
Multivariate Chebyshev polynomials and

FFT-like algorithms

Dissertation

zur Erlangung des naturwissenschaftlichen Doktorgrades

am Institut für Mathematik der

Julius-Maximilians-Universität Würzburg

vorgelegt von

Bastian Seifert

aus

Erlangen, Deutschland

Würzburg, 2020



Eingereicht: Juni 2019
Betreuer: Prof. Dr. Knut Hüper, Julius-Maximilians-Universität Würzburg

Gutachter:

Prof. Dr. Knut Hüper, Julius-Maximilians-Universität Würzburg,
Deutschland

Prof. Dr. Hans Z. Munthe-Kaas, Universitetet i Bergen, Norwegen

Prof. Dr. Markus Püschel, Eidgenössische Technische Hochschule Zürich,
Schweiz

Tag der mündlichen Prüfung: 18. Juni 2020



Acknowledgments

I would like to thank to all those who have enabled the completion of this thesis.
First of all I am grateful to my advisor, Knut Hüper, for all the nice discussions,
support in grant applications, improvement of my writing skills, and especially for
teaching me how to write math papers, which engineers are able to understand.

Furthermore I would like to thank Christian Uhl for the opportunity to work
with him at Ansbach, the �nancial support, especially the many conference visits,
and academic freedom obtained during my time at the Ansbach University of Applied
Sciences. This time led to many interesting ideas, of which not all made it into this
thesis, and improved my skills in communicating with engineers. During the creation
of this thesis I was supported by the European Regional Development Fund (ERDF)
within the project �Technologie-Transferzentrum für den Mittelstand (TZM)�.

I am grateful to Hans Munthe-Kaas for the nice hospitality and support as well
as various fruitful discussions during a visit to Bergen. I like to thank the Deutscher
Akademischer Austauschdienst (DAAD) for supporting me during the visit to Bergen
under the Vortragsreisenprogramm.

I am grateful to Daan Huybrechs for fruitful discussions and comments on matrix-
valued Chebyshev polynomials.

Last but not least I'd like to thank my family and friends for all their support in
my life and during the writing of this thesis.

Ansbach, June 2019

Bastian Seifert

3





Contents

List of Illustrations 7

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

List of Symbols 9

1 Introduction 11

2 Algebraic signal processing 17

2.1 Algebraic signal processing theory . . . . . . . . . . . . . . . . . . . . 17
2.2 Orthogonal polynomials and orthogonal transforms . . . . . . . . . . 27

3 FFT-like algorithms 35

3.1 Fast Fourier transform via induction . . . . . . . . . . . . . . . . . . 35
3.2 Fast Fourier transform via decomposition . . . . . . . . . . . . . . . 44

4 Multivariate Chebyshev polynomials and generalized cosine trans-

forms 51

4.1 Multivariate Chebyshev polynomials associated to root systems . . . 52
4.2 Examples of fast cosine transforms on weight lattices . . . . . . . . . 61
4.3 Generating functions of matrix-valued and multivariate Chebyshev

polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Conclusion and Future work 79

A Gröbner bases 83

B Chinese remainder theorem 87

C The Akra-Bazzi theorem and computational costs of matrices 89

Bibliography 91

5





List of Illustrations

Figures

2.1 The visualization graph of the �nite discrete time signal model. . . . 21

2.2 Visualization of the space signal model. . . . . . . . . . . . . . . . . 22

2.3 The visualization graph of the tensor product of two space signal mod-
els resembles a rectangular grid. . . . . . . . . . . . . . . . . . . . . . 22

2.4 Sections of a vector bundle (red) over points on a circle (blue) form
the signals of the �nite, discrete time signal model. . . . . . . . . . . 27

2.5 The region R of orthogonality of the Koornwinder polynomials for
I = [−1, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Visualization of the signal models relying on the Koornwinder polyno-
mials for n = 4. Boundary conditions and weights are omitted. Red
corresponds to the u-shift, while blue corresponds to the v-shift. . . . 34

3.1 Signal model of a directed hexagonal lattice for N = 4. The boundary
conditions are omitted. Shifts of X are blue, shifts of Y are red, and
shifts of Z are green colored. . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Sublattice of the hexagonal lattice corresponding to the transversal
element 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 The stretching and folding property of the univariate Chebyshev poly-
nommials of the �rst kind. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 A�ne Coxeter-Dynkin diagrams for the reduced, crystallographic root
systems. The dotted node corresponds to the lowest root −α0, the
numbered nodes to the simple roots αi. Open circles are long roots,
while �lled nodes indicate short roots. The marks and comarks are
shown below the nodes as mi

m∨i
. The angle between two roots de-

pends on the multiplicity k of the edge between them and is given
as 4 cos2 θ = k and cos θ ≤ 0, i.e., π2 ,

2π
3 ,

3π
4 ,

5π
6 with length ratio being

arbitrary, 1,
√

2,
√

3 for k = 0, 1, 2, 3, respectively. This �gure shows
the four in�nite series, where n starts at 1 for An, at 2 for Bn, at 3
for Cn, and at 4 for Dn. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 The �ve exceptional a�ne Coxeter-Dynkin diagrams. Notation as in
Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7



8 CONTENTS

4.4 The root systems of type A2 (upper) and C2 (lower) together with the
fundamental region F (shaded region) and the image of F under the
action of the Weyl group. . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 The image of the fundamental region F under the variable change in
case of A2, C2, and G2, respectively. . . . . . . . . . . . . . . . . . . 58

4.6 Visualization of the signal model for Chebyshev polynomials of type
A2, an undirected hexagonal lattice (left), and after representing the
module as induction (right). . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 The common zeros of 〈 T4,0, T0,4 〉 are shown after being stretched by a
factor of 2. The action of the a�ne Weyl group, folding the stretched
triangle back to the fundamental domain, is indicated. The di�erent
colors indicate which common zeros of 〈 T4,0, T0,4 〉 are common zeros
of which 〈 T2,0 − α1, T0,2 − α2 〉. . . . . . . . . . . . . . . . . . . . . . 64

4.8 The upper part shows root system A3 with the simple roots in blue
and the fundamental region. In the lower part the neighbourhood
of each node in the visualization graph of the A3 Chebyshev signal
model resembles the neighbourhood in an BCC lattice. The shifts of
x, y, and z are shown in orange, green, and red, respectively. The
Voronoi cell of the lattice - a truncated octahedron - is shown for the
center point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Visualization of the signal model for Chebyshev polynomials of type
C2 on the left. The shifts of x1 are blue and the shifts of x2 are red
colored. On the right the decomposed lattice after the basis change is
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 The three classes of common zeros of for the skew transforms in case
n = 2 ·3. The common zeros of T6 are shown after being stretched by
a factor of 3.The action of the a�ne Weyl group, folding the stretched
triangle back to the fundamental domain, is indicated. The di�erent
colors indicate which common zeros of 〈 T6,0, T0,6 〉 are common zeros
of which 〈 T3,0 − α1, T0,3 − α2 〉. . . . . . . . . . . . . . . . . . . . . . 71

4.11 The di�erent positions of the basis elements correspond to one of the
eight cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Nodal lines, i.e. set of points where the determinant vanishes, of the
36th matrix-valued eigenfunction with A2-symmetries on the equilat-
eral triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Tables

2.1 The dictionary between signal processing and algebraic concepts [90]. 26

4.1 Root systems and corresponding compact Lie algebras. . . . . . . . . 55

8



List of Symbols

A ,B algebras

M,N modules

· . · algebra action on a module

↪−→ inclusion

diag(ai) diagonal matrix with entries ai
F Fourier transform matrix

Πd polynomials in d variables

V(I) variety of the ideal I

I(V ) ideal of the variety V

Q root lattice

α a simple root

Q∨ coroot lattice

α∨ a simple coroot

P weight lattice

λ a weight

ω a fundamental weight

P∨ coweight lattice

λ∨ a coweight

ω∨ a fundamental coweight

W Weyl group

σα re�ection through the hyperplane perpendicular to
the root α

mi mark of a root system

m∨i comark of a root system

Tλ multivariate Chebyshev polynomial of the �rst
kind of weight λ

Uλ multivariate Chebyshev polynomial of the second
kind of weight λ

degm m-degree

9





Chapter 1

Introduction

Abstract treatment of concepts in application areas has lead to various advantages
in the application areas as well as in pure mathematics. In this dissertation we
use an abstract treatment of concepts in signal processing using the language of
algebra leading to algebraic signal processing theory. Indeed all the basic concepts
of linear discrete-time signal processing, like signals, �lters or the Fourier transform,
have counterparts in algebra especially in the representation theory of algebras, i.e.
modules, algebras and decomposition into irreducible submodules, respectively. Of
course the connection between signal processing and algebra is now classical as it was
already used for the derivation of fast Fourier transform algorithms by Nicholson [83]
and Winograd [126] in the 1970s. But a conceptual algebraic structure capturing all
the relevant aspects of linear signal processing, the algebraic signal model, has only
been identi�ed recently by Püschel and Moura [90].

This concept allows for the derivation of a large class of signal models and discrete
signal transforms using polynomial algebras. In [109] we used the algebra-geometry
dictionary, using Hilbert's Nullstellensatz [35] and the Serre-Swan theorem [112,115],
to motivate a geometric interpretation of algebraic signal models. The geometric
interpretation in turn implies that the underlying geometric objects, an algebraic
variety together with a vector bundle, are intrinsically complicated objects. Since we
are interested mainly in discrete signals we are interested in discrete varieties, as well.
Another branch of mathematics interested in objects with connections to discrete
varieties is orthogonal polynomials in several variables. Indeed we show that there is
a connection between Gauÿian cubature formulae based on orthogonal polynomials
and the existence of a unitary Fourier transform for a corresponding signal model.
This yields a multivariate generalization of the Gauÿ-Jacobi procedure [131] for the
unitarization of signal transforms.

The content of Chapter 2 is as follows. First we recall the motivation and de�-
nition of algebraic signal models from [90] and state their geometric interpretation.
Then Fourier transforms for such signal models, based on the Chinese remainder
theorem, are recalled. The second part of that chapter contains the �rst new result
- Theorem 2.14 - the multivariate Gauÿ-Jacobi-procedure based on a multivariate
Christo�el-Darboux formula derived by Xu [129]. For this we �rst recall some facts
about multivariate orthogonal polynomials. Then we prove the multivariate Gauÿ-
Jacobi-procedure and show that the su�cient condition for its applicability is the

11



12 CHAPTER 1. INTRODUCTION

same condition as for the existence of a Gauÿian cubature formula.

If one has an algebraic model of discrete signals one likes to have a fast algorithm
for the calculation of its Fourier transform. Even though the most popular fast
algorithm for the calculation of the standard discrete Fourier transform, the fast
Fourier transform (FFT), was basically already known by Gauÿ [24], it was only
popularized after its independent rediscovery by Cooley and Tukey [13] one hundred
years later, see [33] for a historic overview. Due to its numerous applications the
FFT has been termed to be one of the most important algorithms of the twentieth
century [101]. The usage of algebra in its derivation dates back at least until the works
of Nicholson [83]. Algebraic approaches to FFT-like algorithms split into two main
directions: group algebra and polynomial algebra approaches. The interpretation of
the fast Fourier transform in terms of the cyclic group Zn was introduced in [83]. This
group-based approach allows for a generalization of FFT algorithms to non-abelian
groups as derived by Diaconis and Rockmore [20] and has inspired the approach to
FFTs on compact groups by Maslen [72]. The polynomial algebra approach relies on
the insight that there exists an isomorphism of algebrasC[Zn] ∼= C[x]

/
〈 xn−1 〉. This

approach allows to study another large class of FFT algorithms [4,34,46] relying on
ideas of Nussbaumer [84] and Winograd [127]. The full polynomial algebra approach
was worked out in [89�93] leading to the advent of algebraic signal processing theory.
See [90, Sect. I-B] for more historical remarks and references.

One main di�erence in algebraic signal processing when compared to other recent
approaches, like the decomposition of semi-simple algebras using Bratelli-diagrams
investigated by Maslen, Rockmore, and Wol� [71], is that in algebraic signal process-
ing one decomposes modules. This is motivated by the fact that in algebraic signal
processing theory the signals are modeled as a module over the algebra of �lters.
This approach then leads to explicit matrix factorizations.

In the algebraic signal processing theory one can identify up to now three ap-
proaches for the derivation of fast algorithms for Fourier transforms of algebraic sig-
nal models based on polynomials. Even though all three approaches are essentially
based on the Chinese remainder theorem and a stepwise partial decomposition, the
di�erent details lead to algorithms of di�erent structure and di�erent computational
cost [89,92,121].

The �rst one is based on a factorization of polynomials f(x) = g(x) · h(x). This
approach requires no special conditions on the polynomial f but might lead to sub-
optimal O(n log2 n) algorithms.

The second approach is based on the decomposition property f(x) = p(q(x)) of
certain polynomials. This approach gives optimal O(n log n) algorithms. Unfortu-
nately in one variable the only families of polynomials posessing this property are, up
to a�ne-linear coordinate changes, the monomials xn and the Chebyshev polynomi-
als Tn(x) [98, Ch. 4]. Hence the only O(n log n) algorithms for signal models based
on polynomials in one variable derivable by this method are the Cooley-Tukey-type
algorithms for the trigonometric, i.e. sine and cosine transforms associated to Cheby-
shev polynomials, and the discrete Fourier transform, associated to the monomials.
In several variables it is not known [119] if there are, up to a�ne-linear coordinate
changes, any examples of polynomials with this property except the monomials and
multivariate Chebyshev polynomials. The second approach in combination with mul-
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tivariate Chebyshev polynomials was used to derive fast algorithms for undirected
hexagonal [96] and BCC lattices [111].

As there are other algorithms for the discrete Fourier transform, like the Britanak-
Rao-FFT [9], one might wonder if these algorithms can be derived using algebraic
signal processing theory. This question was solved using the third approach, which
generalises the second approach [104]. Here one relies on induced modules. This ap-
proach raises the level of abstraction by not relying on properties of the polynomials
but on properties of the signal modules. Module induction is based on an algebra A
with subalgebra B and a �nite set T ⊂ A , the transversal, such that A is the direct
sum of copies of B shifted, i.e. multiplied, by the elements of the transversal. The
induced A -module N of a B-module M is the direct sum of shifted, i.e., acted on,
copies of M by the elements of the transversal. In [104] this approach was worked
out for polynomial algebras in one variable with regular modules, i.e. the algebra
considered as a module over itself. As applications general-radix algorithms for the
Britanak-Rao [9] and the Wang-FFT [122] were deduced.

In Chapter 3 we �rst show how to generalize the induction-based FFT theorem
from one variable to several variable polynomial algebras, see Theorem 3.1. Then we
investigate the decomposition property used in [96] in more detail and investigate if,
like in the univariate case, the decomposition property always yields the existence
of an induction. This is not the case as easy geometric considerations, i.e., counting
the points of the underlying discrete varieties, show, cf. Proposition 3.12. These
considerations lead to a more general FFT theorem, our Theorem 3.13, based on the
decomposition property, than the one used in [96].

Now the question arises if the FFT theorem based on decomposition is signi�-
cant to obtain new, fast algorithms. As aforementioned in the univariate case the
only, up to a�ne-linear change of variables, families of polynomials which obey the
decomposition property are the monomials xn and the Chebyshev polynomials of
the �rst kind Tn(x) [98, Ch. 4]. Since the monomials are associated to standard
discrete Fourier transform and the Chebyshev polynomials are associated to the dis-
crete cosine and sine transforms this limits the applicability of the decomposition
FFT theorem. This leads to the question whether in several variables the situation
is di�erent. The �rst task in this direction is to check whether there are other gener-
alizations of the Chebyshev polynomials to several variables than the trivial product
of two univariate Chebyshev polynomials in di�erent variables and the one consid-
ered in [95, 96]. Luckily there is a rather mature theory of multivariate Chebyshev
polynomials associated to root systems available [36]. This theory gives a nice geo-
metric description of the decomposition property in terms of foldable �gures and a
stretching-and-folding mechanism, as well.

Chapter 4 starts by recalling the de�nition and some properties of the multivari-
ate Chebyshev polynomials. The shifts of corresponding signal models lead to the
recognition that these signal models are associated to the weight lattices of semisim-
ple Lie groups. This is interesting because some of these weight lattices are optimal
regular sampling lattices, i.e., lattices where one can get maximal information with
a minimal number of sampling points, cf. [12, 85]. The chapter proceeds by deriv-
ing analogues of the fast cosine transform for some special cases: the A2 transform,
connected to the Lie group SU(3), yields the cosine transform on a directed hexag-
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14 CHAPTER 1. INTRODUCTION

onal lattice, the C2 transform, associated to SO(5), leads to a cosine transform on
a directed lattice of triangles, and the A3 transform, connected to SU(4), gives a co-
sine transform on the body-centered cubic lattice. The A2 transform was introduced
by Püschel and Rötteler [95, 96], while the C2 and A3 transform were introduced
in [110,111].

In the last section of Chapter 4 a method for the calculation of generating func-
tions for the matrix-valued Chebyshev polynomials is deduced. This part is not
thoroughly connected to the rest of the thesis. While studying multivariate Cheby-
shev polynomials we had some inspiring conversations with Hans Munthe-Kaas and
Daan Huybrechs about these polynomials and they showed me their preprint [44] in
which matrix-valued and multivariate Chebyshev polynomials associated to represen-
tations of Weyl groups were introduced. When we investigated these polynomials we
stumbled upon a way to generalize the method for the calculation of generating func-
tions of multivariate Chebyshev polynomials presented in Damskinsky, Kulish and
Sokolov [18,19,114] to the matrix-valued setting. Even though we are still lacking an
existence proof of the matrix-valued polynomials the examples provided through the
generating functions show that they will be interesting subjects to study and apply
in the future.

We also want to mention some historical facets of multivariate Chebyshev poly-
nomials and their applications. To our knowledge the �rst person to study multi-
variate Chebyshev polynomials was Lidl [21, 64�66] motivated by questions about
permutation polynomials. Koornwinder [52, 54] studied general orthogonal polyno-
mials in two variables containing the bivariate Chebyshev polynomials as special
cases. The decomposition property was �rst observed by Ricci [97]. Ho�man and
Withers [36] �nally gave the geometric approach using the stretching and folding
property and the connection to root systems. Beerends [2] studied the connection to
the Laplace-Beltrami operator of certain symmetric spaces. Lyakhovsky investigated
the connection to singular elements of Lie groups [68,69] much more recently. A very
general approach to orthogonal polynomials in several variables is due to Heckman
and Opdam [31,32].

Applications of the multivariate Chebyshev polynomials are somewhat rare but
exist. Borzov and Damaskinsky [5, 6] studied the quantum harmonic oscillator ob-
tained from the bivariate Chebyshev polynomials of type A2. These considerations
led to the derivation and calculation of the generating functions of the multivariate
Chebyshev polynomials by Damaskinsky, Kulish, and Sokolov [18, 19, 114]. Some
generating functions were calculated by Czyzycki, Hrivnák and Patera [17], as well.

In the context of algebraic geometry, multivariate Chebyshev polynomials were
used to derive surfaces with many singularities by Breske, Labs, and van Straten [8].

In dynamical systems theory multivariate Chebyshev polynomials were used to
de�ne chaotic mappings by Withers [128] and Uchimura [117] while Nakane [81]
studied the external rays of these mappings.

Klimyk and Patera [48] considered Weyl group orbit functions, which are in
fact just multivariate Chebyshev polynomials with a di�erent normalization. This
article lead to a further studies by the school of eastern european mathematicians
around Hrivnák and Patera [29, 82]. As applications, cubature rules [28, 41, 76] and
discretizations of tori of compact simple Lie groups [38, 40, 42] were studied by this
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school. Furthermore they studied discrete orbit transforms [10, 16, 39] but did not
make the connection to the algebraic signal processing theory and hence could not
derive fast algorithms for their calculation.

Another group studying discrete Fourier transforms connected to multivariate
Chebyshev polynomials and cubature formulas is Li, Sun, and Xu [60�63].

In the context of spectral approximations on triangles and spectral methods ap-
plications were investigated by Munthe-Kaas in collaboration with Nome, Ryland,
and Sorevik [77�79,103].

The ideas towards the de�nition of matrix-valued multivariate Chebyshev poly-
nomials by Huybrechs and Munthe-Kaas [44] were inspired by a preprint of Ho�man
and Withers [37]. In general, matrix-valued and multivariate orthogonal polynomials
have found attention only recently due to the work of Grünbaum, Pacharoni, and
Tirao [27]. A connection between matrix-valued and multivariate orthogonal poly-
nomials to Gelfand pairs was studied by Koelink, van Pruijssen and Román [49�51]
inspired by ideas of Koornwinder on vector-valued polynomials [53].

We summarize the main contributions of this thesis. The �rst main result is the
multivariate Gauÿ-Jacobi procedure in Theorem 2.14 and its connection to Gauÿian
cubature formulae. The second main contribution is the multivariate FFT theorem
for signal modules based on multivariate polynomials, Theorem 3.1 and Theorem 3.13.
The main contribution of Chapter 4 is that we show that the multivariate Chebyshev
polynomials give rise to well-behaved examples of the general theory. Furthermore
the geometric mechanism underlying these algorithms are identi�ed. Finally Theo-
rem 4.15 contains a procedure to derive generating functions of matrix-valued and
multivariate Chebyshev polynomials.

