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Abstract 

Worldwide, cold regions are undergoing significant alterations due to climate change. 

Snow, the most widely distributed cold region component, is highly sensitive to climate 

change. At the same time, snow itself profoundly impacts the Earth’s energy budget, 

biodiversity, and natural hazards, as well as hydropower management, freshwater 

management, and winter tourism/sports. Large parts of the cold regions in Europe are 

mountain areas, which are densely populated because of the various ecosystem services and 

socioeconomic well-being in mountains. At present, severe consequences caused by climate 

change have been observed in European mountains and their surrounding areas. Yet, large 

knowledge gaps hinder the development of effective regional and local adaptation strategies. 

Long-term and evidence-based regional studies are urgently needed to enhance the 

comprehension of regional responses to climate change. 

Earth Observation (EO) provides long-term consistent records of the Earth’s surface. It is 

a great alternative and/or supplement to conventional in-situ measurements which are 

usually time-consuming, cost-intensive and logistically demanding, particularly for the poor 

accessibility of cold regions. With the assistance of EO, land surface dynamics in cold regions 

can be observed in an objective, repeated, synoptic and consistent way. Thanks to free and 

open data policies, long-term archives such as Landsat Archive and Sentinel Archive can be 

accessed free-of-charge. The high- to medium-resolution remote sensing imagery from these 

freely accessible archives gives EO-based time series datasets the capability to depict snow 

dynamics in European mountains from the 1980s to the present. In order to compile such a 

dataset, it is necessary to investigate the spatiotemporal availability of EO data, and develop 

a spatiotemporally transferable framework from which one can investigate snow dynamics. 

Among the available EO image archives, the Landsat Archive has the longest 

uninterrupted records of the Earth’s land surface. Furthermore, its 30 m spatial resolution 

fulfils the requirements for snow monitoring in complex terrains. Landsat data can yield a 

time series of snow dynamics in mountainous areas from 1984 to the present. However, 

severe Landsat data gaps have occurred across certain regions of Europe. Moreover, the 

Landsat Level 1 Precision and Terrain (L1TP) data is scarcer (up to 50% less) in high-latitude 

mountainous areas than in low-latitude mountainous areas. Given the abovementioned facts, 

the Regional Snowline Elevation (RSE) is selected to characterize the snow dynamics in 

mountainous areas, as it can handle cloud obstructions in the optical images. In this thesis, I 

present a five-step framework to derive and densify RSE time series in European mountains, 

i.e. (1) pre-processing, (2) snow detection, (3) RSE retrieval, (4) time series densification, 

and (5) Regional Snowline Retreat Curve (RSRC) production. 
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The results of the intra-annual RSE variations show a uniquely high variation in the 

beginning of the ablation seasons in the Alpine catchment Tagliamento, mainly toward higher 

elevation. As for inter-annual variations of RSE, median RSE increases in all selected 

catchments, with an average speed of around 4.66 m ∙ a−1 (median) and 5.87 m ∙ a−1 (at the 

beginning of the ablation season). The fastest significant retreat is observed in the catchment 

Drac (10.66 m ∙ a−1, at the beginning of the ablation season), and the slowest significant 

retreat is observed in the catchment Uzh (1.74 m ∙ a−1, at the beginning of the ablation 

season). The increase of RSEs at the beginning of the ablation season is faster than the 

median RSEs, whose average difference is nearly 1.21 m ∙ a−1, particularly in the catchment 

Drac (3.72 m ∙ a−1). The results of the RSRCs show a significant rise in RSEs at the beginning 

of the ablation season, except for the Alpine catchment Alpenrhein and Var, and the 

Pyrenean catchment Ariege. It indicates that 11.8 and 3.97 degrees Celsius less per year are 

needed for the regional snowlines to reach the middle point of the RSRC in the Tagliamento 

and Tysa, respectively. The variation of air temperature is regarded as an example of a 

potential climate driver in this thesis. The retrieved monthly mean RSEs are highly correlated 

(mean correlation coefficient R̅ = 0.7) with the monthly temperature anomalies, which are 

more significant in months with extremely low/high temperature. Another case study that 

investigates the correlation between river discharges and RSEs is carried out to demonstrate 

the potential consequences of the derived snowline dynamics. The correlation analysis shows 

a good correlation between river discharges and RSEs (correlation coefficient, R=0.52). 

In this thesis, the developed framework signifies a better understanding of the snow 

dynamics in mountain areas, as well as their potential triggers and consequences. 

Nonetheless, an urgent need persists for: (1) validation data to assess long-term snow-

related observations based on high-resolution EO data; (2) further studies to reveal 

interactions between snow and its ambient environment; and (3) regional and local 

adaptation-strategies coping with climate change. Further studies exploring the above-

mentioned research gaps are urgently needed in the future. 
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Kurzfassung 

Weltweit erleben kalte Regionen signifikante Veränderungen durch den Klimawandel. In 

kalten Regionen ist der Schnee die an der weitesten verbreiteten Komponente, welche sehr 

sensibel auf Klimaänderungen reagiert. Zugleich beeinflusst der Schnee selbst das 

Energiebudget der Erde, die Biodiversität, Naturgefahren sowie Wasserenergiegewinnung, 

Süßwassergewinnung, Wintertourismus und Wintersport. Große Teile der kalten Regionen in 

Europa sind Gebirgsregionen. Diese sind dicht besiedelt, da Gebirgsregionen verschiedenste 

Ökosystemservices bereitstellen und sozioökonomisches Wohlbefinden ermöglichen. Heute 

kann man schwerwiegende Konsequenzen in Europäischen Gebirgen und deren 

angrenzenden Gebieten wahrnehmen. Dennoch verhindern große Wissenslücken die 

Entwicklung effektiver und regionaler/lokaler Anpassungsstrategien. Um regionaler 

Auswirkungen durch den Klimawandel besser verstehen zu können, ist es enorm wichtig 

Langzeitstudien und beweisorientierte regionale Studien durchzuführen. 

Erdbeobachtung (EO) bietet durchgängige Langzeitaufzeichnungen der Erdoberfläche. 

Dies ist eine großartige Alternative und/oder Ergänzung zu konventionellen in-situ 

Messungen, welche meist zeitaufwändig, teuer und logistisch herausfordernd sind – vor allem 

in kalten Regionen, die schwer zugänglich sind. Mit der Hilfe von Erdbeobachtung können 

Oberflächendynamiken objektiv, wiederholt, synoptisch und kontinuierlich aufgenommen 

werden. Dank freier und offener Datenpolitik, Langzeitmissionen wie Landsat und Sentinel 

sind diese Daten inzwischen ohne zusätzliche Kosten zugänglich. Durch die oben genannten 

Rahmenbedingungen, besteht die Möglichkeit aus hoch bis mittel aufgelöste Satellitenbilder 

erdbeobachtungsbasierte Zeitreihen zu erstellen, die die Schneedynamiken in Europäischen 

Gebirgen abbilden. Um dieses Ziel zu erreichen, muss die räumliche und zeitliche 

Verfügbarkeit von Erdbeobachtungsdaten überprüft werden und ein Rahmenwerk geschaffen 

werden (übertragbar in Zeit und Raum), um Schneedynamiken aus Erdbeobachtungsdaten 

großflächig ableiten zu können. 

Unter den verfügbaren Erdbeobachtungsarchiven bietet das Landsat Archiv die längsten 

und kontinuierlichsten Aufzeichnungen der Landoberfläche. Zudem erfüllt die räumliche 

Auflösung von 30 m die Anforderungen, Schnee in komplexem Terrain zu monitoren. 

Basierend auf Landsat L1TP Daten (z.B. terrainkorrigiert) ist es möglich, Zeitreihen von 

Schneedynamiken in Gebirgsregionen zwischen 1984 und 1991/1999 zu erstellen. Des 

Weiteren ist Landsat L1TP in hohen Breitengraden seltener verfügbar (bis zu 50 % weniger) 

als in Gebirgsregionen der gemäßigten Breiten. Basierend auf den oben genannten Fakten 

wurde die Regionale Höhe der Schneefallgrenze (RSE) ausgewählt um Schneedynamiken in 

Gebirgsregionen zu charakterisieren, da diese Wolken in optischen Szenen bewältigen kann. 
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In dieser Arbeit wurde ein fünf-Stufen Rahmenwerk geschaffen, um RSE-Zeitserien in 

Europäischen Gebirgen abzuleiten und zu verdichten. Die Prozessierungskette besteht aus (1) 

Vorprozessierung, (2) Schneedetektion, (3) RSE-Ableitung, (4) Zeitreihenverdichtung und (5) 

Erstellung einer regionalen Schneegrenzen-Rückgangsfunktion (RSRC). 

Die Ergebnisse der intra-annuellen RSE Variationen zeigen eine einzigartige hohe 

Variation im Beginn der Abschmelzsaison im alpinen Einzugsgebiet Tagliamento, meist in 

höheren Gebieten. Wie für die inter-annuellen Variationen des RSE, steigt auch der Median 

des RSE in allen ausgewählten Einzugsgebieten mit einer durchschnittlichen Geschwindigkeit 

von 4.66 m ∙ a−1 (median) und 5.87 m ∙ a−1 (zum Beginn der Schmelze). Der schnellste 

signifikante Rückgang kann im Einzugsgebiet Drac (10.66 m ∙ a−1, Beginn der Schmelze) 

beobachtet werden, der langsamste Rückgang im Einzugsgebiet Uzh (1.74 m ∙ a−1, Beginn 

der Schmelze). Der Anstieg des RSE zu Beginn der Schmelzsaison ist schneller als der Median 

des RSE, dessen mittlere Differenz 1.21 m ∙ a−1 beträgt. Insbesondere für das Drac 

Einzugsgebiet (3.72 m ∙ a−1). Die Ergebnisse des RSRC zeigen signifikante Anstiege des RSE 

zu Beginn des Schmelzsaison, ausgenommen davon sind die alpinen Einzugsgebiete 

Alpenrhein und Var und das Einzugsgebiet Ariege in den Pyrenäen. Dies lässt darauf 

zurückschließen, dass 11.8 °C und 3.97 °C Grad weniger pro Jahr nötig sind für Tagliamento 

und Tysa, damit die regionalen Schneegrenzen den Mittelpunkt des RSRC erreicht. Zudem 

wird die Variation der Lufttemperatur als beispielhafter Treiber des Klimas in dieser Thesis 

gesehen. Die monatlich abgeleiteten mittleren RSE korrelieren stark (mittlerer korrelations 

Coeffizient R̅  = 0.7) mit monatlichen Temperaturanomalien. In Monaten mit extrem 

hohen/tiefen Temperaturen ist die Korrelation am stärksten. Ein anderes Fallbeispiel 

untersucht die Korrelation zwischen Abfluss in Flüssen und RSE, um die potenziellen 

Konsequenzen der abgeleiteten Schneefallgrenzendynamiken zu ermitteln. Die 

Korrelationsanalyse weist eine gute Korrelation auf (R=0.52).  

Das in dieser Arbeit entwickelte Rahmenwerk ist nur ein Beginn, um das Wissen über 

Schneedynamiken in Gebirgsregionen zu verbessern und potentiell auslösende Faktoren und 

Konsequenzen zu verstehen. Dennoch wird folgendes dringend benötigt: (1) 

Validierungsdaten für schneebasierte Langzeitbeobachtungen aus hochaufgelösten 

Erdbeobachtungsdaten; (2) weitere Studien zu Interaktionen zwischen Schnee und die 

umgebende Umwelt; und (3) regionale und lokale Anpassungsstrategien, um Auswirkungen 

des Klimawandels zu meistern. Weitere Studien in den oben genannten Punkten werden in 

der Zukunft stark frequentiert sein, damit Wissens- und Forschungslücken geschlossen 

werden können. 

 

 

 



摘要 (Chinese Abstract) 

XVII 

摘要 (Chinese Abstract) 

由于气候变化，全世界的寒冷区正在经历着巨大的变化。冰雪是在寒冷区中分布最广的组

分，并且对气候变化高度敏感。与此同时，冰雪本身也在极大地影响着地球的辐射平衡，生物

多样性，自然灾害，水电管理，淡水管理以及冰雪旅游和冬季体育项目。大部分的欧洲寒冷区

分布在山区。得益于山地丰富的生态系统服务和社会经济福祉，欧洲山区也分布着大量的人口。

目前，由气候变化引起的诸多严重后果已经在欧洲山区及其周围地区被观测到。然而，我们现

在对寒冷区气候变化的了解还不足以支撑有效的区域性应对战略方案的制定。因此，我们迫切

地需要进行长时序的基于观测数据的区域研究，从而更好地应对气候变化。 

地球观测能够向我们提供各种时空分辨率的地表数据。考虑到传统的田野调查时常需要耗

费巨大的人力物力，并且在可达性较低的寒冷区有巨大的局限性，地球观测是一种对传统实地

测量很好的替代与补充。在地球观测的帮助下，我们可以客观并且可重复地获取寒冷区概要和

一致的地表面动态数据。得益于数据开放政策，现在 Landsat，ASTER和 Sentinel数据已经可

以免费使用。在这个背景下，利用开放的中高分辨率的遥感图像构建基于地球观测的时间序列，

可以帮助我们揭示从 20世纪 80年代到现在的欧洲山区的冰雪动态。为了达成这一目标，我们

首先需要调查地球观测数据的时空可用性，并开发一个时空可转移框架来提取冰雪动态。 

在现有的地球观测数据中，Landsat拥有最长且不间断的地表记录数据。同时，Landsat所

能提供的 30米的空间分辨率也满足了在复杂地形下监测冰雪的要求。利用 Landsat L1TP（标

准地形校正）数据，我们可以构建从 1984年到现在的山区冰雪动态时序。然而，在欧洲区域有

着严重的 Landsat数据缺失。此外，Landsat L1TP数据在高纬度山区的数据量也比在低纬度山

区更为稀少（最高可达 50％）。鉴于上述因素，本文选取了区域雪线高程指数来表征山区的冰

雪动态，因为区域雪线高程指数可以应对光学影像中的云遮盖。本文开发了一个五步框架来提

取欧洲山区的区域雪线高程指数时间序列，包含了（1）图像预处理，（2）冰雪分类，（3）区

域雪线高程指数提取，（4）时间序列构建，以及（5）区域雪线撤退曲线计算。 

根据区域雪线高程指数的年内变化，在位于阿尔卑斯山的 Tagliamento流域内，区域雪线

高程指数在融雪季节之初显示出向高的海拔后退的趋势。根据区域雪线高程指数的年际变化，

在所有选定流域的区域雪线高程指数的中位数都明显地逐年增加，平均速度约为每年 4.66米

（中位数）和每年 5.87 米（融雪季节初）。最快速的雪线上升发生在 Drac 流域（融雪季节初：

每年 10.66米），最缓慢的则位于 Uzh流域（融雪季节初：每年 1.74米）。雪线在融雪季节初

期的上升速度快于中位数，其平均差异大约是 1.21 米每年，特别是在 Drac流域这个差异更达

到了每年 3.72米。除了位于阿尔卑斯山的 Alpenrhein 流域和 Var流域以及位于比利牛斯山的

Ariege流域之外，区域雪线撤退曲线的结果显示出消融季节开始时，区域雪线高程指数具有显

著升高。这表明越来越少的温度（Tagliament：11.8°C， Tysa：3.97°C）被需要，让区域雪
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线达到区域雪线撤退曲线的中点。此外，在本文中气温的变化作为雪线上升的一个气候驱动因

子，月平均域雪线高程指数与月温度异常呈现了高度的相关性（平均相关系数为 0.7），这在

极端低/高温出现的月份更为明显。为了研究雪线在融雪季节上升的潜在后果，河流径流和雪线

高程指数之间的相关性分析，显示出河流流量与 RSE之间存在较强的相关性（相关系数为

0.52）。 

本文所开发的雪线动态提取框架只是一个开始，为了丰富对山区冰雪地动态的认知，以及

潜在诱因和后果，我们仍然迫切得需要以下研究：（1）对高分辨率地球观测数据所提取的冰雪

产品精度进行评估的验证数据集;（2）进一步研究冰雪动态与其周围环境之间的相互作用;（3）

应对气候变化的区域和地方适应战略的制定。对于探索上述知识和研究空白的进一步研究在未

来仍是非常需要的。  
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CHAPTER 1 

1 Introduction 

 

Worldwide, climate is undergoing significant changes. The recent Intergovernmental 

Panel on Climate Change (IPCC) Special Report on “global warming of 1.5 °C” (SR15) 

pointed out that “warming greater than the global average has already been experienced in 

many regions and seasons, with higher average warming over land than over the ocean 

(high confidence)” (Allen et al., 2018). Cold regions are sensitive to climate change, 

especially regions that belong to the cryosphere (i.e. snow, ice, and frozen ground 

illustrated in Figure 1-1). Observations have suggested various trends in the response of 

cold regions to the warming climate, including glacier retreat, early snowmelt onset, sea ice 

shrinking, and permafrost thawing (Kaser et al., 2010; Lemke et al., 2007; Radić et al., 

2014; Vaughan et al., 2013). In this context, observing cold region dynamics can elucidate 

the regional response to ongoing climate change. Ultimately, deriving cold region dynamics 

in a continuous, timely and reliable manner will facilitate adaptation-strategies for coping 

with climate change. 

IPCC (2014) emphasized the necessity of long-term observations on environmental 

and social indicators in the European cold regions. Conventional in-situ measurements are 

not well-suited for such a purpose due to their intensive labour and material requirements, 

the poor accessibility of cold regions, and, in particular, their spatiotemporally discontinuity 

(i.e. not a real-time, sparsely distributed, and/or limited observation time span) (Greuell et 

al., 2007; Rabatel et al., 2005). In these regards, satellite-based Earth Observation (EO) 

represents a promising alternative to in-situ measurements. So far, EO sensors have 

acquired a tremendous amount of data at different spatial and temporal resolutions. 

Thanks to the free and open EO data policies, large volumes of long-term EO data; such as 

the Landsat program begun in 1972, the Advanced Very High Resolution Radiometer 

(AVHRR) begun in 1978, the Moderate Resolution Imaging Spectroradiometer (MODIS) and 
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the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) begun in 

1999, and the novel European Sentinel fleet begun in 2014; are now free-of-charge 

(Woodcock et al., 2008; Wulder et al., 2012). Thus, EO ensures objective, repeated, 

synoptic, consistent and large-scale monitoring of land surface dynamics in cold regions. 

Due to the accessibility of these datasets, many EO research initiatives have been 

established to better observe and understand cold region dynamics, for example the Group 

on Earth Observations Cold Regions Initiative (GEOCRI).  

To date, numerous EO-based projects/initiatives have produced geospatial 

information relevant to cold regions worldwide. These projects/initiatives include the 

Interactive Multisensor Snow and Ice Mapping System (IMS) provided by the National 

Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and 

Information Service (NOAA/NESDIS) (Helfrich et al., 2007; Ramsay, 1998), the MODIS 

snow cover products (Hall et al., 2002), the Global Land Ice Measurements from Space 

(GLMS) project (Raup et al., 2007b, 2007a), the global inventory of glacier outlines from 

the Randolph Glacier Inventory (RGI) (Pfeffer et al., 2014a), the European Space Agency’s 

(ESA) GlobSnow product coordinated by the Finnish Meteorological Institute (FMI) 

(Metsämäki et al., 2015; Solberg et al., 2010), the GlobPermafrost initiative (2016–2019) 

launched by ESA (Bartsch et al., 2016), the Global Record of Daily Landscape Freeze/Thaw 

Figure 1-1: The cryospheric components in the Northern and Southern Hemispheres in polar 

projection. Modified according to Vaughan et al. (2013). 
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Status (FT-ESDR) from the NASA’s Making Earth System Data Records for Use in Research 

Environments (MEaSUREs) program (Kim et al., 2012), the German Aerospace Center-

German Remote Sensing Data Center’s (DLR-DFD) Global Snow Pack (GSP) dataset (Dietz 

et al., 2015), the Global Boreal Forest Mapping (GBFM) project led by the Earth 

Observation Research Center (EORC) of the Japan Aerospace Exploration Agency (JAXA) 

(Rosenqvist et al., 2004), the High Mountain and Cold Regions Using big Earth Data 

(HiMAC) service of the Digital Belt and Road Initiative (DBAR) (Qiu et al., 2017), and the 

IPCC “Special Report on Climate Change and Oceans and the Cryosphere”, planned to be 

finalized in September 2019. To date, given the continuously improving computational 

capacity and exponentially increasing EO data volume, there is an urgent need to develop 

a framework to assess cold region dynamics with the EO data legacy as well as the new 

EO data using improved features, such as the enhanced radiometric and spatiotemporal 

resolution in ESA’s Sentinel-2 constellation. 

1.1 Introduction to Cold Regions 

In 1884, the term “cold region” was first used by the German scientist Wladimir 

Köppen (1846–1940), who spoke of a “Kalter Gürtel” (a German word which means “cold 

belt”) to characterize global climate zones (Köppen, 1884). Presently, the term “cold 

region” is still frequently used by engineers, environmental scientists, physicists, and other 

scientists.   

1.1.1 Geographical Extent of Cold Regions 

The term “cold region” can be defined by either geographical extent or geographical 

characteristics (e.g., climate). To date, the most accepted geographical-extent-based 

definition of “cold region” is given by the GEOCRI. Its definition (Qiu et al., 2016) identifies 

the cold regions as polar region and high-mountain areas, whose geographical extent 

includes the Arctic, the Antarctic, high-latitude oceans, the Himalaya Third Pole, and 

mountainous cold areas. At a regional scale, there are also many descriptive definitions of 

cold regions. In Europe, Heal (1998) defined the Arctic and the Alpine areas as the 

European cold regions. In China, the cold regions were defined by Li and Liu (2011) as the 
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northern area of the Qinling Mountains and the Huaihe River. Air temperature is the most 

commonly used parameter to delineate cold regions quantitatively. Its use dates back to 

the 19th century, when Köppen (1884) identified the cold region as the region with 1−4 

moderate months (i.e. mean temperature of 10−20 °C) and 8−11 cold months (i.e., mean 

temperature <10 °C). Similarly, Chen et al. (2006) located the cold regions in China 

according to: (1) mean temperature of the coldest month <3 °C, (2) less than 5 months 

with mean temperature >10 °C, and (3) mean annual temperature <5 °C. Apart from air 

temperature, a 30 cm frost penetration depth once in 10 years (Andersland and Ladanyi, 

2013) is also a frequently applied criterion used by engineers. Yang et al. (2000) mapped 

the cold regions in China in a more comprehensive manner via the thresholding of 10 

different climate factors. Apart from the aforementioned definitions, the most 

acknowledged definition of “cold region” is proposed by the Cold Regions Research and 

Engineering Laboratory (CRREL) (Bates and Bilello, 1966). CRREL takes four parameters 

into consideration when determining the cold region extent, including: (1) air temperature 

(0 °C and −18 °C isotherms), (2) snow depth (30 and 61 cm isolines), (3) ice cover (100 

and 180 annual mean unnavigable days), and (4) frozen ground extent (permafrost and 30 

cm frost penetration). 

Based on the CRREL’s definition and the ECMWF ReAnalysis (ERA)-Interim reanalysis 

data from the European Centre for Medium-Range Weather Forecasts (ECMWF), Hu et al. 

(2017) calculated the cold region stability map according to the following criteria: (1) the 

frequency of negative air temperature occurrence is no less than 50% of time in the 

coldest month of the year; (2) the maximum snow depth on the ground is more than 30 

cm; and (3) temperatures < 0 °C occurs on at least 100 days. Subsequently, a stability 

index is calculated indicating the frequency of the areas identified as cold regions. The 

method has been further applied globally in this thesis (Figure 1-2). The result shows the 

cold regions are mostly distributed in the Northern Hemisphere and Antarctica. In the 

Northern Hemisphere, the geographical extent of cold regions includes the northern parts 

of North America, Greenland, Scandinavia, Russia, the Hindu-Kush Himalaya Third Pole, 

and the European high mountains (e.g., the Alps and the Carpathian Mountains). 
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1.1.2 Cold Regions in the Context of Climate Change 

Cold regions consist of a variety of land covers, including cryospheric components (i.e. 

snow, glacier, and frozen ground), boreal forest, tundra, and the living organisms therein. 

The key characteristic of a cold region is the existence of frozen water in its various forms, 

e.g., snow, glaciers and ice caps, ice shelves and ice sheets, sea ice, lake and river ice, 

frozen ground and permafrost (Figure 1-3). These components play an important role in 

regards to the global surface energy budget, the hydrological cycle, primary productivity, 

surface gas exchange and sea level (Vaughan et al., 2013). These components not only 

passively reflect climate change, but also actively and enduringly impact the physical, 

biological and social systems of Earth’s surface (Vaughan et al., 2013).  

Figure 1-2: Stability of the global cold regions. The darker the blue colour is the more frequent the 

areas are mapped as cold regions. 
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Covering up to 45.2 million km² of the land surface during the winter (Lemke et al., 

2007), snow is the most widely distributed cold region component in the Northern 

Hemisphere. Snow cover influences the Earth’s energy budget, biodiversity, and 

hydropower potential, as well as possible natural hazards and winter tourism (Barnett et 

al., 2005; Chen et al., 2015; Ciscar et al., 2011). The second most widespread cryospheric 

component in cold regions is frozen ground. Permafrost thaw has resulted in significant 

carbon/methane emission (Anisimov, 2007; Schuur et al., 2009), which accelerates the 

warming of the climate. Also, the periodic melting of its active layer has a great impact on 

civil infrastructure (Andersland and Ladanyi, 2013), due to the consequential alteration in 

hydrological and geomorphological regimes. Ice sheets, ice caps and glaciers are the 

primary contributors to sea level rising, and are critical freshwater reservoirs (Kaser et al., 

2010; Lemke et al., 2007; Radić et al., 2014). Apart from the cryospheric components, 

biospheric components are also essential in cold regions, among which the boreal forest is 

the most widespread terrestrial biome (Nasholm et al., 1998). Boreal forests, as well as 

tundra, play an important role in atmospheric pollution uptake (Obrist et al., 2017; Shotyk, 

2017), biodiversity (Sala et al., 2000), organic nitrogen mineralization (Nasholm et al., 

Figure 1-3: The thematic sketch of the cryospheric components and their time scales. Source:  

Lemke et al. (2007). 
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1998), as well as the stability of regional and global climate patterns (Bonan et al., 1992). 

Furthermore, boreal forests and tundra are important habitats for diverse flora and fauna, 

and their economic value (Bogdanski and others, 2008; Östlund et al., 1997; Pisarenko and 

Strakhov, 1996) is significantly pronounced in Northern countries such as Russia, Canada, 

and Sweden. 

1.1.3 Snow as a Crucial Cold Region Component in the European 

Mountains 

Snow covers up to 8.5 million km² of the land surface in Europe during the winter 

(Henderson and Leathers, 2010), and persists in the high latitude and high altitude areas. 

The Global Climate Observing System (GCOS) identified snow as an Essential Climate 

Variable (ECV) (Mason et al., 2003), which is a suitable measure of climate change. In 

response, observing snow dynamics has been included in the ESA’s Climate Change 

Initiative (CCI) program to better support the comprehension of long-term snow dynamics. 

To date, observations reported a continuously decreasing trend of snow coverage over the 

past 90 years, in particular during the ablation seasons (EEA, 2009; Stocker et al., 2013). 

In Europe, mountains cover around 2 million km² with a population of more than 94 million 

(Schuler et al., 2004). These European mountains are one of the most climate sensitive 

regions (EC, 2009), due to fragile ecosystems providing various ecosystem services and 

socioeconomic wellbeing (Beniston et al., 1997; Diaz et al., 2003). Studies show that 

climate change has profoundly altered the Alpine hydrological system during the 20th 

century, with an observed speed of change more rapid than the global average (EC, 2009). 

Given that the majority of the annual runoff in European mountain areas is snowmelt-

dominated (Barnett et al., 2005), it is important to investigate the long-term snow 

dynamics in European mountains. However, there are large gaps in our knowledge 

regarding local responses of snow cover to climate change in snow-fed basins (EEA, 2017a; 

IPCC, 2014), and limited scientific knowledge and high uncertainty set the barriers for 

developing effective climate strategies. In this context, retrieving and analysing long-term 

snowline elevation dynamics can provide valuable information to better understand the 

local impacts of climates change. It can therefore contribute to regional and local 

adaptation-strategies.
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1.1.4 The Need for Earth Observation (EO)-based Snow Dynamic 

Monitoring in Europe  

It has been recognized by studies that the impacts of climate change differ 

significantly among regions (IPCC, 2014). Over the past decades, “Europe as a whole has 

experienced great climate variability and extremes (Christensen et al., 2007; Christensen 

and Christensen, 2003; Luterbacher et al., 2004), such as continuously increasing average 

temperatures particularly in northern Europe (IPCC, 2014, 2013), more frequent high-

temperature extremes and less frequent low-temperature extremes (Füssel et al., 2012; 

Seneviratne et al., 2012; Stocker et al., 2013), increasing annual precipitation in northern 

Europe and decreasing precipitation in some areas of southern Europe (Füssel et al., 

2012), and increasing mean sea level, excluding the northern Baltic Sea (Albrecht et al., 

2011; Füssel et al., 2012; Haigh et al., 2010; Menéndez and Woodworth, 2010). As a 

result, significant changes in land, freshwater, and marine ecosystems have occurred in 

Europe (Parry et al., 2007). For example, advancement in the mean onset dates of spring 

events (e.g., bud burst, breaking hibernation, flowering, migration, snowmelt) has affected 

much of Europe’s flora and fauna (Cleland et al., 2007; Dietz et al., 2012; Menzel et al., 

2006; Penuelas et al., 2013). Annual maximum water discharge from melting has increased 

in parts of northwestern Europe (Giuntoli et al., 2012; Petrow and Merz, 2009), and the 

water quality of the River Meuse (western Europe) has increasingly deteriorated due to 

more frequent and intense droughts induced by climate change (Van Vliet and Zwolsman, 

2008).” (Hu et al., 2017) These factors urge the development of regional and evidence-

based adaptation strategies for mitigating ongoing climate change. For this purpose, 

observations should not only focus on a mesoscale assessment, but also the identification 

of local vulnerability. 

Snow and glaciers are the most frequently monitored cold region components in 

Europe because of their high sensitivity to climate change. To further carry out long-term 

and sustainable cold region monitoring, data accessibility, compatibility, and consistency 

are desired (IPCC, 2014). In these regards, satellite-based EO data is preferred to 

conventional in-situ measurements. With satellite remote sensing we can continuously 

observe and monitor the Earth’s surface and ensure objective, repeated, synoptic and 
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consistent information in cold region land surface dynamics. EO has long been employed 

for environmental assessment by means of time-series analyses (Hostert et al., 2015; 

Lambin and Strahlers, 1994). Time series analysis has increased in importance because of 

its use in addressing questions across different research domains that examine detailed 

local information over a large spatial scale (Hostert et al., 2015). 

Hu et al. (2017) found that studies focusing on local responses to climate change are 

mainly glacier-related studies using high resolution EO data, while mesoscale assessment 

of glaciers is scarce. In Europe, an overall retreat of glaciers has been reported. 

Conversely, in snow-related studies, the snow dynamics vary region by region, and less is 

known about the local dynamics. Currently, there are mutual and large-scale snow studies 

based primarily on MODIS data. While these studies provide timely and large scale 

information on snow dynamics, there are two obvious limitations, i.e. relatively short time 

span and coarse spatial resolution. Such problems are particularly pronounced when 

investigating local snow dynamics, consequently there are few long-term (> 30 years) and 

quantitative studies on local snow dynamics. As a result, there are large gaps in our 

knowledge regarding local responses of snow cover to climate change, especially in the 

European mountains. 

