end+UTRzone) 
                            indexes_used_for_genes.extend(indexes_within_genes) 
                            for e in indexes_within_genes: 
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                                if (e>i.end): 
                                    
the_file.write("AM884176.1"+"\ttaqseq\tUTR\t"+str(i.end)+"\t"+str(e)+"\t.\t-
\t.\tID=TSSm"+str(i.attributes['Name'][0])+"_"+str(e)+";Note=TSSm"+str(i.attributes['Name']
[0])+"_"+str(e)+";gene_biotype=UTR-\n") 
                                else: 
                                    
the_file.write("AM884176.1"+"\ttaqseq\tTSS\t"+str(i.start)+"\t"+str(e)+"\t.\t-
\t.\tID=TSSm"+str(i.attributes['Name'][0])+"_"+str(e)+";Note=TSSm"+str(i.attributes['Name']
[0])+"_"+str(e)+";gene_biotype=TSS-\n") 
                    for e in list(set(indexes)-set(indexes_used_for_genes)): 
                        the_file.write("AM884176.1"+"\ttaqseq\tUTSS\t"+str(e-
UTRzone)+"\t"+str(e)+"\t.\t-
\t.\tID=TSSm"+str(e)+";Note=TSSm"+str(e)+";gene_biotype=UTSS-\n") 
                print("All postions for ",track," ",direction ,len(indexes)) 
                print("Used postions for ",track," ",direction ,len(indexes_used_for_genes)) 
                print("Amount of unsed for ",track," ",direction ,len(list(set(indexes)-
set(indexes_used_for_genes)))) 
 
def make_annoation_for_PSS_with_gene(procent,outfile,extend): 
    tracklist=['PSS'] 
    with open(outfile, 'w') as the_file: 
        for track in tracklist: 
            for direction in ['+','-']: 
                specfictrack=track+direction 
                indexes = procent.index[procent[specfictrack] != 0].tolist() 
                indexes_used_for_genes=[] 
                if direction=='+': 
                    for i in db.region(seqid="AM884176.1",strand=direction,featuretype="gene"): 
                            indexes_within_genes=count(indexes,i.start,i.end) 
                            indexes_used_for_genes.extend(indexes_within_genes) 
                            if indexes_within_genes: 
                                gene_array=[i.start] 
                                gene_array.extend(indexes_within_genes) 
                                gene_array.extend([i.end]) 
                                gene_array.sort() 
                                counting=0 
                                while counting < (len(gene_array)-1): 
                                    
the_file.write("AM884176.1"+"\ttaqseq\tPSS\t"+str(gene_array[counting])+"\t"+str(gene_ar
ray[counting+1])+"\t.\t+\t.\tID=PSS+_"+str(i.attributes['Name'][0])+"_"+str(counting)+";Note
=PSS+_"+str(i.attributes['Name'][0])+"_"+str(counting)+";gene_biotype=PSS+\n") 
                                    counting+=1 
                    for e in list(set(indexes)-set(indexes_used_for_genes)): 
                        the_file.write("AM884176.1"+"\ttaqseq\tUPSS\t"+str(e-
extend)+"\t"+str(e+extend)+"\t.\t+\t.\tID=PSSp"+str(e)+";Note=PSSp"+str(e)+";gene_biotype
=UPSS+\n") 
                else: 
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                    for i in db.region(seqid="AM884176.1",strand=direction,featuretype="gene"): 
                            indexes_within_genes=count(indexes,i.start,i.end) 
                            indexes_used_for_genes.extend(indexes_within_genes) 
                            if indexes_within_genes: 
                                gene_array=[i.start] 
                                gene_array.extend(indexes_within_genes) 
                                gene_array.extend([i.end]) 
                                gene_array.sort() 
                                counting=0 
                                while counting < (len(gene_array)-1): 
                                    
the_file.write("AM884176.1"+"\ttaqseq\tPSS\t"+str(gene_array[counting])+"\t"+str(gene_ar
ray[counting+1])+"\t.\t-\t.\tID=PSS-
_"+str(i.attributes['Name'][0])+"_"+str(counting)+";Note=PSS-
_"+str(i.attributes['Name'][0])+"_"+str(counting)+";gene_biotype=PSS-\n") 
                                    counting+=1 
                    for e in list(set(indexes)-set(indexes_used_for_genes)): 
                        the_file.write("AM884176.1"+"\ttaqseq\tUPSS\t"+str(e-
extend)+"\t"+str(e+extend)+"\t.\t-
\t.\tID=PSSm"+str(e)+";Note=PSSm"+str(e)+";gene_biotype=UPSS-\n") 
                print("All postions for ",track," ",direction ,len(indexes)) 
                print("Used postions for ",track," ",direction ,len(indexes_used_for_genes)) 
                print("Amount of unsed for ",track," ",direction ,len(list(set(indexes)-
set(indexes_used_for_genes)))) 
             
