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Deutschsprachige
Zusammenfassung (Summary in
German Language)

Diese Dissertation besteht aus fünf inhaltlich abgeschlossenen Teilen, die ein
übergeordnetes Thema zur Grundlage haben: Wie können Daten genutzt wer-
den, um bessere Bestands- und Kapazitätsplanung zu ermöglichen? Durch die
zunehmende Digitalisierung stehen in verschiedensten Wirtschaftsbereichen
mehr und mehr Daten zur Verfügung, die zur besseren Planung der Betrieb-
sabläufe genutzt werden können. Historische Nachfragedaten, Sensordaten,
Preisinformationen und Daten zu Werbemaßnahmen, sowie frei verfügbare
Daten wie z.B. Wettervorhersagen, Daten zu Schulferien, regionalen Events,
Daten aus den Sozialen Medien oder anderen Quellen enthalten potentiell
relevante Informationen, werden aber häufig noch nicht zur Entscheidungsun-
terstützung genutzt.

Im ersten Artikel, ”Privacy-preserving condition-based forecasting using
machine learning”, Kapitel 2 beziehungsweise Taigel et al. [2018], wird aufge-
zeigt, wie sensitive Zustandsdaten zur Nachfragevorhersage von Ersatzteilbe-
darfen nutzbar gemacht werden können. Es wird ein Modell entwickelt, das es
erlaubt, Vorhersagen auf verschlüsselten Zustandsdaten zu erstellen. Dies ist
z.B. in der Luftfahrt relevant, wo Dienstleister für die Wartung und Ersatz-
teilversorgung von Flugzeugen verschiedener Airlines zuständig sind. Da die
Airlines befürchten, dass Wettbewerber an sensitive Echtzeitdaten gelangen
können, werden diese Daten dem Wartungsdienstleister nicht im Klartext zur
Verfügung gestellt. Die Ergebnisse des implementierten Prototypen zeigen,

1



Deutschsprachige Zusammenfassung

dass eine schnelle Auswertung maschineller Lernverfahren auch auf großen
Datenmengen, die verschlüsselt in einer SAP HANA Datenbank gespeichert
sind, möglich ist.

Die Artikel zwei und drei behandeln innovative, datengetriebene Ansätze
zur Bestandsplanung. Der Artikel ”Machine learning for inventory manage-
ment: Analyzing two concepts to get from data to decisions” in Kapitel 3
analysiert zwei Ansätze, die Konzepte des maschinellen Lernens nutzen um
aus historischen Daten Bestandsentscheidungen zu lernen. Im dritten Artikel,
”Machine learning for inventory management: Analyzing two concepts to get
from data to decisions”, wird in Kapitel 4 ein neues Modell zur integrierten
Bestandsoptimierung entwickelt und mit einem Referenzmodell verglichen,
bei dem die Schätzung eines Vorhersagemodells und die Optimierung der Be-
standsentscheidung separiert sind. Der wesentliche Beitrag zur Forschung ist
hierbei die Erkenntnis, dass unter bestimmten Bedingungen der integrierte
Ansatz klar bessere Ergebnisse liefert und so Kosten durch Unter- bzw. Über-
bestände deutlich gesenkt werden können.

In den Artikeln vier und fünf werden neue datengetriebene Ansätze zur
Kapazitätsplanung vorgestellt und umfassend analysiert. Im Artikel ”Data-
driven capacity management with machine learning: A new approach and a
case-study for a public service office”, Kapitel 5 beziehungsweise Taigel et al.
[2019], wird ein datengetriebenes Verfahren zur Kapazitätsplanung eingeführt
und auf das Planungsproblem im Bürgeramt Wilhelmshaven angewandt. Das
Besondere hierbei ist, dass die spezifische Zielfunktion (maximal 20% der Kun-
den sollen länger als 20 Minuten warten müssen) direkt in ein maschinelles
Lernverfahren integriert wird, womit dann ein Entscheidungsmodell aus hi-
storischen Daten gelernt werden kann. Hierbei wird gezeigt, dass mit dem
integrierten Ansatz die Häufigkeit langer Wartezeiten bei gleichem Ressour-
ceneinsatz deutlich reduziert werden kann. Im fünften Artikel, ”Prescriptive
call center staffing”, Kapitel 6, wird ein Modell zur integrierten Kapazitäts-
optimierung für ein Call Center entwickelt. Hier besteht die Innovation dar-
in, dass die spezifische Kostenfunktion eines Call Centers in ein maschinelles
Lernverfahren integriert wird. Die Ergebnisse für Daten von zwei Call Cen-
tern zeigen, dass mit dem neuentwickelten Verfahren, die Kosten im Vergleich
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zu dem gängigen Referenzmodell aus der Literatur deutlich gesenkt werden
können.

Den inhaltlichen Rahmen dieser Dissertation bilden die Einleitung im fol-
genden Kapitel sowie ein Ausblick in Kapitel 7. Im Hauptteil nicht dargestellte
Beweise und Algorithmen werden in den Anhängen A bis D zusammengefasst.
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1 Introduction

Autonomous cars and artificial intelligence that beats humans in Jeopardy or
Go are glamorous examples of the so-called Second Machine Age that involves
the automation of cognitive tasks [Brynjolfsson and McAfee, 2014].However,
the larger impact in terms of increasing the efficiency of industry and the
productivity of society might come from computers that improve or take over
business decisions by using large amounts of available data. This impact
may even exceed that of the First Machine Age, the industrial revolution
that started with James Watt’s invention of an efficient steam engine in the
late eighteenth century. Indeed, the prevalent phrase that calls data “the
new oil” indicates the growing awareness of data’s importance. However,
many companies, especially those in the manufacturing and traditional service
industries, still struggle to increase productivity using the vast amounts of
data [for Economic Co-operation and Development, 2018].

One reason for this struggle is that companies stick with a traditional way
of using data for decision support in operations management that is not well
suited to automated decision-making. In traditional inventory and capacity
management, some data – typically just historical demand data – is used to
estimate a model that makes predictions about uncertain planning parame-
ters, such as customer demand. The planner then has two tasks: to adjust
the prediction with respect to additional information that was not part of the
data but still might influence demand and to take the remaining uncertainty
into account and determine a safety buffer based on the underage and over-
age costs. In the best case, the planner determines the safety buffer based
on an optimization model that takes the costs and the distribution of histor-
ical forecast errors into account; however, these decisions are usually based
on a planner’s experience and intuition, rather than on solid data analysis.

5



1 Introduction

This two-step approach is referred to as separated estimation and optimiza-
tion (SEO). With SEO, using more data and better models for making the
predictions would improve only the first step, which would still improve de-
cisions but would not automize (and, hence, revolutionize) decision-making.
Using SEO is like using a stronger horse to pull the plow: one still has to walk
behind.

The real potential for increasing productivity lies in moving from pre-
dictive to prescriptive approaches, that is, from the two-step SEO approach,
which uses predictive models in the estimation step, to a prescriptive ap-
proach, which integrates the optimization problem with the estimation of a
model that then provides a direct functional relationship between the data
and the decision. Following Akcay et al. [2011], we refer to this integrated
approach as joint estimation-optimization (JEO). JEO approaches prescribe
decisions, so they can automate the decision-making process. Just as the
steam engine replaced manual work, JEO approaches replace cognitive work.

In addition to this practical motivation, JEO approaches are at the fore-
front of current research. While the literature offers numerous applications
of machine learning (ML) for making demand predictions in operations man-
agement problems [Choi and Varian, 2012, Asur and Huberman, 2010, Goel
et al., 2010, Stein et al., 2018, e.g., ], research on prescriptive JEO approaches
is just picking up [Ban and Rudin, 2018, Bertsimas and Kallus, 2019].

The overarching objective of this dissertation is to analyze, develop, and
evaluate new ways for how data can be used in making planning decisions in
operations management to unlock the potential for increasing productivity. In
doing so, the thesis comprises five self-contained research articles that forge
the bridge from predictive to prescriptive approaches. While the first arti-
cle focuses on how sensitive data like condition data from machinery can be
used to make predictions of spare-parts demand, the remaining articles intro-
duce, analyze, and discuss prescriptive approaches to inventory and capacity
management.

More specifically, the first article shows how massive amounts of sensitive
condition-based data from distributed sources like sensor-equipped machin-
ery run by various companies can be used to improve maintenance-demand
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forecasting and spare parts and capacity planning. The article describes an
innovative application for privacy-preserving forecasting of demand for spare
parts based on distributed condition data that combines state-of-the art ML
techniques – decision-tree classification in particular – with order-preserving
encryption and uses encrypted data to forecast demand. The application’s
use is appropriate when one is planning for spare parts for the maintenance of
condition-monitored machinery, and it is particularly suitable for cloud-based
implementation since it can be applied efficiently to encrypted in-memory
databases.

In the second article, we analyze the performance drivers of data-driven
prescriptive inventory management in a Newsvendor setting with non-stationary
demand. We study linear quantile regression and tree-based regression, two
novel approaches that are based on ML – and that use historical demand
observations and auxiliary data to prescribe optimal inventory quantities.
We identify three major performance drivers: non-linearity, heteroscedasticity
(i.e., feature-dependent uncertainty), and usability. We evaluate both models
in an extensive simulation experiment that controls for various properties of
the feature-demand relationship and on a complex real-world data set from a
restaurant chain. From these experiments we conclude that, in situations in
which the structure of the feature-demand relationships is not known to be
predominantly linear – the typical case in practice – the tree-based approach
is much more robust. The tree-based approach also provides better results
in case of heteroscedasticity and, in the real-world setting, performs better
with small data-sets because of its superior built-in feature selection, which is
important in terms of usability in practice.

The third article considers an inventory problem with non-stationary de-
mand, where variations in demand are driven by observable features. We use
this setting to determine the difference between two fundamentally different
concepts for turning data into decisions: the classical SEO concept, and the
more recent prescriptive JEO concept. We add to the recent stream of re-
search on JEO approaches in two ways: by introducing a novel JEO approach
based on random forests, a powerful and flexible ML technique, and by pro-
viding a rigorous examination of what drives performance differences between

7



1 Introduction

the JEO concept and the SEO concept. More specifically, we compare JEO’s
performance with that of its SEO counterpart – that is, an SEO approach
that applies an ML approach to predicting demand that is similar to the ap-
proach JEO uses to make prescriptions. In the literature, these comparisons
are either missing or show no significant differences. We provide analytical
results for the comparison of SEO and JEO with an underlying linear model,
whereas we use a controlled simulation setting and a real-world data set from a
restaurant chain for the kernel-based and the random forest-based approaches.
We find that, when there is feature-dependent uncertainty, JEO can lead to
significantly better results than the SEO counterpart can, but results from a
real-world data set suggest that the performance difference between the ap-
proaches is only marginal and that SEO’s performance is surprisingly robust.

In the fourth article, we consider the case of a public service office in
Germany that provides services like passport and ID card applications and
notifications of changes of address. Their decision problem is to determine
the staffing level for a specific staffing time slot (e.g., next Monday, 8am to
12.30pm). The required staffing level – that is, the service capacity – is driven
by features like the day of the week and whether the day falls during school
vacations. We present an innovative JEO approach to prescribing capacities
that requires no assumptions about the underlying arrival process. In this
approach, we integrate the service goals (e.g., "No more than 20% of the cus-
tomers have to wait more than 20 minutes") into an ML algorithm to learn a
functional relationship between features and the prescribed capacity from his-
torical data. We analyze the performance of our JEO approach on a real-world
dataset and compare it to an SEO approach that first uses out-of-the-box ML
to predict arrival rates and then determines the capacity using queuing mod-
els. The JEO approach significantly outperformed the commonly used SEO
benchmark, and both data-driven approaches significantly outperformed a
naive benchmark.

The fifth article provides a JEO approach to staffing inbound call centers,
where the main difference from the setting in the fourth article is that we can
assign costs to waiting time and abandonments. Again, we need to determine
the staffing level for a specific staffing time-slot (e.g., next Monday, 8am to
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9am), and the required capacity is driven by observable features. We present
an innovative JEO approach to prescribing capacities that can incorporate
such features and that does not require assumptions about the underlying ar-
rival process. We show how to integrate abandonment-cost functions into an
ML algorithm to learn a functional relationship between features and optimal
capacity from historical data. We find that our JEO approach significantly
outperforms a state-of-the-art, data-driven benchmark in two real-world set-
tings and that our approach is especially useful in cases with non-stationary
arrival rates.

An overview of the scientific contribution of this dissertation is presented
in Table 1.1.

ML and data is used in innovative ways in all five articles to improve
current approaches to solving inventory or capacity management problems.
The articles show that, by moving from predictive to prescriptive approaches,
we can improve data-driven operations management in two ways: by making
decisions more accurate and by automating decision-making. Thus, this dis-
sertation provides examples of how digitization and the Second Machine Age
can change decision-making in companies to increase efficiency and produc-
tivity.

9



1 Introduction

Methodological
Contribution

Implemented
models or
ML-techniques

Conceptual findings

Privacy-
preserving
condition-
based
forecasting
(Chapter 2)
.
.

• Condition-based
forecasting of spare parts
demand
• Combination of ML
with privacy-preserving
computation

• Decision Tree
Learning
.
.
.
.
.
.

• Enable usage of
sensitive data from
distributed sources
e.g., for collaborative
spare-parts
forecasting
• Implemented
prototype achieves
practicable
computational
performance

Prescriptive
analytics for
inventory
management
(Chapter 3)
.
.
.
.
.

• Sophisticated
simulation framework to
analyze drivers of
performance of planning
approaches
• Evaluation of two
state-of-the art
approaches for
data-driven inventory
management

• Linear quantile
regression
• Tree-based
regression
(Random Forests)
.
.
.
.

• Identification of
heteroscedasticity as
key driver of
performance
• Tree-based
regression is more
robust against
heteroscedasticity and
non-linearity. .

Data-driven
inventory
management
(Chapter 4)
.
.
.
.

• Integrated approach
for data-driven inventory
management in
newsvendor settings

• Comparison with
non-integrated
benchmark
.

• Tree-based
regression (CART
and Random
Forest)
.
.
.
.

• In settings with
strong
heteroscedasticity the
integrated approach
performs significantly
better • On a
real-world dataset, we
find no dominance of
either approach.

Data-driven
capacity
management
for a public
service office
(Chapter 5)

• Integrated approach
for data-driven capacity
management with service
level targets
.
.

• Tree-based
regression
(CART)
• Erlang-C
queuing model
(as benchmark)

• New approach
achieves significantly
higher service levels
with same capacities
on a real-world
dataset

Data-driven
capacity
management
for call
centers
(Chapter 6)
.

• Integrated cost-based
approach for data-driven
capacity management
.
.
.

• Tree-based
regression
(CART)
• Bassamboo’s
data driven
method (as
benchmark)

• Our approach
significantly reduces
the costs in two
real-world
applications
• Our approach can
deal better with
variations in the
arrival rates

Table 1.1: Overview of scientific contribution.
10



2 Privacy-preserving
condition-based forecasting
using machine learning

As machines get smarter, massive amounts of condition-based data from dis-
tributed sources become available. This data can be used to enhance main-
tenance management in several ways, such as by improving maintenance de-
mand forecasting and spare parts and capacity planning. Regarding the for-
mer, machine learning techniques promise substantial benefits for forecasting
the demand for spare parts over conventional techniques that are commonly
used. While development and implementation of these techniques is difficult,
practical applications pose another important challenge to providers of main-
tenance, repair, and overhaul services. Their customers are reluctant to pro-
vide access to sensitive real-time data because of privacy concerns, and even
more so when their data is stored and processed in the cloud. In this paper we
describe an application for privacy-preserving forecasting of demand for spare
parts based on distributed condition data. It combines machine learning tech-
niques – more specifically, decision-tree classification – with order-preserving
encryption. The application is appropriate whenever planning for spare parts
for the maintenance of condition-monitored machinery is needed, and it is
particularly suitable for cloud-based implementation. 1

1This paper was published in the Journal of Business Economics Taigel et al. [2018]. Is is
co-authored by Anselme K. Tueno and Richard Pibernik.
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2 Privacy-preserving condition-based forecasting

2.1 Introduction
In many industries the availability of machines ("uptime") is critical to success-
ful operations, so companies (or their service providers) perform tasks related
to maintenance management, including forecasting future demand for service
and spare parts, managing inventories of spare parts, planning maintenance
capacity, and scheduling service operations. The condition of individual ma-
chines and components determines maintenance demand and is, as such, the
main driver of any maintenance operation. Modern machinery is equipped
with sensors and other devices that provide information about the machin-
ery’s current condition, to which we refer as “condition data”. Condition data
is data about the use of a component (e.g., machine hours since last overhaul)
and information from sensors (e.g., oil temperature alerts, vibration levels).
The effective use of condition data can significantly enhance maintenance op-
erations because it improves forecast accuracy and supports the timely com-
pletion of maintenance tasks [Elwany and Gebraeel, 2008, Deshpande et al.,
2006, Kurz, 2016].

Enhancing the operations of a maintenance, repair, and overhaul (MRO)
service provider through the use of condition data poses two important chal-
lenges: First, it requires companies to devise and implement the right tech-
niques and methods for generating good forecasts from condition data that is
typically distributed across multiple systems belonging to multiple customers
(i.e., machine users and owners). Meeting this challenge calls for a sophisti-
cated machine learning and data mining solution in the cloud. The second
challenge, which cannot be addressed in isolation, is ensuring the protection
of customers’ sensitive and private data. While machines and their condition
data may belong to numerous customers, maintenance operations are usually
carried out by a third party like an original equipment manufacturer (OEM)
or a specialized MRO. Customers are often reluctant to make their condi-
tion data available to a third party or even a cloud-based system that runs
outside their own IT infrastructures. Protecting the extensive and detailed
data about current and future machine use and operating conditions from
leaking to competitors and malicious intruders can be a major concern for

12



2.1 Introduction

customers [Barkataki and Zeineddine, 2015, Zilli et al., 2015]. Therefore, en-
suring data privacy can be a decisive factor in whether customers will adopt
advanced maintenance management concepts based on condition data. The
two challenges are interdependent: ensuring data privacy limits the choice to
use machine learning and data-mining techniques and their implementation
in cloud-based systems.

In this paper we outline an approach that combines machine learning and
cryptographic techniques to enable privacy-preserving forecasting of mainte-
nance demand based on distributed condition data. Our decentralized solu-
tion employs sophisticated machine learning techniques that are executed on
data that can reside in a variety of cloud systems. It produces an aggregate
forecast of maintenance demand for the MRO and corresponding information
about the reliability of the forecast while neither the MRO nor any other party
(including the cloud providers) gain access to individual customers’ private
condition data.

Our research is motivated by the problem of a MRO from the aerospace
industry that provides maintenance services for commercial airlines’ and air
forces’ jet engines. Modern generations of engines, such as those of Rolls-
Royce, track and transmit data in real time from more than twenty param-
eters, including oil pressure, oil temperatures, and vibration levels. In com-
bination with usage data like performed and planned flight hours and flight
cycles, this data can be used for condition-based maintenance planning. This
MRO caters to multiple customers (commercial airlines and air forces), each
of which maintains its own set of condition data, so it is distributed across
multiple proprietary systems and not readily available to the MRO. The cus-
tomers are reluctant to provide real-time condition data openly to the MRO
or a cloud-based system because they fear data leakage to competitors that
could benefit from, for example, information about the state and the planned
operations of their fleet. Moreover, air forces have to obey strict privacy regu-
lations since leaked information about the state of their fleets is considered a
national security concern [Zilli et al., 2015]. The MRO can use the condition
data only if it can resolve the data-privacy issue. Figure 2.1 illustrates the
current situation with distributed sources of condition data that the MRO
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cannot currently use to plan its operations.

MRO

Similar
machines/ 

components

… 

Owns/uses

Customer 1 Private
database

Track and
transmit data

Order 
overhaul

operations

Customer n Private
database

Provides
service
capacity and
spare parts

Owns/uses Track and
transmit data

Figure 2.1: One MRO serving n customers with private condition data

The MRO’s operational performance is strongly affected by its ability to
forecast demand for maintenance services and spare parts. Currently, his-
torical demand is the only source of information available to the MRO for
forecasting. Because of the typically varying patterns of demand [Ghobbar
and Friend, 2002, van Wingerden et al., 2014], forecast errors are high, lead-
ing to the need for high capacity and inventory buffers and, at the same time,
frequent delays and contractual penalties. The purpose of the solution we
propose in this paper is to improve forecast accuracy for the MRO by using
machine learning techniques to generate forecasts based on the distributed
condition data while also ensuring data privacy for the MRO’s customers.
Although we illustrate and formalize our approach for the task of forecasting
spare parts demand, the approach can be modified for employment in other
forecasting objects (e.g., capacity requirements).

The contribution of our research to practice is straightforward. Our so-
lution can help to remove one of the major obstacles to the effective use of
distributed condition data to improve maintenance management. Condition
data’s significant potential for maintenance management can be fully exploited
only if multiple customers’ data is combined and processed effectively, so com-
panies who employ similar types of machinery have to make their data avail-
able to a third party. At first, this data may not appear critical: For example,
the oil pressure of an engine at a certain point in time or the number of hours
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an engine has been employed do not appear to be critical and sensitive pieces
of information; however, one can obtain a blueprint of a company’s operations
by combining them over time. It is reasonable to assume that, even beyond
our example of the airline industry, this potential will create reluctance and
make the case for condition-based maintenance management less attractive
unless data privacy can be guaranteed. The approach we present in this pa-
per provides a solution to this problem by exploiting condition-based data
while keeping this sensitive data private. Thereby, we make more information
usable for the MRO’s forecasts. This potentially leads to improved forecast
accuracy which can lead to lower spare parts inventory costs for the MRO
and shorter lead times for the customers.

From a theoretical and methodological perspective, we are the first to ad-
dress data privacy issues in condition-based maintenance management. We
do not seek to improve the performance of certain machine learning tech-
niques but to show how they can be enhanced to meet customers’ privacy
requirements by providing a novel combination of machine learning and cryp-
tographic techniques. We develop a framework with which to evaluate which
machine learning techniques are suitable for a privacy-preserving implementa-
tion, based on which we describe how one particularly well-suited technique,
decision trees, can be combined with order-preserving encryption techniques
and privacy-preserving aggregation to produce forecasts that are based on con-
dition data without revealing any of the sensitive condition data to any third
party, including the MRO and the competitors’ cloud providers. Although we
focus on the domain of maintenance management, our approach may provide
value in other domains where machine learning can be employed to generate
valuable information from sensitive data that is distributed across multiple
systems of customers (e.g., collaborative demand or supply management).

Our work is part of a large research initiative, the purpose of which is to
build a platform for secure cloud computing.2 The application for privacy-
preserving spare parts forecasting with distributed sensitive data that we
present in this paper builds on and will be part of this platform. Researchers

2Namely, the EU-funded PRACTICE project.
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at SAP SE and the University of Würzburg, in close collaboration with an
MRO in the aerospace industry, developed a prototype that implements the
approach and concept provided in this paper. Preliminary performance tests
show promising results, which is notable since runtime issues can hinder the
implementation of privacy-preserving solutions in practice.

2.2 Related work
Our work is related to four research streams: 1) condition-based forecasting,
2) collaborative planning, forecasting and replenishment (CPFR), 3) machine
learning, and 4) cryptography. The use of condition data for maintenance
management in general and forecasting of maintenance demand in particular
has received considerable attention. A vast amount of work focuses on detect-
ing a fault in a single component or estimating its remaining useful lifetime.
This work – see Jardine et al. [2006] and Peng et al. [2010] for extensive reviews
– is particularly relevant to data preprocessing, which we assume is completed
before we use the data for machine learning. In this context, data preprocess-
ing means that raw sensor data is transformed into information like alerts
on certain values (e.g., a temperature alert) or estimates for remaining useful
lifetime. While this information is useful for ad hoc maintenance measures,
the work in this field does not consider condition-based demand forecasting
on an aggregate level, which is necessary for an external MRO that serves
multiple customers. Two (more conceptual) contributions postulate an inte-
gration of condition-based information and aggregate maintenance planning:
Yam et al. [2001] propose a concept for an intelligent predictive decision sup-
port system to predict the trend of equipment deterioration, pointing out that
the results of their system can be used as input for subsequent maintenance
management planning, such as maintenance scheduling and spare parts in-
ventory planning. Hellingrath and Cordes [2014] identify a research gap with
respect to integrating condition data into spare parts demand forecasting and
describe an approach with which to overcome this gap. They use a binomial
distribution to model spare parts demand and propose to determine its pa-
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rameters using replacement probabilities for individual parts provided by an
intelligent maintenance system. However, in contrast to our approach, they
do not integrate information about the reliability of individual replacement
probabilities into their overall concept and don’t consider that condition data
typically needs to be collected from multiple sources owned by customers that
may be competitors, once again making privacy an issue for practical imple-
mentations.

Dekker et al. [2013] review the application of condition-based forecasting
in practice and provide two case studies on maintenance operations in the
aerospace and dredging industries, where information about the installed base
is used for spare parts logistics. For the aerospace MRO case, they use the
MRO’s historical data to estimate the relationship between demand for spare
parts and flight hours. The second case is based on the work of Veenstra et al.
[2006], who investigate an OEM that manufactures dredging ships and is also
responsible for the timely provision of spare parts to the ships used by a variety
of dredging companies. The work explores the potential benefits of condition-
based maintenance by simulating critical valves’ deterioration process and
comparing the overall maintenance costs with and without condition-based
maintenance.

Veenstra et al. [2006] find significant potential for reducing excessive costs
that, without condition-based maintenance, are caused by equipment down-
time or unnecessary maintenance operations. But they also find that dredg-
ing companies are reluctant to provide the necessary condition-based data
because a competitor could obtain information about the sand the dredging
ship is producing in a certain location, which is highly sensitive information
in this business. This is exactly the issue we tackle in the present paper.

While the aforementioned contributions are primarily of a conceptual na-
ture, some formal quantitative work addresses the forecasting of maintenance
demand. Lin et al. [2012], which is most closely related to our approach,
consider multiple machines, each equipped with one similar component for
which spare parts are kept in a central inventory, and use Markov chains to
model the machinery’s deterioration process. A Markov state is defined by
the number of components that are in each of the predefined deterioration
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states, and condition information is considered in terms of the probability
that a component will deteriorate one state further (which would also change
the state of the entire system). However, in contrast to our work, Lin et al. do
not differentiate the probability of one component’s further deterioration from
that of another component in the same state, hence losing information that
could be obtained from the condition data. In addition, they do not elaborate
on how condition data can be used to derive probabilities for deterioration,
and they neglect any privacy issues. The present paper provides guidance on
how to develop a myopic heuristic for an inventory policy that can handle
condition-based forecasts.

Our research is also related to the work in the area of collaborative plan-
ning, forecasting and replenishment (CPFR). CPFR was initially introduced
in the retail sector to improve information sharing and coordination in supply
chains, e.g., to rule out planning based on inconsistent forecasts, and to avoid
that small variations in final customers’ demands lead to large variations fur-
ther upstream (i.e., to prevent the so called bullwhip effect) [Mertens et al.,
2012]. Information sharing is an important element of CPFR [Seifert, 2006].
According to Mertens et al. [2012], one way to obtain common and consistent
forecasts is to use an aggregated database. However, as Viswanathan et al.
[2007] points out, if one of the potential collaborators perceives the required
data as sensitive, collaborative planning will most likely not materialize. Sur-
prisingly, the work by Deshpande et al. [2006] is the only paper that specifically
addresses the issue of privacy in the context of CPFR. They propose a CPFR
protocol that enables two collaborating parties to obtain a common forecast
without the need to openly share potentially sensitive input data. Although
our work is based on a similar rationale, it differs significantly from that of
Deshpande et al. [2006]: First, we consider a setting where relevant data is
distributed among many parties (an MRO and multiple customers), not only
between one supplier and one retailer as in Deshpande et al. [2006]. Second,
the demand model in Deshpande et al. [2006] is limited to a linear relation-
ship between demand signals and demand realizations, while our tree-based
approach can handle more complex feature-demand relationships. Third, we
mainly rely on order-preserving encryption to enable privacy-preserving col-
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laboration while Deshpande et al. [2006] use a protocol-based approach that is
typically much slower. Nonetheless we think, that our approach could be used
as part of a CPFR implementation if sensitive data requires privacy-preserving
collaboration.

The third area of research that is related to our work is machine learning in
the context of operations management. Letourneau et al. [1999] use decision-
tree learning based on real-time condition data to develop a prediction model
that should alert staff if an aircraft component needs to be replaced. Their
work, which is that most closely related to ours in this literature stream,
shows that the available data generated by aerospace equipment (even if it
does not come from the latest generation of aircrafts) can be used to obtain
useful information about a specific component’s condition by using decision-
tree learning. This seminal work focuses on the improvement of maintenance
operations in the very short term (e.g., through real-time alerts), so it does
not focus on issues like forecasting demand for spare parts or integrating their
results into spare parts inventory planning. For the same reason, they do
not address the issues, especially privacy issues, that arise when working with
distributed condition data. Dahan et al. [2014] demonstrates the relevance
of decision-tree learning by means of two real-world applications in opera-
tions management. In the first application they estimate the churn rate of
customers of a wireless operator, given detailed data about the customers
(seniority, monthly rate, usage, etc.). The second case predicts whether a
potential customer of a security equipment company will respond positively
or negatively if contacted by the sales team, given data about customer type
(private or business), customer size, contact initiation (by company or by
customer), sales person, and so on. In both cases the application of decision
trees in these binary classification problems lead to highly valuable decision
support. Although these applications are tailored towards different domains,
they are helpful in explaining how decision-tree learning can be applied to
improve operations management.

One of the unique features of our work is the integration of machine learn-
ing with cryptographic techniques to ensure that forecasting of maintenance
demand can be carried out in a privacy-preserving way. Therefore, the work
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in the field of cryptography is applicable to our interests. Our work faces two
cryptographic problems: On one hand, we need to make distributed sensitive
data accessible, such as via a cloud-based system. Since customers will pro-
vide their data only in encrypted form, in order to obtain the information
that is required for the aggregated forecasting from the encrypted data, we
need order-preserving encryption in order to perform comparison operations
on data that is encrypted. On the other hand, we need to aggregate the re-
sults we obtain from evaluating customers’ encrypted databases. Therefore,
we apply a secret-sharing protocol, which is a concept from the broader field
of secure multi-party computation. The first concept for order-preserving en-
cryption was developed by Agrawal et al. [2004], but in order to avoid the
trusted central party that is part of the original encryption scheme, we build
our work mainly on Popa et al. [2011], who not only avoid the trusted cen-
tral party but also develop an efficient framework for implementation of this
advanced concept. In addition, we provide an innovative combination with
a privacy-preserving aggregation protocol that is based on secure multi-party
computation, which provides protocols that allow multiple parties to jointly
compute commonly known functions without revealing any of the individual
inputs. Four important contributions in the field of secure multi-party compu-
tation (SMC) are strongly related to our work. The work by Deshpande et al.
[2006] uses SMC to enable collaborative forecasting in a retail setting where
a supplier and a retailer each have private information about future customer
demand. Their work indicates that various kind of data (e.g., on promotions)
can be used to derive the additional information on future demand, but in
contrast to our work, Deshpande et al. [2006] do not explain how they use
this data – that is, how they obtain the single indicator per period that they
use in their model.

Most closely related to our approach are Bost et al. [2015], Ducas and
Micciancio [2015] and Wu et al. [2016], who also provide solutions for privacy-
preserving classification using a decision tree, although in a somewhat different
setting. In their scenarios, a server holds a private decision-tree model and a
client holds a private input. The two parties use a SMC scheme to classify the
client’s input such that, at the end of the computation, only the client learns
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the result and nothing else is revealed to the other parties. When the parties
execute an oblivious comparison protocol, privacy for both parties is guar-
anteed, but interaction is needed in order to evaluate the comparison of two
encrypted numbers, leading to low computational performance. Therefore,
these approaches are impractical for large database. In addition, in contrast
to the method presented in our work, these schemes cannot be retrofitted to
existing database management systems. Finally, Lindell and Pinkas [2000]
use SMC in a concept for privacy-preserving decision-tree learning. In con-
trast to our work, they assume that the learning data that is used to build
the prediction model (the decision tree) is not centrally available. Such cen-
tral availability would be helpful in a scenario in which the MRO cannot
read the historical sensor data during overhaul operations. To the best of
our knowledge, our work is the first to consider the situation of a MRO that
serves multiple customers with distributed sensitive data and provides a solu-
tion that enables condition-based forecasting of demand for aggregated spare
parts without the need to reveal the customers’ private condition data.

2.3 Privacy-preserving supervised machine
learning

In the context of spare parts forecasting, supervised machine learning is, in
the most general terms, used to estimate a functional relationship y = fD(x)
between the condition data x and the need for replacement y in a certain
time period by analyzing a large set of learning data D. Our goal is not to
predict the exact time of replacement or any distribution of remaining useful
lifetime but to determine whether the component needs to be replaced or can
be reused after the engine that contains the component is overhauled within
a certain time window. The set of learning data D includes values of the
condition parameters and the information concerning whether this specific
component had to be replaced during past overhaul events; that is, D =
{(xi, yi)|i = 1, . . . , N}, where yi is the class label (yes or no) and N is the
number of available historic observations, that is, the number of rows in a

21



2 Privacy-preserving condition-based forecasting

learning dataset, as depicted in Table 2.1. Each row represents one instance
of a part that contains condition data that was measured before the overhaul
and the information about whether the part was replaced or not. Table 2.1
contains all parts of a similar type from all of the machinery for which the
MRO is responsible.

Table 2.1: Example of a learning dataset D
Operating hours # cycles # temp_alerts . . . vibration level replace

211 86 4 . . . 2 yes

125 66 1 . . . 3 no
... ... ... ... ...

170 88 5 . . . 2 yes

We assume that a row in the learning data setD can be collected during or
immediately after the overhaul process for the specific part. At this point, the
MRO can access the historical condition data directly from the component and
can know whether a certain part has to be replaced. Therefore, this historical
data is not classified as sensitive from the customers’ viewpoint since it reveals
no insights on current or future use of the fleet.

In the next phase, the relationship fD(x) is used to classify instances
for which the attribute values x are known, but the corresponding y is not.
Therefore, we obtain condition data in real time and use our learned model
to estimate whether a certain part needs replacement in a pre-defined time
interval. Since customers perceive the real-time condition data of the machines
that are currently in use as sensitive, privacy requirements are high in this
prediction phase, and the data must be protected. Neither the MRO nor any
other third party can be able to access this data. To this end, a privacy-
preserving implementation of an appropriate machine learning technique is
required. As we detail below, this requirement severely limits our choice
of applicable machine learning techniques: Not only do we want to ensure
good performance in terms of our forecasting results (i.e., the lowest possible
forecast error), but we also have to be able to solve realistic problems in an
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acceptable amount of time.
Even without privacy requirements, it is a priori not possible to determine

which machine learning technique will perform best for a specific data set,
since this depends heavily on the particular data and the chosen performance
metric [Caruana and Niculescu-Mizil, 2006]. Caruana and Niculescu-Mizil
[2006] provide an extensive empirical evaluation of the most common tech-
niques based on eleven binary classification problems and various performance
metrics. In their ranking, the top three techniques are boosted decision trees
(boosted-DT), random forests (RF) and bagged decision trees (bagged-DT), fol-
lowed by support vector machines (SVM), artificial neural networks (ANN),
K-nearest neighbor (KNN), boosted stumps, decision tree learning (DT), logis-
tic regression (LOGIT) and Naive Bayes (NB). Caruana et al. [2008] extend
the evaluation of Caruana and Niculescu-Mizil [2006] to higher dimensional
datasets (i.e. with 750 to 650, 000 attributes) and state that also for this kind
of data, techniques based on DT are the top performers.

