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Dynamic magnetic resonance scattering
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Dynamic light scattering is a popular technique to determine the size distribution of small

particles in the sub micrometer region. It operates in reciprocal space, by analyzing the signal

fluctuations with the photon auto correlation function. Equally, pulsed field gradient magnetic

resonance is a technique generating data in the reciprocal space of the density distribution of

an object. Here we show the feasibility of employing a magnetic resonance imaging system

as a dynamic scattering device similar to dynamic light scattering appliances. By acquiring a

time series of single data points from reciprocal space, analogue to dynamic light scattering,

we demonstrate the examination of motion patterns of microscopic particles. This method

allows the examination of particle dynamics significantly below the spatial resolution of

magnetic resonance imaging. It is not limited by relaxation times and covers a wide field of

applications for particle or cell motion in opaque media.
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The principles of magnetic resonance (MR) build the
foundation of a variety of imaging applications1. Generally,
images are not acquired directly in the spatial domain but

in the reciprocal space, the k-space. To reconstruct an image, a
sufficient number of data points in k-space has to be sampled.
Thus imaging particle motion in real time (e.g., particles at a size
of several micrometers dispersed in a fluid) is hardly feasible due
to the need of high spatial and temporal resolution. In this paper
we show that it is possible to quantify statistical parameters of
particle motion if the temporal evolution of only a single k-space
point is studied. This is made possible by transferring the prin-
ciples known from dynamic light scattering (DLS) to MR.

In the following, a brief introduction is given to the very basics
of motion sensitive magnetic resonance measurements. For a
more in-depth treatment of the topic the reader is referred to the
common textbooks2,3. During a standard MR experiment
the magnetization vector of the sample, initially colinear with the
main magnetic field B0 = (0,0,Bz), is tipped into the transverse
plane by applying a resonant radio-frequency pulse. The resulting
transverse magnetization precesses around B0 with the typical
Larmor frequency ω = γB0, where γ is the gyromagnetic ratio.
Omitting relaxation effects, the measurement signal can be
written as the sum of all local precessing magnetization vectors:

SðtÞ ¼
Z

IðrÞeiωðrÞtdr ; ð1Þ

where I(r) is proportional to the local spin density and represents
the MR image. Using constant magnetic field gradients G = ∇Bz,
the Larmor frequency ω can be varied linearly for each spatial
dimension. Eq. (1) can then be written as:

SðkÞ ¼
Z

IðrÞeik�rdr ; ð2Þ

where the vector k is defined as:

ki ¼ γ

Z
Gidt : ð3Þ

Hence, the MR image can be obtained from the Fourier
transform of the measurement signal, which is acquired in k-
space4. To perform the Fourier transformation, the measurement
signal must be sampled for a sufficient range in k-space by
varying either the gradient amplitude, or the gradient lobe
duration of a gradient pulse. In this way the k-space can be filled
line by line as shown in the simple example of a 2D-gradient echo
sequence in Fig. 1. The signal amplitude is controlled by

transversal relaxation processes, such as T2 and T�
2 relaxation, and

the speed of rebuilding longitudinal magnetization, i.e. the T1
relaxation. Minimum acquisition time in k-space is thus limited
by constraints from relaxation times and the need for sufficient
signal-to-noise ratio. Imaging small particle motion in real time
(e.g., particles at a size of several micrometers dispersed in a fluid)
can thus be very challenging, if not impossible. In contrast to
optical methods, snapshot-like fast acquisition methods are not
possible, which for example would allow for single particle
tracking in real time.

However, MR acquisition in k-space allows the manipulation
and quantification of the signal phase which opens up a range of
possibilities to quantify motion. A very common and funda-
mental technique is the so-called Pulsed Gradient Spin
Echo (PGSE) technique as shown in Fig. 2a2,5. The PGSE
technique uses a Hahn-Spin-Echo extended with two short
symmetric gradient pulses, one before and one after the 180°-
radio-frequency-pulse (which effectively inverts the polarity of
the first gradient pulse)6. Since the motion encoding gradients are
symmetric they do not influence the spatial encoding; i.e. spatial
and motion encoding can be combined, thus building the
fundamental technique of MR diffusion imaging. In the PGSE
signal, diffusing particles lead to a signal attenuation. In the
narrow gradient pulse approximation the amplitude of the center
of the Spin-Echo depends on the diffusion coefficient D, the
gradient pulse spacing Δ and the q-value and can be described as:

