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Macrophages stand in the first line of defense against a variety of pathogens but
are also involved in the maintenance of tissue homeostasis. To fulfill their functions
macrophages sense a broad range of pathogen- and damage-associated molecular
patterns (PAMPs/DAMPs) by plasma membrane and intracellular pattern recognition
receptors (PRRs). Intriguingly, the overwhelming majority of PPRs trigger the production
of the pleiotropic cytokine tumor necrosis factor-alpha (TNF). TNF affects almost any
type of cell including macrophages themselves. TNF promotes the inflammatory activity
of macrophages but also controls macrophage survival and death. TNF exerts its
activities by stimulation of two different types of receptors, TNF receptor-1 (TNFR1)
and TNFR2, which are both expressed by macrophages. The two TNF receptor types
trigger distinct and common signaling pathways that can work in an interconnected
manner. Based on a brief general description of major TNF receptor-associated signaling
pathways, we focus in this review on research of recent years that revealed insights into
the molecular mechanisms how the TNFR1-TNFR2 signaling network controls the life
and death balance of macrophages. In particular, we discuss how the TNFR1-TNFR2
signaling network is integrated into PRR signaling.
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INTRODUCTION

Tumor necrosis factor-alpha (TNF) is a highly pleiotropic cytokine that affects practically any type
of cell. It triggers cellular responses reaching from the induction of inflammatory gene expression
programs, over the stimulation of cellular proliferation and differentiation to the activation of
cellular suicide programs such as apoptosis and necroptosis (Wajant et al., 2003; Wajant and
Scheurich, 2011; Brenner et al., 2015).

Tumor necrosis factor-alpha is the name giving and prototypic ligand of the TNF superfamily
(TNFSF). It is expressed (i) as a type II single spanning transmembrane protein and (ii) as a soluble
variant which is released from the transmembrane form by proteolytic processing in the stalk region
which separates the characteristic TNF homology domain (THD) from the transmembrane and
the intracellular domain (Locksley et al., 2001; Bodmer et al., 2002; Figure 1). Since the THD
mediates self-assembly into trimeric molecules and receptor binding, both the transmembrane
and soluble form of TNF interact with the two know receptors of TNF, TNF receptor 1 (TNFR1),
and TNFR2 (Figure 1). Both receptors of TNF are typical representatives of the TNF receptor
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superfamily (TNFRSF). As such, TNFR1 and TNFR2 are single-
spanning type I transmembrane proteins characterized by having
several cysteine-rich domains (CRDs) in their extracellular
domain (Locksley et al., 2001; Bodmer et al., 2002). Soluble
forms of TNFR1 and TNFR2 have also been described and
result from alternative splicing or shedding (Philippe et al., 1993;
Taylor, 1994; Galve-de Rochemonteix et al., 1996; Lainez et al.,
2004; Gregory et al., 2012). The soluble TNF receptor variants
inhibit TNF by competing with the cellular receptor species for
TNF binding but possibly also by acting as dominant-negative
molecules. Indeed, the N-terminal CRDs of TNFR1 and TNFR2
are not directly involved in ligand binding but mediate inactive
self-association in the absence of ligand (Chan et al., 2000).
This part of the TNF receptors has therefore been named pre-
ligand binding assembly domain (PLAD) and seems to be a
prerequisite for ligand binding and subsequent formation of
active receptor complexes (Chan et al., 2000). Thus, soluble
TNF receptor molecules might also act as TNF inhibitors by
formation of inactive complexes with cellular TNF receptors by
PLAD-PLAD interaction, but this issue has not been clarified yet.

TNFR1 and TNFR2 belong to different subgroups of the
TNFRSF. TNFR1 is a death receptor (DR) and harbors a death
domain (DD) in its cytoplasmic part (Tartaglia et al., 1993). The
DD is a conserved type of protein-protein interaction domain
which enables DRs to interact homotypically with cytoplasmic
proteins also harboring a DD (Park et al., 2007). DD-containing
signaling proteins link TNFR1 to cytotoxic signaling pathways
triggering apoptosis or necroptosis but also allow engagement
of signaling pathways that activate transcription factors of the
nuclear factor of kappa B (NFκB) family or kinases of the
MAP kinase family (Wajant et al., 2003; Wajant and Scheurich,
2011; Brenner et al., 2015). There exist several mechanisms,
described below in more detail, that suppress cytotoxic signaling
by TNFR1 so that proinflammtory, gene inductive signaling can
be considered as the default mode of TNFR1 activity. TNFR2
has no DD and is a prototypic TNF receptor associated factor
(TRAF)-interacting TNFRSF receptor (Xie, 2013). Thus, there
is a short amino acid motif near the C-terminus of TNFR2
which enables recruitment of the adapter protein TRAF2 and
TRAF2-associated proteins such as TRAF1 and cellular inhibitor
of apoptosis protein 1 (cIAP1) and cIAP2 (Xie, 2013). TNFR2 has
therefore no intrinsic cell death inducing activity but stimulates
NFκB signaling and activation of various kinases (Wajant et al.,
2003). The transmembrane and soluble form of TNF bind with
high affinity to the two TNF receptor types and crystallographic
data revealed a similar structural mode of ligand binding by
TNFR1 and TNFR2 (Banner et al., 1993; Mukai et al., 2010).
Nevertheless, there is a striking difference in the TNF receptor-
stimulating activity of the two TNF forms. While transmembrane
TNF activates TNFR1 and TNFR2 signaling with high efficacy,
binding of soluble TNF results only in the case of TNFR1
in strong and general receptor activation (Wajant et al., 2003;
Figure 1). TNFR1 is expressed by almost any cell type. TNFR2
expression, however, is rather restricted to certain cell types,
including myeloid cells, regulatory T-cells, glial cells and some
endothelial cell types, but can also be induced in epithelial
cells, fibroblasts and certain T- and B-cell subsets (Medler and

Wajant, 2019). TNFR2 is furthermore frequently expressed on
hematopoietic malignancies and some solid tumors. TNF is
not constitutively expressed and is instead readily induced in
activated immune cells but it is also expressed by fibroblasts and
endothelial and epithelia cells in response to proinflammatory
triggers and cytokines including TNF itself (Pauli, 1994;
Medler and Wajant, 2019).