For our subsequent analysis, which focuses on the feasibility of privacy-
preserving classifications using the various concepts, we can summarize this
comprehensive list. Boosted-DT, RF, bagged-DT and boosted stumps are all
based on the concept of DT. Classification via one of these tree-based meth-
ods basically means evaluating multiple decision trees [Murphy, 2012], so if
we find a way to evaluate a single decision tree while satisfying the privacy re-
quirements, we could expand this approach to enable the more sophisticated
machine learning techniques. In addition, NB is not relevant for our work
since it is limited to discrete-valued problems [Murphy, 2012]. In addition,
we also consider basic linear regression (LINREG) which is the foundation for
additional sophisticated regression techniques such as incremental regression
analysis or extensions of the stepwise regression as for example described by
Matt [2005]. Therefore, we have six machine learning techniques (listed in
Table 2.2): SVM, ANN, KNN, DT, LOGIT and LINREG.

These techniques differ not only in terms of performance (e.g., forecast ac-
curacy) but also in terms of the arithmetic operations (e.g., addition, multipli-
cation, comparison), which is not an issue if classification is done on plaintext
(unencrypted data). However, when privacy requirements are considered, the
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sensitive real-time data can be made available and accessed only in encrypted
databases. Hence, we must apply our learned model to encrypted data. Theo-
retically, there are so-called fully homomorphic encryption (FHE) techniques
that allow us to perform any kind of efficiently computable operation (addi-
tion and multiplication) on encrypted data [Gentry, 2009], so while we can’t
read the encrypted data, we can still evaluate a function on it, and decrypting
the return value yields the same result as performing the same function on
plaintext. However, these techniques are not yet feasible for large problems.
For example, a recent implementation by Gentry et al. [2012] takes around
four minutes using 3GB RAM to evaluate an AES-128 encryption operation,
a time span that renders operations on entire databases impractical. Oper-
ations on encrypted data become feasible if we only allow certain operations
(e.g., addition or multiplication) on encrypted data. In this case, either par-
tially homomorphic encryption or order-preserving encryption techniques can
be employed [Popa et al., 2011, Agrawal et al., 2004]. Partially homomorphic
encryption techniques allow only certain operations (addition or multiplica-
tion) to be performed on encrypted data, while order-preserving encryption
allows comparison operations to be performed on encrypted data.

Table 2.2: Required encryption technique for privacy-preserving classification
via different machine learning (ML) techniques

ML Technique
classification
function

[Murphy, 2012]

Required
operations

Required
Encryption

SVM w0 +wTx {+, ∗} FHE
ANN sigm(wTz(x)) {+, ∗, exp} FHE
KNN dist(x,d) {+, ∗, sqrt} not available

DT φ(x,vl) {<,>,=}
order-

preserving
encryption

LOGIT sigm(wTx) {+, ∗, exp} FHE
LINREG w0 +wTx {+, ∗} FHE
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In order to determine which type of encryption is required for each ma-
chine learning technique, we analyze their individual classification functions
and assess which arithmetic operations need to be performed on encrypted
data. We determine the required arithmetic operation and link each of the
techniques with the required encryption technique for a privacy-preserving
implementation of the classification function. Table 2.2 lists the classification
function of each machine learning technique based on Murphy’s 2012 nota-
tion. wTx denotes the scalar product of a transposed vector of weights w and
a vector of attribute values x. Computing a scalar product requires addition
and multiplication since:

wTx =
|x|∑
j=1

wjxj (2.1)

where |x| is the length of the vector x. For privacy-preserving classification
with SVM we need to compute the scalar product of encrypted vectors. Hence,
classification via SVM is possible only on fully homomorphic encrypted data
that enable addition and multiplication operations. In addition to this imple-
mentation issue, SVM has a drawback with respect to demand forecasting,
as it cannot generate probabilistic output (i.e., a distribution over y), so it
falls short in providing additional useful information about the reliability of
an aggregated forecast from multiple classifications of individual components
[Murphy, 2012].

LOGIT requires the computation of a scalar’s sigmoid function:

sigm(ν) := 1
1 + exp(−ν) (2.2)

Since exponentiation can be rewritten as repeated multiplications, LOGIT
requires both addition and multiplication. As in the case of SVM, a privacy-
preserving implementation could only be realized on fully homomorphic en-
crypted data.

For classification via ANN, we first apply a vector-valued function z(x) :=
g(V x) on the attribute vector x. The non-linear link function g is commonly
the sigmoid function (also known as logistic or logit function), g(u) = sigm(u).
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Thus, classification via ANN also requires fully-homomorphic encryption of
the data.

For classification via KNN we need to evaluate the distance between an
instance x and the K nearest neighbors. Typically, the Euclidean distance is
used, so we need to evaluate

dist(x,d) =

√√√√√ |x|∑
j=1

(xj − dj)2 (2.3)

on encrypted data. Since there is not yet an efficient way of computing square
roots on even fully homomorphic encrypted data, KNN is not an option for
privacy-preserving classification.

For classification via DT, comparing the attribute values of x with split
values given by vl is sufficient. The indicator function φ(x,vl) yields 1, if x
belongs to leaf l and 0 otherwise. Hence, only comparison operations need
to be executed on encrypted data, and DT requires only order-preserving
encryption.

For privacy-preserving classification with approaches that build on LIN-
REG, we need to compute the scalar product of encrypted vectors which
requires addition AND multiplication of encrypted data. This however would
require fully homomorphic encryption which is not practical in realistic set-
tings.

Given the status quo in cryptography, only the classification with de-
cision trees is feasible for use on encrypted data. Although this seems to
be a very strong limitation, (boosted-DT), random forests (RF) and bagged
decision trees (bagged-DT) are based on the concept of DT and can be imple-
mented using order-preserving encryption. Therefore, a number of techniques
that have proven to be effective (e.g., Caruana and Niculescu-Mizil [2006])
lend themselves to a privacy-preserving implementation. None of the other
techniques can currently be implemented in a privacy-preserving manner if
we impose realistic practical requirements in terms of run-time performance.
In the next section, we describe an implementation for privacy-preserving
condition-based forecasting that combines DT learning with order-preserving
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encrypted databases.

2.4 Privacy-preserving forecasting with decision
trees

We now briefly describe the underlying idea of our approach, depicted in Fig-
ure 2.2, before we provide further details in the subsequent subsections. De-
cision trees can classify an instance by simple comparison operations. Order-
preserving encryption allows comparison operations to be performed on en-
crypted data. Therefore, the sensitive real-time data can be stored safely in
encrypted databases in one or more cloud systems. We use a separate database
for each customer, each one with a distinct encryption key in order to fulfill
privacy requirements, and only the customer has the key to access and de-
crypt his data. Nonetheless, we can perform the necessary computation on
the encrypted data in order to classify each individual machine or component.
Since the MRO does not need to know the result of classifying individual parts,
we aggregate across multiple parts of the same type from different customers
by applying a privacy-preserving aggregation protocol that returns the sum
of the individual sensitive classification results from each customer without
revealing any of the inputs to a third party. This approach adds an addi-
tional layer of security for the customers, as neither the individual machines’
attribute values nor the forecasts for individual customers are revealed to a
third party. Only aggregate classification results, which the MRO can’t relate
back to individual components, will be made available to the MRO. From
these aggregate classification results we can provide the MRO with the nec-
essary forecast information, that is, expected demand for the planning period
and a measure of the forecast’s reliability.

We can break our approach into six steps: In step 1 the MRO learns a
probabilistic – meaning that the return value is not just the most likely class
(replace: "yes" or "no") but also the estimated probability for replacement
fD(x) = p(replace|x) given a certain condition vector x – decision tree model
fD(x) on a given learning dataset D.
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Figure 2.2: Concept for privacy-preserving condition-based forecasting with
order-preserving encryption

In step 2 the decision tree is translated into basic SQL queries. In step
3 these SQL queries are encrypted so they can be executed on the encrypted
databases that contain the various customers’ sensitive real-time data. We
refer to this encrypted classification function as f encrD (x). In step 4 we apply
a part of the classification function on the encrypted data in order to obtain
the number of instances of customer a that are classified in each leaf l = 1, ...L.
In step 5 we sum these results over all A customers via a privacy-preserving
aggregation protocol. The MRO (as well as any other potentially malicious
party) cannot infer anything about the underlying condition data from these
aggregated results. However, in step 6, the MRO obtains an estimate of the
expected demand and a measure of the forecast’s reliability. In the following
sections we describe these six individual steps in detail and formalize our
approach.
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2.4.1 Probabilistic DT learning for bottom-up demand
forecasting

We now turn to explaining the basic concept of probabilistic decision trees and
how we use them for condition-based forecasting of aggregate demand (step 1
in Figure 2.2). In DT learning, the functional relationships between condition
data and the need for replacement is represented in a tree-like structure, as
depicted in Figure 2.3. Given such a tree we classify one instance by comparing
its attribute values, which describe its current condition, with the values of the
tree nodes following the matching branches from the top node – i.e., the root
– to a leaf node. The probability that is attached to each leaf is the estimate
for the probability that a component that is classified in this leaf needs to
be replaced. More formally, we apply the following function as denoted by
Murphy [2012]:

fD(x) = p(replace|x) =
L∑
l=1

πlφ(x,vl) (2.4)

where πl is the replacement probability attached to leaf l, vl is the matrix
that defines the path from the root to leaf l and φ() is an indicator function
that yields 1 if the attribute values of an instance x fulfill the criteria of the
leaf described by vl and 0 if not. Consider, for example, the leaf determined

by the matrix v2 =


#cycles < 72

vibrationlevel ≥ 2

#cycles < 66

 with the attached probability

π2 = 0.2.
Hence, φ(x,v2) = 1 if and only if the inequalities in v2 hold for the

attribute values of x and 0 otherwise.
To clarify how the replacement probabilities πl are computed, we must

describe the learning phase of decision tree learning.3. What most learning
algorithms have in common is that they use a greedy approach and build a

3For a more general introduction the reader is referred to [Quinlan, 1986, Rokach and
Maimon, 2008, Murphy, 2012, Lomax and Vadera, 2013]
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Figure 2.3: Example of a probabilistic binary decision tree of depth 3

tree by recursively partitioning the learning dataset – that is, they start with
the full set and find the attribute, along with a split value that allows the best
split of a dataset in two disjoint parts. The best split is the one that best
assigns instances with similar class attributes to both subsets. Therefore, we
compute the ratio of instances of one class in a (sub-)set D by:

πD =
∑

(x,y)∈D 1(y = yes)
|D|

(2.5)

Technically speaking, a split function determines the attribute, along with the
best split value for this attribute, by minimizing the sum over the deviance in
the separated parts [Murphy, 2012]. The deviance is a measure of the purity
of the data in a node using πD as an argument. It is 0 if all instances in this
node belong to the same class and 1 if half the instances belong to each of
the two possible classes. Finding the best split and splitting the learning data
accordingly is continued recursively in both of the child nodes until a stopping
criterion is reached. Typical stopping criteria are the depth of the tree, the
number of instances that are available in a certain node, and the potential
improvement achievable in the next split.

These stopping criteria are necessary to avoid overfitting of the tree to
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the learning data; that is, the model would perform well on the learning data
but much worse on new data even if it differs only slightly from the learning
data. Another way to avoid overfitting is to use only a sample of the learning
data for the learning phase and the remaining instances to test the model.
We then obtain a realistic measure for the quality of the learned tree. This
classification of test instances also gives us the probabilities we attach to each
leaf of the tree. For each leaf, we use the ratio of instances that needed to be
replaced. Let T l be the set of instances from the test set classified in leaf l.
Then the replacement probability πl we attach to leaf l is given by πl := πT l .

If a new instance is then classified in a certain leaf l we interpret πl as the
estimated probability that this instance needs to be replaced. A perfect split is
given if only instances of the same class are assigned to each subset of the split
learning data. If, for example, a split along one attribute sorts all instances
of the learning dataset that needed replacement into the left sub-node and
no such instance to the right sub-node, then the estimated probability for
an instance that is classified in the left leaf would be 1 (respectively 0 for
the right leaf) [Murphy, 2012]. While we describe just the case of a binary
decision problem with only two possible classes (replace: yes/no), we note
that we could also apply decision tree learning to ordinal N -class classification
problems, e.g. by dividing the problem in N−1 binary classification problems
as proposed by Frank and Hall [2001].

The MRO is able to learn a tree, as depicted in Figure 2.3 for each type
of spare part. The tree can be used to classify a new instance – that is, to
estimate a probability for replacement given only the current attribute values
that represent the condition of a component. However, the MRO wants to
obtain an estimate for the overall demand for spare parts of a certain type.
Therefore, we compute:

Fspare =
A∑
a=1

∑
x∈Sa

fD(x) =
A∑
a=1

∑
x∈Sa

L∑
l=1

πlφ(x,vl) (2.6)

Thereby, we classify all instances that are currently in use by the different
customers a ∈ {1, ..., A} and for which the condition data is stored in the
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respective databases, denoted by Sa. As an alternative that provides more in-
formation than just the aggregate forecast, we obtain the number of instances
that are classified in a certain leaf l by:

π̄l =
A∑
a=1

∑
x∈Sa

φ(x,vl) (2.7)

Since the leaves differ in terms of purity (i.e. in the values of πl), knowing
how many instances are classified in each leaf gives us valuable information
about the forecast’s reliability. However, before we describe in Section 2.4.4
how we can use this information, we show how we apply DT learning on
encrypted data.

2.4.2 Privacy-preserving classification of distributed data

This subsection details steps 2, 3 and 4 in Figure 2.2 and describes our
approach for privacy-preserving computation of the demand forecasts from
order-preserving encrypted real-time data. Subsection 2.4.2 provides results
from performance tests with our prototype application.

A combination of order-preserving encryption and decision trees

In the classification phase privacy requirements are high since the real-time
datasets of different (competing) customers are to be classified. In the aerospace
example these datasets include current flight plans and real-time condition
data. This is sensitive data, not only for passenger or cargo airlines, but
more so for national air forces. In this scenario, these customers will only
provide their data to a cloud-based system if encryption prohibits data leak-
age. Therefore, we store the customers’ data in encrypted databases using
an order-preserving encryption scheme (OPES). The concept of OPES was
introduced by Agrawal et al. [2004] to allow the efficient processing of range
queries on encrypted data.

For our application, data is encrypted locally by each customer and then
sent to a cloud-based system. This system is referred to as a relaxed interface,
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through which Popa et al. [2013] showed that ideal security can be achieved.
The main advantage of decision-tree classification comes into effect in

combination with OPES. In the classification phase the computational re-
quirements are rather low since only comparison operations {>;<; =} are
necessary to classify an instance. OPES allows us to perform exactly these
comparison operations on encrypted data, satisfying:

encrk(u) < encrk(v)⇔ u < v,

where encrk(u) represents the encryption of data u with encryption key k.
The main features of OPES are that (1) ordering and comparison opera-

tions can be directly applied to encrypted data, including equality and range
queries, MAX, MIN, and COUNT queries; (2) mutability is given, which
means that a small number of ciphertexts of already encrypted values can
change as new plaintext values are encrypted [Popa et al., 2013]; and (3) time
and space requirements are reasonable enough to allow deployment for large
problem instances [Agrawal et al., 2004, Popa et al., 2011].

Based on the work of Popa et al. [2011], we present an architecture that
avoids the need for a trusted database server, as the customers remain respon-
sible for rewriting the queries, and no decryption of query results is necessary.
This architecture is of great importance since the lack of trust in a third party
(e.g., a cloud provider) has been identified as a major obstacle [Barratt, 2004,
Barkataki and Zeineddine, 2015], and with our application the MRO and the
customers can collaborate without necessarily trusting each other.

Comparison operations are sufficient to classify an instance by comparing
its attribute values with all splits of a given decision tree. The COUNT
operation then allows us to obtain the number of instances in each leaf and to
compute the replacement probability. For illustration purposes, consider the
sample database in Table 2.3, which contains encrypted real-time condition
data for one type of part.

In order to classify this data, we need to translate the tree that the MRO
sends to a cloud-based platform into SQL queries. For each leaf of the tree
there is one query that counts how many machines or components fall into
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this leaf. Consider one leaf as an example. The classification function that
returns the number of instances that belong to the leaf from all A customers
is given by:

π̄2,a =
∑
x∈Sa

φ(x,v2) (2.8)

The corresponding SQL query for a plaintext database Sa could be written
as:

select count (∗)

from Sa

where #cycles ≤ 72

and vibration level < 2
This query returns the number of instances that are assigned to the leaf

with an associated probability for necessary replacement of 0.1. However,
this query does not work if it is sent to an encrypted database, as shown in
Table 2.3, where not only the attribute values but also the attribute names are
encrypted. Hence, even if the MRO or the cloud provider tried to access the
encrypted database via SQL queries, no meaningful results could be retrieved.

Table 2.3: Example of an encrypted real-time dataset of customer a named
Sencra

encrk(operating hours) . . . encrk(vibration level) encrk(replace)
encrk(123) . . . encrk(2)
encrk(239) . . . encrk(2)

... ...
encrk(171) . . . encrk(1)

Table 2.3 contains encrypted real-time condition data for one type of part
that was encrypted by one customer using its private key k. This data can
also be classified with a corresponding tree like the one depicted in Figure 2.3.
However, we first need to encrypt the corresponding SQL query in order to
execute the query on the encrypted databases. In SQL notation this results
in:
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select count (∗)

from Sencra

where encra(# cycles) ≤ encra(72)

and encra(vibration level) < encra(2)
Similar to the unencrypted query, this query also returns the number of

engines which are assigned to the leaf with an associated probability of neces-
sary replacement of 0.1. All other leaves can also be evaluated through similar
queries. However, we must run these kind of queries not only for each type
of component but also on each of the customers’ databases. For the MRO
which instances in a certain leaf come from which customer is irrelevant. On
the other hand, the customers consider the probability of replacement as sen-
sitive information that must not be leaked to competitors. Subsequent to the
following performance test, the next subsection describes how the aggregated
numbers of instances in each leaf of each customer can be computed without
revealing these numbers to any other party.

Performance test

We implemented the approach outlined in the previous sections in a prototype
application. In this section we show that our prototype performs well on the
most critical tasks and therefore avoids runtime issues that can hamper the
feasibility of privacy-preserving solutions.

We first analyze two important indicators: 1) The time it takes to encrypt
a dataset initially and 2) how our approach scales with the number of leaves.
For this we use a dataset containing sixteen attributes that describe the condi-
tion of a propulsion plant [Coraddu et al., 2016]. The dataset contains 5, 967
lines, each representing one instance of a similar type of propulsion plant
currently in use by one customer. We then compare our approach with the
approach introduced in Wu et al. [2016], which is, so far, the best performing
approach that can be applied to similar settings and tasks as our approach.
To make our results more generalizable and robust, we use two additional
real-world datasets that are also used by Wu et al. [2016].
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For all datasets the test environment for the initial encryption was a laptop
with 8GB RAM and an i5-3320M processor running on Windows 7. The
classification of the order-preserving encrypted data was performed using SAP
HANA infrastructure with 256GB RAM and a quadruple XEON E5-2670
processor running on Linux Suse. This process emulates a practical situation
in which customers encrypt their data locally, while the privacy-preserving
classification may run on more powerful infrastructure in the cloud.

For our first analysis the initial encryption of all 5, 967 instances took
545, 216ms (approximately 9 minutes). Time for encryption is proportional
to the number of instances, so updating the encrypted database by inserting
a single instance takes about 91ms. We consider this as more than acceptable
for a practical implementation, especially because the initial encryption is a
one-time task and 9 minutes for a realistically sized dataset is a reasonable
runtime.

The main driver of computation time for our approach is the number of
leaves that need to be evaluated. In Figure 2.4 we show the average time
for classifying a single instance from a sample of 100 instances with different
numbers of leaves. We see that the computation time increases approximately
linearly with the number of leaves. We consider this as not being critical
because the number of terminal nodes typically does not exceed 64, which
is the maximum number of leaves of a tree with depth 6. We note that the
number of instances and the depth of the tree is also not critical for our
approach due to the efficient implementation of comparison operations. It
takes just three times longer to classify all 5, 967 instances than to classify
only 100 instances. Furthermore, we do not observe a correlation between
the number of necessary comparison operations, i.e., the depth of the tree.
The reason for this robustness against the number of instances and the depth
of the tree is that we break down the evaluation to standard queries on the
order-preserving encrypted database, which are highly optimized in the HANA
infrastructure. This makes our approach especially well suited for settings
where a large number of instances needs to be evaluated frequently by complex
trees.

Wu et al. [2016] propose an alternative approach for secure evaluation
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Figure 2.4: Evaluation time for different trees with different numbers of ter-
minal nodes (leaves)

of decision trees. For comparing our new approach with Wu et al. [2016]
we use two additional real-world datasets of different size and dimensionality
that are also used in Wu et al. [2016] for performance testing. While these
datasets are not related to condition-based maintenance, they still require
basic classification tasks. In the first dataset (spambase) the task is to decide
whether a mail is spam or not, given a set of 57 features. The second dataset
has 9 features that are used to classify whether a patient has breast cancer.

We follow the approach of Wu et al. [2016] to compare the performance
of our method with the method introduced in Wu et al. [2016] The results are
reported in Table 4.1. We observe that our approach is about 50 times faster
for both datasets compared to the approach of Wu et al. [2016]. The runtimes
we report for our approach are average evaluation times for a sample of 100 in-
stances. Since our approach is very robust to the number of instances we could
achieve much lower average evaluation times per instance for larger samples.
The computation time for the approach of Wu et al. [2016] increases linearly in
the number of instances. Therefore, our approach is much faster when larger
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data sets need to be evaluated. However, we note that the approach of Wu
et al. [2016] has an advantage in terms of privacy since it does not only keep
the feature values of the customers’ data private, but also does not reveal the
split values of the tree. Therefore, in some settings where the service provider
considers the tree as sensitive information s/he can trade off the additional
privacy of Wu et al. [2016] with the significantly better performance of our
approach.

Runtime (in s)
Dataset Features Leaves Our approach Wu et al. [2016]

Breast cancer 9 12 0.024 0.545
Spambase 57 58 0.38 16

Table 2.4: Comparison of computational efficiency with Wu et al. [2016]

2.4.3 Privacy-preserving aggregation protocol

The classification based on a decision tree returns for each leaf l ∈ {1, · · · , L}
and each customer a ∈ {1, · · · , A} the number π̄l,a of engines that fall into
this leaf. For the customers π̄l,a is sensitive data because it reveals information
about the condition of individual machines and components. Hence, this value
should not be disclosed to other customers or to the MRO. The MRO does
not need the individual data of each customer but the aggregated numbers to
make decisions about the spare parts inventory. Hence, the MRO needs only
the sum π̄l,1 + · · ·+ π̄l,A. This subsection implements step 5 of Figure 2.2 by
showing how this aggregated result can be computed without disclosing the
individual input data.

We solve the problem by using the concept of SMC. A SMC protocol
allows mutually suspicious parties to compute a function on their private
inputs without revealing anything but the function’s output. We illustrate
the basic idea of SMC with a simple example that is related to our specific
setting [Schneier, 1995]: Say we have three customers CUS1, CUS2 and CUS3

each has a number x1, x2 and x3 as (private) input. They want to compute
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x = x1 + x2 + x3, but they do not want to disclose their private data to each
other. CUS1 conceals his number by adding a random number r and privately
sends r+x1 to CUS2. CUS2 adds his input and privately sends r+x1 +x2 to
CUS3. CUS3 adds his input and sends r+x1 +x2 +x3 back to CUS1. CUS1

recalls r, subtracts it from the received value r+ x1 + x2 + x3 and announces
x = x1 +x2 +x3. None of the involved parties is able to learn the input of the
other parties. CUS2 and CUS3 are blinded by the random choice r of CUS1,
and CUS1 can only learn the sum x2 + x3 but no individual input.

As in the preceding example, most existing SMC protocols assume se-
cure and authenticated communication channels between each pair of parties.
However, for our privacy-preserving aggregation problem, this assumption is
not realistic because, in a real-world scenario, customer a does not necessarily
know who customer a + 1 is, and the input values for all customers are not
necessarily available at the same time. Therefore, we follow a central server
approach, as Kerschbaum [2009] does, where the server computes the result
of the function. The customers do not need the result of the computation and
will be treated as input parties, which implies a producer-consumer model, as
in Jawurek and Kerschbaum [2012], with the central server as aggregator in
between. The MRO is the only party that needs to know the final result.

However, this central server does not have to be a singular cloud provider.
Within our central cloud-based platform we can use the infrastructures of
various cloud providers to enhance privacy and avoid single points of failure.
Therefore, we propose a secure aggregation protocol based on a secret-sharing
scheme (SSS). With SSS, the role of the central server is split among multiple
cloud applications (APPs) that are hosted by various cloud providers. Each of
these APPs receives only partial information from each customer. Then each
APP aggregates the partial inputs, which are meaningless in themselves, and
sends the aggregation to the MRO. Only the MRO can aggregate the parts
and obtain the overall solution.

A secret sharing scheme consists of two algorithms: one specifies how to
share the secret s in shares, and the other shows how to reconstruct s from
the shares or a subset thereof. For our application an important property
of SSS is linearity since linearity allows us to sum the shares of multiple
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secrets. In a linear scheme, a secret s is viewed as an element of a finite
field, and the shares are obtained by applying a linear mapping to the secret
and several independent random field elements [Beimel, 2011]. An example is
the so called (t, n)−threshold scheme, which assumes that, among the APPs
that receive the secret shares, at most t parties can fail to deliver a result or
cooperate to defeat the protocol, where t < n. If at least t + 1 valid shares
are available, the secret can be reconstructed. Therefore, a subsets of APPs
with cardinality at least t + 1 is referred to as authorized. Assume that s
is a number (like our individual forecasts) and there are three parties APP1,
APP2 and APP3. Then a simple way to share s consists in randomly choosing
two numbers r1 and r2 in Zp, with p prime, and setting r3 = s− r1 − r2 mod
p. Now each party APPi receives ri and they just have to sum all their shares
to reconstruct s. If two secrets s1, s2 have been shared in r1i, r2i then the
parties can securely compute the sum of the secrets s1 +s2 by privately adding
their shares and broadcasting the result. In our example, each APPi sends
the sum of the shares to the MRO, which cannot deduce anything about the
customers’ individual inputs but can sum the added shares from all APPi and
can, therefore, obtain the final result. In general, if t < n/2, then SMC with
perfect security is possible [Cramer et al., 2015], which implies n >= 3. For
more information on more complex linear SSS and how they are used in SMC
the reader is referred to Beimel [2011], Cramer et al. [2015].

For our purposes, we propose a solution where each customer uses a linear
(t, n)−threshold SSS to split its input among n = 2t+ 1 APPs, which jointly
compute the overall result. Only the MRO should be able to reconstruct the
result, which requires a secure channel between each APP and the MRO. The
privacy-preserving aggregation protocol is illustrated in Figure 2.5 for n = 3,
where APP1, APP2 and APP3 run, for example, on Amazon Web Services,
Google Cloud Platform, and Microsoft’s Azure. Customer a splits π̄l,a in three
shares π̄l,a,1, π̄l,a,2, π̄l,a,3 and sends π̄l,a,j to APPj for j = 1, 2, 3 through a secure
channel. Since π̄l,a,j is just one share, it does not reveal any information about
π̄l,a. Then each APP adds the shares received from its customers, and after
all customers have sent their inputs, the APPs send their individual results
to the MRO, which can determine the final result. The properties of linear
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Figure 2.5: Overview of the privacy-preserving aggregation protocol

(t, n)−threshold SSS ensure that, even if at most t (in our example t = 1)
APPs fail to send their result, the MRO will still be able to reconstruct the
result of the aggregation. Assuming that the APPs behave semi-honestly4 and
that at most t APPs can fail or cooperate, our protocol is not only privacy-
preserving but also fault-tolerant, because the result of at least t + 1 APPs
suffice to reconstruct the aggregated result. Furthermore, a malicious MRO
would have to corrupt more than t APPs to obtain the customers’ private
inputs. Protocol 1 is the core of our solution for a secure aggregation of the

4In SMC semi-honest (also called honest-but-curious) parties follow the protocol specifica-
tion. In our setting this means that APPs won’t willingly corrupt or block the transmis-
sion of shares.
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numbers per leaf from the decentralized classification of multiple encrypted
customer databases.

1: CUSa splits π̄l,a in n shares π̄l,a,1, · · · , π̄l,a,n
2: CUSa sends π̄l,a,j to APPj over a secure channel, j = 1, · · · , n
3: APPj computes Sa,j = Sa−1,j + π̄l,a,j,

where S0,j = 0 and Sa−1,j = π̄l,1,j + · · ·+ π̄l,a−1,j

4: After all customers have sent their inputs each APPj sends
SA,j = ∑A

a=1 π̄l,a,j to the MRO
5: If at least t+ 1 APPs send their result, MRO can reconstruct the overall

result
Protocol 1: privacy-preserving aggregation using a secret sharing scheme
As depicted in Figure 2.2, the MRO gives its decision tree as input to the

system and receives as output the result of the privacy-preserving aggregation,
which is the number of engines that fall into a given leaf. With this aggregated
number the MRO can determine the single forecast and an estimate of its
reliability. The next section outlines how the latter can be obtained.

2.4.4 Estimation of forecast reliability

In the previous section we developed an approach that allows us to aggregate
the numbers of instances per leaf from all customers without revealing any
of the individual values. We now describe how the MRO can use this infor-
mation to determine a single forecast value and an estimate of this forecast’s
reliability. This description refers to the final step, step 6, in Figure 2.2. Even
though an estimate for the reliability may at first seem like a marginal detail,
it is an important feature of our approach because based on the aggregated
forecast, the MRO will devise inventory policies for different spare parts. Any
state-of-the-art inventory policy requires not only a single valued (point) fore-
cast, but also some distributional information, such as that to compute safety
buffers. Therefore, this information is critical to subsequent planning tasks.

We build on the fact that our model performs differently in different re-
gions. (That is, the leaves with attached probabilities that are close to 1 or
0 provide more reliable predictions than do leaves with probabilities that are
closer to 0.5. We can leverage the information about how many instances fall
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to each leaf to obtain an ex-post distribution of aggregated demand. This
condition-based forecast uncertainty we differs from the classical approach,
where a single static error distribution is obtained from historic data.

To obtain a measure for the forecast’s reliability, we use the output from
the preceding privacy-preserving aggregation step, where the MRO obtains
the numbers of instances that are classified in each leaf, aggregated over all
customers. We can write this information as a vector π̄ = (fD(x1), ..., fD(xN))
where π̄i is the replacement probability of the leaf instance to which xi was
assigned. N is the number of instances – that is, the number of parts of this
type that are currently in use.

As result of the privacy-preserving aggregation step, the MRO obtains
the numbers of instances that are classified in each leaf, aggregated over all
customers. Since the MRO knows the replacement probability for each leaf,
computation of the weighted average over all leaves provides a point forecast
of the instances to be replaced. In order to obtain a measure of this forecast’s
reliability, we derive a probability distribution for the number of instances
that need to be replaced. Therefore, we start with a vector π̄; the length
of π̄ corresponds to the number of all classified instances. Each entry of π̄
represents one instance and contains the replacement probability of the leaf to
which the instance was assigned. Algorithm 3 in Appendix A takes a vector
with the individual replacement probabilities π̄ and returns a distribution p
with probabilities for 0, 1, ... N replacements.

This process provides us with valuable information for subsequent inven-
tory decisions. We can obtain a measure for the reliability of the forecast by,
for example, calculating the distribution’s standard deviation. This measure
changes depending on the current condition data. Measuring the reliability
of the forecast is independent of the machine learning technique that was ap-
plied for classification. The only requirement is that it is probabilistic – that
is, that it returns replacement probabilities.5

5Except for support vector machines, all techniques discussed in Section 2.3 satisfy this
requirement
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2.5 Conclusion and direction for further research
Although condition-based maintenance is a well-established concept for in-
dividual machines, research on integrating condition data that is created by
multiple machines run by several customers of one MRO in order to forecast
aggregate maintenance demand is scarce. In this context, the privacy concerns
of customers that are not willing to reveal their sensitive real-time data become
an issue that may hamper the use of data needed any collaborative forecasting
approach. We overcome this issue and thereby enable collaborative condition-
based forecasting in service supply chains. With our approach, sensitive data
from different companies can be used to obtain combined condition-based
forecasts without the need to reveal any of the input data. This may lead
to substantial benefits such as more accurate spare parts demand forecasts
for the MRO which subsequently would lead to reduced service times for the
customers and lower inventory costs for the MRO. In addition to a point fore-
cast, we show how to obtain information about its reliability, which allows the
MRO to decide ex ante whether the subsequent inventory decisions should be
based on the decision-tree forecast or on a previously used method that does
not use real-time condition data.

Our work was motivated by the case of an MRO in the aerospace industry;
one of the important and challenging tasks of this company is to determine
the right inventory levels for different spare parts. The applicability of our
approach, however, is not limited to inventory management and there may be
applications of privacy-preserving condition-based forecasting with an even
stronger monetary impact: Frequently, the machinery is not sent to the MRO
as in the case of spare parts for aircrafts, but the the MRO employs expensive
technicians to carry out on-site maintenance. Oftentimes, costs of the service
technicians exceed the costs of the spare parts. Examples are the overhaul
of complex medical machinery or wind turbines that are installed all over
the world but maintained by SMEs with one or few sites. In these kind
of settings, additional substantial costs can arise because service teams are
frequently sent out either too early, that is, when overhaul is not yet necessary,
or too late, after a break-down occurred. Also, the service team may take
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significantly longer to examine the machinery without any prior information
about its condition and/or the right spare parts in place. These excessive costs
can be reduced if privacy-preserving approaches enable the use of sensitive
information for condition-based forecasting. The information we generate
with our approach can, for example, be used to better schedule maintenance
teams, to provide them with better information and the right spare parts
before arriving at the customer’s site and to prioritize and plan maintenance
jobs more accurately to prevent down-times and/or unnecessary maintenance
operations.

