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Contents

Introduction 1

1 Time-continuous gradient-like systems 11
1.1 O-minimal structures and stratifications . . . . . . . . . . . . 12

1.1.1 Basic properties and definitions . . . . . . . . . . . . . 12
1.1.2 Stratifications . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.3 The  Lojasiewicz gradient inequality . . . . . . . . . . . 29

1.2 AC vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.2.1 Convergence properties of integral curves . . . . . . . . 33
1.2.2 Topological properties of (AC) systems . . . . . . . . . 41
1.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . 48

1.3 AC differential inclusions . . . . . . . . . . . . . . . . . . . . . 56
1.4 Degenerating Riemannian metrics . . . . . . . . . . . . . . . . 64

2 Time-discrete gradient-like optimization methods 72
2.1 Optimization algorithms on manifolds . . . . . . . . . . . . . . 73

2.1.1 Local parameterizations . . . . . . . . . . . . . . . . . 73
2.1.2 Examples of families of parameterizations . . . . . . . 85
2.1.3 Descent Iterations . . . . . . . . . . . . . . . . . . . . . 89

2.2 Optimization on singular sets . . . . . . . . . . . . . . . . . . 100
2.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.2.2 Parameterizations of singular sets . . . . . . . . . . . . 102
2.2.3 Descent iterations on singular sets . . . . . . . . . . . . 112
2.2.4 Example: Approximation by nilpotent matrices . . . . 115

2.3 Optimization of non-smooth functions . . . . . . . . . . . . . 121
2.3.1 Generalized gradients . . . . . . . . . . . . . . . . . . . 121
2.3.2 Riemannian gradient descent . . . . . . . . . . . . . . . 129
2.3.3 Descent in local parameterizations . . . . . . . . . . . . 138

i



2.3.4 Minimax problems . . . . . . . . . . . . . . . . . . . . 141
2.4 Sphere packing on adjoint orbits . . . . . . . . . . . . . . . . . 144

2.4.1 General results . . . . . . . . . . . . . . . . . . . . . . 144
2.4.2 Example: the real Grassmann manifold . . . . . . . . . 149
2.4.3 Example: the real Lagrange Grassmannian . . . . . . . 154
2.4.4 Example: SVD orbit . . . . . . . . . . . . . . . . . . . 157
2.4.5 Example: optimal unitary space-time constellations . . 162
2.4.6 Numerical results . . . . . . . . . . . . . . . . . . . . . 171

A Additional results 179
A.1 A theorem on Hessians of self-scaled barrier functions . . . . . 180

B Notation 182

ii



Acknowledgements
First of all, I want to thank my supervisor Prof. Dr. Uwe Helmke, for many
helpful discussions, useful advice, valuable insights and motivation.

I also want to thank my colleagues Dr. Gunther Dirr, Dr. Martin Klein-
steuber, Jens Jordan and Markus Baumann for making my time here in
Würzburg pleasant and interesting.

Last, but not least, thanks go to my father and my sister for their moral
support during my work on this thesis.

iii



Introduction

1



In this thesis we discuss the convergence of the trajectories of continuous
dynamical systems and discrete-time optimization algorithms.

In applications one is often able to show that trajectories of a dynam-
ical system converge to a set of equilibria. However, it is not clear if the
trajectories converge to single points or show any more complicated tangen-
tial dynamics when approaching this set. This situation appears in neural
network applications [88], cooperative dynamics [85, 86] and adaptive con-
trol [34,121]. The question if a trajectory actually converges to a single state
is of importance at its own right, even if it is often known that the system
converges to a set of desirable states. For example, one might ask if a neural
network converges to a single state, if a cooperative system converges from
a initial state to a single point [86] or if an adaptive control scheme con-
verges to a fixed controller. Here, we discuss such convergence questions for
gradient-like dynamical systems.

In the discrete-time case, we focus on optimization algorithms on mani-
folds and their convergence properties. We consider gradient-like algorithms
for several different types of optimization problems on manifolds.

Let us first discuss the continuous-time dynamical systems in more detail.
We start with recalling some of the main initial approaches to prove results on
the convergence of trajectories. By a slight abuse of notation, we will denote
the convergence of a trajectory to single point as pointwise convergence.

• Normal hyperbolicity of manifolds of equilibria. A classical condition
ensuring convergence of the integral curves to single points is normal
hyperbolicity [90]. Assuming that the ω-limit set is locally contained
in a normally hyperbolic manifold of equilibria one can deduce that it
contains at most one point. This can even be extended to the non-
autonomous case [13]. We refer to the monograph of Aulbach [13] for
an extensive discussion of such results.

• Monotone dynamical systems. The trajectories of such systems are de-
creasing of a given partial order on the phase space. Under some strict
monotonicity conditions one can derive criteria for the convergence of
trajectories. This approach goes back to Hirsch [87].

• Gradient systems, ẋ = − grad f(x). If the function f satisfies suit-
able regularity conditions, one can show by more or less sophisticated
methods, that the trajectories converge to single points. The classical
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examples for such gradient systems are Morse and Morse-Bott func-
tions, see e.g. the monograph [77] for an exposition. A less well-known
example is  Lojasiewicz’s convergence result for analytic functions [113].

In this thesis we will consider an extension of the gradient system ap-
proach for continuous-time dynamical systems. Let us first review the con-
vergence properties of gradient systems. The gradient system of a real-valued
function f is defined by the differential equation

ẋ = − grad f(x).

It is well known that the ω-limit sets of integral curves of this system contain
only critical points of the function and, in particular, if the critical points are
all isolated, then bounded trajectories converge to single points [84]. This
yields the convergence for Morse functions. Furthermore, gradient systems of
Morse functions are generic in the class of gradient systems [129]. Hence, for
generic gradient systems the trajectories converge to single points. However,
one will encounter non-generic functions in some applications, for example
if some additional restrictions on the class of functions are given by the
application. Therefore, the behavior of trajectories of such systems is of
interest, too.

It is a surprising fact, that the convergence behavior of trajectories of a
non-hyperbolic gradient system can be non-trivial. A classical example by
Curry [47] is the so-called Mexican hat example. This is a gradient system
in R2 which has integral curves which converge to the entire unit circle. It
is best visualized by a Mexican hat which has a valley on its surface circling
around the center infinitely often and converging to the brim. Taking this
“hat” as the graph of a function on R2, one sees that the gradient field has
a integral curves with the unit circle as ω-limit set. Exact formulas of such
functions can be found in [4, 128]. Figure 1 shows a few contour lines of a
function of this type.

From the Mexican hat example one can also construct gradient fields with
integral curves with non-connected ω-limit sets. One has just to construct a
diffeomorphism1 of an open subset U of R2 to the whole R2 which maps the
intersection of U with the unit circle onto 2 non-trivial curves. The gradient
field of the function induced by the “Mexican hat” has integral curves which
contain these two curves in their ω-limit set.

1for example (x, y) 7→ (x/
√

1 − x2, y/
√

1 − x2).
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Figure 1: Contour lines for the Mexican hat-type function given by f(r, θ) =
exp(−1/(1 − r)2)(1 + sin(r + θ) + exp(−1/(1 − r)2)) in polar coordinates,
cf. [4, 128]. The outer circle denotes the unit circle in R2.

However, under suitable conditions on the function it is possible to prove
convergence of the integral curves even for non-Morse functions. One already
mentioned example is the class of Morse-Bott functions. The convergence is
based on the generalized version of the Morse lemma, see [77].

The second class of functions for which the integral curves converge are
analytic functions. The convergence is a result of  Lojasiewicz [113] and is
stated as the following theorem.

Theorem Let M be an real-analytic Riemannian manifold and f : M → R
be real-analytic. Assume that γ is an integral curve of grad f . Then the
ω-limit set of γ consists at most of one point.

The proof is based on showing the boundedness of the length of an inte-
gral curve with the help of an estimate for the gradient of f - a so-called
 Lojasiewicz inequality [113].

Kurdyka has extended this result to the class of functions definable in an
o-minimal structure [101]. Such functions include C∞-cutoff functions like
exp(−1/(x2 + y2 − 1)2). He showed that a generalization of the  Lojasiewicz
inequality holds in the o-minimal case, which implies the convergence by
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analogous arguments as in the analytic case. For the integral curves of sub-
gradient differential inclusions of non-smooth subanalytic functions Bolte at
el. have proven the convergence using a version of the  Lojasiewicz inequality
for Clarke’s generalized gradients2 [29, 30]. Furthermore they were able to
give estimates on the convergence speed of the integral curves. However,
these estimates require that the  Lojasiewicz exponents in the inequalities are
explicitly known.

The asymptotic properties of integral curves of analytic gradient systems
are even stronger. For example, Thom’s gradient conjecture claims that for
any integral curve γ of an analytic gradient system, which converges to x∗,
the limit of secants

lim
t→∞

γ(t) − x∗

‖γ(t) − x∗‖ (1)

exists. Kurdyka et al. [102] have shown that Thom’s gradient conjecture holds
in Euclidean space and, more generally, on Riemannian manifolds. However,
some stronger conjectures of the asymptotic behavior of the integral curves
are still open [102].

The various convergence results for gradient systems suggest the extension
to more general, gradient-like systems. Unfortunately, there is no uniform
definition of “gradient-like systems” in the literature. In this work we fol-
low Conley [42] and call a dynamical system gradient-like if there exists a
continuous function which is strictly decreasing on non-constant trajectories.
We call this function a Lyapunov function. A simple Lyapunov argument
shows that the ω-limit set of an integral curve is contained in a level set of
the Lyapunov function.

For stronger convergence properties of the trajectories we have to restrict
the class of Lyapunov functions. Otherwise the gradient systems themselves
would provide counterexamples to the convergence of trajectories to single
points. Thus given the results for gradient systems above, it is naturally to
require that the Lyapunov function is analytic. However, this is not sufficient
for the convergence. Take for example the function f(x, y, z) = x2 and the
vector field

X(x, y, z) =




−x3

−x2z
x2y


 .

2Such a  Lojasiewicz inequality for Clarke’s generalized gradient can be extended to
functions definable in an o-minimal structure, see [31].
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The function f is strictly increasing on the non-constant integral curves of
X. Thus the vector field is gradient-like and f is analytic. But most non-
constant integral curves of X converge to an entire circle in {0} × R2.

Therefore, we need additional conditions on the vector field X. For dif-
ferentiable Lyapunov functions f , the gradient-likeness of (X, f) implies that
df(X(x)) ≤ 0 for the vector field X. In the counterexample above we have
even df(X(x)) < 0 if x is not an equilibrium. Therefore, this condition is
not sufficient for convergence of the integral curves to single points. It is a
natural idea to tighten this property to ensure strict convergence of the in-
tegral curves. This leads to replacing the notion of gradient-like by an angle
condition on the vector field and the gradient of f , i.e. for any compact set
K ⊂M , there is a constant εK > 0 such that

−〈grad f(x), X(x)〉 ≥ εK ‖grad f(x)‖ ‖X(x)‖ . (2)

We will call such vector fields satisfying this condition (AC) vector fields.
The condition (2) bounds locally the absolute value of the angle between
grad f(x) and X(x) by a constant < π/2. For an analytic f this allows the
use of  Lojasiewicz-type arguments to show the convergence of the integral
curves as in the gradient case. Note, that this angle condition requires a
Riemannian metric. However, it can be easily seen that the definition of
(AC) vector fields is independent of the Riemannian metric.

The extension of the convergence results for gradient systems to gradient-
like ones appears in some previous works. Simon [144] considers systems
grad f(x) + r(t), where the norm of the time-variant disturbance term r(t)
is bounded by δ ‖grad f(x) + r(t)‖, δ ∈ (0, 1). He proves for analytic f
the convergence of the integral curves to single points. Note, that these
systems satisfy (2) implicitly. However, Simon’s condition is stronger than
(2). A global version of the angle condition was first given by Andrews [9].
Andrews used it to show by a  Lojasiewicz argument the convergence of the
integral curves for an analytic Lyapunov function. However, his proof silently
assumes that critical points of the Lyapunov function are equilibria of the
vector field, which does not follow (2). In [104] it was shown that for analytic
Lyapunov functions and continuous vector fields, the local version (2) is even
sufficient for convergence, without any further conditions on the equilibria of
the vector field and the critical points of the Lyapunov function. It was also
shown that single curves with a derivative which satisfies the angle condition
with respect to an analytic function, converge to a single point. In subsequent
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work [4], Absil et al. also consider the angle condition on single curves in
Rn. They show the weaker result that for analytic functions and under the
additional condition that the curve does not meet any critical points of the
function, the curve converges to a single point.

 Lojasiewicz’s convergence argument has also been employed for solutions
of specific gradient-like second-order systems, e.g. [7,71]. We will show later
how the systems in [7] are related to (AC) vector fields. Other convergence
criteria like e.g. the structure of Morse-functions, have also been applied
to gradient-like second order systems [11], but we will not investigate these
approaches further.

Finally, we mention some similar results on the convergence of integral
curves which are not directly connected to gradient or gradient-like systems.
A generalization of these convergence results is the approach of Bhat and
Bernstein [22, 23]. The convergence for normally hyperbolic manifolds of
equilibria is a result of a certain transversality of the vector field to the
manifold of equilibria. Bhat and Bernstein define the notion of transversal-
ity to a non-smooth set of equilibria by using tangent cones and limits of
the normed vector field ‖X(x)‖−1X. They show that if the vector field is
transversal to a set of equilibria and a non-empty ω-limit set of an integral
curve is contained in this set, then it contains only one point. This is in fact
again related to  Lojasiewicz’s convergence theorem, as an alternative proof
by Hu [94] via (af) stratifications uses an asymptotic transversality argument
similar to the one in [22, 23].

A different approach from Bhat and Bernstein [21] assumes that Lya-
punov function f and a function ψ : R → R are given such that the estimate
‖X(x)‖ ≤ ψ′(f(x))df(X(x)) holds. This allows to bound the length of the
integral curve as in the gradient case, implying the convergence to a single
point. For gradient systems this inequality follows from the  Lojasiewicz
inequality and is in fact the standard way for proving the convergence,
cf. [101, 113].

The first chapter of this thesis deals with extensions of these convergence
results to larger classes of functions and systems. We start in Section 1.1 with
providing some known results on o-minimal structures and analytic-geometric
categories. Furthermore we construct a special type of stratifications, which
will be needed for the convergence of solutions of differential inclusions. Next,
in Section 1.2, we show that the convergence results hold for Lipschitz con-
tinuous vector fields and continuous functions, which are morphisms of an
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analytic-geometric category. In particular, these functions need not be dif-
ferentiable everywhere. Such situations have not been covered by the known
results on gradient-like systems with an angle condition. Furthermore, we
present some examples for (AC) vector fields with C2 Lyapunov functions.
We also discuss some aspects of the topology of the flow of (AC) vector fields
and sketch how the results of Nowel and Szafraniec [126, 127] for analytic
gradient systems can be extended to these systems. In Section 1.3 we extend
the convergence results to solutions of differential inclusions. Since solutions
of differential inclusions have not been yet considered in the literature in the
context of gradient-like systems with angle condition, this is again an exten-
sion of the known results. As the last part of discussion of continuous-time
systems, we consider the case that the Riemannian metric degenerates. This
is discussed in Section 1.4 and we can develop a convergence result for this
case, too. However, this convergence result does not cover the most interest-
ing case of locally unbounded metrics, which has strong connections to the
Thom conjecture and interior point methods.

The author of this thesis has submitted the convergence results from
Section 1.2 and the discussion of the examples for (AC) vector fields for
publication [103].

In the second part of this thesis, we discuss convergence results for discrete-
time gradient-like optimization methods on manifolds.

The classical optimization theory considers optimization problems only
in Euclidean spaces. However, in some applications optimization problem
appear naturally on smooth manifolds. To deal with such a situation in
a classical setting, the manifold has to embedded into an Euclidean space.
Then a standard algorithm for constrained optimization can be applied to
the optimization problem. However, this approach has several disadvantages.
The dimension of the Euclidean space, in which the manifold is embedded,
can be very high, leading to inefficient algorithms. Further, standard con-
strained optimization algorithms will in general not produce iterates on the
manifold itself, thus requiring complicated projections onto the manifold.

Optimization algorithms on manifolds try to avoid these problems by
using the structure of the manifold itself and not relying on any embeddings.
There has been a signification interest in such optimization algorithms on
manifolds in the last years, see e.g. [3,5,54,55,65,75,95,117–119,146,147,154].
So far, there are two main approaches to construct optimization algorithms
on manifolds.
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• The Riemannian geometric approach formulates the classical algorithms
in the language of Riemannian geometry. This yields a direct exten-
sion of the algorithms to Riemannian manifolds. The Riemannian ap-
proach first appeared in the work of Luenberger [116]. The standard
classical algorithms for unconstrained smooth optimization could be
extended by this approach to Riemannian manifolds, namely gradi-
ent [65,116,146,147], conjugate gradient [146,147], Newton [65,146,147]
and Quasi-Newton [65] methods. Furthermore, it is possible to extend
the standard convergence results for gradient-like descent methods to
this setting, see [154, 163, 164] for some results.

• The local parameterization approach uses local parameterizations to
obtain an algorithm on the manifold. In each iteration the function is
pulled back to Euclidean space by the parameterization and one step
of a standard Euclidean space optimization algorithm is applied. The
result is mapped back to the manifold. This yields an optimization
iteration on the manifold, cf. [3, 5, 35, 37, 118–120, 143]. This approach
was introduced by Shub [143] for Newton-type iterations. Shub uses a
smooth retraction φ : TM → M , which yields local parameterizations
φx : TxM →M from the tangent space to the manifold. This retraction
type parameterizations have been studied for Newton [5,143] and trust-
region [3] methods. Shub’s retractions have also been used for the
numerical integration on manifolds [36,37]. In the optimization context,
the numerical integration of a gradient flow leads to gradient descent
optimization algorithms [35, 37]. Other authors have proposed the use
of parameterizations Rn → M for the construction of gradient and
Newton algorithms on manifolds [118–120]. These algorithms use a
different parameterization to project back to the manifold. Hüper and
Trumpf [95] have shown the local quadratic convergence for a class of
such Newton algorithms. Unlike for the Riemannian methods, there are
global convergence results only known for the trust region algorithm [2,
3].

Note, that these methods all apply only to at least continuously differentiable
cost functions. For non-smooth cost functions, the theory is less known and
developed. The basic tools from non-smooth analysis, subdifferentials of
different types, have been extended to smooth manifolds in the last years [14,
15,39,107–109]. To our best knowledge, optimization methods on manifolds
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have only been studied for convex and quasiconvex functions, sometimes even
with strong restrictions on the manifold [61, 62, 132].

In the second chapter, we consider gradient-like optimization algorithms
on manifolds in different contexts. In Section 2.1 we consider gradient-like
optimization algorithms using the local parameterization approach. We first
introduce suitable conditions on the parameterizations of the manifold to en-
sure convergence of the algorithms. These conditions are much weaker than
the smoothness condition of Shub [143] on the retraction TM → M . We
show how these conditions relate to the retractions of Shub, the exponential
map and special parameterizations on homogeneous spaces. Then we give the
global convergence results for gradient-like algorithms. Further, we extend a
result of Absil et al. [4] on the convergence of the descent sequence to a sin-
gle critical point to optimization in local parameterizations. The Section 2.2
contains an extension of the local parameterization approach to optimization
of a smooth cost function over a non-smooth set. We also give a convergence
result in this case, which is however much weaker than for optimization on
a smooth manifold. In Section 2.3 we discuss the problem of optimizing a
Lipschitz-continuous cost function over a smooth manifold. We start with a
introduction of an analogue to Clarke’s generalized gradient, based on the
Frechét subgradient on manifolds by Ledyaev and Zhu [107–109]. Then we
show the convergence of gradient-like descent algorithms, both for Rieman-
nian algorithms and algorithms in local parameterizations. Our arguments
are based on the convergence results of Teel [150] for non-smooth optimiza-
tion in Euclidean space. As an application of the non-smooth optimization
algorithm, we discuss in the last Section 2.4 applications to sphere packing
problems, mainly on Grassmann manifolds. We start with a formulation of
these problems on adjoint orbits. Then we discuss concrete examples and
give explicit algorithms. In the end, numerical results for the algorithms on
the real Grassmann manifold are presented.

The author of this thesis has partially presented the results on optimiza-
tion of non-smooth function and sphere packing applications in the joint
works with U. Helmke [105] and with G. Dirr and U. Helmke [49, 50].
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Chapter 1

Time-continuous gradient-like
systems
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1.1 O-minimal structures and stratifications

1.1.1 Basic properties and definitions

In this section we recall some basic definitions and theorems of o-minimal
structures on (R,+, ·) and analytic-geometric categories.

The reader is referred to [45,53,155] for a detailed discussion of o-minimal
structures and analytic geometric categories. O-minimal structures on the
real field (R,+, ·) are a generalization of semialgebraic sets, i.e. sets deter-
mined by a finite number of polynomial inequalities and equations. We recall
the definition of o-minimal structures on (R,+, ·) [45, 101]:

Definition 1.1.1 Let M =
⋃
n∈N

Mn, where Mn is a family of subsets of
Rn. M is an o-minimal structure on the real field (R,+, ·) if

1. Mn is closed under finite set-theoretical operations,

2. A ∈ Mn and B ∈ Mm implies A× B ∈ Mn+m,

3. for A ∈ Mn+m and πn : Rn+m → Rm, the projection on the first n
coordinates, πn(A) ∈ Mn holds,

4. every semialgebraic set is contained in M,

5. and M1 consists of all finite unions of points and open intervals.

Elements of M are said to be definable in M. If the graph of a function
f : A → B belongs to an o-minimal structure on (R,+, ·), then f is called
definable in the o-minimal structure or just definable.

In the last years a significant number of o-minimal structures on (R,+, ·)
has been discovered. Specific examples of o-minimal structures on (R,+, ·)
include, see [53, 156]:

• The class Ralg of semialgebraic sets, i.e. sets defined by polynomial
inequalities and equations.

• The class Ran of restricted analytic functions, i.e. the smallest structure
containing the graphs of all f |[0,1]n, where f is an arbitrary analytic
function on Rn.

• The structure RR containing the graphs of irrational powers xα, α ∈ R.
Note that Ralg contains only the graphs of rational powers.
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• The structure Rexp containing the graph of the exponential function.
This structure contains C∞ cut-off functions like exp(x−2).

• There are structures RR

an, Ran,exp containing both Ran and RR, or Ran

and Rexp, respectively.

• The Pfaffian closure of an o-minimal structure on (R,+, ·). This is the
smallest o-minimal structure which contains the original structure as
well as suitably regular solutions of definable Pfaffian equations, and
therefore suitable integrals.

There are several operations available to construct new definable func-
tions from given ones, cf. [53]. First of all, the set of functions definable in
an o-minimal structure on (R,+, ·) is closed under composition. In partic-
ular any polynomial combination of definable functions is definable. Given
definable functions f1, . . . , fl : Rn+k → R the functions x 7→ supy∈Rk f1(x, y),
z 7→ max{f1(z), . . . , fn(z)} are definable1. Further, all partial derivatives of
a definable function are definable. Note that compositions or other combi-
nations of functions definable in different o-minimals structures on (R,+, ·)
are not necessarily definable in an eventually larger o-minimal structure on
(R,+, ·). In fact, there are known examples of different o-minimal structures
on (R,+, ·) such that their union is not contained in any other o-minimal
structure on (R,+, ·) cf. [136].

On analytic manifolds a counterpart of semialgebraic sets in Rn are the
semi- and subanalytic sets. The semianalytic sets are locally described by
a finite number of analytic equations and inequalities, while the subanalytic
ones are locally projections of relatively compact semianalytic sets, see [24]
for more information. The analogue generalization of semi- and subanalytic
sets are the elements of analytic-geometric categories. The following defini-
tion of these categories can be found in [53].

Definition 1.1.2 An analytic-geometric category C assigns to each real ana-
lytic manifoldM a collection of sets C(M) such that for all real analytic manifolds
M , N the following conditions hold:

1. C(M) is closed under finite set theoretical operations and contains M ,

2. A ∈ C(M) implies A× R ∈ C(M × R),

1This follows from the fact that the closure of a definable set is definable [53] and
standard constructions for definable sets [53, Appendix A].
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3. for proper analytic maps f : M → N and A ∈ C(M) the inclusion f(A) ∈
C(N) holds,

4. if A ⊂ M and {Ui | i ∈ Λ} is an open covering of M then A ∈ C(M) if
and only if A ∩ Ui ∈ C(Ui) for all i ∈ Λ.

5. bounded sets A in C(R) have finite boundary, i.e. the topological boundary
∂A consists of a finite number of points.

Elements of C(M) are called C-sets. If the graph of a continuous function
f : A → B with A ∈ C(M), B ∈ C(N) is contained in C(M × N) then f is
called a morphism of C or shorter a C-function.

Van den Dries and Miller have shown that there is a one-to-one correspon-
dence between o-minimal structures containing Ran and analytic-geometric
categories [53, Section 3]. The following theorem recalls their results.

Theorem 1.1.3 For any analytic-geometric category C there is an o-minimal
structure R(C) and for any o-minimal structure R containing Ran there is
an analytic geometric category C(R), such that

• A ∈ C(R) if for all x ∈M exists an analytic chart φ : U → Rn, x ∈ U ,
which maps A ∩ U onto a set definable in R.

• A ∈ R(C) if it is mapped onto a bounded C-set in Euclidean space by a
semialgebraic bijection.

Furthermore, for C = C(R) we get the back the o-minimal structure R by
this correspondence, and for R = R(C) we get again C.

Proof: See [53, Section 3, Appendix D]. The characterization of R(C) is
slightly more general than the one in [53, Section 3], as they use a specific
semialgebraic bijection. However, standard arguments show directly that
both characterizations are equivalent. �

As a consequence of the correspondence between o-minimal structures and
analytic-geometric categories, Theorem 1.1.3, C-sets are locally mapped2 to
sets definable in R(C) in arbitrary analytic charts.

2i.e. the image of the intersection of the set and a suitably small open set is definable
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Proposition 1.1.4 A set A ⊂ M is in C(M) if and only if it is locally
mapped to a set in R(C) in analytic charts, i.e. for every analytic diffeo-
morphism φ : U → Rn and every relatively compact C-set V , V ⊂ U , the set
φ(V ∩ A) is definable in R(C).

Proof: This is shown in the argument of van den Dries and Miller for
C(R(C)) = C [53, Proof of D.10(4)]: Since φ(V ∩ A) is a bounded subset
of Rn, we see by [53, D.10 (1)] that φ(V ∩ A) is a C-set if and only if it is
actually definable in R(C). �

Furthermore, C-functions are locally mapped to definable functions by
analytic charts.

Proposition 1.1.5 Let f : M → N be a C-function and φ : U → Rm, U ⊂
M , ψ : V → Rn, V ⊂ N analytic local charts. Assume that we have relatively
compact, open sets U ′, U ′ ⊂ U , V ′, V ′ ⊂ V such that f(U ′) ⊂ V ′. Then the
function

ψ ◦ f ◦ φ−1 : φ(U ′) → ψ(V ′)

is definable in R(C). Especially, if f is a bounded C-function f : U → R,
then

f ◦ φ−1 : φ(U ′) → R

is definable.

Proof: Let φ : U → Rm, ψ : V → Rn analytic charts with U ⊂ M , V ⊂
N neighborhoods of x and f(x). Assume that we have relatively compact
subsets U ′, V ′ with U ′ ⊂ U , V ′ ⊂ V , x ∈ U ′, f(U ′) ⊂ V ′. Since f is a
C-function, the graph Γf of f is a C-set. By Proposition 1.1.4 Γf ∩ (U ′ × V ′)
is mapped on a set S ⊂ Rm+n definable in R(C) by the map (x, y) 7→
(φ(x), ψ(y)). Note, that S is the graph of the map ψ◦f ◦φ−1 : φ(U ′) → ψ(V ′).
Hence, the map ψ ◦f ◦φ−1 : φ(U ′) → ψ(V ′) is definable. The case f : U → R
follows directly by setting ψ = Id |R. �

By Theorem 1.1.3, one can derive from o-minimal structures on (R,+, ·)
the following examples for analytic geometric categories [53]:

• Subanalytic sets. While their definition originates in real analytic ge-
ometry, the class of subanalytic sets can be regarded as the analytic-
geometric category derived from Ran.

• The analytic-geometric category derived from RR

an.
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• The analytic-geometric category derived from Ran,exp. Note that the
class of morphisms of this category contains C∞ cut-off functions.

An analytic-geometric category C contains always the subanalytic sets and
all subanalytic functions are C-functions. Hence, the category of subanalytic
sets is the smallest analytic-geometric category.

Similar tools for constructing new C-functions as in the definable case are
available [53]. Again we have that the composition, polynomial combinations,
tangent maps and the maximum of a finite number of C-functions of a fixed
analytic-geometric category are C-functions. The situation for the supremum
is a little more subtle: given a C-function f : M × N → R the supremum
x→ supy∈K f(x, y) with K ⊂ N compact is a C-function. This does not hold
for non-compact K as the example

f(x, y) =

{
sin(x−1) |x| > y−1

0 |x| ≤ y−1 ; sup
y∈K

f(x, y) = sin(x−1)

on R × (0,∞) shows3.
It will turn out to be useful later, that the maximum of n definable

functions (a, b) → R coincides with one of these functions on an interval
(a, ε) ⊂ (a, b).

Lemma 1.1.6 Let fi : (a, b) → R, i ∈ {1, . . . , n} be a finite family of
functions definable in an o-minimal structure. Then there is ε > a and
j ∈ {1, . . . , n} such that fj(x) = maxi=1,...,n fi(x) for all x ∈ (a, ε).

Proof: As mentioned above the function h(x) := maxi=1,...,n fi(x) is defin-
able. Therefore the set A = {(x, i) | x ∈ (a, b), i ∈ {1, . . . , n}, fi(x) = g(x)}
is definable, too. Thus we can define a definable function j : (a, b) → N,
j(x) := max(x,i)∈A i. By the monotonicity theorem [53, Theorem 4.1] j(x)
is constant on a non-empty interval (a, ε) and fj(x) = maxi=1,...,n fi(x) for
j = j(y), y ∈ (a, ε). �

1.1.2 Stratifications

We discuss now some known facts on stratifications of sets in analytic-
geometric category. We use the standard notions of stratifications, see [24,
53, 83, 114, 115]. Further, we refine the concept of (af)-stratifications from
the literature, as we will need a stricter type of this stratifications later.

3Due to the accumulation of isolated critical points at 0, sin(x−1) cannot be a C-function
on whole R for any analytic-geometric category.
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Definition 1.1.7 Let M be a smooth manifold.

• A stratification of a manifold is a locally finite, disjoint decomposition into
submanifolds Sj, j ∈ Λ, the strata, such that Sj ∩ Si 6= ∅, i 6= j, implies
Sj ⊂ Si and dimSj < dim Si. We call it a Cp-stratification if the strata
are Cp submanifolds.

• Given subsets X1, . . . , Xk we call a stratification of M compatible with
X1, . . . , Xk if each Xj is the finite union of strata. If we have a set
X ⊂ M and a C1-stratification Sj, j ∈ Λ compatible with X, then we
define the dimension of X as

dimX = max
j∈Λ

dimSj.

• A stratification Sj, j ∈ Λ of M satisfies the Whitney condition (a) if for
strata Si, Sj, with Si ⊂ Sj, and any sequence (xn) ⊂ Sj, xn → x ∈ Si,
with Txn

Sj converging4 to a linear space L ⊂ TxM , we have that

TxSi ⊂ L.

Note that since dimM <∞ and stratifications are locally finite, the dimen-
sion of X is well-defined and independent of a specific C1-stratification5.

Stratifications enable us to give a precise definition of a piecewise differ-
entiable function on manifolds.

Definition 1.1.8 Let M be a manifold and f : M → R be a continuous func-
tion. We call f piecewise Cp if there is a stratification Sj, j ∈ Λ such that f is
Cp on the strata. We call the stratification Sj, j ∈ Λ a domain stratification
of f .

Later, we will consider functions, which are not only piecewise differen-
tiable, but their domain stratification satisfies stronger conditions. We start
with the standard notion of an (af ) or Thom-stratification, cf. [112, 115].

Definition 1.1.9 Let M be a smooth manifold and f : M → R a continuous
function. A stratification Sj, j ∈ Λ of M is an (af) C

p-stratification for f if
the following conditions hold:

4Convergence with respect to the topology of the Grassmann bundle on M , see [26, p.
48] for a definition of the Grassmann bundle.

5This follows easily from the Morse-Sard theorem [89, p.69].
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• the strata are Cp,

• the stratification satisfies the Whitney-(a) condition

• f is Cp on the strata,

• the rank of df |Sj
is constant for every stratum Sj and

• the Thom condition holds at every point, i.e. for strata Sj, Si, with Si ⊂
Sj, and any sequence (xn) ⊂ Sj, xn → x ∈ Si with ker df |Sj

(xn) → L we
have ker df |Si

(x) ⊂ L.

Theorem 1.1.10 Let M be an analytic manifold and f : M → R be a con-
tinuous C-function. Then for all p ∈ N there is a (af) C

p-stratification for
f such that the strata are C-sets. Especially, any continuous C-function is
piecewise Cp.

Proof: Loi proved this for functions definable in an o-minimal structure
over (R,+, ·) [112]. His proof uses the standard trick from algebraic geom-
etry of showing that the set, where the (af )-condition is violated, is defin-
able and contains no open set. According to Theorem 1.1.3, and Proposi-
tions 1.1.4, 1.1.5 this method can be lifted to analytic-geometric categories
by using local analytic charts. �

For the rest of this section, the manifold M will be equipped with a Rie-
mannian metric denoted by 〈·, ·〉. If f : M → R is a piecewise differentiable
function and Sj, j ∈ Λ a domain stratification of f , then we denote by gradj f
the gradient of the restriction of f to Sj, f |Sj

, with respect to the induced
metric on Sj.

Lemma 1.1.11 Let M be a smooth Riemannian manifold and f : M → R
a continuous function. Assume that Sj, j ∈ Λ is a (af) stratification which
is also a domain stratification of f . Let Si ⊂ Sj strata and (xk) ⊂ Sj a
sequence with xk → x ∈ Si, gradj f(xk) 6= 0 and

lim
k→∞

gradj f(xk)∥∥gradj f(xk)
∥∥ = v.

Then πTxSi
(v) = λ gradi f(x) with a λ ∈ R, πTxSi

the orthogonal projection
to TxSi with respect to the Riemannian metric.
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Proof: By choosing a subsequence of (xk) we can w.l.o.g. assume that
ker df |Sj

(xk) converges to a linear space L ⊂ TxM . The Thom condition
implies that ker df |Si

(x) ⊂ L. We denote by vk the vector

vk =
gradj f(xk)∥∥gradj f(xk)

∥∥ .

Note that vk converges to a normal vector of L. If πTxSi
(v) 6= 0 then TxSi ∩

L 6= TxSi. In particular, ker df |Si
(x) 6= TxSi and gradi f(x) 6= 0. Since

ker df |Si
(x) ⊂ TxSi ∩ L, dim ker df |Si

(x) = dimTxSi − 1 and dim(TxSi ∩
L) < dimTxSi, we have that ker df |Si

(x) = TxSi ∩ L. Therefore πTxSi
(v) =

λ gradi f(x) for some λ ∈ R. �

Unfortunately, the conditions on (af )-stratifications will not be strong
enough to derive the theorems for the gradient-like systems considered later.
Hence, we introduce our own notion of “strong” (af) stratifications, which
will be used later in the proofs. Note, that we call a function f : M → R
Lipschitz continuous at x ∈ M , if it is Lipschitz continuous at x in local chart
around U . On Riemannian manifolds this is equivalent to the existence of
a neighborhood U of x and a constant L > 0 such that |f(x) − f(y)| ≤
L dist(x, y) for all y ∈ U with dist the Riemannian distance.

Definition 1.1.12 Let M be a Riemannian manifold and f : M → R be a
continuous function. A stratification Sj, j ∈ Λ of M is a strong (af) C

p-
stratification for f if the following conditions hold:

1. the strata are Cp submanifolds,

2. Sj, j ∈ Λ is a Whitney (a)-stratification

3. f is Cp on the strata,

4. rk df |Sj
is constant on any stratum Sj,

5. if there is a x ∈ Si such that for all j ∈ Λ, and (xk) ⊂ Sj, xk → x,
the sequence

∥∥df |Sj
(xk)

∥∥ is bounded, then f is Lipschitz continuous in all
y ∈ Si.

6. for strata Si, Sj, with Si ⊂ Sj, any sequence (xn) ⊂ Sj, xn → x ∈ Si,
with Txn

Sj → L, L ⊂ TxM a linear space, and df |Sj
(xn) → α : L → R

it holds that
α(v) = df |Si

(x)(v) for all v ∈ TxSi,

where πTxSi
denotes the orthogonal projection on TxSi.
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7. for strata Si, Sj, with Si ⊂ Sj, any sequence (xn) ⊂ Sj, xn → x ∈ Si,
with ker df |Sj

(xn) → L, L ⊂ TxM a linear space, and
∥∥df |Sj

(xn)
∥∥→ ∞

it holds that
TxSi ⊂ L.

Remark 1.1.13 Assume that we are given a continuous function f : M → R
and a strong (af), C

p-stratification Sj, j ∈ Λ, for f . Let Sj, Si strata with
Si ⊂ Sj and (xk) a sequence in Sj with xk → x ∈ Si. Furthermore, let
ker dfSj

(xk) converge to a linear subspace L ⊂ TxM . By passing to a suitable
subsequence of (xk) we can w.l.o.g. assume that either condition 6 or 7 hold
for (xk). If condition 6 is satisfied then

ker dfSi
(x) ⊂ kerα = L.

In the case that condition 7 holds, it yields

ker dfSi
(x) ⊂ TxSi ⊂ L.

Hence, the conditions 6 and 7 imply the Thom condition for strong (af) strat-
ifications. Therefore, any strong (af ) stratification is an (af) stratification in
the sense of Definition 1.1.9.

We will show that for every C-function a strong (af )-condition exists. To
achieve this, we need some technical lemmas.

Lemma 1.1.14 Let S, T ⊂ Rn be Cp-submanifolds, p > 1, and definable in
an o-minimal structure R on (R,+, ·). Assume that S ⊂ T . Then there is
a relatively open subset of S such that every C1 curve γ : [0, 1] → S can be
lifted to a family of C1 curves (γε : [0, 1] → T ∪ S | ε ∈ R+) such that

• γ0 = γ,

• if ε > 0 then γε(t) ∈ T for all t ∈ [0, 1],

• the map (t, ε) 7→ γε(t) is continuous,

• and γ̇ε converges uniformly, to γ̇ for ε→ 0.

Furthermore, if γ is definable then the family can be chosen as a definable
family, i.e. the map (t, ε) 7→ γε(t) is definable.
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Proof: By curve selection with parameters [53, Theorem 4.8] there is a
finite collection of Cp manifolds Si, with S =

⋃
Si, and injective definable

map p : S×(0, 1) → T which is Cp on Si×(0, 1) and p(x, t) → x for t→ 0 and
x ∈ S. Applying the existence of Cp-stratifications [53] to the image of this
map, there must be a definable Cp stratum T ′ ⊂ T of dimension dimS + 1
such that T

′ ∩ S is open in S.
Recall that T ′, S satisfy the Whitney-(b) condition if for all x ∈ S and

any sequences (xk) ⊂ T , (yk) ⊂ S, xn → x, yk → x with Txk
T → L, L a

linear subspace, and

{r(xk − yk) | α ∈ R} → V,

V a 1-dimensional linear subspace, the inclusion

V ⊂ L

holds [53, 115]. By the existence of Whitney-(b) stratifications [53] we can

assume after eventually shrinking S and T ′ that T
′∩S = S and the Whitney-

(b) condition holds for S and T ′. Note, that we can always shrink S and T ′

such that these sets are still definable. Furthermore this implies that also
the Whitney-(a) condition holds in all x ∈ S, cf. [115].

Let

NS := {(x, v) ∈ Rn × Rn | x ∈ S, 〈v, w〉 = 0 for all w ∈ TxS}

be the Euclidean normal bundle of S. The Euclidean normal bundle is de-
finable in R [45]. Consider the definable set

Wε = {x ∈ Rn | x = y + v, (y, v) ∈ NS, ‖v‖ = ε}.

After eventually shrinking S and T ′ there is a µ > 0 such that for all 0 <
ε < µ, Wε is a manifold 6 of codimension 1.

Assume that there is no neighborhood of S on which T ′ is transversal to
the Wε for all ε ∈ (0, ρ), ρ > 0. Then there exists a sequences (xk) ⊂ T ′,
(εk) ⊂ (0, ρ), with xk → x, x ∈ S such that xk ∈ Wεk

and Txk
T ′ ⊂ Txk

Wεk
.

We can assume that Txk
T ′ converges to a linear subspace L. We denote by

(yk) the minimum distance projection of xk to S. For suitably large k the yk

6This follows from the construction of normal tubular neighborhoods for submanifolds
of R

n, see [89, Thm. 5.1 and its proof].
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are well defined. The definition of the normal bundle implies that for large
k,

lk := {r(yk − xk) | r ∈ R}
is orthogonal to Txk

Wεk
. By choosing an appropriate subsequence, we can

assume that lk converges to a 1-dimensional linear subspace V . But as
Txk

T ′ ⊂ Txk
Wεk

and lk is orthogonal to Txk
Wεk

, we see that

V 6⊂ L.

This is a contradiction to the Whitney-(b) condition. Hence, the manifold
Wε is transversal to T ′ on a neighborhood of S.

Shrinking S, T ′ and µ we can assume that Wε is transversal to T ′ for all
ε ∈ (0, µ). We can consider for 0 < ε < µ the definable manifold

Xε := Wε ∩ T ′.

We choose a connected component X of {(x, ε) | x ∈ Xε, 0 < ε < µ}, such
that closure of X contains an open set U of S. Furthermore, we restrict
the Xε to their intersection with X, i.e. X ∩ Xε = Xε. Decreasing µ we
can assume that Xε is non-empty for all 0 < ε < µ. We consider now
the Euclidean least-distance projection σ onto S. Restricting σ to each Xε

we get the family of projections σε : Xε → S. Shrinking U , S and µ we
can assume that σ : U → S is smooth and σε is a Cp diffeomorphism7 for all
0 < ε < µ. Again, it can be ensured that the shrunken U , S are still definable.
Note, that by the smoothness of σ, Tσ is uniformly bounded on a relatively
compact neighborhood of S. For any sequences (εk) ⊂ R+, xk ∈ Xεk

, with
εk → 0, xk → x ∈ S the Whitney-(a) condition implies Txk

Xεk
→ TxS. With

σ|S = IdS we get that
Txk

σεk
→ IdTσ(x)S . (1.1)

As (σε) is a definable family of functions8, there must be a relatively open
subset W in S such that the convergence (1.1) is uniform on σ−1(W ) ∩ X,
i.e. for all a > 0 there exists b > 0 such that for all ε > 0, x ∈ σ−1(W ) ∩Xε

‖x− σ(x)‖ < b implies
∥∥∥Txσε − IdTσ(x)S

∥∥∥ < a.

7This follows again from the construction of normal tubular neighborhoods for sub-
manifolds of R

n [89, Thm. 5.1 and its proof] and the fact that straight lines are geodesics
in R

n.
8i.e. the map (x, ε) 7→ σε(x) is definable.
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Let γ : [0, 1] → W be a C1 curve in W . For every Xε we can choose a
unique curve γε : [0, 1] → Xε by γε(t) = σ−1

ε (γ(t)). By construction this
gives a continuous family of curves γε such that γ0 = γ. The curves γε
are C1 as σε is a diffeomorphism. Note that γ̇(t) = Tγε(t)σγ̇ε(t). By the
uniform convergence of Txσε to IdTxS the derivative γ̇ε converges uniformly
to γ̇. Obviously, the family γε is definable if γ is definable. �

Lemma 1.1.15 Let M be an analytic manifold and f : M → R be a con-
tinuous C-function. Assume that we have C-sets S, T ⊂ M which are Cp-
submanifolds, p > 1, and S ⊂ T , dimS < dimT . Furthermore, we assume
that the Thom and the Whitney-(a) condition hold for all x ∈ S and sequences
in T . Then the set

A = {x ∈ S | ∃(xk) ⊂ T with xk → x,

lim
k→∞

Txk
T = L, L ⊂ TxM a linear space

lim
k→∞

df |T (xk) = α : L→ R, α|TxS 6= df |S(x)}
∩ {x ∈ S | ∃C > 0∀(xk) ⊂ T with xk → x, lim ‖df |Txk‖ < C} (1.2)

is a C-set with dimA < dim S.

Remark 1.1.16 The definition of A in Lemma 1.1.15 is independent of the
Riemannian metric.

Proof: We first show that A is a C-set. By the definition of analytic-
geometric categories, it is sufficient to show this locally. By Proposition 1.1.4
it is sufficient to show that A is locally mapped by analytic charts to a
set definable in R(C). Using analytic charts we can assume by Proposi-
tions 1.1.4,1.1.5 that M = Rn and S, T , f are definable in R(C). Since the
definition of A does not depend on the Riemannian metric, we can w.l.o.g. as-
sume that Rn is equipped with the Euclidean metric. Denote by Grass(n, p)
the Grassmann manifold of p-dimensional linear subspaces Rn. We use the
standard identification9 [77]

Grass(n, p) = {P ∈ Rn×n | P 2 = P, P> = P, rkP = p}.

