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Abstract

Prediction intervals are needed in many industrial applications. Frequently in mass pro-
duction, small subgroups of unknown size with a lifetime behavior differing from the
remainder of the population exist. A risk assessment for such a subgroup consists of
two steps: i) the estimation of the subgroup size, and ii) the estimation of the lifetime
behavior of this subgroup. This thesis covers both steps. An efficient practical method
to estimate the size of a subgroup is presented and benchmarked against other meth-
ods. A prediction interval procedure which includes prior information in form of a Beta
distribution is provided. This scheme is applied to the prediction of binomial and neg-
ative binomial counts. The effect of the population size on the prediction of the future
number of failures is considered for a Weibull lifetime distribution, whose parameters
are estimated from censored field data. Methods to obtain a prediction interval for the
future number of failures with unknown sample size are presented. In many applications,
failures are reported with a delay. The effects of such a reporting delay on the cover-
age properties of prediction intervals for the future number of failures are studied. The
total failure probability of the two steps can be decomposed as a product probability.
One-sided confidence intervals for such a product probability are presented.



ii

Zusammenfassung

Vorhersageintervalle werden in vielen industriellen Anwendungen benötigt. In Massen-
produktionen entstehen regelmäßig kleine Untergruppen von unbekannter Größer, welche
ein anderes Lebensdauerverhalten als die übrige Population besitzen. Eine Risikoein-
schätzung für eine solche Untergruppe besteht aus zwei Schritten: i) der Schätzung der
Größe dieser Untergruppe und ii) der Schätzung des Lebensdauerverhaltens dieser Un-
tergruppe. Diese Arbeit behandelt diese beiden Schritte. Eine effiziente Methode zur
Schätzung der Größe der Untergruppe wird vorgestellt und mit anderen Methoden ver-
glichen. Vorhersageintervalle unter Vorinformation in Form einer Betaverteilung werden
dargelegt. Das Schema wird für die Vorhersage binomialer und negativ binomialer Zu-
fallsvariablen angewandt. Der Effekt der Populationsgröße auf die Vorhersage der Anzahl
von zukünftigen Ausfällen wird für eine Weibull Verteilung betrachtet, deren Parameter
auf Basis von zensierten Felddaten geschätzt werden. Methoden um Vorhersageintervalle
bei unbekannter Populationsgröße zu bestimmen werden dargelegt. In vielen Anwendun-
gen werden Ausfälle mit einem Verzug gemeldet. Die Effekte eines solchen Meldeverzugs
auf die Überdeckungseigenschaften von Vorhersageintervallen für die Anzahl an zukünf-
tigen Ausfällen werden untersucht. Die Gesamtausfallwahrscheinlichkeit aus den zwei
Schritten kann in eine Produktwahrscheinlichkeit zerlegt werden. Einseitige Konfidenz-
intervalle für eine solche Produktwahrscheinlichkeit werden dargelegt.
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1 Introduction

Predictions of random quantities are a core task in industrial quality assessments. On
a macro-level, a manufacturer is interested in the number of parts which will fail at the
customer’s end or do not conform to specifications. Modern development and design
processes enable designs such that the product failure rates over the designated lifetimes
are extremely small, despite increasing product complexity. Similarly, modern produc-
tion is capable of manufacturing the products according to its specified design with high
reliability. Comprehensive process quality control is used to monitor that the production
process is running cleanly. Immediate responses are initiated if critical boundary values
are breached.

Nevertheless, even the most advanced production processes are unable to have a yield
of 100 %. Hence, small subgroups with an unintended deviation which pass by the quality
gates are a prevalent problem. The deviation may increase the failure probability within
the designated lifetime.

Although these subgroups are very small compared to the overall production volume,
depending on the effect of the technical deviation on the lifetime, the number of failures
may reach unacceptable levels. Therefore, a risk assessment in this subgroup context
involves two steps: i) an estimation of the size of the subgroup and ii) the effect of the
technical deviation on the parameters of the lifetime distribution of the part.

Historically, predicting the number of failures has been considered in the context
of warranty claims of the total population. Due to the high production numbers in
modern mass production, even small failure rates can accumulate to a sizeable number of
failures over the designated lifetime. The most prevalent prediction is a point prediction,
the expected number of failures. Point predictions do not give any indications on the
underlying uncertainty of the prediction. This shortcoming can be compensated with an
interval forecast. For forecasting, this interval is termed prediction interval. The target
of a prediction interval is to contain the quantity of interest in γ × 100 % of the cases.

Another commonly encountered interval estimation is a confidence interval. A con-
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fidence interval is used to provide an estimate for an unknown distribution parameter.
Confidence intervals have been studied extensively, whereas prediction intervals have
received relatively little attention, as has been noted by Patel (1989) and Wang (2010),
among others. The preference for confidence intervals has even prevailed in industrial
quality reporting, where oftentimes ppm (parts per million) numbers are reported in-
stead of the expected number of failures. This is somewhat surprising, as prediction
intervals have favorable characteristics to practitioners: i) they are easier to interpret
than intervals estimates for some distribution parameters, ii) the prediction of a random
quantity is often the primary interest, whereas the estimation of a distribution parame-
ter is only a mean to perform a prediction and iii) it is empirically possible to measure
the realization of the random quantity, whereas it not possible to observe a distribution
parameter.

While confidence and prediction intervals have different objectives, they share the
same theoretical basis. An interval, or in higher dimensions a region, should cover the
yet unknown quantity of interest with a probability of at least γ. γ is called the nominal
confidence level. The interval is the result from a procedure which uses the result of
an observable sample and the nominal level. There is one major conflict for all interval
procedures, namely precision vs reliability. The longer the resulting interval, the lower
the precision and the higher the reliability. The precision is a decreasing function of the
interval length, whereas the reliability is an increasing function of the interval length.
The reliability is measured by the coverage probability.

Considerable research has been done to predict the number of failures in a warranty
claim context. Oftentimes, repairable systems are considered and modelled by a Poisson
process, see for example Kalbfleisch & Lawless (1988). Regression analysis has been
considered to allow for estimates of influences on the lifetime of products.

Using field data to estimate the parameters of the lifetime distribution poses several
challenges due to the complicated nature of this data: Field data is heavily censored,
as only the exact lifetimes of the failures are known. The remaining population has
censored lifetimes, meaning that they are only known to have lifetimes larger than the
censoring time. Furthermore, due to continuous production and delivery times, the units
are not taken into service at the same time. This is called staggered entry (Escobar &
Meeker (1999)). Another important aspect to consider when dealing with field data is
the reporting process. First, due to logistic and geographic reasons, there is a delay
between the occurrence of the failure and the reporting of it. This delay can amount to
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several months. Second, it is common that not all failures are reported, but, for example,
only for certain markets. The reporting process leads to a truncation of the data. Some
failures cannot be observed, if they do not fulfill some criteria.

Some research has been done in the realm of complicated field data. Escobar &
Meeker (1999) and Hong et al. (2009) considered cases with staggered entry, and product
retirement, where a product is potentially not used anymore before it fails. Kalbfleisch
& Lawless (1992) made suggestions on how to deal with reporting delays.

The additional pitfall when considering failure prediction in the subgroup context
instead of warranty analysis is the uncertainty of the population size.

This thesis covers several aspects of failure prediction with focus on the subgroup
context. The first two chapters consider the estimation of the population size. From
a practical point of view, the first valid question to be asked is what possibilities exist
to estimate the size of the subgroup, when most of the parts are already shipped. The
customary approach to this estimation is sampling. However, sampling methods have
considerable flaws such as dealing with clusters and prohibitive sample size requirements
for small subgroups. As an alternative, a powerful practical approach to estimate the
number of parts affected by a technical deviation is presented in chapter 2. The test
gate method is regularly applicable, as it uses existing screening methods designated
for a different purpose within a production line. Large parts of this chapter have been
accepted for publication by the journal Quality Engineering (Kann et al. (2018a)).

Chapter 3 deals with discrete prediction intervals under prior information. It is well-
known that exact methods for discrete intervals are often too conservative, i.e. their
coverage probability exceeds the desired nominal confidence level significantly. This
results in unnecessarily long intervals, especially for small underlying probability pa-
rameters, which are common in many industrial settings. In many applications, there
is prior information available. Chapter 3 presents an approach to use prior information
encoded in a beta distribution to shorten the resulting prediction interval. These pre-
diction intervals are of minimum weighted volume, while having pointwise x1 coverage
of at least the nominal level. This scheme is applied to three cases: the observed X1

being binomial and the prediction target X2 being either binomial or negative binomial;
and the observed X1 and the prediction target X2 both being negative binomial.

The influence of the subgroup size is considered in chapter 4. To obtain a prediction
interval for the number of failures based on the number of failures at some censoring time,



4 1 Introduction

the procedure from Escobar &Meeker (1999) is adapted to the setting of unknown sample
size. Furthermore, by using a population size interval with a probabilistic structure as in
chapter 3, a method to shorten the prediction interval for the number of future failures is
presented. Parts of this chapter have been presented at the Reliability and Maintenance
Symposium 2018 in Reno, Nevada and will be published in the proceedings (Kann et al.
(2018b)).

The influence of reporting delays on the coverage probability is considered in chapter 5.
It is known that ignoring the reporting delay leads to an underestimation of the number
of failures (Kalbfleisch & Robinson (1991)). The setting from Meng & Meeker (2011) is
adapted with a lognormal delay time distribution as well as an exponential delay time
distribution. Methods to adjust for the reporting delay are studied with respect to their
coverage probabilities. The majority of this chapter has been accepted for publication
by the journal Quality and Reliability Engineering International (Kann et al. (2018c)).

A different perspective of the failure prediction problem is taken on in chapter 6. A
one-sided confidence interval procedure for a product probability q = p1p2 is presented.
This can be considered as the total proportion failing, where p1 is the proportion of
the subgroup within in the total population and p2 is the failure probability over some
designated lifetime, given a part carries the deviation. The setting is such that no direct
inference on q is possible.

The thesis concludes with a summary and comments on future work in chapter 7.
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Terminology

Throughout this thesis, E[·] denotes the expectation, V [·] the variance and 1 denotes
the indicator function. The probability density function is abbreviated by PDF and is
denoted by a lowercase letter (e.g. f). The probability mass function is abbreviated by
PMF and is also denoted by a lowercase letter. The cumulative distribution function
is abbreviated CDF and denoted by an uppercase letter (e.g. F ). P denotes some
probability measure.

Statistical Distributions

A continuous random variable X has the two-parametric Beta distribution Beta(a, b)
with shape parameters a, b > 0 if it has the PDF

fX(x) =


1

B(a,b)x
a−1(1− x)b−1 for x ∈ (0, 1),

0 otherwise,

where
B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt

is the Beta function.

A discrete random variable X has the binomial distribution Bin(n, p) with sample size
n ∈ N and probability parameter p ∈ [0, 1] if it has the PMF

fX(x) =
(
n

x

)
px(1− p)n−x for x = 0, . . . , n.

A continuous random variable has the exponential distribution Exp(λ) with parameter
λ > 0 if it has the pdf

fX(x) = λ exp (−λx) for x ≥ 0.

A continuous random variable has the lognormal distribution logn(µ, σ) with param-
eters µ ∈ R, σ > 0 if it has the PDF

fX(x) = 1
xσ
√

(2π)
exp

(
−(log x− µ)2

2σ2

)
for x > 0.
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A discrete random variable X has the negative binomial distribution negBin(r, p) with
r ∈ N and probability parameter p ∈ (0, 1) if it has the PMF

fX(x) =
(
x+ r − 1

x

)
pr(1− p)x for x = 0, 1, 2, . . . .

A continuous random variable has the uniform distribution U(a, b) with support
[a, b] ⊆ R if it has the PDF

fX(x) =


1
b−a if x ∈ [a, b],

0 otherwise.

A continuous random variable has the Weibull distribution Wbl(η, b) with scale pa-
rameter η > 0 and shape parameter b > 0 if it has the PDF

fX(x) = b

η

(
x

η

)b−1
exp

(
−
(
x

η

)b)
for x ≥ 0.

The exponential distribution is a special case of the Weibull distribution for b = 1.



2 The Test Gate Method

2.1 Introduction

In industrial mass production, high quality in the production is ensured by product
release and production process control. If nonetheless a deviation has been found in the
product during production or within a complaint process, analyzing the properties of
the already produced and released volume is important for several reasons.

The effects of the deviation on the lifetime behavior of the product have to be evalu-
ated. The deviation might lead to a malfunction of some products in the field before a
desired minimum lifetime has been reached. The crucial quantity of interest is the num-
ber of products which both carry the deviation and have been delivered to the customer.
This number limits the maximum number of failures due to the technical deviation and
thus, should be the first step of any risk assessment.1 Typically, the number of products
carrying the deviation is very small. The second risk assessment step is then to evaluate
the effect of the deviation on the lifetime of the affected parts. The industrial statistics
literature focuses on the second risk assessment step. The major topics of interest are
the choice of an appropriate lifetime distribution for failures times (Chahkandi & Ganjali
(2009), Silva et al. (2013) and the references therein) and the prediction of the future
number of failures from a known homogeneous group based on a certain observation (see
for example Krishnamoorthy & Peng (2011), Wang (2008), Meeker & Escobar (1998)
and the references therein). The problem of assessing the unknown size of a subgroup
with deviation by mathematical methods has not been studied in detail.

In modern high volume mass production (with production volumes exceeding 1000
products per day), typically only a small proportion of the total volume is affected
by the deviation. Once the produced volume has been delivered to customers, few
information on the size of the subgroup with deviation is available for assessment. These

1We do not assume that the parts in the subgroup will necessarily fail over lifetime. We use the term
volume with deviation or subgroup with deviation. The term defective subgroup is often used to
describe the phenomenon that a small group of a large volume is quickly failing.
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Figure 2.1: Exemplary illustration of a production process with a test gate

available pieces of information often include production volume still in stock, claims by
customers and imperfect internal detection mechanisms which were not prioritized until
the problem occurred on a bigger scale, e.g. a customer noticing parts with deviation.
Control sampling is a well-known method to extract quality information from the volume
still in stock. Based on the results obtained for a sample of parts in stock, the number of
parts with deviation in the field is estimated. However, this approach has its limitations,
especially in high quality production processes where most quality issues are in the parts
per million (ppm) range. Reliable results in the ppm region would require enormous
sample sizes which are unfeasible in industrial practice. Methods are required which can
be used in contexts where control sampling is not suitable.

As an alternative to customary control sampling, we suggest the test gate method.
This approach has been used by experienced practitioners in the past under very specific
circumstances. We generalize the approach for a wider range of applications. The present
chapter serves to describe the basic features of the test gate method, and to establish a
statistical model, yet without stepping into details of statistical inference.

The subsequent study is structured as follows: In section 2.2 we describe two industrial
applications where the efficiency of the test gate method is shown. Section 2.3 formally
establishes the notion of volume with deviation and the difference between technical and
usage quality. In section 2.4 we describe the requirements and introduce the mathe-
matical description of the test gate method. Section 2.5 discusses stochastic aspects of
the test gate method. We then benchmark the test gate method against well-established
methods in section 2.6. The benchmarked methods are: control sampling of still existing
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stock and system analytical approaches which use data from the manufacturing system.
Section 2.7 summarizes the results and discusses open problems and extensions.

2.2 Industrial Applications

2.2.1 Solder Balls on Electric Control Units

Soldering is a standard process to assemble parts onto printed circuit boards (PCBs) in
electronic mass production. To join the parts and the PCB, a solder is placed into the
joint. During the process, the solder material has to be melted to create a permanent
connection between the PCB and the part. Under some circumstances, a solder ball
may form during the process on the PCB. One such solder ball is depicted in figure
2.2. With optimally adjusted soldering process parameters, almost no solder balls occur.
Generally, solder balls cannot be avoided completely.

Figure 2.2: Solder ball between two pins

A solder ball between two pins might lead to a short, causing for example a highly
increased consumption current of the ECU. As a consequence, the ECU cannot commu-
nicate with the diagnosis tool of the car, leading to a warning lamp.

Solder balls can be electronically active (short) or non-active. Active solder balls are
typically detected at in-circuit testing (ICT) or end of line (EOL) testing. Non-active
solder balls cannot be detected in that way, therefore an automated optical inspection
(AOI) is additionally in place. During AOI, a camera scans the search domain and marks
potential abnormalities. An operator then looks at the images and tags provided by the
AOI for optical abnormalities on the inspected unit. The operator decides whether a unit
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is proceeded or scrapped. The search domain of the AOI is defined by expert knowledge.
Based on this prior knowledge, the scanned areas are known to cover almost 100 % of
solder ball occurrences.

Figure 2.3: ECU with three ASICs

In figure 2.3, you can see an ECU with three ASICs (application-specific integrated
circuit). Due to the relative positioning of the ASICs to the parts subjected to the
soldering process, only the two closest of the three ASICs were controlled via AOI. After
receiving a claim with a solder ball in area three, the AOI was immediately extended to
all areas as a corrective action. The slip before the corrective action had to be estimated.
After the containment, the ratio of occurrences in the area of ASIC one and two to the
occurrences in the area of ASIC three can be measured. Using this ratio it was possible to
assess the number of slipped parts which were already sent to field before the corrective
action.

2.2.2 Displaced Bond Wires

Gelling of sensor elements is used as a protection against shorts and free moving particles.
The gelling process consists of a needle movement to a specified location and an injection
of gel. The trajectory of the needle has to be adjusted such that the needle does not
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touch any part of the product.

In the here described case, the trajectory of the needle was insufficiently adjusted.
Therefore, the needle sporadically touched and bent some bond wires during movement
on its trajectory (see figure 2.4). A displacement of one bond wire reduces the distance

Figure 2.4: Displaced bond wires on ECU

between this wire and one of its neighbors. 2 A reduced distance can lead to a short
between the affected bond wires over lifetime.

If this distance is smaller than a threshold an electronic detection at end of line (EOL)
measurement is possible. The slip is estimated by the ratio of displaced bonds with a
distance below the threshold to the number of displaced bonds with a distance above
the threshold for detection. To estimate this ratio, a measurement of affected blocked
parts was performed. The result was then used to quantify the number of parts already
in the field.

2.3 Technical Quality and Usage Quality

A risk assessment is based on the relation between technical quality as considered in
the manufacturing environment and usage quality perceived by the customer in the field.
The test gate method is used to estimate the size of a subgroup with a technical deviation
in a specific quality characteristic.

Definition 2.3.1 (technical quality, technical deviation). The technical quality of
a unit i of a certain type of product at time t is determined by the technical quality
vector xi(t) = (xi1(t), . . . , xim(t))> of the levels xi1(t), ...,, xim(t) of univariate quality
characteristics 1, ...,m with corresponding technical target ζ1, . . . , ζm assembled in the

2Due to aging (thermomechanical impact or vibration), the distance between two neighboring bond
wires may reduce over lifetime.
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technical target vector ζ = (ζ1, . . . , ζm)>. Let zi(t) = (|xi1(t) − ζ1|, . . . , |xim(t) − ζm|)>

be the vector of deviations from target. The level of each quality characteristic j is eval-
uated by comparing the deviation zi,j(t) from target with the technical nominal condition
interval Rj. The unit of product is technically conforming at time t iff the deviation
vector zi(t) lies in the multivariate technical nominal condition range R = R1× ...×Rm.
Otherwise the unit is technically nonconforming at time t or technically deviating at
time t.

For a set {1, ..., n} of product units let

Sdev,`(t) = |{1 ≤ i ≤ n|zil(t) /∈ R`}|, (2.1)

be the volume of parts deviating in the particular characteristic `, and let

Sdev(t) = |{1 ≤ i ≤ n|zi(t) /∈ R}| (2.2)

be the volume of parts deviating in at least one of the characteristics 1, . . . ,m.

Example 2.3.2 (technical quality, solder balls). Consider the case of the solder ball
in section 2.2.1. In this example, there is a binary characteristic with range {0, 1}. The
pins are supposed to be electrically decoupled, i.e. have value 1. The solder ball leads to
an electric coupling of two pins, and thus this characteristic has value 0. Therefore, if
the value is 0, the unit is deviating.

Example 2.3.3 (technical quality, bond wires). In section 2.2.2, the technical char-
acteristic of unit i is the distance xi(t) between the bond wires. The target is a sufficiently
large distance value ζ. In this case, only downside deviations xi(t) ≤ ζ are relevant. The
unit is technically deviating at time t if the downside deviation ζ − xi(t) = |xi(t) − ζ|
exceeds a specified threshold ι.

Technical product quality is an issue in the control of the manufacturing process, but
not congruent with usage quality.
In particular, a unit being technically deviating is not equivalent with the unit being

nonconforming from the customer’s point of view. Subsequently, we define usage quality
in a reliability context.

Definition 2.3.4 (usage quality, usage nonconforming). The usage quality char-
acteristic of a unit i is its lifetime Ti. The unit i is usage nonconforming at time t iff
Ti < t. The stochastic usage quality indicator for a population of units with identical
lifetime CDF FT is the usage proportion nonconforming at time t pt = FT (t).
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The levels of technical quality characteristics affect usage quality. In the present
context, the usage proportion nonconforming is to be considered as a function ptLT (z)
of the technical deviation vector z. The functional relationship can be specified via a
proportional hazards regression model

λ(s, z(s)) = λ0(s) exp
(
ψ(z(s))

)
. (2.3)

ψ is a regression function satisfying ψ(0) = 0 for the case when all technical quality
characteristics are perfectly on target, λ0(s) = λ(s, 0) is the corresponding baseline non-
negative hazard function. For an increasing link function ψ a deviation of a technical
characteristic from target increases the hazard, and thus the usage proportion noncon-
forming by virtue of the relation

pt(z(t)) = FT (t, z(t)) = 1− exp
(
−
∫ t

0
λ(s, z(s)) ds

)
. (2.4)

In manufacturing design, the technical nominal condition interval Rj for each technical
characteristic j = 1, . . . ,m is chosen in a way such that deviations z ∈ R have neg-
ligible effect on the failure probability. This understanding can be expressed by the
R-insensitive regression function

ψ(z) = β>z1R(z) = β1z11R1(z1) + ...+ βmzm1Rm(zm). (2.5)

The classical model established by Cox (1972) considers the linear regression function
ψ(z(s)) = β>z(s).

2.4 Formalizing the Test Gate Method

This section formalizes the setting and defines the requirements for the test gate method.

Definition 2.4.1 (test gate). A test gate for the quality characteristic j is a mechanism
acting on units i, providing states Dij = 1 (deviation signal for unit i) and Dij = 0 (no
deviation signal for unit i) such that pij = P(Dij = 1|zij /∈ Rj) > 0 for the correct-
positive probability pij. The false-negative probability 1− pij = P(Dij = 0|zij /∈ Rj) is
called slip rate. A test gate is called perfect for characteristic j iff pij = P(Dij = 1|zij /∈
Rj) = 1, or equivalently, iff the slip rate equals 1− pij = 0. For a unit i,

Di = 1−
m∏
`=1

(1−Di`)

denotes the overall deviation signal at the test gate where Di = 1 iff Di` = 1 for at least
one ` ∈ {1, . . . ,m} and 0 otherwise.
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In practice, it can be assumed that the total false-positive probability satisfies

P(Di = 1|zi ∈ R) = 0, (2.6)

i.e., that the test gate never signals a non-existing deviation.

The test gate procedure implies two statistical inference problems: i) An estimation
problem in analyzing the proficiency of the test gate. ii) The prediction of the volume
Sdev,j with deviation, based on the number of parts Kj with deviation in characteristic
j found during the production at a test gate. The two inference tasks are discussed
subsequently in subsections 2.4.1 and 2.4.2. The practical prerequisites are reviewed in
subsection 2.4.3.

2.4.1 Proficiency Analysis of the Test Gate

Modern production environments integrate many test gates which are perfect for specific
characteristics j by design. However, most frequently a test gate which is perfect by de-
sign for some particular characteristic j is also capable of checking further characteristics
` such that pil = P(Di` = 1|zi` /∈ R`) < 1 for the correct-positive probability. This is
illustrated in table 2.1. In such cases, the proficiency of the test gate as applied to the
characteristic ` has to be evaluated by estimating the actual unknown correct-positive
detection rate pi` = P(Di` = 1|zi` /∈ R`). Depending on the deviation and the test gate,
the value of pi` may differ significantly.

Characteristic TG1 TG2

1 100 % 0 %
2 0 % 100 %
3 0 % 20 %
4 0 % 0 %

Table 2.1: Exemplary scheme of 4 characteristics and test gates for characteristics 1, 2,
3 with detection probabilities.

The evaluation of the test gate is separated from the production process. The objec-
tive of the proficiency analysis is to estimate the correct-positive detection rate pi` =
P(Di` = 1|zi` /∈ R`). Because the correct-positive probability is conditional on an ex-
isting deviation in characteristic `, the estimation has to be based on a sample of units
which are known to have the deviation in the considered characteristic `. Two possibil-
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ities of obtaining units satisfying z·` /∈ R` are: i) use an available stock from previous
production, or ii) create items with deviation on purpose.

2.4.2 Prediction

We consider empirical aspects of the problem of predicting the volume Sdev,` with devia-
tion relative to a characteristic ` among n produced units. A stochastic analysis follows
in section 2.5.