Linking our condition-based forecast with a subsequent inventory policy
could be a useful field for further research. Following the myopic heuristic
Lin et al. [2012] introduce is one alternative since our approach provides the
required probability distribution for the demand. Another alternative is pro-
vided by the dynamic re-order point policy Babaï et al. [2009] introduce. A
dynamic policy is necessary because we cannot assume stationarity of de-
mand, as demand depends on the condition of the machinery. Exploring how
to best use even more advanced machine learning techniques, such as RFs,
in a privacy-preserving manner would also be a useful area of inquiry. Ulti-
mately, we want to develop a toolbox of methods from which the user can
choose depending on the individual requirements and data structure.

In our work we considered a setting in which the time for a component’s
overhaul is given (typically by thresholds determined by the manufacturer)
and the need for replacement is predicted using condition data. To schedule
overhaul operations pro-actively based on sensitive condition data has signif-
icant potential for increasing the usefulness of machinery while also reducing
the number of unexpected failures [Deloux et al., 2009]. However, this step
from hard-time to condition-based overhaul requires high-quality data and
a reliable performance of the prediction models, as the consequences of er-
rors are more severe. Therefore, our solution gives an MRO a suitable test
bed for condition-based maintenance that offers significant potential for im-
provements and that, if implemented successfully, can serve as a showcase to
convince customers to delegate more responsibility for maintenance decisions
to the MRO.
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3 Prescriptive analytics for
inventory management: a
comparison of new approaches

We analyze the performance drivers for data-driven inventory management
in a Newsvendor setting with nonstationary demand. For this, we study
two novel approaches which are based on machine learning techniques (lin-
ear quantile regression and tree-based regression, respectively) and which use
historical demand observations and auxiliary data to prescribe optimal in-
ventory quantities. We identify three major performance drivers, that are
non-linearity, heteroscedasticity and usability. We evaluate both models both
in an extensive simulation experiment where we control different properties
of the feature-demand relationship as well as on a complex real-world data
set from a restaurant chain. From these experiments we conclude that in
situations in which the structure of the feature-demand relationships is not
known to be predominantly linear – which can be assumed to be the typical
case in practice – we recommend the much more robust tree-based approach.
Furthermore, the tree-based also provides comparatively better results for
feature-dependent noise, i.e., heteroscedasticity. We also find that in the
real-world setting, the tree-based approach performs better with very small
data-sets due to the better built-in feature selection which is important in
terms of usability in practice. 6

6This paper is co-authored by Jan Meller and Richard Pibernik Meller et al. [2018].
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3.1 Introduction
Throughout the last decades a large body of research in operations manage-
ment addressed the question of how to determine optimal inventory levels
when demand is uncertain. Traditionally, inventory models process input
data such as demand forecasts based on historical demand/sales, information
about the accuracy of the forecasts, and costs for overstocking and under-
stocking to determine an inventory quantity. These models lead to acceptable
results when forecasts are fairly accurate and forecast performance is stable
across time. In many industries, however, these conditions are not satisfied.
In the fashion, retail as well as many service industries (e.g., for restaurants,
as we will see later), demand is oftentimes driven by a number of exogenous
and endogenous factors (e.g., weather conditions, media attention, short and
medium term seasonal factors, promotional activities, etc.) at the same time.
As a result, decision makers frequently face highly nonstationary demand pat-
terns that can hardly be predicted with sufficient accuracy when forecasts are
based solely on historical demand. In these instances conventional methods
for forecasting and inventory management may not only lead to low forecast
accuracy, but, more importantly, excessive inventories and/or large unmet
demand [Carrizosa et al., 2016].

During the last years, access to large amounts of data that can potentially
explain demand (variations) has improved significantly, and, at the same time,
the cost for obtaining, storing and processing this data has decreased substan-
tially. Recent work in operations management has, for example, utilized data
such as Google searches [Bertsimas and Kallus, 2019], clickstreams [Huang
and van Mieghem, 2014], weather information [Arias and Bae, 2016] and con-
dition data of sensor-equipped machinery [Elwany and Gebraeel, 2008]. How
to leverage this auxiliary data by extracting suitable “features” – measurable
exogenous variables that potentially have predictive power – and incorporat-
ing them into inventory models has recently attracted interest in the academic
community.

The work by Ban and Rudin [2018] and Bertsimas and Kallus [2019] have
recently proposed novel approaches that use historical demand and feature
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data to directly prescribe inventory quantities. Ban and Rudin [2018] pro-
pose two distinct approaches for “The Big Data Newsvendor”. In the first,
they apply linear quantile regression (LQR) to derive the Newsvendor order
quantity from historical demand observations and (potentially extensive) fea-
ture data.7. Their second approach is kernel-based optimization. They use
kernel functions to derive weights for each observations. The actual decision
is then a locally weighted average over the historical observations. Bertsimas
and Kallus [2019] formulate five prescriptive models they consider as the most
broadly and practically effective motivated by the following five well-known
machine learning techniques: k-nearest-neighbors regression, kernel-based op-
timization (similar to the approach by Ban and Rudin [2018]), local linear
regression and two approaches using tree-based regression (TBR), namely
classification and regression trees (CART) and random forest (RF) which ba-
sically uses multiple CARTs.

Out of these models, we consider the ones based on LQR and TBR for our
analysis since these approaches are representatives of fundamentally differing
modeling assumptions. According to Hastie et al. [2013] a fundamental dif-
ference in the modeling assumption is, whether we try to find a global model
such as LQR or a local model such as TBR. While the LQR approach glob-
ally fits the parameters of a (linear) model to the entire set of available data,
TBR approaches first partition the feature space and then determine local
decision quantities for each partition based on the observations that fall into
this partition. Furthermore, sophisticated TBR approaches such as RF as
introduced by Breiman [2001] are a powerful machine learning technique for
regression-related tasks due to their accuracy and versatility in a wide range
of settings as well as due to their internal feature selection mechanism. RFs
are competitive in terms of prediction accuracy compared to other machine
learning techniques in various settings [Caruana and Niculescu-Mizil, 2006]
and [Caruana et al., 2008]. In addition, the two other local concepts Kernel-
based optimization and k-nearest neighbors are not able to model interaction
effects between features.

7A similar idea was presented by Beutel and Minner [2012].
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In our work we analyze how the fundamentally different models – the
global LQR and the local TBR – perform in a prescriptive model to derive
inventory quantities. We show that they lead to different performances (that
is, different total costs for overstocking and understocking) depending on the
specific problem instance and dataset at hand. Obviously, a decision maker
would like to know which approach to use under which conditions. Answering
this question lies at the heart of the research presented in this paper. Our con-
tribution is twofold: first, we analyze how well the two competing approaches
can make use of feature data to prescribe inventory quantities. In particular,
we focus on the question whether one approach strictly dominates the other,
i.e, whether we can find conditions under which one approach consistently
leads to better inventory decisions. Second, we explore the structural char-
acteristics of the two approaches and examine which conditions would render
one method preferable over the other from the perspective of a decision maker
who considers applying them in a real-world setting.

For this purpose, we first introduce a demand model that allows us to for-
malize different properties of the feature-demand relationship and the demand
uncertainty. Thereafter, we introduce and discuss the competing approaches
and derive a set of conjectures regarding their performance and usability un-
der different conditions. We then present the results of two studies, which we
carried out to provide numerical and empirical evidence for our conjectures:
The first study is a controlled simulation experiment that allows us to isolate
individual effects of the feature-demand relationships as well as the structure
of uncertainty on the performance of the two competing approaches. Studying
the two approaches in a controlled environment helps us overcome a problem
that one frequently encounters when evaluating the performance of machine
learning methods based on real-world datasets: the performance is usually
dependent on the specific problem instance and there are many confounding
effects – it becomes virtually impossible to draw meaningful conclusions re-
garding the performance drivers of different approaches. In our second study
(where the aforementioned confounding effects are present), we apply the two
models to a real-world problem instance of a fast casual restaurant chain that
has to take daily inventory decisions in the presence of highly nonstationary
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demand. The nonstationary demand can, in part, be explained by features
such as the day of the week, the time of the year as well as weather con-
ditions. In this second study we focus less on structural effects of the two
approaches, but concentrate on their usability. For example, we analyze how
the two approaches behave when only a limited amount of data is available.

The results of our studies suggest that both approaches clearly outper-
form a realistic benchmark approach (based on sample average approximation
- SAA) that ignores feature data. They both lead to very substantial perfor-
mance improvements as long as the uncertainty in the demand observations
is not extremely high. In both our studies the TBR approach appears to be
very robust to different feature-demand relationships; moreover, it can effec-
tively exploit feature-dependent uncertainty (systematic noise). Under most
relevant conditions the TBR approach performs better than the (basic) LQR
approach. The LQR approach can, however, be enhanced through additional
feature engineering. In our second study we observe that the LQR approach
with additional (engineered) features can outperform TBR. However, as we
discuss in detail, feature engineering requires substantial effort and is a very
difficult task, especially under big data regimes and without good a priori
knowledge about feature-demand relationships. Thus, from a practical point
of view, we recommend the use of tree-based approaches, especially because
of their good performance, robustness and superior usability.

3.2 Feature-based Newsvendor problem
Determining inventory levels facing uncertain demand is a well-studied prob-
lem in operations management. However, as we outline in this chapter, the
direct consideration of feature data for decision making is an area of active
research. For single-period settings the Newsvendor model has attracted a lot
of attention as it is simple, intuitive, and yet captures the most important
characteristics of many underlying business problems. For extensive reviews,
the interested reader is referred to Lee and Nahmias [1993] or Khouja [1999].

Since the Newsvendor logic constitutes an important building block of
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our model, we briefly introduce it here: Based upon a known cumulative
distribution function FD(·) of demand D the objective is to minimize the
expected sum of overage costs co and underage costs cu:

min
q≥0

E[C(q,D)] = E[cu(D − q)+ + co(q −D)+] (3.1)

For this standard Newsvendor problem, it can be shown [c.f. Zipkin, 2000]
that the optimal order quantity q∗ is given by:

q∗ = F−1
D

(
cu

cu + co

)
(3.2)

Traditionally, q is determined by first fitting a theoretical distribution to
historical demand realizations to obtain FD and then solving 3.2. This is
referred to as separate estimation and optimization [Liyanage and Shanthiku-
mar, 2005]. One drawback of this approach lies in the difficulties associated
with estimating the “correct” demand distribution (e.g., Scarf et al. [1958] and
Klabjan et al. [2013]), which is particularly relevant when demand is highly
nonstationary. Another issue results from the fact that estimation and opti-
mization are performed on different criteria that are not necessarily aligned:
while the estimation of the demand distribution is usually based on the mini-
mization of some symmetric measure of deviation (e.g., mean squared error),
the subsequent optimization would consider potentially asymmetric (underage
and overage) costs as exemplified by Equation (4.5). Recently, so-called data-
driven approaches have been proposed to overcome these issues. They have in
common that they directly relate the inventory decision to available historical
data (that is, they follow a joint estimation and optimization logic. Sample
Average Approximation (SAA) is the most basic of these approaches and has
been shown to lead to asymptotically optimal results when demand can be
assumed to be i.i.d. [Kleywegt et al., 2002]. For the Newsvendor problem,
SAA can be applied as follows: Given a set of historical demand observations
DN = [d1, d2, . . . , dN ], one determines the order quantity by minimizing the
empirical risk, that is the average costs over the sample DN . The data-driven
Newsvendor problem can be written as:
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min
q≥0

R̂(q,DN) = 1
N

N∑
i=1

[cu(di − q)+ + co(q − di)+] (3.3)

where q is the order quantity, di the demand in period i, and (.)+ is a function
that returns 0 if its argument is negative, and else its argument. The solution
to this sample quantile regression is

q∗SAA = d<j> with j =
⌈

cu
cu + co

N
⌉

(3.4)

which is the jth-largest demand observation [Bertsimas and Thiele, 2005]. An
equivalent formulation of equation (3.4), which is slightly closer to the form
used in quantile regression, as for example in Koenker [2005], is given by:

q∗SAA = inf
dj∈DN

{dj : |{di ∈ DN : di ≤ dj}| ≥
cu

cu + co
N} (3.5)

where |{·}| is the cardinality of a set. We refer to q∗SAA as the Newsvendor
quantity for a given set of demand realizations, based on SAA. Furthermore,
we refer to the fraction cu

cu+co as service level (SL) since this ratio between
underage and overage costs determines how many demand instances of the
sample could not have been satisfied when choosing qSAA.

However, q∗SAA is only (asymptotically) optimal if we assume that demand
realizations are i.i.d. Clearly, this condition is not satisfied in many real-world
situations where demand is oftentimes seasonal, cyclical, follows a trend and
may be driven by a variety of other factors (e.g., weather).8

In the real-world data we use in our second study, for example, we observe
highly nonstationary demand that can, in part, be explained by the day of the
week, the time of the year as well as weather conditions. In such instances,
SAA will most likely not provide satisfactory solutions to the Newsvendor
problem. A common remedy to account for such nonstationarities is to con-
sider potentially meaningful features to explain part of variations of demand.

In the remainder of this section we first describe how feature-dependent
8Bertsimas and Thiele [2005] adapt SAA to account for a trend by adjusting the sample size
– however this does not account for other forms of nonstationary demand, e.g., seasonal
or cyclical demand.

53



3 Prescriptive analytics for inventory management: a comparison of new
approaches

demand can be modeled. We extend traditional demand models to incorporate
the influence of features (e.g. day of the week, weather conditions, etc.)
and show how features can influence both the demand level and demand
uncertainty. This forms an important basis for our further analyses. We then
introduce two novel and distinct approaches that use feature data to determine
“optimal” inventory decisions in a Newsvendor setting. We highlight the
differences between the two approaches and conjecture under which conditions
one approach will outperform the other. Finally, in Sections 3.3 and 4.4.3 we
conduct two studies to explore whether our conjectures hold in a controlled
environment (Section 3.3) and for a real-world dataset (Section 4.4.3). Next
to a performance comparison of the competing approaches, we also discuss
how suitable the different approaches are for practical implementation.

3.2.1 Demand model with feature-dependent demand

As it is common in the literature, we model demand consisting of two com-
ponents, the demand level as well as an additional random component. We
assume the demand level to be deterministic and dependent on the values
of some features. The random component represents exogenous uncertainty,
which may also be feature-dependent. More formally, we model demand D as
follows:

D = µ+ ε

with µ = f (x)
and ε ∼ N (0, σ(x))

x ∈ Rk

(3.6)

where f(x) is the function that describes the relationship between the
demand level and the values of the features, represented by vector x. The
feature vector x can comprise, for example, the weekday, month, temperature,
and other features that potentially influence the demand level. Moreover, ε is
assumed to be a normally distributed random variable with mean zero and a
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standard deviation depending on the feature vector x. The demand model in
(4.1) is very generic and provides us with the flexibility to model particular
feature-demand relationships and to evaluate how different approaches for
solving the feature-based Newsvendor problem perform under these scenarios.
The different demand scenarios are determined by the particular choice of the
functional relationship between the demand level and the feature vector, as
well as the random component and the feature vector.

Consider first the relationship between the demand level µ and the feature
vector x, represented by f(x). In the simplest case, the relationship is linear
and f(x) has a simple form such that µ = β1x1 + β2x2 + ... . While this is a
very desirable case from a modeling and prediction point of view, in reality
we cannot expect to find linear relationships between (all) features and the
demand level. A case in point is the relationship between demand and weather
conditions. We cannot expect demand to be linearly increasing/decreasing in
the temperature or precipitation.

For instance, in our second study (Section 4.4.3), demand for certain
products like Calamari may at first increase as the temperature increases,
but, beyond a certain high temperature, the overall demand may also decrease
because fewer people eat at restaurants. In such cases, f(x) should have some
nonlinear functional form, consisting, for example, of polynomials involving
the individual features and some scaling factors. This, however, may still be a
too simplistic representation of the true demand generating process, because
features may exhibit complex interactions in the way they affect demand. For
example, weather conditions may affect demand differently on weekdays than
on weekends. In this complex case the interaction of features may influence
demand. In Figure 3.1 we illustrate how the demand level can be modeled as
a function of the feature vector.

The representation of the uncertainty is the second important element of
our demand model. We explicitly consider two relevant cases of how uncer-
tainty can affect demand: The first one is the case of homoscedasticity, where
the level of uncertainty is independent of the features, i.e., we can model it
via a random variable ε with mean zero and a constant variance σ2. In this
case, the uncertainty is completely unsystematic. On the other hand, uncer-
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Figure 3.1: Potential characteristics of the demand generating model in terms
of the demand level µ = f(x)

tainty can be feature dependent. For example, uncertainty may be higher
on weekends and public holidays than on regular weekdays.9 In essence, this
implies that there is some systematic structure within the uncertainty that
can potentially be predicted. We term this as the heteroscedastic case. We
model such behavior via the standard deviation of the random noise compo-
nent σ(x) which in the heteroscedastic setting depends on the feature vector
x. Based on these different manifestations of the demand model which cover a
wide range of practically relevant scenarios we can evaluate the performance of
feature-based inventory management models. In the following we describe two
different approaches that incorporate the feature-demand relationship into the
process of determining inventory decisions.

3.2.2 Competing models

The functional relationships between feature values and demand (uncertainty),
as described in the previous section, are typically not known and/or not well-
defined a priori. In the following we assume the decision maker has access to

9Meinshausen [2006] mentions a similar example in the context of predicting ozone levels.
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Figure 3.2: Potential characteristics of the demand generating model in terms
of the uncertainty σ(x)

a set of historical demand observations and corresponding feature data and
wants to employ a model that uses this data as input and returns the “op-
timal” inventory quantity. More formally, let T = {(di,xi), i = 1, . . . , N}
denote the available data, where di is the i-th demand realization and xi the
vector of feature values in period i. We assume that a relationship exists be-
tween the demand realizations di and xi as described in the previous section,
which, however, is not known a priori. A feature-based Newsvendor model
prescribes the inventory quantity q based on a feature vector x, more formally:
q : X → R : q(x) where X denotes the feature space containing all feasible
feature vectors.

Recently, a limited number of feature-based inventory models have been
proposed. In our analysis we focus on two specific models: The first is based
on linear quantile regression and was introduced by Ban and Rudin [2018]
and Beutel and Minner [2012]. In the following we refer to this model as lin-
ear quantile regression Newsvendor (LQR-NV). The second approach applies
tree-based regression and is a modification of the model proposed by Bertsi-
mas and Kallus [2019]. In the following we refer to this model as tree-based
regression Newsvendor (TBR-NV). As highlighted in Section 3.1 we choose
these two models because they can be considered as representative for two
distinct approaches to capture the relationship between features and demand
in order to prescribe inventory quantities. In the sequel we explain the two
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models in detail and provide a discussion of their distinct characteristics.
What both models have in common is that they calibrate, i.e., “learn”

a model based on a given dataset T , which is the fundamental concept of
machine learning. In their contribution, Ban and Rudin [2018] learn a linear
decision rule of the form q : X → R : q(x) = qTx = ∑k

j=1 q
jxj to relate a

feature vector x of length k directly to the Newsvendor quantity q(x). They
optimize the weights qj, j = 1, ..., k for each feature based on T . In detail,
the weights are determined by using the following objective function:

min
q:q(x)=

∑k

j=1 q
jxj

1
n

n∑
i=1

[cu(di − q(xi))+ + co(q(xi)− di)+] + λ
k∑
j=1
|qj| (3.7)

where λ is a regularization parameter that controls the complexity of the
resulting model and hence provides an internal feature selection mechanism.
An important advantage of this approach is, that it allows for an efficient
solution via standard linear programming techniques.

As an alternative to linear quantile regression, we consider tree-based re-
gression for modeling the relationships between features and decisions. The
basic idea of this class of approaches is to find partitions of the input feature
space that contain observations which were made under similar conditions.
Tree-based approaches achieve such partitions by recursively splitting the fea-
ture space along the feature dimensions. The presented model in this section
is based on the contribution of Bertsimas and Kallus [2019] and is adapted to
the basic Newsvendor setting. We start with a brief introduction to the fun-
damental concept of tree-based machine learning as an important preliminary
for the subsequent sections. Tree-based algorithms partition the feature space
by recursively finding the feature along with a split value that minimizes a
loss function over a given set of historical “training data”. This is recursively
repeated until either an additional split does not lead to a substantial im-
provement or a minimum number of observations, which would be available
for the next split, is reached. These are the stopping criteria of the algorithm.
The mean squared error is the standard loss function for decision tree learning
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as introduced by Breiman et al. [1984] and is also applied in Bertsimas and
Kallus [2019]. Recursively splitting a set of learning data yields a partitioning
of the feature space that can be represented in a tree-like structure as for
example in Figure 6.2. We refer to the distinct partitions as regions or leaves.
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Figure 3.3: Example of a decision tree

After learning the regions, Bertsimas and Kallus [2019] propose to sort the
learning data into the leaves according to their feature values and subsequently
solve an optimization problem on that sample of demand realizations for each
region. That is, for region Rl we find the response ql by:

ql = arg min
q

∑
i:xi∈Rl

c(q; di) (3.8)

In a basic Newsvendor setting this is the same as finding the sample
quantile, which is also referred to as the sample average approximation, for
the subset in each region. That is, for each region Rr we obtain a constant
response: q∗SAA,r from equation (3.4) or equivalently equation (3.5). Similar to
the linear quantile regression approach in Ban and Rudin [2018], the tree-based
approach yields a model that directly prescribes an inventory decision given
a new, unseen instance of features. However, instead of using a linear model,
the prescribed quantity is then the response of the region the new instance is
sorted into by comparing its feature values with the nodes in the tree. For
basic decision trees the function q(x′), which returns the order quantity for
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an unknown instance x′ is given by:

q(x′) =
L∑
l=1

ql1(x′ ∈ Rl) (3.9)

where the indicator function 1(x′ ∈ Rl) returns 1 if instance x′ belongs to
region m and 0 otherwise and the responses ql for all L regions are determined
as described by equation (3.8).

Tree-based regression becomes more robust against overfitting if hundreds
of trees are learned on random samples of learning data and then combined to
so called random forests [Breiman, 2001]. In the following, we describe how
Bertsimas and Kallus [2019] extend their concept for prescriptive analytics
from single trees to random forests. The main idea is to find the decision
quantity that minimizes the costs for the entire set of T trees which are learned
on randomly drawn samples of the learning data. Therefore, for tree t we
determine the average costs which would occur given a decision quantity q

and the sample of demand realizations from the learning data, which would
be sorted in the same region of this tree t as the unknown instance x′, that
is {di|xi ∈ Rt(x′)} where Rt(x) assigns a region of tree t to a observation x.
More formally, this is given by:

q̂RF (x′) = arg min
q

T∑
t=1

1
|Rt(x′)|

∑
i:xi∈Rt(x′)

c(q; di) (3.10)

where |Rt(x′)| is the number of instances from the learning data that are
sorted into the same region as the unknown instance x′.

3.2.3 Model comparison

To examine the performance of LQR-NV and TBR-NV, which we introduced
in the previous section, we compare them along three dimensions: First, we
consider different specifications of f(x) and how the models account for these
structural differences. Second, we analyze the implication of the noise struc-
ture on prescribed inventory quantities, i.e. different specifications of σ(x)
that control whether we are in a homoscedastic setting (for σ(x) = constant)
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respectively the degree of heteroscedasticity. Finally, we evaluate the mod-
els’ usability, i.e. how practicable such a solution would be to roll out in a
real-world setting. In this chapter we discuss the theoretical differences and
derive specific conjectures before we present the results of our experiments in
the subsequent chapters.

Comparing linear and tree-based regression, the most obvious distinction
is the way features are related to the final decisions. LQR-NV explicitly mod-
els linear relationships between the input variables and the model output,
imposing a global linearity assumption. In contrast, TBR-NV does not rely
on a global structural assumption, but splits the parameter space into rect-
angular regions and finds a response for each of these regions. Despite its
implicitly linear structure, LQR-NV is able to incorporate nonlinear feature-
demand relationships by transforming the basic features and adding these
“new” features to the training dataset [Ban and Rudin, 2018]. We will discuss
the required feature engineering in Section 3.4.3

Without additional feature engineering, we expect performance differences
between the two approaches to depend on the underlying structure of the
feature-demand relationships. In settings where this relationship is predomi-
nantly linear, LQR-NV should outperform TBR-NV since the former is able to
model this structure by its explicit internal representation. On the other hand,
tree-based regression should provide better results when the feature-demand
relationship is nonlinear and/or entails complex interactions. In cases that
features and actual demand exhibit a nonlinear relationship, we expect that
TBR-NV performs better than LQR-NV because it does not assume a specific
feature-demand relationship. We summarize our first conjecture as follows:

Conjecture 1 (Nonlinearity). LQR-NV outperforms TBR-NV for settings
where the feature-demand relationship follows a predominantly linear pattern.
Compared to LQR-NV, TBR-NV provides better results the more the feature-
demand relationship deviates from a linear relationship.

Besides the expected demand level and its relationship with the features,
a crucial property of any inventory policy is the remaining uncertainty around
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these expected demands and how they are accounted for. In the way they use
the learning data account for uncertainty, the two models under consideration
reveal structural differences: LQR-NV minimizes the empirical risk for the
entire learning dataset by optimizing weights for each feature. Hence, the
inventory decision for an unseen instance is based on the global uncertainty
of the entire learning data. On the other hand, TBR-NV performs a local
optimization for each region based on the instances from the learning data
that belong to this region. That is, the decision for an unseen new instance
is based on demands that were observed under similar conditions.

In classical regression settings, we would usually assume σ(x), i.e., the
measure of how strongly demand varies around its mean, to be constant
across all instances. Under this assumption each historical training instance
would provide the same amount of information via its residuals and, hence,
LQR-NV, as it takes into account the entire learning set, should be able to
more accurately estimate this uncertainty. However, often this assumption
of homoscedasticity does not hold in practice. In many cases, demand can
be predicted much more accurately under some conditions than under other
conditions. For example, the demand for a restaurant on a regular weekday
during lunchtime may have significantly less variability than on a weekend
with a special event taking place nearby. If we have feature-related uncer-
tainty, i.e., if σ(x) is not constant, the local optimization of TBR-NV can be
advantageous since it implicitly accounts for feature dependent uncertainty.

As an example, assume that the demand observations in a certain region
(which is characterized by splits of the feature space) exhibit higher uncer-
tainty, measured, for example, in terms of the standard deviation. In this
case, the decision quantity obtained for this region explicitly accounts for the
uncertainty associated with the instances sorted into this region. Thus, un-
certainty is feature-dependent (more generally: state-dependent) and the re-
sulting decision is explicitly based on the feature-dependent uncertainty. The
global optimization of LQR-NV cannot account for such feature-dependent
uncertainty. This leads us to our second conjecture.

Conjecture 2 (Homo- vs. heteroscedasticity). In a homoscedastic setting,
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performance is driven by the feature-demand relationship. The performance
of TBR-NV will increase relative to LQR-NV with increasing levels of het-
eroscedasticity, that is, the more σ(X) depends on X.

Finally, ease of use and applicability to practically relevant settings is our
third dimension for the comparison of the alternative models. In this context,
we address two important aspects of usability. These are the influence of the
amount of learning data on performance and the need for feature engineering.

Feature engineering is a crucial part of applying machine learning in prac-
tice since it turns raw data into potentially meaningful features. Feature
engineering comprises the process of cleaning, summarizing and aggregating
raw data that typically comes from distributed sources into a table of features
that can be used as input by machine learning models [Zheng, 2017]. We
expect that tree-based approaches such as TBR-NV require significantly less
effort for this task compared to LQR-NV for two main reasons. For one, TBR
can naturally handle categorical variables whereas linear regression requires
those variables to be split in multiple binary features, one for each category.
In addition, linear regression can only handle nonlinear feature-demand rela-
tionships and interaction effects by manually splitting the feature space into
regions for which piecewise linear models can be fitted to the data. In prac-
tice, determining these splits correctly is very difficult because information
about how to best model nonlinearity and complex interactions is typically
not available ex ante.

Our second aspect of usability refers to the performance of both models
with respect to the amount of available learning data. In practice it is impor-
tant that a data-driven model requires as little learning data as possible to
achieve a reliable performance since the amount of available learning data is
usually limited. Learning data should be gained from past observations under
similar conditions. Thus, its value is very limited when fundamental changes
in the business processes occur or when the predictive power of past observa-
tions declines quickly over time. Because of this, a decision maker needs to
know how many past observations a model requires until it provides reliable
results and which model is preferable if only a limited amount of learning
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data is available. We expect LQR-NV to perform relatively better if only
limited learning data is available because it uses the entire dataset to derive
the inventory decision while TBR-NV bases the decision only on subsets of
the learning data with a lower number of observations. We expect TBR-NV
to require more data to capture the particular feature-demand relationships
and eventual heteroscedastic uncertainty. Based on the previous discussion
we derive our third conjecture.

Conjecture 3 (Usability). We expect LQR-NV to require additional feature
engineering in order to provide competitive performance (compared to TBR-
NV) in realistic demand settings. Furthermore, we expect LQR-NV to perform
relatively better (compared to TBR-NV) when only little learning data is avail-
able and TBR-NV to benefit more from additional learning data.

Dimension LQR-NV TBR-NV

Nonlinearity
(chapter
3.3.2)

Requires additional features
from feature engineering to
approximate nonlinear de-
pendencies

Can be modeled by choosing
partitions accordingly

Heterosce-
dasticity
(chapter
4.4.2)

Can not make use of feature-
dependent uncertainty due
to global optimization

Local optimization can
adapt to feature-dependent
uncertainty

Usability
(chapter
4.4.3)

Requires additional feature
engineering to deal with
nonlinearity, interaction ef-
fects and categorical vari-
ables; Requires additional
testing to measure variable
importance; no visualization

Can handle nonlinearity, in-
teraction effects and cate-
gorical variables without ad-
ditional feature engineering;
Provides information about
variable importance; Basic
trees allow intuitive visual-
ization

Table 3.1: Comparing key characteristics of linear regression and tree-based
regression
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Table 3.1 provides an overview of the differences between the two compet-
ing approaches along the dimensions we discussed previously. In the follow-
ing chapter 3.3, we carry out a controlled simulation experiment to examine
the first two conjectures regarding the effect of the (linear/nonlinear) feature-
demand relationship and heteroscedasticity on the performance of each model.
As it is difficult to evaluate aspects of usability in a self-designed simulation
experiment, we also implemented both models in a real-world setting. In Sec-
tion 4.4.3 we present the corresponding results of LQR-NV and TBR-NV,
validate our findings from the controlled simulation experiment, and discuss
the most relevant aspects of usability.

3.3 Study 1: Simulation analysis
Our first study is a controlled simulation experiment that allows us to quan-
tify the individual effects related to the feature-demand relationships on the
performance of LQR-NV and TBR-NV. More specifically, we want to shed
light on how the two competing models perform when the relationship be-
tween level demand and features is linear/nonlinear and when demand un-
certainty is independent/dependent on the feature values, that is when we
have homoscedastic or heteroscedastic noise (see Figures 3.1 and 3.2 and our
Conjectures 1 and 4).

In the next section we first describe our experimental setup. Most im-
portantly, we explain how we induce the different types of feature-demand
relationships through our particular choice of a demand model and its pa-
rameterization. Thereupon, we present the performance of LQR-NV and
TBR-NV relative to the SAA benchmark (as defined in equation 3.4) un-
der a variety of controlled scenarios, and discuss the impact of different types
of demand-feature relationships. This will allow us to derive meaningful con-
clusions regarding performance differences between LQR-NV and TBR-NV
under relevant conditions.
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3.3.1 Experimental setup

For our simulation experiment we use an additive demand model as described
in (4.1). We separately control the feature-demand relationship and the
feature-dependent uncertainty. More formally, we determine demand D as
follows:

D = µp + εγ

with µp = fp(x) = fp(x1) + · · ·+ fp(xk) = xp+1
1 + ...+ xp+1

k

and εγ = N (0, σγ(x))

where σγ(x) =

2(1− γ)σbase if x1 < median(X1)

2
√

1− 2(1− γ)2σbase if x1 ≥ median(X1)

with σbase = E [µp] cvnoise

(3.11)

where p is the parameter that determines linearity (for p = 0) and the
level of nonlinearity (for p = 0, 0.4, ..., 4), respectively, and γ is the simulation
parameter that determines whether we obtain homoscedastic demand (for
γ = 0.5) or increasing levels of heteroscedasticity (for γ = 0.55, 0.6, ..., 1).

The intuitive approach to obtain a set of learning data would be to ran-
domly generate features from a certain distribution and to transform them
according to parameter p to obtain the level demand. The additional noise
component would be drawn from a normal distribution based on parameter
γ and added to the level demand, yielding the demand observations for our
study. However, if we followed this procedure, changes of p or γ would not
only affect the feature-demand relationship and the heteroscedasticity, but
also the distribution of the demand realizations. Since all of our methods
are data-driven, such changes of the demand distributions would also have an
effect on the performance. Thus, we would not be able to isolate the effects
of nonlinearity and heteroscedasticity.

For this reason, we follow a different approach: We start by drawing the
sample of demand realizations and subtract the random noise components
that are determined with respect to γ to obtain the level demands. We then
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determine a random partition of each base demand into k features which are
then transformed with respect to p using the inverse of the transformation
function we apply in (4.23). Using this “backward” procedure, we can control
the demand distribution and avoid that changes in the demand distribution
obfuscate the effects that we actually want to analyze.

In detail, we draw N demand observations di, i = 1, . . . , N from a uni-
form distribution with range [50; 150]. Then, we partition each di randomly
in k parts such that di = x′i1 + · · · + x′ik. k corresponds to the the number
of features. We use the x′i1 to determine whether the error for an observation
εγ is drawn from a distribution with high or low standard deviation accord-
ing to the definition of σγ(x) in (4.23). We then obtain the level demands
{µp,i}i=1,...,N by subtracting εγ,i from di for all i = 1, . . . , N . By subtracting
the random error terms we may obtain negative base demands, which is not
realistic and also causes problems when applying the inverse of our transfor-
mation function. Therefore, we shift these base demands by the minimum of
their values to obtain only non-negative demand levels. Such a constant shift
does not influence the performance of LQR-NV and TBR-NV. From the non-
negative base demands we determine xp+1

1i , . . . , xp+1
ki by using the same ratios

of the partition such that xp+1
1i + · · · + xp+1

ki = µp,i and
xp+1
ji

x′ji
= µp,i

di
. Applying

f−1
p (x) to each xp+1

ji yields the final features xji we use with the respective di
as learning data. Algorithm 2 summarizes our approach for data generation.

Parameter p determines how strong we deviate from a linear feature-
demand relationship. In Figure 3.4 we show the effect of changes in p on
a single feature x. Of course, transforming individual features with a function
that maintains monotonicity is a relatively simple way to induce nonlinear-
ity into the feature-demand relationship. We do not consider more complex
structures that would arise from combinations of individual features or more
complex transformation functions on individual features in order to keep the
setting as tractable as possible.