            
def count(list1, l, r): 
    return list(x for x in list1 if l <= x <= r) 
         
make_annoation_for_TSS_with_gene(procentchange,"TSS.gff",100)         
make_annoation_for_PSS_with_gene(procentchange,"PSS.gff",20)   
 
rawdata = combine_Trackdata(get_fasta_sequence("434bu_chr+pl2.fa"), 
                           load_track("Taq-seq_ctr_TSS.trimmed.fastqperBase1.graph"), 
                           load_track("Taq-seq_ctr_PSS.trimmed.fastqperBase1.graph"), 
                           load_track("Taq-seq_ctr_TSS.trimmed.fastqperBase2.graph"), 
                           load_track("Taq-seq_ctr_PSS.trimmed.fastqperBase2.graph"), 
                           load_track("Taq-seq_ctr_unassigned.trimmed.fastqperBase1.graph"), 
                           load_track("Taq-seq_ctr_unassigned.trimmed.fastqperBase2.graph") 
                           ) 
rawdata=filter_tracktable_by_Referenz(rawdata,"AM884176.1") 
filter_track_data(rawdata,50) 
###TSS 
procentchange=calculate_procent_change_table(rawdata) 
filter_procent_TSS_data(procentchange,0.7) 
check_surrounding_TSS_procent(procentchange,rawdata,50) 
###PSS 
filter_procent_PSS_data(procentchange,0.7) 
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check_surrounding_PSS_procent(procentchange,rawdata,50) 
identify_TSS_or_PSS(procentchange,rawdata,30) 
 
print("FINAL TSS and PSS") 
print("TSS on plus strand :" + str(len(procentchange.index[procentchange["TSS+"] != 
0].tolist()))) 
print("TSS on minus strand :" + str(len(procentchange.index[procentchange["TSS-"] != 
0].tolist()))) 
print("PSS on plus strand :" + str(len(procentchange.index[procentchange["PSS+"] != 
0].tolist()))) 
print("PSS on minus strand :" + str(len(procentchange.index[procentchange["PSS-"] != 
0].tolist()))) 
 
write_table(procentchange,"outputfile_broader.tsv",100) 
write_gff_rows(procentchange,"test_broader.gff","AM884176.1","both") 
write_gff_rows(procentchange,"test_broader_TSS.gff","AM884176.1","TSS") 
write_gff_rows(procentchange,"test_broader_PSS.gff","AM884176.1","PSS") 
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7.4.3. Additional Results of the Motif search of the TagRNA-seq data 

 
Appendix table 23: Results from tomtom from the MEME tool suit searched against all prokaryotic DNA 
databases for the third motif found using the 40 bp upstream sequences from the new annotated intergenic 
regions. 

