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An intricate network of molecular and cellular actors orchestrates the delicate balance

between effector immune responses and immune tolerance. The pleiotropic cytokine

tumor necrosis factor-alpha (TNF) proves as a pivotal protagonist promoting but also

suppressing immune responses. These opposite actions are accomplished through

specialist cell types responding to TNF via TNF receptors TNFR1 and TNFR2. Recent

findings highlight the importance of TNFR2 as a key regulator of activated natural

FoxP3+ regulatory T cells (Tregs) in inflammatory conditions, such as acute graft-vs.-host

disease (GvHD) and the tumor microenvironment. Here we review recent advances in

our understanding of TNFR2 signaling in T cells and discuss how these can reconcile

seemingly conflicting observations when manipulating TNF and TNFRs. As TNFR2

emerges as a new and attractive target we furthermore pinpoint strategies and potential

pitfalls for therapeutic targeting of TNFR2 for cancer treatment and immune tolerance

after allogeneic hematopoietic cell transplantation.

Keywords: GVHD, graft vs. host disease, cancer, Tregs (regulatory T cells), TNFR family costimulatory receptors,

TNFR2 agonists, TNFR2 antagonism

INTRODUCTION

Tumor necrosis factor-alpha (TNF) regulates innate as well as adaptive immune processes
and controls tissue homeostasis in various ways. TNF reached prominence as a prototypic
proinflammatory cytokine, however, more recently, the TNF-TNF receptor system gained attention
for its immunomodulatory and even anti-inflammatory functions. Here, we review important
activities of TNF and its receptors crucial for T cell and Treg function under pathologic conditions
such as acute graft-vs.-host disease (GvHD). The implications of the molecular basis of TNF
receptor signaling are then discussed for the rational development of therapeutic TNFR-receptor-
targeting reagents for clinical applications.

GENERAL ASPECTS OF TNFR1 AND TNFR2 SIGNALING

TNF is a single spanning type II transmembrane protein and the name giving member of the TNF
superfamily (TNFSF) (1). TNF and the other ligands of the TNFSF share a conserved C-terminal
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homology domain, the TNF homology domain (THD), which
mediates self-assembly into trimeric molecules and receptor
binding. A short stalk region connects the THD of TNF with
the transmembrane and the cytoplasmic domain. Membrane
TNF (memTNF) can be cleaved in its stalk region by the
metalloprotease TNFα converting enzyme (TACE, ADAM17)
resulting in the release of trimeric soluble TNF (sTNF) (2).
Both forms of TNF are able to bind to two receptors, TNF
receptor-1 (TNFR1) and TNFR2, which belong to the TNF
receptor superfamily (TNFRSF). A trimeric TNF molecule
interacts with three molecules of either TNFR1 or TNFR2 (3).
Importantly, memTNF activates both TNF receptors, while only
TNFR1 responds strongly to sTNF (Figure 1) (4). Triggering
of TNFR2-associated signaling pathways requires secondary
clustering of initially formed trimeric TNF-TNFR2 complexes.
This occurs spontaneously for memTNF-induced TNF-TNFR2
complexes but not sTNF-liganded TNFR2 complexes (Figure 1)
(5). Lymphotoxin-alpha (LTα), another soluble ligand trimer of
the TNFSF, also interacts with the two TNF receptors triggering
similar effects as sTNF.

TNFR1 and TNFR2 can be assigned to two different
subgroups of the TNFRSF. TNFR1 belongs to the TNFRSF
death receptor subgroup. Death receptors are characterized by
a cytoplasmic protein-protein interaction domain called death
domain (DD), which enables these receptors to trigger cytotoxic

FIGURE 1 | TNFR2 can modulate TNFR1 signaling. TNFR1, activated by soluble TNF (sTNF) or membrane TNF (memTNF), recruits TRAF2 adapter protein trimers

enabling transactivation of the TRAF2-associated E3 ligases cIAP1 and cIAP2 and activation of the classical NFκB pathway but also other proinflammatory signaling

pathways not indicated here (Left). In addition, in TNFR1 signaling the TRAF2-cIAP1/2 complexes inhibit triggering of cell death by K63 ubiquitination of RIP (Left).

TNFR2 activation by memTNF recruits TRAF2-cIAP1/2 complexes, too, and triggers classical NFκB signaling (Right). Due to the higher expression levels of TNFR2

and its ability to trigger TRAF2 degradation, however, TNFR2 activation can result in a substantial depletion of cytosolic TRAF2-cIAP1/2 complexes (Right). This

entails enhanced alternative NFκB signaling and sensitizes for TNFR1-induced death signaling. For details see text.