1.2 Research Foci and Objectives of the Thesis 

As explained in the previous sections, observing snow dynamics is essential for 

understanding and coping with climate change. IPCC (2013) projected with a high 

confidence that snow coverage in the Northern Hemisphere is continuously shrinking 

during the ablation seasons, particularly in mid-latitude mountains (IPCC, 2014, 2013). In 

this context, the observation of long-term snow dynamics in mid-latitude European 

mountain areas is particularly important. Studies also show that responses to the warming 

climate are highly significant, and these mountains are climate-sensitive and vulnerable. To 

date, snow as an ECV has been intensively studied. On the other hand, the currently 

available observations mostly focus on deriving 2D-snow-cover information at a 

continental/hemispherical scale with a limited time-span (i.e. mostly during the period 

2000−2018). Large knowledge gaps regarding local responses to climate change, 
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especially in the elevational direction, hinder adaptation-strategy making. Hence, evidence-

based adaptation strategies for coping with climate change lends itself to using the 

quantitative assessment of long-term snow dynamics in mountainous areas, and employing 

snowline elevation as a proxy. Doing so can better provide pertinent information regarding 

freshwater management, snow-related hazard forecasts, and winter sport/tourism 

management.  

The primary objective of this dissertation is to develop a framework to retrieve and 

characterize snowline dynamics in Europe, based on optical satellite imagery. 

Spaceborne EO imagery is the main data source for snow monitoring in large areas, 

since it can provide long-term consistent records of the Earth’s surface. There are 

heretofore hundreds of EO satellites in orbit, which have collected several Petabytes of 

data (Kuenzer et al., 2015). Initiated in 1972, the Landsat program; which uses a sensors 

MultiSpectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus 

(ETM+), Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS); provides the 

longest continuous record of satellite remote sensing data (Chander et al., 2009; Kuenzer 

et al., 2015). Another long-term archive is the AVHRR series, which launched its first 

sensor in 1978. In addition, readily accessible global time series data such as AATSR 

(Advanced Along Track Scanning Radiometer), MODIS, and MERIS (Medium Resolution 

Imaging Spectrometer) have been available since 1991, 1999, and 2002, respectively 

(Bachmann et al., 2015; Kuenzer et al., 2015). More recently, the European Union (EU) has 

initiated the Copernicus program, previously known as Global Monitoring for Environment 

and Security (GMES) (Donlon et al., 2012; Drusch et al., 2012). The various Sentinel 

missions (Donlon et al., 2012; Drusch et al., 2012; Ingmann et al., 2012; Torres et al., 

2012) also represent essential components of EO imagery collection efforts.  

These open data policies promote the utility of the large volume of EO data. 

Therefore, EO archives hold a great potential to discover long-term snowline elevation 

dynamics in Europe. Among these EO archives, the recent reorganized United States 

Geological Survey’s (USGS) Landsat Collection 1 archive is the world’s longest 

uninterrupted EO dataset. The more than three-decade records of Earth surface at 30 m 

resolution recorded by its TM, ETM+, and OLI/TIRS sensors between 1984 and 2018, make 
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the Landsat Collection 1 archive a unique data source for long-term snow dynamic studies. 

The European Copernicus program conducted by the ESA also is providing the EO images 

acquired by its Sentinel satellites with no charge to users. Thanks to these large-volume 

and freely accessible satellite imagery, as well as with increasingly newly acquired EO data 

from the satellite constellations in orbit, EO has entered a new era (Chi et al., 2016; 

Gorelick et al., 2016). Meanwhile, the great advancement in computational power further 

improves the capacity of handling a large volume of data. Developments in both EO data 

acquisition and in processing enable the retrieval and analysis of long-term snowline 

dynamics. 

In this dissertation, the intention is to exploit the potential of the large-volume and 

freely accessible high-resolution Landsat, ASTER, and Sentinel-2 data, and to develop a 

spatiotemporally transferable framework for data processing to retrieve and analyse long-

term snowline dynamic.  

To achieve these objectives, the first task of this dissertation is to carry out a 

comprehensive literature review regarding the cold region land surface dynamics in Europe. 

The objective of the review is to clarify the state-of-the-art approaches to analysing cold 

region dynamics with regards to snow and glaciers in Europe, as they are strongly 

associated in the European mountains. Subsequently, leading methods in deriving different 

perspectives of the snow and glacier dynamics are highlighted and compared. Most 

importantly, the current research gaps within the field are identified. 

Research Questions: Group 1 

1. How can Earth Observation support the delineation of a cold region boundary in 

Europe? 

2. What are the most frequently applied EO satellites/sensors for the analysis of cold 

region dynamics in Europe? 

3. What are the advantages and disadvantages of the existing different sensor types 

and methods? 

4. What studies dealing with cold region dynamics in Europe have been undertaken 

so far? 

5. What are the research and knowledge gaps with respect to cold region dynamics? 
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The second objective is to provide a comprehensive overview of data availability and 

its suitability for remote-sensing-based assessment of snow dynamics in the European 

mountains. The aim is to elucidate the potentials and opportunities of the long-term 

Landsat Archive for applications in snowline dynamic retrieval. 

The third objective of this thesis is to develop a spatiotemporally transferable 

framework for snowline derivation in mountainous areas based on long-term, free-of-

charge optical datasets. Additionally, based on the resulting long-term snowline time-

series, metrics characterizing the snowline retreat during the ablation seasons require 

development. 

The final objective of this dissertation is to investigate three geographical questions: 

the long-term snowline dynamics in mid-latitude European mountains, their potential 

climate drivers and their consequences. The answers to these three geographical questions 

have the potential to contribute to strategizing responses to ongoing climate change.  

Research Questions: Group 2 

1. What is the spatiotemporal availability of the Landsat Collection 1 archive during 

the period of 1984-2018? 

2. What are the most suitable processing levels and tiers of Landsat Collection 1 

data for snowline dynamics retrieval? 

3. What are the advantages and disadvantages influencing the retrieval of snowline 

dynamics using Landsat imagery? 

Research Questions: Group 3 

1. How can snowlines in mountainous areas be retrieved using the long-term 

Landsat Archive and Sentinel-2 dataset? 

2. How can the gaps in snowline time series be filled when there are no satellite 

observations available? 

3. How can snow cover dynamics during ablation seasons in mountainous areas be 

characterized? 
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In brief, specific objectives addressed in this dissertation are as follows:  

1) Provide a comprehensive literature review of EO-based methods and observations 

of cold region dynamics in Europe. 

2) Investigate the spatiotemporal availability and suitability of the Landsat Collection 1 

archive for snow monitoring in European mountains. 

3) Develop a spatiotemporally transferable framework for deriving and characterizing 

long-term snowline dynamics during the ablation seasons in Europe. 

4) Explore the potential climate drivers and consequences of the derived long-term 

snowline dynamics during the ablation seasons in Europe. 

1.3 Structure and Context of the Thesis 

The dissertation consists of eight chapters that are outlined as follows: 

Chapter 1 (Introduction) starts with a brief introduction to the significance of cold 

regions, particularly with respect to climate change. Subsequently, the chapter emphasizes 

the need for spatial information on cold region dynamics for decision-makers. The chapter 

also highlights the need for EO-based local snow dynamic monitoring in Europe. The 

motivation, research objectives and research questions, as well as the overall structure of 

this dissertation are provided at the end of this chapter.  

 

Research Questions: Group 4 

1. What are the patterns of intra- and inter-annual snowline variations in mid-

latitude European mountains? 

2. What are the potential climate drivers of the detected long-term snowline 

dynamics in European mountains?  

3. What are the potential consequences of the detected long-term snowline 

dynamics in European mountains? 
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Chapter 2 (State-of-the-Art: Results of the Literature Review of Remote 

Sensing on Cold Regions) presents a comprehensive literature review summarizing the 

status and spatial distribution of EO-based studies regarding cold region monitoring in 

Europe. An overview of EO-based observations of snow and glaciers is also provided. 

Subsequently, challenges of EO for cold region observation is discussed with regards to (1) 

spatiotemporal scale and study area settings, (2) data availability, costs and suitability of 

different EO sensor types, and (3) method applicability. Lastly, based on the literature 

review, this chapter explores the potential of Landsat derived time-series in assessing snow 

cover dynamics in mountainous areas within Europe – the prime objective of this thesis. 

Chapter 3 (Study Areas) focuses on the geographical settings of the selected study 

areas, outlining physical, geographical and socioeconomic characteristics. 

Chapter 4 (Data) presents the multiple data sources employed for the assessment of 

snow dynamics in European mountains. The major data sources are satellite imagery, 

Digital Elevation Model (DEM), climate reanalyses data, and in-situ measurements. The 

details are provided in the following sections, together with the description of the employed 

auxiliary datasets. 

Chapter 5 (Developed Framework of Snowline Retrieval and Assessment) 

introduces the novel methodological framework for the assessment of long-term snowline 

dynamics in European mountains. The developed framework includes (1) pre-processing, 

(2) snow detection, (3) regional snowline elevation retrieval, (4) time-series densification, 

and (5) regional snowline retreat curve production.  The details of each step are described 

in the following subsections. 

Chapter 6 (Results of Snowline Dynamics in Europe) presents the results of 

snowline dynamics in Europe in five sections: (1) data availability, (2) snow classifications, 

RSEs, and validation, (3) 35-year intra-annual and inter-annual snowline variability in 

European mountains, (4) the analysis between snowline dynamics and the potential climate 

driver(s), and (5) the possible consequence of the observed snowline dynamics. The first 

part answers the research question regarding the long-term Landsat availability, including 

quality control of data selection (e.g. ascending/descending scenes, tiers, and processing 

levels). Afterwards, the snow classifications, RSEs, and modelled RSE time-series are 
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provided, together with accuracy assessments. Based on the retrieved 35-year RSE time-

series, the intra-annual and inter-annual snowline variability during the ablation seasons 

are analysed for each study area. Ultimately, two case studies are presented. The first case 

study links a climate driver (temperature anomalies and extremes) to the obtained 

snowline dynamics, aiming to investigate the possible triggers causing the observed 

snowline dynamics. The other study links the snowline dynamics to run-off observations, 

attempting to analyse the potential consequences (e.g. flood risk increase) of the observed 

snowline dynamics 

Chapter 7 (Discussion) discusses the obtained results from the previous section. It 

includes the four sections: (1) gaps in Long-term Landsat Collection 1 archive, (2) 

challenges regarding snowline elevation derivation and validation, (3) different aspects of 

the observed snowline elevation dynamics, and (4) the potential triggers and consequences 

in relation to the detected snowline dynamics. The first part investigated Landsat data gaps 

specifically regarding missing observations and cloud observation, in the context of 

snowline dynamics retrieval. Afterwards, the challenges within snowline dynamics 

derivation and validation are discussed. Then the observed snowline dynamics are 

discussed in relation to their peripheral geographical settings and to results in pre-existing 

studies. In the last part, potential applications of the derived RSE dynamics are discussed. 

Also, results from the two case studies, both of which investigate associations between the 

potential climate drivers and consequences of the detected snowline elevation dynamics, 

are discussed. 

Chapter 8 (Conclusion and Outlook) summarizes conclusive findings in relation to 

the objectives and research questions described in the introduction (section 1.2) of this 

thesis. Additionally, outlook and future opportunities of EO for long-term and large-scale 

snow dynamics observations are discussed, as well as the potential statistical techniques 

for further geoscientific analysis. Ultimately, several messages regarding the observed 

snow dynamics in mid-latitude European mountains are provides for decision-makers, 

stakeholders, and snow/hydrological/winter tourism managers.  
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CHAPTER 2 

2 State-of-the-Art: Results of the Literature 

Review of Remote Sensing on Cold Regions 

 

This chapter summarizes the up-to-date current status and spatial distribution of EO-

based studies with regard to cold region monitoring in Europe. Also, an overview of EO-

based cold region dynamics observation is provided with regards to snow and glaciers. 

Subsequently, challenges of EO on cold region observation is discussed with regards to (1) 

spatiotemporal scale and study area settings, (2) data availability, costs and suitability of 

different EO sensor types, and (3) method applicability. Lastly, bases on the literal review, 

the prime objective of this thesis has come into being, which is to explore the potential of 

Landsat derived time series in assessing snow cover dynamics in mountain areas within 

Europe. 

2.1 Earth Observation Studies Contributing to Cold Region 

Monitoring in Europe 

The observation of the cold regions in Europe has a long history. It can trace back to 

1894 at the 6th International Geological Congress, when the International Glacier 

Commission was established in Zurich (Switzerland) to systematically monitor large-scale 

glaciers. To date, plentiful resources of cold regions observation exist for Europe, including 

satellite imagery, photography, paintings and other graphics. Among these methods, 

conventional field measurements are often time-consuming, cost intensive, logistically 

demanding, and challenging, particularly in cold regions with low accessibility (Berthier et 

al., 2004). Hence, such data are usually spatiotemporally discontinuous, i.e., not up-to-

date, sparsely distributed, and only cover a limited time span (Greuell et al., 2007; Rabatel 
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et al., 2005). A promising alternative to field measurements is EO. For more than four-

decade, EO has acquired an enormous amount of images at different spatiotemporal 

resolutions. Because of the free and open data policies of some EO archives (Woodcock et 

al., 2008; Wulder et al., 2012), a tremendous amount of EO data are now free-accessible, 

for instance, AVHRR, MODIS, Landsat, ASTER, and ESA’s Copernicus data. Thanks to these 

EO satellite constellations, the cold regions can be monitored continuously. Meanwhile EO 

also ensures the collection of objective, repeated, synoptic, consistent and large-scale 

information for land surface dynamics in cold regions (Figure 2-1). 

Prior to the formulation of the specific research topic of this thesis, a comprehensive 

literature research was performed, which aims to summarize the state-of-the-art with 

regards EO-based cold region monitoring, and thereafter identify the existing research 

gaps. Such literature review along with its results is summarized in this section, and the 

complete study has been published in detail by Hu et al. (2017).  

2.1.1 Overview of the Reviewed Studies 

Given the challenge summarizing all the cold-region-related studies within a thesis, 

only the SCI (Science Citation Index) articles focusing on snow and glacier dynamics in 

Europe are investigated. The following section presents an overview of the reviewed EO-

based snow and glacier studies, categorized by (a) study objectives, (b) applied sensors, 

and (c) study areas (i.e. geographical distribution). It should be noted that one study may 

have multiple objectives, study areas and/or EO data. Thus, inherently “multi-counted” is 

not avoidable in the presented statistics.  

Figure 2-1: Thematic diagram of cold region monitoring by space-borne Earth Observation (EO). 

Modified according to Hu et al. (2017).  
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In total, 211 EO-based snow/glacier publications were reviewed. These reviewed 

articles were published in the time frame from 1980 to 2018. Therein, a total of 21 

publications were found that used EO data to observe snow and glacier in Europe. 

Information on study objectives regarding EO-based glacier and snow studies are 

summarized in Figure 2-2. The most investigated topic is snow cover area mapping, which 

takes up 21% of the investigated publications. Among glaciologists and geoscientists, 

glacier motion has aroused the greatest interest, being covered in approximately 17% of 

the reviewed publications. Only few (12) publications concerning glacier 

elevation/volumetric change researches were found. Glacier inventories have the smallest 

number of related publications, since the glacier inventories are usually updated at a 5–10-

year interval. 

The most prevalently employed satellite data is Landsat imagery (Figure 2-3) in both 

snow (68) and glacier (42) studies. In terms of the snow-related researches MODIS are 

also commonly (29) applied. Only a quarter of the snow studies used Synthetic Aperture 

Radar (SAR) and Passive Microwave (PM) data. Yet for glacier-related studies, SAR imagery 

are frequently utilized, particularly the European Remote Sensing-1/2 (ERS) data during 

the “Ice Phase”. Moreover, the value of the Light Detection and Ranging (LiDAR) should 

not be neglected with regards to glacier Digital Elevation Model (DEM) calibration and 

verification. 

Figure 2-2: Study Objectives of the reviewed EO (Earth Observation)-based cold region studies in 

Europe. 
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In terms of the geographical distribution of the study areas, Figure 2-4 illustrates that 

Norway (including Svalbard) and the European Alps are the hotspots. Almost half of the 

reviewed snow-related publications focused on the European Alps. In the different parts of 

the Alps, the Italian Alps received the most attention, which is almost twice as much as the 

second most investigated Alpine area (i.e. the Swiss Alps). Regarding the reviewed glacier-

related articles, more than 50% of these publications focus on Norwegian areas (including 

Svalbard). It follows by the European Alps (30%), and therein the French Alps and the 

Swiss Alps are the most frequently studied regions. 

Figure 2-3: Overview of the applied EO (Earth Observation) sensors employed in the reviewed cold 

region studies in Europe. Sensors used fewer than four times are shown in the class 

“others”, which includes Advanced Land Observing Satellite (ALOS)-Phased Array type 

L-band Synthetic Aperture Radar (PALSAR), IKONOS, Japanese Earth Resources 

Satellite-1 Synthetic Aperture Radar  (JERS-1 SAR), Pleiades, Sentinel-1, Sentinel-2, 

WorldView-1/2, TerraSAR-X, COnstellation of small Satellites for the Mediterranean 

basin Observation (COSMO-SkyMed), Sentienl-1, MEdium Resolution Imaging 

Spectrometer (MERIS), etc. 
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2.1.2 Cold Region Extent Delineation 

To assess cold region dynamics, firstly the cold region extent needs to be delineated. 

So far, mapping cold region is often realized by quantitatively analyzing temperature. For 

instance, “Köppen (1884) characterized cold regions as areas with 1–4 moderate months 

(i.e., mean temperature between 10 °C and 20 °C) and 11–8 cold months (i.e., mean 

temperature less than 10 °C). Chen et al. (2006) mapped cold regions in China based on 

the mean temperature of the coldest month (below 3 °C), fewer than 5 months with mean 

Figure 2-4: Geographical distribution of the reviewed EO (Earth Observation) based cold region 

studies in Europe. 
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temperature above 10 °C, and mean annual temperature below 5 °C. In addition to air 

temperature, Yang et al. (2000) located the cold regions in China via thresholding 10 

different climate factors.” (Hu et al., 2017) Also, frost penetration can be used to 

determine cold region extent. “To identify the southern boundary of cold regions, a 30-cm 

frost penetration depth occurring once in 10 years is a generally accepted criterion 

(Andersland and Ladanyi, 2013). To date, the most comprehensive and widely-

acknowledged definition was provided by CRREL (Bates and Bilello, 1966), which located 

the cold regions in the Northern Hemisphere according to temperature (0 °C and −18 °C 

isotherms), snow depth (30 and 61 cm isolines), ice cover (100 and 180 annual mean 

unnavigable days), and frozen ground extent (permafrost and 30 cm frost penetration).” 

(Hu et al., 2017) Based on the CRREL’s definition, Hu et al. (2017) produced the cold 

region stability map (Figure 2-5), together with the ERA-Interim Archive from ECMWF 

(Berrisford et al., 2011). This map has been utilized as the “reference map” for cold region 

mapping using EO data. The map indicates the geographical extent of the cold regions in 

Europe, which includes the Carpathian Mountains, the European Alps, Finland, Sweden, 

Iceland, and Norway (including the Svalbard Archipelago). 

Even though cold region could be delineated roughly using the climate reanalysis data, 

the resultant map is often of coarse resolution. For regional-to-local scale studies, higher 

Figure 2-5: Cold regions in Europe delineated according to integrated stability parameter. Modified 

according to Hu et al. (2017). 
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resolution maps are required. Given the difficulty of deriving air temperature and snow 

depth solely depending on EO data, alternative indicators are required. Since snow is an 

ECV, temporal metrics of snow cover derived from EO data have a great potential for 

delineating a cold region boundary. Meanwhile, “an EO-derived cold region boundary would 

improve the spatial resolution (e.g., 500 m using MODIS data) resulted from the reanalysis 

data (i.e., 80 km from ERA-Interim). Among the temporal snow cover parameters, the 

suitability of 19-year mean SCD derived from GSP data set  (Dietz et al., 2015) from DLR-

DFD is explored (Figure 2-6). The DLR-DFD GSP is a cloud-free time series of daily snow 

cover processed from the operational 500 m MODIS daily snow cover products MOD10A1 

and MYD10A1 (Hall et al., 2002), and has been validated using the European Climate 

Assessment & Dataset (ECA&D) station data in Europe (details see Dietz et al. (2015)) To 

ensure the consistency of spatial resolution, the spatial resolution of mean SCD data is 

downscaled from 500 m to 80 km (the spatial resolution of the ERA-Interim data set and 

the cold region stability result). A correlation analysis between mean SCD (2000–2018) and 

cold region stability is performed. The results indicate high correlation (R2 = 0.734 with a 

p-value < 0.001).” (Hu et al., 2017) The extent of the stable cold region is of a mean SCD 

larger than 180 days.  

Figure 2-6: 19-year mean Snow Cover Duration (SCD) between 2000 and 2018 derived from Global 

Snow Pack (GSP) data based on Dietz et al. (2015) (left), and the scatter plot between 

mean SCD (2000–2018) and cold region stability (right). The two horizontal anomalous 

lines are artefacts due to the spatial resolution downscaling occurring in the mountain 

areas and their surrounding regions. Modified according to Hu et al. (2017). 
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2.1.3 Snow Dynamics Monitoring 

Snow Cover Area (SCA): Thresholding band-ratio(s) is the most frequently used 

method in SCA mapping. “Among the existing threshold-based algorithms, SNOMAP (Hall et 

al., 1995; Riggs et al., 1994) is the most quintessential example. The originally proposed 

Normalized Difference Snow Index (NDSI) ≥ 0.4 (Hall et al., 1995; Riggs et al., 1994) has 

been universally applied to identify snow covered area.” (Hu et al., 2017) 

NDSI= 
GREEN-SWIR

GREEN+SWIR
 (2.1) 

Whereas, single thresholding based on NDSI may provide erroneous results over very dark 

targets, i.e., black spruce forest, water bodies. “To avoid such misclassification, further 

threshold(s) were introduced in addition to NDSI ≥ 0.4. For example, Winther and Hall 

(1999) included ρb4 (reflectance at band 4) ≥ 0.11 for Landsat TM imagery, Xiao et al. 

(2004) used ρb3 ≥ 0.11 for SPOT-VEGETATION images, Foster et al. (2011) additionally 

restricted ρb2 ≥ 0.1 and ρb4 ≥ 0.1 to MODIS data, etc.” (Hu et al., 2017) Another well-

known issue regarding snow classification is snow-in-forest. “Usually, this problem is 

addressed by supplementarily computing the Normalized Difference Vegetation Index 

(NDVI). 

NDVI= 
NIR-RED

NIR+RED
 (2.2) 

Afterwards, a NDSI—NDVI threshold field can be employed to identify snow in forest pixels 

according to Klein et al. (1998).” (Hu et al., 2017) Besides, if thermal bands are available, a 

thermal mask (e.g., 283 K proposed by Romanov et al. (2000)) should be considered to 

further eliminate contaminated snow pixels (e.g., cloud, coastal sand, aerosol-influenced 

pixels). In addition to the above-mentioned methods, maximum likelihood (Turpin et al., 

1999), crisp and fuzzy soft classifiers (Pepe et al., 2010), linear-interpolation-based method 

(Metsämäki et al., 2002) were also developed and applied in Europe. “Due to the inherent 

challenges of SAR sensors—dry snow penetration and single-frequency configuration—

mapping SCA using SAR data independently is difficult. Yet PM sensors with multi-

frequency channels hold potential for mapping snow cover utilizing the inverse correlation 

between surface emission and radar frequency” (Hu et al., 2017), e.g., Grody, 1991; Grody 
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and Basist, 1996; Kongoli et al., 2007. Meanwhile, the limitation of PM-based methods 

should be also noted, including the restriction to dry snow, difficulty in determining thin 

snow (<5 cm) (Foster et al., 2011), very coarse resolution (e.g., SSM/I with 25 km 

resolution), and attenuation of forest (Kurvonen and Hallikainen, 1997). 

“Contemporaneously, an optical-PM-scatterometer blended algorithm (i.e., AFWA NASA 

Snow Algorithm, ANSA) was developed by the US Air Force Weather Agency (AFWA) and 

NASA jointly (Foster et al., 2009, 2007, 2011).” (Hu et al., 2017) Apart from the mono-

temporal spatial extent of SCA, multi-temporal SCA information is also crucial for snow 

cover dynamics assessment. Snow Cover Duration (SCD), Snow Cover Start (SCS), and 

Snow Cover Melt (SCM) (Wang and Xie, 2009) are the most prevalently used metrics. In 

Europe, Dietz et al. (2012) studied the temporal snow cover characteristics in Europe 

between 2000 and 2011 based MODIS-Terra/Aqua daily snow cover products. 

Snow Cover Fraction (SCF): Given the well-known inherent issue of satellite 

images, pixel mixture, FSC results may be more superior informative than binary 

classifications. So far, there are two popular algorithms for FSC derivation, i.e., the 

Norwegian Linear Reflectance-to-Snow-Cover Algorithm (NLR) developed by Andersen 

(1982), and the MODIS-based NDSI-FRA (FRAction of snow-covered area) algorithm 

introduced by Andersen (1982) and Salomonson and Appel (2004). “The NLR method was 

established assuming a linear relationship between the pixel signal and FSC (Andersen, 

1982). Initially, the algorithm was developed for estimating FSC in Norway, based on 

NOAA-AVHRR data. In fact, it can be regarded as a 2-EM (End-Member) SMA (Spectral 

Mixture Analysis) model (Solberg et al., 2010). Later, Zhu and Woodcock (2014a) modified 

the NLR algorithm to build the snow detection module of Tmask (multiTemporal mask, an 

automated cloud, cloud shadow, and snow detection method) for Landsat data. Using NDSI 

values, the NDSI-FRA algorithm has been applied to generate MOD10A1 (Terra) and 

MYD10A1 (Aqua) FSC products (Rittger et al., 2013). It was originally developed to 

estimate FSC using MODIS-Terra imagery (Salomonson and Appel, 2004). Subsequently, 

Salomonson and Appel (2006) expanded the algorithm to data available from the Aqua 

platform as well.” (Hu et al., 2017) Also, the classical spectral unmixing technique has been 

ultized for SCF estimation since the 1990s, e.g., Nolin et al., 1993; Rosenthal and Dozier, 

1996; Painter et al., 2003, 1998. “Foppa et al. (2004) rendered a Linear Spectral Mixture 

Analysis (LSMA) to NOAA-AVHRR data for the whole European Alps. The authors suggested 
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that the presented processing chain is appropriate for operational and the Near Real Time 

(NRT) applications since it is simple, fast, objective, and reproducible. Later, Foppa et al. 

(2007) validated the results quantitatively over the European Alps based on higher 

resolution satellite imagery (ASTER). In the European Alps, Veganzones et al. (2014) 

applied a much advanced unmixing technique to MODIS data. The algorithm includes two 

parts: a (partially) Constrained Least Squares Unmixing (CLSU) and an Endmember 

Induction Algorithm (EIS).” (Hu et al., 2017) Moreover, spectral unmixing is also an 

alternative for detecting snow-in-forest, e.g., Vikhamar and Solberg, 2003a, 2003b; 

Metsämäki et al., 2012. Last but not least, optical reflectance model-based methods are 

also widely used, for example, SCAmod developed by the Finnish Environment Institute 

(SYKE) (Metsämäki et al., 2004, 2005; Salminen et al., 2009; Vepsalainen et al., 2001).  

Snow Characterization: Snow Depth (SD), Snow Grain Size (SGS), Snow Water 

Equivalent (SWE), and Snow Impurity (SI) are the most often studied metrics with regards 

to snow pack characterization. In the optical data domain, SGS and SI are often derived 

because of the reflectance dependence in the visible (for SI) and NIR (for SGS) range 

(Warren, 1982; Warren and Wiscombe, 1980). “(Fily et al., 1997) discovered an empirical 

linear relationship between Landsat TM reflectance and SGS. The authors suggested the 

use of a band at 1.2 µm because of the highly pronounced SGS effect and low influence 

due to atmosphere and SI at this wavelength. Painter et al. (2003) developed a Multiple 

Endmember SMA (MESMA) based model, MEMSCAG (Multiple End Member Snow Covered 

Area and Grain size), to model FSC and SGS using hyperspectral data. In order to map 

light-absorbing snow impurities (e.g., black carbon, mineral dust, and volcanic ash), Di 

Mauro et al. (2015) introduced a Snow Darkening Index (SDI).” (Hu et al., 2017) When it 

comes to the SWE estimation, PM data is the backbone because of the high correlation 

between the Brightness Temperature (BT) functions and SWE (Hallikainen and Jolma, 

1992, 1986). “(Hallikainen and Jolma, 1992) performed a correlation analysis for 17 BT 

metrics and SWE map-derived values in Finland. Their conclusion suggested that BT10V − 

BT37V and BT18V − BT37V are the most suitable (i.e., have the highest correlation 

coefficients) for estimating SWE in small areas.” (Hu et al., 2017) Table 2-1 summarizes 

empirical methods for SD and SWE calculation. Alternatively, Artificial Neural Network 

(ANN) (Santi et al., 2014, 2012) and the Helsinki University of Technology (HUT) snow 

microwave emission model (Pulliainen et al., 1999) are also employed to derive SWE and 
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SD retrieval using PM data. “Tedesco et al. (2004) compared the performance of an ANN-

based technique, an empirical algorithm (Spectral Polarization Difference method, SPD 

(Aschbacher, 1989)) and the iterative inversion of the HUT snow emission model in 

retrieving SWE and SD. The authors found that the best results were obtained from the 

ANN method trained with experimental data. Satisfactory results were also received using 

the other two methods when SWE is less than 17 cm or excluding springtime 

measurements.” (Hu et al., 2017) Furthermore, (Hallikainen et al., 2003) explored the 

usability of active microwave data to derive SWE in Finland. By integrating the Special 

Sensor Microwave/Imager (SSM/I) and the Quick Scatterometer (QuickScat) data, the 

authors concluded that the PM-scatterometer-combined SWE retrieval method is superior 

to the methods solely based on PM data. 
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Table 2-1: Empirical equations for Snow Water Equivalent (SWE) and Snow Depth (SD) calculation. Modified according to Hu et al. (2017). 

Equation Annotation Reference 

SD= - 
GT- 0.085

0.036
 GT=

BT37H − BT18H

37 − 18
 Hallikainen and Jolma, 1992 

SWE = 0.27 ∙ SD  Hallikainen and Jolma, 1992 

∆T = F(SWE) −  F(SWE = 0) F = BT18H −  BT37H Hallikainen, 1984 

SD = 1.59 ∙ (BT18H −  BT37H )  Chang et al., 1987 

SWE = a0 + a1 ∙ [(BT19V - BT37V ) + (BT19V −  BT19H )] a0 and a1 are empirical coefficients Aschbacher, 1989 

SWE = c  ∙ (BT18H - BT37H ) c is the slope of linear fit 4.8 mm ∙ K−1 Armstrong and Brodzik, 2001 

SD = 1.59 ∙ (BT19H - 6) - (BT37H - 1)  Armstrong and Brodzik, 2001 

SWEnon-forested = a0 − a1 ∙ (BT36.5V −  BT18.7V ) a0 and a1 are empirical coefficients Lemmetyinen et al., 2006 

SWEforested = a0 − a1 ∙ [(BT365V − BT18.7V ) - BT18.7V −  BT18.7H ] Lemmetyinen et al., 2006 

SWE = a0 + a1 ∙ (BT23V − BT89V ) a0, a1, a2, a3 are empirical coefficients  Kongoli et al., 2007 

SWE = a2+ a3 ∙ (BT23V −  BT31V )  Kongoli et al., 2007 
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Snowmelt: To monitor snowmelt processes, spatiotemporal snowmelt information is 

needed. The conventional snowmelt area maps can be generated based on multi-temporal 

SAR images, utilizing the seasonal backscattering variability caused by variations of snow 

liquid water content and surface roughness of the snow pack. So far, the leading method is 

the change detection algorithm developed by Nagler and Rott (2000), which is based on a 

ratio between the backscattering coefficient of wet snow and a reference image, pixel by 

pixel. Thereafter, a −3 dB threshold is suggested to separate wet snow from peripheral 

land-covers. Similarly, Koskinen et al. (1997) and Pulliainen et al. (2001) developed the 

Helsinki University of Technology SCA method (TKK-SCA) to detect wet snow cover area 

based on the observed backscattering, as well as those of reference surface and wet snow. 