Some of the results in this thesis have been published in [109�111]. The main
results of this thesis are contained in the single author publication [109].

If we omit entries in a matrix the reader should read a zero instead. The last
numbers of the entries in the bibliography refer to the pages where the reference was
used.
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Chapter 2

Algebraic signal processing

This chapter serves two purposes. First in Sect. 2.1 we discuss theoretical signal
processing from an engineer's perspective to motivate the notions and de�nitions of
algebraic signal processing introduced in [90]. Afterwards the basic de�nitions of
algebraic signal processing are given together with some examples. This includes the
notion of an algebraic signal model and corresponding generalized Fourier transforms.
This part contains no new results, except the observation that there is a geometric
counterpart to the signal models we consider.

The second part in Sect. 2.2 recalls some facts about multivariate orthogonal
polynomials. Then we generalize the Gauÿ-Jacobi procedure for the derivation of
orthogonal Fourier transforms for signal models relying on univariate polynomials
to signal models relying on multivariate polynomials. Furthermore we show that
the su�cient condition for the existence of an orthogonal Fourier transform is the
same condition as for the existence of a Gauÿian cubature formula. Hence we have
a motivation to use a class of polynomials, which were used to derive multivariate
Gauÿian cubature formulas, as building blocks for examples of signal models with
orthogonal Fourier transform.

We assume that the reader is familiar with basic representation theory of algebras
and commutative algebra. References on these subjects are [15,59,102].

2.1 Algebraic signal processing theory

Wemotivate the de�nition of an algebraic signal model as explained in [90]. The main
objects in linear signal processing are signals and �lters. In the processing of time-
dependent signals one possibility to �lter signals is using special electrical circuits,
termed �lters. Now one can put these circuits in series, in parallel, and one can
amplify them. These operations can be interpreted as a multiplication, an addition,
and a scalar multiplication, respectively. Since the multiplication, i.e. putting �lters
in series, is bilinear with respect to the addition, i.e. putting in parallel, and the
scalar multiplication, i.e. ampli�cation, one obtains the structure of an algebra. On
the other hand one can add two signals and one can apply a �lter to a signal and
obtains a new signal. Since one has the interpretation of the �lters as an algebra this
yields that the signals form a module over the algebra of �lters. In this way, �lters
are linear mappings on signals.

17



18 CHAPTER 2. ALGEBRAIC SIGNAL PROCESSING

The next thing to recall is that the electrical circuits realizing the �lters can
mathematically be described using ordinary di�erential equations. The standard
method in engineering sciences for transforming ordinary di�erential equations to
algebraic equations, from which one can obtain sometimes more information, is the
Laplace transform

f 7→ L(f)(s) =

∫ ∞
0

f(t)e−st dt, (2.1)

for s ∈ C. This indicates that the �lters can be interpreted as elements of polynomial
algebras.

Now we turn to the discrete world. One method to go from analog, i.e. continuous,
signals to discrete signals is by sampling them, i.e. getting the values at �xed time-
step values. That is one associates to a continuous signal q(t) a sequence of numbers
by the rule

qk = q(k · TA), (2.2)

where TA is the sampling period. Now the Laplace transform of this discrete signal
is

L(q)(s) =

∞∑
k=0

q(k · TA)e−kTAs. (2.3)

Substituting z = e−kTAs one obtains the Laurent series

∞∑
k=0

q(k · TA)z−k =
∞∑
k=0

qkz
−k. (2.4)

This transformation is called the z-transform and used in the analysis of discrete
systems. Now in real-world applications one often is concerned with only �nite
signals, so one is also interested in a �nite z-transform of a �nite discrete signal qk
which is of the form

n−1∑
k=0

qkz
−k, (2.5)

which results in a polynomial in z−k. Hence the �nite z-transform is a bijection
between a set of numbers, the signal samples, and polynomials in z−1, which will
turn out to be elements of a signal module, when considered with the �lter operations.

We have motivated the following de�nition of an algebraic signal model, which
is the foundation of algebraic signal processing [90].

De�nition 2.1 (Algebraic signal model) An algebraic signal model is a triple
(A ,M,Φ) consisting of an algebra A , the algebra of �lters, an A -module M , the
module of signals, and a bijective map Φ: Kn −→ M for n ∈ N ∪ {∞} and some
�eld K.

Remark 2.2 In this thesis only the �elds K = R,C will be used. In principle one
does not need to restrict to these ground �elds. Indeed signal processing and Fourier
transforms using �nite �elds might be of interest in some applications as these can be
used for in�nite precision calculations, see e.g. [67]. Nonetheless we will only consider
algebras over C in this thesis since this simpli�es some arguments and de�nitions.

18



2.1. Algebraic signal processing theory 19

For explicit computations we additionally require that we can choose a basis of
the module as a C-vector space. The elements of the basis play a role in interpreting
concepts from signal processing, as well. Indeed the basis elements bi are the impulses
and the impulse response of a �lter h ∈ A is h . bi for each basis elements.

The �rst example is the classical �nite discrete time signal model [93].

Example 2.3 Consider the algebraic signal model with algebra A = C[x]
/
〈 xn−1 〉,

the regular module M = A , and the z-transform Φ: Cn −→M given by

(s0, . . . , sn−1) 7→
n−1∑
k=0

skx
k. (2.6)

If one replaces x by z−1 one obtains the �nite discrete time signal model from theo-
retical electrical engineering, but from an algebra point of view it is more common
to have polynomials in x than in z−1.

The next example shows that one has to be more careful if one considers not neces-
sarily �nite signals [90].

Example 2.4 We consider in�nite discrete signals. As algebra one chooses A =
`1(Z), which from an engineering perspective corresponds to �lters being BIBO-
stable, i.e. with bounded input and output. As signal module one chooses M =
`2(Z), which can identi�ed with Laurent series M = {s =

∑
n∈Z snz

−n | s =
(. . . , s−1, s0, s1, . . . ) ∈ `2(Z)}. From a signal processing perspective these signals
are the signals with �nite energy. The z-transform corresponds to the choice of basis
of M as (. . . , z1, z0, z−1, . . . ) and is thus

Φ: `2(Z) −→M,

(. . . , s−1, s0, s1, . . . ) 7→
∑
n∈Z

snz
−n. (2.7)

That M is indeed an `1(Z)-module follows from the general fact, that `p(Z) for any
p < ∞ is an `1(Z)-module with module action given by convolution. This can be
proven as follows. Let h ∈ `1(Z), s ∈ `p(Z) and let t = h∗s. One needs to show that
t ∈ `p(Z). The nth part of t can be estimated using triangle and Hölder inequalities
as

|tn| = |
∑
k∈Z

hksn−k|

≤
∑
k∈Z
|sn−k||hk|1/p|hk|1−1/p

≤
(∑
k∈Z
|sn−k|p|hk|

)1/p(∑
k∈Z
|hk|

)1−1/p

.

(2.8)
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The second factor is independent of n and h is absolute convergent hence

∑
n∈Z
|tn|p ≤

∑
n∈Z

(∑
k∈Z
|sn−k|p|hk|

)(∑
k∈Z
|hk|

)p−1


=

(∑
k∈Z
|hk|

)p−1(∑
n∈Z

∑
k∈Z
|sn−k|p|hk|

)

=

(∑
k∈Z
|hk|

)p−1∑
k∈Z
|hk|

∑
n∈Z
|sn−k|p

=

(∑
k∈Z
|hk|

)p∑
n∈Z
|sn|p <∞.

(2.9)

So t ∈ `p(Z).

The next crucial notion to introduce is that of a shift and shift-invariance [90].

De�nition 2.5 (Shift) For an algebraic signal model (A ,M,Φ) a chosen set of
generators of the algebra x1, . . . , xn is called the shifts of the signal model. A �lter
h ∈ A is called shift-invariant if h · xi = xi · h for all xi. A signal model is called
shift-invariant if all the �lters are shift-invariant.

Since the shifts generate the algebra, a signal model is shift invariant if and only if
the algebra is commutative. Since we want to investigate the algebraic essence of
signal processing, we only consider algebras generated by the shifts algebraically, i.e.
we will not consider algebras where one has to complete using some norm to generate
the algebra.

Shift-invariant signal models are precisely those with a polynomial algebra as
�lter algebra [90]. This can be seen by observing that the shifts in a shift-invariant
signal model commute and recalling that they are the generators of the algebra. This
does not spoil the usage of group algebras of commutative groups in signal processing,
since for any commutative group G one has G ∼= Cn1×· · ·×Cnd , where Cni are cyclic
groups of order ni, and hence

C[G] ∼= C[Cn1 × · · · × Cnd ] ∼= C[x1]
/
〈 xn1

1 − 1 〉 ⊗ · · · ⊗ C[xd]
/
〈 xntd − 1 〉. (2.10)

From a signal processing perspective this might explain why non-commutative groups
have not found that many applications in signal processing, since shift-invariance is
a desirable property. This is the case since in standard applications of time signal
processing one desires that the �lters behave the same no matter at which time one
applies them.

The shifts can be used to visualize the signal model. The visualization is moti-
vated by the following considerations. Assume there exists a basis bt ∈ M of M as
a C-vector space, the impulses of the signal model. Note that these basis elements
are determined by the z-transform Φ, which maps the canonical basis of Cn to these
basis elements. Now the shifts, as generators of the �lter algebra, act on the basis
elements resulting in a sum of basis elements. The non-zero coe�cients tell which
basis elements can be connected by the shifts.
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2.1. Algebraic signal processing theory 21

1 x x2 xn−2 xn−1

Figure 2.1: The visualization graph of the �nite discrete time signal model.

De�nition 2.6 (Visualization graph) The visualization graph of an algebraic sig-
nal model is the graph obtained by adding a node for each basis element of the
signal module and adding an edge from bi to bj if the coe�cient of bj in the sum
xi . bi =

∑
skbk is non-zero for at least one shift xi of the �lter algebra, weighted

with the sum of these coe�cients.

Note that we will omit the weights in general if we draw the visualization graphs. The
weights are important if one is interested in going from algebraic signal processing
to graph signal processing, cf. [106, 107]. Furthermore we will omit the boundary
connections when this would lead to visual confusion and not add much additional
information. Especially in two and three dimensional space signal models we tend
to omit the boundary conditions.

For example the visualization graph of the signal model from Example 2.3 is
shown in Fig. 2.1. It clearly shows the time character of the signal model as it is
a directed graph. Furthermore the periodic extension implicitly assumed by taking
only �nite signals appears in the visualization graph. Now there are signals which
are not time-dependent but space-dependent, like images. The next example shows
how one builds a space signal model [91]. The space-dependence will appear in the
visualization graph, which will be an undirected one unlike the directed graph for
time-dependent signals.

Example 2.7 Consider the Chebyshev polynomials of the �rst kind given by

Tn(cos θ) = cos(nθ), (2.11)

which are polynomials in x = cos(θ) for θ ∈ [0, π]. They obey the recurrence relation

xTn(x) = 1
2Tn−1(x) + 1

2Tn+1(x). (2.12)

Consider the signal model with �lter algebra A = C[x]
/
〈 Tn(x) 〉, regular module

M = A , and z-transform Φ(s) =
∑n−1

i=0 siTi(x). Then x is a generator of A and
hence a shift. By (2.12) one has the visualization of the signal model shown in Fig. 2.2.
Now in reality images are two-dimensional. So how does one obtain a signal model
with a two-dimensional visualization graph? One simply takes the tensor product of
the space signal model with itself, i.e. as algebra one takes

A2 = C[x]
/
〈 Tn(x) 〉 ⊗ C[y]

/
〈 Tm(y) 〉, (2.13)
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T0 T1 T2 Tn−2 Tn−1

Figure 2.2: Visualization of the space signal model.

T0(x)T0(y) T1(x)T0(y) Tn−2(x)T0(y) Tn−1(x)T0(y)

T0(x)T1(y) T1(x)T1(y) Tn−2(x)T1(y) Tn−1(x)T1(y)

T0(x)Tm−2(y) T1(x)Tm−2(y) Tn−2(x)Tm−2(y) Tn−1(x)Tm−2(y)

T0(x)Tm−1(y) T1(x)Tm−1(y) Tn−2(x)Tm−1(y) Tn−1(x)Tm−1(y)

Figure 2.3: The visualization graph of the tensor product of two space signal models
resembles a rectangular grid.

the module is again the regular one, and as z-transform one uses

Φ2 : Cn×m 7→M

Φ2(s) =
n∑
i=0

m∑
j=0

si,jTi(x)Tj(y).
(2.14)

The corresponding visualization graph is shown in Fig. 2.3 and resembles the struc-
ture of an image sampled on a rectangular grid.

A crucial technique in signal processing is the decomposition of a signal into its
frequency (or spectral) components using the Fourier transformation. In algebraic
signal processing theory this can be captured using module theory. Since the signals
are modeled using a module one likes to determine a module description of the spec-
tral components. Simple modules, i.e., modules which have as only submodules the
zero module and itself, are the notation which corresponds to the spectral compo-
nents on the module level. A module is called semisimple if it can be decomposed
into simple modules. This motivates the following de�nition [90].

De�nition 2.8 (Fourier transform and spectrum) Assume the signal module
M of an algebraic signal model is semisimple, i.e. there exist simple A -modules

22



2.1. Algebraic signal processing theory 23

Mw such that M ∼=
⊕

wMw. Then any isomorphism

F : M −→
⊕
w

Mw (2.15)

is called a Fourier transform of the signal model. The frequency spectrum of a signal
s ∈M is the image of the signal under the Fourier transform F(s) = (sw)w∈W .

For real-world applications one often likes to realize the Fourier transform as a matrix.
For this one has to choose bases in M , which was already done via the z-transform
Φ in the signal model, and in each spectral component Mw.

For the decomposition into simple submodules we will rely on the Chinese remain-
der theorem. This theorem states that for a ring R with an ideal I = I1 × · · · × In
being a product of coprime ideals one has

R
/
I ∼= R

/
I1 × · · · ×R

/
In. (2.16)

Likewise for an R-module M one has

M
/
MI ∼= M

/
MI1 × · · · ×M

/
MIn. (2.17)

The reader not familiar with the Chinese remainder theorem, especially in its general
version for rings and modules or the version for polynomial algebras, is directed to
Appendix B where it is treated in some detail.

We denote by Πn(x) = C[x1, . . . , xn] the space of all polynomials in n inde-
terminates. Let the �lter algebra be of the form A = Πn(x)

/
I for some radical,

zero-dimensional ideal I (the rational behind this will be explained after we investi-
gated some examples). Denote by V(I) = {α ∈ Cn | p(α) = 0 for all p ∈ I}. Then
by the Chinese remainder theorem we have

Πn(x)
/
I ∼=

⊕
α∈V(I)

Πn
/
〈 x1 − α1, . . . , xn − αn 〉, (2.18)

as all the 〈 x1−α1, . . . , xn−αn 〉 are coprime as maximal ideals. The corresponding
Fourier transform for the signal model with regular module is realized by the map

p(x1, . . . , xn) 7→
[
p(α)

]
α∈V(I)

. (2.19)

If we choose a basis B in the module M = Πn
/
I and the basis {1} consisting of one

only in each Πn
/
〈 x1 − α1, . . . , xn − αn 〉, the Fourier transform can be realized as

multiplication by the matrix

PB,M = [b(α)]b∈B,α∈V(I). (2.20)

If other bases than {1} are used in each Πn(x)
/
〈 x1 − α1, . . . , xn − αn 〉, e.g. {ai}

for ai ∈ C, the matrix changes to

PB,M = diag

(
1

ai

)
[b(α)]b∈B,α∈V(I), (2.21)

where diag
(

1
ai

)
is the diagonal matrix containing the reciprocals of the basis elements.

We now give some examples of Fourier transforms in the case of signal models relying
on univariate polynomials from [90,121].
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Example 2.9 i.) For the �nite discrete time signal from Example 2.3 one has that
xn−1 =

∏
(x−e2πik/n). Thus for the ideal one has 〈 xn−1 〉 =

⋂〈 x−e2πik/n 〉.
In this case the Chinese remainder theorem yields

C[x]
/
〈 xn − 1 〉 ∼=

⊕
C[x]

/
〈 x− e2πik/n 〉. (2.22)

If we choose {1} as basis in each spectral component one obtains, since as basis
for the module we had choosen {1, x, . . . , xn−1} via the z-transform, the matrix

DFTn = [e2πik`/n]k,`. (2.23)

This is precisely the well-known discrete Fourier transform. The choice of basis
in the spectral components as {1} is somewhat arbitrary. Indeed we can choose
any other basis ai ∈ C in the spectral component and obtain a scaled discrete
Fourier transform

F = D · [e2πik`/n]k,`, (2.24)

where D = diag
(

1
ai

)
is the diagonal matrix containing the reciprocals of the

basis elements.

ii.) If one replaces the �eld C in the �nite discrete time signal model by the �eld
R one considers only real �lters and signals. The main di�erence appears in
the spectrum and the Fourier transform. This is due to R not being a splitting
�eld of xn − 1. In fact over R the polynomial xn − 1 has irreducible factors of
degree 1, which are x−1 and x+1 if n is even, and of degree 2, which are of the
form x2−2 cos(2kπ/n)+1. These irreducible factors correspond to one and two
dimensional spectral components. In the two-dimensional spectral components
one has more freedom to choose a basis. Since the degree two irreducible factors
arise from the combination of two complex conjugated factors in the complex
case one can obtain a real version of the discrete Fourier transform by combining
these. If one orders the complex zeros in such a way that the zeros 1 and −1
appear at positions 1 and n

2 (if n is even) and the conjugate zeros at the positions
k and n− k one can multiply the DFTn with an x-shaped matrix X to obtain
a Fourier transform of the real discrete time signal model. The matrix X has
the form

X =



∗ 0 . . . . . . 0

0 ∗ ∗
...

. . . . .
.

... . .
. . . .

0 ∗ ∗


, (2.25)

where at positions (1, 1) and (n/2, n/2) one has entries corresponding to the
choice of basis in the one dimensional spectral components. The positions
(k, k), (k, n− k), (n− k, k), and (n− k, n− k) form a 2× 2 block which maps a
pair of complex conjugated zeros to the two dimensional real component. Since
these real components are two dimensional one has a larger freedom of choice.
For example the choice of each block as

1

2

[
1 1

−i i

]
, (2.26)
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mapping (a+bi, a−bi) to (a, b) results in the real discrete Fourier transform [22]

RDFTn = [rk,`]0≤k,`<n
with

rk,` =

{
cos 2πk`

n 0 ≤ k ≤ n/2
− sin 2πk`

n n/2 < k < n.

(2.27)

The choice of each block as

1

2

[
1 + i 1− i

1− i 1 + i

]
, (2.28)

which maps (a+ bi, a− bi) to (a− b, a+ b) leads to the discrete Hartley trans-
form [7]

DHTn =

[
cos

2πk`

n
+ sin

2πk`

n

]
0≤k,`<n

. (2.29)

iii.) The Fourier transform of the space model of Example 2.7 is connected to the
discrete cosine transforms. First observe that the n zeros of nth Chebyshev
polynomial are given by {cos (k+1/2)π

n | 0 ≤ k < n}. By the de�nition (2.11)
of the �rst kind Chebyshev polynomials and by choosing the basis {1} in each
one-dimensional component one obtains

DCTn =

[
cos

`(k + 1/2)π

n

]
k,`

. (2.30)

This is the discrete cosine transform of type 3. The other 15 types of dis-
crete cosine and sine transforms can be obtained via similar considerations
with Chebyshev polynomials of the second, third and fourth kind. See [89, 90]
for details on this.

The dictionary between signal processing concepts and algebraic concepts developed
in algebraic signal processing is summarized in Table 2.1.

Since in the following we are especially interested in signal models based on poly-
nomial algebras in several variables, we have to investigate the caveats of going from
one to several variables. It turns out that an algebro-geometric point of view pro-
vides some of the insights needed. For example, we have chosen a zero-dimensional,
radical ideal for concrete examples of the Fourier transform (2.18) and the rational
behind this is obvious from the algebraic geometry point of view. Furthermore this
interpretation gives a geometric point of view on signal processing as well. We recall
just as much of algebraic geometry as we need in the sequel. The reader interested in
diving deeper into the connection between algebra and geometry is kindly directed
to textbooks on algebraic geometry like [113].

Let Πd = Πd(x) = C[x1, . . . , xd] denote the algebra of polynomials in d variables
with complex coe�cients. In general, a polynomial algebra is of the form Πd

/
I, where

I is an ideal of the algebra Πd. Such an ideal I is generated by a set of polynomials
I = 〈 p1, . . . , pn 〉. The area of algebraic geometry relates such polynomials algebras
to geometric structures, which is the algebraic varieties. With an ideal I ⊆ Πd one
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signal processing concept algebraic concept

�lter h ∈ A (algebra)

signal s =
∑
stbt ∈M (module)

z-transform Φ: CN →M (bijection)

�ltering h . s (algebra action on module)

impulse bt ∈M basis element

impulse response of h ∈ A h . bt ∈M
Fourier transform F : M −→⊕

wMw

spectrum of a signal F(s) = (sw)w∈W
shift generator of A

shift-invariance A commutative

Table 2.1: The dictionary between signal processing and algebraic concepts [90].

can associate an algebraic variety, a set of points in Ad = Cd (interpreted as only
the points with no vector space structure), via the rule

V(I) = {α ∈ Ad | p(α) = 0 for all p ∈ I}. (2.31)

For the converse one can associate an algebraic variety to an ideal via

I(V ) = {p ∈ Πd | p(α) = 0 for all α ∈ V }. (2.32)

Now one would like to have the identity I(V(I)) = I, since the association of ideals
to varieties and vice versa respects the morphisms between these objects as well, so
one would obtain an equivalence of categories. Unfortunately this is not the case as
the simple example I(V(〈 x2 〉)) = 〈 x 〉 shows. In one variable the di�erence between
〈 x2 〉 and 〈 x 〉 is that the polynomial x is separable while x2 is not. In several
variables the notion of separable yields that of a radical ideal. Given an ideal I, its
radical is given by

√
I = {p ∈ Πd | pn ∈ I for some n ∈ N}. (2.33)

Since we are interested in discrete transforms, we would like to have a discrete spec-
trum, as well. To have a discrete spectrum one has to have I =

⋂
α∈V(I)〈 x1 −

α1, . . . , xd − αd 〉, i.e., the variety is a �nite set. Such an ideal is called zero-
dimensional and the quotient space Πd

/
I is then �nite-dimensional.