Eðq;ΔÞ ¼ e�q2DΔ : ð4Þ
The q-value specifies the motion encoding capability of the

gradient pulses and is defined as:

q ¼ γδG; ð5Þ
where δ is the gradient pulse duration and G its amplitude.
Eq. (5) corresponds to the definition of the k-value from Eq. (3)7.
However, the definition of a q-value is only meaningful in the
narrow gradient pulse approximation and in its application with
symmetric motion-encoding gradients. In that case, the q-value
on its own spans a reciprocal space to the space of displacements
R= r(t+ Δ)− r(t), which can be seen when using the propagator
formalism to describe the center echo amplitude:

Eðq;ΔÞ ¼
Z

PðR;ΔÞeiq�RdR: ð6Þ

The averaged propagator P is the Fourier transform of the MR
signal when acquired in q-space just as the MR image is the
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Fig. 1 Gradient-Echo sequence: Pulsed field gradients generate k-space encoding according to Eq. (3). For simplicity slice-selection is omitted. A magnetic
resonance (MR)-image can be reconstructed by applying a 2D-Fourier transform to the measurement data, which is acquired in k-space
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Fourier transform of the MR signal when acquired in k-space2,8.
Sampling the MR signal in both spaces, i.e., using k-space and q-
space encoding, respectively, allows to quantify diffusion and flow
in a pixel-wise manner. However, this leads to a long measure-
ment time since both k-space and q-space have to be sampled
sufficiently.

Recent publications were able to show, that by breaking the
symmetry between the two diffusion-encoding gradients the
diffusion experiment can be shifted from being a scattering

experiment to being an imaging experiment, enabling to define
the shape of the diffusion boundaries which are in general not
accessible by a pure scattering experiment9,10. Classical resolution
limits in MR imaging, as defined by a limited magnitude of the
maximum k-space vector, can thus be circumvented.

In this paper, we show that ensemble motion can also be
quantified entirely without using motion encoding gradients (as
done with q-space encoding), by using Dynamic MR Scattering
(DMRS). The phase-sensitive acquisition of a time series of
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Fig. 2 Data acquisition: a Pulsed Gradient Spin Echo (PGSE): Stejskal-Tanner-module producing an echo attenuation due to self diffusion (τ: time between
the excitation and the refocusing RF-pulse; δ: gradient pulse duration; Δ: gradient pulse spacing). b Dynamic Magnetic Resonance Scattering (DMRS):
Repetitive applied excitation-pulse and gradient-pulse module to generate a time series of spatially encoded signals in k-space (TR: repetition time).
c Structure function for different k-space positions in terms of drifting particles. d Structure function for different k-space positions in terms of
Brownian motion
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k-space encoded signals already allows extraction of the para-
meters of the ensemble motion. k-space encoding signifies a
harmonic spatial modulation. When particles move, i.e. when the
spin-density distribution changes, the phase of the k-space signal
also changes in time. The higher the k-value, the more sensitive
the signal phase is to translational motion. For a certain k-space
position the fluctuating signal can then be evaluated by calcu-
lating the autocorrelation function. This approach generalizes the
idea of interpreting dynamic data acquisition in k-space as a
scattering experiment, without the necessity of image recon-
struction in analogy to concepts used in dynamic light scattering
(DLS) and differential dynamic microscopy11–13.

Results
Theoretical description of dynamic magnetic resonance scat-
tering. To illustrate the principle, we assume a sample made of a
number of identical point-like particles dispersed in a viscous
fluid. It is irrelevant whether the source for the signal is found in
the particles or in the fluid, provided that the particles generate
sufficient signal contrast to the fluid background to create var-
iations in the spatial signal distribution. In the following discus-
sion, for convenience, the particles are assumed to generate the
signal instead of the surrounding fluid (which generally would be
the case for MR). The spatial distribution of the signal density
I(r,t) for N particles can then be written as the convolution12:

Iðr; tÞ ¼ I0ðrÞ �
XN
j¼1

δ½r� rjðtÞ� : ð7Þ

I0 represents the local spatial distribution of the particle signal
analogously to the scattering potential of a single particle as
known from optics. The fluctuating k-space signal for the moving
particles, which is generated by applying magnetic field gradients,
can be derived from (7) by applying the spatial Fourier transform:

Sðk; tÞ ¼ S0ðkÞ
X
j

eik�rjðtÞ ; ð8Þ

where S0(k) is the Fourier transform of I0(r). The autocorrelation
function of the k-space signal corresponds to the field correlation
function in dynamic light scattering:

Γðk; tÞ ¼ hSðk; t′ÞS�ðk; t′þ tÞit′
¼ S0ðkÞj j2 P

m;n
eik� rmðt′þtÞ�rnðt′Þ½ �

* +
t′

:
ð9Þ

For particles moving independently from each other the
temporal averaging as denoted by the angular brackets in (9)
vanishes for correlations between displacements of different
particles:

eik�½rmðt′þtÞ�rnðt′Þ�
D E

t′
¼ 0 form≠n : ð10Þ

Assuming N identical particles, the autocorrelation function of
the k-space signal becomes:

Γðk; tÞ ¼ S0ðkÞj j2 P
n
eik�½rnðt′þtÞ�rnðt′Þ�

� �
t′

¼ N S0ðkÞj j2 eik�½rðt′þtÞ�rðt′Þ�� �
t′:

ð11Þ

The normalized version of the field correlation function for
uncorrelated and identical particles can then be written as:

gðk; tÞ ¼ 1

NjS0ðkÞj2
Γðk; tÞ ¼ eik�½rðt′þtÞ�rðt′Þ�

D E
t′
: ð12Þ

In DLS experiments, g(k,t) is accessible through the Siegert
relation12. With the phase-sensitive MR measurements, the field
correlation function can be directly calculated from the time

course of a single k-space point. When assuming identical
particles, Eq. (12) directly corresponds to the signal attenuation in
a PGSE experiment given in Eq. (6). That is to say, instead of
dephasing the measured signal by applying diffusion-encoding
gradients and subsequently exploiting its effect on the signal
attenuation, one can simply repeat single-point k-space sampling
and evaluate the temporal correlation in k-space.

The temporal distance between the diffusion gradients Δ in Eq.
(6) corresponds to t in the field correlation function (Eq. (12)).
Albeit in PGSE experiments, Δ must not significantly exceed T2
(or T1 in the case of stimulated echo experiments), t in Eq. (12)
can virtually be extended to infinity with DMRS experiments,
since there is no theoretical upper limit for the repetition time
(TR) in a MR experiment. This enables to also quantify very slow
ensemble motion.

From dynamic light scattering, the course of the field
correlation function Eq. (12) is well known for Brownian motion
as an exponential decay12:

gðk; tÞ ¼ e�Dk2t ; ð13Þ
with the diffusion coefficient D and for a constant particle drift as
an oscillating function:

gðk; tÞ ¼ eiv�kt ; ð14Þ
with the drift velocity v. In cases where most of the signal energy
is contained in the static background signal, it is more favorable
to examine functions describing the statistics of the signal
differences in order to cancel out the background signal14. One of
these functions is the averaged mean square of the signal
differences in k-space also known as the structure function:

F′ðk; tÞ ¼ N�1 Sðk; t′þ tÞ � Sðk; t′Þj j2� �
t′ : ð15Þ

The time course of the structure function is closely related to
the field correlation function. The normalized version of the
structure function can be written as:

Fðk; tÞ ¼ F′ðk; tÞ
F′ðk;þ1Þ ¼ 1�<½gðk; tÞ� ; ð16Þ

where <½f � denotes the real part of f. The structure function
allows to extract the sample dynamics from the fluctuating k-
space signal, even in cases of strong background signal. In case of
a constant translational motion F(k, t) will be an oscillating
function as g(k, t). Determining the oscillation angular frequency
ω = v⋅k gives access to the velocity v. In case of Brownian motion,
the exponential decay from Eq. (13) is also transfered to Eq. (16).
Fitting an exponential decay 1− e−t/τ to the structure function
with the relaxation time τ = 1/Dk2 allows to determine the
diffusion constant.

Simulations. To demonstrate the feasibility of the proposed
technique, MR measurements are simulated using a Bloch simu-
lation combined with a simulation for samples producing particle
drift and Brownian motion. First, the signal for a sample based on
glass spheres dispersed in water (ρ = 2500 kgm−3, Ø= 100 μm) is
simulated. According to Stokes Law the constant gravitational drift
velocity of the particles is set to v= 8.2 mm s−1. The MR sequence
producing k-space data comprises an excitation pulse followed by
gradient pulse during which different data points are sampled in
the reciprocal space as shown in Fig. 2b. The MR sequence is then
repeated 100 times with a repetition time TR= 10 ms such that
the measurement of one experiment covers a time window of 1 s.
Although sampling the time-course of just a single k-space data
point would be sufficient, 128 sampling points are acquired (each
one represents a different k-space position) with a sampling
frequency of 100 kHz. The structure function for each single k-
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space value contains the full statistical information about the
particle motion as shown in Fig. 2c, d.