“To determine the date of snowmelt onset, the temporal variations in backscattering 

and/or brightness temperature can be employed. For instance, Rawlins et al. (2005) 

derived the timing of snowmelt in the pan-Arctic during the spring of 2000 using daily 

QuikSCAT-SeaWinds backscattering time series. For multi-temporal snowmelt retrieval, 

Rotschky et al. (2011) analyzed the spatiotemporal pattern of snowmelt-refreeze cycles in 

Svalbard using 9-year (from 2000 to 2008) QuikSCAT time series.” (Hu et al., 2017) 

Furthermore, Wang et al. (2011) combined active (QuikSCAT) and passive (SMM/I) 

microwave satellite data to determine snowmelt onset between 2000 and 2009. For the 

purpose of snowmelt runoff estimation, Snowmelt Runoff Model (SRM (Martinec et al., 

1998)) is the most frequently employed model. “Martinec (1975) initially developed the 

SRM for small European river basins, and it has subsequently been successfully applied 

worldwide (Martinec et al., 1998). Swamy and Brivio (1996) explored the potential of 

optical EO data (Landsat dataset) together with ground meteorological and hydrological 

information to improve snowmelt runoff modelling for the Italian Alps. Nagler et al. (2008) 

presented a practical data assimilation scheme for short-term runoff forecasts in Alpine 

basins exemplified by the Ötztal drainage basin (Austrian Alps).” (Hu et al., 2017) The 

authors emphasized that meteorological-forecast-induced errors are more influential than 

satellite-derived snow cover information with regards to resultant runoff simulations. 

Operational Snow Products: The history of operational snow product development 

can reach back to 1960s, when “weekly binary snow cover charts of the Northern 

Hemisphere have been provided by NOAA/NESDIS based on manual inspection by trained 

meteorologists using optical satellite imagery (Armstrong and Brodzik, 2001; Matson and 
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Wiesnet, 1981; Robinson et al., 1993). After the successful development of IMS in 1997, 

snow extent maps can be generated at daily intervals in a more efficient and accurate 

manner (Helfrich et al., 2007; Ramsay, 1998). Such products are usually only suitable for 

studies at a global scale due to their medium resolution (1 km introduced in 2014). In 

December 1999, MODIS-Terra was launched. One year later, the MODIS-Terra 500 m daily 

snow cover product (MOD10A1) became available through the National Snow and Ice Data 

Center (NSIDC). The product is generated using the SNOMAP algorithm (Hall et al., 1995; 

Riggs et al., 1994). During the Globsnow-1/2 project (Metsämäki et al., 2015), ESA also 

developed its SCA and SWE products based on ERS-2/ATSR-2 (Along-Track Scanning 

Radiometer-2) (1995–2003) and Envisat-AATSR (2002–2012) data. For more snow product 

information and data access, it is suggested that readers explore what is offered by the 

NSIDC. Given the existence of various snow-related products, intercomparison and 

validation are essential. Toward this end, ESA launched the SnowPEX (Satellite Snow 

Product Intercomparison and Evaluation Exercise) project within the Quality Assurance 

framework for Earth Observation (QA4EO) to intercompare and validate the major satellite 

snow products for the Northern Hemisphere and the globe. It is expected that the results 

will be published in the near future.” (Hu et al., 2017) In central Europe (42°~51°N, 

5°~30°E), Notarnicola et al. (2013) implemented the EURAC algorithm to produce a near-

real-time snow extent product at 250 m resolution based on the MODIS data. 

2.1.4 Glacier Dynamics Monitoring 

 Glacier Extent Delineation: Glacier extent is the basic parameter for glacier 

dynamics monitoring. GLIMS (Raup and Khalsa, 2010) proposed a guideline for glacier 

extent delineation, i.e. circumscribing both the glacier ice and snow body and all adjacent 

debris at the end of the ablation season. At present, optical imagery is the most used 

dataset for glacier extent delineation. So far, manual digitization is the most 

straightforward way to delineate glacier outlines using a background image displayed as a 

false colour composite (e.g., ASTER bands 4-3-2 (Błaszczyk et al., 2009), TM 5-4-3 or TM 

4-3-2  (Baumann et al., 2009; Paul et al., 2015, 2007), ETM+ 7-4-2 (Follestad and Fredin, 

2007)). Also, “several (semi-) automated techniques have been developed to extract 

glacier bodies of snow and ice from EO data. Among them, taking advantage of the 
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significant spectral contrast between the Short Wave Infra-Red (SWIR) and the visible 

band, the band ratio method (thresholding ratio image, e.g., Bayr et al., 1994;  Hall et al., 

1987; Paul, 2002; Paul et al., 2002) is the most widely acknowledged and utilized 

algorithm. Lastly, manual correction and median filtering are recommended to improve the 

results (Paul et al., 2002). Further information with regard to the threshold sensitivity, 

different band combinations and spatial resolutions can be found in (Paul et al., 2016). By 

far, this algorithm has become the backbone for delineating glacier outlines in many glacier 

inventories (e.g., Carturan et al., 2013; Paul et al., 2011a, 2011b, 2004b; Paul and 

Andreassen, 2009; Pfeffer et al., 2014b; Winsvold et al., 2014). Other classification 

algorithms have also been applied, but scarcely for glacier delineation: Serandrei-Barbero 

et al. (1999) applied fuzzy contextual classification to map the glaciers in the Italian Alps; 

Robson et al. (2016) implemented the Object-Based Image Analysis (OBIA) to classify 

more than 100 glaciers in the Austrian Alps for three time steps semi-automatically.” (Hu et 

al., 2017) Moreover, studies comparing the mainstream delineation techniques have been 

carried out by Paul (2000), Paul et al. (2016, 2015, 2013, 2002), Paul and Kääb (2005). 

“The key conclusions from these studies are: 

1) Generally, the Digital Number (DN) based simple ratio methods had the best results 

(fast, robust and strict to the pixel boundary). Digitization and the band-ratio method 

are consistent in clean glaciers; 

2) Simple ratios are relatively insensitive to threshold selection. Yet the additional TM1 

threshold is of higher threshold sensitivity; 

3) Atmospheric correction for TM2 is important when NDSI is used; 

4) Manual correction is recommended to correct misclassifications caused by debris cover, 

proglacial lakes, shadowed areas, and clouds. 

5) Using thresholds of the panchromatic band (e.g., OLI 8) divided by SWIR could 

improve the spatial resolution, but this increases the workload in manual correction. 

Since mapping shadowcast glaciated areas is the most critical point by far (Paul and 

Kääb, 2005), TM3/TM5 with TM1 correction or NDSI is therefore often preferred. However, 

the local environmental settings concerning vegetation and/or water conditions must 

always be considered to select the most proper ratio (Paul et al., 2015).” (Hu et al., 2017) 

At present, “automated identification of debris cover remains a well-recognized challenge 
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particularly for optical data (Paul et al., 2013, 2011b; Racoviteanu et al., 2009), mainly due 

to its spectral similarity to the surrounding terrain. To tackle the problem, some EO-based 

techniques have been developed mainly based on the thermal band(s). A pioneer study 

was undertaken by Lougeay (1974), who explored the potential of thermal remote sensing 

to identify different moraine types and glacier ice based on thermal contrast. Also, several 

empirical methods using the relationship between debris thickness and temperature have 

been developed (e.g., Mihalcea et al., 2008; Ranzi et al., 2004). An obvious drawback of 

these methods is the lack of spatiotemporal transferability, since field measurement and 

recalibration are imperative. As alternatives, Paul et al. (2004a) developed a semi-

automatic multisource (i.e., multispectral data and DEM) method to map the supraglacial 

debris, and compared it to multispectral-data-based ANN classification.” (Hu et al., 2017) 

Nevertheless, an Interferometric Synthetic Aperture Radar (InSAR) coherence image 

derived from SAR images holds a potential to determine debris cover, which takes low 

coherence as an indication of glacier existence (Atwood et al., 2010; Robson et al., 2016).  

Glacier Motion: Glacier motion is one of the most important perspectives of glacier 

dynamics monitoring. Conventionally, the retreat/advance of glaciers is retrieved from 

bi/multi-temporal glacier outlines (e.g., Holobâcă, 2016). Yet, “to extract the velocity field 

and the displacement within the glaciated area(s), more advanced techniques are needed. 

So far, there are two leading methods for velocity field extraction, image offset-tracking 

and D-InSAR (Differential InSAR). Image offset-tracking can be applied to both optical and 

SAR data. A 2D velocity field can be derived by determining the movement of identifiable 

supraglacial objects (e.g., crevasses, moraines) or speckles, using a window (also known 

as a search chip/patch) moving with an n-pixel step to find the peak cross-correlation. In 

the optical field, this is usually termed “image matching”, for instance, (Berthier et al., 

2005; Heid and Kääb, 2012a; Kääb et al., 2016, 2005; Schubert et al., 2013). A detailed 

comparison of different image matching techniques can be found in (Heid and Kääb, 

2012b; Paul et al., 2015). Also, to measure glacier motion in Europe, speckle/feature and 

coherence tracking are widely applied to TerraSAR-X (X-band) data for the Swiss Alps 

(Schubert et al., 2013) and Svalbard (Schellenberger et al., 2017), ERS-1/2 SAR (C-band) 

in Svalbard (Strozzi et al., 2002), Radarsat-2 (C-band) in Svalbard (Schellenberger et al., 

2016), and the Japanese Earth Resources Satellite-1 (JERS-1; L-band) in Svalbard (Strozzi 

et al., 2006) using amplitude/phase patterns and coherence. D-InSAR is an alternative to 
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offset-tracking. It includes: a two-scene technique (DEM elimination technique), a three-

scene technique (three-pass technique) and a four-scene technique (four-pass technique) 

(Adam and Jonsson, 1997). D-InSAR is amongst the most accurate techniques (Schubert et 

al., 2013; Strozzi et al., 2002). Whereas, it is restricted to a short temporal baseline in 

order to avoid the loss of coherence. A significant drawback of D-InSAR is that it only 

depicts motion in the slant-range direction. Only in a special case, when dual-azimuth 

image pairs (ascending and descending passes) are available and coherence is retained, 

might D-InSAR conquer this problem. Otherwise, an azimuth displacement component 

derived from coherence tracking is often combined with the D-InSAR result to build the 

motion both in slant-range and in the azimuth direction.” (Hu et al., 2017) To further 

retrieve a 3D velocity field, the flow direction is required. An often applied assumption is 

that the glacier ice bodies flow parallel to the surface (Joughin et al., 1998). It is 

noteworthy that such assumption is actually is error-prone, given the fact that flow tends 

to be upward in the ablation zone and downward in the accumulation zone (Paterson, 

2016).  

Glacier Elevation and Volumetric Change: To assess the responses of glaciers to 

climate change, glacier volumetric change is superior to glacier areal change due to the 

time delay of glacier extent shrink (Oerlemans, 2001). “The volumetric change can be 

calculated by multiplying the average glaciated area by the glacier elevation change within 

a certain time span (Hannesdóttir et al., 2015). DEM subtraction is the most 

straightforward way to calculate glacier elevation change. The DEM(s) can be derived from 

photogrammetry using aerial photography, airborne SAR interferometry, airborne LiDAR, 

and topographic maps. Regarding the EO data, optical sensors of stereo geometry, e.g., 

ASTER, the Satellite Probatoire de l'Observation de la Terre 5 (SPOT5), IKONOS, Quickbird, 

WorldView, Pléiades, have enduring popularity. Of these optical sensors, ASTER is of 

particular interest thanks to its free accessibility (unlimited public access since 1 April 

2016), extraction software based on automated algorithms (e.g., SilcAst, PCI Geomatics), 

comparably short revisit time interval, long-term operation (16-day revisit time from 2000 

to present), and relatively high resolution at near-global coverage (15 m nadir and 

backward for band 3). Before the subtraction, reprojection, co-registration and resampling 

are imperative for heterogeneous DEMs. Paul et al. (2015) suggested downscaling the finer 

resolution image using algorithms more complicated than nearest neighbour to avoid 
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artefacts and horizontal disalignment within a sub-pixel. Moreover, when the pixel size 

difference is at least two times, a block average filter is recommended. Similarly, users can 

also use InSAR to generate interferometric DEMs. However, radar penetration of the snow 

and ice makes interferometric DEM subtraction more complicated for glacial studies (Frey 

and Paul, 2012; Gardelle et al., 2012; Nuth and Kääb, 2011). Nevertheless, SAR still 

provides valuable elevation change information, especially when the glacier surface 

experienced ice-water phase change (e.g., precipitation and melting). Magnússon et al. 

(2011) explored the potential of InSAR for detecting regional glacier uplift and subsidence. 

Even though the Ice, Cloud and Land Elevation Satellite-Geoscience Laser Altimeter System 

(ICESat-GLAS) has the best vertical accuracy (0.15 m (Zwally et al., 2002)) and the best 

consistency (Nuth and Kääb, 2011) of these elevation products, it has two major 

drawbacks for glacier elevation change measurement: approximately 70 m diameter 

footprint with 170 m ground spacing along track, and shift of the footprint centers (Kääb, 

2008). To tackle the problem, two leading methods exist for glacier elevation change 

estimation based on altimetry data: the repeat-track method and the cross-over method 

(Kääb et al., 2012; Moholdt et al., 2010; Pritchard et al., 2009). In Europe, Moholdt et al. 

(2010) tested two ICESat repeat-track methods for deriving glacier elevation changes in 

Svalbard and validated the results against cross-over points and the SPOT 5 stereoscopic 

survey of Polar Ice: Reference Images and Topographies (SPIRIT) DEM. The results 

confirmed the validity of repeat-track methods for mapping short-term Arctic glacier 

elevation changes.”  (Hu et al., 2017) The comparison studies among ICESat Altimeter, 

DEMs and topographic maps were carried out by Nuth et al. (2010) and Kääb (2008). The 

authors emphasized the value of ICESat data in deriving glacier elevation/volumetric 

change at a regional scale. 

Glacier Mass Balance: Glacier mass balance is defined as the change of the mass of 

(part of) the glacier over a certain time frame (Cogley et al., 2011). For glacier mass 

balance studies at a decadal scale, solely glacier area or length change is not 

representative enough (Rabatel et al., 2016). Traditionally, “glacier mass balance is directly 

measured via snowpits and stakes. However, such glaciological measurement has an 

obvious drawback, i.e. the laboriousness of long-term and large-scale monitoring. EO-

based mass balance retrieval has thus gained increasing attention in recent years. The 

most widely-applied EO-based method is the “geodetic method” (Finsterwalder, 1954). 
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Hannesdóttir et al. (2015) employed this method to reconstruct the mass balance of 

glaciers in the southeast part of the Vatnajökull ice cap for a seven-year span from ~1890 

to 2010 based on multiple sources including glacial geomorphological features, historical 

photographs, maps, aerial images, the Differential Global Positioning System (DGPS) 

measurements, a LiDAR survey and several optical satellite images (i.e., SPOT5, MODIS, 

Landsat). The glacier-wide geodetic mass balance, BG, can be expressed as: 

BG= ρ̅ × 
∆H

∆t
 (2.3) 

where �̅�  denotes glacier-wide average density, which is either obtained from field 

measurement or oftentimes assumed to be 900 m·kg−3 (Cogley, 2009; Huss, 2013). The 

areal-mean thickness/elevation change ∆H is averaged through a certain time-span ∆t 

(Cogley, 2009). The uncertainties of this method have been well-documented (Cogley, 

2009; Nuth et al., 2012; Sapiano et al., 1998). Apart from bias in ∆H, when converting 

elevation changes into water equivalent volume changes, the simplified assumption of ice 

density �̅� is error-prone especially in compressible firnpack (Huss, 2013; Nuth et al., 2012; 

Sapiano et al., 1998). In addition, the time-span ∆t is significantly uncertain with regard to 

the acquisition dates of the EO data (Cogley, 2009). To construct mass balance time series, 

the geodetic method is usually hampered by the scarcity of long-term consistent annual 

elevation data, so alternatives are desired. The Equilibrium Line Altitude (ELA) is an 

appropriate indicator for glacier mass balance (Braithwaite, 1984). ELA refers to the mean 

altitude of the equilibrium line which divides the accumulation zone and the ablation zone 

and therefore has zero climatic mass balance (Cogley et al., 2011). Based on ELA 

variability, Rabatel et al. (2016) reconstructed glacier-wide mass balance time series for 30 

glaciers in the French Alps from 1983 to 2014. As an alternative to ELA, albedo from 

satellite measurements is useful for depicting glacier mass balance in a time series manner. 

Dumont et al. (2012) explored the relationship between measured annual mass balance 

and MODIS-derived glacier albedo. They observed strong correlation (R2 > 0.9) between 

the albedo and mass balance and argued that albedo is more informative than ELA with 

regard to glacier surface. The “satellite albedo method” was developed and applied for 

Vatnajökull (Iceland) using NOAA-AVHRR imagery (Calluy et al., 2005) and Svalbard using 

MODIS data (Greuell et al., 2007). In addition to the aforementioned algorithm for glacier 

mass balance calculation, other methods also exist, such as the Accumulation Area Ratio 
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(AAR) method (Kulkarni, 1992) and the “flux gate” method (Nuth et al., 2012) (only for 

tidewater glaciers).” (Hu et al., 2017) In Europe, AAR method is often applied to assess 

mass balance for glaciers in Svalbard. 

Glacier Inventory: In principle, a glacier inventory usually summarizes two aspects 

of the glacier information, i.e. glacier extent and glacier-related parameters (e.g., 

identification code, coordinates, total surface area, length, elevation, mean aspect and 

slope). “For the purpose of glacier delineation in regional glacier inventories, 

orthophotographs and historic maps are valuable resources because they contain 

information gathered before the availability of EO data. The primarily EO-based glacier 

inventories for Europe (excluding Greenland) are summarized in Table 1. The Landsat fleet 

is by far the most often used backbone of glacier inventory generation. The Landsat fleet 

has several merits compared to ASTER or SPOT, which are also popular sensors in 

glaciological studies (see Figure 2-3): large swath width, free accessibility, long-term 

records, georeferencing and orthorectification (Winsvold et al., 2014). The methods were 

summarized in the previous sections. As seen in Table 2-2, ratio image thresholding and 

manual digitization are the most frequently applied delineation methods. Regarding the 

updating interval, 5 to 10 years is suggested (Paul et al., 2007) in order to reveal highly 

variable changes as well as the spatial patterns of changes (Paul and Andreassen, 2009). 

Topographical information is the most often extracted glacier parameter, and can be 

automatically calculated from the existing freely available DEMs. The suitability of national 

and global DEMs with regard to glacier-specific topographic parameter extraction was 

investigated by Frey and Paul (2012) for a sample of 1786 Swiss glaciers. The study 

concluded that the first choice is local, high quality DEMs. When such DEMs are not 

available, the Shuttle Radar Topography Mission (SRTM) DEMs are preferred to ASTER 

GDEMs. Notwithstanding better results obtained from SRTM DEMs, both DEMs are useful 

for calculating topographic parameters in glacier inventories. In terms of the calculation, 

Paul et al. (2009) recommended the standardized calculation of relevant glacier parameters 

(9 basic and 7 auxiliary parameters). Apart from topographical attributes, mass balance 

information is one of the most essential variables for glacier studies. Mass balance 

information is seldom included. Recently, some inventories have started to include or 

update mass balance information. For example, Hannesdóttir et al. (2015) included the 

average geodetic mass balance for the outlet glaciers of southeast Vatnajökull. ” (Hu et al., 
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2017) So far, the Randolph Glacier Inventory (RGI) is the only global glacier inventory 

(excluding Greenland and the Antarctic), whose first version was released on 22 February 

2012. The latest RGI Version 5.0 (released 20 July 2015) has ingested some of the mass 

balance data from the WGMS mass balance database (Arendt et al., 2015). 
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Table 2-2: References for existing glacier inventories derived from satellite imagery for European glaciers (excluding Greenland). Modified according to Hu et al. 

(2017). 

Location Year Sensor DEM Method 1 References 

Globe (RGI) 1999 or later Landsat fleet, etc. 
SRTM, SPOT DEM,  
ASTER GDEM2 

T + D Arendt et al., 2015; Pfeffer et al., 2014a 

European Alps 2003 Landsat fleet STRM T Paul et al., 2011b 

Austrian Alps 
1985, 1992 Landsat fleet — T Paul, 2002 

1985, 2003, 2013 
Landsat fleet, ALOS 
PALSAR 

SRTM, Local DEM S Robson et al., 2016 

French Alps 
1967/71,1985/86, 
2003, 2006/09 

Landsat fleet Local DEM S Gardent et al., 2014 

Italian Alps 1987,2009 Landsat fleet Local DEM T Carturan et al., 2013 

Swiss Alps 
1985 Landsat fleet, SPOT Local DEM S/U/T/M Kääb et al., 2002; Paul et al., 2002 

1985, 1992, 1998/99 Landsat fleet Local DEM T Paul et al., 2004b 

Iceland 1890−2010 
Landsat fleet, MODIS, 
SPOT 

Local DEM D Hannesdóttir et al., 2015 

Norway 

LIA−2003 Landsat fleet — D Baumann et al., 2009 

1999 Landsat fleet Local DEM T Paul and Andreassen, 2009 

1966, 1997, 2003, 
2006 

Landsat fleet Local DEM T Paul et al., 2011a 

1947/85, 1988/97, 
1999−2006 

Landsat fleet Local DEM T Winsvold et al., 2014 

Svalbard 

1930s−2010 
ASTER, Landsat fleet, 
SPOT 

SPOT DEM, ASTER 
GDEM2 

D Nuth et al., 2013 

2000−2006 ASTER, Landsat fleet, ASTER generated T+D Błaszczyk et al., 2009 

1 Delineation method for EO data: T = Thresholded Ratio Image; S = Supervised Classification; U = Unsupervised Classification; D = Digitization. 

LIA: Little Ice Age. 
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2.2 Identified Challenges of Earth Observation on Cold 

Regions 

The previous section summarizes the EO-based studies on cold regions with respects 

to snow and glacier dynamics in Europe. Thereof, enormous challenges still exist, when 

deriving the land surface dynamics of cold regions in Europe. Meanwhile, these challenges 

also shed light on the pathway for future studies, based on identified methodological and 

geoscientific research gaps. 

2.2.1 Challenges with Regards to Spatiotemporal Scale and Study 

Area Settings 

The reviewed studies are carried out at very different scales. Snow is highly temporal-

dynamic. Given that most of the snow dynamic studies focus on a regional-to-

hemispherical scale, high spatial resolution is not so critical comparing to the high temporal 

resolution, when analysing large scale snow cover characteristics. Often, snow dynamic 

studies are dependent on high temporal EO data (Figure 2-7).  In contract, “glacier studies 

are mostly presented at an individual glacier scale, and only a limited number of studies 

focus on regional scales (e.g., the European Alps, the Svalbard Archipelago). The time 

interval of EO-based glacier studies varies from monthly to decadal (Figure 2-8), while 

most of the studies are multi-temporal observations at an annual interval.” (Hu et al., 

2017) In this regard, high spatial resolution is more desired for glacier dynamic studies. 

In terms of the study area settings, a large part of the cold regions in Europe are 

situated mostly in high-latitude regions and/or in mountain areas. “Typical problems 

regarding high latitude areas are the occurrence of polar darkness and frequent cloud 

cover, which has a great influence on optical data availability. On the other hand, the total 

number of acquired observations increases owing to the increased overlap of individual 

paths of polar orbiting satellites at high attitudes. Also, some areas in high latitudes are 

simply not covered by EO data. In mountainous areas, the complex and steep terrain is 
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problematic for SAR image processing.” (Hu et al., 2017) Therefore, combining optical and 

SAR data to study cold region dynamics is urgently desired.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2-7: Optical and Synthetic Aperture Radar (SAR) sensors for snow-related applications. 

Modified according to Kuenzer et al. (2014). 

Figure 2-8: Optical, Synthetic Aperture Radar (SAR), and Passive Microwave (PM) sensors for 

glacier-related applications. Modified according to Kuenzer et al. (2014). 
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2.2.2 Challenges with Regards to Data Availability, Cost and 

Suitability of Different EO Sensor Types 

The selection criteria of EO data depend on various factors: (1) study area extent, (2) 

focused time span, (3) required accuracy, (4) data suitability and availability, as well as (5) 

data accessibility and cost. “Very high-resolution optical and SAR data are generally quite 

expensive. Optical imagery of medium to coarse resolution (e.g., Landsat, ASTER, MODIS, 

AVHRR) is available for free and has been frequently used in cold region dynamic analyses. 

Among these sensors, geostationary sensor provides the highest temporal resolution, 

which could provide NRT information with regards to the general cold region land surface 

dynamics. In terms of SAR and LiDAR data, their availability is limited and data gaps often 

exist (e.g., between the termination of the Envisat-Advanced Synthetic Aperture Radar 

(Envisat-ASAR) and the launch of Sentinel-1). At a first glance, the day-night all weather 

operation of SAR sensors makes them particularly intriguing for studying cold regions in 

Europe. However, ice/snow penetration, the complex topography and related geometric 

distortion effects in SAR data (layover, foreshortening, SAR shadows etc.) make this data 

not very suitable for the analyses in complex terrains. Generally, optical data have strong 

capabilities for retrieving almost all glacier- and snow-related parameters for cold region 

monitoring. Especially now with the Sentinel fleet in orbit (combination of Landsat with 

Sentinel-2A/B) the very high revisit time makes these data suitable for monitoring highly 

dynamic snow cover changes.  

The benefits and limitations of optical and SAR data are further summarized in Table 

2-3 and Table 2-4 for optical and SAR sensors, respectively. The only spaceborne LiDAR 

sensor, ICESat-GLAS, provided data during 2003–2009. It has a relatively large footprint 

(70 m) and ground spacing (170 m) along track, which is problematic for monitoring small 

glaciers. Nevertheless, the value of ICESat-GLAS observations as a calibration and 

validation data set should be emphasized. In general, PM data are less influenced by the 

atmosphere (apart from precipitation clouds); they offer high temporal resolution at global 

coverage. However, the spatial resolution of PM data is coarse, which makes this data type 

less suitable for regional studies. In terms of snow monitoring, it remains the major data 

set used in retrieving SWE. There are difficulties in using PM data to detect: (1) wet snow 
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cover, and (2) thin snow cover (<5 cm snow) in heavily forested areas. In addition, PM 

data is strongly influenced by different snow pack physical properties. Underutilization of 

the recently available sensors is recognized. For example, there are only a few studies 

using Sentinel-2 for snow monitoring in Europe. For monitoring glaciers in Europe, 

researchers so far rarely used Sentinel-1, Sentinel-2 and TerraSAR-X data.” (Hu et al., 

2017) Thanks to ESA’s free-accessible Copernicus Program, the EO data availability has 

been significantly promoted. Yet researches with regards to methodological transferability 

are still highly desirable, particularly for long-term studies.  

2.2.3 Challenges with Respect to Method Applicability 

 Presently, various methods have been developed and applied to retrieve land surface 

dynamics in cold regions of Europe at different spatiotemporal scales. “For each topic, 

some methods have been widely applied, e.g., ratio-image thresholding for glacier 

delineation and snow cover area mapping, InSAR and offset-tracking for glacier motion 

monitoring, DEM subtraction for estimating glacier elevation/volumetric change, the 

“geodetic method” for glacier mass balance estimation, spectral unmixing and modelling 

for snow cover fraction derivation, empirical relationship for snow water equivalent 

retrieval, and snow runoff models for snowmelt prediction. Apart from the empirical 

algorithms developed for snow characterization (limited by dependency on field data), the 

other algorithms have been widely applied and validated in different regions at different 

scales. However, the aforementioned methods are usually based on a specific satellite 

sensor only. Their application may suffer from some sensor-inherent drawbacks. Currently, 

fully transferable multi-sensor-based methods, which combine the advantages of several 

sensors, or which have proven their easy transferability in space and time, are still 

relatively rare. 

Because the existing semi-automatic algorithms for glacier delineation are mainly 

based on optical data, there are significant drawbacks in mapping glacier debris cover, as 

automatic algorithms cannot distinguish between this debris and the surrounding terrain. 

The required post manual correction obstructs algorithm automation. Combining novel 

InSAR coherence based algorithms with such optical-based algorithms thus hold a great 

potential for a fully automatized glacier delineation procedure. In terms of snow cover area 
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monitoring, the most well recognized problem is snow cover detection in forested areas, 

which has a significant influence on the accuracy of snow cover product. Furthermore, the 

lack of a large-scale reference/validation data set complicates the accuracy assessment for 

snow cover products.” (Hu et al., 2017) Besides, in addition to areal snow cover 

information, deriving SWE and SD in a high spatial resolution with high accuracy is urgently 

required to comprehensively characterize the snow pack. 
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Table 2-3: Benefits and limitations of optical imagery for cold region monitoring. Modified according to Hu et al. (2017). 

Aspect Benefits Limitation 

 Good data availability and accessibility No usable data under cloud cover and polar darkness 

General Good global spatiotemporal coverage Relatively few spectral bands to distinguish snow/ice 

  Atmospheric absorption and scattering 

Glacier delineation Fast, robust, semi-automated algorithm Problematic identification in cases of debris cover  

Glacier elevation change Automated algorithm High optical contrast is needed 

 No snow/ice penetration Limited number and accessibility of stereo-geometric sensors 

Glacier mass balance Usefulness for building time series SLA does not always represent ELA 

  Albedo only provides relative mass balance 

Glacier motion Long-term historic record Error in image orthorectification processing and whisk-broom acquisition 

Snow Cover Area Fast, robust, semi-automated algorithm 
Confusion between snow and dark targets (e.g., black spruce forest, 

water bodies) 

Snow Cover Fraction Fast, robust, straightforward algorithm Proper endmember selection is required 

  Limited number of bands in multispectral data 

Snow Grain Size & Impurity High sensitivity Only for the upper layer of the snow pack 

Snow Water Equivalent & Depth N/A N/A 

Snowmelt High temporal resolution Cannot distinguish between wet snow and dry snow 
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Table 2-4: Benefits and limitations of Synthetic Aperture Radar (SAR) imagery for cold region monitoring. Modified according to Hu et al. (2017). 

Aspect Benefits Limitation 

General Day-night all-weather operation Snow/ice penetration 

  Complex format and big data size. 