Sdev,` can be predicted by combining i) the number of correctly identified parts K`

with deviation relative to characteristic `, i.e.,

K` =
∣∣∣{1 ≤ i ≤ n|Di = 1, zi` /∈ R`}

∣∣∣ =
n∑
i=1

1R\Rl(zil)Di. (2.7)

and ii) the result of the proficiency analysis of the test gate.

In practice, obtaining K` is not straightforward. At a test gate, all units i with overall
signal Di = 1 will be sorted out. Thus, the test gate provides the number of correctly
identified parts with some deviation, i.e.

K =
∣∣∣{1 ≤ i ≤ n|Di = 1, zih /∈ Rh, for some h ∈ {1, . . . ,m}}

∣∣. (2.8)

A follow-up analysis is required to identify the parts with deviation in characteristic
l. Kl will often be much smaller than K. In particular, if the test gate is designed for
characteristic j 6= `, the overall signal Di = 1 will most of the time be caused by Dij = 1.

2.4.3 Prerequisites

Four practical prerequisites have to be met for the application of the test gate method.

1) There has to be a test gate in the production process which can detect the considered
deviation in characteristic k.

2) The data regarding the parts detected at the particular test gate has to be available.
This means that for all units with Di = 1, Kk has to be known. Parts where the
detection from the test gate stems from some characteristic j 6= k are excluded from
the estimation because only a deviation in the focused characteristic k is considered
at one time.

3) All produced parts have to be tested by the test gate during the production process.
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4) Parts with the considered deviation must be available to test the proficiency of the
test gate. These parts can be either blocked parts which have not been checked by
the test gate or specifically produced for testing. It is essential that the parts used
in the test are not the same parts found by the test gate in the production process
to ensure the statistical independence of the detection.

In practice, condition 2) is attainable because all parts sorted out are undergoing
a root cause analysis. Condition 3) can be loosened, if detailed knowledge about the
distribution of the volume with deviation within the total population exists. In this case,
it may be warranted that only a proportion of the total volume is checked by the test
gate.

Revisiting the examples from section 2.2, perquisites 3) and 4) are fulfilled. Fur-
thermore, prerequisite 2) is met, as solder balls and displayed bond wires are clearly
distinguishable phenomena. The first prerequisite is the most interesting one.

In the bond wire example from section 2.2.2, the test gate is the end of line test with
the electronic measurement. In the solder ball example from section 2.2.1, the test gate
for the detecting the solder ball is the optical inspection. The example somewhat differs,
as solder ball in outside the search domain could initially not be detected. It appears
therefore, that prerequisite 1) is not met. However, due to fact that after the extension
of the search domain you can detect solder balls in the whole ECU, you can use this
information to estimate the proportion of solder balls in the previously unchecked area.
Therefore, you can estimate the proficiency of your original search domain.

2.5 Stochastic Aspects of the Test Gate Method

2.5.1 Basic Stochastic Modelling

Consider a production process where units i are technically deviating with respect to a
technical characteristic j with a constant probability qj = P(zij /∈ Rj). All produced
parts are examined by a test gate for a deviation relative to the characteristic j. After
the end of some time period [0, t], n parts have been produced, Kj parts with deviation
in j have correctly been identified by the test gate, Sdev,j ≥ Kj parts with deviation in
j have been produced, and an unknown number

Sdev,j −Kj =
n∑
i=1

1R\Rj (zij)(1−Di) (2.9)
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of parts with deviation in j have passed the test gate. The volume deviating Sdev,j or,
equivalently, the volume slipped Sdev,j −Kj is the target of prediction in the test gate
analysis, see section 2.4.2.

We assume that the correct-positive probability pij for the detection is identical for
every produced part i with the same deviation in characteristic j, i.e. pij = pj . This
assumption is justified because in most cases the variation in the test gate process is very
small. For a reasonably designed test gate, successive tests can be assumed to be inde-
pendent among each other. By these assumptions, the test gate process can be described
as a Bernoulli process where the detection probability pj is the characteristic parame-
ter. Then the volume slipped Sdev,j − Kj is distributed by the binomial distribution
Bin(n, qj(1− pj)). By Feller’s (1968) inequalities we obtain the bounds

P(Sdev,j −Kj ≥ d) ≤ d[1− qj(1− pj)]
[d− nqj(1− pj)]2

(2.10)

for d > nqj(1− pj), and

P(Sdev,j −Kj ≥ d) ≤ (n− d)qj(1− pj)
[nqj(1− pj)− d]2 (2.11)

for d < nqj(1− pj).

In practice, the exact value of the probability deviating qj is unknown. The conditional
distribution of Kj under Sdev,j is the binomial distribution Bin(Sdev,j , pj). Since Kj is
known, Sdev,j can be estimated using the conditional distribution, if pj can be estimated
sufficiently precise.

2.5.2 Uncertainty of Slip Rate

In practice, the correct-positive probability pj unknown, and has to be estimated by a
suitable experiment. The experiment result leads straightforward to a point estimator
for pj :

p̂j = x

m
, (2.12)

where x is the number of detected parts in the experiment and m the sample size. This
point estimator does not convey information about the underlying uncertainty about the
true value of the parameter pj . The uncertainty is especially large, if the sample size used
in the test is small, and pj is small. In statistical inference, the large uncertainty is visible
by an excessive length of the confidence interval such that no reasonable conclusions can
be drawn. The result of the excessive length is illustrated in the subsequent example.
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The example is general and independent of the particular product considered and the
deviation. The examples mentioned in section 2.2 could be considered, for instance.

Example 2.5.1 (Uncertainty of Slip Ratio). Consider a test with m = 100 parts with
deviation of which x = 20 are detected. The resulting 90 % Clopper-Pearson confidence
interval is [0.1367, 0.2772]. The expected ratio of slipped parts to detected parts for the
lower bound is 1−0.1367

0.1367 = 6.3174, whereas the ratio for the upper bound is 1−0.2772
0.2772 =

2.6075. Thus, there is a significant difference in the expected ratio, depending on whether
the detection probability is near the lower or near the upper bound of the confidence
interval.

Directly related to the problem of estimating the total proportion usage nonconforming
is the problem of a confidence interval for a product probability. Suppose that each
slipped part fails with a probability pfail > 0 during the agreed lifetime in the field
and that parts without deviation do not fail over the agreed lifetime. Furthermore,
assume that the failure probability is independent of the detection at the test gate.
Then the proportion nonconforming from the subgroup with deviation is (1−p)×pfail. A
confidence interval for an upper bound with confidence level γ of this product probability
can be obtained by taking the product of the individual Clopper-Pearson upper bounds
γslip, γpfail such that γ = γslip × γpfail . However, research on the optimal choice of
γslip and γpfail is missing. Additionally, the conservativeness of the individual Clopper-
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Figure 2.5: Coverage for p1 = 0.20 and different n1, n2 with nominal confidence level
γ = 0.95.

Pearson upper bounds lead to an even more conservative product upper bound as the
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possibility of offsets between the upper bounds of the first and the second probability
is not considered. This conservativeness is shown in figure 2.5. For more details on
one-sided confidence intervals for a product probability, see chapter 6.

For a single binomial proportion, conservative frequentist two-sided confidence inter-
vals with prior information exist, see Göb & Lurz (2014). If prior information is available,
these intervals are considerably shorter than intervals without prior information. This
suggests that something similar should be possible for the product probability prob-
lem. Using a Bayesian framework for the product probability is also a possibility worth
exploring.

2.5.3 Uncertainty due to Dispersion of the Bernoulli Process

In risk assessments, the underlying parameter p is actually not the primary variable of
interest. The primary quantity of interest is the random number of parts with deviation
which slipped through the test gate and were sent to customers. Therefore, the uncer-
tainty due to the dispersion of this random variable has to be taken into account. To
predict the realization of a random variable and thus, also capturing the uncertainty due
to the dispersion is known in statistics as a prediction interval problem.

Prediction intervals have received considerable less attention in the literature than
confidence intervals, particularly for discrete distributions. For the binomial distribu-
tion, among the existing intervals the ‘exact’ prediction interval from Thatcher (1964),
the approximate interval by Nelson (1982), and more recently, approximate interval
procedures from Wang (2010) and Krishnamoorthy & Peng (2011). For the negative
binomial and the Poisson distribution, there is even less literature, see for example Bain
& Patel (1993) and Krishnamoorthy & Peng (2011).

The problem of having different distributions in the learning sample and in the pre-
diction target which share the same parameter has also not been studied. This problem
is relevant for the test gate method without existing part detections, see section 2.5.4.
There, the learning sample is binomial, and the prediction target is a negative binomial
random variable. The learning sample and prediction are different in distribution but
share the same parameter in p. Prediction interval procedures encompass similar prob-
lems as confidence intervals, most notably the conflicting interests in obtaining short
intervals and in guaranteeing a prescribed nominal confidence level. The Thatcher in-
terval exceeds the nominal confidence requirement significantly, whereas approximate
intervals violate the confidence requirement for a subset of the parameter space.
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No attempt has been made to include prior information for prediction intervals in the
frequentist framework. In many applications, prior information about the underlying
distribution parameter is often existing due to experience or expert knowledge, or a
subset of the parameter space is of no interest as any result in this range is deemed
unacceptable. Wang (2008) proposes a general framework, which can also be used for
the Bayesian framework. However, this framework is based on an already chosen prior
and does not evaluate its choice.

As mentioned in section 2.1, a statistical risk assessment contains the two steps of
estimating the volume with deviation and of estimating the effect of the deviation on
the lifetimes of the affected volume. This was also illustrated in section 2.3, where
technical and usage quality were distinguished and the effect of the technical deviation
on the lifetime was described by a proportional hazards model. Relative to the second
step, many applications of prediction intervals consider lifetime problems, where due
to censoring usually only approximate solutions exist. Literature focuses on different
procedures to obtain prediction intervals and their respective coverage properties. These
approaches usually improve upon the naive (or plug-in) estimate by calibration, see
Escobar & Meeker (1999) and Lawless & Fredette (2005). The focus of the application
is on reliability either in lifetime testing or warranty analysis.

There exists also literature about Bayesian prediction intervals for the Weibull distri-
bution. The Bayesian literature often focuses on different ways to estimate the param-
eters and the adequate choice of the prior distribution for each parameter, see Kundau
& Raqab (2012).

All these applications consider a fixed known sample size, usually in the context of
laboratory conditions such as lifetime tests or lifetime behavior of the total population.
In a large class of problems in applications, a subpopulation of interest exists, whose
size is unknown. How the methods for known sample sizes work for this problem class
and how they need to be adapted has not been studied. Risk assessments in the context
presented in this chapter belongs to this class. An unknown population size imposes
additional uncertainty which needs to be accounted for. This will be discussed in chapter
4.

2.5.4 Test Gate with no Detected Failures

In some cases, the test gate method is applicable even though no part with deviation
has yet been detected during production. More precisely, this means that there exists a
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test gate which can detect zij /∈ Rj , even though at time t the number of detections Kj

by this test gate is 0.

Since Kj = 0, the knowledge about the existence of zij /∈ Rj for some products has to
come from another source. This could be, for example, an internal failure at a parallel
production line which uses the same supply chain. Now, the question is how many
‘failures’, i.e. slipped parts, have occurred given that 0 ‘successes’, i.e. detections, have
occurred. This can be interpreted as a discrete waiting time problem, which can be
described with a geometric distribution. The PMF of a geometric distribution is given
by

P(Y = k) = 1− pj(1− pj)k. (2.13)

Here, pj denotes the detection probability and therefore 1 − pj the slip rate. Y is the
number of slipped parts before the first detection. For a known detection probability, a
prediction interval can be obtained by using the quantiles of (2.13). If pj can be estimated
with sufficient precision, the same procedure using (2.13) provides a good approximation.
Commonly, pj is estimated by independent sampling and binomial distribution inference.
For feasible sample sizes, the uncertainty with respect to pj can be large, as has been
shown in example 2.5.1. In this case, no exact prediction interval procedure for Y is
known. The predictor is binomially distributed and the prediction target has a geometric
distribution. Exact procedures are only available if both predictor and prediction target
are either binomial or negative binomial.

2.6 Benchmarking with Other Methods

2.6.1 Test Gate Method versus Control Sampling

A standard method to determine the size of the subgroup with deviation is control
sampling, as defined subsequently.

Definition 2.6.1 (control sampling plan). A control sampling plan is defined by the
subsequent components:

1. A sample of size nsample ∈ N of product units of the same nature as the parts 1, ..., n
in the field.

2. The number Xsample of deviating parts with xi /∈ Ri in the sample of units
1, ..., nsample.
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3. An estimator Ŝdev,i(t) of the volume Sdev,i(t) of deviating parts with xi /∈ Ri in the
field.

Control sampling and the test gate method are fundamentally different. Control sam-
pling considers a part of the population, whereas the test gate method is a screening
procedure. A potential advantage of control sampling can be the more subtle investi-
gation of the sampled items, since the number of considered items is small. The test
gate method as an automated screening procedure involves a misclassification with rate
1 − p. However, control sampling has various shortcomings in comparison to the test
gate method.

The test gate method is implemented within the production whereas control sampling
is an additional intervention, external to the production process. The control sampling
method needs to be representative in the sense that the sample population i.e. sample
in stock exhibits the same proportion of products with deviation as the volume sent to
customers. In general, it is not possible to verify this requirement in industrial practice.
Even more, in several cases it is violated, for instance if the deviation occurs in clusters
over time. Then, control sampling leads to inappropriate estimates.

The potential accuracy of the control sampling method can go along with high testing
expenses, up to destructive testing. Another shortcoming of control sampling in modern
practice is its incompatibility with rigorous quality limits in the ppm range. For 0
observed ‘successes’ in a sample of large size, the heuristic ‘rule of three’ states (see van
Belle (2008)) that 3

nsample
provides an approximate 95 % confidence interval for p. If p is

in the ppm range and the upper bound is supposed to be of the same magnitude, it is
obvious that the required sample size is prohibitive. For instance, if an upper bound of
10 ppm is desired, the required sample size is

nsample = 3
10ppm = 300000. (2.14)

The implementation requirements for the test gate method listed in section 2.4 are
often met in practice. Being process internal, the test gate can be used to provide a
fast response in small quality problems in the ppm (parts per million) range. In high
quality mass production, even a first failure triggers a risk assessment. Fast responses
are required for communication and an efficient allocation of resources. Being able to
show that the subgroup with deviation is small is therefore crucial. The test gate method
is a powerful and cost-efficient way to accomplish this task, whereas control sampling is
unfeasible for these ppm cases.
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Being a screening method, the test gate method is able to cope with the occurrence
of temporally coherent clusters of items with deviation. The latter is a serious problem
of control sampling. Control sampling can be adapted to the case only under very
restrictive conditions.

Prior information can be used to improve control sampling, e.g. by the following
approach. A sample is taken at time t and provides an estimate Ŝdev(t) of the volume
Sdev(t) with deviation. Based on a model of the evolution of the volume with deviation
along the time axis, an inference from Sdev(t) to Sdev(s), s 6= t may be made. The
uncertainty of the prediction can be quantified if the distribution of Sdev(s) is sufficiently
known. A simple version of the required time series model assumes that the proportion
pdev(t) of the volume with deviation in the production volume at time t is constant over
a certain time window where a production problem was prevalent. However, the validity
of predictions from control sampling based on such assumptions strongly depend on the
reliability and accuracy of the prior information.

2.6.2 System Analytical Approach to Estimate the Volume Deviating

Sometimes, you may try to predict the volume Sdev(t) of parts deviating at time t based
on insights into the relation between product characteristics and manufacturing system.
Let εt be the vector of manufacturing system characteristics which is related to the
vector z of deviations of the product quality characteristic by a regression equation

z(t) = f(v(t), εt) (2.15)

where εt is a noise variable. Specific instances of the model (2.15) are studied by Ku-
ruüzüm & Akyüz (2009) and Yao et al. (2016). If the distribution of vt is sufficiently
known, the volume Sdev(t) of parts deviating at time t can be predicted.

The system analytical approach is similar to the test gate method in the sense that
both predict the volume deviating based on a comprehensive insight into the manu-
facturing system instead of considering samples as in control sampling. However, the
system analytical approach imposes much stronger requirements than the test gate ap-
proach. Whereas knowledge on the distribution of manufacturing system characteristics
is available in many cases, a sufficiently accurate model of the type (2.15) which relates
manufacturing system and product characteristics is difficult to obtain. The prerequisites
are a combination of engineering knowledge and extensive empirical studies. In indus-
trial practice, these strong requirements on analysis and prior information are satisfied
in special cases only.
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2.7 Conclusion

We have described a method to estimate the size of a subgroup with deviation based on
an imperfect detection mechanism at a test gate during the production. The test gate
method is a powerful and cost-efficient way to show that a potential new quality problem
is actually minor. This is crucial, since in modern high quality mass production even a
single failure triggers a risk assessment. Fast responses are required for communication
and efficient allocation of resources. Even in case of small detection rates, the method
has proven to be very powerful in applications.

The presented test gate method fills an existing gap in industrial practice to deter-
mine small volumes with deviation within large production volumes. Standard sampling
methods are often not applicable, or do not lead to useful results. A detailed treatment
of the statistical problems mentioned in section 2.5 is desirable for future work. Another
area of future work is the time series of detections which provides information on the
underlying deviation. This information could be used to limit the time period where the
deviation was present depending on the time structure of the detections.



3 Discrete Prediction Intervals with Prior
Information

3.1 Introduction

Chapter 2 presented the test gate method to estimate the size of a subgroup in industrial
production and provided a comparison to control sampling. A key prerequisite to use
sampling methods in industrial applications is the ability to analyze the technical root
cause to enable clustering into subgroups. Apart from this technical requirement, the
estimation of the subgroup size is crucial.

For practitioners, prediction regions are much easier to use and understand than confi-
dence regions for distribution parameters. Predicting a phenomenon is the practitioner’s
primary interest, whereas the study of distributions is only a secondary theoretical in-
strument for making predictions. A distribution parameter is an unobservable model
abstraction, whereas predictions target directly the empirical observable phenomenon
the practitioner is dealing with. However, prediction regions have received considerably
less attention in statistical literature than confidence regions for distribution parameters.

Despite the different empirical objectives, the theoretical basis of confidence and pre-
diction regions is the same. A yet unknown quantity of interest should be covered by
a region calculated from a sample with a probability larger or equal to a prescribed
nominal level γ. This construct is subject to two conflicting requirements relative to
the information provided by the region: i) reliability, which is measured by the coverage
probability; ii) precision, which is a decreasing function of the volume of the region.
High reliability goes along with poor precision, and vice versa. So-called “exact” regions
guarantee compliance with the nominal level, however at the expense of considerable
exceedance of the actual coverage probability over the nominal level, and thus poor pre-
cision. So-called “approximate” regions often tend to undercut the nominal level, but
they may be attractive due to better precision.
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The clue to better precision of exact regions is in exploiting prior information. Classi-
cal confidence and prediction regions exploit only the information provided by the sample
data. This is an unnecessary limitation for many industrial and business environments
where usually some partial prior knowledge on the unobserved quantity of interest ex-
ists, due to experience or historical data or an analytic understanding of the considered
phenomenon. In the stochastic model, such prior knowledge can be expressed via prior
distributions. For the confidence region problem, a general scheme for the use of prior
information has been established by Göb & Lurz (2014). It has been demonstrated that
prior information can substantially increase the precision of exact confidence regions.
Subsequently, we will adopt the prior information scheme for the construction of pre-
diction intervals, namely for prediction intervals for a binomially distributed counting
variable and for a negative binomially distributed counting variable.

In particular, we consider the problem of predicting a counting variableX2 based on an
observed counting variable X1 for the following cases: i) both X1 and X2 are binomially
distributed with the same probability parameter p, ii) X1 is binomially distributed and
X2 is negative binomially distributed with the same probability parameter p and iii) both
X1 and X2 are negative binomially distributed with the same probability parameter p.
The objective is to provide a prediction intervalB = B(X1) based on the observed sample
X1 such that the unobserved X2 is covered by B with a sufficiently high probability.

Several approaches to binomial prediction intervals are suggested in the literature, all
without taking prior information into account. Thatcher’s (1964) exact interval guaran-
tees a prescribed nominal level of the coverage probability for all values of p. However,
the coverage is exceeding the nominal level significantly even for large sample sizes. Nel-
son’s (1982) approximate interval is easy to compute, but exhibits severe undercoverage,
especially near the boundaries. Recently, Krishnamoorthy & Peng (2011) and Wang
(2010) suggested closed-form approximate intervals, with improved coverage properties
compared to Nelson’s interval. Krishnamoorthy & Peng (2011) showed that their pro-
posed “Joint Sampling” interval is either equal to or included in Wang’s “Score” interval.
However, both intervals are very conservative near the boundaries and have undercov-
erage for a significant part of the parameter space.

There are even less approaches for negative binomial prediction. Bain & Patel (1993)
applied Faulkenberry’s (1973) approach to the negative binomial distribution. They also
provided a prediction interval based on a normal distribution. An exact interval was in-
troduced by Patel & Samaranayake (1991). However, this interval is not easily accessible.
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Wang (2008) provided a coverage study for discrete prediction intervals and proposed a
method to improve the approximate procedures. Again, none of these approaches take
prior information into account.
We use prior information on p to establish a model for the conditional distribution

of the prediction target X2 under the observation X1. This association model enables
the construction of minimum volume prediction intervals which pointwise in X1 = x1

obey a prescribed nominal prediction confidence level. The remainder of this chapter is
structured as follows. Section 3.2 introduces the general concept of minimum weighted
volume prediction spaces. Section 3.3 considers minimum weighted volume prediction
intervals for the binomial prediction problem. Section 3.4 studies the properties of joint
and conditional distributions of the observation binomial variable X1 and the binomial
prediction target X2. Algorithms for the numerical calculation of minimum weighted
volume prediction spaces are presented in section 3.5. Section 3.6 considers the sensitivity
of prediction spaces relative to prior information for the binomial case. Section 3.7
evaluates coverage properties of prediction intervals under prior information for the
binomial case.

Subsequently, the cases of an observation binomial variableX1 and a negative binomial
prediction target X2 and an observation negative binomial variable X1 and a negative
binomial prediction target X2 are treated similarly. Section 3.8 considers minimum
weighted volume prediction intervals for a negative binomial prediction target. The
properties of the required distributions are presented in section 3.9. The algorithm
presented in section 3.5 needs minor adaptions, which are stated in section 3.10. Section
3.11 and section 3.12 discuss sensitivity and coverage aspects the case of a negative
binomial prediction target. The chapter ends with a conclusion and an outline of future
work.

3.2 Minimum Weighted Volume Prediction Spaces

This paragraph introduces the general concept of minimum volume X1-X2 prediction
spaces of level γ pointwise in X1 = x1. The setting adopts the theory of minimum
volume level γ confidence regions established by Göb & Lurz (2014) for the prediction
region problem.

Let (Ω,F ,P) be a probability space, R1 ⊆ Rd1 , R2 ⊆ Rd2 . Let Ai be a σ-field in
R1 ⊆ Rd1 , R2 ⊆ Rd2 , R ⊆ Rd, with corresponding measures ν1, ν2, ν. Let X1 : Ω → R1,
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X2 : Ω → R2 be random variables. Let fX1,X2 be the joint density of X1 and X2 with
respect to a product measure µ1 ⊗ µ2 on the product σ-field A1 ⊗ A2; let fXi be the
marginal density and fXi|Xj=xj be the conditional density.

We interpret a set A ∈ A1 ⊗A2 as a prediction space in the sense that the projection
Ax1 := {x2|(x1, x2) ∈ A} is a prediction region for X2 under the observed value X1 = x1,
and the projection Ax2 := {x1|(x1, x2) ∈ A} is a prediction region for X1 under the
observed value X2 = x2. The projections satisfy

x1 ∈ Ax2 ⇔ x2 ∈ Ax1 ⇔ (x1, x2) ∈ A for x1 ∈ R1, x2 ∈ R2, (3.1)

i.e., x2 is an element of the prediction region for X2 under the observation X1 = x1 iff
x1 is an element of the prediction region for X1 under the observation X2 = x2.

Subsequently, we consider X1 as the predictor, X2 the prediction target. Then for each
observation X1 = x1, the prediction target X2 should be covered by the prediction region
Ax1 with a prescribed minimum probability, as stipulated by the subsequent definition
3.2.1.

Definition 3.2.1 (x1-pointwise level γ PS). Let 0 < γ < 1. A set A ∈ A1 ⊗ A2 is
called x1-pointwise level γ prediction space (PS) for (X1, X2) iff

γ ≤ Px1(X2 ∈ Ax1) = Px1(X1 ∈ Ax2)

=
∫
Ax1

fX2|X1=x1(x2)dµ2(x2) for all x1 ∈ R1.
(3.2)

Many customary approaches to prediction regions assume independent observation
X1 and prediction target X2, and consider the coverage probability Py(X2 ∈ AX1)
indexed in a distribution parameter common to X1 and X2. The coverage probability
Px1(X2 ∈ Ax1) considered in (3.2) is a useful quantity only in the case of dependent X1

and X2. We obtain an association model by considering the distribution parameter y in
the classical model as a realization Y = y of a random variable Y : Ω→ R, R ⊆ Rd. The
density fY of Y with respect to some dominating measure µ is assumed to be known
from prior information, and X1 and X2 are assumed to be conditionally independent
under Y = y. Then the joint PDF fX1,X2 is obtained from

fX1,X2(x1, x2) =
∫
R
fX1|Y=y(x1)fX2|Y=y(x2)fY (y) dµ(y). (3.3)

The above model suits to many practical cases. For instance, consider a batch manu-
facturing process with an output of units 1 through n, with a corresponding sequence
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Z1, ..., Zn of quality characteristics of the items. A sample Z1, ..., Zn1 from the batch
is analyzed by a statistic X1 = T1(Z1, . . . , Zn1) to make a prediction on a statistic
X2 = T2(Zn1+1, . . . , Zn) of the remainder of the batch. Let Y be a parameter of the prob-
ability distribution of Zi. From the statistical analysis of previously produced batches,
the density fY of the parameter Y is sufficiently well known so that the joint density
fX1,X2 can be calculated by (3.3).