Each subspace is identified with the symmetric, orthogonal projection onto
itself. The manifold Grass(n, p) is a definable, analytic submanifold of Rn×n.

9This identification will also be used in later sections.
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We define the subsets

B1 = {(x, P, v) | x ∈ T, P ∈ Grass(n, dimT ), ∀w ∈ TxT : Pw = w;

∀w ∈ TxT : 〈v, w〉 = df |T (x)(w)}
B2 = {(x, P, v) | x ∈ S, P ∈ Grass(n, dim T ),

∀w ∈ TxS, 〈v, w〉 = df |S(x)(w)}
B3 = {(x, P, v) | x ∈ T, P ∈ Grass(n, dimT ), ImP = TxT,

∀w ∈ TxT :
〈v, w〉
‖v‖2 = df |T (x)(w)}

of Rn×Grass(n, dimT )×Rn. Note, that these sets are all definable in R(C).
Then

A =
(
S ∩ π1

(
B1 \B2

))
\ π1(B3 ∩ (S × Grass(n, dimT ) × {0})),

π1 the projection on the first component. Hence, the set A ⊂ Rn is defin-
able10. Thus, we have proven that A is in the general case a C-set.

For dimA < dimS we have to show that A contains no relatively open,
non-empty subset of S. Assume that this does not hold, w.l.o.g. A = S and
S is relatively compact. We first show that df |S(x) 6= 0 for all x ∈ S. Assume
that df |S(x) = 0 for a x ∈ S. Since S = A there is a sequence (xk) ⊂ T ,
xk → x such that Txk

T converges to a linear space L, dimL = dimT , and
there is a linear map α : L→ R with

lim
k→∞

df |T (xk) = α and α|TxS 6= df |S(x) = 0.

By replacing (xk) with a subsequence, we can assume that (ker df |T (xk))
converges to a linear space L′ ⊂ TxM , dimL′ = dimT − 1. By the Thom
condition we have TxS = ker df |S(x) ⊂ L′. But since α|L′ = 0, we get
α|TxS = 0. This gives a contradiction. Hence, df |S(x) 6= 0 for all x ∈ S.

By Propositions 1.1.4,1.1.5 we can again assume that M = Rn and S,T ,
f are definable in R(C). Again, we can assume that M is equipped with the
Euclidean metric. The Euclidean least distance projection σ onto S is a well
defined function on a neighborhood U of S11. Since the projection can be
defined by

σ(x) = {y ∈ S | ‖x− y‖ = min
z∈S

‖x− y‖}
10The closure of a definable set is definable [53].
11This follows again from the construction of normal tubular neighborhoods in R

n [89,
Thm. 5.1 and its proof] and the fact that straight lines are geodesics in R

n.
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on the set

U = {x ∈ Rn | #{y ∈ S | ‖x− y‖ = min
z∈S

‖x− y‖} = 1},

the projection is definable in R(C). We consider the function h : T ∩U → R,

h(x) :=
〈grad f |T (x), grad f |S(σ(x))〉

‖grad f |S(σ(x))‖2

where 〈·, ·〉, ‖·‖ denote the Euclidean scalar product and norm, grad the
gradient on S and T with respect to the Riemannian metric induced by the
Euclidean one. The function h is well defined as df |S(x) 6= 0 for all x ∈ S and
it is definable in R(C). Let Γh be the graph of h. From the Thom condition
follows that if for a sequence (xk) ⊂ T , xk → x ∈ S lim df |T (xk) = α exists
then α|TxS = µdf |S(x) with µ ∈ R, see Lemma 1.1.11. By (1.2) and since
A = S, we have for any x ∈ S a δ 6= 1 with (x, δ) ∈ (Γh ∩ S × R). By the
existence of Cp-stratifications [53, Theorem 4.8] there is a definable open set
V in S and a δ 6= 1 such that for all x ∈ V the set {x} × (−∞, δ) ∩ Γh is
non-empty. W.l.o.g. we can assume that S = V . We first discuss the case
δ < 1. Let Rδ be the set

Rδ = {x ∈ T ∩ U | h(x) < δ}.

Then S ⊂ Rδ. Shrinking T , we can w.l.o.g. assume that h(x) < δ for all
x ∈ T . By Lemma 1.1.14 there is an open set W ⊂ S such that any C1

curve in S can be lifted to a family of curves on T . Let γ : [a, b] → W be
a C1 integral curve of grad f |S. We can lift γ to a continuous family of C1

curves γε : [a, b] → T with γ0 = γ and γ̇ε converges uniformly to γ̇. As f is
continuous fε := f ◦ γε must converge uniformly to f ◦ γ. Furthermore by
definition of A, for any y ∈ A there is a constant C > 0 and neighborhood
W of y in S ∪ T such that for all x ∈ W : ‖df |T (x)‖ < C. Since γ([a, b]) is
compact, this yields that

ηε(t) = 〈grad f |T (γ(t)), grad f |S(γ(t)) − γ̇ε(t)〉
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converges uniformly to 0 for ε→ 0. Hence, there is a ρ > 0 and a continuous
function τ : (0, ρ) → R+, with τ(ε) → 0 for ε→ 0, such that

fε(b) − fε(a) =

∫ b

a

d

dt
f ◦ γε(t)dt =

∫ b

a

〈grad f |T (γε(t)), γ̇ε(t)〉 dt

≤
∫ b

a

〈grad f |T (γε(t)), grad f |S(γ(t))〉 dt + τ(ε)

≤
∫ b

a

δ ‖grad f |S(γ(t))‖2 dt+ τ(ε)

= δ(f(γ(b)) − f(γ(a))) + τ(ε).

Since δ < 1, this gives a contradiction and A contains no open set of S. For
the case δ > 1, we can use an analogous argument with a lower bound for
fε(b) − fε(a) which yields a contradiction. �

Lemma 1.1.17 Let M be an analytic Riemannian manifold and f : M → R
be a continuous C-function. Assume that we have C-sets S, T ⊂M which are
Cp-submanifolds, p > 1, and S ⊂ T , dim S < dimT . Furthermore we
assume that the Thom and the Whitney-(a) condition hold for all x ∈ S and
sequences in T . Then the set

B = {x ∈ S | ∃(xk) ⊂ T with xk → x, ‖df |T (xk)‖ → ∞,

lim
k→∞

ker df(xk) = L, L ⊂ TxM linear space, TxS ∩ L 6= TxS}. (1.3)

is a C-set with dimB < dim S.

Remark 1.1.18 The definition of B in Lemma 1.1.17 is independent of the
Riemannian metric.

Proof: We start with showing that B is a C-set. As in the proof of
Lemma 1.1.15 it is sufficient to show this locally. Thus, using local ana-
lytic charts, we can assume that M = Rn and f , S, T definable. Since the
definition of B does not depend on the Riemannian metric, we equip Rn with
the Euclidean one. We define subsets of Rn × R × Grass(n, dimT − 1)

C1 = {(x, r, P ) | x ∈ T, r = (1 + ‖df(x)‖2)−1, df |T (x) ◦ P = 0}
C2 = {(x, 0, P ) | x ∈ S, P ∈ Grass(n, dimT − 1), ∃w ∈ TxS : Pw 6= w}.
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These sets are definable in R(C). Then B = π1(C1 ∩ C2), π1 the projection
on the first component. Hence, B is definable in R(C). Thus, the set B is in
the general case a C-set.

Assume that dimB = dimS, w.l.o.g. B = S. Let x ∈ S with df |s(x) = 0.
Since S = B there is a sequence (xk) ⊂ T , with xk → x, lim ker df |T (xk) = L,
L ⊂ TxM a linear space and TxS∩L 6= TxS. But on the other hand the Thom
condition implies that ker df |S(x) = TxS ⊂ L. This yields an contradiction
and df |S(x) 6= 0 for all x ∈ S.

Let σ : T → S the least distance projection on S. The map σ is smooth
and well defined after eventually shrinking S and T . We define the function

h(x) = 〈grad f |T (x), grad f |S(σ(x))〉 .

Since S = B and df |s(x) 6= 0 for all x ∈ S, the closure of

X = {x ∈ T | |h(x)| ≥ 2 ‖gradS f(σ(x))‖}

contains an open subset of S. W.l.o.g. we can assume that X = T and
h(x) > 0 for all x ∈ S.

By Lemma 1.1.14 there is a relatively open subset W of U such that
curves in W can be lifted to families of curves in T . We choose an integral
curve γ : [a, b] → S of the vector field grad f |S(x) on S. This curve is lifted to
a continuous family of C1 curves γε : [a, b] → T with γ0 = γ and γ̇ε converges
uniformly to γ̇. As f is continuous fε := f ◦ γε must converge uniformly to
f ◦ γ. On the other hand

fε(b) − fε(a) =

∫ b

a

d

dt
f ◦ γε(t)dt =

∫ b

a

〈grad f |T (γε(t)), γ̇ε(t)〉 dt

=

∫ b

a

〈grad f |T (γε(t)), grad f |S(γ(t))〉 dt− τ(ε)

≥ 2

∫ b

a

‖grad f |S(γ(t))‖2 dt− τ(ε)

= 2(f(γ(b)) − f(γ(a))) − τ(ε)

with a continuous function τ : R+ → R+, τ(ε) → 0 for ε → 0. This gives a
contradiction and B contains no relatively open subset of S. �

Lemma 1.1.19 Let M be a smooth Riemannian manifold and f : M → R
be a continuous, piecewise differentiable function. Assume that we have a
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Cp-stratification Sj, j ∈ Λ of M , p ≥ 2, such that f is C1 on the strata.
Then f is locally Lipschitz continuous in x ∈ M if there is a neighborhood U
of x and a constant C > 0 such that for all j ∈ Λ and y ∈ U ∩ Sj

∥∥df |Sj
(y)
∥∥ < C

holds.

Proof: Using a local chart of a neighborhood of U ′ ⊂ U of x we can
assume that M = Rn and U ⊂ Rn. Let y ∈ U and γ : [0, 1] → U be the
straight line between y and x, i.e. γ(t) = t(x − y) + y. By a theorem from
differential topology [89, p.78, Thm. 2.5], we can approximate γ in the C2

topology by C2 curves γk(t) which are transversal12 to the strata. Then
hk(t) = f(γk(t)) is continuous differentiable besides a finite number of points
of [0, 1]. By the conditions on f we have that ‖h′

k(t)‖ ≤ Cεk ‖x− y‖ with
εk → 1. Thus |f(y) − f(x)| ≤ C ‖x− y‖. As this holds for all y ∈ U , f is
Lipschitz continuous in x. �

Theorem 1.1.20 Let M be an analytic Riemannian manifold and f : M →
R be a continuous C-function. Then for all p > 1 there is a strong (af )
Cp-stratification into C-sets for f and any (af ) Cp-stratification into C-sets
can be refined into a strong one.

Proof: With Theorem 1.1.10 it is sufficient to show that any (af) stratifica-
tion can be refined into a strong one. Let Sj, j ∈ Λ be an (af ) stratification
of f . We define the set

A := {x ∈M | ∃i, j ∈ Λ, x ∈ Si, Si ⊂ Sj, ∃(xk) ⊂ Sj : xk → x,∥∥df |Sj
(xk)

∥∥→ ∞}.

Analytic charts map locally this set to sets definable in R(C), cf. Proposi-
tion 1.1.4. Thus A is a C-set. Therefore, we can refine the stratification such
that A is the union of strata. By abuse of notation we denote this refine-
ment by Sj, j ∈ Λ. We chose the refinement such that rk df |Sj

is constant
on the strata, cf. [53]. As A is closed, a stratum Si is either contained in A
or all x ∈ Si have a neighborhood U(x) such that

∥∥df |Sj
(y)
∥∥ is bounded for

12Here: if γk(t) ∈ Sj , then γ̇k(t) and Tγk(t)Sj span R
n. We use later a weaker notion of

transversality for differentiable curves.
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all j ∈ Λ, y ∈ U(x) ∩ Sj. Lemma 1.1.19 implies that the stratum is either
contained in A or f is locally Lipschitz in all points of the stratum. Thus the
stratification satisfies the conditions 1 - 5 of a strong (af) stratification. For
strata Si, Sj, Si ⊂ Sj let Aij be the set the of points, were the condition 6
fails. By the Lemmas 1.1.15 the set Aij has dimension < dim Si. The same
holds by Lemma 1.1.17 for the set Bij, were the condition 7 fails. A standard
argument from real-algebraic geometry, cf. [53, 83, 112], implies that we can
refine our stratification such that both conditions are satisfied everywhere.
Note that after refinement of the stratification the conditions 1 - 4 are still
satisfied. Thus our stratification is a strong (af )-stratification. �

Remark 1.1.21 In [31] Bolte et al. show that a Whitney stratification of
the graph of a function Rn → R with an additional regularity condition,
always yields a projection formula for the Clarke generalized gradient, i.e.
the Clarke generalized gradient projected to the tangent space of a stratum
is the gradient of the function on the stratum. Furthermore, they show that
for an arbitrary finite collection of subsets of Rn and a definable function,
such a Whitney stratification, compatible with the subsets, always exists.
While we provided a direct proof of Theorem 1.1.20, the results of Bolte et
al. actually imply this theorem, too.

1.1.3 The  Lojasiewicz gradient inequality

Our convergence theory for time-continuous gradient-like systems is based on
the  Lojasiewicz gradient inequality. This is an estimate on the gradient of a
function. It was first established by  Lojasiewicz for analytic functions [113],
and later extended by Kurdyka to functions definable in an o-minimal struc-
ture on (R,+, ·) [101]. Bolte et al. [30, 31] have considered the  Lojasiewicz
gradient inequality for Clarke’s generalized gradient of semi-analytic and de-
finable functions. By Proposition 1.1.5 Kurdyka’s result yields a  Lojasiewicz
gradient inequality for C-functions. For our applications, we need the follow-
ing version for C-functions.

Theorem 1.1.22 Let S be a submanifold of an analytic Riemannian mani-
fold M . Furthermore let f : S → R be a bounded, differentiable C-function
and x∗ ∈ M . Assume that S is equipped with a Riemannian metric g =
〈〈·, ·〉〉, such that for any compact set K ⊂ M there is a constant CK with
‖gx‖ ≤ CK for all x ∈ K ∩S, ‖·‖ denoting the operator norm with respect to
the Riemannian metric on M . Then there exist a neighborhood U of x∗ in M ,
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constants C > 0, ρ > 0 and a strictly increasing C1-function ψ : (0, ρ) → R+

such that for x ∈ U ∩ f−1((0, ρ))

∥∥gradg ψ ◦ f(x)
∥∥
g
≥ C holds. (1.4)

Here gradg and ‖·‖g denote the norm and gradient with respect to g. Fur-
thermore the function ψ is definable in the o-minimal structure R(C) on
(R,+, ·).

The theorem follows from Kurdyka’s version for functions definable in an o-
minimal structure on (R,+, ·). However, we need the following small lemma.

Lemma 1.1.23 Let M a Riemannian manifold and S a submanifold with
different Riemannian metric g = 〈〈·, ·〉〉. Assume that for any compact set
K ⊂ M there is a constant CK with ‖gx‖ ≤ CK for all x ∈ K ∩ S, ‖·‖
denoting the operator norm with respect to the Riemannian metric on M .
Let f : S → R be a differentiable function. Then for any compact set K
there is a constant ĈK > 0 such that

‖grad f(x)‖ ≤ ĈK
∥∥gradg f(x)

∥∥
g

for all x ∈ S ∩K.

Proof: Note that we can write 〈〈v, w〉〉 as 〈H(x)v, w〉, where H(x) : TxS →
TxS is a positive definite, self adjoint linear map with respect to the Rie-
mannian metric on M . Using local charts, we see that the induced vector
bundle map H : TS → TS is continuous. Note that ‖gx‖ ≤ CK is equivalent
to ‖H(x)‖ ≤ CK, ‖·‖ denoting the respective operator norms. As H(x) is
self-adjoint with respect to 〈·, ·〉, we have

∥∥gradg f(x)
∥∥2

g
=
〈
grad f(x), H(x)−1 grad f(x)

〉
≥ C−1

K ‖grad f(x)‖2 .

This proves the lemma. �

 Lojasiewicz gradient inequality Kurdyka [101] proved the above theorem
for functions f : U → R definable in an o-minimal structure on (R,+, ·) with
U an bounded open subset of Euclidean Rn. However, his proof also works for
definable, bounded submanifolds of Rn with the Riemannian metric induced
from the Euclidean one. As f is a bounded C-function the submanifold S
must be a C-set. By using local charts, see Propositions 1.1.4, 1.1.5, we can
assume that f and S are definable in R(C). Further, the theorem does not
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depend on the particular Riemannian metric on M , changing the metric just
requires a change of the constant C in (1.4). By Lemma 1.1.23 we change
the metric to g with just introducing another constant in 1.4. Thus it follows
directly from the version of Kurdyka’s theorem for submanifolds of Euclidean
space in the o-minimal setting. �

Remark 1.1.24

1. The bound on ‖gx‖ is necessary, without it the  Lojasiewicz gradient
inequality does not hold.

2. If the o-minimal structure R(C) is polynomially bounded, [53], we can
choose ψ(s) = s1−µ for a suitable µ ∈ (0, 1), [101]. This gives the
classical  Lojasiewicz gradient inequality

‖grad f(x)‖ ≥ C |f(x)|µ .

3. Unlike in Euclidean space, we do not give directly the  Lojasiewicz gra-
dient inequality on any relatively compact, open subset U of M . This
is due to the fact, that local charts will not necessarily cover a neigh-
borhood of U . This situation will be covered by the next corollary.

As a straightforward corollary we see that the  Lojasiewicz gradient in-
equality can be extended to any compact subset of M instead of single points.
Our proof is similar to the argument used in [31] to show that for a domain
stratification of a non-smooth, definable f , the functions ψ can chosen uni-
formly for all strata near x∗.

Corollary 1.1.25 Let K be a compact subset of an analytic Riemannian
manifold M . Assume that f : M → R is a continuously differentiable C-
function. There exist a neighborhood U of K in M , constants C > 0, ρ > 0
and a strictly increasing C1 function ψ : (0, ρ) → R+ such that for x ∈
U ∩ f−1((0, ρ))

‖gradψ ◦ f(x)‖ ≥ C holds. (1.5)

Furthermore the function ψ is definable in the o-minimal structure R(C) on
(R,+, ·).
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Proof: As K is compact, we can cover it by a finite number of open set Ui
on which the  Lojasiewicz gradient inequality holds, see Theorem 1.1.22. This
gives a finite number of definable functions ψi : (0, ρi) → R+. Let ρ̃ = min ρi.
By Lemma 1.1.6 maxψ′

i coincides with one ψ′
j on an interval (0, ρ) ⊂ (0, ρ̃).

Thus ψj : (0, ρ) → R+ is the required definable function for the neighborhood
U =

⋃
Ui of K. �
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1.2 AC vector fields

1.2.1 Convergence properties of integral curves

In this section we define AC-vector fields and discuss the convergence prop-
erties of their integral curves. Here and in the sequel, we will denote the
Riemannian metric on a manifold M by 〈·, ·〉.

Definition 1.2.1 Let M be a Riemannian manifold, X a continuous vector
field on M and f : M → R a continuous function. We call X an angle con-
dition (AC) vector field with associated Lyapunov function f if the following
conditions hold:

• f is non-constant on open sets,

• f is piecewise C1 with domain stratification Sj, j ∈ Λ,

• for any compact set K there is a constant ε > 0 such that for all j ∈ Λ
and all x ∈ Sj ∩K with X(x) ∈ TxSj the estimate

−
〈
gradj f(x), X(x)

〉
≥ ε

∥∥gradj f(x)
∥∥ ‖X(x)‖ (AC)

holds13.

Lemma 1.2.2 Let X be an (AC) vector field on a Riemannian manifold M
with Lyapunov function f . Assume that f has the domain stratification Sj,
j ∈ Λ. Then X satisfies the properties of Definition 1.2.1 with respect to any
refinement S̃l, l ∈ Λ̃, i.e. any stratification such that the Sj are unions of
strata S̃l.

Proof: Let S̃l, l ∈ Λ̃ be a refinement14 of Sj, j ∈ Λ. Furthermore let
x ∈ S̃l with X(x) ∈ TxS̃l, X(x) 6= 0 and gradl f(x) 6= 0. Then x is con-
tained in a stratum Sj with X(x) ∈ TxSj and gradj f(x) 6= 0. Note that
πTxS̃l

(gradj f(x)) = gradl f(x) and πTxS̃l
(X(x)) = X(x), where πTxS̃l

denotes

the projection on TxS̃l with respect to the Riemannian metric. In particular
‖gradl f(x)‖ ≤

∥∥gradj f(x)
∥∥. For a relatively compact neighborhood U of x

13As we defined in the previous section, gradj f denotes the gradient of f on Sj with
respect to the induced Riemannian metric.

14We assume that Λ̃ ∩ Λ = ∅.
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let ε > 0 be the constant such that the inequality (AC) is satisfied for the
stratification Sj, j ∈ Λ. Since X(x) ∈ TxS̃l, we get

− 〈gradl f(x), X(x)〉 = −
〈
gradj f(x), X(x)

〉

≥ ε
∥∥gradj f(x)

∥∥ ‖X(x)‖ ≥ ε ‖gradl f(x)‖ ‖X(x)‖

for all x ∈ U . This proves the lemma. �

Lemma 1.2.3 Let X be a continuous vector field on an analytic Riemannian
manifold M and f : M → R be a continuous C-function, non-constant on
open sets. Assume that the domain stratification of f is an (af)-stratification
by C-sets and X satisfies the condition of Definition 1.2.1 for all x ∈M which
are contained in strata of dimension dimM , i.e. for any compact set K ⊂M
we have a constant εK > 0 such that (AC) holds in points of K contained in
strata of dimension dimM . Then X is an (AC) vector field with Lyapunov
function f . The new ε̃K for compact sets K meeting the highest dimensional
strata coincides with the a priori given εK.

Proof: Let x be a point in a lower dimensional stratum Sj with gradj f(x) 6=
0. We denote gradj f(x) by w. There is a stratum Sl with dimSl = dimM

and Sj ⊂ Sl. Since f is non-constant on open sets and rk df |Sl
is constant,

we have for all y ∈ Sl that gradl f(y) 6= 0. Let (xk) ⊂ Sl be a sequence with
xk → x and vk := ‖gradl f(xk)‖−1 gradl f(xk) converging to some v ∈ TxM .
By Lemma 1.1.11 we know that that πTxSj

(v) = λw, where λ ∈ R and πTxSj

denotes the projection on TxSj with respect to the Riemannian metric.
By using local charts we prove now that it is possible to choose Sl and a

sequence (xk) with λ ≥ 0. Let φ : U → Rn be an analytic chart around x. By
Proposition 1.1.4 we can assume that the images of Si∩U , i ∈ Λ are definable
in an o-minimal structure. Denote by 〈〈·, ·〉〉 = φ−1∗ 〈·, ·〉 the pullback15 of
the Riemannian metric on M and define the function W : φ(U) → R by
W (y) := f ◦ φ−1(y). Note that

Txk
φ(vk) =

g̃radlW (φ(xk))∥∥∥g̃radlW (φ(xk))
∥∥∥

15See [1] for a definition of pull-backs.
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converges to Txφv where g̃radl denotes that gradient on φ(Sl) with respect
to 〈〈·, ·〉〉. Furthermore

Txφ(w) =
g̃radjW (φ(x))∥∥∥g̃radjW (φ(x))

∥∥∥
.

Thus if λ < 0 for all sequences then we have dW (y)(g̃radjW (φ(x))) < C < 0

for all y ∈ Ũ ∩ φ(Sl ∩ U) with Ũ a suitable neighborhood of φ(x) and C a
constant. As we were free to choose above any maximal dimensional stratum
whose closure contains x, we have indeed that dW (y)(g̃radjW (φ(x))) < C <

0 for all y ∈ Ũ ∩ φ(Si ∩ U), i ∈ Λ, dimSi = dimM . Otherwise we could just
switch the stratum and get a sequence with λ ≥ 0.

Choose a C1 curve θ in φ(Sj∩U) with θ(0) = φ(x), θ′(0) = g̃radjW (φ(x)).
The function W ◦ θ is strictly increasing in an open interval (−a, a) around
0. Let tk ∈ R+ be a sequence with tk → 0. Connect θ(−tk), θ(tk) with a
straight line ηk. Note, that the directions

dk =
θ(tk) − θ(−tk)
|θ(tk) − θ(−tk)|

of these lines converge to
∥∥∥g̃radjW (φ(x))

∥∥∥
−1

g̃radjW (φ(x)). Thus for large

k we have after eventually shrinking Ũ that dW (y)(dk) < C < 0 for all
y ∈ Ũ ∩ φ(Si ∩ U), i ∈ Λ, dimSi = dimM .

Fix a k ∈ N. We consider the definable family (ly) of affine linear sub-
spaces of Rn with

ly = {y + rdk | r ∈ R}.
There is a y∗ ∈ Rn with ηk ⊂ ly∗. Denote by Σ the union of the lower
dimensional strata in Ũ . Then there is a sequence ym → y∗ with lym

6= ly∗

such that the intersection of each lym
with Σ is finite. Otherwise, we see by

using a cell decomposition [53] that the definable set

Rn × Σ ∩ {(y, z) | z ∈ ly}

would contain an open subset, which contradicts the fact that dim Σ < n.
Hence for each ηk there is a sequence of lines (ηmk ), ηmk → ηk such that each
ηmk meets Σ in a finite number of points.
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On the lines ηmk orientated in direction dk the function W is strictly
decreasing. By continuity of W it must be decreasing on ηk, although
not strictly. But on the other hand we have for sufficiently large k that
W (θ(−tk)) < W (θ(tk)). This gives a contradiction and there must be indeed
a sequence with λ ≥ 0.

If there is a sequence with λ = 0 then v must be orthogonal to TxSj and
by the continuity of X the (AC) inequality on Sl implies that X(x) 6∈ TxSj.
By Definition 1.2.1 the inequality (AC) does not have to be satisfied for such
x ∈ M . Thus we can assume that we have a sequence (xk) with λ > 0. Due
to ‖v‖ = 1 and ‖w‖ = 1 we get λ ≤ 1.

Let ε > 0 the constant such that inequality (AC) holds on the intersection
of a relatively compact neighborhood of x with Sl. Then

ε ≤ lim
k→∞

−
〈
vk,

X(xk)

‖X(xk)‖

〉
= −

〈
v,

X(x)

‖X(x)‖

〉

= −
〈
πTxSj

(v),
X(x)

‖X(x)‖

〉
= −λ

〈
w,

X(x)

‖X(x)‖

〉

≤ −
〈
w,

X(x)

‖X(x)‖

〉
.

Thus given a compact set K ⊂M , we have for all x ∈ K

εK ≤ −
〈

gradj f(x)∥∥gradj f(x)
∥∥ ,

X(x)

‖X(x)‖

〉
,

where εK > 0 is a constant such that inequality (AC) holds on the intersection
of a relatively compact neighborhood of K with the strata of dimension
dimM . �

Proposition 1.2.4 Let X be a Lipschitz continuous (AC) vector field on
an analytic Riemannian manifold M with an Lyapunov function f . Assume
that f is a C-function and the stratification of f consists of C-sets. Then X
is gradient-like, i.e. for any non-constant integral curve γ of X the function
f ◦ γ is strictly decreasing.

Proof: Fix a domain stratification of f and a non-constant integral curve
γ. We can refine this stratification to an (af)-stratification. By Lemma 1.2.2
this refined stratification still satisfies the conditions of Definition 1.2.1. First
we show that f ◦ γ is non-increasing. Take a compact interval [a, b] in the
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domain of γ. Choose a relatively compact neighborhood N of γ([a, b]) such
that there is no equilibrium of X on N . We can approximate X on N by a
sequence of analytic vector fields Xk, i.e.

lim
k→∞

sup
x∈N

‖X(x) −Xk(x)‖ = 0.

As X does not vanish on N the angle between X and Xk converges uniformly
to 0 for k → ∞. Hence, for sufficiently large k the Xk satisfy the inequality
(2) in points of the highest dimensional strata with εk depending on N and
on k. Lemma 1.2.3 implies that the Xk are indeed (AC) vector fields with
Lyapunov function f . The integral curves of the Xk are analytic and therefore
belong to the analytic-geometric category. Consider the integral curves γk
starting at time a in γ(a). By the Lipschitz continuity of X, the curves γk
converge uniformly to γ on the interval [a, b]. As they belong to the analytic-
geometric category they can only leave or enter lower dimensional strata in
a finite number of points in time in the compact interval [a, b]. Therefore,
for each k, the interval is divided into a finite number of open subintervals
on which γk stays in a fixed stratum. If for a stratum Si, a subinterval
(c, d) ⊂ (a, b), all t ∈ (c, d) we have γk(t) ∈ Si then f ◦ γk is continuously
differentiable on (c, d) and must be decreasing by the (AC) condition. Thus
by continuity of f ◦ γk, f ◦ γk must be non-increasing for the whole interval
[a, b]. As the γk converge uniformly to γ, we get that f ◦ γ is non-increasing,
too.

We still have to show that f ◦γ is not constant on open intervals. Assume
that f ◦γ is constant on an interval (a, b). Let Sj be the highest dimensional
stratum met by γ|(a,b). Note that the dimension of Sj can be lower than
dimension of M . Choose y ∈ γ((a, b)) and t∗ ∈ (a, b) with y ∈ Sj, and
y = γ(t∗). We have that X(y) 6= 0. As Sj was the highest dimensional
stratum met by γ|(a,b) there must be a neighborhood of t∗ in (a, b) such that
its image under γ is contained in Sj. Thus X(y) ∈ TySj. If gradj f(y) 6= 0
we get directly a contradiction from the (AC) conditions. Let us consider
the other case. Since rk df |Si

is constant on each stratum Si and f is non-
constant on open sets there must be a stratum Sl with dim Sl = dimM ,
Sj ⊂ Sl and gradl f(x) 6= 0 for all x ∈ Sl. Let (xk) be a sequence in Sl with
xk → y and X(xk) 6= 0. W.l.o.g. let ker df(xk) converge to a linear subspace
L ⊂ TyM . The Thom condition implies that ker df |Sj

(y) ⊂ L. Because
f ◦ γ|(a,b) is constant, differentiable in t∗ and γ̇(t∗) = X(y) ∈ TySj, we have
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X(y) ∈ ker df |Sj
(y) ⊂ TySj. This implies that16

dist(X(xk), ker df(xk)) → 0.

which gives 〈
X(xk)

‖X(xk)‖
,

gradl f(xk)

‖gradl f(xk)‖

〉
→ 0.

This contradicts the definition of (AC) vector fields. Hence, f ◦γ|(a,b) cannot
be constant. �

Theorem 1.2.5 Let X be a Lipschitz continuous AC vector field on an an-
alytic Riemannian manifold M with a Lyapunov function f . Assume that f
is a C-function and its strata are C-sets. Then the ω-limit set of any integral
curve of X contains at most one point.

Our proof is centered around the approach of  Lojasiewicz [101, 113] to
derive a bound of the length of the curve from the  Lojasiewicz gradient
inequality.
Proof: Let γ be a non-constant integral curve of X and x∗ be an element of
the ω-limit set of γ. Furthermore let f : M → R be the associated C-function.
W.l.o.g. we can assume that f(x∗) = 0. Since f ◦ γ is by Proposition 1.2.4
strictly decreasing, this implies that f ◦ γ(t) > 0 for all t ∈ R. Refine the
domain stratification of f such that it is (af ) and the sign of f is constant17

on the strata. We denote this stratification by Sj, j ∈ Λ and by Λ̃ the index
set of the strata on which f is non-constant. Applying Theorem 1.1.22 to the
strata Sj, with x∗ ∈ Sj and f non-constant on Sj, we get a relatively compact
neighborhood U of x∗, constants Cj > 0, ρj > 0 and strictly increasing, C1

functions ψj : (0, ρj) → R+ such that for all j ∈ Λ̃, x ∈ Sj ∩ U ∩ f−1((0, ρj))

∥∥grad(ψj ◦ f)|Sj
(x)
∥∥ > Cj.

W.l.o.g. we assume that ψj(r) → 0 for r → 0. Note that only a finite number
of strata Sj meet U , w.l.o.g. for j ∈ {1, . . . , k}. Let [t1, t2] a closed, finite
interval with γ([t1, t2]) ⊂ U . Assume that we have a non-empty interval
(t3, t4) ⊂ [t1, t2] with γ((t3, t4)) ⊂ Sj. Since rk df |Sj

is constant and Propo-
sition 1.2.4 ensures that f ◦ γ is strictly decreasing, we have gradj f(x) 6= 0

16We define for v ∈ TxM , L ⊂ TxM the distance dist(v, L) = supw∈L ‖v − w‖.
17i.e. either f > 0, f < 0 or f = 0 on each stratum
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for all x ∈ Sj. Let ε the (AC) constant for U . For t ∈ (t3, t4) we have

− d

dt
(ψj ◦ f ◦ γ) (t) = −

〈
gradj (ψj ◦ f) (γ(t)), γ̇(t)

〉

≥ εψ′
j(f(γ(t)))

∥∥gradj f(γ(t))
∥∥ ‖γ̇(t)‖ ≥ εCj ‖γ̇(t)‖

which gives
∫ t4

t3

‖γ̇(t)‖ dt ≤ ψj(f(γ(t3))) − ψj(f(γ(t4)))

Cjε
. (1.6)

As in the proof of Proposition 1.2.4 we approximate X on the whole manifold
M by analytic vector fields Xk. Again, in a relatively compact neighborhood
N ⊂ U of γ([t1, t2]) we have that X(x) 6= 0 for all x ∈ N and therefore
the angle between the Xk and X tends uniformly to zero for large k. We
can now apply Lemma 1.2.3 to see that the Xk are indeed (AC) vector fields
with Lyapunov function f . Let εk be the (AC) constants for N and Xk.
Note that εk → ε. This is clear on the high dimensional strata as the angle
between X and Xk tends to 0 uniformly on N . Lemma 1.2.3 extends this
to the low dimensional strata. Let γk be the integral curve of Xk starting in
γ(t1) at time t1. W.l.o.g. each γk is defined on [t1, t2] and γ([t1, t2]) ⊂ N . As
in the proof of Proposition 1.2.4 every γk intersects, leaves or enters lower
dimensional strata only finitely often on [t1, t2] due to the analyticity of the
γk. By Proposition 1.2.4 the γk can meet the lower dimensional strata, on
which f is constant, only in a finite number of points for t ∈ [t1, t2]. Thus,
these strata can be ignored when estimating the length of γk. Using the
bound (1.6) above with γk and exploiting the monotonicity of the ψj and
f ◦ γk we can deduce that

∫ t2

t1

‖γ̇k(t)‖ dt ≤
∑

j∈Λ̃
Sj∩U 6=∅

ψj(f(γk(t1)))

Cjεk
.

But then ∫ t2

t1

‖γ̇(t)‖ dt ≤
∑

j∈Λ̃
Sj∩U 6=∅

ψj(f(γ(t1)))

Cjε
.

Since f(x∗) = 0, the sum

∑

j∈Λ̃
Sj∩U 6=∅

ψj(f(γ(tk)))

Cjε

39



converge to 0 for any sequence tk → ∞ with γ(tk) → x∗. Hence γ(t) cannot
leave U anymore for sufficient large tk and its length is bounded. Thus γ(t)
converges to x∗. �
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1.2.2 Topological properties of (AC) systems

In this section we consider some topological properties of (AC) systems. We
have shown in the previous section that the integral curves of an (AC) vector
field converge if the Lyapunov function is from the class of C-functions. Of
course, the same holds for the integral curves of the gradient vector field of
the Lyapunov function itself18. Hence, we can view the convergence of the
integral curves of an (AC) vector field as inherited from the gradient vector
field. It is natural to ask whether further topological properties of the flow
are inherited from the Lyapunov function.

First we consider the question, if the linearization of the gradient field of
the Lyapunov function at a non-degenerate critical point19 and the (AC) vec-
tor field are topologically equivalent near this point. Recall, that two vector
fields are called topologically equivalent, if there is a homeomorphism which
maps trajectories of the flows of the first vector field onto the trajectories of
the second and visa versa, and preserves the orientation of the flows on the
trajectories [67, Def. 1.7.2. and 1.7.3]. From the Hartmann-Grobmann theo-
rem [67, Thm. 1.3.1] follows that if x ∈M is a non-degenerate critical point
of a smooth function f : M → R then the gradient vector field is (locally)
topologically equivalent to its linearization at x, see also [77, Proof 3.10].
One might wonder if this passes over to the (AC) vector field, too, i.e. if the
(AC) vector field is topologically to the linearization of the gradient vector
field in a non-degenerate critical point of the Lyapunov function. However,
this is not the case. Take for example the function f(x, y) = x2 − y2 in R2.
The point 0 is obviously a non-degenerate critical point of f . We choose
three non-negative C1-functions ζ1, ζ2, ζ3 : R2 → R+ on R2 with

ζ1(x, y) =

{
y2 for y > 0
0 for y ≤ 0

,

ζ2(x, y) = ζ1(x,−y),

ζ3(x, y) =

{ (
x4

9
− y2

)2

for |y| < x2

3

0 for |y| ≥ x2

3

18This can be either derived from the convergence for functions definable in an o-minimal
structure on (R,+, ·) [101] or as a special case of our convergence theorems.

19i.e. the Hessian is non-degenerate, see [77].
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Further, we define the three vector fields

X1(x, y) =

(
−x

y − x2

)
, X2(x, y) =

(
−x

y + x2

)
, X3(x, y) =

(
−x
y

)

on R2. Note that these three vector fields are all (AC) with the Lyapunov
function f given above on a suitably small neighborhood U of 0. As ζ1, ζ2,
ζ3 are non-negative, the sum

Y = ζ1X1 + ζ2X2 + ζ3X3

is an (AC) vector field on U with Lyapunov function f . The figure 1.1 shows
the normalized vector field, i.e. ‖Y ‖−1 Y , and the boundaries of the region of
attraction of the point 0. The vector fields X1 and X2 have stable manifolds
S1 = {(x, x2/3) | x ∈ R} and S2 = {(x,−x2/3) | x ∈ R} respectively [67].
Our construction implies that for Y the region of attraction of the origin
contains {(x, y) | |y| ≤ x2/3}. Further, the origin is unstable as Y restricted
to the y-axis is just an unstable linear vector field multiplied by a non-
negative scalar function. Since the region of attraction of 0 contains an open
set in any neighborhood of 0, but on the other hand the point 0 is not a
stable equilibrium of Y , the vector field Y cannot be topologically equivalent
to any linear vector field. In particular it is not topologically equivalent near
0 to the linearization of grad f in 0.

However, it is possible to give a result on the topology of the set of tra-
jectories attracted by a compact subset of a critical level set. More precisely,
we can extend a theorem on Nowel and Szafraniec [126, 127] for analytic
gradient vector fields to (AC) vector fields in a fairly straightforward man-
ner. Consider an analytic function f : M → R with gradient vector field
grad f . Nowel and Szafraniec have shown that the Čech-Alexander cohomol-
ogy groups of the family of trajectories attracted by a set K ⊂ f−1({y})
and of the set U ∩ {x ∈ M | f(x) > y}, for a suitable neighborhood U of
K, are isomorphic. For (AC) systems the same result holds under the con-
dition that the critical points of the Lyapunov function and the vector field
coincide. Thus, we have to following extension of [127, Thm. 2.25].

Theorem 1.2.6 Let X be an (AC) vector field on an analytic Rieman-
nian manifold M with Lyapunov function f , which is proper, C1 and a
C-function. Assume that the equilibria of X and the critical points of f co-
incide. Furthermore, let K be a compact C-set which is contained in the
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Figure 1.1: The normalized vector field Y
‖Y ‖

. The two solid lines denote the
boundary of the region of attraction of 0.

level set {x ∈ M | f(x) = 0}. We denote by Uδ the set Uδ = {x ∈
M | supy∈K dist(x, y) < δ}. Assume that we have an Uδ such that for

any δ̂ < δ the set Uδ̂ ∩ {x ∈ M | f(x) > 0} is homotopy equivalent to
Uδ ∩ {x ∈ M | f(x) > 0}. Then for sufficiently small y ∈ R, y > 0, the
Čech-Alexander cohomology groups Ȟ∗({x ∈ M | f(x) = y, ω(x) ∈ K}) and
Ȟ∗(Uδ ∩ {x ∈ M | f(x) > 0}) are isomorphic.

Note, that it is also possible to use general neighborhoods U of K in
conjunction with the condition from [127].
Proof: Since the arguments of Nowel and Szafraniec with some modifica-
tions can be applied to this case, we will only sketch these changes and not
provide the complete argument.

(1) First we construct a “disturbance” h of f as in [127]. By [53, Theorem
1.20] there is a non-negative20 C-function g : M → R, twice continuously
differentiable, with g(x) = 0 ⇔ x ∈ K. Nowel and Szafraniec have shown,
that there are constants ρ1 > 0, ρ2 > 0 and an odd, strictly increasing C1-
bijection φ : R → R which is a C-map and for all x ∈ f−1((0, ρ1))∩g−1((0, ρ2))
with df(x) = 0 or dg(x) = 0 implies f(x) ≥ 2φ(g(x)) [127, (2.1)]. It follows

20That the function is non-negative can be trivially ensured by squaring.
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directly from Corollary 1.1.25 that there is a δ > 0, and constants C > 0,
ρ3 > 0 and a strictly increasing C1-function, definable in the o-minimal
structure R(C), ψ : R → R+ such that for x ∈ Uδ ∩ f−1((0, ρ3))

‖gradψ ◦ f(x)‖ ≥ C

holds. Further, we can assume that ψ′(t) → ∞ for t→ 0, ρ3 < min{1, ρ1, ρ2}
and ψ′(t) is > 1 and strictly decreasing on (0, ρ3). Note, that ψ is a bijection
(0, ρ3) → (0, ψ(ρ3)). Hence, we can choose a definable, strictly increasing
function σ : (0, 1) → (0, 1) such that σ(t) → 0 for t→ 0 and for all t ∈ (0, 1)

ψ(σ(t)) < t2.

By the monotonicity theorem [53, Thm. 4.1], we can w.l.o.g. assume that
σ is C1 on (0, 1) ∩ φ((0, ρ3)). Note that t < ψ(t) for all t ∈ (0, ρ3). Hence,
σ(t) < t for t ∈ (0, ρ4) ⊂ φ((0, ρ3)) with ρ4 < 1 sufficiently small. Using the
monotonicity theorem and the fact that derivatives of definable functions are
definable, we can assume that ψ′(t) > 0 and σ′(t) > 0 for all t ∈ (0, ρ4). A
combination of the monotonicity theorem and an integration argument shows
that

ψ′(σ(t))σ′(t) < 1

for all t sufficiently close to 0, i.e. for all t ∈ (0, ρ4) if we choose ρ4 sufficiently
small.

Let U = Uδ ∩ (φ ◦ g)−1((0, ρ4))) We define21 h : U → R as

h(x) = f(x) − σ(φ(g(x))).

(2) By the same argument as in [127, Lem. 2.2] we can show that x ∈ U
and g(x) sufficiently small, we have dh(x) 6= 0

(3) Assume that we are given a ε > 0. Let x ∈ U with h(x) = 0. Then
f(x) = σ(φ(g(x))) and we get

‖grad(σ ◦ φ ◦ g)(x)‖ = σ′(φ(g(x))) ‖grad(φ ◦ g)(x)‖
≤ 1

ψ′(σ(φ(g(x)))︸ ︷︷ ︸
=f(x)

)
‖grad(φ ◦ g)(x)‖

< C−1 ‖grad f(x)‖ ‖grad(φ ◦ g)(x)‖ .
21In fact, h can be extended to a C1 function on the whole manifold.
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Note that ‖grad(φ ◦ g)(x)‖ converges to 0 for g(x) → 0. Thus if g(x) is
sufficiently small then we have that for all x ∈ U , h(x) = 0 implies that

ε

2
‖grad f(x)‖ > ‖grad(σ ◦ φ ◦ g)(x)‖ . (1.7)

(4) For all x ∈ U with h(x) = 0, f(x) 6= 0 and g(x) sufficiently small we
have 〈gradh(x), X(x)〉 > 0. Note that U is relatively compact. Let ε > 0 the
(AC) constant for U . Then for all x ∈ U with h(x) = 0 and g(x) sufficiently
small the estimate (1.7) holds. This gives

−〈gradh(x), X(x)〉 = −〈grad f(x) − grad(σ ◦ ψ ◦ g)(x), X(x)〉
≥ ε ‖X(x)‖ ‖grad f(x)‖ − ‖X(x)‖ ‖grad(σ ◦ ψ ◦ g)(x)‖
≥ ε

2
‖X(x)‖ ‖grad f(x)‖ > 0

Since the same estimate as in the gradient case, up to a multiplicative
constant, holds for the length of the integral curves of (AC) vector fields,
the remaining argument is basically the same as the one for of Theorem
3.13 in [127]. Note, that since Nowel and Szafraniec consider only analytic
functions f , we have to adapt the arguments to our case of a non-analytic f .
But this is achieved by the use of our general disturbance term σ(φ(g(x)))
instead of (φ(g(x)))N in [127]. Our choice of the function σ ensures that this
does not give any problems and the proofs can be easily modified. �

We will now give some examples that the (AC) condition is crucial for
the theorem above.

Example 1.2.7 Let M = R2\{0}. In polar coordinates (r, θ), with (r, θ) 7→
(r cos(θ), r sin(θ)) [63, p. 217] , we can define the following vector field X̃

X̃(r, θ) =

(
r(1 − r)3

(1 − r)2(sin(θ))2

)
.