signaling (1). TNFR2, on the other side, is a representative
of the TNF receptor associated factor (TRAF)-interacting
receptor subgroup of the TNFRSF. Therefore, TNFR2 lacks a
death domain and instead directly interacts with TRAF family
members, which form homo- or heterotrimers (6). Although
TNFR1 can trigger apoptotic and necroptotic signaling via
its DD, these cytotoxic activities are not prevalent. They are
typically inhibited by Fas-associated death domain (FADD)-
like IL-1β-converting enzyme-inhibitory proteins (FLIPs)
and/or complexes of a TRAF2 trimer and a single cellular
inhibitor of apoptosis-1 (cIAP1) or cIAP2 E3 ligase molecule
(7, 8). Accordingly, TNFR1 stimulation results primarily in
the engagement of cell death-independent proinflammatory
pathways activating NFκB transcription factors and MAP
kinases. Notably, TRAF2 and the cIAPs not only antagonize
cytotoxic TNFR1 signaling but also contribute to TNFR1-
induced proinflammatory signaling (9). The TRAF2-cIAP1 and
TRAF2-cIAP2 complexes are indirectly recruited to trimeric
TNF-TNFR1 complexes by the DD-containing adapter protein
TNF receptor associated death domain (TRADD). In context of
the TNFR1 signaling complex, the TRAF2-cIAP1/2 complexes
K63-ubiquitinate the DD-containing serine/threonine kinase
receptor interacting protein (RIP), which is recruited via
its DD to the DD of TNFR1 independently from TRADD.
K63-ubiquitinated TNFR1-bound RIP creates docking sites
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for the linear ubiquitin chain assembly complex (LUBAC)
and for various K63 or linear ubiquitin binding-domain
containing signaling intermediates, such as the NFκB essential
modulator (NEMO) subunit of the inhibitor of kappaB kinase
(IKK) complex and the TGF-beta activated kinase-1 (TAK1)
binding protein-2 (TAB2) subunit of the IKK-activating
TAB2-TAK1 complex (7, 9). Thus, K63-ubiquitination of
RIP strongly enhances the TRAF2-dependent ability of the
TNFR1-TRADD-TRAF2-cIAP1/2 core complex to recruit the
IKK complex and the TAB2-TAK1 complex. This leads to
IKK-mediated phosphorylation of the inhibitor of kappaB-
alpha (IκBα), its proteasomal degradation and the subsequent
nuclear translocation of previously IκBα-sequestered dimers
of the NFκB transcription factor family. Furthermore, K63-
ubiquitination of TNFR1-associated RIP antagonizes the
ability of the latter to trigger apoptosis and necroptosis.
The initiation of these cell death responses is based on the
release of RIP from the TNFR1 signaling complex and its
subsequent interactions with caspase-8 and/or RIP3 in cytosolic
complexes (7, 8). TNFR1-induced RIP-mediated caspase-8
activation results in apoptosis, while the interplay of RIP
with RIP3 may stimulate necroptosis. Since caspase-8 actively
suppresses necroptotic signaling, e.g., by cleavage of RIP and
RIP3, TNF-induced necroptotic signaling typically becomes
only relevant in cells with a compromised ability to activate
caspase-8 (7, 8).

Interestingly, TNFR2 recruits very efficiently TRAF2-cIAP1/2
complexes (Figure 1). Indeed, TRAF2 and the cIAPs were
originally identified as TNFR2 signaling components (10, 11)
and are relevant for TNFR2-induced classical NFκB signaling,
too. Since TNFR2 is typically much higher expressed as TNFR1,
recruitment of TRAF2-cIAP1/2 complexes to TNFR2, but not
to TNFR1, reduces the freely available cytoplasmic pool of these
molecules (Figure 1) (12).Moreover, TNFR2-mediated depletion
of cytosolic TRAF2-cIAP1/2 complexes can be enhanced
by TNFR2-stimulated TRAF2 proteolysis. Since the cytosolic
TRAF2-cIAP1/2 complexes contribute to constitutive MAP3K
NFκB inducing kinase (NIK) degradation, sequestration, and
degradation of TRAF2-cIAP1/2 complexes by TNFR2 result
in NIK accumulation. NIK has a high basal activity and,
therefore, NIK accumulation already triggers phosphorylation
of NIK substrates. NIK’s best investigated substrate is the
p100 precursor protein of the p52 NFκB transcription factor
subunit. NIK-mediated p100 phosphorylation promotes limited
proteolysis to p52. This triggers the conversion of cytoplasmic
p100-containing NFκB dimers to p52-containing dimers, which
can translocate into the nucleus. In contrast to TNFR1,
TNFR2 can therefore not only stimulate nuclear translocation
of NFκB dimers by the IKK complex-dependent classical
pathway but also by an alternative pathway based on IKK
complex-independent p100 processing (5). TNFR2-mediated
sequestration/degradation of TRAF2 complexes not only affects
the inhibitory effect of the TRAF2-cIAP1/2 complexes on the
alternative NFκB pathway but also limits their availability
for TNFR1 (Figure 1). Consequently, TNFR2 activation can
attenuate TNFR1-induced classical NFκB signaling and sensitize
cells for TNFR1-induced cytotoxicity (12–19).

EXPRESSION OF TNF AND ITS
RECEPTORS TNFR1 AND TNFR2

TNF is mainly produced by immune cells, e.g., monocytes,
macrophages, and T- and B-cells (20). Non-immune cells, such as
keratinocytes, astrocytes, endothelial, and epithelial cells but also
cancer cells can also express TNF (20). TNF production is highly
inducible (up to 10.000 fold). Members of the NFAT-, NFκB-,
and basic region-leucine zipper transcription factor families
control TNF production on the transcriptional level and ERK1/2,
p38MAPK and JNK signaling at the posttranscriptional level
by modulation of mRNA stability and translation efficacy (20,
21). As TNF activates the MAP kinase signaling cascades and
transcription factors of the NFκB family, TNF can induce its own
transcription via both types of TNF receptors (16, 22–28). While
TNFR1 is expressed in almost any cell type, TNFR2 expression
is limited to myeloid cells, T- and B-cells and endothelial cells
(29, 30). Although, sometimes several thousand molecules can
be detected, TNFR1 expression levels are typically below 1,000
molecules per cell, especially in T cells (Table 1), limiting its
detection with flow cytometry. Thus, lack of flow cytometric
TNFR1 detection does not exclude functionally relevant TNFR1
molecule numbers. TNFR2 expression varies more and can reach
≥105 molecules per cell in tumor cell lines (40).

TNF AND ITS RECEPTORS IN T CELL
BIOLOGY

After its molecular cloning, TNFR2 was discovered to promote
proliferation of thymocytes and peripheral T cells (41, 42).

TABLE 1 | TNFR1 and TNFR2 expression in primary cells.