For given X1 = x1, the precision of the prediction region Ax1 is expressed by its
volume ν2(Ax1) where ν2 is a suitable volume measure on the σ-field A2 in R2, e.g., the
Lebesgue-Borel measure or a counting measure. To express the precision of all possible
projection volumes Ax1 in a unique indicator, we consider the weighted volume, which
averages all projection volumes ν2(Ax1) weighted by the PDF fX1(x1) of X1,and we
seek minimum weighted volume prediction spaces, as characterized by the subsequent
definition.

Definition 3.2.2 (weighted volume, MWV PS). The weighted volume of a predic-
tion space A is defined by

VX2|X1(A) =
∫
R1
ν2(Ax1)fX1(x1) dµ1(x1). (3.4)

A prediction space A? is called minimum weighted volume (MWV) x1-pointwise level γ
prediction space iff A? satisfies the level requirement (3.2) and
VX2|X1(A?) is smallest among the weighted volumes VX2|X1(A) of all prediction spaces
A which satisfy the level requirement (3.2).

Since the level requirement (3.2) is stated for each condition X1 = x1 separately, it
is obvious from the definition (3.4) of the weighted volume VX2|X1(A) that an MWV
x1-pointwise level γ prediction space A? can be constructed by the following algorithm
3.2.3.

Algorithm 3.2.3 (MWV x1-pointwise level γ prediction space).

S1) For each x1, construct a set A(x1) ∈ A2 which minimizes ν2(A(x1)) under Px1(X2 ∈
A(x1)) ≥ γ.

S2) Let A? = ∪x1∈R1{x1} ×A(x1).

In the case of a univariate X2 with values in a discrete or continuous segment R2 ⊆ R,
particular interest is in prediction spaces A where the projections Ax1 , x1 ∈ R1, are
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intervals

Ax1 = [xL(x1), xU (x1)] ∩R2 = {x2 ∈ R2|xL(x1) ≤ x2 ≤ xU (x1)}. (3.5)

From the representation (3.2) of the level requirement it is obvious that a sufficient
condition for obtaining interval projections under algorithm 3.2.3 is that for each x1 ∈ R1

the conditional PDF fX2|X1=x1 is unimodal. The prediction space A? which minimizes
the weighted volume VX2|X1(A) among the prediction spaces A with interval projections
Ax1 is provided by the following modified algorithm 3.2.4.

Algorithm 3.2.4 (MWV x1-pointwise level γ PS with interval projections).

S1) For each x1 ∈ R1, minimize ν2([xL(x1), xU (x1)] ∩R2) under the constraint
FX2|X1=x1(xU (x1))− FX2|X1=x1(xL(x1)−) ≥ γ.

S2) Let A? = ∪x1∈R1{x1} ×A(x1).

3.3 The Beta Prior Model for Inference on Binomially
Distributed Variables

This section expands on a special case of the model established by the previous para-
graph 3.2. We consider counting variables Xi where the distribution parameter Y is the
probability parameter of a binomial distribution. Conditional on Y = y, the observation
variable X1 and the prediction target X2 are assumed to be independent, where X1

has the binomial distribution Bin(n1, y), and the prediction target X2 has the binomial
distribution Bin(n2, y). We choose Ri = {0, ..., ni}, i = 1, 2, and consider counting
measures µ1, µ2 and ν2 with µi(B) = |B| for B ⊆ Ri, ν2(B) = |B| for B ⊆ R2. Then
the confidence requirement (3.2) amounts to

γ ≤ Px1(x1 ∈ Ax2) = Px1(X2 ∈ A2)

=
∑

x2∈Ax1

fX2|X1=x1(x1) for all x1 ∈ R1, (3.6)

and the weighted volume defined by (3.4) is

VX2|X1(A) =
∑
x1∈R1

|Ax1 |fX1(x1) =
∑
x2∈R2

∑
x1∈Ax2

fX1(x1). (3.7)
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The probability parameter Y is assumed to have a beta distribution Beta(a, b) with
shape parameters a, b > 0, i.e.,

fY (Y = y) =


1

B(a,b)y
a−1(1− y)b−1 if 0 < y < 1,

0 otherwise,
(3.8)

where
B(a, b) =

∫ 1

0
xa−1(1− x)b−1 dx = Γ(a)Γ(b)

Γ(a+ b) (3.9)

is the beta function. With the generalized binomial coefficients defined by(
x

y

)
= Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1) =
(

x

x− y

)
(3.10)

for x, y ∈ (−1,+∞), x+ 1 > y, the beta function can be expressed as

B(s, t) = 1
s
(s+t−1

s

) = 1
t
(s+t−1

t

) for s, t > 0. (3.11)

The beta distribution model has several appealing characteristics which made it the
preferred distribution for expressing prior information on a probability y, particularly
in Bayesian statistics, see Hald (1981) in acceptance sampling in quality control where
y is the probability of manufacturing a nonconforming unit, Godfrey & Andrews (1982)
or Berg (2006) in audit sampling where y is the probability of a misspecification in an
account: flexibility; sparse parametrization; the property of being the conjugate prior for
the binomial distribution; the potential to express various density shapes like bathtub,
inverted bathtub, strictly decreasing, strictly increasing, constant (equidistribution).

The equidistribution case with a = 1 = b corresponds to complete uncertainty on the
binomial parameter y. In many industrial applications, the binomial parameter y is a
probability nonconforming, e.g., the probability of producing a nonconconforming item
in manufacturing or the probability of a booking error in accounting. In such contexts,
y is usually very small. The relevant beta priors have parameters a ≤ 1 < b or a < 1 ≤ b
with PDFs strictly decreasing on [0, 1]. The more a or b deviate from 1, the higher the
concentration of the probability mass on values close to 0.

The two parameters a and b of the beta distribution are uniquely determined by the
mean and one quantile, or by two quantiles. In the case of repetitive sampling, the
latter parameters may be estimated from historical data, for instance in audit sampling
or quality control where data from past inspections may be exploited. However, often
appropriate reference data is not available. In this case, the features of the distribution
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have to be elicited from expert opinions in interviews or panels, see the studies by Cor-
less (1972), Hogarth (1975), Kadane et al. (1980), Chaloner & Duncan (1983), O’Hagan
O’Hagan (1998), Walls & Quigley Walls & Quigley (2001), for instance. Software as-
sisted eliciting schemes are considered by Blocher & Robertson (1976) or Garthwaite &
O’Hagan (2000).

3.4 Properties of Distributions under the Beta Prior Model for
Binomial Counts

Under the beta prior information model (3.8) on the probability parameter, this section
derives and studies the joint, marginal, and conditional distributions of the counts X1

and X2. The following proposition 3.4.1 establishes the joint, marginal, and conditional
PMFs.

Proposition 3.4.1 (PMFs of X1, X2). Let Y have the beta distribution Beta(a, b).
Conditional on Y = y, let Xi, i = 1, 2 have the binomial distribution Bin(ni, y). Then
we have:

(i) The unconditional joint PMF fX1,X2 of (X1, X2) is given by

fX1,X2(x1, x2) =
(n1
x1

)(n2
x2

)
B(a+ x1 + x2, b+ n1 + n2 − x1 − x2)

B(a, b)

=
(n1
x1

)(n2
x2

)(n1+n2
x1+x2

) (a+x1+x2−1
x1+x2

)(b+n1−x1+n2−x2−1
n1+n2−x1−x2

)(a+b+n1+n2−1
n1+n2

) (3.12)

=
(n1
x1

)(n2
x2

)(n1+n2
x1+x2

) ( −ax1+x2

)( −b
n1+n2−x1−x2

)(−a−b
n1+n2

)
for xi = 0, . . . , ni.

(ii) The unconditional PMF fXi of Xi satisfies

fXi(xi) =
(ni
xi

)
B(xi + a, ni − xi + b)

B(a, b)

=
(a+xi−1

xi

)(b+ni−xi−1
ni−xi

)(a+b+ni−1
ni

) =
(−a
xi

)( −b
ni−xi

)(−a−b
ni

)
(3.13)
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for xi = 0, . . . , ni.

(iii) The conditional PMF fX2|X1=x1 of X2 under X1 = x1 satisfies

fX2|X1=x1(x2) =
(n2
x2

)
B(a+ x1 + x2, b+ n1 + n2 − x1 − x2)

B(a+ x1, b+ n1 − x1)

=
(a+x1+x2−1

x1

)(b+n1−x1+n2−x2−1
n2−x2

)(a+b+n1+n2−1
n2

) =
(−a−x1
x1+x2

)(−b−n1+x1
n2−x2

)(−a−b−n1
n2

)
(3.14)

for x2 = 0, . . . , n2.

The proof of proposition 3.4.1 is provided in appendix 3.A1. The last representation
of the PMF in (3.12), (3.13), (3.14), respectively, shows the relation to the generalized
hypergeometric distribution introduced by Kemp & Kemp (1956), see also Johnson et al.
(1993), with parameters α, β, n and the probabilities(α

r

)( β
n−r

)(α+β
n

) for r = 0, 1, 2, . . . (3.15)

In the classification by Kemp & Kemp (1956), the marginal distribution of Xi provided
by (3.13) is the generalized hypergeometric distribution of type II A with parameters
α = −a, β = −b, n = ni. The conditional distribution of X2 under X1 = x1 is
the generalized hypergeometric distribution of type II A with parameters α = −a −
x1 < 0, β = −b − n1 + x1 < 0, n = n2. Using the relationships of the distributions

considered by proposition 3.4.1 with the generalized hypergeometric distribution, we
can infer expressions for the moments from the respective formulae provided by Kemp
& Kemp (1956). Hence,

E[Xi] = ni
a

a+ b+ ni
, E[X2|X1 = x1] = n2

a+ x1
a+ b+ n1

, (3.16)

V[Xi] = niab(a+ b+ ni)
(a+ b)2(a+ b+ 1) , (3.17)

V[X2|X1 = x1] = n2(a+ x1)(b+ n1 − x1)(a+ b+ n1 + n2)
(a+ b+ n1)2(a+ b+ n1 + 1) . (3.18)

A sufficient condition for obtaining prediction spaces with interval projections is the
unimodality of the conditional PDF fX2|X1=x1 for each x1 ∈ R1. For the conditional
density (3.14) the unimodality is stated by the subsequent proposition 3.4.2 whose proof
is provided by appendix 3.A2.
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Proposition 3.4.2 (unimodality of fX2|X1=x1). Under the beta prior with parameters
a, b > 0, consider the conditional PMF fX2|X1=x1 provided by (3.14).

(i) For x2 ∈ {0, ..., n2 − 1} we have

fX2|X1=x1(x2 + 1) =

n2 − x2
x2 + 1

a+ x1 + x2
b+ n1 + n2 − x1 − x2 − 1fX2|X1=x1(x2).

(3.19)

(ii) For x2 ∈ {0, ..., n2 − 1} we have

fX2|X1=x1(x2 + 1)


> fX2|X1=x1(x2) if x2 < (n2+1)(a+x1−1)

a+b+n1−2 − 1,

= fX2|X1=x1(x2) if x2 = (n2+1)(a+x1−1)
a+b+n1−2 − 1,

< fX2|X1=x1(x2) if x2 > (n2+1)(a+x1−1)
a+b+n1−2 − 1.

(3.20)

Due to the occurrences of binomial coefficients and beta functions in the conditional
PMF fX2|X1=x1 and the repeated calculation of the CDF FX2|X1=x1 , a search algorithm
like algorithm 3.2.4 is computationally intensive for larger sample sizes. A simple ap-
proximation of the conditional CDF FX2|X1=x1 can be inferred from the subsequent
proposition 3.4.3 on the asymptotics of the beta function. The proof of proposition 3.4.3
is given in appendix 3.A3.

Proposition 3.4.3 (asymptotics of beta function). Let α, β > 0, and let
p : (0,∞)→ (0, 1) be a function with limn→∞ p(n) = s ∈ (0, 1). Then we have

lim
n→∞

( n
np(n)

)
B
(
α+ np(n), β + n[1− p(n)]

)
1
np(n)α−1[1− p(n)]β−1 = 1. (3.21)

Consider proposition 3.4.3 with α = a+ x1, β = b+ n1− x1. From the representation
(3.14) of the conditional density fX2|X1=x1 and from the limiting relation (3.21) we infer
for large n2 the approximation

FX2|X1=x1(x2) ≈
∫ x2

0

(
z
n2

)a+x1−1 (
1− z

n2

)b+n1−x1−1
dz

B(a+ x1, b+ n1 − x1)

=
∫ x2/n2

0 pa+x1−1(1− p)b+n1−x1−1 dp
B(a+ x1, b+ n1 − x1) = Ga+x1,b+n1−x1

(
x2
n2

) (3.22)

where Ga+x1,b+n1−x1 is the CDF of the beta distribution Beta(a+ x1, b+ n1 − x1).
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3.5 Construction of Exact and Approximate MWV Prediction
Intervals for Binomial Counts

As a special case of the algorithm 3.2.4 considered in section 3.2, the present section
establishes an exact and an approximative algorithm to calculate MWV x1-pointwise
level γ prediction spaces for the prediction target count X2 under the predictor count
X1 = x1.

By proposition 3.4.2, the conditional PMF fX2|X1=x1 expressed by formula (3.14) is
unimodal. In this case, the MWV x1-pointwise level γ prediction spaces constructed by
the basic algorithm 3.2.3 necessarily have interval projections Ax1 . Hence, we obtain
MWV x1-pointwise level γ prediction spaces from the algorithm 3.2.4 where
Ri = {0, ..., ni} and ν2 is the counting measure with support R2, see the subsequent
algorithm 3.5.1.

Algorithm 3.5.1 (exact MWV x1-pointwise level γ PS under beta prior).

S1) For each x1 ∈ {0, . . . , n1}:

S1.1) Determine u(x1) = max{x2 ∈ R2|1− FX2|X1=x1(x2 − 1) ≥ γ}.

S1.2) For each x2 = 0, . . . , u(x1) determine

k(x2) = min {k ∈ N0|FX2|X1=x1(x2 + k)− FX2|X1=x1(x2 − 1) ≥ γ}.

S1.3) Determine x̂2(x1) ∈ {0, . . . , u(x1)} which minimizes k(x2).

S1.4) Let A(x1) = {x̂2(x1), . . . , x̂2(x1) + k(x̂2(x1))}.

S2) Let A? = {(x1, x2)|x2 ∈ A(x1)}.

For large sample sizes n2, the search algorithm can be accelerated by using the approx-
imation (3.22) of the conditional CDF FX2|X1=x1 , see the subsequent algorithm 3.5.2.

Algorithm 3.5.2 (approximate MWV x1-pointwise level γ PS under beta
prior). For x1 ∈ {0, . . . , n1}, let Ga+x1,b+n1−x1 be the CDF of the beta distribution
Beta(a+ x1, b+ n1 − x1).

S1) For each x1 ∈ {0, . . . , n1}:

S1.1) Determine u(x1) = n2G
−1
a+x1,b+n1−x1

(1− γ).
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Figure 3.1: Comparison between the endpoints of exact intervals by algorithm 3.5.1 and
approximate intervals by algorithm 3.5.2. a = 1 = b, γ = 0.90.

S1.2) For each x2 = 0, . . . , u(x1) determine

k(x2) = −x2 + n2G
−1
a+x1,b+n1−x1

(
γ +G−1

a+x1,b+n1−x1

(
x2
n2

))
.

S1.3) Determine x̂2(x1) ∈ [0, u(x1)] which minimizes k(x2).

S1.4) Let A(x1) = {x̂2(x1), . . . , x̂2(x1) + k(x̂2(x1))}.

S2) Let A = {(x1, x2)|x2 ∈ A(x1)}.

Figure 3.1 illustrates the accuracy of the approximate prediction intervals by algorithm
3.5.2 in comparison with the exact intervals by algorithm 3.5.1. For a small prediction
sample size of n2 = 50, minor differences are visible. The approximate intervals tend to
be slightly shorter than the exact intervals. For a moderate sample size of n2 = 150, the
difference between the bounds are hardly noticeable. However, due to the discreteness
of the prediction target, a small difference in the length can lead to a considerable drop
in coverage. The latter effect will be analyzed in section 3.7.

3.6 The Sensitivity of Prediction Spaces in Prior Information
for a Binomial Prediction Target

To be useful, the prior information expressed by a beta distribution Beta(a, b) of the un-
derlying probability y should take effect on properties of the prediction space. However,
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Figure 3.2: Pointwise length of intervals Ax1 and weighted volumes VX2|X1(A) of exact
x1-pointwise level γ prediction spaces with γ = 0.90, sample sizes n1 = 20,
n2 = 50.

the characteristics of the prediction space should not be oversensitive in the parameters
a and b so as to avoid serious inference errors resulting from minor misspecifications.

In this section, we study the effect of prior information on three core characteristics of
x1-pointwise level γ prediction spaces: i) the length of single prediction intervals, ii) the
weighted volume of the entire prediction space, iii) the necessary sample size to achieve
a prescribed weighted volume. Throughout, we assume the confidence level γ = 0.90,
and compare priors Beta(1.0, b) with varying b under fixed a = 1.0. In all subsequent
studies, we assume the size n1 of the predictor sample to be considerably smaller than
the size n2 of the prediction target group. The latter relation holds in most applications,
particularly in prediction problems in industrial manufacturing where a small predictor
sample, e.g., obtained from a controlled experiment, is exploited to provide information
on a large prediction target group, e.g., a lot of manufactured units released to the
field. The opposite relation, as considered by Krishnamoorthy & Peng (2011) and Wang
(2010), is much less common.

Figure 3.2 illustrates the effect of prior information on interval length by comparing
the length of single prediction intervals under the noninformative prior Beta(1.0, 1.0)
(equidistribution) with the prior Beta(1.0, 20.0). The latter prior has a right-skewed
strictly decreasing PDF which puts large weight on small y = p. For instance, the
95 % quantile of Beta(1.0, 20.0) is 0.14 only. Under Beta(1, 1), the intervals for medium
size realizations of X1 are longest, and the intervals for small and large realizations are
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Figure 3.3: Length of prediction intervals Ax1 of level γ = 0.90 for various observations
X1 = x1 under the beta prior Beta(1, b) with various values b. Sample sizes
n1 = 20, n2 = 50.

shorter. Under Beta(1, 20), corresponding to the shape of the PDF the intervals are
significantly shorter for small x1 than in the Beta(1, 1) case. For large x1, the intervals
are longer in the Beta(1, 20) than in the Beta(1, 1) case.

Figure 3.3 compares two extreme cases of prior information. Figure 3.3 illustrates the
effect of the parameter b ranging over the interval [1, 20] in detail. a = 1 is fixed. The
length of intervals Ax1 is considered for observations X1 = 0, 4, 9, 20 = n1. A strong
local effect of small changes in b is visible only under the observation x1 = 20 = n1

where values of b moderately above 1.0 rapidly inflate the interval length. However,
such observations X1 close to n1 occur with minor probability for moderate to large b.
For the relevant observations X1 = 0, 4, 9 a small increase in b takes only minor effect
on the interval length.

Figure 3.4 considers the sensitivity of the weighted volume VX2|X1(A) in b under fixed
a = 1.0. For other values of a, the shape of the sensitivity curve is similar but shifted
along the horizontal axis. The weighted volume is highly sensitive in b in the region
around 1.0 where small deviations of b away from 1.0, i.e., small deviations away from
the noninformative case a = 1 = b, entail strong reductions in volume whereas changes
in larger values b affect the descent in the weighted volume much less.

For most applications, the sensitivity pattern exhibited by figure 3.4 is not problematic
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Figure 3.4: Weighted volume VX2|X1(A) as a function of the parameter b of the beta
distribution, a = 1 fixed.
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Figure 3.5: 100ρ % quantiles of Beta(1, b) as a function of b.

but rather useful. Figure 3.6 displays the 90 % and 95 % quantiles of Beta(1.0, b) as
functions of 1 ≤ b ≤ 20. The region of steep descent of the quantile functions coincides
with the region of steep descent of the weighted volume. Increasing b from 1.0 to 5.0
decreases the 90 % quantile from 0.90 down to 0.37, and the 95 % quantile from 0.95
down to 0.45. However, for most applications where Y is a probability nonconforming,
in particular in quality control or auditing, the latter values of quantiles of Y are still
extremely conservative. This means: Rather conservative increases in b away from 1.0
lead to substantial reductions in weighted volume; under less conservative assumptions
of higher values of b which are subject to a higher risk of misspecification the gain in
weighted volume is much smaller.
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Figure 3.6: Required sample size n1,min to undercut a prescribed weighted volume of
level γ = 0.90 as a function of b.

The effect of prior information on the sample size required to undercut a prescribed
weighted volume is complementary to the effect on the weighted volume. Figure 3.6
displays the minimum sample size n1,min which undercuts a prescribed weighted volume
of the prediction space as a function of b. n1,min is rapidly decreasing when b moves
away from 1.0. Changes in large b have a weak effect on n1,min only.

3.7 Coverage Properties for the Binomial Case

The present section defines concepts of the coverage of a prediction interval for the
prediction target X2; it i) compares the coverage of exact MWV x1-pointwise level γ
prediction intervals with the coverage of prediction intervals without prior information,
ii) studies the effect of misspecified prior information on the coverage of exact MWV
x1-pointwise level γ prediction intervals, and iii) evaluates the coverage of approximate
MWV x1-pointwise level γ prediction intervals constructed by algorithm 3.5.2.

Under the beta prior model of section 3.3, the pointwise coverage Px1(X2 ∈ Ax1)
considered by definition 3.2.1 amounts to

Px1(X2 ∈ Ax1) =
n2∑
x2=0

fX2|X1=x1(x2)1Ax1
(x2)

=
n2∑
x2=0

(n2
x2

)
B(a+ x1 + x2, b+ n1 + n2 − x1 − x2)

B(a+ x1, b+ n1 − x1) 1Ax1
(x2),

(3.23)

where 1B denotes the indicator function of a set B, see equation (3.14) for the condi-
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Figure 3.7: Pointwise x1 coverage for the level-90 x1-pointwise MWV for the binomial
case

tional PMF fX2|X1=x1(x2). (3.23) is the appropriate coverage concept under a model of
randomly varying y = p as established by (3.3). For a correct prior, the coverage (3.23)
is at least the nominal level. This is illustrated in figure 3.7. In the absence of a prior
on y = p, the coverage (3.23) is not meaningful. The customary coverage concept in
prediction region theory without priors considers the probability Pp(X2 ∈ AX1) indexed
in the parameter y = p, here

Pp(X2 ∈ AX1) =
n1∑
x1=0

n2∑
x2=0

px1+x2(1− p)n1+n2−x1−x21Ax1
(x2). (3.24)

To compare the coverage properties of the MWV prediction interval with the cover-
age of customary prediction intervals we have to use the coverage concept (3.24). The
indicated MWV prediction intervals for a fair comparison with intervals without priors
are the MWV intervals under the uninformative uniform prior Beta(1.0, 1.0) which ex-
presses total uncertainty on the probability parameter y = p. Figure 3.8 shows that the
MWV prediction interval under Beta(1.0, 1.0) has good properties in the sense of the
coverage (3.24) pointwise in p. The prescribed level γ = 0.90 is undercut in some areas,
but the violations are minor.

We proceed to the topic ii) of this section, the effect of misspecified prior information
on the coverage. For this purpose we consider the coverage concept (3.23) pointwise in
x1 which is inherent to prediction spaces under prior information.

Figure 3.9 illustrates the problem of violations of the nominal level γ by the pointwise
coverage Px1(X2 ∈ Ax1) under priors misspecified relative to a true quantile. Through-
out, violations occur for medium to large x1 only. In practice, particular caution is
required relative to misspecifications underestimating the true quantile, as in the cases
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Figure 3.8: Comparison of the coverage probabilities between the Score PI, Nelson’s PI,
Thatcher’s PI and the MWV PI with a = 1, b = 1 for different sample sizes.
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Figure 3.9: Coverage probability pointwise in x1 for misspecified priors under sample
sizes n1 = 20, n2 = 100 and confidence level γ = 0.90. Priors Beta(a, b) with
a = 1, parameter b determined by quantile prescription.
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on the right-hand side of figure 3.9: assumed 90 % quantile 0.68, assumed 90 % quantile
0.72 and assumed 90 % quantile 0.80 versus the true 90 % quantile 0.90. In these cases,
large values of p and, consequently, medium to large values of x1 with potential cov-
erage shortfalls are actually much more likely than assumed by the misspecified priors.
However, the shortfalls observed for the underestimating misspecifications are actually
minor. Conservative misspecifications overestimating the true quantile are less seri-
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Figure 3.10: Pointwise coverage probability for the approximate MWV prediction inter-
val, prior Beta(1, 1), nominal confidence level γ = 0.90

ous since medium to large values of x1 with potential coverage shortfalls are actually
less likely than assumed by the misspecified priors. The coverage shortfalls observed at
medium to large x1 under the three conservative misspecifcations (assumed 90 % quan-
tile 0.81, assumed 90 % quantile 0.90 and assumed 90 % quantile 0.945 versus the true
90 % quantile 0.72) are partially serious. However, the critical values of x1 are actually
much less likely to occur under the true prior than under the stipulated misspecifation.
For example, the probability of x1 = 19 with the true prior is 0.0120, whereas in the as-
sumed cases the resulting probabilities are 0.0248, 0.0476, and 0.0661 respectively. The
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conclusive rule for practice is to bet on conservative prior assumptions. Then, coverage
shortfalls are rather negligible.

