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SUMMARY

Life on oceanic islands provides a playground and comparably easy-
studied basis for the understanding of biodiversity in general. Island
biota featuremany fascinating patterns: endemic species, species radia-
tions and species with peculiar trait syndromes. However, classic and
current island biogeography theory does not yet consider all the fac-
tors necessary to explain many of these patterns. In response to this,
there is currently a shift in island biogeography research to system-
atically consider species traits and thus gain a more functional per-
spective. Despite this recent development, a set of species characteris-
tics remains largely ignored in island biogeography, namely genomic
traits. Evidence suggests that genomic factors could explain many of
the speciation and adaptation patterns found in nature and thus may
be highly informative to explain the fascinating and iconic phenomena
known for oceanic islands, including species radiations and suscepti-
bility to biotic invasions.

Unfortunately, the current lack of comprehensive meaningful data
makes studying these factors challenging. Even with paleontological
data and space-for-time rationales, data is bound to be incomplete due
to the very environmental processes taking place on oceanic islands,
such as land slides and volcanism, and lacks causal information due to
the focus on correlative approaches. As promising alternative, integra-
tive mechanistic models can explicitly consider essential underlying
eco-evolutionary mechanisms. In fact, these models have shown to be
applicable to a variety of different systems and study questions.

In this thesis, I therefore examined present mechanistic island mod-
els to identify how they might be used to address some of the current
open questions in island biodiversity research. Since none of the mod-
els simultaneously considered speciation and adaptation at a genomic
level, I developed a new genome- and niche-explicit, individual-based
model. I used this model to address three different phenomena of is-
land biodiversity: environmental variation, insular species radiations
and species invasions.

Using only a single model I could show that small-bodied species
with flexible genomes are successful under environmental variation,
that a complex combination of dispersal abilities, reproductive strate-
gies and genomic traits affect the occurrence of species radiations and
that invasions are primarily driven by the intensity of introductions
and the trait characteristics of invasive species. This highlights how
the consideration of functional traits can promote the understanding
of some of the understudied phenomena in island biodiversity.
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The results presented in this thesis exemplify the generality of in-
tegrative models which are built on first principles. Thus, by apply-
ing such models to various complex study questions, they are able to
unveil multiple biodiversity dynamics and patterns. The combination
of several models such as the one I developed to an eco-evolutionary
model ensemble could further help to identify fundamental eco-evolu-
tionary principles. I conclude the thesis with an outlook on how to use
and extend my developed model to investigate geomorphological dy-
namics in archipelagos and to allow dynamic genomes, which would
further increase the model’s generality.
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ZUSAMMENFAS SUNG

Inseln sind nützlicheModellsysteme für das Verständnis von Biodiver-
sität im Allgemeinen. Dies wird verstärkt durch den Umstand, dass
Flora und Fauna auf Inseln eine Vielzahl einzigartiger Phänomene auf-
weisen: von endemischen Arten über Artenradiationen bis hin zu au-
ßergewöhnlichenArteigenschaften. Bisherige Theoriender Inselbiogeo-
graphie berücksichtigen jedoch nicht alle Faktoren, die nötig wären,
um solche Phänomene zu erklären. Derzeitige Bemühungen zielen da-
her darauf ab, Arteigenschaften systematisch mit bestehenden Theo-
rien zu vereinen. Trotz dieser Entwicklung werden genomische Art-
eigenschaften bislang in solch einer funktionalen Inselbiogeographie
weitestgehend ignoriert, obwohl es Hinweise darauf gibt, dass genomi-
sche Faktoren einige der faszinierenden Diversifizierungsmuster ein-
schließlich Artenradiationen erklären könnten.

Die Erforschung dieser Faktoren gestaltet sich aufgrund des Man-
gels an umfangreichen, aussagekräftigen Daten jedoch als schwierig.
Selbst unter Zuhilfenahme von paläontologischen Daten und substitu-
ierten Daten aus vergleichbaren Systemen lassen sich Unvollständig-
keiten in den Daten und das Problem fehlender Kausalzusammenhän-
ge schwer überwinden. Eine vielversprechende Alternative stellen me-
chanistische Modelle dar, von denen einige bereits für eine Vielzahl
von Systemen und Forschungsprojekten eingesetzt wurden.

In dieser Dissertation wurden daher mechanistische Inselmodelle
untersucht, um herauszufinden, inwiefern sich diese für derzeitige of-
fene Fragen in der Inselbiogeographie eignen würden. Da keines der
untersuchten Modelle gleichzeitig Artbildung and Anpassung unter
Berücksichtigung von genomischen Faktoren abbildet, wurde ein neu-
es genom- und nischenexplizites, individuenbasiertes Modell entwi-
ckelt. Dieseswurde benutzt, umdrei verschiedene Phänomene imKon-
text der Inselbiogeographie zu untersuchen: die Anpassung an Um-
weltvariation, Artenradiationen und Invasionen durch exotische Ar-
ten.

Mit diesem neuentwickeltem Modell konnte gezeigt werden, dass
kleinere Arten mit flexiblen Genomen unter variablen Umwelteigen-
schaften erfolgreicher sind, dass eine komplexe Kombination aus Aus-
breitungsfähigkeiten, Fortpflanzungsstrategien und genomischen Art-
eigenschaften das Entstehen von Artenradiationen beeinflussen und
dass Invasionen vor allem von der Einführungsintensität und den Art-
eigenschaften exotischerArten getrieben sind.Diese Ergebnisse demons-
trieren, wie die Berücksichtigung funktionaler Arteigenschaften dabei
helfen kann, einige bislang wenig untersuchte Phänomene der Insel-
biogeographie zu verstehen.
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Die Ergebnisse dieser Dissertation stehen beispielhaft für die Allge-
meingültigkeit integrativer, auf Grundzusammenhängen aufbauender
Modelle. Dies wird durch die Aufdeckung diverser Biodiversitätsmus-
ter und -dynamiken im Rahmen der Bearbeitung verschiedener kom-
plexer Fragestellungen hervorgehoben. Weitere Modelle, wie das hier
beschriebene, könnten sogar in einemModellensemble kombiniertwer-
den, umöko-evolutionareGrundprinzipien zu identifizieren.Abschlie-
ßend wird ein Ausblick auf die Möglichkeit gewährt, das Modell wei-
terzunutzen und zu erweitern, um beispielsweise geomorphologische
Archipeldynamiken oder dynamischeGenome abzubilden, und damit
die Allgemeingültigkeit des Modells noch zu erweitern.
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Change is the essential process of all existence.

— Spock
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Part I

I NTRODUCT ION





1
L I F E ON I S LANDS

Oceanic islands host a multitude of fascinating and unique species.
This circumstance already inspired researchers like Darwin and Wal-
lace to formulate their groundbreaking evolutionary theories on the
origin of species (Darwin, 1859; Wallace, 1880; Warren et al., 2015).
More than 150 years later, researchers are still working toward find-
ing out which factors make island biota as unique as they are. The fact
that islands represent comparatively small, closed systems that feature
all of the relevant eco-evolutionary and environmental processes act-
ing in other, for instance, continental, systems, makes them ideal study
systems for biodiversity in general (Warren et al., 2015). Islands are
recognized to feature some of the most diverse ecosystems and host a
majority of the world’s endemics (Kier et al., 2009). Unfortunately, this
uniqueness comes at a cost:many island species are prominently at risk
by neobiota, climate and land use change (Myers et al., 2000; Patiño et
al., 2017). Investigating how island biodiversity is shaped and main-
tained therefore helps to understand biodiversity in general and thus
to estimate its likely response to global change.

In this thesis, I will present my research aimed at investigating some
of the factors and mechanisms that shape island biodiversity using
process-based models.

1.1 PAT T ERNS OF I S LAND B IOD IV ER S I T Y

There are several aspects which contribute towardmaking island biota
so intriguing. One of them is the phenomenon that island communities
do not appear as random subsets of continental species pools. Instead,
of all the lineages found on the continents, only a select few are rep-
resented on islands as well (Taylor et al., 2019). This so-called “island
disharmony” can be explained by the fact that the only species that
end up colonizing islands are those that have the ability to actually
reaching them (Juan et al., 2000). Island disharmony thus exemplifies
some of the many environmental and biotic filters that shape island
biodiversity. A second aspect further amplifies this uniqueness. Com-
pared to other biogeographic regions, oceanic islands exhibit a dispro-
portionately high number of endemics, i.e. species which are found
nowhere else in the world (Kier et al., 2009). Since islands are often
quite isolated, in situ speciation rather than colonization contributes
disproportionally to species richness when compared to continental
systems (Whittaker and Fernández-Palacios, 2007). Furthermore, iso-
lation of the island impedes the spread of evolved species to neighbor-
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4 L I F E ON I S LANDS

ing islands or continental land masses. The fact that many endemics
within an island or archipelago are often closely related indicates the
many successive speciation events within corresponding clades. These
species radiations gave rise to, for example, the many species of Aeo-
nium on the Canary islands (Jorgensen and Olesen, 2001) or lobeliads
on Hawaii (Givnish et al., 2009). Yet, what enabled these lineages to
show such outstanding diversifications (adaptive radiations), while
most island species do not change markedly from the mainland lin-
eages is unclear. So far, many of these phenomena are described pri-
marily in a quantitative and species-agnostic manner, and species char-
acteristics are seldom taken into account (but seeCrawford et al., 2009).
As a result, current research highlights these species characteristics as
a promising factor to gain more insight into the origin of island biodi-
versity (Patiño et al., 2017; Warren et al., 2015).

Island species are in fact often associated with remarkable patterns
and characteristics themselves. The phenomenon coined as the “island
rule” is one of these patterns. It describes the tendency of large main-
land taxa to evolve into smaller island sister taxa, and of small main-
land taxa to evolve into larger island sister taxa (Foster, 1964). This is
often combined with a loss of dispersal ability and responses in other
traits like defensive capabilities. All of these species traits comprise
the island syndrome (Burns, 2019). For most of these characteristics,
there are plausible explanations. Given the vastness of ocean around
islands, which represents an inhospitable matrix, reducing dispersal
seems necessary to maintain viable population sizes rather than losing
all offspring to the sea. Additionally, losing defensive capabilities is a
way to reduce or re-allocate valuable energy in a new habitat where
enemies are not around. These phenomena are exemplary for a large
body of evidence of trait-related island patterns (Burns, 2019). In some
of the cases, they can be attributed to particular factors: for instance,
external drivers, geography or opportunism. The process of integral
importance for most of these phenomena is evolution. Current theoret-
ical frameworks hence focus on these kinds of factors to try to explain
island biodiversity.

1.2 FORMAL I S LAND B IOD IV ER S I T Y THEOR I E S

Since Darwin and Wallace, many theories have been put forth to ex-
plain island biodiversity. One of the most influential modern frame-
works on island biodiversity is MacArthur and Wilson’s equilibrium
theory of island biogeography (ETIB, MacArthur and Wilson, 1963).
ETIB describes island species numbers as the result of two factors: is-
land size and isolation. These factors, in turn, affect the opposing pro-
cesses of immigration and extinction. This formalization makes it pos-
sible to analytically express island species numbers as a function of
area — a concept known as Species-Area-Relationship (SAR). Over
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longer time spans, species numbers are additionally affected by spe-
ciation, i.e. the emergence of new species through evolution. But al-
though discussed as an additional important process, speciation was
not included in the original theory (MacArthur andWilson, 1963;War-
ren et al., 2015).

Darwin and Wallace were also aware that present biodiversity pat-
terns are a result of past processes, most prominently evolution. Since
these processes were missing from the formal ETIB, there were sev-
eral attempts to reconcile this in order to advance island biogeography
theory (e.g. Chen and He, 2009; Rosindell and Phillimore, 2011). One
of these attempts resulted in the formulation of the general dynamic
model (GDM, Whittaker et al., 2007). Additional to immigration, ex-
tinction and speciation, the GDM considers an island’s geomorpho-
logical ontogeny from island surfacing to submergence. During this
interval, an island will change size, geographical features and possi-
bly connectivity to other land masses. All of this affects ecological op-
portunities for species to diversify and isolation between populations.
As a result, species numbers vary over time, while they are shaped by
all those different processes, hence the name “dynamic” (Borregaard,
Matthews, and Whittaker, 2016).