Cell type TNF binding sites per cell References

Total TNFR1 TNFR2

Human umbilical

cord vein (HUVEC)

cells

1,500 n.d. n.d. (31)

Human

SACa-activated

B-cells

6,000 n.d. n.d. (32)

Human neutrophils 3,000 n.d. n.d. (33)

Human neutrophils 6,000 n.d. n.d (34)

Peripheral T cells,

healthy subjects

130/140 n.d. n.d. (35–37)

Peripheral T cells,

MS patients

950/840 n.d. n.d. (35, 36)

Peripheral T cells,

myasthenic

patients

660 n.d. n.d. (37)

OKT3/IL2

activated T cells

600 n.d. n.d. (38)

PHA activated

PBMCs

5,600 10–20% 80–90% (39)

aStaphylococcus aureus Cowan strain I.
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Subsequently, TNFR2 was recognized as a costimulator of naive
CD8+ T cells in vitro and in vivo (43–46). Accordingly, TNFR2-
mediated T cell costimulation is impaired in patients suffering
from common variable immunodeficiency (47). At the molecular
level, the costimulatory activity of TNFR2 has been associated
with an increased expression of survival proteins such as survivin
and Bcl-2 (44). However, the role of TNFR2 in CD8+ T cell
regulation is presumably more complex, context-dependent,
and goes beyond sole improvement of CD8+ viability. For
example, in mice infected with respiratory influenza virus or
acute lymphocytic choriomeningitis virus TNFR2 contributes to
the contraction of the antigen-specific CD8+ T cell population
(48, 49). In accordance with the counterintuitive proapoptotic
TNFR2 activity in these models, TNFR2 deficient CD8+ T
cells were less sensitive for TNFR1-dependent cell death and
activation induced cell death in vitro (50, 51). As discussed above,
TNFR2 can sensitize cells for TNFR1-induced cell death by
depletion/degradation of protective TRAF2-cIAP/2 complexes
but also activates the alternative and classical NFκB pathways,
which upregulate antiapoptotic proteins and proliferation
promoting factors. Thus, it is tempting to speculate that the
balance of these two effects determines the outcome of TNFR2
activation in CD8+ T cells. Particularly, in situations where
CD8+ T cells are protected TRAF2-cIAP1/2-independently from
TNFR1-induced killing, the proliferation promoting effects of
TNFR2 might dominate.

THE RELEVANCE OF TNF AND ITS
RECEPTORS FOR TREG BIOLOGY AND
TREG FUNCTION

Early on, it had been reported that administration of soluble
TNF to neonatal non-obese diabetic (NOD) mice enhanced
diabetes onset while reducing CD4+CD25+ T cell numbers
in thymus and spleen. Treatment with anti-TNF antibodies
resulted in opposite effects (52). Moreover, T cell transfer
experiments of CD4+CD25+ T cells from TNF-treated neonatal
mice displayed diminished inhibitory activity (52). Again in the
NOD model, TNF inhibited Tregs via TNFR1 (53). Accordingly,
TNF contained in the synovial fluids of rheumatoid arthritis (RA)
patients was reported to impair Treg function by upregulation
of protein phosphatase 1 and dephosphorylation of Foxp3 (54).
Notably, the latter was restored in RA patients treated with the
TNF neutralizing antibody Infliximab (54). Already earlier and in
accordance with a Treg inhibitory effect of TNF, several reports
showed a moderate but significant increase in Treg frequency
in the peripheral blood of RA patients treated with the TNF
neutralizing antibodies Adalimumab and Infliximab (55–57).
Furthermore, exogenous soluble TNF inhibited the suppressive
activity of Tregs derived from HBV patients (58). Likewise, TNF
alone, or in combination with IL6, inhibited the suppressive
activity of Tregs isolated from naïve mice in vitro (59).

However, by 2007 Chen et al. not only showed that TNFR2
is highly expressed on murine and human Tregs but also that
TNFR2 supports Treg proliferation and maintenance of their
suppressive activity (60–64). Indeed, TNFR2+ expression marks

TABLE 2 | In vivo evidence for TNFR2-dependent Treg functions.

Model Method Effect References

TNFR2 KO

mice

Cecal ligation and

puncture

Reduced Treg

expansion

(60)

TNFR2 KO

nTregs

T cell transfer induced

colitis

Loss of suppressive

Treg activity

(65)

TNFR2 KO EAE Reduced Treg numbers

and exacerbated

disease

(66)

TNFR2 KO

Tregs of EAE

mice

Transfer in EAE mice Loss of EAE inhibitory

activity

(66)

TNFR2 KO

bone marrow

reconstitution

B16F10 metastasis Reduced tumor Tregs

and metastasis

(67)

TNFR2 KO

mice

Friend virus-induced

Vß5+ Treg expansion

Loss Vß5+ Treg

expansion

(68)

Wt mice TNFR2 agonist Vß5+ Treg expansion (68)

Wt mice TNFR2 agonist Treg expansion (69)

Wt mice TNFR2 agonist priming Treg expansion and

protection from GvHD

(69)

TNFR2 KO

Tregs

Treg transfer-mediated

GvHD protection

Loss of GvHD

protection

(70)

Wt Tregs TNFR2 blocking

antibody in Treg

transfer-mediated

GvHD protection

Loss of GvHD

protection

(70)

Wt mice TNFR2 agonist in

collagen induced

arthritis

Increased Treg number

and reduced disease

score

(71)

Wt and TNFR2

KO mice

TNFR2 agonist Treg expansion in naïve

mice

(72)

the most suppressive subset of Tregs (63). Consequently, various
animal models, including models of inflammatory diseases and
cancer, confirmed the relevance of TNFR2 for Treg proliferation
and Treg activity (Table 2).