Finally we consider the topic iii) of the coverage of type (3.23) of approximate MWV
x1-pointwise level γ prediction intervals constructed by algorithm 3.5.2. Figure 3.10
indicates that the coverage properties of approximate intervals depends strongly on the
ratio of the sample sizes n1 and n2. For n1 = 20, n2 = 50 the coverage is considerably
below the nominal level 0.90 with a minimum around 0.82. Increasing n2 to 150 with
n1 = 20 fixed increases the coverage, the minimum coverage is around 0.87. Leaving
n2 = 50 fixed and increasing n1 to 50 leads to a further drop in coverage to values
below 0.80. Figure 3.1 shows that approximate intervals tend to be shorter than exact
intervals where, however, the bounds on both sides have only minor differences between
approximate and exact. Nevertheless, the missing points can have strong effect on the
coverage particularly under small sample sizes where the points have a relatively large
probability mass.

3.8 The Beta Prior Model for Inference on Negative
Binomially Distributed Variables

This section modifies the case for binomially distributed variables presented in section
3.3 for the case where conditional on Y = y, the prediction target X2 has the negative
binomial distribution negBin(r2, y), with PMF

fX(x) =
(
x+ r2 − 1

x

)
yr2(1− y)x for x = 0, 1, 2, . . . , (3.25)

for y ∈ (0, 1), r2 ∈ N. We consider the two cases where, conditional on Y = y, X1

has i) the binomial distribution Bin(n1, y) and ii) the negative binomial distribution
negBin(r1, y). As in section 3.3, conditional on Y = y, X1 and X2 are assumed to be
independent. Therefore, the distribution parameter Y in case i) is the shared probability
parameter of a binomial and negative binomial distribution, in case ii) is the probability
parameter of a negative binomial distribution.

In the framework of section 3.2, we choose R1 = {0, . . . , n1} and R2 = N0 in case i)
and we choose Ri = N0, i = 1, 2 in case ii). The confidence requirement (3.2) and the
weighted volume defined by (3.4) result in the same expressions as in section 3.3.
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3.9 Properties of some Discrete Distributions under the Beta
Prior Model

Under the beta prior information model (3.8) on the probability parameter, this section
derives and studies the joint, marginal, and conditional distributions of the random
variables X1 and X2. We consider the two cases: i) both Xi are negative binomial
random variables and ii)X1 is a binomial, andX2 is a negative binomial random variable.

3.9.1 Two Negative Binomial Counts

First, we consider minimum volume prediction spaces with prescribed level pointwise in
x1 for two negative binomial counts. The following proposition 3.9.1 establishes the joint,
marginal, and conditional PMFs. The proof of proposition 3.9.1 is given in appendix
3.A4.

Proposition 3.9.1 (PMFs of X1, X2). Let Y have the beta distribution Beta(a, b),
a, b > 0, with PDF

fY (y) =


1

B(a,b)y
a−1(1− y)b−1 if 0 < y < 1,

0 otherwise,
where the Beta function is defined as in (3.9). Conditional under Y = y, let Xi have
the negative binomial distribution negBin(ri, y) with r1, r2 ∈ N. Then we have:

(i) The unconditional joint PMF fX1,X2 of X1, X2 satisfies

fX1,X2(x1, x2) =
(x1+r1−1

x1

)(x2+r2−1
x2

)
B(r1 + r2 + a, x1 + x2 + b)
B(a, b) , (3.26)

for xi = 0, 1, 2, . . . .

(ii) The unconditional PMF fXi of Xi satisfies

fXi(xi) =
(xi+ri−1

xi

)
B(ri + a, xi + b)
B(a, b) , (3.27)

for xi = 0, 1, 2, . . ..

(iii) The conditional PMF fX2|X1=x1 of X2 under X1 = x1 satisfies

fX2|X1=x1(x2) =
(
x2 + r2 − 1

x2

)
B(r1 + r2 + a, x1 + x2 + b)

B(r1 + a, x1 + b) , (3.28)

for x2 = 0, 1, 2, . . . .
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(iv) The prediction likelihood ratio is given by

Qx1(x2) = B(a, b)B(r1 + r2 + a, x1 + x2 + b)
B(r1 + a, x1 + b)B(r2 + a, x2 + b) ,

for xi = 0, 1, 2, . . .

3.9.2 Binomial Predictor, Negative Binomial Prediction Target

We now consider minimum volume prediction spaces with prescribed level pointwise in
x1, where the observed sample is the realization of a binomial random variable, but the
prediction target is a negative binomial random variable. Again, we establish the joint,
marginal and conditional PMFs. The proof of proposition 3.9.2 is provided in appendix
3.A5.

Proposition 3.9.2 (PDFs of X1, X2). . Let Y have the beta distribution Beta(a, b),
a, b > 0, with PDF

fY (y) =


1

B(a,b)y
a−1(1− y)b−1 if 0 < y < 1,

0 otherwise,
where the Beta function is defined as in (3.9). Conditional under Y = y, let X1 have the
binomial distribution Bin(n1, y) with n1 ∈ N, 0 < y < 1, and conditional under Y = y,
let X2 have the negative binomial distribution negBin(r2, y) with r2 ∈ N. Then we have:

(i) The unconditional joint PMF fX1,X2 of X1, X2 satisfies

fX1,X2(x1, x2) = 1
B(a, b)

(
n1
x1

)(
x2 + r2 − 1

x2

)
B(x1 +r2 +a, n1−x1 +x2 +b), (3.29)

for x1 = 0, . . . , n1, x2 = 0, 1, 2, . . . .

(ii) The unconditional PMF fX1 of X1 satisfies

fX1(x1) =
(n1
x1

)
B(x1 + a, n1 − x1 + b)

B(a, b) , (3.30)

for x1 = 0, . . . , n1.

(iii) The unconditional PMF fX2 of X2 satisfies

fX2(x2) =
(x2+r2−1

x2

)
B(a, b) B(r2 + a, x2 + b), (3.31)

for x2 = 0, 1, 2, . . . .
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(iv) The conditional PMF fX2|X1=x1 of X2 under X1 = x1 satisfies

fX2|X1=x1(x2) =
(
x2 + r2 − 1

x2

)
B(x1 + r2 + a, n1 − x1 + x2 + b)

B(x1 + a, n1 − x1 + b) , (3.32)

for x1 = 0, . . . , n1, x2 = 0, 1, 2, . . . .

(v) The prediction likelihood ratio is given by

Qx1(x2) = B(a, b)B(x1 + r2 + a, n1 − x1 + x2 + b)
B(r2 + a, x2 + b)B(x1 + a, n1 − x1 + b) , (3.33)

for x1 = 0, . . . , n1, x2 = 0, 1, 2, . . . .

As in section 3.4, we prove the unimodality of the conditional PMFs fX2|X1=x1 which is
a sufficient condition to obtain prediction spaces with interval projections. Proposition
3.9.3 states the unimodality for the conditional PMF (3.28), the proof is provided in
appendix 3.A6. The unimodality of the conditional PMF (3.32) is subsequently stated
in proposition 3.9.4 and the proof is presented in appendix 3.A7.

Proposition 3.9.3 (unimodality of fX2|X1=x1). Consider the conditional PMF
fX2|X1=x1 given by (3.28) under the beta prior.

(i) For x2 ∈ N0 we have

fX2|X1=x1(x2 + 1) =
x2 + r2
x2 + 1

x1 + x2 + b

x1 + x2 + b+ r1 + r2 + a
fX2|X1=x1(x2). (3.34)

(ii) For x2 ∈ N0 we have

fX2|X1=x1(x2 + 1)


> fX2|X1=x1(x2) if x2 <

r2(x1+b−1)−x1−b−a−r1
r1+a+1 ,

= fX2|X1=x1(x2) if x2 = r2(x1+b−1)−x1−b−a−r1
r1+a+1 ,

< fX2|X1=x1(x2) if x2 >
r2(x1+b−1)−x1−b−a−r1

r1+a+1 .

Proposition 3.9.4 (unimodality of fX2|X1=x1). Consider the conditional PMF
fX2|X1=x1 given by (3.32) under the beta prior.

(i) For x2 ∈ N0 we have

fX2|X1=x1(x2 + 1) =
x2 + r2
x2 + 1

n1 − x1 + x2 + b

n1 + x2 + r2 + a+ b
fX2|X1=x1(x2). (3.35)
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(ii) For x2 ∈ N0 we have

fX2|X1=x1(x2 + 1)


> fX2|X1=x1(x2) if x2 <

r2(n1−x1+b−1)−n1−a−b
x1+a+1 ,

= fX2|X1=x1(x2) if x2 = r2(n1−x1+b−1)−n1−a−b
x1+a+1 ,

< fX2|X1=x1(x2) if x2 >
r2(n1−x1+b−1)−n1−a−b

x1+a+1 .

3.10 Construction of Exact Prediction Intervals for a Negative
Binomial Prediction Target

As in section 3.8 and section 3.9, we consider two cases for a negative binomial prediction
target: i) the predictor X1 is binomial and ii) the predictor is also negative binomial.

We have established the unimodality of the conditional distribution fX2|X1=x1 for both
cases in section 3.9. Therefore, algorithm 3.5.1 can be used with minimal adaptions. The
adaption is necessary as Ri = N, i = 1, 2 is unbounded for the prediction target X2. In
case i) step S1.1) in algorithm 3.5.1 has to be limited to a maximum number of possible
values of x2 ∈ R2. In case ii), it is furthermore required to limit the number of possible
values for x1 ∈ R1 to a finite number in step S1). The adapted algorithms for the two
cases are subsequently stated in algorithm 3.10.1 and algorithm 3.10.2.

Algorithm 3.10.1 (exact MWV x1-pointwise level γ PS under beta prior for
the binomial-negative binomial case).

S1) For each x1 ∈ {0, . . . , n1}:

S1.1) Choose a maximum value x2max.

Determine u(x1) = max{x2 ∈ R2, x2 ≤ x2max|1− FX2|X1=x1(x2 − 1) ≥ γ}.

S1.2) For each x2 = 0, . . . , u(x1) determine

k(x2) = min {k ∈ N0|FX2|X1=x1(x2 + k)− FX2|X1=x1(x2 − 1) ≥ γ}.

S1.3) Determine x̂2(x1) ∈ {0, . . . , u(x1)} which minimizes k(x2).

S1.4) Let A(x1) = {x̂2(x1), . . . , x̂2(x1) + k(x̂2(x1))}.

S2) Let A? = {(x1, x2)|x2 ∈ A(x1)}.

Algorithm 3.10.2 (exact MWV x1-pointwise level γ PS under beta prior for
the negative binomial case).
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S1) Choose a maximum value x1max ∈ R1. For each x1 ∈ {0, . . . , x1max}:

S1.1) Choose a maximum value x2max ∈ R2.

Determine u(x1) = max{x2 ∈ R2, x2 ≤ x2max|1− FX2|X1=x1(x2 − 1) ≥ γ}.

S1.2) For each x2 = 0, . . . , u(x1) determine

k(x2) = min {k ∈ N0|FX2|X1=x1(x2 + k)− FX2|X1=x1(x2 − 1) ≥ γ}.

S1.3) Determine x̂2(x1) ∈ {0, . . . , u(x1)} which minimizes k(x2).

S1.4) Let A(x1) = {x̂2(x1), . . . , x̂2(x1) + k(x̂2(x1))}.

S2) Let A? = {(x1, x2)|x2 ∈ A(x1)}.

The maximum values x1max and x2max have to be chosen large enough that the values
above them have a negligible effect on the algorithm.

Figure 3.11 depicts exact MWV intervals for several cases. Small realizations of X1

indicate a small y for the binomial predictor and a large y for the negative binomial
predictor. In both cases, contrary to the binomial case, a small y makes a large realization
of X2 more likely. The prediction intervals are affected by the prior information in the
desired manner. The Beta(1, 99) prior on the right of figure 3.11 puts much weight
on a small y = p. The resulting intervals have larger lower bounds and larger upper
bounds compared to the intervals with the Beta(1, 1) prior on the left. For realizations
of X1 indicating a small to medium y, the upper bound is increased significantly for the
Beta(1, 99) prior compared to the Beta(1, 1) prior.

There are two main observations for the lower bound. The first observation is that
for realizations of X1 indicating a small y = p, the lower bounds are fairly small. The
conditional PMFs (3.28) and (3.32) which are plotted in figure 3.12 are right-skewed,
whereas the conditional PMF (3.14) in the binomial case is rather symmetric. Thus,
a considerable amount of probability mass lies at the lower end, which can explain the
observed phenomenon. The second observation is that despite strong changes in the prior
information, the lower bound does not move significantly, even if x1 indicates a small
y = p. In figure 3.12 you can see that the dispersion of the conditional PMF is larger
for the Beta(1, 99) prior than for the Beta(1, 1) prior. This is opposite to the binomial
case. Thus, the length reduction observed in the binomial case cannot be observed for
a negative binomial prediction target.
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Figure 3.11: Exact MWV prediction intervals, prior Beta(1, 1) (left), Beta(1, 99) (right),
nominal confidence level γ = 0.90 for the binomial-negative binomial case
(top) and the negative binomial case (bottom).
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Figure 3.12: Conditional PMFs for prior Beta distribution with parameters a = 1, b = 1
(blue), and a = 1, b = 99 (red) for the binomial-negative binomial case
(left) and the negative binomial case (right).
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3.11 The Sensitivity of Prediction Spaces in Prior Information
for a Negative Binomial Prediction Target
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Figure 3.13: Pointwise length of the level-90 x1-pointwise MWV for a negative binomial
count. Predictor binomial (top) with n1 = 20, r2 = 5 and predictor negative
binomial (bottom) r1 = 5, r2 = 5, nominal confidence level γ = 0.90.

As in section 3.6 the underlying probability y should take effect on properties of
the prediction space, without being oversensitive in the parameters a and b. These
requirements on the prior information expressed by a beta distribution Beta(a,b) are
independent of the prediction target. We proceed similarly to section 3.6 to study
the core characteristics of x1-pointwise level prediction spaces for a negative binomial
prediction target. Throughout, we assume the confidence level γ = 0.90, and compare
priors Beta(1.0, b) with varying b under fixed a = 1.0.

Figure 3.13 illustrates the effect of prior information on interval length by comparing
the length of single prediction intervals under the noninformative prior Beta(1.0, 1.0)
with the prior Beta(1.0, 20.0) for a binomial and a negative binomial predictor X1. The
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Beta(1.0, 20.0) prior has a right-skewed strictly decreasing PDF which puts large weight
on small y = p. The interval lengths differ significantly for the different predictors. For
the binomial predictor in the upper part of figure 3.13, the interval length decreases
for increasing realizations x1. The decrease in the interval length is weaker for the
Beta(1.0, 20.0) prior as this prior indicates that small values of p are more likely. There-
fore, it is more likely that a high number of trials is needed to reach the required number
of successes. For the negative predictor in the lower part of figure 3.13, the interval length
increases for increasing realizations of X1. The interval for any realization is longer for
the Beta(1.0, 20.0) prior, again for the reason that this prior indicates smaller values of
y = p to be more likely.

3.12 Coverage Properties for a Negative Binomial Prediction
Target

As in section 3.7, we study the x1-pointwise coverage of the prediction interval for a
negative binomial prediction target X2. Under the beta prior model of section 3.8, the
pointwise coverage Px1(X2 ∈ Ax1) considered by definition 3.2.1 amounts to

Px1(X2 ∈ Ax1) =
∞∑

x2=0
fX2|X1=x1(x2)1Ax1

(x2)

=
∞∑

x2=0

(
x2 + r2 − 1

x2

)
B(x1 + r2 + a, n1 − x1 + x2 + b)

B(x1 + a, n1 − x1 + b) 1Ax1
(x2)

(3.36)

for the case of a binomial predictor, where 1B denotes the indicator function of a set B.
For the case of a negative binomial predictor, we have

Px1(X2 ∈ Ax1) =
∞∑

x2=0
fX2|X1=x1(x2)1Ax1

(x2)

=
∞∑

x2=0

(
x2 + r2 − 1

x2

)
B(r1 + r2 + a, x1 + x2 + b)

B(r1 + a, x1 + b) 1Ax1
(x2).

(3.37)

For a correct prior, the coverage of (3.36) and (3.37) is at least the nominal level. This
is shown in figure 3.14. In the top of figure 3.14, large realizations x1 indicate a high
success probability and therefore very small realizations x2, whereas in the bottom large
realizations x1 indicate a small success probability and thus large realizations x2. In the
bottom part, the coverage is very close to the nominal level for large realizations x1.
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This can be explained by the unbounded support of the negative binomial distribution.
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Figure 3.14: Pointwise x1 coverage of the level-90 x1-pointwise MWV for a negative
binomial prediction target. Predictor binomial (top) and predictor negative
binomial (bottom), nominal confidence level γ = 0.90.

We now study the effect of misspecified prior information on the coverage, using
the coverage concept (3.36) for the binomial-negative binomial case and (3.37) for the
negative binomial case pointwise in x1.

In figure 3.15 and figure 3.16 the coverage is plotted for the same misspecified priors
that were used in section 3.7, see figure 3.9, in particular. As in section 3.7, using conser-
vative priors, i.e. overestimating the true quantile is the safe option. Underestimating
the true quantile can result in coverage violations in relevant areas of the parameter
spaces, as can be seen on the left of figure 3.15. Overall, the sensitivity with respect to
misspecification is not significant, resulting in only minor coverage level violations.



54 3 Discrete Prediction Intervals with Prior Information

0 5 10 15 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

true 90 % quantile at 0.72 true 90 % quantile at 0.90

Figure 3.15: Coverage probability pointwise in x1 for misspecified priors under sample
size n1 = 20, and number of required successes r2 = 5 and confidence level
γ = 0.90. Priors Beta(a, b) with a = 1, parameter b determined by quantile
prescription.

0 5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

true 90 % quantile at 0.72 true 90 % quantile at 0.90

Figure 3.16: Coverage probability pointwise in x1 for misspecified priors under required
number of successes r1 = 5, r2 = 5 and confidence level γ = 0.90. Priors
Beta(a, b) with a = 1, parameter b determined by quantile prescription.
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3.13 Conclusion

We have introduced a general framework of x1-pointwise level γ minimum weighted
volume prediction spaces under prior information, and we have applied the framework
to binomial counts and negative binomial counts. In the former instance, the properties
of the prediction spaces are very satisfactory. The prediction intervals react on changing
prior information, but they are not oversensitive. The usage of prior information enables
strong reductions in the sample size.

For the case of predicting a negative binomial random variable, the prior information
also affects the prediction interval in the desired manner. However, due to the properties
of the conditional PMFs fX2|X1=x1 for the binomial-negative binomial and the negative
binomial case, the lower bound does not change considerably for large expected X2,
even when using strong prior information. Therefore, stronger prior information does
not necessarily lead to a shorter interval.

Many topics remain for future research. The established framework of x1-pointwise
level γ MWV prediction spaces can be applied to many other prediction problems on
discrete or continuous random quantities. It is also important to develop and apply
MWV prediction spaces under prior information where the confidence level is prescribed
pointwise in a relevant distribution parameter instead of pointwise in the predictor x1.
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Appendix of Chapter 3

3.A1 Proof of Proposition 3.4.1

From the well-known recursion Γ(x + 1) = xΓ(x) for the gamma function, from the
definition (3.9) of the beta function, and from the equation

(
−x
k

)
= (−1)k

(
x+ k − 1

k

)
for x ∈ R, k ∈ Z (3.38)

for binomial coefficients we obtain for the beta function the recursion

B(s+ k, t+m) = B(s, t)
k−1∏
i=0

s+ i

s+ t+m+ i

m−1∏
j=0

t+ j

s+ t+ j

= B(s, t)
(s+k−1

k

)(t+m−1
m

)(s+t+k+m−1
k+m

) 1(m+k
m

) = B(s, t)
(−s
k

)(−t
m

)(−s−t
k+m

) 1(m+k
m

)
(3.39)

for s, t > 0, k,m ∈ N0.

Consider assertion (i) of proposition 3.4.1. Using the integral definition of the beta
function, recursion (3.39) with s = a, k = x1 + x2, t = b, m = n1 + n2 − x1 − x2, and
equation (3.38) we obtain

fX1,X2(x1, x2) =
∫

[0,1]
fX1,X2|Y=y(x1, x2)fY (y)dy

=
(n1
x1

)(n2
x2

)
B(a, b)

∫
[0,1]

yx1+x2+a−1(1− y)n1+n2−x1−x2+b−1dy

=
(
n1
x1

)(
n2
x2

)
B(a+ x1 + x2, b+ n1 + n2 − x1 − x2)

B(a, b)

=
(n1
x1

)(n2
x2

)(n1+n2
x1+x2

) (a+x1+x2−1
x1+x2

)(b+n1−x1+n2−x2−1
n1+n2−x1−x2

)(a+b+n1+n2−1
n1+n2

)

=
(n1
x1

)(n2
x2

)(n1+n2
x1+x2

) ( −ax1+x2

)( −b
n1+n2−x1−x2

)(−a−b
n1+n2

)
as asserted by equation (3.12).

Equation (3.13) in assertion (ii) is obtained analogously to the above proof of equation
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(3.12). Equation (3.14) in assertion (iii) is obtained from (3.12) and (3.13) by

fX2|X1(x2) = fX1,X2(x1, x2)
fX1(x1)

=
(n1
x1

)(n2
x2

)
B(a+ x1 + x2, b+ n1 + n2 − x1 − x2)

B(a, b)

× B(a, b)(n1
x1

)
B(x1 + a, n1 + b− x1)

=
(
n2
x2

)
B(a+ x1 + x2, b+ n1 + n2 − x1 − x2)

B(a+ x1, b+ n1 − x1) .

3.A2 Proof of Proposition 3.4.2

Consider assertion (i) of proposition 3.4.2. Let x2 ∈ {0, . . . , n2 − 1}. We have
(

n2
x2 + 1

)
= n2!

(x2 + 1)!(n2 − x2 − 1)! = n2 − x2
x2 + 1

(
n2
x2

)
.

Using recursion (3.39) with s = a+x1 +x2, t = b+n1 +n2−x1−x2, k = 1, m = 0 and
the relation B(x, y − 1) = x+y−1

y−1 B(x, y) we obtain

B(a+ x1 + x2 + 1, b+ n1 + n2 − x2 − 1− x1)

= a+ x1 + x2
b+ n1 + n2 − x1 − x2 − 1B(a+ x1 + x2, b+ n1 + n2 − x1 − x2).

Inserting the latter two results into (3.14) we obtain

fX2|X1=x1(x2 + 1) =
( n2
x2+1

)
B(a+ x1 + x2 + 1, b+ n1 + n2 − x1 − x2 − 1)

B(a+ x1, b+ n1 − x1)

= n2 − x2
x2 + 1

a+ x1 + x2
b+ n1 + n2 − x1 − x2 − 1

×
(n2
x2

)
B(a+ x1 + x2, b+ n1 + n2 − x1 − x2)

B(a+ x1, b+ n1 − x1)

= n2 − x2
x2 + 1

a+ x1 + x2
b+ n1 + n2 − x1 − x2 − 1fX2|X1=x1(x2).

Assertion (ii) follows from assertion (i) by elementary calculation.
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3.A3 Proof of Proposition 3.4.3

By Stirling’s formula, there is a function 0 < r(x) < 1
12x such that

Γ(x) =
√

2π xx−0.5 exp(−x) exp(r(x)) for x > 0. (3.40)

With definition (3.10) of binomial coefficients we obtain from (3.40) for n > 0

(
n

np(n)

)
=

(n+ 1)n+0.5 exp(1) exp
(
r(n)

)
√

2π (np(n) + 1)np(n)+0.5(n(1− p(n)) + 1)n(1−p(n))+0.5

=
{√

2πnp(n)np(n)+0.5[1− p(n)]n[1−p(n)]+0.5
}−1

×

(
1 + 1

n

)n+0.5
exp(1) exp

(
r(n)

)
(
1 + 1

np(n)

)np(n)+0.5 (
1 + 1

n[1−p(n)]

)n[1−p(n)]+0.5 ,

(3.41)

where
−1

12(n(1− p(n)) + 1) + −1
12(np(n) + 1) < r(n) <

1
12(n+ 1) . (3.42)

Let
A1(n) = 1√

2πn
1

p(n)np(n)+0.5
1

(1− p(n))n(1−p(n))+0.5 . (3.43)

With limu→∞(1 + 1/u)u = exp(1) we obtain from (3.41), (3.42), (3.43)

lim
n→∞

( n
np(n)

)
A1(n) = 1. (3.44)

With the definition (3.9) of the beta function and by applying Stirling’s formula (3.40)
for n > 0 we obtain

B
(
α+ np(n), β + n[1− p(n)]

)

=
√

2π [α+ np(n)]α+np(n)−0.5 [β + n[1− p(n)]]β+n[1−p(n)]−0.5

(α+ β + n)α+β+n−0.5 exp
(
r(n)

)

=
√

2π
n

exp
(
r(n)

)[ α
np(n) + 1

]α+np(n)−0.5 ( β
n[1−p(n)] + 1

)β+n[1−p(n)]−0.5

(
α+β
n + 1

)α+β+n−0.5

× p(n)α+np(n)−0.5[1− p(n)]β+n[1−p(n)]−0.5,

(3.45)
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where
−1

12(α+ β + n) < r(n) <
1

12[α+ np(n)] + 1
12[β + n[1− p(n)]] . (3.46)

Let
A2(n) =

√
2π
n
p(n)α−0.5+np(n) [1− p(n)]β−0.5+n[1−p(n)]. (3.47)

With limu→∞(1 + 1/u)u = exp(1) we obtain from (3.45), (3.46), and (3.47)

lim
n→∞

B
(
α+ np(n), β + n[1− p(n)]

)
A2(n) = exp(α) exp(β)

exp(α+ β) = 1. (3.48)

From (3.44) and (3.48) we obtain the limiting relation (3.21) stipulated by proposition
3.4.3.