TNFR1-RELATED SIGNALING
PATHWAYS

After binding of soluble or membrane-bound TNF, the
DD-containing cytoplasmic proteins TNFR1-associated death
domain (TRADD) and receptor interacting protein kinase-
1 (RIPK1) recruit to TNFR1 due to DD–DD interactions
(Figure 2). Deficiency or knock-down of RIPK1 enhance
recruitment of TRADD and TRAF2 to TNFR1 (Devin et al.,
2001; Jin and El-Deiry, 2006; Zheng et al., 2006; Fullsack
et al., 2019). Deficiency or knock-down of TRADD, in contrast,
consistently reduced TRAF2 recruitment in various studies and
showed varying effects on RIPK1 recruitment (Jin and El-Deiry,
2006; Zheng et al., 2006; Ermolaeva et al., 2008; Pobezinskaya
et al., 2008; Fullsack et al., 2019). Since TRAF2 interacts
furthermore with high affinity with TRADD outside its DD
(Park et al., 2000), these findings suggest that TNFR1-bound
TRADD, and to a lesser extent TNFR1-bound RIPK1, recruit
TRAF2 homotrimers (or TRAF1-TRAF2 heterotrimers) into the
TNFR1 signaling complex. With TRAF2 the E3 ligases cIAP1 and
cIAP2, which already form complexes with TRAF2 homotrimers
(or TRAF1-TRAF2 heterotrimers) in the cytoplasm, become
co-recruited to the TNFR1 signaling complex (Wajant and
Scheurich, 2011). The cIAPs modify various components of
the TNFR1 signaling complex, in particular RIPK1, with K63-
linked ubiquitin chains and create so binding sites for the
E3 ligase linear ubiquitin chain assembly complex (LUBAC).
The LUBAC then further modifies RIPK1 with linearly linked
ubiquitin chains which allow the recruitment of the MAP3K
transforming growth factor-β (TGFβ)–activated kinase-1 (TAK1)
via the adapter protein TAK1-binding protein-2 (TAB2) and
of the inhibitor of kappa B kinases (IKK) complex (Wajant
and Scheurich, 2011; Brenner et al., 2015). TAK1 can now
phosphorylate and activate the IKK2 subunit of the IKK
complex and triggers this way the events of the classical
NFκB pathway including phosphorylation and degradation
of inhibitor of kappa B-alpha (IκBα), release and nuclear
translocation of previously IkBα-inhibited NFκB dimers and
transcription of various NFκB-regulated targets. The latter
include IκBα itself but also other factors that in feedback
loops can modulate TNFR1 signaling, e.g., the FADD-like ICE-
inhibitory proteins (FLIPs), cIAP2, A20 and TRAF1 (Wajant
et al., 2003). The described chain of events emerge from
the plasma membrane located TNFR1 signaling complex (also
named complex I) within seconds to very few minutes and
allows production of functional relevant amounts of NFκB-
regulated proteins in less than 1 h (Wajant and Scheurich, 2011;
Brenner et al., 2015).
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FIGURE 1 | The TNF-TNFR1-TNFR2 system. As other receptors of the TNFRSF, TNFR1 and TNFR2 are characterized by cysteine-rich domains (CRD) in their
extracellular part. TNFR1 harbors furthermore a death domain (DD) and TNFR2 a TRAF2 binding site (T2bs). TNF occurs in two forms, as a membrane-bound
trimeric ligand (memTNF) and as a soluble likewise trimeric molecule (sTNF). TACE processes memTNF to sTNF. Please note, memTNF stimulates both TNF
receptors while sTNF largely fails to stimulate TNFR2 despite high-affinity binding. PLAD, pre-ligand binding assembly domain.