Noteworthy, adoptive transfer experiments with antigen-
specific Teffs and Tregs revealed that effector T cells promote
the expansion of sub-optimally proliferating antigen-stimulated
Tregs in a TNF-dependent manner (62, 73). Similarly, Vβ5+

Tregs, recognizing mouse mammary tumor virus encoded
superantigen, expand after Friend virus infection due to TNFR2
activation by CD8+ expressed membrane TNF (68). Thus, the
capability of T cell expressed TNF to promote Treg proliferation
and activation via TNFR2 may represent a negative feedback
mechanism to terminate inflammation.

The seemingly conflicting data on the proliferation and
activity of Tregs via targeting TNF or TNFR2 might be related
to two obvious scenarios:

First, neutralization of TNF might inhibit without
discrimination detrimental and beneficial effects of TNF on
Tregs that separates with the two TNF receptors (Figure 2).
Evidence supports TNFR1 mediated negative effects on Tregs.
TNFR1 deficiency increased Treg activity (53) and Tregs
deficient for FLIP, a major inhibitor of TNF-induced apoptosis,
have extremely low Treg numbers and develop a scurfy-like
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FIGURE 2 | TNF and its receptors for Treg biology and Treg function. (A) Soluble TNF (sTNF) can impair the maintenance and function of thymic derived naturally

occurring Tregs (nTregs) via TNFR1. In contrast, stimulation of TNFR2 expands and fosters the function of nTregs. (B) Notably nTregs and induced Tregs (iTregs)

respond differently to TNF. Triggering of TNFR2 in iTregs diminishes their stability and function. (C) The seemingly contradictory results obtained with anti-TNF

biologicals that are in current clinical use such as antibodies, antibody-fusion proteins, or Fab’ fragments can be ascribed to the different effects of TNF on the two

receptors TNFR1 and TNFR2. Consequently, neutralizing TNF and not directly targeting its receptors can result in complex scenarios by exerting detrimental and

beneficial effects on Tregs, dependent on which receptor is being engaged and whether nTregs or iTregs, or both, are implicated.

phenotype (74). Notably, TNFR2 markedly improves myeloid
derived suppressor cell survival via FLIP upregulation (75).
Opposing effects of the two TNF receptors have also been
reported regarding the suppressive effect of Tregs on effector T
cell proliferation in vitro (76). While TNFR1 deficiency in Tregs
resulted in enhanced suppressive activity, TNFR2 deficient Tregs
almost completely lost their suppressive potential.

Another factor contributing to the seemingly inconsistency
in the available literature on the role of TNF in Treg biology is
that nTregs and iTregs respond differently to TNF (Figure 2).
Indeed, TNF neutralization in an EAE model increased Treg
levels due to the reversal of an inhibitory effect of TNF on
TGFß-induced iTreg differentiation (77), while nTregs remained
unaffected. Noteworthy, TNF inhibited iTreg differentiation also
via TNFR2 (77). Accordingly, restoration of Treg function in
RA patients treated with Infliximab has been traced back to an
emerging and unusual CD62L− Treg population that after TNF
blockade differentiates via TGFβ from CD4+CD25− cells of RA
patients but not of healthy individuals (78).

TNFR2 SIGNALING IN
REGULATORY T CELLS

Already in 2002, high TNFR2 expression was reported on human
CD4+CD25+ thymocytes, which showed T cell suppressive
activity after polyclonal expansion (79). The first reports
demonstrating the importance of TNFR2 for Treg functions,
however, were published only 5–6 years later (60, 61, 80).
Although regulation of Tregs has meanwhile become the most
intensively studied in vivo activity of TNFR2, limited knowledge
exists about the molecular mode of action in Tregs. Based
on what is known about TNFR2 signaling in other cell types,
without claim of completeness, three possible mechanisms
appear plausible:

First, TNFR2-induced activation of NFκB transcription
factors (Figure 3). Activation of the classical and alternative
NFκB pathway by TNFR2 has been demonstrated in a variety
of cell types and these pathways are also stimulated by the
TNFR2-related TNFRSF receptors CD27, OX40, and GITR, all
been implicated in Treg development or survival. Therefore, it
is tempting to speculate that TNFR2-induced NFκB signaling
is also involved in the control of Treg expansion/activity. In
fact, the NFκB subunit cRel, with its well-established role in
thymic Treg development and which has also been implicated
in iTreg generation (81) has just recently been identified, along
with p65 (RelA), as a crucial factor for the maintenance and
functionality of mature nTregs and iTregs (82, 83). Activation
of cRel- and p65-containing NFκB dimers is typically triggered
by the classical NFκB pathway. Despite normal or slightly
increased Treg numbers in spleen and lymph nodes, mice
with cRel or p65 deficient Foxp3+ Tregs showed mild (cRel
deficient Tregs) or significant but slowly progressing (p65
deficient Tregs) lymphoproliferative disease (83). This points to
a role of cRel and p65 for the suppressive activity of Tregs.
Indeed, in contrast to wild type Tregs, Tregs lacking cRel or
p65 were unable to rescue mice from T cell transfer-induced
colitis (83). Mice double deficient for p65 and cRel in Tregs
succumbed early to a scurfy-like (Foxp3 defective) phenotype
(83). Although, cRel deficiency did not impair iTreg formation,
cRel is also here relevant, because absence of cRel and p65
in CD4+ T cells impaired iTreg induction (83, 84). Tregs can
also be categorized in two distinct functional subsets, resting
Tregs (rTregs) in lymphoid tissue, and activated Tregs (aTreg)
with reduced Foxo1 expression, migrating to inflamed tissues
including cancer (85). Now, cRel but not p65 turned out as
important for aTreg differentiation and tumor development (82).
Inducible p100 processing, which results in the conversion of
p100-RelB complexes to a p52-RelB NFκB dimers (Figure 3),
is the central step in the alternative NFκB pathway. Mice
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FIGURE 3 | Model of TNFR2-mediated regulation of NFκB transcriptions factors in Tregs. In absence of appropriate exogenous stimuli, the classical NFκB pathway is

not active (Left). Constitutively active cytosolic TRAF2-cIAP1/2 complexes K48-ubiquitinate NIK and cRel triggering so the proteasomal degradation of these proteins