Figure 3a shows the time course of the normalized structure
function for three different k-space values. The oscillating
progression of the normalized structure function clearly reflects
the translational movement of the particles at a constant
velocity along the spatial encoding gradient. Identifying the peaks
in the discrete spectra as shown in Fig. 3b, allows to determine
the drift velocity. The velocities determined from the peak
positions (v1 = (8.4 ± 0.9)mm s−1; v2 = (8.3 ± 0.4)mm s−1; v3 =
(8.2 ± 0.3)mm s−1) show a good agreement with the predefined
drift velocity of 8.2 mm s−1 of the particles. Due to the limited
spectral resolution, determining the peak position is less accurate
than directly fitting a sinusoid. Figure 3c shows the results for the
decorrelation time τ= 1/(v⋅k) plotted as a function of k, when
applying sinusoidal fits to the different structure functions. The
drift velocity is found to be v= 8.18mm s−1 by fitting the
decorrelation time as a function of k.

In a second step we simulate Brownian motion of 1 μm
particles dispersed in water (viscosity η= 1.0 ⋅ 10−3 N s m−2;
temperature T= 300 K) using a 3D-random walk. According to
the Stokes–Einstein-relation the diffusion coefficient is set to
D= 4.39 ⋅ 10−13 mm2 s−1. Figure 3d shows the structure function
plotted for three different k-values and fitted to the exponential
decay as given in Eqs. (13) and (16). The results of the simulation
show a good agreement with the given diffusion coefficient (D1=
(4.6 ± 0.3) 10−13 mm2 s−1, D2= (4.3 ± 0.3) 10−13 mm2 s−1,
D3 = (4.5 ± 0.4)10−13 mm2 s−1). Figure 3e shows a plot of the
characteristic decay time τ = 1/Dk2 as a function of k. Fitting the
characteristic decay time gives the diffusion coefficient D =
(4.5 ± 0.3) 10−13 mm2 s−1. Both simulations are designed to
resample real world-experiments, that is gradient strengths and

sequence-timings can easily be realized with existing MR
hardware.

MR measurements. In order to demonstrate the feasibility
of DMRS, we examine sedimenting glass microspheres
(ρ = 2500 kg m−3, Ø= 100 μm) on a Bruker 17.6 T scanner
equipped with a 1 T m−1 gradient insert (see Fig. 4a). The tem-
poral evolution of the k-space-data is sampled using a 1D fast
gradient echo sequence15. The direction of the frequency-
encoding (kx-encoding) is chosen to be aligned with the drift
direction. Figure 4b shows a photograph of the sedimenting glass
spheres. For reference, a sequence of MR images is acquired,
additionally. Due to the limited spatial resolution and primarily
due to the limited temporal resolution the reconstructed MR
images reveal no details about the particle size and distribution, as
shown in Fig. 4c.

In contrast, with the DMRS-data, i.e., with the time series of the
k-space data, the imprint of the ensemble motion becomes visible,
which can be seen in the corresponding structure functions and
their spectra as shown in Fig. 4d, e. Figure 4f shows the evaluation
of the decorrelation time τ = 1/(v⋅k) for different k-values. Fitting
this plot results in a drift velocity of v= (12 ± 1) mm s−1. By
analyzing high-resolution video frames of the sedimenting
glass spheres, the mean drift-velocity is found to be v= (11.4 ±
0.9) mm s−1, which is in good agreement with the MR experiments.

In a second experiment, the velocity distribution of rising air-
bubbles in a water tube is examined (see Fig. 4g). DMRS-k-space
data are acquired again using a 1D fast gradient-echo sequence
(i.e. without phase-encoding) on a Magnetom Skyra-3T (Siemens,
see Fig. 4h). With video analysis and single air-bubble tracking, we
could identify a range of velocities between 150 and 250mm s−1.
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In Fig. 4i, j, the corresponding structure functions and its spectra
are plotted for three different kx-values. For each kx-value, the
velocity at the peak-value of the spectrum is given. Determining
the decorrelation time τ = 1/(v⋅k) for different k-values (see
Fig. 4k) allows to specify a mean value for the most prominent
drift velocity of the bubbles (v= (189 ± 7) mm s−1). The width of
the spectral distribution shows a good agreement with the range
of velocities that were found by video analysis.

Both examples show the capability of the presented method to
examine particle dynamics. The modulation of the field
correlation function reflects the dynamics of the particles and is
governed by the magnitude of the corresponding k-vector.

Discussion
Contrary to the PGSE technique, a contrast between the particles
and the background is needed. This means that the field of
applications can be found primarily in analyzing the dynamics of
heterogenous systems, such as colloidal suspensions or emulsions,
by directly examining the dynamics of particles or droplets. In
respect thereof DMRS can be considered as a complement to the
existing MR methods probing translational dynamics, which are
widely based on the Stejskal-Tanner technique.