3.A4 Proof of Proposition 3.9.1

Let x1, x2 ∈ N0, r1, r2 ∈ N and let X1, X2, and Y be as stated in proposition 3.9.1. Then
we obtain

(i) fX1,X2(x1, x2)

=
∫

[0,1]
fX1,X2|Y=y(x1, x2)fY (y)dy

=
∫

[0,1]

(
x1 + r1 − 1

x1

)(
x2 + r2 − 1

x2

)

× (1− y)x1yr1(1− y)x2yr2 1
B(a, b)y

a−1(1− y)b−1dy

= 1
B(a, b)

(
x1 + r1 − 1

x1

)(
x2 + r2 − 1

x2

)∫
[0,1]

yr1+r2+a−1(1− y)x1+x2+b−1dy

=
(x1+r1−1

x1

)(x2+r2−1
x2

)
B(r1 + r2 + a, x1 + x2 + b)
B(a, b)

(ii)

fXi(xi) =
∫

[0,1]
fXi|Y=y(xi)fY (y)dy

=
∫

[0,1]

(
xi + ri − 1

xi

)
(1− y)xiyri 1

B(a, b)y
a−1(1− y)b−1dy

=
(
xi + ri − 1

xi

)
1

B(a, b)B(ri + a, xi + b)
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(iii)

fX2|X1=x1(x2) = fX1,X2(x1, x2)
fX1(x1)

=
(
x2 + r2 − 1

x2

)
B(r1 + r2 + a, x1 + x2 + b)

B(r1 + a, x1 + b)

(iv)

Qx1(x2) =
fX2|X1=x1(x2)

fX2(x2)

= B(a, b)B(r1 + r2 + a, x1 + x2 + b)
B(r1 + a, x1 + b)B(r2 + a, x2 + b) .

3.A5 Proof of Proposition 3.9.2

Let x1 ∈ {0, . . . , n1}, x2 ∈ N0, n1, r2 ∈ N and let X1, X2, and Y be as stated in
proposition 3.9.2. Then we have

(i)

fX1,X2(x1, x2)

=
∫

[0,1]
fX1,X2|Y=y(x1, x2)fY (y)dy

=
∫

[0,1]

(
n1
x1

)
yx1(1− y)n1−x1

×
(
x2 + r2 − 1

x2

)
yr2(1− y)x2 1

B(a, b)y
a−1(1− y)b−1dy

= 1
B(a, b)

(
n1
x1

)(
x2 + r2 − 1

x2

)∫
[0,1]

yx1+r1+a−1(1− y)n1−x1+x2+b−1dy

= 1
B(a, b)

(
n1
x1

)(
x2 + r2 − 1

x2

)
B(x1 + r2 + a, n1 − x1 + x2 + b).

(ii) See proof of proposition 3.4.1 for the unconditional distribution of Xi for two
binomial samples.

(iii) See proof of proposition 3.9.1 for the unconditional distribution of Xi for two
negative binomial samples.
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(iv)

fX2|X1=x1(x2) = fX1,X2(x1, x2)
fX1(x1)

=
(n1
x1

)(x2+r2−1
x2

)
B(x1 + r2 + a, n1 − x1 + x2 + b)

B(a, b)

× B(a, b)(n1
x1

)
B(x1 + a1, n1 − x1 + b)

=
(
x2 + r2 − 1

x2

)
B(x1 + r2 + a, n1 − x1 + x2 + b)

B(x1 + a1, n1 − x1 + b)

(v)

Qx1(x2) =
fX2|X1=x1(x2)

fX2(x2)

= B(a, b)B(x1 + r2 + a, n1 − x1 + x2 + b)
B(r2 + a, x2 + b)B(x1 + a, n1 − x1 + b) .

3.A6 Proof of Proposition 3.9.3

Let x2 ∈ N0. Then we have for the conditional PMF fX2|X1=x1 given by (3.28)

(i)

fX2|X1=x1(x2 + 1)

=
(
x2 + 1 + r2 − 1

x2 + 1

)
B(r1 + r2 + a, x1 + x2 + 1 + b)

B(r1 + a, x1 + b)

=
(
x2 + 1 + r2 − 1

x2 + 1

)

× B(r1 + r2 + a, x1 + x2 + b)
B(r1 + a, x1 + b)

x1 + x2 + b

x1 + x2 + b+ r1 + r2 + a

=
(
x2 + r2 − 1

x2

)
x2 + r2
x2 + 1

× x1 + x2 + b

x1 + x2 + b+ r1 + r2 + a

B(r1 + r2 + a, x1 + x2 + b)
B(r1 + a, x1 + b)

= x2 + r

x2 + 1
x1 + x2 + b

x1 + x2 + b+ r1 + r2 + a
fX2|X1(x2),

using (3.39) with s = r1 + r2 + a, t = x1 + x2 + b, k = 0, m = 1.
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(ii) Follows from (i) by straightforward calculations.

3.A7 Proof of Proposition 3.9.4

Let x2 ∈ N0. Then we obtain for the conditional PMF fX2|X1=x1 given by (3.32)

(i)

fX2|X1=x1(x2 + 1)

=
(
x2 + 1 + r2 − 1

x2 + 1

)
B(x1 + r2 + a, n1 − x1 + x2 + 1 + b)

B(x1 + a, n1 − x1 + b)

=
(
x2 + r2 − 1

x2

)
x2 + r2
x2 + 1

× n1 − x1 + x2 + b

r2 + a+ n1 + x2 + b

B(x1 + r2 + a, n1 − x1 + x2 + b)
B(x1 + a, n1 − x1 + b)

= x2 + r2
x2 + 1

n1 − x1 + x2 + b

r2 + a+ n1 + x2 + b
fX2|X1=x1(x2),

using (3.39) with s = x1 + r2 + a, t = n1 − x1 + x2 + b, k = 0, m = 1.

(ii) Follows from (i) by straightforward calculations.



4 Prediction Intervals with Unknown
Sample Size

4.1 Introduction

Chapter 3 studied discrete prediction intervals, where the prediction interval is obtained
from a learning sample, prior information and the confidence level. The future number
of failures is also a discrete prediction target, however the setting and therefore the
approach is quite different. In this case, each member of the population has a continuous
lifetime distribution. The parameters of the lifetime distribution are unknown. The most
commonly used lifetime distributions are the Weibull and the lognormal distribution.
Oftentimes, a prediction can only be made based on observed field data. The prediction
target Y is connected to the data by an unknown vector of parameters θ. The prediction
target can be either within the sample or in a new sample, see Escobar & Meeker (1999).

For a continuous distribution, a prediction interval [Yl, Yu] which satisfies

Pθ(Y ∈ [Yl, Yu]) = γ for all θ (4.1)

exists, if a pivotal quantity is available. A random variable Z(X,Y ) is called pivotal,
if it does not depend on the unknown θ. For the location-scale family, which includes
the Weibull and the lognormal distribution, pivotal quantities are, for example, known
for uncensored data. However, these pivots are no longer pivots under certain censoring
schemes, see Lawless (2003). As such censoring schemes are customary in field data,
the pivotal approach cannot be used. A customary approach is the so-called the naive
or plug-in approach. The resulting prediction interval does not take into account the
uncertainty of the parameter estimates and therefore often has coverage below the desired
nominal confidence level.

Much of the existing literature focuses on improving the naive prediction intervals,
either by analytical means, see Beran (1990), Barndorff-Nielsen & Cox (1996), or by
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using simulation, see Escobar & Meeker (1999), Meng & Meeker (2011), and Mee &
Kushary (1994). This problem is also related to finding a predictive distribution, see
Lawless & Fredette (2005). Escobar & Meeker (1999), and Meng & Meeker (2011) study
the problem of predicting the future number of failures based on censored data. In their
studies, initially n units were put into service at time 0. We extend their setting to the
subgroup problem described below.

Frequently, in modern mass production a specific deviation occurs for a small subgroup
within the total population. These parts have a different lifetime distribution than the
rest of the population. Therefore, the number of future failures from this subpopulation
is the quantity of interest. However, the exact size of this subpopulation is unknown, as
the parts are in the field and cannot be distinguished unless they fail. Hence, prediction
intervals for this problem have to account for additional uncertainty, since the population
size is not known. We consider a parametric framework, where individual lifetimes are
given by a Weibull distribution, although the methodology may be applied to other
continuous lifetime distributions.

The rest of this chapter is structured as follows. In section 4.2 the prerequisites and the
model of the study are discussed. Then, section 4.3, provides the concepts for prediction
intervals in the framework of a known population size. Section 4.4 discusses prediction
intervals with unknown sample size. The final section 4.5 provides a summary and points
out future work.

4.2 Background

4.2.1 Prerequisites

We want to predict the future number of failures of a population, which is a realization
of a random quantity. To predict such a random quantity, two requirements must be
fulfilled.

(i) A statistical model has to be defined which describes the process of interest for the
population. There is an important distinction between parametric models, where
the model consists of a probability distribution depending on a vector θ of variables
and nonparametric models.

(ii) Information about the parameters θ and the population must exist. The informa-
tion about θ can come from experiments, field data or expert knowledge.
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We only consider parametric models, where the lifetimes are described by a continuous
probability distribution with CDF F (t, θ), and a corresponding PDF f(t, θ). For predic-
tion intervals for nonparametric models, see for example Hahn & Meeker (1991). We
will focus on the case where θ is unknown and has to be estimated. In many cases,
θ has to be estimated from censored data. For censored data, there are two standard
assumptions which we will also use, see Lawless (2003).

Assumption 4.2.1. (i) The times of the events of interest are statistically indepen-
dent.

(ii) The censoring times are independent of any event times.

4.2.2 Model

We consider the situation where n units enter the field at time 0. Of these n units, S
have a deviation from their nominal state. A unit with deviation cannot be distinguished
from a unit without deviation unless it fails. S is unknown, but a γ1× 100 % prediction
interval [Sl, Su] is available. We consider a parametric framework where the lifetime of
a member of S is determined by a Weibull distribution with CDF

F (t, η, b) = 1− exp
(
−
(
t

η

)b)
. (4.2)

The lifetimes for the n − S units without the deviation are of no interest and can be
considered as ∞ for simplicity. At some censoring time tc > 0, r > 1 failures occurred,
whose exact failure times are recorded. The remaining n− r units are still in operation
and consequently have censored lifetimes. Based on this censored data, the goal is to
obtain a γ × 100 % prediction interval for the additional number of failures in a future
time period (tc, tp] from the S − r remaining units with deviation.

We consider S to be unknown, but a level γ1 prediction interval [Sl, Su] is available
for S, i.e. P(S ∈ [Sl, Su]) ≥ γ1.

4.2.3 Coverage Concepts

For a given CDF F (t, θ) of continuous type with known θ, an equal-tailed two-sided
100γ % prediction interval [Tl, Tu] for a future observation is obtained by

[Tl, Tu] = [q 1−γ
2
, q 1+γ

2
], (4.3)
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where qα denotes the 100α % quantile of F (t, θ). Consequently,

Pθ(T ∈ [Tl, Tu]) = γ.

In practice, the prediction interval (4.3) is unavailable since θ is unknown and needs to
be estimated. Hence, it is required to obtain prediction intervals procedures, when θ is
estimated.

A given data set, which includes the sample result and the setting such as censoring
times, leads to a parameter estimate θ̂. We focus on θ̂ being the maximum likelihood
estimator (MLE) of θ, although other estimation procedures would also be possible and
can be adapted in a straightforward manner. The target is to obtain an interval [Tl, Tu]
for a future observation with a nominal level of γ. The nominal level γ ∈ (0, 1) is a lower
bound for the actual coverage probability of the prediction interval, i.e.

Pθ(T ∈ [Tl, Tu]) ≥ γ for all θ. (4.4)

We determine intervals [Tl, Tu] = [Tl(θ̂), Tu(θ̂)] as functions of θ̂. Conditional on the
parameter estimate θ̂, a prediction interval [Tl, Tu] = [Tl(θ̂), Tu(θ̂)] has the conditional
coverage probability

Pθ,θ̂(T ∈ [Tl, Tu]) = P(Tl ≤ T ≤ Tu|θ, θ̂) (4.5)

= F (Tu(θ̂), θ)− F (Tl(θ̂), θ). (4.6)

The latter coverage probability cannot be analyzed because θ is unknown. The estimated
data will differ from sample to sample for the same setting. Thus, the estimate θ̂ will also
vary, leading to a different prediction interval [Tl, Tu]. The prediction interval procedure
can be evaluated using the unconditional coverage probability

Pθ(T ∈ [Tl, Tu]) = P(Tl ≤ T ≤ Tu|θ) (4.7)

= Eθ̂[P(Tl ≤ T ≤ Tu|θ, θ̂)] (4.8)

=
∫
θ̂
P(Tl ≤ T ≤ Tu|θ, θ̂)h(θ̂)dθ̂, (4.9)

where h is the PDF of θ̂. This unconditional coverage probability can be evaluated or
approximated using numerical procedures, see for example Escobar & Meeker (1999).
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4.3 Prediction Intervals with Known Sample Size

4.3.1 Naive Prediction Intervals

A straightforward way of obtaining a prediction interval is to use the approach from
equation (4.3) and substitute the unknown θ by the ML estimate θ̂. The resulting
prediction interval is thus

[Tl, Tu] =
[
q̂ 1−γ

2
, q̂ 1+γ

2

]
, (4.10)

where q̂α denotes the α level quantile of F (t, θ̂). This is called the “plug-in” or “naive”
prediction interval. It does not account for the uncertainty of the ML estimate θ̂ with
respect to θ. Therefore, the unconditional coverage can be significantly below the nom-
inal level. If θ̂ has good asymptotic properties, the naive prediction interval will be a
good approximate prediction interval for large sample sizes.

4.3.2 Prediction of the Number of Future Failures

So far, we have only considered individual lifetimes, but not yet the aggregated popula-
tion of size n which we are interested in. A unit which is still operating at the censoring
time tc can either fail or survive the time period (tc, tp] and all units belonging to the
population of size n have the same lifetime distribution (4.2). Hence, conditional on
the number of failures r at time tc, the number of failures Y in (tc, tp] has a binomial
distribution with parameters n− r and ρ, where

ρ = F (tp, η, b)− F (tc, η, b)
1− F (tc, η, b)

. (4.11)

Therefore,

P(Y ≤ k) =
k∑
j=0

(
n− r
j

)
ρj(1− ρ)n−r−j . (4.12)

The ML estimate ρ̂ of ρ is obtained by plugging the ML estimates η̂ and b̂ of the Weibull
parameters η and b into (4.11). It is important to note, that the number of failures r has
an effect on (4.12) in two ways: i) on the remaining population n − r which is directly
visible in (4.12), whereas ii) is more implicit, as the ML estimates η̂ and b̂ are based on
the r exact failure times and the n − r survivors and thus change with r. Therefore, ρ̂
changes with r.

Let δl, δu ∈ (0, 1). Plugging ρ̂ into (4.12), we solve for Yl, the largest k which satisfies

Pρ̂(Y < k) =
k−1∑
j=0

(
n− r
j

)
ρ̂j(1− ρ̂)n−r−j ≤ δl (4.13)
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and for Yu, the smallest k which satisfies

Pρ̂(Y ≤ k) =
k∑
j=0

(
n− r
j

)
ρ̂j(1− ρ̂)n−r−j ≥ δu. (4.14)

For δl = 1−γ
2 , δu = 1+γ

2 , [Yl, Yu] is called the naive two-sided level γ prediction interval.
Consequently, for δl = 1−γ, Yl is the naive one-sided level γ lower prediction bound and
for δu = γ, Yu is the naive one-sided level γ upper prediction bound. The inequalities
in (4.13) and (4.14) are caused by the discreteness of the binomial distribution which
generally prevents an exact solution of (4.13) and (4.14) as an equation.

4.3.3 Calibration

As mentioned before, the naive level γ prediction interval does not have actual coverage
γ. Let H(γ, η, b) be the actual coverage of the naive prediction interval. The idea of
calibration is to find an approximation H̄ of H, depending only on γ and not on the
unknown parameters η and b. In the framework of Escobar & Meeker (1999), this is
done by using the ML estimates and finding a γ′ such that the level γ′ naive prediction
interval has coverage of approximately γ, i.e. H̄(γ′) = γ. The following algorithm by
Escobar & Meeker (1999) can be used to calibrate a naive level γ prediction interval
for a population of size S. This is done by combining the lower and upper one-sided
level (1 + γ)/2 prediction bounds. Let r > 1 be the number of failures at the censoring
time tc, let tp be the prediction time, let θ = (η, b) be the Weibull parameters, and let
θ̂ = (η̂, b̂) be the ML estimate.

Algorithm 4.3.1 (Calibration). (i) Choose a number of simulation runs B.

(ii) Choose a confidence level γ′ > 0.

(iii) For each simulation j, j = 1, . . . , B, sample S failure times from F (t, θ̂) and apply
the censoring pattern at tc. Obtain the number of failures r′j at the censoring time
tc, and the ML estimates θ̂′j of the simulated data.

(iv) Calculate ρ̂′j and the level γ′ naive prediction interval [S′l,j , S′u,j ] from the Bin(S −
r′j , ρ̂

′
j) distribution.
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(v) For each simulation j, calculate

P ′l,j = 1−
S′l,j−1∑
k=0

(
S − r′j
k

)
ρ̂k(1− ρ̂)S−r

′
j−k, (4.15)

P ′u,j =
S′u,j∑
k=0

(
S − r′j
k

)
ρ̂k(1− ρ̂)S−r

′
j−k. (4.16)

(vi) The unconditional coverage can be estimated by

H̄l(γ′) = 1
B

B∑
j=1

P ′l,j , (4.17)

H̄u(γ′) = 1
B

B∑
j=1

P ′u,j . (4.18)

Steps 1 − 6 are repeated until values γ′l, γ′u are found such that (4.17) and (4.18) are
equal to 1+γ

2 .

4.4 Prediction Intervals with Unknown Population Size

4.4.1 Monotonicity of the ML Estimate for the Exponential Distribution

We will show, that for a fixed number of exact observations, the ML estimate θ̂ is
increasing in the sample size n. Let tc > 0 be the censoring time. Let

t∗i =

ti, if ti ≤ tc,

tc, if ti > tc.

For type I censored data with r exact observations and sample size n, the ML estimate
is θ̂ =

∑n

i=1 t
∗
i

r , see for example Lawless (2003). Let n1, n2 ∈ N, n1 < n2 be two sample
sizes. Let r ∈ N be the number of exact observations at some censoring time tc > 0.
Then we have

θ̂2 =
n2∑
i=1

t∗i
r

=
n1∑
i=1

t∗i
r

+ (n2 − n1)tc
r

≥
n1∑
i=1

t∗i
r

= θ̂1.
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Let X ∼ Wbl(η, b), then Xb =: t ∼ Exp(θ), with θ = ηb. Therefore, for a Weibull
distribution with known shape parameter b, with failure times xi, i = 1, . . . , n we have
the ML estimators

θ̂ =
∑n
i=1 ti
r

=
∑n
i=1 x

b
i

r
, (4.19)

η̂ =
(∑n

i=1 ti
r

) 1
b

=
(∑n

i=1 x
b
i

r

) 1
b

. (4.20)

Thus, the monotonicity of the estimate η̂ of the Weibull scale parameter η for a known
shape parameter b follows from the monotonicity of the estimate of the exponential
parameter θ.

For the ML estimate θ̂ of the parameter θ of an exponential distribution, we have for
ρ̂ as introduced in (4.11) and tc < tp

ρ̂ = F (tp, θ̂)− F (tc, θ̂)
1− F (tc, θ̂)

=

(
1− exp

(
− tp

θ̂

))
−
(
1− exp

(
− tc
θ̂

))
1−

(
1− exp

(
− tc
θ̂

))
=

exp
(
− tc
θ̂

)
− exp

(
− tp

θ̂

)
exp

(
− tc
θ̂

) = 1−
exp

(
− tp

θ̂

)
exp

(
− tc
θ̂

) .
Differentiating with respect to θ̂ yields

dρ̂

dθ̂
=
− tp
θ̂2 exp

(
− tp

θ̂

)
exp

(
− tc
θ̂

)
−
(
− exp

(
− tp

θ̂

)
tc
θ̂2 exp

(
− tc
θ̂

))
(
exp

(
− tc
θ̂

))2

=
− exp

(
− tp

θ̂

) (
tp−tc
θ̂2

)
exp

(
− tc
θ̂

) < 0.

It follows that ρ̂ = ρ̂(θ̂) is monotone decreasing in θ̂. Consequently, ρ̂ = ρ̂(n, r) is
monotone decreasing in n for fixed r ∈ N.

4.4.2 Effect of Population Size

As can be seen in equation (4.12), the resulting prediction interval depends on the pop-
ulation size S. Indirectly, the size of the population becomes also present in equation
(4.11), when substituting the ML estimates η̂ and b̂ into the Weibull distribution. For
the ML estimation of the Weibull parameters, the number of exact and censored ob-
servations is required. While the number of exact observation is fixed, the number of
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censored observations requires the population size. Thus, for different population sizes,
the resulting ML estimates are different and consequently the resulting ρ̂ is different.

To adopt the calibration approach for an unknown S, the effect of the population size
on the resulting prediction interval has to be considered. The first step is to adapt the
censored data appropriately to the new setting. If the assumed population Sl size is
smaller than the actual population size S, then S − Sl censored observations have to be
removed. Thus, there are r exact observations and Sl − r censored observations at tc
in the modified data. Accordingly, if the assumed population Su is larger than S, then
Su − S censored observations have to be added to the data. The modified data consists
of r exact and Su − r censored observations at tc in this case.

The first observation from our simulations is that the ML estimate of the Weibull
parameters for different population sizes shows little variation in the shape parameter
b, while the variation in the scale parameter η is high. However, the variation in the
estimate of η also depends on the number of failures and the value of the censoring
time tc. For the same number of failures and the same censoring time, the ML estimate
η̂ is increasing with increasing population size. The ML estimate b̂ is decreasing with
increasing population size.

The behavior of the ML estimates η̂ and b̂ with respect to the population size deter-
mines the effect of the population size on ρ̂. For a fixed number of failures at a censoring
time tc, a larger population size S will lead to a decrease in the value of ρ̂. The latter
observation imposes the question of whether or not, the increase in the population size
will outweigh the decrease in ρ̂.

An obvious starting point to answer this question would be to look at the expected
number of failures in the interval (tc, tp] for different population sizes and the resulting
ML estimates ρ̂ = ρ̂(S) for the binomial proportion ρ. The expected value of a binomial
random variable Y with parameters S and ρ is E[Y ] = Sρ. If the ML estimate ρ̂(S)
of the true population S is small, the (absolute) variation in ρ̂ for different population
sizes is relatively small. This causes Sl × ρ̂(Sl), and Su × ρ̂(Su) to be similar even if
the interval [Sl, Su] for the population size is quite wide. For larger values of ρ̂(S), the
variation in ρ̂ is also larger. In this case,

E[Yl(Sl)] = Sl × ρ̂(Sl) < Su × ρ̂(Su) = E[Yu(Su)]. (4.21)

The difference of the expected values in (4.21) can be significant, if the interval [Sl, Su]
is wide. It should be noted that (4.21) might not hold in general. For cases with small
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variation in ρ̂ it can occur that E[Yl(Sl)] ≈ E[Yu(Su)], although we have not observed a
case where the order is reversed.

4.4.3 Monotonicity Approach

The idea of the monotonicity approach is simple. Based on (4.21), the resulting naive
prediction intervals should be such that the lower bound from the smaller population
Sl is smaller than the lower bound from the larger population Su. Similarly, the naive
upper bound from the larger population Su should be larger than the upper bound from
the smaller population Sl. Since the naive interval is considered as the starting interval
for the calibration, the monotonicity should be kept within the calibration. Our studies
have confirmed this with one minor exception, which we will discuss below.

For a given interval [Sl, Su], the following approach can be used to obtain a prediction
interval for the number of failures.