With time the TNFR1 signaling complex starts to internalize
and this comes along with the release of the TNFR1-bound
signaling molecules (Fritsch et al., 2017). In the cytoplasm
the latter can form receptor-free cytoplasmic complexes (also
named complex IIa and IIb) with FADD, caspase-8 and RIPK3
which context-dependent enable induction of apoptosis or
necroptosis (Brenner et al., 2015). Since TRADD, RIPK1, TRAF2
and the cIAPs are also part of the initially formed TNFR1-
associated signaling complex, it is tempting to speculate that
these molecules as a whole can dissociate from TNFR1 to recruit
then FADD/caspase-8 and to act as a “condensation nucleus”
to recruit RIPK3 and additional RIPK1 and RIPK3 molecules
(Li et al., 2012). Noteworthy, there is evidence that TNFR1-
induced activation of p38 and its downstream target MAPK
kinase-activated kinase-2 (MK2) results in MK2-mediated
phosphorylation of RIPK1 on serine 320 (human)/321(mouse)
of TNFR1-associated RIPK1 but also of “free” cytosolic RIPK1
which hinders RIPK1 from acting as “condensation nucleus” of
cytosolic complexes containing kinase active RIPK1 (Li et al.,
2012; Jaco et al., 2017). Complex IIa-associated maturation
of procaspase-8 dimers results in the release of mature
heterotetrameric caspase-8 molecules composed of the two
p18 and p10 subunits of a procaspase-8 dimer. Subsequent
apoptosis induction is typically suppressed by constitutive
and NFκB-induced expression of FLIP proteins and K63-
ubiquitination of RIPK1 (Brenner et al., 2015). Thus, cells are
normally resistant against TNF-induced apoptosis as long as
FLIP expression/induction is not inhibited (e.g., by CHX or IKK
inhibitors) and/or RIPK1 K63 ubiquitination is not prevented
(e.g., by SMAC mimetics or TRAF2 depletion) (Brenner et al.,
2015; Annibaldi and Meier, 2018). Noteworthy, complex IIa-
associated active caspase-8 and caspase-8/FLIPL heterodimers,
which have a limited enzymatic activity, cleave RIPK1 and RIPK3
and prevent so complex IIb triggered formation of necroptosis-
inducing oligomeric RIPK1/RIPK3 aggregates (Brenner et al.,
2015). Moreover, K63- and linear ubiquitination of RIPK1
and activation of TAK1 and IKK not only stimulate the anti-
apoptotic classical NFκB pathway but also inhibits cytotoxic

RIPK1 activation by phosphorylation in its intermediate domain
(S320 of human RIPK1, S321 of murine RIPK1) directly
(IKK and TAK1) and indirectly (TAK1) via activation of the
p38-MK2 dyad (Dondelinger et al., 2015, 2017; Geng et al.,
2017; Jaco et al., 2017; Menon et al., 2017). TNF-induced
necroptosis therefore only occurs when caspase-8 activation
fails in cells with a compromised TNFR1-TRAF2-cIAP1/2-
LUBAC-TAK1-IKK sequence (Figure 2). Apoptotic cells release
membrane-enclosed apoptotic vesicles containing the cellular
content of the dying cell which are cleared by macrophages
without triggering inflammation. In contrast, necroptosis is
a lytic form of cell death releasing intracellular DAMPs and
proinflammatory cytokines and thus promotes inflammation
(Kearney and Martin, 2017; Frank and Vince, 2019). Since
ongoing TNFR1 signaling is per se highly inflammatory, TNF-
induced necroptosis might nevertheless dampen inflammatory
TNF effects under certain circumstances (Kearney and Martin,
2017). Thus, the inflammatory net effect of TNFR1 in vivo is
determined by the complex interplay of TNFR1-induced classical
NFκB signaling, apoptosis and necroptosis.

In context of TNFR1 signaling, TRADD, RIPK1, TRAF2
and TAK1 are not only of central relevance for the activation
of the classical NFκB pathway and suppression of the cell
death inducing capacity of TNFR1 but are also responsible for
triggering the MAP kinase cascades leading to the activation
of JNK and p38 (Wajant et al., 2003). Since the relevance of
TNFR1-induced activation of JNK and p38 signaling have been
poorly addressed so far in macrophages, it will not been addressed
further in this review. The same applies for TNFR1-induced DD-
independent activation of the neutral sphingomyelinase and ERK
signaling pathways.

TNFR2-RELATED SIGNALING
PATHWAYS

Initially, oligomerized TNFR2 recruit TRAF2 along with
its tightly associated binding partners TRAF1, cIAP1 and
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FIGURE 2 | TNFR1 signaling. The default state of TNFR1 signaling results in activation of proinflammatory pathways such as the classical NFκB pathway. If FLIP
proteins and the TRAF2-cIAP1/2 complexes are limited, e.g., due to CHX treatment and/or TRAF2-cIAP1/2 depletion), the quality of TNFR1 signaling shifts to
apoptosis. Not before caspase-8 activity is limited under apoptotic conditions, there is finally necroptosis induction. For more details see text.

cIAP2 what resembles the indirect, TRADD/RIPK1-mediated
recruitment of these proteins in context of TNFR1 signaling.
Although there is no evidence for a role of TRADD and/or RIPK1
in TNR2 signaling, the LUBAC as well as the IKK complex are
also recruited to the TNFR2 signaling complex (Figure 3), but less
efficient as in the case of TNFR1 (Wicovsky et al., 2009; Borghi
et al., 2018). TNFR2 stimulation results therefore in activation of
the classical NFκB pathway, too.

Cell surface expression levels of TNFR2 reach often > 10000
molecules per cell (e.g., Gehr et al., 1992; Medvedev et al., 1996)
and are regularly much higher than those of TNFR1 which
are typically in the range of a few hundred to 1-3 thousand
molecules per cell (e.g., Thoma et al., 1990; Gehr et al., 1992).
Recruitment of TRAF2-cIAP1/2 and TRAF1-TRAF2-cIAP1/2
complexes to TNFR2 can therefore lead to a significant depletion
of these complexes in the cytoplasm and may thus affect other
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FIGURE 3 | TNFR2 signaling. TNFR2 efficiently recruits TRAF2-cIAP1/2 and TRAF1-TRAF2-cIAP1/2 complexes which allow activation of the classical NFκB
pathway. TNFR2 recruitment of TRAF2-cIAP1/2 and TRAF1-TRAF2-cIAP1/2 complexes concomitantly depletes the cytosolic pool of these proteins and hinder them
so to trigger degradation of the alternative NFκB pathway stimulating kinase NIK. Thus, TNFR2 also activates the alternative NFκB pathway.