(Left). This not only dampens the activity of the NIK-dependent alternative NFκB pathway to low basal levels but also diminishes the amount of cRel-containing

dimers, which can be activated via the classical NFκB pathway. Since p100 can inhibit cRel- and RelA-containing NFκB dimers, it might also reduce the responsibility

of the classical NFκB pathway. TNFR2 activation by memTNF results in the recruitment of TRAF-cIAP1/2 complexes and activation of the IKK-dependent classical

NFκB pathway (Right). The depletion of the cytosolic TRAF2-cIAP1/2 complexes associated herewith leads to reduced degradation of NIK and cRel, thus (i) to

enhanced alternative NFκB signaling and (ii) more cRel-containing NFκB dimers that can respond to the classical NFκB pathway (Right). The model is based on what

is known about the specific functions of NFκBs in Tregs and the mechanisms of TNFR2 signaling in general.

with p100 deficient Tregs also develop a mild autoimmune
syndrome, which depends on RelB and correlated with increased
Treg numbers with reduced suppressive activity (86). Notably,
interaction with the ankyrin domain of p100 can also inhibit
cRel- and p65-containing NFκB dimers (87), whereby p100
binds cRel-containing dimers more preferential than RelA-
containing dimers (88). Thus, TNFR2 via activation of the
alternative NFκB pathway has the potential to crosstalk into the
classical NFκB pathway. Considering that TNFR2 seems to be
more important than TNFR1 in Tregs and because TNFR2, in
contrast to TNFR1, triggers not only the classical NFκB pathway
but also the alternative NFκB pathway, the following scenario
appears plausible: TNFR2 (or other p100 processing-triggering
TNFRSF receptors) triggers/maintains Foxp3 expression and
Treg suppressive activity by stimulating both NFκB pathways
yielding in the coordinated activation of cRel, RelB, and RelA-
containing NFκB dimers (Figure 3).

A second possible mode of TNFR2 signaling in Tregs is
based on the ability of TNFR2 to sequester and degrade
TRAF2. Depletion of cytoplasmic TRAF2-cIAP1 and TRAF2-
cIAP2 pools may not only result in the accumulation of NIK
and activation of the alternative NFκB pathway but might

also promote other signaling events, which are inhibited in
unstimulated cells by TRAF2-mediated degradation. In fact,
TRAF2 and cIAPs antagonize proinflammatory signaling in
myeloid cells by promoting proteasomal degradation of cRel
and IRF5 (89). Therefore, TNFR2-induced depletion of cytosolic
TRAF2-cIAP1/2 complexes has the potential to increase cRel
levels (Figure 3).

Thirdly, it has been suggested that TNFR2 elicits its effect on
Tregs not directly by triggering intracellular signaling pathways
but indirectly after shedding from the plasma membrane and
inhibiting soluble TNF (80). A functional relevant robust TNF
neutralizing effect of the soluble TNFR2 ectodomain, however, is
hard to reconcile with the very low affinity of monomeric TNFR2
for TNF (90).

PRECLINICAL AND CLINICAL EVIDENCE
FOR THE USEFULNESS OF THERAPEUTIC
TREG TARGETING VIA TNFR2

Adoptive transfer of Tregs is a straightforward strategy to
exploit the overwhelming immunotherapeutic potential of this
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cell type, which is being explored in clinical studies (91).
Purification/enrichment and ex vivo expansion of stable and
functional Tregs are crucial factors complicating the applicability
and success of therapeutic adoptive Treg transfer (92). In
accordance with the crucial role of TNF-TNFR2 signaling in
Treg biology, two recent studies demonstrated beneficial effects
of targeting of the TNF-TNF receptor system in ex vivo Treg
expansion protocols. Using a not further specified agonistic
TNFR2 antibody, Okubo et al. demonstrated that the additional
activation of TNFR2 in standard Treg expansion protocols
conferred improved suppressive activity while reducing Treg
heterogeneity (93). Furthermore, using the TNFR2-specific mAb
MR2-1 as an agonist, TNFR2 signaling promoted the expansion
of low purity MACS-isolated Treg preparations to stable
homogenous Treg populations (94). Therefore, TNFR2 agonists
may potentially improve ex vivo Treg expansion methods for
clinical applications.

First decisive evidence for the in vivo drugability of the TNF-
TNFR2 interaction in nTregs stems from mouse experiments
of GvHD and collagen-induced arthritis (CIA). Employing a
TNFR2-selective nonameric variant of murine TNF, several
groups found that exogenous TNFR2 stimulation suffices to
expand Treg numbers in mice (68, 69, 71, 72). TNFR2
agonist-induced Treg expansion protected mice from subsequent
allogeneic hematopoietic cell transplantation (HCT)-induced
GvHD, while preserving graft-vs.-leukemia activity (Figure 4)
(69). Inhibiting the TNF-TNFR2 interaction blocked Treg
activity in GvHD (70). TNFR2-promoted Treg expansion also
attenuated the clinical score of mice suffering from CIA (71).
In accordance with these findings, Pierini et al. reported that
in vitro TNF priming in the presence of IL2 enhances TNFR2-
dependent murine Treg activation and proliferation resulting in
Tregs providing superior protection from GvHD (95).