Intriguing about island biodiversity theories is that they can readily
be applied to systems other than oceanic islands (Warren et al., 2015;
Whittaker and Fernández-Palacios, 2007). This is because islands rep-
resent all the factors and processes that are relevant in, for instance,
continental systems as well. ETIB, for instance, had a considerable im-
pact on environmental and conservation studies. By applying SAR to
a multitude of different systems, researchers were able to assess how
well species numbers for a given region correspond to habitat area in
comparison to SAR typical for that region. Deviations from these ex-
pectations typically indicate extinction debts or colonization credits
(Cristofoli et al., 2010; Figueiredo et al., 2019; Tilman et al., 1994).

This generality of island biodiversity theory will likely still apply to
future frameworks as well. A promising current development for a bet-
ter understanding is the shift towards a more functional perspective in
island biogeography research, i.e. to consider species’ functional traits
(Patiño et al., 2017; Warren et al., 2015). However, classical island bio-
geography frameworks do not yet represent scales at the level of detail
necessary to consider traits. Hence, there are few theoretical predic-
tions for functional island biogeography phenomena, such as island
syndromes and adaptive radiations. Explaining the variety of empiri-
cal island biology patterns therefore calls for an extension of current
theories to allow for the inclusion of species’ functional traits and po-
tentially of other, so far unconsidered, factors.
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1.3 OP EN QUE ST IONS AND CHALL ENGE S

Among those phenomena that current theories fail to explain are the
patterns of adaptive radiations: on several oceanic islands, taxa such
as Psychotria (Rubiaceae) or Asteraceae (Barrabé et al., 2014; Crawford
et al., 2009; Nepokroeff et al., 2003) evolved a multitude of different
species. The difficulty of explaining these patterns is highlighted by a
subset of the 50 most pressing questions in island biology, which were
compiled on the occasion of the 50th anniversary of the ETIB (Patiño
et al., 2017): “What functional traits (e.g. relating to dispersal capac-
ity, reproduction, trophic ecology) are associated with high diversifi-
cation rates within and across island systems?” “What traits best pre-
dict which groupswill undergo adaptive radiation on islands?” “What
is the influence of gene flow among islands and/or between islands
and mainland areas on speciation rates?” All of these questions refer
to species characteristics. Probably the most obvious of those traits are
dispersal abilities: the more dispersive a species, the more genetic ex-
change between populations. Consequently, many island biogeogra-
phy studies use dispersal and isolation as the primary explanation for
evolutionary patterns (e.g. Rosindell and Phillimore, 2011). However,
genetics theory and genomic studies suggest that this might be an un-
warranted oversimplification.

1.3.1 The role of genomic traits in species performance

Before sexual reproduction, gene variants (alleles) are selected ran-
domly from each parent during recombination to constitute a gamete’s,
and thus half an offspring’s, genome. Contrary to Gregor Mendel’s
model system in peas, this recombination is not free from certain con-
straints. Some genes, for example, can be located in close linear prox-
imity on a chromosome. These genes therefore tend to be inherited
together. This circumstance can be detected as the co-occurrence of
particular trait alleles corresponding to seemingly unrelated genes (ge-
netic linkage, Hawthorne and Via, 2001). An interesting phenomenon
can be observed if only one of the genes is actually under selection. In
this case, the frequency of the associated allele of the second gene will
increase in the population, even though it is not under direct selection
(divergence hitchhiking). This process can lead to quick divergence of
populations, and thus speciation, since it enhances the isolation of en-
tire genomic regions rather than only single genes (Feder and Nosil,
2010). As a result, the contained alleles have a higher chance of being
fixed in the population, rather than homogenized, even in the face of
gene flowbetweenpopulation (Via andWest, 2008). This circumstance
makes genomic traits therefore a good candidate to better understand
why certain lineages evolve so many different species.
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Genomic traits might play a role over very short time spans as well.
Habitats with changing environmental conditions and possibly chang-
ing biotic composition present constant filters for species to pass in or-
der to survive. For this, either flexibility in environmental preferences
or sufficiently fast responses of species is critical. One such response
comprises changing key traits in a matter of only a few generations in
order to increase adaptation to the environment. This rapid evolution
can be detected on the genomic side as a major shift in allele frequen-
cies for associated traits (Thompson, 1998). For species colonizing is-
lands, this becomes highly relevant. If lacking pre-adaptation to the
novel conditions, species can only survive by rapid adaptation. Since
islands often feature diverse and relatively dynamic habitats (Whit-
taker and Fernández-Palacios, 2007), the encountered conditions can
change quickly. For the necessary rapid evolutionary response, it has
been shown that selecting from already present, standing variation can
be more efficient than acquiring new mutations (Barrett and Schluter,
2008, see also Crawford et al., 2009). Given the impacts of genetic link-
age on recombination makes genomic traits an important factor for
rapid evolutionary responses (Grant and Grant, 2014; Lamichhaney et
al., 2015; Podos, 2001). Exactly howgenomic traits contribute to species
survival in realistic ecological settings under variable environmental
conditions is still unclear, however.

1.3.2 The threat of invasive species

Global change presents anothermajor challenge for island species (My-
ers et al., 2000). One of the largest threats to island biodiversity besides
climate change and habitat destruction is presented by invasive species.
The reason for the increased vulnerability of islands to invasives are
the same phenomena which make islands unique in the first place: en-
demics and island syndromes.While the latter may increase the risk of
species being replaced by invasives due to the loss of defensive or com-
petitive abilities, the former means a replaced species might be lost for-
ever. Understanding the process of invasions and the involved factors
is therefore critical for any conservation efforts targeted to mitigate in-
vasion impacts. Indeed, researchers have been able to identify various
factors which are important for the success of invasions. One of them is
the power of themany— introducingmore individuals of a species in a
given time period, i.e. increasing the propagule pressure, increases the
chance of the introduced species to become invasive (Holle and Sim-
berloff, 2005). Species attributes play another important role. While
those alien species that end up being successful are are often those
that have similar characteristics as native species (Küster et al., 2010),
invasive species typically feature traits that correspond to increased re-
cruitive and competitive capabilities, e.g. growth and size (Grotkopp
and Rejmánek, 2007). These traits all contribute to a potential invasion
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syndrome.What is missing so far, however, is a systematic approach to
put both propagule pressure and invasion syndrome in context to each
other to assess their respective relative importance along the invasion
process.

1.3.3 Inferring causation

The challenge in answering all these questions is the current lack of
meaningful data. The putative causal links range from levels of ge-
nomic factors to biogeographical patterns. Hence, making any infer-
ences requires data of appropriate scales, i.e. time series of multiple
species on multiple islands together with genomic data. Fortunately,
with improved and cheaper sequencing technologies, the extent of pub-
lished genomic data is rapidly increasing (e.g. Alonso-Blanco et al.,
2016). Additionally, there is a variety of publicly available databases
which provide functional data and this still continues to grow (Kattge
et al., 2011; Kattge et al., 2020). Thus, some of the necessary data is
already available, albeit potentially not in sufficient extent and not har-
monized.

Time series, on the other hand, are another matter. Timed data at
meaningful scales, i.e. thousands to millions of years, are virtually im-
possible to obtain. In some cases, these gaps are therefore patchedwith
paleontological data (e.g. Lieberman, 2012), but in the rare instances
where such data is available, it is always incomplete and poorly re-
solved (Donoghue et al., 1989). As an alternative, many island biology
studies are thus taking advantage of the fact that islands in a hotspot
archipelago can be considered snapshots of different phases in an is-
land’s ontogeny and thus represent different points in an ecological
and evolutionary time series (Warren et al., 2015). While this space-
for-time approach produced valuable insights and inspired new hy-
potheses, all inferences have only a correlative foundation. Ultimately,
investigating the causative effects of processes and factors on island
biodiversity can only be done through systematic experiments. Again
though, the spatial and temporal extents necessary to draw relevant
conclusions often prohibitmeaningful experiments (Warren et al., 2015).
Additionally, manipulating real systems on a sufficiently large scale
raises ethical considerations: Wilson and Simberloff’s seminal defau-
nation experiments in the Florida Keyes (Simberloff andWilson, 1969)
would be unthinkable in present times, with widespread awareness of
biodiversity loss, pollution and species extinctions.

Given the challenge of conducting in situ experiments at relevant
scales, systematic manipulation has to be done elsewhere. A useful ap-
proach is employing representative models. These can also be virtual,
as in the case of mechanistic simulationmodels. Their advantage is the
ability to have complete control over all processes and parameters. The
basic principle of simulation models is to define a set of rules which
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will dictate the behavior of the system, feed it with appropriate param-
eter values and analyze the emerging results. These results can then
be compared to empirical data at different scales and levels in order
to assess the validity of the assumptions of the model (Grimm et al.,
2005). Ideally, such models consider a sufficient number of processes
to be applied to several specific systems rather than some unrealistic
idealization (Evans et al., 2013). This generality however, is not often
the case — while most models provide some valuable biological in-
sight, some models are not general enough to answer more complex
questions which require integrating multiple processes to control for
confounding effects (Cabral, Valente, and Hartig, 2017). For islands,
there are already a number of mechanistic models, but they, too, often
address only a limited number of systems or study questions.Whether
any of these models would also qualify to answer some of the current
open questions in island biogeography depends therefore on their in-
tegrated processes. Additionally, the applicability of these models to
other systems or study questions depends on the level of detail their
assumed processes and parameters represent. Instead of building on
first principles and having higher order patterns emerge from these,
some models directly simulate patterns at more abstract levels, e.g.
speciation as a determined, time-delayed lineage split (Rosindell and
Phillimore, 2011). As a consequence, the modeled patterns are likely
context dependent on the implicit characteristics of the modeled sys-
tem, which makes application to other systems difficult. And since
these models do not consider the specific processes behind a pattern,
their assumed mechanisms can not easily be related to any particular
biological, i.e. species-specific property. Therefore, the most meaning-
ful insights is to be expected from models that build on first princi-
ples (e.g. Cabral, Wiegand, and Kreft, 2019; Pontarp et al., 2019) and
consider functional species characteristics, i.e. traits (e.g. Matthews,
Leidinger, and Sarmento Cabral, 2020). As such, mechanistic models
then allow integrating many different processes and established theo-
ries that, in combination, may produce unexpected patterns through
complex behavior and thus new hypotheses. As per the modeling cy-
cle, these new hypotheses can inspire empirical studies — and their
observations, in turn, will motivate further modeling.





2
OVERV I EW OF STUDY QUEST IONS

This thesis aims to shed light on the role of species traits in mainte-
nance and evolution of island biodiversity. Thework thereby contributes
to building an integrative, functional theory of island biology, by using
mechanistic models.

After having assessed the current state of the art of island models
in the literature, I closed some of the identified gaps by developing a
novel simulationmodel. I used this model to several different phenom-
ena related to island biology: environmental variation, diversification
and invasion. The main part of the thesis (part ii) is hence structured
into four separate manuscripts, each of which is devoted to one of the
study questions which are briefly presented in the following. At the
time of writing this thesis, one of the manuscripts has been published
in a peer-reviewed journal (Leidinger and Cabral, 2017), and two oth-
ers have been submitted to journals pending editor’s decisions and
peer reviews (Leidinger and Cabral, 2020). The remainingmanuscript
is currently prepared for submission to a peer-reviewed journal as well
(chapter 5).

Since simulation models represent a powerful approach for investi-
gating island biodiversity, I needed to establish an overview on mech-
anistic island models. This called for the investigation of which pro-
cesses and factors had been considered in mechanistic models so far
and the identification of potential knowledge gaps. In chapter 3, I there-
fore systematically searched the literature for islandbiogeographymod-
eling studies and analyzed all identified models in terms of their char-
acteristics and addressed study questions and systems.

Having identified that previous models largely neglected the pro-
cess of adaptive radiation and genomic traits (chapter 3), I developed
a new model to remedy both of these shortcomings by explicitly con-
sidering different species characteristics and genomic traits. To test the
implementation and impact of these factors, I was interested in how
genomic traits affect plant community composition under temporally
variable environments — a scenario regularly encountered on oceanic
islands. In chapter 4, I thus investigated how genomic traits mediated
the effect environmental variation by contrasting scenarios of tempo-
rally static environmental conditions to scenarios of temporally vari-
able environmental conditions.

The identified importance of genomic traits in ecological contexts
and time scales (chapter 4) compelledme to investigate how theywould
impact evolutionary patterns. Since a number of studies already re-
ported an influence of genetic linkage in speciation, I thus performed

11
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island colonization experiments in chapter 5 to find out which ecologi-
cal and genomic traits affected the occurrence and extent of radiations
of insular plant lineages.