To improve the contrast between continuous phase and dis-
persed phase, it is also conceivable to use contrast agents such as
ultrasmall superparamagnetic iron oxid (USPIOS), thus even
particles at cell size (i.e., several micrometers) can provide suffi-
cient contrast to the background. It is important to mention that
it is not necessary to spatially resolve the particle distribution, as
is done for instance with molecular imaging. Furthermore, the
particle dynamics must provide sufficient signal fluctuation in
order to be captured with the autocorrelation function. For
Brownian motion, for instance small particles (<1 μm), theoreti-
cally can be examined easier with less gradient performance. The
slower the particle dynamics, the higher the gradient strength
necessary to capture the ensemble motion. However, the required
gradient strength can be reduced by extending TR, i.e., the tem-
poral spacing between the k-space sampling points. In case of a
strong background signal or a dense particle distribution, it is also
important that the receiver chain is able to resolve the k-space
signal fluctuation. In that case, it might be useful to only sample
the relevant higher k-space sampling points in order to suppress
the high amplitude signal from the k-space center.

An interesting field of application might be the characterization
of emulsion systems in natural as well as synthetic products. In
this regard, PGSE-NMR is widely used to determine the droplet-
size distribution (DSD)16–18. The examinations are mainly based
on the quantification of the self-diffusion of the dispersed liquid
within the droplet wall. However, the droplets themselves also
undergo Brownian motion, leading to additional spin dephasing
during the encoding gradients, which might hamper the accuracy
of the DSD examination. DMRS is not sensitive to self-diffusion
but primarily relies on a spatial and temporal signal contrast
between the continuous and the dispersed phase, albeit the gra-
dient performance is not needed to spatially resolve particles or
droplets. Thus, mathematical models evaluating the DSD can be
significantly simplified since self-diffusional processes are not
accounted for by the measurement process.

Additionally, the ability to study the DSD with low-cost/low-
field MR bench-top spectrometers has led to the widespread use
of PGSE-NMR in suitable emulsions and colloidal suspensions
when optical methods cannot be used, as in opaque media.
However, bench-top MR systems have to rely on the possibility to
separate signals from the continuous and the dispersed phase by
relaxation or diffusion-weighting to isolate each phase for
self-diffusion measurement. In our approach, this clear separation

is needed only to the extent that sufficient contrast to noise is
provided to map the particle dynamics, making our presented
application particularly interesting for low-cost bench-top
systems.

When using PGSE-NMR, the range of droplets able to be sized
is limited by the duration of the temporal separation Δ (see
Fig. 2a) of the encoding gradient18. PGSE-NMR allows quantifi-
cation of droplet sizes between 0.2 and 100 μm, which limits the
range of applications for industrial bench-top MR systems17. To
circumvent this limitation sophisticated MR techniques have
been proposed, such as the use of dipolar demagnetization
fields19. With DMRS, the inter-pulse separation time Δ from
PGSE-NMR is translated to the repetition time TR, which has no
upper limit dictated by the relaxation times T2 (in case of a Spin-
Echo–measurements) or T1 (in case of the use of stimulated
echoes). Thus, DMRS also allows to monitor the dynamics at a
low diffusion constant D, since there is no theoretical upper limit
for the repetition time TR, as long as the measurement environ-
ment can be kept stable for the whole measurement duration.
Summarized, the use of DMRS to monitor chemical and physical
processes in multi-phasic liquids could help to characterize and
control corresponding industrial processes, e.g. hydrocracking or
emulsion ripening/flocculation/coagulation/aggregation/etc.

A further field of possible applications is the investigation of
granular flow and sedimentation processes. These processes have
already been investigated using MR techniques. For example
Seymour used motion sensitizing gradients to study stochastic
and deterministic properties of the fluid motion in a granular
flow20. In contrast to this method, the presented method, pro-
vides means to study the motion of non MR-sensitive solid
particles itself, which are carried along by the fluid and show
different dynamic behavior. Although this information is also
encoded in the flow propagator it seems more difficult to extract
this information from the data. In comparison, the proposed
method can be specifically tailored to yield this information.
Thus, our proposed method could provide a simple way to
complete the dynamic picture of granular flow processes. For
slower processes like sedimentation direct imaging has also been
proposed21. However, this requires a sufficiently slow sedi-
mentation process and hardware capable of spatially resolving the
solid components as well as their motion. The presented
approach eases these conditions. As imaging is not necessary,
even processes on the time scale of a few TR or below can be
resolved. Furthermore, the ensemble dynamics of particles
smaller than the spatial resolution of the acquired k-space line can
be investigated. This may reduce hardware requirements and thus
make these experiments more feasible. These examples are not
limited to the application of solid non-MR-sensitive objects in a
fluid, but can be used to study these properties in any multi-
phasic system where the phases can be distinguished by MR
methods, thus generating the necessary contrast between the
phases to detect the temporal changes. This can be chemical shift,
e.g. oil droplets, or different nuclei, e.g. perfluor carbon
emulsions.