We model heteroscedasticity by relating the standard deviation of the er-
ror term to the feature x1. For values of x1 below the median we obtain low
standard deviations (depending on γ) and for values higher than the median,
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Input : I = (p, γ, cvnoise, N)
Output: R = {di,xi}i=1,...,N

begin
for i← 1 to N do

di ←− Uniform(50, 150) // generate demand
end
for i← 1 to N do // generate dummy features

Randomly choose (x′1i, . . . , x′ki)|x′1i + · · ·+ x′ki = di and
x′ji > 0

end
MedX1←− Median(x′11, . . . , x

′
1N) // sample median

σbase ←− E [D] cvnoise // base noise level

for i← 1 to N do
if x′1i < MedX1 then // include heteroscedasticity

σγi ←− 2(1− γ)d̄ σbase
else

σγi ←− 2
√

1− 2(1− γ)2d̄ σbase
end
εi ← Normal(0, σ2

γi) // error component
µ′i ←− di − εi // determine level demands

end
µMin ←− |min(µ′1, . . . , µ′N)| // find smallest µ
for i← 1 to N do

µi ←− µ′i + µMin // shift all µi by constant

Determine (xp1i, . . . , x
p
ki)|

xpji
µi

= x′ji
di

for j ← 1 to k do
xij = xp+1

ji

1
p+1 // determine final features

end
end

end
Algorithm 2: Simulation data generation
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Figure 3.4: Effect of exponentiation of an individual feature to model nonlin-
earity

we set a higher standard deviation. The joint standard deviation is always
approximately σbase independent of γ, because the combined standard devia-
tion of two samples is given by σ12 =

√
N1σ2

1+N2σ2
2

N1+N2
, where N1 and N2 are the

number of observations in each sample. In our sample from (4.23), N1 ≈ N2

due to the sample median as criterion. Hence, inserting the expressions for
low and high standard deviations in the formula for the combined standard
deviation yields σbase. Because it is easier to interpret, we use the coefficient
of variation cvnoise instead of σbase to describe the uncertainty in our simula-
tion experiments. In reality x1 could represent, for example, the temperature,
assuming that lower values lead to lower, but also more steady demand com-
pared to higher temperatures for which it is more uncertain whether people
eat at a restaurant or choose other options.

From each choice of parameters p, γ, cvnoise and SL, we obtain a training
dataset TNsim = {(di,xi), i = 1, ..., Nsim}. We use the first Nsim − 1 instances
to train each model and evaluate them for period Nsim. For our analysis we
choose Nsim = 1000 and k = 3 as the number of features that determine the
level demands. In order to achieve stable results, we run the entire simula-
tion S = 1000 times for a certain set of parameters and each model. We
implemented the different models as described in Section 3.2.2 in R. For the
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implementation of TBR-NV we use the ranger-package [Wright and Ziegler,
2017] and for LQR-NV we employ the quantreg-package provided by Koenker
[2016].

For each simulation run s = 1, . . . , S, we compute the costs achieved by
model m ∈ {LQR-NV, TBR-NV, SAA} by:

Cs,m = cu(ds − q∗s,m)+ + co(q∗s,m − ds)+ (3.12)

where q∗s,m is the inventory quantity of model m and cu and co are determined
by SL, because SL = cu/ (cu + co) and we assume normalized costs so that
cu + co = 1.

We evaluate the mean c̄m = 1/S∑S
s=1Cs,m across all S = 1000 simulation

runs for each model m. To make our results easier to interpret, we report,
whenever appropriate, the percentage mean cost improvement of LQR-NV
and TBR-NV over SAA, which is defined as

δm = c̄m − c̄SAA

c̄SAA
× 100; m ∈ {LQR-NV, TBR-NV}. (3.13)

In Table 4.1 we provide the parameter values for our subsequent experi-
ments.

Experiment Nonlinearity Heteroscedasticity
(chapter 3.3.2) (chapter 4.4.2)

Parameters
p {0, 0.1, . . . , 3} 0
γ 0.5 {0.5, 0.55, . . . , 1}
Controls
cvnoise {0.05, 0.25, 0.5, 1} {0.05, 0.25, 0.5, 1}
SL {0.5, 0.67, 0.8, 0.95} {0.5, 0.67, 0.8, 0.95}

Table 3.2: Parameter settings for our experiments

In Section 3.3.2 we analyze the influence of the feature-demand relation-
ship by varying p. Thereafter, in Section 4.4.2, we analyze the influence of
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feature-dependent uncertainty by varying γ. In both analyses we use base
noise (cvnoise) and different service levels (SL) as control variables.

3.3.2 Model performance depending on the
feature-demand relationship

In our first set of analyses we examine the influence of the underlying rela-
tionships between the features and the final demand on the decision qual-
ity of the two compared approaches. In the panel on the left hand side of
Figure 3.5 we report the δm for m ∈ {LQR-NV, TBR-NV} as described in
(4.26) under a 80% service level and a low level of noise (cvnoise = 0.05)
for varying levels of nonlinearity (reflected by parameter p). The panel on
the right hand side of Figure 3.5 displays the standard deviation of Cs,m for
m ∈ {LQR-NV, TBR-NV}.
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Figure 3.5: Effects of nonlinearity for SL = 80% and cvnoise = 0.05

We observe that for this “low noise”-setting, both models outperform
SAA by up to 80%. Intuitively, these large overall improvements can be at-
tributed to the relatively low amount of additional noise we introduce into
our experiment: a large portion of the demand can be explained by the causal
feature-demand relationship, which SAA is, by definition, not able to ex-
ploit. It is not surprising to see that in the genuinely linear case (for p = 0):
δTBR-NV < δLQR-NV, i.e., the linear model is superior compared to TBR-NV.
Linear feature-demand relationships and low levels of noise are obviously very
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favorable conditions for LQR-NV. However, with increasing p, i.e., an increas-
ing deviation from the purely linear feature-demand relationships, the perfor-
mance gap between LQR-NV and TBR-NV diminishes, and for p-values above
≈ 0.6, TBR-NV leads to higher cost improvements than LQR-NV. It is inter-
esting to see that TBR-NV’s performance is very robust towards increasing
levels of nonlinearity – independent of the value of p, TBR-NV leads to very
stable cost improvements of δTBR-NV ≈ 50%.

This behavior under increasing nonlinearity of the feature-demand re-
lationship can be attributed to the specific structural characteristics of the
two models. First of all, it seems natural that trying to fit a linear model
to a nonlinear structure leads to worse results as the relationships become
more nonlinear. This is also reflected in the standard deviations – as the
nonlinearity increases, the model uncertainty, i.e., the inability of the model
to approximate the (actual) nonlinear relationships with a linear model, in-
creases as well. This can also be observed from the larger standard deviations
of Cs,LQR-NV as depicted in Figure 3.5b. On the other hand, the rather simple
approach of TBR-NV to partition the feature space and find piece-wise con-
stant decisions for each partition works well also for nonlinear feature-demand
relationships.

As a result we conclude that TBR-NV is very robust to changes in the
specific form of the feature-demand relationship. Furthermore, even in this
very simplified experiment – without complex feature interactions in the data
structure – LQR-NV proves to be rather sensitive to moderate deviations from
the linear structure.

To evaluate how exogenous variables impact the models’ performance, we
carried out experiments under varying levels of our control parameters cvnoise
and SL. Figure 3.6 compares the cost improvement of LQR-NV and TBR-
NV over SAA for cvnoise ∈ {0.05, 0.25, 0.5, 1}. The results suggest that
with additional noise, the influence of the direct feature-demand relationship
diminishes; as a result, the cost improvements of both LQR-NV and TBR-
NV decrease as cvnoise increases. At cvnoise = 1, LQR-NV and TBR-NV lead
to almost the same costs as SAA because demand realizations are predomi-
nantly determined by its (purely) random component. At this level of noise
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Figure 3.6: Percentage cost improvement depending on the level of nonlinear-
ity for a 80% service level and different levels of noise (cvnoise).

the portion of demand that can be explained by the feature-demand relation-
ship is so small that LQR-NV and TBR-NV only lead to marginal improve-
ments compared to SAA (the approach that ignores features). For moderate
(cvnoise = 0.25) and relatively high (cvnoise = 0.5) levels of noise, however, we
obtain similar structural insights as for low levels of noise (cvnoise = 0.05):

1. LQR-NV performs better than TBR-NV up to a level of nonlinearity of
p ≈ 0.5, but is outperformed by TBR-NV when p exceeds this thresh-
old level. Of course, for higher levels of noise, these effects are less
pronounced.

2. TBR-NV’s performance is again very robust with respect to changes in
the nonlinearity, albeit on a lower overall level, as cvnoise increases.

As explained in Section 3.2.2, a specific property of LQR-NV and TBR-
NV is that they directly prescribe inventory quantities based on the available
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demand and feature data as well as the overage and underage costs from which
the service level is determined as SL = cu/ (cu + co). So far, we compared
the performance of our models for SL = 0.8, that is for a ratio of underage
costs to overage costs of 4 to 1. In many practical instances, this ratio may
be higher and decision makers will pursue higher service levels. Thus, the
service level is a relevant (exogenous) parameter for our models and we want
to explore the robustness of our results with respect to variations in SL.

To this end we compare the performance of LQR-NV and TBR-NV for
varying service levels (SL = 0.5, 0.8, 0.95 and 0.99) at a fixed level of noise
(cvnoise = 0.25). The corresponding results are reported in Figure 3.7.
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Figure 3.7: Percentage cost improvement depending on the level of nonlinear-
ity for cvnoise = 0.25 and different service levels (SL).

The results presented in Figure 3.7 suggest that with increasing cost
asymmetry, the performance of both LQR-NV and TBR-NV decrease rela-
tive to SAA. Moreover, the total mean costs decrease in SL for all of the
models. This can be explained by our approach of normalizing underage
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and overage costs. In appendix B.1 we show that the expected mismatch
costs for SAA under a uniform demand distribution D ∼ U(a, b) is given
by E[CSAA(SL)] = SL(b − a)(1 − SL) which (for SL > 0.5) decreases in
SL. Beyond this shift in total mismatch costs, our structural findings are
robust to changes of the cost asymmetry. However, we note a decrease in the
performance gap between LQR-NV and TBR-NV for high service levels.

This can be explained by the internal structure of the specific models: The
more asymmetric the cost structure, the more important potential outliers
become in the partitioned leaf nodes of TBR-NV. Consider, for example,
SL = 0.99. In this case the highest observation per leaf determines the
inventory quantity independent of the distribution of the remaining instances
assigned to a particular leaf. Hence, the inventory quantities are determined
by the highest quantity per leaf, which may well be outliers compared to
the remaining instances. Similarly, the (global) LQR-NV approach shifts the
linear quantile regression line to the corresponding service level quantile—that
is, for high service levels it is also mainly driven by high demand observations
from the past. Thus, both approaches lead to similar inventory quantities
that are predominantly driven by high demand realizations in the past. This
explains the small differences in the performance of LQR-NV and TBR-NV
for (very) high service levels.

In conclusion, the results of this first set of simulation experiments sug-
gest that LQR-NV outperforms TBR-NV in settings with homoscedastic un-
certainty and a linear feature-demand relationship, which is in line with our
conjecture 1. With increasing nonlinearity, the performance of LQR-NV de-
creases. For moderate to high levels of nonlinearity TBR-NV leads to superior
performance compared to LQR-NV (and, of course, SAA). All of our results
provide strong evidence for the fact that TBR-NV is able to deal with non-
linearity in a very efficient way and that its results are very robust to varying
degrees of nonlinearity in the feature-demand relationship.
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3.3.3 Influence of feature-dependent uncertainty on model
performance

In this section we examine the influence of feature-dependent uncertainty
on the performance of LQR-NV and TBR-NV. More specifically, we intro-
duce heteroscedastic noise into the learning data and control the level of het-
eroscedasticity through the parameter γ as explained in Section 4.4.2. Figure
4.2 displays the performance improvements of LQR-NV and TBR-NV com-
pared to SAA for increasing levels of heteroscedasticity and varying levels of
noise for a linear feature-demand relationship (p = 0) at SL = 0.8.
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Figure 3.8: Percentage cost improvement depending on γ (level of het-
eroscedasticity) in a linear demand setting at 80% service level with different
levels of base noise (cvnoise).

For low noise (cvnoise = 0.05), we see that heteroscedasticity – as we model
it – has no visible influence on the relative performance of both models. This
is rather intuitive because at this low level of noise it does not make much
of a difference for the overall performance whether noise is homoscedastic or
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heteroscedastic.
We observe that at higher levels of noise and for strong heteroscedasticity

(γ > 0.75), TBR-NV outperforms LQR-NV, although the underlying feature-
demand relationship is still linear. This supports our conjecture 2 where we
presume that the performance of TBR-NV compared to LQR-NV improves
with the level of heteroscedasticity. However, we also see that for γ < 0.65 the
improvement of TBR-NV slightly decreases as γ increases. Hence, TBR-NV
can only make use of this particular type of heteroscedasticity if it is high
enough.

In line with the results presented in the previous section we see that a
higher level of base noise (e.g. cvnoise = 0.5) leads to a lower difference in the
performance of both LQR-NV and TBR-NV compared to SAA. As highlighted
before, the reason for this is that the higher noise mainly obfuscates the
feature-demand relationship, which does not matter for SAA, but reduces the
performance of both feature-based approaches. This reduces the potential
advantage of TBR-NV in settings with heteroscedastic uncertainty: for low
uncertainty, the heteroscedasticity has no effect, while for high uncertainty
the effect is drastically diminished due to lower overall performance.

Similar to the previous section, we also analyze the robustness of our
results with respect to the choice of the service level. For this, we run the
simulation for three additional service levels SL = 0.5, 0.95 and 0.99. Figure
3.9 shows the performance of LQR-NV and TBR-NV relative to SAA with
respect to γ for SL = 0.5, 0.95 and 0.99. The structural effects are very
similar to those we observed in the previous section: we see that in general a
higher cost asymmetry leads to a lower difference in mean costs of both models
compared to SAA. With respect to the influence of heteroscedasticity we do
not see any meaningful structural impact (compared to the results presented
in Figure 4.2) when varying the service levels.

We conclude that heteroscedasticity (at least as we model it) is a per-
formance driver, but with a much lower impact than the nonlinearity of the
feature-demand relationship. Nonetheless, feature-dependent heteroscedastic-
ity slightly favors TBR-NV: except for perfectly linear feature-demand rela-
tionships with almost no noise, TBR-NV is able to obtain similar or better
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Figure 3.9: Percentage cost improvement depending on p (level of het-
eroscedasticity) for different service levels (SL) in a linear demand setting
with a base noise level of cvnoise = 0.25.

results than LQR-NV.
Finally, we examine the influence of combined nonlinearity and feature-

dependent uncertainty. We find that in our setting the effects of nonlinearity
and heteroscedasticity are independent and additive. As we saw in Figure 3.6,
the performance of TBR-NV is virtually independent of the level of nonlinear-
ity. Hence, the effect of heteroscedasticity we deducted from Figure 4.2 is also
unaffected by increasing nonlinearity. For LQR-NV these effects are reversed:
heteroscedasticity has virtually no effect on the performance of LQR-NV,
hence the strong effect of nonlinearity is unaffected by heteroscedasticity. In
Figure B.1 in Appendix B.2 we visualize these results.
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3.4 Study 2: Prescriptive analytics at Yaz
In the previous chapter we studied LQR-NV and TBR-NV in a controlled
experiment to obtain structural insights on how the feature-demand relation-
ships influence the performance of the two competing models. While this
enabled us to study important individual effects (nonlinear feature-demand
relationships; heteroscedasticity) in isolation, it also required major simplifi-
cations in comparison to most real-world settings. For example, we considered
only three features with a known relationship with demand, while in reality
decision makers will oftentimes be confronted with hundreds or even thou-
sands of features which may or may not have predictive power. Also, we did
not consider complex relationships between features, which are common in
practice, and instead assumed specific functional forms to model the relation-
ships between features, level demand and uncertainty (see our discussion in
conjunction with Figures 3.1 and 3.2).

We now evaluate the performance of LQR-NV and TBR-NV for a real-
world inventory management problem which exhibits (simultaneously) a num-
ber of practically relevant characteristics (many features, potentially complex
nonlinear, but unknown, relationships) we deliberately did not consider in
our controlled simulation experiment. On the one hand, we are interested in
whether or not we find similar performance improvements relative to SAA and
similar results when comparing the two models. On the other hand, we use
this realistic setting to evaluate the two main aspects of usability which we
discussed in Section 4.4: the impact of the amount of learning data and the
need for, and importance of, feature engineering. Due to the overwhelming
complexity in the required simulation design, such aspects of usability cannot
effectively be evaluated in a controlled experiment, but require a real-world
dataset to obtain valid insights. In this study, we analyze a dataset from a fast
casual restaurant chain named Yaz. Yaz offers a limited range of main ingre-
dients, but with a broad variety of mostly oriental-style preparations. Because
the ingredients are perishable, Yaz has to decide upon their inventories on a
daily basis. Thus, Yaz is facing Newsvendor problem.

In the following sections we first provide an overview of the data sources
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we used and the features we derived from the available data. Thereafter, we
describe the setup, i.e., the logic used to compare the different approaches.
Finally, we present our results regarding the relative performance of both
approaches and discuss aspects regarding the usability of these models in our
real-world application.

3.4.1 Data

Yaz provided us with sales data from their main flagship restaurant in Stuttgart,
Germany, for the period 2013/09/27 to 2015/11/09. The restaurant man-
ager’s observation (assumption) was that the weather has a strong influence
on demand. Hence, we obtained weather data from databases of the German
Meteorological Service and aggregated it to a daily level to reflect the same
level of granularity of a potential weather forecast for the next day. Despite
the fact that we used actual weather information that would not be available
to the decision maker instead of a forecast, we believe that the features we
derived from this data would be very similar to a weather forecast for the next
day.

Based on this raw data, we derived 167 features for each product by
extracting structural information about the underlying time series, e.g., the
rolling mean demand for the same weekday. Table 6.4 provides an overview
of the most important features. An overview of the entire set of features can
be found in the appendix.

The demand structure of different products varies significantly in terms
of the mean demand and the coefficient of variation. For this reason we
report the model performance for three selected products that exhibit different
demand structures (see Table 3.4).

As illustrated in Figure 4.4, the aggregated (and smoothed) demand is
nonstationary over time, ruling out a basic Newsvendor solution to this in-
ventory management problem that is based on a fixed demand distribution.
Besides this nonstationarity over a longer period of time, we also observe non-
stationarity in the short term. Figure 3.11 displays the mean demands and
coefficients of variation per weekday for each product. It is straightforward to

80



3.4 Study 2: Prescriptive analytics at Yaz

Source Feature Description

T
im

e
Se

ri
es

Total_M_2W Average aggregate demand (for all prod-
ucts) on same weekday for the last two
weeks

Steak_M_3W Average aggregate demand (for individ-
ual products) on the same weekday for
the last three weeks

Total_D1 Aggregate demand (for all products) the
day before

Is_Dec Is December
Is_Sat Is Saturday

Is_Outlier Is special day (Event, Holiday, etc.)

W
ea
th
er Temp_D2 Air temperature two days ago

Temp_M_4D Average Air temperature over last four
days

Sun_M_5D Average duration of sunshine over last
five days

Table 3.3: Examples of relevant features for the product Steak

see that neither the mean demands nor the coefficients of variation are con-
stant across different days of the week. Even though these variations might be
partly explained by other endogenous features than the weekday, we can con-
sider these differences as an indicator for the existence of heteroscedasticity,
i.e. feature-dependent uncertainty.

In the past, the restaurant manager intended to have all products avail-
able at any time. Thus, inventory levels were very high and only on rare
occasions Yaz faced stockouts. During the period we consider in our analysis
Yaz experienced a stockout on 1.6% of the days, that is on 98.4% of the days
all six main ingredients (Calamari, Steak, Lamb, etc.) were available. For
the restaurant this high level of availability had severe negative consequences
because it lead to high obsolescence. For our study, however, the high level of
product availability has an advantage: sales closely represent actual demand
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Statistic Calamari Steak Lamb

Mean demand 4.3 22.5 31.6
Coefficient of variation 0.67 0.44 0.40

Table 3.4: Mean demand and coefficient of variation of different products
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Figure 3.10: Evolution of smoothed aggregated demand over time

and we do not have to deal with issues related to censored demand.

3.4.2 Evaluation procedure

After cleaning and preprocessing the raw data as described in the previous
section, we obtain a training dataset TNY az = {(di,xi), i = 1, ..., NY az} with
NY az = 760 demand observations. We use these instances similarly to our
approach in Section 4.4.2 but repeat the evaluation procedure for each single
day within our evaluation period t ∈ {51, . . . , 760}: Starting with day t = 51,
we calibrate each model with the t−1 previous observations, hence by learning
the model on the training data Tt−1 = {(di,xi), i = 1, ..., t − 1}. Once the
LQR-NV and TBR-NV models are calibrated, each of them is fed with the
feature values xt for day t in order to determine the prescribed quantity q∗t,m
per model m ∈ {LQR-NV, TBR-NV, SAA}. The resulting cost Ct,m is then
calculated as described in (4.24). This procedure is repeated for all days in
the evaluation period. The resulting costs are then averaged for the whole
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Figure 3.11: Demand characteristics per weekday

evaluation period to

c̄m = 1
(760− 51 + 1)

760∑
t=51

Ct,m

and reported as δm, the percentage improvement over SAA, as described in
(4.26). We emphasize that the first 50 days are used exclusively for training
the prediction models and are not considered in the same way for the perfor-
mance evaluation. As both competing models are based on machine learning
techniques, we argue that otherwise, without a minimum amount of training
data, neither of the two methods would provide valid results.

3.4.3 Results

This chapter presents the main results of our application of LQR-NV and
TBR-NV to the inventory management problem of Yaz. First, we compare
the percentage improvement of the two approaches with respect to our SAA
benchmark. Then, in the subsequent sections, we will address the main as-
pects of usability in more detail.

Performance of LQR-NV and TBR-NV

Figure 3.12 displays the percentage cost improvements of LQR-NV and TBR-
NV relative to SAA for a service level of 0.8. We observe that both feature-

83



3 Prescriptive analytics for inventory management: a comparison of new
approaches

based approaches lead to considerable performance improvements. In line
with our findings in Section 3.3 we observe lower performance improvements
when uncertainty is higher. For Calamari – the product with the highest
CV – we achieve substantially lower profit improvements than for Lamb or
Steak, the two products with a much lower CV. This relationship also holds
for Lamb vs. Steak: for Lamb, the product with the lowest CV, we observe
the highest performance improvements. Of course, we have to be careful
in drawing strong conclusions; in contrast to the results of our controlled
experiment, we cannot rule out that the performance differences are caused
by product-specific feature-demand relationships.

In essence, we face the typical problems that occur when trying to evalu-
ate the performance of complex machine learning techniques that are applied
to large datasets: it is virtually impossible to prove, in a rigorous way, which
factors explain performance differences. This issue is also pertinent when try-
ing to explain our next observation: TBR-NV outperforms LQR-NV across
all products. In Section 3.3 we saw that TBR-NV performs better than LQR-
NV when the feature-demand relationship is nonlinear. Thus, our results
presented in Figure 3.12 may be an indication for nonlinear relationships be-
tween the demand for the different products (Calamari, Steak, Lamb) and
the 167 features. We cannot, however, rule out that the superior performance
may be caused by other factors, e.g., interaction effects between different
features, which we did not consider in our controlled experiment. However,
the results do present strong evidence for the fact that – without additional
feature-engineering – a tree-based approach is more appropriate when nonlin-
ear and/or complex interactions among features exist. We will further explore
this issue in Section 3.4.3, where we perform additional feature engineering
for LQR-NV.

Influence of the amount of available learning data

In our controlled experiment we evaluated the performance of LQR-NV and
TBR-NV based on the premise that a large set of learning data is available.
More specifically, we assumed that a training set with 1000 instances of de-
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Figure 3.12: Percentage cost improvement relative to SAA for SL = 0.8

mand realizations and feature values is available. While this is convenient
and appropriate for analyzing structural effects, it may not reflect practically
relevant problem settings. In practice, companies may not have access to
such a long history (approximately three years), or historical data may not be
predictive over such a long time span. In the fashion industry, for example,
demand (and feature) data from two or three years ago may have very little
predictive power. Thus, for decision makers it becomes important to assess
how different approaches perform when less (historical) data is available.

In this chapter we analyze the effect the available amount of learning
data has on the performance of LQR-NV and TBR-NV. This is an important
aspect of usability when prescriptive analytics is set into practice – simply
speaking: we would like to know how long we need to collect data until we
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can rely on the results of individual models.
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Figure 3.13: Smoothed percentage cost improvement over time for Calamari,
Steak and Lamb at 80% service level

Figure 3.13 shows how the mean costs evolve over time as we evaluate
period after period for our models starting with period 51. We used LOESS
regression [Cleveland, 1979] to smooth the scatterplot of the mean costs in
individual periods. Across all products both models can hold (TBR-NV for
Steak) or significantly improve their performance compared to SAA within
the first (additional) 300 periods (i.e, the first year in which we record the
relevant data). Hence, both approaches benefit from additional data. In
the initial phase with limited amount of learning data we see that TBR-NV
seems to have an advantage over LQR-NV. This advantage diminishes with
additional learning data. That is, in this particular setting and if only a
limited amount of learning data is available, TBR-NV seems to be preferable
over LQR-NV.

This finding contradicts our Conjecture 3 where we presumed that LQR-
NV requires less learning data due to its global approach that bases the deci-
sion on the entire available set of learning data. The counterintuitive results
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can be explained by the way TBR-NV selects the relevant features. For TBR-
NV the most important features with only 50 observations of learning data
are very similar to the most important features of the model when given the
full set of data. For LQR-NV, with only 50 observations, the set of the most
important features mainly consists of features that have a much smaller im-
pact compared to the model learned on the full dataset. Hence, the feature
selection of TBR-NV can adapt dynamically to the amount of given learning
data and determine the most important features from a large set of features
when given only a limited amount of learning data. In contrast, LQR-NV does
not adapt dynamically to the amount of learning data, resulting in inferior
model performance.

For the products Calamari and Lamb we see an increase in the cost im-
provements around period 500. This can mainly be explained by an increase
in demand the restaurant was facing at this time as indicated in Figure 4.4.
Hence, figure 3.13 shows that LQR-NV and TBR-NV can handle such non-
stationarity in the underlying demand process better than SAA and similarly
well compared to each other.

Influence of feature engineering

As discussed in Section 4.4.3, the reason for the superior performance of TBR-
NV is most likely caused by nonlinear and/or complex relationships between
features and demand, which LQR-NV in its basic (strictly linear) form can-
not handle well. Ban and Rudin [2018] point out that LQR-NV can also deal
with nonlinear and more complex relationships if the basic features are trans-
formed, that is through feature engineering. A nonlinear function can, for
example, be approximated locally by its Taylor expansion as long as the func-
tion is analytic. The parameters of the Taylor expansion can then be added
as additional features to the linear objective function. These features may
also include cross-product terms of the original features and can, thus, also
capture interaction effects. This feature engineering, however, is rather chal-
lenging: A Taylor expansion, for example, only provides local approximation
and the feature space needs to be split in order to obtain a piecewise linear
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model. This leads to piecewise polynomial fitting, which can be accomplished
by the standard linear least squares approach if we know where to split the
feature space [Montgomery et al., 2007].

Unfortunately, we typically neither know where to split nor how many
splits are required to achieve good performance. This is a major drawback
because determining the variable along which to split in combination with the
respective split value leads to a nonlinear regression problem [Montgomery
et al., 2007]. Especially in “big data”-regimes where the number of features is
high (thousands of attributes are not uncommon), manually integrating expert
knowledge about individual features to model nonlinearity with a linear model
as suggested in Montgomery et al. [2007] is likely to turn out infeasible from
a practical point of view. Moreover, such manual pre-processing contradicts
the fundamental idea of machine learning, that is, letting the algorithm find
the relevant relationships from the data.

The problem is how to determine appropriate data preprocessing oper-
ations upfront and how to engineer suitable features that capture the most
important feature-demand relationships that are unknown a priori. Even for
our Yaz dataset, which “only” contains 167 features, it is extremely difficult to
carry out successful manual feature engineering. Of course, some relationships
and their structure are easy to detect without much effort, e.g., how the level
demand differs across weekdays (see Figure 3.11a). However, determining,
a priori, which weather-related features are relevant, identifying and model-
ing their presumably nonlinear relationship with the demand level as well as
their interactions with other features (e.g. weekdays) and converting this into
suitable features for a LQR-NV model is a daunting task. Despite these prob-
lems we want to explore if performance of LQR-NV can be improved through
manual feature engineering. The main reason is that the results of such an
analysis can potentially foster a better understanding of the factors leading
to the performance differences between LQR-NV and TBR-NV we observed
in Figure 3.12. The problems associated with such an analysis are that the
results depend on how well we manually engineer the features – we have no
means to identify the best set of manually engineered features and an exhaus-
tive enumeration is infeasible – even for the limited number of features in our
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dataset. To circumvent this problem, we use the information we obtain from
LQR-NV to engineer the basic features in order to derive an additional set of
features per product.

More specifically, we use a decision tree model to select relevant features,
to find splits to build a partially linear model, and to determine interaction
terms, i.e. combinations of individual features. Decision tree learning provides
implicit feature selection since only the most meaningful features show up
in the tree. Furthermore, decision trees partition the parameter space in
groups of observations with similar demands. We replicate these splits by
also splitting the corresponding features into separate features, one containing
values above the split value and one containing the values below the split value.
Figure 3.14 depicts this splitting procedure for the root node in the tree for
one individual product (Steak).

Through this procedure, we are able to incorporate complex feature-
demand relationships of the kind that a feature is positively correlated with
demand in its lower range and negatively correlated in its upper range into an
enhanced LQR-NV model. In order to capture interaction effects of individual
features we construct interaction terms by multiplying the split variable in the
root node with the split attributes in the first level of the subtrees. Hence,
by resorting to the information from decision trees, we already consider three
important aspects for our new, improved features for LQR-NV: Feature se-
lection, piecewise relationships and interaction terms. Thus, we incorporate
manually the main information that TBR-NV uses as part of its built-in logic.

We then repeat our evaluation logic for LQR-NV with these new features.
Figure 3.15 depicts the results for our three products for a service level of 0.8.
We see that with the optimized features LQR-NV can achieve considerably
higher cost improvements. For two out of three products, LQR-NV with the
optimized features now outperforms TBR-NV. This implies that indeed non-
linear feature-demand relationships and complex interactions were responsible
for the initial performance differences we observed in Figure 3.12. Through
manual feature engineering we can enhance LQR-NV to an extent that this
approach leads to (slightly) better results than TBR-NV (at least for two of
our products). Even with feature engineering, the performance of LQR-NV
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Figure 3.14: Piecewise splitting of features exemplified for the product Steak
and the first split

for Calamari is lower than the performance of TBR-NV. For this product,
the difference in the coefficient of variation between weekdays is largest (see
Figure 3.11b). This is an indicator for more heteroscedasticity in the data of
Calamari which may explain why TBR-NV is still better than LQR-NV, even
after additional feature engineering.

In conclusion we find that additional feature engineering can indeed im-
prove the performance of LQR-NV. Achieving this improvement does, how-
ever, require additional effort for the manual feature engineering. This effort
can be very high, especially in settings where many features are relevant and
the upfront advantage of TBR-NV approaches is larger, i.e. there is stronger
or more complex nonlinearity or heteroscedasticity in the data. Hence, the de-
cision maker has to trade-off the additional effort/cost for feature engineering
with the (a priori unknown) benefits this may provide compared to TBR-NV
that provides consistently good results and requires little effort.
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Figure 3.15: Percentage cost improvement for LQR-NV with standard feature
data [LQR-NV (orig)] and and improved feature data [LQR-NV (opt)] versus
the TBR-NV for SL = 0.8

3.5 Conclusion and future work
In this paper we examined the performance of two novel data-driven models
(LQR-NV and TBR-NV) that directly prescribe inventory decisions based on
historical demand observations and available feature data. In order to analyze
the factors driving the performance and versatility of the two competing mod-
els, we conducted two studies. First we carried out a controlled simulation
experiment to analyze the impact of two important properties of the feature-
demand relationship, that is the degree of nonlinearity as well as the amount
of systematic noise within the demand uncertainty. Our second experiment
applied the two competing models to a real-world dataset. In this inventory
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management problem for a fast casual restaurant chain, we also compared the
performance of the two models, but focused mainly on usability aspects, i.e.,
the actual effort required to apply both models to realistic problem instances
and to obtain reasonable results.

From our simulation experiment we found (not surprisingly) that LQR-
NV performs well in settings where the feature-demand relationship is linear
and the additional noise is not excessively high. However, as soon as the
feature-demand relationship deviates from a linear pattern, the performance of
LQR-NV decreases substantially while the performance of TBR-NV is robust
to changes in the form of the relationship. Second, we found that systematic
noise also favors TBR-NV but on a considerably lower level. From these
results we conclude that in situations in which the structure of the feature-
demand relationships is not known to be predominantly linear – which can be
assumed to be the typical case in practice – we recommend the much more
robust TBR-NV.

The results of our second study provide further support for this recommen-
dation. We saw that TBR-NV outperforms LQR-NV for all of the products
included in our study. In contrast to one of our conjectures we find that
TBR-NV provides better results even if limited data to learn the models is
available. Furthermore, we evaluated the effect of additional manual feature
engineering. We saw that with additional structural information about the
feature-demand relationships we can engineer features that improve the per-
formance of LQR-NV. To do so, however, we used the structural information
from the competing tree based approach, which is a rather artificial way to
perform feature engineering, because this information would typically not be
available upfront.

It is hardly possible to quantify the performance impact of additional
feature engineering ex ante – even under very favorable conditions we observed
very different effects across the different products included in our study. Thus,
we conclude that TBR-NV leads to good and robust performance across a
wide range of scenarios and requires much less effort for feature engineering.
For this reason, a decision maker with no or little information about the
actual feature-demand relationship should prefer the more robust TBR-NV

92



3.5 Conclusion and future work

over LQR-NV. Of course, the decision maker should be aware of the fact
that LQR-NV can lead to better results when the right data structure is
present and/or good information that can be used for feature engineering is
available. Additional feature engineering, however, requires substantial effort
and ex ante it is not clear whether this additional effort will turn out to be
worthwhile.