Island radiations produced a major proportion of the world’s en-
demics species. This puts island biota prominently at risk of anthro-
pogenic influences, such as species invasions. In chapter 6, I present
an application of the developed model to such a conservation- related
question. The chapter describes an experiment involving in-silico species
introductions on a virtual island to investigate which abiotic factors
and ecological species traits cause exotic plant species to become suc-
cessful invaders.

I will conclude the thesis with a general discussion of the findings
of the chapters and provide an outlook to potential future research di-
rections (part iii).



Part II

MA IN





3
B IOD IVER S I TY DYNAM IC S ON I S LANDS :
E XPL I C I T LY ACCOUNT ING FOR CAUSAL I TY IN
MECHAN I ST I C MODEL S

In the quest for an integrative island biology, island simulation mod-
els will be an essential asset to mechanistically investigate factors in-
volved in shaping island biodiversity. In the following manuscript, we
systematically reviewed studies involving island models to character-
ize implemented factors and summarize their respective findings.

We found that island models were applied to a multitude of differ-
ent study questions related to past, present, and future island biodiver-
sity patterns, but usually restricted to only one particular system. The
models themselves often considered only a few processes. In particu-
lar, adaptive radiationswere touched upon by only a singlemodel. The
findings from our analyses of island model characteristics thus call for
more integrative models and the reconnection of island biogeography
with mainstream ecology and evolution.

The manuscript was published in Diversity in 2017 (Leidinger and
Cabral, 2017). The article was drafted and written by myself with con-
tributions by Juliano Sarmento Cabral. I performed all research proce-
dures and analysis. The conceptual design was done by Juliano Sar-
mento Cabral. My overall contribution amounted to ca. 90 %.
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Abstract: Island biogeography remains a popular topic in ecology and has gained renewed interest
due to recent theoretical development. As experimental investigation of the theory is difficult to carry
out, mechanistic simulation models provide useful alternatives. Several eco-evolutionary mechanisms
have been identified to affect island biodiversity, but integrating more than a few of these processes
into models remains a challenge. To get an overview of what processes mechanistic island models
have integrated so far and what conclusions they came to, we conducted an exhaustive literature
review of studies featuring island-specific mechanistic models. This was done using an extensive
systematic literature search with subsequent manual filtering. We obtained a list of 28 studies
containing mechanistic island models, out of 647 total hits. Mechanistic island models differ greatly
in their integrated processes and computational structure. Their individual findings range from
theoretical (such as humped-shaped extinction rates for oceanic islands) to system-specific dynamics
(e.g., equilibrium and non-equilibrium dynamics for Galápagos’ birds). However, most models so
far only integrate theories and processes pair-wise, while focusing on hypothetical systems. Trophic
interactions and explicit micro-evolution are largely underrepresented in models. We expect future
models to continue integrating processes, thus promoting the full appraisal of biodiversity dynamics.

Keywords: mechanistic models; island biogeography; causality

1. Introduction

Islands remain popular model systems for studying mechanisms determining species
diversity [1,2]. Reasons for this include the possibility to define isolation and area [3], while still
retaining a degree of connectivity via rare long-distance dispersal events. At the same time, islands
showcase all major types of mechanisms thus far indicated to influence biodiversity dynamics, such as
physiological, demographic, dispersal, interaction, genetic and environmental processes [4–6].

One of the most prominent and earliest theories describing island diversity as a function of
ecological mechanisms and external drivers is the seminal equilibrium theory of island biogeography
(ETIB; [7]). In their theory, MacArthur and Wilson suggest that species numbers on an island
are determined by a dynamic equilibrium between opposing rates of colonization and extinction.
These rates are, in turn, dependent on the isolation and size of an island, respectively. A decade
ago, island biogeography theory received new momentum with the formulation of the general
dynamic model (GDM; [8]). This conceptual model considers changes of carrying capacity and niche
opportunities over the ontogeny of oceanic islands and its effect on species numbers and their rates of
change, including predictions on speciation rates. The typical ontogenic trajectory of hotspot islands
starts with a small island size at the time of island emergence via volcanic activity, corresponding
to low carrying capacity. As the island grows older, elevation and overall area increases and, thus,
also carrying capacity. Later, after the island drifts out of the volcanic hotspot, erosion leads to higher

Diversity 2017, 9, 30; doi:10.3390/d9030030 www.mdpi.com/journal/diversity
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topographic complexity, facilitating species radiations. The last stage sees further erosion of the island
and ultimately atoll formation, resulting in increased numbers of locally extinct species.

While biodiversity theories, in particular the ETIB, were developed and tested experimentally,
nowadays, conservation considerations render it unfeasible to conduct experiments of a scale comparable
to that of the classical experiment by Simberloff and Wilson [9]. Moreover, Borregaard et al. [10] and
Whittaker and Fernández-Palacios [11] among others point out that issues such as anthropogenic
disturbances and above all the long timescales relevant when considering evolution make studying
phenomena affecting the dynamics and maintenance of island biodiversity difficult and complex.

As a general consequence of these limitations, many studies investigating species diversity patterns
on islands can only draw conclusions of a correlative nature, often by fitting regression models [12].
This has helped in identifying many possible drivers of biodiversity distribution [13,14]. However,
the underlying causal relationships remain generally debatable, considering that the representation of
causality in correlative models is limited. Therefore, definitive statements on evolution and on the impact
of geological processes based solely on field data are generally inconclusive. This holds true particularly
for islands, due to the destructive nature of geological phenomena, such as volcanism or erosion. One way
to overcome this data limitation is to employ a space-for-time substitution using islands of different
ontogenic stages as snapshots in time [15]. However, archipelagic dynamics, such as geomorphological
changes in island size, connectivity and heterogeneity, as well as island hopping, might have confounding
effects on empirical data [16]. Another possible alternative, still involving empirical testing, is using
smaller scaled model systems such as microbiota [17,18]. Yet, for studying biogeography dynamics of
longer living organisms, process-explicit models remain the most viable option to date.

With the advances in technology and scientific knowledge, process-explicit simulation models have
become even more feasible, both in implementation, as well as conducting. In principle, process-explicit
(or mechanistic) models reflect hypotheses about how mechanisms interact to produce observed patterns.
In this context, we define mechanisms (or processes) as actions that causally link elements in a model. The
produced patterns are thus direct results of the interplay between integrated processes. The advantage
of these models lies in their flexibility. Such flexibility can be characterized in two ways: (1) through
variation of model parameter values and thus their impact [19]; and (2) switching off particular processes
or varying the model structure, e.g., the order of processes [20]. The combination of both allows for a
multitude of possible alternative simulation arenas or scenarios and enables us to test the robustness, but
also the importance of the respective mechanistic assumptions, while maintaining complete mechanistic
control of the experiments.

To get an overview of which processes and drivers have been considered thus far in
mechanistic island models, what patterns they produce and what they found out about their
systems, we conducted an extensive literature review. We systematically searched for aspects, like
for example, the theories models are based on, whether they are stochastic or deterministic, spatially
implicit or explicit and what focal level they consider. The scope of our review also entails any model
explicitly assessing island biogeography theories or assumptions. In contrast to the recent review
by Borregaard et al. [10], we only consider models that specifically feature causal mechanisms, detached
from the scope of the GDM. Our review is similar to Cabral et al. [21], but we focus specifically on
island models and perform an exhaustive, systematic literature search.

2. Results

2.1. Description

The search for “archipelago OR island OR model OR equilibrium” in the title field and “(island OR
archipelago) AND (species) AND (evolution OR speciation OR theory) AND (simulation OR model)” as
the topics yielded 647 hits on the Web of Science (https://apps.webofknowledge.com), spanning years
from 1981 to 2017 (Figure 1), which we filtered manually on the basis of whether the papers actually
contained mechanistic models and whether they were island related, i.e., whether they assessed island
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biogeography theories or dealt explicitly with islands and/or archipelagos. This procedure meant
not including all models that could potentially be relevant to islands (e.g., metacommunity models),
but which unfortunately did not explicitly state so in their text, thus making it difficult to find all of
them in a systematic way. After this filtering, we attained 28 hits in total (Table 1).
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Figure 1. Number of paper hits from the literature search over publication years. (A) Total (raw) numbers
of all paper types; (B) numbers of studies containing mechanistic simulation models. Note the different
y-axis scales of both graphs.

2.2. Properties

Island biogeography models developed so far are very diverse in their properties (see the
spread in Figure 2). Common to most models is the implementation of basic demographic processes
(birth/death) and dispersal, but also, evolution is an often integrated process (Table 1, “processes”).
A fundamental property found in the models lies in their implementation of stochasticity. Most of the
studies use stochastic models (Figure 2). These are characterized by employing stochasticity in at least
one of their mechanisms. This might be, e.g., the selection of the number of offspring in a reproduction
event (e.g., [22]) or dispersal decisions (e.g., [23]). In contrast, deterministic models are often described
purely analytically by a set of differential equations [24,25], although in some deterministic models,
stochasticity can be easily switched on [26].

Some of the models explicitly consider the spatial configuration and position of state variables of
their environment, i.e., they are spatially explicit. While spatially explicit and stochastic models were
common in the earliest studies [22,27], more recently published models tend to be less often spatially
explicit [28,29], which mirrors the popularity of the unified neutral theory of biodiversity (UNTB; [30]).
Because the UNTB inspired a large portion of the later models, we considered it an additional category.
Consequently, models are “neutral” if they follow neutral dynamics, i.e., ecological equivalence
between individuals of different species. Additional underlying theories are also summed up
in Table 1.

Models also varied in their metacommunity scenarios. The most common arena is of
a mainland-island configuration (or source-sink), with a source species pool on the (continental)
mainland. In some cases, more than one island is modeled, creating an archipelago-type
system (Table 1). Most models furthermore explore hypothetical systems (Table 1), which represent
islands in a simplified way and have no direct connection to real-world systems, although they are
often inspired by real-world examples.

The integration of evolutionary processes emerges as another discriminating factor (Figure 2). This
has been achieved at different levels of detail. With a genome-explicit model, Gavrilets and Vose [31]
consider the accumulation of micro-evolution in genes encoding for ecological niche preferences,
which leads to the isolation of populations and eventually in speciation, and recent papers opt to
implement speciation in a more simplified way using submodels like “protracted speciation” [32] or
point speciation as in the original UNTB [30].
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Figure 2. Multidimensional scaling of the refined list of papers according to the model characteristics
(Stress − 1 = 0.144, better than permutation-based null solutions with p < 0.05). Blue arrows represent
category axes with significant importance (p < 0.05). Arrow directions are from the absence to the
presence of a property or in increasing order (number of niche axes and focal level). Clusters show
groupings of papers based on whether models consider niche differences between species (green cluster)
and whether they employ evolution in any form (orange cluster). Meaning of arrow labels: neutral:
whether the model follows neutral theory [30]; evolution: whether the model employs evolution;
stochastic: whether the model architecture is deterministic (zero) or stochastic (one); spatially.explicit:
whether the model explicitly considers space; no.niche.axes: the number of parameters that relate
to biological differences between species; static.environment: whether the model arena is subject
to change (zero) or static (one); agent.level: the organizational level at which the model processes
act (from individual, one, to population, two, to species, three). The underlying data are shown
in Table 1. Note that for the creation of the plot, a jitter was applied to the data to make points
better distinguishable.

An important factor contributing to the distribution of the studies’ models is the implemented
agent level, which determines whether processes directly act on individuals, populations or species.
This also shows a positive trend with stochasticity, with deterministic analytical models usually
focusing on higher organizational levels (see the diametrical axes “focal.level” and “stochastic”
in Figure 2), such as population or species numbers [26,33]. In contrast, stochastic models often
are individual based [22,31]. The agent level often also determines the focal level (Table 1), which is on
the same or a higher organizational level as the agent level. Noteworthy here are two studies, which
integrate genetic properties into their models to investigate the genetic structures of populations [34,35].

While in most of the models, there is no differences between species, some models allow
species to carry their own particular parameter values. This can, for instance, be the reproductive
output [22,24] or the competition strength [36] and is reflected as the number of non-neutral niche axes
(Table 1). The total number of parameters ranges from one to 14 (Table 1). However, as parameters
were not equally apparent in all papers, these numbers might be underestimated.