Another area that may profit from the presented method is the
characterization of multi-phase flow in trickle or fixed bed reac-
tors which is important for reactor efficiency22–26. For example,
changing from bubbly or trickle flow to pulsed flow could result
in an observable change/loss of the spatio-temporal signal-cor-
relation and thus lead to a change in the apparent relaxation of
the correlation function. Again, this does not require an air-liquid
interface if both phases can be separated by MR and the reactor
bed can be distinguished from all other phases. If multiple k-space
points are acquired for instance, a combination with the Bayesian
analysis by Holland et al. might provide a better characterization
of the transporting liquid or the transport pathways in the reactor

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0136-6 ARTICLE

COMMUNICATIONS PHYSICS |            (2019) 2:46 | https://doi.org/10.1038/s42005-019-0136-6 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


bed27. Also, a combination with T�
2 weighted imaging as descri-

bed by Arbabi et al. is possible if data is sampled at different echo
times28. This may also provide a possible way of creating different
contrasts for different phases.

Methods
Derivation of the field correlation function. The spatio-temporal dynamics of a
homogenous system of particles can be captured with the Van Hove correlation
function29:

GðR; tÞ ¼ 1
N

XN
n¼1

XN
m¼1

δðR� rnð0Þ þ rmðtÞÞ
* +

: ð17Þ

The function splits into two parts. A self correlation part GS(R, t) giving the
probability that a particle moved a distance R in time t:

GSðR; tÞ ¼
1
N

XN
n¼1

δðR� rnð0Þ þ rnðtÞÞ
* +

; ð18Þ

and a distinct part giving the probability to find at time t a particle j at a distance R
from a place where there was a different particle i at time t = 0:

GDðR; tÞ ¼
1
N

XN
n≠m

δðR� rnð0Þ þ rmðtÞÞ
* +

: ð19Þ

In case of statistically independent particles GD vanishes and G(R, t) = GS(R, t).
Further for identical particles G can be written as:

GðR; tÞ ¼ GSðR; tÞ ¼ δ R� rnð0Þ þ rnðtÞð Þh i : ð20Þ
Calculating the spatial Fourier transform of GS(R, t):

~Gðk; tÞ ¼
Z

d3Reik�RhδðR� rnð0Þ þ rnðtÞÞi ¼ eik�ðrnðtÞ�rnð0ÞÞ
D E

: ð21Þ

shows that the Fourier transform of the space time correlation function equals
the first order field correlation function from Eq. (12):

~Gðk; tÞ ¼ gðk; tÞ : ð22Þ
In case of Brownian motion superimposed with a constant translational motion

such as sedimentation for example, the particle flux J can be described by Fick’s
first law of diffusion with an additional term describing the constant translational
motion at the velocity v:

J ¼ vcðR; tÞ � D∇cðR; tÞ : ð23Þ
Further, if the number of particles is constant in time, the conversation of

particles can be expressed by the continuity equation

∂c
∂t

þ ∇ � J ¼ 0 : ð24Þ
Substituting the flux J from Eq. (23) yields

∂c
∂t

þ v � ∇c ¼ D∇2c : ð25Þ
The probability density function GS(R, t) obeys Fick’s law in the same manner as

the particle concentration c so that it is reasonable to assume that GS(R, t) is also the
solution to Eq. (25) 11:

∂

∂t
GSðR; tÞ þ v � ∇GSðR; tÞ ¼ D∇2GSðR; tÞ : ð26Þ

Calculating the spatial Fourier transform and using Eq. (22) yields:

∂

∂t
gðk; tÞ � ½ik � vgðk; tÞ� ¼ �k2Dgðk; tÞ : ð27Þ

Assuming g(k, 0) = 1 gives the solution for the field correlation function g(k, t):

gðk; tÞ ¼ eik�vt e�k2Dt : ð28Þ
The first part represents the oscillating influence of the constant translational

motion on the correlation function. The second part causes an exponential decay
due to the uncorrelated Brownian motion.

MR simulations. In general, the spin density distribution is not found to be the
exact Fourier transform of the k-space data in MR. This only holds true for a
completely static spin density distribution. To demonstrate, that the principles of
DLS can still be applied in MR, we have simulated moving particles in a spatial
encoding gradient field, as it can be found in typical MR imaging sequences. The
phase evolution of the particles was calculated as follows:

ϕðx; v; tÞ ¼ k � xðtÞ þ k� � vðtÞ ; ð29Þ
with k�i ¼ γ

R
Gitdt. k

* incorporates the effect of first order phase accumulation due
to constant velocities during spatial encoding.