The microenvironment of most tumors is highly enriched
with TNF producing cells such as macrophages, T cells, and
fibroblasts and often contains increased Treg numbers that
crucially contribute to tumor immune escape and tumor
progression (Figure 4). Based on the compelling evidence that
TNF-TNFR2 interaction stimulates Treg activity, various studies
addressed the feasibility of blocking TNFR2 therapeutically
in animal cancer models. In one study, loss of tumor
immunity against secondary tumors was traced back to CD103+

effector Tregs with high TNFR2 expression (96). In vitro,
TNF induced TNFR2-mediated effector Treg expansion and
their transfer suppressed antitumoral CD8+ T cell responses
(96). Likewise, increased effector Treg frequencies were found
in peripheral blood samples of colon rectal carcinoma and
hepatocellular carcinoma patients. Again, these Tregs were
significantly enriched in vitro in response to TNF (96).
Moreover, soluble hTNFR2-Fc enhanced the antitumor activity
of cyclophosphamide and further reduced effector Treg numbers
in mice bearing CT26 tumors without affecting CD8+ T
cell activation (96). Also in CT26 bearing mice, blockade of
TNFR2 signaling with the antagonistic antibody M861 reduced
TNFR2+ Treg frequency within the tumor microenvironment
and enhanced the immune stimulatory activity of CpG
oligodesoxynucleotides (97). Notably, the antagonistic TNFR2

antibody TR75-54.7 inhibited growth of 4T1 tumors more
efficiently than the antagonistic CD25 mAb PC61 (97). Using a
novel antagonistic TNFR2 antibody, Torrey et al. demonstrated
that TNFR2 blockade in ascites of ovarian cancer patients
result in reduced Treg numbers and increased effector T cell
frequency (98).

Patients suffering from acutemyeloid leukemia (AML) display
increased Treg numbers in the peripheral blood and bone
marrow (99), which correlate with poor prognosis (100). The
majority of these Tregs strongly express TNFR2 and efficiently
migrate into the bone marrow (101). In AML patients subjected
to epigenetic therapy, a reduction of TNFR2+ Tregs have been
observed in the bone marrow of responders compared to non-
responders whereas there was no difference in TNFR2− Tregs
before and after treatment (101).

PRECLINICAL DEVELOPMENT OF
TNFR2-TARGETING REAGENTS

The goal of TNFR2 targeting clearly depends on the considered
disorder. While inhibiting TNFR2 activities in Tregs or even
destroying Tregs may be the goal in cancer, stimulating
TNFR2 may be the aim to treat inflammatory conditions or
inflammation-associated cancer to improve immune suppression
by Tregs.

PRECLINICAL DRUGS WITH
TNFR2-INHIBITORY ACTIVITY

In principle, TNFR2 activation might be prevented
pharmacological by use of one of the various approved TNF-
neutralizing biologicals for the treatment of autoinflammatory
diseases. However, this would also inhibit TNFR1 signaling
counteracting the beneficial effects of reduced TNFR2 activity.
In the immunotherapy of cancer, for example, inhibition
of TNFR2 might help to break tumor-associated immune
tolerance by reducing Treg activity. The intended stimulation
of anti-tumor immunity, however, would suffer from inhibiting
proinflammatory TNFR1 activities, too. Selective inhibition of
TNFR2 is obviously possible with TNFR2-specific antibodies
blocking TNF binding and lacking intrinsic TNFR2-stimulating
activity (Figure 5, upper panel). The development of antagonistic
anti-TNFR2 antibodies appears, at first glance, simple. Indeed,
various reports described the use of antagonistic TNFR2-specific
antibodies in vitro on non-hematopoietic cells. In vivo, however,
the situation might be complicated by the presence of immune
cells and immune cell-associated expression of Fcγ-receptors
(FcγRs). Various preclinical in vivo studies demonstrated that
FcγR-binding can act as an all-dominant factor that determines
the agonistic activity of TNFRSF receptor-specific antibodies
and even converts antagonistic antibodies into strong TNFRSF
receptor agonists (3). The FcγR binding-dependent agonistic
activity of TNFRSF receptor-targeting antibodies presumably
reflects the fact that membrane-anchoring of antibodies
promotes the secondary oligomerization of initially formed
antibody-TNFRSF receptor complexes, which is needed for
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FIGURE 4 | TNFR2 is critical for Treg function in cancer and inflammation. (A) In the tumor microenvironment, immune cells, such as tumor associated macrophages

(TAM), stroma, and tumor cells, produce TNF, which (1) attracts and stimulates Tregs and myeloid derived suppressor cells (MDSC). TNFR2-mediated Treg activation

prevents optimal costimulation by antigen presenting cells to trigger cytotoxic tumor-specific T cell responses (2) and, importantly, prevents T cell mediated tumor lysis

through several immune checkpoints (3). (B) Selective inhibition of TNFR2 or depletion of TNFR2+ Tregs in tumors (1) would improve costimulation by tumor antigen

presenting cells (APC) to activate cancer specific immune responses (2), abolish the blockade of cancer specific immune responses within the tumor tissue (3) and,

thus, reactivate cytotoxic T cells to destroy cancer cells. (C) In recipients of allogeneic hematopoietic cell transplantation (HCT), the underlying disease, intensive

therapy and host conditioning systemically reduce Tregs (1). After allogeneic HCT Tregs are overwhelmed to control alloreactive T cells (2), which cause acute

graft-vs.-host disease (GvHD). (D) TNFR2-specific agonists stimulate Tregs in secondary lymphoid organs and peripheral tissues (1). Increased Treg numbers and

function support tissue homeostasis and can contain excessive T cell responses (2) as they occur in acute GvHD or other inflammatory diseases.

full receptor activation (3). In any case, this issue should be
evaluated in course of the development of antagonistic anti-
TNFR2 antibodies and could necessitate the use of antibody
isotypes/variants devoid of FcγR binding.