Motif (Database entry) p-value E-value q-value 

Fur V.cholerae (EXPREG_000008b0) 3.78E-05 1.86E-02 3.66E-02 

Fur P.aeruginosa(EXPREG_00000c80) 1.24E-04 6.13E-02 5.65E-02 

Fur (MX000013) 1.77E-04 8.73E-02 5.65E-02 

Fur (MX000028) 2.33E-04 1.15E-01 5.65E-02 

PerR B.subtilis (EXPREG_00000bc0) 7.28E-04 3.59E-01 1.12E-01 

rpoD (rpoD18) 1.45E-03 7.16E-01 1.41E-01 

Fur B.subtilis (EXPREG_00000b40) 1.51E-03 7.47E-01 1.41E-01 

Fnr (MX000004) 1.60E-03 7.92E-01 1.41E-01 

Fur A.salmonicida (EXPREG_00000360) 1.92E-03 9.47E-01 1.45E-01 

Fur Y.pestis (EXPREG_00000a20) 1.94E-03 9.58E-01 1.45E-01 

fur (fur) 3.11E-03 1.53E+00 2.01E-01 

Fur S.enterica (EXPREG_00001020) 3.11E-03 1.54E+00 2.01E-01 

Fnr (Gammaproteobacteria) 4.08E-03 2.01E+00 2.47E-01 

NikR H.pylori (EXPREG_00000670) 4.82E-03 2.38E+00 2.64E-01 

Fur L.monocytogenes (EXPREG_000013d0) 4.91E-03 2.43E+00 2.64E-01 

Fur N.gonorrhoeae (EXPREG_00000ec0) 5.76E-03 2.84E+00 2.64E-01 

ArcA (MX000091) 6.31E-03 3.12E+00 2.64E-01 

Fur P.syringae (EXPREG_00001110) 6.54E-03 3.23E+00 2.64E-01 

SigE (MX000068) 8.55E-03 4.22E+00 3.28E-01 

argR (argR) 1.09E-02 5.38E+00 3.64E-01 

AlgU (MX000035) 1.40E-02 6.89E+00 4.48E-01 

SigB (MX000072) 1.65E-02 8.13E+00 4.99E-01 

MalR C.perfringens 

(MalR_Clostridium_perfringens) 

1.76E-02 8.67E+00 5.16E-01 

Fur A.ferrooxidans (EXPREG_00000370) 1.84E-02 9.08E+00 5.24E-01 
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Appendix table 24: Results from tomtom from the MEME tool suit searched against all prokaryotic DNA 
databases for the fourth motif found using the 40 bp upstream sequences from the new annotated 
intergenic regions. 

Motif (Database entry) p-value E-value q-value 

LexA M.tuberculosis (EXPREG_000005d0) 3.87E-03 1.91E+00 1.00E+00 

LexA C.glutamicum (EXPREG_00000020) 4.91E-03 2.43E+00 1.00E+00 

DinR/LexA (MX000025) 5.18E-03 2.56E+00 1.00E+00 

Atu5393_Rhizobiales 1.15E-02 5.70E+00 1.00E+00 

RSc0472_Burkholderiales 1.18E-02 5.85E+00 1.00E+00 

IscR_Rhodospirillales_Sphingomonadales 1.40E-02 6.91E+00 1.00E+00 

FruR_Alpha_Beta_Xanthomonadales 1.41E-02 6.95E+00 1.00E+00 

LexA S.aureus (EXPREG_00001790) 1.61E-02 7.96E+00 1.00E+00 

AmrZ P.aeruginosa (EXPREG_000004d0) 1.69E-02 8.34E+00 1.00E+00 

 



Appendix  

127 

7.4.4. Additional Results of the Gradient establishment 

 