For the geometric interpretation of the signal module we have to investigate the
notion of sections of a vector bundle. Let V be an algebraic variety. The trivial
bundle is the product E = V ×Cn with the projection ρ(x, v) 7→ x such that ρ−1(x)
has a vector space structure. A vector bundle is now a total space E together with a
projection π : E → V such that Ex = π−1(x) ∼= Cn has a vector space structure for
each x ∈ V and is locally trivial. Here local triviality means that there is an open
cover of V =

⋃
Uα such that the restriction of π to each Uα is isomorphic to the
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Figure 2.4: Sections of a vector bundle (red) over points on a circle (blue) form the
signals of the �nite, discrete time signal model.

trivial bundle, i.e., there exists a morphism φα such that the diagram

π−1(Uα) Uα ×Cn

Uα

φα

π ρ
(2.34)

commutes. A section of a vector bundle π : E → V is a morhpism s : V → E such
that π ◦ s = id. The sections form a module over the coordinate algebra Πd

/
I(V ).

In converse the famous Serre-Swan theorem [112, 115] states that to each module
over the coordinate algebra one can associate a vector bundle. In this sense vector
bundles and modules over the coordinate algebra are the same thing. Hence the
geometric point of view on an algebraic signal model is that of an algebraic variety
together with a vector bundle. As example the geometric picture corresponding to
the �nite discrete time signal model is shown in Fig. 2.4.

2.2 Orthogonal polynomials and orthogonal transforms

One property the monomials xn and the Chebyshev polynomials Tn share is that
both form families of univariate orthogonal polynomials. A family of polynomials
p0, p1, . . . , pn, . . . is an orthogonal polynomial sequence if any two members are or-
thogonal with respect to some inner product and each pn has degree n. The orthog-
onal polynomials are interesting for considerations in signal processing since there
are exact n zeros of pn, which are all simple. Hence the ideals they generate are
radical. Furthermore one of their properties, the Christo�el-Darboux formula, can
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be used to derive unitary versions of the Fourier transforms of signal models de�ned
by them [90, 105]. In the literature this is termed the Gauÿ-Jacobi procedure [131]
and works for every family of orthogonal polynomials in one variable.

In several variables things get more complicated. The �rst thing one observes
is that for n > 0 the set of polynomials Vdn ⊆ Πd

R
= R[x1, . . . , xd] of total degree

n which are orthogonal to all polynomials of lower degree form a vector space of
dimension greater than one. Hence it is unlikely that there exists a distinguished
basis of Vdn which behaves better than the others. Indeed it turns out that it is
advantageous to formulate the theory in terms of the spaces Vdn and not for a special
basis. The matrix-vector-notation needed for this formulation was introduced by
Kowalski [56�58] and the formulation was worked out by Xu [129]. The resulting
notion of multivariate orthogonal polynomials and the corresponding multivariate
Christo�el-Darboux formula can be used to deduce a several variable analogon of the
Gauÿ-Jacobi procedure. Unfortunately it turns out that its applicability is restricted
to a small class of orthogonal polynomials, since the condition for its applicability
is the same as for the existence of a Gauÿian cubature formula, which rarely exist
in higher dimensions. We start by recalling the basic de�nitions and properties of
orthogonal polynomials in several variables.

Consider an inner product on Πd = Πd
R
given by a non-negative weight function

w, i.e.

〈p, q〉 =

∫
Rd

p(x)q(x)w(x) dx, (2.35)

for p, q ∈ Πd. Two polynomials p, q are called orthogonal if 〈p, q〉 = 0. Let Vdk ⊆ Πd
k be

the subset of the polynomials of total degree k that are orthogonal to all polynomials
in Πd

k−1 together with zero. This yields the direct sum

Πd =
∞⊕
k=0

Vdk. (2.36)

The dimension of Vdk is rk =
(
k+d−1
k

)
. To a basis {pk1, . . . , pkrk} of Vdk associate the

vector
Pk(x) = [pk1(x), . . . , pkrk(x)]>. (2.37)

For any x ∈ Rd denote

xPk(x) = [xpk1(x), . . . , xpkrk(x)]>. (2.38)

The following theorem is a multivariate version of Favard's theorem [23] and shows
that, like in the univariate case, orthogonality is equivalent to a three-term recurrence
relation.

Theorem 2.10 Let {Pk}∞k=0 be an arbitrary sequence in Πd such that Pk spans Πd
k

for each k. Then one has equivalence of the following statements:

i.) There exists a positive de�nite linear functional which makes {Pk}∞k=0 an or-
thogonal basis of Πd.

ii.) For n ≥ 0 and 1 ≤ i ≤ d there exist matrices Ak,i, Bk,i and Ck,i of size rk ×
rk+1, rk × rk, and rk × rk−1, respectively, and rankAk,i = rk+1 and rankCk,i =
rk−1 such that one has the three-term recurrence relation

xiPk(x) = Ak,iPk+1(x) +Bk,iPk(x) + Ck,iPk−1(x). (2.39)
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Proof: See [129, Thm. 2]. �

Note that the multivariate Favard theorem is not as strong as the univariate one.
From the three-term recurrence relation one can deduce the multivariate Christo�el-
Darboux formula.

Theorem 2.11 (Xu-Christo�el-Darboux formula) Let {Pk(x)}∞k=0 satisfy a three
term recurrence relation of the form (2.39) with P−1 = 0 and let there exist symmet-
ric and invertible matrices Hk such that Bk,iHk is symmetric and

Ak,iHk+1 = HkC
>
k+1,i (2.40)

for any 1 ≤ i ≤ d and k > 0. Then for any n and 1 ≤ i ≤ d one has

n∑
k=0

P>k (x)H−1
k Pk(y)

=


(An,iPn+1(x))>H−1

n Pn(y)−P>n (x)H−1
n An,iPn+1(y)

xi−yi if x 6= y,

P>n (x)H−1
n An,i

∂
∂xi
Pn+1(x)− (An,iPn+1(x))>H−1

n
∂
∂xi
Pn(x) if x = y.

(2.41)

Proof: See [129, Thm. 3]. �

The matrices Hk can be obtained from the positive de�nite linear functional L of
Theorem 2.10, i.), e.g. the inner product L( · , · ) = 〈 · , · 〉, via Hk = L(PkP

>
k ).

This shows that the value of the sum
∑n

k=0P
>
k (x)H−1

k Pk(y) is independent from
the choice of the bases Pk in Vdk, as it follows from the identity P>k L(PkP

>
k )Pk =

Q>k L(QkQ
>
k )Qk for any choice of bases P and Q in Vdk, cf. [129, Thm. 4].

Note that even though the right-hand side of (2.41) suggests that it depends on
i, the left-hand side shows that it is actually independent of i.

We now extend the point of view, that orthogonality does not hold in terms of
particular bases of Vdn but in terms of the subspaces Vdn, to algebraic signal models.

De�nition 2.12 Two signal models (A ,M,Φ1) and (A ,M,Φ2), with bases of the
modules given by sets of orthogonal polynomials P1 and P2, are called insigni�cantly
di�erent if P1 and P2 are orthogonal with respect to the same positive de�nite linear
functional.

The next thing we need to discuss are the common zeros of multivariate orthogo-
nal polynomials. Since we are concerned with multivariate polynomials the zero set,
i.e., the variety, of one polynomial is of dimension d − 1. Since we are interested in
discrete sets it is obvious that we should consider the intersection of as many vari-
eties such that we obtain a discrete set. Bézout's theorem suggests that in general
we should consider rn polynomials. As we need the zeros to be simple as well, we
are interested in very special situations. The common zeros of Pn turn out to be as
well-behaved as possible, if they exist.
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Theorem 2.13 All common zeros of Pn are real, distinct and simple, i.e. at least
one ∂

∂xi
Pn(x) is not vanishing. There exists at most dim Πd

n−1 common zeros and
this bound is reached if one has for orthonormal polynomials Pn the equality

An−1,iA
>
n−1,j = An−1,jA

>
n−1,i (2.42)

for all 1 ≤ i, j ≤ d.

Proof: See [130, Thm. 2.13]. �

We are now ready to prove the multivariate Gauÿ-Jacobi procedure as our �rst new
theorem.

Theorem 2.14 Let {Pk}∞k=0 be a sequence of multivariate orthogonal polynomials.
Consider a signal model with underlying variety V = 〈 Pn 〉 such that |V | = dim Πd

n−1

and let the choice of basis via Φ be given by {Pk}n−1
k=0 . Then there exists an insigni�-

cantly di�erent signal model which has an orthogonal Fourier transform.

Proof: We can assume that {Pk} are orthonormal since the choice of an orthonor-
mal instead of an orthogonal basis only leads to an insigni�cantly di�erent signal
model.

The common zeros of Pn are real and simple and thus at least one partial deriva-
tive of Pn evaluated at one such zero is non-zero. In the one-dimensional irreducible
component corresponding to α ∈ V choose as basis√

P>n−1(α)An−1,i
∂
∂xi
Pn(α).

Note that this choice is independent of the index i. This choice of basis leads to
an orthogonal Fourier transform Forth as can be seen as follows. First observe that
Forth = F

√
D, where F is the Fourier matrix where in each spectral component the

basis {1} had been choosen, i.e. it is of the form

F = (p(α))p∈{Pk}k,α∈V ,

and
√
D is the diagonal matrix

√
D = diag

(
1
/√

P>n−1(α)An−1,i
∂
∂xi
Pn(α)

∣∣∣ α ∈ V ).
One then has

(Forth)> · Forth =
√
D · F> · F ·

√
D.

The product F> ·F has entries of the form
∑n−1

k=0 Pk(α)>Pk(β) for α, β ∈ V . Now by
the Xu-Christo�el-Darboux formula (2.41) and the fact that V consists of common
zeros of all the elements of Pn, all non-diagonal elements vanish. The diagonal
elements are of the form P>n−1(α)An−1,i

∂
∂xi
Pn(α). These elements do not vanish

since the common zeros of Pn are simple. Consequently, the matrix D is well-de�ned
and it follows that Forth,> · Forth = 1. �

30



2.2. Orthogonal polynomials and orthogonal transforms 31

Unfortunately the multivariate Gauÿ-Jacobi procedure is rarely applicable because
of the condition on the number of common zeros in Theorem 2.14, which is the same
as for the existence of a Gauÿian cubature formula. A cubature formula of degree
2n − 1 is a �nite sum that approximates an integral and is exact for all p ∈ Πd

2n−1,
i.e., ∫

Rd

p(x) dµ =
N∑
k=1

wkp(xk), (2.43)

and there is a p∗ ∈ Πd
2n such that the equality does not hold. The wk ∈ R are the

weights of the cubature formula while the xk ∈ Rd are the nodes. The number of
nodes N ful�lls the lower bound

N ≥ dim Πd
n−1. (2.44)

If the lower bound is actually reached the cubature formula is called Gauÿian. The
following theorem due to Mysovskikh [80] characterizes Gauÿian cubature formulae
in terms of common zeros of multivariate orthogonal polynomials.

Theorem 2.15 A Gauÿian cubature formula exists if and only if Pn has dim Πd
n−1

common zeros.

Proof: See [80]. �

While in the univariate case Gauÿian quadrature formulae always exists, this is not
the case in the multivariate setting. For example if the measure µ of the integral 2.43
is centrally symmetric then no Gauÿian cubature formula exists, cf. [130, Cor. 2.16].
This rules out typical regions of multivariate orthogonality like cubes, balls or sim-
plices. But since the approximation of integrals is a well-studied topic, there exist
examples of Gauÿian cubature formulae and we can use the corresponding orthogonal
polynomials to construct examples of signal models with orthogonal transforms.

The �rst class of examples of the construction of Gauÿian cubatures where pre-
sented by Schmid and Xu [108] in the bivariate case. Their construction relied on
bivariate polynomials introduced by Koornwinder [52]. For these historical reasons
we study the signal model of these polynomials in the following example. Indeed it
will turn out that these Koornwinder polynomials in certain special cases coincide
(up to normalization) with certain multivariate Chebyshev polynomials investigated
in Chapter 4.

Example 2.16 Let n ∈ N0 and u = x + y as well as v = x · y. Let {pn} be
orthogonal polynomials with respect to a weight function w on an interval I and
denote by xk,n the zeros of pn. Let the pn satisfy the recurrence relation xpn =
anpn+1 + bnpn + cnpn−1. The bivariate orthogonal Koornwinder polynomials are
then de�ned as

P
n,−1/2
k (u, v) =

{
pn(x) · pk(y) + pn(y) · pk(x) if k < n,√

2pn(x) · pn(y) if k = n,
(2.45)

and

P
n,1/2
k =

pn+1(x) · pk(y)− pn+1(y) · pk(y)

x− y . (2.46)
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Figure 2.5: The region R of orthogonality of the Koornwinder polynomials for I =
[−1, 1].

Each Pn,±1/2
k is a polynomial of total degree n. They are orthogonal polynomials on

R = {(u, v) | (x, y) ∈ I × I such that x < y}, cf. Fig.2.5, with respect to the weight

function W (u, v) = (u2− 4v)±
1
2w(x)w(y). For more pleasant formulas we restrict to

orthonormal polynomials, but the reasoning is the same for orthogonal polynomials.
Note that for orthonormal polynomials one has cn = an−1. The polynomials (2.45)
and (2.46) obey the three-term recurrence formula (2.39) with matrices

Aγn,1 = an,γ


1 0

. . .
...

1 0

fγ 0

, (2.47)

and

Aγn,2 = an,γ



b0 a0 0

a0 b1 a1

...

. . .
. . .

. . .
...

an−2 bn−1 an−1 0

fγan−1 fγbn an


, (2.48)
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with f−1
2

=
√

2, a
n,−1

2
= an, f1

2
= 1, and a

n,
1
2

= an+1, as well as the matrices

Bγ
n,1 =



b0 a0 0

a0 b1 a1

...

. . .
. . .

. . .
...

an−2 bn−1 fγan−1

fγan−1 bn


+ bn,γ1n+1, (2.49)

B
−1/2
n,2 = bn,γ



b0 a0

a0 b1 a0

. . .
. . .

. . .

an−2 bn−1 fγan−1

fγan−1 bn


+a2

n−1



0 . . . . . . 0
...

. . .
...

... 0
...

... 1 0

0 . . . 0 0


, (2.50)

and

B
1/2
n,2 = bn,γ



b0 a0

a0 b1 a0

. . .
. . .

. . .

an−2 bn−1 fγan−1

fγan−1 bn


− a2

n



0 . . . 0
...

. . .
...

0 0

0 . . . 1


, (2.51)

with bn,−1/2 = bn and bn,1/2 = bn+1. The dim Π2
n−1 common zeros of P−1/2

n are given

by (xk,n + xj,n, xk,n · xj,n) for j ≤ k and the common zeros of P1/2
n are given by

(xk,n+1 + xj,n+1, xk,n+1 · xj,n+1) for j < k.
Now consider the signal model with algebra A = Π2

/
〈 Pn 〉, regular module

M = A , and z-transform

Φ: Cdim Π2
n−1 −→M,

(sk,`) 7→
∑
k<`<n

sk,`P
`
k .

(2.52)

By the matrices for the three-term recurrence relations (2.47), (2.48), (2.49), (2.50),
and (2.51) the visualization in Fig. 2.6 is obtained. Since the number of common
zeros of Pn, i.e. |V(〈 Pn 〉)|, is dim Π2

n−1 and we have orthonormal polynomials, the
Fourier transform of these signal models are orthogonal by Theorem 2.13. Note that
one can not state the Fourier transformation explicitly, since no closed form for the
zeros of the univariate orthogonal polynomials is available.
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Figure 2.6: Visualization of the signal models relying on the Koornwinder polynomi-
als for n = 4. Boundary conditions and weights are omitted. Red corresponds to the
u-shift, while blue corresponds to the v-shift.
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Chapter 3

FFT-like algorithms

The discrete Fourier transform would probably not have found not as many applica-
tions as it currently has, if there would not exists a fast algorithm for its computation.
The fast Fourier transform (FFT) has thus been termed to be one of the most im-
portant algorithms of the twentieth century, cf. [101].

This chapter is concerned with two approaches to fast Fourier transform algo-
rithms for algebraic signal models. The �rst is relying on induced modules and
generalizes the method developed in [104] for signal models based on univariate poly-
nomials to the multivariate case. The second approach relies on a decomposition
property of special polynomials. In the univariate case the second approach is a
special case of the �rst one [104].

The general idea of FFT algorithms is a divide-and-conquer approach. That is
one breaks the problem of calculating the Fourier transform into smaller pieces, i.e.
Fourier transforms of smaller sizes. By a recursive application of this method one
obtains a substantially faster method for computation of the Fourier transform than
the naive approach of evaluating the matrix-vector products directly.

In a mathematically more rigorous setting this divide-and-conquer approach can
be implemented as factorization of the Fourier transform matrix into sparse matrices,
cf. [92]. Since in algebraic signal processing theory one likes to obtain everything
on the level of algebras and modules, the question arises how the factorization into
sparse matrices translates into the structure of the modules. Indeed in this chapter
it is shown that the sparse factorizations stem from partial decompositions of the
signal module, cf. [92, 96,104].

3.1 Fast Fourier transform via induction

We need to recall some tools from the representation theory of algebras. Let A be
an algebra and B be a subalgebra of A . A �nite set T ⊆ A is called a transversal
of B in A if

A =
⊕
t∈T

tB (3.1)

as vector spaces. In the sequel · . · denotes the action of an algebra on a module.
If M is a B-module the module

⊕
t∈T t .M , with vector space direct sum, is called

the T -induced A -module of M .
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36 CHAPTER 3. FFT-LIKE ALGORITHMS

The main idea behind fast algorithms using induction is stated in the following
commutative diagram. For ease of notation the modules in the diagram are assumed
to be regular ones, even though the concept works for any module, cf. the Chinese
remainder theorem for modules B.1.

N
⊕

t t . Mt

⊕
i Πn

/
〈 x− αi 〉

⊕
t

⊕
j Πn(y)

/
〈 y − βt,j 〉

change of basis

Fourier Fourier

project and scale

(3.2)

The diagram (3.2) shows that, possibly using a change of basis, one can break the
problem of calculating the Fourier transform of an induced module into the less com-
putational costly problem of calculating the Fourier transform of lower-dimensional
modules. Repeated application of this idea will, under certain mild assumptions, lead
to a fast recursive algorithm. This is the content of the following theorem, which
generalizes [104, Thm. 5.1].

Theorem 3.1 (FFT algorithms via induced modules) Let A be an algebra and
let B be a subalgebra of A . Let Mt = Πd(y)

/
Jt be a set of B-modules such that

N =
⊕

t∈T t . Mt = Πn
/
I, with T = {t1, . . . , tw} ⊂ A a �nite set, is an A -module.

Assume the action of t ∈ T on Mt is by multiplication with a polynomial t. Let
rt : V (I) −→ V (Jt) be a surjective map between the corresponding varieties. The
Fourier transform of N with respect to a basis bN can be decomposed as

PbN ,N = [D1R1| . . . |DwRw]

[⊕
t∈T

Pbt,t.M

]
BbN
⊕bt , (3.3)

where BbN⊕
bt
is the change of basis from the basis bN to the concatenation of bases of

the t.Mt, the matrices Pbt,t.Mt are the Fourier transforms of the t.Mt, the matrices
Rt are matrices with entries [Rt]α∈V(I),β∈V(J) being 1 if rt(α) = β and 0 otherwise,
and the Dt = diag(t(α)|α ∈ V(I)) .

Proof: First note that since t acts as multiplication by a polynomial any element
of t .Mt can be written as t · b (by identifying t with the polynomial as which t acts
by multiplication) and denote the chosen basis without the t as bt. Then the claim
follows from the following unwinding of de�nitions

PbN ,N = [b(α)]b∈bN ,α∈V(I)

= [t(α)b(r(α))b∈⊕bt,α∈V(I)|t ∈ T ]BbN
⊕bt

= [diag(t(α)|α ∈ V(I))Rt(b(β))b∈bt,β∈V(Jt)]B
bN
⊕bt

= [D1R1| . . . |DwRw]

[⊕
t∈T

Pbt,t.Mt

]
BbN
⊕bt .