For the simulations, we assumed point-like, non-interacting particles. The
simulation calculates the individual phase accumulation of the transverse
magnetization for each particle according to Eq. (29). The k-space signal was

generated by adding the signal contribution of each particle. We simulated a fully
spoiled 1D gradient-echo-sequence with gradients applied only in readout
direction.

Simulation of particle drift. A total of 500 particles (Ø= 1 μm) randomly posi-
tioned in a sample volume of the size of 3.0 × 3.0 × 2.0 cm3 filled with water
(viscosity η = 1.0 ⋅ 10−3 N s m−2) were examined under the constant drift velocity
of v ¼ d2gðρglas � ρH2O

Þ=ð18ηÞ ¼ 8:2mm s�1 with g = 9.81 m s−2, ρH20
¼

1000 kgm�3 and ρglas = 2500 kg m−3. The direction of the resultant gravitational
drift was set to coincide with the gradient direction. The readout-gradient strength
was set to Gx = 0.08 T m−1. The magnetization was assumed to always start with
the same amplitude at the sequence entrance and hence T1 relaxation effects were
omitted. Data acquisition was performed as shown in Fig. 2b with a sampling
frequency of νsampling = 100 kHz and 128 sampling points during each readout-
gradient. Each sampling point represents a different k and k*-space value respec-
tively. The sequence was repeated Nt = 100 times at a repetition time of TR =
10 ms such that the measurement of one experiment covers a time window of 1 s.
The whole experiment was repeated Nav = 100 times and the k-space signal dif-
ferences where averaged according to Eq. (15).

Simulation of Brownian motion. The sample size was chosen to be (3.0 × 3.0 ×
2.0) μm3 with 5000 dissolved particles in water. The particle diameter was set to
1 μm. The Brownian motion was simulated with a 3D-random walk with a time
resolution of τ = 10−5 s and a 1D stepsize of hxi ¼ ffiffiffiffiffiffiffiffiffiffiffi

2DΔτ
p

. According to the
Stokes–Einstein-relation D was calculated to be D = 4.39 ⋅ 10−13 m2 s−1. To adapt
the MR sequence to the slow diffusion process, the following changes were made to
the sequence: Gx = 0.23 T m−1, repetition time TR = 1 s, sampling frequency
νsampling = 10 kHz, number of sequence repetitions Nt= 100, number of averages:
Nav = 250.

MR measurement at 17.6 T. Sedimenting glass microspheres (ρ = 2500 kg m−3,
Ø= 100 μm) were examined at a Bruker 17.6 T scanner (Fig. 4c) equipped with a
gradient insert with a maximum field strength of 1 T m−1. A FLASH (fast-low-
angle-shot)-sequence was repeated Nt = 200 times with a repetition time of TR =
3.6 ms to capture the sample dynamics in a total time window of 0.7 s15. The
direction of the kx-encoding was chosen to be aligned with the drift directions.
Under each readout-gradient, 64 kx-sampling-points were acquired (actual gradient
strength: 0.071 Tm−1; gradient duration: 0.84 ms). The whole experiment was
averaged Nav = 64 times. Parameters used for generating the MR images were as
follows: flip-angle α = 10°, slice-thickness 1 mm; field-of -view (xy): (25 × 25) mm2

and resolution (xy): (0.4 × 0.4) mm2.

MR measurement at 3 T. The experiments to study the velocity distribution of
rising air-bubbles in water were conducted with a Magnetom Skyra-3T (Siemens)
with a maximum gradient field strength of 0.045 T m-1. The temporal evolution of
the k-space-data was acquired using a FLASH-sequence without ky-encoding, i.e.,
without phase encoding. Under each readout-gradient 80 kx-sampling-points were
acquired (actual gradient strength: 0.73 mT m−1; gradient duration: 1.3 ms).
The whole experiment was averaged Nav = 383 times. Further parameters were:
flip-angle α = 15°, slice-thickness 20 mm; field-of-view (x): 0.5 m; resolution (x):
6.25 mm.

Simulations of particles undergoing Brownian motion and translation simul-
taneously. Additionally to the results presented in the main manuscript, particles
undergoing simultaneously Brownian motion and translational motion were
simulated. Particles with a diameter of 1 μm (D = 4.39 ⋅ 10−13 m2 s−1) and a
constant drift velocity of 1 μm s−1 were examined. The same pulse sequence was
applied as for the determination of the pure Brownian motion. The results for the
structure functions and its spectra can be seen in Fig. 5a, b for three selected
k-values. The structure function is now a damped harmonic oscillation. The
oscillating part represents the translational motion, whereas the exponential decay
is caused by the loss of spatial correlation due to the Brownian motion.