Appendix figure 37: Pellets from thirty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed in 
a FastPrep at 4.0 m/s for 20 s once. The lysate was separated on a 10%-40% glycerol gradient before samples 
were taken. (A) Proteins were separated using a 12 % SDS-PAGE and visualised via colloidal Coomassie staining. 
The first lane shows the protein marker (M) followed by the protein samples from the different fractions of 
the gradient collected from top (1) to pellet (P). (B) RNAs were loaded onto 7M Urea 6% PAGE and visualized 
via ethidium bromide. The first lane shows RiboRuler Low range, followed by the samples of the different 
fractions of the gradient collected from top (1) to pellet (P).  
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Appendix figure 38: Pellets from forty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed in 
a FastPrep at 4.5 m/s for 20 s once. The lysate was separated on a 10%-40% glycerol gradient before samples 
were taken.  RNAs were loaded onto 7M Urea 6% PAGE and visualized via ethidium bromide. The first lane 
shows RiboRuler Low range, followed by the samples of the different fractions of the gradient collected from 
top (1) to pellet (P).  
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Appendix figure 39: Pellets from forty 150 cm2-dishes of Hela229 cells infected with Chlamydia were lysed in 
a FastPrep at 4.0 m/s for 20 s once. The lysate was separated on a 10%-40% glycerol gradient before samples 
were taken. (A) Proteins were separated using a 12 % SDS-PAGE and visualised via colloidal Coomassie staining. 
The first lane shows the protein marker (M) followed by the protein samples from the different fractions of 
the gradient collected from top (1) to pellet (P). (B) RNAs were loaded onto 7M Urea 6% PAGE and visualized 
via ethidium bromide. The first lane shows RiboRuler Low range, followed by the samples of the different 
fractions of the gradient collected from top (1) to pellet (P).  
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Appendix figure 40: Absorbance of all collected fractions (1-P) measured at 260nm via NanoDrop 
spectrophotometer. Pellets of forty 150 cm2 dishes of cells infected with Chlamydia were used and lysed at 4 
m/s for 20 s once. 
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Appendix figure 41: Results from third replicate using following conditions: pellets from forty 150 cm2-dishes 
of Hela229 cells infected with Chlamydia were lysed in a FastPrep at 4.0 m/s for 20 s once. The lysate was 
separated on a 10%-40% glycerol gradient before samples were taken. (A) Proteins were separated using a 12 
% SDS-PAGE and visualised via silver staining. The first lane shows the protein marker (M) followed by a lysis 
control and the samples from the different fractions of the gradient collected from top (1) to pellet (P). (B) 
RNAs were loaded onto 7M Urea 6% PAGE and visualized via ethidium bromide. The first lane shows Riboruler 
Low range, followed by the lysis control and the samples of the different fractions of the gradient collected 
from top (1) to pellet (P). (C) RNAs were separated on a 7M Urea 6% PAGE and transferred to a nylon 
membrane before probing for ctrR0332. The processed form of ctrR0332 was detected at ~80 bp (ctrR0332’). 
The order of the samples is as described in B, but without marker. 
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Appendix figure 42: Absorbance of all collected fractions (1-P) measured at 260nm via NanoDrop 
spectrophotometer. Pellets of forty 150 cm2 dishes of cells infected with Chlamydia were used and lysed at 4 
m/s for 20 s once. 
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Appendix figure 43: Results from second replicate with following conditions: chlamydial pellets from forty 150 
cm2-dishes of infected Hela229 cells were lysed using 0.1 mm silica beads by 15 s of vortexing and 15 s cooling 
on ice for 5 times. The lysate was separated on a 10%-40% glycerol gradient before samples were taken. (A) 
Proteins were separated using a 12 % SDS-PAGE and visualised via colloidal Coomassie staining. The first lane 
shows the protein marker (M) followed by a lysis control and the samples from the different fractions of the 
gradient collected from top (1) to pellet (P). (B) RNAs were loaded onto 7M Urea 6% PAGE and visualized via 
ethidium bromide. The first lane shows RiboRuler Low range, followed by the lysis control and samples from 
the different fractions of the gradient collected from top (1) to pellet (P). (C) RNAs were again separated on a 
7M Urea 6% PAGE but then transferred to a nylon membrane before probing for the RNAs: ctrR0332 and IhtA, 
signal recognition particle (SRP), transfer-messenger RNA (tmRNA), chlamydial 5S RNA, human 5S RNA and 
human 5.8S RNA. The processed form of ctrR0332 was detected at ~80 bp (ctrR0332’). The order of the samples 
is as described in B, but without marker. 
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Appendix figure 44: Results from third replicate with following conditions: chlamydial pellets from forty 150 
cm2-dishes of infected Hela229 cells were lysed using 0.1 mm silica beads by 15 s of vortexing and 15 s cooling 
on ice for 5 times. The lysate was separated on a 10%-40% glycerol gradient before samples were taken. (A) 
Proteins were separated using a 12 % SDS-PAGE and visualised via colloidal Coomassie staining. The first lane 
shows the protein marker (M) followed by a lysis control and the samples from the different fractions of the 
gradient collected from top (1) to pellet (P). (B) RNAs were loaded onto 7M Urea 6% PAGE and visualized via 
ethidium bromide. The first lane shows Riboruler Low range, followed by the lysis control and samples from 
the different fractions of the gradient collected from top (1) to pellet (P). (C) RNAs were again separated on a 
7M Urea 6% PAGE but then transferred to a nylon membrane before probing for the RNAs: ctrR0332 and IhtA, 
signal recognition particle (SRP), transfer-messenger RNA (tmRNA), chlamydial 5S RNA, human 5S RNA and 
human 5.8S RNA. The processed form of ctrR0332 was detected at ~80 bp (ctrR0332’). The order of the samples 
is as described in B, but without marker. 
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7.4.5. Grad-seq trimming 

 
Following command was used to trim the raw data of the gradient high-throughput 
sequencing: 
 
cutadapt \ 

           -q 20 \ 

           -m 1 \ 

           -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC \ 

           -o ... \  

 