Furthermore, we discriminated models with static environments and models where the
environment was subject to change. This change affects the geographic configuration of the
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environments, altering island size, suitability or carrying capacity. Examples for this are the models
inspired by the GDM, which simulate island ontogenies [25,26,37].

Lastly, we took into consideration whether studies investigated purely hypothetical scenarios
(models marked “h” in the system column of Table 1) or if they applied their models to real-world
systems, e.g., by fitting or calibrating them to empirical data (models marked “r”). Of the 28 included
studies, only five studies include a systematic comparison with real-world systems. For instance,
Birand and Howard [38] and Rosindell and Phillimore [39] use parameter screening to obtain realistic
rates of extinction, reproduction, speciation and migration compared with archipelago species numbers
(including information on endemics) from plants and arthropods, or birds, respectively. Two other
studies used representations of real geography as their model arena [23,34] for the investigation
of radiation or speciation histories. Only a single study actually fitted their model to data, using
a maximum likelihood approach and dated phylogenies of Galápagos land birds to obtain rates of
diversification and radiation [29].

Some of the aforementioned characteristics often go together, representing commonly-used model
structures (Figure 3). For example, island models following the framework of the UNTB usually
employ evolution, as well. This highlights especially those studies that extend classical neutral
dynamics with speciation [28,39,40]. Another example of a frequent characteristics combination
are spatially-explicit models with static environments, which can be found among the earliest
published models included in this study [22,24,27,41]. This co-occurrence of spatially-explicit and static
environment properties is further strengthened by a number of studies displaying the exact opposite
of this combination, namely spatially-implicit models with dynamic environments, as implemented
by models having a GDM background [25,26,37]. One interesting property that is rather isolated in
the property space is the consideration of inter-specific differences (niche-based, Figure 3). While the
contrast of niche-based models to neutral models could be expected, the accompanying opposition
to models including evolution is surprising. In fact, when marking the relevant studies according to
whether models consider niche differences between species (green cluster, Figure 2) and whether they
employ evolution in any form (orange cluster, Figure 2), only one study [31] joins both of these clusters
and can thus be understood as the only one to investigate evolution in an explicitly adaptive context.
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Figure 3. Multidimensional scaling of the model properties in the refined list of papers (Stress− 1 = 0.126).
The closer two properties are, the more often these properties are implemented simultaneously
in models. The underlying data are shown in Table 1. ind.based: individual-based; pop.based:
population-based; sp.based: species-based; other properties as in Figure 2. For this analysis, we
used the same data as for producing Figure 2 .
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2.3. Findings

The reviewed studies investigate a variety of patterns in the spectrum of biodiversity. Commonly
investigated patterns include the proportion of endemism and species-area relationships (SAR).
For SAR, studies found that in additional to the extinction and immigration rates as proposed
by MacArthur and Wilson [7]) [27,41,42], species numbers also depend on explicit competition [41],
trophic interactions [50,52], environmental heterogeneity [33,47] and evolutionary processes,
like mutations and speciation [25,38]. Figure 4 shows a representation of all of the processes and drivers
implemented in the models, explicitly highlighting causal relationships and under-explored links.

Island biodiversity

HeterogeneityIsolation

Time

Area

Immigration Speciation Extinction

Differentiation Growth InteractionDispersal

Figure 4. Summary of typical processes and drivers affecting island biodiversity implemented in the
models with their assumed causal relationships (Table 1, columns “processes”, “focal level”, “agent level”,
“investigated patterns”). Round and square boxes denote drivers and processes, respectively. The bottom
row of processes represents processes usually acting on individual-/population-levels, the top row
of processes metacommunity-level processes. Black boxes and text mark factors and relationships
regularly integrated in models, while grey arrows stand for thus far under- or un-explored relationships.
Note that authors may opt to implement models that skip certain organizational levels, for example
for investigating the direct effect of isolation on extinction as predicted by the ETIB. Additional
relationships not explicitly stated in the chart include rescue-effects [53] between isolation and
extinction and target effects [54] from area to immigration. For clarity, these kinds of relationships have
been excluded from the graphic. Furthermore, “growth” combines both birth and death processes,
while “interactions” include positive, neutral and negative interactions, for example competition
or trophic interactions, and “differentiation” encompasses micro-evolutionary processes, such as
mutation and gene flow. For a more complete overview of processes, patterns and organizational levels,
the reader may refer to Figure 5.

A group of models simulating hypothetical systems concentrated on testing particular
predictions from theoretical frameworks like ETIB and was thus able to confirm power law
species-area-relationships [27,41,42] or the hump-shaped trajectories following island ontogenies
of the GDM [26,37]. This investigation of theoretical prediction includes a trend of models integrating
different existing theories or improving theory considering additional mechanisms, mostly on the
basis of classical island biogeography, such as disturbance [22], trophic interactions [50], evolution
and speciation [39,43], competition [24,36] and inter-specific differentiation (e.g., niche-based) [47].
In many cases, these extended models are able to explain field observations that could not be explained
by any one isolated theoretical component, e.g., the ETIB (model generality [20]).

The models that simulate real-world systems [23,29,34] shed light on the mechanisms behind
distribution patterns of real-world species; for instance, diversification of Philippine shrews shaped by
competitive exclusion over dispersal ability [23], bluebirds on Bermuda as cryptic introductions [34]
or presently increasing species richness in some bird lineages on the Galápagos, while other
lineages already attained equilibrium dynamics [29]. The models of Birand and Howard [38] and
Rosindell and Phillimore [39] were able to produce realistic species distribution and endemism
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patterns, when compared to empirical data of species numbers, while Valente et al. [29] used Bayesian
information criterion weights for selection of the best model that explains current diversification
patterns on the basis of phylogenetic data.

Some models reveal the impacts of spatial and temporal factors and mechanisms on island
biodiversity. For instance, along island chains, species richness does not necessarily decrease, but can even
increase with distance from the mainland, if speciation rates are adequately high [40]. When considering
temporal scales relevant for geological dynamics, island biodiversity follows island ontogeny as
predicted by the GDM [26,37]. Moreover, island biodiversity does not necessarily follow either
equilibrium or non-equilibrium dynamics exclusively [29]. Furthermore, species abundances
provide a better measure of immigration/extinction rates on islands than only species richness:
low abundances follow immigration and may precede extinction [28]. Interestingly, the extension of
island biogeography with niche theory leads to complex emergent patterns. For example, Kadmon and
Allouche [33] revealed a uni-modal relationship between species richness and habitat heterogeneity,
owing to the reduced suitable area on a given island at high degrees of heterogeneity. Relaxing the
habitat specificity of species to allow for a niche breadth, however, restores the positive relationship
between species richness and habitat heterogeneity as predicted by classical niche theory [47]. Thus,
integrating multiple processes results in both complex emergent patterns and provides detailed
information about the study system.

3. Discussion

3.1. General Modeling Trends

Although actual mechanistic models in island biogeography are still scarce in comparison to other
fields in ecology [21], the rate of publication of models has increased (Figure 1). This reflects a renewed
popularity in island biogeography theory over the past two decades (Figure 1), highlighting the
importance of islands as model systems for biodiversity dynamics. Therefore, we expect a persistence
of the increasing trend in the number of island models in the near future, particularly because several
processes and process combinations remain un- or under-explored.

The sequence of underlying theories that studies try to test or extend shows that modelers are
often inspired by the important current theories. Early papers [22,42] are mainly based on MacArthur
and Wilson’s ETIB. In the 2000s, the popularity of the neutral theory of island biogeography [30]
inspired a series of studies following the publication of the theory [28,39,55]. More recently, the general
dynamic model of oceanic island biogeography [8] is also employed in models [26,37]. This regular
switching in underlying theories suggests that a universal theory of ecology is highly sought after
(see Lawton [56]). The effort to develop such a universal theory is often made explicit in the usage of
adjectives like “generalized” or “unified” in paper titles [25,29,36,39]. Yet, unifying studies have only
integrated parts, mostly pair-wise, of the many ecological theories. More importantly, the majority of
mechanistic models do indeed integrate theories by simulating processes particular to each theory.
Exemplary processes include colonization and extinction, representing the ETIB [22,42], or island
ontogeny, representing the GDM [26,37].

The advantage of island models simulating hypothetical systems [42,43,50] is that they facilitate
understanding the effects of fundamental processes. Furthermore, hypothetical systems are more
easily employed, because they do not need data to setup simulation arenas and have parameters set by
assumptions and study design, which follow the model’s theoretical background and study question,
respectively. However, more specific questions can only be answered by simulating real-world
systems [23,34]. The gained knowledge can also be used to extrapolate the development of the system
into the future, taking into account different climate or disturbance scenarios. A mechanistic model is
thus a powerful tool for conservation biology. These kinds of models do not have to be specific for
a particular system. The model of Valente et al. [29], for instance, was later used to assess the impact of
anthropogenic extinctions on equilibrium dynamics in another system, namely Caribbean bats [57].
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3.2. Integrated Processes and Emergent Patterns

The observed studies often focus on specific ecological aspects, which affect the implemented
processes (or characteristics of the state variables), for example spatial arrangement [40,48] or
inter-specific variability [33,47]. However, some of the mechanisms, like disturbances or explicit
competition, were rarely explicitly integrated (e.g., [22,24,27]). Most notably, only one model considers
trophic interactions [50]. Given the importance of higher trophic levels acting as top-down regulators
on biodiversity [58], it is surprising that not more direct species interactions are being considered yet.

A possible reason for this limited process integration is the required mechanistic complexity
and resulting computational demand. The latter is an issue that still seems to scare ecologists and
showcases that despite today’s computational feasibility, ecological modeling is not as developed as
other fields in biology (e.g., -omics studies) or other natural science fields. This underdevelopment of
computational abilities highlights the need for teaching computer programming to undergraduate
students of ecology. To also educate today’s researchers, current modelers should explain their models
better and make them more accessible, by, e.g., user-friendly interfaces and proper documentation.
As a first step, however, it should be considered good practice to always publish computer code
alongside the publication [59,60].

Another particularly understudied field in island models is evolution based on the accumulation
of explicit gene mutations that result in fitness differences. Only one study of the investigated papers
employed such a detailed micro-evolutionary mechanism, with a palm population adapting to different
soil types and diverging in its phenology [31]. Given that selection on oceanic islands has been one
of the foundations of evolution theory [61], the explicit evolution of traits and species will hopefully
be more often implemented in island models. A first step towards this is the concept of protracted
speciation, where a mutation event triggers a speciation process, but the new species emerges only
after a certain period of implicit accumulation of mutations and genomic isolation from the sister
clade [32]. Among non-island models there are further examples for such micro-evolutionary
processes and consideration of genetic diversity (e.g., [62–64]). Some of their integrated evolutionary
processes could ultimately result in reproductive isolation of populations and thus speciation, and
there are already examples for actual adaptive speciation and radiation in landscape ecology and
metacommunity models [65–67]. Applying their findings to island systems could provide the perfect
framework to increase and unify efforts in studying the (micro-)evolution of species.

Biological models for nowadays complex questions should aim at producing patterns over
different spatial, temporal or organizational scales (pattern-oriented modeling; [68,69]). The mechanistic
complexities of many models, with up to ten model parameters or more (Table 1), would
easily be able to produce more patterns, but the respective studies concentrated on only a few
patterns at a time, for instance species numbers [27] or biogeographic rates [28]. One model that
investigated the interaction between micro-evolutionary and ecological mechanism [6], thus producing
eco-evolutionary dynamics, was unfortunately not considered by our web of knowledge search.
Another example of a very complex stochastic archipelago model including evolutionary dynamics,
niche theory and geomorphological processes was not captured in our search, as it represents a book
chapter [70]. This reduction of investigated processes and patterns, and thus complexity, can be a
consequence of the peer-review process, which often requires a focus on one or few specific and simple
questions, or it can result from models developed specifically to only address a certain problem.

While simple models do have their place for, e.g., preliminary investigations of particular
processes in a hypothetical system, they do not need to be developed from scratch. For example, if
one is interested in assessing the role of positive density dependence (i.e., Allee effects) on islands,
one would not need to implement a model de novo, but could simply apply a pre-existing model
with Allee effects to islands. In the quest for more cooperation, reproducibility and re-use of code,
we thus encourage modelers to rather develop existing models further. For this to work, modeling
scientists should embrace open source principles. A complex model integrating multiple processes
and generating multiple patterns could thus be used to investigate multiple questions, problems
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and systems (e.g., higher model generality [20]). For example, a model integrating trait evolution
(changes in individual or species function) could be used to investigate both neutral and niche-based
assumptions and is thus more general than purely neutral models.