This yields in Euclidean coordinates the vector field X,

X(x) = X(x1, x2) = (1 − ‖x‖)3

(
x1

x2

)
+ (1 − ‖x‖)2x2

2

(
−x2

x1

)
.

One easily checks that the whole unit circle S1 is the set of equilibria of X
and that only the equilibria a = (0, 1) and b = (0,−1) have non-trivial sets of
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Figure 1.2: The normalized vector field X
‖X‖

. For numerical reasons we plotted
X

‖X‖
only if ‖X‖ > 0.0001, otherwise we plotted X itself. The solid circle

denotes the set of equilibria.

attraction. Figure 1.2 shows the normalized vector field, i.e. ‖X(x)‖−1X(x).
Furthermore, X has the Lyapunov function f(x) = (1 − ‖x‖)2.
The (AC) condition is not satisfied with respect to the Lyapunov function f ,
as 〈‖X(x)‖−1X(x), x〉 → 0 for x→ S1\{a, b}. The set of non-trivial trajecto-
ries converging to S1 is identical to the set of non-trivial trajectories converg-
ing to K = {a, b}. However, any neighborhood Uδ of K as in Theorem 1.2.6
will have two connected components. Using this argument we see that for
any Uδ for S1 as in Theorem 1.2.6 and all y ∈ (0, 1), the cohomology groups
Ȟ∗({x ∈ R2 | f(x) = y, ω(x) ∈ K}) and Ȟ∗(Uδ ∩ {x ∈ R2 | f(x) > 0}) are
not isomorphic.

Example 1.2.8 Let M = R3 \ {(x1, x2, 0) | (x1, x2) ∈ R2}. In spherical
coordinates (r, θ, τ), with (r, θ, τ) 7→ (r cos(θ), r cos(τ) sin(θ), r sin(τ) sin(θ))
for (r, θ, τ) ∈ R+ × (0, π)× (0, 2π) [63, p. 217], we define a vector field Ỹ by

Ỹ (r, θ, τ) =



r(1 − r)
sin(2θ)

0


 .
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Transformation to Euclidean coordinates yields a vector field Y on M . The
set of equilibria consists of the unit circle S = {(0, x2, x3) | x2

2 + x2
3 = 1}.

The function f(x) = (1−‖x‖)2 is a Lyapunov function of Y . For any closed
subset K ⊂ S there is a smooth diffeomorphism φ of M with the following
properties:

• It leaves for any r > 0 the sphere {x ∈ R3 | ‖x‖ = r} invariant.

• φ(S) ∩ S = K

• f is a Lyapunov function of the induced vector field X̃ = (Txφ)Y (φ(x)).

The purpose of the diffeomorphism φ is to disturb Y such that only points
of K in S have non-trivial sets of attraction. We define the vector field
X(x) := (1 − ‖x‖)2X̃(x) on M . Then f is a Lyapunov function of X. As in
the previous case it is easy to check thatX does not satisfy the (AC) condition
with respect to the Lyapunov function f . Furthermore the set of equilibria of
X is the whole unit sphere. Since X is the scalar multiple of the pullback of
Y , φ maps outside of the unit sphere trajectories of Y onto trajectories of X.
Hence, only subsets of φ(S) have a non-trivial region of attraction. Further,
the region of attraction of φ(S) consists of φ(S)∪ (M \Sn−1). If we consider
the set S in M , then for any suitably small δ > 0, the neighborhood Uδ =
{x ∈ R3 | supy∈S dist(x, y) < δ} satisfies the conditions of Theorem 1.2.6.
However, the set of non-trivial trajectories attracted by S is homeomorphic
to K × {(x1, x2) ∈ R2 | x1 6= 0 or (x1, x2) = 0} and its Čech-Alexander-
cohomology will in general not be isomorphic to Ȟ∗(Uδ∩{x ∈M | f(x) > 0}).
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1.2.3 Applications

In this section we consider some examples for the application of the con-
vergence theorem for (AC) vector fields. As the first example we consider
dissipative systems with a Hessian-driven damping term of the form

ẍ = −c1ẋ− c2 (Hessx f) ẋ− grad f(x), c1, c2 > 0. (1.8)

Here Hessx f denotes the Hessian of f . These systems were first considered
by Alvarez et al. [7] for optimization purposes, albeit only on Hilbert spaces.
For analytic functions f they proved the convergence of the integral curves
of (1.8) in Euclidean space. However, they showed this using directly the
 Lojasiewicz gradient inequality and not by considering any angle conditions.

Theorem 1.2.9 Let M be a Riemannian manifold and f : M → R a C2

function. Then the vector field on TM defined by

∇ẋẋ = −c1ẋ− c2 Hessx fẋ− grad f(x) (1.9)

is an (AC) vector field. Here, ∇ denotes the Riemannian connection. If
M is analytic with analytic Riemannian metric and f is a C-function, then
ω-limit set of any solution contains at most one point.

Proof: Let K : TTM → TM denote the connection map22, i.e. ∇XY (x) =
K((TxX)Y (x)), and π : TM → M the tangent bundle projection, cf. [138].
We define on TM the vector field Γ as the geodesic vector field, i.e. the
vector field of the geodesic flow [99, 138]. Let us recall the definition of
horizontal and vertical lifts from TM to TTM , cf. [52, 99, 138, 165]. For a
map L : TM → TM , with π(L(v)) = Lπ(v) for all v ∈ TM , we define the
horizontal and vertical lifts, LH and LV , as the vector fields on TM with

TηπL
H(η) = L(η) , KLH(η) = 0,

TηπL
V (η) = 0 , KLV (η) = L(η).

The splitting of the tangent spaces TηTM into a vertical and horizontal
spaces, cf. [99,138], ensures that these lifts are well-defined. Using represen-
tations of K and Tηπ in local coordinates [99,138], one sees that LH , LV are

22In some instances in literature K is called the connection and ∇ the covariant deriva-
tive, see [99, 106].
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smooth if L is a smooth function. We can now define a vector field X on
TM by

X(η) := Γ(η) − c1η
V − c2(Hessπ(η) fη)V − (grad f(π(η)))V , for η ∈ TM.

Let γ : (a, b) → TM be an integral curve of X. We define α : (a, b) → M as
the projection of γ to M , i.e. α(t) = π(γ(t)). Note, that Tηπ(Γ(η)) = η [99,
Lem. 3.1.15]. Denoting Y (η) = X(η) − Γ(η), we see that TηπY (η) = 0 and

α̇(t) = Tγ(t)π(γ̇(t)) = Tγ(t)π (Γ(γ(t)) + Y (γ(t))) = Tγ(t)π(Γ(γ(t))) = γ(t).

Recall that
∇α̇(t)α̇(t) = Kα̈(t),

see [99, Example 1.5.14]. Note, that this implies that KΓ(η) = 0, since
geodesics are parallel curves. Hence,

∇α̇(t)α̇(t) = Kγ̇(t)

= K
(

(Γ(γ(t)) − c1 (γ(t))V

−c2
(
Hessπ(γ(t)) f(γ(t))

)V − (grad f(π(γ(t))))V
)

= −c1γ(t) − c2 Hessπ(γ(t)) f(γ(t)) − grad f(π(γ(t)))

= −c1α̇(t) − c2 Hessα(t) f(α̇(t)) − grad f(α(t)).

Thus α(t) is a solution of (1.9). An analogous argument shows that the
tangent curve α̇ of a solution α of (1.9) is an integral curve of X. Therefore,
equation (1.9) yields the vector field X on TM . We use the energy function
E : TM → R,

E(η) = (1 + c1c2)f(π(η)) +
1

2
‖η + c2 grad f(π(η))‖2

proposed in [7] for the Hilbert space case, as Lyapunov function for X. Con-
sider the function F : TM → R, F (η) = ‖η‖2. A straight forward calculation
shows that for all η ∈ TM , ζ ∈ TηTM

dF (η)(ζ) = 〈η,Kζ〉 ,
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see [138, p. 58]. Using dF , can now calculate the differential of E by the
chain rule. This gives for η ∈ TM , ζ ∈ TηTM

dE(η)(ζ) = (1 + c1c2)df(π(η))(Tηπ(ζ))

+

〈
η + c2 grad f(π(η)), Kζ + c2K(Tπ(η) grad f)︸ ︷︷ ︸

=Hessπ(η) f

(Tηπ(ζ))

〉

= (1 + c1c2)df(π(η))(Tηπ(ζ))

+
〈
η + c2 grad f(π(η)), Kζ + c2 Hessπ(η) f(Tηπ(ζ))

〉
.

The Riemannian metric on M can be extended in a canonical way to the
Sasaki metric on TM [138, p. 55-56] by setting

〈〈ζ, ξ〉〉 = 〈Tηπ(ζ), Tηπ(ξ)〉 + 〈Kζ,Kξ〉 , ζ, ξ ∈ TηTM.

By definition of the horizontal and vertical lifts, we see that the gradient of
E with respect to this metric is given by

gradE(η) = (1 + c1c2) grad f(π(η))H + ηV + c2(Hessπ(η) f(η))H

+ c2(grad f(π(η)))V + c22(Hessπ(η) f(grad f(π(η))))H .

As already shown for the Hilbert space case in [7], we get that

〈〈gradE(η), X(η)〉〉 = −(c1 ‖η‖2 + c2 ‖grad f(π(η))‖2).

Note that

‖X(η)‖2 = ‖η‖2 +
∥∥c1η + c2 Hessπ(η) f(η) + grad f(π(η))

∥∥2

‖gradE(η)‖2 = (1 + c1c2)2
∥∥∥
(

IdTπ(η)M + Hessπ(η) f
)

grad f(π(η))
∥∥∥

2

+c22 ‖grad f(π(η))‖2 + ‖η‖2 + c22
∥∥Hessπ(η) f(η)

∥∥2
.

The continuity of Hessx f yields that for any compact set K we have a con-
stant εK > 0 with

−〈〈gradE(η), X(η)〉〉 ≥ εK ‖gradE(η)‖ ‖X(η)‖ .

Hence, the vector field X of (1.9) on TM is an (AC) vector field. If f is a
C-function and 〈·, ·〉 is analytic then the Lyapunov function E is a C-function.
Theorem 1.2.5 gives now the convergence of the integral curves. �
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In the Hilbert space case, Alvarez et al. showed that the second order
equation (1.8) can be transformed into a first order gradient-like system with
a new Lyapunov function W [7]. This first order system has the form

ẋ = −(I + J) gradW (x) (1.10)

where grad denotes the gradient with respect to the scalar product, I the
identity and J a skew symmetric linear operator. We will now show that
such first order systems are (AC) systems, too.

There are two approaches for the construction of such systems. One is
to define the vector field by using a non-degenerate, non-symmetric bilinear
form b. On a manifold M , we call any smooth section b in the bundle of
bilinear real valued maps on the tangent spaces a bilinear form. The form is
non-degenerate if it is non-degenerate bilinear form on TxM for every x ∈M .
Analogous to the Riemannian metric or symplectic form case we can associate
to any C1 function f : M → R a vector field Xf defined by df(x)(v) =
b(Xf (x), v) for all x ∈ M , v ∈ TxM . In the case of (1.10) the bilinear form
would be23 v>(I + J>)−1w and XW (x) = (I + J) gradW (x). The other
approach is to consider these vector fields as the sum of a Hamiltonian and
a gradient vector field, both from the same function f . In the case above we
have the gradient gradW (x) and the Hamiltonian vector field J gradW (x),
if J is non-degenerate. Both approaches give an (AC) vector field as the next
propositions show.

Proposition 1.2.10 Let M be a Riemannian manifold and f : M → R be
a C1 function. Assume that b is a non-degenerate bilinear form on M such
that bs(v, w) := 1/2(b(v, w) + b(w, v)) defines a Riemannian metric on M .
Then Xf is an (AC) vector field.

Proof: Let x ∈ M and U a relatively compact neighborhood of x. Since
the angle condition does not depend on the metric, we can assume that bs
coincides with the Riemannian metric on M . There exists ε > 0 such that

‖grad f(y)‖2 = df(grad f(y)) = b(Xf(y), grad f(y)) ≤ ε ‖Xf(y)‖ ‖grad f(y)‖
for all y ∈ U . Further

bs(grad f(y), Xf(y)) = df(Xf(y)) = b(Xf (y), Xf(y)) =

bs(Xf(y), Xf(y)) = ‖Xf (y)‖2 .

23Note that (I + J)−1 exists for all skew-symmetric J since x>(I + J)x = x>x > 0 for
all x ∈ R

n, i.e. ker(I + J) = {0}.
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Thus

−bs(− grad f(y), Xf(y)) ≥ 1

ε
‖Xf (y)‖ ‖grad f(y)‖ for all y ∈ U.

Therefore, Xf is an (AC) vector field with Lyapunov function −f . �

Proposition 1.2.11 Let M be a Riemannian manifold and Ω a symplectic
form on M . If f : M → R is a C1 function then grad f + Xf is an (AC)
vector field. Here Xf denotes the Hamiltonian vector field of f with respect
to Ω.

Note that this does not follow from Proposition 1.2.10 as the sum of a Rie-
mannian metric and a symplectic form is not necessarily non-degenerate. A
simple example would be the scalar product 〈(v1, v2), (w1, w2)〉 = v1w1 +
v2w1 + v1w2 and the symplectic form Ω((v1, v2), (w1, w2)) = v1w2 − v2w1 on
R2. Their sum is b((v1, v2), (w1, w2)) = v1w1 + 2v1w2 which is degenerate.
Proof: Note that

〈grad f, grad f +Xf 〉 = ‖grad f‖2 . (1.11)

From the equation

〈grad f(x), w〉 = Ω(Xf(x), w) for all w ∈ TxM,

we get that
Xf(x) = B(x) grad f(x)

with a well-defined function B(x) with values in the bundle of linear maps
TxM → TxM over M . In local charts with matrix representations for 〈·, ·〉
and Ω we see that B is continuous. Thus on every relatively compact open
set there is a constant C > 0 with

‖grad f(x) +Xf(x)‖ ≤ ‖IdTxM +B(x)‖ ‖grad f(x)‖ ≤ C ‖grad f(x)‖ ,

where IdTxM : TxM → TxM denotes the identity map and ‖I +B(x)‖ the
operator norm induced by 〈·, ·〉 on TxM . With (1.11) we get directly that on
compact sets

−〈− grad f, grad f +Xv〉 ≥ εK ‖grad f‖ ‖grad f +Xf‖

for the constant εK = C−1. �
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Remark 1.2.12 One might be tempted to conjecture that the pointwise
convergence also holds if the vector field has the form X = Xf + grad h, Xf

the Hamiltonian vector field with respect to a function f : M → R and h a
different function M → R. However, our approach cannot be applied to this
problem. The example

X(x1, x2, x3, x4) =




−2x1

x3

−x2

−2x4


 ,

similar to the one used in the introduction, shows this. X is the sum of
the gradient of f(x1, x2, x3, x4) = −x2

1 − x2
4 and the Hamiltonian vector field

Y (x1, x2, x3, x4) = (0, x3,−x2, 0)> and has integral curves converging to the
entire unit circle in {0} × R2 × {0}.

As another example we consider vector fields of the form

F (gradh) (1.12)

on a Riemannian manifold M . Here, h is a real valued function on M and
F : TM → TM is a C1 function with F (TxM) ⊂ TxM for all x ∈ M ,
F (0) = 0. Furthermore, F is assumed to satisfy a monotonicity condition,
i.e. there is a constant δ > 0 such that for all x ∈M and v ∈ TxM

〈DFx(v)v, v〉 ≥ δ ‖v‖ ‖DFx(v)v‖ (1.13)

holds, where Fx = F |TxM and D the usual derivative of functions on Hilbert
spaces. Note that the inclusion F (TxM) ⊂ TxM is necessary for (1.12) to be
a vector field, because for each v ∈ TxM the value of F (v) must be contained
in TxM . Under the conditions above the vector field (1.12) is an (AC) vector
field and we get the following convergence theorem.

Theorem 1.2.13 Let M be a Riemannian manifold and h : M → R a C2

function. Assume that F : TM → TM is a C1 function, which satisfies for all
x ∈ M : F (TxM) ⊂ TxM , F (0) = 0, and the monotonicity condition (1.13).
Then (1.12) is an (AC) vector field with Lyapunov function −h.

If M is an analytic manifold and h is a morphism of an analytic-geometric
category, then the ω-limit set of an integral curve of (1.12) contains at most
one point.
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Proof: We write Fx for F |TxM . Let us define the function

σ(t) := 〈Fx(tv), v〉

for a v ∈ TxM . Then for all t > 0

σ̇(t) = 〈DFx(tv)v, v〉 =
1

t2
〈DFx(tv)tv, tv〉

≥ δ

t2
‖tv‖ ‖DFx(tv)tv‖ = δ ‖v‖ ‖DFx(tv)v‖ .

Thus we have for all t > 0

σ(t) ≥
∫ t

0

δ ‖v‖ ‖DFx(sv)v‖ds = δ ‖v‖
∫ t

0

∥∥∥∥
d

ds
F (sv)

∥∥∥∥ ds

≥ δ ‖v‖
∥∥∥∥
∫ t

0

d

ds
F (sv)ds

∥∥∥∥ = δ ‖v‖ ‖Fx(tv)‖ .

Setting t = 1, we get

〈F (v), v〉 ≥ δ ‖v‖ ‖F (v)‖ .

Thus (1.12) is an (AC) vector field. If h is a C-function we get by Theo-
rem 1.2.5 the convergence of the integral curves. �

Similar systems of the form

F (gradh1(x)) − F (gradh2(x)) (1.14)

where considered by Popov [131], although only on Hilbert spaces. Popov
requires F besides C1 to be δ-monotone, which can be defined in the Rie-
mannian manifold setting as that there exists a δ > 0 such that

〈F (v) − F (w), v − w〉 ≥ δ ‖v − w‖2 for all x ∈M, v, w ∈ TxM. (1.15)

Since F is C1, there is for any compact set K a constant Ck such that for
all v, w ∈ K ‖F (v) − F (w)‖ ≤ CK ‖v − w‖. Thus (1.15) implies that (1.14)
is an (AC) vector field with Lyapunov function h2 − h1. Hence, if h1 and
h2 are C-functions then by Theorem 1.2.5 the integral curves either escape
to infinity without any ω-limit points in M or converge to single points.
The notion of δ-monotonicity is connected to condition (1.13) as there is a
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very similar characterization with the linearization of F on TxM . In fact,
δ-monotonicity is equivalent to local δ-monotonicity24, i.e.

〈DFx(v)w,w〉 ≥ δ ‖w‖2 for all x ∈M, v, w ∈ TxM, (1.16)

where Fx = F |TxM and D the usual derivative of functions on Hilbert spaces.
For completeness we give a short proof of the equivalence of (1.15) and (1.16).

Proposition 1.2.14 Let M be a Riemannian manifold and F : TM → TM
be a C1 function with F (TxM) ⊂ TxM for all x ∈ M . Then δ-monotonicity
of F is equivalent to local δ-monotonicity.

Proof: If we restrict F to a TxM for x ∈ M then our definitions of
local δ-monotonicity and δ-monotonicity on a manifold coincide with Popov’s
versions in [131]. With this restriction the implication of δ-monotonicity from
local one can be shown as in [131], Theorem 4.1. For the other implication
note that

〈Fx(v + tw) − Fx(v), w〉 =
1

t
〈Fx(v + tw) − Fx(v), v + tw − v〉

≥ δ

t
‖tw‖2 = δ ‖tw‖ ‖w‖ .

Thus

〈DFx(v)w,w〉 = lim
t→0

1

t
〈Fx(v + tw) − Fx(v), w〉 ≥ lim

t→0

δ

t
‖tw‖ ‖w‖ = δ ‖w‖2 .

As the constant δ does not depend on the tangent space TxM we get the
global equivalence. �

24This term comes from [131]. Note that it is in fact a global condition.
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1.3 AC differential inclusions

In this section, we extend (AC) vector fields to a class of differential inclusions
and prove a similar convergence theorem for their solutions.

Let M be a smooth manifold and 2TM the set of subsets of TM . Anal-
ogously to the Euclidean case [12], a differential inclusion on M has the
form

ẋ ∈ F (x)

where F is a map F : M → 2TM with F (x) ⊂ TxM . To define solutions of
a differential inclusion, recall that a curve γ : [a, b] → Rn is called absolutely
continuous if for any ε > 0 there is a η > 0 such that for any sequence
a ≤ a1 < b1 < . . . < ak < bk ≤ b with

k∑

i=1

(bi − ai) < η

we have
k∑

i=1

‖γ(bi) − γ(ai)‖ < ε,

see [12, p. 12]. We call curves defined on an open interval (a, b) absolutely
continuous if they are absolutely continuous on every compact subinterval
of (a, b). For curves on manifolds we use the standard definition of absolute
continuity in local charts [111, 125], i.e. a curve γ : [a, b] → M is absolutely
continuous if it is absolutely continuous in local charts. An absolutely con-
tinuous curve is differentiable almost everywhere [12, p. 12].

A solution of a differential inclusion ẋ ∈ F (x) is an absolutely continuous
curve γ : (a, b) →M such that

γ̇(t) ∈ F (γ(t))

almost everywhere25 , cf. [12, p. 93/94]. Last, we recall some continuity
conditions on the set-valued maps. A set-valued map F : M → 2TM is called
upper semicontinuous at x ∈ M , if for any neighborhood V ⊂ TM of F (x)
there is a neighborhood U of x such that

⋃

y∈U

F (y) ⊂ V,

25i.e. for all t ∈ (a, b) \N , with N a set of measure 0.
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see [12, p.41, Def. 1]. We call F simply upper semicontinuous if it is upper
semicontinuous in all x ∈ M . The map F : M → 2TM is called lower semi-
continuous at x ∈M , if for any sequence (xk) ⊂M and v ∈ F (x), there is a
sequence (vk) ⊂ TM with vk ∈ F (xk) and vk → v, see [12, p. 43]. Again, we
call F lower semicontinuous if it is lower semicontinuous in all x ∈M .

Definition 1.3.1 Let M be a Riemannian manifold, f : M → R a continuous
function and

ẋ ∈ F (x), F : M → 2TM

a differential inclusion on M . We call ẋ ∈ F (x) an angle condition (AC)
differential inclusion with associated Lyapunov function f if

• f is non-constant on open sets,

• f is piecewise C1 with domain stratification Sj, j ∈ Λ,

• F is lower semicontinuous,

• for any compact set K there is a constant εK > 0 such that for all j ∈ Λ,
x ∈ Sj ∩K and v ∈ F (x) ∩ TxSj the estimate

−
〈
gradj f(x), v

〉
≥ εK

∥∥gradj f(x)
∥∥ ‖v‖ (AC)

holds.

Lemma 1.3.2 Let M be a Riemannian manifold and S ⊂M a submanifold.
Assume that we have a Lipschitz continuous function f : M → R, which
is C1 on S, and a continuous curve γ : (−1, 1) → M , differentiable in 0,
with γ(0) ∈ S and γ ′(0) ∈ Tγ(0)S. Then f ◦ γ is differentiable in 0 with
(f ◦ γ)′(0) = df |S(γ(0))(γ′(0)).

Proof: Using a local chart we can w.l.o.g. assume that M = Rn equipped
with the induced Riemannian metric and γ(0) = 0. Let α : (−1, 1) → S be
a C1 curve with α(0) = 0 and α′(0) = γ′(0). Then

lim
t→0

dist(γ(t), α(t))

t
= 0.

Let L > 0 be the Lipschitz constant of f on a neighborhood U of 0. Then

lim
t→0

|f(γ(t)) − f(α(t)|
t

≤ lim
t→0

L dist(γ(t), α(t))

t
= 0.
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We have

lim
t→0

f(γ(t)) − f(0)

t
= lim

t→0

f(γ(t)) − f(α(t)) + f(α(t)) − f(0)

t

= lim
t→0

f(α(t)) − f(0)

t
= df |S(0)(α′(0)) = df |S(0)(γ′(0)).

�

Lemma 1.3.3 Let M be Riemannian manifold with (AC) differential inclu-
sion ẋ ∈ F (x) and Lyapunov function f : M → R. Then ẋ ∈ F (x) is a (AC)
differential inclusion for any refinement of the stratification of f .

Proof: The (AC) condition is preserved by the same argument as in the
vector field case. The other conditions do not depend on the stratification.

�

Lemma 1.3.4 Let M be an analytic Riemannian manifold and ẋ ∈ F (x)
an (AC) differential inclusion. Assume that the Lyapunov function f is a
C-function and the stratification is a strong (af ) stratification into C-sets. Let
x ∈ Sj. If f is not Lipschitz at x, then F (x) ∩ TxSj = {0} .

Proof: Let v ∈ F (x), v 6= 0. Assume that f is not Lipschitz at x.
Lemma 1.1.19 implies that there is a i ∈ Λ and a sequence xk → x, xk ∈ Si
with ‖gradi f(xk)‖ → ∞. Let w.l.o.g. ker df |Si

(xk) → L, L ⊂ TxM a lin-
ear subspace. From condition 7 of the strong (af) stratification follows that
TxSj ⊂ L. Since F is lower semicontinuous there is a sequence vk ∈ F (xk)
with vk → v. By condition (AC) we have limk→∞ vk 6∈ L. Thus v 6∈ TxSj.
�

Definition 1.3.5 Let M be a manifold. A continuous curve γ : [a, b] → M
is piecewise continuously differentiable if there is a finite number of points
a = t1 < . . . < tn = b such that γ is C1 on each interval [ti, ti+1].

Proposition 1.3.6 Let M be an analytic Riemannian manifold and ẋ ∈
F (x) an (AC) inclusion. Assume that the Lyapunov function f is a C-
function and the stratification consists of C-sets. Let one of the following
conditions hold:

1. f is Lipschitz and γ any solution of ẋ ∈ F (x),
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2. or γ is a piecewise continuously differentiable solution of ẋ ∈ F (x),
with a countable number of points t with γ̇(t) = 0.

Then f ◦ γ is monotonously decreasing.

Proof: By Lemma 1.3.3 we can refine the stratification into a strong (af )
stratification. Let γ : (a, b) →M be a solution of ẋ ∈ F (x). Denote by A the
set of points in (a, b) such that γ̇(t) is transversal26 to the stratum of γ(t),
i.e.

A = {t ∈ (a, b) | γ̇(t) 6∈ Tγ(t)Sj}.
For any t ∈ A, j ∈ Λ, γ(t) ∈ Sj, there is a δ > 0 that for all s ∈ (t− δ, t+ δ),
s 6= t, we have γ(s) 6∈ Sj. Hence, the intersection of A with any compact
subinterval of (a, b) must be countable. In particular, A has measure 0.
Furthermore, we denote by B the set of critical points of γ, i.e.

B = {t ∈ (a, b) | γ̇(t) = 0}.

Case (1): f is Lipschitz continuous. It is a well-known fact, that the
composition of a Lipschitz continuous function and an absolutely continuous
function yields an absolutely continuous function, see [16, p. 245, Ex. 14.O]
for the scalar-valued case. Hence, the function f ◦γ is absolutely continuous.
Since f is Lipschitz, we can apply Lemma 1.3.2 and see that for all t ∈ (a, b)\
A, the function f ◦γ is differentiable and (f ◦γ)′(t) =

〈
gradj(t) f(γ(t)), γ̇(t)

〉
,

with j(t) defined by γ(t) ∈ Sj(t). Thus, we have by the (AC) condition that
(f ◦ γ)′(t) ≤ 0 for t ∈ (a, b) \ A. As f ◦ γ is absolutely continuous, we have
that

(f ◦ γ)(t) =

∫ t

t0

(f ◦ γ)′(s)ds+ f(γ(t0)),

see [12, p. 13, Thm. 1]. Since A has measure 0, the function f ◦ γ is
monotonously decreasing.

Case (2): γ is piecewise continuously differentiable. Then it is sufficient to
show the monotonicity of f ◦ γ on an interval (a, b) where γ is differentiable.
Denote by C the points t ∈ (a, b), such that f is not Lipschitz in γ(t). If
t ∈ C, then by Lemma 1.3.4 either γ̇(t) is transversal to Tγ(t)Sj or γ̇(t) = 0.
Hence, f is Lipschitz continuous in all points γ(t) with t ∈ (a, b) \ (A ∪ B)
and C ⊂ (A ∪ B). Since, any accumulation point of of non-Lipschitz points
of f must be non-Lipschitz, too, the set C is closed in (a, b). Let [c, d] be an

26i.e. γ̇(t) 6∈ Tγ(t)Si with γ(t) ∈ Si.
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arbitrary, non-trivial, compact subinterval of (a, b). Then [c, d] ∩ C is closed
and countable. Hence, the set (c, d)\C is a countable union of open intervals
Ik. Note, that by the arguments for the case of Lipschitz continuous f ,
(f ◦γ)′(t) exists for all t ∈ Ik, is ≤ 0 and integrable27 on Ik. Hence, (f ◦γ)′(t)
exists for all t ∈ (c, d) \ C and is integrable on [c, d]. Furthermore, f ◦ γ is
continuous. By a theorem from real analysis [79, p. 298/299, Ex. 18.41 d)]
these conditions imply that f ◦ γ : [c, d] → R is absolutely continuous. Since
(f ◦ γ)′(t) ≤ 0 almost everywhere on [c, d], we get that f ◦ γ is monotonously
decreasing on [c, d]. Since [c, d] was arbitrary, this proves our claims. �

Remark 1.3.7 The arguments in the proof above are not sufficient to cover
the general case of a non-Lipschitz f and arbitrary absolutely continuous
solutions.

Proposition 1.3.8 Under the conditions of Proposition 1.3.6 the function
f ◦ γ is strictly decreasing if γ is non-constant on open sets.

Proof: Refine the stratification to a strong (af ) stratification. Assume that
γ : (a, b) →M is an absolutely continuous solution. By Proposition 1.3.6 f ◦γ
is monotonously decreasing. Thus, f ◦γ is not strictly decreasing if and only
if there is an non-empty interval (c, d) ⊂ (a, b) such that f ◦ γ is constant.
Assume that such an interval (c, d) exists.

We consider first the case that f is Lipschitz continuous. Let Sj be the
highest dimensional stratum met by γ on the interval (c, d). As a strat-
ification is locally finite we can w.l.o.g. assume that γ(t) ∈ Sj for all
t ∈ (c, d). If γ in differentiable in t then γ̇(t) ∈ Tγ(t)Sj and by Lemma 1.3.2
(f ◦ γ)′(t) =

〈
gradj f(γ(t)), γ̇(t)

〉
= 0. But as γ is absolutely continuous and

non-constant on open sets, γ̇(t) cannot be zero for all t ∈ (c, d). The (AC)
condition and the fact that rk df |Sj

is constant, imply that gradj f(x) = 0 for
all x ∈ Sj. Choose t0 ∈ (c, d) with γ̇(t0) 6= 0. Let x = γ(t0). There is a i ∈ Λ
and a sequence (xk) ⊂ Si with xk → x and df |Si

(xk) 6= 0. Since F is lower
semicontinuous, there is a sequence vk ∈ F (xk) with vk → γ̇(t0). W.l.o.g. we
can assume that vk 6= 0 for all k and w = limk→∞ ‖gradi f(xk)‖−1 gradi f(xk)

27By the absolute continuity of f ◦ γ on the open interval Ik, we see that (f ◦ γ)′ is
integrable on any compact subinterval of Ik and the integrals are uniformly bounded. Let
Jl ⊂ Ik be a increasing sequences of compact subintervals with

⋃∞

l=1 Jl = Ik. Denote by
ψl the characteristic function of Jl. Since (f ◦ γ)′ is non-positive, we can apply theorem
on monotone sequences of integrable functions [79, p. 172, Thm. 12.22] to the sequence
of functions t 7→ ψl(t)((f ◦ γ)′(t)). Hence, (f ◦ γ)′ is integrable on Ik.

60



exists. Since df |Sj
(x) = 0, the Thom condition implies that 〈w, η〉 = 0 for all

η ∈ TxSj and especially 〈
w,

γ̇(t0)

‖γ̇(t0)‖

〉
= 0. (1.17)

Let K be a compact subset of M with xk ∈ K for all k ∈ N. By the (AC)
condition, there is an ε > 0 such that

ε ≤ −
〈

vk
‖vk‖

,
gradi f(xk)

‖gradi f(xk)‖

〉
.

Taking the limit this gives a contradiction to equation (1.17).
Assume that f is not Lipschitz continuous. In this case γ is piecewise

differentiable with countable set of critical points. We can assume that γ is
differentiable on (c, d). If f is not Lipschitz continuous in γ(t), t ∈ (c, d),
then by Lemma 1.3.4 γ̇(t) is either 0 or transversal to the stratum of γ(t).
Therefore, we can find a non-trivial subinterval [u, v], u < v of (c, d) such
that f is Lipschitz in all γ(t) with t ∈ [u, v]. Hence, we apply the previous
argument for Lipschitz continuous f and get the desired contradiction. �

Before we prove the convergence theorem, let us recall the standard defi-
nition of the length of curve.

Definition 1.3.9 ( cf. [26, p.158] ) Let M be a Riemannian manifold and
γ : [a, b] → M be an absolutely continuous curve. The length L(γ) of γ is
defined by

L(γ) = sup{
k∑

i=1

dist(γ(ti), γ(ti+1)) | a ≤ t1 < t2 < . . . < tk ≤ b}.

Remark 1.3.10 On a Riemannian manifold we use the Riemannian distance
to define the length of an absolutely continuous curve as above. For piecewise
continuously differentiable curves γ : [a, b] → M it is well known that the
above definition coincides with the arc length [26, Prop. 2, p. 158], i.e.

L(γ) =

∫ b

a

‖γ̇(s)‖ ds.

This also holds for absolutely continuous curves. However, the only reference
in the literature of the equality for absolutely continuous curves seems to
be [162, p.33].
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Theorem 1.3.11 Let M be an analytic Riemannian manifold and ẋ ∈ F (x)
is an (AC) inclusion. Assume that the Lyapunov function f is a Lipschitz
continuous C-function and the stratification consists of C-sets. Then any
solution of ẋ ∈ F (x) converges a single point or has empty ω-limit set.

Again, we derive a bound for the length of the solution from the  Lojasiewicz
gradient inequality.
Proof: Let γ : (0,∞) →M be a solution of ẋ ∈ F (x) and x∗ and element of
the ω-limit set of γ. W.l.o.g. assume that f(x∗) = 0 and γ is non-constant on
open intervals. In particular, γ̇ 6≡ 0 on open intervals. By Proposition 1.3.8
f ◦ γ is strictly decreasing, and therefore f ◦ γ(t) > 0 for all t ∈ (0,∞). We
refine the stratification of f to a strong (af )-stratification Sj, j ∈ Λ, such that
the sign of f is constant on the strata. Applying the  Lojasiewicz gradient
inequality, Theorem 1.1.22, to f , x∗ and the strata Sj with x∗ ∈ Sj and
f > 0 on Sj, we get a neighborhood U of x∗, a constant C > 0 and definable,
strictly increasing C1 functions ψj : R+ → R+, ψj(r) → 0 for r → 0, such
that for all j ∈ Λ, x ∈ Sj ∩ U , with f(x) > 0,

∥∥gradj ψj ◦ f(x)
∥∥ > C. (1.18)

Let [a, b] be a compact interval with γ([a, b]) ⊂ U . We denote by A the set
of points t ∈ [a, b], where γ is differentiable and γ̇(t) ∈ Tγ(t)Sj(t), Sj(t) the
stratum of γ(t). Since γ is absolutely continuous, it is non-differentiable only
on a set of measure 0. Furthermore, the set of t ∈ [a, b] such that γ̇(t) is
transversal to the stratum of γ(t) has measure 0, too. Hence, the set [a, b]\A
has measure 0. Consider ψj ◦ f ◦ γ. By Lemma 1.3.2, the (AC) condition
and (1.18) we get for all t ∈ A, γ(t) ∈ Sj

− d

dt
(ψj ◦ f ◦ γ)(t) =

〈
gradj(ψj ◦ f)(γ(t)), γ̇(t)

〉

≥ ε
∥∥gradj(ψj ◦ f)(γ(t))

∥∥ ‖γ̇(t)‖
≥ εC ‖γ̇(t)‖ .

Since f is Lipschitz, the function f ◦ γ is absolutely continuous on [a, b].
By Proposition 1.3.8 it is strictly decreasing. Since ψj is C1, the function
ψj ◦ f ◦ γ is absolutely continuous, too. Using the monotonicity of ψj and
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f ◦ γ we get the following estimate from the equations above

∫

[a,b]

‖γ̇(t)‖ dt =

∫

A

‖γ̇(t)‖ dt ≤ 1

εC

∑

Sj∩U 6=∅

(
−
∫

A

d

dt
ψj ◦ f ◦ γ(t)dt

)

=
1

εC

∑

Sj∩U 6=∅

ψj ◦ f ◦ γ(a) − ψj ◦ f ◦ γ(b)

≤ 1

εC

∑

Sj∩U 6=∅

ψj ◦ f ◦ γ(a)

Note that for a → ∞ the right hand side becomes arbitrarily small. There-
fore, γ cannot leave U and the length of γ is finite, see Remark 1.3.10. Thus
γ converges to x∗. �

Theorem 1.3.12 Let M be an analytic Riemannian manifold and ẋ ∈ F (x)
is an (AC) inclusion. Assume that the Lyapunov function f is a C-function
and the stratification consists of C-sets. Let γ be a piecewise continuously
differentiable solution of ẋ ∈ F (x) with {t | γ̇(t) = 0} countable. Then γ
converges a single point or has empty ω-limit set.

Proof: Let γ : (0,∞) → M be a piecewise differentiable solution. By
Lemma 1.3.3 we can refine the stratification into a strong (af )-stratification.
As in the proof of Proposition 1.3.6 we can argue that the set A = {t ∈
(0,∞) | f is not Lipschitz in γ(t)} is closed and countable. Since the func-
tion t 7→

∫ t
0
‖γ̇(s)‖ ds is absolutely continuous, the set A does not contribute

to the growth of the length of γ. For any compact interval [c, d] contained in
(0,∞) \ A the function f ◦ γ : [c, d] → R is absolutely continuous. We can
use the same argument as in the proof of Theorem 1.3.11 to obtain bounds
for the length of γ on [c, d]. Using the monotonicity of f ◦ γ from Proposi-
tion 1.3.8 we get the same bounds for the length of γ as in the f Lipschitz
case. This yields the convergence of γ. �
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1.4 Degenerating Riemannian metrics

In the preceding sections we considered (AC) vector fields with piecewise
differentiable Lyapunov functions. In this section we want to examine the
question how this piecewise structure can be extended to the underlying
space.

We will restrict ourselves to the case that we still have a smooth manifold
M , but the Riemannian structure is only piecewise defined. To be more
precise, we define a piecewise Riemannian metric as follows.

Definition 1.4.1 Let M be a smooth manifold. A piecewise Cp-Riemannian
metric consists of a Cp stratification Sj, j ∈ Λ of M and a family of Riemannian
metrics (gj), gj, on the strata.

Our convergence theorems in the preceding sections already allow non-
smooth Riemannian metrics. Usually, Lipschitz or even simple continuity of
the Riemannian metric is sufficient. However, with piecewise Riemannian
metrics a different type of degeneration comes into play. Towards the bor-
der of a stratum Sj, the Riemannian metrics can degenerate, i.e. become
indefinite or have a singularity.

However, the above definition of a piecewise Riemannian metric lacks any
connections between the different gj on the strata. If we want to consider
to asymptotic properties near the boundary of a stratum, e.g. examining the
behavior of gradient curves converging to the boundary, we would need some
compatibility conditions such that the metrics gj on the boundary strata
govern at least some of the behavior of the metrics near these boundary
strata.

Definition 1.4.2 Let (M, 〈·, ·〉) be a smooth Riemannian manifold. Assume
that we have a piecewise Riemannian metric (gj | j ∈ Λ) on M such that the
stratification Sj, j ∈ Λ is Whitney-(a). We call the gj locally bounded if for any
compact set K we have ‖gj(x)‖ < CK for all j ∈ Λ, x ∈ K ∩ Sj , where ‖·‖
denotes the operator norm with respect to 〈·, ·〉. We call the gj compatible if

• they are locally bounded

• and for any i, j ∈ Λ, Si ⊂ Sj, x ∈ Si, (xk) ⊂ Sj, with xk → x,
α = limk→∞ gj(xk), we have that α|TxSi

= gi(x).
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For (AC) vector fields the angle condition has only to be satisfied in points
where the vector field is tangential to a stratum of the Lyapunov function.
Therefore, the definition of (AC) vector fields extends directly to piecewise
Riemannian metrics if the stratifications of the Lyapunov function and the
piecewise Riemannian metric coincide. The same holds for (AC) differential
inclusions. For the sake of completeness, we give the definition of (AC)
inclusions in this setting.

Definition 1.4.3 Let M be a Riemannian manifold, f : M → R a continuous
function and

ẋ ∈ F (x), F : M → 2TM

a differential inclusion on M . Furthermore, let (gj), gj = 〈·, ·〉j, be a piecewise,
locally bounded, compatible Riemannian metric on M with stratification Sj,
j ∈ Λ. We call ẋ ∈ F (x) an angle condition (AC) differential inclusion with
associated Lyapunov function f if

• f is non-constant on open sets,

• f is piecewise C1 with domain stratification Sj, j ∈ Λ, i.e. the domain
stratification coincides with the stratification for the piecewise Riemannian
metric,

• F is lower semicontinuous,

• for any compact set K there is a constant ε > 0 such that for all j ∈ Λ,
x ∈ Sj ∩K and v ∈ F (x) ∩ TxSj the estimate

−
〈
gradj f(x), v

〉
j
≥ ε

∥∥gradj f(x)
∥∥
j
‖v‖j (AC)

holds.

With the notion of compatibility as defined above, we get the following
convergence theorem.

Theorem 1.4.4 Let M be an analytic manifold with compatible, piecewise
differentiable Riemannian metric. Furthermore, let ẋ ∈ F (x) be an (AC)
inclusion. Assume that the Lyapunov function f is a C-function and the
stratification consists of C-sets. Let γ be a piecewise continuously differen-
tiable solution of ẋ ∈ F (x) with {t | γ̇(t) = 0} countable. Then γ converges a
single point or has empty ω-limit set. If f is Lipschitz continuous, then this
holds for all solutions.
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To prove the theorem we need the following lemmas.

Lemma 1.4.5 Let M be an Riemannian manifold with compatible, piecewise
differentiable Riemannian metric (gj | j ∈ Λ), gj = 〈·, ·〉j. Furthermore, let
ẋ ∈ F (x) be an (AC) inclusion with Lyapunov function f and stratification
Sj, j ∈ Λ. For any compact set K there is a CK > 0 such that for all j ∈ Λ
and x ∈ Sj ∩K ∥∥gradj f(x)

∥∥
j
≥ CK

∥∥grad f |Sj

∥∥ ,

where ‖·‖j, gradj denote norm and gradient with respect to the gj and ‖·‖,
grad f |Sj

the gradient and norm with respect to the Riemannian metric on
M .

Proof: There is a positive, semidefinite map H(x) : TxM → TxM with
〈v, w〉j = 〈v,H(x)w〉 for all v, w ∈ TxM . The boundedness of the gj implies
that for any K there is a constant CK > 0 such that for all x ∈ K

‖H(x)‖ ≤ C2
K,

where ‖·‖ denotes the operator norm with respect to the Riemannian metric.
Hence, for all j ∈ Λ, x ∈ K ∩ Sj

Ck
∥∥gradj f(x)

∥∥
j
≥
∥∥H(x) gradj f(x)

∥∥ = ‖grad f |S(x)‖ .

�

Lemma 1.4.6 Let M be a Riemannian manifold with compatible, piecewise
differentiable Riemannian metric. Furthermore, let ẋ ∈ F (x) be an (AC)
inclusion with Lyapunov function f . Assume the stratification Sj, j ∈ Λ is
strong (af). Let i ∈ Λ and x ∈ Si with df |Si

(x) = 0. Then F (x)∩TxSi ⊂ {0}.

Proof: Let v ∈ F (x) ∩ TxSi. Since the piecewise Riemannian metric is
bounded, there is a smooth Riemannian metric 〈·, ·〉 on M such that ‖gi‖
is bounded on relatively compact sets. We choose j ∈ Λ and a sequence
(xk) ⊂ Sj, xk → x with df |Sj

(xk) 6= for all k. This is possible as f is
non-constant on open sets. By the lower semicontinuity of F there is a
sequence vk ∈ F (xk) with vk → v. The (AC) condition and Lemma 1.4.5
yield constants ε, C > 0 such that

−df(xk)(vk) ≥ ε ‖vk‖j
∥∥gradj f(xk)

∥∥
j
≥ C ‖vk‖j ‖grad f(xk)‖
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where grad, ‖·‖ denote the norm and gradient on Sj with respect to 〈·, ·〉.
Thus either the (AC) condition with respect to 〈·, ·〉 holds for the sequences
xk and vk or ‖vk‖j → 0. In the first case v = 0 follows from the Thom
condition as for smooth metrics. In the second case the compatibility and
boundedness of the piecewise Riemannian metric implies that v = 0. �

Proof of Theorem 1.4.4: By the estimate in Lemma 1.4.5, the proof
is nearly identical to the case of a smooth metric presented in section 1.3.
The necessary lemmas and propositions also hold for piecewise, compatible
Riemannian metrics. We only have to note that for proving the analogue of
Lemma 1.3.4 and Proposition 1.3.8, we need the above Lemma 1.4.6. �

This raises of course the question what one can do if the Riemannian
metrics on the strata are unbounded. This situation comes up in important
applications like Thom’s gradient conjecture or Hessian metrics from barrier
functions as used in linear programming. We approach such problems by
considering piecewise positive definite maps of the tangent spaces. More
specifically we use the following definition.