The study presented in this paper has a number of limitations. Despite
the fact that we made a substantial effort to obtain generalizable results, we
cannot guarantee that they hold true under all practically relevant settings.
For our simulation experiment we made a number of simplifications in order
to obtain tractable results and to identify and study causal effects. For ex-
ample, we did not study the effect of complex interactions of features and did
not include a larger number of features with less predictive power. Also, we
cannot rule out that our particular experimental setup was more favorable for
TBR-NV than for LQR-NV, e.g., in the way we modeled systematic noise.
However, we believe that our experiments did bring out important results
regarding the performance drivers of the different models that can be used
as a basis for further and more extensive analyses. Moreover, our analyses
focused only on the performance of two particular (albeit distinct) models in
a Newsvendor setting. Of course, there may be alternative models that lead
to better performance, and we do not know how the two models perform when
being applied to more involved inventory management problems (e.g., when
multiple periods have to be considered, or when demand is lumpy). We per-
ceive our work as a starting point for a rigorous and more in-depth evaluation
of new and very promising techniques that integrate feature data (“big data”)
into inventory management models.
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4 Machine learning for inventory
management: Analyzing two
concepts to get from data to
decisions

We analyze two fundamentally different concepts to considering data for plan-
ning decisions using the example of a newsvendor problem in which observable
features drive variations in demand. Our work contributes to the extant lit-
erature in two ways. First, we develop a novel joint estimation-optimization
(JEO) method that adapts the random forest machine learning algorithm to
integrate the two steps of traditional separated estimation and optimization
(SEO) methods: estimating a model to forecast demand and, given the un-
certainty of the forecasting model, determining a safety buffer. Second, we
provide an analysis of the factors that drive difference in the performance of
the corresponding SEO and JEO implementations. We provide the analytical
and empirical results of two studies, one in a controlled simulation setting
and one on a real-world data set, for our performance evaluations. We find
that JEO approaches can lead to significantly better results than their SEO
counterparts can when feature-dependent uncertainty is present and when the
cost structure of overage and underage costs is asymmetric. However, in the
examined practical settings the magnitude of these performance differences is
limited because of the overlay of opposing effects that entail the properties of
the remaining uncertainty and the cost structure. 10

10This paper is coauthored by Jan Meller.
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4.1 Introduction
We analyze two fundamentally different concepts to consider data for inventory-
management problems in which observable features drive variations in de-
mand. In lockstep with the ever-increasing availability of data, research at-
tention in the operations management community has shifted from approaches
that rely on historical demand time-series to methods that can consider auxil-
iary data that may drive variations in demand [Feng and Shanthikumar, 2018].
Studies that use web traffic data to predict hotel demand [Yang et al., 2014],
consider online clickstream data to forecast demand for a door manufacturer
[Huang and van Mieghem, 2014], and derive daily demand from an analysis
of social media data [Cui et al., 2018] are only a few examples of the use of
such auxiliary data for planning decisions.

In the classical inventory-control literature, such demand forecasts are
typically the first step in making inventory decisions. Then the decision-maker
considers the forecast uncertainty (e.g., the empirical distribution of forecast
errors) and the costs for underage and overage. More specifically, the decision-
maker sets an inventory level to minimize the expected inventory-mismatch
costs by balancing expected overage costs for leftover inventory with expected
underage costs for stock-out situations. The literature refers to this concept
as separated estimation and optimization (SEO) [cf. Ban and Rudin, 2018]. In
contrast to sequentially estimating a demand prediction model and optimizing
inventory decisions based on the former’s inputs, another literature stream
[e.g., Akcay et al., 2011, Beutel and Minner, 2012, Oroojlooyjadid et al., 2016,
Ban and Rudin, 2018, Bertsimas and Kallus, 2019] promotes integrating these
two steps. Their models have in common that the expected mismatch costs of
the final inventory decision are already considered for estimating the model,
resulting in a single optimization problem that learns cost-optimal decisions
from historical data. In line with Akcay et al. [2011], we refer to this concept
as joint estimation-optimization (JEO).

A series of articles [Liyanage and Shanthikumar, 2005, Chu et al., 2008,
Ramamurthy et al., 2012, Lu et al., 2015] has shown that a class of integrated
approaches called operational statistics dominates SEO methods for newsven-
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dor settings with parametric demand distributions. However, while intuitively
attractive because of they do not lose information between the prediction and
optimization stages, JEO approaches still lack proof of their superiority over
SEO approaches in a data-rich environment with non-parametric, feature-
driven demand. Most of the existing studies show that one JEO approach
outperforms relatively simple benchmarks, such as sample average approxi-
mation, but to the best of our knowledge, a rigorous examination of SEO
and JEO approaches using the same underlying machine-learning technique
and the same raw data is lacking. Only in two studies do we find results
that provide a fair comparison between the corresponding SEO and JEO ap-
proaches. In one, Ban and Rudin [2018], the linear SEO approach without
regularization performs slightly better than the JEO counterpart, and in the
other, Huber et al. [2019] find no significant performance difference between
a JEO approach based on artificial neural networks and its SEO counterpart.
For this reason, we see a research gap that calls for a rigorous examination of
the performance differences between implementations of the JEO and the SEO
concepts and a quantification of the performance gap in real-world application
scenarios.

Our work contributes to the existing literature in two ways: First, we
develop a novel JEO approach that is based on the random forest machine
learning algorithm. Second, we provide a critical in-depth analysis of the
structural differences and the factors that drive performance differences be-
tween corresponding SEO and JEO approaches for various underlying machine
learning algorithms. We provide both the analytical insights and the empiri-
cal results of two studies, one in a controlled simulation setting and one on a
real-world data set, for our performance evaluations.

After presenting the theoretical backgrounds of the SEO and JEO con-
cepts in section 4.2, section 6.3 presents implementations with two under-
lying machine learning techniques: random forests, which includes our new
tree-based JEO approach, and kernel optimization as a benchmark from the
literature. Finally, the results of our analyses are presented in section 4.4.
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4.2 Two concepts to get from data to inventory
decisions

The problem of how to determine inventory targets when facing uncertain de-
mand has been at the center of attention in operations management research
for decades. In the classical stream of research, demand uncertainty is cap-
tured by parameterized probability distributions, which are often assumed to
be known [e.g., Zipkin, 2000]. However, such a strong assumption is unreal-
istic for most practical settings, where the underlying demand distribution is
usually unknown [Klabjan et al., 2013]. In many real-world situations, not
only is the form of the distribution unknown, but demand is clearly not sta-
tionary, as it might be seasonal or cyclical, follow a trend, or be influenced
by factors like weather, national holidays, and sales promotions. A common
way to deal with such a situation is to cast information that may have pre-
dictive power into features, i.e., summarized representations of the auxiliary
data. To illustrate the concept of feature-driven demand, assume an additive
demand model that has two components: the demand level and an additional
random component11. In this basic model, we assume that the demand level
is deterministic and correlated to the data features, which we denote by the
vector x. The additional component ε internalizes all exogenous uncertainty
which may also be feature-dependent. Hence, demand D can be modelled as:

D = µ (x) + ε

with E [ε] = 0; σε ∼ x

x ∈ Rk

(4.1)

where µ(x) is the function that describes the relationship between values of the
features x and the the demand level µ(x) = E [D|X = x]. Exemplary data
features that are subsumed in the vector x could include weekday, month,
temperature, and representations of other attributes that could affect the
expected demand level.
11This assumption is common in inventory management[cf., e.g., Nahmias, 2001].
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While the function µ (x) is unknown in practice, we often have a data set
of historical observations that consists of pairs of demand and feature values.
We refer to such a set T = {(di,xi), i = 1, . . . , n} as the training data set.
Assuming an underlying demand model as in (4.1), we distinguish two generic
concepts with which to consider the learning data T for making inventory
decisions. We provide details about these two concepts in the subsections 4.2.1
and 4.2.2.

4.2.1 Separate estimation and optimization (SEO) with
auxiliary data

SEO follows a two-step procedure: First, we estimate a demand-forecasting
model to capture the relationship between the vector of data features x and
the demand level µ(x). That is, we approximate the function µ(x) using an
estimated function µ̂(x). Since we cannot assume our model is perfect, we
adjust the forecasts for uncertainty that is due to forecasting errors to obtain
optimal stocking decisions [c.f. Brown, 1959, Nahmias, 2001]. For this reason,
we evaluate the demand-forecasting model’s prediction performance to pro-
duce a representation of the remaining uncertainty, that is, the distribution
of the forecast errors12. The latter distribution then serves as an input to
the inventory-optimization logic, which determines an additional safety stock
that is calculated by trading off expected overage costs with expected under-
age costs. The final inventory decision then consists of both the prediction
generated by the forecasting model and the safety stock.

More formally, the problem of interest is

q∗SEO(x) ∈M×R = arg min
µ̂(·)∈M

E [L(µ̂(x), D)|X = x]+arg min
z∈R

E [C(z,D − µ̂(x))]

(4.2)
where the prediction function µ̂ : X −→ R is selected from a function space
M and maps from the set of all possible feature vectors X to real valued

12The forecast errors contain both the random component ε of the demand model and the
model uncertainty when approximating µ(x) by µ̂(x). For readability, we subsume both
these components under ε in the following.
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demands, and L(µ̂(x), D) and C(z,D−µ̂(x)) are two unrelated loss functions.
Typically, one would choose a symmetric loss function L(µ̂(x), D) like the
mean squared error to generate unbiased predictions, whereas the second loss
function C(z,D−µ̂(x)) reflects specific (and presumably asymmetric) overage
and underage costs as a consequence of a mismatch between the decision and
actual demand.

4.2.2 Joint estimation-optimization (JEO) with auxiliary
data

Despite its wide adoption in practice, the two-step SEO concept has a major
drawback: By first fitting a prediction model for the demand and then op-
timizing the inventory decision, we have two separate optimization problems
that are not necessarily congruent and so can lead to suboptimal decisions
[Liyanage and Shanthikumar, 2005]. For this reason, another class of models
has recently gained attention: JEO models that directly link the features with
the final decision and so avoid the intermediate step of building a demand pre-
diction model. Instead, the training of the demand prediction model and the
inventory decision are combined into a single optimization problem. The un-
derlying idea of combining statistical estimation and optimization goes back
to Hayes [1969], who estimated policies from data by minimizing the expected
total operating cost.

Bertsimas and Kallus [2019] propose a framework for JEO models and
formalize the problem as:

q∗JEO(x) ∈ Q = arg min
q(·)∈Q

E [C(q(x), D)|x] , (4.3)

where q : X −→ R is a decision function from the function space Q, which
maps from the set of all possible feature vectors X to real valued decisions;
and C(q(x), D) is the loss function that yields costs given a decision q and
a realization of demand D. The main difference from SEO is that JEO is a
single optimization problem whose solution is directly obtained with respect
to the actual cost function C(q(x), D).

100



4.2 Two concepts to get from data to inventory decisions

Several examples of JEO approaches in the literature differ primarily in
the functional relationship q∗(x) between decision and features. The contri-
butions of Beutel and Minner [2012] and Ban and Rudin [2018] both employ
linear functions q : X → R : q(x) = βTx to relate a feature vector x of
length k to the newsvendor quantity q(x). They optimize the weights βj for
each feature from a set of learning data. Ban and Rudin [2018] also present
a second JEO approach that uses kernel functions to derive weights for each
observation. The decision is then a locally weighted average over the histor-
ical observations. We use the kernel approach in our analyses because it can
be used for both SEO and JEO, a comparison that has not been reported
before, and to contrast the results we get with our new, tree-based approach.
In contrast to Ban and Rudin [2018], we focus on the difference between SEO
and JEO and carve out the key performance drivers.

Oroojlooyjadid et al. [2016] combine deep-learning (a form of artificial
neural networks) with a newsvendor-style loss function. They apply their new
approach to a newsvendor problem with multiple items and compare their per-
formance to several standard approaches. They show that their method works
well in settings with sufficient training data and under unknown underlying
demand distributions. However, they do not compare their JEO approach
with an SEO version, where deep-learning would be used to predict demand.
Therefore, how much of the cost improvement they achieve (compared to the
benchmark approaches from the literature) is due to the integration of es-
timation and optimization and how much is due to the superior and more
complex prediction method remain unclear.In addition, while deep learning
algorithms are powerful and typically provide good results, they are black
boxes in terms of interpretability and so are less adequate for use in an explo-
ration of structural differences between SEO and JEO than are, for example,
tree-based approaches.

Bertsimas and Kallus [2019] propose a tree-based approach that is a com-
bination of SEO and JEO: Their model uses the standard mean-squared error
loss function to determine the structure of the decision tree. In a second
step, the authors determine the response for each leaf of the tree by solving
a problem-specific instance of the optimization problem in (4.3), given the
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sample of learning data that is sorted in each leaf. They extend this logic to
random forests, which are an ensemble of decision trees that typically provides
better results than single trees [Caruana et al., 2008].

While the tree-based approach in Bertsimas and Kallus [2019] is clos-
est to our model in terms of the underlying machine learning method, the
main drawback of SEO models, that is, the application of two independent
optimization steps (the structural learning and then the actual cost “opti-
mization”), is also present in their approach. In contrast to our approach,
they do not consider the problem-specific costs of determining the structure
of the decision tree. Only by integrating these costs can we obtain a truly
JEO approach that is based on random forests. The next section provides a
detailed description of our model for a newsvendor-style inventory problem.

4.3 Application to the newsvendor problem
Motivated by the problem in a real-world case at a restaurant chain, we con-
sider a newsvendor setting to illustrate the structural performance differences
between the SEO and JEO approaches13. In this case, the restaurant man-
ager needs to determine the quantity q of a product to be prepared for the
next day. Demand is not stationary but is driven by external effects, which
we incorporate as k-dimensional feature vector x. Unsold quantities must be
disposed of at a cost of co per disposed unit, and the estimated cost of unmet
demand is cu per unit. As in (4.3), the goal is to minimize the total expected
cost:

min
q(x)∈Q

E[C(q(x), D)] (4.4)

with the specific newsvendor cost function

C(q(x), D) = cu(D − q(x))+ + co(q(x)−D)+, (4.5)

13The JEO concept can also be applied to other decision problems with more complex cost
functions, such as in capacity management problems, as in Taigel et al. [2019].
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where D is the random demand and (.)+ is a function that returns 0 if its
argument is negative, and else its argument.

To solve this optimization problem, we need to further specify the func-
tion q(x). In the following, we present implementations with two underlying
functions (i.e., machine learning techniques): the first is based on random
forests and the second is based on kernel regression.

4.3.1 Implementation based on random forests

The random forests machine learning technique, first introduced by Breiman
[2001], has been shown to have high prediction accuracy in various settings
[Caruana and Niculescu-Mizil, 2006, Caruana et al., 2008]. For our analyses,
tree-based approaches like random forests are particularly useful since we can
use their final tree structures to measure heteroscedasticity, as described in
subsection 4.4.3.

In general, a random forest consists of a number of trees T that par-
tition the feature space into regions R that group instances whose features
have similar values. The prediction of a new, unseen instance is obtained by
grouping the instance into one of the regions based on the values of its features
and assigning a demand estimate, such as their mean demand, based on the
other instances in this region. The underlying rationale of this approach is
that instances that are similar in known properties of the data (the features)
can reasonably be assumed to be similar also in unknown properties (e.g.,
the realized demand). The regions are found by recursively applying axis-
parallel splits on the training data set T to minimize a training loss function
L(f̂(x), D). Going forward, we call θ the parameter vector that determines
how a tree is grown and R(x′, θ) the region of a single tree into which a new
instance described by x′ would be sorted. According to Athey et al. [2019], we
can interpret such a region as a forest-based adaptive neighborhood of x′ that
is defined via the data-driven weights wi(x′) of each historical observation i.

The notion of providing a data-driven way to re-weight historical observa-
tions for predictions plays a key role when random forests are used in inventory
decisions. In the following, we detail how the basic random forest mechanism
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can be used via both the SEO approach and the JEO approach to derive such
decisions. We note two differentiating properties of the two approaches: how
regions are generated via the training algorithm and how the final decisions
are derived given the specific neighborhoods.

SEO based on random forests As described in Section 4.2, the generic SEO
approach separately estimates an expected demand level µ and accounts for
the remaining uncertainty by calculating an additional safety stock, depending
on the distribution of forecast errors. Following this methodology, the random
forest algorithm is employed to predict the mean demand, conditional on the
realization of the feature vector x′. To receive the regions RSEO(x′, θ) that
are needed to predict the conditional mean, tree structures are learned by
splitting the feature space to minimize the standard MSE loss function:

L(µ̂(x), D) = LMSE(µ̂(x), D) = 1
n

n∑
i=1

(di − µ̂(xi))2. (4.6)

Then, given regions RSEO(x′, θt) from tree t into which a new instance x′

is sorted, we can calculate weights wi(x′) for historical observations as:

wi(x′) = 1
T

T∑
t=1

1(xi∈RSEO(x′,θt))

N(x′, θt)
, (4.7)

where n(x′, θt) defines the number of historical observations from the training
set that fall into the same region as x′. Given these weights, the prediction
of the conditional mean is then a weighted sum over all observations di:

µ̂SEO(x′) =
n∑
i=1

wi(x′)di. (4.8)

In the subsequent optimization step we find an additional safety stock that
covers the decision-maker against forecasting errors by trading off the expected
overage and underage costs. This problem corresponds to the solution of the
simple data-driven newsvendor problem without features [Levi et al., 2015].
To solve this problem, we require an empirical distribution of the out-of-
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sample prediction errors. Hence, after training the random forest on a subset
of the training data, we evaluate the predictions on the remaining set that
was not used for training. Then the out-of-sample prediction errors εi are
calculated and the final inventory decision from SEO-RF is determined as:

q̂SEO−RF (x′) =
n∑
i=1

wi(x′)di + inf{ε : F̂n(ε) ≥ cu
cu + co

}, (4.9)

where cu/(cu + co) corresponds to the service level (SL) that determines the
optimal fraction of demand shortages, and F̂−1

n (ε) denotes the inverse of the
empirical cumulative distribution of forecast errors. It can be shown that, if F
is continuous, the second part of the sum becomes ε̂n = εdn·SLe, the dn ·SLeth
largest forecast error [Ban and Rudin, 2018].

JEO based on random forests The JEO method based on random forests
(JEO-RF) has two major differences from the SEO random forest (SEO-RF)
approach: First, the cost structure of overage versus underage quantities is
already considered within the loss function of the training algorithm, gener-
ating tree structures that already reflect the second-stage optimization prob-
lem from the SEO approach. Second, given such tree structures, a different
method of considering the neighboring observations is used to derive the final
inventory decisions. Consider the following asymmetric loss function:

L(q(x), D) = C(q(x), D) =
N∑
i=1

co(q(x)− d)+ + cu(d− q(x))+. (4.10)

Here, excess quantity (i.e., if (q(x)− d) > 0) is considered with co in the loss
function, whereas missing quantities ((q(x)− d) < 0) are weighted with cu.

Having learned cost-aware tree structures, we apply the random forest
kernel method developed in Scornet [2016] to define weight functions for the
training instances as:

wi(x′) =
T∑
t=1

1(xi∈RJEO(x′,θt))∑T
t=1 N(x′, θt)

. (4.11)

According to Scornet, using this approach avoids rough estimates in regions
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of the feature space where data is sparse. Similar to the SEO approach based
on random forests, we can use these weights to define data-driven neighbor-
hoods for a new instance x′. Now, applying the framework of Bertsimas and
Kallus [2019] and inserting our loss function (4.10), we can generate the final
inventory decisions with JEO-RF by solving:

q̂JEO−RF (x′) = arg min
q(·)∈Q

N∑
i=1

C(q(x′), di) = inf{d :
N∑
i=1

wi(x′)1(di≤d) ≥
cu

cu + co
}.

(4.12)
The last equality follows from the fact that the resulting problem corresponds
to a quantile regression problem [cf. Meinshausen, 2006].

4.3.2 Implementation based on kernel optimization

To validate the results we obtain with our new random forest-based approach,
we also implement and evaluate the SEO and JEO concepts based on a kernel
optimization (KO) method. The JEO-KO approach, introduced by [Ban and
Rudin, 2018], provides the best results in a comparative study that uses a
real-world data set.

The basic idea of kernel regression goes back to Nadaraya [1964] and
Watson [1964]), who propose to estimate a dependent variable like demand
using a locally weighted average of historic demands, where the weights are
subject to how close the values of the historic observation’s features are to
those of the instance in question.

SEO with kernel regression For SEO-KO, the kernel-based SEO approach,
we follow the SEO concept as described in Section 4.2 and use kernel regression
to estimate a function f̂SEO−KO that predicts demandD given a feature vector
x′. This function is referred to as the Nadaraya-Watson estimator and is given
by:

µ̂SEO−KO(x′) =
∑N
i=1Kw(x′ − xi)di∑N
i=1Kw(x′ − xi)

, (4.13)
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where Kw(u) is a kernel function with bandwidth w. Like Ban and Rudin
[2018], we use the Gaussian kernel function:

K(u) = 1√
2
exp−||u||

2
2/2, (4.14)

with Kw(u) = K(u/w)/w.
With the function µ̂SEO−KO, we evaluate the predictions on the training

data and obtain out-of-sample prediction errors εi, i = 1, ..., N . Similar to
SEO-RF, we determine the final inventory decision as:

q̂SEO−KO(x′) = µ̂SEO−KO(x′) + inf{ε : F̂n(ε) ≥ cu
cu + co

}, (4.15)

where cu/(cu + co) corresponds to the service level (SL) that determines the
optimal fraction of demand shortages based on overage and underage costs,
and F̂−1

n (ε) denotes the inverse of the empirical cumulative distribution of
forecast errors.

JEO with kernel optimization The main difference between the kernel-
based JEO approach (JEO-KO) and the SEO-KO approach is that, as in-
troduced by Ban and Rudin [2018], the JEO-KO uses the Nadaraya-Watson
estimator (as in (4.13)) to estimate the newsvendor cost instead of demand.
The JEO-KO approach is then given by:

min
q≥0

∑N
i=1Kw(x′ − xi)C(q, di)∑N

i=1Kw(x′ − xi)
. (4.16)

According to Ban and Rudin [2018], (4.16) is a one-dimensional piecewise
linear optimization problem, and the solution is given by:

qJEO−KO(x′) = inf{q :
∑N
i=1 κiI(di ≤ q)∑N

i=1 κi
≥ cu
cu + co

}, (4.17)

where κi = Kw(x′ − xi). Therefore, qJEO−KO(x′) is the smallest value for
which the inequality in (4.17) is just satisfied.
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4.4 Comparison of SEO and JEO
In this section, we analyze the drivers of differences in the SEO and JEO
approaches’ performance. In the first subsection we compare SEO and JEO
when the relationship between features and demand (SEO) and that between
features and decision (JEO) are modeled as linear functions. In this linear
setting we can show analytically that SEO leads to suboptimal decisions if
the remaining forecast uncertainty follows a non-random pattern. In line with
the econometrics literature, we refer to such feature-dependent uncertainty as
heteroscedasticity [e.g., Asteriou and Hall, 2011].

Our findings from the analytical examination with linear models culminate
in our hypothesis that heteroscedasticity is also the main driver of performance
differences in the more complex JEO and SEO approaches. Since tree-based
and kernel-based models do not allow for analytical treatments similar to
those that linear models do, our following analyses are based on two studies:
A simulation experiment in which we evaluate the impact of various specifica-
tions of the data structures on the models’ performance while controlling for
exogenous, confounding effects, and a test of our findings on a real-world data
set, where we apply the two approaches to an inventory-planning problem
from a restaurant chain.

4.4.1 Analytical examination

A common assumption in regression settings–that is when we want to model a
relationship between a dependent variable and a set of independent variables–
is the homoscedasticity of the error term. This assumption means that we can
describe the variation of the dependent variable as the sum of a term explained
by the model, µ(x), and a stochastic error component with constant variance
across all instances. However, this homoscedasticity assumption often fails
to hold in practice. Breiman and Friedman [1985] describe the problem of
predicting the ozone levels for the subsequent day and show that these levels
can be forecasted much more accurately on some days than on others. The
same holds for demand predictions where, for example, the demand for a
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restaurant on a typical weekday may vary significantly less than it does on a
weekend. If σε(x) is not constant, the error term is heteroscedastic.

In this subsection, we compare the impact of heteroscedasticity on the
cost performance of SEO and JEO when the relationship between features and
demand (SEO) and that between features and decision (JEO) are modeled as
linear functions. The linear SEO approach consists of a least squares estimate
of the conditional mean function µ̂(x) and a sample quantile of all residuals
q̂ε(SL) = inf{ε : F̂n(ε) ≥ SL} to account for the asymmetric cost structure.
The decision is hence given by:

q̂SEO−Lin(x) = xβ̂LSE + q̂ε(SL), (4.18)

where β̂LSE = (ξ′ξ)−1ξ′d is the parameter vector that is derived from the least
squares regression with design matrix ξ containing all k-dimensional feature
vectors and the according demand observations d.

The linear JEO approach, as proposed by Beutel and Minner [2012] and
Ban and Rudin [2018], is given by the conditional quantile:

q̂JEO−Lin(x) = xβ̂SL, (4.19)

where β̂SL = argminβ∈Rk
∑n
i=1(C(xiβ, di)), with C(q, d) = cu(d− q)+ + co(q−

d)+ as the newsvendor cost function.
For a simple linear demand model with independent and identically dis-

tributed (iid) errors which do not depend on x, Koenker [2005] points out
that the quantile function as in Equation (4.19) is – similar to the linear SEO
approach in (4.18) – just a vertical displacement by the sample quantile of the
error distribution q̂ε(SL). Hence, for an homoscedastic linear setting, both
approaches lead to similar results.

However, if there is any form of feature-dependent uncertainty, the as-
sumption of (iid) errors which is crucial for the linear SEO approach does not
hold. We will analyze the impact of heteroscedasticity on both approaches in
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simple univariate linear location-scale model:

D|(X = x) = βx+ (γx)u (4.20)

with u ∼ Fu independent of the realizations x of the random feature X, with
an (unknown) symmetrical densitiy function fu(.) with mean zero, γ > 0 a
scale parameter for heteroscedasticity.

In this setting, the optimal newsvendor decision are given by [Koenker,
2005]:

q∗(x) = x(β + γF−1
u (SL)) (4.21)

Proposition 4.1. For a linear location scale model with heteroscedasticity as
in (4.20), the following holds:

EX×D [C(qJEO−Lin(x), D)] ≤ EX×D [C(qSEO−Lin(x), D)] (4.22)

for γ > 0.

The proof of both propositions in this chapter can be found in the ap-
pendix.

Figure 4.1 illustrates this example for X ∼ unif(0, 1) by showing that, for
the homoscedastic setting, both the SEO approach and the JEO approach per-
form well near the optimal decision quantile. However, for the heteroscedastic
case, only JEO captures the structure of the noise appropriately by adjusting
the slope of the regression line, while SEO results in inefficiently high or low
ordering decisions since there is only a parallel shift of the regression line.

Figure 4.1 illustrates this example by showing that, for the homoscedastic
setting, both the SEO approach and the JEO approach perform well near the
optimal decision quantile. However, for the heteroscedastic case, only JEO
captures the structure of the noise appropriately by adjusting the slope of the
regression line, while SEO results in inefficiently high or low ordering decisions
since there is only a parallel shift of the regression line.

Furthermore, the scale of the effect of heteroscedasticity depends on the
service level, that is, the asymmetry of the cost structure:
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Figure 4.1: Comparison of the linear SEO and JEO approaches under ho-
moscedastic versus heteroscedastic settings

Proposition 4.2. With C(.) the newsvendor cost function from Equation
(4.5), 0 ≤ γ ≤ 1 and X ∼ unif(0, 1) the following holds. For symmetric
costs (i.e., SL = 0.5),

EX×D [C(qJEO−Lin(x), D)] = EX×D [C(qSEO−Lin(x), D)] .

For SL > 0.5, EX×D [C(qSEO−Lin(x), D)] − EX×D [C(qJEO−Lin(x), D)] in-
creases in SL.

From these findings for linear models, we derive two main conjectures,
which we analyze with more complex underlying machine learning models in
the following study:

Conjecture 4 (Homoscedasticity vs. heteroscedasticity). In a homoscedastic
setting, JEO’s performance is not better than that of SEO. JEO’s performance
will improve relative to SEO with increasing levels of heteroscedasticity – that
is, the more σ(x) changes subject to x.

Conjecture 5 (Effect of service level). For symmetric costs (i.e., a service
level of 0.5) heteroscedasticity has no significant effect on the relative per-
formance differences between SEO and JEO. The effect of heteroscedasticity
increases with increasing asymmetry.
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4 Machine learning for inventory management

In the following, we examine these structural differences between SEO
and JEO for the more complex underlying machine learning models of ran-
dom forests and kernel optimization. For this examination, we compare the
models in a controlled simulation experiment and using a real-world dataset
from a restaurant chain, since with these models, we cannot provide proofs of
propositions as we did for the linear model.

4.4.2 Study 1: Simulation analysis

Our first numerical study is a controlled simulation experiment that allows
us to quantify the effect of feature-dependent demand uncertainty when we
have a homoscedastic or heteroscedastic uncertainty structure. In this con-
trolled setting, we can isolate and examine single cause-effect relationships.
We complement our simulation study with an analysis using a real-world
data set, which does not allow similar insights, as many effects, such as non-
linearity, heteroscedasticity, and spurious correlations between predictors and
prescriptions, overlay it. We posit that our simulation approach allows for
the extraction of meaningful insights regarding the factors that drive perfor-
mance differences and provides us with the possibility to underpin our findings
statistically.

In this section we first describe our experimental setup. We explain how
we control the feature-related uncertainty through our choice of a demand
model and its parameterization and present the results first for the random
forests approach and then for the kernel-based approach.

Experimental setup

We use an additive demand model that can control the feature-demand rela-
tionship and the feature-dependent uncertainty separately. More formally, we
determine demand D as:
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D = µ(x) + εγ(x)
with µ(x) = x1 + ...+ xk

and εγ(x) = ε0
γ(1− x0) + ε1

γx0,

where ε0
γ ∼ N (0, (1− γ)σbase)

and ε1
γ ∼ N

(
0,
√

2− (1− γ)2σbase

)
with x0 ∈ {0, 1},
σbase = E [µ(x)] cvnoise,

(4.23)

where γ is the simulation parameter that determines whether we obtain
homoscedastic demand (for γ = 0) or discrete heteroscedastic demand with
increasing levels of heteroscedasticity (for γ = 0.1, 0.2, ..., 1). The coefficient
of variation cvnoise is the parameter that controls the level of noise. In our
simulation, we control cvnoise since it is independent of the mean. We consider
heteroscedasticity with a two-population model for the uncertainty component
εγ and a feature x0 that influences only the structure of the uncertainty and
has no effect on the demand level. In reality, x0 could represent, for example,
whether we consider a typical weekday or a weekend day, assuming that the
mean is similar but the uncertainty around our predictions is higher on week-
ends. Via this modeling approach, γ controls the level of heteroscedasticity by
affecting the difference of the standard deviations of ε0 and ε1. As an exam-
ple, γ = 0.3 results in an uncertainty model where the standard deviation of
ε0γ ∼ N (0, 0.7 ∗ σbase) is about 1.76 times higher than the standard deviation
of ε1γ ∼ N (0, 1.23 ∗ σbase).

In more detail, for each configuration of parameters γ, cvnoise, and σbase,
we draw NSim realizations from a uniform distribution with range [0; 1] for
each of the k demand features. The demand level is then given by the sum
x1 + ... + xk. We also draw NSim realizations for x0 ∼ Bernoulli(0.5), the
feature that determines whether the uncertainty component for a particular
observation should be drawn from ε0γ or ε1γ.

Then, the final demand observation D is composed of the sum of demand
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4 Machine learning for inventory management

Experiment Simulation Real-world
application

Section 4.4.2 Section 4.4.3

Parameters
γ {0, 0.25, . . . , 1} –
SL {0.5, 0.8, 0.95, 0.99} {0.5, 0.8, 0.95}
Controls
cvnoise {0.25, 0.5, 0.75, 1} –
Model configs
ntrees {100, 500} {100, 500}
minnode {5, 15, 30} {5, 15, 30}

Table 4.1: Parameter settings for our experiments

level µ(x) = x1 + ... + xk and the error term εγ(x) as described in (4.23).
Following this approach, we obtain a training dataset TNsim = {(di,xi), i =
1, ..., Nsim}. To measure the performance of each model, we use the first
Nsim − 1 instances to train the model and then evaluate them for period
Nsim. This procedure is repeated S times to achieve stable results. Mismatch
costs incurred by model m ∈ {JEO-X, SEO-X} with X either RF or KO are
calculated for each simulation run s = 1, . . . , S via the cost function:

C(q̂m(xs), ds) = cu(ds − q̂m(xs))+ + co(q̂m(xs)− ds)+, (4.24)

where q̂sm is the inventory decision in simulation run s prescribed by model m.
The cost parameters cu and co are assumed to be normalized (cu + co = 1),
so they can be derived from SL since SL = cu/ (cu + co). Subsequently, we
calculate the mean cost performance

c̄m = 1/S
S∑
s=1

C(ds, q̂sm) (4.25)

per model m and report the relative cost improvement δJEO of the JEO ap-
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proach compared to the SEO approach as follows:

δJEO = c̄JEO-X − c̄SEO-X

c̄SEO-X
; (4.26)

To evaluate our conjectures, we run a series of simulation experiments
under a wide range of parameter combinations, as shown in Table 4.1. We
test for the influence of feature-dependent uncertainty on the relative per-
formance of the JEO and SEO approaches while controlling for the overall
uncertainty level and the asymmetries between overage costs and underage
costs. More specifically, we vary the γ parameter for various combinations of
service level SL and cvnoise. For all of our experiments, we choose Nsim = 501
observations and k = 3 as the number of features that determine the demand
levels. Although the number of considered features in practical scenarios is
usually much higher (e.g., for our yaz case study, we have k = 168), other
studies [e.g., Bertsimas and Kallus, 2019] show that tree-based approaches
like random forests are especially likely to perform robustly even with noisy
features, (i.e., features without predictive power or with only minor predictive
power). We fix the number of simulation runs to S = 100 for each parameter
configuration and model.

We implemented the models we describe in Section 6.3 in the statistical
programming language R. For the random forest models we extended the
ranger package [Wright and Ziegler, 2017].

Results for random forest-based approaches

Figure 4.2 shows the relative performance improvement δJEO of JEO-RF over
the SEO-RF approach for increasing levels of heteroscedasticity for various
parameterizations of noise parameters and the service level parameters.

In settings with a low level of uncertainty (cvnoise = 0.25) there is no
effect of increasing heteroscedasticity, and both approaches do equally well
in recovering the underlying linear relationships. If the uncertainty is low,
whether there is any structure in the remaining uncertainty that could be
beneficial for JEO-RF seems to make no difference.
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Figure 4.2: JEO-RF cost improvement over SEO-RF depending on γ (level of
heteroscedasticity) in a linear demand setting for various service levels (SL =
0.5, 0.8 and 0.95 with different levels of base noise (cvnoise). The shaded area
represents a 95% confidence interval around the mean improvement.

For higher levels of uncertainty, heteroscedasticity has a positive effect
on the performance of JEO-RF compared to SEO-RF. In some settings (e.g.,
cvnoise = 0.25 and SL = 0.95), JEO-RF significantly outperforms SEO-RF,
so Conjecture 4 holds if the uncertainty is high enough. However, for ho-
moscedastic settings, JEO-RF can be inferior, especially in settings with high
service levels. Given homoscedasticity, that SEO-RF uses all residuals in the
optimizations step becomes an advantage since then the decision of SEO-RF
is based on a larger sample compared to the JEO-RF. This larger sample for
SEO-RF is especially important for high service levels since then the empirical
quantiles come from the edges of the available samples which are even more
sparse.
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In line with Conjecture 5, we find that for symmetric costs (i.e., SL = 0.5),
heteroscedasticity has no significant effect on the approaches’ performance
primarily because for symmetric costs, JEO-RF does not use the feature that
drives the noise. Splitting along this feature would not make a difference
in terms of costs since the distributions of the errors are both symmetric
around zero and differ only in terms of variance. The minor difference stems
from the fact that JEO-RF estimates the sample median, while SEO-RF with
the MSE-loss estimates the sample mean. (See Appendix C.3 for additional
details.)