activities of these molecules (Duckett and Thompson, 1997;
Fotin-Mleczek et al., 2002; Li X. et al., 2002). Indeed, TRAF2
and the cIAPs are constitutively engaged in the cytoplasm in
the inhibition of the alternative/non-canonical NFκB pathway
which is of special relevance for the control of the activity of p52-
RelB NFκB dimers (Sun, 2017). By virtue of its ability to reduce
the cytosolic pool of TRAF2-containing complexes, TNFR2 is
thus able to activate the alternative NFκB pathway (Rauert et al.,
2010). In detail, TRAF2 recruits its binding partners cIAP1/2 to
TRAF3 and the TRAF3 interacting MAP3-kinase NIK. The cIAPs
ubiquitinate NIK with K48-linked ubiquitin chains and thereby
promote the proteasomal degradation of this constitutively
active kinase. TNFR2-induced depletion of cytosolic TRAF2-
cIAP1/2 complexes results therefore in the accumulation of
active NIK and NIK-mediated phosphorylation of the NFκB
precursor protein p100. Phosphorylated p100 becomes K48-
ubiquitinated and is then processed by the proteasome to
the NFκB transcription factor subunit p52, thus resulting in
the activation of p100-containing NFκB dimers (Sun, 2017).
Although it has been found that depletion of TRAF2-cIAP1/2 and
TRAF1-TRAF2-cIAP1/2 complexes is fully sufficient to interfere
with the cytoplasmic activities of these complexes (Fotin-Mleczek
et al., 2002), the depletion effect might be enhanced and sustained

further by TNFR2-triggered proteasomal degradation of TRAF2
and cIAP2 (Duckett and Thompson, 1997; Li X. et al., 2002).
TNFR2-induced depletion of the cytosolic pool of TRAF2-
cIAP1/2 and TRAF1-TRAF2-cIAP1/2 complexes can also limit
the availability of these proteins for other receptors. Indeed, it
has been observed that prestimulation of TNFR2 (or similarly
acting TNFRSF receptors such as Fn14) affects recruitment
of TRAF2 and cIAPs to TNFR1 and thereby attenuates the
ability of TNFR1 to stimulate classical NFκB signaling (Fotin-
Mleczek et al., 2002). Due to the relevance of TRAF2 and
cIAPs for preventing apoptosis and necroptosis in context of
TNFR1 signaling, TNFR2-mediated depletion/degradation of
these molecules can result in enhanced TNFR1-induced cell
death in macrophages as is discussed below in detail.

In a cell type-specific manner TNFR2 can also activate the
tyrosine kinase bone marrow kinase on chromosome X (BMX)
and the phosphatidylinositol 3-kinase (PI3K)/protein kinase
B(Akt) pathway (Pan et al., 2002; So and Croft, 2013). The
latter presumably occurs TRAF2-dependent because TRAF2 has
been implicated in Akt activation by various receptors including
TNFR1 and the TNFR2-related TNFRSF receptor CD40 (Davies
et al., 2005; Zhu et al., 2016). In contrast, TNFR2-induced BMX
activation occurs independently from TRAF2 (Pan et al., 2002).
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The molecular mechanisms used by TNFR2 to activate BMX and
PI3K/Akt are, however, poorly investigated and their relevance in
macrophages has not been addressed so far.

In sum, TNFR1 and TNFR2 are differently activated by soluble
and membrane TNF, induce production of their own ligand in
some cells, engage receptor-specific but also common pathways
and the various TNFR1/2-associated signaling pathways are,
last but not least, interconnected by regulatory circuits. TNF
and its receptors therefore constitute a complex signaling
network what is reflected by the fact that additive, synergistic
or even antagonistic effects have been reported for the two
TNF receptor types.

THE TNF-INDUCED CYTOTOXIC
SIGNALING NETWORK IN
MACROPHAGES

The complexity of the TNF-TNFR1-TNFR2 signaling system
is especially relevant in macrophages because this cell type not
only co-expresses TNFR1 and TNFR2 but also produces high
amounts of TNF upon stimulation of a variety of receptors
including all types of PRRs and various members of the TNFRSF.
Of central relevance for the upregulation of TNF is the activation
of the classical NFκB pathway. Macrophage-produced TNF
not only mediates the proinflammatory and cytotoxic activities
of this cell type but also regulates in an autocrine fashion the
viability and activation status of macrophages. Indeed, there
are a variety of examples of pathogen-induced macrophage
cell death that crucially involves TNF (Table 1). An intensively
studied example is killing of human alveolar and monocyte-
derived macrophages by in vitro infection with mycobacteria

TABLE 1 | Pathogen-induced TNF-mediated macrophage killing.