Definition 1.4.7 Let (M, 〈·, ·〉) be a Riemannian manifold. A piecewise posi-
tive definite tangent space map of M consists of a stratification Sj, j ∈ Λ, of
M and a family of positive definite maps Hj(x) : TxSj → TxSj, smooth in x.
Assume that the stratification satisfies the Whitney-(a) condition. We call the
Hj locally bounded if for any compact set K in M there is a constant CK > 0
such that for all j ∈ Λ and all x ∈ K ∩ Sj

‖Hj(x)‖ < Ck,

‖·‖ denoting the operator norm with respect to 〈·, ·〉. We call the Hj compatible
if

• the Hj are locally bounded

• and for any i, j ∈ Λ, Si ⊂ Sj, (xk) ⊂ Sj, x ∈ Si with xk → x L =
limk→∞Hj(xk), we have that L|TxSi

= Hi(x).

Remark 1.4.8 For a function f : M → R a piecewise positive definite tan-
gent map Hj gives a gradient-like vector field

X(x) = −Hj(x) grad f(x).

We can define a piecewise Riemannian metric gj = 〈·, ·〉j by setting 〈v, w〉j =

〈Hj(x)−1v, w〉 where Hj(x)−1 denotes the inverse of Hj(x) on TxSj. Then
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X(x) can be considered as the gradient of f with respect to gj. The difference
to the case of piecewise, compatible, locally bounded Riemannian metrics
above is that here we pose compatibility and boundedness conditions on the
Hj instead of H−1

j to cover the case of unbounded Riemannian metrics.

We will now give some examples where such piecewise positive definite
tangent maps show up.

Example 1.4.9 One instance is the Thom gradient conjecture. Assume that
f : Rn → R is an analytic function and γ an integral curve of − grad f with
ω(γ) = {0}. As mentioned in the introduction the Thom gradient conjecture
claims that the limit

lim
t→0

γ(t)

‖γ(t)‖ (1.19)

exists. A well-known approach, suggested by R. Thom [153], to examine
this conjecture is to blow-up Rn at 0. This is done in the following way,
cf. [148, 153]. The function ψ(x, r) = rx is a blow-up of Rn around 0 to
the cylinder Z = Sn−1 × R ⊂ Rn × R. Note that we will in the following
represent the tangent spaces of Z as subspaces of Rn+1. Via the blow-up we
can both pull back f to f ◦ ψ and − grad f to

X(x, r) =

(
r−1(grad f(rx) − 〈x, grad f(rx)〉x)

〈x, grad f(rx)〉

)

= −
(
r−2I rx
rx> 1

)(
r grad f(rx)

〈x, grad f(rx)〉

)

on Z \ Sn−1 × {0}. 28 Note, that the function F : Z → R has the gradient

gradF (x, r) =

(
r grad f(rx)

〈x, grad f(rx)〉

)

with respect to the Riemannian metric on Z induced by the Euclidean one.
Hence, X has the form X = −H(x, r) gradF (x, r) on on Z \ Sn−1 × {0}
where

H(x, r) :=

(
r−2I rx
rx> 1

)
∈ R(n+1)×(n+1).

28Note, that X is the gradient of f ◦ ψ with respect to the Riemannian metric〈
〈(v, h), (w, k)〉(x,r)

〉
= r2 〈v, w〉 + hk.
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As we have pulled back the vector field − grad f to X on Z \ Sn−1 ×{0}, all
solutions of − grad f are mapped onto solutions of X. Thus, if all solutions
γ̃ of X, with γ̃(0) ∈ Rn×R+, γ̃(t) → Sn−1 × {0}, converge to single points,
then the limit (1.19) exists and the gradient conjecture holds.

Note, that multiplying a vector field with a positive scalar function does
not change the trajectories. Therefore, we can consider for convergence ques-
tions instead the vector field

X̃(x, r) := r2X(x, r).

The family of maps (H(x, r) ∈ R(n+1)×(n+1)), induces a compatible, bounded,
piecewise positive definite tangent space map on Z with the stratification
S1 = Sn−1 × {0}, S2 = Z \ S1, and

H1(x, 0) = IdT(x,0)S1 , H2(x, r) =

(
I r2x

r2x> r2

)
∈ R(n+1)×(n+1).

Note, that although we represent H2(x, r) as a (n + 1) × (n + 1) matrix, it
is nevertheless easily seen that 〈v,H2(x, r)v〉 > 0 for all (x, r) ∈ Z, r 6= 0,
v ∈ T(x,r)Z. Then

X̃(x, r) =

{
−H1(x, r) gradF (x, r) for r = 0
−H2(x, r) gradF (x, r) for r 6= 0

.

This shows that the Thom gradient conjecture is a special case of the ques-
tion, whether integral curves of a vector field −Hj grad f converge, with Hj

a compatible, locally bounded, piecewise positive definite tangent map.

Example 1.4.10 As a different example, we consider the logarithmic barrier
function

h(x) = −
n∑

i=1

log xi,

on the positive orthant Rn
+ = {(x1, . . . , xn) | xi > 0}, see [134]. This function

has the Hessian
Hessx h = diag(x−2

1 , . . . , x−2
n )

The inverse of the Hessian H(x) = (Hess h(x))−1 has the form H(x) =
diag(x2

1, . . . , x
2
n). Its extension to the whole Rn yields a compatible, locally

bounded piecewise positive definite tangent map HI , the strata being the or-
thants and subspaces of the form SI = {(x1, . . . , xn) ∈ Rn |; ∀i ∈ I, xi = 0},
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I ⊂ {1, . . . , n}, I 6= ∅, and HI defined as the restriction of diag(x2
1, . . . , x

2
n)

to SI .
Differential equations of the form

ẋ = −(Hessx h)−1 grad f(x),

with h a barrier function, can be interpreted as continuous-time, interior
point optimization methods, see [8, 10, 32]. In particular, for linear and
semidefinite programming and optimization on symmetric cones, there has
been a considerable interested in systems of this and similar types, see for
example [17–19, 48, 58, 59, 77, 122].

The barrier function above on Rn
+ belongs to the class of self-scaled bar-

riers on symmetric cones [134]. However, not every self-scaled barrier on a
symmetric cone has a Hessian such that its inverse can be extended to a
compatible, piecewise positive definite tangent map. In fact, this can be only
done if and only if the cone is isomorphic to Rn

+. The interested reader can
find this in Appendix A.1.

Unlike piecewise, compatible Riemannian metrics, we do not get the con-
vergence even of integral curves of Hj grad f , with Hj compatible, locally
bounded, piecewise positive definite tangent maps. The following example
illustrates this.

Example 1.4.11 Let H = {(x, r) ∈ Rn+1 | r > 0} a half space in Rn+1 with
n ≥ 2. For any bounded vector field X(x) ∈ Rn we can define the tangent
map

H1(x, r) =

(
r2 rX(x)>

rX(x) In +X(x)X(x)>

)

on H. Using the Schur complement [93] it can be easily seen that H1(x, r)
is positive definite. We can extend H1 to a compatible, piecewise positive
definite tangent map on Rn+1. On ∂H = Rn × {0} we define the tangent
map

H2(x, 0)(v, 0) := (In +X(x)X(x)>)v, v ∈ Rn.

On the opposite half space −H = {(x, r) ∈ Rn+1 | r < 0} the tangent map
is constructed by symmetry H3(x, r) = H1(x,−r). Now consider the linear
function f(x, r) = cr, c > 0 and the vector field

Y (x, r) =





−H1(x, r) grad f(x, r) for r > 0
−H2(x, r) grad f(x, r) for r = 0
−H3(x, r) grad f(x, r) for r < 0

.
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Then

Y (x, r) = −c
(

r2

|r|X(x)

)
,

which is a Lipschitz continuous vector field on Rn+1. Now we choose a vector
field X(x) which has a periodic orbit Θ. Then there are solutions of Y (x, r)
which will converge to the entire periodic orbit for t→ ∞, in fact any solution
in Θ × (R \ {0}) shows this behavior. Therefore, for an analytic function f
and a locally bounded, compatible, piecewise positive definite tangent map
Hj the convergence theorems do not hold in general.

In dimension 2, the proof of Thom’s gradient conjecture can be proven by
a simple and direct argument, see [102, Prop. 2.1]. One would expect that
for vector fields −Hj(x) grad f(x) a similar argument yields the convergence
of integral curves on two dimensional manifolds. However, this is not the
case, as the following example shows.

Example 1.4.12 Let H1, H2, H3 be the locally bounded, compatible, piece-
wise positive definite tangent map on Rn+1 from example 1.4.11, H1 defined
on H, H2 on ∂H, H3 on −H. We choose n = 2 and

X(x1, x2) =

(
−x2

x1

)
.

As function f we take f(x, r) = cr, c > 0 as in the example above. Consider
the vector field

Y (x, r) = −Hj grad f(x, r).

The cylinders R × ρS1, ρ > 0 are invariant sets of this vector field with
the integral curves on the positive halfspace H spiralling along them while
they converge to the circles {0} × ρS1. If we restrict ourselves now to the
cylinder Z = R × S1, then we have there a vector field with integral curves
spiralling along the cylinder. Since grad f is tangent to Z and the restriction
of Hj to Z gives again a locally bounded, compatible, piecewise positive
definite tangent map, we have constructed the desired counterexample on a
2 dimensional manifold.
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Chapter 2

Time-discrete gradient-like
optimization methods
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In this chapter, we consider discrete-time, gradient-like optimization meth-
ods on manifolds. The main goal is to develop a uniform convergence theory
for gradient-like algorithms on manifolds and singular spaces. We discuss
algorithms for the following three problem types:

• a smooth cost function on a manifold,

• a smooth cost function on a manifold restricted to a non-smooth con-
straint set,

• a non-smooth, Lipschitz continuous cost function on a manifold.

For the smooth cost functions, we use a local parameterization approach as
employed in e.g. [3,5,118–120,143]. However, the families of parameterization
will be subject only to weak regularity conditions, especially, substantially
weaker ones than conditions on the retractions of Shub [143], For example,
the families will not depend continuously on the base points. We give global
convergence results for all of these algorithms. For non-smooth cost func-
tions, we discuss both a Riemannian and a local parameterization approach.
We show the convergence of gradient descent algorithms for both approaches.
The descent algorithms for non-smooth cost functions are illustrated by some
sphere packing problems on adjoint orbits.

2.1 Optimization algorithms on manifolds

2.1.1 Local parameterizations

We start with the discussion of families of parameterizations and suitable
regularity criteria.

Without further notice, M will be a smooth Riemannian manifold with
Riemannian metric g = 〈·, ·〉. The Riemannian distance between x, y on M
is denoted by dist(x, y) and the exponential map at x ∈ M by expx. For
a detailed discussion and definitions of Riemannian geometry, we refer the
reader to the standard literature like e.g. [26, 51, 97, 106].

We call a function φ : M×Rn →M a family of smooth parameterizations
if for all x ∈M the map y 7→ φ(x, y) is smooth. We use the notation φx for the
function φx : Rn → M , y 7→ φ(x, y). A family of parameterizations will be
denoted by (φx) or (φx : Rn →M). If we restrict the parameterizations to a
subset X ⊂M , we use the notations (φx | x ∈ X) or (φx : M → Rn | x ∈ X).

For the convergence results on descent iterations defined later, we need
some regularity conditions on the family of parameterizations. First we fix
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some notations for operator norms of linear maps Rm → TxM , TxM → Rm,
m ∈ N. Let A : Rm → TxM , B : TxM → Rm, we denote by ‖A‖, ‖B‖ the
operator norms

‖A‖ = sup{‖Av‖g | v ∈ Rm, ‖v‖e = 1},
‖B‖ = sup{‖Bv‖e | v ∈ TxM, ‖v‖g = 1},

where ‖·‖g is the norm induced by 〈·, ·〉 and ‖·‖e the Euclidean one on Rm.
We now introduce some special notions of uniform continuity and equicon-

tinuity.

Definition 2.1.1 Let f : M → R be a smooth function and X ⊂ M a set.
Assume that the injectivity radius1 of all x ∈ X is uniformly bounded below by
a constant r > 0. We call the differential df uniformly exp-continuous on X if
for all ε > 0 there is a δ > 0 such that for all x ∈ X, y ∈ TxM

‖y‖ < δ implies ‖d(f ◦ expx)(0) − d(f ◦ expx)(y)‖ < ε.

Let (φx) a family of smooth parameterizations on M . We call the family (φx)
equicontinuous at 0 on X if for all ε > 0, there is a δ > 0 such that for all
x ∈ X, y ∈ Rn

‖y‖ < δ implies dist(φx(y), φx(0)) < ε.

We call the family of tangent maps (Tφx : Rn → TxM) exp-equicontinuous at
0 on X, if for all ε > 0 there is a δ > 0 such that for all x ∈ X, y ∈ Rn, with
‖y‖ < δ,

dist(φx(y), x) < r and
∥∥T0(exp−1

x ◦φx) − Ty(exp−1
x ◦φx)

∥∥ < ε

hold.

Note that exp−1
x ◦φx : Rn → TxM is a smooth map between open sets in

vector spaces. Hence, the difference T0(exp−1
x ◦φx) − Ty(exp−1

x ◦φx) is well-
defined.

We can now give the definition of our standard assumptions on the family
of parameterizations.

1Note, that if the injectivity radius of x is s, then expx is defined for all v ∈ TxM with
‖v‖ < s and a diffeomorphism of {v ∈ TxM | ‖v‖ < s} onto its image [97].
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Definition 2.1.2 Let (φx) be a family of parameterizations and X ⊂M a set.
Assume that the injectivity radius of all x ∈ X is uniformly bounded from below
by a constant r > 0. We say that the family satisfies the standard assumptions
on X, if it is a family of smooth parameterizations that satisfies the following
conditions:

• φx(0) = x for all x ∈ X,

• there is a constant C > 0 such that the tangent maps T0φx : Rn → TxM
satisfy ‖T0φx‖ < C for all x ∈ X,

• for all x ∈ X the tangent maps T0φx are invertible, and there is a constant
C > 0 such that for all x ∈ X :

∥∥(T0φx)
−1 (x)

∥∥ < C,

• (Tφx) is exp-equicontinuous at 0.

If the family of parameterizations satisfies the standard assumptions on M , then
we say simply that it satisfies the standard assumptions.

Remark 2.1.3 Since for all x ∈M one has T0 expx = IdTxM , it follows that

‖T0φx‖ = ‖T0(exp−1
x ◦φx)‖ and ‖(T0φx)

−1‖ =
∥∥∥(T0(exp−1

x ◦φx))−1
∥∥∥. There-

fore the standard assumptions can be viewed as a regularity condition with
respect to the smooth map exp : TM → M with T0 exp |TxM = IdTxM . But
then we could replace expx by any other smooth map ψ : TM → M , with
T0ψ|TxM = IdTxM , i.e. a retraction used by Shub [143]. The would yield a
more general version of the standard assumptions defined above. In fact, all
convergence results later can also be obtained in this setting provided that
the conditions on the cost function would be suitably adapted.

Remark 2.1.4 One might wonder, why we do not use a smooth family of
parameterizations or the retractions of Shub. However, a smooth family of
smooth parameterizations will not suitable under the standard assumptions
for optimization purposes. The smoothness and the fact, that the parame-
terizations are local diffeomorphisms would imply that the tangent bundle of
the manifold is trivial. Hence, it could be only applied to a limited number
of applications.

The retractions of Shub [143] avoid this problem, as one has a smooth map
from the tangent bundle to the manifold. However, a computer implementa-
tion requires to process the data in a coordinate form. This can achieved in
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two different ways: On the one hand one can use local coordinates on the tan-
gent spaces. But then one actually works with parameterizations Rn → M
instead of TxM →M . Hence, there is a priori no reason to assume an under-
lying retraction. On the other hand, one could embed the tangent bundle in a
trivial vector space bundle over the manifold, e.g. see [37,76]. However, this
increases the dimension of the problem leading to increased storage require-
ments and eventually reduced computational efficiency. Therefore, there is
no reason to restrict oneself to the retractions proposed by Shub.

The standard assumptions imply that the family of parameterizations is
equicontinuous at 0. We give a slightly more general statement of this fact,
as it will be needed later when we consider optimization on non-smooth sets.

Proposition 2.1.5 Let X ⊂ M be a set such that the injectivity radius of
all x ∈ X is uniformly bounded from below by a constant r > 0. Assume that
(φx) is a family of parameterizations satisfying the following conditions:

• φx(0) = x for all x ∈ X.

• There is a constant C > 0 such that the tangent maps T0φx : Rn →
TxM satisfy ‖T0φx‖ < C for all x ∈ X.

• (Tφx) is exp-equicontinuous at 0.

Then the family (φx) is equicontinuous at 0 on X. In particular, there are
constants δ > 0, C > 0 such that for all y ∈ Rn with ‖y‖ < δ the estimate

dist(φx(y), x) < C ‖y‖ holds.

Proof: Let r > 0 denote the uniform lower bound for the injectivity radius
of the x ∈ X. We consider the family of maps (ψx)

ψx := exp−1
x ◦φx,

where expx is the exponential map at x. Note that each ψx is well-defined
and smooth on a ball BRx

(0) = {y ∈ Rn | ‖y‖e < Rx}, with

Rx := sup{s ∈ R+ | ∀y ∈ Rn, ‖y‖e ≤ s : dist(φx(y), x) < r},

as expx is a diffeomorphism onto the set φx (BRx
(0)). Hence ψx is a map

ψx : BRx
(0) → TxM . Since expx and φx are local diffeomorphism at 0, all Rx

76



must be positive. Fix x ∈ M and t > 0, y ∈ Rn with ‖ty‖e < Rx. From the
identity

ψx(ty) =

∫ t

0

Dψx(sy)yds,

we get that

φx(ty) = expx (ψx(ty)) = expx

(∫ t

0

Tsy(exp−1
x ◦φx)yds

)
.

As dist(φx(ty), x) is smaller than the injectivity radius of x, a standard con-
sequence of the Gauss Lemma [97, Cor. 4.2.3, 4.2.4] shows that

dist(φx(ty), x) = ‖
∫ t

0

Tsy(exp−1
x ◦φx)yds‖.

This yields the estimates

dist(φx(ty), x) ≤ ‖y‖e
∫ t

0

∥∥Tsy(exp−1
x ◦φx)

∥∥ ds

≤ ‖ty‖e
(∥∥T0(exp−1

x ◦φx)
∥∥ + max

0≤s≤t

∥∥T0(exp−1
x ◦φx) − Tsy(exp−1

x ◦φx)
∥∥
)

By the assumptions on (φx), the family (Tφx) is exp-equicontinuous at 0 on
X. Moreover, there is a C > 0 with ‖T0(exp−1

x ◦φx)‖ = ‖T0φx‖ < C for all
x ∈ X. Thus for any ε > 0 we can choose a ρ > 0 independent of x such
that for all δ ∈ (0, ρ), x ∈ X and y ∈ Rn,

‖y‖e < min{δ, Rx}

implies
dist(φx(y), x) ≤ min{δ, Rx} (C + ε) . (2.1)

We have to prove that there is a uniform lower bound R > 0 for Rx. By
choosing ε = C in inequality (2.1), there exists a δ ∈ (0,min{ρ, r

4C
}) such

that for all x ∈ X, y ∈ Rn,

‖y‖e < min{δ, Rx}

implies
dist(φx(y), x) ≤ 2C · min{δ, Rx}.
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For this δ we get that for all x ∈ X and y ∈ Rn

‖y‖e < min{δ, Rx}

implies

dist(φx(y), x) < 2C · min{δ, Rx} <
r

2
.

As each φx is smooth and defined on the whole Rn, we can define a family of
strictly increasing, continuous, surjective functions (σx : (0, Rx] → (0, r]) by

σx(t) := sup{dist(φx(y), x) | ‖y‖e ≤ t}.

This yields for all x ∈M that

σx(min{δ, Rx}) <
r

2

and thus
min{δ, Rx} < Rx.

Therefore, δ < Rx for all x ∈ M and we get the uniform lower bound
R = δ > 0 for Rx.

Thus we can choose for any ε̃ > 0 a δ ∈ (0,min{ρ, R, ε
2C

}) such that for
all x ∈ X, y ∈ Rn,

‖y‖e < δ

implies
dist(φx(y), x) ≤ 2δC ≤ ε̃.

Therefore, the family (φx) is equicontinuous at 0 on X. In particular, for a
δ ∈ (0,min{ρ, R}) and all x ∈ X, y ∈ Rn

‖y‖ ∈ (
δ

2
, δ) implies dist(φx(y), x) ≤ 2Cδ ≤ 4C ‖y‖ .

Hence, for all x ∈ X and y ∈ Rn with ‖y‖e ∈ (0,min{ρ, R}) the inequality

dist(φx(y), x) < 4C ‖y‖e
holds. This yields the estimate on dist(φx(y), x). �

For our convergence proofs later, we will need the following lemma on the
equicontinuity of d(f ◦φx) for a real valued function f : M → R and a family
of parameterizations (φx : Rn →M).
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Lemma 2.1.6 Let X ⊂ M be a set such that the injectivity radius of all
x ∈ X is uniformly bounded from below by a constant r > 0. Further, let (φx)
be a family of smooth parameterizations satisfying the following conditions:

• φx(0) = x for all x ∈ X.

• There is a constant C > 0 such that the tangent maps T0φx : Rn →
TxM satisfy ‖T0φx‖ < C for all x ∈ X.

• (Tφx) is exp-equicontinuous at 0.

Assume that f : M → R is a smooth function with uniformly exp-continuous
differential df on X and uniformly bounded ‖df(x)‖ on X. Then the family
of differentials (d(f ◦ φx)) is equicontinuous at 0 on X, i.e. for all ε > 0
there is a δ > 0 such that for all y ∈ Rn, x ∈ X

‖y‖e ≤ δ implies ‖d(f ◦ φx)(y) − d(f ◦ φx)(0)‖ < ε,

‖·‖e denoting the Euclidean norm on Rn and its operator norm for linear
forms Rn → R.

Proof: Let r > 0 be the uniform lower bound of the injectivity radius of
all x ∈ X. Fix an x ∈ X. Assume that y ∈ Rn with dist(x, φx(y)) < r. We
denote by z ∈ TxM the vector z := exp−1

x (φx(y)). Then

d(f ◦ φx)(y) − d(f ◦ φx)(0)

= df(φx(y)) ◦ Tyφx − df(x) ◦ T0φx

= df(φx(y)) ◦ Tz expx ◦Tφx(y) exp−1
x ◦Tyφx − df(x) ◦ T0 expx ◦Tx exp−1

x ◦T0φx

= (df(φx(y)) ◦ Tz expx−df(x) ◦ T0 expx) ◦ Tφx(y) exp−1
x ◦Tyφx

+df(x) ◦ T0 expx ◦
(
Tφx(y) exp−1

x ◦Tyφx − Tx exp−1
x ◦T0φx

)

= (d(f ◦ expx)(z) − d(f ◦ expx)(0)) ◦ Tφx(y) exp−1
x ◦Tyφx

+df(x) ◦ T0 expx ◦
(
Ty(exp−1

x ◦φx) − T0(exp−1
x ◦φx)

)
.
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This yields

‖d(f ◦ φx)(y) − d(f ◦ φx)(0)‖
≤ ‖d(f ◦ expx)(z) − d(f ◦ expx)(0)‖

∥∥Tφx(y) exp−1
x ◦Tyφx

∥∥
+ ‖df(x)‖

∥∥Ty(exp−1
x ◦φx) − T0(exp−1

x ◦φx)
∥∥

≤ ‖df(x)‖
∥∥Ty(exp−1

x ◦φx) − T0(exp−1
x ◦φx)

∥∥
+ ‖d(f ◦ expx)(z) − d(f ◦ expx)(0)‖
·
(∥∥T0

(
exp−1

x ◦φx
)∥∥ +

∥∥T0

(
exp−1

x ◦φx
)
− Ty

(
exp−1

x ◦φx
)∥∥) .

By a standard corollary of the Gauss Lemma [97, Cor. 4.2.3, 4.2.4], the es-
timate dist(x, φx(y)) < r implies ‖z‖ = dist(x, φx(y)). Since (φx) is equicon-
tinuous at 0 on X, see Proposition 2.1.5, we can choose for any ε > 0 a
δ > 0 with δ < r such that for all x ∈ X, y ∈ Rn, ‖y‖e < δ implies
‖z‖ = dist(x, φx(y)) < ε. We denote by C1, C2 > 0 the uniform bounds for
‖T0φx‖ and ‖df(x)‖ on X. Then uniform exp-continuity of df on X, the
exp-equicontinuity of Tφx at 0 on X and equicontinuity of (φx) at 0 on X
yield that for any ε > 0, we can choose a δ > 0 such that for all x ∈ X,
y ∈ Rn, with ‖y‖e < δ,

‖d(f ◦ expx)(z) − d(f ◦ expx)(0)‖ < ε

and ∥∥T0

(
exp−1

x ◦φx
)
− Ty

(
exp−1

x ◦φx
)∥∥ < ε

hold. Thus, if δ < r we get by the calculations above that for all x ∈ X,
y ∈ Rn, ‖y‖e < δ implies that

‖d(f ◦ φx)(y) − d(f ◦ φx)(0)‖ < C2ε+ ε(C1 + ε).

This yields the equicontinuity of the family of differentials (d(f ◦φx)) at 0.
�

Lemma 2.1.7 Let X ⊂ M be a compact set. Assume that (φx) is a family
of smooth parameterizations which satisfies the standard assumptions on X.
Then there is a r > 0 such that the functions τx : Rn → R

τx(y) :=
∥∥(Tyφx)

−1
∥∥

80



are well-defined for y ∈ Rn, ‖y‖ < r. Furthermore, the family (τx) is equicon-
tinuous at 0, i.e. for every ε > 0 there is a δ > 0 such that for all x ∈ X,
y ∈ Rn with ‖y‖ < r,

‖y‖ < δ implies |τx(y) − τx(0)| < ε.

Proof: Let us first consider a linear map T : H1 → H2 between two finite
dimensional Hilbert spaces H1, H2 with inner products 〈·, ·〉1, 〈·, ·〉2. Assume
that T is invertible with ‖T−1‖ < C for a constant C > 0, where ‖T−1‖
denotes the operator norm. Let A : H2 → H1 be a linear map. By standard
results on Neumann series [166, p.69] the linear map IdH2 −T−1A is invertible
if ‖T−1A‖ < 1. Thus it is invertible if ‖A‖ < 1

C
. This implies that T − A is

invertible if ‖A‖ < 1
C

.
Assume that A : H2 → H1 satisfies ‖A‖ < 1

2C
. Then by applying the

Neumann series [166, p.69], we get

∥∥T−1 − (T − A)−1
∥∥ =

∥∥T−1
(
IdH2 −(IdH2 −T−1A)−1

)∥∥
≤

∥∥T−1
∥∥ ∥∥IdH2 −(IdH2 −T−1A)−1

∥∥

=
∥∥T−1

∥∥
∥∥∥∥∥

∞∑

k=1

(T−1A)k

∥∥∥∥∥

≤ C

∞∑

k=1

∥∥T−1A
∥∥k =

C ‖T−1A‖
1 −

∥∥T−1A
∥∥

︸ ︷︷ ︸
<1/2

≤ 2C2 ‖A‖ .

Now consider the family of maps (y 7→ Ty(exp−1
x ◦φx)) with x ∈ X. As X

is compact and the family (φx) equicontinuous at 0 on X by Lemma 2.1.6,
there is a r > 0 such that the function y 7→ (exp−1

x ◦φx)(y) is well-defined
and smooth for all y ∈ Rn with ‖y‖ < r. Denote by C > 0 a constant, such
that ∥∥(T0φx)

−1
∥∥ < C for all x ∈ X.

Since the family (Tφx) is exp-equicontinuous at 0 on X, there is a δ ∈ (0, r)
such that for all x ∈ X, y ∈ Rn with ‖y‖ < δ,

∥∥Ty(exp−1
x ◦φx) − T0(exp−1

x ◦φx)
∥∥ < 1

2C
(2.2)
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holds. Applying the considerations above with T = T0(exp−1
x ◦φx), A =

T0(exp−1
x ◦φx)− Ty(exp−1

x ◦φx), we see that Ty(exp−1
x ◦φx) is invertible for all

y ∈ Rn with ‖y‖ < δ and x ∈ X. Furthermore, we get for all x ∈ X, y ∈ Rn,
‖y‖ < δ the estimate

∥∥∥
(
T0(exp−1

x ◦φx)
)−1 −

(
Ty(exp−1

x ◦φx)
)−1
∥∥∥

≤ 2C2
∥∥Ty(exp−1

x ◦φx) − T0(exp−1
x ◦φx)

∥∥ .

This shows that τx(y) is well-defined for all x ∈ X and y ∈ Rn, with ‖y‖ < δ.
Applying (2.2) and the bound for ‖(T0φx)

−1‖ to the estimate above, we see
that for all x ∈ X, y ∈ Rn, ‖y‖ < δ,

∥∥∥
(
Ty(exp−1

x ◦φx)
)−1
∥∥∥ ≤ 2C.

Since X is compact, there is a ρ > 0 such that for all x ∈ X, z ∈ M with
dist(x, z) < ρ, the inequality

∥∥∥Texp−1
x (z) expx

∥∥∥ < 1

2

holds. By the equicontinuity of φx at 0 on X, we can choose a r̂ > 0 such
that for all x ∈ X, y ∈ Rn with ‖y‖ < r̂, we have

dist(φx(y), x) < ρ.

This yields for all x ∈ X, y ∈ Rn with ‖y‖ < r̂ the estimate

∥∥∥Texp−1
x (φy(x)) expx

∥∥∥ < 1

2
.

Therefore, for all x ∈ X, y ∈ Rn with ‖y‖ < min{r̂, δ} we have

‖Tyφx‖ ≤
∥∥∥
(
Ty(exp−1

x ◦φx)
)−1
∥∥∥
∥∥∥Texp−1

x (φy(x)) expx

∥∥∥ ≤ C.

From now on, we will assume that δ < r̂. Let us denote for all x, z ∈ M
with dist(x, z) smaller than the injectivity radius of x, the parallel transport
along the shortest geodesic between x and z by πx,z : TxM → TzM . Define
for x ∈ X, y ∈ Rn, ‖y‖ < r,

µx(y) :=
∥∥∥Texp−1

x (φx(y)) expx−πx,φx(y)

∥∥∥ .
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Note, that for all x ∈ X we have µx(0) = 0. By straightforward calculations
we get for all x ∈ X and y ∈ Rn, with ‖y‖ < δ, the estimates

∣∣∥∥(T0φx)
−1
∥∥−

∥∥(Tyφx)
−1
∥∥∣∣

≤
∥∥∥
(
T0(exp−1

x ◦φx)
)−1 −

(
Ty(exp−1

x ◦φx)
)−1
∥∥∥

+
∣∣∣
∥∥∥
(
Ty(exp−1

x ◦φx)
)−1
∥∥∥−

∥∥(Tyφx)
−1
∥∥
∣∣∣

and

∣∣∣
∥∥∥
(
Ty(exp−1

x ◦φx)
)−1
∥∥∥−

∥∥(Tyφx)
−1
∥∥
∣∣∣

=
∣∣∣
∥∥∥(Tyφx))

−1 Texp−1
x (φx(y)) expx

∥∥∥−
∥∥(Tyφx)

−1 πx,φx(y)

∥∥
∣∣∣

≤
∥∥(Tyφx)

−1
∥∥
∥∥∥Texp−1

x (φx(y)) expx−πx,φx(y)

∥∥∥ .

Combining these estimates yields

∣∣∥∥(T0φx)
−1
∥∥−

∥∥(Tyφx)
−1
∥∥∣∣

≤ µx(y)C + 2C2
∥∥Ty(exp−1

x ◦φx) − T0(exp−1
x ◦φx)

∥∥ .

Since X is compact and φx equicontinuous at 0 on X, the family of functions
y 7→ µx(y) is equicontinuous at 0 on X. By the exp-equicontinuity of Tφx at
0 on X, we can find for all ε > 0 a δ̃ ∈ (0, δ) such that for all x ∈ X, y ∈ Rn,
with ‖y‖ < δ̃, we have

µx(y) < ε and
∥∥Ty(exp−1

x ◦φx) − T0(exp−1
x ◦φx)

∥∥ < ε.

Thus for all x ∈ X, y ∈ Rn with ‖y‖ < δ̃ we get

∣∣∥∥(T0φx)
−1
∥∥−

∥∥(Tyφx)
−1
∥∥∣∣ ≤ ε(C + 2C2).

Since we can choose ε > 0 arbitrary, this yields the equicontinuity of the
family (τx | x ∈ X) at 0. �

We give now a version of the  Lojasiewicz gradient inequality in a family
of parameterizations.

Theorem 2.1.8 Let M be an analytic manifold and f : M → R a smooth
C-function. Assume that we have a family of parameterizations (φx) which
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satisfies the standard assumptions on a relatively compact, open set V . Then
for any x∗ ∈ V there is a neighborhood U ⊂ V of x∗, constants r > 0,ρ > 0,
C > 0 and a strictly increasing function ψ : (f(x∗),+∞) → R+, definable
in an o-minimal structure, with ψ(t) → 0 for t → f(x∗), such that for all
y ∈ Rn, x ∈ V with ‖y‖ < r, φx(y) ∈ f−1((f(x∗), f(x∗) + ρ)), the estimate

‖grad(ψ ◦ f ◦ φx)(y)‖ ≥ C

holds.

Proof: Let x∗ ∈ U . W.l.o.g. f(x∗) = 0. By the  Lojasiewicz gradient
inequality, Theorem 1.1.22, there exists a neighborhood V ⊂ U , constants
C1 > 0, ρ > 0 and a function ψ : R+ → R+, definable in an o-minimal
structure, with ψ(t) → 0 for t→ 0, such that for all x ∈ V , with f(x) ∈ (0, ρ),

‖grad(ψ ◦ f)(x)‖ > C1.

For all x ∈ V , y, v ∈ Rn with f(φx(y) ∈ (0, ρ)

〈grad(ψ ◦ f ◦ φx)(y), v〉 = d(ψ ◦ f ◦ φx)(y)(v)

= d(ψ ◦ f)(x)(Tyφxv)

= 〈grad(ψ ◦ f)(x), Tyφxv〉
=

〈
(Tyφx)

> grad(ψ ◦ f)(x), v
〉
,

where (Tyφx)
> : TxM → Rn denotes the adjoint of the map Tyφx between

the Hilbert spaces Rn and TxM . Applying Lemma 2.1.7 we get a r1 > 0
such that (Tyφx)

−1 exists for all y ∈ Rn, ‖y‖ < r1 and x ∈ V . By standard
arguments on adjoint operators we have for all x ∈ V and y ∈ Rn, with
‖y‖ < r1, that

∥∥((Tyφx)
>)−1

∥∥ =
∥∥((Tyφx)

−1)>
∥∥ =

∥∥(Tyφx)
−1
∥∥ .

But as for all x ∈ V , y ∈ Rn, with ‖y‖ < r

∥∥(Tyφx)
>
∥∥ ≥ 1

‖((Tyφx)>)−1‖ ,

we get for all x ∈ V , y ∈ Rn, with ‖y‖ < r and φx(y) ∈ f−1((0, ρ)), that

‖grad(ψ ◦ f ◦ φx)(y)‖ ≥ C1

‖((Tyφx)>)−1‖
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holds. Let C2 > 0 the uniform bound for ‖(T0φx)
−1‖ on U . By the equiconti-

nuity of the family of maps (y 7→
∥∥((Tyφx)

>)−1
∥∥) at 0 on U , see Lemma 2.1.7,

we can find a r2 ∈ (0, r1) such that for all x ∈ U , y ∈ Rn, with ‖y‖ < r2,

∥∥((Tyφx)
>)−1

∥∥ <
∥∥((T0φx)

>)−1
∥∥+ C2 < 2C2

holds. This yields the estimate

‖grad(ψ ◦ f ◦ φx)(y)‖ ≥ C1

2C2
.

for all x ∈ V , y ∈ Rn, ‖y‖ < r2 with φx(y) ∈ f−1((0, ρ)). This proves the
theorem. �

In the application of Theorem 2.1.8, it would be sufficient to have an
lower bound only for ‖grad(ψ ◦ f ◦ φx)(0)‖. This bound can be directly
proven from  Lojasiewicz’s gradient inequality and the standard assumptions
without the use of Lemma 2.1.7. However, the more general version of the
 Lojasiewicz’s gradient inequality in local parameterizations is interesting on
its own and therefore presented here.

2.1.2 Examples of families of parameterizations

Riemannian normal coordinates

As the first example, we consider the family of Riemannian normal coordi-
nates on a complete Riemannian manifold M . Let us recall the definition
of these coordinates, see [97, p.19]. From orthonormal bases of the tangent
spaces TxM we can construct a family of linear isometries ψx : Rn 7→ TxM .
The Riemannian normal coordinates are then given by

φx := expx ◦ψx : Rn →M.

This family (φx) satisfies the standard assumptions.

Proposition 2.1.9 Assume that M is a complete Riemannian manifold. Let
X ⊂ M a set and r > 0 such that the injectivity radius of all x ∈ X is
bounded from below by r. Then the Riemannian normal coordinates satisfy
the standard assumptions on X.

Proof: By definition φx(0) = x for all x ∈ X. It is a well-known fact
from Riemannian geometry, see [51], that ‖T0 expx‖ = ‖Tx exp−1

x ‖ = 1. As
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‖ψx‖ = 1 for all x ∈ X, the norms ‖T0φx‖ and ‖(T0φx)
−1‖ are uniformly

bounded for all x ∈ X. The exp-equicontinuity of Tφx at 0 follows from

Ty(exp−1
x ◦φx) = Texp(ψx(y)) exp−1

x ◦Tψx(y) expx ◦Tyψx = Tyψx = T0ψx.

�

Retractions of the tangent bundle

Our next example are the retractions of the tangent bundle proposed by
Shub [143] for Newton’s method on manifolds. We show how families of
parameterizations satisfying the standard assumptions, can be derived from
these retractions. Let us recall the definition of Shub’s retractions.

Definition 2.1.10 Let M be a complete Riemannian manifold and R : TM →
M be a smooth map. We denote by Rx the restriction of R to TxM . The map
R is a retraction2 if

1. Rx(0) = x for all x ∈M and

2. T0Rx = IdTxM for all x ∈M .

Under a compactness assumption on M , a retraction yields a family of
parameterizations which satisfies the standard assumptions.

Proposition 2.1.11 Let M be a compact manifold and R : TM → M a
retraction. Assume that (ψx : Rn → TxM) is a family of isometries. Then
the family (Rx ◦ ψx) satisfies the standard assumptions.

Note that we do not pose any further conditions of the family of isometries.
Proof: Denote by φx the maps Rx ◦ψx : Rn →M . By definition φx(0) = x
for all x ∈M . The condition T0Rx = IdTxM yields ‖T0φx‖ = ‖(T0φx)

−1‖ = 1.
By the compactness of M the map exp−1 ◦R : TM → TM is well-defined
and smooth on a neighborhood of the zero-fiber 0x in TM . As the ψx are
isometries, a compactness argument yields the exp-equicontinuity of the Tφx
at 0. �

2Shub [143] actually defines R only on a neighborhood of the zero section 0x in TM .
However, by the conditions on R, we can assume w.l.o.g. that this neighborhood coincides
with the whole tangent bundle. Further, our definition does not include the Lipschitz
condition and boundedness condition on the first and second derivatives from [143].
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Families of parameterizations on manifolds with a Lie group action

In [37] Celledoni and Owren propose a method for the construction of re-
tractions for a manifold M with a transitive action of a Lie group G. Using
a special family of maps from the tangent spaces TxM to the Lie algebra g

of G, they derive specific retractions φx : TxM →M from a coordinate map
g → G and the Lie group action on M . Of course, we can construct from
these retractions a family of parameterizations (φx : Rn →M), satisfying the
standard assumptions, as illustrated in the previous example.

However, we want that the family of parameterizations is in a certain
sense invariant under the Lie group action. We use a modification of the
construction of [37] to obtain such a family of parameterizations from a single
local diffeomorphism φ : Rn → M . In Proposition 2.1.12 will show that
such families always satisfy the standard assumptions. We also relate this
construction to the retractions of Celledoni and Owren and similar families
of parameterizations (φx : TxM →M).

Assume that we have a smooth, transitive action β : G ×M → M of a
Lie group G on M . We use the notation βg(x) := β(g, x), for g ∈ G, x ∈
M . Let us recall the definitions of invariance under the group action of
some differential geometric objects, see [74]. We call the Riemannian metric
invariant (under the action β) if for all x ∈M , g ∈ G, v, w ∈ TxM

〈v, w〉x = 〈Txβgv, Txβgw〉βg(x)

holds. This implies that the maps βg are isometries. It is a well-known fact
that isometries of Riemannian manifolds preserve the exponential map, see
e.g. [99]. Hence, in the case of an invariant metric, the exponential map is
invariant under β, i.e. for all g ∈ G: βg(expx(v)) = expβg(x)(Txβgv). In the
remaining part of this example, we will assume that a a smooth, transitive
operation β of a Lie group G on M is given and that the Riemannian metric
〈·, ·〉 is invariant under β.

Using the Lie group action on M , we can construct a family of parame-
terizations satisfying the standard assumptions in the following way.

Proposition 2.1.12 Let ψ : Rn →M be a local diffeomorphism and h : M →
G a map with β(h(x), ψ(0)) = x. Then the family of smooth parameteriza-
tions

φx(y) := β(h(x), ψ(y))

satisfies the standard assumptions.
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Proof: By construction we have that φx(0) = x. As for all x ∈M

‖T0φx‖ =
∥∥Tψ(0)βh(x) ◦ T0ψ

∥∥ = ‖T0ψ‖

and ∥∥T0φ
−1
x

∥∥ =
∥∥∥(T0ψ)−1 ◦

(
Tψ(0)βh(x)

)−1
∥∥∥ =

∥∥(T0ψ)−1
∥∥

hold, we get the uniform boundedness of T0φx and (T0φx)
−1. The invariance

of the exponential map implies that for all x, y ∈ M , g ∈ G, v ∈ TyM , with
dist(x, y) smaller than the injectivity radius of x,

∥∥Tβg(y) exp−1
x v

∥∥ =
∥∥∥Ty exp−1

βg(x) (Tyβg(v))
∥∥∥

holds. Hence, for any x ∈M , y ∈ Rn, ‖y‖ sufficiently small, we have that

∥∥Tx exp−1
x ◦T0φx − Tφx(y) exp−1

x ◦Tyφx
∥∥ =∥∥∥Tψ(0) exp−1

ψ(0) ◦T0ψ − Tψ(y) exp−1
ψ(0) ◦Tyψ

∥∥∥ .

This yields the exp-equivariance of Tφx at 0. �

The next proposition gives conditions when families of parameterizations
φx : TxM → M , like the families of retractions in [36, 37] and the parame-
terizations used in [76, 118], can be identified with a family from Proposi-
tion 2.1.12.

Proposition 2.1.13 Let (µx : TxM → M) be a family of local diffeomor-
phisms such that for all x ∈M , g ∈ G, w ∈ Tβg(x)M

βg
(
µx(Tβg(x)β

−1
g w)

)
= µβg(x)(w). (2.3)

Then for any x∗ ∈ M and any map h : M → G with β(h(x), x∗) = x, there
is a family of isometries (ψx : Rn → TxM) such that for all v ∈ Rn

(µx ◦ ψx)(v) = β (h(x), µx∗(ψx∗(v))) .

In particular, the family (µx ◦ ψx) satisfies the standard assumptions.

Proof: Let ψ : Rn → Tx∗M be an isometry. We define the family of
isometries (ψx : Rn → TxM) by

ψx(v) = Tx∗βh(x)(ψ(v)).
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By the invariance of the Riemannian metric we have for all x ∈M , v, w ∈ Rn

〈ψx(v), ψx(w)〉 =
〈
Tx∗βh(x)(ψ(v)), Tx∗βh(x)(ψ(w))

〉

= 〈ψ(v), ψ(w)〉 = 〈v, w〉 .
Thus the maps ψx are all isometries. Let v ∈ Rn and x ∈ M . Then

(µx ◦ ψx)(v) = µx
(
Tx∗βh(x)(ψ(v))

)

= β
(
h(x), µx∗

(
Tβ(h(x),x∗)β

−1
h(x)

(
Tx∗βh(x)(ψ(v))

)))

= β (h(x), µx∗(ψ(v))) = β (h(x), µx∗(ψx∗(v))) .

Thus the family (ψx) has the required properties. From Proposition 2.1.12
follows that the family (µx ◦ ψx) satisfies the standard assumptions. �

The retractions proposed by Celledoni and Owren [37] can fit into this
setting, if the maps TxM → g and the coordinate map g → G are chosen such
that the invariance condition (2.3) is satisfied. Furthermore examples for the
use of families of parameterizations satisfying the invariance condition (2.3)
can be found in in [5, 76, 118] for Grassmann and Stiefel manifolds. By the
invariance of the exponential map under the group action, the family (expx)
satisfies always the conditions of Proposition 2.1.13.

Manton [119] mentions also the question of the right choice of local pa-
rameterizations for Newton algorithms on homogeneous spaces. However, he
suggests the use of parameterizations which preserve the local symmetries of
the homogeneous space, an aspect we will not follow here any further.