Here (b(r(α))b∈bt,α∈V(I) = Rt(b(β))b∈bt,β∈V(Jt) follows since r : V(I) −→ V(Jt) is onto
and Rt keeps track of this map. The result follows. �

36



3.1. Fast Fourier transform via induction 37

Since the theorem captures very general situations, it is not possible to derive a
better general statement than O(n2) for the computational cost of the obtained
algorithms. This is since in general we do have only the trivial O(n2) estimate for the
computational cost of the matrices B and Ri. But if we assume them to be of linear
cost and if we can �nd a suitable descending chain of submodules these algorithms
are of cost O(k log(k)), where k = |V(I)|. Then the following proposition is a simple
consequence of the Akra-Bazzi-Theorem [1], a re�ned version of the Master Theorem
for divide and conquer recurrences [3], cf. App. C for some more information on this
theorem.

Proposition 3.2 Consider the decomposition of the Fourier transform from Theo-
rem 3.1 and assume one has a descending chain of submodules, where in each step
we have a split in at least two submodules. If the basis change matrices B and the
Mi in each step are O(k) then the decomposition is O(k · log(k)) with k = |V(I)|.

Finding a descending chain of submodules is no problem as one can collect random
points of the variety but this typically leads to neither sparse B nor sparse Ri.
Hence the main di�culty for an e�ective application of the theorem is �nding good
examples.

We want to investigate, how we can ensure the existence of a transversal. We
start by characterizing subalgebras generated by exactly the number of variables
many generators. This is done in terms of the image of the variety under the image
of the generators of the subalgebra.

Proposition 3.3 Let B ⊆ A = Πn
/
I be a �nitely generated subalgebra, s.t. B =

〈 r1, . . . , rn 〉 for ri ∈ A . Then as algebras

B ∼= Πn(y)
/
J, (3.4)

where J = I((r1, . . . , rn)(V(I))) is the ideal of the image of V(I) under the generators
of B in C[y1, . . . , yn].

Proof: To proof (3.4), we show that both sides have the same dimension and the
kernel of an algebra homomorphism between them is trivial.

Denote the �nite variety by {α1, . . . , αk} = V(I). Let {β1, . . . , β`} be the image
of these points under (r1, . . . , rn). Then ` ≤ k.

Claim 3.4 dim B = `.

Proof: We prove Claim 3.4. We can write

I =
∏
i

〈 x1 − αi,1, . . . , xn − αi,n 〉.

Each of the 〈 x1 − αi,1, . . . , xn − αi,n 〉 is maximal, hence they are all coprime and
we can use the Chinese remainder theorem B.2 to decompose A . Denote by

F : A −→
⊕
i

Πn
/
〈 x1 − αi,1, . . . , xn − αi,n 〉
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the isomorphism from equation (2.21). The diagram

ker(prB) ker(pr)

A
⊕

i Πn
/
〈 x1 − αi,1, . . . , xn − αi,n 〉

B F(B)

0 0

prB pr

F

F

commutes. Hence it su�ces to determine the dimension of ker(pr), to determine
the dimension of B. But the dimension of ker(pr) is given by the number of αi,
which get mapped to the same βj under the ri, so dim ker(pr) = k − `. Henceforth
dim B = dimF(B) = k − dim ker(pr) = `. Hence dim B = dim Πn(y)

/
J , as J is

radical and |V(J)| = `. This proves claim 3.4. O

Consider the algebra homomorphism

κ : B −→ Πn(y)
/
J,

ri 7→ yi,

which maps generators to generators. We have the short exact sequence

0 κ−1(J) B Πn(y)
/
J 0

κ

and hence Πn(y)
/
J ∼= B

/
κ−1(J). So we still need to show:

Claim 3.5 ker(κ) = {0}.

Proof: We prove Claim 3.5. It su�ces to show, that the ri vanish on the ideal
ker(κ) = κ−1(J). As J is the ideal of the points βi, it can be written as

J =
∏
j

〈 y1 − βj,1, . . . , yn − βj,n 〉.

So κ−1(J) =
∏
i〈 r1 − βi,1, . . . , rn − βi,n 〉. Now the isomorphism F maps the ri to

the βi, as the βi are the image of the αi under ri and F is, by (2.21), just inserting αi
into the polynomials. So F(κ−1(J)) = {0}, hence κ−1(J) = {0} in A and evidently
in B as well, as B is a subalgebra of A . Hence the Claim 3.5 is proved. O

By Claim 3.4 and Claim 3.5 we have proved the proposition. �

Hence in this case there always exists a transversal of B in A , as one can choose
each t ∈ T such that t(ai) = 0 and t(a`) 6= 0 for one a` ∈ V(I). Then each tB has
dimension 1, and hence dim

⊕
t∈T tB = dim

⊕
a∈V(I) Πn(x)

/
〈 x1− a1, . . . , xn− an 〉.
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Thus they are isomorphic as vector spaces and by (2.18) to A as well. Note that
this choice is a useless one for the development of fast algorithms, as we have no
intermediate steps and hence one does not obtain a recursive structure which can
be exploited for speeding up calculations. Nonetheless this is a necessary remark, as
now we can always assume a transversal existent.

Choose a transversal T of the subalgebra B in A . The next step is to show that
the structure of the B-modules t .M for B-modules of the formM = Πn(y)

/
J with

zero-dimensional, radical ideal J and t ∈ T is again a polynomial module. Hence
one gets a descending chain of submodules where one can easily the describe the
corresponding Fourier transforms.

Proposition 3.6 Let A be an algebra with subalgebra B and let T be a �nite
transversal of B in A . Let M = Πn(y)

/
J be a B-module and

⊕
t . M = Πn

/
I

the induced A -module. There exists a map r : V(I) −→ V(J). The action of the
transversal elements leads to B-modules of the form

t . M ∼= C[y1, . . . , yn]
/
Jt, (3.5)

where Jt = I({r(α) | α ∈ V(I) and tp(α) 6= 0}.

Proof: The existence of the map r is clear, since B is a subalgebra of A . Hence T
must contain 1 and thus M is a submodule of

⊕
t .M . Therefore r can be choosen

as a projection of V(I) onto its subset V(J).
It su�ces to show that the B-modules on both sides of 3.5 are of equal dimension.

The isomorphism from the Chinese remainder theorem for
⊕
t.M leads for the subset

t . M to
tpp 7→ (tp(α)p(r(α)))α∈V(I),

for any p ∈ M . Denote by [α] the equivalence class of α ∈ V(I) which map to the
same β ∈ V(J). The dimension of t . M is |V(J)| minus one for each [α] where
tp(α) = 0. Restricting to Jt hence does not change the dimension. The proposition
is proven. �

Remark 3.7 Note that the map r : V(I) −→ V(J) from Prop. 3.6 can be explicitly
determined if N and M are regular and M is a subalgebra of N . Then the map is
just the set of generators r = (r1, . . . , rn) from Prop. 3.3.

The �rst example is the classical FFT algorithm for the Fourier transform of the
discrete �nite time signal model from Example 2.3 and is from [104].

Example 3.8 The module C[x]
/
〈 x4−1 〉 can be represented as 1.C[y]

/
〈 y2−1 〉⊕

x .C[y]
/
〈 y2 − 1 〉 with transversal T = {1, x}. The algebra action is multiplication

modulo 〈 x4 − 1 〉 and y = x2. The change of basis B is from {1, x, x2, x3} to
{1, x2, x, x3} = {1 . 1, 1 . y, x . 1, x . y} and thus

B =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

.
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The direct sum is C[y]
/
〈 y2−1 〉⊕xC[y]

/
〈 y2−1 〉 as modules leading to the matrix

DFT2 ⊕ DFT2 =


1 1

1 −1

1 1

1 −1

.
The matrices R1 and R2 keeping track of the map between the varieties are given by

Ri =


1 0

0 1

1 0

0 1

,
since r = x2 maps V(〈 x4 − 1 〉) = {1, i,−1,−i} onto {1,−1, 1,−1}. The diagonal
matrix D1 is the identity since the polynomial 1 evaluates always to 1, while

D2 =


1

i

−1

−i

,
since the polynomial x corresponds to the identity map. Hence we obtain

[D1M1 | D2M2] =


1 0 1 0

0 1 0 i

1 0 −1 0

0 1 0 −i

.
We obtained the sparse matrix factorization

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

 =


1 0 1 0

0 1 0 −i

1 0 −1 0

0 1 0 i




1 1

1 −1

1 1

1 −1




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

, (3.6)

and thus a fast algorithm for the computation of the Fourier transform of the dis-
crete, �nite time signal model. Indeed for the calculation of a matrix-vector product
using the left-hand side of (3.6) one needs 12 complex additions and 8 complex mul-
tiplications, while using the right-hand side the same result is obtained using only 8
complex additions and 5 complex multiplications.

We now give an example, i.e. the FFT on a directed hexagonal lattice, which shows
how one can derive FFTs on various lattices from the literature. The derivation
of FFTs on regular directed lattices was �rst obtained in [75]. See [132] for more
concrete examples using the classical derivation. The example illustrates a reverse
engineering approach to obtain these algorithms by algebraic signal processing theory,
as well.
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Example 3.9 We reverse engineer the FFT of a directed hexagonal lattice from
Mersereau [74] by algebraic signal processing theory. Assume N = 2k for some k > 1.
Recall from [74] that the discrete Fourier transform for a signal sn1,n2 sampled on
an hexagonal lattice is given as

F(s)k1,k2 =
3N−1∑
n1=0

N−1∑
n2=0

sn1,n2 exp(−−πi
3N ((2n1 − n2)(2k1 − k2) + 6n2k2)). (3.7)

From this formula and the de�nition of Fourier transforms corresponding to zero-
dimensional varieties (2.19) it is evident that the variety is given by the points{(

exp
(−πi(2k1−k2)

3N

)
, exp

(
2πik2
N

))
| k1 = 0, . . . , 3N − 1; k2 = 0, . . . , N − 1

}
. (3.8)

The basis is determined by (3.7), as well, and consists of elements x2n1−n2yn2 for
n1 = 0, . . . , 3N − 1 and n2 = 0, . . . , N − 1.

The vector space underlying the module is hence given by

M = C[x2, xy]
/
〈 yN − 1, x3N − yN/2 〉. (3.9)

Now we have to expose for which algebra we can �nd a module structure, such that
we get a hexagonal model and an FFT-like algorithm. Unlike one might speculate
at �rst, one realizes the module structure of M not as a module over a polynomial
algebra in two variables but in three indeed. For this consider the algebra A =

C[X1, X2, X3]
/
〈 X3N

1 − 1, X
N/2
2 − 1, X

N/2
3 − 1 〉, with actions on M given by

X1 . p(x, y) = x2 · p(x, y),

X2 . p(x, y) = xy · p(x, y),

X3 . p(x, y) = x−1y · p(x, y).

(3.10)

The resulting visualization graph of the signal model is shown in Fig. 3.1.
The signal module can be decomposed into submodules. The choice of lattice

cosets in [74] corresponds to the choice of the submodule S = C[r2, rs]
/
〈 sN/2 −

1, r3N/2− sN/4 〉 with r = x2 and s = y2. We need to �nd a subalgebra and transver-
sal of the underlying algebra, which results in the induced module of S being M .
Consider the subalgebra B = C[Y1, Y2, Y3]

/
〈 Y 3N/2

1 − 1, Y
N/4

2 − 1, Y
N/4

3 − 1 〉. A
transversal of B in A is {1, X1, X2, X3}. The action of the transversal elements
on S is realized by multiplication with the polynomials {1, x2, xy, x−1y}. Then one
obtains

M = S + x2S + xyS + x−1yS. (3.11)

The sublattice corresponding to the transversal element 1 is depicted in Fig. 3.2.
From the structure of the submodule and the transversal it is obvious that the
change of basis to the induced module is a permutation matrix, hence is sparse.

None of the elements of V(〈 yN − 1, x3N − yN/2 〉) gets mapped to zero by an
element of the transversal. The preimage of each point of V (〈 yN/2−1, x3N/2−yN/4 〉)
consists at most of four points of V (〈 yN − 1, x3N − yN/2 〉). Hence each row of M
has at most four non-zero entries, thus M has O(n) entries and is sparse. Thus by
Prop. 3.2 we have indeed a fast algorithm.
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3.1. Fast Fourier transform via induction 43

Remark 3.10 In [94] a signal model for the directed quincunx lattice was intro-
duced. This signal model used a basis similar to the one we used in Example 3.9.
These examples show that the algebra action on the module is indeed crucial for the
signal model.

For a fast recursive algorithm one needs a chain of descending submodules. The
decomposition property p(x) = q(r(x)) is very useful for the development of fast
algorithms in one variable as from the following propositions one obtains a nice
chain of subalgebras, cf. [89, 92]. The several variables analog of the decomposition
property reads

(p1, . . . , pn) = (q1(r1, . . . , rn), . . . , qn(r1, . . . , rn)). (3.12)

Since this notation is rather opulent, we abbreviate 〈 p 〉 = 〈 p1, . . . , pn 〉 and
〈 q(r) 〉 = 〈 q1(r1, . . . , rn), . . . , qn(r1, . . . , rn) 〉 if confusion with the one-variable
case can be avoided by context. The decomposition property yields the existence
of su�ciently well-behaved submodules.

Proposition 3.11 Assume the zero-dimensional radical ideal I = 〈 p1, . . . , pn 〉 sat-
is�es

〈 p 〉 = 〈 q(r) 〉.
Then 〈 r 〉 ∼= Πn(y)

/
〈 q 〉.

Proof: The mapping (r1, . . . , rn) maps V(I) to the variety of the q1, . . . , qn, i.e.
(r1, . . . , rn)(V(I)) = V(〈 q 〉), as 〈 p 〉 = 〈 q(r) 〉. By Proposition 3.3 one has 〈 r 〉 ∼=
Πn(y)

/
〈 q 〉. Thus the proposition is proven. �

In the univariate case one can always obtain a transversal of the algebra 〈 r(x) 〉 ∼=
C[y]

/
〈 q(y) 〉 from a basis of C[x]

/
〈 r(x) 〉 since the number of common zeros of

univariate, separable r − α is independent of α. In the multivariate case this is
not always the case. The next proposition formalizes this in terms of the appearing
varieties.

Proposition 3.12 Consider 〈 p1, . . . , pn 〉 = 〈 q1(r1, . . . , rn), . . . , qn(r1, . . . , rn) 〉
with zero-dimensional variety. If |V(〈 p 〉)| 6= |V(〈 r 〉)| · |V(〈 q 〉)| then no basis
of Πn

/
〈 r 〉 is a transversal of Πn(y)

/
〈 q 〉 in Πn

/
〈 p 〉. If |V(〈 p 〉)| = |V(〈 r 〉)| ·

|V(〈 q 〉)| then any basis of Πn
/
〈 r 〉 is a transversal of Πn(y)

/
〈 q 〉 in Πn

/
〈 p 〉.

Proof: If |V(〈 p 〉)| 6= |V(〈 r 〉)| · |V(〈 q 〉)| the dimensions of Πn(y)
/
〈 q 〉 and

Πn
/
〈 r 〉 do not multiply to the dimension of Πn

/
〈 p 〉 so a basis of Πn

/
〈 r 〉 can not

be a transversal of Πn(y)
/
〈 q 〉.

For the second part observe that if {Q1, . . . , Qqd} is a basis of Πn(y)
/
〈 q 〉 and

{R1, . . . , Rrd} is a basis of Πn
/
〈 r 〉 then

R1Q1(r1, . . . , rn) . . . R1Qqd(r1, . . . , rn)
...

...

RrdQ1(r1, . . . , rn) . . . RrdQqd(r1, . . . , rn)


is a basis of Πn

/
〈 p 〉 if |V(〈 p 〉)| = |V(〈 r 〉)| · |V(〈 q 〉)|. Hence {R1, . . . , Rrd} is a

transversal of Πn(y)
/
〈 q 〉 in Πn

/
〈 p 〉. �
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44 CHAPTER 3. FFT-LIKE ALGORITHMS

This renders some of the ideals obeying the decomposition property (3.12) useless
for their application with the decomposition Theorem 3.1 for Fourier transforms.
The next section shows that this property is useful nonetheless as there is another
decomposition theorem for the Fourier transform.

3.2 Fast Fourier transform via decomposition

As we have seen in the previous section in the multivariate case the decomposition
property (3.12) does, unlike in the univariate case, not always yield the existence
of an induction. But we still can decompose a module whose quotient ideal obeys
the decomposition property step-wise. Instead of the diagram (3.2) the following
commutative diagram explains the rationale behind the FFT algorithms based solely
on the decomposition property in case of regular modules

Πn
/
〈 p 〉 Πn

/
〈 q(r) 〉

⊕
α∈V(〈 q 〉) Πn

/
〈 r − α 〉

⊕
γ∈V(〈 p 〉) Πn

/
〈 x− γ 〉 ⊕

α∈V(〈 q 〉)
⊕

β∈V(〈 r−α 〉) Πn
/
〈 x− β 〉

change of basis

Fourier

Fourier

Fourier

permute

(3.13)

The following theorem is a generalized version of [96, Thm. 3] for the situation
where one does not assume that the sizes of the varieties of the decomposed ideals
multiply to the size of the original variety. The proof is essentially diagram (3.13),
but the formulation is a bit technical. Consider A = Πn

/
〈 p 〉 such that the ideal

obeys the decomposition property, i.e. 〈 p 〉 = 〈 q(r) 〉, and consider the signal model
with regular module N = A . Let k = |V(〈 q 〉)|. Denote by Mα = Πn

/
〈 r − α 〉

for α ∈ V(〈 q 〉). Denote by di = dimMαi the dimension of the submodule to αi
ordered with respect to size, i.e. d1 > · · · > dk. In N one can choose, using the
decomposition property, a basis of the form

t1u1(r(x)) . . . tdku1(r(x)) tdk+1u1(r(x)) . . . td1u1(r(x)),

t1u2(r(x)) . . . tdku2(r(x)) . . . td2u2(r(x)),
...

...

t1uk(r(x)) . . . tdkuk(r(x))

, (3.14)

where the u1, . . . , uk form a basis of Πn
/
〈 q 〉. The elements tiu`(r(x)) with i > dj

are then called the excess elements of Mαj . Now we can formulate the theorem,
which generalizes [96, Thm. 3] if the subalgebras are not all of the same dimension.

Theorem 3.13 (FFT algorithms via decomposition) Let A = Πn
/
〈 p 〉 such

that 〈 p 〉 = 〈 q(r) 〉 and consider the signal model with regular module N = A .
Let k = |V(〈 q 〉)|. Denote by Mα = Πn

/
〈 r − α 〉 for α ∈ V(〈 q 〉). Denote for
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3.2. Fast Fourier transform via decomposition 45

i = 1, . . . , k by di = dimMαi , ordered with respect to size. The Fourier transform of
N with respect to a basis b can then be decomposed as

Pb,N = P ·
(⊕

i

PMαi

)
· T ·B, (3.15)

where P is permutation matrix, PMαi
are the Fourier transforms of each Mαi , B is

a change of basis between bases of N . Denote by (ci,j) the entries of the Fourier
transform matrix of Πn

/
〈 q 〉 with respect to the basis {u1, . . . , uk} of (3.14). The

matrix T is a block matrix of the form[
ci,j1min(di,dj) Ddi,dj

0>dj ,di 0

]
i,j=1,...,k

, (3.16)

where 0di,dj is the (possibly empty) di × max(0, dj − di) zero matrix and Ddi,dj is
a (possibly empty) di × max(0, dj − di) matrix containing the decomposition of the
excess basis elements.

Proof: Consider the diagram (3.13). The change of basis is from b to the basis 3.14.
The isomorphism Πn

/
〈 q(r) 〉 −→ ⊕

iMαi is, using that basis, realized by T . By
the decomposition property the zeros of the Mαi are equal to the zeros of N , except
possibly in a di�erent ordering. The theorem follows. �

If allMα are of equal dimension the matrix T is just equal to the tensor product of the
Fourier transform of Πn

/
〈 q 〉 with 1k. Reasoning analogously as for Prop. 3.2 one

gets again a fast algorithm if the change of basis is sparse and one has a descending
chains of submodules with the decomposition property.

The �rst example shows that one obtains indeed di�erent algorithms from Theo-
rem 3.1 and from Theorem 3.13, cf. [89, Example 7.4].

Example 3.14 The monomials obey the decomposition property since xn = (xm)r

if n = m · r. For the module M = C[x]
/
〈 x4 − 1 〉 with basis {1, x, x2, x3} to change

to the representation C[x]
/
〈 (x2)2 − 1 〉 one needs no change of basis, i.e. B = 1,

since the basis is already of the desired form. Since in the one variable case by the
fundamental theorem of algebra every x2−α for any α ∈ C has the same number of
zeros the matrix T from (3.15) is given as the tensor product of the Fourier transform
of C[x]

/
〈 x2 − 1 〉 with the 2× 2 identity matrix, i.e.

T = DFT2 ⊗ 12 =

[
1 1

1 −1

]
⊗
[

1 0

0 1

]
=


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

. (3.17)

This decomposes C[x]
/
〈 (x2)2 − 1 〉 into C[x]

/
〈 x2 − 1 〉 ⊕ C[x]

/
〈 x2 + 1 〉. The

�rst submodule can be decomposed with the standard discrete Fourier transform of
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46 CHAPTER 3. FFT-LIKE ALGORITHMS

size 2 while the second submodule has as Fourier transform

[
1 i

1 −i

]
, since x2 + 1 =

(x− i)(x+ i). Hence one obtains as decomposition for the direct sum
1 1

1 −1

1 i

1 −i

. (3.18)

For the permutation observe that for the discrete Fourier transform of size 4 the
zeros are ordered as {1,−i,−1, i} while until now we obtained the zeros ordered as
{1,−1,−i, i}. Hence we �nally need to multiply with the permutation matrix

P =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

. (3.19)

Thus the complete decomposition (3.15) reads in this case
1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

 =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0




1 1

1 −1

1 i

1 −i




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

. (3.20)

Comparing (3.20) with (3.6) one observes that we indeed get two di�erent sparse
factorizations leading to two di�erent fast algorithms.