3.3. Limitations and Modeling Agenda

Two great difficulties in constructing process-based models lie in the number of parameters
and the calibration of these parameters with adequate values, as some of the investigated models
did for example with phylogenetic data. The number of parameters increases with each additional
process, which requires additional empirical data for parameterization. Additionally, after calibration,
calibrated parameter values should be cross-checked with field observations, which further increases
the need for specific data. Furthermore, additional processes and parameters increase the risk of
equifinality, i.e., a model that will produce similar results, despite different parameter combinations [12].
To deal with this issue, more detailed data are needed to correctly identify processes and parameters.
Due to the destructive nature of geomorphological processes acting on islands, the wish for
comprehensive data for island systems over evolutionary timescales will likely never be fulfilled,
but many hypotheses generated through simulations models could be selectively tested with fieldwork.
For this to work, modelers and empiricists will need to collaborate more closely. This can be achieved if
modelers communicate what kind of data they need and if the empiricists consider model predictions
to be testable hypotheses.

Until now, island models mainly focused on single islands, preventing confounding effects
emerging from archipelagic dynamics, such as archipelago biodiversity positively correlating with
archipelago island number [14]. Borregaard et al. [26] considers archipelago dynamics implicitly by
employing an emigration function, which represents individuals migrating between islands. Notable
exceptions are the models of Warren [48] and Gascuel et al. [40], which both provide a simplified
framework of archipelagos using island chain systems and dispersal between neighboring islands.
This way, they are able to reveal that archipelago species richness is higher than species richness on
a single island with a matched size. However, the linear, evenly-spaced arrangement of islands is
one simple representation of an archipelago and cannot capture more diverse connection patterns of
archipelagos that occur in nature. Additionally, theory predicts that real-world archipelagos are also
subject to change over time, due to geomorphological and climatic processes, which in turn affects
biodiversity [8].

Other processes known to have major impacts on biodiversity, but hitherto absent explicitly
in models, include glaciation-induced sea level oscillations [71,72] or anthropogenic influences [73].
However, one initialization scenario of Rosindell and Harmon [28] reflects a sea level change that
separates a landmass from the mainland, which thus harbors a subset of the mainland species
pool. Furthermore, processes like range shifts under climate change and resulting evolutionary
effects, which currently are a hot topic in ecological modeling in general [62,74], are not explored by
island models yet. A more collaborative approach between researchers of these different ecological
fields is thus a promising perspective for ecological modeling in general. With models integrating
many different processes, which are able to produce several plausible patterns, researchers will
have a valuable tool to make new hypotheses and thus guide field ecologists efficiently to conduct
necessary experiments.

3.4. Conclusions

In this paper, we reviewed mechanistic island models, revealing a high diversity of investigated
questions and integrated processes. Integrated processes were often inspired by current influential
theories and highlight the search for a universal theory of ecology/island biogeography. An important
step towards this will be the development of models integrating evolutionary, ecological and
environmental processes, thus far recognized as relevant by biodiversity theories.
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While in island models, patterns and processes at intermediate ecological levels (e.g., population,
species) predominate, more realistic, and thus more widely applicable, models will need to
integrate more processes at the individual level, such as interactions, genetics and behavior. These
individual-level processes should not only affect individuals, but should also influence patterns at
the population, community and metacommunity level (Figure 5). Additionally, processes acting
on higher spatial and temporal scales, like archipelago structure and geomorphological changes, as
well as human-induced environmental change will also need to be considered explicitly (far right in
Figure 5). While most of these processes are already implemented in the reviewed models, hardly any
model integrates more than two aspects at a time. Yet, the models were able to shed light on a variety
of ecological questions in island biogeography regarding the past, present and future. Therefore,
we anticipate that integrating multiple processes should untap an even larger number of potential
(more complex) questions by increasing model generality.

3
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Figure 5. Representation of exemplary integrated processes and drivers in island models (bottom) and
emerging variables and patterns (top). Model complexity, and thus generality [20], increases from
left to right. We assume that processes and drivers add up from left to right. Thus, a given model
representation includes also all processes and drivers of the less complex models to its left and is
therefore also able to produce the respective patterns. Mechanisms and drivers are closely related
to different theories (exemplary theories are shown in brackets at the bottom), e.g., colonization and
extinction as the fundamental rates of the equilibrium theory of island biogeography (ETIB). As can be
seen, some emergent patterns of more complex models are the same as the drivers for simpler models.
For instance, the second model on the right produces colonization rates as an emergent pattern, which
at the same time are necessary input parameters for the far left model. AE: archipelago endemics; ind.:
individual. MIE: multiple island endemics; SIE: single island endemics; sp.: species; GDM: general
dynamic model.
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Lastly, island biogeography theory was never applied solely to islands, as several ETIB-inspired
metapopulation and metacommunity studies indicate. We regret that we had to exclude many
potentially relevant metacommunity studies from our review, because they did not specifically relate
their models to islands, but hope that in the future, researchers will more often apply their models
to other related systems, as well. Because of their many advantageous qualities, like clearly-defined
isolation and structure, islands will likely remain an ideal model system for studying biodiversity
dynamics in general. The next generation of island models will therefore, much like the ETIB did
and still does, continue to inspire fields like landscape ecology, metapopulation and metacommunity
ecology, marine biology and be applied to systems such as sky islands, coral reefs and forest fragments.
This will help with promoting the usefulness of mechanistic models to an even wider range of
researchers, which ultimately will result in increasingly better models and better predictions.

4. Materials and Methods

The raw compilation of studies was obtained by running an ISI Web of Science search with the
string “archipelago OR island OR model OR equilibrium” in the title field and “(island OR archipelago)
AND (species) AND (evolution OR speciation OR theory) AND (simulation OR model)” as the topics.
We did also try a more restrictive title search string (“(archipelago OR island) AND (model OR
equilibrium)”), but this string resulted in far fewer hits and missed some modeling papers we knew
explicitly included islands. This conservative search captured a broad range of studies even if it
resulted in many false positives. The initial search result was refined by manual review of all 647 found
studies evaluating two criteria: (1) whether the study has a direct island relation; and (2) whether
the study employs a mechanistic model. Only if both of these questions could be answered with yes
was a study incorporated into our review. We are aware that this focus on island-specific studies is
somewhat arbitrary, as many metacommunity- and metapopulation-like systems, such as lakes, caves
or coral reefs, could also be applied to islands (e.g., [75,76]). However, finding all of them would be
systematically challenging via a structured literature search, because although plentiful and highly
relevant to islands, these models failed to explicitly relate their findings to island biogeography theory,
which was one of our manual screening targets. Additionally, metapopulation and metacommunity
studies are usually restricted to ecological timescales and, thus, often lack evolutionary and/or
(geomorphological) environmental processes, which are relevant to island biodiversity. Nevertheless,
we believe that summarizing the findings of such models and relating them to island biogeography
theory, as well as to other biodiversity theories would be a very useful exercise and should be aimed
for in future reviews.

We analyzed the obtained paper list with special attention on the nature of the employed
models and the theoretical backgrounds. For this, we characterized the models by several categories:
(a) whether they employ stochasticity, e.g., in the demographics; (b) whether or not they are spatially
explicit, that is the spatial position and arrangement actually impacts the system; (c) if they consider
their environments to be static (yes) or if islands for example follow an ontogenic trajectory (no);
(d) if they consider evolutionary processes like mutation, speciation or selection; and (e) whether they
regard their systems as following neutral theory [30]. Some categories rather represent spectra like
the agent level, i.e., the organizational level of the state variables on which processes act (individuals,
populations, species) or the number of niche axes (number of biological parameters, whose values
may be different between species in the case of niche-based models). Furthermore, we considered the
focal level: the organizational level at which most emergent patterns are investigated. Additionally,
we included the year of publication, the type of system that is modeled (single island, archipelago,
mainland-island, mainland-archipelago) and whether this is real-world or hypothetical, as well as
the theoretical background of the model, if specified. We also looked for the integrated processes,
the number of model parameters as we were able to identify them and the investigated patterns.

We then used some of this information (agent level, static environment, number of niche axes,
spatially explicitness, stochasticity, neutrality and evolutionary processes) to conduct multidimensional
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scaling (MDS) employing the R packages MASS, vegan and smacof [77–79] and thus get an overview
of how different studies are assembled and whether there are specific under-explored areas to be
found. For the ordination of papers, we used mds from the smacof package [79] and metaMDS from the
MASS package for the ordination of model properties. Contrary to ordination methods like principal
component analyses, in MDS, the goodness of fit is not indicated by the sum of explained variance of
the first dimensions, but the Stress-1 value, with values close to zero indicating a good fit [79]. The code
for running these analyses and producing the plots can be found in the Supplementary Materials.

Supplementary Materials: The following are available online at https://github.com/lleiding/mechislandmodels,
code.R: R-code for running MDS and producing plots.
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4
TEMPORAL ENV IRONMENTAL VAR IAT ION
IMPOSE S D I F F ERENT IAL S ELECT ION ON BOTH
GENOM IC AND ECOLOG ICAL TRA I T S

Having hypothesized that species traits, including genomic character-
istics are important factors in determining how successful species are
in surviving variable environmental conditions, for instance after is-
land colonization, I wanted to test this hypothesis with a mechanistic
model. Unfortunately, none of the models analyzed in the systematic
literature review allowed to do that, because they either disregarded
species functional differences or considered only superficial evolution-
ary processes and factors, including genomic traits (chapter 3). Hence,
I developed a novel model aimed at closing this gap and used it to
investigate the role of genomic and ecological traits of plant species in
temporally variable environments. This gets described in the following
manuscript.

We found that temporal environmental variability imposes a con-
stant filter on inter- and intraspecific variation. While the loss of inter-
specific variation could be observed as a loss of species richness, ge-
nomic traits, in particular an intermediate genetic linkage, could slow
down some of the loss of genetic variation. Ecological traits that pro-
moted species’ survival under variable environments constituted in-
creased environmental tolerances and accelerated life cycles, enabled
by decreased body sizes.

At the time of writing, the manuscript has been submitted to Oikos,
and is currently under review. A non-peer-reviewed preprint of the ar-
ticle is available as Leidinger andCabral (2020). The articlewas drafted
and written by myself with contributions by Juliano Sarmento Cabral.
I performed all research procedures and analysis. The conceptual de-
sign was done by myself and Juliano Sarmento Cabral. My overall con-
tribution amounted to ca. 95 %.
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Abstract 1

The reaction of species to changing conditions determines how community com- 2

position will change functionally — not only by (temporal) species turnover, 3

but also by trait shifts within species. For the latter, selection from standing 4

variation has been suggested to be more efficient than acquiring new mutations. 5

Yet, studies on community trait composition and trait selection largely focus on 6

phenotypic variation in ecological traits, whereas the underlying genomic traits 7

remain relatively understudied despite evidence of their role to standing varia- 8

tion. Using a genome-explicit, niche- and individual-based model, we address 9

the potential interactions between genomic and ecological traits shaping com- 10

munities under an environmental selective forcing, namely temporal variation. 11

In this model, all ecological traits are explicitly coded by the genome. For our 12

experiments, we initialized 90 replicate communities, each with ca. 350 initial 13

species, characterized by random genomic and ecological trait combinations, on 14

a 2D spatially-explicit landscape with two orthogonal gradients (temperature 15

and resource use). We exposed each community to two contrasting scenarios: 16

without (i.e. static environments) and with temporal variation. We then ana- 17

lyzed emerging compositions of both genomic and ecological traits at the com- 18

munity, population and genomic levels. Communities in variable environments 19

were species poorer than in static environments, populations more abundant 20

and genomes had a higher numbers of genes. The surviving genomes (i.e. those 21

selected by variable environments) coded for enhanced environmental tolerance 22

and smaller biomass, which resulted in faster life cycles and thus also in increased 23

potential for evolutionary rescue. Even under the constant environmental filter- 24

ing presented by temporal environmental variation, larger, more linked genomes 25

allowed selection of increased variation in dispersal abilities. Our results pro- 26

vide clues to how sexually-reproducing diploid plant communities might react 27

to increased environmental variation and highlights the importance of genomic 28

traits and their interaction with ecological traits for eco-evolutionary responses 29

to changing climates. 30

31
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Introduction 35

Communities of plant species are the result of different abiotic and biotic con- 36

ditions (Huntley 1991). Changes in those conditions will therefore also reflect 37

on communities and their trait composition. Response strategies that enable 38

species survival under changing conditions may vary across species. They can, 39

for instance, select for survival (Holt 1990), for lower body mass (Parmesan 40

2006), for dispersal (Berg et al. 2010), or for adaptation to new conditions (Joshi 41

et al. 2001, Jump and Peñuelas 2005, Bell and Gonzalez 2009). Given enough 42

time, this will result in the communities passing through ecological species suc- 43

cessions (Huston and Smith 1987) and evolutionary taxon cycles (Ricklefs and 44

Bermingham 2002). Even in short periods, populations within communities can 45

change their traits in response to environmental variation via rapid evolution 46