Algorithm 4.4.1 (Monotonicity Approach). (i) Choose a nominal confidence
level γ for the calibration procedure.

(ii) Obtain the level γ calibrated prediction interval for S = Sl and S = Su.

(iii) Choose the smaller calibrated lower bound Yl = min (Yl(Sl), Yl(Su)), and the larger
calibrated upper bound Yu = max (Yu(Sl), Yu(Su)) to obtain the prediction interval
[Yl, Yu].

As mentioned above, the value S ρ̂(S) is not monotone in S. In the case of a small
variation in ρ̂, which can occur for small values of ρ̂, it can occur that the naive prediction
intervals are the same for the different population sizes. In this case, it can occur that
calibrated lower prediction bound of the larger population is smaller than the calibrated
lower bound of the smaller population. Similarly, it can happen that the calibrated
upper bound of the smaller population is larger than the calibrated upper bound of the
larger population.

However, we have not observed a case where the calibrated upper bound of the smaller
population is larger than the calibrated upper bound of the larger population by more
than 1. We have also not observed a case, where the calibrated lower bound of the larger
population is smaller than the calibrated lower bound of the smaller population by more
than 1. Furthermore, when this effect occurs, the influence of the population size on the
final prediction interval is small, or sometimes even not existing. This implies that the
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exact size of the subgroup with deviation does not have a significant influence on the
number of failures in the time period of interest.

In applications, this is valuable information as investing more resources in reducing
the uncertainty of the affected population will offer little benefit as long as the prediction
period will not have to be extended or the ML estimation changes considerably, e.g. due
to additional failures which were not reported or were delayed. We have not observed a
case where the monotonicity is violated for the naive prediction intervals.

If the difference in (4.21) is increasing, so does the effect of the population size. In
this case, reducing the uncertainty of the population size, which will result in a shorter
prediction interval for the population size, will lead to a much shorter prediction interval
for the number of failures in (tc, tp]. Thus, obtaining a shorter prediction interval for
the population size should be targeted in this case. We now provide two examples to
illustrate the effect of the population size on the calibrated prediction interval.

Example 4.4.2 (Monotonicity approach). Escobar & Meeker (1999) considered the
case where S = 10000 units were put into service. After tc = 48 months, r = 80 units
had failed. They reported the ML estimates of the Weibull distribution as η̂ = 1152, and
b̂ = 1.51. We adopt this case and take [8202, 12038] as the prediction interval for the
population size. For illustration purposes, this interval was chosen such that S = 10000
is approximately in the center of the interval. The interval is the result from Thatcher’s
(1964) procedure with a learning sample of size 1000 with 100 ‘successes’ and a confidence
level of γ1 = 0.95 and a total population of 100000. We created a data set from the true
Weibull parameters η = 1152, b = 1.51 and obtained r = 71 failures at tc = 48. The
prediction time period is the next 12 months, thus tp = 60. The resulting ML estimates
for the binomial parameter ρ are

ρ̂(Sl) = 0.0039, ρ̂(S) = 0.0032, ρ̂(Su) = 0.0027.

The resulting γ = 0.9 naive prediction intervals are [23, 42] for all cases and the cali-
brated prediction intervals are [20, 45], which was also the result in the original example.
Therefore, [20, 45] would be the calibrated prediction interval.

Example 4.4.2 illustrates the case, where the population size has no influence on the
final prediction interval, as long as it is contained in the prediction interval for the
population size.
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Example 4.4.3 (Monotonicity approach). Consider a true population size of S =
100. Again, we chose a suitable Thatcher prediction interval of level γ1 = 0.95 such that
the true population size is approximately in the center of the interval. The prediction
interval for the population is [47, 180]. This is the Thatcher prediction interval for a
sample size of 100, 10 ‘successes’ and a total population of 1000. At the censoring time
tc = 36, r = 20 failures were reported. We used the true parameters, η = 76.8, and
b = 1.518. The prediction period was taken as (36, 72]. The resulting ML estimates for
ρ are

ρ̂(Sl) = 0.8423, ρ̂(S) = 0.4756, ρ̂(Su) = 0.2774.

The level γ = 0.9 calibrated prediction intervals are [16, 27], [22, 53], [25, 64]. Therefore,
the final prediction interval is [16, 64].

In example 4.4.3, the population size has a significant influence on the final prediction
interval. For the lower estimate of the population size 47, at the censoring time only
27 units are still operating. Since the proportion failing in (tc, tp] is large, the total
remaining population limits the total number of failures. Therefore, it is not surprising
that the resulting upper bound is significantly smaller than upper bound for S = 100 or
Su = 180. However, for S = 100 and for Su = 180, the resulting calibrated upper bounds
are not close to the number of operating units at the censoring time. Nevertheless, the
upper bound from Su is significantly larger than the upper bound from S.

The advantages of the monotonicity approaches are obvious. If a prediction interval for
the population size is available, the calibration procedure to improve the naive prediction
intervals can be adopted in a simple manner.

Before executing the computationally intensive calibration, calculating the expected
value, i.e. the point estimate as in (4.21), can offer a first insight whether the population
size has a sizeable effect on the resulting prediction interval. If the effect of the population
size is small, the coverage properties of the resulting interval are similar to those in the
case with a known population size. See Meng & Meeker (2011) for a study on the
coverage properties for a known population size.

If the effect on the population size is large, then the coverage properties are also
changed significantly. As calibration aims to bring the coverage for a given population
size close to the desired nominal level, combining the smaller lower bound and the
larger upper bound to obtain a prediction interval results in a wide and often highly
conservative prediction interval. This is caused by the fact that the true population will
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only in a very few cases take the boundary values. In many cases, the population lies in
the interior of the interval where, if the population size S were known, a much shorter
prediction interval would be obtained.

4.4.4 Distribution-based Approach

In this section, we suggest a method to reduce the length of the resulting prediction
interval of the monotonicity approach. This approach is of course only reasonable, if
the length of the prediction interval has a significant influence on the final prediction
interval. In example 4.4.2 and example 4.4.3, we computed Thatcher prediction intervals
for the population size. While the Thatcher interval is a conservative procedure to
predict a binomial random variable based on a random sample from the same binomial
distribution, it provides no information on the location of the predicted random variable
within the interval. In chapter 3, we introduced a framework for frequentist prediction
intervals with prior information for some discrete distributions. Unlike the Thatcher
interval, these intervals contain information on the location of the predicted random
variable within the prediction interval. This information is given by the conditional
distribution given X1 = x1.

The approach we introduce in the remainder of this sections makes use of such a
conditional distribution. It does not use a prior and posterior distribution as a Bayesian
approach would do and is therefore a frequentist approach.

Consider we have a discrete probability distribution with PMF g, which describes
the distribution of the population size within the prediction interval. In practice, this
distribution could be specified by expert knowledge or by obtaining a prediction interval
from a sample with the same distribution, where prior information about the underlying
distribution parameter exists.

For example, if a binomial sample is used to predict a binomial random variable,
and there exists prior information on the underlying parameter p in form of a beta
distribution, then g would be the PMF of the beta-binomial distribution, see section
3.4. However, basically any discrete probability distribution, such as the binomial, the
negative binomial, or the Poisson distribution, are possible candidates.

Now, given [Sl, Su] should be a level γ1 prediction interval, the sum of g over all
elements should ideally be equal to γ1. However, this is in general not possible due to
the discreteness of the distribution for the population size. We now propose a procedure
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to use the probabilistic structure of the interval [Sl, Su] to obtain a prediction interval
for the number of failures in (tc, tp].

Algorithm 4.4.4 (Distribution-based approach). (i) For each S ∈ [Sl, Su], cal-
culate the calibrated level γ prediction interval [Yl(S), Yu(S)] for the available data.

(ii) For each S ∈ [Sl, Su], calculate

WS = g(S, ·)∑
W∈[Sl,Su] g(W, ·) . (4.22)

(iii) For each S ∈ [Sl, Su], obtain the products WS × Yl(S) and WS × Yu(S).

(iv) The lower bound Yl is given by the largest integer smaller than

Zl =
∑

S∈[Sl,Su]
WSYl(S). (4.23)

(v) The upper bound Yu is given by the smallest integer larger than

Zu =
∑

S∈[Sl,Su]
WSYu(S). (4.24)

In step 1, the calibrated prediction interval is obtained for every population size within
the interval [Sl, Su]. In step 2, the weight for each S ∈ [Sl, Su] is calculated. The weights
are normalized to the overall probability of [Sl, Su] according to g. Thus, the sum
of the weights over [Sl, Su] equals 1. In step 3, the calibrated prediction bounds are
weighted with their respective weights. The resulting prediction bounds are the sum of
the weighted prediction bounds, rounded to the next smaller / larger integer.

Example 4.4.5 (Distribution-based approach). Consider a population of 100, and
a prediction interval of [37, 136] for the population size S. This prediction is obtained
using the procedure from section 3.5 with X1 = 10, n1 = 100, n2 = 800, γ = 0.95 and
the prior information is given by the beta distribution with parameters a = 1, b = 2. The
true Weibull parameters are η = 76.8 and b = 2.3. At the censoring time tc = 36, r = 17
had failed. The prediction period is (36, 72]. The calibrated level γ = 0.90 prediction
interval using the monotonicity approach yields the interval [11, 49]. The beta-binomial
weighted prediction interval using the distribution based approach results in the interval
[14, 41].
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Example 3 shows the benefit of a distribution-based approach. The interval length
is considerably shorter due to the usage of the probabilistic structure of the interval
[Sl, Su]. The size of the reduction in interval length depends on two factors.

The first factor is the same as for the monotonicity approach: the variation in ρ̂ and
its influence on the intervals length of the monotonicity approach. The second factor is
the shape of the distribution of the population size prediction interval. This distribution
determines which of the calibrated intervals are weighted most heavily, and thus have
the highest influence on the resulting prediction interval.

The weighting of the calibrated intervals points out the importance of the correct
choice and characterization of g when using this approach. Furthermore, there are also
natural limits to this approach, as for example, a very extreme case of a point prediction
for the population size reduces the approach to the interval for an assumed known
population size.

4.5 Concluding Remarks and Future Work

This chapter has established a framework to predict the number of failures in a future
time period with an unknown population size.

There are several topics for future work. For the monotonicity approach, analytical
results regarding the influence of the population size on the ML estimates would be
desirable. Furthermore, the effect of the variation in ρ̂ and the population size should be
studied in more detail. The transition, when the length of the population size interval
starts to influence the final prediction interval is of particularly interest.

The overall coverage of the final prediction interval should be studied in detail for
both presented approaches. Other possibilities to use the distribution of the prediction
interval for the population size to obtain a prediction interval can be considered. For
example, the sampling of the population size could be included in the simulations.



5 Failure Prediction with Reporting Delay

5.1 Introduction

In the previous chapter 4, failure prediction based on censored field data with unknown
sample size was discussed. The main problem in this setting was the unknown size of
the subgroup, which affects the parameter estimation of the lifetime distribution and
the remaining population at the censoring time. In the setting of the previous chapter,
no additional noise in the field data was present. However, most of the time additional
noise is present in the setting of field data, which needs to be accounted for.

Nelson (2000) and Nordman & Meeker (2002) studied Weibull prediction intervals for
a future number of failures with a given shape parameter. Escobar & Meeker (1999)
studied a failure prediction problem for time-censored data in two situations: single
time of field entry where all units enter the field at the same time, and staggered field
entry where units enter the field over a longer period of time. Staggered entry leads to
different ages of the units in the field at the time of censoring. In particular, Escobar &
Meeker (1999) focused on improving the naive prediction interval using simulation-based
calibration. The coverage properties of this problem were subsequently studied by Meng
& Meeker (2011) for the Weibull distribution. Extensive literature exists on forecasting
in the context of warranty claims, see for example Kalbfleisch & Robinson (1991), Wu
& Akbarov (2012), Akbarov & Wu (2012) and Majeske (2007).

Another important problem in industry is forecasting in the context of risk assess-
ments, where the number of failures resulting from one specific technical root cause is of
interest. In this case, the observed number of failures at some point in time is smaller
than in the warranty case. Furthermore, these risk assessments are time-critical and
require fast responses. This has not received much attention in the literature. Wu &
Akbarov (2012) consider warranty forecasts for a recently launched product with lit-
tle field experience, where similar past products with longtime field experience exist.
However, this is a significantly different situation than in risk assessments, as in many
modern production environments one specific technical root cause changes the lifetime
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behavior over a limited production period. Therefore, no comparable products with
longtime field data exist.

Reporting delays occur frequently and can be significant in length. This becomes
particularly crucial, if the time in field is short. Reporting delays have been studied in
the warranty claim framework, e.g., by Kalbfleisch & Lawless (1992) and Kalbfleisch &
Robinson (1991). Estimating the delay time distribution has received particular atten-
tion, see Kalbfleisch & Lawless (1992). Recently, Hong et al. (2009) suggested a model
for failure prediction with reporting delays and product retirement. Hong et al. (2009)
also noted the lack of studies in their context.

The topics of the present chapter are the evaluation of the effect of reporting delays
in terms of the coverage properties of the resulting prediction interval, and the study
of the efficiency of methods to account for the truncation in terms of coverage. These
topics have not yet been considered by the relevant literature. This chapter is structured
as follows: Section 5.2 states the scope which is subsequently studied. In section 5.3,
some important concepts in the realm of prediction intervals are reviewed. Then, the
influence of truncation on the prediction intervals is studied in section 5.4. Methods to
account for the data truncation are presented in section 5.5. The parameters for the
simulation study are introduced in section 5.6. The methods are evaluated in terms of
their coverage properties in section 5.7. Section 5.8 concludes.

5.2 Model

In this section, we define the model under consideration. For both, failures times and
delay times, we use a parametric framework. We consider a total population of size n
where each member i = 1, . . . , n with lifetimes x1, . . . , xn fails according to a continuous
lifetime distribution with CDF F (x, θ). We focus on a Weibull model, i.e., θ = (η, b)
and CDF

F (x, η, b) = 1− exp
(
−
(
x

η

)b)
, (5.1)

where η is the scale parameter and b the shape parameter. We consider a fixed censoring
time tc at which the number of failures r is recorded. From this data, we want to estimate
the total number of failures in an interval (tc, tp], where tp > tc. Often, tp is the warranty
time or contractually stipulated lifetime, but other choices such as a one year time period
are also common.
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Failures are not reported instantaneously, but with a reporting delay τi, i = 1, . . . n.
We model the delay times as iid lognormal random variables, τi ∼ logn(µ, σ) with CDF

G(τ, µ, σ) = Φ
( log(τ)− µ

σ

)
, (5.2)

where Φ(·) is the CDF of the standard normal distribution. Modelling the reporting delay
by a lognormal distribution provides a good fit to real world data. When a failure is
reported, the exact failure time xj and the reporting time xj+τj are observed. Reporting
delays induce a right truncation on the data. At the censoring time, the failure of unit
j ∈ {1, . . . , n} is only observable if xj + τj ≤ tc. If xj ≤ tc, but xj + τj > tc, the unit
has already failed before the censoring time, but the failure time cannot be observed.
In the latter situation, the unit j seemingly has the censored lifetime xj = tc, although
in reality the unit failed before tc with actual lifetime xj < tc. In practice, mutual
influences between the reporting and the failure process are out of scope. We can safely
assume the independence of xi and τi.

5.3 Prediction Intervals

5.3.1 Types of Observations

There are three classes of observations. Exact observations, censored observations and
truncated observations. Censoring and truncation can be combined. The right censored
and right truncated observation types relevant for our problem are listed in table 5.1.
Censoring has been studied extensively in the literature, e.g., see Lawless (2003) for a
detailed treatment of the matter. Type I censoring, also called time censoring, uses a
predetermined time threshold. Thus the number of exact observations in the sample is
random. Type II censoring stops when a predetermined number of exact observations
has been recorded. In this case, the censoring time is random.
Right truncation occurs when an observation is only possible below a threshold value.

Above the threshold, the existence of the observation is not known. For a right truncated
random variable Tr with truncation at τr, we have

P(Tr ≤ t|Tr < τr) = F (t, θ)
F (τr, θ)

for 0 ≤ t < τr.

When considering the reporting times xj + τj , the data is type I right censored with
threshold tc as in table 5.1. However, only the lifetimes xj are of interest for the inference.
xj is only observable if xj + τj ≤ tc. The lifetimes xj can also be considered as truncated
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Table 5.1: Censored and truncated information constructed from a sample Z1, ..., Zn with
ordered values Z(1,n) ≤ ... ≤ Z(n,n)

type I right censored
with threshold tc

Y1 = Z(1,n), ..., Yktc
= Z(ktc ,n), Z` = tc for ` = ktc

+ 1, .., n,
where Z(ktc ,n) ≤ tc < Z(ktc +1,n)

type II right censored
with threshold 1 ≤
k < n

Y1 = Z(1,n), ..., Yk = Z(k,n), Y` = Z(k,n) for ` = k + 1, .., n

right truncation with
threshold t

Y1 = Z(1,n), ..., Ykt
= Z(kt,n), where Z(kt,n) ≤ t < Z(kt+1,n)

at random thresholds tc− τj . This is a truncation condition analogous to the one stated
in row three of table 5.1 with random threshold tc − τj ,for each xj . Besides, we assume
the total number of units n to be known. Thus, we differ substantially from both of the
classical concepts in table 5.1. In the present context, we refer to the above described
sample setting as truncated.

5.3.2 Failure Prediction for a Population

So far, we have only considered individual lifetimes, but not yet the aggregated popula-
tion of size n which we are interested in. A unit which is still operating at the censoring
time tc can either fail or survive the time period (tc, tp] and all units belonging to the
population of size n have the same lifetime distribution (5.1). Hence, conditional on
the number of failures r at time tc, the number of failures Y in (tc, tp] has a binomial
distribution with parameters n− r and ρ, where

ρ = F (tp, η, b)− F (tc, η, b)
1− F (tc, η, b)

. (5.3)

Therefore,

P(Y ≤ k) =
k∑
j=0

(
n− r
j

)
ρj(1− ρ)n−r−j . (5.4)

The ML estimate ρ̂ of ρ is obtained by plugging the ML estimates η̂ and b̂ of the
Weibull parameters η and b into (5.3). When plugging the ML estimate ρ̂ into (5.4), it
is important to note, that the number of failures r has an effect on (5.4) in two ways: i)
on the remaining population n− r which is directly visible in (5.4), whereas ii) is more
implicit, as the ML estimates η̂ and b̂ are based on the r exact failure times and the
n− r survivors and thus change with r. Therefore, ρ̂ changes with r.
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Let δl, δu ∈ (0, 1). Plugging ρ̂ into (5.4), we solve for yl, the largest k which satisfies

P(Y < k) =
k−1∑
j=0

(
n− r
j

)
ρ̂j(1− ρ̂)n−r−j ≤ δl (5.5)

and for yu, the smallest k which satisfies

P(Y ≤ k) =
k∑
j=0

(
n− r
j

)
ρ̂j(1− ρ̂)n−r−j ≥ δu. (5.6)

For δl = 1−γ
2 , δu = 1+γ

2 , [yl, yu] is called the naive two-sided level γ prediction interval.
For δl = 1−γ, yl is the naive one-sided level γ lower prediction bound and for δu = γ, yu

is the naive one-sided level γ upper prediction bound. The inequalities in (5.5) and (5.6)
are caused by the discreteness of the binomial distribution which generally prevents
an exact solution of (5.5) and (5.6) as an equation. Since the truncation leads to an
underestimation of the number of failures at the censoring time and subsequently to a
smaller upper prediction bound, we will focus on the one-sided upper prediction interval.

5.4 Effect of Truncation on Prediction Interval

The truncation has effects on the (naive) prediction interval for the number of failures as
described in section 5.3.2. The truncation has effects on the (naive) prediction interval
for the number of failures as described in section 5.3.2. We will discuss the effect of the
ML estimation in this section

The failure probability ρ̂ = ρ̂(η̂, b̂) as defined in (5.3) is a function of the Weibull
ML estimates. The question is which likelihood function should be used. For a fixed
truncation time tf , an ML estimation can be done on the so-called truncated conditional
likelihood

Ltrunc(θ) =
∏

i:xi≤tf

f(xi, θ)
F (tf , θ)

. (5.7)

The estimate resulting from (5.7) is however quite uninformative, as has been reported
by Kalbfleisch & Lawless (1988) for the classical truncation case, particularly in cases
where only a small proportion of the total population has exact lifetimes. This is the
common case in many applications in industry. Furthermore, the truncation time in our
case is not fixed, but varies on the unit index i.
The censored likelihood

Lcens(θ) =
∏

i:xi≤tc
f(xi, θ)

∏
i:xi>tc

F̄ (tc, θ) (5.8)
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uses information on the remaining population at the censoring time tc. Therefore, this
information should not be disregarded, if possible. Without the presence of delay times,
this estimator contains all existing information. However, if the number of truncated
observations is > 0, (5.8) treats some units which have a lifetime less than the censoring
time as censored observations, which induces bias. If (5.8) is used regardless of the
truncation, the proportion of units failing until tp is underestimated.

Furthermore, the binomial prediction interval derived from (5.4) uses the remaining
population at the censoring time. Therefore, using only the reported failures will lead to
a different prediction interval than the one which would be available without reporting
delays.

5.5 Approaches

Fundamentally, there are at least two possible approaches to adjust for possible missed
observations due to reporting delay: A time shift of the censoring time or a probabilistic
adjustment of the reported number of failures. These two approaches will be presented
in this section.

In the simplest case, the reporting delay is a constant, known time period d. In this
case, the adjusted censoring time t′c is the original censoring time tc minus the constant
reporting delay, i.e. t′c = tc−d. Thus, the prediction period (tc, tp] would be extended to
the left by the reporting delay, i.e. the prediction period becomes (t′c, tp]. The parameters
can thus be estimated on the censored data set in the sense of table 5.1, where all failures
up to the adjusted censoring time t′c are known.

However, if there is either uncertainty with regard to the length of reporting delay, or
the reporting delay is completely stochastic in its nature, described through a probability
distribution with CDF G(t, µ, σ), the shift in the censoring time cannot be done exact
anymore. However, the idea of shifting the censoring time such that no failures have
occurred between the shifted and the actual censored time can be adapted. This will be
explored in section 5.5.1.

The alternative idea is, instead of shifting the censoring time, to estimate the number
of unreported failures which already occurred, thus estimating the actual number of
failures at the censoring time. This can be done by estimating the probability of a
failure with a delay time such that a truncation occurs. This approach will be explored
in section 5.5.2.
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5.5.1 Shifting the Censoring Time

We explore the idea to shift back the censoring time such that the data at the new
censoring time does not contain any truncated observations. It is worth mentioning that
a forecast at tc could be done at time tc+d, where all failures prior to tc will be reported.
However, in many applications the analysis is time critical and d may amount to several
months, thus we do not consider this option further.

Let tc be the original censoring time and let robs be the number of reported failures
at tc. For i = 1, . . . , robs, we have ordered failure times x1, . . . , xrobs , reporting times
y1, . . . , yrobs , and delay times τ1 = y1 − x1, . . . , τrobs = yrobs − xrobs . Let xrobs+1 be the
failure time for the first future reported failure. Ideally, if xrobs+1 were known, the
maximum available amount of information is used for the parameter estimation. The
shifted censoring time in this case is

t̃c = max
xrobs≤t≤tc

{xrobs+1 > t}. (5.9)

If the reporting delay is a constant d > 0 and known, all failures before tc − d are
reported at tc and the data can be considered as censored in the sense of row 1 of table
5.1 with censoring time tc − d. The idea of the approach presented in this section is
to approximate this setting, if d is stochastic. In the sequel, we consider the stochastic
delay time with a delay time distribution G(µ, σ). Estimating a nonparametric delay
time distribution has been considered by Kalbfleisch & Lawless (1992).

There are several ways to handle the uncertainty. If a meaningful maximum upper
delay time can be estimated, a conservative approach is to use this upper bound and
consider this as a constant delay time. Two of the most easily available and used quan-
tities of a distribution are the mean and the median. Subsequently, we will use these
parameters for shifting the censoring time.

Additional uncertainty is introduced, if the parameters of the delay time distribution
are also unknown and thus have to be estimated. This uncertainty is usually smaller
because reporting schemes tend to be similar, regardless of the product in consideration,
whereas the failure distribution is not. Thus, the database of the manufacturer may
contain comprehensive and representative information on the reporting delay, such that
parameters can be reliably estimated. Here, we consider the parameters of the delay time
distribution to be known. Let G(t) = G(t, µ, σ) be the CDF of a lognormal distribution
with µ ∈ (−∞,∞), σ > 0. Then for τ ∼ G(t, µ, σ) we have

E[τ ] = eµ+ 1
2σ

2
, V [τ ] = (eσ2 − 1)e2µ+σ2

,median(τ) = eµ. (5.10)
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We define the shifted censoring times

tce = tc − E[τ ], (5.11)

tcm = tc −median(τ). (5.12)

From (5.10) it is obvious that E[τ ] ≥ median(τ). Thus, tce ≤ tcm . Of course, tcm , tce
should be greater than 0. The prolonged prediction period then becomes (tcE , tp], and
(tcM , tp] respectively. Then, the parameter estimates η̂ and b̂ for η and b are based on
(5.8). The estimates for the failure probability ρ are

ρ̂ce = F (tp, η̂, b̂)− F (tce , η̂, b̂)
1− F (tce , η̂, b̂)

, (5.13)

ρ̂cm = F (tp, η̂, b̂)− F (tcm , η̂, b̂)
1− F (tcm , η̂, b̂)

. (5.14)

The naive prediction intervals can now be obtained as described in section 5.3.2 using
ρ̂ce and ρ̂cm . The approach can be easily adopted for any α-quantile qα for the delay
time distribution, which for example could be specified by an expert. In this case,

tcq = tc − qα, (5.15)

and

ρ̂cq =
F (tp, η̂, b̂)− F (tcq , η̂, b̂)

1− F (tcq , η̂, b̂)
. (5.16)

5.5.2 Adjusting the Number of Failures

The probabilistic approach is based on the idea of estimating the actual number of
failures at tc, i.e. |{j ∈ {1, . . . , n} : xj ≤ tc}|, by using the reported number of failures
and the delay time distribution.