Pathogen TNF-inducing
factor/
mechanisms

Evidence References

Mycobacterium
avium

– Anti-TNF Balcewicz-Sablinska
et al., 1999; Bermudez
et al., 1999

Mycobacterium
tuberculosis

– Anti-TNF Balcewicz-Sablinska
et al., 1998; Rojas
et al., 1999

Mycobacterium
tuberculosis

Mce4 Anti-TNF Saini et al., 2016

Mycobacterium
tuberculosis

PGRS33 > TLR2 Anti-TNF Basu et al., 2007

Helicobacter pylori JHP0290 Anti-TNF Pathak et al., 2013

Salmonella enterica OMP96-induced
cell stress

Anti-TNF Chanana et al., 2006,
2007

Ureaplasma
urealyticum

– Anti-TNF Li Y.H. et al., 2002

– LPS Anti-TNF Xaus et al., 2000

Bacillus
Calmette-Guérin

– TNFR1 KO Rodrigues et al., 2013

Yersinia
pseudotuberculosis

– TNFR1 KO Peterson et al., 2016

(Keane et al., 1997; Balcewicz-Sablinska et al., 1998, 1999;
Bermudez et al., 1999). Interestingly, mycobacteria infection also
results in macrophage production of IL-10 which in turn triggers
TNFR2 shedding resulting in TNF neutralization by soluble
TNFR2 and reduced apoptosis (Balcewicz-Sablinska et al., 1998,
1999). TNF-induced cell death in mycobacteria-infected murine
macrophages and macrophage cell lines has been attributed to
TNFR1-induced caspase-8 activation and concomitant TNFR1-
induced reactive oxygen species (ROS)-mediated activation of
apoptosis signaling kinase-1 (ASK1) which promotes c-Cbl-
mediated ubiquitination and degradation of the short FLIP
isoform (FLIPS) (Bhattacharyya et al., 2003; Kundu et al., 2009).
Worth mentioning Mycobacterium tuberculosis can also trigger
RIPK3/MLKL-mediated cell death by tuberculosis necrotizing
toxin-mediated NAD+ depletion independently from TNF and
RIPK1 signaling (Pajuelo et al., 2018).

TNFR1-DEPENDENT NECROPTOSIS IN
MACROPHAGES

Studies with SMAC mimetics (IAP antagonists) depleting
cIAP1/2 and the cIAP1/2-related XIAP molecule as well as
evaluation of XIAP and cIAP1/2 knockout cells revealed that
these molecules are crucial for the survival of primary murine
bone marrow-derived macrophages (McComb et al., 2012; Wong
et al., 2014). The survival function of XIAP, cIAP1 and cIAP2
in this scenario could be traced back to the suppression of
TNF-induced necroptosis (McComb et al., 2012; Wong et al.,
2014). Studies with murine macrophages genetically deficient for
TNFR1, TNFR2 and TNF together with the use of TNFR1- and
TNFR2-specific agonists and antagonists revealed furthermore
that both TNF receptors cooperate in triggering necroptotic
cell death (Legarda et al., 2016; Siegmund et al., 2016; Lawlor
et al., 2017). While exogenous TNF and/or autocrine TNF
produced in response to TNFR1 and TNFR2 activation deliver
a potential trigger for TNFR1-induced necroptosis, TNFR2
signaling enables realization of the necroptotic potential of
activated TNFR1 by depletion of the cytosolic pool of TRAF2-
cIAP1/2 complexes (Ruspi et al., 2014; Siegmund et al., 2016).
As already mentioned above, some pathogens, e.g., mycobacteria,
trigger IL-10-mediated shedding of TNFR2 to dampen/escape
autocrine TNF killing (Balcewicz-Sablinska et al., 1998, 1999).
The protective effect of TNFR2 shedding has so far mainly
be attributed to the neutralization of TNF by the soluble
TNFR2 ectodomain (Balcewicz-Sablinska et al., 1998, 1999). In
light of the pro-necroptotic activity of TNFR2 in macrophages
identified in recent years, however, it appears plausible that
the protective effect of TNFR2 shedding is also due to the
inhibition of the pro-cell death activities of TNFR2. RIPK1
and RIPK3 trigger execution of necroptotic cell death mainly
by activation of mixed lineage kinase domain-like (MLKL)
protein which forms cell-lytic plasma membrane pores and
stimulation of mitochondrial production of reactive oxygen
species (ROS) (Roca and Ramakrishnan, 2013; Fulda, 2016).
Since ROS can promote TNF mRNA expression in human and
murine macrophages (Gossart et al., 1996; Chandel et al., 2000;
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Kono et al., 2000; Brown et al., 2004), this arm of the
necroptotic response might close a feed forward loop in TNF-
induced necroptosis.

In accordance with the established anti-necroptotic activity
of caspase-8, robust/maximal necroptosis induction by TNF
in macrophages requires caspase-8 inhibition (McComb et al.,
2012; Siegmund et al., 2016). In most studies, the latter has
been achieved artificially by the use of caspase-8 inhibitors
or genetic deletion of the caspase-8 gene. This raises the
question for the physiological/pathophysiological conditions
under which necroptosis occurs. A first pathophysiological
scenario where caspase-8 is limited are tumor cells that evade
from apoptotic surveillance mechanisms by down-regulation
of caspase-8 expression, for example by DNA methylation or
caspase-8 gene deletion (e.g., references Grotzer et al., 2000; Teitz
et al., 2000; Fulda et al., 2001; Shivapurkar et al., 2002; Hopkins-
Donaldson et al., 2003). Necroptosis induction in caspase-8
low tumor types, however, has been poorly investigated so
far. A second scenario where caspase-8 activity is limited and
necroptosis gain relevance is in cells infected by viruses encoding
caspase-8 inhibitory proteins. Several viral inhibitors of caspase-
8 have been identified in recent years and include CrmA from
cowpox virus and the baculovirus-encoded p35 protein (Ray
et al., 1992; Zhou et al., 1997; Xu et al., 2001) but also proteins of
clinically important human viruses. The human cytomegalovirus
(CMV) gene UL36 encodes the viral inhibitor of caspase-8-
induced apoptosis (vICA) protein which is conserved in primates
and rodents and the ribonucleotide reductase R1 subunits of
herpes simplex virus types 1 and 2 also act as caspase-8 inhibitors
(McCormick, 2008; Dufour et al., 2011). Please be aware that
some of these viral proteins not only inhibit caspase-8 but also
other caspases including caspase-1 which is of crucial relevance
for signaling by inflammasomes. The relevance of caspase-8
inhibition and sensitization for necroptosis for the in vivo effects
of these pathogenic factors can therefore be difficult to define.