Unfortunately the decomposition property is a rare one. Indeed in one variable the
only families which have this property are, up to a�ne-linear coordinate changes,
the monomials xk and the Chebyshev polynomials of the �rst kind Tk, cf. [98, Ch. 4].
In Chapter 4 we will investigate a larger class of families with the decomposition
property generalizing the univariate Chebyshev polynomials.

As a �rst multivariate example we propose a fast algorithm for a special case of
the Koornwinder polynomial signal models from Example 2.16.

Example 3.15 Consider a family of orthogonal polynomials {pn} which obey the
decomposition property, i.e. pn(x) = pm(pr(x)) if n = m · r. By [98, Ch. 4] we
can assume that these orthogonal polynomials are the Chebyshev polynomials of
the �rst kind. The non-normalized Koornwinder polynomials to the value −1

2 , i.e.

Pnk = P
n,−1/2
k if k < n and Pnn (u, v) = pn(x) · pn(y), with u = x + y and v = x · y,

obey the decomposition property since one has

P r0 (u, v) = pr(x) + pr(y)

and
P rr (u, v) = pr(x) · pr(y)
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3.2. Fast Fourier transform via decomposition 47

and thus it follows that for n = m · r one has

Pmk (P r0 (u, v), P rr (u, v)) = pm(pr(x))pk(pr(x)) + pm(pr(y))pk(pr(x))

= pn(x)pk·r(x) + pn(y)pk·r(x)

= Pnk·r(u, v)

if k < n and

Pmm (P r0 (u, v), P rr (u, v)) = pm(pr(x)) · pm(pr(y))

= pn(x) · pn(y)

= Pnn (u, v),

if k = n. We want to give an example as explicit as possible, hence we investigate
the signal model with A = R[u, v]

/
〈 P4 〉, M = A , and

Φ(s) =
∑

k≤n<4

sk,nP
n
k . (3.21)

The polynomials of the basis of the module are explicitly given through the following
list

P 0
0 = 1,

P 1
0 = u,

P 1
1 = v,

P 2
0 = 2u2 − 4v − 2,

P 2
1 = 2uv − u,
P 2

2 = 4v2 − 2u2 + 4v + 1,

P 3
0 = 4u3 − 12uv + 3u,

P 3
1 = 4u2v − 8v2 − 6v,

P 3
2 = 8uv2 − 4u3 + 6uv + 3u,

P 3
3 = 16v3 − 12vu2 + 24v2 + 9v.

(3.22)

For using the Chinese remainder theorem B.3 with the decomposition property, and
thus for application of Theorem 3.13 for the decomposition of the corresponding
Fourier transform, we do use a basis change to the basis

[P 0
0 , P

1
0 , P

1
1 , P

2
1 , P

2
0 , P

1
0P

2
0 , P

1
1P

2
0 , P

2
2 , P

1
0P

2
2 , P

1
1P

2
2 ]. (3.23)

Observing that one has

P 3
0 = 2P 1

0P
2
0 − 2P 2

1 + 5P 1
0 ,

P 3
1 = 2P 1

1P
2
0 − 2P 1

1 ,

P 3
2 = 2P 1

0P
2
2 − P 2

1 ,

P 3
3 = 4P 1

1P
2
2 − 2P 1

1P
2
0 + P 1

1 ,

(3.24)
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and the other elements being in the old as well as in the new basis, one obtains the
sparse change of basis

B =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 5 0 0 0

0 0 1 0 0 0 0 −2 0 1

0 0 0 0 1 0 −2 0 −1 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 2 0 −2

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 4



. (3.25)

One observes that V(〈 P4 〉) = V(〈 P 4
0 , P

4
4 〉) decomposes into three subvarieties

using the decomposition

P 4
0 = P 2

0 (P 2
0 , P

2
2 ),

P 4
4 = P 2

2 (P 2
0 , P

2
2 ),

one consisting of four points and two consisting of three points. Indeed one has

V(〈 Pn 〉) =
{(

cos
( k+

1
2

2 π
)

+ cos
( j+ 1

2
2 π

)
, cos

(k+
1
2

2 π
)
·cos

( j+ 1
2

2 π
)
| 0 ≤ j ≤ k < n

}
,

(3.26)
cf. Example 2.16, since the zeros of the Chebyshev polynomials of the �rst kind are
given by cos(k+1/2

2 π). Hence the Fourier transform of this signal model is given as

F4 = (P ki (α))0≤i≤k≤3,α∈V(〈 P4 〉). (3.27)

We are interested in the varieties corresponding to the partial decomposition

〈 P 4
0 , P

4
4 〉 =

⋂
0≤j≤k<2

〈 P 2
0 − cos(

k+
1
2

2 π)− cos(
j+

1
2

2 π), P 2
2 − cos(

k+
1
2

2 π) · cos(
j+

1
2

2 π) 〉

(3.28)
One obtains in (x, y)-coordinates

V(〈 P 2
0 − cos(π4 )− cos(π4 ), P 2

2 − cos(π4 ) · cos(π4π) 〉)
= {(cos π8 , cos π8 ), (cos 7π

8 , cos π8 ), (cos 7π
8 , cos 7π

8 )},

V(〈 P 2
0 − cos(3π

4 )− cos(π4 ), P 2
2 − cos(3π

4 ) · cos(π4π) 〉)
= {(cos 3π

8 , cos π8 ), (cos 5π
8 , cos π8 ), (cos 7π

8 , cos 3π
8 ), (cos 7π

8 , cos 5π
8 )},

V(〈 P 2
0 − cos(3π

4 )− cos(3π
4 ), P 2

2 − cos(3π
4 ) · cos(3π

4 π) 〉)
= {(cos 3π

8 , cos 3π
8 ), (cos 5π

8 , cos 3π
8 ), (cos 5π

8 , cos 5π
8 )}.

(3.29)
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The Fourier transform of M = R[u, v]
/
〈 P2 〉 with basis [P 0

0 , P
1
0 , P

1
1 ] is

F2 =

1 cos(π4 ) + cos(π4 ) cos(π4 ) · cos(π4 )

1 cos(3π
4 ) + cos(π4 ) cos(3π

4 ) · cos(π4 )

1 cos(3π
4 ) + cos(3π

4 ) cos(3π
4 ) · cos(3π

4 )



=

1
√

2 1
2

1 0 −1
2

1 −
√

2 1
2

.
(3.30)

For the partial decomposition observe that all elements of the new basis are of either
of the forms P ji P

0
0 , P

j
i P

2
0 , P

j
i P

2
2 , but the element P 2

1 is an excess element for the
varieties consisting of three points. As matrix T from (3.15) one obtains in this case



1 0 0 0
√

2 0 0 1
2 0 0

0 1 0 1√
2

0
√

2 0 0 1
2 0

0 0 1 0 0 0
√

2 0 0 1
2

1 0 0 0 0 0 0 −1
2 0 0

0 1 0 0 0 0 0 0 −1
2 0

0 0 1 0 0 0 0 0 0 −1
2

0 0 0 1 0 0 0 0 0 0

1 0 0 0 −
√

2 0 0 1
2 0 0

0 1 0 −1√
2

0 −
√

2 0 0 1
2 0

0 0 1 0 0 0 −
√

2 0 0 1
2



(3.31)

Note that the 4 × 4 blocks appear in the second block row instead of the �rst, as
one would expect from Theorem 3.13, since from (3.30) one obtains the sizes of the
subvarieties (3.29) in order (3, 4, 3). As basis in each of the three dimensional spaces
one obtains from the partial decomposition (3.31) the elements [P 0

0 , P
1
0 , P

1
1 ], while

for the four dimensional space one obtains [P 0
0 , P

1
0 , P

1
1 , P

2
1 ]. This results in the direct
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sum1 2 cos π8 cos2 π
8

1 0 − cos2 π
8

1 −2 cos π8 cos2 π
8


⊕


1 cos π8 + sin π
8 cos π8 sin π

8 − cos π8 − sin π
8 + 2 cos π8 sin π

8

(
cos π8 + sin π

8

)
1 cos π8 − sin π

8 − cos π8 sin π
8 − cos π8 + sin π

8 − 2 cos π8 sin π
8

(
cos π8 − sin π

8

)
1 − cos π8 − sin π

8 − cos π8 sin π
8 cos π8 − sin π

8 − 2 cos π8 sin π
8

(
− cos π8 + sin π

8

)
1 − cos π8 − sin π

8 cos π8 sin π
8 cos π8 + sin π

8 + 2 cos π8 sin π
8

(
− cos π8 − sin π

8

)


⊕
1 2 sin π

8 sin2 π
8

1 0 − sin2 π
8

1 −2 sin π
8 sin2 π

8

.
(3.32)

The last thing we need for the decomposition 3.15 is a permutation matrix. Going
from (3.29) to (3.26), with n = 4, is done using the permutation

P =



1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0



. (3.33)

Hence the overall computational cost of this decomposition is as follows. From the
change of basis (3.25) one has 6 (real) additions and 9 (real) multiplications, from the
partial decomposition (3.31) one gets 17 additions and 17 multiplications, and for the
direct sum of the smaller transforms (3.32) one obtains 22 additions and 22 multipli-
cations. This results in an overall of 45 additions and 48 multiplications, while the
naive matrix-vector product approach requires 78 additions and 88 multiplications.
This results in saving of approximately 44 % of overall operations.
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Chapter 4

Multivariate Chebyshev

polynomials and generalized cosine

transforms

The previous chapters suggest that nice examples of multivariate polynomials as
basis for algebraic signal models should possess two properties. The �rst one is the
decomposition property (3.12), so one can either use Theorem 3.1 or Theorem 3.13 to
obtain a fast algorithm for the computation of their Fourier transforms. The second
one is that the number of common zeros of Pn should be equal to dim Πd

n−1 so that
one can use Theorem 2.14 to obtain an orthogonal Fourier transform. Unfortunately
both properties occur rarely and the appearance of both properties at once is even
more rare.

In this chapter we study generalizations of the Chebyshev polynomials, used for
the derivation of the discrete space signal model in Example 2.7, to multivariate
Chebyshev polynomials. The construction of these polynomials is based on a geo-
metric stretching and folding property which was introduced by Ho�man and With-
ers [36]. The generalizations of the �rst kind Chebyshev polynomials turn out to be
subject to the decomposition property while the multivariate analogues of the second
kind Chebyshev polynomials have, by adjusting the grading, enough common zeros,
cf. [76], so one can apply the multivariate Gauÿ-Jacobi-procedure of Theorem 2.14.
After the de�nition and study of some of the properties of the multivariate Cheby-
shev polynomials in Sect. 4.1, some of the corresponding fast transforms are studied
in detail in Sect. 4.2. The focus on these special cases is motivated as follows. The
�rst example is that corresponding to the root system of type A2. There one obtains
a hexagonal space signal model and was �rst motivated in [95] as cosine transforms
on hexagonally sampled images. The fast algorithm for its computation was �rst ob-
tained in [96] using the decomposition property and a variant of Theorem 3.13. The
hexagonal lattice is the optimal regular sampling lattice in two dimensions requiring
13.4 % less sampling points to obtain the same information as a regular rectangu-
lar sampling lattice. Similar we considered the signal model corresponding to the
root system of A3 in [111] as the signal model corresponds to a body-centered cubic
(BCC) lattice (though we wrongly identi�ed the lattice of the signal model with the
reciprocal lattice in that paper). The BCC lattice is the optimal regular lattice for
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0 1 2 3 4

Stretch

Fold

Figure 4.1: The stretching and folding property of the univariate Chebyshev poly-
nommials of the �rst kind.

sampling band-limited signals above the Nyquist limit, while below the Nyquist limit
it is the face-centered cubic (FCC) lattice, the reciprocal lattice of the BCC lattice,
cf. [73, 85, 118]. The BCC lattice requires 29.3 % less sampling points to obtain the
same information as a regular rectangular samplig lattice. Furthermore alias errors
are reduced best [118]. See also the book of Conway and Sloane [12] for more details
on lattices and their properties.

The last example, the signal model associated to Chebyshev polynomials to the
root system C2, was motivated by us in [110] as it gives a cosine transform for
signals sampled on a lattice of triangles. Furthermore in this special case we have
enough common zeros to apply the Gauÿ-Jacobi procedure to obtain an orthogonal
transform.

As one can observe that the construction of the multivariate Chebyshev polyno-
mials relies on one-dimensional representations of Weyl groups, it is natural to ask
what happens if one uses representations that are of higher dimension. Basically the
same construction, with some technical adjustments, lead to matrix-valued Cheby-
shev polynomials associated to these representations as was observed by Huybrechs
and Munthe-Kaas [44]. In Sect. 4.3 we generalize a method for the derivation of gen-
erating functions of multivariate Chebyshev polynomials introduced by Damaskinsky,
Kulish and Sokolov [18] to the matrix-valued case. Furthermore using extensive com-
puter algebra some examples are calculated. Since in general the existence of the
matrix-valued polynomials is not proven, this is a strong indicator towards their
existence.

4.1 Multivariate Chebyshev polynomials associated to

root systems

The general construction of multivariate Chebyshev polynomials of the �rst kind
by Ho�man and Withers [36] relies on the following geometric interpretation of the
decomposition property. The map

cos−1 ◦Tn ◦ cos (4.1)

stretches the interval [0, 1] and folds it back at the integers, cf. 4.1. This is called a
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4.1. Multivariate Chebyshev polynomials associated to root systems 53

stretching and folding operation. Hence a natural generalization of Chebyshev poly-
nomials should be associated to some region which can be stretched and then folded
back to itself. In [36] it was shown that the foldable �gures in higher dimensions are
in one-to-one correspondence to the Weyl groups of root systems.

For this generalization we thus need to recall the notions of Weyl groups and root
systems, both stemming from Lie theory. Indeed the root systems were introduced by
Killing [47] for the classi�cation of the complex, semi-simple Lie algebras. See [43] for
a thorough investigation of root systems and associated groups as well as classi�cation
proofs and references to the literature.

De�nition 4.1 A crystallographic root system in a �nite-dimensional euclidean space
(Rd, 〈 · , · 〉) is a �nite set R of non-zero vectors, the so-called roots, which span Rd

subject to the conditions

i.) r · α ∈ R then r = ±1 for all α ∈ R,

ii.) closedness under re�ections through the hyperplanes perpendicular to the roots,
i.e.,

σα(β) = β − 2
〈α, β〉
〈α, α〉α ∈ R (4.2)

for all α, β ∈ R,

iii.) for any α, β ∈ R we have 2 〈α,β〉〈α,α〉 ∈ Z.
The set of integer linear combinations of the roots is termed the root lattice

Q = spanZR ⊆ Rd (4.3)

of the root system. The coroot of a root α ∈ R is

α∨ =
2

〈α, α〉α. (4.4)

The coroots form a root system which is denoted by R∨. The coroot lattice Q∨ is the
Z-span of the coroots.

There are at most two di�erent root lengths (root lengths are de�ned as lengths
as vectors) for an irreducible root system, i.e., one which is not a combination of
root systems with mutually orthogonal spaces. The irreducible root systems can
be classi�ed using Coxeter-Dynkin diagrams. There are four in�nite series An, Bn,
Cn, Dn, cf. Fig. 4.2, and �ve exceptional root systems E6, E7, E8, F4, G2, cf.
Fig. 4.3. The four in�nite series correspond to the special unitary, special orthogonal
and symplectic Lie algebras as summarized in Table 4.1. One can choose a basis
∆ = {α1, . . . , αd} ⊆ R of the root system such that one has α =

∑d
i=1 cjαj with all

cj ∈ Z of the same sign. The αi are called simple roots. The simple roots divide
the root system into positive roots R+ and negative roots R−. The simple roots
introduce a partial order on the roots, as well. The partial order is de�ned by λ � µ
if the expansion of λ− µ in simple roots has non-negative coe�cients only. Then λ
is called higher than µ. The highest root has the form

α0 = m1α1 + · · ·+mdαd, (4.5)
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An

·

1

1
1

2

1
1

3

1
1

· · · n

1
1

Bn

·

1

1
1

2

2
2

3

2
2

· · · n− 1

2
2

n

2
2

Cn · 1

2
2

2

2
2

3

2
2

· · · n− 1

2
2

n

1
1

Dn

· n 1
1

1

1
1

2

2
2

· · · n− 3

2
2

n− 2

2
2

n− 1

1
1

Figure 4.2: A�ne Coxeter-Dynkin diagrams for the reduced, crystallographic root
systems. The dotted node corresponds to the lowest root −α0, the numbered nodes
to the simple roots αi. Open circles are long roots, while �lled nodes indicate short
roots. The marks and comarks are shown below the nodes as mi

m∨i
. The angle between

two roots depends on the multiplicity k of the edge between them and is given
as 4 cos2 θ = k and cos θ ≤ 0, i.e., π

2 ,
2π
3 ,

3π
4 ,

5π
6 with length ratio being arbitrary,

1,
√

2,
√

3 for k = 0, 1, 2, 3, respectively. This �gure shows the four in�nite series,
where n starts at 1 for An, at 2 for Bn, at 3 for Cn, and at 4 for Dn.
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root system compact Lie algebra

An sun+1

Bn so2n+1

Cn spn

Dn so2n

Table 4.1: Root systems and corresponding compact Lie algebras.
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·
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Figure 4.3: The �ve exceptional a�ne Coxeter-Dynkin diagrams. Notation as in
Fig. 4.2.
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56 CHAPTER 4. MULTIVARIATE CHEBYSHEV POLYNOMIALS

with positive integers mi. The mi are called the marks of the root system. The
marks of the coroot system are called the comarks of the initial root system and
denoted by m∨1 , . . . ,m

∨
d .

The Weyl group of a root system R is the group generated by the re�ections

W = 〈 σα | α ∈ R 〉. (4.6)

The Z-dual of Q is the coweight lattice P∨, while the Z-dual of Q∨ is the weight
lattice P . The generators of P are the fundamental weights ωj and the generators of
P∨ are the fundamental coweights ω∨j . Between these lattices the following relations
hold

{α1, . . . , αd} Q Q∨ {α∨1 , . . . , α∨d }

{ω1, . . . , ωd} P P∨ {ω∨1 , . . . , ω∨d }

⊆

⊆

⊇

⊇

. (4.7)

The coroot lattice acts on Rd by translation and the a�ne Weyl group is the
semi-direct product

Wa� = W nQ∨. (4.8)

The simplex F = Rd
/
Q∨ tiles Rd under the action of the a�ne Weyl group and

is called the fundamental Weyl chamber. One can describe the fundamental Weyl
chamber as the convex hull

F = conv

{
0,
ω∨1
m1

, . . . ,
ω∨d
md

}
(4.9)

of the fundamental coweights scaled by the marks. This fundamental region re-
places the interval [0, 1] as stretching and folding region for multivariate Chebyshev
polynomials. In Fig. 4.4 the root systems of type A2 and C2 are shown together
with the simple scaled coweights and the fundamental domains. The dual pairing
( · , · ) : P ×Rd

/
Q∨ −→ C is given by

(λ, θ) = exp(2πi〈λ, θ〉). (4.10)

The Weyl group, which is isomorphic to a group of integer matrices, acts on P and
Rd
/
Q∨. Symmetrization of the dual pairing with respect to the corresponding Weyl

group now leads to the de�nition of multivariate Chebyshev polynomials of the �rst
kind [36].

De�nition 4.2 Let W be a Weyl group of a root system R with weight lattice P and
coroot lattice Q∨. The multivariate Chebyshev polynomial of the �rst kind of weight
λ ∈ P is

Tλ(x1, . . . , xd) = Tλ(θ) =
1

|W |
∑
w∈W

(λ,wθ) (4.11)

for θ ∈ F . The multivariate Chebyshev polynomials are polynomials in the variables

xk = Tωk(θ), (4.12)

with θ ∈ F .
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ω∨
1

m1

ω∨
2

m2

F

α1

α2 α1 + α2

−α1

−α2−α1 − α2

ω∨
1

m1

ω∨
2

m2

F

α1

α2 α1 + α2

α1 + 2α2

−α1

−α2−α1 − α2

−α1 − 2α2

Figure 4.4: The root systems of type A2 (upper) and C2 (lower) together with the
fundamental region F (shaded region) and the image of F under the action of the
Weyl group.
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Figure 4.5: The image of the fundamental region F under the variable change in case
of A2, C2, and G2, respectively.

That the multivariate Chebyshev polynomials are indeed polynomials follows from
a theorem of Chevalley [11], which considers invariants of �nite groups generated by
re�ections.

For the Weyl group W (A1) of type A1 one gets back the original de�nition of
Chebyshev polynomials, as the root system is then RA1 = {1,−1} and is equal to
the coroot lattice, the only simple root is {1}, the Weyl group is W (A1) = {1,−1},
the root and coroot lattice is Z, the weight lattice is P = Z. This leads to F = [0, 1]
and Tn(x) = 1

2(exp(2πinθ) + exp(−2πinθ) = cos(nθ).
From the de�nition (4.11) one can deduce that the obtained variables are real-

valued or consist of pairs of complex-conjugates. That is if we complex-conjugate
the xj in the θ-domain we obtain either the identity or a permutation between the
xj , cf. [76, Sect. 6]. The only cases where one does not obtain real variables are
An, D2n+1, and E6. In these cases one obtains the following pairs

An :
x x1 x2 · · · xn−1 xn

x xn xn−1 · · · x2 x1

D2n+1 :
x x1 x2 · · · x2n−1 x2n x2n+1

x x1 x2 · · · x2n−1 x2n+1 x2n

E6 :
x x1 x2 x3 x4 x5 x6

x x5 x4 x3 x2 x1 x6

.