Fðv;D; k; tÞ ¼ 1� Ae�Dk2 tcos v0 �ktð Þ; ð30Þ

Figure 5b, c shows the results when fitting a damped cosine wave as given
in Eq. (30) to the k-dependant structure functions. Both, the diffusion coefficient
and the drift velocity, can be extracted correctly from the structure functions.
For high k-values the fast loss of correlation of the k-space signal in time blurs
the characteristics of the structure functions and leads to increased imprecision
of the fitted parameters as can be seen Fig. 5c, d. Suitable k-values to probe the
drift can be found in the range of klow < k < khigh with klow ≈ 2π/(TAv) and khigh ≈
fsπ/v, where TA is the temporal sampling window for the field correlation function,
fs = 1/TR is the sampling frequency and v the drift velocity. The lower boundary
is the spectral resolution due to the finite TA while the upper boundary is the
Nyquist sampling theorem. For Brownian motion k should be on the order of
magnitude of a few klow � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=DTA

p
, with the diffusion coefficient D. This

ensures sufficient dynamics in the structure function for parameter fitting. For
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high k-values the temporal sampling bandwidth has to be elevated accordingly
such that the dynamic range of the exponential decay is sampled sufficiently,
otherwise the exponential fit increasingly delivers biased diffusion coefficients
as can be seen in Fig. 5b for high k-values. For a given sampling rate, one finds
khigh � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=DTR

p
. In Fig. 5e, f, the correlation times τ are plotted as functions

of k, for the particle drift (τ= 1/(v⋅k) see Fig. 5e) and the Brownian motion
(τ= 1/Dk2 see Fig. 5f), respectively. Unstable fits (i.e., when the relative error for
the fit parameter exceeded 20 %) where excluded from the plot.

As shown in Fig. 5a, the structure functions change significantly with increasing
k. For low k-values, nearly a pure oscillation is observed. With large k the
attenuating part dominates. It can be expected that for high k-values, only an
exponential curve is observable. This indicates that, in limiting cases, the structure
function is either dominated by the diffusion process or by the translation. For
simplicity in the following v⋅k= vk is assumed. Rescaling Eq. (30) by k= kTκ and
τ= kTvt shows

Fðκ; τÞ ¼ 1� Ae�κ2τcos κτð Þ ð31Þ
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Fig. 5 Brownian Motion Combined With A Constant Drift: Simulation results for Brownian motion combined with a constant drift (D = 4.39 ⋅ 10−13 m2s−1,
v = 1.0 μm s−1, particle diameter: 1 μm): a Structure function at three different k-values and (b) corresponding spectra. c Plot of fitted drift velocities versus
k. d Plot of fitted diffusion coefficients versus k. e Plot of decorrelation time τ = 1/(v⋅k) versus k. f Plot of the decorrelation time τ = 1/Dk2 versus k.
Unstable fit results i.e. those exceeding a relative error for the fit parameter of 20 % where excluded from the plot
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with kT= v/D as the k-value where the relaxation rate of the damping equals the
oscillation frequency. If κ2 τ � κ τ ) κ � 1 (large k-values), damping dominates
the time evolution of F(κ, τ) and

Fκ�1ðκ; τÞ � 1� Ae�κ2τ ð32Þ
holds, which is the structure function for Brownian motion (Eqs (13) and (16)
in the manuscript). The opposite case of weak damping is found if
κ2 τ � κ τ ) κ � 1. In this case for short times τ � 1=κ the damping can be
neglected and one finds

Fðκ; τÞ � 1� Acos κτð Þ; ð33Þ
which corresponds to Eqs (14) and (16) of the manuscript for a constant drift. For
τ≳1=κ observable damping of the oscillation would be present. For unscaled times
this translates to TA � D= κ2v2ð Þ ¼ 1= k2Dð Þ.

The experimental application of these limits shall be investigated exemplarily for
the 1 μm particles from the simulation above. In this case one finds kT ≈ 2 × 106m−1.
Starting with the fast damping limit, k-values significantly higher than kT have to be
realized. With k ¼ γ

R
Gdt and assuming a pulse duration of 1 ms a gradient

strength of G � 7:5Tm�1 would be necessary to generate k � kT. Even if
extending the gradient-pulse duration, such high k-values can only be realized with
highly specialized MR hardware, e.g., dedicated diffusion probes. However, the
weak-damping limit with k � kT in the scenario of the drifting 1 μm particles can
easily be met with current MR imaging systems as demonstrated in the experiment.

Data availability
The data that supports the findings of this study are available upon request from the
corresponding author.
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