Inhibition of TNFR2 activity might also be achieved by
non-antibody based drugs. For example, Tang et al. identified
progranulin as a high-affinity competitor of TNF binding to
TNFR2 (102). However, progranulin also competes with TNF
for TNFR1 binding and with TL1A for DR3 binding (102,
103). Thus, progranulin based TNFR2 blockers let expect
similar limitations as discussed above for TNF-neutralizing
reagents. Moreover, several independent groups failed to
observe inhibition of TNF-TNFR1/2 interaction by progranulin

(104–106). In fact, it has been reported that progranulin
rather enhances, than blocks, TNF-induced TNFR2-mediated
proliferation of Tregs (107). In the absence of ligand, TNFR1,
TNFR2 and several other receptors of the TNFRSF undergo

homotypic interaction without activating cellular signaling
pathways (108–110). This is mediated via the N-terminal pre-
ligand assembly domain (PLAD) and is required for efficient
ligand binding. Accordingly, dimeric Fc and GST fusion proteins
of the TNFR1 PLAD inhibit TNFR1-promoted pathologies in
preclinical models (110–113). Because of the homotypic PLAD-
PLAD interaction, fusion proteins of the TNFR2-PLAD may act
as TNFR2-specific antagonists leaving TNFR1 signaling intact
(Figure 5, upper panel).

PRECLINICAL DRUGS FOR SELECTIVE
TNFR2-STIMULATION

Activation of TNFR2 can be achieved by recombinant variants
of its natural ligands TNF and LTα or by agonistic antibodies
or antibody mimetics. Two aspects require consideration for
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FIGURE 5 | TNFR2 targeting biologicals. (A) TNFR2-specific antibodies blocking TNF binding (left part) or fusion proteins of the TNFR2 PLAD domain (right part) can

block the formation of TNFR2 signaling complexes without directly affecting TNFR1-related activities. Lower panel: nonameric variants of TNFR2-specific TNF mutants

(B) and FcγR-bound agonistic anti-TNFR2 antibodies (C) allow specific activation of TNFR2. Per se non-competitive non-agonistic TNFR2-specific antibodies that

oligomerize poorly active soluble TNF-TNFR2 complexes can potentiate TNFR2 signaling (D). For details see text.

recombinant ligand variants for TNFR2 stimulation: first,
receptor selectivity, as TNF (and LTα) interacts with TNFR2
and TNFR1; second, limited ability of soluble TNF trimers to
stimulate TNFR2 signaling. The challenge of TNFR2 selectivity
had been solved early, by various groups identifying mutations
conferring selectivity for one of each of the two TNF receptors.
Furthermore, oligomerization of soluble TNF trimers potentiates
their ability to stimulate TNFR2 (5). This knowledge triggered
our rational design of human and mouse TNF fusion proteins
that comprise three ligand trimers and act as very potent TNFR2
agonists. To obtain three covalently linked TNF trimers the small
trimerization domain of tenascin-C was genetically linked to a
triplet of TNFR2-specific TNF protomers separated by peptide
linkers long enough to allow intramolecular self-assembly (5, 69).
In vitro binding and functional studies proved high selectivity of
these agonistic fusion proteins for TNFR2 and, accordingly, in no
toxicity in mice treated repeatedly with high doses of the murine
TNFR2-specific variant (69).

Besides recombinant soluble TNFSF ligand variants, agonistic
antibodies are the classical approach to activate receptors
of the TNFRSF (Figure 5, lower panel). Based on superior
pharmacokinetics and the broad experience in antibody
production and development, agonistic antibodies remain the
first choice to accomplish therapeutic activation of TNFRSF
receptors. Indeed, various agonistic antibodies targeting immune
stimulatory or cell death-inducing members of the TNFRSF are
currently under investigation in clinical trials for cancer therapy.
As discussed above for the development of antagonistic TNFR2-
specific antibodies, one has to consider again the possibility of
antibody binding to FcγRs and the possible agonism-boosting
and immune cell-stimulating effects of these interactions. Since

agonistic TNFRSF receptor-specific IgG antibodies frequently
achieve only maximum activity upon FcγR-binding, such
antibodies risk to trigger destruction of targeted cells instead of
receptor activation. Thus, TNFR2 targeting with such antibodies
in vivo could rather deplete Tregs instead of promoting Treg
expansion. Therefore, antibodies with a high intrinsic, FcγR
binding-independent agonistic activity or Fc domain-mutated
antibodies preferentially binding to inhibitory FcγRs may
account for the best strategy to achieve TNFR2 activation with
agonistic antibodies in vivo.

An interesting option to achieve TNFR2 activation in vivo is
the use of non-competitive antibodies modifying the receptor
response to soluble ligand trimers. It has been found that some
non-competitive and per se non-agonistic antibodies against
TNFRSF receptors can strongly enhance receptor activation upon
soluble ligand binding presumably via aggregation of otherwise
poorly active trimeric ligand-receptor complexes (Figure 5,
lower panel) (114, 115). This mode of action has also been
demonstrated for the TNFR2-specific mAb 80M2 (4). Clinical
development of a TNFR2-specific antibody of this type may
have two advantages: first, the “agonistic” activity would be
fully independent from FcγR-binding and second, the “agonistic”
activity would be closely spatiotemporally linked to sites where
TNF is actively expressed.