Again, we consider a censoring time tc. Let robs be the number of reported failures at
tc and let rt,tc be the number of failures which occurred at t, t ≤ tc and were reported
before tc. Let G(t) = G(t, µ, σ) be the CDF of the reporting delay distribution, and let
F (t, η, b) be the CDF of the Weibull failure distribution. A point estimate for the actual
number of failures at a time t, t ≤ tc is given by

r̃t = rt,tc
G(tc − t, µ, σ) . (5.17)

The estimator is motivated by the fact that only G(tc− t, µ, σ)×100 % of the failures at
time t have a reporting delay τ ≤ tc − t and are thus reported before tc. This estimator
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has also been suggested by Kalbfleisch & Lawless (1992). It follows from (5.17) that any
time t, where a failure occurs will receive a sort of weight. For reported failures times
x1, . . . , xrobs , the actual number of failures before tc can thus be estimated by

r̂tc =
⌈ robs∑
k=1

rxk,tc
G(tc − xk, µ, σ)

⌉
. (5.18)

The standard procedure in the prediction problem without reporting delay is to estimate
the parameters of the lifetime distribution based on the censored lifetime data (5.8). This
is usually done using maximum likelihood. Therefore, it is required to have the exact
lifetimes of the failures before tc and the censoring time tc. Adjusting the total number
of failures reported at tc upwards creates a sort of artificial failures, where no failure data
is available at the time of the analysis. To use these failures in the maximum likelihood
estimation, failure data has to be created. This can be done by using the delay time
CDF G and create a failure time between 0 and tc,

x̂j = tc − τj , (5.19)

where τj is a random variable with CDF G(µ, σ). (5.19) implies, that all artificial failures
are reported at tc. Of course, a reporting time > tc could be chosen but this has two
drawbacks. First, additional assumptions about the distribution of the reporting dates
need to be made. Second, for the same delay time τj , the resulting failure time xj is
larger, leading to an ML estimate which results in a less conservative prediction bound.

Now the data set contains r̂tc failures with failure times x1, . . . , xrobs , x̂robs+1 , . . . , x̂rtc ,

where r̂tc−robs failures have not been reported and are artificially created. This adjusted
data set is then treated as a censored data set, but without any truncation. Thus the
ML estimation is done as in the classical censored problem (5.8). The prediction interval
is then obtained as described in section 5.3.2. The estimator r̂tc is used in (4.12) as the
number of failures r.

5.6 Simulation

In this section, we present the setup for the simulation which was done to evaluate
coverage properties of the naive prediction interval in our model. As a basis, we used
the factors from the simulation study by Meng & Meeker (2011) and added additional
factors for truncation and the delay time distribution.

(i) pf : the expected proportion failing before the censoring time tc
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(ii) Er : the expected number of failures before the censoring time tc

(iii) Em : the expected number of failures between the censoring time and the future
prediction time tp

(iv) η : the Weibull scale parameter

(v) b : the Weibull shape parameter

We set the expected value and the variance in (5.10) for a lognormal random
variable τ modelling the delay time to a proportion of the censoring time tc to
scale the sizes of the delay times properly to the sizes of the lifetimes.

(vi) Etrunc ∈ (0, 1) : proportion of the censoring time for the expected value. The
expected number of truncated observations (= unreported failures) increases with
Etrunc

(vii) Vtrunc ∈ (0, 1) : proportion of the censoring time for the variance

From these factors, some additional factors have to be derived for a suitable statistical
model.

(i) the population size n : n = Er
pf

(ii) the censoring time tc : tc = F−1
Weibull(pf , η, b), where FWeibull(·)−1 denotes the inverse

of the CDF defined in (5.1)

(iii) the prediction time tp : tp = F−1
Weibull

(
Er+Em

n , η, b
)

(iv) the lognormal parameter µ : µ = log

 Etrunctc√
Vtrunc
E2

trunctc
+1


(v) the lognormal parameter σ : σ =

√
log

(
Vtrunc
E2

trunctc
+ 1

)
The lognormal parameters µ and σ are obtained by setting E[τ ] = Etrunctc and V [τ ] =
Vtrunctc in (5.10) and solve the two equations for the two parameters.

Furthermore, we used an exponential delay time distribution with parameter λ as an
alternative to the lognormal distribution. The exponential distribution is used to model
a situation where short reporting delays are more likely than large reporting delays.

We evaluate the coverage in section 5.7 by using the following scheme.
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(i) Use the true parameters of the lifetime distribution and the true parameters of
the delay time distribution to simulate m = 10000 samples of lifetimes and delay
times.

(ii) Apply the censoring and truncation scheme described in section 5.2. In particular,
obtain the number of failures robs with xj + τj ≤ tc and the actual number of
failures r with xj ≤ tc.

(iii) For each sample j = 1, . . . ,m, obtain the naive upper bound ua,j for the approaches
a described in section 5.5. Furthermore, obtain the naive prediction intervals us-
ing the censored case without reporting delays and the naive prediction intervals
treating the case with reporting delays without any adjustments.

(iv) For each sample, j = 1, . . . ,m and each approach a, obtain pa,j = P(Y ≤ ua,j)
for the binomial CDF (5.4) with the remaining population size and true binomial
parameter ρ obtained from (5.3) by using the true Weibull parameters.

(v) The unconditional coverage probability, as defined by (4.7) in section 4.2.3, for each
approach is approximated by 1

m

∑m
j=1 pa,j .

The justification for the final step is given by Escobar & Meeker (1999), as mentioned
in section 4.2.3.

5.7 Results

We present the most relevant results of the simulation study in this section. For the
failure time distribution, we considered only η = 1, as it is a scale parameter and other
values η can be transformed to this case. Furthermore, we report the results only for
b = 1. Approximate invariance of the coverage results have been reported by Meng &
Meeker (2011) and Genschel & Meeker (2010).

As a benchmark, we use the coverage of the censored sample, which is available in
a simulation study. This is justified as the censored case is the result without any de-
lay times and thus the maximum attainable information at the censoring time in the
considered setting. Even for the censored case, the coverage of the naive prediction inter-
vals can be significantly below the nominal coverage level, especially for long prediction
periods.



5.7 Results 89

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.1: Coverage versus expected number of failures in (tc, tp] with lognormal delay
time distribution, n = 1000, Er = 10, Etrunc = 0.10.
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Figure 5.2: Coverage versus expected number of failures in (tc, tp] with lognormal delay
time distribution, n = 1000, Er = 10, Etrunc = 0.20.

However, the coverage properties of the naive prediction interval in the censored case
can be improved towards the nominal coverage by using calibration, see Meng & Meeker
(2011). Therefore, it seems likely that this can also be achieved for the truncated case, if
the coverage in truncated case is close to the coverage in the censored case. For compar-
ison we also provide the coverage of the upper bound which is obtained by ignoring the
data truncation and proceeding as described in section 5.3.2 without any adjustment. If
the coverage of a method is smaller than in the censored case, the loss in information
due to the reporting delay is not compensated sufficiently.

In figure 5.1, the coverage of all methods is only slightly worse than the benchmark
coverage of the censored sample. This can be explained by the small expected truncation
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Figure 5.3: Coverage versus expected number of failures in (tc, tp] with lognormal delay
time distribution, n = 1000, Er = 10, Etrunc = 0.30.

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Figure 5.4: Coverage versus expected number of failures in (tc, tp] with lognormal delay
time distribution, n = 67, Er = 20, Etrunc = 0.10.

and the overall small proportion of failing units. The mean adjustment in this case
prolongs the prediction period to such an extent, that the upper bound is larger than in
the censored case.

With increasing truncation, the coverage decreases for all methods. The gap between
the censored coverage and the nonadjusted coverage widens considerably. This can be
seen in figure 5.2 and figure 5.3. The coverage decrease is larger for the time adjusted
methods than for the probability adjustment. For a large number of failures in the pre-
diction period, the mean adjustment is no longer more conservative than the benchmark.
The time shift by the median adjustment is small, the coverage is only slightly better
than in the nonadjusted case.
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Figure 5.5: Coverage versus expected number of failures in (tc, tp] with lognormal delay
time distribution, n = 67, Er = 20, Etrunc = 0.20.
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Figure 5.6: Coverage versus expected number of failures in (tc, tp] with lognormal delay
time distribution, n = 67, Er = 20, Etrunc = 0.30.

If the proportion of units failing is larger, the coverage drops more strongly. This
can be seen in figures 5.4, 5.5 and 5.6. In particular, the coverage of the mean adjust-
ment drops for smaller prediction periods. For a large proportion failing, the variance
influences the probability adjustment. For a larger variance, the number of unreported
failures is scaled upwards more strongly. Therefore, the resulting upper bounds are
higher leading to a better coverage. This can be seen in figure 5.6.
Finally, the effect of an exponential delay time distribution is shown in figure 5.7.

The coverage of mean and median shift are much more similar than in the lognormal
case. For both cases, the coverage is better than in the nonadjusted case. For a short
prediction period, the time shift appears superior to the probability adjustment. The
probability adjustment is not as close to the benchmark case as in the lognormal case,
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Figure 5.7: Coverage versus expected number of failures in (tc, tp] with exponential delay
time distribution.

but is superior to the chosen time adjustments for longer prediction periods.

5.8 Conclusion

We have studied the effect of reporting delays on Weibull prediction intervals for the
future number of failures. We proposed two methods to account for the truncation
which is induced by the delay between failure and reporting. Both methods improve the
coverage compared to the unmodified prediction interval.

For the time adjustment, the length of the adjustment is crucial. A longer shift
backwards results in a more conservative upper bound. An adequate choice depends on
the specific case under consideration.

For the practitioner, the time adjustment is easier to apply and to communicate. How-
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ever, in many cases, when there is little field data available, a meaningful shift will be
near the time 0. The probability adjustment approach does not suffer from the short-
comings of the time shift approach and is less dependent on the specific case of interest.
It also shows dependency on the variance and the delay time distribution. Besides, prob-
ability adjustment is difficult to communicate, as artificial failures have to be created
and used.

There are several areas for future research. The improvement of the naive prediction in-
terval through calibration should be studied in the case of truncation. Furthermore, the
sensitivity of the coverage to the parameters of the delay time distribution should also be
considered, as in applications there will be at least some uncertainty about the param-
eters of delay time distribution as well. As an alternative to the parametric approach
presented in this chapter, the probability adjustment could be done in a nonparamet-
ric way by using a suitable inequality, e.g. Camp-Meidell, for the values of the delay
distribution function.

Finally, another crucial truncation often present in prediction problems is caused by
incomplete reporting. Incomplete reporting can occur for various reasons; the customer
might only report a certain percentage of the total number of failures to a supplier, or
warranty claims are only recorded for certain markets. A suitable stochastic model for
this situation is also desirable for future work.



6 Confidence Intervals for a Product of
Two Binomial Proportions

6.1 Introduction

In the previous chapters, prediction intervals were considered in various settings related
to the occurrence of small subgroups with different lifetime behavior. In this chapter, we
will look at the problem from a different perspective in form of a total probability failing
for the whole population, which can be decomposed into a probability of belonging to
the subgroup and a failure probability, conditional on belonging to the subgroup. In this
case, the lifetime distribution is transferred into one relevant failure probability. This
approach can be suitable if information on the failure probability can be determined in
an laboratory environment, for example.

Consider the following more concrete example from risk assessment in the production
of wafers for electronic components in automobiles. The wafers are produced in large
batches under fixed machine settings. After a part of a specific batch has been processed
in automobile manufacturing, end-of-line (EOL) testing of finished cars reveals occasional
wafer failures. The EOL test results are reported to the wafer manufacturer. Diagnostics
undertaken by the wafer manufacturer reveal a unique failure root cause C1 occurring
on a proportion p1 of the wafers. The root cause C1 leads to a failure C2 with a
small conditional probability p2. Then the total failure probability of a wafer is the
product q = p1p2. However, the presented scheme is general and in many industrial
applications, a failure probability q can be decomposed into a product q = p1p2 of two
factor probabilities.

In contemporary industrial environments, the total failure probability q is very small.
Feasible sample sizes are insufficient to estimate small q with due precision directly. The
decomposition q = p1p2 enables sufficiently accurate estimation. The probability p1 of
having the root cause C1 is usually large enough to be estimated reliably from a sample
of practicable size n1 from the process. The conditional failure probability p2 can be
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estimated from a targeted experiment where a sufficiently large group of units bearing
the characteristic C1 is intentionally generated to observe the failure rate in this group.

Similar problems and decompositions of failure probabilities occur in various contexts
beyond manufacturing, e.g., in life sciences. Yet, corresponding methods of sample
inference, in particular confidence intervals for q based on a decomposition q = p1p2,
have not been considered in the literature. The present chapter studies such confidence
intervals based on binomial samples.

Confidence intervals for a single binomial proportion have received wide attention in
the literature. The Clopper & Pearson (1934) interval is exact in the sense that point-
wise in p ∈ [0, 1] the coverage does not undercut a prescribed nominal level. However, on
large segments of the unit interval the coverage exceeds the nominal level considerably.
The research on less conservative and thus shorter exact intervals has been concentrating
exclusively on the two-sided case, see the work by Sterne (1954), Crow (1956), Blyth &
Still (1983). von Collani & Dräger (2001) and Göb & Lurz (2014) obtained consider-
able reductions in the length of exact frequentist two-sided intervals by exploiting prior
information on p.

In many applications one-sided intervals are more relevant than two-sided intervals.
In particular, for failure probabilities or probabilities nonconforming in manufacturing
upper confidence limits are of prevailing interest. We will concentrate on this case in our
study. The case of a one-sided interval for q = p1p2 with a lower limit can be obtained in
an obvious manner by considering the complementary probability 1 − q. Our aim is to
construct exact intervals where the actual coverage does not undercut the nominal level.
By the lack of relevant research in the literature, the only one-sided exact interval we can
make use of as a starting point for constructing an interval for a factorized probability
q = p1p2 is the Clopper-Pearson interval. One of the rare contributions on one-sided
intervals is due to Cai (2005), however considering approximate intervals only.

The subsequent study presented in this chapter is structured as follows. Section 6.2
introduces the underlying stochastic model for the empirical analysis of a factorized
probability q = p1p2. Section 6.3 combines two individual Clopper-Pearson upper con-
fidence limits to obtain a limit for q. Section 6.4 obtains intervals for q by inverting a
one-sided test of significance, and exploits prior information on the factors p1 and p2 so
as to obtain less conservative limits. Section 6.5 combines the methods considered by
sections 6.3 and 6.4 into one scheme. We compare all presented methods in section 6.7
in terms of length and coverage. Section 6.8 concludes and points out areas of future
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work.

6.2 Problem Description and Stochastic Model

In this section, we describe the sampling inference on decomposed probabilities q = p1p2

in a stochastic model.

Consider a population of units i = 1, 2, . . ., e.g., the output of a manufacturing process.
Each item i exhibits a characteristic C1 with probability p1. Conditional on having the
characteristic C1, item i can have the characteristic C2 with conditional probability p2.
Let X1i, X2i be the indicators of the characteristics C1, C2 relative to item i, i.e.,

X`i =

1 if item i has characteristic C`,

0 if item i has not characteristic C`.
(6.1)

We assume that the series (X1i, X2i), i = 1, 2, . . . is i.i.d. The characteristic C2 can only
occur on items with characteristic C1. Thus for all i

p1 = P(X1i = 1), p2 = P(X2i = 1|X1i = 1), 0 = P(X2i = 1|X1i = 0). (6.2)

For the unconditional probability q = P(X2i = 1) of an item i having the characteristic
C2 we obtain

q = P(X2i = 1|X1i = 1)P(X1i = 1) + P(X2i = 1|X1i = 0)P(X1i = 0)

= P(X2i = 1|X1i = 1)P(X1i = 1) = p1p2.
(6.3)

The objective is to construct a one-sided confidence interval with upper limit for q. By
the decomposition (6.3), inference on q can be obtained by combining separate inferences
on p1 and p2. Consider an independent sample of size n1 from the total process, and a
second sample, independent of the first and independent within itself, of size n2 from
a population of items with characteristic C2. Let S1 be the number of items with
characteristic C1 in the first sample, and let S2 be the number of items with characteristic
C2 in the second sample. By assumption, S` is binomially distributed by Bin(n`, p`).
Due to the mutual independence of the two samples, the joint PMF of S1 and S2 is

fn1,n2,p1,p2(s1, s2) =
(
n1
s1

)
ps1

1 (1− p1)n1−s1

(
n2
s2

)
ps2

2 (1− p2)n2−s2 . (6.4)

Using (6.3), we can substitute p2 = q
p1
, to obtain

fn1,n2,p1,q(s1, s2) =
(
n1
s1

)
ps1

1 (1− p1)n1−s1

(
n2
s2

)(
q

p1

)s2(
1− q

p1

)n2−s2

. (6.5)
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6.3 Product of Clopper-Pearson Limits

In this section we construct an upper confidence limit for the product probability by
taking the product of upper confidence limits for the involved factor probabilities.

The sample statistic S` of the sample for the characteristic C` is binomially distributed
by Bin(n`, p`). Exact upper limits for p` can be obtained by the well-known Clopper &
Pearson (1934) procedure. Let 0 < γ` < 1 be the prescribed nominal level for sample `.
For sample results s` < n`, the Clopper-Pearson upper limit pU,` = pU,`(s`) is the unique
solution 0 < p < 1 of the equation

s∑̀
k=0

(
n`
k

)
pk(1− p)n`−k != 1− γ`, (6.6)

for s` = n` the trivial limit pU,` = 1 is used. The solution of equation (6.6) equals the
quantile of level γ` of the beta distribution Beta(s` + 1, n` − s`).

For ` = 1, 2, the Clopper-Pearson limit satisfies P(p ≤ pU,`) ≥ γ`. By the independence
of the two samples we obtain for the product limit qU = pU,1pU,2

P(q ≤ qU ) = P(p1p2 ≤ pU,1pU,2)

= P(p1 ≤ pU,1, p2 ≤ pU,2) + P(p2pU,1 < p1p2 ≤ pU,1pU,2)

+ P(p1pU,2 < p1p2 ≤ pU,1pU,2) (6.7)

≥ P(p1 ≤ pU,1)P(p2 ≤ pU,2) ≥ γ1γ2.

A total confidence level of at least γ can thus be reached with the limit qU = pU,1pU,2

by any choice of γ1, γ2 such that γ = γ1γ2. A natural candidate is γ1 = γ2 = √γ.

However, the product limit qU = pU,1pU,2 is very conservative, for two reasons. First,
the individual limits pU,` are very conservative, i.e., for a large range of true values of
p`, the actual coverage P(p` ≤ pU,`) is considerably larger than a prescribed level γ`, see
for example Agresti & Coull (1998) and Newcombe (1998). Second, the inequality (6.7)
is based on the trivial lower bound 0 for two of the three probabilities involved in the
second line of (6.7).
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6.4 Upper Confidence Limits under Prior Information based on
Inverting a Test of Significance

The product limit qU = pU,1pU,2 considered in section 6.3 is overconservative, and does
not allow for exploiting prior information. These two related issues will be approached in
the present section by constructing one-sided confidence limits from inverting a one-sided
test of significance on p.

In modern industrial environments, the root cause probability p1 and the conditional
failure probability p2 are small. It can safely be assumed that reliable upper bounds
p`max for the probabilities p` are known. The parameter space is thus reduced to p` ∈
[0, p`max], ` = 1, 2. The resulting upper bound for the product probability is q ≤ qmax =
p1 maxp2 max. Subsequently, we consider the parametrization in p1 and in the product
probability q directly with prescribed upper bounds 0 < qmax ≤ p1 max ≤ 1. Then the
relevant parameter space is

Θmax = {(p1, q)|0 < q ≤ qmax, q ≤ p1 ≤ p1 max}. (6.8)

We derive an upper confidence limit for q by inverting tests for one-sided null hypotheses
of the type

Hq = {(p1, q̃) ∈ Θmax|q̃ ≥ q}, 0 < q ≤ qmax. (6.9)

The natural test statistic is the product S = S1S2 of the number S1 of items with
characteristic C1 in the sample of size n1 from the total process and the number S2

of items with characteristic C2 in the sample of size n2 from a population with C1.
Intuitively, a hypothesis Hq should be rejected iff S = S1S2 is too small, i.e., we consider
rejection regions

Rc =
{
s ∈ {0, . . . , n1n2}|s ≤ c

}
. (6.10)

In the design of a critical value cα(q) of a test of significance level 0 < α < 1 for Hq we
have to control the nuisance parameter p1. For 0 ≤ q ≤ 1, c ∈ R, consider the function
Rq,c : [q, 1]→ [0, 1] defined by

Rq,c(p1) =
∑

0≤s`≤n`
s1s2≤c

(
n1
s1

)
ps1

1 (1− p1)n1−s1

(
n2
s2

)(
q

p1

)s2(
1− q

p1

)n2−s2

. (6.11)

The function R 3 c 7→ Rq,c(p1) is the CDF of S = S1S2, see the reparametrized joint
PMF of S1, S2 provided by (6.5). Rq,c is a continuous function on [q, 1] with

R0,c(p1) = 1 for 0 ≤ p1 ≤ 1, c ≥ 0, (6.12)
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Rq,c(q) =
∑

0≤s1≤n1
s1n2≤c

(
n1
s1

)
qs1(1− q)n1−s1 for c ∈ R, 0 ≤ q ≤ 1. (6.13)

For 0 ≤ q ≤ 1, c ∈ R, Rq,c adopts its absolute maximum

MAXc,p1 max(q) = max
q≤p1≤p1 max

Rq,c(p1) (6.14)

on any compact prior information interval [q, p1 max] for p1. The subsequent proposition
6.4.1 clarifies properties of the maximum.

Proposition 6.4.1 (maxima of Rq,c). Let 0 < p1max ≤ 1, 0 ≤ c < n1n2. Then we
have:

(i) For 0 < q ≤ p1max, Rq,c adopts its global maximum MAXc,p1 max(q) on [q, p1max]
in a finite number of points p1i(q) ∈ [q, p1max].

(ii) The function [0, p1max] 3 q 7→MAXc,p1 max(q) is continuous and strictly decreasing
from MAXc,p1 max(0) = 1 down to

MAXc,p1 max(p1 max) =
∑

0≤s1≤c/n2

(
n1
s1

)
ps1

1 max(1− p1 max)n1−s1 , (6.15)

and in particular invertible on its image interval[ ∑
0≤s1≤c/n2

(
n1
s1

)
ps1

1 max(1− p1 max)n1−s1 , 1
]
. (6.16)

(iii) For q ∈ (0, p1max) we have MAXc,p1 max(q) < MAXc+1,p1 max(q) where
MAXc′,p1 max(q) = 1 for c′ ≥ n1n2.

The proof of assertions (i) and (ii) of proposition 6.4.1 is provided in appendix 6.A1,
assertion (iii) is trivial. By the results of proposition 6.4.1, the next proposition 6.4.2
establishes a significance test of level α for the hypothesis Hq as defined by (6.9).

Proposition 6.4.2 (level α test for hypothesis Hq). Let 0 < q ≤ qmax ≤ p1 max ≤ 1,
let 0 < α < 1, and let the hypothesis Hq be defined by (6.9). By assertion (iii) of
proposition 6.4.1, a critical bound cα(q) is defined by

cα(q) =max{c ∈ {0, ..., n1n2 − 1}|MAXc,p1 max(q) ≤ α} if MAX0,p1 max(q) ≤ α,

−1 otherwise.

(6.17)
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Consider the test for Hq with the test statistic S = S1S2 and the rejection region Rcα(q) =
{s|s ≤ cα(q)}, see (6.10). Then we have:

(i) The power function of the test satisfies

G(p1, q̃) = Pp1,q̃
(S1S2 ≤ c) = Rq̃,cα(q)(p1) (6.18)

for 0 < q̃ ≤ qmax, q̃ ≤ p1 ≤ p1 max.

(ii) The test is of level α, i.e.,

G(p1, q̃) ≤ α for all q ≤ q̃ ≤ qmax, q̃ ≤ p1 ≤ p1 max. (6.19)

Assertion (i) of proposition 6.4.2 follows immediately from the definition (6.11) of the
function Rq,c. Assertion (ii) follows from the definition (6.17) of the critical bound cα(q)
and the monotonicity result of assertion (ii) of proposition 6.4.1.

Exploiting the duality between tests of significance and confidence regions, the subse-
quent main theorem 6.4.3 provides one-sided confidence intervals with prescribed nomi-
nal level γ for the product probability q.