2.1.3 Descent Iterations

We now turn to the discussion of descent iterations in a family of parame-
terizations.

We define the descent iterations analogous to the approaches in the liter-
ature [35, 37, 118, 120, 143].

Definition 2.1.14 A descent iteration for a smooth cost function f : M → R
in a family of smooth parameterizations (φx : Rn →M) is a sequence (xk) ⊂M
given by

xk+1 = φxk
(αksk), αk ∈ R+, sk ∈ Rn

such that for all k ∈ N

f(xk+1) ≤ f(xk)

and f(xk+1) = f(xk) implies xl = xk for all l > k.
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We call αk the step size and sk the descent direction.

Remark 2.1.15 One major argument for descent algorithms via families
of smooth parameterizations instead of using geodesics, is the fact that
geodesics are often too expensive to calculate [118]. The parameterizations
allow to use of computationally cheaper maps. Furthermore, in many applica-
tions it is not possible to calculate the exact geodesics but only a sufficiently
accurate approximation. Strictly speaking, the convergence results known
for Riemannian optimization would not apply directly in these cases.

We now introduce an extension of the standard conditions for global con-
vergence used in Euclidean optimization to our setting.

Definition 2.1.16 A descent iteration (xk) ⊂ M for a smooth function f : M →
R in a family of smooth parameterizations (φx) satisfies the angle condition (AC)
if there is a constant ε > 0 such that

−d(f ◦ φxk
)(0)(sk) ≥ ε ‖sk‖ ‖grad(f ◦ φxk

)(0)‖ (AC)

for all k ∈ N. The iteration satisfies the first and second Wolfe-Powell con-
ditions (WP1), (WP2) if there are constants σ, ρ ∈ (0, 1) such that for all
k ∈ N

f(xk) − f(xk+1) ≥ −σd(f ◦ φxk
)(0)(αksk) (WP1)

d(f ◦ φxk
)(αksk)(sk) ≥ ρd(f ◦ φxk

)(0)(sk). (WP2)

To determine a suitable step size which satisfies (WP1) and (WP2), a
Wolfe-Powell line search would use an iterative sectioning algorithm as e.g.
in [64, Section 2.6]. The Armijo line search takes a different approach. In
particular it enforces only the first Wolfe-Powell condition.

Definition 2.1.17 A descent iteration (xk) ⊂M for f : M → R in a smooth
family of parameterizations (φx) determines the step size by the Armijo line
search if there are constants σ, ρ ∈ (0, 1), C > 0 such that for all k ∈ N

αk = Cρjk

with

jk := min
{
j ∈ N | f(xk) − f(φxk

(Cρj) ≥ −σd(f ◦ φxk
)(0)(Cρjsk)

}
.
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For gradient descent, i.e. sk = grad(f ◦φxk
)(0), the use of the Armijo rule in

local parameterizations was proposed in [118].
The convergence of descent iterations in a family of smooth parameteri-

zations is based on a special property of the descent in Euclidean space. The
standard proofs for convergence of descent iterations in Rn, see e.g. [64,161],
can be viewed from an alternative perspective: Instead of the descent se-
quence of points xk ∈ Rn for a fixed cost function f , a sequence of functions
fk evaluated only at the fixed point 0 can be considered. One can then ask
whether dfk(0) converges to zero in place of df(xk). The following lemma
illustrates this more precisely.

Lemma 2.1.18 We consider the Euclidean space Rn. Let (fk : Rn → R),
k ∈ N, a family of smooth functions and (αk) ⊂ R+, (sk) ⊂ Rn sequences.
Assume that the following conditions hold:

• (dfk) is equicontinuous at 0, i.e. for all ε̂ > 0 exists a δ > 0 such that

∀k ∈ N, x ∈ Rn : ‖x‖ < δ implies ‖dfk(x) − dfk(0)‖ < ε̂.

• for all k ∈ N we have ‖sk‖ = 1,

• fk(0) − fk(αksk) → 0 for k → N.

• there exists ε > 0 such that for all k ∈ N

−dfk(0)(sk) ≥ ε ‖grad fk(0)‖ ,

• there exist σ, ρ ∈ (0, 1) such that for all k ∈ N

fk(0) − fk(αksk) ≥ −σdfk(0)(αksk)

dfk(αksk)(sk) ≥ ρdfk(0)(sk).

Then ‖dfk(0)‖ → 0 for k → ∞.

Given a descent iteration (xk) in Rn, xk = αksk, for a cost function f : Rn →
R we can define fk(x) := f(x− xk). W.l.o.g. we can assume that ‖sk‖ = 1.
If the descent iteration satisfies the angle and Wolfe-Powell conditions and df
is uniformly continuous, then the family (fk) with sequences αk, sk satisfies
the conditions of Lemma 2.1.18. Furthermore, the convergence ‖dfk(0)‖ → 0
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is equivalent to ‖df(xk)‖ → 0. Thus the lemma above implies the standard
convergence results for descent algorithms in Euclidean spaces. In fact, we
have only to apply a modification of the standard arguments [64, 161] for
convergence of descent iterations to prove Lemma 2.1.18.
Proof: The proof is a straightforward adaptation of the argument for
descent iterations in Euclidean spaces, see [64, Thm 2.5.1] or [161]. The
conditions on fk, αk and sk yield an ε > 0 such that for all k ∈ N

fk(0) − fk(αksk) ≥ −σdfk(0)(αksk) ≥ ε |αk| ‖grad fk(0)‖

holds. As fk(0)− fk(αksk) → 0, we can pass to a suitable subsequences such
that |αk| → 0 or ‖grad fk(0)‖ → 0. Assume that |αk| → 0. We define

rk := dfk(αksk)(sk) − dfk(0)(sk).

Assume that there is a C > 0 with |rk| > C for all k ∈ N.
Then ‖dfk(αksk)(sk) − dfk(0)(sk)‖ > C for all k ∈ N. But since |αk| → 0
this would be a contradiction to the equicontinuity of the dfk in 0. Thus
|rk| → 0. On the other hand

rk = dfk(αksk)(sk) − dfk(0)(sk) ≥ (ρ− 1)dfk(0)(sk) ≥ 0.

Therefore dfk(0)(sk) → 0. Since −dfk(0)(sk) ≤ ε ‖grad fk(0)‖, this yields the
convergence

‖grad fk(0)‖ → 0.

�

Note, that for a descent iteration (xk) ∈M in a family of smooth param-
eterizations (φx), we get a sequence of functions hk := f ◦ φk : Rn → R.

Theorem 2.1.19 Assume that the following conditions hold:

• f : M → R is a smooth cost function,

• (φx) is a family of smooth parameterizations,

• (xk) is a descent iteration for f in the parameterizations and satisfies
the angle and Wolfe-Powell conditions,

• the injectivity radius of all x ∈ S = {x ∈M | f(x) ≤ f(x0)} is bounded
from below by a constant r > 0,
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• df is uniformly exp-continuous on S,

• ‖df‖ is uniformly bounded on S,

• (φx) satisfies the standard assumptions on S.

Then ‖df(xk)‖ → 0 or f(xk) → −∞. In particular all accumulation points
of (xk) are critical points of f .

Proof: We assume that f(xk) is strictly decreasing, otherwise the claim in
trivial. Define a family of smooth functions (hk : Rn → R), k ∈ N by

hk(y) := f(φxk
(y)) for all y ∈ Rn.

Let αk ∈ R+ the step sizes and sk ∈ Rn the descent directions of the descent
iteration. W.l.o.g. ‖sk‖ = 1 for all k ∈ N. As (φx) satisfies the standard
assumptions on S, df is uniformly exp-continuous on S and ‖df‖ is uniformly
bounded on S, we can apply Lemma 2.1.6 to get the equicontinuity of d(f◦φx)
at 0 on S. This implies the equicontinuity of dhk at 0. Assume that f(xk)
is bounded from below. Then hk(0) − hk(αksk) = f(xk) − f(xk+1) → 0. As
the descent iteration satisfies the angle and Wolfe-Powell conditions, we can
now apply Lemma 2.1.18. Thus

‖d(f ◦ φk)(0)‖ = ‖dhk(0)‖ → 0.

Since ‖(T0φx)
−1‖ is uniformly bounded on S, we get that

‖df(xk)‖ → 0.

�

Theorem 2.1.20 Assume that the following conditions hold:

• f : M → R is a smooth cost function,

• (φx) is a family of smooth parameterizations,

• (xk) is a descent iteration for f in the parameterizations and satisfies
the angle and Wolfe-Powell conditions,

• For any compact subset K of M , the family (φx) satisfies the standard
assumptions on K, i.e. the constants used in the standard assumptions
depend on K, and can be different for different compact sets.
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Then all accumulation points of (xk) are critical points.

Proof: We assume that f(xk) is strictly decreasing, otherwise the claim
in trivial. Let x∗ ∈ M be the accumulation point of (xk). We denote by
αk ∈ R+ the step sizes and by sk ∈ Rn the descent directions of the descent
iteration. W.l.o.g. ‖sk‖ = 1 for all k ∈ N. Furthermore, let U be relatively
compact, open neighborhood of x∗. There is a subsequence (xkj

) of (xk)

such that xkj
∈ U for all j ∈ N. As f is smooth ‖df‖ is bounded on U

and df is exp-continuous in 0 at U . Furthermore, (φx) satisfies the standard
assumptions on the compact set U . Thus by Lemma 2.1.6 the family d(f ◦
φx) is equicontinuous at 0 on U . Since the descent sequence xk has an
accumulation point, f(xk) is bounded from below and especially f(xkj

) −
f(xkj+1) → 0. Define now hj : Rn → R by

hj(y) = f(φxkj
(y)) for all y ∈ Rn.

As the descent sequence satisfies the angle and Wolfe-Powell conditions, we
can apply Lemma 2.1.18 to hj, αkj

, skj
. This yields ‖dhj(0)‖ → 0. Since φx

satisfies the standard assumptions on U , this gives
∥∥df(xkj

)
∥∥ → 0. By the

smoothness of f we get df(x∗) = 0. �

Corollary 2.1.21 Assume that the following conditions hold:

• f : M → R is a smooth cost function with compact sublevel sets

• (φx) is a family of smooth parameterizations,

• (xk) is a descent iteration for f in the parameterizations and satisfies
the angle and Wolfe-Powell conditions,

• For any compact subset K of M , the family (φx) satisfies the stan-
dard assumptions on K, i.e. the constants in the standard assumptions
depend on K.

Then the sequence (xk) converges to the set of critical points.

Proof: By Theorem 2.1.20 the accumulation points of (xk) are critical
points. As f(xk) is non-increasing, the sequence (xk) is contained in a com-
pact sublevel set S. Therefore, xk converges to the set of critical points of f
in S. �
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For C-functions, one can show that a gradient-like descent along geodesics
(xk) converges to a single point; for analytic functions and classical gradient-
like descent in Euclidean spaces, see [4], and for the more general case of
C-functions with gradient-like descent along geodesics on Riemannian man-
ifolds, see [103]. The case of analytic functions and gradient-like descent
along geodesics on Riemannian manifolds has also been considered in [104].
We extend these results to descent iterations in local parameterizations.

Theorem 2.1.22 Assume that the following conditions hold:

• M is an analytic manifold,

• f : M → R is a smooth C-function,

• (φx) is a family of smooth parameterizations,

• (xk) is a descent iteration for f in the parameterizations and satisfies
the angle and Wolfe-Powell conditions,

• For any compact subset K of M , the family (φx) satisfies the stan-
dard assumptions on K, i.e. the constants in the standard assumptions
depend on K.

Then the descent sequence (xk) either converges to a single point or has no
accumulation points.

Proof: We provide a adaptation of the convergence arguments for Euclidean
and Riemannian gradient-like descent iterations [4, 103, 104] to descent iter-
ations in a family of parameterizations. Let x∗ be an accumulation point of
(xk). W.l.o.g. we assume f(x∗) = 0. By Theorem 2.1.8 there are a relatively
compact neighborhood U of x∗, constants C1 > 0, ρ > 0 and a strictly in-
creasing function ψ : R+ → R+, definable in an o-minimal structure, such
that for all x ∈ U , with f(x) ∈ (0, ρ),

|ψ′(f(x))| ‖grad(f ◦ φx)(0)‖ = ‖grad(ψ ◦ f ◦ φx)(0)‖ ≥ C.

By the angle and Wolfe-Powell conditions, there is an ε > 0 such that for all
k ∈ N

f(xk) − f(xk+1) ≥ ε ‖grad(f ◦ φxk
)(0)‖ ‖αksk‖ .

For xk ∈ U this yields

C1ε ‖αksk‖ ≤ ψ′(f(xk)) (f(xk) − f(xk+1)) .
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As in [103] we can deduce from the monotone increase of ψ, the monotone
decrease of ψ′ and the mean value theorem that3

ψ′(f(xk)) (f(xk) − f(xk+1)) ≤ ψ(f(xk)) − ψ(f(xk+1)).

This yields the estimate

C1ε ‖αksk‖ ≤ ψ(f(xk)) − ψ(f(xk+1))

for xk ∈ U . By Lemma 2.1.6 there is a C2 > 0 and r > 0 such that for all
x ∈ U and y ∈ Rn with ‖y‖ < r,

dist(φx(y), x) < C2 ‖y‖ .

As f(xk) → f(x∗), the difference ψ(f(xk)) − ψ(f(xk+1)) converges to zero.
Thus, there is a K > 0 such that for all k > K with xk ∈ U , we have that
‖αksk‖ < r. This gives for xk ∈ U , k > K the estimate

C1

C2
ε dist(xk+1, xk) =

C1

C2
ε dist(φxk

(αksk), xk) ≤ ψ(f(xk)) − ψ(f(xk+1)).

Since there is a subsequence xkj
converging to x∗ and ψ(f(xk)) → 0, we can

conclude that the iterates xk cannot leave U anymore for large k and that

∞∑

k=0

dist(xk+1, xk)

is bounded. Therefore, xk converges to x∗. �

Example: descent on Riemannian manifolds

As an example, we illustrate how standard gradient-like descent methods on
Riemannian manifolds, see [154], can be interpreted in our setting of descent
iterations in smooth parameterizations. Recall that a Riemannian descent
iteration (xk) ⊂M is given by

xk+1 = expxk
αksk,

3In [4], the authors use a similar argument to get the estimate for analytic cost functions
on R

n. In this case ψ(t) has the form t(1−µ), µ ∈ (0, 1) [113].
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where αk ∈ R+ is the step size and sk ∈ Txk
M the descent direction, such

that for all k ∈ N

f(xk+1) ≤ f(xk)

and f(xk+1) = f(xk) implies xj = xk for all j > k.

Here, we assume that M is a complete Riemannian manifold, otherwise the
descent iteration might not be well-defined. Furthermore, we require that
the injectivity radius of all x ∈ M is uniformly bounded from below by a
constant r > 0.

Let (φx) be a family Riemannian normal coordinates on M . By Proposi-
tion 2.1.9 the family (φx) satisfies the standard assumptions on M . Further-
more the parameterizations are given by φx = expx ◦ψx, where (ψx : Rn →
TxM) is a family of linear isometries. We can define

ŝk := ψ−1
xk

(sk).

Then the Riemannian descent iteration (xk) can be viewed as a descent it-
eration in the family of smooth parameterization (φx) with step sizes αk
and descent directions ŝk. Recall that (xk) satisfies the angle and Wolfe-
Powell conditions according to Definition 2.1.16, if there are constants ε > 0,
ρ, σ ∈ (0, 1) such that for all k ∈ N

−d(f ◦ φxk
)(0)(ŝk) ≥ ε ‖grad(f ◦ φxk

)(0)‖ ‖ŝk‖ ,
f(xk) − f(xk+1) ≥ −σd(f ◦ φxk

)(0)(αkŝk),

d(f ◦ φxk
)(αkŝk)(ŝk) ≥ ρd(f ◦ φxk

)(0)(ŝk)

hold. Since ψx is an isometry, we have ‖ŝk‖ = ‖sk‖. Furthermore, T0 expx
and T0ψx are isometries, too. Denoting by (T0 expx)

>, (T0ψx)
> the adjoints

of the linear maps T0 expx : TxM → TxM , T0ψx : TxM → Rn between Hilbert
spaces, this yields

‖grad(f ◦ φx)(0)‖ =
∥∥grad(f ◦ expxk

◦ψxk
)(0)

∥∥
=
∥∥(T0ψxk

)> ◦ (T0 expxk
)> grad f(xk)

∥∥ = ‖grad f(xk)‖ .

Furthermore, note that

d(f ◦ φxk
)(0)(αkŝk) = d(f ◦ expxk

)(0)(αksk)
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and

d(f ◦ φxk
)(αkŝk)(ŝk) = d(f ◦ expxk

)(ψxk
)(αkŝk))(Tαk ŝk

ψxk
ŝk)

= d(f ◦ expxk
)(αksk)(sk).

Therefore, the angle and Wolfe-Powell conditions are equivalent to the exis-
tence of constants ε > 0, ρ, σ ∈ (0, 1) such that

−d(f ◦ φxk
)(0)(ŝk) ≥ ε ‖grad f(xk)‖ ‖sk‖ ,

f(xk) − f(xk+1) ≥ −σd(f ◦ expxk
)(0)(αksk),

d(f ◦ expxk
)(αksk)(sk) ≥ ρdf(0)(sk).

Hence, our convergence results imply for cost functions with compact
sublevel sets the standard results on Riemannian gradient-like descent as
illustrated by the following corollary, compare with [154].

Corollary 2.1.23 Let M be a complete Riemannian manifold and f : M →
R a smooth cost function with compact sublevel sets. Assume that xk is a
Riemannian descent iteration in M which satisfies the following conditions

• There exists an ε > 0 such that for all k ∈ N

−d(f ◦ φxk
)(0)(ŝk) ≥ ε ‖grad f(xk)‖ ‖sk‖ .

• There exist ρ, σ ∈ (0, 1) such that for all k ∈ N

f(xk) − f(xk+1) ≥ −σd(f ◦ expxk
)(0)(αksk),

d(f ◦ expxk
)(αksk)(sk) ≥ ρdf(0)(sk).

Then xk converges to the set of critical points of f .

Remark 2.1.24 For functions with non-compact sublevel sets, Udriste [154]
requires that the Hessian is uniformly bounded on sublevel sets. Our con-
ditions, especially the uniform bound on ‖df‖, are stronger. However, the
conditions on df could be replaced by a weak equicontinuity condition on
d(f ◦φx). More precisely, we could assume that for any ε > 0 there is a δ > 0
such that for all x ∈ {z ∈M | f(x) ≤ f(x0)}, v ∈ Rn, ‖v‖ < δ,

‖d(f ◦ φx)(v)(v) − d(f ◦ φx)(0)(v)‖ < ε holds.

98



With a minor modification of Lemma 2.1.18, the convergence results hold for
this weaker condition, too. This version would imply the general form of the
convergence results from [154]. However, this ties the admissible functions
directly to the parameterizations. While this might be viable in some cases,
this can prevent a direct exchange of the parameterization or the cost function
in an application.

In the same manner, we retrieve the convergence of a Riemannian descent
iteration to a single point for C-functions, cf. [4] for the Euclidean and [103]
for a Riemannian version.

99



2.2 Optimization on singular sets

2.2.1 Motivation

We start this section be recalling the smooth constraint optimization prob-
lem.

Let M be a smooth manifold, f : M → R be a smooth function, the cost
function and X ⊂M a set, the so-called constraint set or set of feasible points.
The smooth constrained optimization problem consists of finding x∗ ∈ X such
that

f(x∗) = min
x∈X

f(x).

The standard Euclidean space setting assumes that M is the Euclidean
Rn and X is given by a number smooth equations or inequalities, i.e. X =
g−1(0) ∩ h−1(Rl

+) for smooth functions g : Rn → Rk, h : Rn → Rl.
We review some aspects of the standard Euclidean approaches. However,

given the vast amount of literature in this area, it is beyond the scope of this
work to give a complete overview. So we will just sketch a few parts of this
area and refer the reader to the standard literature like [33, 64, 130].

A first step to solve the optimization problem is to characterize the min-
ima of f on X. The usual approach is to use linearization techniques or
Taylor approximations for this purpose. Under suitable regularity conditions
on the constraint set, the constraint qualifications [33], this yields first-order
Lagrange-multiplier type necessary conditions for the minima of f . These
conditions are the well-known Karush-Kuhn-Tucker conditions. Points sat-
isfying these conditions are called KKT points and defined as follows [33,
p.160]. A point x∗ ∈ Rn is a KKT point if and only if there exist λ ∈ Rk,
µ ∈ Rl such that

• df(x∗) + λ>Dg(x∗) + µ>Dh(x∗) = 0,

• g(x∗) = 0, h(x∗) ∈ Rl
+,

• µ ∈ Rl
+,

• µ>h(x∗) = 0.

The Euclidean methods use Newton-type algorithms, like e.g. the SQP-
methods, or penalization approaches, like penalty or barrier functions, to
find a KKT point in the constraint set. However, this requires that suitable
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constraint qualifications hold which can impose relatively strong conditions
on the geometry of the constraint set. For example, the so-called linear
constraint qualifications, see [33] for a definition, imply that the constraints
define locally a smooth submanifold with corners4. Thus these approaches
are not easily applicable to e.g. arbitrary semi-algebraic sets. Furthermore,
the methods often rely on a description of the constraint set by equations and
inequalities. This raises problems if such a description is not easily available,
would be very complicated or the description would not satisfy any type of
constraint qualification. Furthermore, these approaches exploit the simple
geometry of the ambient Euclidean space and are not easily extended to
general Riemannian manifolds.

Here, we propose a different approach by extending the descent iterations
in local parameterizations from the previous section to non-smooth sets. To
motivate this approach, let us consider the case that X is a algebraic subset of
Rn or subanalytic subset of an analytic manifold M . Then well-known desin-
gularization results of Hironaka [81, 82] or the uniformization theorem [24],
guarantee the existence of an analytic map ψ : N → X with N an analytic
manifold of dimension dimX. Note that there are constructive versions of
the proof of the desingularization theorem [25,158,159], thus for analytic sets
X the map ψ can be constructed by a finite number of blowing up opera-
tions. Assume now that we are given a smooth cost function f : M → R
and we want to optimize f over X, i.e. find a minimum of the restriction
f |X : X → R of f to X. Let (φy) be a family of smooth parameterizations of
N . Then we can construct a descent iteration (yk) in this family of parame-
terizations for the smooth function f ◦ψ. On the other hand we can construct
a family of parameterizations (φ̂x : Rn → X) of X by setting φ̂x := ψ ◦ φy,
y ∈ ψ−1({x})5. The descent iteration (yk) for f ◦ ψ consists of Euclidean
optimization steps for the functions f ◦ ψ ◦ φyk

, which are mapped back to
N by φyk

. Define a sequence (xk) ⊂ X, xk := ψ ◦ φyk
(0). This sequence is

determined by Euclidean optimization steps for the function f ◦ φ̂xk
which are

mapped back to X by parameterizations φ̂xk
. Thus we can view (xk) as a de-

scent iteration for f on X in the parameterizations (φ̂x). This motivates the

4i.e. a subset of R
n which is locally diffeomorphic to R

l ×R
k
+ × {0}m, l+ k +m = n.

5This does not give a unique parameterization φ̂x for a x ∈ X . Therefore, we assume
φ̂xk

:= ψ ◦ φyk
for the descent iteration (yk). This assumption is feasible, as f(ψ(yk)) is

non-increasing, and non-decreasing only if the sequence (yk) is constant for the remainder
of the sequence.
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extension of the optimization on manifolds in a family of parameterizations
to singular sets.

Note, that one can view the blow-up construction above as a general-
ization of the nonlinear coordinate transform approaches, see [56, 133], and
quadratic slack variable approaches, see e.g. [96].

2.2.2 Parameterizations of singular sets

At first we consider families of parameterizations of a set X ⊂M , regularity
conditions on the families and necessary conditions in the parameterizations
for local minima of the cost function. In the remainder of this section M will
again be a smooth Riemannian manifold with Riemannian metric 〈·, ·〉.

We define for any X ⊂ M a family of smooth parameterizations as a
function φ : X × Rn → M , such that Imφ = X and y 7→ φ(x, y) is smooth.
Again, φx denotes the function y 7→ φ(x, y)6.

To develop a convergence theory for the descent iterations described later,
we need suitable first order condition for the minima of a smooth function
f : M → R restricted to X, i.e. a suitable concept of critical points on X.
It is not obvious how a first order condition should look like. One possible
approach would be to use tools from non-smooth optimization for this task.
However, we assume here that the non-smooth set can be parameterized by
smooth maps φx : Rn → M , φx(R

n) ⊂ X. By considering the function in
these parameterizations, i.e. f ◦ φx, we can use the well-known character-
ization of critical points on Euclidean Rn, to derive a first order necessary
condition for local minima. This characterization will fit seamlessly into our
approach to minimization by descent iterations in the parameterizations.

Definition 2.2.1 Let X be a closed subset of M with a family of smooth
parameterizations (φx) with φx(0) = x. Let f : M → R be a smooth function.
We call points x ∈ X with d(f ◦ φx)(0) = 0 the critical points of f on X
induced by the family of parameterizations or in short critical points of f |X .

Note, that besides the smoothness and φx(0) = x, we not impose any
further restrictions on the parameterizations. It follows directly that this
condition is necessary for a local minimum.

Proposition 2.2.2 Let X be a closed subset of M and f : M → R a smooth
cost function. Assume we have a family of smooth parameterizations (φx) of

6To avoid confusion, we stress the fact that the φx do not have to be invertible or local
diffeomorphisms.
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X with φx(0) = x. If x∗ is local minimum (or local maximum) of f on X,
then d(f ◦ φx∗)(0) = 0, i.e. x∗ is a critical point of f |X .

Proof: The local minimum x∗ of f on X implies that 0 is a local minimum
of the smooth function f ◦ φx∗. �

Furthermore, if a set X ⊂ Rn is given by smooth equations and inequal-
ities, then all KKT points are critical points in our definition.

Proposition 2.2.3 Let X be a closed subset of the Euclidean Rn, which
is defined by a finite number of equations and inequalities. Assume that
f : Rn → R is a smooth cost function and x∗ a KKT point. Then for
any family of smooth parameterizations (φx) of X with φx(0) = x, we get
d(f ◦ φx∗)(0) = 0.

Proof: We use the same notation as in the definition of KKT points, cf. 100.
Let φx : Rk → X. Assume that d(f ◦ φx∗)(0) 6= 0. Then there is a curve
γ : R → Rk with γ(0) = 0, (f ◦φx∗ ◦γ)′(0) 6= 0. Define τ := φx∗ ◦γ. Then by
definition τ(0) = x∗, τ̇(0) 6= 0 and (f ◦ τ)′(0) 6= 0. Furthermore, τ(t) ∈ X for
all t ∈ R. W.l.o.g. we can assume that f ◦ τ(t) > 0 for t > 0 and f ◦ τ(t) < 0
for t < 0. The case of different signs can be covered by replacing τ(t) with
τ(−t).

Let X = {x ∈ Rn | g(x) = 0, h(x) ≥ 0} for smooth functions g : Rn →
Rl, h : Rn → Rr. As τ(t) ∈ X for all t ∈ R, we have g(τ(t)) = 0 and
h(τ(t)) ≥ 0 for all t ∈ R. Denote by λ ∈ Rl, µ ∈ Rr

+ the Lagrange
multipliers of the KKT point. Let D denote the differential of maps Rn →
Rm. Then Dg(x∗)τ̇ (0) = 0 and µ>h(τ(t)) ≥ 0 hold for all t ∈ R. By
µ>h(τ(0)) = µ>h(x∗) = 0 we get that µ>Dh(x∗)τ̇(0) = 0. Therefore

df(x∗)(τ̇ (0)) + λ>Dg(x∗)τ̇ (0) + µ>Dh(x∗)τ̇(0) = df(x∗)(τ̇(0)) 6= 0

which is a contradiction to the KKT conditions. Thus d(f ◦ φx∗)(0) = 0. �

As in the smooth case, we need some regularity conditions on the family
of parameterizations.

Definition 2.2.4 Let X be a subset of M , and K a subset of X.7 Assume that
the injectivity radius of all x ∈ K is bounded from below by a constant r > 0.

7As X is already just a subset of M , the use of another subset K ⊂ X might at a
first sight not be really necessary for the problems below. One could always just try to
identify X = K. However, in some cases the parameterizations will be actually needed on
the whole space, while the conditions only holds on a subset.
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A family of smooth parameterizations (φx) of X satisfies the weak standard
assumptions on K, if the following conditions hold

1. for all x ∈ K : φx(0) = x,

2. there is a constant C > 0 such that ‖T0φx‖ < C for all x ∈ K,

3. the family (Tφx : Rn → TxM) is exp-equicontinuous at 0 on K

4. for any sequence xk ∈ K with xk → x∗ ∈ K we have that

ImT0φx∗ ⊂
{
w ∈ TxM | w = limT0φxm

(vm), (vm) ⊂ Rk,

(xm) a subsequence of (xk)} .8

Remark 2.2.5 The condition 4 in Definition 2.2.4 is equivalent to the lower
semicontinuity of the set-valued map x 7→ Im T0φx.

Example 2.2.6 Let X = {(x, y) ∈ R2 | xy = 0} and

φ((x, y), t) :=

{
(x + t, 0) for x 6= 0
(0, y + t) otherwise

.

Then (φ(x,y)), with φ(x,y) : t 7→ φ((x, y), t), is a family of smooth parameteri-
zations of X. However, since

ImT0φ(x,y) =

{
R × {0} for x 6= 0
{0} × R otherwise

condition 4 is violated and the family does not satisfy the weak standard
assumptions on X. If we choose instead

φ̂((x, y), t) :=





(x+ t, 0) for x 6= 0
(0, y + t) for y 6= 0
(0, 0) for (x, y) = (0, 0)

,

then the family of parameterizations (φ̂(x,y)) ofX, with φ(x,y) : t 7→ φ((x, y), t),
satisfies the weak standard assumptions on X.

8Convergence in the standard topology of the tangent bundle.

104



The parameterizations do not depend smoothly or even continuously on
the base points. Therefore we need the following proposition to ensure that
d(f ◦ φxk

)(0) → 0 implies that x∗ is a critical point in the sense of Defini-
tion 2.2.1. Note, that we use the lower semicontinuity of x 7→ ImT0φx to get
this result. This motivates the inclusion of this property in the definition of
the weak standard assumptions.

Proposition 2.2.7 Let X be a subset of M with a family of smooth parame-
terizations (φx) which satisfies the weak standard assumptions. Assume that
K ⊂ X. If f : M → R is a smooth function and (xk) a sequence in K,
xk → x∗, x∗ ∈ K, then d(f ◦ φxk

)(0) → 0 implies d(f ◦ φx∗)(0) = 0, i.e. that
x∗ is a critical point of f on X.

Proof: If d(f◦φx∗)(0) 6= 0 then there exists v ∈ ImTφx∗(0) with df(x∗)(v) =
c 6= 0. By the lower semicontinuity of x 7→ ImT0φx and eventually passing to
a subsequence of xk, there exists a sequence vk ∈ Im Tφxk

(0), vk → v. The
continuity of df implies that df(xk)(vk) → c. Thus d(f ◦ φxk

)(0) 6→ 0. �

We motivated the parameterization approach by choosing an analytic
map ψ : N → X from a manifold to an analytic set X and covering N with
local parameterizations (φx). The following proposition shows that under
some regularity assumptions on ψ, the standard assumptions on (φx) imply
the weak standard assumptions for the family (ψ ◦ φx).

Theorem 2.2.8 Let X be a subset of M , K a subset of X and N another
smooth Riemannian manifold. Assume that the following conditions hold:

1. There is a smooth map ψ : N →M with ψ(N) = X.

2. ‖Tyψ‖ is uniformly bounded on ψ−1(K).

3. For every x ∈ K, there is a Hx ⊂ TxM such that for all y ∈ ψ−1(x)

ImTyψ = Hx.

4. For all ε > 0 there is a δ > 0 such that for all y ∈ ψ−1(K), v ∈ TyN

‖v‖ < δ implies
∥∥Tv(expψ(y) ◦ψ ◦ expy) − T0(expψ(y) ◦ψ ◦ expy)

∥∥ < ε.

Here the notation exp is used both for the exponential map on M and
on N .
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5. There is a uniform lower bound r > 0 for the injectivity radius of all
x ∈ K and all y ∈ ψ−1(K).

6. There is a family of smooth parameterizations (φy : Rn → N) of N
which satisfies the standard assumptions on the set ψ−1(K).

Then any family of parameterizations (φ̂x) of X given by

φ̂x := ψ ◦ φy, for a y ∈ ψ−1(x),

satisfies the weak standard assumptions on K.

Proof: Since φ̂x(0) = (ψ ◦ φy)(0) = ψ(y) = x for y ∈ ψ−1(x), we get

φ̂x(0) = x. Let C be an uniform upper bound of ‖T0φy‖ and ‖Tyψ‖ on
ψ−1(K). Then for all x ∈ K we have a y ∈ ψ−1(K) such that

∥∥∥T0φ̂x

∥∥∥ = ‖Tyψ ◦ T0φy‖ ≤ ‖Tyψ‖ ‖T0φy‖ ≤ C2.

Thus,
∥∥∥T0φ̂x

∥∥∥ is uniformly bounded on K. To show the exp-equicontinuity

of T φ̂x at 0 on K, we use a similar argument as in the proof of Lemma 2.1.6.
However, we have to show first that the family (ψ ◦ expy : TyN → M) is
equicontinuous at 0 on ψ−1(K). For this purpose, let (µy : Rn → TyN | y ∈
N), n = dimN be a family of isometries. We assume that (ψ̂x : Rn →
M | x ∈ K) is a family of smooth maps such that

ψ̂x = ψ ◦ expy ◦µy with y ∈ ψ−1(x).

Note, that this family has the following properties:

• For all x ∈ K: ψ̂x(0) = x.

• For all x ∈ K there is y ∈ ψ−1(x) with
∥∥∥T0ψ̂x

∥∥∥ = ‖Tyψ‖ < C, C the

bound defined above.

• T ψ̂x is exp-equicontinuous at 0 on K.

Thus, we can apply Proposition 2.1.5 and get that the family (ψ̂x) is equicon-
tinuous at 0 on K. Since the µy are isometries and there are no further con-

ditions, besides ψ(y) = x, on the choice of y ∈ ψ−1(K) in the definition of ψ̂x,

106



this yields the equicontinuity of (ψ ◦ expy : TyN →M) at 0 on ψ−1(K). Fur-
thermore, by Proposition 2.1.5 the family (φy) is equicontinuous on ψ−1(K)
at 0.

By the equicontinuity of (ψ◦expy) and (φy) at 0 on ψ−1(K), there is a s >
0 such that for all v ∈ Rn, y ∈ ψ−1(x), ‖v‖ < s implies dist(x, ψ(φy(0))) < r
and dist(y, φy(0)) < r.9 Let x ∈ K, y ∈ N with ψ(y) = x and v ∈ Rn with
‖v‖ < s. Then we get the following calculations

Tv(exp−1
x ◦ψ ◦ φy) − T0(exp−1

x ◦ψ ◦ φy)
= Tv(exp−1

x ◦ψ ◦ expy ◦ exp−1
y ◦φy) − T0(exp−1

x ◦ψ ◦ expy ◦ exp−1
y ◦φy)

= Texp−1
y (φy(v))

(
exp−1

x ◦ψ ◦ expy
)
◦ Tv

(
exp−1

y ◦φy
)

−T0

(
exp−1

x ◦ψ ◦ expy
)
◦ T0

(
exp−1

y ◦φy
)

= Texp−1
y (φy(v))

(
exp−1

x ◦ψ ◦ expy
)
◦ Tv

(
exp−1

y ◦φy
)

−T0

(
exp−1

x ◦ψ ◦ expy
)
◦ Tv

(
exp−1

y ◦φy
)

+T0

(
exp−1

x ◦ψ ◦ expy
)
◦ Tv

(
exp−1

y ◦φy
)

−T0

(
exp−1

x ◦ψ ◦ expy
)
◦ T0

(
exp−1

y ◦φy
)

=
(
Texp−1

y (φy(v))

(
exp−1

x ◦ψ ◦ expy
)
− T0

(
exp−1

x ◦ψ ◦ expy
))
Tv
(
exp−1

y ◦φy
)

+T0

(
exp−1

x ◦ψ ◦ expy
) (
Tv
(
exp−1

y ◦φy
)
− T0

(
exp−1

y ◦φy
))
.

This yields the estimate

∥∥Tv(exp−1
x ◦ψ ◦ φy) − T0(exp−1

x ◦ψ ◦ φy)
∥∥

≤
∥∥∥Texp−1

y (φy(v))

(
exp−1

x ◦ψ ◦ expy
)
− T0

(
exp−1

x ◦ψ ◦ expy
)∥∥∥

·
∥∥Tv

(
exp−1

y ◦φy
)∥∥

︸ ︷︷ ︸
=‖T0(exp−1

y ◦φy)−Tv(exp−1
y ◦φy)−T0(exp−1

y ◦φy)‖
+
∥∥T0

(
exp−1

x ◦ψ ◦ expy
)∥∥

︸ ︷︷ ︸
=‖Tyψ‖

∥∥Tv
(
exp−1

y ◦φy
)
− T0

(
exp−1

y ◦φy
)∥∥

≤
∥∥∥Texp−1

y (φy(v))

(
exp−1

x ◦ψ ◦ expy
)
− T0

(
exp−1

x ◦ψ ◦ expy
)∥∥∥

·
(∥∥T0

(
exp−1

y ◦φy
)∥∥ +

∥∥T0

(
exp−1

y ◦φy
)
− Tv

(
exp−1

y ◦φy
)∥∥)

+ ‖Tyψ‖
∥∥Tv

(
exp−1

y ◦φy
)
− T0

(
exp−1

y ◦φy
)∥∥ .

9By abuse of notation we use dist both for the Riemannian distance on M and on N .
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Note, that since ‖v‖ < s, the well-known corollary of the Gauss lemma,
cf. [97, Cor. 4.2.3, 4.2.4] yields again that dist(y, φy(v)) =

∥∥exp−1
y (φy(v))

∥∥.
We denoted by C > 0 an uniform upper bound for ‖Tyψ‖ and ‖T0φy‖ on
ψ−1(K). The equicontinuity of (φy) at 0 on ψ−1(K), the exp-equicontinuity
of (Tφy) at 0 and condition 4 in the proposition yield for any ε > 0 a δ ∈ (0, s)
such that for all x ∈ K, y ∈ ψ−1(K), v ∈ Rn, with ‖v‖ < δ, the estimates

∥∥Tv
(
exp−1

y ◦φy
)
− T0

(
exp−1

y ◦φy
)∥∥ < ε,∥∥∥Texp−1

y (φy(v))

(
exp−1

x ◦ψ ◦ expy
)
− T0

(
exp−1

x ◦ψ ◦ expy
)∥∥∥ < ε

hold. Combing this with the estimate above, we get for any ε > 0 a δ > 0
such that for all x ∈ K, y ∈ ψ−1(K), v ∈ Rn, with ‖v‖ < δ:

∥∥Tv(exp−1
x ◦ψ ◦ φy) − T0(exp−1

x ◦ψ ◦ φy)
∥∥ < ε(C + ε) + εC.

Thus (T φ̂x) is exp-equicontinuous at 0 on K. We must still check the last
condition of the weak standard assumptions. For any sequence xk ∈ K, xk →
x ∈ K, we can choose a y ∈ ψ−1(x) and a sequence yk → y, yk ∈ ψ−1(xk).
Since Tψ is continuous, we get that

Im Tyψ ⊂ {w ∈ TxM | ∃(vk) ⊂ Rn : lim
k→∞

Tyk
ψ(vk) = w}.

Note that ImT0φy = TyN for all y ∈ ψ−1(K) and for all x ∈ K, y ∈ ψ−1(K),
there is a Hx ⊂ TxM with ImTyψ = Hx. Thus

ImT0(ψ ◦ φx) = Hx ⊂ {w ∈ TxM | ∃(vk) ⊂ Rn : lim
k→∞

T0(ψ ◦ φyk
)vk = w}.

Therefore condition 4 of the weak standard assumptions holds on K. �

On compact sets most of the conditions of Theorem 2.2.8 are automati-
cally satisfied. This yields the following corollary.

Corollary 2.2.9 Let X be a subset of M , K a compact subset of X and N
another smooth Riemannian manifold. Assume that the following conditions
hold.

1. There is a smooth map ψ : N →M with ψ(N) = X.

2. For every x ∈ K, there is a Hx ⊂ TxM such that for all y ∈ ψ−1(x)

ImTyψ = Hx.
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3. There is a smooth family of parameterizations (φy : Rn → N) of N
which satisfies the standard assumptions on the set ψ−1(K).

Then any family of parameterizations (φ̂x) of X given by

φ̂x := ψ ◦ φy, for a y ∈ ψ−1(x),

satisfies the weak standard assumptions on K.

Assume that the constraint set X can be stratified, i.e. there exists a
stratification of M compatible with X. If the parameterizations are then
submersions onto the strata, then a point x ∈ X is a critical point if and
only if it is a critical point of the function restricted to the stratum of x. The
following proposition illustrates this property.

Proposition 2.2.10 Let X be a subset of M and N another smooth Rie-
mannian manifold. Assume that the following conditions hold:

• Sj, j ∈ Λ, is a C2-stratification of M , compatible with X.

• (φx : Rn →M) is a family of smooth parameterizations of X.

• For all j ∈ Λ and x ∈ Sj we have

ImT0φx = TxSj.

• f : M → R is a smooth function.

Then any x ∈ X is a critical point of f on X induced by the parameterizations
(φx) if and only if

πTxSj
(grad f(x)) = 0,

πTxSj
the orthogonal projection in TxM on TxSj.

Proof: Let x ∈ Sj be a point. Note that
〈
πTxSj

(grad f(x)), v
〉

= 〈grad f(x), v〉 = df(x)(v) = 0

for all v ∈ TxSj. Since ImT0φx = TxSj, and d(f ◦ φx)(0) = df(x) ◦ T0φx we
have that

df(x)|TxSj
= 0 if and only if d(f ◦ φx)(0) = 0.

Thus πTxSj
(grad f(x)) = 0 if and only if x is a critical point of f |X . �

For parameterizations constructed from a smooth map N → X and a pa-
rameterizations of the manifold N , we have the following corollary of Propo-
sition 2.2.10.
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Corollary 2.2.11 Let X be a subset of M and N another smooth Rieman-
nian manifold. Assume that the following conditions hold:

1. ψ : N →M is a smooth map with ψ(N) = X.

2. Sj, j ∈ Λ, is a C2-stratification of M , compatible with X.

3. For all j ∈ Λ, x ∈ Sj ∩X and y ∈ ψ−1(x) we have

ImTyψ = TxSj.

4. f : M → R is a smooth function.

5. (φy : Rn → N) is a family of smooth parameterizations of N which are
all local diffeomorphisms in 0.

Let (φ̂x) family of smooth parameterizations of X given by

φ̂x := ψ ◦ φy, for a y ∈ ψ−1(x).

Then any x ∈ X is a critical point of f on X induced by the parameterizations
(φ̂x) if and only if

πTxSj
(grad f(x)) = 0,

where πTxSj
denotes the orthogonal projection in TxM on TxSj.

Proof: Since the φy are local diffeomorphisms, we see that for all j ∈ Λ,
x ∈ Sj and y ∈ ψ−1(x)

ImT0φ̂x = ImTyψ = TxSj

holds. Thus the result follows directly from Proposition 2.2.10. �

Remark 2.2.12 Let the assumptions of Corollary 2.2.11 hold. For strata
Si, Sj, Si ⊂ Sj, Si, Sj ⊂ X and a sequence (xk) ⊂ Sj, xk → x ∈ Si, there
is a sequence (yk) ⊂ N , yk → y ∈ N . Assume that ImTyk

ψ converges to a
τ ⊂ TxM . By smoothness of ψ, we have that

ImTyψ ⊂ τ.

Thus
TxSi = ImTyψ ⊂ τ = lim ImTyk

ψ = lim Txk
Sj.

This yields that the strata Sj ⊂ X satisfy the Whitney-(a) condition.
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Remark 2.2.13 The reader should note that a desingularization ψ : N → X
of an analytic or even algebraic set does not necessarily satisfy the conditions
of Corollary 2.2.11. Regular, self-intersecting curves in Rn provide already
suitable counterexamples. Let γ : R → Rn be a regular10, smooth curve with
an a, b ∈ R such that a 6= b, γ(a) = γ(b), and γ̇(a), γ̇(b) linearly independent.
The parameterization γ : R → X, X = {γ(t) | t ∈ R} resolves the singu-
larities of X. Since γ̇(a), γ̇(b) are linearly independent and dimX = 1, any
Whitney-(a) stratification of X will have the point γ(a) as a 0-dimensional
stratum. But as γ is regular, we have dim(ImTaγ) = dim(ImTbγ) = 1. Thus
γ does not satisfy the condition of Corollary 2.2.11. An explicit example for
such a curve would be X = {(x, y) ∈ R2 | y2 = x2 − x3}, see [46, p.24].