  Propagation effects in ionosphere 

Glacier delineation Debris cover is less problematic  
Unable to detect glaciers based on single frequency amplitude/phase 

image 

Glacier elevation change Very accurate Coherence requirement (InSAR & D-InSAR) 

  Penetration correction is necessary 

Glacier mass balance N/A N/A 

Glacier motion Most accurate (D-InSAR) and very Need for retained coherence (Coherence tracking and D-InSAR) 

 accurate for offset-tracking Only slant-range motion (D-InSAR) 

  Requires large image patches for incoherent intensity tracking 

Snow Cover Area N/A Only able to detect wet snow 

Snow Cover Fraction N/A N/A 

Snow Grain Size & Impurity N/A N/A 

Snow Water Equivalent & Depth Physical model based method Mostly single frequency sensors 

 Snowmelt Can detect wet snow N/A 
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2.3 The Need and Potential of the Landsat Archive for 

Long-Term Snow Monitoring in Mountainous Areas 

Previous sections illustrate the long history of EO-based snow observation, including 

mapping SCA, characterizing snow pack, and monitoring snowmelt processes. Therein, SCA 

is the most frequently utilized parameter for characterizing long-term snow dynamics using 

medium-to-coarse spatial resolution EO data. Whereas, precisely deriving long-term snow 

dynamics under the complex terrain (e.g., mountain areas) based on medium to coarse 

spatial resolution data is challenging (Severskiy and Zichu, 2000), due to mixed pixels, 

variable land covers, regional precipitation and temperature patterns, as well as shadowing 

effects. Thus, EO data providing higher spatial resolution would be intriguing.  

Since the launch of Landsat 1 (initially named as the Earth Resources Technology 

Satellite, ERTS) on July 23, 1972, the Landsat series has been providing optical EO data 

over four decades. So far, it is the longest uninterrupted operating EO program that is also 

free-accessible since 2008 (Wulder et al., 2012). The Landsat Archive is, therefore, an 

invaluable EO dataset for land surface studies. Landsat-based snow topics are still focused 

by the current (2018−2023) Landsat Science Team. Thanks to the improved geometric and 

radiometric accuracy, the monitoring of snow has been significantly benefited from the 

newest Landsat generation (Landsat 8 OLI/TIRS) (Roy et al., 2014). Furthermore, USGS 

unprecedentedly reorganized the global Landsat 1–5 MSS, Landsat 7 ETM+, Landsat 8 

OLI/TIRS, and the majority of Landsat 4–5 TM scenes into the USGS Collection 1 archive in 

May 2018, which promotes the time series analysis by providing consistently geometrically 

and radiometrically calibrated and tiered products (USGS/EROS, 2017). Yet Landsat-based 

snow studies were rarely carried out to a time series level of more than 30-years (Hu et al., 

2017).  In Europe, only a limit number of Landsat-based snow studies exist, which assess 

snow cover dynamics in European mountains for more than 30 years. Even though Landsat 

continuously orbits the Earth since the 1970s, observations are not available for the whole 

time series due to mission constraints, ground infrastructure and operation efficiency 

(Arvidson et al., 2006). The data gaps caused by technical and management problems, the 

near two-week revisit time interval, and cloud cover pose challenges when it comes to the 
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analysis of the highly variable snow cover dynamics from Landsat, which might ultimately 

explain the lack of existing long-term time series studies.   

Despite the aforementioned challenges and limitations, one of the major objectives of 

this study is hence to investigate the potential of Landsat-derived time series in assessing 

snow cover dynamics in mountain areas within Europe. The following aspects have been 

analysed for this purpose: (1) the spatiotemporal pattern of Landsat Collection 1 Level 1 

Precision and Terrain (L1TP) corrected products across Europe, in particular the mountain 

areas; (2) the frequency of cloud cover of the Landsat Collection 1 L1TP dataset in Europe. 

Due to the signal saturation of Landsat MSS data over snow and ice (Altena and Kääb, 

2017), the absence of the thermal band and the incompletion of the Landsat MSS 

Collection 1 reprocessing, Landsat 1−5 MSS data have been excluded from this thesis. 

Afterwards, based on the Landsat availability, a framework will be developed for analysing 

long-term snow dynamics in mountain areas using 35-year Landsat time series. 
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CHAPTER 3 

3 Study Areas 

3.1 Location and Topography 

In this thesis, the major European mountains are first analysed with regards to the 

Landsat data availability. The selected catchments are located between 41.45° – 49.16° N 

and 0.10° – 24.92° E at the mid-latitude range of Europe, spanning 11 countries (Andorra, 

Austria, Switzerland, Germany, Spain, France, Hungary, Italy, Romania, Slovakia and 

Ukraine). In total, these cover a territory of 74425.18 km2. Among the selected 

catchments, the largest catchment is Ariege in the Pyrenees covering a territory of 

approximately 13681.63 km2. The smallest catchment is Uzh in the Carpathian Mountains, 

which cover a territory of approximately 2202.73 km2. The major rivers in each catchment 

are: the Danube (Salzach, Tysa, and Uzh), the Ebro (Serge), the Gironde (Ariege), the Po 

(Adda), the Rhine (Alphenrhein), the Rhône (Drac), the Tagliamento (Tagliamento), and 

the Var (Var). The majority of the study areas are snow-fed basins. Figure 3-1 and Figure 

3-2 show the geographical extent of each study area and their topographic information. 

The elevation of the investigated catchments ranges from −5 m to 3889 m. Except for the 

investigated Carpathian catchments and Alpine catchment Tagliamento, the maximum 

elevation ranges of the other investigated catchments are above 2900 m. The catchment of 

lowest maximum elevation is the Carpathian catchment Uzh, which is below 1500 m. Figure 

3-2 illustrates the detailed elevation information indicating the proportion of different 

elevation ranges. Among the study areas, catchments Ariege, Tagliamento, Uzh and Tysa 

cover the least high elevation zones. For each investigated catchment, the slope 

information is summarized in Table 3-1.  The mean slopes of the study areas range from 

7.51° to 22.36°. In general, the slopes of the Carpathian catchments are lower than the 

rest of the catchments. 



CHAPTER 3  Study Areas 

50 

 

 

 

Figure 3-1: Location of the study areas, and their elevation information. Data Source: Tachikawa et 

al. (2011). 
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 Figure 3-2: Topographic characteristics of each study area. Data Source: Tachikawa et al. (2011). 
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Table 3-1: Overview of the investigated catchments. 

Study area Country 1 River Area [km²] 

Elevation [m] Slope [degree] 

min mean max min mean max 

Adda CH, IT Po 7855.44 −5.00 1150.66 3844.00 0.00 18.94 88.01 

Alpenrhein DE, AT, CH Rhine 7785.03 242.00 1602.23 3289.00 0.00 20.19 80.87 

Ariege AD,FR, ES Gironde 13681.63 43.00 715.17 3213.00 0.00 12.64 73.13 

Drac FR Rhône 3570.83 192.00 1613.51 3889.00 0.00 22.36 85.57 

Salzach DE, AT Danube 6770.63 336.00 1251.68 3540.00 0.00 18.50 86.42 

Serge AD,FR, ES Ebro 9148.34 25.00 1125.57 3103.00 0.00 15.04 72.99 

Tagliamento IT 
Tagliame

nto 
7051.67 2.00 529.06 2529.00 0.00 12.84 85.68 

Tysa UA,RO, HU Danube 12066.92 39.00 667.17 2272.00 0.00 13.30 66.62 

Uzh SK, UA Danube 2202.73 58.00 250.91 1487.00 0.00 7.51 55.62 

Var FR Var 4291.96 1.00 1181.12 2966.00 0.00 21.67 77.71 

1 Country Abbreviations: AD: Andorra, AT: Austria, CH: Switzerland, DE: Germany, ES: Spain, FR: France, HU: Hungary, IT: Italy, RO: Romania, SK: 
Slovakia, UA: Ukraine. 
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3.2 Climatology 

 Köppen-Geiger climate classification is the most frequently used climate classification 

map,  which is provided by Kottek et al. (2006), Rubel et al. (2017), and Rubel and Kottek 

(2010) with a spatial resolution of 0.5 degree (30 arc minutes) representative for the 50-year 

period 1951−2000. Figure 3-3 shows the Köppen-Geiger climate classification map for the 

investigated catchments, which mainly include Bsk (arid, steppe, and cold), Cfa (warm 

temperature, no dry season, hot summer, and cold winter), Cfb (warm temperature, no dry 

season, warm summer, and cold winter), Cfc (warm temperature, no dry season, cool summer, 

and cold winter), Csa (warm temperature, dry summer, hot summer, and cold winter), Csb 

(warm temperature, dry summer, warm summer, and cold winter), and Dfc (boreal, no dry 

season, cool summer, and cold winter) in the Pyrenean catchments, Cfa, Cfb, Cfc, Dfc, Dfb 

(boreal, no dry season, warm summer, and cold winter), and ET (Alpine Tundra) in the Alpine 

catchments, and Cfb, Dfb and Dfc in the Carpathian catchments. To characterize the detailed 

feature of temperature and precipitation in the investigated catchments, 10 stations data from 

NOAA-GHCN are displayed in Figure 3-4. 

 

Figure 3-3: Climate classes of the study areas according to Köppen-Geiger climate classification. Data 

Source: Rubel and Kottek (2010). 
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Figure 3-4: Long-time mean annual temperature climate charts (1984−2018) for the meteorological 

stations near/within the investigated catchments: a) Ariege: FRE00106205, b) Serge: 

SPE00156585, c) Drac: FRM00007591, d) Var: FRM00007690, e) Alpenrhein: 

GME00128830, f) Adda: ITE00100554; g) Salzach: AU000006306, h) Tagliamento: 

ITM00016045, i) Uzh: UPM00033631, j) Tysa: UPM00033647. Data Source: Menne et al. 

(2012). 
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3.3 Hydrology 

Annual runoff in the selected catchments is mainly snowmelt-dominated (Barnett et al., 

2005). However, in the context of warming climate, (Blöschl et al., 2017) found that the 

magnitude and timing of river floods are shifting (Figure 3-5). However, such shift is not 

consistent in large-scale. It is noteworthy that in the three selected mountain areas (the 

Pyrenees, the Alps, and the Carpathian Mountains), the floods mainly occur during the end of 

ablation seasons with a trend towards early dates. Furthermore, for each catchment, daily 

mean and peak runoff from 1984 to 2018 have been calculated and demonstrated in Figure 

3-6. It has been shown that in the Alpine catchments Drac, Alpenrhein, and Salzach, high 

average daily runoff has been observed in March and April. Also, regarding the daily peak 

runoff, the pattern is similar as the daily mean runoff, while the high daily peak runoff values 

are more obvious in the Carpathian catchment than the daily mean runoff. 

   

Figure 3-5: Observed trends of river flood timing in Europe (left) and observed average timing of river 

floods in Europe (right) between 1960 and 2010. On the left, the colour scale indicates 

earlier or later floods in days ∙ a−1. The Europe is divided into four regions with distinct 

drivers: (1) Northeastern Europe (earlier snowmelt); (2) North Sea (later winter storms); 

(3) Western Europe along the Atlantic coast (earlier soil moisture maximum); and (4) parts 

of the Mediterranean coast (stronger Atlantic influence in winter). On the right, each arrow 

represents one hydrometric station. Colour and arrow direction indicate the average timing 

of floods, and lengths of the arrows indicate the concentration of floods within a year. 

Modified according to Blöschl et al. (2017). 
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Figure 3-6: Runoff characteristics during the ablation season (from April to June, 1984−2018) of each 

investigated study area. Data Source: C3S (2017). 
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3.4 Land Cover 

To derive the land cover information in the selected catchments, the European Space 

Agency-Climate Change Initiative-Land Cover (ESA-CCI-LC) product version 1.4 is used. ESA-

CCI-LC is produced by combining EO-based surface reflectance and ground-truth observations 

at 300 m spatial resolution (Defourny et al., 2016). The validation against the GlobCover 2009 

(Arino et al., 2012) shows that the ESA-CCI-LS product has an overall accuracy of 73.2% 

(Defourny et al., 2016). The ESA-CCI-LS 2015 product (Figure 3-7) shows the major land cover 

(> 10%) types in: 

• Ariege (the Pyrenees) are Herbaceous cover (35.29%), Tree cover, broadleaved, 

deciduous, closed to open (>15%) (21.53%), and Grassland (12.70%); 

• Serge (the Pyrenees) are Tree cover, needleleaved, evergreen, closed to open (>15%) 

(38.82%), and Herbaceous cover (18.40%); 

• Drac (the Alps) are Grassland (25.78%), and Tree cover, needleleaved, evergreen, closed 

to open (>15%)  (20.77%); 

• Var (the Alps) are Tree cover, needleleaved, evergreen, closed to open (>15%)  (45.44%), 

and Grassland (19.86%); 

• Alpenrhein (the Alps) are Grassland (39.01%), and Tree cover, needleleaved, evergreen, 

closed to open (>15%)  (23.59%); 

• Adda (the Alps) are Tree cover, needleleaved, evergreen, closed to open (>15%)  

(16.45%), Grassland (15.50%), Herbaceous cover (13.63%), and Tree cover, 

broadleaved, deciduous, closed to open (>15%) (12.40%); 

• Salzach (the Alps) are Tree cover, needleleaved, evergreen, closed to open (>15%)  

(31.28%), Grassland (30.27%), and Tree cover, mixed leaf type (broadleaved and 

needleleaved) (11.79%); 

• Tagliamento (the Alps) are Herbaceous cover (36.46%), Tree cover, broadleaved, 

deciduous, closed to open (>15%) (14.54%), and Tree cover, mixed leaf type (broadleaved 

and needleleaved) (10.68); 

• Uzh (the Carpathian Mountains) is Tree cover, broadleaved, deciduous, closed to open 

(>15%) (75.08%); 

• Tysa (the Carpathian Mountains) are Tree cover, broadleaved, deciduous, closed to open 

(>15%) (34.63%), Cropland, rainfed (16.76%), and Tree cover, needleleaved, evergreen, 

closed to open (>15%)  (12.78%). 
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Figure 3-7: Land cover information of each study area. Data Source: Defourny et al. (2016). 



CHAPTER 3  Study Areas 

59 

3.5 Snow Phenology 

The Global Snow Pack (GSP) (Dietz et al., 2015) is based on the daily MODIS snow cover 

product MOD10A1 and consists of daily, cloud-free information about the global snow cover 

extent at 500 m resolution. Taking the advantage of dense and gapless snow coverage 

information GSP, Snow Depletion Curves (SDCs) can be calculated accordingly. The SDCs 

illustrate the variation of mean snow cover area (in percentage) through a whole year during 

the period 2000−2018. On the top of each SDC plot Figure 3-8, the red/blue bars illustrate the 

average SCA differences compared to the previous day. A red bar (negative value) shows that 

the snow coverage is shrinking. Vice versa, a blue bar (positive value) shows that the snow 

coverage is increasing i.e. there is a snowfall event. Given that GSP is a daily SCA product, it is 

possible to estimate the glaciated and firn-covered areas by detecting the pixels covered by 

snow/ice for more than 90% of the days from 2000 to 2018. The dark blue areas in the SDCs 

illustrate firn and/or glacier ice coverage.  

Given the possible intermediate snowfall events within the near-two-week Landsat revisit 

time, it is difficult to retrieve snow distribution dynamics throughout the whole year using the 

Landsat Archive (Hall, 2012). In this regard, it is necessary to determine the end of the 

ablation season, as it provides a good balance among the occurrence of intermediate snowfall 

events, persistence of observable snow, exposure of glacier ice and/or firn, and availability of 

cloudless scenes. Seen from the Figure 3-8, the selection of April to June, fulfils the 

aforementioned requirements. However, in the Carpathian catchments Uzh and Tysa, it is 

more beneficial to include the snowline elevation information in March, as the most of the 

snow depletion are occurred in March. However, the frequent occurrence of snowfall events 

during March to June should be taken into consideration when interpreting the snowline 

elevation results. 
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Figure 3-8: Characteristics of the snow phenology (2000−2018) in each study area. Data Source: Dietz 

et al. (2015). 
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3.6 Socioeconomic Situation 

In the investigated catchments, the majority of them are snow-fed. In this regard, the 

snowmelt is strongly associated with the water abstraction and consumption. Water resources 

are important in Europe. EEA (2018) reported that near 30 % of the total European habitants 

was exposed to water scarcity conditions, which is 10% more than that in 2014. 

Geographically, these populations are mainly distributed in the densely populated European 

urban areas, agriculture-dominated areas of southern Europe and Mediterranean islands. 

Water scarcity is mainly caused by climate change and water demand (EEA, 2018). Figure 3-9 

summarizes the main freshwater abstraction in European Environment Agency (EEA) member 

and cooperating countries in 2015. It shows the rivers are the dominant sources of freshwater 

abstraction (65%) in these countries. The water used by economic sectors of those countries 

in 2015 is further demonstrated in Figure 3-9. Therein, agriculture, forestry and fishing are the 

main water economic sectors, which take up to 40.4% of the water use from January to 

September.  

 

 

Figure 3-9: Freshwater abstraction by source in 2015. The pie chart shows the annual data, for the year 

2015, for water abstraction by source at the European level. The quarterly values have been 

used to show the development of seasonal water abstraction by source. Q1: January to March, 

Q2: April to June, Q3: July to September, and Q4: October to December, in  European 

Environment Agency (EEA) member countries: Austria, Belgium, Bulgaria, Croatia, Czech 

Republic, Denmark, Estonia, Finland, Germany, Greece, Hungary, Ireland, Italy, Latvia, 

Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Romania, Slovakia, Slovenia, 

Spain, Sweden, Switzerland, United Kingdom and  Cooperating countries: Albania, 

Montenegro, Serbia, the Former Yugoslav Republic of Macedonia. Source: EEA (2018). 
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Since 1990s, efforts in development in water conveyancing, efficiency gains in water use 

and socioeconomic transformations have resulted in over 9% reduction in total water 

abstraction in Europe (Figure 3-10). Meanwhile, in western and southern Europe, water 

abstraction for cooling in electricity generation, as well as for households in southern Europe 

has been observed slightly increased (EEA, 2018). Due to the abandonment of old industrial 

installations and agricultural areas, approximately 50% water abstraction reduction has been 

observed in eastern Europe until 2010s (Alcantara et al, 2013; Hartvigsen, 2013).  Also, Figure 

3-10 demonstrates around 52% increase in the gross value added from all economic sectors 

from 2000 to 2015. EEA (2018) pointed out the absolute decoupling in the EU economy. The 

observed absolute decoupling between water abstraction and gross value added generated 

from all economic sectors at basic price would also explain the decrease in water abstraction 

(EEA, 2018).   

Figure 3-10: Water use by economic sectors in 2015. For the pie chart, the data series are calculated 

annually for 2015 of water abstraction by sector at the European level. The quarterly values 

have been used to show the development of seasonal water use by sectors in Europe. 

Economic sectors were identified according to the Statistical Classification of Economic 

Activities in the European (NACE) classes. Q1: January to March, Q2: April to June, Q3: July 

to September, and Q4: October to December. In  European Environment Agency (EEA) 

member countries: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, 

Finland, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, 

Netherlands, Norway, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, 

United Kingdom and  Cooperating countries: Albania, Montenegro, Serbia, the Former 

Yugoslav Republic of Macedonia. Source: EEA (2018). 
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Regarding the population density, Figure 3-11 shows that densely populated cities are 

located within and/or near to the investigated catchments. For instance, Toulouse is located in 

the Pyrenean catchment Ariege, Barcelona is located near the Pyrenean catchment Serge, and 

Milano is near to the Alpine catchment Adda. As water demand is a key factor with regards to 

water scarcity, which is largely influenced by population and related economic activities, the 

study of snowmelt and runoff during the ablation seasons therein can provide valuable 

information to better understand the local impacts of climates change. It can therefore 

contribute to regional and local adaptation-strategies making in relation to water resource 

management. 

 

 
Figure 3-11: Gross value added from all economic sectors and total water abstraction in the European 

Union (EU)-28 (2000 = index 100). Time series cover the period of 1990−2015. The 

comparison between water abstraction and gross value added has been made based on 

gross value added at basic price in euros for the EU-28. Source: EEA (2018). 
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Figure 3-12: Population distribution of each study area in 2011. Data Source: GEOSTAT (2011). 
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CHAPTER 4 

4 Data 

 

This chapter outlines the multiple data sources employed for the snow dynamic 

assessment in European mountains. The major data sources include satellite imagery, Digital 

Elevation Model (DEM), climate reanalyses data, and in-situ measurements. The details are 

provided in the following sections, together with the description of the employed auxiliary 

datasets. 

4.1 Satellite Imagery 

In this thesis, three (semi-) high resolution and free-of-charge optical datasets are 

utilized, including (1) Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus 

(ETM+), Operational Land Imager/ Thermal Infrared Sensor (OLI/TIRS) between 1984 and 

2018; (2) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

between 2000 and 2007, and (3) Sentinel-2A/2B Multispectral Instrument (MSI) between 2015 

and 2018. The comparison of the wavelength among the applied EO sensors is shown in 

Figure 4-1. As the ASTER/SWIR sensor defected in late April, 2008, and SWIR information is 

important for detecting snow, the ASTER acquisitions after April 2008 are not adapted. To 

guarantee the image quality, only radiometrically calibrated and orthorectified Landsat, ASTER, 

and Sentinel-2 products are utilized, which include Landsat L1TP, AST_L1T, and Sentinel-2 

L1C. In the context of snow detection, green, red, NIR, and SWIR bands are the most 

frequently utilized bands. Also, the thermal bands provide useful information in distinguishing 

snow from other bright but warm surfaces. Thus, thermal bands are also employed in this 

thesis, once they are available. The band configurations regarding the employed bands of the 

selected EO sensors are displayed in Table 4-1. 
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Table 4-1: Bands characteristics of the selected Earth Observation (EO) sensors in this study: Landsat 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land 

Imager/Thermal Infrared Sensor (OLI/TIRS), Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER), and Sentinel-2 (S2). CW stands for central wavelength in 

µm, and SR stands for spatial resolution in meter. 

Sensor 

  Landsat   Sentinel-2 ASTER 

TM/ETM+ CW SR OLI/TIRS CW SR S2 CW SR ASTER CW SR 

Green 2 0.56 30 3 0.56 30 3 0.56 10 1 0.56 15 

Red 3 0.66 30 4 0.66 30 4 0.67 10 2 0.66 15 

NIR 4 0.83 30 5 0.87 30 8a 0.83 20 3N 0.82 15 

SWIR 5 1.65 30 6 1.61 3 11 1.61 20 4 1.65 30 

TIRS 6 11.4 60/120* 10 10.9 100*    13 10.6 90** 

* TM Band 6, ETM+ Band 6, and TIRS Band 10/11 are acquired at 120, 60, and 100 meters resolution, respectively, 

but products are resampled to 30 meters pixels. 

** ASTER thermal band 13 is acquired at 90 meters resolution. The image is resampled to 30 meters pixels to 

guarantee data consistency. 

 

 

 

Figure 4-1: Bandpass wavelengths for the employed sensors in this thesis, i.e. Landsat 4−5 Thematic 

Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational 

Land Imager/Thermal Infrared Sensor (OLI/ TIRS) sensor, Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER), and Sentinel-2. Modified according to USGS 

(2015). 
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4.1.1 Landsat Data 

For more than four-decade, the Landsat series of satellites have the longest uninterrupted 

operation history, providing temporal record of the land surface and its modification. As of 

January 1st 2015, Wulder et al. (2016) reported that the volume of Landsat data already 

exceeds 5.5 million archived at USGS. All these images are categorized using a spatial 

referencing system (i.e., Worldwide Reference System, WRS), which partitions Landsat images 

into approximately 185×185 km² squares (known as scenes). Presently, approximately 1200 

scenes are being acquired by Landsat 7 and Landsat 8 in orbit (Wulder et al., 2016).  In order 

to support the long-term data analyses, the USGS reorganized the global Landsat 1–5 MSS, the 

majority of Landsat 4–5 TM, Landsat 7 ETM+, and Landsat 8 OLI/TIRS into Collection 1 

structure. The significant change in management of the USGS Landsat Archive not only varies 

metadata and file names, but also ensures the quality consistency through time and across 

different Landsat instruments. Landsat Collection 1 constitutes of Landsat 1−8 Level-1 

products. These Landsat Level-1 products are of three processing levels, i.e., Level 1 Precision 

and Terrain (L1TP), Systematic Terrain Correction (L1GT), and Systematic Correction (L1GS): 

• L1TP scenes are of the highest quality, and thus suitable for pixel-based time series 

analyses. L1TP images are radiometrically calibrated and orthorectified using Global 

Land Survey 2000 Ground Control Points (GLS2000 GCPs) and a Digital Elevation Model 

(DEM) to correct elevation displacement;  

• L1GT scenes are radiometrically calibrated. Geometric corrections are applied only 

based on on-board spacecraft data, and elevation displacement is corrected using DEM 

data; 

• L1GS scenes are radiometrically calibrated. However, geometric corrections are only 

applied systematically using on-board spacecraft ephemeris data. 

Together with data quality control, Level-1 data of different processing levels are assessed 

and categorized into three tiers, i.e. Tier 1, Tier 2 and Real-Time (RT): 

• Tier 1 scenes consist of the L1TP products, whose geo-registration is consistent and 

within prescribed image-to-image tolerances of no larger than 12-meter radial Root 

Mean Square Error (RMSE). 
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• Tier 2 scenes include all L1GT and L1GS data, and the L1TP data that do not meet 

the geo-registration constraint. 

• Real-Time scenes are newly-acquired Landsat 7 ETM+ and Landsat 8 OLI/TIRS data, 

which are later transitioned to either Tier 1 or Tier 2 after 14−16 days (Landsat 8) or 

about 26 days (Landsat 7). 

Among the three tiers above, Tier 1 is of the highest available data quality, and hence the Tier 

1 data are regarded most suitable for time series analyses. For the detailed information about 

Collection 1 Level 1 products, readers should refer to USGS/EROS (2017). 

The detailed information in relation to the spectral configuration of each Landsat sensor is 

summarized in Table 4-2. In this thesis, due to the signal saturation of Landsat 1−5 MSS data 

over snow and ice (Altena and Kääb, 2017) and the absence of the thermal band, Landsat 1−5 

MSS data have been excluded from this study. The Landsat Archive is the main dataset for this 

thesis. Therefore, the spatiotemporal distribution of Landsat TM, ETM+, and OLI/TIRS 

Collection 1 data archived at USGS (USGS/EROS, 2017) are firstly analysed to maintain an 

overview of the Landsat data availability across the whole Europe. Once the density of time 

series is analysed, images are atmospherically and topographically corrected, and then used 

for snow classification within the selection study areas. 

 



CHAPTER 4  Data 

69 

Table 4-2: Bands characteristics of Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational Land Imager/Thermal Infrared Sensor 

(OLI/TIRS). CW stands for central wavelength in µm, and SR stands for spatial resolution in meter. 

Bands                       Sensors 

MSS MSS ETM+ OLI/TIRS 

Landsat 1−3 Landsat 4−5 WL SR Landsat 4−5 WL SR Landsat 7 WL SR. Landsat 8 WL SR. 

Ultra-Blue (coastal/aerosol)           Band 1 0.435− 0.451 30 

Blue     Band 1 0.45−0.52 30 Band 1 0.45−0.52 30 Band 2 0.452−0.512 30 

Green Band 4 Band 1 0.5−0.6 60** Band 2 0.52−0.60 30 Band 2 0.52−0.60 30 Band 3 0.533−0.590 30 

Red Band 5 Band 2 0.6−0.7 60** Band 3 0.63−0.69 30 Band 3 0.63−0.69 30 Band 4 0.636−0.673 30 

Near Infrared (NIR) 1 Band 6 Band 3 0.7−0.8 60** Band 4 0.76−0.90 30 Band 4 0.77−0.90 30 band 5 0.851−0.879 30 

Near Infrared (NIR) 2 Band 7 Band 4 0.8−1.1 60**          

Shortwave Infrared (SWIR) 1     band 5 1.55−1.75 30 band 5 1.55−1.75 30 Band 6 1.566−1.651 30 

Shortwave Infrared (SWIR) 2     Band 7 2.08−2.35 30 Band 7 2.09−2.35 30 Band 7 2.107−2.294 30 

 Panchromatic        Band 8 0.52−0.90 15 Band 8 0.503−0.676 15 

Cirrus           Band 9 1.363−1.384 30 

Thermal Infrared (TIRS) 1     band 6 10.40−12.5 120/30* band 6 10.40−12.50 60/30* Band 10 10.60−11.19 100/30* 

Thermal Infrared (TIRS) 2           Band 11 11.50−12.51 100/30* 

* TM Band 6, ETM+ Band 6, and TIRS Band 10/11 were acquired at 120, 60, and 100 meters resolution, respectively, but products are resampled 
to 30 meters pixels.  

** Original MSS pixel size was 79 x 57 meters; production systems now resample the data to 60 meters



CHAPTER 4  Data 

70 

4.1.2 Sentinel-2 Data 

 The Sentinel-2 mission is a part of ESA’s Copernicus program, consisting of two polar-

orbiting satellites (i.e. Sentinel-2A and 2B) placed in the same sun-synchronous orbit (at 786 

km altitude with a 10:30 a.m. descending node), phased at 180° to each other. It supports 

GMES by offering multi-spectral high-resolution optical imagery over global terrestrial surfaces. 

“GMES is an EU-led initiative designed to establish a European capacity for the provision and 

use of operational monitoring information for environment and security applications. This 

capacity is seen to be composed of three modules, which together constitute the functional 

GMES ‘system’: 

• The production and dissemination of information in support of EU policies for 

Environment and Security; 

• The mechanisms needed to ensure a permanent dialogue between all stakeholders and 

in particular between providers and users; 

• The legal, financial, organisational and institutional frame to ensure the functioning of 

the system and its evolution. 

Many elements of the modules already exist but have been conceived, designed and managed 

in isolation, thus limiting interoperability and production of relevant information. The 

coherence, efficiency and sustainability of a shared information system for Europe will be the 

added value of GMES. Developing compatibility between the existing elements, establishing 

cooperation between the organisations and filling the gaps where necessary will achieve this 

goal.” (Drusch et al., 2012) At present, Sentinel-2A and 2B are providing EO data since 

January 2015 and March 2017, respectively. In 2016, two more satellite, Sentinel-2C and 2D, 

were ordered to be launched from 2021 onwards to join the constellation. 

The Sentinel-2 constellation is initially designed to provide continuous SPOT-and-Landsat-

type EO data, contributing to ongoing multispectral EO. Senetinel-2 constellation is monitoring 

Earth's surface dynamics between latitudes 56° S and 84° N. Sentinel-2 acquisitions are of 

wide swath width (approximately 290 km), and high revisit time (10 days at the equator with 

one satellite, and 5-days with 2 satellites under cloud-free conditions which results in 2−3 days 

at mid-latitudes), including islands larger 100 km2, EU islands, all other islands less than 20 km 

from the coastline, the whole Mediterranean Sea, all inland water bodies and all closed seas. 
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At the moment, MSI payloads acquire, store and then download up to 1.6 TB of data per orbit. 

The MSI has 13 spectral bands spanning from the VISible-Near-Infra-Red (VISNIR) to SWIR at 

10 to 60 m spatial resolution (see Table 4-3).  

Table 4-3: Bands characteristics of Sentinel-2. 