We also see that the effect that heteroscedasticity has on the approaches’
relative performance is more pronounced for higher service levels, a result that
is again in line with Conjecture 5.

Results for kernel-based approaches

Figure 4.3 displays the relative performance improvements δJEO of JEO-KO
over the SEO-KO approach for increasing levels of heteroscedasticity for dif-
ferent parameterizations of the noise and the service-level parameters. We
use the same simulation setup as we used for our random forest approach.
We find that the results with kernel optimization are mostly in line with the
results for random forests, but the effects are less pronounced.

As is the case for random forests, for settings with low uncertainty there
is no effect of increasing heteroscedasticity. For higher uncertainty levels het-
eroscedasticity has a positive effect on the performance of JEO-KO compared
to that of SEO-KO, although the effect is somewhat less pronounced than it is
for random forests. Still, in some settings (e.g., cvnoise = 0.25 and SL = 0.95),
JEO-KO significantly outperforms SEO-KO. Hence, we state that Conjecture
4 holds if the uncertainty is high enough. However, for perfectly homoscedas-
tic settings, JEO-KO can be inferior (cvnoise = 0.75 and SL = 0.8).

Also with regard to Conjecture 5, the results for the KO approaches are
similar to those for random forests. We find no significant differences for
symmetric costs (i.e., SL = 0.5). For higher service levels, , heteroscedasticity
has a significant effect on the performance of KO-JEO compared to KO-SEO.
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Figure 4.3: JEO-KO’s cost improvement over SEO-KO depending on γ (level
of heteroscedasticity) in a linear demand setting for various service levels
(SL = 0.5, 0.8 and 0.95 with various levels of base noise (cvnoise). The shaded
area represents a 95% confidence interval around the mean improvement.

The effect is more pronounced for higher noise levels.
We conclude that the key findings are related to fundamental differences

between the JEO and SEO concepts and do not depend on the underlying
ML technique.

4.4.3 Study 2: Prescriptive analytics at Yaz restaurant

In section 4.4.2, we examined the differences between the performance of SEO
and that of JEO in a controlled experiment. While this approach allowed us
to study the isolated effect of heteroscedasticity while controlling for the level
of uncertainty and cost asymmetries, the overall setting was simpler than
most real-world scenarios. In particular, our separating the feature-demand
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relationship from the feature-uncertainty relationship is a strong assumption,
as one would expect in scenarios where features drive the overall uncertainty
of demand features also to influence the level of demand. Hence, the effect of
heteroscedasticity cannot be traced as it can in a simulation experiment.

In this section, we compare the performance of JEO and SEO on a real-
world inventory management problem that has many features with potentially
complex nonlinear but unknown relationships to demand that are typically
encountered in practical scenarios. We seek to confirm our simulation experi-
ment’s findings in terms of the relative performance between the two models.
The data set stems from Yaz, a Germany-based fast-casual restaurant chain.
Yaz offers meals with a limited range of main ingredients but with a broad
variety of preparations. Because these main ingredients are perishable, Yaz
has to decide how many of them to prepare each day. Hence, the problem
structure (perishable items, per-unit overage, and underage costs) culminates
in the well-known newsvendor problem described above.

The following sections first provide an overview of the data sources we
used and the features we derived from the available data. Thereafter, we
describe our evaluation setup – that is, the logic used to compare the two
approaches. Finally, we present our results regarding the performance of both
approaches in our real-world application.

Data

Yaz provided us with sales data from their flagship restaurant in Stuttgart,
Germany, for the period from 2013/09/27 to 2015/11/09. The products’ de-
mand structure varies significantly in terms of the mean demand and the
coefficient of variation. For this reason we report the model performance for
three exemplary products (calamari, steak, lamb) whose demand structures
differ. As illustrated in Figure 4.4, the smoothed demand is nonstationary
over time, ruling out a basic newsvendor solution, which would require a sta-
tionary demand distribution to solve this inventory-management problem.

In the past, the restaurant manager wanted all products to be available
at all times, so inventory levels were high and Yaz rarely faced stock-out
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Figure 4.4: Evolution of the smoothed demand over time for different products.

situations. During the period under consideration, stock-out events occurred
on only on 1.6% of the days, so all three ingredients were available on 98.4%
of the time. Hence, we do not correct for censored demand data as Bertsimas
and Kallus [2019]. We expect that this marginal rate of censored demand
data will not have a significant effect on our comparison of JEO and SEO.

The restaurant manager’s hypothesis was that the weather has a strong
influence on demand, so we collected weather data from the databases of the
German Meteorological Service and aggregated that data to a daily level to
reflect the same level of granularity of a potential weather forecast for the next
day. Since actual weather forecasts for the next day were not available, we
used the actual weather information for the previous day as a proxy. Although
this information would not be available at the time that a decision is made,
the features we derived from this data are likely to be similar to a weather
forecast for the next day.

Based on this raw data, we derived 168 features for each product by
extracting structural information about the underlying time series (e.g., the
rolling mean demand for the same weekday). Table 6.4 provides an overview

120



4.4 Comparison of SEO and JEO

Source Feature

Time Series

Average aggregate demand (for all products) on
same weekday for the last two weeks
Average aggregate demand (for individual products)
on the same weekday over the last three weeks
Aggregate demand (for all products) the day before

Calendar
Is December
Is Saturday
Is special day (Event, Holiday, etc.)

Weather
Air temperature two days ago
Average Air temperature over last four days
Average duration of sunshine over last five days

Table 4.2: Examples of relevant features for the product Steak

of the most important features.

Evaluation procedure

After cleaning and preprocessing the raw data, we obtain a data set TNY az =
{(di,xi), i = 1, ..., NY az} with NY az = 672 demand observations. To evaluate
our model performance on this data set, we use a five-fold cross-validation,
splitting TNY az randomly into five roughly equal-sized subsets. Let

φ : {1, . . . , NY az} 7→ {1, . . . , 5}

denote the indexing function that maps a particular observation to one of the
five partitions. Then, q̂−φ(x) ) is the prescription function that is calibrated
with the k-th part of the data removed. Thus, we calibrate our prescription
model five times for different compositions of the training data set and eval-
uate it on the k-th part of the data. Subsequently, we compute the mismatch
cost estimates as:

c̄m = 1
NY az

NY az∑
i=1

C(di, q̂−φ(i)
m (xi))
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Again, we report δm, the percentage cost improvement over the sample average
approximation (SAA) benchmark per model m to improve our assessment of
the models’ performances.

In our simulation experiments described in section 4.4.2, we controlled for
cost asymmetry in terms of the service level, uncertainty within the data, and
heteroscedasticity, and now we quantify these drivers in our real-world exper-
iment. For this, we calculate the out-of-sample mean squared error (MSE)
of the predictions generated by the SEO approach as a measure of the re-
maining uncertainty (i.e., as a similar metric to the cvnoise parameter in our
simulations):

εMSE = 1
NY az

NY az∑
i=1

(di − d̂RF (xi))2 (4.27)

We also measure the heteroscedasticity in the residuals of the random
forest predictions, so we calculate the state-dependent coefficient of variation
over all historical observations d1, . . . , dnlt sorted into a particular leaf l in a
tree t of our SEO random forest:

cvlt =

√
(∑i(dilt − 1

nlt

∑
i dilt)2

1
nlt

∑
l dilt

(4.28)

Then we determine the standard deviation for each tree t separately:

sdt =

√√√√∑
l

(
cvlt −

1
Lt

∑
l

cvlt

)2

(4.29)

This standard deviation measures the heteroscedasticity in the residuals since
it detects how much the coefficient of variation deviates depending on the
actual state (i.e., the leaf into which an observation is sorted). Then we
aggregate the sdt to receive an indicator for heteroscedasticity γRF :

γRF = 1
T

∑
t

sdt (4.30)

Using this approach allows us to measure the state-dependent uncertainty for
the SEO-RF method which serves as an approximation for the heteroscedas-
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ticity in the residuals.

Results for random forest-based approaches

This section presents the main results for the application of JEO-RF and SEO-
RF to Yaz’s inventory management problem. Figure 4.5 shows the percentage
cost improvements,

δm,SAA = c̄m − c̄SAA
c̄SAA

= ∆m,SAA

c̄SAA
,

of JEO-RF and SEO-RF relative to SAA for various service levels. As Fig-
ure 4.5 shows, both approaches considerably improve the mismatch costs com-
pared to the SAA benchmark. We also find that the two methods perform
similarly for the 0.5 service level, with slightly lower costs for SEO-RF. These
results are in line with the outcome of our simulation, where neither approach
outperformed the other for the 0.5 service level, as the resulting symmetric
mismatch cost structure results in similar prescriptions.
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Figure 4.5: Percentage cost improvement δm,SAA over SAA for the SEO-RF
and the JEO-RF models

For other service levels we find similar effects to those of our simulation ex-
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periments: With increasing asymmetry of overage and underage costs, JEO’s
cost improvement over SEO increases. For example, for the 0.95 service level,
we find considerable differences between JEO-RF and SEO-RF (e.g., for steak
a cost improvement over SAA of 36% for JEO-RF and 32% for SEO-RF, and
for calamari a cost improvement over SAA of 17% versus 15% for SEO-RF).

Calamari Steak Lamb

MAE 2.00 5.53 7.17
MSE 6.72 54.35 89.00
γRF 0.35 0.18 0.16
∆JEO 0.02 0.07 0.02
δJEO(%) 6.31 7.32 1.58
p-value 0.008 0.086 0.599

Table 4.3: Measures for the forecast accuracy and heteroscedasticity of resid-
uals of the SEO approach (upper part) and cost improvements of JEO over
SEO for a 0.95 service level, and with the p-value results of a t-test (lower
part).

In line with Conjecture 4, our simulation results in section 4.4.2 identified
the level of heteroscedasticity in the residuals as a major driver of perfor-
mance differences between the SEO-RF and JEO-RF approaches. To confirm
these findings on the Yaz data set, we determined the structure of the re-
maining uncertainty by applying descriptive statistics to the residuals of the
SEO, which are represented in Table 4.3. We find that calamari has the
higher heteroscedasticity (measured by γRF ) in the leaf nodes, followed by
steak and lamb. Ceteris paribus, we expected JEO to have the highest cost
improvement for calamari products, but as Table 4.3 shows, we achieve the
highest relative improvement for steak (7.32%), followed by calamari (6.31%)
and lamb (1.58%). We explain this outcome with an overlay of two opposite
effects: Whereas we find heteroscedasticity is highest for calamari, we also
see that the overall forecast accuracy for calamari is highest, i.e., remaining
uncertainty for this product, which also affects the relative cost advantage of
JEO over SEO, is lowest: The mean absolute error (MAE) of calamari is more
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than 3.5 times lower than the forecasting error of lamb, considerably limiting
the performance differences between the two approaches. In this case, the
MAE (instead of a relative error) is the adequate measure since costs are re-
lated to the absolute deviations. For calamari, we find that the performance
advantage of JEO over SEO is statistically highly significant, with a p-value
of 0.008. Hence, we conclude that our results from the real-world case study
are in line with the findings from the simulation study, providing additional
support to our hypotheses that heteroscedasticity is an important driver of
JEO’s cost advantage over SEO.

Finally, we examined the stability of our results over a range of model
parameter combinations. Table 4.4 presents the mean absolute cost improve-
ments (∆JEO) and the scaled absolute cost improvements (∆JEO

c̄SEO
) for steak

for various combinations of service levels and the model-specific tuning pa-
rameters ntrees, representing the number of trees, and minnode, the minimum
number of observations in a node as an additional split. We find that, except
for the 0.5 service level, all parameter configurations lead to lower mean costs
for the JEO approach compared to SEO. However, in only four configurations
do we find our cost improvement to be highly statistically significant.

Results for kernel-based approaches

In the following, we present the main results for the application of JEO-KO
and SEO-KO to Yaz’s inventory management problem. We use the same
evaluation logic that we did in our random forest approach. Figure 4.6 dis-
plays the percentage cost improvements δm,SAA = c̄m−c̄SAA

c̄SAA
= ∆m,SAA

c̄SAA
m ∈

{JEO-KO, SEO-KO} of JEO-KO and SEO-KO relative to SAA for different
service levels.

We find that the results for KO are mostly in line with what we found for
random forests, as SEO-KO and JEO-KO both improve the mismatch costs
compared to the SAA benchmark. Other than for random forest, we find that
for SL = 0.5, SEO-KO achieves a slightly higher cost improvement.

For high service levels, JEO-KO yields better results than its SEO coun-
terpart. However, the kernel approach cannot measure the heteroscedasticity
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Figure 4.6: Percentage cost improvement δm,SAA over SAA for the SEO and
the JEO kernel optimization models

as the random forest approach can. For this reason, we cannot draw conclu-
sions concerning whether any differences in the performance of JEO-KO and
SEO-KO using the kernel-based approach might be driven by heteroscedas-
ticity in this practical setting.

While the main contribution of our paper is the comparison of JEO and
SEO, we can also compare the results between JEO-RF and JEO-KO since we
use the same benchmark and evaluation procedures. We see that JEO-RF’s
performance on this data set is considerably better than that of JEO-KO. For
example, for steak with SL = 0.95, the mean performance improvement of
JEO-RF is around 35 percent, while it is only around 17 percent for JEO-
KO. However, these findings, reached using a specific data set, cannot be
generalized.

4.5 Conclusion
We analyzed the performance of two fundamentally different concepts to con-
sider data for a newsvendor-style inventory management problem, where vari-
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ations in demand are driven by observable features. By comparing the respec-
tive implementations for SEO and JEO with two underlying machine learning
algorithms, our in-depth analysis provides the first rigorous examination of
performance differences between the two concepts. Moreover, the newly intro-
duced JEO approach based on random forests is a novel method with which
to determine optimal inventory quantities.

In a first analytical examination we showed that an SEO approach based
on a linear regression model yields suboptimal results if heteroscedasticity
in the residuals is present, whereas its JEO counterpart results in optimal
inventory decisions. We saw a similar impact of heteroscedasticity for the
two more complex nonlinear methods in a simulation study and in a study
based on a real-world data set. The analysis of performance differences on our
real-world data set suggests that both the random forest-based and the kernel
optimization-based JEO approaches outperform their respective SEO counter-
parts in settings with high heteroscedasticity and high remaining uncertainty
(i.e., low forecast accuracy), in combination with a highly asymmetric cost
structure. Moreover, we find that our random forest-based JEO approach
significantly outperforms the more established kernel-based JEO approach on
our real-world data set. Furthermore, by exploiting its tree-based structure,
we developed a measure to determine the amount of heteroscedasticity to
derive further insights about the structure of the remaining uncertainty.

Hence, given settings with high service levels, low forecasting accuracy
and presumed heteroscedasticity, using JEO models is appropriate because
of their internal structure, which is geared to such settings. On the other
hand, in situations in which forecast accuracy is high and mismatch costs
are symmetric, SEO approaches perform well. In addition to the competitive
performance of the established SEO approaches in such settings, they are
flexible in terms of the underlying prediction model: While JEO approaches
must be tailored to a specific setting, SEO approaches benefit directly from
developments that lead to improved prediction models since they serve only
as a building block while the subsequent optimization logic remains.
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SL ntrees minnode ∆JEO LB 95% CI UB 95% CI ∆JEO

c̄SEO

0.5 100 5 −0.01 −0.08 0.05 −0.00
0.5 100 15 0.00 −0.06 0.05 0.00
0.5 100 30 −0.03 −0.08 0.02 −0.01
0.5 500 5 −0.01 −0.06 0.05 −0.01
0.5 500 15 −0.02 −0.07 0.03 −0.02
0.5 500 30 −0.05 −0.09 0.00 −0.04
0.8 100 5 0.01 −0.05 0.07 0.00
0.8 100 15 0.03 −0.03 0.09 0.01
0.8 100 30 0.10 0.03 0.17 0.05
0.8 500 5 0.00 −0.05 0.05 0.00
0.8 500 15 0.02 −0.03 0.07 0.01
0.8 500 30 0.02 −0.03 0.07 0.01
0.95 100 5 0.03 −0.04 0.10 0.03
0.95 100 15 0.13 0.04 0.22 0.14
0.95 100 30 0.09 0.00 0.17 0.10
0.95 500 5 0.05 −0.02 0.12 0.06
0.95 500 15 0.07 −0.01 0.15 0.08
0.95 500 30 0.09 0.01 0.18 0.10

Table 4.4: Mean absolute performance differences between SEO and JEO for
steak, depending on model configurations. The last column divides the abso-
lute performance difference by the mean mismatch cost of the SEO model for
the specific configuration to illustrate the magnitude of the improvements.
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5 Data-driven capacity
management with machine
learning: A new approach and a
case-study for a public service
office

In this paper we consider the case of a public service office in Germany that
provides services such as handling passports and ID card applications, noti-
fications of change of addresses, etc. Their decision problem is to determine
the staffing level for a specific staffing time-slot (e.g., next Monday, 8am to
12.30pm). Required capacity is driven by features such as the day of the week,
whether the day is in school vacations, etc. We present an innovative data-
driven approach to prescribe capacities that does not require any assumptions
about the underlying arrival process. We show how to integrate specific ser-
vice goals (e.g., "At most 20% of the customers should have to wait more than
20 minutes") into a machine learning (ML) algorithm to learn a functional re-
lationship between features and prescribed capacity from historical data. We
analyze the performance of our integrated approach on a real-world dataset
and compare it to a sequential approach that first uses out-of-the-box ML to
predict arrival rates and subsequently determines the according capacity using
queuing models. We find that both data-driven approaches can significantly
improve the performance compared to a naive benchmark and discuss benefits
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and drawbacks of our approach. 14

5.1 Introduction
In this paper we consider the problem of finding the right level of capac-
ity for service operations. We address the case of a public service office in
Germany that provides services such as the application andt issuance of pass-
ports or ID cards, notifications of change of addresses, etc. Their decision
problem is to determine the staffing level for a specific time slot (e.g., next
Monday, 8am to 12.30pm). Practitioners’ intuition is that required capacity
depends on the day of the week, whether this day falls on school vacations,
etc. Our case is a typical example of over-the-counter service industries: mul-
tiple servers/stations that process customer orders in a first-come-first-served
manner. Customer/order arrivals and the service time are uncertain and ar-
rival rates are typically time-dependent. For-profit firms and governmental
organizations face the same problem of determining the right capacity (i.e.,
number of servers) for different time intervals. Customers expect good service
in terms of short waiting times and decision-makers want to avoid excessive
costs for idle capacity.

Many well-established approaches in the literature determine capacity
levels based on distributional assumptions for the inter-arrival and inter-
departure times of the customers. Such an approach, however, ignores the
uncertainty around an estimated distribution parameter and in many practi-
cal instances the approach lacks the suitability to be implemented.

We present a novel, data-driven approach to prescribe optimal capacity
levels by directly modeling the functional relationship between capacity deci-
sion and features that potentially drive the required capacity. Our integrated
approach does not require any assumptions about the underlying arrival pro-
cess. Given a sufficiently large data set of historical observations of features
and associated arrival processes, our approach derives a decision rule that

14This paper was published in the Proceedings of the 2018 INFORMS International Confer-
ence on Service Science Taigel et al. [2019]. Is is co-authored by Jan Meller and Alexander
Rothkopf.
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directly prescribes the minimal capacity to fulfill given service objectives. In
this paper, we consider a single objective (e.g., at most 20% of the customer
should have to wait more than 20 minutes), but we note that our approach
can be extended to simultaneously incorporating additional service goals (e.g.,
at most x% abandonment rate or y minutes average waiting time).

5.2 Literature
Closely related to our approach is the work by Bassamboo and Zeevi [2009]
who propose a data-driven approach to determine capacities in a call-center
model with multiple customer classes and multiple server pools using historical
call-arrival data. In their approach arrival rates of incoming calls are not
assumed to be constant or known. Instead of making assumptions about the
distribution of the arrivals, they use empirical estimates for the arrival rates
which they derive from samples of historic call-arrival-epochs with similar
characteristics. Based on these estimated distributions they can determine the
expected penalty costs from abandonments with respect to a chosen capacity
and hence minimize the sum of the expected penalty costs and the costs for
capacity.

They can show that with an increasing amount of available data, their
data-driven approach approximately achieves the same costs as one using a
simulation-based approach with known arrival rates. However, their results
also show that with a decreasing amount of observation, the average costs of
their approach increase. We consider this as critical, since Bassamboo and
Zeevi [2009] require samples of historic call-arrival-epochs with similar char-
acteristics. Let for example a set of such similar epochs contain all Monday
mornings without vacations, in the first week of a month, with no special
weather event. This still rather broad specification limits the amount of sim-
ilar observations to less than 10 given we have one year of data available.
Hence, the choice of relevant characteristics and how we determine similar
observations will influence the decision. In contrast to Bassamboo and Zeevi
[2009], we integrate these considerations in our decision model. Our model
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groups historical demand observations such that they allow for the best de-
cision. Another methodical difference is that our approach does not require
to estimate arrival rates, since we directly consider the capacity decision that
would have been optimal given past arrivals.

Bertsimas and Doan [2010] also consider a call-center staffing problem
and propose a data-driven approach that determines capacities for each unit
period of the planning period (e.g., each hour of a day) by minimizing the
mean cost over given historical arrival rates. They do not require explicit
assumptions about the distribution of arrivals, however, they implicitly as-
sume, that all historic observations from a specific time slot/unit period are
similarly valuable for making the capacity decision for an upcoming period.
Hence, they do not consider that external features could potentially explain
parts of the variations in the historical data which is the main structural dif-
ference to the approach we present in this paper. Furthermore, their approach
requires specific costs for waiting and abandonment which are not available
in a setting like the public service office where specific service goals related to
waiting time are more adequate.

5.3 Methodology
In this section we present a novel, data-driven approach to prescribe optimal
capacity levels by directly modeling the functional relationship between ca-
pacity decision and features that potentially drive the required capacity. We
first formulate the general model and show the flexibility of our approach. In
the second subsection we describe an implementation based on the machine
learning technique of decision tree learning.

5.3.1 Distribution-free approach for feature-based capacity
decisions

In this section we introduce a novel approach to prescribe a capacity level µ(x)
for a time-slot given a feature vector x that represents information charac-
terizing this particular time-slot, e.g., day of the week, whether the time-slot
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falls on a school holiday, etc. These prescribed capacities should fulfill certain
service objectives G (e.g., ratio of staffing time-slots where at least 80% of the
customers are served within a certain time). The actual capacity level µ(x)
is then determined by minimizing the capacity level that is required to fulfill
the service-level objectives i = 1, ..., O for at least Gtarget

i of the observations:

min
µ(·)

µ(x) (5.1)

s.t. Gi(µ(x)) ≥ Gtarget
i ∀i (5.2)

We can interpret Eq. (5.2) as second-level service goals that allow us to
consider the trade-off between capacity and specific service-level objectives
which are measured on a time-slot basis, e.g., the maximum waiting time
or the average waiting time per customer. We note that Eq. (5.2) allows
to control for multiple service goals independently which is a main difference
compared to classical queuing approaches. Traditionally, decision makers have
to focus on a single service goal. In the setting of our case study, the decision
maker seeks to achieve that at most 20% of the customers within a certain
time-slot should have to wait for more than 20 minutes. This is the only
service goal, hence, O = 1. Such a constraint can be controlled and relaxed
via Eq. (5.2). E.g., if Gt

1arget = 0.95, we allow the service goal to be missed
in 5% of the cases. This makes the approach more robust against outliers.

Our data-driven approach learns the functional relationship µ̂(x) from a
set of historical data T = {(µ(∗)

n ,xn)}n=1,...,N where each observation consists
of an ex-post optimal decision µ(∗)

n and a feature vector xn for each time-slot
n = 1, ..., N .

In order to determine these ex-post optimal decisions µ(∗)
n , we evaluate

the historical arrival processes yn representing the individual arrival times of
each customer for each historical time-slot n = 1, . . . , N . Hence, we solve the
data-driven counterpart of Eqs. (5.1) - (5.2) for a given set of learning data
T :
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min
µ̂(·)

N∑
n=1

µ̂(xn) (5.3)

s.t. Ĝi(µ̂(), T ) ≥ Gtarget
i (5.4)

Clearly, solving Eqs. (5.3)- (5.4) for a general function µ(·) is infeasible
due to too many degrees of freedom. For this reason, we need to specify
a certain form of the functional relationship. For our approach we chose a
tree-based model which we find highly suitable due to its high flexibility in
modeling complex feature-demand relationships as well as its integrated fea-
ture selection mechanism. Besides these methodological properties, tree-based
models have proven to perform well in various settings [see, e.g., Caruana and
Niculescu-Mizil, 2006, Caruana et al., 2008].

5.3.2 Tree-based implementation

The general idea of tree-based machine learning algorithms is to partition the
input feature space into disjunct “regions” by recursively finding the feature
along with a split value that minimizes an objective function over a given set
of historical “training data” T . This procedure is recursively repeated until
either an additional split would not lead to a substantial improvement or a
minimum number of observations is reached. The interested reader is referred
to the excellent presentation of tree-based models in Hastie et al. [2013] for
further details.

The intuition behind this approach is that the decision we make for a
specific time-slot is based on the decisions that would have been optimal in
"similar" segments in the past. Our algorithm determines what is "similar"
such that it allows for the best decisions (instead of mean predictions as with
the standard tree-learning algorithm). Our solution encompasses the following
four steps:

1. Data pre-processing: To make the algorithm computationally feasible,
we build a NxM -dimensional look-up table W where N is the number
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of available historical staffing segments and M is the maximum number
of servers per time-slot that is available per time-slot. The entries in
W are the ratios of waiting times violating the service target for the ar-
rival process in a particular (historical) staffing time-slot given a specific
capacity µ:

wn,µ =
∑
j 1(znj(µ,yn) > tmax)

|yn|
, n = 1, ..., N and µ = 1, ...,M

where |yn| is the number of customers that arrived in time period n

and znj(·) is the waiting time of arrival j in time period n and 1(z >
tmax) = 1 if z > tmax and 0 otherwise. The evaluation of the arrival
process, i.e., computing znj(·) is the computationally expensive part.
With the look-up tableW , we have to do this only once for each capacity
and historical time-slot. We can use W to obtain the ex-post optimal
capacity decisions that we need as a training data set for our algorithm
and to evaluate the resulting decisions. We note that for additional
service goals we could compute additional look-up tables following the
same logic.

2. Ex-post optimization: From W we can obtain the ex-post optimal ca-
pacity decision for each time slot n = 1, ..., N by:

µ(∗)
n = inf

µ
{wn,µ < (1− α)} (5.5)

where the service level α is the ratio of customers that are supposed
to be served on time. We use these capacities in the learning data set
T = {(µ(∗)

n ,xn)}n=1,...,N .

3. Tree-learning: We "learn" the structure of the tree by determining the
partition of the parameter space that allows for the best capacity deci-
sions. In detail, we recursively apply the following splitting step:
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(x∗p, s∗) = argmin
(xp,s):p∈{1,...,k}∧s∈Xp

(
L
{(
µ(∗),x

)
∈ ST |xp ≤ s

}
+ L

{(
µ(∗),x

)
∈ ST |xp > s

}) (5.6)

where Xp is the set of all values of the p-th feature in the learning data
and the loss function L(ST ) for a set ST ⊂ T is the aggregated excessive
capacity, defined as follows:

L(ST ) =
∑

n:
(
µ

(∗)
n ,xn

)
∈ST

(µST − µ(∗)
n )+ (5.7)

and

µST = inf
µ
{µ ∈ 1, ..., ,M | 1

|T |
∑

n:
(
µ

(∗)
n ,xn

)
∈ST

1(µ(∗)
n ≥ µ) ≥ Gtarget} (5.8)

where Gtarget is the ratio of time slots where the service level goal should
be reached. Eq.(5.7) is the unutilized capacity if µST is the capacity as-
signed to all historical observations in a set ST , which replaces the MSE
as the basic loss function. Hence, Eq. (6.18) determines the split that
allows for the best decision by grouping possibly similar decisions. Eq.
(5.8) simply yields the sample quantile for the µ(∗)

n in a given subset,
hence, if Gtarget = 100% then we get the maximum capacity in that
subset. Essentially, the algorithm tries all possible splits (i.e., all combi-
nations of xp and s and finds the combination that minimizes the total
loss resulting from the split.

4. Apply staffing function: Given the feature vector x′ for a new, unseen,
staffing time-slot, we now obtain the staffing decision by sorting x′ into
a region r by comparing the splits in the tree with the associated values
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Figure 5.1: Examples from case study: trees use similar variables but with a
different structure.

of x′. More formally,

µ̂(x′) =
R∑
r=1

µr1(x′ ∈ r) (5.9)

where r = 1, ..., R are the partitions of the feature space that were
learned in the previous step. Figure 5.1a shows an example for a de-
cision tree representation of the integrated learning approach. The ob-
vious difference to a regression tree as depicted in Figure 5.1b are the
leaf labels that are prescribed staffing levels of the integrated tree and
predicted quantities for the classical regression tree.

Our main contribution is the integration of the specific optimization prob-
lem (minimizing capacity subject to certain service goals) into the estimation
of a model that learns the functional relationship between features and out-
put. We expect that this approach is especially useful if a) arrival rates are
not stationary and if b) the non-stationarity is feature dependent. To clarify
these two conjectures, we consider the following simple example. On average,
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there are 100 customers per shift, but only 25 arrive in the first half of the shift
whereas the second half of the shift sees on average 75 customers. Without
any features, a separated approach bases the decision on the 100 estimated
mean arrivals and typically misses the service goal due to the higher number
of arrivals in the second half of the shift. Our integrated approach, would
prescribe a capacity that would have achieved the service goal for past real-
izations of these arrival processes. Hence it would take the non-stationarity
into account.

In order to clarify conjecture b), suppose we have a single binary feature,
e.g., school holiday: yes/no that affects the arrival rates in the following way:
During school holidays, arrival rates are constant throughout the shift with
on average 100 arrivals. Without school holidays, we have non-stationarity as
described above. In such a setting, a standard estimation model that aims at
predicting the mean arrivals would not consider the school holidays feature,
since it does not affect mean demand. Whereas our integrated approach would
consider the feature if it improves the prescribed decisions, i.e., if it reduces the
overall unutilized capacity, if different capacities are assigned to the subsets
that are split by the school holiday feature. This is the main effect of the
modified splitting function in Eq. (5) in step 3 of our procedure.

5.4 Case Study: Staffing Service Counters at a
Public Services Office

In this section, we validate our approach from the previous section by applying
it to the problem of finding optimal capacity levels for the staffing problem
at a public services office in Germany. At this office citizens can apply and
collect passports and ID cards, change their address, etc. We compare the
results of our integrated approach with the more traditional separated ap-
proach that uses a standard decision tree model to estimate arrival rates and
subsequently applies the Erlang-C formula to optimize capacities. While the
separated approach based on Erlang-C may not be the most sophisticated
solution available in the literature it is a relevant benchmark due to its preva-
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lence in practice. For more details on the Erlang-C model, see for example
Gans et al. [2003].

In our case study the labor laws and labor agreements force employers to
assign employees to fixed shifts which is a time window, for example, from
8am to 12.30pm. Hence, we have one 4.5-hour staffing time-slot per day.
We have one year (251 working days) of historical data including for each
individual customer the time-stamp the customer arrived. These time-stamps
are generated by an automated ticketing system: customers enter and have
to draw a ticket and are called first-come-first-served once a server is free.
Applying the service target to ’serve 80% of the customers in a waiting time
below 20 minutes’ to this historical data set, only for 35% of the staffing time-
slots the service goal was reached. We denote this ratio by Greal = 0.35. That
is, for more than 65% of the days more than 20% of the customers had to
wait more than 20 minutes.

Labor laws in Germany prohibit employers to track the individual service
times at service desks. However, we know that a typical service task takes
around 20 minutes, the minimum service time is 5 minutes and maximum
service time can be ’substantially longer than the typical time’. Hence, for each
arrival we draw a service time from a triangular distribution with min = 5,
max = 60 and peak = 20 minutes.

As features we use day of week, whether the day is a school holiday, in the
first week of the month or a bridge day (i.e., a working day between weekend
and a single holiday). The prediction model achieves an out-of-sample MAPE
of 13.5% in predicting the number of arrivals per time-slot. Just using the
mean as prediction would result in a MAPE of 20%.

To evaluate both approaches on the given real-world dataset we use leave-
one-out cross validation. I.e., one-by-one we take one observation from the
data set which we do not use for training the model, train the model and
then evaluate the performance for the left-out observation. As performance
measures, we consider the ratio of time-slots, where the service target was
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achieved. Ĝ as defined in Eq. (5.10), i.e.,

Ĝ(µ(),L) = 1
|T |

∑(
µ

(∗)
n ,xn

)
∈T

1

(
µ(∗)
n ≤ µ̂(xn)

)
(5.10)

For Gtarget = 1 the integrated approach yields Ĝ(µ̂integrated, T ) = 96.0%
with a mean assigned capacity of 11.5. The benchmark approach with separate
estimation yields Ĝ(µ̂separate, T ) = 82.4% with a mean assigned capacity of
9.25. Considering the service target, the integrated approach is clearly better.
However, it also requires higher capacity. Using the parameterGtarget trade-off
required capacity and achieved service target in a controlled way.
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Figure 5.2: The integrated approach easily allows for trading-off the achieved
service target and required capacity.

Figure 5.2 shows the ratio of achieved service target with respect to the
required mean capacity. Compared to the naive approach where we assign a
fixed capacity for all days, we can reduce the number of days where the service
target is missed from 16 to 13 days (with mean capacity 11), from 33 to 24 days
(mean capacity 10) and from 63 to 53 (mean capacity 9) using the integrated
data-driven approach. The sequential approach achieves similar performance
as the integrated approach (Ĝ(µ̂integrated, T ) = 82.8% with a mean capacity
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of 9.19). However, comparability (as well as applicability) is limited due to
the lack of an adequate model parameter to evaluate different combinations
of capacity and Ĝ(µ̂separate, T ).

In the following, we also evaluate integrated and separated approach for
hourly time-slots and find that our integrated approach clearly outperforms
the separated benchmark based on Erlang C. The following table shows the
detailed results. We see that with the same capacity requirement our approach
reduces the number of time slots where more than 20% of customers have
to wait more than 20 minutes by 90 which is a 40% improvement in the
performance criterion.

We suppose that the better relative performance of the integrated ap-
proach for hourly staffing segments compared to full shifts, where the per-
formance is similar, is due to the following reason: For the longer staffing
segments the fluctuations in the arrival processes average out. Since the typ-
ical pattern is an increasing arrival rate between 8 and 9am, a peak between
9 and 11am and a decline until 12.30, planning based on the average arrival
rate provides acceptable results. For hourly planning, the separated approach
leads to significantly worse results since it would assign the same capacity to
time-slots with increasing and decreasing arrival rates, as long as the average
rate is similar. A more detailed examination is part of our future research.