TNF-INDUCED NECROPTOSIS AND ITS
INTEGRATION IN PRR SIGNALING

In accordance with the fact that PRRs strongly stimulate TNF
production by macrophages, it has been described that induction
of TNF and TNFR2-mediated TRAF2 depletion contribute to
macrophage necroptosis induced by certain TLRs, including
TLR4 and TLR3 (Kaiser et al., 2013; Legarda et al., 2016;
Siegmund et al., 2016; Lawlor et al., 2017). TNF-independent
necroptosis induction by TLR4 and by TLR3, however, has
also been described (He et al., 2011; McComb et al., 2014).
The varying relevance of autocrine TNF production for TLR4-
induced necroptosis presumably reflects the use of different
doses of the TLR4 agonist lipopolysaccharide (LPS) in the
cited studies. Indeed, it has been described that high doses
of LPS directly activate necroptotic signaling so that the
effect/contribution of autocrine TNF-induced necroptosis is
masked (Legarda et al., 2016). Studies with XIAP-deficient
bone marrow progenitor cell-derived dendritic cells revealed
an unexpected inhibitory role of XIAP on TNF signaling

(Yabal et al., 2014) which was later on confirmed in murine
bone marrow-derived macrophages (Lawlor et al., 2015, 2017).
It turned out that LPS-stimulated XIAP-deficient macrophages,
despite unchanged TNF production, elicit an enhanced cell
death response, inflammasome activation and IL-1β secretion
in a TNF-dependent manner (Yabal et al., 2014). Worth
mentioning XIAP-deficiency showed no effect on TNF-induced
activation of the classical NFκB pathway, p38 MAPK activation
and TNFR1 signaling complex formation (Yabal et al., 2014).
Thus, XIAP might preferentially affect TNF-related activities in
macrophages that require RIPK3. Indeed, TNF-induced IL-1β

secretion, caspase-8 activation and cell death induction were
blocked in dendritic cells derived of XIAP/RIPK3 DKO mice
(Yabal et al., 2014).

Lipopolysaccharide-induced TLR4 signaling has not only the
potential to trigger necroptosis via induction of endogenous TNF
but also adjusts the necroptotic sensitivity of macrophages for
TNF in a complex manner (Figure 4). On the one side, TLR4
induces type I interferons which have various pro-necroptotic
effects as is discussed below in detail. One the other side,
TLR4 activates caspase-8 in a TNF-independent manner and
promotes so the “inactivating” cleavage of the deubiquitinase
Cyld (Legarda et al., 2016; Figure 4). Cyld removes K63-linked
polyubiquitin chains from RIPK1 and interferes so in context of
TNFR1 signaling with the recruitment and survival functions of
the TAB2-TAK1 and IKK complexes. The LPS-induced caspase-
8-mediated degradation of Cyld thus desensitizes macrophages
for necroptosis. TLR4-induced caspase-8 activation requires
the TLR4-RIPK1 linking adapter protein Toll/interleukin-1
receptor domain-containing adaptor protein inducing interferon
(TRIF) and is dependent on RIPK1 and FADD (Weng et al.,
2014; Legarda et al., 2016; Peterson et al., 2016). Caspase-8
activation by TLR4 thereby closely resembles the mechanisms
of TNFR1-induced TRADD-RIPK1-mediated stimulation of the
FADD-caspase-8 dyad.

Studies with human-induced pluripotent stem cells (hiPSCs)
showed that differentiated RIPK1-deficient macrophages
progressively undergo autocrine TNF-dependent cell death
(Buchrieser et al., 2018). Thus, RIPK1 can also elicit anti-
necroptotic activity in context of TNF signaling in macrophages.
However, the cues defining the net quality of RIPK1 effects in
macrophages are elusive. Noteworthy, addition of exogenous
soluble TNF not further enhanced endogenous-TNF dependent
cell death of RIPK1 KO hiPSCs while LPS- and poly(I:C)-induced
TNF-independent necroptosis was enhanced (Buchrieser et al.,
2018). Since soluble TNF poorly stimulate TNFR2, it is tempting
to speculate that TNFR2-mediated cell death sensitization is the
limiting step in TNF-induced cell death in this model.

COOPERATION OF TNF AND TYPE I
INTERFERONS IN NECROPTOTIC
SIGNALING IN MACROPHAGES

Besides the classical NFκB pathway, the type I interferon pathway
is a second major signaling pathway which is regularly engaged
by PRRs (Figure 5). The central elements of the type I interferon
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FIGURE 4 | The cytotoxic TLR-TNF signaling network. TNF expression is strongly upregulated by PRRs such as TLR3 and TLR4 via the classical NFκB pathway.
TNF via the two TNF receptors can then cooperate with TLR3/4-TRIF-RIPK1 axis to trigger apoptosis or necroptosis. For details see text. Please note, necroptosis
only takes place when caspase-8 activity is limited, e.g., by viral caspase-8 inhibitors.

pathway are the kinases TANK-binding kinase 1 (TBK1) and
inhibitor of kappaB kinase ε (IKKε) which phosphorylate and
activate the interferon-β gene inducing transcription factor
interferon regulatory factor 3 (IRF3). In context of TLR3 and
TLR4 signaling the adapter proteins TRIF and TRAF3 mediate
activation of TBK1/IKKε and IRF3. Together with the in parallel
activated classical NFκB pathway, the type I interferon pathway
stimulates the production of the type I interferons (Ikushima
et al., 2013). Thus, TNF and type I interferons are co-produced
by pathogen challenged macrophages. Similarly to TNF, type
I interferons not only act as effector molecules of activated
macrophages but also retroact on the macrophages. Moreover,
there is growing evidence that TNF and type I interferons
cooperated in the control of macrophage viability (Figure 4).
So it has been found that TNF/ZVAD- and LPS/ZVAD-
induced necroptosis are blocked in macrophages derived of
Interferon-α/β receptor alpha chain (IFNAR1) knockout mice