7.4.6. Grad-seq analysis script 

The following script was written to analyse the high-throughput data from the gradient: 

 

import argparse 

import pandas as pd 

import os 

from scipy import stats 

from sklearn.cluster import KMeans 

from sklearn.cluster import AgglomerativeClustering 

from sklearn.manifold import TSNE 

import textwrap 

from tslearn.clustering import KShape 

from sklearn.decomposition import PCA 

import matplotlib.pyplot as plt 

 

parser = argparse.ArgumentParser(description='Calculation of correlations between one 

RNA from the RNA data and the proteins') 

parser.add_argument('--rnafile', '-rf',help='File with Gradatient RNAdata', required=True) 

parser.add_argument('--proteinfile', '-pf',help='File with Gradatient proteindata', 

required=True) 

parser.add_argument('--selector', '-sf',help='obtain selected Features use features with 

space: CDS tRNA rRNA sRNA hCDS hsProtein ctrProtein',nargs='+') 

parser.add_argument('--table_start_rna', '-tsr',help='table start of RNAtable',type=int, 

required=True) 

parser.add_argument('--table_end_rna', '-ter',help='table end of RNAtable',type=int, 

required=True) 

parser.add_argument('--table_start_protein', '-tsp',help='table start of proteintable',type=int, 

required=True) 

parser.add_argument('--table_end_protein', '-tep',help='table end of proteintable',type=int, 

required=True) 

parser.add_argument('--principle', '-pca',help='how many Principle Components',type=int) 

parser.add_argument('--output', '-o',help='basename with the correletation between the RNA 

and the proteins from the Gradient') 

args = parser.parse_args() 

print("Following Parameters were set:") 
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print("RNA-File:",args.rnafile) 

print("Protein-File:",args.proteinfile) 

print("RNA table start:",args.table_start_rna) 

print("RNA table end:",args.table_end_rna) 

print("Protein table start",args.table_start_protein) 

print("Protein table end:",args.table_end_protein) 

if str(args.principle) != "None": 

 print("Principle Components:",args.principle) 

 

#output=str(output)[2:-3] 

if str(args.output) == "None": 

 args.output="Data.csv" 

print("Outputfile path",args.output) 

if str(args.selector) != "None": 

 print("Selected Features",args.selector) 

 

###reading RNA file frome Gradient 

###creation of one Table 

####read rnafile (type,identifier,annotation,values) 

def _read_rnafile(filename,Valuestart,Valueend): 

 rnafile=pd.read_table(filename) 

 table=pd.concat([rnafile.ix[:,['Feature']],rnafile.ix[:,['Gene']],rnafile.ix[:,['Attributes']],rnafi

le.iloc[:,int(Valuestart):int(Valueend)]],axis=1) 

 table.columns= 

['Feature','Gene','Attributes','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','

20','P'] 

 return table 

####read protein (type,identifier,annotation,values) 

def _read_proteinfile(filename,Valuestart,Valueend): 

 proteinfile=pd.read_table(filename) 

 proteinfile['Feature']=_identify_chlamydial_proteins(proteinfile.ix[:,'Fasta.headers']) 

 table=pd.concat([proteinfile.ix[:,['Feature']],proteinfile.ix[:,['Gene.names']],proteinfile.ix[

:,['Protein.names']],proteinfile.iloc[:,int(Valuestart):int(Valueend)]],axis=1) 

 table.columns= 

['Feature','Gene','Attributes','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','

20','P'] 

 return table 

###endfile 

def _identify_chlamydial_proteins(Fastaheaders): 

 idlist=Fastaheaders 

 id_list=[] 

 for x in idlist: 

  if 'OS=Chlamydia' in x: 

   id_list.append('ctrProtein') 

  else: 

   id_list.append('hsProtein') 

 return id_list 

 

def _append_rna_protein_table(rnatable,proteintable): 
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 return rnatable.append(proteintable) 

 

####tablefeature selector 

def _select_features(table,arguments): 

 selected_table=table 

 return selected_table[selected_table["Feature"].isin(arguments)] 

 

###clustering 

 

def _extract_valuetable(Valuetable): 

 return Valuetable.loc[:,'1':'P'] 

 

def _kmeans_clustering (Valuetable,number_of_clusters): 

 Valuetable.as_matrix() 

 k_means = KMeans(n_clusters=number_of_clusters,random_state=0) 

 k_means.fit(Valuetable) 

 return k_means.labels_ 

 

def _hierarchical_clustering (Valuetable,number_of_clusters): 