Generally, the algebraic blow-up for a singular variety does not satisfy
the conditions of Corollary 2.2.11. Consider a blow-up of Rn with smooth
center C, dimC = n − k. We refer the reader to [141, p.71] for a detailed
construction of blow-ups with a specific center. In local coordinates we can
assume that C = {0} × Rn−k. Then the blow-up is given by

B = {(x1, . . . , xk, xk+1, . . . , xn, (x1 : . . . : xk)) | (x1, . . . , xn) ∈ Rn}
⊂ Rn × Pk−1.

where (x1 : . . . , xk) denotes the projective coordinates11. The projection π on
the first n-coordinates maps B to Rn. It is easily seen that rk Tyπ = n−k+1
for all y ∈ {0}×Pk−1. However, since π is a diffeomorphism on B\{0}×Pk−1

and not a local diffeomorphism in {0} × Pk−1, Rn has to be stratified into
Rn \ C and C. But then ImTyπ 6= T0C for all y ∈ π−1(0). Thus the
conditions of Corollary 2.2.11 are not satisfied. This argument can be applied
analogously to blow-ups of general algebraic varieties instead of Rn.

This also illustrates that it is generally not possible to construct a family
of smooth parameterizations, which satisfies the weak standard assumptions,
from the algebraic blow-up construction of singular variety. In the Rn case
above we see that for a point x in the center C, at each point y ∈ π−1(x) the
image of Tyπ is different. Thus constructing a family of parameterizations
from parameterizations φy of B, by setting

φ̂x = π ◦ φy, y ∈ π−1(x)

10i.e. γ̇(t) 6= 0 for all t ∈ R
11cf. [140, p. 41]
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gives a family which does not satisfy the weak standard assumptions. This
argument can be extended to any singular variety X, unless the preimages
of points of the center consist of single points. But in this case X would be
smooth at the center anyway.

2.2.3 Descent iterations on singular sets

We now turn to the definition of descent iterations and the discussion of
some convergence results. The definition of descent iterations in a family of
parameterizations on constraint sets is analogous to the smooth case.

Definition 2.2.14 Let f : M → R be a smooth cost function and X ⊂ M a
constraint set. A descent iteration for f in a family of smooth parameterizations
(φx) of X is a sequence (xk) ⊂ X given by

xk+1 = φxk
(αksk), αk ∈ R+, sk ∈ Rn,

such that for all k ∈ N

f(xk+1) ≤ f(xk)

and f(xk+1) = f(xk) implies xl = xk for all l > k.

We call αk the step size and sk the descent direction.

For descent iterations on singular sets we define the same conditions for
convergence as in the smooth case.

Definition 2.2.15 Let X be a subset of M and f : M → R a smooth cost
function. A descent iteration (xk) for f in a family of smooth parameterizations
(φx) of X satisfies the angle condition (AC) if there is a constant ε > 0 such
that

−d(f ◦ φxk
)(0)(sk) ≥ ε ‖sk‖ ‖grad(f ◦ φxk

)(0)‖ (AC)

for all k ∈ N. The iteration satisfies the first and second Wolfe-Powell con-
ditions (WP1), (WP2) if there are constants σ, ρ ∈ (0, 1) such that for all
k ∈ N

f(xk) − f(xk+1) ≥ −σd(f ◦ φxk
)(0)(αksk) (WP1)

d(f ◦ φxk
)(αksk)(sk) ≥ ρd(f ◦ φxk

)(0)(sk). (WP2)

Remark 2.2.16 In the same way we can extend the Armijo line search to
these descent iterations in a family of smooth parameterizations of X.
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We have a similar convergence theorems as in the manifold case.

Theorem 2.2.17 Let X be a subset of M and (xk) a sequence in X. Assume
that the following conditions hold.

• f : M → R is a smooth cost function,

• (φx) is a family of smooth parameterizations of X,

• (xk) is a descent iteration for f in the parameterizations and satisfies
the angle and Wolfe-Powell conditions,

• the injectivity radius of all x ∈ S = {x ∈ X | f(x) ≤ f(x0)} is bounded
from below by a constant r > 0,

• df is uniformly exp-continuous on S,

• ‖df‖ is uniformly bounded on S,

• (φx) satisfies the weak standard assumptions on S.

Then ‖d(f ◦ φxk
)(0)‖ → 0 or f(xk) → −∞. In particular, all accumula-

tion points of (xk) are critical points of f on X induced by the family of
parameterizations.

Proof: We use the same argument as in the smooth case. Assume that f(xk)
is strictly decreasing, otherwise the claim follows directly from the definition
of descent iterations and the Wolfe-Powell conditions. Let hk : Rn → R be
defined by

hk(v) := (f ◦ φxk
)(v).

We denote by αk ∈ R+, sk ∈ Rn, the step sizes and descent directions.
W.l.o.g. ‖sk‖ = 1 for all k ∈ N. Application of Lemma 2.1.6 yields the
equicontinuity of d(f ◦ φxk

) on S, i.e. equicontinuity of dhk at 0. If f(xk) is
bounded from below, then hk(0)−hk(αksk) = f(xk)−f(xk+1) → 0. Therefore
we get by Lemma 2.1.18 that

‖dhk(0)‖ = ‖d(f ◦ φxk
)(0)‖ → 0.

If (xk) has an accumulation point, then f(xk) is bounded from below. This
proves the convergence of ‖d(f ◦ φxk

)‖ to 0. Since ‖d(f ◦ φxk
)(0)‖ → 0,

Proposition 2.2.7 implies the accumulation point is a critical point of f on
X induced by the family of parameterizations. �
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Theorem 2.2.18 Let X be a subset of M and (xk) a sequence in X. Assume
that the following conditions hold:

• f : M → R is a smooth cost function,

• (φx) is a family of smooth parameterizations of X,

• (xk) is a descent iteration for f in the parameterizations and satisfies
the angle and Wolfe-Powell conditions,

• For any compact subset K of X, the family (φx) satisfies the weak
standard assumptions on K, i.e. the constants in the weak standard
assumptions depend on K.

Then all accumulation points of (xk) are critical points of f on X induced
by the family of parameterizations.

Proof: Again we can basically use the same argument as in the smooth case.
Assume that f(xk) is strictly decreasing, otherwise the claim follows again
directly from the Wolfe-Powell conditions. Let x∗ ∈ X be an accumulation
point of the descent iteration. Note that f(xk) is bounded from below. We
can choose an relatively compact, open neighborhood U of x∗ in X, such that
‖df‖ is uniformly bounded and df is exp-continuous on U . Let (xkj

) ⊂ U be
a subsequence of (xk) which converges to x∗. The same argument as in the
proof of Theorem 2.2.17 applied to this subsequence yields

∥∥∥d(f ◦ φxkj
)
∥∥∥→ 0.

Thus, by Proposition 2.2.7, the accumulation point x∗ is a critical point of f
on X induced by the parameterizations. �

Corollary 2.2.19 Let X be a subset of M and (xk) a sequence in X. As-
sume that the following conditions hold:

• f : M → R is a smooth cost function with compact sublevel sets {x ∈
X | f(x) ≤ c} on X.

• (φx) is a family of smooth parameterizations,

• (xk) is a descent iteration for f in the parameterizations and satisfies
the angle and Wolfe-Powell conditions,
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• For any compact subset K of X, the family (φx) satisfies the weak
standard assumptions on K, i.e. the constants in the weak standard
assumptions depend on K.

Then the sequence (xk) converges to the set of critical points of f on X
induced by the family of parameterizations.

Proof: Similar to the smooth case, this follows from fact that the iterates
remain in a compact set by a straightforward application of Theorem 2.2.18.

�

Remark 2.2.20 Assume that the parameterizations were constructed as in
Theorem 2.2.8, i.e. from a smooth map ψ : N → X and a family of param-
eterizations on N . If the map ψ is a bijection, then the descent iteration
on X can be lifted to a descent iteration on N for the function f ◦ ψ. Since
this iteration satisfies the Wolfe-Powell and angle conditions, the convergence
theorems for the smooth case yield convergence to the critical points of f on
X. However, this argument fails if ψ is not bijective, since a lift (yk) of de-
scent iteration (xk) on X to N will not be necessarily a descent sequence on
N12.

2.2.4 Example: Approximation by nilpotent matrices

As an illustration of our approach to optimization on singular sets, we con-
sider the following approximation problem for a matrix N ∈ Rn×n: Find
A ∈ Rn×n, with An = 0, such that

‖N −A‖ = min
A∈Rn×n,An=0

‖N − A‖F , (2.4)

i.e. we want to find the best approximation of N in the Frobenius norm,
‖A‖F =

√
tr(A>A), by a nilpotent matrix A. Here, the constraint set is the

set of nilpotent matrices

X = {A ∈ Rn×n | An = 0}.

As a cost function, we choose the smooth function

f(A) := ‖N − A‖2
F = tr((N − A)>(N − A)).

12For example, yk+1 ∈ N does not even have to be an element of Imφyk
, (φy : R

n → N)
the parameterizations of N .
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Clearly, the minima of f on X coincide with the solutions of (2.4).
The of nilpotent matrices is a well-known singular algebraic variety. We

refer the reader to [78] for more information. In particular, it is known how
to construct a desingularization of X. Denote by Flag(n) the following set
of n-tuples of subspaces of Rn

Flag(n) := {(V1, . . . , Vn) | Vi ⊂ Rn, dimVi = i, Vi ⊂ Vi+1}.

This set is a smooth manifold, the so called (complete) flag manifold [77].
We can now construct the set

M̃ := {(A, V1, . . . , Vn) | A ∈ Rn×n, (V1, . . . , Vn) ∈ Flag(n),

AVi ⊂ Vi−1, AV1 = {0}}.

This set is a smooth manifold13 and the projection

π((A, V1, . . . , Vn)) = A

is a smooth, surjective map onto X [78]. It can even be shown that it is a
desingularization in the algebraic sense, i.e. maps an open, dense, algebraic
subset of M̃ diffeomorphically onto the set of smooth points of X.

To construct a family of parameterizations of X, we recall some facts on
the flag manifold from [77, p.62]. The flag manifold is diffeomorphic to the
isospectral orbit

F = {Θ diag(λ1, . . . , λn)Θ> | Θ ∈ SO(n)}

for any fixed sequence of eigenvalues λ1 > λ2 > . . . > λn > 0. The manifold
F is identified with Flag(n) by mapping an B ∈ F to the n-tuple of sub-
spaces (V1(B), . . . , Vn(B)), where Vi(B) is spanned by the eigenvectors of the
eigenvalues λ1, . . . , λi of B.

This representation of the flag manifold can be used to get a simplified
representation of M̃ and ultimately parameterizations of X. Clearly, M̃ is
diffeomorphic to

{(A,B) | A ∈ Rn×n, B ∈ F,AVi(B) ⊂ Vi−1(B), AV1(B) = {0}}, (2.5)

since we just apply a diffeomorphism to the flag components of the tuple
(A, V1, . . . , Vn). Now, given an (A, V1(B), . . . , Vn(B)) ∈ M̃ , B ∈ F , we want

13In fact, it is diffeomorphic to the cotangent bundle of Flag(n) [78].
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to examine to relation between A and B. Let e1, . . . , en the orthonormal
eigenvectors of B belonging to the eigenvalues λ1, . . . , λn. Since Vi(B) is
spanned by e1, . . . , ei and AVi(B) ⊂ Vi+1(B) we have that e1 ∈ kerA and for
all i = 2, . . . , n

Aei =
i−1∑

j=1

µijej

with µij ∈ R. This gives the decomposition B = Θ diag(λ1, . . . , λn)Θ> with
Θ ∈ SO(n), Θ = (e1 . . . en). Then above condition on A holds if and only
if Θ>AΘ = L, with L ∈ Rn×n a lower triangular matrix. We can use this
decomposition in the description of (2.5). This yields that the manifold M̃
is diffeomorphic to

M := {(ΘLΘ>,Θ diag(λ1, . . . , λn)Θ> | Θ ∈ SO(n),

L ∈ Rn×n lower triangular} ⊂ Rn×n × Rn×n.

Furthermore X = π(M), where π denotes the projection onto the first com-
ponent.

Denote by Tri(n) the linear space of lower triangular n×n-matrices. Let
µ : so(n) → SO(n) be any smooth first order approximation14 of the matrix
exponential map exp. Then for a Y = (ΘLΘ>,Θ diag(λ1, . . . , λn)Θ>) ∈ M
we have a parameterization µY : Tri(n) × so(n) →M

φ̂Y (S,Ω) := (Θµ(Ω)(L + S)µ(Ω)>Θ>,Θµ(Ω) diag(λ1, . . . , λn)µ(Ω)>Θ>).

Projecting onto the first component, we get the family of smooth parameter-
izations φ : Tri(n) × so(n) →M of the constraint set X,

φΘLΘ>(S,Ω) = Θµ(Ω)(L + S)µ(Ω)>Θ>

for ΘLΘ> ∈ X, Θ ∈ SO(n), S ∈ Tri(n). Note, that for a A ∈ X the
associated φA of the form above is not necessarily unique.

We can also derive these parameterizations from the real Schur decompo-
sition A = ΘRΘ>, Θ ∈ SO(n), R upper triangular, see [66, 7.4.1]. However,
our approach illustrates more clearly which role the desingularization of the
set of nilpotent matrices plays.

14i.e. T0µ = T0 exp
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Using this family of parameterizations, we want to obtain a gradient
descent algorithm on X. For this task, we have to calculate the differential
of f ◦ φΘLΘ>. Note that

f ◦ φΘLΘ>(S,Ω) = ‖N‖2
F − 2 tr(N>φΘLΘ>(S,Ω)) + ‖L + S‖2

F .

Hence,

d(f ◦ φΘLΘ>)(S,Ω)(H,K)

= −2 tr
(
N>ΘTΩµ(K)(L+ S)µ(Ω)>Θ>

)
+ 2 tr((L+ S)>H)

−2 tr
(
N>Θµ(Ω)(L + S)(TΩµ(K))>Θ>

)
− 2 tr

(
N>Θµ(Ω)Hµ(Ω)>Θ>

)

= −2 tr
((

(L+ S)µ(Ω)>Θ>N>Θ + (L + S)>µ(Ω)>Θ>NΘ
)
TΩµ(K)

)

+ tr
((

(L + S)> − µ(Ω)>Θ>N>Θµ(Ω)
)
H
)
,

for H ∈ Tri(n), K ∈ so(n). In particular, we get with T0µ(K) = K that

d(f ◦ φΘLΘ>)(0, 0)(H,K)

= −2 tr
((
LΘ>N>Θ + L>Θ>NΘ

)
K
)

+ 2 tr
((
L> − Θ>N>Θ

)
H
)
.

Endowing Tri(n) with the scalar product tr(H>K) and SO(n) with the Rie-
mannian metric induced by the scalar product − tr(H>K) on so(n), we ob-
tain the gradient

grad(f ◦φΘLΘ>)(0, 0) = (2(L−πTri(Θ
>NΘ)),−2πso(Θ

>NΘL+Θ>N>ΘL>)),

where πTri : Rn×n → Tri(n), πso : Rn×n → so(n) denote the orthogonal pro-
jections of the matrix space Rn×n onto the linear spaces Tri(n) and so(n).
Note, that the decomposition A = ΘLΘ> can be iteratively updated in the
algorithm, since the parameterizations φΘLΘ> give automatically a such de-
composition. A similar approach of iterative updating of a singular value
decomposition was also used by Helmke et al. in [75].

We get the following algorithm:

Algorithm 2.2.21 Let N ∈ Rn×n. Choose an initial A0 = Θ0L0Θ>
0 ∈ X

with L0 ∈ Tri(n), Θ0 ∈ SO(n).

1. Set

Kk = 2(πTri(Θ
>
kNΘk) − Lk)

Hk = 2πso(Θ
>
kNΘkLk + Θ>

kN
>ΘkL

>
k ).
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2. Calculate a step size αk along the curve α 7→ φΘ>

k
LkΘk

(αKk, αHk) such
that the Wolfe-Powell conditions are satisfied.

3. Set

Lk+1 = Lk + αkKk

Θk+1 = µ(αkHk)Θk

Ak+1 = Θk+1Lk+1Θ
>
k+1.

4. Set k = k + 1 and go to step 1.

Unfortunately, the family of parameterizations of X does not satisfy the
weak standard assumptions, even on compact subsets of X. This can be seen
by the following construction. The parameterizations have at the point (0, 0)
the tangent map

T(0,0)φΘLΘ>(H,K) = ΘKLΘ> + ΘLK>Θ> + ΘHΘ>,

H ∈ Tri(n), K ∈ so(n). Now choose Θ1,Θ2 ∈ SO(n) such that the nth
columns of Θ1 and Θ2 span different subspaces of Rn. Let (Lk) ⊂ Tri(n) be
a sequence with Lk → 0 and (Θ̂k) ⊂ SO(n) a sequence with Θ̂k → Θ1. Then

lim
k→∞

ImT(0,0)φΘ̂kLkΘ̂>

k
= {Θ1SΘ>

1 | S ∈ Tri(n)}

and
ImT(0,0)φΘ20Θ>

2
= {Θ2SΘ>

2 | S ∈ Tri(n)}.
The subspaces of Rn×n have the same dimension. But since ker ΘiSΘ>

i ,
S ∈ Tri(n), is spanned by the nth column of Θi, i = 1, 2, these subspaces
do not coincide. On the other hand, for a nilpotent matrix L of rank n− 1,
the associated flag of invariant subspaces is unique. Thus, no matter which
parameterizations φΘLΘ> for each A ∈ X are chosen, there are matrices and
sequences as above such that the semicontinuity condition on ImT0φ is not
satisfied.

Nevertheless, we can provide a convergence result for Algorithm 2.2.21.

Proposition 2.2.22 Let (Ak) ⊂ X, AK = ΘkLkΘ
>
k , (Θk) ⊂ SO(n), (Lk) ⊂

Tri(n) be the sequences produced by Algorithm 2.2.21. Then

d(f ◦ φΘkLkΘ>

k
)(0, 0) → 0

and Θk, Lk converge.
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Proof: Consider the family of parameterizations (φ̂(L,Θ) : Tri(n)× so(n) →
Tri(n) × SO(n)),

φ̂(L,Θ)(S,Ω) = (L + S,Θµ(Ω))

of the smooth manifold N = Tri(n) × SO(n). If we identify Tri(n) with
Rn(n−1)/2, we see that the Euclidean group15 E(n(n− 1)/2) acts transitively
on Tri(n). This yields a transitive action of G = E(n(n−1)/2)×SO(n) on N .
If we equip Tri(n) with the scalar product tr(H>K) and SO(n) with a biin-
variant Riemannian metric, then the product metric on N is invariant under
the action of G. It is now straightforward to verify that the conditions of
Proposition 2.1.12 hold for (φ̂(L,Θ)). Hence, this family satisfies the standard
assumptions on N . Instead of considering Algorithm 2.2.21 as a gradient
descent algorithm on X, we can also consider it as a gradient-like descent
algorithm on N for the analytic cost function f̂ : (L,Θ) 7→ f(ΘLΘ>) in the
family of parameterizations (φ̂(L,Θ)). Note, that f̂ has compact sublevel sets.
The convergence results for smooth gradient-like descent, Corollary 2.1.21
and Theorem 2.1.22, yield that (Lk,Ωk) converges to a single critical point
of f̂ . �

15see [68] for a definition.
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2.3 Optimization of non-smooth functions
We will now turn to the dual situation that the cost function is defined on
a smooth manifold, but non-smooth itself, i.e. we consider the following
problem.

Let M → R be a smooth manifold and f : M → R a Lipschitz continuous
cost function. Find a x∗ ∈M with

f(x∗) = min
x∈M

f(x).

This problem is equivalent to the previously discussed case of optimizing
a smooth cost function on a non-smooth subset of a smooth manifold, i.e. to
finding (x∗, y∗) ∈M × R such that

y∗ = min
(x,y)∈Gf

y

with Gf = {(x, f(x)) | x ∈ M} ⊂ M × R the graph of f . However, such
reformulations of the problem can be much less accessible for optimization
algorithms in practice. Therefore, it is necessary to develop separate algo-
rithms for this problem formulation.

2.3.1 Generalized gradients

Our approach to non-smooth cost functions will be based on gradient descent
iterations. To implement a gradient descent for non-smooth functions, we
need first of all a suitable notion of a generalized gradient or subdifferential for
these functions. For Euclidean or Hilbert spaces such generalized gradients
and subdifferentials have been the subject of intensive studies over the last
decades. We refer the reader to the monographs of Clarke [41] and Rockafellar
and Wets [135] for further information. However, the case of non-smooth
functions on Riemannian manifolds has received only restricted attention.

For convex functions, the classical notion of the subdifferential was ex-
tended by Ferreira and Oliveira [62] to Riemannian manifolds for the use
in descent algorithms. A Frechét or viscosity subdifferential on Rieman-
nian manifolds was examined by Ledyaev and Zhu [107–109] and Azagra et
al. [15]. Both Chryssochoos and Vinter [39] and Azagra and Ferrera [14]
studied proximal subdifferentials on Riemannian manifolds.

For the descent methods discussed later we will use an extension of
Clarke’s generalized gradient to Riemannian manifolds. It is based on du-
alizing and convexifying the limiting Frechét subgradient on manifolds from
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Ledyaev and Zhu [108]. Most results for this generalized gradient are de-
rived from the Euclidean counterparts in [41, 135] by applying local charts,
a general technique proposed in [107,108] for the Frechét subdifferentials on
manifolds. We basically follow this approach of Ledyaev and Zhu [107, 108]
and, hence, the properties of the generalized gradient presented here are very
closely related to the results of Ledyaev and Zhu. However, the extension
of Clarke’s generalized gradient to Riemannian manifolds is not explicitly
discussed in [107, 108].

We start with recalling the definition of the Frèchet subdifferential and
the limiting Frèchet subdifferential from [108] on smooth manifolds. As usual,
M will denote a Riemannian manifold with Riemannian metric 〈·, ·〉.

Definition 2.3.1 (cf. [108]) Let f : M → R be a Lipschitz continuous func-
tion on a smooth manifold M . The Frèchet subdifferential of f at x ∈ M is
the set

∂Ff(x) = {dg(x) | g : M → R, g is C1,

f − g has a local minimum at x}.

The limiting Frèchet subdifferential of f at x ∈M is the set

∂Lf(x) = {α ∈ TxM
∗ | ∃xn, xn → x, αn ∈ ∂Ff(xn), αn → α}.

Here the convergence αn → α is defined as the convergence of the sequence
(αn) in the cotangent bundle of M .

In Euclidean or more general Banach spaces, the original definition of
Clarke’s generalized gradient [41] for a Lipschitz continuous function f relies
on the generalized directional derivative

f ◦(x, v) = lim sup
y→x,t→0,t>0

f(y + tv) − f(y)

t
.

It is clearly possible to extend this definition to Riemannian manifolds. How-
ever, such an extension would have to use to parallel transport of v ∈ TxM
to a vector v(y) ∈ TyM along a connecting geodesic between x and y. A
priori such a definition would depend on the Riemannian metric in a neigh-
borhood of x. In contrast, the Riemannian gradient of a smooth function in
a point x ∈ M depends on the the value of the Riemannian metric at the
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point x and not on the curvature in particular. However, the limiting Frèchet
subdifferential ∂Lf depends only on the topology of the cotangent bundle,
i.e. only on the differentiable structure of M . This suggests to extend the
characterization of Clarke’s generalized gradient gradC f in Euclidean space
by the limiting Frèchet subdifferential

gradC f(x) = co{v ∈ Rn | 〈v, ·〉 ∈ ∂Lf(x)}16,

see [135, Thm. 8.49], to Riemannian manifolds. Since ∂Lf is independent of
the Riemannian structure, such an extension will depend only on the value
of the Riemannian metric in the point x itself.

Definition 2.3.2 Let f : M → R be a Lipschitz continuous function on a
Riemannian manifold. We define the generalized gradient grad f(x) in x ∈ M
as the set

grad f(x) = co{v ∈ TxM | 〈v, ·〉 ∈ ∂Lf(x)}.

This generalized gradient shares the properties of Clarke’s gradient on
Euclidean spaces.

Proposition 2.3.3 Let f : M → R be a Lipschitz continuous function on
a Riemannian manifold. Then grad f(x) is a non-empty, compact, con-
vex subset of the tangent space TxM . Furthermore the set-valued function
grad f : M → 2TM is upper semicontinuous.

Proof: Note, that f is Lipschitz continuous if and only if it is Lipschitz
continuous in local charts with respect to the Euclidean distance. By the
transformation rules for the limiting Frèchet subdifferential [108, Cor. 1],
the upper semicontinuity of ∂Lf and the non-empty, compact values of ∂Lf
follow directly from the Euclidean results [135, Thm. 8.7, Thm. 9.13]17.
Therefore, grad f is upper semicontinuous with non-empty, compact values
everywhere18 . The convexity of grad f(x) for all x ∈M follows directly from
the definition. �

16Note that Clarke actually defines his generalized gradient as a subset of the dual
space [41]. However, in the Euclidean setting the dual space (Rn)∗ is identified with R

n

and Clarke’s generalized gradient is considered as a subset of R
n. The spaces R

n and
(Rn)∗ are identified via the Euclidean scalar product.

17The local Lipschitz continuity implies ”strict continuity” in the sense of [135]
18The map T ∗

xM → TxM , 〈v, ·〉 7→ v is linear and the convex hull of a compact set is
compact.
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The generalized gradient transforms under diffeomorphisms in a similar
way as the gradient of a smooth function. Given a Lipschitz continuous
function f : M → R and a smooth diffeomorphism h : N → M , it is known
that

∂L(f ◦ h)(x) = {α ◦ Txh | α ∈ ∂Lf(h(x))},
see [108, Cor. 1]. With this equivalence we see that the definition of grad f(x)
implies

grad(f ◦ h)(x) = Txh
> grad f(h(x)). (2.6)

Here, Txh
> denotes the adjoint of the tangent map Txh, i.e. coincides with

the linear map Txh
> : Th(x)M → TxN, defined by

〈Txhv, w〉 = 〈v, Txh>w〉 for all v ∈ TxN,w ∈ Th(x)M.

Furthermore, we use the notation L grad f(x) for the set {Lv | v ∈ grad f(x)}
with L : TxM → TyN a linear map.

Given any Riemannian metric 〈·, ·〉 on M , let H(x) : TxM → TxM denote
a self-adjoint positive-definite linear map that depends smoothly on x. Then

〈〈v, w〉〉 = 〈H(x)v, w〉

defines a new Riemannian metric. Let grad, g̃rad denote the generalized
gradients, associated with 〈·, ·〉 and 〈〈·, ·〉〉, respectively. A straightforward
calculation shows that

g̃radf(x) = H(x)−1 grad f(x), (2.7)

which is again the analogue of the formulas for smooth functions.

Proposition 2.3.4 Let f : M → R be a Lipschitz continuous function on
a Riemannian manifold, S an arbitrary subset of measure 0 in M , which
contains the points where f is not differentiable. Then

grad f(x) = co{v ∈ TxM | ∃xk → x, xk 6∈ S, lim grad f(xk) = v}.

Note, that by Rademacher’s theorem [135, Thm. 9.60], for any Lipschitz
continuous function f , the set of points, where f is not differentiable, has
measure 0. Proof: Let x ∈ M , U ⊂ M a neighborhood of x and φ : U →
W ⊂ Rn, φ(x) = 0, be a smooth local chart. We assume that φ maps U
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diffeomorphically onto W . Denote by 〈·, ·〉E the Euclidean scalar product on
W and 〈·, ·〉R the Riemannian metric on W induced by φ, i.e. for y ∈ W

〈v, w〉R =
〈
Tyφ

−1v, Tyφ
−1w, .

〉

As usual we can express 〈·, ·〉R as

〈v, w〉R = 〈v,H(y)w〉E .

with H : W → Rn×n a smooth function. We denote by gradR and gradE
the generalized gradient on W with respect to 〈·, ·〉R and 〈·, ·〉E. By the
considerations above we have that

gradR(f ◦ φ−1)(y) = H(y)−1 gradE(f ◦ φ−1)(y).

Since φ : U →W is a smooth diffeomorphism, we have that for all x ∈ U .

grad f(x) = Txφ
> gradR(f ◦ φ−1)(φ(x)),

where Txφ
> denotes the adjoint of the tangent map with respect to 〈·, ·〉 on

TxU and 〈·, ·〉R on Tφ(x)W . Hence, for all x ∈ U

grad f(x) = Txφ
>H(φ(x))−1 gradE(f ◦ φ−1)(φ(x)).

By [135, Thm. 8.49], the generalized gradient gradE(f◦φ−1)(y) coincides with
Clarke’s generalized gradient. Therefore, we can apply the characterization
of Clarke’s generalized gradient [41, Thm. 2.5.1] by limits of the gradients of
f ◦ φ−1 and get

grad f(x) = Txφ
>H(φ(x))−1 co{v ∈ Rn | ∃yk → φ(x), yk 6∈ φ(S),

lim gradE(f ◦ φ−1)(yk) = v}.

The transformation rules the the Riemannian gradient yield

Txφ
>H(φ(x))−1 co{v ∈ Rn | ∃yk → φ(x), yk 6∈ φ(S),

lim gradE(f ◦ φ−1)(yk) = v}
= Txφ

> co{v ∈ Rn | ∃yk → φ(x), yk 6∈ φ(S),

lim gradR(f ◦ φ−1)(yk) = v}
= co{v ∈ TxM | ∃xk → x, xk 6∈ S, lim grad f(xk) = v}.

This proves our claim. �
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Proposition 2.3.5 Let x, y ∈ M be two arbitrary points such that their
geodesic distance d(x, y) is smaller than the injectivity radius of x. Assume
that f : M → R is Lipschitz and let γ(t) := expx tv be a geodesic segment
between x and y, i.e. v ∈ TxM , γ(1) = y. Then there exists τ ∈ (0, 1) such
that

f(x) − f(y) ∈ {〈w, γ̇(τ)〉 | w ∈ grad f(γ(τ))}.

Proof: We define functions h : U → R, h(z) := (f ◦ expx)(z), U ⊂ TxM
a suitable open set which contains {tv | t ∈ [0, 1]}, and σ : [0, 1] → TxM ,
σ(t) := tv. Since f ◦ expx is Lipschitz continuous and TxM a finite dimen-
sional vector space with scalar product 〈·, ·〉, we can apply the mean value
theorem for Clarke’s generalized gradient [41, Thm. 2.3.7]. This yields a
τ ∈ (0, 1) such that

f(x) − f(y) ∈ {〈w, v〉 | w ∈ gradC h(σ(τ))},

where gradC denotes Clarke’s generalized gradient. For the tangent map of
expx, we use the standard identification of Tw(TxM) with TxM . We denote
by (Tτv expx)

> the adjoint of the linear map Tτv expx : TxM → Texpx(τv)M
where TxM , Texpx(τv)M equipped with the scalar product defined by the
Riemannian metric. The transformation rules for the generalized gradient
yield

{〈w, v〉 | w ∈ gradC h(σ(τ))}
= {〈w, v〉 | w ∈ (Tτv expx)

> grad f(expx(τv)))}
= {〈(Tτv expx)

>w, v〉 | w ∈ grad f(expx(τv)))}
= {〈w, Tτv expx v〉 | w ∈ grad f(expx(τv)))}
= {〈w, γ̇(τ)〉 | w ∈ grad f(expx(τv)))}.

This proves the proposition. �

One important example of non-smooth cost functions are functions of the
form f(x) := max{f1(x), . . . , fm(x)}. Such cost function appear in minimax
problems, and in particular, in the sphere packing problems discussed later.
On Banach spaces, Clarke’s generalized gradient of such a maximum func-
tion f can be calculated from the generalized gradients of the fi under the
condition of regularity of the functions fi; see [41]. Since this definition of
regularity can be given by the limiting and Frechèt subdifferential [135, Cor.
8.11], it is straightforward to extend it to manifolds.
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Definition 2.3.6 A Lipschitz continuous function f : M → R on a Rieman-
nian manifold is called regular at x if

∂Ff(x) = ∂Lf(x).

Remark 2.3.7 In the Euclidean case, regularity implies that ∂Lf is con-
vex valued [135, 9.16]. Using the transformation rules the Frèchet subgra-
dient [108, Cor. 1], we see that for regular functions on a manifold the
generalized gradient is just the dual of ∂Lf .

Lemma 2.3.8 A Lipschitz continuous function f : M → R is regular if and
only if it is regular in the sense of Clarke19 in local charts.

Proof: As stated before, the definition of regularity in Euclidean space
is for Lipschitz continuous functions equivalent to Clarke’s regularity of the
function, cf. [135, Cor. 8.11, Thm. 9.16] and [41, Def. 2.3.4]. Thus, our claim
follows directly from the transformation rules for the Frechèt and limiting
Frechèt subdifferential in local charts [108, Cor. 1]. �

We can now derive a chain-rule for generalized gradients from the Eu-
clidean counterpart.

Proposition 2.3.9 Let f1, . . . , fm : M → R, h : Rm → R be Lipschitz con-
tinuous, regular functions and the elements of Clarke’s generalized gradient
gradC h(x) non-negative vectors. Then

g(x) = h(f1(x), . . . , fm(x))

is regular and

grad g(x) =

co

{
m∑

i=1

aivi | vi ∈ grad fi(x), (a1, . . . , am) ∈ gradC h(f1(x), . . . , fm(x))

}
.

Here, coS denotes the closure of the convex hull of S ⊂ TxM .

Ledyaev and Zhu derive a inclusion type-chain rule for limiting Frechét
subgradients [107, Thm. 4.12]. By Remark 2.3.7 we get directly an inclusion
type chain-rule for regular functions from their results.

19i.e. [41, Def. 2.3.4]
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Proof: By Lemma 2.3.8 the fi are Clarke regular in local charts. Hence,
the regularity of g follows from the Euclidean result [41, Thm. 2.3.9] and
application of Lemma 2.3.8. The formula for the generalized gradient of g
is obtained from the Euclidean version in local charts and application of the
transformation rules for the generalized gradient under diffeomorphisms and
changes of the metric, compare with the proof of Proposition 2.3.4. �

Note, that if the regularity assumptions do not hold, then the equality
for the generalized gradient has to be replaced by the inclusion grad g(x) ⊂
co{∑m

i=1 aivi | vi ∈ grad fi(x), (a1, . . . , am) ∈ gradC h(f1(x), . . . , fm(x))}.
From [41, Example 2.2.8] it is known that the function g(x1, . . . , xm) :=
max{x1, . . . , xm} is regular with generalized gradient

grad g(x) = {(a1, . . . , am) | ai ≥ 0,
∑

ai = 1, ai 6= 0 iff xi = g(x)}.

As in the Euclidean case, cf. [41, Prop. 2.3.12], this leads to the following
result that describes the generalized gradient of g ◦ (f1, . . . , fm).

Corollary 2.3.10 Let f1, . . . , fm : M → R be Lipschitz continuous, regular
functions on a Riemannian manifold. Then

g(x) = max{f1(x), . . . , fm(x)}

is regular and

grad g(x) = co{grad fi(x) | fi(x) = g(x)}.

In [107, Thm. 4.12] an inclusion-type formula for the limiting Frechét subd-
ifferential of max{f1(x), . . . , fm(x)} is presented.

For the construction of an optimization algorithm, we need the standard
first order necessary condition for local extrema.

Definition 2.3.11 Let f : M → R be a Lipschitz continuous function and
x ∈M . We call x a critical point of f if

0 ∈ grad f(x).

Proposition 2.3.12 Let f : M → R be a Lipschitz continuous function and
x ∈M a local minimum or maximum of f . Then x is a critical point.
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Proof: A point is an local minimum/maximum if and only if it is a lo-
cal minimum/maximum a local chart φ : U → Rn, U a neighborhood of x.
Hence, the proposition follows directly from the Euclidean case [41, Prop.
2.3.2] by the transformation rules for the generalized gradient. �

Note, that for the limiting Frechét subdifferential this necessary condition
holds only for local minima [108]. However, if the function is regular and x ∈
M a local maximum or minimum, then by Remark 2.3.7 we have 0 ∈ ∂Lf(x).

2.3.2 Riemannian gradient descent

We will now introduce by descent iterations along geodesics for optimization
problems with non-smooth, Lipschitz continuous cost functions.

For convex, non-smooth functions, a subgradient descent along geodesics
and its convergence under some conditions on the curvature of the manifolds
has been considered by Ferreira and Oliveira [62]. We extend this to descent
iterations along geodesics for non-convex, Lipschitz continuous functions on
general complete Riemannian manifolds and provide a convergence result for
gradient descent.

The definition of the Riemannian descent iterations is analogous to the
smooth case, see [154] for an exposition of Riemannian descent methods for
smooth functions. To ensure that the descent iteration is well-defined, we
assume that the Riemannian manifold M is complete.

Definition 2.3.13 Let M be a complete Riemannian manifold and f : M → R
be a Lipschitz continuous function. We define a Riemannian descent iteration
as

xk+1 = expxk
(αksk) ,

with αk a step size and sk a descent direction. We call it gradient descent if
sk ∈ grad f(xk).

Note, that we do not require the monotonicity of the sequence (f(xk)). This
is motivated by the fact, that we can prove a convergence result only for a
type of descent iterations which are not necessarily monotone.

Unlike the smooth case, not all elements v of − grad f(xk) provide a
direction of descent in the strict sense, i.e. such that

t 7→ f(expxk
(tv))

is strictly decreasing on an interval (0, ε). In fact, we will see later, that
such strict descent directions are not necessary for convergence results for
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this optimization approach. However, they are necessary to implement an
Armijo-like step-size selection algorithm. Therefore, we give some definitions
and proposition to determine such a strict descent directions. Note, that all
these characterizations are analogous to their Euclidean counterparts.

Definition 2.3.14 Let x ∈ M and C ⊂ TxM compact and convex. We
define20

N(C) = {v ∈ TxM | ∀w ∈ C : 〈v, w〉 < 0}.

Proposition 2.3.15 Let f : M → R be Lipschitz continuous, x ∈ M and
C ⊂ TxM a compact set with grad f(x) ⊂ C. If 0 6∈ co(C), then all v ∈ N(C)
are strict descent directions for f .

Proof: Since for any w1, w2 ∈ C, λ ∈ (0, 1), v ∈ TxM , with 〈w1, v〉 < 0,
〈w2, v〉 < 0 the inequality 〈λw1 + (1 − λ)w2, v〉 < 0 holds, we have that
N(C) = N(co(C)). Hence, we can assume that C is convex. Let γ : R →M
be a smooth curve with γ(0) = x, γ̇(0) = v ∈ N(C). We denote by r > 0 the
injectivity radius of x. Since grad f is upper semicontinuous with compact
values, there are a σ > 0, δ ∈ (0, r) such that for all y ∈M with dist(x, y) < δ
and all w ∈ grad f(y) we have

〈w, πx,y(v)〉 < −σ,

where πx,y denotes the parallel transport along the shortest geodesic between
x and y. Since γ is smooth, there is a ε > 0 such that for all t ∈ (0, ε) we
have dist(γ(t), x) < δ and

∥∥πx,γ(t)v − γ̇(t)
∥∥ < σ/2. Hence, for all t ∈ (0, ε)

and w ∈ grad f(γ(t)) we have

〈w, γ̇(t)〉 < −σ
2
.

By mean-value Theorem 2.3.5 this implies that f(γ(t)) < f(x) for all t ∈
(0, ε). Setting γ(t) = expx(tv) locally around 0, we see that v is a strict
descent direction for f . �

In the Euclidean case, it is well-known that the direction of steepest de-
scent can be obtained by the negative of the projection of 0 to the generalized
gradient, i.e. −π0(grad f(x)), see e.g. [80, VIII.1] for the convex functions.

20To avoid confusion, we point out that the N(C) used here, is not the normal cone of
C in TxM in the sense of the standard definition, cf. [80].
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With the characterization of descent directions as above, we can apply the
same arguments as in the Euclidean case and establish that −π0(grad f(x))
is a descent direction in the manifold case. In fact, by Proposition 2.3.15 we
can give a more general version which enables us to use approximations of
the generalized gradient.

Proposition 2.3.16 Let C ⊂ TxM be a compact, convex set. We denote
by π0(C) the least distance projection of 0 to C with respect to the scalar
product on TxM given by the Riemannian metric. Then −π0(C) ∈ N(C) or
π0(C) = 0.

Proof: 21 The well-known fact that for all w ∈ C one has −〈w, π0(C)〉 +
‖π0(C)‖2 ≤ 0 [80, Thm. III, 3.1.1], gives directly that 〈w,−π0(C)〉 < 0 for
all w ∈ C. �

Corollary 2.3.17 Let f : M → R be Lipschitz continuous, x ∈ M and
C ⊂ TxM a compact, convex set with grad f(x) ⊂ C. If 0 6∈ C, then −π0(C)
is a strict descent direction for f at x.

The most striking difference between gradient descent for smooth and
non-smooth functions, is that commonly used line search schemes for the
step length will not provide convergence of the algorithm to critical points
in the non-smooth case. In fact, there are known counterexamples for even
convex, piecewise linear functions, see [80]. However, for convex functions it
is known that one can choose sk ∈ grad f(xk) and an arbitrary sequence αk
with

∑
αk = ∞, αk → 0 to yield convergence of the iterates to the set of

critical points [20,62]. We will reproduce this result for non-convex functions
on Riemannian manifolds.

Our proof is based on the results of Teel for the optimization of non-
smooth functions on Euclidean Rn [150]. Teel’s approach is based on dis-
cretizations

xk+1 ∈ xk + αkF (xk) (2.8)

of a differential inclusion
ẋ ∈ F (x). (2.9)

Teel shows that for sufficiently small αk, asymptotically stable sets of (2.9)
are approximated by asymptotically stable sets of (2.8). Furthermore, for

21We could also argue that is a byproduct from the calculation of steepest descent
directions for convex functions in Euclidean spaces [80, VIII.1].
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compact, asymptotically stable sets A of (2.9) the existence of a function
τ : Rn → R, such that αk < τ(xk) implies that A is asymptotically stable
for (2.8) with the same basin of attraction as (2.9), is shown. For gradient
or gradient-like differential inclusions the sublevel sets are asymptotically
stable. Thus vanishing αk imply the convergence of (xk) to a critical sublevel
set, i.e. a sublevel set {x ∈ Rn | f(x) ≤ c} such that c is a critical value.

We extend these results to gradient descent iterations on Riemannian
manifolds and prove the convergence to the set of critical points.

We start with the extension of the known results on the existence of
smooth Lyapunov functions for asymptotically stable sets of differential in-
clusions on Euclidean space [151] to Riemannian manifolds. We recall quickly
some notions of stability for differential inclusions from [150]. A compact set
A ⊂M is called stable for a differential inclusion ẋ ∈ F (x), if for any neigh-
borhood U of A there is a neighborhood V of A such that all solutions starting
in V exist for all times t > 0 and remain in U . A is called asymptotically
stable if it is stable and there is a neighborhood U of A such that all solu-
tions starting in U converge to A. The set of points G such that all solutions
starting in G convergence to A is called the basin of attraction.

Lemma 2.3.18 Let ẋ ∈ F (x) be a differential inclusion on a submanifold
M ⊂ Rn with F (x) a upper semicontinuous set-valued map with F (x) ⊂
TxM , nonempty, compact, convex for all x ∈M . Furthermore, let F be uni-
formly bounded on M . Assume that A is a compact, asymptotically stable set
with basin of attraction G. Then we can extend F to a upper semicontinuous,
set-valued map F̂ on Rn with nonempty, compact, convex values F̂ (x), such
that A is asymptotically stable for the differential inclusion

ẋ ∈ F̂ (x)

with region of attraction Ĝ ⊃ G.

Proof: Let π be the Euclidean least distance projection to M and s the
squared distance, i.e. s(x) = ‖π(x) − x‖2, to M . On a suitable neighborhood
U of M both maps are well-defined and smooth. There is a unique family of
linear maps σ(x) : Tπ(x)M → Rn, x ∈ U , defined by

Txπσ(x) = IdTxM .

Shrinking U , we can w.l.o.g. assume that ‖σ(x)‖ is uniformly bounded.
Using a smooth normal tubular neighborhood we see that (σ(x)) is a smooth
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family, i.e. the map (x, v) 7→ σ(x)v is smooth. We can extend F to U by
setting

F (x) = σ(x)F (π(x)).

Using this extension we define

F̂ (x) =





F (x) + grad s(x) x ∈ U
co ({v ∈ Rn | xk → x, xk ∈ U, vk → v,

vk ∈ (F (xk) + grad s(xk))} ∪ {0})
x ∈ ∂U

0 x ∈ Rn \ U

By construction F̂ is upper semicontinuous with closed, convex F̂ (x). Since
F is uniformly bounded, the values F̂ (x) must be compact for all x ∈ Rn.
Let V be an open neighborhood of A in Rn. Then there is a relatively open
subset W of V , with W ⊂ M , such that any solution of ẋ ∈ F (x), which
starts in W , converges to A and remains in V for all t ≥ 0. W.l.o.g. we can
assume that both V and W are relatively compact. There is a δ > 0 such
that

{x ∈ Rn | dist(x, V ) < δ} ⊂ U,

with dist the Euclidean distance in Rn. We define

V̂ = {x ∈ U | π(x) ∈ V ∩M, dist(x,M) < δ}

and
Ŵ = {x ∈ U | π(x) ∈ W, dist(x,M) < δ}.