(McComb et al., 2014; Legarda et al., 2016). The compromised
necroptosis sensitivity correlated with reduced expression of
the “pro-necroptotic” proteins TNFR2 and MLKL (Legarda
et al., 2016). Reconstitution experiments revealed, however, that
reexpression of TNFR2 and MLKL alone is not sufficient to
restore necroptotic sensitivity for LPS pointing to additional
type I interferon targets which are of relevance in necroptotic
signaling. Indeed, there is evidence that TRIF-dependent induced
type I interferons also promote the expression of Z-DNA binding
protein-1 (Zbp1) and gasdermin D (GSDMD), which after
cleavage can also cause lytic cell death (see below), via KAT2B-
and p300-mediated histone 3 acetylation at lysine 27 (Li et al.,
2018). Moreover, it has been shown that interferon-β activates
protein kinase R (PKR) and promotes so its interaction with
RIPK1 to trigger RIPK1/RIPK3-mediated necroptotic cell death
(Thapa et al., 2013). The relevance of this mechanism for TNF-
induced IFNAR1-dependent necroptosis in murine macrophages
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FIGURE 5 | The role of type I interferons in the cytotoxic TLR-TNF signaling network. TNF via the classical NFκB pathway induces IRF1 which in turn stimulates in
cooperation with the classical NFκB pathway the expression of low amounts of IFNβ. The latter boosts its own expression by autocrine signaling but also the
expression of pro-necroptotic proteins, such as TNFR2 and MLKL. PRRs, e.g., TLR4, often co-induce TNF and IFNβ expression. Thus, cytotoxic signaling by PRRs,
IFNβ, and TNF are interconnected in various ways in macrophages by feed forward loops. Please be aware, for simplicity functional relevant phosphorylation and
ubiquitination events are not included. For more details see text.

is, however, unclear. Last but not least, it has been found
in caspase-8-inhibited macrophages that LPS initially induces
TRIF-mediated type I interferon production which then trigger
via the interferon-stimulated gene factor-3 (ISGF3) complex
sustained RIPK3 phosphorylation and necroptosis by a yet poorly
understood mechanism independent from PKR (McComb et al.,
2014; Saleh et al., 2017).

Noteworthy, there is not only evidence that type I interferons
contribute to TNF-induced necroptosis but vice versa also that
TNF- and/or necroptosis-associated signaling contribute to the
induction of type I interferons. TNF induces in macrophages
not only NFκB-regulated genes but also, with delay, typical
signal transducer and activator of transcription-1 (STAT1)-
and interferon response proteins such as MX1, IRF7 and
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STAT1 itself (Yarilina et al., 2008). The stimulation of the
transcription of the latter proteins is due to an indirect
mechanism involving NFκB-mediated upregulation of IRF1
via both TNF receptors and subsequent induction of low
concentrations of IFNβ by the joint action of IRF1 and NFκB
transcriptions factors (Yarilina et al., 2008). TNF and TNF-
induced IFNβ cooperate then in the sustained and strong
expression of NFκB/STAT co-regulated inflammatory factors
such as CCL5, CXCL10 and CXCL11 and also maintain IFNβ

expression (Yarilina et al., 2008). Whether TNF-induced IFNβ

production is of relevance for TLR4-triggered necroptosis
appears, however, unlikely as the TLR4-TRIF-IRF3 axis is
already sufficient to mount a strong type I interferon response.
There is, however, evidence from studies with LPS/ZVAD-
treated macrophages that TBK1, IKKε, RIPK1 and RIPK3 form
a high molecular weight complex which via RIPK3 promote
TBK1/IKKε signaling (Saleh et al., 2017). Thus, TNF-induced
RIPK1/RIPK3 activation in course of necroptotic signaling might
have the potential to boost IFNβ production but this has not
been evaluated yet.

TNF AND CASPASE-8-MEDIATED
INFLAMMASOME ACTIVATION AND
PYROPTOSIS

Besides apoptosis and necroptosis, pyroptosis is a third
form of programmed cell death which is of particular
relevance in macrophages (Man et al., 2017). Pyroptosis is
a strongly proinflammatory form of lytic cell death which
is triggered downstream of inflammasome complexes by
caspase-1 mediated cleavage of gasdermin D (GSDMD). The
N-terminal p30 cleavage product of GSDMD forms then
large pores in the plasma membrane and executes so cell
lysis (Man et al., 2017). Inflammasome-triggered pyroptosis
of macrophages and intestinal epithelial cells is of special
relevance for combating infection by intracellular bacteria
(Frank and Vince, 2019). Recent studies showed that Yersinia
bacteria by help of their TAK1 inhibitory acetyltransferease
YopJ triggers RIPK1-mediated activation of caspase-8 (Orning
et al., 2018; Sarhan et al., 2018). Interestingly, this not
only results in effector caspase activation and apoptosis
but also in caspase-8-mediated, thus non-canonical GSDMD
cleavage, GSDMD-mediated NLRP3 inflammasome activation
and pyroptosis (Orning et al., 2018; Sarhan et al., 2018). In
one of these reports, it has been furthermore shown that
cell death induction and IL-1β production by a mixture of
pharmacological TAK1 inhibitors and TNF are reduced in
GSDMD-deficient murine macrophages (Orning et al., 2018).
Moreover, Yersinia-induced cell death was reduced in murine
macrophages deficient for TLR4, TRIF or TNFR1 (Orning
et al., 2018). Thus, under appropriate conditions TNF may
also trigger GSDMD-dependent non-canonical inflammasome
activation and pyroptosis, too (Figure 5). GSDMD is presumably
directly cleaved by caspase-8 in these scenarios because TAK1
inhibition/LPS-induced generation of the pore forming p30
GSDMD fragment occurred in caspase-3/-7 double-deficient