5.5 Conclusion and further research
In this paper we present a novel, data-driven approach to prescribe optimal
capacity levels by directly modeling a functional relationship between features
that potentially drive the required capacity and the actual capacity decision.
Our main contribution is the integration of the specific optimization problem
(minimizing capacity subject to certain service goals) into the estimation of a
model that learns the functional relationship between features and decision.
We expect that this approach is especially useful if a) arrival rates are not
stationary and if b) the non-stationarity is feature dependent. For the staffing
problem at a public services office we find that integrated approach signifi-
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cantly outperforms the commonly used benchmark approach in the case of
hourly planning time-slots.

Based on the basic model presented in this paper, our next steps for the
case of the public service office will be to analyze the effect of the length of a
planning segment on the relative performance of the integrated approach and
the separated benchmark. We will also consider more complex service targets
since, for example, from a customer’s perspective, the mean waiting time is
more relevant than the ratio of time-slots where an arbitrary service target
is achieved. Our model allows to simultaneously take multiple service targets
into account.

We will also extend our approach to other important capacity planning
problems such as call-centers, where we can consider abandonments and mul-
tiple agent and customer classes. Call center typically track exact time-stamps
for incoming, answering and ending calls. Hence, historical service times are
given and we can avoid to work with generated service times. Since service
times might as well be feature-dependent, we expect additional potential for
integrated data-driven approaches like the one we present in this paper.

Furthermore, the comparison with more sophisticated benchmarks such
as the data-driven approach introduced by Bassamboo and Zeevi [2009] is a
topic of further research. We expect that given a clustering of similar historical
observations the involved optimization procedure described by Bassamboo and
Zeevi [2009] will lead to competitive results. However, in a complex practical
setting, finding such a clustering might be challenging. We will investigate
whether the clustering that comes as a byproduct of our approach can be used
for the data-driven approach by Bassamboo and Zeevi [2009].
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This paper addresses the call center staffing problem. We present a novel pre-
scriptive staffing approach that minimizes the human labor cost and the cost
for calls that were abandoned due to excessive waiting times. Our approach is
novel in that it determines a prescriptive model based on the functional rela-
tionship between observable features such as call volumes in previous staffing
segments, school holidays or other events and the optimal staffing decision.
In order to abstain from strong assumptions about underlying data distri-
butions, we learn the model from historical data by combining the staffing
cost optimization problem with a machine learning algorithm. We analyze
the performance of our approach on two real-world data sets and compare it
to a state-of-the-art benchmark. Provided with the same information as the
benchmark, our approach dominates on both data sets, resulting in a cost
improvement of up to 8 percentage points and shows even greater cost im-
provements when provided with additional features. We can explain the cost
advantage of our approach in part with its ability to consider non-random
intra-slot patterns in the call arrival such as a trend. 15

6.1 Introduction
In service systems such as call centers, employee staffing is one of the most
important planning tasks. Facing uncertain demand for service capacity and
limited available resources, a system manager has to trade off the costs for
staffing additional employees against customers’ expectations regarding the
quality of service. At the same time, labor costs for call center agents con-

15This paper is co-authored by Jan Meller.
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stitute by far the largest cost driver, accounting for 60 − 80% of the overall
operating cost in typical call centers [Aksin et al., 2007].

In this paper, we introduce a novel, prescriptive staffing approach for in-
bound call centers. The term “prescriptive” addresses two important charac-
teristics of our method [cf. Bertsimas and Kallus, 2019]: First, our approach is
based on a functional relationship that enables it to prescribe optimal staffing
levels given observable feature values. We assume that such features, e.g.,
the call volumes on the same weekday in previous weeks, national holidays or
further calendar events as well as weather or promotion campaigns, can have
a considerable impact on the required staffing levels. Second, our approach
is data-driven, that is, we do not make explicit assumptions about underly-
ing distributions (e.g., distributions of inter-arrival or inter-departure times).
Instead, we directly “learn” the functional relationship between observable
features and staffing decision from a set of historical observations of arrival
patterns and feature realisations.

Our approach departs from typical ways to address this kind of staffing
problem where one would naturally use a queuing system to model the respec-
tive service environment. One central property of such queuing approaches is
to impose a distribution on inter-arrival and inter-departure times which often
are assumed to follow an exponential distribution. However, empirical studies
show that the resulting homogeneous Poisson processes do not accurately re-
flect the observed call arrivals and service completions [Avramidis et al., 2004,
Brown et al., 2005]. As a consequence, authors argue that in many situations,
arrival rate uncertainty plays a more significant role for the performance of
staffing methods than the inherent variability of the stochastic processes [e.g.,
Bassamboo et al., 2010]. Considering this type of uncertainty becomes even
more important when arrival rates are forecasted and hence are prone to fore-
casting errors. For this reason, the same authors promote stochastic fluid
models which are able to consider such arrival rate uncertainty. Unfortu-
nately, these models implicitly assume that fluctuations of arrival rates are
random within a planning segment, and for example, do not exhibit patterns
such as a trend [cf. Harrison and Zeevi, 2005, Bassamboo and Zeevi, 2009].
In addition, none of these approaches considers external features that can be
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relevant for staffing decisions.
Our contribution to the extant literature is two-fold: First, we present

the - to the best of our knowledge - first prescriptive approach for call cen-
ter staffing which integrates a cost-based staffing objective with a machine
learning method (regression tree). Our approach “learns” optimal decisions
from historical call arrival data and according feature observations. Second,
we validate our approach at the hand of two real-world call center data sets
and identify drivers of performance differences between our novel method and
a state-of-the-art benchmark based on a stochastic fluid model. We show that
our method results in considerably lower costs when using the same informa-
tion as the benchmark approach. Moreover, we find that additional features
further increase this cost advantage.

The remainder of this paper is structured as follows: In section 6.2, we
review established staffing approaches from the literature with which we con-
trast our contribution. Section 6.3 then introduces our prescriptive staffing
method and describes the specific implementation with a tree-based machine
learning algorithm. Finally, we evaluate and benchmark the performance of
this method on two real-world data sets for a setting with homogeneous cus-
tomers and call center agents in section 6.4.

6.2 Literature review
A natural way to model call center operations is by using queuing systems
[Gans et al., 2003]. These approaches have in common that the input stream
of customer calls and the stream of service completions are modeled as in-
dependent stochastic processes. Due to their appealing internal mechanic,
typical staffing goals that, for example, are based on the distribution of cus-
tomer waiting times can be calculated by assuming some general properties of
the system. In the past, one central set of assumptions in the literature were
homogeneous Poisson arrival and departure processes in order to determine
analytical results for the distributions of steady-state queue length, customer
waiting times and the load factor of the servers.
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However, empirical studies show that call arrivals in practice often depart
from the theoretical assumptions in the literature in a number of ways: As an
example, several authors find that call arrival times are often overdispersed,
i.e., the standard deviation of their interarrival times is considerably higher
than the mean [Jongbloed and Koole, 2001]; call arrival rates vary over the
day [Brown et al., 2005, Kim and Whitt, 2014]; and are dependent on the
arrival patterns from previous days [Avramidis et al., 2004] – all of which is
contrary to the Poisson assumption.

As a result, authors have offered two main avenues to address these issues:
First, a stream in the literature models incoming calls by nonhomogeneous
Poisson processes [e.g., Liao et al., 2012, Kim and Whitt, 2014] instead of
homogeneous Poisson processes. In order to keep the models solvable, the
form of the nonstationary arrival patterns in this class of models is limited
to rather simple patterns, e.g., by employing a linear function or a doubly
stochastic Poisson process. A second stream in the literature provides more
flexible modeling opportunities which allow to incorporate external factors
that might drive staffing requirements. These approaches typically follow
the pointwise stationary approximation paradigm [Green and Kolesar, 1991],
according to which a day is split into shorter time intervals of equal length
for which a constant arrival rate is assumed. Then, the arrival rates for these
intervals can be separately forecasted, e.g., by applying time series methods
[Taylor, 2012, Saccani, 2013, Ibrahim and L’Ecuyer, 2013, Ibrahim et al.,
2016]. Applications of machine learning in the field of call center staffing are
scarce. Li et al. [2019] apply machine learning to predict service levels given
specific staffing decisions. However, they need to simulate call arrival data in
order to have enough training which requires strong parametrical assumptions
about the underlying arrival processes.

Forecasting arrival rates based on historical data entails the challenge
of how the uncertainty from prediction errors can be considered within the
staffing models. While many authors focus either on the forecasting task of
arrival rates or on the cost and quality of service implications of stochastic
scheduling methods, Gans et al. [2015] note that only few contributions com-
bine sophisticated arrival rate forecasting with stochastic optimization models.
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In the same paper, Gans et al. propose an auto-regressive time-series model
to estimate the scaled arrival volumes for the staffing segments. In order to
deal with the forecast uncertainty, they then generate scenarios for the ar-
rival volumes and feed them into a stochastic programming model to find the
staffing levels that minimize expected cost. While providing a way to com-
bine arrival rate forecasting and stochastic call center staffing, their approach
relies heavily on strong parametric assumptions concerning the stationarity
of arrival rates (piece-wise Poisson) as well as the distribution of arrival rate
uncertainty (normally distributed).

In a different stream of the literature [e.g., Harrison and Zeevi, 2005,
Bassamboo et al., 2006, Bassamboo and Zeevi, 2009, Bassamboo et al., 2010],
some authors argue that in many situations, the uncertainty that is induced
by stochastic arrival rates dominates the uncertainty due to the stochastic
nature of the interarrival times and hence they neglect the latter entirely.
This argumentation provides the avenue and justification of fluid models where
actual stochastic processes are replaced by (a distribution of) their rates [e.g.,
Harrison and Zeevi, 2005, Bertsimas and Doan, 2010]. At the same time,
by ignoring the stochastic variability of the call arrival process in itself, the
accuracy of the considered call arrival rates has an even larger impact on
the quality of the final staffing decisions. Over the last decade, different
approaches have been developed that build on the idea of fluid models for call
center staffing and combine them with an approach to consider the uncertainty
of arrival rates.

Bertsimas and Doan [2010] assume a risk-averse system manager and
hence provide two formulations of the staffing problem that aim at protecting
against worst-case realizations of the arrival rates. In their first formulation,
the α-quantile of the total cost, consisting of staffing, waiting and abandon-
ment penalties, is minimized. In their second model, which builds on robust
optimization theory, uncertainty sets are defined that contain all potential
realizations of the arrival rates. Then, the worst case outcome considering
these potential realizations is minimized. An appealing characteristic of these
approaches is the ability to guarantee a certain performance even under very
unfavourable arrival rate realizations. On the contrary, these robust solu-
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tions tend to be conservative, sacrificing much of the potential cost savings
for robustness. Also, in their approach, Bertsimas and Doan do not consider
external feature data to generate these uncertainty sets, ignoring potentially
predictive information about the actual arrival rate realizations.

A second approach based on fluid models, proposed by Tulabandhula
and Rudin [2013], promotes simultaneously solving the forecasting (of the
arrival rates) task and the optimization (of the staffing decisions) task. To
achieve this, they learn a prediction model where a regularization term that
is proportional to the expected operating costs is added to the loss function.
Hence, following this approach, the prediction model is already biased in
favour of the subsequent optimization task. Then, they apply the simple
square-root staffing rule onto the predictions generated with the biased model.
We follow a similar idea with some important differences: First, instead of
biasing the forecasting model, our approach fully integrates both tasks – that
is, we obtain one single optimization model that learns optimal decisions from
historical call arrival data. Second, Tulabandhula and Rudin [2013] use the
square-root staffing rule which is based on the assumption of Poisson arrivals
and departures. In our approach, we do not require this assumption in that
we directly use the historical call arrival patterns and thereupon determine ex-
post optimal decisions that are independent of any distributional assumptions
of the underlying call arrival process.

Finally, Bassamboo and Zeevi [2009] introduce a method to derive data-
driven staffing decisions based on historical call arrival data. Their approach
builds upon a series of papers introducing stochastic fluid models for call
center staffing problems where multiple customer classes and multiple server
pools have to be considered [e.g., Harrison and Zeevi, 2005, Bassamboo et al.,
2006]. In order to derive staffing decisions for a new staffing segment, empirical
estimates for the arrival rates are calculated from samples of past call arrival
epochs with similar characteristics. Then, these empirical distributions are fed
into the staffing model which minimizes the sum of expected abandonment
and capacity costs. While Bassamboo and Zeevi do consider the uncertainty
of arrival rates their method is not able to consider structural changes of
the mean arrival rate such as a trend. Also, their method requires data from

148



6.3 Data-driven capacity management

“similar” past staffing segments which necessitates a preprocessing in the form
of a clustering approach. Hence, the choice of relevant characteristics and
how to determine such similar observations largely influences the quality of
the final staffing decisions. In contrast, our approach comes with integrated
feature selection and can also factor in structural changes of the mean arrival
rate such as a trend.

Our new prescriptive staffing approach that is presented in the next section
adds to the literature in that we provide a novel way of deriving staffing
decisions directly from data. Our approach considers both, external features
driving staffing requirements, and the uncertainty that arises from estimating
their impact on the final prescriptions.

6.3 Data-driven capacity management
In this section we formalize the call center staffing problem and introduce
our modeling assumptions. Then, we present the competing approach based
on a stochastic fluid model that we will use as benchmark in our analyses.
Finally, we describe our data-driven approach to prescribe optimal call center
staffing levels by directly modeling the functional relationship between staffing
decision and features that potentially drive the required capacity.

6.3.1 Problem statement and modeling assumptions

We consider a call center setting where b identical servers are staffed within
a staffing segment to handle arriving calls. We model the incoming calls
as a doubly stochastic process F (t) := (F (t) : 0 ≤ t <∞) where the ar-
rival rate Λ(t) is itself a random variable with unknown distribution. In
the following, F (t) represents the cumulative number of calls up to a time
t. Each of these calls gets either directly answered by an idle server, or, if
all servers are busy, is assigned to a buffer with infinite capacity. Once con-
nected to a call center agent, the customers’ service requirements are mod-
eled as a second, independent random variable. Hence, the stochastic process
S(t) := (S(t) : 0 ≤ t <∞) describes the cumulative amount of service comple-
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tions up to a time t where µ represents the service rate. Since each customer
is endowed with an individual amount of patience, those whose calls could
not directly be answered are willing to wait for a maximum of τ minutes
until the call is abandoned. Their impatience is modeled as a third random
variable and hence, the cumulative amount of abandoned calls up to a time
t can be described via the stochastic process A(t) := (A(t) : 0 ≤ t <∞) and
abandonment rate γ.

Optimization problem A distinguishing characteristic of our prescriptive
staffing approach is the explicit accounting for the call arrival structure within
a slot and hence the resulting timing of arrivals, service completions and
abandonments. To closely model the actual sequence of events, we adapt
a model formulation that has originally been proposed for a more complex
setting where single calls from different customer classes have to be routed to
agents from different server pools who can potentially handle calls from one
or more customer classes [e.g., Harrison and Zeevi, 2005, Bassamboo et al.,
2006, Bassamboo and Zeevi, 2009].

We impose a cost-based staffing objective where the system manager aims
to minimize the expected total costs resulting from her staffing decision b in
a segment of length T . Assume the cost of an abandoned call to be p and the
staffing cost per server being assigned to a staffing segment to be c. Then,
the system manager’s optimization problem can be formalized as:

min
b∈R+

V(b) := c b+ pE
[
A

(∫ T

0
γQ(s)ds

)]
(6.1)

s.t. D(t) ≤ b (6.2)
Q(t) = Z(t)−D(t) ≥ 0 (6.3)

Z(t) = F (t)− S
(∫ t

0
µD(s)ds

)
− A

(∫ t

0
γQ(s)ds

)
, (6.4)

where the server process D(t) represents the number of servers engaged in
customer calls at time t which we require to capture the timing and routing
of single calls to agents. The first constraint (6.2) guarantees that the number
of currently active servers D(t) can not exceed the total number of available

150



6.3 Data-driven capacity management

servers. Constraint (6.3) links D(t) with the queue length process Q(t), which
can be interpreted as the number of customers currently waiting in the buffer,
and the headcount process Z(t) that represents the number of customers in
the system. Constraint (6.4) is the system dynamics constraint with F (t)
constituting the cumulative arrivals up to t, the second term being the cu-
mulative service completions up to t and the third term being the cumulative
abandonments up to time t. The three additional processes, Z(t), Q(t), D(t),
are defined over the time domain [0, T ] and take values in R+.

6.3.2 A stochastic fluid model-based benchmark

Given the stochasticity of the involved processes, the problem described by (6.1)
is particularly hard to solve. For this reason, in recent years authors have pro-
posed approximations by fluid models [e.g., Harrison and Zeevi, 2005, Bassam-
boo and Zeevi, 2009, Bassamboo et al., 2010] to this kind of staffing problem.
Fluid models are based on additional assumptions with which the original
problem is approximated. First, one assumes all stochastic processes to be
Poisson flows. Then, one replaces these flows in the system with their rates,
i.e.,

F
(∫ t

0
Λ(s)ds

)
≈
∫ t

s=0
Λ(s)ds, (6.5)

S
(∫ t

0
µD(s)ds

)
≈
∫ t

s=0
µD(s)ds, (6.6)

A
(∫ t

0
γQ(s)ds

)
≈
∫ t

s=0
γQ(s)ds. (6.7)

The main idea of this approximation is to treat stochastic variability of the
customer arrivals, service requirements and abandonments as insignificant
compared to variations in the rates themselves [Harrison and Zeevi, 2005].
Moreover, one assumes the system to instantaneously reach a steady-state
equilibrium, i.e.,

Λ(t) = µD(t) + γQ(t), (6.8)

which constitutes a pointwise stationary approximation, replacing constraint
(6.4). Given these approximations, the staffing objective (6.1) can be approx-
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imated by V (b) [cf. Bassamboo and Zeevi, 2009, Harrison and Zeevi, 2005]:

V (b) := cb+ T
∫
p(λ− bµ)+dG(λ), (6.9)

where G(λ) represents the cumulative distribution function of the arrival rates
λ. Since we consider a very simple case – one customer class and one agent
pool – the objective (6.9) can be further reduced to the well-known newsvendor
problem [cf. Harrison and Zeevi, 2005] which gives us the following character-
ization of the optimal pool size:

G(b∗µ) = 1− c

Tpµ
. (6.10)

Of course, in practice, it is not realistic to assume full knowledge of the
distribution of arrival rates Λ(t). Instead, a system manager would have access
to records of historical call arrivals during past staffing segments. Let Fl be the
record of realizations of the call arrival process Fl(t), that is, the cumulated
arrivals up to a time t, t ∈ [0, T ], during the historical staffing segment l. For
now, let’s assume, that all historical staffing segments are “similar”. Then, the
complete data set of n historical call arrival patterns is Rn = ⋃n

l=1 Fl. Since
the actual arrival rates can not be observed, Bassamboo and Zeevi [2009]
propose a method to calculate the linear approximations Λ̂l(s) of the arrival
rates on the window w > 0:

Λ̂l(s) = Fl(s+ w)− Fl(s)
w

. (6.11)

Based on these estimates, the empirical cumulative distribution function of
the arrival rates is calculated as follows:

Ĝn(λ) = 1
T

∫ T

0

1
n

n∑
l=1
1{Λ̂l(s)≤λ} ds, λ ∈ R+. (6.12)

Then, one can determine the optimal staffing decision b̂∗ as:

b̂∗ :=
Ĝ−1
n

(
1− c

Tpµ

)
µ

(6.13)
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In the following we refer to this approach as stochastic fluid model (SFM)
approach and use it as benchmark for our evaluations in section 6.4.

6.3.3 A novel prescriptive analytics approach

The fluid model approximation approach presented in subsection 6.3.2 is sub-
ject to two major limitations: First, it implicitly assumes that the data Rn

consist of “similar” staffing segments, i.e., that all past arrival processes be-
have similarly. However, practice shows that the actual structure of call arrival
processes is often driven by external factors such as day of the week, week of
the month or by holiday periods. Typically, one would cast such informa-
tion into features, i.e., summarized representations of these factors that can
be considered in vectorial form, e.g., whether a particular historical staffing
decision was taken on a Monday or a Saturday. In the following, we denote
such a feature vector for a particular staffing segment l as ~xl. Second, while
the arrival rate uncertainty is considered, the fluid model approximation ig-
nores the stochastic variability of the modeled processes, i.e., the variability
in the inter-arrival times of single calls, the service requirements as well as the
abandonment times.

In the following, we introduce a novel data-driven approach that combines
the optimization logic that was formalized in subsection 6.3.1 with state-of-
the-art machine learning techniques to learn a staffing prescription function
b(~x) from historical data. As a prerequisite, assume for now that there exists a
cost function C : F×B −→ R+ that assigns a real-valued staffing cost to each
combination of a call arrival pattern F ∈ F over the time horizon [0, T ] and a
staffing decision b ∈ B. This assumption as well as a way how to approximate
such a function C(·, ·) are further detailed in the next paragraph. Moreover,
we require a functional relationship between the features ~x and the call arrival
pattern F (t) with joint distribution function fF×X . Then, we find a function
b : X −→ R+ that maps from the domain of features to the respective optimal
staffing quantity. We determine this function b(·) by minimizing the expected
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total staffing costs C(F, b(·)) given the vector of auxiliary features ~x:

min
b(·)∈B

EF×X [C(F, b(~x))|X = ~x]. (6.14)

However, in a practical setting, the distribution function fF×X is not ob-
servable and estimating such a distribution from data is error-prone in high-
dimensional feature spaces (“big data”).

𝑭𝑭𝑙𝑙

t Fl(t)

00:00:00 0

00:00:01 0

… …

00:03:21 1

… …

00:04:37 2

l xmon … xsat xstaff_segm1 … xstaff_segm11 xis_holiday xlagged_call_vol

1 0 … 0 0 … 0 0 312

2 0 … 0 0 … 0 0 247

3 0 … 0 0 … 0 1 210

… … … … … … … … …

l 0 … 0 0 … 0 0 207

… … … … … … … … …

n 0 … 0 0 … 0 1 265

Figure 6.1: Overview of the structure of the data set Tn. For each historical
staffing segment l, a vector ~xl of descriptive features as well as a record of the
sequence of call arrivals Fl(t) within the staffing segment is available.

For this reason, we choose a different approach: We apply the well-
established machine learning principle of empirical risk minimization to di-
rectly learn the prescription function b(·) from historical data. To that end,
we first augment the data set Rn with vectors of the respective historical fea-
ture values ~x. The data set Tn which is used in the subsequent step consists
of tuples (Fl, ~xl), l = 1, ..., n and hence Tn := ⋃n

l=1(Fl, ~xl). Figure 6.1 provides
an overview of the data set: For each collection of observed call arrivals we
have a vector of additional information, e.g. whether the considered staffing
segment was on a Monday or a Friday, and during which time period of the
day the according staffing decision had to be made. Now we can replace (6.14)
and instead minimize the empirical counterpart over the training data Tn:

min
b(·)∈B

n∑
l=1

C(Fl, b(~xl)). (6.15)
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Learning the prescription function Our approach is based on the assump-
tion that when two historical staffing segments are similar in their known
properties, e.g., the same weekday, or the same time slot within the day, they
are also similar in their unknown properties, i.e., in the call arrival pattern
and hence, in the optimal staffing decision. For this reason, our goal is to
retrace the functional relationship between the properties known in advance
– the features ~x – and the optimal staffing decision b∗. Clearly, considering
the complexity of the problem as well as the dimensionality of the potential
feature space, it is infeasible to find a globally optimal b(~x) from all possible
functions that map the features to staffing decisions. For this reason, we have
to choose a function class that restricts the degrees of freedom the ultimate
staffing function has. Since the cost function C(Fl, b(~x)), i.e., the evaluation
of (6.1) for a given record of call arrivals Fl and a staffing quantity b(~x) is
highly complex and not analytically defined (see the following subsection for
our approach of approximating C(Fl, b(~x))), the potential candidate space of
function classes is limited. As an example, artificial neural networks, one of
the currently most powerful approaches to predictive problems, rely on the
gradient descent method that is not applicable to that kind of loss function.
For this reason, we propose to use a regression tree model [cf. Breiman et al.,
1984], respectively its bagged variant, the random forest, which do not need
to explicitly determine a gradient. These models are able to generally model
very complex feature-demand relationships and have proven to perform well in
various settings [see, e.g., Caruana and Niculescu-Mizil, 2006, Caruana et al.,
2008]. In the following, we describe the adapted variant of the tree-learning
algorithm that lets us “learn” optimal staffing decisions.

Let LT ′n(b) be the loss function in terms of total staffing costs for a staffing
decision b over the historical staffing segments T ′n ⊂ Tn:

LT ′n(b) =
∑

l:(Fl,~xl)∈T ′n

(
C(Fl, b)

)
. (6.16)

The procedure is then as follows: Start with the data sample of all historical
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demand observations Tn and calculate the optimal staffing decision as follows:

bTn = arg min
b∈R+

LTn(b)

= arg min
b∈R+

 ∑
l:(Fl,~xl)∈Tn

(
C(Fl, b)

) .
(6.17)

Then, we aim at finding a combination of a feature xφ and splitting point
σ that optimally splits the feature data space X along xφ at σ into two sub-
regions T 1

n ⊂ Tn|xφ ≤ σ and T 2
n ⊂ Tn|xφ > σ. The optimal splitting combi-

nation (xφ, σ) is found by solving the following problem:

(φ∗, σ∗) = argmin
(φ,σ)∈

(
Φ,Xφ

)
(
LT 1

n
(b) + LT 2

n
(b)
)

= argmin
(φ,σ)∈

(
Φ,Xφ

)
( ∑
l:(Fl,~xl)∈T 1

n

(
C(Fl, b)

)
+

∑
l:(Fl,~xl)∈T 2

n

(
C(Fl, b)

))
,

(6.18)

where Φ is the index set of all features and Xφ the set of all values of the
φ-th feature in the learning data. Then, the procedure sorts all historical
observations into the subsamples defined by the determined split above and
repeats this procedure greedily for the subsamples T 1

n and T 2
n until no further

loss reduction can be achieved. We interpret each final subsample as a leaf
node or region r in the feature space and denote the set of samples in each
region by T rn with r = 1, ...R and R the number of regions. We then obtain a
staffing decision for a new, unseen staffing segment by sorting the new instance
into the tree based on its feature configuration ~xnew and returning the optimal
staffing prescription depending on the respective region Tr:

b(~xnew) =
R∑
r=1

bT rn 1(~xnew ∈ T rn ). (6.19)

Figure 6.2 visualizes an exemplary tree:

Approximating the cost function In order to apply the tree-based learning
algorithm described above, we require a function that assigns a particular cost
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Figure 6.2: Exemplary outcome of our prescriptive analytics approach for one
tree. The slot feature represents the staffing slot on a particular day (e.g., on
a Monday, from 8.00am to 9.00am).

to a staffing decision given a call arrival pattern Fl:

C(Fl, b) = c · b+ pNA
l (b), (6.20)

with NA
l (b) denoting the number of abandoned customer calls due to excessive

waiting times. Clearly, this number of abandonments depends on the actual
call arrival pattern, i.e., the timing of individual call arrivals, as well as the
number of staffed call center agents b. Since we possess the time stamps of
actual call arrivals f1, . . . , fk, we can closely retrace the actual call arrival ar-
rival process. In the following, we focus on the call arrival uncertainty and for
this reason assume service times s per customer and customer patience times
v to be deterministic. However, we note that our approach is independent
of such an assumption and would also let us reproduce the timing of events
under much more complex service and customer patience time distributions.
Algorithm 4 in the appendix presents the logic we then implemented in order
to determine the set of abandoned calls A for a specific staffing segment l
and a staffing decision b. The number of abandoned calls is then given by:
NA
l (b) = |A|, the size of the set A. We note that with algorithm 4 we can also

consider transient effects, that is, we can account for busy servers and queues
from previous time-slots when starting new intervals.
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6.4 Evaluation
In this section, we evaluate and compare our prescriptive staffing model (PSM)
from the previous section with a stochastic fluid model (SFM) as described in
subsection 6.3.2.

6.4.1 Evaluation strategy

The goal of our evaluation is two-fold: First, we explore the performance of the
PSMmethod in comparison to the SFM benchmark under fair conditions, that
is, when both approaches are fed with the same information. To this end, we
analyze the cases of two different call centers. The first call center is situated
in the Netherlands and answers more than 400 calls/hour on average. Many
of the staffing methods developed in the literature are particularly dedicated
to call centers of a similar size since on the one hand, large call volumes and,
as a consequence, high arrival rates shrink the observation error [Bassamboo
and Zeevi, 2009] which allows for the internal representation of the call arrival
pattern via arrival rates with sufficient accuracy. On the other hand, staffing
large call centers allows for neglecting the impact of integrality constraints
of the number of prescribed call center agents in a staffing slot. The second
call center under consideration however, is much smaller (≈ 90 calls/hour on
average) and hence provides us with the opportunity to retrace the impact of
these factors on the staffing performance in a different setting.

Second, our prescriptive staffing model is designed to process further in-
formation that might or might not be relevant for the staffing decision via the
input feature vector ~x. For this reason, we perform a second series of analyses
where we consider additional features such as lagged information about past
call arrival patterns, holiday and weekday information.

Figure 6.3 provides an overview of the performed analyses. In the follow-
ing, we detail our data sets and describe the design choices of our implemen-
tation of the respective models. Finally, we define the metrics being used to
measure performance in our settings.

158



6.4 Evaluation

Model 2: SFM benchmark

• Stochastic fluid model 
• based on the work of Harrison and 

Zeevi (2005) and Bassamboo and 
Zeevi (2009)

Model 1: PSM

• Prescriptive staffing model
• based on adapted regression tree 

learning approach

Call center 
data set 1

• Large call center in 
the Netherlands

• Avg. no. of calls/h: 
442

Call center 
data set 2

• Small call center in 
Israel

• Avg. no. of calls/h: 
90

• Data sample is 
openly available

Compared staffing 
approaches

Used data sets

Baseline analysis (Section 4.1)

• Goal: Evaluate performance of PSM and SFM 
under fair conditions, i.e., both approaches 
have the same amount of information

• Analysis of total staffing cost given different 
service level goals and different time windows 

• Regression analysis of relationship between 
differences in staffing prescriptions and call 
arrival patterns

Analyses

Evaluation metric: Total staffing cost

𝐶𝐶𝑚𝑚 = �
𝑙𝑙=1

𝑛𝑛
𝐶𝐶(𝐹𝐹𝑙𝑙 , 𝑏𝑏𝑚𝑚∗ ), 𝑚𝑚 = {𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝐹𝐹𝑃𝑃}Metric

Value of feature information analysis 
(Section 4.2)

• Goal: Examine the performance improvement 
that can be achieved by considering additional  
feature information, e.g., holiday information, 
lagged arrival pattern information, weekdays

• Analysis of total staffing cost with and without 
features given different service level goals

Figure 6.3: Overview of our evaluation procedure

Data and descriptives

We consider two different data sets from real-world call centers for our eval-
uations. Both data sets contain records of individual call arrival times along
with information about waiting times, service times or, if applicable, the times
when a customer has abandoned a call.

Call center 1: Public services in the Netherlands The first data set cap-
tures the call arrivals in a call center of a large city in the Netherlands over
the period from 01/01/2014 to 12/31/2014. The call center offers services
regarding, e.g., local taxes or parking fees. At peak times, a maximum of
113 call center agents handle calls from different lines, with call volumes of
442 calls/hour on average. Table 6.1 summarizes central characteristics of the
incoming call pattern for one of the planning slots, from 8 am to 9 am. At a
first glimpse, we note a strong intra-week seasonality in the call volume – with
Mondays being by far the busiest weekdays whereas Fridays – the slowest days
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– only see about 2/3 of the call volume of a Monday. Also, we have calculated
the empirical coefficients of variation of the call arrivals, i.e., the standard
deviation of arrival volume divided by its mean (CVemp). This actual CV is
contrasted with the theoretical coefficient of variation that we would expect
if we assumed the arrivals to follow a Poisson process (CVPois). Clearly, the
empirical values show a considerably larger variation than the Poisson values.
This “overdispersion” is a commonly observed phenomenon in the call center
staffing literature. Hence, it is obvious that the call arrivals within these data
samples – which already reflect single planning slots – cannot be accurately
modeled by a homogeneous Poisson process.

Day Calls/hour CVemp (in %) CVPois (in %)

Monday 329 21.7 5.5
Tuesday 243 34.1 6.4
Wednesday 241 23.5 6.4
Thursday 212 20.1 6.9
Friday 204 24.4 7.0

Table 6.1: Empirical data of arrivals in time slot 8am to 9am by week day for
the large call center.

Figure 6.4 visualizes the underlying arrival patterns in more detail. We
find that within these slots, the incoming calls follow a clearly identifiable
trend with almost steady increases in the call arrival rate. We would expect
that, given such a non-random pattern, the prescriptive staffing model PSM
uses the timing of these single call arrivals to its advantage over the stochastic
fluid model which only considers the empirical distribution of arrival rates.

Call center 2: “Anonymous Bank” in Israel The second data set contains
calls to a telephone call center of a bank in Israel. The reported call data
ranges over a period of 12 months, from 01/01/1999 to 12/31/1999, and is
described in detail in Mandelbaum et al. [2001]16. Table 6.2 provides an

16The data set is freely available and can be accessed at http://iew3.technion.ac.il/
serveng/callcenterdata/index.html.
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Figure 6.4: Arrival rates on different weekdays from 8.00 to 9.00 am as well
as the coefficient of variation of the slopes calculated for a single planning
segment. The black line represents the mean slope of the arrival rates, the
area shaded grey represents the 0.95 prediction interval of the slope of arrival
rates.

excerpt of the provided information. A caller would first be connected to a
voice response unit (vru) where one must identify oneself and then has the
option to perform self-service transactions. After that, the caller could be
either connected to an agent, or is assigned to the queue until the next agent
becomes available.

Call_id Date Vru_entry Q_start Q_exit Ser_start Ser_exit Server

33116 1999-01-01 00:00:31 00:00:36 00:03:09 00:00:00 00:00:00 NO_SERV
33117 1999-01-01 00:34:12 00:00:00 00:00:00 00:00:00 00:00:00 NO_SERV
33118 1999-01-01 06:55:20 06:55:26 06:55:43 06:55:43 06:56:37 MICHAL
33119 1999-01-01 07:41:16 00:00:00 00:00:00 07:41:25 07:44:53 BASCH
33120 1999-01-01 08:03:14 00:00:00 00:00:00 08:03:23 08:05:10 MICHAL

Table 6.2: Excerpt of the data structure from the small call center

This second call center possesses very differing properties from the first
call center: First, we have a much smaller call volume: ≈ 37, 000 calls per
month result in about 90 calls per hour on average. Second, the call center
agents also perform outbound calls that might change the behavior of queuing
and service completions. For our purposes, however, we only focus on the call
arrival process.