TARGETING TNFR2 TO ENHANCE TREG
FUNCTION IN GVHD

The pathophysiologic sequelae of acute GvHD follows a
spatiotemporally orchestrated pattern of disease initiation and
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an ensuing effector phase (116–120). TNF plays a crucial role in
all these events through several mechanisms. Host conditioning
triggers an instant TNF release by host macrophages (121)
which might enhance maturation of host type antigen presenting
cells (APCs), the expression of MHC molecules (122) and
T cell adhesion to APCs (123). TNF furthermore provides
costimulatory signals to naïve CD4+ T cells and CD8+ cytotoxic
T lymphocytes (44, 124–126). TNF, together with IL1β, also
enhances TNF expression by freshly activated alloreactive T
cells constituting a feed-forward-loop of TNF release (127–129).
However, only in recent years it has become clear that TNF also
triggers anti-inflammatory feedback loops, e.g., by stimulation
of Tregs and myeloid derived-suppressor cells via TNFR2
(see previous paragraphs). After initial priming in secondary
lymphoid tissues, alloreactive effector T cells home into GvHD
target tissues (116, 117, 130, 131). Upon allorecognition, tissue
infiltrating donor T cells release TNF, which can cause epithelial
damage (120, 132). Fn14, a tissue damage-induced receptor of
the TNFRSF, sensitizes intestinal epithelial cells and renders
them particular susceptible to TNF-dependent apoptosis (133).
This may also explain, at least in part, why the intestinal tract
is a primary target for GvHD tissue damage. The consequent
disruption of the barrier function of the gut epithelium results
in a vicious cycle of exacerbating GvHD (134).

In patients, systemic TNF release of >100 pg/mL in the
first 3 months after allo-HCT strongly correlated with acute
GvHD, veno-occlusive disease, endothelial leakage syndrome,
and interstitial pneumonitis (128, 129). Also, it was found that
levels of shed TNFR1 and TNFR2 correlate with systemic TNF
concentrations and allo-HCT related complications (135, 136).
Subsequently, it has been furthermore found that a strong
increase of soluble TNFR1 (sTNFR1) 7 days after allo-HCT
correlated with GvHD incidence and severity and patient survival
(137, 138). These results lead to the integration of sTNFR1,
together with interleukin-2-receptor-alpha, interleukin-8, and
hepatocyte growth factor, into a proposed serum biomarker panel
for GvHD diagnosis and prediction of survival (139).

The detrimental effects of TNF on GvHD pathogenesis
provided a clear rationale to test TNF-inhibitors in allo-
HCT. Indeed, TNF blockade prevented acute GvHD in most
mouse models but may also affect graft-vs.-leukemia activity as
transplantation of TNFR1 deficient donor CD8T cells resulted in
an increased leukemia relapse after allo-HCT (120, 121, 127, 140).
Based on these data, several clinical studies were initiated to
test TNF inhibitors for the treatment of acute GvHD or as a
preemptive therapeutic approach to prevent the onset of acute
GvHD. Importantly, the TNF blocking antibody infliximab failed
in clinical trials, both in a treatment setting and in a preemptive
therapy approach, and might even increase bacterial and fungal
infections (141, 142). Although etanercept, a Fc fusion protein of
the TNFR2 ectodomain, in combination with high-dose steroids
showed initially promising response rates in GvHD patients, it
neither improved survival in comparison to control subjects nor
showed it a beneficial activity in a prophylactic setting (143–145).

Blocking TNF does not only inhibit the primarily TNFR1-
mediated proinflammatory TNF activities but also the
predominantly TNFR2-mediated protective effects. The

ambivalence of therapeutically targeting TNF is emphasized
by the experience with TNF inhibitors in the treatment of
autoimmune diseases. Clearly, TNF blockers have been a
game-changer for the treatment of inflammatory diseases such
as rheumatoid arthritis and colitis showing high response
rates in many patients making them the commercially most
successful biologicals on the market. However, many patients
do not respond to TNF inhibitors and TNF blockers may even
exacerbate inflammation in other diseases, e.g., heart failure
or multiple sclerosis (146, 147). This emphasizes that, despite
the prominent perception of TNF as a potent proinflammatory
cytokine, TNF can exert important immunosuppressive
functions, likely depending on the underlying disease and the
involved immune regulatory cells.

As pointed out above, an important mechanism explaining
these opposing outcomes of TNF-inhibition is the dichotomy
of TNFR1- and TNFR2-mediated effects. Therefore, directly
addressing TNFR1 or TNFR2 as therapeutic targets through
TNFR1 antagonists or TNFR2 agonists appears as an attractive
strategy to improve current clinical practice of GvHD treatment.
So far, this strategy has been tested in preclinical mouse
models employing TNFR2-selective agonists. TNFR2-mediated
in vivo expansion of Tregs could prevent acute GvHD (69).
Notably, fostering Treg numbers and their function may not only
counterbalance excessive inflammation but may also improve
tissue regeneration (148, 149). Restoration of tissue homeostasis
in GvHD target tissue may prove as a key mechanism to improve
outcomes in patients undergoing allo-HCT.

Conclusively, therapeutically targeting of TNFR2 in patients
appears as a highly promising approach to either propagate
donor Tregs in vitro or, importantly, to enhance Treg activity
by expanding TNFR2+ Tregs in patients before allo-HCT to
prevent GvHD. This attractive approach promises to reduce
the risk for GvHD while allowing for alloimmune responses
against remaining leukemia cells or to allow for efficient
immune control of opportunistic infections. More caution will
be warranted to employ TNFR2-agonists at the time of donor
lymphocyte infusion or at the onset of GvHD. Clearly, the
stimulatory effects of TNFR2 on Tcons require careful assessment
in preclinical in vivo models before TNFR2 agonists will enter
clinical trials.
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