macrophages and GSDMD coimmunoprecipitated furthermore
with caspase-8 (Orning et al., 2018; Sarhan et al., 2018). The
mechanisms described are presumably of broader relevance as
various other pathogenic bacteria and viruses, e.g., enteroviruses,
pseudomonas and vibrio also utilize TAK1 inhibitory proteins
(Zhou et al., 2013; Lei et al., 2014; He et al., 2017; Rui et al., 2017).
RIPK1-mediated caspase-8 activation is inhibited by cIAPs (see
above). Since Yersinia, LPS and TNF trigger cIAP depletion via
the TLR4-TRIF pathway and the TNFR2-TRAF2 axis, it appears
possible that cIAP depletion contributes to the pyroptotic RIPK1-
caspase-8-GSDMD signaling branch but this issue has not been
experimentally addressed yet.

Most pathogens activate in macrophages several types
of inflammasome complexes. Yersinia pestis for example
not only activates the NLRP3 inflammasome but also the
pyrin inflammasome (Philip and Brodsky, 2012; Jamilloux
et al., 2018). The sensor protein pyrin detects Rho GTPases
molecule species which are inhibited by bacterial toxins and
forms then an inflammasome with ASC and procaspase-
1 (Jamilloux et al., 2018). TNF and various other PPR-
induced cytokines, including type I interferons, stimulate the
expression of pyrin in macrophages (Centola et al., 2000).
Thus, the TNF triggered pyroptotic RIPK1-caspase-8-GSDMD
signaling axis might further cooperate with TNF/interferon-
induced pyrin expression and enhanced pyrin inflammasome
activity to promote macrophage pyroptosis (Figure 5). Indeed,
a contribution of TNF-induced pyrin expression to pyrin
inflammasome activation, IL-1β production and pyroptosis
induction has been recently demonstrated for clostridium difficile
toxin B (Sharma et al., 2019).

Just recently two studies demonstrated that intrinsic, thus
mitochondria-dependent apoptosis in bone marrow-derived
macrophages is accompanied by activation of the NLPR3
inflammasome and IL-1β activation (Chauhan et al., 2018; Vince
et al., 2018). Noteworthy, the latter was not only due to activation
of the NLRP3 inflammasome but has also been traced back
to inflammasome-independent IL-1β processing by caspase-8.
In context of intrinsic apoptosis caspase-8 is directly activated
by processing by effector caspases and indirectly by cIAP1/2
depletion and subsequent RIPK1 kinase activation. Caspase-8-
activation and cIAP1/2 depletion can also be triggered by TNFR1
(or other death receptors) and TNFR2. It is thus well conceivable
that TNF triggers this unusual proinflammatory mode of
apoptosis, especially under circumstances where TNFR1-induced
caspase-8 is insufficiently blocked. Future studies have to
show whether the proinflammatory activities of caspase-8
(GSDMD cleavage, IL-1β processing) gain relevance for the
biology and pathophysiology of TNF in vivo. Noteworthy, the
pyroptotic GSDMD p30 fragment is able to trigger mitochondrial
ROS production (Platnich et al., 2018) and the ROS in
turn are established inducers of the NLRP3 inflammasome
(Tschopp and Schroder, 2010) and, as mentioned before, of
TNF expression (Gossart et al., 1996; Chandel et al., 2000;
Kono et al., 2000; Brown et al., 2004). Thus, the GSDMD
p30-ROS axis might auto-amplify p30 production by two
feed forward loops, first by NLRP3 inflammasome activation
and second by TNF-induced caspase-8 activation. TNF itself
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is furthermore able to trigger mitochondrial production of
ROS in macrophages and thus might further enhance these
feed forward loops.

CONCLUSION AND PERSPECTIVE

There are a considerable number of high quality publications
addressing the role of TNF in the life death balance of
macrophages. In sum, these studies show that the effect of TNF
on macrophage viability not only depends on the integrated
and complex activity of the TNFR1-TNFR2 signaling network
but also from its crosstalk with other, equally complex signaling
systems engaged by PRR-, inflammasomes and interferons. It
is thus not really surprising that the precise net-effects of TNF
on macrophages in infection diseases and cancer are still poorly
predictable. Indeed, it is not even clear whether and if yes
to which extend, the reported effects of TNF on macrophages
are generalizable to all types of macrophages. Likewise, it is
unclear under which in vivo conditions which of the various
individual TNF-related signaling mechanisms gain dominance.
Thus, future studies must show whether there are key factors

that determine the quality of TNF signaling on macrophage
viability. It appears particularly important to learn more about
the crosstalk of concomitantly occurring signaling paths engaged
by TNF and other inducers of macrophage cell death. Last
but not least, it will be important for the understanding of
the role of TNF for macrophage biology to learn more about
the systemic immunological net-effects triggered by timely
limited “immunogenic” death versus persistent inflammatory
activation of macrophages.
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