Bands Wavelength [µm] Spatial Resolution [m] 

Ultra-blue (coastal/aerosol) Band 1 0.433−0.453 60 

Blue Band 2 0.458−0.523 10 

Green Band 3 0.543−0.578 10 

Red Band 4 0.650−0.680 10 

Red Edge (RE) 1 Band 5 0.698−0.713 20 

Red Edge (RE) 2 Band 6 0.733−0.748 20 

Red Edge (RE) 3 Band 7 0.773−0.793 20 

Near Infrared (NIR) Band 8 0.785−0.900 10 

Near Infrared narrow (NIRa) Band 8a 0.855−0.875 20 

Water vapour Band 9 0.935−0.955 60 

Cirrus Band 10 1.360−1.390 60 

Shortwave Infrared (SWIR) 1 Band 11 1.565−1.655 20 

Shortwave Infrared (SWIR) 2 Band 12 2.100−2.280 20 

4.1.3 ASTER Data 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) is a 

multispectral imager on board NASA’s Terra spacecraft, which is the first one of a series of 

multi-instrument spacecraft forming NASA’s Earth Observing System (EOS) launched in 

December 1999. ASTER is an international cooperative program among NASA, Japan's Ministry 

of Economy, Trade and Industry (METI), and Japan Space Systems (J-space systems), to 

achieve the goal: to develop a scientific comprehension of the Earth as an integrated system, 

its response to change, and to better predict variation and trends in climate, weather, and 

natural hazards. To date, ASTER has successfully provided enormous land surface dynamic 

records, including reflectance, surface temperature, and elevation. 
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ASTER is the solely high-resolution sensor on Terra, operating in a sun-synchronous orbit, 

30 minutes behind Landsat ETM+. There are three ASTER telescopes, i.e. VNIR, SWIR, and 

TIR, which together cover a wide spectral region with 14 bands (Table 4-4). Therein, an 

additional backward-looking near-infrared band (Band 3B) provides stereo coverage, which 

helps the generation of stereographical DEM. The spatial resolutions of the three telescopes 

are 15 m in VNIR, 30 m in SWIR, and 90 m in TIR, respectively. A footprint of a single ASTER 

scene covers an area of 60 x 60 km. It should be pointed out that ASTER SWIR band failed in 

April 2008, which causes the data discontinuity thereafter.  

Every day, approximately 650 scenes are acquired by ASTER. However, unlike Landsat, 

ASTER images the earth following the ASTER Scheduler situated in Japan at ASTER Ground 

Data System (GDS) with inputs from both US and Japan. Subsequently, the images are sent to 

the EOS Operations Center (EOC) at the Goddard Spaceflight Center (GSFC). The scheduler is 

designed to maximize the science return over a time period of each day, which priories the 

acquisition based on the rank of alternative observing modes (and non-observing instrument 

modes) for each time-step. ASTER is a good supplement to the Landsat Archive, especially 

after 2003 when Landsat 7 ETM+ SLC-off issue occurred. However, the value of ASTER Archive 

differs among regions due to its heterogeneous data availability.  
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Table 4-4: Bands characteristics of ASTER, in which SR stands for spatial resolution. 

Bands Wavelength [µm]  SR [m] 
Radiometric 

Res. 

Green Band 1 0.52−0.60 15 8-bit 

Red Band 2 0.63−0.69 15 8-bit 

Near Infrared (NIR) 1 Band 3N 0.78−0.86 15 8-bit 

Near Infrared (NIR) 2 Band 3B 0.78−0.86 15 8-bit 

Shortwave Infrared (SWIR) 1 Band 4 1.60−1.70 30 8-bit 

Shortwave Infrared (SWIR) 2 Band 5 2.145−2.185 30 8-bit 

Shortwave Infrared (SWIR) 3 Band 6 2.185−2.225 30 8-bit 

Shortwave Infrared (SWIR) 4 Band 7 2.235−2.285 30 8-bit 

Shortwave Infrared (SWIR) 5 Band 8 2.295−2.365 30 8-bit 

Shortwave Infrared (SWIR) 6 Band 9 2.360−2.430 30 8-bit 

Thermal Infrared (TIR) 1 Band 10 8.125−8.475 90 12-bit 

Thermal Infrared (TIR) 2 Band 11 8.475−8.825 90 12-bit 

Thermal Infrared (TIR) 3 Band 12 8.925−9.275 90 12-bit 

Thermal Infrared (TIR) 4 Band 13 10.25−10.95 90 12-bit 

Thermal Infrared (TIR) 5 Band 14 10.95−11.65 90 12-bit 

4.2 Digital Elevation Model (DEM) 

Elevation information is indispensable for snow dynamic assessment in mountain areas. So 

far, there are multiple commercial and freely open global DEMs (EEA, 2017b), e.g., SRTM, 

ASTER GDEM (Global Digital Elevation Model), WorldDEM, PlanetDEM. Among these DEMs, 

SRTM and ASTER GDEM are the most frequently employed ones. Yet SRTM only covers the 

area between 56°S and 60°N. Given that large proportion of land surface in Europe is of high 

latitude, ASTER GDEM is selected for elevation information retrieval in this thesis. 

The initial ASTER GDEM was released to public in June 2009. It is a joint work between 

METI and NASA. The current version (i.e. ASTER GDEM Version 2), released in October 2011, 

is generated by applying the refined production algorithm and including additional 0.26 million 

stereo-pairs. It results in significant improvements over the first version in spatial resolution, 
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horizontal and vertical accuracy, and water body detection. The subset of ASTER GDEM v2 is 

displayed in Figure 4-2. Its spatial resolution is 30 m, covering the land surface between 83° N 

and 83° S.  

4.3 Climate Reanalysis Data 

ERA5 is the latest climate reanalysis data produced by ECMWF, integrating modelled data 

with observations across the world into a global and consistent dataset using the laws of 

physics. ERA5 offers a large quantity of atmospheric, land and oceanic climate variables 

worldwide at one hour interval. The first segment of the ERA5 dataset was released in June 

2018 for public use (from 1979 to within 3 months of real time). Eventually, the entirely ERA5 

dataset spanning from 1950 to present is expected to be released for use in late 2019. Figure 

4-3 illustrates the 2 m air temperature on 12:00 over the whole Europe.  

Figure 4-2: Overview of the elevation information in Europe derived from ASTER GDEM Version 2 

(Tachikawa et al., 2011). 
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ERA5 covers the complete global, whose spatial and temporal resolution are 0.25° (~ 31 

km) and one hour, respectively. ERA5 covers the complete globe. The ERA5 data are stored in 

the Copernicus Climate Change Service-Climate Data Store (C3S-CDS) in the GRIB format. In 

this thesis, five parameters (listed in Table 4-5) are pre-selected to analyse the interaction 

between their variations and snowline dynamics during the ablation seasons 1984−2018. Since 

the temporal resolution of the ERA5 data is one hourly, with each selected catchment, six 

statistical measures are calculated, i.e. maximum, minimum, mean, 25th, 50th, and 75th 

percentiles. In addition, the cumulative sums of the 2 m air temperature, of the total 

precipitation, and of the runoff are computed to further include the effects over the time-span. 

Table 4-5: Summary of input variables for Random Forest Regression (RFR) derived from ERA5 dataset. 

Parameter Name Units Short Name Parameter ID 

2 m air temperature K 2t 167 

Runoff m ro 205 

Skin temperature K skt 235 

Snow depth m of water equivalent sd 141 

Total precipitation m tp 228 

 

Figure 4-3: 2 m air temperature on April 1, 2018 12:00 (Coordinated Universal Time) over the whole 

Europe derived from ERA5 (C3S, 2017). 
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4.4 In-Situ Data 

To date, there two leading methods of validating the snow cover products, i.e. using 

(very-high) resolution satellite images and in-situ observations. As higher resolution satellite 

imagery is often not open and freely accessible, the obtained snow classifications are 

compared with the snow depth observations from the National Oceanic and Atmospheric 

Administration-Global Historical Climatology Network (NOAA- GHCN) (Menne et al., 2012) and 

ECA&D. GHCN-Daily is an integrated dataset of in-situ meteorological measures from land 

surface stations worldwide. It constitutes of numerous daily climate observations from more 

than 100,000 stations in 180 countries and territories, which integrates a common suite of 

quality assurance reviews. In Europe, there are 1910 stations with snow depth records 

between 1984 and 2018 consecutively or intermittently. The second in-situ dataset is ECA&D, 

which was initiated in 1998 supported by the European Meteorological Services Network 

(EUMETNET) and the European Commission (EC). Nowadays, ECA&D is integrating 

observations from 15563 meteorological stations in 63 European countries. The spatial 

distributions of NOAA-GHCN and ECA&D stations across Europe are shown in Figure 4-4. In 

this thesis, daily snow depth records from GHCN-Daily and ECA&D between 1984 and 2018 are 

originated from 65 meteorological stations within the selected study areas. 

 

 

Figure 4-4: Location of National Oceanic and Atmospheric Administration-Global Historical Climatology 

Network (NOAA-GHCN) and European Climate Assessment & Dataset (ECA&D) Stations 

across Europe. 
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4.5 Auxiliary Data 

There are four auxiliary datasets utilized in thesis, providing the supplementary 

information in relation to catchment extent, snow coverage, glacier extent, and river discharge. 

Catchment extent is important for clipping/merging satellite images of different footprints to a 

unified geographical extent. The (sub-) catchment extent applied is the Hydrological basin 

shapefiles in Europe provided by the Food and Agriculture Organization (FAO) displayed in 

Figure 4-5. 

Snow cover information is important with regards to the snow coverage evaluation, 

intermediate snowfall event detection, and ablation period determination for a specific 

catchment. In these regards, GSP dataset  (Dietz et al., 2015) from DLR-DFD is included. The 

DLR-DFD GSP provides a cloud-free time series of daily snow cover processed from the 

operational 500 m MODIS daily snow cover products MOD10A1 and MYD10A1 (Hall et al., 

2002), and has been validated using ECA&D station data in Europe (details see  Dietz et al., 

2015). The mean snow cover duration between 2000 and 2018 derived from GSP within 

Europe is shown in Figure 4-6.  

 

Figure 4-5: Major hydrological basins and their sub-basins. This dataset divides the European continent 

according to its hydrological characteristics. Data source: Lehner et al. (2008). 
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Because glaciers influence snowline dynamics at a regional scale, it is required to calibrate 

the snowline dynamics in glaciated regions with the elevation information of the glacier(s). 

This elevation information is derived from RGI and the ASTER GDEM v2. The RGI is the first 

complete global glacier inventory (excluding Greenland and the Antarctic) released on 22 

February 2012. It is based on EO data, including Landsat fleet, ASTER, SPOT5 HRS, SRTM 

DEM, ASTER GDEM, etc. Figure 4-7 illustrates an example of the glacier outlines of Saint Sorlin 

and Sarenes from the RGI, near the catchment Drac. 

 

Figure 4-6:  Mean Snow Cover Duration (SCD) between 2000 and 2018 derived from the Global Snow 

Pack (GSP). Data Source: Dietz et al. (2015). 

Figure 4-7: Glacier outlines of Saint Sorlin and Sarenes from the Randolph Glacier Inventory (RGI) (Pfeffer 

et al., 2014a), near the catchment Drac. 
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To investigate the patterns of river discharge, records from the Global Runoff Data Centre 

(GRDC) are employed. GRDC archive has collected international data up to two centuries, and 

has been widely used in regional and global long-term hydrological studies. Supported by 

WMO, the GRDC archive is now holding river discharge data of more than 9500 stations from 

161 countries (Figure 4-8). For researchers, universities and other organisations, data are 

available for research programmes and projects via research proposals. 

 

 

 

 

  

Figure 4-8: Location of the Global Runoff Data Centre (GRDC) Stations across Europe. 
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CHAPTER 5 

5 Developed Framework of Snowline Retrieval and 

Assessment 

 

This chapter presents a fast, novel, and transferable framework for the assessment of 

long-term snowline dynamics in European mountains, including (1) pre-processing, (2) snow 

detection, (3) regional snowline elevation retrieval, (4) time series densification, and (5) 

regional snowline retreat curve production.  

5.1 Optical Imagery Pre-Processing 

To obtain physically comparable surface reflectance, atmospheric and topographic 

corrections are performed using ATCOR-3 (Richter and Schläpfer, 2011) for each Landsat, 

ASTER, and Sentinel-2 image (Figure 5-1). Therein, ASTER GDEM Version 2 (Tachikawa et al., 

2011) is employed for slope and elevation information derivation. 

Figure 5-1: Effects of atmospheric and topographic correction: left: original raw Digital Number (DN) 

image in false colour composite (RGB: SWIR-NIR-RED); right: ATCOR-corrected image in 

false colour composite (RGB: SWIR-NIR-RED). 
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The major processing steps regarding the atmospheric correction are demonstrated in 

Figure 5-2. It contains 10 sub-processors, including (1) the sensor-specific Look Up Tables 

(LUTs) reading, (2) pre-classification and land covers (i.e. land, water, haze, cloud, and 

shadow) masking, (3) an optional haze or cirrus removal, (4) optional shadow removal, (5) 

visibility or aerosol optical thickness map calculation based on the Dense Dark Vegetation 

(DDV) method, (6) aerosol model (path radiance behaviour in the blue to red bands) updating 

(only if a blue band exists and the update option is enabled), (7) Water Vapour Map (WVM) 

computation, (8) iterative surface reflectance retrieval, (9) spectral polishing (for hyperspectral 

instruments), and (10) BRDF (Bidirectional Reflectance Distribution Function) correction. For 

detailed information, the reader should refer to the ATCOR manual (Richter and Schläpfer, 

2011) or Asrar and Asra, 1989; Schowengerdt, 2006; Slater, 1980. 

 

 

 

 

 

Figure 5-2: Main processing steps during atmospheric correction. Modified according to Richter and 

Schläpfer (2011). 
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5.2 Snow Classification and Validation 

To classify snow cover in optical images, there are two major processing steps, i.e. snow 

detection based on a decision tree of multiple thresholds, and non-snow land cover masking 

using cloud mask, water mask, shadow mask and/or thermal mask: 

• Snow Detection is realized by applying the algorithms developed by Klein et al. (1998) and 

Poon and Valeo (2006) in this thesis. The algorithm separates snow cover from ambient 

surroundings based on the significant signal contrast between the green and the SWIR band 

(Figure 5-3). “The algorithm is based on a decision tree with multiple thresholds on NDSI, the 

green band, and the Near Infra-Red (NIR) band. To detect snow in forested areas, the NDSI-

NDVI field is utilized to calibrate the snow cover classification results therein.  

 

 

 

 

• Cloud Mask: Three different types of cloud masks are applied due to different designations 

of Landsat, ASTER and Sentinel-2. Firstly, to mask out the clouds in Landsat scenes, the 

Mountainous Fmask (MFmask) is applied (Foga et al., 2017; Frantz et al., 2018; Zhu et al., 

2015; Zhu and Woodcock, 2012). Secondly, for Sentinel-2 images, clouds are masked out by 

employing “s2cloudless”, an automated single-scene pixel-based cloud detector developed by 

Figure 5-3: Multispectral profiles of main land covers: left: atmospherically and topographically 

corrected image in false colour composite (RGB: SWIR-NIR-RED), right: multispectral 

profiles of snow/ice, vegetation and water body. (Data source: Landsat 8 Operational 

Land Imager/Thermal Infrared Sensor (OLI/TIRS) near the catchment Drac at path/row: 

196/029 acquired on 07 June 2017). 
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the Sentinel Hub's research team. Thirdly, to identify the clouds in ASTER scenes, the 

Automatic Cloud Cover Assessment (ACCA) (Irish, 2000; Irish et al., 2006) is applied.  

• Water Mask: High NDSI values usually indicate the presence of the snow in optical EO 

imagery. However, high NDSI values could also be observed in clear water bodies. Therefore, 

the water bodies must be masked out to avoid misclassification. Because the water bodies 

commonly show positive Normalized Difference Water Index (NDWI) values” (Hu et al., 2019b) 

based on Gao (1996): 

NDWI= 
NIR-SWIR

NIR+SWIR
  (5.1) 

and “the reflectance of water bodies in the green band is relatively low, the water mask is 

generated based on thresholding these two values.  

 • Shadow Mask: Shadow-cast areas are normally treated as non-valid pixels. In this study, 

the shadow pixels are identified following the methods from the SnowPEX Team (Ripper et al., 

2015). Thereafter, the shadow-cast pixels are masked out in the snow cover results.  

• Thermal Mask: Both Landsat and ASTER have thermal band(s). To filter out bright and 

warm surfaces such as warm rocks in the classification results, a thermal threshold (< 288 K) 

introduced by Metsämäki et al. (2015) is applied to Landsat- and ASTER- based snow 

classifications. Sentinel-2 does not have any thermal band, which could potentially commit 

more commission errors over bright and warm targets. ” (Hu et al., 2019b)  In this thesis, the 

snow classifier and masks are applied in sequence to obtain snow classification results.   

In order to assess the accuracy of the obtained binary snow classification results, the 

validation is performed using the contemporary snow depth measurements from NOAA-GHCN 

and ECA&D dataset. As the reference dataset, the snow depth is converted into snow/snow-

free information according to the 1-cm-threshold proposed by Parajka et al. (2010b). Once the 

observed snow depth is >1 cm, the corresponding pixel is regarded as a snow pixel, and vice 

versa. Based on the validation results, a confusion matrix can be generated (Table 5-1). 

Afterwards, Producer’s Accuracy (PA), User’s Accuracy (UA), Overall Accuracy (OA), and Kappa 

Coefficient (κ) (Equation 5.2−5.6) are calculated according to the confusion matrix.  
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Producer's Accuracy (PA) snow= 
A

A+C
  (5.2) 

User's Accuracy (UA)
 snow

= 
A

A+B
  (5.3) 

Overall Accuracy (OA)= 
A+D

A+B+C+D
  (5.4) 

Expected Agreement (EA)= 
(A+B)×(A+C)+(C+D)×(B+D)

(A+B+C+D)
2

  (5.5) 

Kappa Coefficient (κ)= 
OA-EA

1-EA
  (5.6) 

Where A (the number of pixels which are identified as snow in both classification results and 

snow depth measurements), B (the number of pixels which are identified as snow in 

classification results, but as snow-free according to the snow depth measurements), C (the 

number of pixels which are identified as snow-free in classification results, but as snow 

according to the snow depth measurements), and D (the number of pixels which are identified 

as snow-free in both classification results and snow depth measurements) are illustrated in the 

demonstrative confusion matrix in Table 5-1. 

Table 5-1: Demonstrative confusion matrix relating satellite-derived snow classifications with ground 

snow-depth observations. 

Classification \ Observation Snow depth > 1cm Snow depth ≤ 1cm 

Snow A B 

Snow-free C D 

5.3 Regional Snowline Elevation (RSE) Retrieval and 

Accuracy Assessment 

To date, there are various definitions of snowline, according to the objectives of the 

studies, e.g., geographical studies, meteorological studies, hydrological studies. Krajčí et al. 

(2014) reviewed the existing snowline definitions, thereafter, a new term Regional Snowline 

Elevation (RSE) was proposed for remote-sensing-based applications. “The RSE is defined as 
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the elevation where there are as few as possible snow pixels below it, and as few as possible 

land pixels above it. Methodologically, the RSE can be determined as the elevation where the 

minimum value of the sum of two cumulative histograms (i.e. cumulative histogram of snow 

pixel elevations and land pixel elevations) is reached (Figure 5-4).” (Hu et al., 2019b)The index 

itself was originally validated by Krajčí et al. (2014) against the snow depth measurements 

from climate stations and field campaigns, and the accuracy was reported as 86%. The most 

influential factors with regards to RSE accuracy are vegetated areas and shadows adjacent to 

the snowline. 

To assess the accuracy of the retrieved RSEs, five quality indices are developed therefor 

(Table 5-2). The first quality index is Representativeness Index (RI) measuring the percentage 

of valid pixels (i.e. labelled as snow or land) within the spatial extent of a catchment. The 

second quality index, Error Index (EI), is a measure of the percentage of erroneous pixels (i.e. 

snow pixels below the RSE, PF, and snow free pixels above the RSE, NT) according to the 

corresponding RSE. By definition, the obtained RSE should result in as few erroneous pixels as 

possible. Thereby, EI is introduced as the ratio between the number of erroneous pixels and 

the total number of pixels (TP). The concepts of the rest three indices were originally 

introduced by Dong and Peters-Lidard (2010), Painter et al. (2009), and Rittger et al. (2013) 

for accuracy assessment. 

Figure 5-4: Estimation of Regional Snowline Elevation (RSE) from the combined cumulative histograms 

of the snow covered pixels (in blue) and land pixels (in orange). In the x-axis, P1 indicates 

that there are P1 land pixels above the RSE; P2−P1 there are P2−P1 snow pixels below the 

RSE, P2 alone means the sum of land pixels above the RSE and snow pixels below the RSE, 

and TP stands for the total number of pixels. Modified according to Hu et al. (2019b). 
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Table 5-2: Performance measures for assessing the Regional Snowline Elevation (RSE) outcomes. 

Performance Measure Definition 

Representativeness Index (RI) 
PT+NT+PF+NF

TP
 

Error Index (EI) 
NT+PF

PT+NT+PF+NF
 

Precision 
PT

PT+NF
 

Recall 
PT+NT

PT+NF
 

F-score 
2PT

2PT+PF+NF
 

TP: total number of pixels with the corresponding catchment extent. 

PT: total number of positive true pixels (snow in snow classification, pixel above RSE). 

NT: total number of negative true pixels (land in snow classification, pixel above RSE). 

PF: total number of positive false pixels (snow in snow classification, pixel below RSE). 

NF: total number of negative false pixels (land in snow classification, pixel below RSE). 

5.4 Time Series Densification Using Random Forest 

Regression (RFR) 

Landsat constellation, ASTER, and Sentinel-2 constellation have an inherent trade-off 

between the spatial resolution and temporal resolution. In this regards, although high spatial 

resolution is achieved, the near-two-week temporal resolution of the Landsat satellite 

constellation poses a challenge in monitoring highly dynamic snowline. To densify the time 

series, a classic machine learning technique, Random Forest Regression (RFR) is applied, 

together with the daily climate reanalysis data to fill the gaps when no satellite images are 

available. The random forest technique was developed by Breiman (2001), who introduced the 

random forest as a classifier/regressor constituting a collection of tree-structured classifiers 

(i.e. trees) that are independent and identically distributed random vectors, and each tree 

casts a unit vote for the most popular class. RFR is a non-linear statistical ensemble method, 

for a regression purpose. It has the following major advantages (Breiman, 2001; Liaw et al., 

2002), which makes it ideal for the densification of the RSE time series: 
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• Straightforward inclusion or exclusion of explanatory variables according to data 

availability and user requirements; 

• Ability of handling unbalanced dataset and high dimensional dataset; 

• Robustness to outliers and non-linear data; 

• Ability of dealing with multicollinearity in explanatory variables; 

• Capability of coping with both numeric and categorical explanatory variables; 

• Relatively small number of user-specified model parameters; 

• Low risk of overfitting; 

• Calculation of explanatory variable importance; 

• Parallelizability and fast prediction and training speed. 

Before the implementation of the RFR, the extracted RSEs need to be “cleaned”. To 

ensure the high quality of the input RSEs, a threshold of RI > 20% has been set to filter out 

RSE results which are not representative due to the lack of valid observations (e.g., too much 

cloud obstruction, large cast-shadow area). In this thesis, the RFR is implemented using the R 

package “RandomForest” (Liaw et al., 2002). The parameterization of the user-defined 

variables is: the number of regression trees to grow (ntree = 500), the number of predictors 

sampled for splitting at each node (mtry = p/3, where p is the number of the variables), and 

the minimum size of terminal nodes (nodesize = 5). The input explanatory variables are 2 m 

air temperature, total precipitation, skin temperature, snow depth, and runoff from the ERA5 

dataset. For each variable, the maximum, minimum, mean, 25th, 50th, 75th percentiles, and 

cumulated sum are calculated. Given that 2 m air temperature may be counteracted due to 

negative values, its cumulated sum has been hence calibrated by adding the observations from 

the previous month (March). To assess the model performance, the coefficient of 

determination (R²), RMSE, and Mean Absolute Error (MAE) for each model are calculated. To 

assess the importance of each input variable, the permutation importance (percentage 

increase in mean squared error) for each implemented Random Forest model is computed. 
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5.5 Regional Snowline Retreat Curve (RSRC) Derivation and 

Validation 

Subsequent to the RSEs derivation and time series densification, Regional Snowline 

Retreat Curves (RSRCs) can be generated to characterize the retreat of the regional snowline 

during an ablation season. Given the fact that snowmelt is highly temporal dynamic, and RSE 

variation is usually not monotonous during an ablation season because of the occurrence of 

intermediate snowfall events (Hu et al., 2019a). In fact, it is more likely that the relationship 

between AT and RSE dynamic metrics during an ablation season is monotonous. To reduce the 

impact of the non-monotonicity, Accumulated Temperature (AT), instead of date, is linked to 

RSEs time series to generate RSRCs. However, the influence of the intermediate snowfall 

events cannot be totally eliminated. Since the conventional Ordinary Least Squares (OLS) 

regression technique is of very low break point, it cannot handle the contaminated RSE results 

influenced by the intermediate snowfall events. Therefore, the robust M-estimator (Hampel et 

al., 2011) is applied. Normally an RSRC is of sigmoid shape. Thus, a logistic link function is 

firstly applied to the RSE time series (Equation 5.7) for a better model fitting. “The robust 

regression is then implemented using the R package “MASS”. The form of RSRC can be 

expressed by Equation 5.7 and Equation 5.9:     

RSEi= 
RSEmax

1+ek∙ATi+b
 (5.7) 

ATMA= 
b

-k
 (5.8) 

ATi= ∫ (T̅i − T0)
i

0

∙di + AT0≈ ∑ ∑ (T̅ij − T0)

24

j=1

i

1

 + AT0 (5.9) 

where the RSEmax is the highest RSE, which equals to the highest elevations from the DEM. In 

case of the glaciated areas RSEmax is approximated by 95 percentile of the elevations in 

delineated glacier outlines from the RGI. The slope (k) is always a negative value, whose 

absolute value represents the steepness of an RSRC. The ratio between the intercept (b) and –

k (Equation 5.8) is a coefficient indicating the Accumulated Temperature of the Mid-Ablation 

season (ATMA, the mid-point of the RSRC). The generalized behaviour of RSRC in relation to 
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the coefficients is illustrated in Figure 5-5. ATi represents the AT at the ith day within the 

ablation season, which is the integral of the daily air temperature above the base temperature 

(T0) added by the AT from the previous month (AT0). By adding the AT0 to the ATi, it calibrates 

the shift of consecutive air temperatures below 0 °C at the beginning of an ablation season.” 

(Hu et al., 2019b) In this thesis, ATi is approximated by calculating the daily average of hourly 

2 m air temperature measures from the ERA5 dataset, and the base temperature is set as the 

melting point (0 °C) for snow/ice (Equation 5.9). Besides, three statistics from the summary of 

each RSRC are extracted to perform the accuracy assessment, including the corrected 

coefficient of determination (corrected R2) adapted for robust regression (Willett and Singer, 

1988), MAE, and RMSE.   

Figure 5-5: Theoretical Regional Snowline Retreat Curve (RSRC) based on the Accumulated 

Temperature (AT) and Regional Snowline Elevation (RSE). ATEA are the AT at the end of 

the ablation season, whose RSEs is the RSEmax. ATmin and ATmax are the 

minimum/maximum AT observed within the ablation season. Accumulated Temperature 

of the Mid-Ablation season (ATMA) is the mid-point of the RSRC, which is the AT value of 

the mid-ablation season. The solid line represents the standard situation, and the dash 

lines are the RSRC with different regression coefficients. The dash lines and dot-dash 

lines represents the behaviour of the RSRCs in different slope and intercept values. 

Modified according to Hu et al. (2019b). 
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Overall workflow 
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CHAPTER 6 

6 Results of Snowline Dynamics in Europe 

 

This chapter presents the results of snowline dynamics in Europe, with regards to five 

perspectives: (1) data availability, (2) snow classifications, Regional Snowline Elevations 

(RSEs), and validation, (3) 35-year intra-annual and inter-annual snowline variability in 

European mountains, (4) the analysis between snowline dynamics and the potential climate 

driver(s), as well as (5) the possible consequence of the observed snowline dynamics. The first 

part answers the research question regarding the long-term Landsat availability, including 

quality control of data pre-selection (e.g. ascending/descending scenes, tiers, and processing 

levels). Afterwards, the snow classifications, RSEs, and densified RSE time series are provided, 

together with the accuracy assessment. Based on the retrieved 35-year RSE time series, the 

intra-annual and inter-annual snowline variabilities during the ablation seasons are analysed 

for each study area. Ultimately, two case studies are presented. The first case study links a 

climate driver (air temperature anomalies) to the obtained snowline dynamics, aiming to 

investigate the possible triggers causing the observed snowline dynamics. The other one linked 

the snowline dynamics to river discharge observations, exploring the potential consequences 

(e.g. flood risk increase) of the observed snowline dynamics. 

6.1 Analysis of Landsat Collection 1 Availability over Europe 

In this section, the availability of Landsat Collection 1 archive over Europe is analysed, 

providing an overview of long-term Landsat viability for time series analysis of snow dynamics 

in Europe. Firstly, the data volume Landsat 4−8 TM/ETM+/OLI/TIRS data in Collection-1 are 

presented, according to ascending/descending orbits, tiers and processing levels. Then the 

spatial distribution of the archived Landsat Collection 1 TM/ETM+/OLI/TIRS data over Europe 

is presented, together with the monthly Landsat Collection 1 TM/ETM+/OLI/TIRS data volume. 

Accordingly, locations and periods of existing Landsat data gaps during 1982−2017 in Europe 
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are identified. Given the great impact of cloud obstruction on optical satellite image availability, 

the cloud cover information derived from the MFmask is analysed to delineate the locations as 

well as the severity of cloud cover in the Landsat Collection 1 time series.  

6.1.1 Suitability of Different Landsat Processing Levels and Tiers 

In May 2018, the USGS unprecedentedly reorganized the global Landsat 1−5 MSS, 

Landsat 7 ETM+, Landsat 8 OLI/TIRS, and the majority of Landsat 4−5 TM scenes into the 

USGS Collection 1 archive. The reorganized Landsat scenes were categorized into three tiers, 

i.e. Tier 1, Tier 2, and RT which consist of daily updated metadata available online. Among 

these three tiers, Tier 1 (“stackable” data for time series analysis) is the strictest quality 

indicator for time series analysis (for details please refer to section 4.1.1). It is characterized 

by the highest quality in terms of radiometric and geometric calibration. Figure 6-1.a shows 

that only 59 % of the Landsat 4 and 52% of the Landsat 5 TM data meet the Tier 1 criterion. 

On the other hand, the Tier 1 criterion is met by 72% of the Landsat ETM+ and 62% of the 

Landsat OLI/TIRS scenes. For long-term time series in cloud-prone areas, for example snow 

covered mountain regions (Martinuzzi et al., 2007; USGS/EROS, 2017), USGS suggests to 

lower the selection criterion from Tier 1 to L1TP processing level in order to filter out 

unsuitable time series input scenes (USGS/EROS, 2017). For the presented study, the Landsat 

Collection 1 archive available between 1982 and 2017 has been analysed across the entire 

Europe based on the available metadata information as of January 16, 2018 and again has 

been rechecked on March 22, 2018. Therein, approximately 100,000 scenes have been 

acquired by Landsat 7 ETM+ after May 31, 2003, when the SLC permanently failed. It has 

been estimated that nearly 22% of the pixels are unusable in SLC-off Landsat 7 ETM+ 

acquisition (Markham et al., 2004).  

Given that some ascending scenes (i.e. “night-time” acquisitions) may provide additional 

usable images during the polar day in Northern Europe, the metadata of the ascending scenes 

was checked as well. However, Figure 6-1.b shows that more than 93% of the ascending 

scenes contain sun elevation below 15°, which are therefore not appropriate for accurate 

atmospheric correction and post-processing. In this view, only the descending scenes (a total 

of 1189 path/row footprints) which were processed to the L1TP level were eventually used for 

the availability and snow condition analysis in this study. In total, the metadata of 477,224 

Landsat acquisitions over Europe in the USGS Landsat Collection 1 dataset were incorporated. 
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In this thesis, Landsat acquisitions archived by other International Cooperators (ICs) are not 

considered, as the scenes held by ICs are often not free-accessible, and only pre-processed 

according to the ICs’ individual norms.  