Theorem 6.4.3 (level γ upper confidence limit). Let 0 < γ < 1. For 0 < qmax ≤
p1max ≤ 1 let the upper level γ limit qU,γ(s) for s ∈ {0, . . . , n1n2} be defined by

qU,γ(s) =

MAX−1
s,p1 max(1− γ) if 1− γ ≥MAXs,p1 max(qmax),

qmax otherwise.
(6.20)

(i) The random interval

Bγ = Bγ,p1 max,qmax(S1, S2) =(0, qU,γ(S1S2)) if 1− γ ≥MAXs,p1 max(qmax),

(0, qU,γ(S1S2)] otherwise

(6.21)

is a level γ confidence interval for the product probability q relative to the prior
information parameter space Θmax defined by (6.8), i.e.,

Pp1,q(q ∈ Bγ) ≥ γ for 0 < q ≤ qmax, q ≤ p1 ≤ p1 max. (6.22)

In particular, we have Bγ(S1, S2) = (0, qmax] if S1S2 = n1n2.
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(ii) Let 0 < qmax ≤ p1max ≤ 1, 0 < q′max ≤ p′1max ≤ 1 with q′max ≤ qmax, p′1max ≤ p1max.
Then we have Bγ,p′1 max,q

′
max
⊂ Bγ,p1 max,qmax.

The proof of theorem 6.4.3 is provided by appendix 6.A2. The critical prior limit in
the construction of theorem 6.4.3 is p1 max. As visible from definition (6.20), the prior
limit qmax only serves as an upper cut-off for the confidence limit, whereas the confidence
limit is a continuous function of p1 max. To avoid ambiguities in the prior limit qmax one
may choose the trivial limit qmax = p1 max without substantially affecting the confidence
interval.

6.5 Obtaining Prior Information

In a modern stable high quality manufacturing environment, conservative prior bounds
for the root cause probability p1 and the conditional failure probability p2 are easily
obtained. Bounds pimax in the parts per thousand range can be considered as reliable
and conservative. In exploratory contexts with little previous experience on the study
matter, it may be difficult to obtain prior bounds. In such cases, the analysis of the
two samples of sizes n1 and n2 can proceed in two steps. First, obtain confidence limits
pU,1(S1), pU,2(S2), e.g., the Clopper-Pearson upper confidence limits pU,1(S1), pU,2(S2) as
described in section 6.3. Second, use qmax = pU,1pU,2 and p1 max = pU,1 as prior bounds
to obtain a confidence interval of the type (6.21) established by theorem 6.4.3. The
subsequent proposition 6.5.1 provides a lower bound for the coverage of this method.

Proposition 6.5.1 (lower coverage bound). Let 0 < γ0, γ
′ < 1. For ` = 1, 2, let

pU,`(S`) be an upper confidence limit such that

Pp1,p2(p1 ≤ pU,1(S1), p2 ≤ pU,2(S2)) ≥ γ0 for all 0 ≤ p1, p2 ≤ 1. (6.23)

Let qmax(S1S2) = pU,1(S1)pU,2(S2), p1 max(S1) = pU,1(S1), and let Bγ′ =
Bγ′,qmax(S1S2),p1 max(S1)(S1S2) be the confidence interval defined by (6.21). Then we have

Pp1,q(q ∈ Bγ′) ≥ γ0 + γ′ − 1 for all 0 < q ≤ p1 ≤ 1. (6.24)

If prior bounds are prestated without reference to the actual sample, the crucial bound
for determining the confidence limit (6.20) is p1 max. Without a substantial limitation
of the result, you can choose the trivial bound qmax = p1 max, see the remarks following
theorem 6.4.3. An analogous clear pattern does not hold for sample based Clopper-
Pearson bounds p1 max(S1), qmax(S1S2), see the results of section 6.7, below.
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6.6 Computation of Confidence Limits under Prior Information

We now provide an algorithm to obtain the upper confidence limit qU,γ(s) defined by
(6.20).

Algorithm 6.6.1. Consider the prior bounds 0 < qmax ≤ p1max ≤ 1. Let 0 < γ < 1 be
the nominal confidence level, and let ε > 0 be the accuracy bound. Let si ∈ {0, ..., ni} be
the sample observations, and let s = s1s2.

S1) If s = n1n2 let qU,γ(s) = qmax, return. If s < n1n2 go to step S2).

S2) Initialize qlower = 0, qupper = qmax. Go to step S3).

S3) Let qa = 1
2(qlower + qupper).

S4) Determine the maximum MAXs,p1 max(qa).

S4.1) If |MAXs,p1 max(qa)− (1− γ)| ≤ ε let qU,γ(s) = qa, return.

S4.2) If MAXs,p1 max(qa) > 1− γ + ε let qlower = qa. Go back to step S3).

S4.3) If MAXs,p1 max(qa) < 1− γ − ε let qupper = qa. Go back to step S3).

The algorithm 6.6.1 uses a bisection procedure on the interval [0, qmax] to close in on
the confidence limit qU,γ(s). The hard task is determining the maximum MAXs,p1 max(qa)
in step S4). The function Rqa,s is in general not unimodal, so that simple bisection
procedures to obtain an absolute maximizer pa fail. However, by proposition 6.4.1 Rqa,s
adopts its global maximum in a finite number of points. Therefore, we proceed by a
brute force scheme and maximize over many different subintervals, which is a standard
heuristic procedure used for global optimization, see Press (2007).

6.7 Comparison of Methods

This section compares the properties of the three previously developed upper confidence
limits: i) the product qU,C-P(s1, s2) = pU,C-P(s1)pU,C-P(s2) of two independent Clopper-
Pearson limits, see section 6.3; ii) the limit qU,prior(s1s2) under prestated prior upper
bounds for p1 and p2, see theorem 6.4.3 in section 6.4; iii) the limit qU,combine(s1s2)
suggested in section 6.5 where the sample based prior bounds are Clopper-Pearson lim-
its pU,C-P(s1), pU,C-P(s2). We analyze two characteristics of the respective confidence
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Figure 6.1: Coverage Cp1(p1p2) of product C-P (left) and test inversion limit (right),
p1 = 0.20 fixed, different n1, n2, under nominal confidence level γ = 0.95.

intervals B: 1) the actual coverage provided by

Cp1(q) =
n1∑
s1=0

n2∑
s2=0

(
n1
s1

)
ps1

1 (1− p1)n1−s1

(
n2
s2

)(
q

p1

)s2(
1− q

p1

)n2−s2

1B(q), (6.25)

where 1B(·) denotes the indicator function of the confidence interval B. 2) The width
of the intervals for selected observations s1, s2.

The type i) Clopper-Pearson product interval and the type ii) prior information inter-
val with trivial prior bounds qmax = p1 max = 1 are exact relative to a prescribed nominal
level γ on the unrestricted parameter space, i.e., Cp1(q) ≥ γ for all 0 < q ≤ p1 ≤ 1.
However, both intervals are very conservative, as illustrated by figure 6.1. The actual
coverage largely exceeds γ throughout, and is close to 1 for small values of q = p1p2.
While somewhat less conservative for small p2, the coverage of the product Clopper-
Pearson upper limit never comes close to the desired nominal level. The type ii) interval
by theorem 6.4.3 is less conservative for moderate to large values of p2.

The prior information type ii) interval with at least one nontrivial prior bound p1 max <

1 or p2 max < 1 is exact relative to the restricted parameter space Θ only, i.e., Cp1(p1p2) ≥
γ for all 0 < pi ≤ pimax, 0 < q < qmax. Beyond the restricted parameter space the
coverage is uncontrolled. Figure 6.2 shows that nontrivial prior bounds push the actual
coverage towards the nominal confidence level inside Θ whereas outside Θ the nominal
level can be undercut.

Prior information exploits the coverage budget provided by the nominal level more
efficiently. Correspondingly, the upper confidence limits under prior information are
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Figure 6.2: Coverage Cp1(p1p2) of test inversion limit, different prior bounds pi max, p1 =
0.20 fixed, n1 = n2 = 30 (top), p1 = 0.50 fixed, n1 = n2 = 50 (bottom),
nominal confidence level γ = 0.95.
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Figure 6.3: Upper confidence limit for q conditional under p̂1 = s1/n1 = 0.002 fixed,
sample sizes n1 = 2n2 (left), and n1 = 5n2 (right).
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Figure 6.4: Upper confidence limit at level γ = 0.95 under s1 = 0 = s2 (left) and
s1 = 3, s2 = 5 (right). Prior information from Clopper-Pearson limits with
γ1 = 0.975 = γ0 (one C-P) and γi =

√
0.975 (two C-P).

shorter, and thus more informative, than without prior information, as illustrated for
selected cases by figure 6.3. Subsequently, we consider the limit qU,combine(s1s2) of type

iii) suggested in section 6.5 where the sample based prior bounds are Clopper-Pearson
limits. By proposition 6.5.1, any choice of levels γ0 for the Clopper-Pearson part and
γ′ for the follow-up part resting on theorem 6.4.3 provides a confidence interval B of
nominal level γ as long as γ0 + γ′ − 1 = γ. For tuning the method, two questions are
relevant: a) How should the level γ0 be factorized to γ0 = γ1γ2 over the two Clopper-
Pearson steps? b) How should the total weight 1 + γ be allocated over γ0 and γ′?

Figures 6.4 and 6.5 consider the question a) for the total level γ = 0.95 under equally
weighted γ0 = 0.975 = γ′. We consider the two alternatives of 1) loading the Clopper-
Pearson level fully on the first sample, i.e., γ1 = γ0 = 0.975, γ2 = 1.0, and 2) allocating
the Clopper-Pearson level equally to both samples by γ1 = √γ0 = γ2. The target
characteristic is the width of the confidence interval. Figure 6.4 considers fixed sample
results si under varying sample sizes. Figure 6.5 considers at least one sample result
proportional to the sample size.

For s1 = 0 = s2 in the left part of figure 6.4 the allocation 2) is more favorable.
For larger s = s1s2, particularly larger s2, the right part of figure 6.4 shows that the
allocation 2) is not necessarily the best. In figure 6.5 the values of the si are not both
fixed. Either one si is fixed and the other one is a fixed proportion of the sample size ni,
or both are a fixed proportion. For expected small values of s2, the evidence suggests
that it is favorable to use two Clopper-Pearson.
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Figure 6.5: Upper confidence limit at level γ = 0.95 under s1 = 0.1n1, s2 = 1 (upper-
left), s1 = 1, s2 = 0.10n2 (upper-right) and s1 = 0.10n1, s2 = 0.10n2 (lower-
center), prior information from Clopper-Pearson limits with γ1 = 0.975 (one
C-P) and γi =

√
0.975 (two C-P).
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Figure 6.6: Upper confidence limit at level γ = 0.95 under si = 0 (top) and si = 2
(bottom), different choices of γ0 and γ′.

For fixed total confidence level γ = 0.95, different choices of the test confidence level
γ′ and the prior total confidence level γ0 with γ0 + γ′− 1 = γ = 0.95 are shown in figure
6.6. The results vary with the value of s = s1s2. For s1 = 0 = s2, choosing a higher level
results in a lower upper limit, whereas for s1 = 2 = s2 choosing a higher level for the
Clopper-Pearson bounds seems favorable. For increasing sample sizes, the differences
in the upper confidence limits diminish. Overall, a clear general effect of the particular
choice of γ′ and γ0 cannot be observed.

6.8 Conclusion

We presented a novel approach to obtain an upper bound for a product probability which
cannot be directly estimated. The test inversion approach without prior information
leads to very conservative upper bounds, especially near the left boundary.

The strength of the test inversion is its flexibility, as it can be used in combination



108 6 Confidence Intervals for a Product of Two Binomial Proportions

with prior information. Using prior information considerably reduces the resulting upper
bound while maintaining the nominal confidence level. If prior information on the factor
probabilities can be obtained by sampling, the individual Clopper-Pearson bounds can
be used as prior information in the test inversion. This combined approach also shows
a considerable length reduction for the confidence interval.

Several areas remain for future research. Since a product S can be often be decomposed
in more than one set of factors S1S2, the effect of different sample results with respect
to their sample sizes and the same S should be studied. Furthermore, extending the
procedure to more than two factor probabilities can be considered.
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Appendix of Chapter 6

6.A1 Proof of Proposition 6.4.1

6.A1.1 Proof of Assertion (i) of Proposition 6.4.1

By definition (6.11) Rq,c is a continuous rational function on [q, 1]. Hence Rq,c adopts its
maximum MAXc,p1 max(q) = maxq≤p1≤p1 max Rq,c(p1) in a finite number of points pi(q) ∈
[q, p1 max].

6.A1.2 Proof of Assertion (ii) of Proposition 6.4.1

For p1, p2 ∈ [0, 1], c ∈ R, let the distribution function of S1S2 be denoted by

Ln1,n2,c(p1, p2) =
∑

0≤yi≤ni
y1y2≤c

(
n1
y1

)(
n2
y2

)
py1

1 (1− p1)n1−y1py2
2 (1− p2)n2−y2 . (6.26)

For fixed p1 ∈ (0, 1], the partial derivative of Ln1,n2,c in p2 is

∂

∂p2
Ln1,n2,c(p1, p2) =

− n2
∑

0≤y1≤n1
0≤y2≤n2−1

c−y1+1≤y1y2≤c

(
n1
y1

)(
n2 − 1
y2

)
py1

1 (1− p1)n1−y1py2
2 (1− p2)n2−1−y2 . (6.27)



110 6 Confidence Intervals for a Product of Two Binomial Proportions

Let an1,s1(p1) =
(n1
s1

)
ps1

1 (1− p1)n1−s1 . (6.27) is obtained by calculating

∂

∂p2
Ln1,n2,c(p1, p2)

=
∑

0≤si≤ni
s1s2≤c

an1,s1(p1)
(
n2
s2

)
ps2−2

2 (1− p2)n2−s2−2
[
s2(1− p2)− (n− s2)p2

]

=
∑

0≤si≤ni
s1s2≤c

an1,s1(p1)n2

(
n2 − 1
s2 − 1

)
ps2−2

2 (1− p2)n2−s2

−
∑

0≤si≤ni
s1s2≤c

an1,s1(p1)n2

(
n2 − 1

n2 − s2 − 1

)
ps2

2 (1− p2)n2−s2−1

= n2

{ ∑
−1≤s2≤n2−1, 0≤s1≤n1

(s2+1)s1≤c

an1,s1(p1)
(
n2 − 1
s2

)
ps2

2 (1− p2)n2−1−s2

−
∑

0≤s2≤n2, 0≤s1≤n1
s1s2≤c

an1,s1(p1)n2

(
n2 − 1

n2 − s2 − 1

)
ps2

2 (1− p2)n2−s2−1
}

= −n2

{
−

∑
0≤s2≤n2, 0≤s1≤n1

s2s1≤c−s1

an1,s1(p1)
(
n2 − 1
s2

)
ps2

2 (1− p2)n2−1−s2

+
∑

0≤s2≤n2, 0≤s1≤n1
s1s2≤c

an1,s1(p1)n2

(
n2 − 1
s2

)
ps2

2 (1− p2)n2−s2−1
}

= −n2
∑

0≤si≤ni
c−s1+1≤s2s1≤c

an1,s1(p1)
(
n2 − 1
s2

)
ps2

2 (1− p2)n2−1−s2

= −n2
∑

0≤s2≤n2−1, 0≤s1≤n1
c−s1+1≤s2s1≤c

an1,s1(p1)
(
n2 − 1
s2

)
ps2

2 (1− p2)n2−1−s2 .

For fixed 0 < p1 ≤ 1 we obtain for 0 < q < p1, 0 ≤ c < n1n2 from (6.11), (6.26), (6.27)

d
d q
Rq,c(p1) = 1

p1

∂

∂p2
Ln1,n2,c(p1, p2)

∣∣∣
p2 = q/p1

< 0. (6.28)

Hence for fixed 0 < p1 ≤ 1 the function (0, p1] 3 q 7→ Rq,c(p1) is strictly decreasing.
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Now we can complete the proof of assertion (ii) of the proposition. Let 0 < q1 <

q2 ≤ p1 max ≤ 1, and let Rqi,c adopt its global maximum maxq≤p1≤p1 max Rqi,c in the point
p1(qi) ∈ [qi, p1 max] for i = 1, 2. Then because of q1 < q2 ≤ p1(q2)

MAXc,p1 max(q1) = max
q1≤p1≤p1 max

Rq1,c(p1) = Rq1,c(p1(q1)) ≥

Rq1,c(p1(q2)) > Rq2,c(p1(q2)) = max
q2≤p1≤p1 max

Rq2,c(p1) = MAXc,p1 max(q2).

The latter shows that [0, p1max] 3 q 7→MAXc,p1 max(q) is strictly decreasing. [0, p1max] 3
q 7→ MAXc,p1 max(q) is continuous since (q, p1) 7→ Rq,c(p1) is continuous. The image
interval (6.16) is now obtained from the results (6.12) and (6.13).

6.A2 Proof of Theorem 6.4.3

We consider assertion (i) of theorem 6.4.3.

First, we demonstrate

q ∈ B ⇐⇒ s > c1−γ(q) for all 0 < q ≤ qmax (6.29)

where c1−γ(q) is defined by (6.17).

Consider the case 1− γ < MAXs,p1 max(qmax). By definition we have
B = (0, qmax]. Hence q ∈ B for all 0 < q ≤ qmax. For all 0 < q ≤ qmax we have by
assumption

1− γ < MAXs,p1 max(qmax) ≤ MAXs,p1 max(q),

hence by the definition (6.17) s > c1−γ(q). Hence (6.29) holds.

Consider the case 1− γ ≥MAXs,p1 max(qmax). By definition we have
B = (0,MAX−1

s,p1 max(1−γ)). For all 0 < q ≤ qmax we have by assertion (ii) of proposition
6.4.1 and by definition (6.17)

q ∈ B ⇐⇒ q < MAX−1
s,p1 max(1− γ) ⇐⇒

MAXs,p1 max(q) > 1− γ ⇐⇒ s > c1−γ(q),

i.e., (6.29).

Applying (6.29) we obtain for all 0 < q ≤ qmax, q ≤ p1 ≤ p1 max by proposition 6.4.2

Pp1,q(q ∈ B) = Pp1,q(s > c1−γ(q)) ≥ 1− (1− γ) = γ.

Assertion (ii) of theorem 6.4.3 is obvious from proposition 6.4.1 and the definitions (6.20),
(6.21).
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6.A3 Proof of Proposition 6.5.1

Let 0 < q ≤ p1 ≤ 1. By the monotonicity result of assertion (ii) of theorem 6.4.3 and by
the Bonferroni inequality P(E1 ∩ E2) ≥ P(E1) + P(E2)− 1 we obtain

Pp1,q(q ∈ Bγ′,pU,1(S1)pU,2(S2),pU,1(S1)(S1S2))

≥ Pp1,q(q ∈ Bγ′,pU,1(S1)pU,2(S2),pU,1(S1)(S1S2)), p1 ≤ pU,1(S1), q/p1 ≤ pU,2(S2))

≥ Pp1,q(q ∈ Bγ′,q,p1(S1S2), p1 ≤ pU,1(S1), q/p1 ≤ pU,2(S2))

≥ Pp1,q(q ∈ Bγ′,q,p1(S1S2)) + Pp1,q(p1 ≤ pU,1(S1), q/p1 ≤ pU,2(S2))− 1

≥ γ′ + γ0 − 1.



7 Conclusion

Various topics on failure prediction were covered in this thesis. The focus was on pre-
diction intervals in various contexts occurring in industrial risk assessment. The first
two chapters dealt with the estimation of the size of the subgroup. Although still widely
used, control sampling for the subgroup size estimation has serious disadvantages. The
test gate method presented in chapter 2 provides an efficient alternative to control sam-
pling. This method is based on existing screening within the production for specific
characteristics, which is often capable of detecting deviations in other characteristics as
well, although less reliably than the one it was intended for. In particular, the test gate
method is applicable for clusters and problems in the ppm range.

An exact prediction procedure for the test gate method is still an open problem.
Furthermore, the method may be extended to a time series context, where the timing of
the detections is used to identify clusters where the deviation was present. This would
enable the practitioner to not only make a more accurate prediction about the size of
the subgroup, it would also enable him to identify unaffected populations with respect
to the desired confidence level.

Estimating the size of the subgroup with deviation requires using discrete prediction
intervals. A general procedure to obtain prediction intervals exploiting prior information
was presented in chapter 3. The scheme was applied to the binomial and negative
binomial distribution. The prior information on the underlying parameter is expressed
by a beta distribution. These prediction intervals are the shortest with respect to the
weighted volume while fulfilling the coverage demand pointwise in x1. This coverage
criterion is not meaningful for prediction intervals without prior information, where the
learning sample and prediction target are independent.

Despite not being exact in the classical pointwise in Y = p sense, the MWV prediction
intervals show good coverage properties in the classical sense. Due to the construction,
the intervals rely on the correct specification of the prior distribution. Although they are
not overly sensitive to a wrong specification, the coverage requirement can be violated
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in this case. Therefore, pointwise Y = p prediction intervals under prior information are
desirable, as they would overcome the reliance on the correct specification of the prior
information. Furthermore, the framework can be extended to other discrete distributions
such as the Poisson distribution. This will require the use of a different prior distribution.

In chapter 4 the effect of the sample size on the resulting prediction interval for the
future number of failures was studied. Using the scheme from Escobar & Meeker (1999),
the underlying Weibull lifetime distribution for the individual parts was used to obtain a
prediction interval for the future number of failures. Two methods to obtain a prediction
interval for the future number of failures based on the censored field data were presented.
These methods adapt the procedure for a known sample size.

The monotonicity approach uses a distribution free prediction interval for the pop-
ulation size, whereas the distribution-based approach uses a prediction interval with
a probabilistic structure as presented in chapter 3 for the population size. The latter
approach is able to shorten the prediction interval significantly, if the population size
has an effect on the resulting prediction interval for the number of failures. Since the
population size is only specified in the form of a prediction interval, the study of the
overall coverage is an interesting topic for future work. Furthermore, more work on
the influence of the population size is desirable, as this question determines whether a
more accurate estimation of the subgroup size yields an effect on the resulting prediction
interval for the future number of failures.

The effect of a reporting delay on the failure prediction was studied in chapter 5.
It has been shown, that neglecting the reporting delay severely impacts the coverage
probability for the future number of failures. Two methods to account for the reporting
delay achieve much better results. The first method shifts the censoring time back to an
estimated time. All failures prior to this estimated time should be reported before the
original censoring time. The prediction period is adjusted accordingly. Different time
shifts have been studied, in particular the mean and the median. The second method
estimates the number of unseen failures, which have already occurred, but have not been
reported yet. For this estimated number, artificial failure times are assigned based on
the delay time distribution and the censoring time. The prediction is then based on the
adjusted number of failures and the, partially artificial, failure times.

The delay times have been modelled by a lognormal and an exponential distribu-
tion. The results vary depending on the distribution choice. Therefore, more work on
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the distribution choice is desirable. In applications, the parameters of the delay time
distribution are not known and therefore need to be estimated. This adds additional
challenges to the presented approaches. Therefore, the coverage should be studied, when
the parameters of the delay time distribution are estimated.

In chapter 6 one-sided confidence intervals for a product probability q = p1p2 were
studied. This problem was motivated by the subgroup context, where p1 is the pro-
portion with deviation and p2 is the proportion of units failing, conditional on having
the deviation. In this context, direct inference on q is not feasible. We showed that
combining two Clopper-Pearson confidence intervals to obtain a confidence interval for
the product probability is even more conservative than the Clopper-Pearson procedure
for a single proportion.

We constructed a test of significance to obtain a exact level γ one-sided confidence
interval for q. However, this interval is also very conservative. It is possible to use
prior information on p1 and p2 for the test of significance. This shortens the result-
ing confidence interval considerably. As obtaining prior information is often difficult,
the Clopper-Pearson bounds resulting from the individual samples can be used as prior
information. This combined approach also showed significant improvements in the re-
sulting upper bound. Using sampling results as prior information, multiple confidence
levels on the individual steps are used to obtain a final confidence level of γ.

An optimal choice of the individual confidence levels was not found. More research
on the influence of the individual levels should be carried out. This should also include
different decompositions of S = S1S2. Furthermore, the method can be extended to
more than two characteristics. Due to the conservativeness already observed with two
factor probabilities, the prior information required for more than two factors to obtain
intervals close to the nominal level should be studied.

Some aspects which are adjoined to the topics of the individual chapters of this thesis
are worth mentioning for future work. In industrial applications, the final goal is to
obtain a 100×γ % prediction interval for the future number of failures which incorporates
all existing uncertainties. Therefore, the aspects covered in the individual chapters
should be considered in total.

First, an overall procedure should be developed. This procedure takes all available
information to obtain a prediction interval for the subgroup size. Then, it uses this pre-
diction interval and all available field data to estimate all required parameters. Finally,
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the procedure would provide a prediction interval for the future number of failures. Af-
terwards, the coverage of this procedure should be studied. Particular attention should
be given to the sensitivity analysis with respect to the individual uncertainties.

Furthermore, additional effects which were not covered in this thesis, but are also
common industrial settings, should be studied. In particular, this includes staggered
entry and partial reporting in form of reporting behavior. These two components add
new difficulties, as staggered entry leads to different ages at the censoring time and
partial reporting leads to a permanent truncation of the number of failures. However,
as both components are present in industrial settings, including them in a model will be
highly valuable.
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