 Valuetable.as_matrix() 

 h_clust = 

AgglomerativeClustering(n_clusters=number_of_clusters,affinity="euclidean",linkage="ward") 

 h_clust.fit(Valuetable) 

 return h_clust.labels_ 

 

def _kShape_clustering(Valuetable,number_of_clusters): 

 Valuetable.as_matrix() 

 kshape = KShape(n_clusters=number_of_clusters, random_state=0) 

 kshape.fit(Valuetable.as_matrix()) 

 return kshape.labels_ 

 

def _do_both_clusterings_and_add_to_table(Valuetable,minclusters,maxclusters): 

 values=_extract_valuetable(Valuetable) 

 for i in range(minclusters,maxclusters,1): 

  Valuetable[str(i)+'_Kmeans_cluster']=_kmeans_clustering(values,i) 

 for i in range(minclusters,maxclusters,1): 

  Valuetable[str(i)+'_hierarchical_cluster']=_hierarchical_clustering(values,i) 

 for i in range(minclusters,maxclusters,1): 

  Valuetable[str(i)+'_kShape_cluster']=_kShape_clustering(values,i) 

 

###tsne with normalizied values 

def _do_tsne(valuetable,perplexity=30): 

 values=_extract_valuetable(valuetable) 

 tsne = TSNE(n_components=2, random_state=0, 

perplexity=perplexity).fit_transform(values) 

 #np.set_printoptions(suppress=True) 

 return pd.DataFrame(tsne,columns=['TSNE_1','TSNE_2']) 

 

def _merge_value_cluster_dataframe_and_tsne(valuecluster,tsne): 
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 valuecluster['TSNE_1']=tsne.ix[:,['TSNE_1']] 

 valuecluster['TSNE_2']=tsne.ix[:,['TSNE_2']] 

 return valuecluster 

 

###pca analyse with normalizied values 

 

def _do_pca(valuetable,number_of_pca): 

 values=_extract_valuetable(valuetable) 

 pca=PCA(n_components=number_of_pca).fit_transform(values) 

 columns=[] 

 for i in range(1,number_of_pca+1,1): 

  columns.append("pca_"+str(i)) 

 principalDf = pd.DataFrame(data = pca 

             , columns = columns,index=values.index) 

 return principalDf 

 

## do elbows graphs 

 

def _do_pca_elbow(valuetable): 

 values=_extract_valuetable(valuetable) 

 pca=PCA(n_components=20) 

 pca2=pca.fit_transform(values) 

 plt.plot(pca.explained_variance_ratio_.tolist()) 

 plt.xlabel('number of components') 

 plt.ylabel('cumulative explained variance') 

 plt.tight_layout() 

 plt.savefig(args.output + "_pca.pdf", format='pdf') 

 plt.close() 

 

def _do_kmeans_elbow(valuetable): 

 values=_extract_valuetable(valuetable) 

 sse = (Smirnov et al., 2016a) 

 for k in range(1, 10): 

     kmeans = KMeans(n_clusters=k, max_iter=1000).fit(values) 

     sse[k] = kmeans.inertia_  

 plt.plot(list(sse.keys()), list(sse.values())) 

 plt.xlabel("Number of cluster") 

 plt.ylabel("SSE") #https://stackoverflow.com/questions/19197715/scikit-learn-k-

means-elbow-criterion 

 plt.tight_layout() 

 plt.savefig(args.output + "_kmeans.pdf", format='pdf') 

 plt.close() 

 

####testcasd# 

testtable = 

_append_rna_protein_table(_read_rnafile(args.rnafile,args.table_start_rna,args.table_end_rn

a),_read_proteinfile(args.proteinfile,args.table_start_protein,args.table_end_protein)) 

if str(args.selector) != "None": 

 testtable=_select_features(testtable,args.selector) 
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_do_both_clusterings_and_add_to_table(testtable,3,10) 

testtable=_merge_value_cluster_dataframe_and_tsne(testtable,_do_tsne(testtable)) 

if str(args.principle) != "None": 

 testtable=testtable.join(_do_pca(testtable, args.principle)) 

testtable.to_csv(args.output,sep="\t") 

 

 

_do_pca_elbow(testtable) 

_do_kmeans_elbow(testtable) 
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