(4.13)

The simplex F gets transformed under the variable change xk = Tωk(θ) to a
cusped region. For example in case of the root system A2 the fundamental region F
is an equilateral triangle which gets transformed to a deltoid under (x1, x2) (and, to
be rigorous, shown in (1

2(x1 + x2), 1
2i(x1 − x2)) coordinates, cf. (4.13)). In Fig. 4.5

the cusped regions for the irreducible two-dimensional root systems are shown. The
following proposition contains the properties of the �rst kind multivariate Chebyshev
we need in the sequel, cf. [77, 97].

Proposition 4.3 The multivariate Chebyshev polynomials of the �rst kind associ-
ated to a Weyl group W are subject to

i.) invariance with respect to the action of the Weyl group on the weight indices

Tw>λ = Tλ (4.14)
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4.1. Multivariate Chebyshev polynomials associated to root systems 59

and invariance with respect to the a�ne Weyl group on the argument in the
fundamental domain

Tλ(Tω1(wθ), . . . , Tωd(wθ)) = Tλ(Tω1(θ), . . . , Tωd(θ)), (4.15)

ii.) the shift property
Tλ1Tλ2 = 1

|W |
∑
w∈W

Tλ1+w>λ2 , (4.16)

iii.) the decomposition property

Tkλ = Tλ(Tkω1 , . . . , Tkωd) (4.17)

for λ ∈ P and k ∈ Z.

Proof: For the �rst part of i.) observe that

Tv>λ = 1
|W |

∑
w∈W

(v>λ,wθ)

= 1
|W |

∑
w∈W

(λ, vwθ)

= 1
|W |

∑
u∈W

(λ, uθ)

= Tλ,

with u = vw. For the second part one has

Tλ((ω1, vθ), . . . , (ωd, vθ)) = 1
|W |

∑
w∈W

(λ,wvθ)

= 1
|W |

∑
u∈W

(λ, uθ)

= Tλ((ω1, θ), . . . , (ωd, θ)),

with u = wv.
For the part ii.) one has

Tλ1Tλ2 =

(
1
|W |

∑
u∈W

(λ1, uθ)

)(
1
|W |

∑
v∈W

(λ2, vθ)

)

=

(
1
|W |

∑
u∈W

(λ1, uθ)

)(
1
|W |

∑
v∈W

(v>λ2, θ)

)
= 1
|W |2

∑
u,v∈W

(λ1, uθ)(v
>λ2, θ)

= 1
|W |2

∑
u,v∈W

(λ1 + (vu−1)>λ2, uθ)

= 1
|W |

∑
w∈W

1
|W |

∑
u∈W

(λ1 + w>λ2, uθ)

= 1
|W |

∑
w∈W

Tλ1+w>λ2 ,
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where we can write w instead of vu−1 since we are summing over the whole group.
The part iii.) follows since one has formally

Tkωi(θ) = 1
|W |

∑
w∈W

(kωi, wθ)

= 1
|W |

∑
w∈W

(ωi, wkθ)

= Tωi(kθ),

and thus

Tλ(Tkω1(θ), . . . , Tkωd(θ)) = Tλ(Tω1(kθ), . . . , Tωd(kθ)

= 1
|W |

∑
w∈W

(λ, kθ)

= 1
|W |

∑
w∈W

(kλ, θ)

= Tkλ(θ).

We have proven the proposition. �

The properties i.) and ii.) of Prop. 4.3 yield a recursion relation if one uses the shift
relation with the xk = Tωk .

Since the multivariate Chebyshev polynomials are subject to the decomposition
property they give rise to examples of signal models with a fast Fourier transform
algorithm via Theorem 3.13. In certain cases one can even get an induction of
modules and thus can apply Theorem 3.1 to get a fast Fourier transform algorithm.
We will investigate some examples in Sect. 4.2. Unfortunately one does in general not
get orthogonal Fourier transforms by the multivariate Gauÿ-Jacobi procedure 2.14
since one has not enough common zeros for all multivariate Chebyshev polynomials
of the same degree. Indeed the following proposition due to Li, Sun, and Xu shows
that there is in general no hope to obtain enough common zeros.

Proposition 4.4 The multivariate Chebyshev polynomials of the �rst kind associ-
ated to the root system A2 of degree n have no common zero.

Proof: See [60]. �

But already in one variable there is a second kind of Chebyshev polynomials. Their
multivariate counterparts have been studied in the context of cubature formulas
in [76]. The A2 second kind Chebyshev polynomials were used in [95] signal pro-
cessing for the spatial hexagonal lattice. Recall that the second kind Chebyshev
polynomials in one variable are de�ned as

Uk(x) = Uk(cos θ) =
sin(k + 1)θ

sin θ
=

e2πi(k+1)θ − e2πi(k+1)θ

e2πiθ − e−2πiθ
. (4.18)

Hence the second kind Chebyshev polynomials are anti-symmetrized exponentials
with an index shift, divided by the minimal anti-symmetric sum. The +1 index
shift has an interpretation as the sum of fundamental weights. The de�nition of the
multivariate Chebyshev polynomials is as follows.
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De�nition 4.5 Let W be a Weyl group of a root system R with weight lattice P
and coroot lattice Q∨. Let δ =

∑
ω ω be the sum of fundamental weights. Then the

multivariate Chebyshev polynomials of the second kind of weight λ ∈ P are de�ned
as

Uλ(x1, . . . , xk) =

∑
w∈W det(w)(λ+ δ, wθ)∑
w∈W det(w)(δ, wθ)

. (4.19)

They are polynomials in the variables xi of (4.12).

Actually these are just the characters of semi-simple Lie algebras, as follows from
the Weyl character formula in combination with the Weyl denominator formula [123�
125].

That the second kind Chebyshev polynomials give rise to Gauÿian cubature for-
mulas has been shown for root systems of type An in [63]. For the other root systems
one needs to adjust the grading on the polynomials as shown in [76]. Then one can
even associate the common zeros with elements of �nite order of the corresponding
Lie group. This adjusted grading is useful for the �rst kind Chebyshev polynomial,
as well, since only with this grading the Tkωi form a Gröbner basis for the ideal they
generate.

De�nition 4.6 Let λ ∈ P then its m-degree is given by

degm(λ) = 〈λ, α∨0 〉. (4.20)

A monomial xλ11 . . . xλdd has m-degree degm(λ) = degm((λ1, . . . , λd)).
The m-graded lexicographical ordering on the monomials is de�ned by ordering

the monomials with respect to degm and then breaking ties by the lexicographical order
on the variables.

In case of type An all marks are equal to 1, so in these cases the m-degree coincides
with the standard degree. The leading monomial of the Chebyshev polynomial Tλ
with respect to the m-graded lexicographical ordering is xλ11 . . . xλdd . By the recursion
relations obtained from the shift relation the leading monomials with respect to m-
graded lexicographical ordering of the polynomials Tnω1 , . . . , Tnωd are disjoint. Hence
they form a Gröbner basis for the ideal they generate with respect to the m-graded
lexicographical ordering.

4.2 Examples of fast cosine transforms on weight lattices

This section is concerned with the derivation of fast transform algorithms for ana-
logues of the discrete cosine transform, as derived in Examples 2.7 and 2.9, iii.),
on other undirected lattices in higher dimensions. The general approach is to take
some - depending on the number of common zeros they have - of the multivariate
Chebyshev polynomials of speci�ed degree to de�ne a zero-dimensional variety. As
signal module we will in these examples always choose the regular module. Then
the multivariate Chebyshev polynomials of lower degree will form the basis for our
signal model. By the shift relation of Prop. 4.3, ii.), one obtains that the lattices
in the visualization graph correspond to the associated weight lattices of the root
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system. Using the decomposition property (4.17) the fast algorithms are derived
using Theorem 3.13. In the cases were we can obtain a transversal we derive fast
algorithms using Theorem 3.1 instead. Furthermore we picture the underlying geo-
metric principle, the stretching and folding, of these algorithms. The actual details
of course di�er between the di�erent root systems. But the given examples show
that it is in any case possible to derive fast algorithms for suitably de�ned cosine
transforms on weight lattices.

The change of basis matrices can be described in general for each root system
but require lengthy calculations using the recurrence relations and the invariance
under the action of the Weyl group, i.e. Prop. 4.3, 4.14.) and ii.). Hence a
Mathematica® [45] module was developed which is able to perform these alge-
braic calculations. It is available in a Github repository under the URL-address
https://github.com/bseifert-HSA/basis-change-Chebyshev-transforms.

Consider the situation that the size of the subvarieties multiply and one wants
to derive a fast algorithm using induced modules via Theorem 3.1. Then one has
to ensure that the matrices Ri are sparse, as well. In the case of the Chebyshev
polynomials this can be shown as follows. Denote the chosen subset of Chebyshev
polynomials of degree n by Tn. If one has n = r · m then by the stretching and
folding property the fundamental domain gets stretched by the Trωi to r

d copies of
it and then gets folded back to the fundamental domain. Thus each common zero of
Tm has at most rd preimages under the Trωi in the common zeros of Tn. Thus the
Ri have O(|V(〈 Tn 〉)|) entries, i.e. are sparse.

The �rst example is that of A2, where the signal model implements a signal model
of space signals sampled on a hexagonal lattice. This connection was �rst investigated
in [95] and a fast algorithm derived in [96] using a variant of Theorem 3.13. Since
in this case we will see that one has n2 common zeros for n = m · r one obtains
n2 = m2r2, so Theorem 3.1 in combination with Proposition 3.12 is applicable as
well and yields another fast algorithm for computing the Fourier transform of the
signal model. We present the alternative algorithm based on induced modules in
some detail.

Example 4.7 We consider the signal model associated to Chebyshev polynomials
of type A2. The root system and fundamental region are shown in Fig. 4.4. In this
case the shift relation reads

x · Tλ1,λ2 = 1
3(Tλ1+1,λ2 + Tλ1,λ2−1 + Tλ1−1,λ2+1),

y · Tλ1,λ2 = 1
3(Tλ1,λ2+1 + Tλ1−1,λ2 + Tλ1+1,λ2−1).

(4.21)

A set of su�cient starting conditions for running the recursion is

T0,0 = 1,

T1,0 = x,

T0,1 = y,

T1,1 = 3
2xy − 1

2 .

(4.22)

We consider the signal model consisting of

A = C[x, y]
/
〈 T0,n, Tn,0 〉,

M = A (as regular module),
(4.23)
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Figure 4.6: Visualization of the signal model for Chebyshev polynomials of type A2,
an undirected hexagonal lattice (left), and after representing the module as induction
(right).

and

Φ: Cn
2 −→M,

Φ(s) =

n∑
k,`=0

sk,`Tk,`.
(4.24)

The visualization unveils the hexagonal lattice underlying this signal model, cf.
Fig. 4.6, obtained from the shift relations (4.21). Indeed one obtains an undirected
hexagonal lattice, i.e. a space signal model. As already mentioned in the introduc-
tory part of this chapter, sampling using a hexagonal lattice as the advantage of
obtaining the same information with 13.4 % less sampling points than one would
need if one would use a regular rectangular lattice. In [96] the n2 common zeros of
Tn,0 and T0,n were described elementary. We proposed a geometric description of the
common zeros in [109], as this shows the geometric mechanisms underlying the de-
composition more clearly. The preimage of 0 in the θ-domain is 1

3ω
∨
1 + 1

3ω
∨
2 . Through

the stretching-and-folding property and the condition that the common zeros be in
the fundamental domain F one obtains

V(〈 Tn,0, T0,n 〉) = {1 + 3j

3n
ω∨1 +

1 + 3k

3n
ω∨2 | 2 + 3(j + k) < 3n}

∪ {2 + 3j

3n
ω∨1 +

2 + 3k

3n
ω∨2 | 4 + 3(j + k) < 3n},

(4.25)

with j, k = 0, . . . , n− 1. For each α ∈ V(〈 Tr,0, T0,r 〉) one has |V(〈 Tm,0 − α1, T0,m −
α2 〉)| = m2. The geometric mechanism of the distribution of the common zeros
is illustrated in Fig. 4.7. Since for n = r · m one thus has |V(〈 Tn,0, T0,n 〉)| =
|V(〈 Tr,0, T0,r 〉)|·|V(〈 Tm,0, T0,m 〉)| and all the subalgebrasC[x, y]

/
〈 Tm,0−α1, T0,m−

α2 〉 are of equal dimension, by Prop. 3.12 any basis of C[x, y]
/
〈 Tr,0, T0,r 〉 is a

transversal of C[x, y]
/
〈 Tm,0, T0,m 〉. We pick as basis of C[x, y]

/
〈 Tr,0, T0,r 〉 the

Chebyshev polynomials up to degree r − 1. We consider only the case r = 2 as
otherwise the following case analysis would become even longer. But using our
Mathematica® module it is possible to obtain other variants, as well. Thus the
change of basis is

(T0,0, . . . , Tn,n)→ (T0,0T0,0(Tm,0, T0,m), . . . , Tm−1,m−1T1,1(Tm,0, T0,m).
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ω∨
1

m1

ω∨
2

m2

α1

α2

Figure 4.7: The common zeros of 〈 T4,0, T0,4 〉 are shown after being stretched by
a factor of 2. The action of the a�ne Weyl group, folding the stretched triangle
back to the fundamental domain, is indicated. The di�erent colors indicate which
common zeros of 〈 T4,0, T0,4 〉 are common zeros of which 〈 T2,0 − α1, T0,2 − α2 〉.

To deduce the basis change one has to investigate the cases of indices ranging from
(0, 0) to (m,m), from (m + 1, 0) to (2m,m), from (0,m + 1) to (m, 2m), and from
(m+ 1,m+ 1) to (2m, 2m). Let k, ` < m. The orbit of (k, `) under the Weyl group
W (A2) is

{(−k − `, , k), (−k, k + `), (−`,−k), (`,−k − `), (k, `), (k + `,−`)}.

Hence one has additionally to distinguish between the cases were k = 0, ` = 0,
k + ` < m, k + ` = m, and k + ` > m.

In region I, i.e. indices ranging from (0, 0) to (m,m), nothing has to be done

Tk,` = Tk,`

For region II, i.e. indices ranging from (m+ 1, 0) to (2m,m), one obtains

Tm+k,` =



Tm,0 k, ` = 0,

−2Tm−k,k + 3Tk,0Tm,0 ` = 0,

−1
2Tm−`,0 + 3

2T0,`Tm,0 k = 0,

−Tm−k,k+` − Tm−k−`,k + 3Tk,`Tm,0 k + ` < m,

−1
2T0,k − 3

2T`,0T0,m + 3Tk,`Tm,0 k + ` = m,

T`,2m−k−` − 3Tm−k,k+`−mT0,m + 3Tk,`Tm,0 k + ` > m.

Region III, i.e. indices ranging from (0,m + 1) to (m, 2m), can be calculated as
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follows

Tk,m+` =



T0,m k, ` = 0,

−1
2T0,m−k + 3

2Tk,0T0,m ` = 0,

−2T`,m−` + 3T0,`T0,m k = 0,

−T`,m−k−` − Tk+`,m−` + 3Tk,`T0,m k + l < m,

−1
2T`,0 − 3

2T0,−m−`Tm,0 + 3Tk,`T0,m k + ` = m,

T2m−k−`,k − 3Tk+`−m,m−`Tm,0 + 3Tk,`T0,m k + ` > m.

For region IV, i.e. indices ranging from (m+ 1,m+ 1) to (2m, 2m), one obtains

Tm+k,m+` =



Tm,m k, ` = 0,

Tk,0 − 3Tm−k,kT0,m + 3Tk,0Tm,m ` = 0,

T0,` − 3T`,m−`Tm,0 + 3T0,`Tm,m k = 0,

2Tk,` − Tm−`,m−k − 3Tm−k,k+`T0,m . . .

− 3Tk+`,m−`Tm,0 + 6Tk,`Tm,m
k + ` < m,

Tk,` − 3
2T0,kT0,m − 3

2T`,0Tm,0 + 6Tk,`Tm,m k + ` = m,

− Tm−`,m−k + 2Tk,` − 3Tm−k,k+`−mTm,0 . . .

+ 3T`,2m−k−`T0,m + 3T2m−k−`,kTm,0 . . .

− 3Tk+`−m,m−`T0,m + 6Tk,`Tm,m

k + ` > m

by keeping in mind that T2m,0 = T0,2m = 0 in the signal module.

Since the basis change and the Ri are sparse one obtains by Prop. 3.2 and The-
orem 3.1 a O(n2 log(n)) algorithm for the computation of the Fourier transform of
the A2 signal model. This is substantially faster than the naive O(n4)-approach.

The next example considers a signal model associated to the root system A3. In [111]
a fast algorithm for the Fourier transform of the signal model relying on Theorem 3.13
was derived. Note that we have in case of A3 that the varieties consist of n3 points,
so we can apply Theorem 3.1 in combination with Proposition 3.12 as well to obtain
another fast algorithm.

Example 4.8 The next example is considered with the signal model associated to
Chebyshev polynomials of type A3. The root system and the fundamental region are
shown in the upper part of Fig 4.8. The recursion relations reads in this case

x · Tλ1,λ2,λ3 = 1
4(Tλ1+1,λ2,λ3 + Tλ1,λ2,λ3−1 + Tλ1,λ2−1,λ3−1 + Tλ2−1,λ2+1,λ3),

y · Tλ1,λ2,λ3 = 1
6(Tλ1,λ2+1,λ3 + Tλ1+1,λ2,λ3−1 + Tλ1+1,λ2−1,λ3+1

+ Tλ1−1,λ2+1,λ3−1 + Tλ1−1,λ2,λ3+1 + Tλ1,λ2−1,λ3),

z · Tλ1,λ2,λ3 = 1
4(Tλ1,λ2,λ3+1 + Tλ1,λ2+1,λ3−1 + Tλ1+1,λ2−1,λ3 + Tλ1−1,λ2λ3),

(4.26)

65



66 CHAPTER 4. MULTIVARIATE CHEBYSHEV POLYNOMIALS

with starting conditions

T0,0,0 = 1,

T1,0,0 = x,

T0,1,0 = y,

T0,0,1 = z,

T1,1,0 = 2xy − z,
T1,0,1 = 4

3xz − 1
3 ,

T0,1,1 = 2yz − x,
T1,1,1 = 4xyz − 2x2 − 2z2 + y.

(4.27)

Thus the neighbourhood of each node in the signal model looks as depicted in the
lower part of Fig. 4.8. This structure resembles a body centered cubic lattice. The
Voronoi cell of the lattice points is a truncated octahedron and shown for the central
point. We consider the signal model consisting of

A = C[x, y, z]
/
〈 T0,0,n, T0,n,0, Tn,0,0 〉,

M = A (as regular module),
(4.28)

and

Φ: Cn
3 −→M,

Φ(s) =

n∑
k,`,p=0

sk,`,pTk,`,p.
(4.29)

Denote Tn = 〈 T0,0,n, T0,n,0, Tn,0,0 〉. In [111] we used an elementary ad-hoc descrip-
tion of the variety V(Tn). Here we will give a more geometric description as for the
A2 case. In terms of the coweights we have the n3 common zeros of the Tnωi be given
as

V(Tn) =

{
1 + 4j

4n
ω∨1 +

1 + 4k

4n
ω∨2 +

1 + 4`

4n
ω∨3 | 3 + 4(k + j + `) < 4n

}
∪
{

2 + 4j

4n
ω∨1 +

1 + 4k

4n
ω∨2 +

2 + 4`

4n
ω∨3 | 5 + 4(k + j + `) < 4n

}
∪
{

3 + 4j

4n
ω∨1 +

2 + 4k

4n
ω∨2 +

1 + 4`

4n
ω∨3 | 6 + 4(k + j + `) < 4n

}
∪ {1 + 4j

4n
ω∨1 +

2 + 4k

4n
ω∨2 +

3 + 4`

4n
ω∨3 | 6 + 4(k + j + `) < 4n}

∪
{

2 + 4j

4n
ω∨1 +

3 + 4k

4n
ω∨2 +

2 + 4`

4n
ω∨3 | 7 + 4(k + j + `) < 4n

}
∪
{

3 + 4j

4n
ω∨1 +

3 + 4k

4n
ω∨2 +

3 + 4`

4n
ω∨3 | 9 + 4(k + j + `) < 4n

}

(4.30)

Since for n = r ·m one thus has |V(Tn)| = |V(Tr)| · |V(Tm)| and all the subalge-
bras C[x, y, z]

/
〈 Tm,0,0 − α1, T0,m,0 − α2, T0,0,m − α3 〉 are hence of equal dimension.
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Figure 4.8: The upper part shows root system A3 with the simple roots in blue and
the fundamental region. In the lower part the neighbourhood of each node in the
visualization graph of the A3 Chebyshev signal model resembles the neighbourhood
in an BCC lattice. The shifts of x, y, and z are shown in orange, green, and red,
respectively. The Voronoi cell of the lattice - a truncated octahedron - is shown for
the center point.
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Moreover, by Prop. 3.12 any basis of C[x, y, z]
/
Tr is a transversal of C[x, y, z]

/
Tm.