 

(a) The total number of archived Landsat 4−5 TM, Landsat 7 ETM+ and Landsat 8 OLI/TIRS scenes at 

different processing levels and tiers 

 

(b) Sun elevation of the archived Landsat Collection 1 ascending (i.e. “night-time” acquisition) and descending 

(i.e. “day-time” acquisition) scenes 

Figure 6-1: Quality indicators of the Landsat scenes archived in Collection 1 dataset (1982−2017) over 

Europe. 
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To systematically detect snow cover and cloud cover, the USGS Landsat Surface 

Reflectance Level-2 Science Products were utilized, including the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) products for Landsat TM and ETM+ scenes 

and the Landsat 8 Surface Reflectance Code (LaSRC) products for Landsat 8 OLI/TIRS scenes. 

In accordance with the availability analysis, all Level-2 Tier 1 surface reflectance products, as 

well as the L1TP scenes categorized in Level-2 Tier 2 surface reflectance products provided by 

the Google Earth Engine (GEE), have been selected and used for snow and cloud detection. 

6.1.2 Spatiotemporal Distribution of the Landsat Collection 1 

TM/ETM+/OLI/TIRS L1TP Products in Europe 

The spatiotemporal distribution of data availability is directly linked to the density of the 

snow cover time series and the occurrence of missing values therein. The USGS Landsat 

Collection 1 archive currently (as of January 16, 2018) holds around 315,000 

TM/ETM+/OLI/TIRS L1TP images acquired over Europe between 1982 and 2017 (Figure 6-3). 

The effect of footprint overlapping is well-pronounced (shown as the checkerboard pattern) in 

Europe. The maximum number of acquisitions is located over Southern Europe, particularly the 

Alps, and parts of the Scandinavian Mountains. Northernmost Europe such as Svalbard has 

fewer L1TP scenes than the rest of Europe due to the low winter sun elevation angles and 

severe cloud cover. Albeit a large number of acquisitions are acquired in these regions due to 

extremely overlapped footprints, these images can rarely be pre-processed at the L1TP level. 

In mountain areas, approximately 500 acquisitions per footprint are archived in Collection 1 

over the Alps, and a similar number of images are also acquired over the Carpathian Mountains 

and the Pyrenees. The number of available scenes can reach more than 1,000 (e.g., in the 

Northern Alps and Central Carpathians), where footprints are overlapped. The mountains in 

Northern Europe have deficient acquisitions, especially those located on islands (e.g., Iceland, 

Scotland, and Svalbard). Although the footprint overlapping is more significant within these 

areas, for the majority of Iceland and Scotland no more than 280 scenes per footprint have 

been acquired for any of these locations. 

The temporal distribution of monthly availability of the archived Landsat Collection 1 data 

at the L1TP processing level is illustrated in Figure 6-2. Generally, the intra-annual data volume 

shows a seasonality pattern with the maximum appearing in the summertime and the 

minimum occurring in midwinter. The overall inter-annual pattern also has obvious periodical 
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disparities, which are almost inconsistent with the timeline of different Landsat missions. 

Before the launch of Landsat 7 ETM+ (1982−1999, epoch 1), the data availability reaches its 

minimum. The availability is elevated during the Landsat 5 TM and Landsat 7 ETM+ 

cooperation time (1999−2013, epoch 2). Later, the availability reaches its maximum after the 

launch of Landsat 8 OLI/TIRS (2013 to present, epoch 3), which is annually almost twice as 

much as the amount during epoch 1. In epoch 1, most of the acquisitions in Europe were 

contributed by the Landsat 5 TM, while Landsat 4 TM acquired only a few L1TP scenes 

between 1987 and 1992 over Europe. Since Landsat 7 ETM+ became operational, the majority 

of the archived scenes in Europe have been acquired by Landsat 7 ETM+ during the epoch 2. 

Later, in epoch 3, Landsat 8 OLI/TIR became the backbone. In the meantime, Landsat 7 ETM+ 

consecutively provided L1TP scenes to the Landsat Archive. Two periods (1982−1984 and 

1991−1999) of sparse acquisitions can be identified in Figure 6-2. For the first period 

(1982−1984), even though Landsat 4 TM was launched in 1982, the data actually became 

available only after the year 1984. Accordingly, the length of the whole time series is, in fact, 

shorter. Another significant data scarcity is observed between 1992 and 2000, except for 1995 

and 1998. During this period, only a limited number of Landsat 5 TM scenes were acquired 

mainly over Western Europe. 

 

Figure 6-2: Temporal pattern of monthly Landsat 4−5 Thematic Mapper (TM), Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager/Thermal Infrared 

Sensor (OLI/TIRS) Level 1 Precision and Terrain (L1TP) acquisition amounts over Europe 

archived in Collection 1 dataset. Modified according to Hu et al. (2019a). 
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Figure 6-3: Spatial distribution of Landsat 4−5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+), and Landsat 8 Operational Land Imager/Thermal Infrared Sensor 

(OLI/TIRS) Level 1 Precision and Terrain (L1TP) scenes over Europe archived in Collection 

1 dataset between 1984 and 2017. 
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6.1.3 Cloud Obstruction of the Landsat Collection 1 TM/ETM+/OLI/TIRS 

L1TP Products in Europe 

For optical snow monitoring, clouds do not only obstruct optical EO observation but also 

cause challenges in separating snow and clouds. The frequency of each pixel in Europe 

covered by clouds during the period 1982−2017 is presented in Figure 6-4, based on the 

“Level-2 Pixel Quality Assurance Bit Flag” in the USGS Landsat Collection 1 Level-2 Surface 

Reflectance Tier 1 and 2 L1TP products. Geographically, the occurrence of clouds tends to be 

more frequent in mountainous areas (> 70%) and high latitude regions (> 50%), yet lower in 

low latitude plains (< 50%) and the Mediterranean (< 30%). This is highly consistent with the 

local geographical settings, e.g., topography and climatology. Among the selected study areas, 

Scotland has the densest cloud cover. More than 80% of Landsat L1TP scenes within the 

regions around Ben Nevis are cloud covered. Severe cloud cover (> 60%) is also observed in 

the ice-cap peripheral areas in Iceland, the northwest face of the Scandinavian Mountains as 

well as the north face of the Pyrenees. Cloud cover is less severe in the Carpathian Mountains 

and the Alps, with exception of the high peaks. No more than 55% of these acquisitions are 

cloud covered.  

The seasonal cloud cover patterns from the selected six mountain areas have been 

illustrated in Figure 6-5. They are calculated based on the cloud flags in the Landsat metadata 

file. Again, the Scandinavian Mountains (Figure 6-5.a), Scotland (Figure 6-5.b) and Iceland 

(Figure 6-5.c) are the most cloud-prone regions among all months, where the median cloud 

coverage stays around 40% throughout the whole year. The upper quantile of the cloud cover 

in these regions persists at approximately 70% in each month. In addition, the cloud cover is 

much more long-lasting in Scotland and Iceland, whose lower quantile of cloud cover are 

mostly above 30% and 20% respectively. An anomaly is the cloud cover of Iceland in 

December (Figure 6-5.c), which is obviously lower than in other months. The intra-annual 

cloud cover variation of mountains in Southern Europe (the Alps, Carpathian Mountains, and 

the Pyrenees) presents a cosine-curve shape. Most of the Landsat summer acquisitions have 

no more than 50% cloud coverage. The lower quantile is approximately 5% in July and 

August. 
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Figure 6-4: The frequency of cloud occurrence of Landsat 4−5 Thematic Mapper (TM), Landsat 7 

Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land 

Imager/Thermal Infrared Sensor (OLI/TIRS) Level 1 Precision and Terrain (L1TP) scenes 

in Collection 1 archive based on Fmask. 



CHAPTER 6  Results of Snowline Dynamics in Europe 

101 

 
(a) Seasonal cloud cover in the  

Scandinavian Mountains 

 
(b) Seasonal cloud cover in Scotland 

 
(c) Seasonal cloud cover in Iceland 

 
(d) Seasonal cloud cover in the Pyrenees 

 
(e) Seasonal cloud cover in the Alps 

 
(f) Seasonal cloud cover in the  

Carpathian Mountains 

Figure 6-5: Boxplots of seasonal cloud cover per scene in the main European mountain areas: (a) 

Scandinavian Mountains, (b) Scotland, (c) Iceland, (d) Pyrenees, (e) Alps, and (f) 

Carpathian Mountains. Modified according to Hu et al. (2019a). 
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6.2 Snow Cover Maps and Regional Snowline Elevation (RSE) 

In this section, the results of snow classifications, EO-derived RSEs, RFR-densified RSEs 

are presented. This section starts with demonstrating the snow classifications in comparison to 

the MODIS-based snow classification results. It shows the necessity of employing higher-

resolution satellite images for snow cover assessment in mountain areas than the prevalently 

used MODIS snow cover products. Also, the accuracy assessment of the obtained snow 

classification results is provided. In terms of the RSE results, firstly, the RSEs derived from the 

Landsat, ASTER, and Sentinel-2 images are demonstrated together with the corresponding 

accuracy assessment based on the five indices (section 5.3). Afterwards, the modelled daily 

RSE time series are displayed, as well as the corresponding validation results.  

6.2.1 Snow Classifications and Accuracy Assessment 

An example of the snow classification results based on the Landsat OLI/TIRS image near 

the catchment Drac is displayed in Figure 6-6.a and Figure 6-6.d. For a comparison purpose, 

the MODIS-based snow classification on the same date is shown aside (Figure 6-6.b and Figure 

6-6.e). In the background the originally Landsat image is displayed in a false-colour 

composition (RGB: SWIR-NIR-Red). Therein, snow is of a typical bluish colour, while clouds are 

shown as bright white objects. The zoom-in images (Figure 6-6.d and Figure 6-6.e) illustrate a 

great underestimation in snow-covered areas. Moreover, within the snow-land boundary areas, 

500m MODIS snow cover products show an obvious over-/underestimation of snow cover. In 

this regard, the medium-resolution based snow cover products are not well-suited for snowline 

estimation, while the Landsat Archive shows its strength in precisely extracting the high-

resolution boundary between snow and snow-free areas. 

To quantitatively assess the accuracy of the snow classification maps, a confusion matrix 

is generated (Table 6-1), based on 7720 ECA&D and NOAA-GHCN snow depth observations. 

Based on the confusion matrix, OA and κ are calculated as 96.71% and 0.72, respectively. In 

addition, based on the confusion matrix (Table 6-1), UA and PA in relation to snow are 

calculated. The obtained UA snow is 83.25%, which means that 83.25% of the classified snow 

pixels are truly snow-covered according to the ground truth data. The obtained PA snow is 

65.41%, which means that 65.41% of the snow-covered pixels have been detected.  
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Figure 6-6: Snow Classification based on (a) Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) and (b) Moderate Resolution Imaging 

Spectroradiometer (MODIS) imagery in the Catchment Drac on 07 June 2017, and the atmospherically and topographically corrected image in 

false colour composite (RGB: SWIR-NIR-RED) (c), as well as two zoom-ins (d−e). 
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Table 6-1: Confusion matrix relating satellite-derived snow classifications and ground snow-depth 

observations. Modified according to Hu et al. (2019b). 

  Snow Depth Observations 

  Snow Snow-free UA 

Classification 

Snow 348 70 83.25% 

Snow-free 184 7118 97.48% 

PA 65.41% 99.02% OA = 96.71% 

 

6.2.2 Regional Snowline Elevations (RSEs) and Accuracy Assessment 

To demonstrate the RSEs results, RSEs derived from the Landsat OLI/TIRS and ETM+ 

observations during the ablation season 2018 are displayed in Figure 6-7, it is 

representative for the general situation when dual Landsat sensors are in orbit (Figure 6-2) 

before the launch of Sentinel-2A in June 2015. As the acquisition dates of the original 

Landsat images differ spatially, for a better visualization, an ablation season is categorized 

into nine time slots in a near 10-day time interval (i.e. early/middle/end of April/May/June). 

“Spatially, in the northern Pyrenees (i.e. Ariege) RSEs are lower than in the southern part 

(i.e. Serge). Besides, the regional snowline in the northern part of Pyrenees is preserved 

longer compared to the southern part. In the two Carpathian catchments, particularly in 

Uzh, the RSEs last much shorter than in other investigated catchments during the ablation 

season 2018. In contrast, the regional snowlines are still preserved at the end of the 

ablation season 2018 in most of the Alpine catchments.” (Hu et al., 2019b) One of the 

possible explanations is the higher elevation of the European Alps than the other 

investigated study areas, indicated by the elevation information provided by the DEM. 

In terms of the temporal pattern, assuming snow is continuously melting, the snowline 

will be accordingly retreating towards a high elevation. In this regard, the occurrence of 

the reddish colour, indicating the snowline at the end of the ablation season (i.e. end of 

June), “should be located around the highest elevation. Otherwise, once the regional 

snowlines in reddish colour are located in lower elevation zones compared with previous 

ones, it indicates the occurrence of an intermediate snowfall event. Therefore, these 

results could help identify anomalies, such as intermediate snowfall events observed in 

Figure 6-7, where reddish/yellowish regional snowlines are of lower elevation than 

bluish/greenish ones. For example, the yellow-coloured (end of May) regional snowline 

appears in Adda and Tagliamento, and the coral-coloured (end of June) regional snowline 

is observed within Uzh.” (Hu et al., 2019b) Moreover, within the Carpathian catchments, 

regional snowlines are rarely observed at the end of the ablation season, unless an 

intermediate snowfall event is occurs (e.g., Figure 6-7.h). 
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Meanwhile, five quality indices (introduced in Section 5.3) are calculated (Figure 6-8). 

The first index, RI (Figure 6-8.a), illustrates the percentage of valid pixels (i.e. labelled as 

snow or land) from the satellite image within the catchment extent. The medians of RI in 

each catchment are more than 60%, and the upper and lower quantiles thereof are near 

Figure 6-7: Snowlines based on Regional Snowline Elevations (RSEs) during the ablation season 
(from April to June) 2018 within the investigated catchments: a) Adda, b) Alpenrhein, 

c) Ariege, d) Drac, e) Salzach, f) Serge, g) Tagliamento, h) Tysa, i) Uzh, and j) Var. 

Modified according to Hu et al. (2019b). 
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90% and 35%, respectively. It indicates an overall sufficient amount of valid pixels for RSE 

retrieval. The second index EI (Figure 6-8.b), measuring the percentage of erroneous 

pixels, indicates an overall low (median < 5%) erroneous pixels percentage. The medians 

of recall scores (Figure 6-8.c) are around 30%, which shows the median probability of 

detecting a classified snow pixel above the derived RSEs is around 30%. The medians of 

precision scores (Figure 6-8.d) are around 50% for the Alpine catchments (except 

Tagliamento), indicating 50% of the pixels above the derived RSEs are indeed snow.  The 

last calculated index is F-score. The medians of the F-scores (Figure 6-8.e) are mostly near 

30% for the Alpine catchments (except Tagliamento), while for the Pyrenean and 

Carpathian catchments the F-scores are comparably low. 

  

  

 

 

Figure 6-8: Accuracy assessment of the retrieved Regional Snowline Elevation (RSE) of each 
catchment, based on the Representativeness Index (RI), Error Index (EI), Precision, 

Recall, and F-score in each investigated catchment: a) Adda, b) Alpenrhein, c) Ariege, 

d) Drac, e) Salzach, f) Serge, g) Tagliamento, h) Tysa, i) Uzh, and j) Var. 
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6.2.3 Modelled Regional Snowline Elevations (RSEs) and Accuracy 

Assessment 

Together with the daily snow coverage derived from the GSP, the densified time series 

of RSEs results are shown in Figure 6-9 for each investigated catchment. The increase of 

snow coverage during an ablation season could indicate the occurrence of snowfall events. 

It confirms the modelled RSE is able to represent the intermediate snowfall events, which 

is challenging in RSE retrieval using high resolution satellite data with long revisit time 

(Hall, 1985; Hu et al., 2019a, 2019 b). The snow coverage shows a high negative 

correlation to the RSE (mean correlation coefficient �̅� = − 0.81, for the Alpine catchments 

�̅� = − 0.87).  

The overall performance of RFR models is shown in Table 6-2, based on the Out-Of-

Bag (OOB) results, including the percentages of explained variance and Root Mean Square 

Errors (RMSEs). In general all models show a good performance predicting the RSE, which 

achieved an overall average R² around 0.66. It should be noted that performance of RFR 

models over-perform in Alpine catchment, whose mean R² reaches 0.72, indicating the 

RFR models can explain 6% more variance there. The highest coefficient of determination 

(R²) is achieved in the catchment Drac (R² = 0.89), and the least R² is obtained in the 

catchment Uzh (R² =0.48). It is seemingly that the R² may be in relation to the geographic 

settings of the catchment. Besides, the average RMSE is reported as 229.44 m.  

Table 6-2: Percentage of the variance (R²) explained by the Random Forest Regression (RFR), and 

root mean squared error (RMSE). 

Catchment Percentage of explained Variance [%] RMSE [m] 

Adda 83.53 164.39 

Alpenrhein 68.17 294.92 

Ariege 64.17 298.45 

Drac 89.27 144.44 

Salzach 60.85 290.23 

Serge 66.42 236.77 

Tagliamento 48.08 339.90 

Tysa 56.41 251.33 

Uzh 42.99 108.62 

Var 84.38 165.31 
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Regarding the importance of climate variables to RSE variability, the permutation 

importance of the RFR models is reported in Table 6-3. Cumulated sum of 2 m air 

temperature and mean snow depth are the most important variables, which are of MAE 

improvements range from 5.03% to 19.99%. Also, the cumulated skin temperatures are 

overall influential. In catchment Drac, the influence of runoff is more pronounced than the 

other investigated catchments. However, total precipitation is reported as the least 

important climate variable in predicting RSEs.  

Figure 6-9: Time series of the modelled Regional Snowline Elevations (RSEs) displayed in solid blue 

line, and snow coverage derived from the Global Snow Pack (GSP) during the ablation 

seasons 1984−2018. 
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Table 6-3: Permutation importance of each input variable in the investigated catchments. 

Parameters Adda Alpenrhein Ariege Drac Salzach 
2

 m
 a

ir
 T

e
m

p
e

ra
tu

re
 Min 4.26 3.65 6.98 5.07 4.79 

25% Percentile 6.43 4.59 3.74 4.35 4.06 

Median 8.76 4.26 4.35 5.38 4.41 

25% Percentile 8.35 0.15 2.89 5.40 1.71 

Max 6.42 −1.33 4.87 5.86 1.05 

Mean 6.21 4.23 3.77 4.60 4.10 

Cumulated Sum 14.22 10.54 19.46 14.14 8.44 

T
o

ta
l 

P
re

c
ip

it
a

ti
o

n
 Min 2.81 0.67 1.47 1.99 −3.22 

25% Percentile 2.95 0.07 0.79 3.10 −1.87 

Median 4.00 0.17 2.61 4.20 0.45 

25% Percentile 4.30 2.04 3.65 5.48 0.47 

Max 3.93 1.41 2.72 6.97 −0.72 

Mean 3.96 −0.55 1.36 3.38 −1.04 

Cumulated Sum 8.58 2.24 7.42 3.69 3.78 

R
u

n
o

ff
 

Min 6.45 3.36 4.68 10.41 6.09 

25% Percentile 11.81 6.12 3.09 11.66 2.75 

Median 8.14 7.08 4.69 11.70 4.01 

25% Percentile 8.73 3.90 3.75 13.65 0.36 

Max 6.81 −0.44 5.19 10.83 3.07 

Mean 6.66 4.66 1.00 13.83 3.54 

Cumulated Sum 8.35 2.99 6.92 8.67 3.80 

S
n

o
w

 D
e

p
th

 

Min 0.00 −2.36 0.00 7.06 −4.06 

25% Percentile 3.83 6.56 0.00 8.75 −1.24 

Median 12.06 5.56 2.43 12.03 3.81 

25% Percentile 11.21 7.24 6.29 11.06 6.16 

Max 10.27 6.64 5.58 9.99 7.39 

Mean 14.79 9.32 18.26 15.00 9.20 

Cumulated Sum 7.09 1.53 2.83 9.79 2.10 

S
k

in
 T

e
m

p
e

ra
tu

re
 Min 7.59 4.75 9.39 8.48 −0.60 

25% Percentile 9.02 8.61 7.70 8.03 6.10 

Median 13.27 7.56 6.98 7.68 6.20 

25% Percentile 13.63 3.81 5.45 6.64 3.92 

Max 8.28 −2.36 5.32 8.33 2.14 

Mean 6.66 6.65 5.11 7.47 4.13 

Cumulated Sum 14.74 12.35 16.70 15.95 9.80 
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Table 6-3 (Continued) 

Parameters Serge Tagliamento Tysa Uzh Var 

2
 m

 a
ir

 T
e

m
p

e
ra

tu
re

 Min 9.33 8.79 4.96 8.23 3.61 

25% Percentile 7.14 7.06 4.93 8.67 4.19 

Median 3.82 5.53 3.22 3.73 4.78 

25% Percentile 6.26 3.95 3.74 3.82 2.26 

Max 7.14 2.49 4.31 2.89 3.66 

Mean 4.27 6.39 4.01 6.24 3.03 

Cumulated Sum 12.33 8.03 14.98 12.26 15.03 

T
o

ta
l 

P
re

c
ip

it
a

ti
o

n
 Min 0.03 −0.26 0.10 −2.22 0.69 

25% Percentile 2.13 1.09 −0.36 −1.50 −2.42 

Median 0.05 5.21 2.25 2.66 −0.84 

25% Percentile 2.39 6.51 1.32 3.75 1.61 

Max 1.40 4.84 0.94 3.38 0.34 

Mean 0.91 3.99 −2.11 3.60 −0.77 

Cumulated Sum 3.65 6.16 5.48 5.75 1.37 

R
u

n
o

ff
 

Min −1.51 7.45 4.13 1.40 10.85 

25% Percentile −1.69 5.04 4.77 2.30 9.40 

Median 3.44 4.95 4.35 3.36 6.98 

25% Percentile 3.23 5.93 4.45 2.46 4.37 

Max 1.63 4.34 4.49 3.75 2.67 

Mean 2.89 6.98 3.77 4.90 4.90 

Cumulated Sum 8.57 8.12 2.30 5.02 4.56 

S
n

o
w

 D
e

p
th

 

Min 0.00 0.00 0.00 0.00 0.00 

25% Percentile 0.00 −1.67 −1.00 1.12 2.35 

Median 5.53 8.51 3.49 1.95 12.44 

25% Percentile 8.32 5.04 6.72 1.79 10.73 

Max 6.16 5.26 5.43 1.27 11.98 

Mean 10.04 19.99 8.46 5.03 11.72 

Cumulated Sum −0.27 −0.27 6.71 12.30 9.33 

S
k

in
 T

e
m

p
e

ra
tu

re
 Min 10.03 5.77 10.56 8.40 6.22 

25% Percentile 8.70 8.55 6.67 14.23 8.28 

Median 8.62 6.98 6.80 6.69 7.54 

25% Percentile 4.94 4.56 4.62 2.81 5.43 

Max 3.78 4.74 5.58 2.88 6.44 

Mean 6.22 7.43 6.62 6.34 6.12 

Cumulated Sum 13.04 9.22 13.87 10.29 15.62 

 



CHAPTER 6  Results of Snowline Dynamics in Europe 

111 

6.3 Long-term Snowline Dynamics in European Mountains 

The present study aims to characterize regional snowline dynamics during the ablation 

seasons. Within this context, two aspects of the regional snowline dynamics are presented 

in the following sections, i.e. intra-annual and inter-annual variations of regional snowlines. 

To assess the intra-annual variation, locations of RSEs at 1-day interval during an ablation 

season are analysed. Afterwards, three measures are presented with regards to the intra-

annual variation, including RSRC steepness, ATMA, as well as the 35-year trends of the 

median RSEs and the RSEs at the beginning of the ablation season. Lastly, a 

comprehensive accuracy assessment is provided in the last section. 

6.3.1 Intra-annual Variations of Regional Snowlines during the 

Ablation Seasons 1984−2018 

In terms of the intra-annual variations of the RSE, Figure 6-10 illustrates the frequency 

of an elevation covered by snow on a certain day of the ablation seasons 1984−2018. It 

shows that the RSEs are, in general, lower in the Northern Alps than the Southern Alps. 

The intra-annual variation of the RSEs is larger in the Southern Alps. In the southern 

Pyrenean catchment Serge, the RSEs at the beginning of the ablation seasons are lower 

than the northern Pyrenean catchment Ariege. Also, the variation of the RSEs in Ariege is 

larger than Serge during the ablation season 1984−2018. In the two investigated 

Carpathian catchments, the RSEs reach the maximum elevation in May, especially in the 

catchment Uzh. In general, the occurrences of the anomalously low RSEs also indicate the 

probable intermediate snowfall events therein. The width of the curves suggests the timing 

of the most significant RSEs variability. Among the all investigated catchments, the Apline 

catchment Tagliamento shows the uniquely high variation in the beginning of the ablation 

seasons, mainly towards a high elevation.   
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Figure 6-10: Frequency of the Regional Snowline Elevations (RSE) above a certain elevation during 
the ablation seasons between 1984 and 2018 within the investigated catchments: a) 

Adda, b) Alpenrhein, c) Ariege, d) Drac, e) Salzach, f) Serge, g) Tagliamento, h) 
Tysa, i) Uzh, and j) Var. The blue solid line indicates the 35-year median RSE at each 

day-of-year during an ablation season. 

6.3.2 Inter-Annual Variability of Regional Snowlines during the 

Ablation Seasons 1984−2018 

To demonstrate the inter-annual regional snowline variations, the time series of the 

steepness and ATMA from RSRCs are shown in Figure 6-11 and Figure 6-13 for each study 

area. The steepness of the RSRC represents the velocity of regional snowline retreat, since 

the AT is related to the day-of-year in the ablation season. Among the investigated 

catchments, significantly positive trends have been detected, except for the Alpine 

catchment Alpenrhein, the Pyrenean catchment Ariege, and the Alpine catchment Var. This 

indicates the lift of the RSEs at the beginning of the ablation seasons. The 35-year AT time 
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series (see Figure 6-12) indicates a tendency of increasing AT during the ablation seasons. 

Such tendency intensifies the retreat of RSEs during the ablation season. 

Also, it is necessary to investigate the timing of the snow-clearance process. ATMA 

illustrates how much AT is required for a regional snowline to reach the middle of the RLE. 

Significantly negative trends of ATMA are detected in some catchments, including 

Tagliamento and Tysa. It indicates that 11.8 and 3.97 less Celsius per year are needed for 

the regional snowlines to reach the middle of the RSRC in the Tagliamento and Tysa, 

respectively. In these two catchments, significantly positive trends of RSRCs’ steepness are 

observed. It also suggests higher RSEs in early April, and that the disappearance of 

snowline retreat occurs earlier.    
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Figure 6-11: Steepness of the Regional Snowline Retreat Curves (RSRCs) of the investigated 

catchments between 1984 and 2018. Modified according to Hu et al. (2019b). 
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Figure 6-12: Box-whisker plots presenting max, min, median as well as 25th and 75th percentiles of 
the Accumulated Temperatures (ATs) between April and June of the investigated 

catchments (1984−2018). Modified according to Hu et al. (2019b). 
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Figure 6-13: Accumulated Temperature of the Mid-Ablation season (ATMA) of the Regional Snowline 
Retreat Curves (RSRCs) of the investigated catchments between 1984 and 2018. Modified 
according to Hu et al. (2019b). 
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Results of the trend analysis with regards to median RSEs and the RSEs at the 

beginning of the ablation seasons between 1984 and 2018 have been summarized in Table 

6-4. The results show an overall significant trend of higher median RSE (except for Serge 

and Uzh), and higher RSE at the beginning of the ablation season (except for Serge). The 

median RSE becomes higher in all the selected catchments, with an average speed of 

around 4.66 m ∙ a−1 (median) and 5.87 m ∙ a−1 (at the beginning of the ablation season). 

The fastest significant retreat is observed in the catchment Drac (10.66 m ∙ a−1, at the 

beginning of the ablation season), and the slowest significant retreat is observed in the 

catchment Uzh (1.74 m ∙ a−1, at the beginning of the ablation season). The RSE at the 

beginning of the ablation season suggests a faster retreat than the median, whose average 

difference is approximately 1.21 m∙a−1, particularly in the catchment Drac (3.72 m ∙ a−1).  

Table 6-4: Summary of the Trend analysis with regards to median RSEs and the RSEs at the 

beginning of the ablation seasons between 1984 and 2018. 

Catchment 
5 % Median 

Slope [m ∙ a−1] p-value Slope [m ∙ a−1] p-value 

Adda 8.560 0.00020 5.243 0.00895 

Alpenrhein 5.766 0.00001 5.642 0.00273 

Ariege 7.771 0.00185 4.453 0.01470 

Drac 10.656 0.00050 6.933 0.00108 

Salzach 3.488 0.00505 4.660 0.03820 

Serge 2.577 0.15100 1.568 0.30500 

Tagliamento 8.821 0.00222 8.777 0.00255 

Tysa 4.885 0.02990 3.6727 0.00016 

Uzh 1.7376 0.02930 -0.1708 0.37500 

Var 4.468 0.08430 5.778 0.04060 

6.3.3 Accuracy Assessment of Regional Snowline Retreat Curves 

(RSRCs) 

To assess the performance of the robust M-estimation of the derived RSRCs, the 

corrected R2 (Figure 6-14) for robust estimation, MAE (Figure 6-15), and RMSE (Figure 

6-16) are calculated for each fitted RSRC. The three metrics summarize the fit of the RSLC 

to the RSE inputs. Within the Alpine catchments (excluding Tagliamento and the 

Carpathian catchments), the median corrected R2 is around 0.90. Therein, more than 90% 

of the variances in the RSEs can be explained by the variation of AT. According to the 
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median, the RSRCs explain on average approximately 10% less variation in the RSEs in the 

Pyrenean catchments than the aforementioned Alpine catchments. In the Tysa and 

Tagliamento, most of the RSRCs are only able to predict 65% of the RSE variability 

according to their comparably small median corrected R2 (near 65%). The models show 

weak performance in the Carpathian catchment Uzh, where the models explain only 

approximately 40% of the RSE variability therein. Besides, the upper quantile, median, and 

lower quantile of MAEs are generally around 25 m, 20 m, and 15 m, respectively. Most of 

the RMSEs are lower than 200 m.  

 

Figure 6-14: Box-whisker plots presenting max, min, median as well as 25th and 75th percentiles of 

the Corrected R² of the Regional Snowline Retreat Curves (RSRCs). 

 

Figure 6-15: Box-whisker plots presenting max, min, median as well as 25th and 75th percentiles of 

the Mean Absolute Error (MAE) of the Regional Snowline Retreat Curves (RSRCs). 

 

Figure 6-16: Box-whisker plots presenting max, min, median as well as 25th and 75th percentiles of 

the Root Mean Squared Error (RMSE) of the Regional Snowline Retreat Curves (RSRCs). 

  



CHAPTER 6  Results of Snowline Dynamics in Europe 

119 

6.4 Potential Climate Drivers and Consequences of the 

Detected Long-Term Snowline Dynamics in the 

European Mountains 

Based on the derived RSE dynamics in the previous sections, two case studies are 

carried out, linking RSEs to air temperature anomalies and river discharge dynamics, 

respectively. The first case study investigates the potential responses of the RSEs to the air 

temperature dynamics, which are assumed as the main climate driver of the observed 

snowline retreat. The second case study looks into the patterns between RSEs and river 

discharges, since the observed trends of river flood timing in Europe is shifting to the early 

ablation season. 