(Maron et al. 2004). In this case, selection on standing variation can be more 47

efficient than aquiring novel mutations (Barrett and Schluter 2008, Bolnick et al. 48

2011). This standing variation can be both intraspecific and intra-individual, 49

i.e., within-genome variation. A high standing variation thus provides a re- 50

source for populations to quickly respond to changing environments (Cochrane 51

et al. 2015). However, the genomic traits which enable and maintain standing 52

variation remain largely understudied in ecological and eco-evolutionary studies 53

(but see Schiffers et al. 2012, Matuszewski et al. 2015). 54

Many functional species traits are quantitative and subject to genetic inter- 55

actions, such as epistasis, pleiotropy and genetic linkage. To infer a direct con- 56

nection between phenotype and genotype is therefore complex (Korte and Farlow 57

2013). Still, all this genomic background determines standing genetic variation, 58

which in turn will constrain which individual phenotypes are possible and thus 59

a population’s evolutionary potential. With the increasing availability of ex- 60

haustive genetic data, considering detailed genetic factors in eco-evolutionary 61

models has become more feasible, especially for model species (Frachon et al. 62

2019, Exposito-Alonso et al. 2019). Indeed, there is an increasing amount of ge- 63

netic data at the population or even at the individual level (e.g. Domingues et al. 64

2012, Alonso-Blanco et al. 2016). Nevertheless, manipulating real-world systems 65

to conduct meaningful experiments to isolate factors on both functional and ge- 66

netic levels is difficult (but see Booth and Grime 2003). Thus, although the 67

importance of genetic factors for ecological processes has long been recognised 68

(Holt 1990), investigating its effects in real-world systems remains challenging 69

(Hughes et al. 2008). 70

Simulation models provide a powerful alternative to overcome the empirical 71

challenges of investigating and manipulating genetic traits and all the trait- 72

mediated ecological functions they control. Modeling studies can cover any 73

organisational level in biology, from genomes over species to communities (Ma- 74

tuszewski et al. 2015, Kubisch et al. 2014, Münkemüller et al. 2012, Saupe 75

et al. 2019), and thus are suitable tools to explore potential eco-evolutionary 76

regulations of species traits. Therefore, we developed a Genome-explicit Meta- 77

community Model (GeMM, Fig. 1) to address the interplay of genomic and 78

ecological traits in species communities under an environmental selective force, 79

namely temporal environmental variation. Specifically, we address the follow- 80

ing questions. (a) Which ecological and genomic traits enable survival in tem- 81

porally variable environments? (b) How do temporally variable environments 82

shape standing variation (phenotypic and genetic)? We designed a simulation 83
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experiment under two different environmental scenarios, namely with versus 84

without temporal environmental variation (variable and static environments, 85

respectively) and analyzed genomic and ecological trait characteristics of sur- 86

viving communities. We expected communities in variable environments to se- 87

lect for higher tolerances (Holt 1990), higher dispersal abilites (Berg et al. 2010) 88

and lower biomass (Parmesan 2006) and to exhibit increased standing variation, 89

both genetic and phenotypic (Cochrane et al. 2015). While our expectations on 90

trait responses were largely confirmed, we find that standing variation is de- 91

creased for most traits except dispersal. Our findings on virtual communities 92

suggest how eco-evolutionary dynamics of real plant communities might unfold 93

under changing environments. 94

Genome

Linkage unit(s)

Parental
origin

Gene(s)

Sequence

Allele(s), one or more of:

seed biomass, adult biomass,
temperature and precipitation
optima and tolerances,
mean dispersal distance,
long distance dispersal

Phenotype

   Fixed traits
   Species identity,
   seed biomass, adult biomass,
   temperature and precipitation
   optima and tolerances,
   mean dispersal distance,
   long distance dispersal

Individual

Local/current environment

Variable traits
Mass, precipitation and 
temperature adaptation

Death

Death

Death

Seed dispersal

Reproduction

Competition

Growth

Survival

Establishment

metabolic

metabolic

metabolic

ev
er

y 
ye

ar

(a) (b)

Figure 1. Schematic of the model. (a) Individuals represent the base agents
in the model. They are comprised of a phenotype which interacts with other
individuals and the environment, and a genome. The genome is diploid and
consists of maternal and paternal sets of linkage units, which combine genes as
one hereditary unit. Each gene may code for one or more alleles of functional
traits. The expressed trait in the phenotype results as the average of all
associated alleles in the genome. The expression of some of the traits
(“variable traits”) additionally depends on the local current environment and
may change over time. (b) Flow of processes each individual passes every year.
Some of the processes are dependent on the local temperature and individual
biomass (marked “metabolic”), while all processes depend on an individual’s
phenotypic traits (see (a)). Dashed arrows represent influences, solid arrows
represent sequence of events.

Materials and Methods 95

The model 96

General structure. We use GeMM (version 1.0.0) — a genome- and spatially- 97

explicit, niche- and individual-based model for plant metacommunities written 98

in julia (Bezanson et al. 2017, Fig. 1). The model generates metacommunity 99

dynamics (Hanski 2001, Leibold et al. 2004) and it considers explicit local pop- 100

ulation and community assembly dynamics emerging from genomic and indi- 101

vidual level processes. The model simulates discrete time steps, which can be 102

translated to one year. In the model, individuals belong to species, which are 103

characterized by individuals with identical genetic architecture (i.e. genome size 104

and linkage) and ecological traits (dispersal ability, environmental niche and 105
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size) falling within a species-specific Gaussian trait distributions (Fig. 1 (a)). 106

Thus, individuals of the same species are not functionally identical, depicting 107

intraspecific phenotypic variation. Dispersal of individuals (i.e. seeds) intercon- 108

nects grid cells, while the position of individuals is characterized by the grid cell 109

coordinates, i.e., all individuals are concentrated in the center of the respective 110

grid cell. 111

Eco-evolutionary processes. Like some previous ecosystem models (Har- 112

foot et al. 2014, Cabral et al. 2019, see Cabral et al. 2017 for a review), yearly 113

vegetative growth in biomass, fertility and mortality rates in the model are con- 114

trolled following the metabolic theory of ecology (MTE, Brown et al. (2004), 115

Price et al. (2010)). Accordingly, the model considers discrete yearly time steps. 116

In MTE, a biological rate b depends on the temperature T and individual mass 117

M , scaling a base rate b0 as: 118

b = b0M
ce

− EA
kBT (1)

where EA is the activation energy and kB the Boltzman constant. The expo- 119

nent c is 3
4 for biomass growth and reproduction, and − 1

4 for mortality (Brown 120

et al. 2004). This results in smaller individuals having a higher mortality than 121

bigger ones, while individuals in cooler conditions have a lower mortality than 122

those in warmer conditions. Using the MTE means reduced parameterization 123

effort, since b0 values for the different processes are global constants and thus 124

identical for every species. Additionally, the emerging longevity-fecundity trade- 125

off that comes with mass-regulated rates has been shown to inherently supress 126

the evolution of “super-species” (Cabral et al. 2019). 127

Over the course of a simulation, individuals thus grow in size, passing three 128

life stages: (1) seed, (2) juvenile, and (3) adult. Individuals disperse as seeds, 129

establish, grow and become reproductive adults (Fig. 1 (b)). Both seed biomass 130

and adult biomass, i.e., the threshold biomass where individuals become repro- 131

ductive, are two of the central, genetically-coded traits that define individuals 132

(Fig. 1 (a), Table 1). Adults are monoaecious and reproduce sexually with a 133

random adult of the same species whithin the same grid cell to produce new 134

seeds. Seed dispersal follows a logistic dispersal kernel with genetically-coded 135

mean dispersal distance and shape parameter µ and s, respectively (see Bullock 136

et al. 2017). In our discrete landscapes, dispersal is modeled as centroid-to-area, 137

with expected mean dispersal distances usually around equal to the length of 138

the grid cells (cf. Chipperfield et al. 2011). Furthermore, all individuals have 139

encoded preferences concerning two different environmental measures: the first, 140

temperature, has a direct effect on biological rates, as described by the MTE 141

(Brown et al. 2004) and affects density-independent mortality, while the sec- 142

ond is a surrogate for environmental resources, e.g., water. Thus, from here on 143

this second axis is called precipitation for simplicity. Individuals’ adaptation 144

to precipitation conditions determine their competitive abilities. Both these 145

preferences are characterized by an optimum and a tolerance, which are rep- 146

resented as mean and standard deviation of a Gauss curve, respectively. The 147

degree of mismatch between an individual’s preference optimum with the lo- 148

cal environment (i.e. within the grid cell) determines its adaptation value (i.e. 149

environmental fitness). Near their optimum, individuals with higher niche tol- 150

erance have lower adaptation values than individuals with narrower breadth 151
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(i.e. specialists, Griffith and Sultan (2012)). During establishment, the adapta- 152

tion values toward temperature and precipitation are calculated for each new 153

seed based on the local conditions and phenotypic traits (Fig. 1 (b)). Further- 154

more, each time environmental conditions change, all individuals in the affected 155

grid cell pass establishment again to re-calculate their adaption values. These 156

adaptation values are functional for two different subsequent processes. First, 157

individuals experience a metabolic, density-independent mortality (Brown et al. 158

2004). This mortality further scales with individual temperature adaptation, so 159

that mortality is higher for individuals which are poorly adapted to the sur- 160

rounding temperature (Cook 1979). Second, all individuals in a cell compete 161

for the limited available space in the grid cell, i.e., total sustainable biomass. If 162

the combined biomass of all individuals in a cell exceeds the grid cell’s carrying 163

capacity biomass, individuals are removed from the community until biomass 164

is within grid cell limits. The choice which individuals to remove is based on 165

pair-wise comparisons of random pairs of individuals. From any of such two 166

individuals, the individual less adapted to local precipitation conditions is re- 167

moved. 168

Genetic architecture. All of the aforementioned traits (see Table 1) are 169

coded by one or more genes in an individual’s diploid genome (polygenes ). Sin- 170

gle genes can also be associated to several traits at the same time (pleiotropy, 171

Solovieff et al. (2013)). Thus, each trait can be represented more than once 172

in the genome (i.e. through different genes at different loci). Since trait repre- 173

sentations are subject to species-specific variation, they can constitute different 174

alleles — both within the haploid genome at different loci, but also between the 175

maternal and paternal haploid genomes or between individuals (cf. Nevo 1978). 176

Realized ecological traits y, i.e., an individual’s phenotype, are then determined 177

quantitatively by considering all respective loci yl within an individual’s genome 178

and taking their average. This results in a random degree of species-specific phe- 179

notypic and genetic, i.e., intra-individual or intra-genomic, trait variation (cf. 180

Mackay 2001). Lastly, genes may be combined to form a linkage unit, which 181

represent a set of spatially close genes within the same chromosome arm. Link- 182

age units thus comprise the smallest hereditary entities (Hermann et al. 2013, 183

Lande 1984). Haploid gametes receive a complete random set of those linkage 184

units following a recombination process, where each linkage unit can originate 185

from either the paternal or maternal chromosomal complement of the individual 186

producing the gamete. During reproduction, the gametes of two mating individ- 187

uals thus form an offspring’s (i.e. seed) genome. The phenotypic characteristics 188

of each offspring are then calculated on the basis of its recombined genome and 189

local environmental conditions (Fig. 1 (a)). 190

A detailed model description with justification for assumptions, equations and 191

parameter values can be found in Supplementary material Appendix 1 (Grimm 192

et al. 2006, 2010). Model parameters are summarized in Table 1. 193

Experimental design 194

Simulation arena. We set our simulation experiments in a rectangular land- 195

scape of a grid of 5 by 7 grid cells (Fig. 1). Each grid cell had a carrying 196
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Table 1. Model parameters, their meaning and relevance. Phenotypic traits y (Mr, Ms, µ, s, P , σP , T ,
σT ) are always the average of all corresponding trait loci yl in the genome. Values are arbitrary, but within
empirically or theoretically supported ranges (see main text and supplementary materials for details) and
dimensionless unless otherwise specified. The variability column describes whether and how values might
change. Constant: values are global constants across scenarios; genome: values might differ within an
individual’s genome, potentially giving rise to different phenotypes; scenario: values differ between
scenarios, but stay constant within scenarios; species: values might differ between species, but stay fixed
within species. SD: standard deviation