We pick as basis of C[x, y, z]
/
Tr the Chebyshev polynomials up to degree r − 1.

That the basis change in this example is sparse follows from explicit calcu-
lations, which can be found online under https://github.com/bseifert-HSA/basis-
change-Chebyshev-transforms/tree/master/A3. Since the results are very lengthy,
we omit them here. We just mention that one has to subdivide the basis into 8
regions and the case analysis consists of 45 cases in each region.

Since one has a sparse basis change and sparse matrices Ri one obtains, similar
to the case A2, a O(n3 log(n)) algorithm, which is substantially faster than the naive
O(n6) approach.

The next example, based on Chebyshev polynomials of type C2, which are a special
case of the Koornwinder polynomials in Example 2.16 with di�erent normalization,
was presented by us in [109,110]. This example was the starting point to investigate
the multivariate Gauÿ-Jacobi procedure from Theorem 2.14 since it was the �rst
example we became aware of where this method did work in [110], where we used an
elementary description of the common zeros. A description of the fast algorithm for
this signal model was �rst presented in [109] with less details.

Example 4.9 In case C2 the shift relations are

x1 · Tk,` = 1
4(Tk+1,` + Tk−1,` + Tk−1,`+2 + Tk+1,`−2),

x2 · Tk,` = 1
4(Tk,`+1 + Tk,`−1 + Tk−1,`+1 + Tk+1,`−1).

(4.31)

A set of su�cient starting conditions for running the recurrence relation is

T0,0 = 1,

T1,0 = x1,

T0,1 = x2,

T1,1 = 2x1x2 − x1.

(4.32)

The weight vector for the total m-degree lexicographical ordering of the monomials
is (1, 2). That is degm(x1) = 1 and degm(x2) = 2.

Denote by Tn = {Tk,` | k+ ` = n}. Then one has a three-term recurrence of the
form

xiTk = Ak,iTk+1 +Bk,iTk + Ck,iTk−1, (4.33)

were the matrices Ak,i, Bk,i, and Ck,i can be deduced from the shift relations (4.31).
For example for the x1 shift one obtains

Ak,1 =



0 1/2 0 . . . 0

1/4 0 1/4 0 . . . 0

0
. . .

. . .
. . .

...

. . . 0 1/4 0 1/4 0

0 . . . 0 1/2 0 1/4


, (4.34)
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Bk,1 =



0 . . . 0
...

. . .
...

0 . . . 0 0

0 . . . 1/4 0

0 . . . 0 0


, (4.35)

and

Ck,1 =



0 1/2 0 . . . 0

1/4 0 1/4
. . .

...

0
. . .

. . .
. . . 0

1/4 0 1/4
... 0 1/4 0

0 . . . 0 1/4


, (4.36)

with special caseB1,1 =
[

1/2 0
0 0

]
. The multivariate Christo�el-Darboux formula (2.41)

can be realized using the matrices H0 = 1
2 and Hk = diag(1

8 ,
1
16 , . . . ,

1
16 ,

1
8).

We consider the signal model consisting of

A = R[x1, x2]
/
〈 Tn 〉,

M = A (as regular module),
(4.37)

and

Φ: R
n(n+1)

2 −→M,

Φ(s) =
∑

k+`<
n(n+1)

2

sk,`Tk,`. (4.38)

The signal model has a visualization, which resembles a triangle, cf. Fig. 4.9. We
present a geometric description of the common zeros using the coweights. That is
the common zeros are given as

V(〈 Tn 〉) =
{

2j+1
2n ω∨1 + k

2nω
∨
2

∣∣∣ j, k = 0, . . . , n− 1, j + k < n
}
. (4.39)

This results in n(n+1)
2 common zeros.

We derive a fast algorithm in case n = 2 ·m. Since for n = 2 ·m it is n(n+1)
2 6=

2(2+1)
2 · m(m+1)

2 one does not get an induction via the decomposition.
Due to the decomposition property 4.3, iii.), the map

(x1, x2) 7→ (T2,0(x1, x2), T0,2(x1, x2)) (4.40)

maps the variety V(Tn) to the variety V(Tm). The map

(x1, x2) 7→ (Tm,0(x1, x2), T0,m(x1, x2) (4.41)
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T0,0
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T3,0

T0,1
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T1,1

T1,2 T2,1

T0,0
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Figure 4.9: Visualization of the signal model for Chebyshev polynomials of type C2

on the left. The shifts of x1 are blue and the shifts of x2 are red colored. On the
right the decomposed lattice after the basis change is shown.

stretches the fundamental region F by a factor of m and folds it back under the
a�ne Weyl group. After the stretching operation one obtains m2 copies of the
fundamental region. Thus if the stretched zero is in the interior of F after folding
back one obtains m2 common zeros. If the stretched zeros is on the boundary of F
after folding back always two of the copies of F in the interior of the stretched region
share these common zeros. Hence in this case one only obtains m(m+1)

2 common zeros.
Of the common zeros of T2 there is one in the interior and two on the boundary.
Since these are the images under the stretching and folding operation one obtains
two subalgebras with m(m+1)

2 common zeros and one subalgebra with m2 common
zeros. Using Mathematica® the following general basis change is obtained. The
basis change is from (Tk,` | k+ ` < n) to (Tk,`Tt,p(Tm,0, T0,m) | k+ ` < m, t+ p < 2).
For this one as to distinguish between three regions of the indices ranging from (0, 0)
to (m,m), from (m+ 1, 0) to (2m,m), and from (0,m+ 1) to (m, 2m). Let k, ` < m.

The orbit of (k, `) under the Weyl group W (C2) is

{(−k − 2`, `), (−k − 2`, k + `), (−k,−`), (−k, k + `),

(k,−k − `), k, `, (k + 2`,−k − `), (k + 2`,−`)}.

Hence one has to distinguish the eight cases

` = 0,

k = 0 and 2 · ` < m,

k = 0 and 2 · ` = m,

k = 0 and 2 · ` > m,

k + 2 · ` < m,

k + 2 · ` = m,

k + 2 · ` > m,
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ω∨
1

m1

ω∨
2

m2

α1

α2

Figure 4.10: The three classes of common zeros of for the skew transforms in case
n = 2 · 3. The common zeros of T6 are shown after being stretched by a factor
of 3.The action of the a�ne Weyl group, folding the stretched triangle back to the
fundamental domain, is indicated. The di�erent colors indicate which common zeros
of 〈 T6,0, T0,6 〉 are common zeros of which 〈 T3,0 − α1, T0,3 − α2 〉.
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Figure 4.11: The di�erent positions of the basis elements correspond to one of the
eight cases.
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as visualized in Fig. 4.11. Note that since for any basis elements index (t, p) one has
t+ p < n = 2m one always has k + ` < m in the sequel.

For region I, i.e. indices ranging from (0, 0) to (m,m), one has

Tk,` = Tk,`

since every element is in the new basis as well as in the old. For region II, i.e. indices
ranging from (m+ 1, 0) to (2m,m), one obtains

Tm+k,` =



Tm,0 k, ` = 0,

−2T−k+m,k − T−k+m,0 + 4Tk,0 · Tm,0 ` = 0,

−T−2·`+m,` + 2T0,` · Tm,0 k = 0, 2` < m,

−T0,` + 2T0,` · Tm,0 k = 0, 2` = m,

−T2·`−m,−`+m + 2T0,` · Tm,0 k = 0, 2` > m,

− T−k+m,k+` − T−k−2·`+m,` . . .

− T−k−2·`+m,k+` + 4Tk,` · Tm,0
k + 2` < m,

−T0,` − T0,k+` − T2·`,k+` + 4Tk,` · Tm,0 k + 2` = m,

− Tk+2·`−m,−`+m − Tk+2·`−m,−k−`+m . . .

− T−k+m,k+` + 4Tk,` · Tm,0
k + 2` > m.

And �nally for region III, i.e. indices ranging from (0,m+ 1) to (m, 2m), one gets

Tk,m+` =



T0,m k, ` = 0,

−Tk,−k+m + 2Tk,0 · T0,m ` = 0,

−T0,−`+m − 2T2·`,−`+m + 4T0,` · T0,m k = 0, 2` < m,

T0,` − 4T0,`Tm,0 + 4T0,` · T0,m k = 0, 2` = m,

2T0,` + T0,m−` + 2T2m−2`,`

− 8T2`−m,m−` + 4T0,` · T0,m
k = 0, 2` > m,

− Tk,−k−`+m − Tk+2·`,−`+m
− Tk+2·`,−k−`+m + 4Tk,` · T0,m

k + 2` < m,

Tk,` − 2T0,`Tm,0 − 2T0,m−`Tm,0 + 4Tk,`T0,m k + 2` = m,

Tk,m−k−` + 2Tk,` + T2·m−k−2·`,k+` . . .

− 4Tk+2·`−m,−`+m · Tm,0 + T2·m−k−2·`,` . . .

− 4Tk+2·`−m,−k−`+m · Tm,0 + 4Tk,` · T0,m

k + 2` > m.

Since the obtained change of basis is sparse, we get a fast O(n2 log n) algorithm by
Theorem 3.13.

Since the number of common zeros of Tn equals dim Πn−1
2 Theorem 2.14 implies

the existence of an orthogonal transform. Denote the diagonal matrix with inverted
entries by

Dn = diag
(

1
/(
T>n−1(x)H−1

n−1An−1,1
∂
∂x1
Tn(x)

))
, (4.42)
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and by

H⊕n =
n−1⊕
k=0

H−1
k (4.43)

the direct sum of the H−1
k matrices. Reasoning analogously to the proof of Theo-

rem 2.14 an orthogonal version of the transform is given by

Forth =
√
H⊕n · F ·

√
Dn. (4.44)

The matrix H⊕n is needed here since we do not have orthonormal but only orthogonal
polynomials.

4.3 Generating functions of matrix-valued and multivari-

ate Chebyshev polynomials

When we considered the multivariate Chebyshev polynomials of the second kind in
Def. 4.5, we gave an ad-hoc explanation on the appearance of the sum of fundamental
weights and the division by the minimal anti-symmetric sum. In this section we
will consider these things from a more conceptual point of view, even valid for all
representations and not just one-dimensional ones. This construction is due to [44],
which was inspired by [37]. For this one observes that the same construction as in
(4.11) enriched by a representation ρ : W −→ GL(Vρ) of the Weyl group

(λ, θ)ρ =
∑
w∈W

ρ(w) exp(2πi〈λ,w>θ〉) (4.45)

leads to equivariant sums

(λ,w>θ)ρ = ρ(w)>(λ, θ)ρ. (4.46)

One is interested in �nding a projection from these equivariant sums to invariant
sums. The correct de�nition needs some technicalities �rst derived in [44].

One starts by investigating under which conditions the matrix-valued sums (4.45)
possess rank de�ciency. This can occur either if θ = w>θ for some θ ∈ F , which can
be avoided by choosing a subset of F as domain of de�nition, or if (λ, θ)ρ = (λ,w>θ)ρ
for all θ ∈ F . Both cases imply, using equivariance,

(λ, θ)ρ = (λ,w>θ)ρ = ρ(w)>(λ, θ)ρ. (4.47)

That is, the rows of (λ, θ)ρ lie in the eigenspace of ρ(w) corresponding to the eigen-
value 1. This motivates to consider only special weights.

A weight λ =
∑
λiωi has signature I ⊆ {1, 2, . . . , d} if λi 6= 0 if and only if i ∈ I.

Conversely to every I ⊆ {1, . . . , d} the associated primal weight is λI =
∑

i∈I ωi.
The intersection of the 1-eigenspaces of a signature I are de�ned as

VI =
⋂
i∈I

V{i} (4.48)
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with
V{i} = {x ∈ Vρ | ρ(σαi)x = x}. (4.49)

Denote by Ic = {1, . . . , d} \ I. Then for any j ∈ Ic one has

(λ, θ)ρ = (λ, σαjθ). (4.50)

Thus
rank(λ, θ)ρ ≤ VIc (4.51)

and in turn
(λ, θ)ρ = 0 (4.52)

if VIc = {0}. This justi�es the following de�nition.

De�nition 4.10 A weight λ ∈ P and its signature I are called admissible if VIc 6=
{0}. The set of minimal admissible signatures is denoted by A.

For example for the trivial representation all weights are admissible, while for the
determinant representation the only admissible signature is {1, . . . , d}. Thus for the
determinant representation the admissible weights in the positive cone are of the
form λ+ δ, with δ =

∑
i ωi = 1

2

∑
αi the half-sum of positive roots, well-known from

Weyls character formula [123].
For the second kind Chebyshev polynomials the projection is hence given as

(δ, θ)det. But δ is the primal weight of the minimal admissible set. The projection
from the equivariant to the invariant matrix-sums is hence de�ned as the minimal
function

Sρ(x1(θ), . . . , xd(θ)) =
∑
I∈A

(λI , θ)ρ. (4.53)

Now the de�nition of the multivariate and matrix-valued Chebyshev polynomials is
as follows.

De�nition 4.11 Let ρ be a representation of a Weyl group and λ ∈ P an admissible
weight. The λth Chebyshev polynomial Aρλ is the solution to

Sρ(x1(θ), . . . , xd(θ)) ·Aρλ(x1(θ), . . . , xd(θ)) = (λ, θ)ρ. (4.54)

Remark 4.12 Note that it is up to now not known if Sρ is invertible for all repre-
sentations. The examples given below strongly indicate that the minimal functions
should be invertible in general. The investigation of a proof of the invertibility of Sρ

is work in progress.

The multivariate and matrix-valued Chebyshev polynomials are polynomials in the
variables (4.12) as follows from a theorem by Kostant [55], which is the matrix version
of the theorem by Chevalley [11] which can be used in the scalar-valued case to show
that one has indeed polynomials . They are subject to the shift relation

Tλ1 ·Aρλ2 =
1

|W |
∑
w∈W

Aρλ1+wλ2
(4.55)
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and are invariant in θ since they are polynomials in (4.12) but equivariant in the
index

Aρwλ = Aρλ · ρ(w)>. (4.56)

Since one can choose di�erent representations with the same properties, there is
a notion of equivalence for representations. Two representations ρ1 and ρ2 are called
equivalent if there exists a matrix E such that

E · ρ1 · E−1 = ρ2. (4.57)

This motivates the introduction of the following de�nition of equivalent Chebyshev
polynomials.

De�nition 4.13 Two Chebyshev polynomials to representations ρ1 and ρ2 are called
equivalent if there exists an invertible matrix E such that

E ·Aρ1λ · E−1 = Aρ2λ . (4.58)

Equivalent representations lead to equivalent Chebyshev polynomials.

Lemma 4.14 Let ρ1 and ρ2 be two equivalent representations. Then the Chebyshev
polynomials Aρ1λ and Aρ2λ are equivalent for any λ.

Proof: Let E be an invertible matrix such that E · ρ1 · E−1 = ρ2. Then

E(λ, θ)ρ1E
−1 =

∑
w∈W

Eρ1(w)E−1 exp(2πi〈λ,w>θ〉)

=
∑
w∈W

ρ2(w) exp(2πi〈λ,w>θ〉)

= (λ, θ)ρ2 ,

and hence E ·Sρ1E−1 = Sρ2 , as well. The Chebyshev polynomial Aρ2λ is the solution
to

Sρ2Aρ2λ = (λ, θ)ρ2 .

Conjugation of the de�nining equation

Sρ1Aρ1λ = (λ, θ)ρ1

for Aρ1λ with E leads to

E
(
Sρ1Aρ1λ

)
E−1 = E(λ, θ)ρ1E

−1

inserting 1 = EE−1 one obtains(
ESρ1E−1

)(
EAρ1λ E

−1
)

= E(λ, θ)ρ1E
−1

and thus one gets
Sρ2
(
EAρ1λ E

−1
)

= (λ, θ)ρ2 .

Thus EAρ1λ E
−1 and Aρ2λ are solutions to the same equation and hence are equal. �
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We are now ready to deduce the generating functions. The formula for the generating
functions and the proof are generalizations of ideas given in [18] for the scalar-valued
multivariate Chebyshev polynomials to the matrix-valued case.

Theorem 4.15 Let ρ : W −→ GL(V ) denote the representation of a Weyl group.
Denote by Wr = {w ∈W | ρ(w) = r} and by

Mr,k = diag(exp(2πif1,k(θ)), . . . , exp(2πif|Wr|,k(θ))) (4.59)

the diagonal matrix of action entries, i.e. fi,k(θ) is the kth component of wi ∈ Wr

acting on θ. Assume that Sρ is invertible. The generating function for the Chebyshev
polynomials associated to ρ is then given by

Sρ(θ)
−1Fρ(p1, . . . , pd) (4.60)

where the nominator is

Fρ(p1, . . . , pd) =
∑

r∈ρ(W )

r · tr(Rr,p1 · · ·Rr,pd) (4.61)

with
Rr,pi = (1|Wr| − pkMr,k)

−1. (4.62)

Proof: The symmetrized pairing obeys

(λ, θ)ρ =
∑
w∈W

ρ(w) exp(2πi〈λ,w>θ〉)

=
∑

r∈ρ(W )

r ·
∑
w∈Wr

exp(2πi〈λ,w>θ〉

=
∑

r∈ρ(W )

r

|Wr|∑
k=1

exp

(
2πi

d∑
i=1

fk,i(θ)λ

)

=
∑

r∈ρ(W )

r tr(Mr)

with

Mr = diag

(
exp

(
2πi

d∑
i=1

f1,i(θ)λ

)
, . . . ,

(
2πi

d∑
i=1

f|Wr|,i(θ)λ

))
.

Now the matrix Mr can be written as a product

Mr =
d∏

k=1

Mλk
r,k

with
Mr,k = diag(exp(2πif1,k(θ)), . . . , exp(2πif|Wr|,k(θ))).

Observe that

Mλk
r,k =

1

λk!

dλk

dpλkk
Rr,pk

∣∣
pk=0

.
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Thus one obtains

(λ, θ)ρ =
1

λ!

∂λ

∂pλ11 · · · ∂pλdd

∑
r∈ρ(W )

r · tr(Rr,p1 · · ·Rr,pd)
∣∣∣
p1=···=pd=0

.

Since Aρλ(θ) = Sρ(θ)−1 · (λ, θ)ρ the proof is �nished. �

Remark 4.16 Observe that the generating functions derived using Theorem 4.15
are still in θ-coordinates. But it is, using computer algebra, much easier to convert
the occurring generating functions to the x-coordinates than to �nd a closed-form of
the Chebyshev polynomials in x-coordinates.

We give now two examples of the generating functions of matrix-valued Chebyshev
polynomials associated to two-dimensional representations of Weyl groups. The cal-
culations were performed in the computer algebra system Mathematica® and the
representations where chosen so that Mathematica® could handle the occurring
variable changes more easily. The Mathematica® notebooks used for the calcula-
tion are available online under the url https://github.com/bseifert-HSA/generating-
functions-matrix-chebyshevs.

Example 4.17 A faithful two-dimensional representation of the Weyl group of the
root system A2 is given by the following six matrices{[

1 0

0 1

]
,

[
0 −1

−1 0

]
,

[
−1 −1

1 0

]
,

[
−1 0

1 1

]
,

[
0 1

−1 −1

]
,

[
1 1

0 −1

]}
. (4.63)

There are two minimal admissible sets A = {{1}, {2}}. Denote by

dA2 = (−1 + p3 + 3px− 3p2y) · (−1 + q3 − 3q2x+ 3qy). (4.64)

Using Theorem 4.15 we obtain the following entries of the matrix-valued generating
function

F1,1(p, q) = 2
dA2
·
(
q + 2q2 + p(−4 + q(q − 3x− 6qx+ 6y)

+ p2(−2 + q(2− 3qx+ 6y)))
)
,

F1,2(p, q) = 2
dA2
·
(
(−2q(1 + 2q) + p(2 + q(q + 3x+ 12qx− 6y))

− p2(1 + 2q)(−1 + 3qy))
)
,

F2,1(p, q) = 2
dA2

(
q(2 + q) + p2(−4 + q − 6q2x+ 12qy)

+ p(−2 + q(q(2− 3x)− 6x+ 3y))
)
,

F2,2(p, q) = 2
dA2

(
2q(2 + q)− p(1 + q(6x+ q(2 + 6x)− 3y))

+ p2(2 + q)(−1 + 3qy)
)
.

(4.65)

Example 4.18 As before we calculate the generating function for a representation
of the Chebyshev polynomials of type B2. A faithful two-dimensional representation
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of the Weyl group of B2 is given by the matrices{[
1 0

0 1

]
,

[
−1 0

0 −1

]
,

[
−1 −1

0 1

]
,

[
−1 −1

2 1

]
,[

−1 0

2 1

]
,

[
1 0

−2 −1

]
,

[
1 1

−2 −1

]
,

[
1 1

0 −1

]}
.