Let γ(t) be a solution of
ẋ ∈ F̂ (x)

with γ(0) ∈ Ŵ . Assume that γ leaves V̂ at τ > 0 for the first time. By our
construction of F̂ , the function s(γ(t)) is strictly decreasing on (0, τ). Thus
π(γ(τ)) lies in the boundary of V̂ ∩M in M . By construction we have that

d

dt
π(γ(t)) = Tπ(γ(t))γ̇(τ) ∈ Tπ(γ(t))F̂ (γ(t)) = F (π(γ(t)))

for almost all t ∈ (0, τ). Thus π(γ(t)) is a solution of ẋ ∈ F (x) on M for
t ∈ (0, τ) with π(γ(0)) ∈ W . But W was chosen such that all solutions
starting in W remain in V ∩ M for all t > 0. This gives a contradiction
and γ(t) ∈ V̂ for all t > 0. Arguing again that that π(γ(t)) is a solution
of ẋ ∈ F (x), we see that π(γ(t)) → A. Furthermore, s(γ(t)) is strictly

133



decreasing for all t > 0. Thus, γ(t) → A. Therefore, A is asymptotically
stable. Let G be the region of attraction of ẋ ∈ F (x) in M . Note, that we
can assume that G ⊂ U . Assume that we have a solution γ(t) of ẋ ∈ F̂ (x)
with γ(0) ∈ G. There is an open interval (0, τ) such that γ(t) ∈ U for all
t ∈ (0, τ). By construction the function s(γ(t)) is absolutely continuous,
non-negative and non-increasing on (0, τ). Furthermore, it is decreasing on
any interval (a, b) ⊂ (0, τ) with γ((a, b))∩M = ∅. Hence, it must be constant
0 and γ cannot leave M . Therefore, G is contained in the basin of attraction
of A with respect to the differential inclusion ẋ ∈ F̂ (x). �

Lemma 2.3.19 Let F : M → 2TM be a upper semicontinuous set-valued
map with F (x) a nonempty, compact, convex subset of TxM . We assume
that F (x) is uniformly bounded on M . Furthermore, let A ⊂ M be the
asymptotically stable set of

ẋ ∈ F (x)

with basin of attraction G. Then there exists a smooth function V : G→ R+
0 ,

V (x) = 0 on A, V (x) > 0 on G \ A, V (x) → ∞ for x→ ∂G, such that

max
w∈F (x)

〈w, gradV (x)〉 ≤ −V (x).

This is the Riemannian version of result of Teel and Praly [151] in Euclidean
space.
Proof: By a theorem of Nash [124] we can embed M isometrically in some
Euclidean Rn. Using Lemma 2.3.18, we can extend F to Rn such that A is
asymptotically stable for

ẋ ∈ F (x)

with basin of attraction Ĝ ⊃ G. The result of Teel and Praly [151] yields the
existence of V̂ with the required properties for Ĝ. We get the desired V on
G by restriction of V̂ to M . �

The existence of the smooth Lyapunov function allows us to use the argu-
ment of Teel for the discretization of differential inclusions [150] in the context
of Riemannian manifolds. This yields the following Riemannian version of
the result of Teel for Euclidean space [150, Thm. 2].

Proposition 2.3.20 Assume that M is a complete Riemannian manifold.
Let ẋ ∈ F (x) be a differential inclusion with F : M → 2TM a set-valued
map, with F (x) ⊂ TxM compact, convex and non-empty. Assume that A
is compact and asymptotically stable with basin of attraction G. For any
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compact sets C, D, with G ⊃ D ⊃ C ⊃ A there is a α > 0 such that for all
α̂ < α we have an an Â ⊂ C which is asymptotically stable for the iterations

xk+1 = expxk
(α̂sk) , sk ∈ F (xk)

and its basin of attraction contains D.

Proof: With Lemma 2.3.19 we can extend directly the proof of Teel [150,
Theorem 2] for differential inclusions on Euclidean Rn to Riemannian man-
ifolds. �

Given this discretization result, we can prove the convergence to the set
of critical points. However, we need first a Riemannian version of a known
differentiation result for non-smooth, regular functions, cf. [142, 150].

Lemma 2.3.21 Let f : M → R be a Lipschitz continuous, regular function
and γ : R →M an absolutely continuous curve. Then for all a, b ∈ R, a < b,
we have

f(γ(b)) − f(γ(a)) = −
∫

[a,b]

max
v∈grad f(γ(t))

〈v,−γ̇(t)〉 dt,

where
∫
[a,b]

denotes the integral over the set of points in [a, b] where γ is

differentiable.

Proof: For a regular, Lipschitz continuous function h : Rn → R, an ab-
solutely continuous curve µ : R → Rn, and a t∗ ∈ R such that µ and h ◦ µ
differentiable at t∗ it is known that

(h ◦ µ)′(t∗) = − max
w∈gradC h(µ(t∗))

〈w,−µ̇(t∗)〉 , (2.10)

see [142, 150]. Let φ : U → Rn be a local chart w.l.o.g. with γ([a, b]) ⊂ U .
Then h := f ◦ φ−1 is Lipschitz continuous and by Lemma 2.3.8 regular.
Furthermore, µ := φ ◦ γ is absolutely continuous. Since h ◦ µ is absolutely
continuous, we get that

(f ◦ γ)(b) − (f ◦ γ)(a) =

∫

[a,b]

− max
w∈gradC h(µ(t))

〈w,−µ̇(t)〉 dt

= −
∫

[a,b]

max
w∈(Tγ(t)φ)−> grad f(γ(t))

〈
w,−(Tγ(t)φ)>γ̇(t)

〉
dt

= −
∫

[a,b]

max
v∈grad f(γ(t))

〈v,−γ̇(t)〉 dt,
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where (Tγ(t)φ)>, (Tγ(t)φ)−> denote as usual the adjoint of Tγ(t)φ : Tγ(t)M →
Rn and its inverse. �

Theorem 2.3.22 Assume that M is a complete Riemannian manifold. Let
f : M → R be a Lipschitz continuous, regular function with bounded sublevel
sets and a finite number of critical values. Assume that we have a descent
iteration (xk) with

xk+1 = expxk
(αksk) ,

such that for all k ∈ N : sk ∈ − grad f(xk), αk → 0 and

∞∑

k=1

αk = ∞.

If xk has an accumulation point, then xk converges to the set of critical points
of f .

Note, that unlike Ferreira and Oliveira in their work on Riemannian gra-
dient descent for non-smooth, convex functions [62], we do not impose any
bounds on the sectional curvature of the manifold to obtain convergence to
the set of critical points. However, we do not get results on the pointwise
convergence of the descent sequence for convex cost functions.
Proof: Let x∗ be an accumulation point of xk. We denote by L(C) the
sublevel set {x ∈ M | f(x) ≤ C}. Let c∗ = f(x∗). We choose a constant
C0 > 0. Consider the differential inclusion

ẋ ∈ F (x), F (x) =

{
− grad f(x) x ∈ L(c∗ + C0)
{0} otherwise

.

Note, that F is upper semicontinuous with compact, convex values. Since
the sublevel sets of f are bounded, F must be uniformly bounded on M . A
straightforward Lyapunov argument, Lemma 2.3.21 and the finite number
of critical values yield that the sublevel sets of f with values < c∗ + C0

are asymptotically stable for the differential inclusion above. Since x∗ is an
accumulation point of (xk) and αk → 0, we can apply Proposition 2.3.20 to
differential inclusion ẋ ∈ F (x) to see that for sufficiently large k the sequence
(xk) remains in L(c∗+C0) and converges to the sublevel set L(f(x∗)). Assume
now that 0 6∈ grad f(x∗). By the upper semicontinuity of grad f(x), there
is a uniform lower bound for minv∈grad f(x) ‖v‖ on a suitable neighborhood
of x∗. Since the map (x, λ, w) 7→ Tλw expx w is smooth, we can deduce that
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there are r > 0, C1 > 0, µ > 0 such that for all x ∈ Br(x
∗), w ∈ − grad f(x),

λ ∈ (0, µ):
max

v∈grad f(expx λw)
〈−Tλw expx w, v〉 ≥ C1. (2.11)

Here, Br(x
∗) denotes the ball {x ∈ M | dist(x, x∗) < r}. Let xkl

→ x∗.
As αk → 0, the αk are smaller than the injectivity radius of all x ∈ Br(x

∗)
for large k. Thus,

∑
αk = ∞ implies that there exists a sequence ml ∈ N

such that xkl+ml
6∈ Br(x

∗), xkl
, . . . , xkl+ml−1 ∈ Br(x

∗). Since αk → 0 and
grad f(x) is uniformly bounded on Br(x

∗), ml > 2 for all but a finite number
of the ml. By (2.11) and Lemma 2.3.21, we have that

f(xkl
) − f(xkl+ml−1) =

ml−2∑

i=1

f(xkl
) − f(xkl+i)

=

kl+ml−2∑

i=kl

∫

[0,αi]

max
v∈grad f(expx tsi)

〈−Ttsi
expx si, v〉 dt

≥ C1

kl+ml−2∑

i=kl

αi.

Note that
kl+ml−1∑

j=kl

αj > r.

Since αk → 0, this yields

f(xkl
) − f(xkl+ml−1) > C2

with C2 > 0 a constant independent of l. Therefore xkl+ml−1 ∈ L(c∗ − C2).
As αk → 0 we can apply again Proposition 2.3.20 to choose a C3 > 0 such
that (xk) converges to the sublevel set L(c∗−C3). This gives a contradiction
to xkl

→ x∗ 6∈ L(c∗ − C3). Hence, we have proven that if an accumulation
point x∗ of (xk) exists, then the (xk) converges to a critical sublevel set and
all accumulation points of xk are critical points. Therefore, if (xk) has an
accumulation point, then it converges to the set of critical points. �

For a more convenient notation, we introduce a special name for step sizes
satisfying the conditions of Theorem 2.3.22.

Definition 2.3.23 We call a sequence of step sizes (αk) harmonic if αk → 0,∑
αk = 0.
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Remark 2.3.24 As there is no descent condition of the form f(xk+1) <
f(xk) for our gradient descent, we cannot make any sensible convergence
statements for iteration sequences without an accumulation point. However,
this problem can only appear if M is non-compact.

Instead of the fixed step sizes of Theorem 2.3.22, we can also use an
Armijo line search, i.e. for constants σ, µ ∈ (0, 1), C > 0, we choose

xk+1 = expxk

(
µ−lkCsk

)
,

with sk ∈ N(grad f(xk)), ‖sk‖ = 1 and

lk = min{l ∈ N | f(xk) − f
(
(expxk

(
µ−lCsk

))
≤ σCµ−l ‖π0(grad f(xk))‖}.

However, as mentioned before, we cannot guarantee the convergence to the
set of critical points for these step sizes.

2.3.3 Descent in local parameterizations

For smooth cost functions, one motivation for considering descent iteration in
local parameterizations was the high computational costs and sometimes even
the impossibility of an exact calculation of the geodesics, see Remark 2.1.15.
But this argument also holds for descent iterations for non-smooth cost func-
tions. Therefore, we will now discuss a generalized gradient descent in a
family of smooth parameterizations of the manifold M . Again we assume,
that M is a complete Riemannian manifold with Riemannian metric 〈·, ·〉.

We use the same notations for a family of smooth parameterizations as in
Section 2.1. The descent iterations are defined as for smooth cost functions.

Definition 2.3.25 Let f : M → R be a Lipschitz continuous function. We
define a descent iteration in a family of smooth parameterizations φx of M as

xk+1 = φxk
(αksk).

We call αk the step size and sk the descent direction. If T0φxk
(sk) ∈ grad f(0),

then we call the iteration a gradient descent in local parameterizations.

As for smooth cost functions, the gradient descent along geodesics is
identical to the gradient descent in the family (expx).

The use of a family of parameterizations instead of geodesics for descent
is only justified if convergence to at least the set of critical points can be
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shown. This needs of course again some regularity conditions of the fam-
ily of parameterizations. Here, we show that our standard assumptions of
Definition 2.1.2 are sufficient to extend the convergence Theorem 2.3.22 to
descent iterations in a family of parameterizations.

First, we need the following generalization of Teel’s discretization theorem
in Euclidean space [150, Thm. 2] to discretizations by local parameteriza-
tions.

Proposition 2.3.26 Let ẋ ∈ F (x) be a differential inclusion with F : M →
2TM a set-valued map, with F (x) ⊂ TxM compact, convex and non-empty.
Furthermore, let F be uniformly bounded on M . Assume that A is compact
and asymptotically stable with basin of attraction G. Furthermore, let (φx) be
a family of parameterizations satisfying the standard assumptions. For any
compact sets C, D, with G ⊃ D ⊃ C ⊃ A, there is a α > 0 such that for all
α̂ < α there is an Â ⊂ C which is asymptotically stable for the iterations

xk+1 = φxk
(α̂sk), sk ∈ T0φ

−1F (xk) (2.12)

and its basin of attraction contains D.

Proof: Again, we extend directly the argument of Teel [150] to our set-
ting. We denote by V : G → [0,∞) the smooth Lyapunov function from
Lemma 2.3.19. Let x ∈ M , y ∈ Rn. The standard mean-value theorem
yields an λ ∈ (0, 1) with

V (φx(y)) − V (x) = 〈gradV (φx(λy)), Tλyφx(y)〉 .

This gives

V (φx(y)) − V (x) ≤ max
w∈F (x)

〈
gradV (φx(λy)), Tλyφx

(
Txφ

−1
x (w)

)〉
. (2.13)

By the exp-equicontinuity of the family Tφx at 0 the family (Ωz | z ∈ Rn),

Ωz = TzφxT0φ
−1
x

is compactly convergent at 0. Thus the family of 1-forms µz, z ∈ Rn,

µz(v) = 〈gradV (φx(z)),Ωzv〉
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is compactly convergent at 0. Therefore, for any compact subset K ⊂ M
there is a continuous function ε : R → R+, ε(t) → 0 for t → 0 such that for
all x ∈ K, y ∈ Txφ

−1
x F (x), α ∈ R, the inequality

V (φx(αy)) − V (x) ≤ max
w∈F (x)

µαy(αw) ≤ α(−V (x) + ε(‖αy‖))

holds. Note, that the upper semicontinuity of F ensures that F is bounded
on any compact subset of M . Thus using the same arguments as Teel [150]
we can choose suitable sublevel sets L(c1), L(c2) of V and α ∈ R+ such that
D ⊂ L(c1), C ⊂ L(c2), L(c1), L(c2) are invariant under the iteration 2.12
and L(c2) is reached in finite number of iterations 2.12 from each x0 ∈ L(c1).
This proves our claims. �

Theorem 2.3.27 Let f : M → R be a Lipschitz-continuous, regular func-
tion with bounded sublevel sets and a finite number of critical values. Assume
that we have a descent iteration (xk) with

xk+1 = φxk
(αksk)

such that for all k ∈ N : T0φxk
sk ∈ − grad f(xk), αk → 0 and

∞∑

k=1

αk = ∞.

If xk has an accumulation point, then xk converges to the set of critical points
of f .

Proof: We use the same argument as for Theorem 2.3.22. Let x∗ be an
accumulation point of xk and c∗ = f(x∗). Again we choose a constant C0 > 0.
By Proposition 2.3.26 the descent iteration can again be viewed for large k
as a discretization of the differential inclusion

ẋ ∈ F (x), F (x) =

{
− grad f(x) x ∈ L(c∗ + C0)
{0} otherwise

,

where F is upper semicontinuous with compact, convex, uniformly bounded
values. This yields the convergence of (xk) to the level set L(c∗). Assume
that 0 6∈ grad f(x∗). As mentioned in the proof of Proposition 2.3.26, the
family of maps (Ωz | z ∈ Rn)

Ωz = TzφxT0φ
−1
x
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is compact convergent for z → 0. By Lemma 2.1.6 the family (φx) at 0
is equicontinuous at 0. These facts together with the upper-semicontinuity
grad f yield that the family of maps θλ

θλ(x) :=

min{
〈
TλT0φ

−1
x w

(
φxT0φ

−1
x (w)

)
, v
〉
| w ∈ grad f(x), v ∈ grad f(φx(λw))}

is compact convergent for λ → 0. Note, that by definition there exists a
constant C1 > 0 such that for suitably small neighborhoods U of x∗

θ0(x) > C1, x ∈ U.

Thus, we can choose an r > 0, µ > 0 such that for all x ∈ Br(x
∗), w ∈

grad f(x) and λ ∈ (0, µ)

max
v∈grad f(φx(λT0φ−1(w)))

〈
−TλT0φ

−1
x wφx

(
T0φ

−1
x (w)

)
, v
〉
> C1 > 0

holds. We get by Lemma 2.3.21 that for all k ∈ N

f(xk) − f(xk+1) =

∫

[0,αk]

max
v∈grad f(φx(tsk)

〈Tλαksk
φx(tsk), v〉 dt

For all k ∈ N with φxk
(tsk) ∈ Br(x

∗) for all t ∈ [0, αk] this yields

f(xk) − f(xk+1) > C1αk.

The rest of the argument is identical to the Riemannian case and therefore
omitted. �

2.3.4 Minimax problems

Problem formulation

We focus now on cost functions of the form

f(x) = max
i=1,...,m

fi(x)

with fi smooth. The minimax problem consists of finding the minima of f .
We denote by I(x) the set of active indices, i.e.

i ∈ I(x) ⇔ fi(x) = f(x).
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By Corollary 2.3.10 we have

grad f(x) = co{grad fi(x) | fi(x) = f(x)}.
Following Theorem 2.3.22 we can choose an arbitrary sk ∈ grad f(xk) as a
direction for an optimization iteration

xk+1 = expxk
tksk.

However, if we use an Armijo-like descent iteration, we have to ensure that
sk ∈ N(grad f(xk)). According to Proposition 2.3.16, a sufficient choice for
sk is in this case π0(grad f(xk)). Calculating π0(grad f(xk)) is a quadratic
programming problem [20]. Denoting by l the number of active indices,
i.e. l = #I(xk), this quadratic programming problem has the following
formulation:

Minimize L>WL

L ∈ [0, 1]l

W = (〈grad fi(xk), grad fj(xk)〉)i,j∈I(x)
and can be solved by standard algorithms.

Smooth approximations

A different approach to the minimax problem, is the use of a sequence fp of
smooth approximations of the cost function f = max fi. A complete overview
of this approach is beyond the scope of this work. Here, we discuss only two
examples of smooth approximations.

One type of approximations is the use p-norms, an idea which apparently
dates back to Pólya [38]. Assume that the functions fi are non-negative on
M . Then we can view f as the ∞-norm of the vector (f1, . . . , fm). But
as the p-norm ‖·‖p converges uniformly to ‖·‖∞ on compact sets, we can
approximate f by

f̂p(x) := ‖(f1(x), . . . , fm(x)‖p =

(
m∑

i=1

(fi(x))p

)1/p

.

The f̂p converge uniformly to f on compact sets. However, as f̂p is still
non-smooth, we use instead the smooth function

fp(x) := (f̂p(x))p =

m∑

i=1

(fi(x))p
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for optimization. Obviously, the minima of fp converge to the minima of f
for p→ ∞. Basic calculus yields the gradient

grad fp(x) = p

m∑

i=1

(fi(x))p−1 grad fi(x).

We can use standard gradient-like optimization methods to find the minima
of fp. Either increasing p during the optimization or choosing a priori a
sufficiently large p should yield a good approximation of a minimum of f .
This approach can also be used for fi bounded from below, by replacing fi(x)
with fi(x) + C for C a sufficiently large positive constant.

Another type of smooth approximation is the entropic regularization
method of Li and Fang [110]. Li and Fang use the smooth approximations

fp(x) =
1

p
log

(
m∑

i=1

exp(pfi(x))

)
.

They show that these fp converge uniformly to f . The gradient can be
calculated as

grad fp(x) =

∑m
i=1 exp(pfi(x)) grad fi(x)∑m

i=1 exp(pfi(x))
.

Again, smooth optimization algorithms can be used to achieve good approx-
imations of the solution of the minimax problem with these fp.
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2.4 Sphere packing on adjoint orbits

2.4.1 General results

As an illustration of our non-smooth gradient descent algorithm, we will con-
sider sphere packing problems on Grassmann manifolds and SVD orbits. The
packing problems on Grassmann manifolds are motivated by applications in
coding theory [6,69,91,92,167], where an optimal sphere packing corresponds
to a code with good error correction properties. We formulate the sphere
packing problem in the more general setting of adjoint orbits and reductive
Lie groups. Such adjoint orbit techniques have been applied for the anal-
ysis double bracket equations and gradient flows for matrix approximation
problems, e.g. [149], and for extension of Jacobi-type algorithms for singular
and eigenvalue problems, e.g. [98]. Note, that there are some relations of
such sphere packing problems to problems in multi-agent coordination and
cooperative control, see [44, 139].

We start with some preliminaries on reductive Lie groups and adjoint
orbits. For Lie groups G,K we will always denote by g, k the Lie algebras of
G and K.

Let us recall some basic notions from [100]. A Lie algebra involution θ
is a Lie algebra automorphism with θ2 = I. Note, that every involution θ
gives a decomposition g = k + p with k, p the +1, −1 eigenspaces of θ. A Lie
algebra g is called reductive if g = [g, g] ⊕ Zg and [g, g] is semisimple. For
the classical matrix groups and matrix Lie algebras like O(n), GL(n), so(n),
u(n), etc., we use the same notation and definitions as [100].

We can now give the definition of a reductive Lie group from [100, 149].

Definition 2.4.1 (cf. [100]) Let G be a Lie group, K ⊂ G a compact sub-
group, θ a Lie algebra involution, F a bilinear form on g. Assume that

• F is non-degenerate, Ad-invariant and symmetric,

• g is reductive,

• the Lie algebra k of K is the +1 eigenspace of θ,

• the −1 eigenspace p of θ is orthogonal to k with respect to F ,

• (X, Y ) 7→ −F (X, θY ) is positive definite,
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• the map K × exp p → G, (k, expP ) = K expP is a surjective diffeomor-
phism,

• the automorphisms Adg, g ∈ G, on the complexification g ⊕ ig of g are
inner automorphisms of g ⊕ ig.

Then we call (G,K, θ, F ) a reductive Lie group. Furthermore we call the de-
composition

g = k + p

a Cartan decomposition of g.

Note, that for real groups, there are different definitions which do not require
the last condition of Definition 2.4.1, see e.g. [160]. For example, O(n) is not
always a reductive group by the definition above [100, p.447, Example 3], but
it would be always reductive in the sense of the definition of [160]. However,
it is very easy to see that the theory and optimization methods represented
here would also work for these more general definitions.

For the rest of this subsection we will fix a reductive Lie group (G,K, θ, F )
with Cartan decomposition g = k + p. Note, that K is always a maximal
compact subgroup of G [100, Prop. 7.19].

Definition 2.4.2 For X ∈ g we define the adjoint orbit or AdK-orbit O(X)
as the set

O(X) = {AdkX | k ∈ K}.

It is well-known that an adjoint orbit is a smooth manifold with tangent
space TYO(X) = adY k [149]. Let us recall the definition of the normal
metric, see [27, 77, 146, 149].

Definition 2.4.3 Let X ∈ p. Denote (ker adX |k)⊥ := {A ∈ k | ∀H ∈
k ∩ ker adX : F (A,H) = 0}. Then TXO(X) = adX(ker adX |k)⊥. The normal
metric on O(X) is defined by

〈adX H, adX K〉 = −F (K,H).

Several authors have shown that the gradient with respect to this metric
can be computed by a double bracket relation see [27, 77, 146, 149]. The
reductive case was treated by Tam [149], whose results we recall here for the
convenience of the reader.
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Proposition 2.4.4 For a smooth function f̂ : p → R, the gradient of f =
f̂ |O(X) with respect to the normal metric is given by

grad f(Y ) = adY adY gradF f̂(Y ),

where gradF f̂(Y ) denotes the gradient of f̂ with respect to F on p.

Proof: See [149, Lem. 2.2, Thm 2.3, Rem. p.214]. �

If no other parameterizations are available, we will need geodesics for
the generalized gradient descent algorithms. Let us recall the formula for
geodesics on the adjoint orbit.

Proposition 2.4.5 Let X ∈ p and Ω ∈ (ker adX |k)⊥. Then t 7→ Adexp tΩX
is a geodesic on O(X) with respect to the normal metric and all geodesics
through X have this form.

Proof: This can be proven in greater generality for geodesics with respect
to the normal metric on homogeneous spaces, see [146, p.16-19]. �

Remark 2.4.6 While we have a simple formula for the gradient grad f(Y )
with respect to the normal metric, we need the Lie algebra element Ω ∈
(ker adY |k)⊥ with adY Ω = grad f(Y ) to compute the geodesic in the gradient
direction. Thus, we need the isomorphism σ : TYO(X) 7→ (ker adY |k)⊥, with
adY ◦σ = IdTY O(X), to implement any type of Riemannian gradient descent.
Given such an isomorphism σ, we get for Y ∈ O(X) and η ∈ TYO(X) the
formula

γ(t) = Adexp(−tσ(η)) Y.

Note, that this construction of the exponential map on O(X) is a special
case of the construction of local parameterizations on homogeneous spaces
proposed by Celledoni and Owren [37]. The map σ corresponds to their
inverse of the tangent map of the group action on O(X), and the exponential
map corresponds to their coordinate map on the Lie group.

On adjoint orbits we consider the distance induced by the bilinear form
F on p.

Definition 2.4.7 We define the distance

dist(P,Q) = F (P −Q,P −Q)1/2,

on an AdK-orbit O(X), X ∈ p.
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We define now the sphere packing problem on O(X) with respect to this
distance.

Problem 2.4.8 Find m points P1, . . . , Pm on an AdK-orbit O(X), X ∈ p,
such that

max{r | Br(Pi) ∩ Br(Pj) = ∅, i < j}
is maximized. Here, Br(Pi) denotes the ball

Br(Pi) = {P ∈ O(X) | dist(Pi, P ) < r}.

However, the function above is not very accessible for optimization pur-
poses. Instead we consider the following problem.

Problem 2.4.9 Find m points P1, . . . , Pm on an adjoint AdK-orbit O(X),
X ∈ p, such that

min dist(Pi, Pj) (2.14)

is maximized.

In fact, the solutions of these problems are equivalent.

Proposition 2.4.10 Let X ∈ p. A m-tuple of points (P1, . . . , Pm), Pi ∈
O(X), is a solution of 2.4.8 if and only if it is a solution of 2.4.9.

Proof: Let P1, . . . , Pm be points in O(X). Define

r1 = max{r | Br(Pi) ∩Br(Pj) = ∅, i < j}

and
r2 = min dist(Pi, Pj).

As dist(Pi, Pj) ≥ 2r1, we have 2r1 ≤ r2. On the other hand for all r < r2/2
and all i < j, Br(Pi) ∩ Br(Pj) = ∅ holds. Thus 2r1 = r2, which yields our
claim. �

In (2.14) we have to maximize the minimum of a finite number of non-
smooth functions. Since the non-smoothness of these function would intro-
duce additional complications to our algorithms, we will instead minimize
the maximum of a finite number of smooth functions in our sphere packing
algorithms.
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Proposition 2.4.11 Let X ∈ p. The local maxima of (2.14) coincide with
the local minima of f : (O(X))m → R,

f(P1, . . . , Pm) = max
i<j

F (Pi, Pj). (2.15)

Proof: First note that the maxima of (2.14) and

min
i<j

F (Pi − Pj, Pi − Pj)

coincide. But as

F (Pi − Pj, Pi − Pj) = F (Pi, Pi) + F (Pj, Pj) − 2F (Pi, Pj)

= 2F (X,X) − 2F (Pi, Pj),

we conclude that the local minima of f are exactly the local maxima of
(2.14). �

To calculate the generalized gradient, we need first the gradients of maps
(P,Q) 7→ tr(PQ).

Lemma 2.4.12 Let X ∈ p. The gradient of the map f : (P,Q) 7→ F (P,Q)
on (O(X))2 with respect to the normal metric is

grad f(P,Q) = (adP adP Q, adQ adQ P ).

Proof: Direct consequence of 2.4.4 and that dF (P,Q)(h, k) = F (P, k) +
F (h,Q). �

The above lemma allows us to give the following formula for the general-
ized gradient. Here, and in the sequel we use the notation

I(P ) = I(P1, . . . , Pm) = {(i, j) ∈ N × N | F (Pi, Pj) = f(P )}

for the indices of the active functions.

Proposition 2.4.13 The generalized gradient of f (2.15) is

grad f(P ) = co{(. . . , adPi
adPi

Pj︸ ︷︷ ︸
ith entry

, . . . , adPj
adPj

Pi︸ ︷︷ ︸
jth entry

, . . .) | (i, j) ∈ I(P )}22

22The “. . .” denote zero entries.
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Proof: Direct consequence of Lemma 2.4.12. �

Unfortunately, generalized gradient algorithms often show bad conver-
gence properties. Therefore, it is sometimes advisable to use one of the
smooth approximations discussed in Section 2.3.4. The functions F (Pi, Pj)
are not necessarily non-negative. To use Pólya’s p-norm approach we have
to consider the cost function f(P ) +CX with CX a suitably chosen constant.
The smallest choice for CX is obviously −min f(P ). However, as this value is
usually not known a priori, we can also use the upper bound CX = F (X,X).
In some examples, there will be better choices for CX . Pólya’s approach leads
us to the cost function

fp(P ) =
1

p

∑

i<j

(F (Pi, Pj) + CX)p. (2.16)

The calculation of the gradient of these smooth cost functions is straightfor-
ward.

Proposition 2.4.14 The gradient of fp : (O(X))m → R, (2.16), with respect
to the normal metric is

grad fp(P ) =
∑

i<j

(F (Pi, Pj) + CX)p−1(. . . , adPi
adPi

Pj, . . . , adPj
adPj

Pi, . . .).

Proof: Follows again from Lemma 2.4.12. �

2.4.2 Example: the real Grassmann manifold

As the first concrete example for the sphere packing on adjoint orbits we
consider sphere packings on the real Grassmann manifold, i.e. the manifold
of all k dimensional subspaces in Rn. It is well known that the Grassmann
manifold or Grassmannian is a compact, smooth manifold of dimension (n−
k)k [77]. Denote by Sym(n) the set of symmetric n× n matrices. To fit the
Grassmann manifold into our setting we use the identification with

Grass(n, k,R) =
{
P | P ∈ Sym(n), P 2 = P, trP = k

}
,

from [77], i.e. the set of symmetric projection matrices of rank k. More
precisely, we identify a subspace with the projection P onto the subspace.
In [77] it is shown that this map is a natural diffeomorphism between the
Grassmann manifold and Grass(n, k,R).
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Conway et al. [43] have considered sphere packings on the Grassmann
manifold with respect to the so-called chordal distance. Given k-dimensional
subspaces P̂ ,Q̂ of Rn with principal angles23 ρ1, . . . , ρk the chordal distance
is defined as

dist(P̂ , Q̂) =

(
k∑

i=1

sin2 ρi

) 1
2

,

see [43]. If P,Q ∈ Grass(n, k,R) are the projections onto P̂ and Q̂, then we
have

dist(P̂ , Q̂) =
1√
2
‖P −Q‖F ,

where ‖A‖F = (tr(A>A))1/2 denotes the Frobenius norm on Rn×n [43, Thm.
2]. Hence, the chordal distance is given on Grass(n, k,R) by the distance

dist(P,Q) =
1√
2
‖P −Q‖F .

Conway et al. [43] approached the sphere packing problem on the Grassman-
nian by a family of cost functions

fA(P1, . . . , Pm) =
∑

i<j

(dist(Pi, Pj) − A)−1.

Starting with A = 0, they used a Hooke-Jeeves pattern search to minimize
fA while repeatedly setting A to 1/2 min dist(Pi, Pj) after a fixed number of
steps. They did not give any theoretical results on the convergence of their
algorithm.

Here, we use our formalism for sphere packings on adjoint orbits and
the generalized gradient descent to this problem. To apply the theory from
Section 2.4.1, we need first a suitable reductive Lie group.

Proposition 2.4.15 Let GL0(n,R) the identity component of GL(n,R).
Then (GL0(n,R), SO(n),−X>, 1

2
tr(XY )) is a reductive Lie group with Lie

algebra Rn×n and Cartan decomposition Rn×n = so(n) ⊕ Sym(n).

Proof: By [100, p. 447, Example 2] the identity component SL0(n,R) of
SL(n,R) is reductive. Thus GL0(n,R) as the direct product of SL0(n,R)
and R+ is reductive, too. �

23See [66, 12.4.3, p. 603] for a precise definition of the principal angles.
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Proposition 2.4.16 Grass(n, k,R) is the adjoint AdSO(n)-orbit of

(
Ik 0
0 0

)
.

Proof: A matrix P ∈ Rn×n is a symmetric projection matrix of rank k, if
and only if it can be written as

P = Θ>

(
Ik 0
0 0

)
Θ, Θ ∈ SO(n).

Hence, the Grassmannian is the AdSO(n)-orbit of the specified matrix. �

Given the inner product F (X, Y ) = 1
2

tr(XY ) on Sym(n), we see that

the chordal distance is given by dist(P,Q) =
√
F (P −Q,P −Q). Hence,

we can use our machinery to solve the sphere packing problem with respect
to the chordal distance on the real Grassmannian.

Corollary 2.4.17 Let

f(P1, . . . , Pm) = max
i<j

tr(PiPj)

the cost function for the sphere packing problem on Grass(n, k,R) with respect
to the chordal distance. The generalized gradient of f with respect to the
normal metric on Grass(n, k,R) is

grad f(P1, . . . , Pm) = co{(. . . , [Pi, [Pi, Pj]], . . . , [Pj, [Pj, Pi]], . . .)
24 |

(i, j) ∈ I(P )},

where [A,B] = AB −BA denotes the usual matrix Lie bracket.

Note, that we have scaled the cost function with a positive constant to obtain
simpler formulas.

For the sphere packing problem on Grass(n, k,R) we use gradient descent
in local parameterizations. As parameterizations of Grass(n, k,R), we use
second order approximations of the exponential map, the QR-coordinates of
Helmke et al. [76]. The QR-coordinates are maps φP : TP Grass(n, k,R) →
Grass(n, k,R). However, they can be fit into our setting of parameterizations
Rk(n−k) → Grass(n, k,R). by choosing a family of isometries (ψp : Rk(n−k) →
TP Grass(n, k,R)). To give a formula for the QR-coordinates we write P ∈
Grass(n, k,R) as

P = Θ>

(
Ik 0
0 0

)
Θ with Θ ∈ SO(n). (2.17)
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For η ∈ Sym(n) the bracket [η, P ] has the form

[η, P ] == Θ>

(
0 ξ

−ξ> 0

)
Θ with η ∈ Rk×(n−k).

Then the QR-coordinates are defined as

φP (αη) := Θ>

(
(Ik + α2ξξ>)−1/2 αξ(In−k + t2ξ>ξ)−1/2

−αξ>(Ik + α2ξξ>)−1/2 (In−k + α2ξ>ξ)−1/2

)

·
(
Ik 0
0 0

)(
(Ik + α2ξξ>)−1/2 αξ(In−k + α2ξ>ξ)−1/2

−αξ>(Ik + α2ξξ>)−1/2 (In−k + α2ξ>ξ)−1/2

)>

Θ. (2.18)

For a detailed discussion of the QR-coordinates, we refer the reader to [76].
Note that the terms (Ik + α2ξξ>)−1/2, (In−k + α2ξ>ξ)−1/2 can be calculated
again efficiently from an singular value decomposition of ξ. Assuming that
ξ = UΣV with Σ ∈ Rk×(n−k) diagonal, U ∈ SO(k), V ∈ SO(n− k), we have
that

(Ik + α2ξξ>)−1/2 = U(Ik + α2ΣΣ>)−1/2U> and

(In−k + α2ξ>ξ)−1/2 = V >(In−k + α2Σ>Σ)−1/2V.

The form of φP (2.18) allows us to update the decomposition (2.17) during
the algorithm by setting

Θt+1 =

(
(Ik + α2

t ξξ
>)−1/2 αtξ(In−k + α2

t ξ
>ξ)−1/2

−αtξ>(Ik + α2
t ξξ

>)−1/2 (In−k + α2
t ξ

>ξ)−1/2

)>

Θt.

Thus, we avoid repeated calculation of the eigenbases of P . Note that a
similar approach to repeated updating of a singular value decomposition was
used by Helmke et al. in [75].

As an second order approximation of the exponential map, the param-
eterizations φP have the differential T0φP = IdTP Grass(n,k,R). Therefore, we
can use −π0(grad f(P1, . . . , Pm)) as the descent direction and do not have to
map it onto a different tangent vector.

Note that the parameterizations φP use adP η for calculating φP (η). Since
the map ad2

P is the identity on TP Grass(n, k,R), see [76, Lem. 2.2, Prop.
2.3], we have that [[Pi, [Pi, Pj]], Pi] = [Pj, Pi] for all Pi, Pj ∈ Grass(n, k,R).
Hence, at points (P1, . . . , Pm) ∈ Grass(n, k,R)m, where only one function
tr(PiPj) is active, we can use

(. . . , Pj, . . . , Pi, . . .)
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instead of the gradient grad f(P1, . . . , Pm) for calculating the curve α 7→
φP (α grad f(P1, . . . , Pm)).

These considerations yield the following algorithm.

Algorithm 2.4.18 Let (P 0
1 , . . . , P

0
m) be m initial points in Grass(n, k,R).

Calculate Θ0
i ∈ SO(n) such that

P 0
i = (Θ0

i )
>

(
Ik 0
0 0

)
Θ0
i .

1. If only one tr(PiPj) is active then set

ηtl =





−Pi l = i
−Pj l = j
0 otherwise

.

If more tr(PiPj) are active then set

(ηt1, . . . , η
t
m) = −π0(grad f(P1, . . . , Pm)).

2. Calculate ξti , i = 1, . . . , m by

(
∗ ξti

(ξti)
> ∗

)
:= Θt

iηi(Θ
t
i)

>.

3. Calculate a step size αt either by a harmonic or by a Armijo step size
selection25 along the curve α 7→ (. . . , φP t

i
(αηti), . . .).

4. Set

Θt+1
i

=

(
(Ik + α2

t ξ
t
i(ξ

t
i)

>)−1/2 αtξ
t
i(In−k + α2

t (ξ
t
i)

>ξti)
−1/2

−αt(ξti)>(Ik + α2
t ξ
t
i(ξ

t
i)

>)−1/2 (In−k + α2
t (ξ

t
i)

>ξti)
−1/2

)
Θt
i,

P t+1
i = (Θt+1

i )>
(
Ik 0
0 0

)
Θt+1
i .

5. Set t = t + 1 and go to step 1.

25Note, that when using the Armijo step size selection, we have to calculate the SVD of
ξt
i for the repeated calculation of φP t

i
(C2−lηt

i ) only once.
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Corollary 2.4.19 If the step sizes satisfy
∑
αt = ∞, αt → 0, then the

iterates of Algorithm 2.4.18 converge to the set of critical points of f .

Proof: Choose a family of isometries (ψP : Rk(n−k) → TP Grass(n, k,R)).
Then our claim follows from Theorem 2.3.27 with the family of parameteri-
zations (φP ◦ ψP ). �

2.4.3 Example: the real Lagrange Grassmannian

Our next example is the real Lagrange Grassmann manifold, i.e. the manifold
of Lagrangian subspaces in R2n. A n-dimensional subspace V ⊂ R2n is
Lagrangian if for all v, w ∈ V

v>Jw = 0, J =

(
0 In

−In 0

)
,

see [76]. Equivalently to the Grassmann manifold, we can identify the La-
grangian subspaces with self-adjoint projection operators onto the subspaces,
which satisfy PJP = 0. Thus one can identify the Lagrange Grassmann
manifold with the Lagrange Grassmannian [76]

LGrass(n) = {P ∈ Sym(2n) | P 2 = P, trP = n, PJP = 0}.

A Lagrangian subspace P̂ is identified with the P ∈ LGrass(n) such that P
is the projection onto P̂ .

We need now a suitable reductive group to apply our theory. For this
purpose, recall that

Sp(n) = {X ∈ SL(n,R) | X>JX = J}

is the symplectic group and

sp(n) = {X ∈ Rn×n | X>J + JX = 0}

its Lie algebra [100].

Proposition 2.4.20 Let

G = {λX ∈ Sp(n,R) | X>JX = J, λ ∈ R+}

the group of symplectic n × n matrices and by G0 its identity component.
Furthermore, let the group OSP(n) be given by

OSP(n) = {X ∈ G | X>X = I}26.
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Then (G0,OSP(n),−X>, 1
2

tr(XY )) is a reductive group. The Lie alge-
bra of G is g = sp(n,R) × RI2n. The Lie algebra g of G has the Cartan
decomposition

g = osp(n) + PSym(n)

with osp(n)26 = so(2n) ∩ sp(n) and PSym(n) = (Sym(2n) ∩ sp(n)) + RI2n.

Proof: The group G is a closed, linear group of matrices closed under the
conjugate transpose operation. Our claim follows again from [100, p. 447,
Example 3]. �

Proposition 2.4.21 LGrass(n) is the AdOSP(n)-orbit of

(
In 0
0 0

)
.

Proof: The group OSP(n) acts transitively on LGrass(n) by conjugation,
see [76]. �

By our definition LGrass(n) is a subset of Grass(2n, n,R). Thus the
chordal distance

dist(P,Q) =
1√
2
‖P −Q‖F

is well-defined on LGrass(n). In fact, as in the Grassmannian case it can also
be defined via the principal angles between the Lagrangian subspaces. Given
the bilinear form F (X, Y ) = 1

2
tr(XY ) on sp(n,R)×RI2n, we get again that

chordal distance is dist(P,Q) =
√
F (P −Q,P −Q) . Thus our machinery

is applicable to this example, too.

Corollary 2.4.22 Let

f(P1, . . . , Pm) = max
i<j

tr(PiPj)

the cost function for the sphere packing problem on LGrass(n) with respect to
the chordal distance. The generalized gradient of f with respect to the normal
metric on LGrass(n) is

grad f(P1, . . . , Pm) =

co{(. . . , [Pi, [Pi, Pj]], . . . , [Pj, [Pj, Pi]], . . .) | (i, j) ∈ I(P )}.
26cf. [76]
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As the Lagrange Grassmannian is a subset of Grass(2n, n,R), we can con-
sider f as the restriction of the cost function given in the previous subsection
to the m-fold product of the Lagrange Grassmannian. The generalized gra-
dient of f on the product of LGrass(n) coincides with generalized gradient of
f on Grass(2n, n,R) for points P1, . . . , Pm ∈ LGrass(n) ⊂ Grass(2n, n,R).
Furthermore, it can be shown that LGrass(n) is a totally geodesic subman-
ifold of Grass(2n, n,R) [76]. Additionally, if we have a decomposition for
P ∈ LGrass(n)

P = Θ>

(
Ik 0
0 0

)
Θ, with Θ ∈ OSP(n), (2.19)

we can define QR-coordinates φP : TP LGrass(n) → LGrass(n) on the La-
grange Grassmannian by the restriction of the QR-coordinates for the Grass-
mannian Grass(2n, n,R) to TP LGrass(n) [76]. Hence, the Lagrange Grass-
mannian is an invariant set of the generalized gradient descent iteration, if
the decompositions of the P t

i have all the form (2.19). This can be achieved
by ensuring that in the initial decompositions

P 0
i = (Θ0

i )
>

(
In 0
0 0

)
Θ0
i

one has Θ ∈ OSP(n).
Therefore, we have to following result.

Proposition 2.4.23 Let (P1, . . . , Pm) ∈ LGrass(n)m and decompositions

P 0
i = (Θ0

i )
>

(
Ik 0
0 0

)
Θ0
i .

with Θ0
i ∈ OSP(n). If Algorithm 2.4.18 starts with such initial values, then

it produces a generalized gradient descent on LGrass(n) for the function f . If
additionally the step sizes satisfy

∑
αt = ∞, αt → 0, then iterates converge

to the set of critical points of f .

Proof: It can be shown that for a decomposition (2.19) and η ∈ LGrass(n)
the matrices

(
(Ik + ξξ>)−1/2 ξ(In−k + ξ>ξ)−1/2

−ξ>(Ik + ξξ>)−1/2 (In−k + ξ>ξ)−1/2

)>

.

are elements of OSP(n), see [76]. Thus our claims follow by induction and
from Corollary 2.4.19. �
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2.4.4 Example: SVD orbit

We now demonstrate that the sphere packing problem on the set of matri-
ces with fixed singular values with respect to the Euclidean distance is also
covered by our methods. Assume we are given a k < n and fixed real num-
bers λ1 > . . . > λk > 0. Let us denote D = diag(λ1, . . . , λk) ∈ Rk×k and

L =

(
D
0

)
∈ Rn×k. As in [77, p.84] we consider the set

M(L) = {ULV | U ∈ O(n), V ∈ O(k)}.

This set is a smooth, compact manifold, see [77, p. 86, Prop. 2.2]. We call
M(L) the SVD-orbit of L. Let Rn×k be equipped with the Euclidean scalar
product, i.e. 〈X, Y 〉 = tr(X>Y ). We consider the sphere packing problem
on M(L) with respect to the Euclidean distance

distE(X, Y ) = 〈X − Y,X − Y 〉1/2 .

To embed the manifold M(L) into our setting, we use the well-known trick
to identify M(L) with a manifold of symmetric (n + k) × (n + k) matrices,
see [40, 77, 146]. The manifold M(L) is identified with

M̂(L) =

{(
0 X
X> 0

)∣∣∣∣X ∈M(L)

}

by mapping

X 7→
(

0 X
X> 0

)
,

see [77, p. 90]. It is known that this manifold is an adjoint orbit [98,149]. To
give the associated reductive Lie group of M̂(L), we need some additional
notions. Recall that SO(n, k) is the Lie group

SO(n, k) = {A ∈ SL(n + k,R) | A>

(
In 0
0 −Ik

)
A =

(
In 0
0 −Ik

)}

with Lie algebra

so(n, k) = {X ∈ sl(n+ k,R) | X>

(
In 0
0 −Ik

)
+

(
In 0
0 −Ik

)
X = 0

}
,
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cf. [100]. For a matrix group G we denote by S(G) the subgroup of matrices
A ∈ G with det(A) = 1. Furthermore, we use the notation G×Kfor the set

G×K =

{(
A 0
0 B

) ∣∣∣∣A ∈ G,B ∈ K

}
,

where G,K are matrix groups or matrix lie algebras.