6.4.1 Snowline Dynamics and Air Temperature Anomalies 

The time series of RSE for each study area are displayed in Figure 6-17, together with 

the monthly air temperature difference to the 35-year mean. When heat wave events (e.g., 

2003 and 2007) occurred in Europe, the mean monthly RSEs were much lower than the 

other years. When anomalously high air temperature occurs in the early ablation season, 

for example, in April 2007 within Adda, it does not only result in anomalously high RSE in 

the early ablation season, but also accelerate the recession of the regional snowline to its 

maximum elevation.  

Table 6-5: Summary of the correlation analysis between Regional Snowline Elevations (RSEs) and 
monthly air temperature anomalies in each month during the ablation seasons 

1984−2018. 

Catchment April May June 

Adda 0.80 0.77 0.84 

Alpenrhein 0.78 0.87 0.85 

Ariege 0.75 0.79 0.85 

Drac 0.64 0.72 0.80 

Salzach 0.43 0.83 0.79 

Serge 0.66 0.84 0.92 

Tagliamento 0.31 0.78 0.76 

Tysa 0.66 0.64 0.76 

Uzh 0.82 0.17 −0.26 

Var 0.38 0.77 0.64 
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Figure 6-17: Temporal variation of the Regional Snowline Elevations (RSEs) during the ablation 
seasons 1984−2018 in each investigated catchment. The blue dash lines represent 

smoothed RSEs using Savitzky–Golay filter with 2nd order polynomial in 3-day 

window. 

The retrieved monthly mean RSE (blue dash line) shows a good correlation (�̅� = 0.7, 

Table 6-5) with the monthly air temperature anomaly, which is well-pronounced in months 

with extremely low/high air temperature. The correlation coefficients increase along with 

the time during an ablation season. Generally, the correlation coefficients are higher in 

June than in April. 

 

Temperature Anomalies [°C] 
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6.4.2 Snowline and Discharge Dynamics during the Ablation Seasons 

2000−2016 

The discharge time series from GRDC dataset is displayed in Figure 6-18 and Figure 

6-19 for the ablation seasons 2000−2016, together with the RSE and snow coverage 

information. The peak discharge events are well-indicated in the time series of both RSEs 

and snow coverage, i.e. the turning points therein. Correlation analyses are performed to 

preliminarily investigate the relationship between river discharge and RSE, as well as 

between river discharge and snow coverage. The correlation coefficient (R) between river 

discharge and RSE is 0.52 in the catchment Alpenrhein, and is 0.21 in the catchment 

Salzach. In term of the relationship assessment between river discharge and snow 

coverage, the correlation coefficient (R) is −0.49 in the catchment Alpenrhein, and is −0.21 

in the catchment Salzach. The absolute values of the correlation coefficients are quite 

similar in both between river discharge and RSE, and between river discharge and snow 

coverage. For the catchment Alpenrhein, the absolute value of correlation coefficient (R) 

between river discharge and RSE is 0.03 higher than that between river discharge and 

snow coverage. It indicates that approximately 3% more variation in river discharge can be 

explained by RSE than that by snow coverage. 

 

 
Figure 6-18: Landsat-based Regional Snowline Elevations (RSEs), MODIS-based snow coverage, and river 

discharges measured at ground station during the ablation season 2000−2016 in the Alpine 

catchment Alpenrhein. 
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Figure 6-19: Landsat-based Regional Snowline Elevations (RSEs), MODIS-based snow coverage, and river 

discharges measured at ground station during the ablation season 2000−2016 in the Alpine 

catchment Salzach. 
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CHAPTER 7 

7 Discussion 

 

This chapter discusses the presented results from the previous sections. This includes 

the following perspectives: (1) gaps in the long-term Landsat Collection 1 archive, (2) 

challenges regarding the snowline elevation derivation and validation, (3) different aspects 

of the retrieved snowline elevation dynamics, and (4) the potential triggers and 

consequences in relation to the detected snowline dynamics. The first part investigated the 

data gaps in the Landsat Archive due to missing observations and cloud contamination. 

Afterwards, challenging aspects about snowline dynamics retrieval and validation are 

discussed. Next, the estimated snowline dynamics are evaluated with respect to their 

peripheral geographical settings as well as in the context of existing studies. In the last 

part, potential applications of the derived RSE dynamics are discussed. Additionally, results 

from two case studies investigating associations between potential climate drivers and 

consequences of detected snowline elevation dynamics are examined. 

7.1 Gaps in the Long-Term Landsat Collection 1 Archive  

In this section, the availability of the Landsat Collection-1 archive over Europe is 

analysed, to evaluate its suitability for time series analysis of snow cover dynamics in 

Europe. For this purpose, the data volume of the entire Landsat Collection-1 archive 

(TM/ETM+/OLI/TIRS) is presented with respect to ascending/descending orbit, data 

quality, and processing levels. Then the spatial distribution of the Landsat Collection-1 data 

over Europe is depicted together with the monthly data volume. Accordingly, spatial extent 

and periods of existing data gaps in Europe between 1982 and 2017 are identified. 

Furthermore, cloud coverage is a significant limiting factor with respect to the usage of 

optical satellite images. In this thesis, the CFMask algorithm was employed to generate 

cloud masks.  The resulting cloud masks were analysed to delineate cloud-contaminated 

pixels as well as the severity of cloud cover in the Landsat Collection 1 time series. 

7.1.1 Significant TM Data Gaps in the 1990s and Southwestern Europe 

In Section 6.1.2, data gaps and uneven spatiotemporal distribution of the Landsat 

Collection 1 data were discovered for Europe (see Figure 6-2). These data gaps and their 
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heterogeneous distribution were mainly caused by four reasons: (1) satellite sensor 

failures, (2) commercialization attempt, (3) data sharing and shortage, as well as (4) 

acquisition priority plan. Both instruments, Landsat 4−5 TM, had no onboard recording 

capacities. Therefore, data downlinking is crucial. The Landsat-4 satellite was launched in 

July 1982. In 1983 two solar panels and both direct downlink transmitters failed (Chander 

et al., 2007). Due to this failure, transmission of Landsat-4 TM data was not possible. Only 

after the Tracking and Data Relay Satellite System (TDRSS) became operable, Landsat-4 

TM observations could be transmitted and relayed to the ground stations via TDRSS. 

Moreover, the primary Landsat-5 Ku-band TDRSS transmitters, as well as the secondary, 

failed in July 1987 and 1992, respectively. Since then Landsat-5 data transmission was 

limited to direct, real-time X-band transmission. Landsat-5 TM data sensed within the US 

and ICs international ground stations and their reception circle-vicinity were successfully 

transmitted (Chander and Micijevic, 2006). Otherwise, the observations that cannot be 

transmitted via direct and real-time X-band transmission, are permanently lost due to the 

Landsat-5 Ku-band TDRSS transmitter failure. 

Another issue was the Landsat commercialization experiment (also known as “The era 

of privatization”, see Goward et al., 2006), when the Earth Observation Satellite Company 

(EOSAT) took over the Landsat operations between 1985 and 2001. Many Landsat 

observations were dismissed and the spatial coverage was shrunk, as the Landsat 

acquisition priorities were given to the requests of established customers. Meanwhile, 

researchers used free-of-charge meteorological satellite images or alternative EO imagery. 

Contemporarily, the French satellite SPOT constellation was orbiting the Earth providing a 

potential source to fill the gaps in the Landsat data archive.  

Goward et al. (2006) reported that the total number of the Landsat data within the IC 

archives exceeds by far the sum of what the USGS archive was holding. Among the ICs, 

ESA holds most of the historical and current Landsat MSS/TM/ETM+/OLI/TIRS images 

(>1.5 million) (Goward et al., 2006; Saunier et al., 2017). Large quantities of these data 

are unique and not duplicated in the USGS Landsat Archive (Wulder et al., 2016). Since the 

implementation of Landsat Global Archive Consolidation (LGAC), historical Landsat data 

held by the ICs are being brought back to the Earth Resources Observation and Science 

(EROS) center. Several factors such as: IC business model, data sharing policy, 

antiquated/degrading media, and unfamiliar data formats still hamper the ingesting 

process. In Europe, approximately 500,000 Landsat5 TM images were archived at ESA’s 

KIS station and could not be geometrically and radiometrically corrected due to the missing 

Payload Correction Data (PCD) files (Micijevic et al., 2017; Wulder et al., 2016). Once these 

scenes are processed, the Landsat availability in Europe might be improved considerably. 

Apart from the aforementioned factors, the seasonality pattern (Figure 6-2) is also a 

reflection of the preferential acquisition plan, i.e. the Long Term Acquisition Plan (LTAP) for 

Landsat 7 and Landsat 8 missions. The objective of the LTAP is to update the global 
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Landsat Archive with sunlit, substantially cloud-free land scenes for land surface dynamics 

monitoring (details see Arvidson et al., 2006, 2001), using a scheduler based on predicted 

scene quality, cloud cover statistics of the historical acquisitions, urgency and efficiency of 

acquisitions. Under the sunlit (sun elevation > 15° in the Northern Hemisphere) and cloud-

avoidance criteria, it would cause potential data availability decrement in high altitude and 

(especially) high latitude regions excluding the identified niche locations. For snow-related 

studies, it promotes the chance of late summer snow-line detection. On the other hand, 

the missing winter observations would result in formidable challenges in deriving vital 

temporal snow cover indices, such as the SCS and SCM. 

7.1.2 Influence of Cloud Cover and Haze on Data Availability 

Clouds frequently cover a large proportion of Europe, especially in high altitudes 

and/or high latitude regions as presented in Section 6.1.3. Cloud contamination is one of 

the most limiting factors with regards to optical EO data availability. An image-to-image 

registration tolerance of less than 12 m RMSE is an indispensable criterion for Landsat 

Collection 1 Tier 1 (“stackable” scenes) categorization. The trade-off between RMSE values 

and time series density is significantly pronounced in cloud persistent areas. Following the 

USGS criterion relaxation suggestion (i.e., from Tier 1 to L1TP), 176 (2%), 4518 (2.6%), 

4520 (2.3%), and 5949 (6.6%) additional Landsat acquisitions for Landsat 4 TM, Landsat 5 

TM, Landsat 7 ETM+, and Landsat 8 OLI/TIRS are added, respectively. It would potentially 

populate the snow cover time series in cloud-prone areas. Island areas such as Scotland 

and Iceland have already a limited number of Landsat acquisitions. However, the deficiency 

is further aggravated by the high cloud cover frequency, which leads to only approximately 

100 clear-sky observations during the past three decades even taking the footprint 

overlapping effect into consideration. However, in Iceland, the effects of LTAP are well-

pronounced, because Iceland has been considered as a niche location for Landsat 

acquisitions.  

Since the derived cloud cover information is based on the CFMask-based cloud flag, 

the accuracy of the cloud detection algorithm (i.e., CFMask) should also be considered. 

Although the overall accuracy of CFMask algorithm was reported as 96.4% by Zhu and 

Woodcock (2012), commission errors of the CFMask over bright targets such as ice/snow, 

sand dunes, rocks and building roofs have been well-recognized by the remote sensing 

community (e.g. reported in Selkowitz and Forster, 2015). Moreover, the majority of the 

current USGS Collection 1 Level-2 Pixel Quality Assurance Bit Bands are generated using 

the default 22.5% cloud probability and three-pixel buffer. Therein, a three-pixel buffer 

amplifies the commission errors of the CFMask. In this context, revising and refining the 

cloud mask in mapping snow/ice covered areas would be strongly recommended. Apart 

from the cloud mask, the implemented snow classification method is actually insensitive to 

haze (see Figure 7-1). The method has successfully detected a large quantity of snow/ice 



CHAPTER 7  Discussion 

126 

under haze. Therefore, further studies are needed to be related to (1) determining the 

thickness of haze on the premise of precisely detecting snow; (2) quantifying the accuracy 

of “snow beneath haze” class; (3) separating haze from the overall cloud mask. 

 

Figure 7-1: The influence of cloud/haze on snow cover classification. (a) Landsat surface 

reflectance true colour combination; (b) Snow cover classification; (c) CFmask cloud 
cover classification; (d) Snow beneath haze according to snow and cloud 

classification. 
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7.1.3 Influence of Cloud Cover on Snowline Elevation Statistics 

As the clouds obstruct land cover information beneath them, missing snow pixels and 

their elevation information could bias the elevation distribution of snow covered pixels. It 

can thus result in over- and underestimation of the snowline elevation. Given the 

significant influence of cloud obstructions, thresholds between 70% and 90% of cloud 

coverage in optical images have been suggested by Gafurov and Bárdossy (2009), Krajčí et 

al. (2014), and Parajka et al. (2010a), to name a few. Hu et al. (2019a) assessed the 

influences of the cloud coverage on the snowline elevation statistics. The authors 

exemplified the spatial uncertainties of the median snowline elevations during the end of 

the ablation seasons. The results in the Pyrenees, the Alps, and the Carpathian Mountains 

are demonstrated in Figure 7-2. In general, overestimations (i.e. snow-free areas above 

median SLE) are most frequently observed in the southern slopes of the investigated 

mountains, while underestimations (i.e. snow-covered areas below the median SLE) are 

mostly observed on the northern slopes thereof. These spatial patterns of the error-prone 

areas coincide with areas more prone to precipitation (as snow in particular), given their 

location on windward slopes. Among the three regions, snowline elevations in the 

Carpathian Mountains are much more likely to be largely impacted by cloud obstruction 

than those in the other two mountain areas.  

 

Figure 7-2: Details of the spatial uncertainty assessment of the Median Snowline Elevations (MSEs) 
during the end of the ablation seasons between 1984 and 2017 for the selected 

mountain areas: a) the Pyrenees (PN, Path/Row: 198/030) during June, b) the Alps 
(AP, Path/Row: 195/029) during May and c) the Carpathian Mountains (CP, Path/Row: 

183/028) during April. Red colour indicates overestimated areas (snow-free areas 
above median SLE) and blue colour indicates underestimated areas (snow-covered 

areas below the median SLE). The base-map is a hill-shade derived from the Digital 

Elevation Model (DEM). Modified according to Hu et al. (2019a). 
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7.2 Challenges Regarding Accurate Snow Cover Mapping 

and Regional Snowline Elevation (RSE) Retrieval 

This section presents the challenges with regards to (1) accurate snow cover mapping, 

(2) accurate RSE retrieval, (3) accurate RSE modelling, and (4) validation data as well as 

validation scheme for local snow-related EO products. At first, challenges regarding 

accurate snow cover mapping are discussed, including signal saturation, absence of 

thermal information, cloud contamination, and snow-in-forest. Afterwards, apart from the 

errors in the input snow classifications, further uncertainties within the retrieved RSEs from 

EO satellite images are evaluated, i.e. missing observations, and errors from the employed 

DEM data. Based on the retrieved RSEs from EO satellite images and climate reanalysis, 

the RSEs at the time without available EO satellite images are modelled. For accurate RSE 

modelling, there are serval challenges discussed in this thesis, including errors propagated 

from the input data and input variable selection, as well as the interpretability of the 

applied RFR model. Lastly, the challenges regarding the validation schemes are discussed 

in the context of accuracy assessment for both snow cover maps and RSE results. 

7.2.1 Challenges for Accurate Snow Cover Mapping 

The precision of the classified snow cover maps is impacted by four major factors, 

including (1) signal saturation in the employed bands, (2) missing thermal information, (3) 

cloud contamination, and (4) snow in forest. Signal saturation is related to the radiometric 

resolution of the employed EO sensor. In this thesis, Landsat 4/5 TM, Landsat 7 ETM+ and 

ASTER are of 8-bit radiometric resolution. Therefore, the signals of snow-covered areas are 

often saturated in the images acquired by these sensors (Dozier, 1989, 1984). Given that 

the visible bands are often used to separate snow/cloud from other bright surfaces (Zhu 

and Woodcock, 2014b), signal saturation of the visible bands can lead to a poor accuracy 

in snow classification results. In contrast, the radiometric resolution of the current optical 

EO sensors (i.e. Landsat 8 OLI and Sentiel-2 MSI) has been improved to 12-bit with higher 

Signal-to-Noise Ratio (SNR) (Drusch et al., 2012; Roy et al., 2014). The signal saturation in 

snow-covered areas has been addressed (Wang et al., 2016). Hu et al. (2019a) have also 

discovered such improvement while classifying snow in European mountains. Besides, the 

absence of thermal bands in Sentinel-2 data should also be noted, since it could potentially 

identify some warm bright targets erroneously as snow. Another potential reason inducing 

commission error in the snow cover result is cloud contamination, when separating snow 

and clouds. Commission errors over bright targets (e.g., ice/snow, sand dunes, rocks and 

building roofs) during the application of cloud masks (e.g., MFmask, ACCA) have been well-

recognized by the community (Hagolle et al., 2010; Irish, 2000; Selkowitz and Forster, 

2015). This problem is significantly pronounced in separating snow and clouds (particularly 
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icy clouds). Last but not the least, as suggested in the previous section, the low accuracy 

regarding snow classification covered by forest canopy is noteworthy. Forest canopy does 

not only cover up the snow below it, but also casts shadow on its adjacent areas (Klein et 

al., 1998; Maurer et al., 2003). Although the prevalently used NDSI-NDVI algorithm has 

been employed in this thesis to improve the accuracy, further improvements are still 

needed for precisely mapping snow in the forested areas. At a regional scale, future studies 

focusing on adjusting the constraint values for each are desirable. 

7.2.2 Challenges for Accurate Regional Snowline Elevation (RSE) 

Retrieval 

Apart from the errors mentioned in the previous section, the uncertainties within the 

retrieved RSEs are also in relation to missing observations, and errors from the employed 

DEM data. These factors can distort the histograms of the snow/land pixels, which is the 

core for the RSE estimation. Missing observations occur at both pixel and footprint levels. 

At a pixel level, the major issues causing the missing observations are cloud obstructions 

and sensor anomalies. Cloud obstruction is the greatest inherent issue impacting the 

usability of optical satellite imagery, particular in mountain areas during the winter time, 

since clouds usually persist a long period there. To date, the solutions for cloud obstruction 

is limited, mainly via image combination from different sensors/similar acquisition time 

and/or modelling. In terms of the sensor anomalies, Landsat 7 ETM+ SLC-off is the most 

well-known issue. Since 2003, SLC-off issue has resulted in approximately 20% less data 

availability in a single Landsat 7 ETM+ scene (Pringle et al., 2009). At a footprint level, 

missing scenes are mainly caused by the acquisition plan and sensor failure. Acquisition 

plan influence the spatiotemporal pattern of the data volume, for instance, the Landsat 

“Commercialization Era” (Goward et al., 2006) introduced in Section 7.1.1. Also, regarding 

the ASTER Archive, ASTER scheduler determines the spatiotemporal pattern of the ASTER 

data availability. The other issue, the sensor anomaly, influences the data usability. For 

example, the ASTER SWIR band failure makes the ASTER data acquired after April 2008 

not suitable for precise snow cover detection. On the other hand, catchments are of better 

data availability, if the footprints overlap there. The increase of the data availability can be 

doubled and more, since the scenes acquired from two horizontally adjacent footprints are 

of one-week time difference. 

DEM is indispensable for RSE retrieval. Nevertheless, obtaining an accurate DEM in 

complex terrains and high mountains is challenging for either interferometric or 

photogrammetric methods based on spaceborne satellite data. It has been recognized that 

the prevalent photogrammetric method (i.e. the correlation algorithm) for photogrammetric 

DEM generation often generation fails over snow covered areas (Kääb, 2002; Svoboda and 

Paul, 2009). Also, an interferometric DEM suffers from the problem of the voids in the 

original SAR data in mountain areas (Frey and Paul, 2012). In the Swiss Alps, the accuracy 
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comparison between the ASTER GDEM (a photogrammetric DEM) and the SRTM (an 

interferometric DEM) suggested that both DEMs are suitable for topographical parameters 

calculation in snow/ice-covered areas (Frey and Paul, 2012). In this thesis, the main 

objective is change detection of RSEs during a long period. Therefore, the errors induced 

by the employed DEM are systematic, and can be largely counteracted. However, given the 

high accuracy of DEMs generated from the airborne LiDAR, it is desirable to investigate the 

accuracy improvement using airborne LiDAR DEMs as valuable alternatives to 

interferometric or photogrammetric DEMs. Whereas, it should be still noted that the 

airborne LiDAR DEMs often only cover a small area (e.g., at a regional scale), and they are 

not freely-accessible.  

7.2.3 Challenges for Accurate Regional Snowline Elevation (RSE) 

Modelling 

The greatest drawback of the Landsat time series in the context of snow dynamics 

observation is its near two-week revisit time. To conquer this problem, RFR is implemented 

in this thesis to fill the observation gaps in between, together with the relevant climate 

reanalysis data. On the one hand, the RFR shows its strength in relation to (1) capacity of 

coping with the small training dataset, (2) robustness to outliers and non-linear data, (3) 

ability of handling multicollinearity in explanatory variables, (4) low risk of overfitting, (5) 

calculation of explanatory variable importance, etc. The aforementioned advantages make 

RFR more preferable than other machine learning techniques or conventional multi-linear 

regression model for snowline modelling. On the other hand, RFR also has its limitation 

with regards to the model uncertainties and small model interpretability. Model 

uncertainties are largely resulted from the input data, i.e. RSE results derived from satellite 

images and the climate reanalysis data. Uncertainties in relation to RSE results derived 

from satellite images have been discussed above in Section 7.2.2. In terms of climate 

reanalysis data, the uncertainties are mainly raised from three perspectives, (1) the 

selection of the climate reanalysis dataset and the input climate variables, (2) accuracy of 

the input climate variables, and (3) the resolution of the input climate reanalysis data. To 

date, ERA5 from ECMWF provides climate reanalysis data of the complete globe from 1979 

to within 3 months of real time. It provides large quantities of climate variables of 30 km 

spatial resolution and 1 hour temporal resolution. Most importantly, it is free-of-charge. In 

these regards, ERA5 is suitable for snowline modelling at a catchment level from 1984 to 

2018. Whereas, processing such data is time consuming. Hence, only five parameters are 

selected based on the knowledge. Shown in Section 6.2.3, the accuracy and the 

importance results differ from one catchment to another. It indicates that the geographical 

settings in different catchments influence the snowline dynamics. Therefore, it would be 

also beneficial to include more variables and test the importance of those variables for 

snowline modelling. It would not only help the improvement of the model accuracy, but 

also enhance the comprehension of the contribution from different climate variables in the 
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context of snow dynamics. When it comes to the accuracy of the climate variables from the 

ERA5 dataset, information about uncertainties regarding the selected climate variables is 

included in ERA5 archive at reduced spatial and temporal resolutions. Importantly, the 

uncertainty of the selected variables is induced from the spatial statistics calculation. In 

complex terrains, the coarse resolution of ERA5 data results in omission of variation of the 

involved climate variables, especially for the catchments with a large proportion of flat 

areas. To tackle such problem, it is desired to use high resolution climate reanalysis data. 

However, such datasets are computational demanding, and often not freely accessible. 

Once such data can be acquired, it is worthy trying to investigate the influence of spatial 

resolution of the climate reanalysis with regards to snowline modelling. 

7.2.4 Challenges for Validating Snow Cover Maps and Regional 

Snowline Elevation (RSE) Results 

Validation is indispensable, in the context of the snow cover maps and RSEs 

derivation. Yet to validate snow cover maps and RSEs derived from the high-resolution 

optical satellite imagery is particularly challenging, due to the insufficient validation data 

and inefficient validation techniques. At present, field measurements and very-high-

resolution resolution images are the mainstream validation sources for snow-related 

products. For example, Krajčí et al. (2014) utilized the Automatic Weather Station (AWS) 

records (e.g., SD and SWE) together with snow field measurements to validate the RLE 

results obtained from MODIS observations. The spacing among the involved AWSs and 

field measurement points is 100 m in the altitudinal direction. Such validation scheme is 

capable of assessing RSE results at a local scale. However, for large scale studies based on 

high resolution satellite imagery, conventional field measurements and AWS data are not 

well-suited for a statistical trustable accuracy assessment. The main obstacle is the 

requirement of large quantities of input measurements from densely distributed ground 

observation points. For this purpose, not only a considerably intensive labour and materials 

are required, but also low accessibility in mountain areas makes it unpractical. Besides, the 

time span of historical field measurements and/or AWS data hardly reaches back to 1980s, 

which poses another challenging for validation the resolution throughout the full time 

series. 

Very high resolution satellite images hold a potential to validate snow cover maps and 

RSE results. Oftentimes, very high resolution satellite images are optical images, such as 

WorldView-3 (1.24 and 3.7 m), SPOT 5 (2.5 and 5 m), PlanetScope (3 m), Pléiades (0.5 

and 2 m), RapidEye (5 m). The largest disadvantages of these satellites are the limited 

data access (especially not free-of-charge) and cloud obstruction. Since these very high 

resolution images are optical imagery, they still suffer from cloud obstructions on the same 

date when the snow is observed by Landsat/ASTER/Sentinel-2. Consequently, the land 

surface information below the clouds remains missing. Apart from these two drawbacks, 
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the suitability of the very high resolution satellite images in relation to snow cover maps 

and RSE validation is also deteriorated by other factors, including (1) absence of SWIR and 

thermal bands, (2) small footprints, (3) irregular and long revisit time, and (4) missing 

observations before year 2000. To detect the land surface information beneath the clouds, 

SAR images can be utilized, since SAR penetrates the clouds. Nowadays, the spatial 

resolution of the spaceborne SAR sensors is significantly improved under a certain 

acquisition mode, e.g., Radarsat-1/2, COSMO-SkyMed, TerraSAR-X, PAZ SAR satellite. 

Together with the SAR-based snow cover detection methods (Muhuri et al., 2017; 

Nijhawan et al., 2019; Wang et al., 2015), snow cover area (both dry and wet snow) can 

be mapped using SAR observations with an accuracy up to 98.1%. On the other hand, 

similar as the very high resolution optical data, such high resolution SAR images for long-

term and large scale is hampered by the limited data access policy and observation 

scarcities before 2000 in particular.  

Besides, WebCam data is also a potential dataset to validate the snow cover maps and 

RSE results, given their advantages of: (1) low cost, (2) very high temporal resolution, (3) 

long-term observation records, and (4) cloud independence. Still, the main challenge 

influencing the utility of long-term and large scale WebCam data is their pre-processing 

which is time-consuming. Meanwhile, collaboration (e.g., sharing policy making) and 

metadata standardization are required, to fuse WebCam images acquired at different 

places from different organizations, institutes, and countries. To date, Unmanned Aerial 

Vehicle (UAV) imagery data have drawn a great attention from the community, given that 

UAVs are easy and flexible to deploy with regards to the mounted sensors (e.g., 

multispectral, hyperspectral, thermal, microwave, LiDAR), and operation date as well as 

periods. The acquired UAV images are usually of higher spatiotemporal resolution than by 

those acquire by satellites. Hence, UAVs provide detailed spatiotemporal information 

regarding the snow cover, even during the cloudy days. 

Regarding the validation schemes, it remains also challenging. Originally, Krajčí et al. 

(2014) validated the RSE results based on ground snow depth measurements from AWSs 

and field campaigns. The accuracy of the derived RSE results is presented using an 

accuracy index, indicating the agreement between the RSE results and the ground 

measurements. The index is a ratio between the sum of correctly classified station-days 

and the total number of station-days. Hu et al. (2019a) assessed the uncertainties below 

the cloud cover in Landsat-based snowline elevation results against those not covered by 

clouds derived from the Sentinel-2 images close to the Landsat acquisition date. The 

readers should notice that the presented validation method in this thesis is still imperfect, 

but what can be realized by the free-accessible data to a large extent. In this regard, 

further researches developing and/or improving validation methods is urgently required. 
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7.3 Characterizing Regional Snowline Elevation (RSE) 

Dynamics  

This section discusses the uncertainties, the potential explanations, and the potential 

applications of the obtained intra- and inter-annual RSE dynamics. Firstly, the error sources 

of the observed RSE dynamics are discussed in relation to: (1) errors propagated from the 

erroneous input RSE data, (2) representativeness of the sigmoid transformation, (3) 

efficiency of the regression model, and (4) coarse resolution of the climate reanalysis data. 

Afterwards, the potential explanations of these detected RSE dynamics are discussed, 

together with the previous snow studies in Europe.  

7.3.1 Challenges of Accurately Deriving Regional Snowline Retreat 

Curves (RSRCs)  

RSRC is the main tool employed for characterizing the long-term RSE dynamics in this 

thesis. The accuracies of the RSRCs are mainly influenced by: (1) errors propagated from 

the erroneous input RSE data, (2) representativeness of the sigmoid transformation, (3) 

efficiency of the regression model, and (4) coarse resolution of the climate reanalysis data. 

The errors regarding the RSE input have been discussed previously in Section 7.2. When it 

comes to the representativeness of the sigmoid transformation, it is an issue linked to the 

geographical settings of the investigated area. In Section 3.5, based on the snow 

phenology characteristics and data exploration, a sigmoid shape RSRCs was developed by 

Hu et al. (2019b). As a non-linear transformation, several parameters have to be pre-

defined (details see section 5.5). Amongst these parameters, the highest RSE (RSEmax) is 

strongly depended on the glacier extent, if the study area is glaciated. Given that 

observations (e.g. summarized by Hu et al. (2017)) have suggested significant glacier 

retreat in alpine glaciers in Europe, RSEmax is rather a variable than a constant. However, 

the challenge is to obtain such glacier extent product even at an annual basis. Local studies 

investigating the influence of such effect in the future are required. Besides, also shown in 

the results (section 6.3.3), the corrected R² of the M-estimation regression models are 

much lower in Carpathian catchments than those in the other investigated catchments. The 

main reason is the low efficiency of the applied M-estimation regression models, due to 

frequent intermediate snowfall events and significantly different geographical settings. 

Intermediate snowfall events lead to create anomalously low RLEs that are often treated as 

the ‘outliers’ in the RSLRCs by the M-estimator. Given the nature of the M-estimator, 

relatively high breakpoint, this effects are normally largely reduced in most catchments. 

However, in the investigated Carpathian catchments, the shape of RSRCs is often non-

sigmoid shape. Apart from the distortions caused by the intermediate snowfall events, the 

elevation ranges also results in an ambiguous shape of the RSRC during an ablation 



CHAPTER 7  Discussion 

134 

season. The generally low elevation of the Carpathian Mountain results in the limited ability 

holding snow for a long period, and hence the melting period is much faster than the high 

mountains. Together with the frequently intermediate snowfall events, the dynamics of the 

snowlines fluctuates greatly. Even by adjusting the pre-defined ablation period, the region 

is either full covered by snow, or shifting between snow-cover and snow-cleared rapidly. 

To capture snowline dynamics for such regions, RSRCs based on sigmoid transformation is 

not well-suited. Last but not least, the coarse spatial resolution (~31 km) of the employed 

ERA5 should also be considered. It directly leads to a potential problem regarding the 

representativeness. It is particularly true for catchments with a large proportion of low-

elevation areas, since the calculated AT is rather representative for the snow-free areas 

thereof. Consequently, the information of high-elevation areas is omitted, in which the 

snowline is actually located. As an alternative, climate reanalysis products with higher 

spatial resolution than ERA5 should be examined for investigating the influence of spatial 

resolution, e.g., COSMO-REA6 (6 km) and COSMO-REA2 (2 km). Meanwhile, it should also 

be noted that such datasets are usually only limited to a certain time span and spatial 

coverage. 