Parameter Description Value or Range Variability

EA Activation energy 1× 10−19 J (adapted from Brown et al. 2004) constant
kB Boltzman constant 1.38× 10−23 JK−1 constant
K Carrying capacity 100 kg constant
r0 Base fecundity 1.4× 1012 (modified after Brown et al. 2004) constant
g0 Base growth rate 8.8× 1010 (modified after Brown et al. 2004) constant
m0 Base mortality rate 1.3× 109 (modified after Brown et al. 2004) constant
δP Temporal precipitation SD 0.0 or 0.2 scenario
δT Temporal temperature SD 0.0 ◦C or 0.2 ◦C scenario
nl Number of loci 1 to 20 (Fournier-Level et al. 2011) species
nu Number of linkage units 1 to nl species
σl SD among trait loci 0 to 0.1 × mean of trait genome
Mr Biomass at reproductive stage e3 g to e14 g (Brown et al. 2004) genome
Ms Biomass at seed stage e−2 g to e10 g genome
µ Dispersal kernel mean 0 to 1 grid cells genome
s Dispersal kernel shape 0 to 1 grid cells genome
P Precipitation optimum 0 to 10 genome
σP Precipitation tolerance 0 to 1 genome
T Temperature optimum 10 ◦C to 40 ◦C genome
σT Temperature tolerance 0 ◦C to 1 ◦C genome

capacity of 100 kg of total biomass, which approximately relates to 100m2 of 197

grassland (Deshmukh 1984, Bernhardt-Römermann et al. 2011). Landscape 198

size and carrying capacity was arbitrary but ensured computational feasibility. 199

Two perpendicular environmental gradients (temperature and precipitation) ran 200

along the long and short axis of the landscape, respectively. The rectangular 201

shape of our simulation arena provided a longer gradient in the physiologically 202

important temperature direction. 203

Initialization. We initialised each grid cell of the landscape with a different 204

local community of random species. The species characteristics (i.e. genomic and 205

ecological traits) as well as local abundances were chosen randomly from large 206

ranges of uniform-distributed values. On the genomic level, species differed by 207

the number of loci, nl (maximum = 20, cf. Fournier-Level et al. 2011, Schiffers 208

et al. 2012), intragenomic variation between trait values, i.e., genetic variation, 209

σl (maximum = 0.1×trait value), and number of linkage units, nu (between 210

one and nl, Table 1). To obtain the ecological characteristics of a species, 211

first an average phenotype was defined by randomly selecting a value for each 212

phenotypic trait. These traits, more specifically, the adult biomass trait, were 213
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then used to calculate the number of offspring a single individual of this species 214

would have. Given an already determined genetic architecture (i.e. nl, nu, and 215

σl), each individual of a species was then initialized as follows. For each trait 216

representation (i.e. gene) within the genome, the associated trait value was 217

chosen randomly following a Normal distribution with the trait value of the 218

average phenotype as mean and standard deviation the product of σl and the 219

trait value (Table 1). Afterwards, the initial phenotype for each individual was 220

calculated based on all genes in the genome. This resulted in varying degrees 221

of intragenomic and intraspecific standing variation. We disabled mutations in 222

our experimental design so that this standing variation was the only resource 223

for selection. Grid cells were then filled with populations of several species until 224

carrying capacity was reached. Because species vary randomly in their traits, 225

including biomass, initial grid cell communities varied in richness. This resulted 226

in initial communities with on average 10 species per grid cell and a total of 350 227

species in the landscape. 228

Values for simulation, global and species-specific parameters that were not 229

varied in the different experimental scenarios were chosen to ensure plausible 230

patterns, most importantly to achieve species co-existence by adjusting the 231

mortality-to-fecundity ratio. Species-specific parameter values were drawn at 232

random from a range that extended beyond what would be realisable in sim- 233

ulations to reduce geometric artifacts within the parameter space (Table 1). 234

This also kept the need for additional assumptions at a minimum, since viable 235

species emerged via environmental filtering and ecological interactions. Global 236

parameter values were either adapted from the literature (Brown et al. 2004, 237

Fournier-Level et al. 2011) or fine-tuned via trying out a range of realistic values. 238

Scenarios. For investigating our general study question about the interplay of 239

environmental variation and ecological and genomic traits, we designed two sce- 240

narios. In the first, temperature and precipitation gradients arbitrarily ranged 241

through constant values of 16.85 ◦C to 22.85 ◦C (290K to 296K) and 3 to 7 242

(arbitrary quantity), respectively, during the entire simulation run (“static en- 243

vironment”). In the second, initial temperature and precipitation values were 244

the same as in static environments, but could change at each year (“variable 245

environment”). The change followed a gaussian random-walk trajectory to yield 246

positive auto-correlation (Fung et al. 2018). The amount of change (δP and 247

δT , Table 1) was drawn randomly from a Normal distribution with a standard 248

deviation of 0.2. This value corresponds to a moderate rate of change of no 249

more than 0.5 degrees per year in the majority (ca. 99 %) of cases, which 250

we found by trying different values to produce noteable environmental change 251

that did not kill all individuals in a short amount of time. Since our simu- 252

lation arena represents a small spatial scale, all grid cells changed always by 253

the same value at each timestep. The change of temperature was independent 254

from that of precipitation and vice-versa. Confounding effects, such as land- 255

scape configuration, different temporal dynamics, complex dispersal behavior 256

and macro-evolutionary processes (e.g. clade diversification) have been studied 257

elsewhere and were thus not included in the present study (Münkemüller et al. 258

2012, Kubisch et al. 2014, Aguilée et al. 2018). Table 1 contains the parameters 259

which were varied for the scenarios, their meaning and their values. We sim- 260

ulated 90 different replicates. Each replicate terminated after 1000 simulated 261
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years. This duration was adequate to allow quasi-equilibrium (see Results) and 262

short enough to warrant our selection-on-standing-variation rationale (Hermis- 263

son and Pennings 2005). Each replicate, i.e., each unique initial community, 264

was subjected to both scenarios. This yielded 180 simulations in total. 265

We recorded the complete state of the individuals in our simulation world 266

at the start and every 50 years of a simulation run. This data encompassed 267

individual phenotypic and genotypic values. Thus, for every year, we tracked the 268

state of local species populations including location, abundance, demographics, 269

median adaptation, and trait values for all ecological and genomic traits. 270

Analyses 271

To make the individual information more accessible, we calculated summary 272

statistics at the population level. We defined a population as a group of conspe- 273

cific individuals co-occurring in the same grid cell. For each population, we then 274

calculated median values of each phenotypic trait, the variance of each pheno- 275

typic trait (phenotypic intraspecific variation), and medians of the individual 276

genetic variation in each trait. We scaled all variance values by the respec- 277

tive population-specific medians to get coefficients of variation of the median 278

(CV median). In order to compare emerging ecological patterns and identify 279

when equilibrium is reached, we calculated a set of ecological metrics, namely 280

species-richness, i.e., the average number of species per grid cell, α (α-diversity), 281

the total number of species across the landscape, S (γ-diversity), β-diversity, 282

β = S/α− 1 (Whittaker 1960), population demographic structure (i.e. number 283

of juveniles and number of adults) and range-filling from the data on surviv- 284

ing communities. For diversity indices, we converted our data to community 285

matrices and analyzed them using vegan (Oksanen et al. 2018) in R (R Core 286

Team 2019). To assess demographic structure within communities, we analyzed 287

average numbers of juveniles and adults. Range-filling was calculated as the 288

fraction of grid cells that was occupied by a species over all the grid cells that 289

were potentially suitable for the given species. Suitability was asserted as an ar- 290

bitrary cut-off where environmental parameters (temperature and precipitation) 291

fell within a species’ tolerance (optimum ± tolerance). 292

For our study questions, we analyzed the trait composition of surviving 293

communities genomic trait composition (study question (a)), and differences in 294

phenotypic and genetic standing variation (study question (b)) between envi- 295

ronments. Since we were interested in general patterns of the effect of envi- 296

ronmental variability, rather than the effects of warming or cooling trends, we 297

excluded precipitation and temperature optimum traits from our analyses. We 298

transformed trait and variation distributions before analysis and visualization 299

using a log (x+ 1) transformation, because they were strongly left-skewed and 300

contained values < 1. Additionally, we calculated the degree of genetic linkage 301

as nl

nu
, because due to our method of initializing species, nu directly depended 302

on nl. 303

To ascertain whether and how trait composition differs between environ- 304

mental conditions (study question (a)), we first compared species numbers and 305

identities. Because each community is subjected to both environments, we an- 306

alyzed what proportion of species was shared by both environments, and which 307

were unique to one of the environments. To assess how ecological and genomic 308

traits respond to variable environments, we compared trait characteristics be- 309
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tween scenarios by performing principal component analyses on the population 310

trait data. This way, we were able to describe general patterns in trait space 311

between scenarios by relating the total trait space shift to the principal com- 312

ponents and correlated trait axes. Additionally, we compared community trait 313

distributions pairwise between environments to identify trends in traits specific 314

to the environments. For this, we calculated linear mixed models using the R 315

package lme4 (Bates et al. 2015) with trait as response, environment as fixed 316

effect and replicate as random effect. 317

To find out whether there is a selective force on standing variation (both phe- 318

notypic and genetic) specific to environmental conditions (study question (b)), 319

we compared the phenotypic and genomic trait variances of surviving commu- 320

nities between scenarios for all traits in separate. We again calculated linear 321

mixed models, with trait variances as response, environment as fixed effect and 322

replicate as random effect. 323

The model code, experiment definition files and analysis scripts are available 324

at https://github.com/lleiding/gemm. Albeit reporting of significance values 325

is generally inappropriate for simulation models (White et al. 2014), we use 326

significance here to identify which responses are stronger than others. 327

Results 328

Differences of ecological patterns between environments 329

Surviving communities in our simulation experiments (Fig. 1) differed in a num- 330

ber of ecological characteristics. Compared to communities in static environ- 331

ments, communities in variable environments were only about half as species- 332

rich on a local level (α-diversity, Fig. 2(a)) and exhibited less β-diversity (Fig. 333

2(b)), which resulted in decreased species richness on a regional scale (γ-diversity, 334

Fig. 2(c)). Summing over all replicates, a total of 108 species survived in 335

both enviroments, while 256 and 64 surviving species were unique to static 336

and variable environments, respectively. Emerging functional differences com- 337

prised higher total abundances in all demographic stages (Fig. 2(d), (e)) and de- 338

creased range filling for communities in variable environments (Fig. 2(f)). While 339

all aforementioned metrics were constantly changing during the entire simula- 340

tion course in the variable environments, in static environments they reached a 341

quasi-equilibrium by year 500. For the following trait-based analyses, we thus 342

used data from that year. 343

Response of ecological and genomic traits 344

Surviving communities showed subtle differences in their trait syndromes com- 345

bining all traits in a PCA. In the first two principal components, populations 346

from variable environments occupied for the most part a subset of the trait 347

space of populations from static environments (mostly overlapping ellipses in 348

Fig. 3). Nevertheless, the trait space of variable environment communities was 349

shifted towards increased environmental tolerances and dispersal abilities and 350

decreased mean genetic variation (negative direction of second principal com- 351

ponent - Fig. 3). With the exception of the first, all principal components and 352

thus correlated traits, contributed similarly to the overall explained variance 353
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Figure 2. Averaged ecological patterns across the entire simulation arena
over time after initialisation. Dark/violet: static environment, light/yellow:
variable environment. Grey ribbons represent 95% confidence intervals. (a)
local species richness (α-diversity) as numbers of species, (b) β-diversity
(Whittaker 1960), (c) total species richness (γ-diversity) as numbers of species,
(d) mean number of juveniles, (e) mean number of adults, (f) range-filling, i.e.,
the percentage of potentially suitable habitat that is actually occupied. Spikes
are due to single replicates with extreme values.