Proposition 2.4.24 We denote by SO0(n, k) the identity component of the
group SO(n, k). Then (SO0(n, k), S(O(n)×O(k)),−X>, tr(XY )) is a reduc-
tive Lie group. The Lie algebra of SO0(n, k) is so(n, k) with Cartan decom-
position

so(n, k) = so(n) × so(k) + Sym(n+ k) ∩ so(n, k).

The manifold M̂(L) is the AdS(O(n)×O(k))-orbit of

(
0 L
L> 0

)
.

Proof: See [98, 149]. �

Proposition 2.4.25 Let

dist(A,B) =
√

tr((A− B)2)

the distance on Sym(n + k) induced by tr(AB). Then for

X̂ =

(
0 X
X> 0

)
, Ŷ =

(
0 Y
Y > 0

)
∈ M̂(L)

we have that dist(X̂, Ŷ ) =
√

2 distE(X, Y ).

Proof: This follows from

tr

((
0 A
A> 0

)(
0 B
B> 0

))
= tr

((
AB> 0

0 A>B

))
= 2 tr(A>B).

�

Hence, we can solve the sphere packing problem on M(L) by applying
our machinery to the sphere packing problem on M̂(L).

Corollary 2.4.26 Let

f

((
0 P1

P>
1 0

)
, . . . ,

(
0 Pm
P>
m 0

))
= max

i<j
2 tr(P>

i Pj)
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the cost function for the sphere packing problem on M̂(L) with respect to the
distance dist. The generalized gradient of f with respect to the normal metric
on M̂(L) is

grad f

((
0 P1

P>
1 0

)
, . . . ,

(
0 Pm
P>
m 0

))
=

{(
0 A
A> 0

) ∣∣∣∣A ∈ co{PiP>
i Pj + PjP

>
i Pi − 2PiP

>
j Pi | (i, j) ∈ I(P )}

}
.

Proof: Straight forward calculations show that

[(
0 P
P> 0

)
,

[(
0 P
P> 0

)
,

(
0 Q
Q> 0

)]]
=

(
0 PP>Q +QP>P − 2PQ>P

P>PQ> + Q>PP> − 2P>QP> 0

)
.

for P,Q ∈ Rn×k. �

To determine the geodesics we have to calculate for η ∈ TP̂M̂(L) the
Ω ∈ (ker adP̂ |(so(n)×so(k)))

⊥ with η = adP̂ Ω. We use the standard approach

to reduce the calculations to the case that P̂ ∈ M̂(L) has a suitably simple
structure, see e.g. [54, 76, 146]. Let P ∈M(L) and

P̂ =

(
0 P
P> 0

)
∈ M̂(L).

We can write P = ULV , U ∈ SO(n), V ∈ SO(k). Then P̂ = Q̂>L̂Q̂ with

Q̂ =

(
U> 0
0 V

)
, L̂ =

(
0 L
L> 0

)
.

Thus for Ω1 ∈ so(n),Ω2 ∈ so(k), Ω =

(
Ω1 0
0 Ω2

)
we have that

[P̂ ,Ω] = Q̂[L̂, Q̂>ΩQ̂]Q̂>.

The following calculations are similar to the case of the compact Stiefel mani-
fold, cf. [54]. Straightforward calculations show that

ker adP̂ |(so(n)×so(k)) =



Q̂




0 0 0
0 S 0
0 0 0


 Q̂>

∣∣∣∣∣∣
S ∈ so(n− k)



 .
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Thus

(
ker adP̂ |(so(n)×so(k))

)⊥
=


Q̂




A B 0
−B> 0 0

0 0 C


 Q̂>

∣∣∣∣∣∣
A,C ∈ so(k), B ∈ Rk×(n−k)



 .

Therefore, we have for any η ∈ TP̂M̂(L) the equation27

η = Q̂


L̂,




A B 0
−B> 0 0

0 0 C




 Q̂> =

Q̂




0 0 DC − AD
0 0 B>D

DA− CD DB 0


 Q̂>, A, C ∈ so(k), B ∈ Rk×(n−k),

with

Q̂




A B 0
−B> 0 0

0 0 C


 Q̂> ∈ (ker adP̂ |(so(n)×so(k)))

⊥.

This allows us now to calculate the geodesic in direction η ∈ TP̂M̂(L). Let

Q̂>ηQ̂ =




0 0 η1

0 0 η2

η>1 η>2 0


 , η1 ∈ Rk×k, η2 ∈ R(n−k)×k.

and A,C ∈ so(k) satisfy

D−1η1 + η>1 D
−1 = D−1AD −DAD−1,

η1D
−1 +D−1η>1 = DCD−1 −D−1CD.

Then the geodesic γ̂(t) through P̂ in direction η has the form

γ̂(t) =

(
0 γ(t)

γ(t)> 0

)

with

γ(t) = U exp

(
t

(
A D−1η>2

−η2D
−1 0

))(
D exp(−tC)V

0

)
.

27Recall that we defined D = diag(λ1, . . . , λk).
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The formula for geodesics allows us again to update the singular value de-
composition in each iteration, like Helmke et al. in [75]. Note, that it is also
possible to give an explicit description of the isomorphism σ : TP̂M̂(L) →(
ker adP̂ |(so(n)×so(k))

)⊥
by using Kronecker products and vec-operations28.

We have basically to give explicit formulas for A and C.
In an implementation of the algorithm we will of course compute only the

upper triangular part of the points on M̂(L), i.e. our iteration will operate
on the M(L) itself instead of M̂(L). This yields the following algorithm.

Algorithm 2.4.27 Let (P 0
1 , . . . , P

0
m) be m initial points in M(L). Define

U0
i ∈ SO(n), V 0

i ∈ SO(k) by P 0
i = U0

i

(
D
0

)
V 0
i .

1. Set

(ζ t1, . . . , ζ
t
m) :=

− π0

(
co{
(
. . . , PiP

>
i Pj + PjP

>
i Pi − 2PiP

>
j Pi, . . . ,

PjP
>
j Pi + PiP

>
j Pj − 2PjP

>
i Pj, . . .

)
| (i, j) ∈ I(P )}

)
,

where π0(C) denotes the least-distance projection to a convex set C ⊂
Rn×k with respect to the distance dist(A,B) = tr((A−B)>(A−B))1/2.

2. Set (
H t
i

Kt
i

)
:= (U t

i )
>ζ ti (V

t
i )>, H t

i ∈ so(k), Kt
i ∈ R(n−k)×k.

and determine At
i, C

t
i by

D−1H t
i + (H t

i )
>D−1 = D−1AtiD −DAtiD

−1,

H t
iD

−1 +D−1(H t
i )

> = DCt
iD

−1 −D−1Ct
iD.

3. Choose a step size αt by an harmonic or Armijo step size selection.

4. Set

U t+1
i := U t

i exp

(
αt

(
Ati D−1(Kt

i )
>

−Kt
iD

−1 0

))

V t+1
i := exp(−αtCt

i )V
t
i

P t+1
i := U t+1

i LV t
i

28See [93] for definition of the Kronecker product and the vec operation.
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5. Set t = t + 1 and go to step 1.

Corollary 2.4.28 If the step sizes in Algorithm 2.4.27 satisfy
∑
αt = ∞,

αt → 0, then the iterates converge to the set of critical points of f .

Proof: This is an application of Theorem 2.3.22. �

Remark 2.4.29 Normal metrics can be generally defined on homogeneous
spaces and, in particular, on M(L), too, see [77, 146]. In our case, we could
construct a normal metric on M(L) such that the identification M(L) 7→
M̂(L) is an isometry. Hence, a generalized gradient descent for the cost func-
tion maxi<j(distE(Pi, Pj))

2 on (M(L))m would also yield algorithm 2.4.27.

2.4.5 Example: optimal unitary space-time constella-
tions

As the next example, we consider the construction of optimal space-time
constellations for multi-antenna communication channels with Rayleigh flat
fading. Unitary space-time constellations for such channels were introduced
by Hochwald and Marzetta [91]. The channel consists of k transmitter an-
tennas, r receiver antennas and n discrete time slots for transmission. The
transmission model has the form [6, 69, 91]

R =

√
ρ

k
SH +W,

where R ∈ Cn×r the received signal, S ∈ Cn×k the send signal, H ∈ Cr×r

the matrix of Rayleigh fading coefficients, W ∈ Cn×r the channel noise, ρ
the signal to noise ratio. Furthermore, it is assumed that not the exact
channel and noise coefficients H and W , but only their distributions are
known. More precisely, the fading coefficients are Gaussian distributed and
the W is Gaussian white noise [6,69,91]. A unitary space-time constellation
as proposed by Hochwald and Marzetta for this channel model consists of
a finite number of matrices U1, . . . , Um ∈ Cn×k with unitary columns, i.e.
U∗
i Ui = Ik. Thus, a unitary space-time constellation is a finite subset of the

compact, complex Stiefel manifold

St(n, k,C) = {U ∈ Cn×k | U∗
i Ui = Ik}.

At the receiver the signal is decoded by a maximum likelihood decoder, i.e.

SR = argmax
U=U1,...,Um

‖R∗U‖F ,
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with ‖A‖F = (tr(A∗A))1/2 the complex Frobenius norm, R the received and
SR the decoded signal [69, 91]. Note, that for each Ui the value ‖R∗Ui‖F
only depends on the subspace of Cn spanned by the columns of Ui. Thus,
the matrices Ui cannot be identified directly at the receiver, but only the
subspaces spanned by their columns. Therefore, to choose a unitary space-
time constellations, we have to choose suitable constellations of subspaces in
Cn.

Two different design criteria for good unitary-space time constellations
have been identified in the literature, see [6,69,92]. For a low signal-to-noise
ratio it is beneficial to maximize the diversity sum [69]

min
i<j

√
1 − 1

k
‖U∗

i Uj‖F

or equivalently to minimize [6]

max
i<j

‖U∗
i Uj‖2

F . (2.20)

If the signal-to-noise ratio is high, then maximizing the diversity product [69,
92]

min
i<j

Πk
s=1

(
1 − δs(U

∗
i Uj)

2
)1/2k

, (2.21)

δs the sth singular value, gives constellations with good error correction prop-
erties. Both criteria are derived from Chernoff’s bounds on the error proba-
bilities, for a detailed discussion we refer the reader to [6, 69, 92].

Note, that both the diversity sum and product only depend on the spaces
spanned by columns of the Ui, which matches the fact that we have in fact
to choose subspaces of Cn as the points of a constellation. Thus, the choice
of a good constellation with respect to one of the design criteria is an op-
timization problem on the complex Grassmann manifold of k-dimensional
subspaces of Cn. Similar to the real case, we identify the complex Grass-
mann manifold with the complex Grassmannian Grass(n, k,C) of hermitian
projection operators onto k-dimensional subspaces,

Grass(n, k,C) =
{
P ∈ Cn×n | P 2 = P, P ∗ = P, tr(P ) = k

}
.

Here, we consider Grass(n, k,C) as a real manifold of dimension 2k(n − k).
As in the real case, the complex Grassmannian is an adjoint orbit and fits
into the reductive group setting.
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Proposition 2.4.30 Denote by GL0(n,C) the identity component of the
group GL(n,C). Then (GL0(n,C), U(n),−X∗,< tr(XY )) is a reductive Lie
group. Its Lie algebra is Cn×n with Cartan decomposition

Cn×n = u(n) + Herm(n),

where Herm(n) denotes the Hermitian n× n matrices.

Proof: Analogous argument to the real case. �

Proposition 2.4.31 The Grassmannian Grass(n, k,C) is the AdU(n) orbit

of

(
Ik 0
0 0

)
.

Proof: Similar to the real case, a matrix P ∈ Cn×n is a hermitian projection
operator of rank k, if and only if it can be written as

P = U∗

(
Ik 0
0 0

)
U, U ∈ U(n).

�

The diversity sum

The problem of finding optimal constellations with respect to the diversity
sum, can be restated as a sphere packing problem on the complex Grass-
mannian with respect to the distance induced by F . This interpretation as a
sphere packing problem has already been noticed and used by Agrawal et al.
in [6]. Note, that this distance is again the chordal distance, but this time
between complex subspaces.

Proposition 2.4.32 The diversity sum (2.20) induces a smooth function
f on the m-fold Grass(n, k,C) which coincides with the minimum distance
function 2.14 with respect to the distance

dist(P,Q) = (< tr((P −Q)2))1/2.

In particular, maximizing (2.20) is equivalent to the sphere packing problem
on Grass(n, k,C) with respect to this distance.

Proof: This follows directly from the fact, that for a U ∈ Cn×k with
U∗U = Ik, the projector on the column space of U is UU ∗. �
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Agrawal et al. [6] approach this optimization problem by minimizing

max
i<j

tr(U∗
j UiU

∗
i Uj) (2.22)

on the m-fold product of the compact, complex Stiefel manifold St(n, k,C).
To do so, they replace the non-smooth cost function by a family of regular-
izations

fA =
1

A
log

(
∑

i<j

exp(A tr(U∗
j UiU

∗
i Uj))

)
,

Ui ∈ St(n, k,C), i = 1, . . . , m. Note, that the fA are entropic regularizations
of the Minimax problem (2.22) as proposed by Li and Fang, see Section 2.3.4.
Agrawal et al. use gradient descent in a overparameterization of St(n, k,C)
to converge to a minimum of a regularizations. The parameter A is repeat-
edly increased to converge to a minimum of the non-smooth cost function.
However, they do not prove any theoretical results on the convergence of
their algorithm. Han and Rosenthal [69, 70] use a simulated annealing algo-
rithm to find constellations with a good diversity sum in a discrete subset
on the m-fold product of St(n, k,C). They restrict their algorithm to the
case n = 2k. Furthermore, they do not provide any theoretical convergence
results.

We can apply our non-smooth optimization approach to this sphere pack-
ing problem.

Corollary 2.4.33 Let

f(P1, . . . , Pm) = max
i<j

< tr(PiPj)

the cost function for the sphere packing problem on Grass(n, k,C) with respect
to the distance (< tr((P−Q)2))1/2. The generalized gradient of f with respect
to the normal metric on Grass(n, k,C) is

grad f(P1, . . . , Pm) =

co{(. . . , [Pi, [Pi, Pj]], . . . , [Pj, [Pj, Pi]], . . .) | (i, j) ∈ I(P )}.

Again, we seek an efficient implementation of the generalized gradient
descent by exploiting the structure of the elements of Grass(n, k,C). This
can be achieved by a direct extension of the QR-coordinates to the complex
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Grassmannian. We just have to replace the transpose with the complex
conjugate transpose in the formulas of the real case. Thus, we can derive a
generalized gradient descent algorithm on the complex Grassmannian from
algorithm for the real case in a simple, straightforward manner.

Proposition 2.4.34 Let (P 0
1 , . . . , P

0
m) ∈ Grass(n, k,C)m and for i = 1, . . . , m

P 0
i = (Θ0

i )
∗

(
Ik 0
0 0

)
Θ0
i , with Θ0

i ∈ U(n).

If we replace the transpose with the complex conjugate transpose operation in
Algorithm 2.4.18 then it produces a generalized gradient descent on the com-
plex Grassmannian Grass(n, k,C) for the function f and the initial values
above. In particular, if the step sizes satisfy

∑
αt = ∞, αt → 0, then the

algorithm converges to the critical points of f .

The diversity product

Han and Rosenthal [69,70] have also applied their algorithm to the problem
of finding constellations with maximized diversity product. However, the
same restrictions as for the diversity sum apply: they did only consider the
case n = 2k and optimized over a discrete subset of the m-fold product of the
complex Stiefel manifold. Furthermore, they gave no theoretical convergence
results.

Here, we will consider the application of our non-smooth optimization
methods to the diversity product. As already mentioned, diversity product
does only depend on the column spaces spanned by the matrices of the uni-
tary space-time constellation and is therefore a well-defined function on the
complex Grassmannian Grass(n, k,C), too. The following proposition gives
an equivalent form of the diversity product on Grass(n, k,C).

Proposition 2.4.35 Let U1, . . . , Um ∈ St(n, k,C) and P1 = U1U
∗
1 , . . . , Pm =

UmU
∗
m. Then Pi ∈ Grass(n, k,C), i = 1, . . . , m and

min
i<j

Πk
s=1

(
1 − δs(U

∗
i Uj)

2
)1/2k

= min
i<j

(det(In − PiPj))
1/2k ,

where δs(A) denotes the sth singular value of A.

For derivation of this formula in the case n = 2k with a special representation
of St(2k, k, C), see [69, 92].
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Proof: One sees directly that Pi ∈ Grass(n, k, C). We show that Πk
s=1(1 −

δs(U
∗V )2) = det(In − UU∗V V ∗) for U, V ∈ St(n, k,C). W.l.o.g. we can

assume that

U =

(
Ik
0

)
and V =

(
A
B

)
,

A ∈ Ck×k, B ∈ C(n−k)×k. Straightforward calculations show that

det (In − UU∗V V ∗) = det

(
In −

(
AA∗ AB∗

0 0

))

= det

(
Ik − AA∗ AB∗

0 In−k

)

= det(Ik − AA∗)

= Πk
s=1(1 − δs(A)2)

= Πk
s=1(1 − δs(U

∗V )2).

This proves our claim. �

Furthermore, we need some simple facts on det(I − PQ).

Lemma 2.4.36 For all positive semi-definite P,Q ∈ Herm(n) the function
det(I − PQ) is real valued. For P,Q ∈ Grass(n, k,C) it is non-negative and
bounded from above by 2k.

Proof: First note, that for all P,Q ∈ Cn×n, the eigenvalues of I−PQ have
the form 1 − λi with λi the eigenvalues of PQ. By a theorem of Horn and
Johnson [93, Thm 7.6.3] for a strictly positive definite P , and hermitian Q
the eigenvalues of PQ are real. A straightforward continuity argument on the
eigenvalues as the zeros of the characteristic polynomial gives that det(I −
PQ) is real for all positive semidefinite P,Q. For P,Q ∈ Grass(n, k,C) we
have that ‖PQ‖ ≤ 1, ‖·‖ denoting the operator norm. Thus I−PQ has only
eigenvalues ≥ 0 and ‖I − PQ‖ < 2, i.e. the eigenvalues are bounded from
above by 2. This proves our claim. �

By the above proposition and lemma we can either minimize

f1(P1, . . . , Pm) = max
i<j

(2k − det(I − PiPj))

or
f2(P1, . . . , Pm) = max

i<j
− log(det(I − PiPj))
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on the m-fold product of the complex Grassmannian Grass(n, k,C) to ob-
tain a constellation with maximized diversity product. The constant 2k is
added to f1 to ensure that the functions are non-negative and Pólya p-norm
approximation is applicable. The function f2 is not well-defined on the whole
m-fold product of the Grassmannian, but the singularities of f2 are global
minima of the diversity sum anyway and therefore the worst choice of possible
constellations.

Unfortunately, neither the diversity product nor the cost functions f1,
f2 can be regarded as cost functions for the sphere packing problem on an
adjoint orbit. Nevertheless, we can use the formula for the gradients of a
smooth function with respect to the normal metric, Proposition 2.4.4, to
calculate the generalized gradients of f1 and f2.

Proposition 2.4.37 The generalized gradient of the cost function f1 with
respect to the normal metric on the m-fold Grassmannian Grass(n, k,C)m is

grad f1(P1, . . . , Pm) =

co {(. . . , [Pi, [Pj adj(I − PiPj), Pi]], . . . , [Pj, [adj(I − PiPj)Pi, Pj]], . . .) |
2k − det(I − PiPj) = f1(P1, . . . , Pm)

}
,

where adjA denotes the adjoint29 of A. The generalized gradient of f2 with
respect to the same metric on the m-fold Grassmannian is

grad f2(P1, . . . , Pm) =

co
{

(. . . , [Pi, [Pi, Pj(I − PiPj)
−1]], . . . , [Pj, [Pj, (I − PiPj)

−1Pi]], . . .) |
− log(det(I − PiPj)) = f2(P1, . . . , Pm)}

Proof: For the space Rn×n it is known that d det(X)(H) = tr(adj(X)H),
see [72, p. 304]. Considering C and Cn×n as real vector spaces, one can show
with the same argument as in the real case that d det(U)(H) = tr(adj(U)H).
Hence we get for h(P,Q) = det(I − PQ), P,Q ∈ Cn×n, that for all H,K ∈
Cn×n

dh(P,Q)(H,K) = − tr (adj(I − PQ)HQ+ adj(I − PQ)PK) .

By Lemma 2.4.36 we see that h takes only real values on the manifold
Grass(n, k,C)×Grass(n, k,C). Thus the differential restricted to the tangent

29see [93] for a definition of the adjoint.
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bundle of Grass(n, k,C) × Grass(n, k,C) is real too, i.e.

dh(P,Q)(H,K) = −< tr(adj(I − PQ)HQ) − < tr(adj(I − PQ)PK)

for P,Q ∈ Grass(n, k,C), H ∈ TP Grass(n, k,C), K ∈ TQ Grass(n, k,C).
By Proposition 2.4.4 we get the following gradient of h with respect to the
normal metric on the product Grass(n, k,C) × Grass(n, k,C):

gradh(P,Q) = ([P, [Q adj(I − PQ), P ]], [Q, [adj(I − PQ)P,Q]]).

If we consider C and Cn×n as real vector spaces we get for the function
k(P,Q) = − log(det(I − PQ)) the differential

dk(P,Q)(H,K) =
1

det(I − PQ)
tr(adj(I − PQ)HQ+ adj(I − PQ)PK)

= tr((I − PQ)−1HQ+ (I − PQ)−1PK).

Using again that h is real-valued on Grass(n, k,C) × Grass(n, k,C) and
Proposition 2.4.4, we get the following result for the gradient with respect to
the normal metric:

grad k(P,Q) = ([P, [P,Q(I − PQ)−1]], [Q, [Q, (I − PQ)−1P ]]).

The formulas for the generalized gradient follow now directly from Corollary
2.3.10. �

We can use a generalized gradient descent on Grass(n, k,C) to search for
configurations which maximize the diversity product. Again, we use the QR-
coordinates to exploit the structure of the elements of Grass(n, k,C). This
yields the following algorithm.

Algorithm 2.4.38 Let (P 0
1 , . . . , P

0
m) be m initial points in Grass(n, k,C).

Calculate Θ0
i ∈ U(n) such that

P 0
i = (Θ0

i )
∗

(
Ik 0
0 0

)
Θ0
i .

1. Set
(ηt1, . . . , η

t
m) = −π0(grad f1(P1, . . . , Pm)).

2. Calculate ξti , i = 1, . . . , m by
(

∗ ξti
(ξti)

∗ ∗

)
:= Θt

iηi(Θ
t
i)

∗.
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3. Calculate a step size αt either by a harmonic step size selection or with the
Armijo rule along the curve (. . . , φP t

i
(ηti), . . .).

4. Set

Θt+1
i

=

(
(Ik + α2

t ξ
t
i(ξ

t
i)

∗)−1/2 αtξ
t
i(In−k + α2

t (ξ
t
i)

∗ξti)
−1/2

−αt(ξti)∗(Ik + α2
t ξ
t
i(ξ

t
i)

∗)−1/2 (In−k + α2
t (ξ

t
i)

∗ξti)
−1/2

)
Θt
i,

P t+1
i = (Θt+1

i )∗
(
Ik 0
0 0

)
Θt+1
i .

5. Set t = t + 1 and go to step 1.

For the cost function f2 we get the analogous algorithm.

Corollary 2.4.39 If the step sizes in Algorithm 2.4.38 satisfy
∑
αt = ∞,

αt → 0, then the iterates converge to the set of critical points of f1 (or f2

respectively).

Proof: Again, this is an application of Theorem 2.3.27 by choosing a family
of isometries (ψP : R2k(n−k) → TP Grass(n, k, C)). �
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2.4.6 Numerical results

In this section, we discuss some numerical results of our sphere packing al-
gorithms. We consider the case of the real Grassmannian, see Section 2.4.2.
Since there is a significant number of good packings known for Grass(n, k,R)
with n ≤ 16, see e.g. [43, 145], we can evaluate the results of our algorithms
for this case precisely. All algorithms were implemented in Matlab.

In Table 2.1 we display the results of our non-smooth optimization al-
gorithm with an Armijo step size selection. Our simulations cover the case
of m points in Grass(n, 2,R) with m ranging from 10 to 14 and n from 4
to 10. The largest minimal squared distance, which was achieved by the
algorithm in 80 or 200 iterations, is shown in the columns “80 steps” and
“200 steps”. The column “start” gives the minimal squared distance be-
tween the points of the initial configuration in Grass(n, 2,R). The results
are compared with best minimal squared distances30 of Conway et al. [43],
which are displayed in the column “Conway et al.”. The initial configuration
was chosen in Grass(n, 2,R) by the following construction: For each point of
initial configuration we chose a A ∈ Rn×n with entries randomly distributed
in [−1, 1]. We calculated a Θ ∈ SO(n) by Θ = exp(5(A − A>)). Then we
used the point

Θ>

(
I2 0
0 0

)
Θ.

in Grass(n, 2,R) for the initial configuration. For the Armijo step size se-
lection we used the constants σ = 10−4, µ = 0.5, C = 1. We limited the
number of line search steps in the Armijo rule to 16 and terminated the al-
gorithm if this bound was exceeded. The algorithm achieved a significant
improvement of the distances compared to the initial configuration. How-
ever, it did not reach to distances of the best known packings from Conway
et al. Furthermore, we noted during the simulations that the algorithm is
sensitive to the choice of the constant σ in the Armijo step size selection. A
different choice like, e.g. σ = 0.1, would lead to a significant degradation of
the results. Figure 2.1 illustrates this behavior.

Table 2.2 shows the results of the non-smooth algorithm with the har-
monic step size selection αt = 1/(0.3t+ 1). We considered the same packing
problems as in Table 2.1. However, we used new initial configurations for the
algorithm. Again, a significant improvement compared to the initial config-
uration was made, but the distances from Conway et al. were not reached.

30The results of Conway et al. are rounded to 4 decimal digits.
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The results are similar to the Armijo version. However, this requires careful
adaption of the step size formula to this specific problem and depends on the
construction of the initial values. We will discuss this a little later.

As a comparison, we show in Table 2.3 the results of a gradient descent it-
eration for a smooth p-norm approximation of our non-smooth cost function.
We used the p = 6 approximation

f6(P1, . . . , Pm) =
1

6

∑

i<j

tr(PiPj)
6.

A standard gradient descent in the QR-parameterization with an Armijo
step size selection was applied to this function. For the Armijo rule, we used
again the constants σ = 10−4, µ = 0.5, C = 1. Again, we limited to number
of line search steps to 16 and terminating the algorithm if this bound was
exceeded. The initial points were chosen by the same construction as above.
This smooth approximation performed much better than the non-smooth al-
gorithms, despite the fixed order p = 6 of the approximation. The algorithm
gave results very close to the findings of Conway et al., in particular, com-
pared to the non-smooth algorithms. Thus, it seems to be superior to the
non-smooth approach. This is further illustrated in in Figure 2.2, where we
compare the smooth and non-smooth algorithms for the case of packing 14
points in Grass(14, 2). We started with a random initial configuration. The
parameter for the algorithms were chosen as above. The diagram shows the
evolution of the minimal squared distance between the points during the it-
erations of the algorithms. Note that the minimal squared distance does not
increase monotonically for the smooth algorithm, as it is a descent iteration
for a different cost function - the smooth approximation f6.

However, as already mentioned the similar behavior of the non-smooth
algorithms with Armijo and harmonic step sizes depends on the construction
of the initial points. For example by the Euler angle decomposition we can
decompose each Θ ∈ SO(n) as

Θ =

(
Ξ 0
0 0

)(
In−2 0

0 R(α1)

)

In−2 0 0

0 R(α2) 0
0 0 1


 · . . . ·

(
R(αn−1) 0

0 In−2

)

with Ξ ∈ SO(n− 1) and

R(αi) =

(
cos(αi) sin(αi)
− sin(αi) cos(αi)

)
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Figure 2.1: Behavior of the non-smooth algorithm with the Armijo set sizes
for different values of σ, 10−4 and 10−1. We consider the problem of 14 points
in Grass(10, 2,R).

with αi ∈ [0, 2π] [157]. We can choose an initial configuration by constructing
recursively Θ with random αi and using

Θ>

(
I2 0
0 0

)
Θ

as points of the initial configuration. In the Figures 2.3 and 2.4 we show
the evolution of the algorithms starting from our standard choice of initial
points and the Euler angle construction for the problem of packing 10 points
on Grass(16, 8,R). The Grassmannian Grass(16, 8,R) was chosen because
the effect is more visible than on Grass(16, 2,R). All constants for the algo-
rithms were chosen as in the previous simulations. In both cases the smooth
approximation has the best performance. The non-smooth algorithm with
Armijo step size shows similar convergence in both simulation, in particular,
if we take into account that the initial configurations have different qual-
ity. However, the harmonic step size is significantly affected by the change
of the initial configurations. For the Euler angle construction it has worse
performance than the non-smooth algorithm with Armijo step size rule.
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n m start 80 steps 200 steps Conway et al.
4 10 0.42508 0.87146 0.89766 1.1111
4 11 0.025911 0.8202 0.83872 1.0000
4 12 0.14129 0.8801 0.9274 1.0000
4 13 0.0329 0.69513 0.76776 1.0000
4 14 0.19674 0.64854 0.7147 1.0000
5 10 0.45419 1.118 1.1305 1.3333
5 11 0.28611 1.0749 1.0882 1.3200
5 12 0.56397 1.0088 1.0383 1.3064
5 13 0.20946 1.0286 1.043 1.2942
5 14 0.37904 0.95747 1.0046 1.2790
6 10 0.86787 1.3315 1.4038 1.4815
6 11 0.70121 1.2454 1.3634 1.4667
6 12 0.24786 1.1462 1.1716 1.4545
6 13 0.61849 1.1475 1.2259 1.4444
6 14 0.35458 1.2136 1.2484 1.4359
7 10 1.0108 1.3621 1.4245 1.5873
7 11 0.72959 1.4141 1.4748 1.5714
7 12 0.73347 1.2922 1.313 1.5584
7 13 0.70806 1.3411 1.4235 1.5476
7 14 0.65897 1.3338 1.4024 1.5385
8 10 0.6665 1.4407 1.4828 1.6667
8 11 0.7486 1.4422 1.5141 1.6500
8 12 1.0548 1.486 1.5348 1.6364
8 13 0.75067 1.3831 1.4513 1.6250
8 14 0.76594 1.4244 1.4812 1.6154
9 10 1.1383 1.5072 1.6485 1.7284
9 11 0.90762 1.5139 1.5944 1.7111
9 12 0.92357 1.4947 1.5235 1.6970
9 13 0.90856 1.4811 1.5675 1.6853
9 14 0.59752 1.4975 1.5669 1.6752

10 10 0.95202 1.6428 1.7024 1.7778
10 11 1.096 1.624 1.68 1.7600
10 12 1.194 1.5693 1.6389 1.7455
10 13 1.022 1.5638 1.6346 1.7333
10 14 0.74117 1.5319 1.6084 1.7231

Table 2.1: Armijo rule Results of the sphere packing algorithm for packing
m points on the real Grassmannian Grass(n, 2).
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n m start 80 steps 200 steps Conway et al.
4 10 0.32539 0.89374 0.9388 1.1111
4 11 0.32323 0.8776 0.92154 1.0000
4 12 0.19822 0.89603 0.93348 1.0000
4 13 0.16588 0.76737 0.82843 1.0000
4 14 0.080045 0.72348 0.80152 1.0000
5 10 0.62849 1.1255 1.1701 1.3333
5 11 0.33131 1.0557 1.1144 1.3200
5 12 0.082729 1.0162 1.0689 1.3064
5 13 0.41955 1.0006 1.0267 1.2942
5 14 0.20488 1.0419 1.0832 1.2790
6 10 0.78359 1.322 1.3821 1.4815
6 11 0.70646 1.2635 1.3107 1.4667
6 12 0.42362 1.2616 1.3072 1.4545
6 13 0.68365 1.2284 1.2835 1.4444
6 14 0.50561 1.1602 1.2204 1.4359
7 10 0.82531 1.4656 1.5207 1.5873
7 11 0.83157 1.3525 1.4329 1.5714
7 12 0.70846 1.41 1.4578 1.5584
7 13 0.85141 1.2842 1.3418 1.5476
7 14 0.66567 1.3387 1.3957 1.5385
8 10 1.0676 1.5527 1.6009 1.6667
8 11 0.76063 1.5078 1.5585 1.6500
8 12 0.89878 1.4745 1.5219 1.6364
8 13 0.70867 1.4867 1.5334 1.6250
8 14 0.42532 1.4327 1.4866 1.6154
9 10 1.0598 1.65 1.6833 1.7284
9 11 0.93986 1.5833 1.6243 1.7111
9 12 0.78188 1.5694 1.6154 1.6970
9 13 0.86891 1.5688 1.6041 1.6853
9 14 0.85208 1.4793 1.5322 1.6752

10 10 1.1021 1.6812 1.7186 1.7778
10 11 1.209 1.6513 1.6876 1.7600
10 12 0.81313 1.6027 1.6606 1.7455
10 13 1.1644 1.6146 1.6542 1.7333
10 14 0.79348 1.5657 1.6165 1.7231

Table 2.2: Harmonic step size Results of the sphere packing algorithm for
packing m points on the real Grassmannian Grass(n, 2).
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n m start 80 steps 200 steps Conway et al.
4 10 0.36761 1.1111 1.1111 1.1111
4 11 0.1865 0.98006 0.98208 1.0000
4 12 0.28515 0.99966 1 1.0000
4 13 0.21484 0.90421 0.99809 1.0000
4 14 0.04376 0.99129 0.99603 1.0000
5 10 0.54927 1.3119 1.3274 1.3333
5 11 0.65627 1.2778 1.2911 1.3200
5 12 0.38339 1.2639 1.2726 1.3064
5 13 0.42 1.258 1.2624 1.2942
5 14 0.41014 1.2184 1.2387 1.2790
6 10 0.76941 1.4784 1.4814 1.4815
6 11 0.39748 1.4611 1.4649 1.4667
6 12 0.29008 1.4273 1.4458 1.4545
6 13 0.78825 1.4148 1.4197 1.4444
6 14 0.53428 1.4092 1.4159 1.4359
7 10 0.82595 1.5861 1.5861 1.5873
7 11 0.74219 1.5638 1.5706 1.5714
7 12 0.83264 1.5571 1.5575 1.5584
7 13 0.74724 1.543 1.5471 1.5476
7 14 0.7688 1.5183 1.5313 1.5385
8 10 0.65001 1.6615 1.6665 1.6667
8 11 0.71212 1.649 1.65 1.6500
8 12 0.6358 1.6335 1.6362 1.6364
8 13 0.61274 1.6094 1.6212 1.6250
8 14 0.8729 1.6087 1.6148 1.6154
9 10 1.0903 1.7249 1.728 1.7284
9 11 0.93424 1.7074 1.7109 1.7111
9 12 1.0657 1.6908 1.6961 1.6970
9 13 1.038 1.6789 1.6847 1.6853
9 14 0.61142 1.6722 1.675 1.6752

10 10 1.0861 1.7746 1.7773 1.7778
10 11 1.045 1.7572 1.7588 1.7600
10 12 0.91031 1.7419 1.7452 1.7455
10 13 0.7923 1.7291 1.7332 1.7333
10 14 0.89754 1.7179 1.7223 1.7231

Table 2.3: Results of gradient descent for a smooth p-norm approxima-
tion of order 6 for packing problem of m points on the real Grassmannian
Grass(n, 2).
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Figure 2.2: Behavior of the smooth and non-smooth algorithms for packing
14 points in Grass(10, 2).
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Figure 2.3: Behavior of the smooth and non-smooth algorithms for 10 points
on Grass(16, 8,R) and our standard construction of initial configurations.
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Figure 2.4: Behavior of the smooth and non-smooth algorithms for 10 points
on Grass(16, 8,R) and the Euler angle construction of initial configurations.
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Appendix A

Additional results
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A.1 A theorem on Hessians of self-scaled bar-

rier functions
In this section, we show that the inverse of the Hessian of self-scaled barrier
function on a symmetric cone can be extended to compatible, piecewise posi-
tive definite tangent map if and only if the cone isomorphic to Rn

+. The proof
is based on the classification theorem for self-scaled barriers on symmetric
cones by Güler and Hauser [73]. As a detailed introduction into the theory of
Jordan algebras, symmetric cones and self-scaled barrier functions is beyond
the scope of this work, we refer the reader to [57, 60, 134] for definitions and
basic theorems.

Theorem A.1.1 Let C be an open symmetric cone in an Euclidean vector
space V and f a self-scaled barrier function on C. The inverse of the Hessian
of f can be extended to a compatible, piecewise positive definite tangent map
on V if and only if there is a linear isomorphism V → Rn which maps C
onto Rn

+.

Proof: Since the cone is symmetric, we can assume by [57, Thm. III.3.1]
that V is an Euclidean Jordan algebra and C the interior of the cone of
squares in V . By [57, Prop. III.4.4] we can decompose V into a direct sum of
simple ideals V1,. . . ,Vk. This yields a decomposition of C into a direct sum
of irreducible cones C1, . . . , Ck by setting Ci = C ∩ Vi, cf. [57, Prop. III.4.5].
Güler and Hauser [73] have shown that a self-scaled barrier function on a
symmetric cone C with such a decomposition has the form

f(x) = a0 −
k∑

i=1

ai log deti(x),

with constants a0 ∈ R, a1, . . . , ak ≥ 1 and deti denoting the determinant
on Vi. Hence, it is sufficient to assume that V is simple, C irreducible
and f(x) = a − log det(x) with a ∈ R.1 Let P (x) : V → V denote the
quadratic representation2 of V . For x ∈ C, the inverse of the Hessian of
f is Hess f(x)−1 = P (x), see [60, Prop. 6.23] or [57, Prop. II.3.2, Prop.
III.4.2]. Choose a Jordan frame c1, . . . , ck. By the Peirce decomposition of

1Note that we can normalize a0 − a1 log(det(x)) to ã0 − log(det(x)) by multiplication
with a positive constant.

2i.e. for x, y ∈ V , P (x)y = 2x(xy) − (x2)y, see [57, p. 32]
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V , see [57, p.62 and Prop. IV.1.1], we can define subalgebras Vj in V as
the 1-eigenspaces of the maps x 7→ (c1 + . . . + cj)x. We denote by Kj the
interior of the cone of squares in Vj. By [57, Prop. IV.3.1] we can decompose
∂C in the orbits Cj = G(c1 + . . . + cj), j = 1, . . . , k, where G denotes the
identity component of the automorphism group of C. Furthermore, we have
Kj ⊂ Cj [57, Prop. IV.3.1].

Let x ∈ Cj. By [57, Prop. III.5.2] for all g ∈ G, x ∈ V the equation
P (gx) = gP (x)g∗, with g∗ the adjoint of g, holds. Since Cj = G(c1 + . . .+cj),
we can therefore assume that x = c1 + . . . + cj. By [57, Prop. IV.3.1]
rkP (c1 + . . . + cj) = dimVj. Furthermore, G is the component of closed
linear group, see [57, p.4], and hence analytic [100]. Since c1 + . . .+ cj ∈ Vj,
Kj ⊂ Cj and dimKj = dimVj, we see that rkP (c1 + . . . + cj) ≥ dimCj if
and only if Kj is a relatively open subset of Cj.

Assume the inverse of the Hessian of f can be extended to a compatible,
piecewise positive definite tangent map on V . This implies that rkP (c1+. . .+
ck−1) ≥ dimCk−1. But since Ck−1 is an analytic submanifold and contains an
open subset of a linear subspace Vk−1 with dimVk−1 = dimCk−1, it follows
from the identity principle for analytic functions [137, Prop. 2.9, p. 11] that
Ck−1 ⊂ Vk−1. Since V is simple, ∂C = Ck−1 [57, p. 73]. Thus, the boundary
of C is contained in the linear subspace Vk−1 of V . Since C is an open, convex
subset of V , this implies that C is a half-space. On the other hand, C is self
dual, i.e. C = {x ∈ V | ∀y ∈ C, y 6= 0: 〈x, y〉 > 0}, cf. [57, p. 4]. Therefore
C = R+ and V = R.

Hence we have proven that if the inverse of the Hessian can be extended
to a compatible, piecewise positive definite tangent map on V , then C must
be isomorphic to Rn

+.
On the other hand a self-scaled barrier on Rn

+ has by the classification the-

orem of Güler and Hauser [73] the form3 f(x1, . . . , xk) = a0−
∑k

i=1 ai log(xi),
with a0 ∈ R, ai ≥ 1. This yields the Hessian diag(a1x

−2
1 , . . . , akx

−2
k ) and its

inverse can be extended to a compatible, piecewise positive definite tangent
map, cf. Example 1.4.10. �

In fact, we have shown that for simple V and the stratification of ∂C
into Cj = G(c1,+ . . .+ cj), the bilinear map (v, w) 7→ 〈P (x)v, w〉 is a scalar
product on TxCj if and only if Cj = R+.

3For Vi = R we have deti(x) = x.

181



Appendix B

Notation
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R the field of real numbers
R+ the positive real numbers
C the field of complex numbers
<z real part of a z ∈ C
2S the power set of a set S

A topological closure of a set A
∂A topological boundary of a set A
IdV identity mapping V → V on a vector space V
V ⊥ orthogonal complement to a subspace V in a vector

space W with a scalar product
coS the convex hull of a set S in a vector space
coS the closure of coS for a set S in a topological vector

space
R o-minimal structure, p. 12
C analytic geometric category, p. 13
C(M) the set of C-sets on the manifold M , p. 13
R(C) the o-minimal structure derived from an analytic geo-

metric category C, p. 14
C(R) the analytic geometric category derived from an o-

minimal structure R, p. 14
ω(γ),ω(x) the ω-limit of an integral curve γ or the integral curve

passing through x
f |T restriction of a function f : M → R to a subset T
TxM tangent space of a manifold M
Txφ tangent map TxM → Tφ(x)N of a differentiable map

φ : M → N with x ∈M
df(x) differential of a function f : M → R at x ∈ M
df |T (x) differential at x ∈ T of f |T with T ⊂ M a submanifold

and f : M → R a function
γ̇, γ′ derivative of a differentiable function γ : R →M
〈·, ·〉 Riemannian metric on a manifold M
‖·‖ norm on a tangent space TxM induced by a Riemannian

metric, also used for the induced operator norms
expx the exponential map TxM →M on a Riemannian mani-

fold M at the point x ∈M
grad f(x) Riemannian gradient or generalized gradient, p. 123, at

x ∈M of a function f : M → R
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grad f |T (x) Riemannian gradient of f |T with respect to the induced
metric on a submanifold T ⊂ M with f : M → R a
function

gradj f(x) Riemannian gradient of the restriction of a function
f : M → R to a stratum Sj with respect to the induced
metric, p. 18

Hessx f Riemannian Hessian of a twice differentiable function
f : M → R at x ∈M

∂Ff(x) Frechét subdifferential of a function f : M → R at x ∈
M , p. 122

∂Lf(x) limiting Frechét subdifferential of a function f : M → R
at x ∈M , p. 122

gradC f(x) Clarke’s generalized gradient for a function f : Rn → R
In n× n identity matrix
A> transpose of a matrix A ∈ Rn×n

A∗ complex conjugate transpose of a matrix A ∈ Cn×n

adjA adjugate of a matrix A
‖A‖F the Frobenius norm of a n× n matrix
Flag(n) the complete flag manifold, p. 116
Tri(n) the linear space of lower triangular n × n matrices, p.

117
[A,B] the Lie bracket, for matrices the matrix Lie bracket, i.e.

[A,B] = AB −BA
exp the exponential map on a Lie group
ad adjoint representation of a Lie algebra
Ad adjoint representation of a Lie group
S(G) see p. 158
GL(n,R), GL(n,C) general linear group over R and C
E(n) Euclidean group, p. 120
SL(n,R) special linear group over R
O(n) orthogonal group
SO(n) special orthogonal group
Sp(n) the symplectic group, p. 154
OSP(n) see p. 154
SO(n, k) see p. 157
U(n) unitary group
so(n) the Lie algebra of skew-symmetric n× n matrices
sp(n) see p. 154
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osp(n) see p. 155
so(n, k) see p. 157
sl(n,R) the Lie algebra of real n× n matrices A with tr(A) = 0
u(n) the Lie algebra of skew-Hermitian n× n matrices
Sym(n) the set of symmetric n× n matrices, p. 149
PSym(n) see p. 155
Herm(n) the set of Hermitian n× n matrices, p. 164
Grass(n, k,R) the real Grassmannian, p.149
LGrass(n) the Lagrange Grassmannian, p. 154
Grass(n, k,C) the complex Grassmannian, p. 163
St(n, k,C) the complex, compact Stiefel manifold, p. 162
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[73] R. A. Hauser and O. Güler. Self-scaled barrier functions on symmetric
cones and their classification. Foundations of Computational Mathe-
matics, 2:121–143, 2001.

[74] S. Helgason. Differential Geometry, Lie Groups and Symmetric Spaces.
Academic Press, New York, 1978.
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