7.3.2 Observed Regional Snowline Dynamics in European Mountains 

The intra-annual variations of regional snowlines during the ablation seasons 

1984−2018 show the patterns among the investigated catchments. The anomalously low 

RSEs within an ablation season are mainly caused by intermediate snowfall events. The 

frequency and the persistence of the intermediate snowfall events influence absolute value 

of the anomalously low RSEs. It is also linked to the local geographical settings. For 

instance, the Pyrenean catchment Ariege as well as the Alpine catchments Drac, 

Tagliamento, and Var has the largest intra-annual RSE variations, especially low RSE 

anomalies. These four catchments have a large part of windward slopes facing the nearby 

ocean. Such geolocation leads to more frequent intermediate snowfall events. Noticeably, 

unlike high RSE anomalies, low RSE anomalies are much often observed in the Carpathian 

catchments. It is because of their comparably low elevation and the frequent intermediate 

snowfall events therein, particularly demonstrated in the Carpathian catchment Uzh. As a 

consequence, snowline reaches its maximum elevation in the early ablation season, while 

anomalously low RSEs are caused by intermediate snowfall events during the middle-to-

late ablation season. Another potential factor is the cold extremes and their persistence, 

which slow down the snowmelt process, and hence slow down the retreat of the regional 

snowline as well.  Besides, the anomalously high RSEs indicate the potential consequence 

from the warming climate. To further investigate such effect, analysis regarding inter-

annual RSE variation is required, together with the air temperature variations. 

There are three aspects of the inter-annual RSE variation derived in this thesis, i.e. 

steepness and ATMA from RSRCs, as well as the median RSEs and the RSEs at the 
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beginning of the ablation season between 1984 and 2018. The overall significantly-positive 

trends have been detected, indicating an increasing high RSE at the beginning of the 

ablation season. This result is in line with the independent trend analysis of the RSEs at the 

beginning of the ablation season between 1984 and 2018. Moreover, the results from trend 

analysis of ATMA in these catchments are either insignificant or statistically negative 

(Tagliamento and Tysa). It indicates that either same or less AT is needed for the regional 

snowlines to reach its middle point of the RSRC. With the background of global warming, 

such effect would be aggravated. Consequently, an overall increasing high snowline 

elevation is expected, which is in accordance with the trend analysis of the median RSEs 

between 1984 and 2018. These results agree with the previous studies, Bulygina et al., 

2009; Takala et al., 2009; Tedesco et al., 2009; Wu et al., 2018, to name a few. 

Meanwhile, there are the Pyrenean catchment Ariege (significantly negative trend of 

steepness), the Alpine catchment Salzach (significantly positive trend of ATMA) and the 

Carpathian catchment Uzh (significantly positive trend of ATMA). The significantly negative 

trend of steepness illustrates an accelerated snowline retreat velocity. Given the 

insignificant ATMA in the corresponding RSRC, it indicates the snowline retreats to its 

highest elevation faster, and the ablation season is shortened. Because of the warming 

climate, the RSE at the beginning of the ablation season is retreating to a high elevation, 

which is confirmed by the trend analysis of the RSEs thereof at the beginning of the 

ablation season between 1984 and 2018. Thus, the characteristics of the snowline retreat 

in the Pyrenean catchment Ariege is increasingly high RSEs at the beginning of the ablation 

season, fastened snowline retreat velocity, and shortened ablation season. The significantly 

positive trend of ATMA in the Alpine catchment Salzach, indicates more AT is needed for its 

RSRC to reach the middle point. Given the significantly positive trend of the RSRC 

steepness, it indicates the snowline variation in the Alpine catchment Salzach is less 

pronounced. The results are also confirmed by the independent trend analysis of the 

median RSEs and the RSEs at the beginning of the ablation season between 1984 and 

2018, whose slopes of the resultant linear trend are comparable smaller than those of the 

other catchments. Lastly, the potential explanation for significantly positive trend of ATMA 

the Carpathian catchment Uzh is mainly due to the low accuracy of both its RFR model for 

RSE densification, and M-estimation regression model for RSRC calculation. The low 

accuracy of these two models has been explained in the previous section 7.2.3 and section 

7.3.1, respectively. 

7.4 Potential Applications of Regional Snowline Dynamics  

In this section, the potential application fields of the RSE dynamics are discussed. 

Firstly, the suitability of RSE in the context of local snowline elevation assessment is 

discussed. Afterwards, potential applications of RSE results are summarized, which includes 

snow phenology, climate change, winter tourism/sport management, flora and fauna 

studies, hydropower and freshwater management, and snow-related hazard management. 
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Lastly, to demonstrate the applications of RSE, the results from two case studies in this 

thesis are discussed. 

RSE as an index developed for optical EO data, whose representativeness for the 

snowline conditions could be queried. Firstly, it is ideal for optical remote sensing, given 

the influences from clouds therein. It is particularly true in mountain areas, where cloud 

can be long-persisted and cover a large number of pixels. This fact significantly decreases 

the usability of the optical EO images for snow-related researches. RSE is a solution 

optimizing the representativeness for the local snowline conditions, meanwhile, controlling 

the effects from clouds by thresholding cloud coverage in the employed optical images. Hu 

et al. (2019a) have further evaluated the representativeness of a single statistical measure, 

and confirmed the representativeness of a single statistical index for local snowline 

elevation assessment (also see section 7.1.3). Besides, the suitability of RSE as an index 

for assessing local snowline elevation has been investigated by Krajčí et al. (2014).  Krajčí 

et al. (2014) reported a mean accuracy around 86%, which is 14% greater than snowline 

estimate method previously proposed by Parajka et al. (2010a) or Da Ronco and De 

Michele (2014). Krajčí et al. (2014) also pointed out RSE also reduces the scatter adjacent 

to the snowline. Besides, the mean elevation of snow and land pixels could not provide a 

uniquely estimated elevation separating snow and land pixels. In these regards, RSE is a 

suitable index for the assessment of local snowline dynamics. 

In terms of the potential applications of RSE results presented in this thesis, it can be 

further used in applications regarding snow phenology, climate change, winter 

tourism/sport management, flora and fauna studies, hydropower and freshwater 

management, and snow-related hazard management. “Snow cover phenology is a vital 

perspective of snow cover dynamics, which includes Snow Accumulation Onset (SAO), SCS, 

Snowmelt End (SME), SCD, just to name a few. However, given the revisit time and 

intermediate snowfall event occurrence, (semi-) high resolution optical EO sensor like 

Landsat is rather for monitoring snow dynamics in late ablation season. Since RSEs 

illustrate the spatial snow cover at an altitudinal direction, it could better illustrate the 

dynamics of snow clearance rather than the whole snowmelt process. This is because of 

the lower snowfall frequency and cloud coverage in the late ablation season. Climate 

change has a great impact on snow dynamics. Revealing the response of snow (an ECV) to 

the ongoing climate change is important. As RSE represents the regional (catchment-wise) 

dynamics of snow, spatial analysis based on long-term RSEs would provide a chance to 

carry out evidence-based statistical trend analysis. Furthermore, quantitate analyses linking 

RSE dynamics with other ECVs is beneficial to enhance the comprehension of regional 

response climate change. Thereby, better adaptation strategies could be made. Snowmelt 

runoff is fundamentally vital regarding water management and disaster warning in 

snowmelt-dominant catchments. Runoff can be predicted by calibrating hydrological 

models using spatial snow coverage derived from the RSLRCs. It would be intriguing to 

compare the performance using (semi-) high resolution based snow information and 
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medium resolution based information (e.g., Déry and Brown, 2007) in mountain areas. 

Winter tourism/sport management requires detailed spatial snow cover data for hiking 

routes planning, artificial snow planning, as well as the operation period length. Flora and 

fauna in high mid-latitude mountain regions are influenced by the snowline dynamics. The 

spatiotemporal snow dynamics affect the plant phenology (Asam et al., 2018; Böttcher et 

al., 2014; Thum et al., 2009), and animal activity (Mills et al., 2018; Pöyry et al., 2018; 

Zimova et al., 2018).” (Hu et al., 2019b) Given the high correlation between the snowline 

dynamics and river discharge, the observed RSEs results can also be applied in the 

hydrological researches. Since there are many snow-fed basins in European mountains, 

and river is dominant freshwater abstraction (65%) in many European countries (EEA 

2018), RSE results provide valuable information for hydropower and freshwater 

management in Europe. Such evidence-based information also contributes to the snow-

related hazard management. For example, spring floods have been observed shifting 

towards early ablation season in Europe (Blöschl et al., 2017). The shortened ablation 

season, fastened snowline retreat, and shift of the end of snowline retreat provide potential 

explanations. Joint researches taking RSE dynamics together with other geographical 

factors could potential promote the comprehension of the spring flood behaviour in the 

context of climate change.   

To demonstrate the application of RSE results, two case studies are carried out. The 

first study investigates the relationship between snowline dynamics and air temperature 

anomalies. The results show a high correlation between monthly mean RSE and monthly 

air temperature anomaly during an ablation season. In the context of warming climate, 

high air temperature extreme events firstly accelerated the snowline retreat. Meanwhile, 

the consecutive high air temperature further exacerbates the regional snowline recession. 

Consequently, the risk of early ablation season flooding could increase, in accordance to 

the findings from Blöschl et al. (2017). Whereas, quantitative analyses projections of flood 

frequency and magnitude remain uncertain, this hence calls for further joint researches 

with, for example, physical model under different scenarios. The second case study 

investigates the relationship between snowline and discharge dynamics during the ablation 

seasons 2000−2016 in two Alpine catchments. RSE time series provides a new dimension, 

as a potential flood variation, a proxy for snowmelt during an ablation season. The 

correlation coefficients between RSEs and river discharge are comparable or even larger 

than those between snow coverage and discharge. Given that snow coverage has been 

applied in run off modelling, potential RSEs could also be applied for such purpose. 

Besides, RSE derived RSE time series can even reach back to 1970s, as long as the input 

climate variables are available at that time. On the other hand, the retreat of the snowline 

may be lagged compared to the absolute of the SCA. As suggested by Hall (2012), it is 

because that the snowmelt starts at all elevation zones (particularly within the high 

elevation zones) peripheral to sharp and steep rocks. In this regard, further studies are 

highly desirable, further investigating the potential of runoff modelling and/or prediction 

taking RSE as an input data.  
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CHAPTER 8 
 

8 Conclusion and Outlook 

 

This chapter summarizes the conclusive findings in relation to the objectives and 

research questions raised in the introduction (section 1.2) of this thesis. Furthermore, an 

outlook of future opportunities of Earth Observation (EO) for long-term and large-scale 

snow dynamics observation is discussed, as well as the potential statistical techniques for 

further geoscientific analyses. Additionally, the findings on snowline dynamics in the mid-

latitude European mountains are translated into recommendations for stakeholders and 

decision-makers. 

8.1 Summary and Conclusive Findings 

During the winter, snow is the most extensive part of the cryosphere which is highly 

sensitive to climate change. Snow has great impacts on the Earth’s energy budget, 

biodiversity and natural hazards, as well as hydropower management, freshwater 

management, and winter tourism/sports. Mid-latitude mountains in particular are 

experiencing significant alternations of snow and glaciers in response to climate change. In 

Europe, mountains cover approximately 2 million km² and are inhabited by more than 94 

million people (Schuler et al., 2004), who benefit from the various ecosystem services and 

the socioeconomic wellbeing of the terrain. Since an increasing number of severe 

consequences have been observed as a result of climate change in mountain areas (Blöschl 

et al., 2017; EEA, 2017b; IPCC, 2014), long-term and evidence-based regional studies are 

urgently needed for promoting the comprehension of regional responses to climate change, 

and hence for developing effective regional and local adaptation-strategies. In this context, 

this dissertation improves the current knowledge of regional responses to climate change 

by providing quantitative information about long-term EO-derived snowline dynamics 

during the ablation seasons of 1984−2018. The primary goal of this dissertation is to 

retrieve and assess long-term snowline dynamics in European mountains, using combined 

free-accessible optical EO datasets. The answers to the four research questions and 

objectives defined in this thesis are summarized as follows:  
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8.1.1 The State-of-the-Art of Earth Observation in Cold Region 

Monitoring 

Objective 1 is to carry out a comprehensive literature review on cold region land surface 

dynamics in Europe using EO. The review aims to clarify the state-of-the-art of determining 

the cold region dynamics in Europe, especially for snow and glacier dynamics as they are 

particularly important and strongly interconnected in European mountains. Furthermore, 

leading methods for deriving data on snow and glacier dynamics are highlighted and 

compared. Ultimately, the current existing research gaps are identified. 

Research Question 1.1: How can Earth Observation support the delineation of a cold 

region boundary in Europe? 

Cold region boundaries can be delineated quantitatively, using the annual Snow Cover 

Duration (SCD) derived from EO images as an indicator. The result shows that the 

geographical extent of the cold region in Europe mainly includes: the Carpathian 

Mountains, the European Alps, Finland, Sweden, Iceland, and Norway (including the 

Svalbard Archipelago). A significant linear relationship (p-value < 0.001) has been found 

between SCD and cold region stability, with a coefficient of determination (R2=0.73). 

Accordingly, the extent of the stable cold region can be identified as an area with >180-

day mean SCD. The spatial resolution of the stable cold region is mapped at 500 m spatial 

resolution, using Moderate Resolution Imaging Spectroradiometer (MODIS)-based SCD 

information. Therefore, the EO-based cold region boundary is well-suited for regional cold 

region studies, especially in identifying the areas that are undergoing significant changes.  

Research Question 1.2: What are the most frequently applied EO satellites/sensors for 

the analysis of cold region dynamics in Europe? 

In total, over 250 research articles on cold region dynamics from Science Citation 

Index (SCI) journals from the past 30 years have been reviewed. So far, optical EO data 

are the most prevalently employed satellite datasets for investigating cold region dynamics. 

Optical data have been utilized in over 70% of all reviewed literature on snow and glacier 

dynamics in the cold regions of Europe. Within this literature, 100 studies have utilized 

Landsat data to study cold region dynamics. By contrast, only 25% of the reviewed snow-

related studies used Synthetic Aperture Radar (SAR) and Passive Microwave (PM) data. PM 

data are used by ~20% of the studies to derive Snow Water Equivalent (SWE) and Snow 

Depth (SD) with empirical equations. On the other hand, SAR data are more often used to 

study glacier motion and elevational change, which take up 34% of the studies on glacier 

dynamics. To investigate the glacier elevational change, Light Detection and Ranging 

(LiDAR) data are also applied, while only 3% of the reviewed literatures have employed 

LiDAR data. 
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Research Question 1.3: What are the advantages and disadvantages of the existing 

different sensor types and methods? 

Optical satellite images are the backbone of cold-region-dynamic studies, due to their 

long-term records of the Earth’s land surface, different spatiotemporal resolutions, good 

global spatiotemporal coverage, and good data accessibility. On the other hand, optical 

satellite images are not usable under cloud cover and in polar darkness. In this regard, SAR 

data have the advantage of both all-weather and day-night operation as well as the ability 

to penetrate dry snow and ice. Often, however, SAR data is handled in a complex data file 

format and large data size. Moreover, dense SAR time series do predate Sentinel-1, and 

not all SAR data can be accessed free-of-charge. PM data are less influenced by the 

atmosphere (excluding precipitation clouds). In addition, PM data usually have very high 

temporal resolution at global coverage. However, detecting wet snow from PM data can be 

difficult, as well as doing so for thin snow cover (<5 cm snow) in heavily forested areas. 

Mapping snow/ice in mountainous areas using PM data in coarse spatial resolution has also 

proven challenging. To date, there are only two space-borne LiDAR sensors, ICESat-1 GLAS 

(Ice, Cloud, and land Elevation Satellite-1 Geoscience Laser Altimeter System) and ICESat-

2 ATLAS (Advanced Topographic Laser Altimeter System), which provide data from 2003–

2009 (ICESat-1) and from 2018 to present (ICESat-2). Yet, they have relatively large 

footprints and ground track spacing, which hinders their application to small glacier 

monitoring. Despite this shortcoming, the value of ICESat-1 and ICESat-2 observations as a 

calibration and validation dataset should be emphasized, particularly for large ice caps. 

Research Question 1.4: What studies dealing with cold region dynamics in Europe have 

been undertaken so far? 

The literature review shows that cold regions in Europe are undergoing significant 

changes. To sum up, there are six key findings on snow and glacier dynamics in Europe: 

• Mean SCD is shortening at a mean speed of around 6 days ∙ a−1 (between 1972 and 

2000);  

• Snowmelt onset is shifting towards the early ablation season at a rate of 

approximately 4 days ∙ a−1;  

• The amount of impurities above the snow pack is increasing, especially in spring;  

• Glacier extents are shrinking (at a mean speed of approximately −0.3% per year), and 

a few have been totally vanished since the “Little Ice Age”;  

• Glacier surging is especially accentuated within the Svalbard Archipelago, and for land-

terminating glaciers - the highest motion velocity (500 m∙a−1) was observed in the 

Mont Blanc region in 2003;  

• Glacier elevation is lowering, particularly in the Alps, leading to increased mass loss.  
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Research Question 1.5: What are the research and knowledge gaps with respect to cold 

region dynamics? 

To date, there remain a large number of research and knowledge gaps in cold region 

dynamics, specifically with respect to spatiotemporal scales, data availability and suitability, 

as well as method transferability and applicability. The major gaps are:  

• Accurate methods for mapping snow-in-forest based on optical data;  

• A long-term consistent dataset for validating EO-based snow cover and glacier extent;  

• Satellite-image-derived high-spatial-resolution Snow Water Equivalent and Snow Depth 

products;  

• Correcting snow/ice penetration of SAR data for snow/glacier observation;  

• A framework that can handle multi-sensor EO data for cold region studies;  

• The knowledge about the local and regional snow response to climate;  

• Long-term glacier dynamics at a meso-/continental scale. 

8.1.2 Availability and Suitability of the Long-Term Landsat Archive for 

Snow Monitoring in European Mountains 

Objective 2 is to provide a comprehensive overview of data availability and suitability for 

a remote-sensing-based assessment of snow dynamics in European mountains. To that 

end, the potentials and opportunities of the long-term Landsat Archive for applications in 

snowline dynamic retrieval should be elucidated. 

Research Question 2.1: What is the spatiotemporal availability of the Landsat Collection 

1 archive during the period of 1984-2018? 

As of January 16, 2018, a total of 477,224 Landsat scenes for Europe between 1982 

and 2017 have been acquired and archived in Collection 1. Within that dataset, 315,000 

scenes have been processed at L1TP level (i.e. Level 1 Precision and Terrain). In 

mountainous areas, approximately 500 acquisitions per footprint across the Alps are 

archived in Collection 1. A similar number of images have also been acquired over the 

Carpathian Mountains and the Pyrenees. The Landsat L1TP data is scarcer (up to 50% 

less) in high-latitude mountain areas than in low-latitude mountain areas. In Europe, 

Iceland and Scotland contain mountainous regions with the scarcest Landsat Collection 1 

L1TP data. Although the footprint overlaps more significantly within these areas, for the 

majority of Iceland and Scotland, no more than 280 scenes per footprint have been 

acquired for any one location. The available Landsat 4-5 TM, Landsat 7 ETM+, and Landsat 

8 OLI/TIRS data in Europe mainly span from 1984 to present. The most severe Landsat 

data-gaps in Europe occur during 1982-1984 and 1991-1999. Therefore, to carry out long 

term snow dynamics studies in European mountains, the data gaps should be noted and 

filled. 
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Research Question 2.2: What are the most suitable processing levels and tiers of 

Landsat Collection 1 data for snowline dynamics retrieval? 

The implementation of Collections has resulted in a significant variation in the 

management of the Landsat Archive. At present, the selection of the Landsat data for data 

processing can be based on either processing levels or Tiers. In this thesis, the results 

show that Landsat data processed at L1TP level (i.e. Level 1 Precision and Terrain in both 

Tier 1 and Tier 2) are the most suitable for snowline dynamic retrieval. This is because 

Landsat L1TP achieves a good balance between data availability and precise geolocation 

for snow monitoring. The amount of Landsat L1TP data is approximately 14,000 scenes 

more than Landsat Tier 1 (i.e. “stackable” data for time-series analysis) data over the 

whole of Europe from between 1984 and 2017. In terms of the value of ascending scenes 

(i.e. “night-time” acquisitions), given that more than 93% of the ascending scenes contain 

sun elevation below 15°, they are not appropriate for accurate atmospheric correction and 

snow classification. In these regards, to determine snowline dynamics in European 

mountains, the most suitable Landsat products to ensure both data availability and 

geolocation precision are the Landsat L1TP data. 

Research Question 2.3: What are the advantages and disadvantages influencing the 

retrieval of snowline dynamics using Landsat imagery? 

Apart from the missing observations, the usability of Landsat images for snow dynamic 

retrieval is also influenced by cloud obstruction, cloud contamination, and the difficulty in 

detecting snow in forested and glaciated areas. Geographically, the occurrence of clouds 

tends to be more frequent in mountainous areas (> 70%) and high latitude regions (> 

50%), and less frequent in low latitude plains (< 50%) and the Mediterranean (< 30%). 

This is highly consistent with the local geographical settings (e.g., topography and 

climatology). Scotland has the densest cloud cover, with > 80% near Ben Nevis. Severe 

cloud cover (> 60%) is also observed in the ice-cap peripheral areas in Iceland, the 

northwest face of the Scandinavian Mountains and the north face of the Pyrenees. Cloud 

obstruction is more severe (approximately 70%) during accumulation and ablation seasons, 

which influences the observation of snow onset and snowmelt. However, most of the 

Landsat summer acquisitions have no more than 50% cloud coverage. Other than cloud 

cover, detecting snow under cloud contamination and forest canopy based on optical 

imagery is not dependable. Glacier extent also greatly impacts the spatial variation and 

retreat velocity of snowline dynamics. It is hence necessary to correct for the influence of 

clouds, forests, and glaciers when determining snowline retrieval. 
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8.1.3 Spatiotemporally Transferable Framework for Snowline 

Derivation in Mountainous Areas 

Objective 3 is to develop a spatiotemporally transferable framework for snowline 

derivation in mountain areas using long-term free-of-charge optical datasets. Additionally, 

metrics based on the retrieved long-term snowline time-series need to be developed to 

characterize the snowline retreat during the ablation seasons. 

Research Question 3.1: How can snowlines in mountainous areas be retrieved using the 

long-term Landsat Archive and Sentinel-2 dataset? 

To achieve this goal, a three-step framework has been developed. Firstly, the optical 

EO images are atmospherically and topographically corrected to obtain physically 

comparable surface reflectance. Secondly, the Snow Cover Area (SCA) is mapped based on 

a multi-threshold decision tree. The misclassified pixels are then corrected with the 

corresponding masks (i.e. cloud, shadow, water, and thermal masks). The Overall Accuracy 

(OA) and Kappa coefficient (κ) of the SCA maps achieved high accuracies of 96.71% and 

0.72, respectively. Lastly, the Regional Snowline Elevation (RSE) has been determined 

using cumulative histogram optimization together with the elevation information derived 

from Digital Elevation Models (DEMs). The accuracy assessment according to the derived 

RSEs indicates a low proportion of erroneous pixels overall (median < 5%). The developed 

framework has been successfully applied to approximately 8000 Landsat, ASTER, and 

Sentinel-2 images acquired between 1984 and 2018 in ten catchments distributed in the 

Alps, Carpathian Mountains, and Pyrenees. Thus, the developed framework is 

spatiotemporally transferable. It is also applicable to different optical satellite images to 

accurately derive long-term snowlines in mountainous areas. 

Research Question 3.2: How can the gaps in snowline time series be filled when there 

are no satellite observations available? 

To tackle the inherent problem of exploiting the Landsat time series for the monitoring 

of snowline dynamics, this thesis implements random forest regression to fill the data gaps. 

The mean coefficient of determination (R²̅̅̅̅ ) is 0.66, with the highest R² achieved in the 

Alpine catchment Drac (R² = 0.89). It indicates that the random forest regression models 

can explain 66% of the variations in snowline elevation dynamics on average. The mean 

RMSE is reported as 229.44 m. According to the permutation importance of the random 

forest regression models, cumulated sum of 2 m air temperature and mean snow depth are 

the most important variables, whose increases in Mean Absolute Error (MAE) range from 

5.03% to 19.99%. Given the good performance of random forest regression, it is a suitable 

technique to fill the gaps in satellite-image-based snowline time series. 
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Research Question 3.3: How can snow cover dynamics during ablation seasons in 

mountainous areas be characterized? 

To characterize the regional snowline dynamics during an ablation season, Regional 

Snowline Retreat Curves (RSRCs) have been generated using the robust M-estimator. From 

RSRC, Accumulated Temperature in the Mid Ablation season (ATMA) and steepness can be 

calculated to describe the velocity of regional snowline retreat, and the timing of the snow-

clearance, respectively. The median corrected R2 = ~0.90 in the investigated Alpine and 

Pyrenean catchments, and R2 = ~0.65 in the Carpathian catchment Tysa. The upper-

quantile, median, and lower-quantile of MAEs are generally around 25 m, 20 m, and 15 m, 

respectively. The trend analysis for median RSEs and the RSEs at the beginning of the 

ablation seasons between 1984 and 2018 is implemented to characterize inter-annual 

snowline dynamics. To investigate the intra-annual snowline dynamics, the frequency snow 

cover at a specific elevation on a certain day of the ablation season has been calculated. 

This calculation indicates not only magnitude, but also the timing of the anomalous 

snowline elevations during an ablation season.  

8.1.4 Characteristics, Potential Climate Drivers, and Consequences of 

the Detected Long-Term Snowline Dynamics in European 

Mountains 

Objective 4 is to investigate long-term snowline dynamics in mid-latitude European 

mountains, their potential climate drivers, and their consequences. Constraints for these 

geographical uncertainties can contribute to strategizing responses to ongoing climate 

change. 

Research Question 4.1: What are the patterns of intra- and inter-annual snowline 

variations in mid-latitude European mountains? 

In terms of the intra-annual variations of the RSE, the Alpine catchment Tagliamento 

shows a uniquely high variation in the beginning of the ablation season, mainly towards a 

high elevation. As for the inter-annual variations of the RSE, the median RSE is increasingly 

higher in all the selected catchments, with an average speed of around 4.66 m ∙ a−1 

(median) and 5.87 m ∙ a−1 (at the beginning of the ablation season). The fastest significant 

retreat is observed in the catchment Drac (10.66 m ∙ a−1, at the beginning of the ablation 

season), and the slowest significant retreat is observed in the catchment Uzh (1.74 m ∙ a−1, 

at the beginning of the ablation season). The RSE at the beginning of the ablation season 

suggests a faster retreat than the median, whose average difference is near 1.21 m ∙ a−1, 

particularly in the catchment Drac (3.72 m ∙ a−1).   
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Research Question 4.2: What are the potential climate drivers of the detected long-term 

snowline dynamics in European mountains? 

In this thesis, the variation of air temperatures is regarded as an example of a 

potential climate driver. To investigate the responses of RSE to climate change, the RSEs 

are analysed with the corresponding air temperature records. The retrieved monthly mean 

RSEs are highly correlated (mean correlation coefficient R̅ = 0.7) with the monthly air 

temperature anomalies, which is more significant in months with extremely low/high air 

temperature. The correlation coefficients increase over time during an ablation season. In 

general, the correlation coefficients are higher in the late ablation season (June) than in 

the early ablation season (April). In this regard, the variations in air temperature can 

explain a large proportion (nearly 50%) of snowline variations in ablation season, especially 

in the late ablation season (June). It is speculated that the velocity and elevation of 

snowlines in the European Mountains will be continuously increasing, in the context of 

global warming. 

Research Question 4.3: What are the potential consequences of the detected long-term 

snowline dynamics in European mountains? 

To demonstrate the potential consequences of the snowline dynamics, RSE results are 

analysed with river discharge data in two Alpine catchments (Alpenrhein and Salzach). The 

correlation analysis shows a good correlation between river discharges and RSEs 

(correlation coefficient, R=0.52). The correlation coefficient is 0.03 higher than that 

between river discharges and snow coverages. It indicates that approximately 3% more 

variability in river discharge can be explained by the RSE than by snow coverage. It is 

speculated that the increases in RSEs will result in shorter ablation seasons. It could hence 

increase runoffs and shift the timing of spring floods and thus the risk of spring floods in 

snow-fed basins. These predictions not only call for regional and local adaptation-strategies 

for water management, but also for the development of better runoff monitoring and 

predictions in snow-fed basins. 

8.2 Outlook and Future Opportunities   

Long-term regional snowline assessments based on high resolution EO data can 

promote the comprehension of regional responses to climate change. In this thesis, the 

presented framework should be considered a first step toward increasing knowledge about 

snow dynamics in mountainous areas, and about potential triggers and consequences for 

the phenomena observed. Future researchers and further studies should focus on the 

following aspects:  
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➢ Acquiring validation data to assess long-term snow-related observations 

based on high-resolution EO data. The lack of appropriate validation datasets poses 

a great challenge to the accuracy assessment of long-term snow products that are 

derived from high-resolution EO data, especially in mountainous areas. The 

geographical setting significantly influences the spatiotemporal pattern of snow cover. 

The heterogeneous snow distribution in mountain areas requires either densely 

distributed conventional field measurements (e.g., meteorological station data, snow 

course measurements), or very high resolution cloud-free reference imagery acquired at 

simultaneously. WebCams and Unmanned Aerial Vehicle (UAVs) are the most suitable 

candidates for this task. Therefore, the assessment of regional snow products using 

high-resolution EO data reference images from WebCams and UAVs is highly desirable. 

 

➢ Conducting further studies to reveal the interaction between snow and its 

ambient environment. To better characterize local and regional snow packs, 

platforms integrating snow-related observations from different data sources are 

indispensable, e.g., National Snow & Ice Data Center (NSIDC), Globsnow. Yet, a 

comprehensive platform integrating other related environment variables (e.g., river 

discharge, air temperature) is absent. Given the strong interaction between snow and 

its ambient environment, developing a consistent platform which integrates multiple 

snow and climate variables can not only improve the understanding of regional 

responses to climate change, but also support decision-making and adaption-strategy-

making in climate sensitive regions. Furthermore, efficient techniques for handling 

information from different data sources are needed to analyse the snow dynamics 

together with their surroundings. 

 

➢ Implementing regional and local adaptation strategies. European mountains are 

highly sensitive to the influences of climate change. Snow in mountainous areas 

represents a significant ecosystem function and service, as well as an important factor 

for economic prosperity. The population in these mountains are particularly exposed to 

snow-related natural hazards such as spring floods, avalanches, and snow storms. 

These hazards not only threaten the habitants in mountain areas, but also their ambient 

areas (e.g., downstream regions). Global warming intensifies such phenomena. Thus, 

challenges for the design of adaption-strategies need to be addressed urgently, 

especially at a regional scale. In winter sports, for example, as the snowline retreats 

with increasing speed, ski resorts are forced to use artificial snow to extend the ski 

seasons. Not only does this pattern take a financial toll on these businesses, but also 

there may be consequential environmental impacts on ski resorts that should be 

assessed. As a basis, these strategies call for the cooperation of environment scientists, 

hydrologists, meteorologists, etc. to better observe and analyse the historic and ongoing 

changes, and reduce the uncertainties in prediction. 
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EO is a highly effective, objective, and reliable technique for investigating long-term 

regional snow dynamics. The development of a spatiotemporal transferable framework has 

received interest as a potentially important tool in the work performed by many scientists, 

policy-makers, and business stakeholders. The framework developed in thesis is a step 

forward in better serving such work. The thesis also demonstrates the potentials of 

quantifying these changes, and analysing the interactions between snow and its ambient 

environment. Despite the advances made by the framework presented in this thesis, the 

above-mentioned knowledge and research gaps demand further consideration.  
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