Table 6.3 reveals that, similar to the situation in the larger call center,
the empirical CV is considerably higher than the theoretical CV if we as-
sumed a homogeneous Poisson call arrival process. This is again a sign for
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Day Mean arrivals 1
λ̂

CVempirical (in %) CVPoisson (in %)

Sunday 93 21.0 10.3
Monday 89 19.6 10.6
Tuesday 88 23.1 10.6
Wednesday 85 27.0 10.8
Thursday 83 26.0 10.9
Friday 70 25.1 11.9

Table 6.3: Empirical data of arrivals in time slot 8am to 9am by week day for
the small call center.

overdispersion of call arrivals.

Feature engineering

Due to its granularity, the raw data described above cannot directly be pro-
cessed in order to generate recommendations for staffing decisions. Also, de-
spite a lot of predictive information such as trend and seasonality patterns can
usually be extracted from historical information, further auxiliary data like
information about national holidays or special events and campaigns often
provide relevant information that should be considered for staffing decisions.
Hence, in order to apply the PSM as described in section 6.3, some data trans-
formation and preprocessing steps are necessary to obtain predictive features,
i.e., summarized representations of auxiliary data.

For our experiments, we consider three different groups of such features
which are provided in Table 6.4. In our first analysis, only features that are
directly related to the specific planning slot, i.e., information about the par-
ticular weekday and time of the day that has to be staffed are provided as
information to the planning methods. Then, in the second series of experi-
ments in subsection 6.4.3, further features are derived: On the one hand, we
derive time series-related features such as the number of calls in the same
planning segment on the previous day (and the week), relative to the average
number of calls for all previous segments from similar weekday and time slot.
Second, we also derived features that capture the information whether the
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respective day is a national holiday in the country the call center is situated
in which is expected to have a considerable impact on the call volume.

Source Feature

Planning
Features

Binary week day features: E.g., is the particular day a
Monday?
Binary planning slot features: E.g., is the planning slot
8:00am to 9:00am?

Time
Series

Number of arrivals in the same slot on previous day
(and week) relative to mean number of arrivals in his-
torical slots at the same weekdays

Calendar
Binary holiday feature: Is the particular day a holiday,
within school holidays, a bridge day, or in the first week
of a month?

Table 6.4: Overview of the included features

Implementation and parameter choices

In order to apply PSM and SFM to the two call center settings, both ap-
proaches require several design and implementation choices. First, a central
input for our benchmark method is the empirical distribution of the arrival
rates. As Bassamboo and Zeevi [2009] note, the accuracy of such an empirical
distribution depends strongly on the choice of the window length w over which
the number of call arrivals is counted and then divided by the window length
in order to determine the marginal arrival rates in a rolling window approach
as described in equation (6.11). The same authors propose a rule of thumb to
determine such a window length depending on the maximum of call arrivals
by:

w̃ = 1
4
√
Nmax

. (6.21)

Based on this approach, we determine w̃ for the large call center to be 10
minutes, and for the small call center 12 minutes. Then, we assume customers
to be assigned to agents following a simple first-in, first-out control policy.

163



6 Prescriptive call center staffing

Furthermore, caller patience v as well as service time s are assumed to be
deterministic for each customer and hence are determined for each of the data
sets separately. Moreover, in our experiments we also control for the impact
of the cost configuration between penalty costs for abandoned calls and for
capacity costs for servers, i.e., the service level that is calculated as:

SL = 1− c

Tpµ
. (6.22)

We assume several service level configurations and report the realized costs for
both staffing approaches. The following table 6.5 summarizes the parameter
configurations that we have calculated from the actual arrival data for both
call centers.

Parameters Large call center Small call center

Arrival window w̃ 10 min 12 min
Patience time v 1.69 min 1.31 min
Service time s 5.56 min 3.2 min

Table 6.5: Parameter settings for our analyses

Procedure and metrics

In the following subsections, two analyses are performed to identify drivers for
the performance of the new prescriptive staffing method PSM in comparison
to the SFM benchmark method. We use data from the two call centers
detailed above which both contain 12 months of call arrival data. These data
sets are split into five roughly equally-sized subsamples. Then, we follow
a five-fold cross-validation approach: We take the first four subsamples to
“learn” respectively calibrate the staffing models and use the fifth subsample
as a separate test set to evaluate the performance of the respective staffing
prescriptions. Then, we permutate the folds and repeat this procedure until
we have used each fold once as a test set and four times within the training
set and hence have generated out-of-sample prescriptions for each historical

164



6.4 Evaluation

staffing segment.
As described in Figure 6.3, our first analysis aims at examining the perfor-

mance of both PSM and SFM under fair conditions. Here, only the features
that define the respective planning slot – the week day as well as the time slot
within that day – are considered as input to the methods. The PSM method
is directly trained with these features whereas the SFM is calibrated for each
planning slot separately by pre-clustering the training data as to provide the
stochastic fluid model only with historical instances that are “similar” to the
staffing segment that should be planned for.

In the second analysis, also the impact of feature information is examined.
Here, all the features described in table 6.4 are handed over to a second PSM
approach. Then, the latter is again trained on each respective (augmented)
training data set and the staffing prescriptions are evaluated similarly to the
analysis in section 6.4.2.

In order to report cost performance, we first calculate the ex-post optimal
cost for the respective data set:

C∗ = min
b

n∑
l=1

C(Fl, b). (6.23)

Then, for each staffing model m = {PSM,SFM}, the respective out-of-
sample cost is calculated per fold and then summarized over all five folds as
follows:

Cm =
5∑

f=1

nf,test∑
l=1

C(Fl, bm(~xl). (6.24)

Finally, we report the relative gap to optimality which is defined as follows:

∆rel,m = δabs,m
C∗

= Cm − C∗

C∗
. (6.25)

Based on this metric, we assess the performance of both models and derive
structural insights.
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6.4.2 Baseline analysis

In our first analysis, we examine the performance of PSM and SFM when
both approaches use the same information, that is, we only consider planning
slot (i.e., hour of the day) and day of the week as features.

Figure 6.5 visualizes the cost performance of both methods reported as gap
to optimality depending on the service level for both call centers separately.
We find that for low service levels, both methods perform similarly well but
the relative gap to optimality increases with increasing service levels. The
reason for the increasing gap with increasing service level is that protecting
against uncertain call arrival volumes becomes more expensive due to higher
call abandonment costs and higher cost for additional safety capacities in
terms of additional call center agents. The baseline, i.e., the ex-post optimal
decision has perfect information and is not affected by uncertainty. The effect
of the service level is also reflected in Figure 6.5 where particularly for the large
call center setting (Figure 6.5c), both methods tend to overstaff in comparison
to the ex-post optimal staffing decisions for high service levels.

However, we also note structural differences between the performances
of both methods: Apparently, for high service levels, the PSM method re-
sults in notably lower costs (measured as gap to optimality) than the SFM
method. For example, for the large call center and a service level of 95%
(which corresponds to the actual service level), we find that PSM leads to a
3.81 percentage points lower gap to optimality compared to SFM which trans-
lates into a calculated cost difference of 8.97 units (where 7.78 are the costs
per server and 4.17 are the costs per abandonment). In the case of the smaller
call center, the SFM leads to an even larger gap of optimality for the highest
service levels. As an example, for a service level of 90% (corresponding to the
actual service level in the small call center) we find that PSM leads to a 62.9
percentage points lower gap to optimality compared to SFM which translates
into a difference in calculated costs of 48.97 units (where 5.12 are the costs
per server and 9.48 are the costs per abandonment).

These large performance differences between both approaches depending
on the specific call center setting motivate our subsequent analyses. We can
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Figure 6.5: Relative gap to optimality ∆rel and average staffing decisions de-
pending on service level configuration.

explain the very large performance gap between PSM and SFM in the small
call center by the observation that the new PSM method is able to better
capture the uncertainty that is inherent in the call arrival pattern. This is
confirmed by the behavior illustrated in Figure 6.5d: SFM on average leads to
significantly understaffed planning slots, planning even less call center agents
than the ex-post optimal solution. This is very counterintuitive since we
would expect a similar behavior as in the large call center setting where both
staffing methods that have to consider uncertainty would add a generous safety
capacity buffer compared to the ex-post optimal staffing decision.

We retrace the observed performance difference to two different factors:
First, as Bassamboo and Zeevi [2009] point out, the correct choice of the win-
dow length w might strongly affect the observation error (of arrival rates) and
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as such have an impact on the staffing performance. Figure 6.6 illustrates
the effect of different window lengths w on the calculated arrival rate distri-
butions for both call centers. The middle panels represent the choices of w
that were calculated by equation (6.21) according to the approach proposed
by Bassamboo and Zeevi. We find that while for the large call center, the
coefficients of variation of the arrival rates fluctuate in the relatively small
range of [0.65, 0.74], the impact on the coefficients of variation in the small
call center is much higher with values between 0.29 and 0.87.
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Figure 6.6: Distribution of calculated arrival rates for different window sizes
w

Figure 6.7 visualizes the impact of these different choices of w on the
performance of the SFM method. We see that the shorter window length
(resulting in the considerably higher coefficient of variation) helps the SFM
method to better capture the uncertainty of the arrival rates in the small
call center setting and hence leads to a much better staffing performance for
high service levels. Nevertheless, although part of the performance difference
between PSM and SFM can be explained by a suboptimal choice of the window
length, the SFM’s performance remains inferior to the PSM’s performance

168



6.4 Evaluation

under all examined configurations.

0.2

0.4

0.6

0.4 0.6 0.8 1.0
Service level

R
el

at
iv

e 
ga

p 
to

 o
pt

im
al

ity
 ∆

re
l

PSM SFM (w = 20) SFM (w = 10) SFM (w = 1)

(a) Large call center

0

1

2

3

0.4 0.6 0.8 1.0
Service level

R
el

at
iv

e 
ga

p 
to

 o
pt

im
al

ity
 ∆

re
l

PSM SFM (w = 20) SFM (w = 12) SFM (w = 1)

(b) Small call center

Figure 6.7: Staffing performances for different window sizes w

For this reason, we retrace the rest of the performance differences to the
call arrival patterns themselves or, more specifically, we presume that our
PSM method is better in handling intra-slot structure of the call arrivals,
e.g., if the call arrival pattern within a planning slot reveals a trend. Figure
6.8 shows boxplots of the average cost differences between SFM and PSM
from the large call center setting depending on the average absolute slope of
each planning slot. We find that the cost advantage is significantly higher
for slots with the highest third ordered by average absolute slopes compared
to the third with the lowest average slopes. The median cost differences are
16.0, 11.6 and 6.10 for high, medium and low slope. For the large call center,
the average absolute slope ranges between 0.5% and 9.0%. For the small call
center, the largest average absolute slope value is only 1.5%. Given these
negligeable absolute slopes, we can not perform a similar analysis as for the
large call center.

6.4.3 Value of feature information analysis

The previous analysis has shown that the new prescriptive staffing method
PSM is able to outperform its state-of-the-art competitor, SFM, given the
same information on the slot that has to be planned. However, besides ex-
ploiting structural similarities between the call arrivals in single slots, a dis-
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Figure 6.8: Boxplot of average cost differences between SFM and PSM for all
slot/day-combinations for the large call center.

tinguishing property of the PSM method is that it allows to consider auxiliary
data in the form of feature information that might be relevant for the staffing
prescription. In this section, we evaluate the performance of the PSM with
additional features derived from historical time series (e.g., call volume in the
same slot at the previous day) and calendar information (e.g., holidays) and
compare it to the performance of its counterpart without feature information
as well as the SFM method.

Figure 6.9a provides an overview of the staffing performances for the large
call center reported as relative gap to optimality ∆rel depending on the ser-
vice level configuration. We observe that the feature information significantly
improves the staffing performance and even gains in importance with increas-
ing service level up to a 8.8% lower gap to optimality than the PSM method
without feature information for the 97.5% service level.

The performances for the small call center which are reported in Fig-
ure 6.9b however provide a different picture. In this setting, the included
feature information does not add a large benefit to the staffing performance
of the PSM method. We assume that the included features do not have pre-
dictive information for the call arrival rates in this setting which might be
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Figure 6.9: Value of feature information

explained by the fact that the call center is working in an entirely different
domain (banking) than the larger call center (public services) and hence, call
volume might be driven by different factors.

Still, while the PSM method cannot profit from the additional feature
information, it remains robust, leading to similar prescription performance as
the PSM method without feature information.

6.5 Conclusion and further research
In this paper we presented a prescriptive method to call center staffing. The
proposed approach is entirely novel in that it prescribes optimal staffing levels
by using an adapted machine learning algorithm that exploits the predictive
information being available in the form of feature data, e.g., seasonal effects
or national holidays. Our main contribution is the integration of the specific
staffing objective into the machine learning algorithm. The application of this
procedure to real-world problem instances is enabled by a novel preprocessing
routine that efficiently calculates ex-post optimal decisions which then serve
as an important input to the subsequent staffing model. The latter model
then learns the functional relationship between these optimal decisions and
the feature data and exploits it for future, unseen instances.
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We find that our approach performs particularly well when uncertain ar-
rival rates follow a nonrandom pattern (e.g., a trend) and when features with
predictive information are available. Under such conditions, our prescriptive
staffing method achieves up to 3% lower staffing costs than the optimized
stochastic fluid model benchmark in the large call center and up to 8% lower
costs in the small call center. More importantly, we are able to beat the bench-
mark in all examined scenarios, i.e., under differing service level assumptions
both with and without auxiliary information. We conclude that by using the
actual arrival patterns and not making parametric assumptions, our approach
handles the uncertainty around the call arrival structure particularly well.

We leave it to further research work to extend our approach to settings
with multiple customer classes as well as different server types. In these
problem instances, routing calls from a specific customer class to an available
server requires a considerably more complicated routing logic that we have
ignored so far. Moreover, we see further research potential in exploring the
benefits of utilizing more advanced underlying machine learning techniques.
As an example, bagging multiple instances of the core regression trees of
our PSM method would result in prescriptive random forests whose staffing
decisions should be less prone to overfitting than regression trees.
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This dissertation introduced and analyzed new ways for using data to make
better decisions in operations management. It showed that, across a broad
variety of industries, such as maintenance, repair and overhaul businesses,
restaurants, call centers and public services, available data can be used to
improve decision making. As discussed in Chapter 1, there is increasing
awareness of the importance of data in decision-making, but the traditional
approach, which uses data mainly for making predictions to support the sub-
sequent decision, which typically involves manual adaptations based on intu-
ition or gut feeling, stands in the way of achieving substantial improvements
in productivity by automating the entire process using prescriptive models.
Therefore, this thesis introduced and analyzed new prescriptive models that
integrate estimation and optimization into a single step. Such JEO approaches
were implemented and evaluated on real-world data sets for inventory man-
agement (Chapters 3 and 4) and capacity management problems (Chapters 5
and 6).

The first paper in the thesis (Chapter 2) sought ways to use data that is
distributed between potentially competing players and that contains sensitive
information, so it cannot be shared openly. We introduced and implemented
a concept that allowed us to evaluate classification and regression trees on
encrypted data. While the use case in our work was to forecast demand
for maintenance and spare parts, with minor adaptations, the same concept
could be used to evaluate tree-based JEO approaches and enable automated
decision-making with distributed and sensitive data.

In Chapter 3 we analyzed the performance drivers of data-driven pre-
scriptive inventory management in a Newsvendor setting with non-stationary
demand. Our main conclusion is that, in a typical practical setting, the tree-
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based approach provides more robust results than a linear approach because
it provides lower-cost decisions for feature-demand relationships that are not
predominantly linear, it provides better results in cases of heteroscedasticity,
and it performs better in real-world settings with very small data sets be-
cause of its built-in feature selection, which is important in terms of usability
in practice.

Chapter 4 analyzed the fundamental structural differences between SEO
and JEO approaches. We used an inventory problem with non-stationary
demand, where variations in demand are driven by observable features. We
introduced a novel JEO approach based on random forests, a powerful and
flexible ML technique, and compared its performance with that of its SEO
counterpart, which uses a similar ML concept. An extensive simulation study
revealed that, in cases of feature-dependent uncertainty, using JEO has signifi-
cantly better results than using its SEO counterpart does. These results were
backed up by similar analysis with kernel-based JEO and SEO approaches
from the literature and by analytical results we obtained with linear models.
However, the results from real-world data suggested that the difference in the
two approaches’ performance is only marginal and that SEO’s performance
is surprisingly robust. Hence, we concluded that the greater effort that is re-
quired for the implementation of problem-specific JEO approaches is justified
only for high-impact decisions or in case of heteroscedasticity.

In Chapter 5, we considered a capacity-management problem in a pub-
lic service office in Germany. We presented an innovative JEO approach to
prescribe capacities that requires no assumptions about the underlying ar-
rival process. We formalized service goals like “No more than 20% of the
customers wait more than 20 minutes” and integrated them into am ML al-
gorithm to learn a functional relationship between features and prescribed
capacity from historical data. We analyzed our JEO approach’s performance
on a real-world dataset and compared it to an SEO approach that first uses
out-of-the-box ML to predict arrival rates and then determines the capacity
using queuing models. We found that the performance of both data-driven
approaches is significantly better than that of a naive benchmark, but the JEO
approach significantly outperformed the commonly used SEO benchmark. We
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concluded that the JEO approach is especially useful if arrival rates are not
stationary and the non-stationarity is feature dependent.

Chapter 6 introduced a JEO approach for staffing inbound call centers,
where the main difference from the setting in Chapter 5 was that we assigned
costs to waiting time and call abandonments. We integrated abandonment
cost functions into a ML algorithm to learn a functional relationship between
features and optimal capacity from historical data. An analysis of our JEO
approach’s performance on two real-world datasets compared to that of a
state-of-the art data-driven benchmark revealed that our approach signifi-
cantly outperforms the benchmark in both settings. We also found that our
approach is especially useful in cases that have non-stationary arrival rates,
which is in line with the results from Chapter 5.

From our results, we conclude that JEO approaches are promising ways
to improve decision-making considerably. First, JEO approaches can signif-
icantly reduce costs compared to their traditional SEO counterparts when
there is feature-dependent uncertainty (e.g., if demand predictions are more
accurate for some days than for others). Second, JEO approaches are a per-
fect fit for automating decision-making since they prescribe actual decisions
instead of making predictions like standard ML approaches do and that then
require a second step that typically involves manual intervention. Hence, we
see a large potential for increasing productivity by moving from predictive
to prescriptive analytics with JEO approaches as part of automated decision-
making processes.

The JEO approaches that were developed as part of this thesis will serve
as foundation for a start-up that provides AI-based solutions for operations
management. The various research projects conducted with companies in
developing this dissertation suggest the enormous practical usefulness and
potential for significant productivity gains in a variety of industries.

In addition to this obvious potential for practical applications, there are
also many opportunities for further research. A downside of JEO approaches
is that they are less flexible than SEO approaches, where the underlying ML
technique that is used for making predictions can easily be exchanged. For
JEO approaches, the ML algorithms have to be adapted to the specific prob-
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7 Summary and Conclusion

lem class. Hence, implementing and analyzing JEO approaches for other
problem classes such as pricing or multi-period inventory settings is an im-
portant field for future research.
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A Appendix of Chapter 2

A.1 Aggregate classification results to demand
distribution

We first provide the algorithm that returns the distribution and then illustrate
the importance of having a measure for the forecast accuracy with an numeric
example.

A.1.1 Algorithm

The following Algorithm 3 takes a vector with the individual replacement
probabilities π̄ and returns a distribution with probabilities for 0, 1, ... N

replacements, where N is the number of instances in π̄.
Then the initial distribution vector has length N + 1 and is given by p =

(1; 0; . . . ; 0). This vector already fulfills all necessary criteria of a probability
distribution since:

• 0 ≤ p[i] ≤ 1 for i = 1, . . . , length(p)

• and ∑length(p)
i p[i] = 1 hold.

For the initial distribution none of the classified instances is considered. Hence,
the probability for 0 replacements is 1. We then add, iteratively, the individual
replacement probabilities from π̄ according to the following logic: If we add an
additional component from π̄, the probability of j = 1, . . . , N replacements
is updated by adding the following two terms:

• the product of the probability of j replacements without the additional
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Function distribution(π̄)
N ← length(π̄)
p← vectorwithlength = N + 1 // initialize the
distribution vector; all entries are 0

p[1]← 1 // set first entry to 1

for i in 2 : N + 1 // in each step one component is added
do

for j in i : 2 // backward iteration from i to 2
do

p[j] = p[j − 1] ∗ (1− π̄[i− 1]) + p[j] ∗ π̄[i− 1] // update
the probabilities

end
p[1] = p[1] ∗ π̄[i− 1] // this is the probability that
all components have to be replaced

end
return p // now p[i] contains the probability for N + 1− i
replacements

Algorithm 3: Iterative algorithm to compute a probability distribution
given a vector with individual replacement probabilities

component and the probability that the additional component does not
have to be replaced

• the product of the probability for j − 1 replacements without the addi-
tional component and the probability that the additional one has to be
replaced

Each step of the algorithm maintains the properties of a probability distribu-
tion.

A.1.2 Example

If the condition data changes, the reliability of the forecast can also change.
Even if the point forecast remains the same, we now can measure this un-
certainty, which gives us the opportunity to react accordingly. We illustrate
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A.1 Aggregate classification results to demand distribution

this with the following example. Let’s assume the MRO is responsible for
the overhaul of 100 engines currently in use by different customers and all
equipped with the same kind of oil pump. The MRO is interested in the ex-
pected number of pumps he needs to replace within the next month (the lead
time for this part). The classification results are given in Figure A.1. The 100
instances of data are classified using the tree given in Figure 2.3, assuming
this tree was learned on historical data related to oil pump condition. Assume
that, in Example 1, π̄1 = 70 instances belong to leaf 1 with a replacement
probability of 0.1 and π̄3 = 30 to leaf 3 with probability 0.9.

0.2 0.9 0.2 1Replacement
probabilities:

0.1

# Classified
instances:

70 0 30 0 0

0 40 20 40 0

Example1:

Example2:

Figure A.1: Examples of classification results with 100 instances

The forecast is then just the mean:

Fspares,Example1 =
L∑
l=1

π̄lπl = 70∗0.1+0∗0.2+30∗0.9+0∗0.2+0∗1 = 34 (A.1)

In the classification results of Example 2, π̄2 = 40 instances belong to leaf 2,
π̄3 = 20 to leaf 3 and π̄4 = 40 to leaf 4 with respective replacement probabili-
ties of 0.2, 0.9 and 0.2 we obtain the same mean forecast:

Fspares,Example2 =
L∑
l=1

π̄lπl = 0∗0.1+40∗0.2+20∗0.9+40∗0.2+0∗1 = 34 (A.2)

Given only the mean, we have no information about the reliability of the
forecasts. However, applying Algorithm 3 gives us the distributions depicted
in Figure A.2.
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Figure A.2: Distributions resulting from the two different examples in Figure
A.1; Example 1 in grey bars; Example 2 in white bars

We see that in Example 1 the distribution is more centered around the
mean. Hence, although the forecast is the same, Example 2 comes with a
higher uncertainty. This provides us with valuable information for subsequent
inventory decisions.
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B Appendix of Chapter 3

B.1 Expected costs for SAA with uniformly
distributed demand

For a sample of demands with d ∼ U [a, b] we determine the expected costs
with respect to SL for SAA as follows. We note that we consider normalized
underage-and overage costs, that is, cu+co = 1 and therefore SL = cu

cu+co = cu.
From

E[CSAA(SL)] = E[SL(d− qSAA)+ + (1− SL)(qSAA − d)+]

with E[qSAA] = a+ SL(b− a) we get:

E[CSAA(SL)] = SL
1
2(b− (a+ SL(b− a))) + (1− SL)1

2(a+ SL(b− a)− a)

= SL(b− a)(1− SL)

δ

δSL
= (b− a)(1− 2SL) =

< 0 if SL > 0.5

> 0 if SL < 0.5

Hence, the expected costs decrease with an increase of SL for SL > 0.5.
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B.2 Combined effect of nonlinearity and
heteroscedasticity

Figure B.1 shows the difference of mean costs of both models compared to
SAA for different levels of nonlinearity (p = 0, 0.4, 1, 2) with respect to γ. We
see that the behavior of TBR-NV does not change for different values of p.
While the curve of LQR-NV is shifted towards SAA as p increases. However,
the shape or slope of the curve of LQR-NV does not change hence the influence
of nonlinearity and heteroscedasticity simply add up.
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Figure B.1: Mean cost deltas depending on the level of heteroscedasticity for
cvnoise = 0.5, SL = 0.8 and different levels of nonlinearity (p = 0, 0.4, 1, 2).

B.3 Features for Steak
The following tables B.1 and B.2 provide an overview of the derived features
we originally fed into the LQR-NV and TBR-NV models.
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B.3 Features for Steak

Feature Description

Weather_Di Weather ∈ {Wind, Sun, Rain, Cloudiness, Tem-
perature} i ∈ {1, 2, 3} days ago

Weather_M_Di Average Weather ∈ {Wind, Sun, Rain, Cloudi-
ness, Temperature} over the last i ∈ {1, ..., 7}
days

Weather_H_7D Number of days Weather ∈ {Wind, Sun, Rain,
Cloudiness, Temperature} was higher than 7day
average

Weather_L_7D Number of days Weather ∈ {Wind, Sun, Rain,
Cloudiness, Temperature} was lower than 7day
average

Table B.1: List of features derived from weather data
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Feature Description

Steak_Di Demand i days ago i ∈ {1, ..., 7}

Steak_C_Di Demand cumulated over last i days i ∈ {1, ..., 7}

Steak_H_7D Number of days demand was higher than 7day
average

Steak_L_7D Number of days demand was lower than 7day
average

Steak_M_iW Average aggregate demand for Steak at same
weekday for the last i weeks i ∈ {1, 2, 3}

ProdCat_Di Demand for products from ProdCat ∈
{Meat, Fish, All} i days ago i ∈ {1, ..., 7}

ProdCat_C_Di Demand for products from ProdCat ∈
{Meat, Fish, All} cumulated over last i days
i ∈ {1, ..., 7}

Steak_R_7D Range of demand for Steak over last 7 days

ProdCat_R_7D Range of demand for products from products
from ProdCat ∈ {Meat, Fish, All} over last 7
days

ProdCat_H_7D Number of days demand for products from
ProdCat ∈ {Meat, Fish, All} was higher than
7day average

ProdCat_M_iW Average aggregate demand for the products
from ProdCat ∈ {Meat, Fish, All} at same
weekday for the last i weeks i ∈ {1, 2, 3}

is_Month 1 if observation is from Month, else 0

is_Weekend 1 if observation is from a weekend, else 0

is_DayOfWeek 1 if observation is from DayOfWeek, else 0

is_Year 1 if observation is from Month, else 0

Is_Outlier Is special day (Event, Holiday, etc.)

Table B.2: List of features derived from time series for product Steak184
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C.1 Proof of Proposition 4.1
Proof. From Koenker [2005] we obtain that the coefficient of the quantile
regression β̂SL, converges for n→∞ to β + γF−1

u (SL). This implies that the
linear empirical risk minimization of q̂JEO−Lin(x) provides consistent decisions
and hence asysmptotically optimal costs.

For the same setting, we analyze q̂SEO−Lin(x). We obtain

β̂LSE = min
β′

n∑
i=1

(di − xiβ′)2 = min
β′

n∑
i=1

(xiβ + xiγui − xiβ′)2

= min
β′

n∑
i=1

xi(β2 + 2βγui − 2ββ′ + (γui)2 − 2β′γui + β′
2)

= min
β′

(
n∑
i=1

xi(β2 − 2ββ′ + β′
2) +

n∑
i=1

xiγui(2β − 2β′) +
n∑
i=1

xi(γui)2
)

= min
β′

(
n∑
i=1

xi(β − β)2 +
n∑
i=1

xiγui(2β − 2β′)
)

n−→∞−−−−→ β

(C.1)

since ∑n
i=1 xi(γui)2 is independent of β and ∑n

i=1 xiγui(2β − 2β′) n−→∞−−−−→ 0
since X and u are independent and u has mean zero. Hence, the least squares
estimate is not biased by heteroscedasticity.

q̂ε(SL), i.e., the empirical quantile of the residuals does not consider the
feature x and converges to some constant constSL. Hence, the estimator in
the SEO approach is still unbiased, the decision however, does not reflect the
feature-dependent uncertainty, since constSL shifts the regression line simi-
larly for all x.
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Since the cost function is convex and JEO provides asymptotically optimal
decisions, we obtain E [C(qJEO−Lin(x), D)] ≤ E [C(qSEO−Lin(x), D)]. We do
not have strictly lower costs for JEO due to special cases such as x = const.

C.2 Proof of Proposition 4.2
Proof. For SL = 0.5 we show that both approaches lead to the same ex-
pected decision. For the linear JEO approach we obtain EX×D [qJEO−Lin(x)] =
x(β + γF−1

u (0.5)) = xβ since F−1
u (0.5) = 0 because fu is symmetrical with

mean zero. For the linear SEO approach we have EX×D [qSEO−Lin(x)] =
xβ + F−1

ε (0.5) where the distribution of ε is given by the residuals of the
least squares estimator:

εi = xiβ + γxiui − xiβ̂

= xi(β − β̂) + γxiui
(C.2)

Since the product distribution of Xu is still symmetric with mean zero and
(β − β̂) n−→∞−−−−→ 0 we obtain F−1

ε (0.5) = 0 and hence EX×D [qJEO−Lin(x)] =
EX×D [qSEO−Lin(x)]. Due to the piece-wise linear newsvendor cost function,
similar expected decisions also imply similar expected costs.

For SL > 0.5, we first show that ∃x0 ∈ [0, 1] : EX×D [qJEO−Lin(x0)] =
EX×D [qSEO−Lin(x0)].

EX×D [qJEO−Lin(x0)] = EX×D [qSEO−Lin(x0)]
⇔ x0β + F−1

ε (SL) = x0β + x0γF
−1
u (SL)

⇔ F−1
ε (SL) = x0γF

−1
u (SL)

⇔ x0 = F−1
ε (SL)

γF−1
u (SL)

(C.3)

Hence, we need to show that 0 ≤ F−1
ε (SL)

γF−1
u (SL) ≤ 1. The left inequality we get

since F−1
ε (SL) ≥ 0 and F−1

u (SL) ≥ 0 since SL ≥ 0.5 and both distributions
of u and ε are symmetric with mean zero.
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C.3 Mean versus median estimation

For the right inequality we have:

F−1
ε (SL) ≤ γF−1

u (SL)

⇔ Fε(q) ≥
1
γ
Fu(q) ∀q > 0.5

⇔ P (ε ≤ q) ≥ 1
γ
P (u ≤ q)

⇔ P (γXu ≤ q) ≥ 1
γ
P (u ≤ q)

⇔ P (z ≤ q) := P (γu ≤ q) ≥ 1
γ
P (u ≤ q)

⇔
∫ q

−∞
fγu(z)dz ≥ 1

γ

∫ q

−∞
fu(u)du

⇔
∫ q

−∞

1
|γ|
fu(

z

γ
)dz ≥ 1

γ

∫ q

−∞
fu(u)du

⇔
∫ q

−∞

1
|γ|
fu(u)du ≥ 1

γ

∫ q

−∞
fu(u)du

(C.4)

where we use that P (γXu ≤ q) ≥ P (γu ≤ q) since 0 ≤ X ≤ 1 and γ a scale
parameter of fu such that for z := γu, we have fγu(z) = 1

|γ|fu(
z
γ
) = 1

|γ|fu(u).
Since ∃x0 ∈ [0, 1] : E [qJEO−Lin(x0)] = EX×D [qSEO−Lin(x0)], we have

EX×D [qJEO−Lin(x)] − EX×D [qJEO−Lin(x)] = (x − x0)γF−1
u (SL) which is in-

creasing in SL as F−1
u (SL) is increasing in SL. Since C(.) is convex, we ob-

tain that EX×D [C(qSEO−Lin(X), D)]−EX×D [C(qJEO−Lin(X), D)] increases in
SL.

C.3 Mean versus median estimation
Given the demand model in (4.23), estimating the sample median instead
of the mean provides better results in terms of costs when there is strong
heteroscedasticity because then the observations with low noise are closely
centered on the true mean. The sample median ignores the observations that
have errors from the distributions with high variance, while the sample mean
is similarly affected by all observations. We can show this reasoning more
formally by comparing the variance of sample mean d̄ and sample median d̃
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in homoscedastic and heteroscedastic settings, respectively.

Proposition C.1. For homoscedastic settings and a sample d from demand
model (4.23) the following holds:

V ar(d̃) > V ar(d̄).

Proof. In the homoscedastic setting, we have x ∼ N (0, σ2
base) with sample size

n. Then we have:

V ar(x̄) = σ2
base

n
<
σ2
baseπ

2n ≈ V ar(x̃) (C.5)

where we use that for n large, V ar(x̃) ≈ 1
4nf2(θ) , with f the density function

of x and θ the true median [Maritz and Jarrett, 1978].

Proposition C.2. For heteroscedastic settings and a sample d from demand
model (4.23) the following holds:

V ar(d̃) > V ar(d̄).

Proof.

V ar(x̄) = σ2
base

n
>
σ2
Lowπ

2nLow
≈ V ar(x̃) (C.6)

if σ2
Low < 2nLow

πn
σ2
base, which holds in our setting in which σ2

Low is as low as
zero, and about half of the observations are drawn from a distribution with
the lower variance. Hence, even for symmetric cost settings, JEO-RF can lead
to more robust results in the case of strong heteroscedasticity.
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D.1 Algorithm to approximate the cost function
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Data: Ordered set of historical arrival times {f1, . . . , fk} in slot l, service
time s, customer patience p, Number of servers b, end of planning
slot T .

Result: Set of abandoning customers A
init Initialize parameters

S ←− ∅ // set of customers currently served
Q←− ∅ // set of customers waiting for service
A←− ∅ // set of customers having abandoned
τ = f1 // First event is arrival

end
begin

while τ ≤ T do
if τ = fi then next event is arrival

if S.length() < b then server available
ci = τ + s // calculate completion time
S.add(ci) // add to server set

end
else must wait

ai = τ + v // calculate abandonment time
Q.add(ai) // add to queue

end
end
else if τ = ci then next event is service completion

S.remove(ci) // remove customer from server set
if Q.length() > 0 then there is a queue

aj = Q.first() // determine first customer in queue
Q.remove(aj) // remove customer from queue
cj = τ + s // calculate new service completion time
S.add(cj) // add next customer to server set

end
else do nothing
end

end
else next event is abandonment

aj = Q.first() // determine customer that abandons
Q.remove(aj) // remove customer from queue
A.add(aj) // save abandonment

end
ci+1 = S.first() // Update c
ai+1 = Q.first() // Update a
τ = min{fi+1, ci+1, ai+1} // Update τ
i = i+ 1 // Increase i and continue with next iteration

end
return A

end
Algorithm 4: Cost approximation
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