(4.66)

Denote by

dB2 = ((−1+p2)2 +4p(1+p)2x−16p2y2) · ·(1+q(q(2+q2 +4x)−4(1+q2)y)) (4.67)

The generating function is given by

F1,1(p, q) = 8
dB2

(
− q(1 + q)2 + p(1 + q)(2 + q(−1 + q + 4x+ 4qx− 4y))

+ p2
(
4 + 8y + q(1 + 4x+ q(6 + q + 4(4 + q)x)− 12y

− 4q(−2 + q − 4x)y − 16(2 + q + q2)y2)
)

− p3(−2 + q(1 + 8y + q(q + 4qy − 4(1 + 2x+ y))))
)
,

F1,2(p, q) = 8
dB2

(
p− q(1 + q)2 + p3(1 + q(q + 2q(2 + q)x− 4y))

+ pq(q + 4q(2 + q)x+ 2(x− 2y))

+ p2
(
2 + 4y + q(1 + 2x+ q(4 + q + 6(2 + q)x)

− 4y − 4q(−1 + q − 2x)y − 16(1 + q + q2)y2)
))
,

F2,1(p, q) = 16
dB2

(
q(1 + q + q2)− p(1 + q(1 + 4x+ q(q + 4x+ 4qx− 4y)− 2y))

+ p2
(
− 2− 8y + q(−1− q(3 + q)− 4(1 + q)2x

+ 2(3 + q(−4 + q − 8x))y + 8(4 + q + 2q2)y2)
)

+ p3(−1 + q(1 + 4y + q(−2 + q − 4x+ 2(−2 + q)y)))
)
,

F2,2(p, q) = 8
dB2

(
− p+ 2q(1 + q + q2)− pq(q + 8q(1 + q)x+ 4(x− y))

− 2p2
(
1 + 4y + q(1 + 2x+ q(2 + q + 6(1 + q)x)

− 2y − 2q(−2 + q − 4x)y − 8(2 + q + 2q2)y2)
)

− p3(1 + q(q + 4q(1 + q)x− 4y))
)
.

(4.68)
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Chapter 5

Conclusion and Future work

This thesis has made several contributions to the development of the algebraic signal
processing theory in the case of polynomial algebras in several variables. First we
connected the algebraic signal processing theory to algebraic geometry by interpret-
ing the �lter algebra as a space and the signal module as a vector bundle over this
space. This enabled us to give su�cient conditions on ideals to induce well-de�ned
Fourier transforms by the Chinese remainder theorem.

The second contribution was the connection between algebraic signal processing
and the theory of multivariate orthogonal polynomials expanding prior work. This
gave a generalization of the Gauÿ-Jacobi procedure for the derivation of orthogonal
polynomials in the multivariate case. Unfortunately the multivariate Gauÿ-Jacobi
procedure is tightly connected to the existence of Gauÿian cubature formulae, which
rarely exist.

We proceeded to generalize prior results on induction- and decomposition-based
approaches to FFT-like algorithms in the multivariate case. The generalization of the
induction-based approach allowed to include the fast Fourier transform algorithms
on various directed lattices by Merseareau and Speake [75] into the algebraic theory.
The generalization of the decomposition-based approach allowed for the inclusion of
polynomial algebras with di�erent-sized subalgebras.

We then investigated the connection to Lie theory. The generalizations of Cheby-
shev polynomials based on the re�ection groups associated to the root systems were
investigated. Since the multivariate Chebyshev polynomials are indexed by the el-
ements of the weight lattices of semi-simple Lie algebras, they gave rise to signal
models on these lattices. Furthermore they obey the decomposition property and
thus their exist fast algorithms, for which we gave a geometric interpretation.

A further generalization of the multivariate Chebyshev polynomials leads to
matrix-valued Chebyshev polynomials associated to representations of the re�ections
groups of the root lattices. We deduced a general scheme for the calculation of the
generating functions of matrix-valued and multivariate Chebyshev polynomials and
gave two examples.

Of course there are things open to investigate in the future. First and foremost
there is still missing an existence proof of the matrix-valued Chebyshev polynomi-
als 4.54. For this one has to show that the minimal function Sρ does not vanish
in the interior of the fundamental region. Daan Huybrechs suggested the following
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Figure 5.1: Nodal lines, i.e. set of points where the determinant vanishes, of the 36th
matrix-valued eigenfunction with A2-symmetries on the equilateral triangle.

approach in private communication. First one observes that Sρ is element-wise an
eigenfunction of the Laplacian on F , with certain jumping conditions on the bound-
ary. In the case of ρ = det the boundary conditions are the homogeneous Dirichlet
boundary conditions and in case of ρ = id one has Neumann boundary conditions.
So in the one-dimensional case that Sρ is invertible follows from the Courant nodal
theorem [14]. Hence one possible approach to prove that Sρ is invertible is to de-
rive a theory of matrix element-wise eigenfunctions of the Laplacian with jumping
boundary conditions and proof an analogue of the Courant nodal theorem in this
setting. One might wonder why the theory of matrix-valued eigenfunctions of Lapla-
cians has not been considered, yet. One possible explanation to this is that the
proof of the Courant nodal line relies on a patching lemma, which states that the
eigenfunctions of subdomains, bounded by the nodal domains of the nth eigenfunc-
tion, corresponding to the smallest eigenvalue is the nth eigenfunction of the original
domain. Now in the matrix-valued setting this would imply that the nodal domains
have the same symmetries as the original domain. Hence this restricts the possible
domains for matrix-valued eigenfunctions with jumping boundary conditions to the
foldable �gures. First numerical experiments support this conjecture, cf. Fig. 5.1.

The second thing missing is a general method to deduce fast algorithms for the
inverse Fourier transforms. In the one-variable case one can rely on the Gauÿ-Jacobi
procedure if the signal model is based on orthogonal polynomials. Then one can de-
�ne an orthogonal transform whose inverse can be calculated with the same algorithm
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as the original transform. In several variables this is only possible in certain special
cases, as follows from Theorem 2.15. Hence a general method for the calculation of
the inverse Fourier transforms is desirable.

Moreover the connection to algebraic geometry is still somewhat super�cial and
needs to be tightened. We conjecture that the usage of more advanced tools, e.g. co-
homology, could be bene�cial. Indeed in topological signal processing sheaf cohomol-
ogy has found applications in sensor fusion [100] and general sampling theorems [99].
General sheaf theory has found applications in network analysis [30], as well.

Another idea from a current trend in algebraic geometry is tropicalization. In
tropical geometry [70] one studies piecewise-linear shadows of algebraic curves by
replacing the �eld R with the semi-�eld (R ∪ {−∞},max,+). This theory has ap-
plications in economics and dynamic programming and has recently found some ap-
plications in signal processing [26,116]. Hence establishing a connection to algebraic
signal processing theory seems to be reasonable goal.

Furthermore there exist non-equispaced, i.e., on arbitrary grids, Fourier trans-
forms on the circle, the sphere and the rotation group [86,120]. These non-equispaced
Fourier transforms can be used to deduce fast global optimization methods on these
manifolds [25]. Since the multivariate Chebyshev polynomials have strong connec-
tions to the representation theory of Lie groups it is natural to wonder if one can gen-
eralize these methods to compact Lie groups. One step into this direction would be
to translate the interpolation used to calculate the non-equispaced Fourier transform
into the algebraic setting. A possible tool to implement this could be deformation
theory.

Finally there are of course other algebras than polynomial algebras, which could
be of interest. The �rst class to consider are algebras associated to graphs, i.e. the
ones generated by the adjacency matrix of a graph. This is one of the approaches to
graph signal processing [106,107], which has recently found many applications in the
applied sciences. Another class of algebras to be considered are algebras associated
to lattices of partially ordered sets or hypergraphs. First steps in this directions can
be found in [87,88].
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Appendix A

Gröbner bases

This appendix summarizes some results on Gröbner bases. See [15] for more details
and proofs of the results, as well as references to the literature.

Let α = (α1, . . . , αd) ∈ Nd
0 be a multi-index. Any polynomial p ∈ C[x1, . . . , xd]

can be written as
p =

∑
α

cαx
α =

∑
α

xα1
1 . . . xαdd , (A.1)

with cα ∈ C and α ranging over a �nite subset ofNd
0. The cα are called the coe�cients

of p and the cαxα are called the terms of p.
The ideal generated by p1, . . . , ps ∈ C[x1, . . . , xd] is

〈 p1, . . . , ps 〉 =

{∑
i

hipi | hi ∈ C[x1, . . . , xd]

}
. (A.2)

The polynomials p1, . . . , ps are called a basis of the ideal 〈 p1, . . . , ps 〉. The Hilbert's
basis theorem, cf. [15, Ch. 2, �5, Thm. 4], states that every ideal of C[x1, . . . , xd] is
�nitely generated, i.e. of the form A.2. Note that the basis of an ideal is not uniquely
determined.

One is interested in special bases of an ideal, which possess good computational
properties. These special bases are the Gröbner bases. For their de�nition, we
need to recall the notion of a monomial ordering. First one observes that there is a
one-to-one correspondence between Nd

0 and the monomials of C[x1, . . . , xd] via

(α1, . . . , αd)↔ xα1
1 · · ·xαdd . (A.3)

Hence one relies on the de�nition of an ordering on Nd
0 to de�ne orderings on the

monomials, by setting xα > xβ if α > β.

De�nition A.1 (Monomial ordering) A monomial ordering on C[x1, . . . , xd] is
a relation > on Nd

0 which satis�es

i.) the relation > is a total order on Nd
0, i.e. exactly one of the statements

α > β, α = β, β > α (A.4)

is true for any α, β ∈ Nd
0,

83



84 APPENDIX A. GRÖBNER BASES

ii.) if α > β and γ ∈ Nd
0 then α+ γ > β + γ,

iii.) the relation > is a well-ordering of Nd
0, i.e. every non-empty subset of Nd

0

contains a smallest element.

De�nition A.2 Let p =
∑

α cαx
α 6= 0 ∈ C[x1, . . . , xd] and > be a monomial order,

then

i.) the multi-degree of the polynomial p is

multideg(p) = max{α ∈ Nd
0 | cα 6= 0}, (A.5)

ii.) the leading coe�cient of p is

LC(p) = cmultideg(p), (A.6)

iii.) the leading monomial of p is

LM(p) = xmultideg(p), (A.7)

iv.) the leading term of p is

LT(p) = LC(p) · LM(p). (A.8)

De�nition A.3 Let I ⊆ C[x1, . . . , xd] be a non-zero ideal and let > be a monomial
oder, then

i.) the leading terms of the ideal I are

LT(I) = {cxα | there exists p ∈ I \ {0} such that LT p = cxα}, (A.9)

ii.) the ideal of leadings terms is 〈 LT I 〉.

Note that in general 〈 LT p1, . . . ,LT ps 〉 6= 〈 LT 〈 p1, . . . , ps 〉 〉. The bases for an
ideal for which equality holds are the Gröbner bases.

De�nition A.4 A subset G = {g1, . . . , gs} ⊆ I such that

〈 LT g1, . . . ,LT gs 〉 = 〈 LT I 〉 (A.10)

is called a Gröbner basis.

Proposition A.5 Every ideal has a Gröbner basis. Any Gröbner basis of an ideal
is a basis for the ideal.

What is so remarkable about Gröbner bases is that the remainder of division by them
is unique. For the division algorithm in several variables see Algorithm 1.

Proposition A.6 Let I ⊆ C[x1, . . . , xd] be an ideal and G = {g1, . . . , gs} be a
Gröbner basis for I. If p ∈ C[x1, . . . , xd] then there is a unique r ∈ C[x1, . . . , xd]
such that

i.) No term of r is divided by any of the LT g1, . . . ,LT gs,

ii.) there is a g ∈ I such that p = g + r.
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Algorithm 1 The division algorithm for polynomials in several variables.
function Division(G = {g1, . . . , gs}, p)

qi = 0, r = 0, tmp = p
while tmp 6= 0 do

i = 1
division_occured = false
while i < s and division_occured = false do

if LT(gi) divides LT(tmp) then

qi = qi + LT(tmp)
LT(gi)

tmp = tmp− LT(tmp)
LT(gi)

· gi
division_occured = true

else

i = i+ 1
end if

end while

if division_occured = false then
r = r + LT(tmp)
tmp = tmp− LT(tmp)

end if

end while

return q1, . . . , qs, r such that p = q1g1 + . . . qsgs + r
end function

Note that the quotients qi from Algorithm 1 change if one changes the implicit chosen
ordering of the gi.

An easy criterion for deciding, if a basis of an ideal is a Gröbner basis, is the
Buchberger criterion, which relies on the notion of S-polynomials.

De�nition A.7 Let f, g ∈ C[x1, . . . , xd] \ {0}. Let α = multideg(f) and β =
multideg(g). The least common multiple of LM(f) and LM(g) is xγ with γi =
max(αi, βi). The S-polynomial of f and g is

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g. (A.11)

Theorem A.8 (Buchberger criterion) Let I be an ideal. A basis G = {g1, . . . , gs
of I is a Gröbner basis of I if and only if for all i 6= j the remainder of division of
S(gi, gj) by G is zero.

The Buchberger criterion is for example ful�lled if the leading monomials of the gi
are disjoint, i.e. if LM(gi) = xαi then ai,k 6= 0 if and only if aj,k = 0 for all j 6= i.

In this thesis we use the fact that Gröbner bases solve the ideal membership
problem. That is f ∈ I = 〈 g1, . . . , gs 〉, for G = {g1, . . . , gs} a Gröbner basis, if and
only if the remainder of division of f by G is zero.
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Appendix B

Chinese remainder theorem

This appendix recalls the Chinese remainder theorem for rings and modules with a
special focus on polynomial algebras. We will especially focus on the explicit form
for polynomials in several variables.

Theorem B.1 (Chinese remainder theorem) Let R be a commutative ring and
I = I1 ∩ · · · ∩ In be the intersection of pairwise comaximal ideals. Then

R
/
I ∼= R

/
I1 × · · · ×R

/
In. (B.1)

If M is an R-module then

M
/
MI ∼= M

/
MI1 × · · · ×M

/
MIn. (B.2)

Proof: We consider n = 2, the general fact follows by induction. We start by
showing that for comaximal ideals I1, I2 one has I1I2 = I1∩ I2. For this observe that
any x ∈ I1I2 is of the form

∑
i1∈I1,i2∈I2 i1i2. But then x ∈ I1 since the i1 are and

x ∈ I2 since the i2 are and the R is commutative. Hence x ∈ I ∩ J so IJ ⊆ I ∩ J .
Since I1, I2 are comaximal one has R = I1 + I2. Now observe that

I1∩I2 = R(I1∩I2) = (I1+I2)(I1∩I2) = I1(I1∩I2)+I2(I1∩I2) ⊆ I1I2+I2I1 = I1I2

by commutativity. Hence I1I2 = I1 ∩ I2 follows.
Now de�ne the homomorphism

φ : R −→ R
/
I1 ×R

/
I2

by φ(r) = (r + I1, r + I2). For (B.1) to hold one has to show that the sequence

0 I1 ∩ I2 R R
/
I1 ×R

/
I2 0

φ

is exact. That is, one has to show that φ is surjective. We have to �nd to each
(r1 + I1, r2 + I2) an x ∈ R such that φ(x) = (r1 + I1, r2 + I2). Since R = I1 + I2

one can write r1 = i1,1 + i2,1 and r2 = i1,2 + i2,2 with i1,1, i1,2 ∈ I1 and i2,1, i2,2 ∈ I2.
Now let x = i1,2 + i2,1. Then x − r1 = i1,2 − i1,1 ∈ I1 so x + I1 = r1 + I1 and
x − r2 = i2,1 − i2,2 ∈ I2 so x + I2 = r2 + I2. Hence φ(x) = (r1 + I1, r2 + I2) and
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surjectivity of φ is proven. Thus the Chinese remainder theorem for commutative
rings holds.

The Chinese remainder theorem for modules (B.2) is now just a simple conse-
quence of its version for rings since one has the canonical isomorphism R

/
I ⊗ A ∼=

A
/
AI and tensor products commute with �nite direct products. �

This general form of the Chinese remainder theorem does not tell how to explicitly
calculate the isomorphism. As we are mainly interested in polynomial algebras, we
specialize the isomorphism from the theorem to the case of polynomial algebras. We
investigate �rst the complete decomposition and then what happens if one has a
decomposition.

Proposition B.2 Consider Πn
/
I for a zero-dimensional radical ideal I. Then I =∏

α∈V(I)〈 x1 − α1, . . . , xn − αn 〉 with all 〈 x1 − α1, . . . , xn − αn 〉 comaximal. Then
the isomorphism from the Chinese remainder theorem is realized by the evaluation
homomorphism p 7→ (p(α))α∈V(I).

Proof: We have to show that p − p(α) ∈ 〈 x1 − α1, . . . , xn − αn 〉. Denote by
g(x1, . . . , xn) = p(x1, . . . , xn) − p(α). Then g(α) = 0. A Gröbner basis for 〈 x1 −
α1, . . . , xn − αn 〉 is {x1 − α1, . . . , xn − αn}. Now g can be written as g = p1(x1 −
α1) + · · ·+ pn(xn − αn) + r for polynomials pi, where none of the xi − αi divides r,
so r is constant. Since g(α) = p1 · 0 + · · · + pn · 0 + r = 0 it follows that r = 0 and
thus p− p(α) ∈ 〈 x1 − α1, . . . , xn − αn 〉. �

Next we show how the Chinese remainder theorem is realized if one uses only a
partial composition. This version is used in Sect. 3.2.

Proposition B.3 Consider the algebra Πn
/
I for a zero-dimensional radical ideal

I = 〈 p1, . . . , pn 〉 which obeys the decomposition property

〈 p1, . . . , pn 〉 = 〈 q1(r1, . . . , rn), . . . , qn(r1, . . . , rn) 〉. (B.3)

Assume the ri − αi form Gröbner bases for the ideals they generate. Then the ideals
〈 r1−α1, . . . , rn−αn 〉 are comaximal. The isomorphism from the Chinese remainder
theorem is realized by replacing each occurrence of ri by αi.

Proof: The comaximality of the ideals 〈 r1 − α1, . . . , rn − αn 〉 follows from the
radicality of I. Denote by p(ri :> αi) the polynomial were every occurrence of ri has
been replaced by αi. We show that g = p − p(ri :> αi) ∈ 〈 r1 − α1, . . . , rn − αn 〉.
Observe that due to the Gröbner basis property we can write g = p1(r1 − α1) +
· · · + pn(rn − αn) + r, where r is polynomial not divided by any of the ri − αi.
Now observe again that g(ri :> αi) = 0 and thus r = 0. Hence p − p(ri :> αi) ∈
〈 r1 − α1, . . . , rn − αn 〉. �
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Appendix C

The Akra-Bazzi theorem and

computational costs of matrices

The Akra-Bazzi theorem [1] is a method to determine the asymptotic behaviour of
algorithms, whose asymptotic complexity can be described using recurrence equa-
tions. In this appendix we investigate the application of the Akra-Bazzi theorem on
matrix factorizations, i.e. we state what we mean by the computational cost of a
matrix factorization and how to determine the asymptotic computationally cost if
one has a recurrence formula for the factorization.

We use the following two Landau symbols. The �rst one is the asymptotic upper
bound which tells that a function f grows at most as fast as another function g,

it is denoted by f ∈ O(g) and de�ned as lim supx→∞
∣∣∣f(x)
g(x)

∣∣∣ < ∞. The second

one is the asymptotic sharp bound which tells that a function f is bounded from
above and from below by a function g, it is denoted by f ∈ Θ(g) and de�ned as

0 < lim infx→∞
∣∣∣f(x)
g(x)

∣∣∣ ≤ lim supx→∞
∣∣∣f(x)
g(x)

∣∣∣ < ∞. The asymptotic sharp bound

implies f ∈ O(g) as well as g ∈ O(f).
The Akra-Bazzi theorem is now as follows.

Theorem C.1 (Akra-Bazzi) Let T : R+ −→ R+ be a function which obeys the
recurrence relation

T (x) = g(x) +

k∑
i=1

aiT (bix+ hi(x)) (C.1)

for all x ≥ x0, where x0 is some constant, such that

� the recurrence (C.1) can be resolved uniquely,

� ai > 0 and bi ∈ [0, 1] are constants,

� |g′(x)| ∈ O(xc) for some constant c,

� |hi(x)| ∈ O
(

x
(log x)2

)
.

Then one has

T (x) ∈ Θ

(
xp
(

1 +

∫ x

1

g(x)
up+1 du

))
, (C.2)
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COSTS OF MATRICES

with p ∈ R+ such that
∑k

i=1 aib
p
i = 1.

Now for its applications to matrix factorizations consider the following. The
computational cost of a matrix is de�ned to be the number of complex additions and
complex multiplications to form the matrix-vector product of the matrix with an
arbitrary vector. That is, for an n × n matrix one has for each row n − k complex
multiplications, where k is the number of entries being 0 or 1, and n−1−j additions,
where j is the number of entries being 0. The overall computational cost of a matrix
are considered as the sum of the number of complex additions and multiplications.
So an n× n matrix where all entries are non-zero is of computational cost O(n2).

As an example consider a recursive matrix factorization, where in each step the
n×nmatrix factors into a product of matrices of computational cost O(n) and a block
diagonal matrix with blocks of size n/2 × n/2. E.g. consider P1, P2, B,M ∈ Cn×n
such that

M = P1 ·B · P2 (C.3)

with P1, P2 ∈ O(n) and B a block diagonal matrix with blocks of size n/2 × n/2.
Then one obtains a recurrence equation for the computational cost of the form

T (n) = T (n/2) + T (n/2) + c · n, (C.4)

where c is the number of matrices of cost O(n). Since 1/2 + 1/2 = 1 we obtain from
the Akra-Brazzi Theorem C.1 that

T (n) ∈ Θ(n · log n), (C.5)

since one has
∫ n

1
u
u2

du = log n.
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