(Supplementary material Appendix 1 Fig. A2). 354

Focusing on single traits, communities showed several differences between 355

the two types of environments (Fig. 4(a), Supplementary material Appendix 1 356

Table A3). Compared to static environments, surviving communities in variable 357

environments showed on average an increased number of genes (nl), increased 358

precipitation and temperature tolerances (σP and σT , respectively), increased 359

long distance dispersal (s), decreased adult biomass (Mr), and decreased ge- 360

netic variation (σl). Seed biomass, mean genetic variation and genetic linkage 361

exhibited no significant differences (Supplementary material Appendix 1 Table 362

A3). 363

Differences in standing variation (phenotypic and genetic) 364

Additionally to differences in the phenotypic characteristics, we found distinct 365

patterns between environments in both phenotypic and genetic trait variation 366

(Fig. 4(b)). While the phenotypic variation of mean dispersal distance and both 367

phenotypic and genetic variation of long distance dispersal was increased in 368

variable environments, all other trait variations (phenotypic and genetic) were 369

decreased in variable environments. The trend towards a decrease in genetic 370
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Figure 3. Principal component analysis (PCA) showing trait space
characteristics (ecological and genomic) of surviving populations. Biplot of
surviving populations and trait axes along the first two principal components.
Populations without temporal environmental variation (dark/violet) vs. with
temporal environmental variation (light/yellow). Shadowed ellipses highlight
areas of 95 % confidence.

variation of temperature tolerance was not significant. 371

Discussion 372

General differences between scenarios 373

Our results show how community trait composition of plant metapopulations 374

may differ between static and temporally variable environments in a genomically- 375

explicit eco-evolutionary model. The changing abiotic conditions in variable 376

environments act as a constant environmental filtering mechanism (Kraft et al. 377

2015), where only those species survive that are able to adapt to or track envi- 378

ronmental changes. As a result, communities are species poorer (see also Menge 379

and Sutherland 1976). The decreased β-diversity furthermore suggests that 380

these fewer species in variable environments are rather generalistic, in compari- 381

son to static environments where species seem more specialized to local environ- 382

mental conditions, as evidenced by the higher β-diversity (cf. Gilchrist 1995). 383

The fact that, furthermore, range-filling is reduced in the variable environments 384

is likely a mid-domain-like effect (cf. Colwell and Lees 2000), where due to the 385

ongoing temporal variability, the margins of a potential range will often become 386
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Figure 4. Community trait responses to temporal environmental variation
along three organisational levels. (a) Differences in trait means in variable
environments compared to static environments. (b) differences in phenotypic
trait variances, and (c) differences in genetic trait variances in variable
environments compared to static environments. Error bars show standard
errors. Red and blue colors indicate negative and positive differences,
respectively. Note the different axis scales. The abbreviation “n.s.” denotes
differences that are not significant (p > 0.05). “N.A.” marks trait differences
that are not available at the given level.

unsuitable quickly, impeding establishment and survival. Moreover, because the 387

environmental change in our simulations was random rather than periodical or 388

directional, the probability for species to find alternating suitable conditions is 389

low. This alternating suitability, however, is the prerequisite for temporal envi- 390

ronmental variability to favor species co-existence and increased species richness 391

(cf. Tilman and Pacala 1993, Descamps-Julien and Gonzalez 2005). In contrast, 392

most communities in static environments passed environmental filtering already 393

after the first 200 years, after which species were distributed according to their 394

environmental preferences and ecological patterns became stable. 395

Study question (a): Which ecological and genomic traits 396

enable survival in temporally variable environments? 397

The trait characteristics of communities in the respective environments repre- 398

sent successful strategies in surviving random environmental variation. The de- 399

creased values of precipitation tolerance in communities in static environments 400

indicate increased environmental specialization. This is in contrast to commu- 401

nities in variable environments, where the variability in precipitation conditions 402

favors species with higher tolerance values (i.e. specialization to local condi- 403

tions are detrimental in variable environments, Gilchrist 1995, Kassen 2002). 404

Additionally, temperature tolerance directly affects individual survival due to 405

metabolic constraints (Fig. 2(d)). Since a high temperature tolerance decreases 406

fitness, species are forced to keep tolerances low if they occur at their respective 407

environmental optimum. In variable environments, this environmental optimum 408

is hardly met. As a consequence, selection acts rather on enhancing temper- 409

ature tolerance to gain long-term fitness. Therefore, our experimental design 410
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captures the evolution towards bet-hedging strategies in terms of adaptation to 411

variable environments (Slatkin 1974). 412

The second aspect of survival strategies lies in the biomass patterns. In gen- 413

eral, species in variable environments were smaller than in static environments. 414

Since growth rates and fecundity follow MTE, smaller species are more fecund 415

than bigger species at the expense of survival. A higher and more frequent num- 416

ber of offspring will spread the risk over time in variable environments (McGinley 417

et al. 1987, Philippi and Seger 1989). Additionally, the larger range of different 418

biomasses in static environments can be interpreted as temporal partitioning 419

(Pronk et al. 2007), because it means that co-occurring species will reproduce 420

at different times and intervals. This allows species to alternate dominance and 421

thus produce temporally variable biotic conditions (cf. Olff et al. 2000, Wilson 422

and Abrams 2005). Furthermore, both biomass and tolerance patterns suggest 423

that specialization to avoid competitive exclusion plays a larger role in shaping 424

communities in static environments, while communities in variable environments 425

are primarily shaped by generalism and environmental filtering (cf. Menge and 426

Sutherland 1976, Hulshof et al. 2013). 427

In order to track suitable conditions, dispersal abilities are of crucial im- 428

portance in changing environments (Bourne et al. 2014). While mean dispersal 429

distances in our simulations showed little differences between environments, long 430

distance dispersal indeed increased in variable environments. Besides primary 431

dispersal traits, the dispersal rate also increased in variable environments via 432

the indirect effect of metabolic rates: the high demographic turnover that comes 433

with higher fecundity due to decreased biomass leads to more frequent dispersal. 434

This further explains why there was little change in mean dispersal distance be- 435

tween environments. With the rate of change in our simulations and the small 436

spatial extent of our landscape, dispersal distance (which is what is controlled 437

by dispersal traits) is less important than dispersal rate (cf. Johst et al. 2002). 438

However, this might change in fragmented landscapes, where dispersal distance 439

is critical to maintain connection between habitable patches (Bacles et al. 2006, 440

Boeye et al. 2013, Bonte et al. 2010). 441

Lastly, species may survive by adapting to changing conditions (Jump and 442

Peñuelas 2005). This constant adaptation requires an appropriate genetic ar- 443

chitecture: we expected genomes to contain a high variation of trait alleles 444

(Holt 1990) which can be recombined easily for a species to quickly respond to 445

novel conditions (Schiffers et al. 2012, Matuszewski et al. 2015) by producing 446

new phenotypes. Indeed, we found increased gene numbers in variable environ- 447

ments, which allow potentially larger range of possible expressed trait values, 448

and thus more recombination potential. Since genetic linkage did not differ be- 449

tween environments, the genome size increase is due to an increased number 450

of linkage units. Species with these larger genomes can be thought of having 451

undergone polyploidisation or ascedent dysploidy. In fact, polyploidisation cor- 452

relates with latitude and, arguably, with environmental stress (Rice et al. 2019), 453

but direct tests of this are difficult due to feasibility (Van de Peer et al. 2017). 454

Moreover, increased fecundity also increases adaptation potential as it leads to 455

more recombination in a given time interval. According to our results, the adap- 456

tation response to variable environments is mainly characterised by increasing 457

environmental tolerances. However, the changes in genomic traits did not pre- 458

vent the general decrease of mean genetic variation in variable conditions, which 459

contradicts results from a previous modeling study (Matuszewski et al. 2015). 460
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With more detailed data on the levels of variation, we will attempt to offer an 461

explanation to this in the following section. 462

Study question (b): How do temporally variable environ- 463

ments shape phenotypic and genetic standing variation? 464

Having identified survival strategies on a population phenotypic level, we wanted 465

to know whether there are selection patterns on the standing variation within 466

the populations — both at the phenotypic intraspecific and genetic levels. Our 467

results enable us to identify which traits are under increased selection pressure 468

and in which traits species benefit from variation in the different environments. 469

Most traits, such as tolerance for environmental conditions and biomass, were 470

more specialized, i.e., had lower variation, in variable environments at both in- 471

traspecific and genetic levels. However, it appears to be beneficial for species to 472

maintain plasticity in dispersal distances when coping with temporal environ- 473

mental variation, as evidenced by the fact that dispersal traits, especially long 474

distance dispersal, maintained similar to higher levels of variation. 475

Since variation in our experiments could be increased neither by mutation 476

(Josephs et al. 2017), nor by external gene flow (Cornetti et al. 2016), selection 477

could only act on standing variation. Under these conditions, a higher linkage 478

of genes preserves variation in the associated trait (cf. Teotónio et al. 2009), 479

while low linkage genes allows faster specialization. This differentiated selec- 480

tion pressure might explain why we don’t see a net change in genetic linkage, 481

because variation and specialization benefit from contrasting degrees of genetic 482

linkage. Specialization in any given ecological function and thus the emergence 483

of different phenotypes could also be facilitated by a low number of loci for as- 484

sociated traits (Schiffers et al. 2014). In contrast, phenotypic uniformity might 485

arise from increased number of loci which stabilize variation (Fraser and Schadt 486

2010). Thus, the number of loci represents a potential trade-off between special- 487

ization and phenotypic robustness, which might warrant further investigation. 488

These findings suggest that increasing the number of loci could act as a stabi- 489

lizing coexistence mechanism by promoting intraspecific competition caused by 490

phenotypic uniformity and thus greater intraspecific niche overlap. In light of 491

this, further experiments should focus on whether phenotypic variation impacts 492

species coexistence negatively (Hart et al. 2016) or if low species numbers first 493

allow higher phenotypic variation (Hulshof et al. 2013). 494

Our results furthermore exemplify that intraspecific and genetic variation do 495

not need to be correlated. In case of mean dispersal distance, phenotypic varia- 496

tion increased in variable environments. However, the genetic variation of mean 497

dispersal distance decreased. Thus, the phenotypic variation in mean dispersal 498

distance is due to very different phenotypes, which, in turn, exhibit relatively 499

specialized genotypes. This further stresses the essential role of ecotypes to 500

ensure species survival under changing environments. 501

Limitations and perspectives 502

The fact that our simulations produced low coexistence in terms of the total 503

number of species across the landscape might be a result of too large a trait 504

space in the initial species pool, most of which would be filtered by the relatively 505

narrow environmental conditions. Since the initial species pool was on average 506
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350 species large, the probability is also high for it to contain a few strong 507

generalist species, which outcompete other species. On the other hand, an 508

average initial number of 10 species per grid cell means a low probability for one 509

or more species to be sufficiently adapted to the local conditions. Nevertheless, 510

the coexistence level obtained is also in accordance with theoretical expectations, 511

considering that a niche partitioning along the two gradients would explain the 512

average of four species we count in static environments (i.e. one specialized 513

species per environmental gradient combination, see Armstrong and McGehee 514

1980). The filtering is also evidenced by the reduction of trait value ranges over 515

all traits after simulation initialisation (not shown). In fact, additional post-hoc 516

simulations with more constrained initial communities in terms of species traits 517

resulted in a two-fold increase of surviving species numbers (not shown). This 518

did not, however, change the general results. Small-scale disturbance or trophic 519

interactions, e.g., herbivory could further increase coexistence, as theoretical and 520

empirical studies suggest (Shea et al. 2004, Roxburgh et al. 2004, Chesson and 521

Kuang 2008). But since these processes likely produce additional confounding 522

effects, we chose not to include them in our model at this stage, albeit we identify 523

them as potential directions for further model development. Trophic and other 524

interactions such as mutualism, can have important effects on species survival 525

under climate change (Berg et al. 2010) and even lead to extinction cascades 526

if keystone species get lost (Brook et al. 2008). Since keystone species would 527

be affected by genetic factors in the same way as any other species, our model 528

likely underestimates net species loss effects mediated by genetic factors. 529

Furthermore, our model simplifies complex genetic factors and dynamics 530

which could potentially have confounding effects on resulting patterns. For in- 531

stance, linkage between genes in reality is not a binary decision, but rather a 532

consequence of the physical distance between those genes. The larger the dis- 533

tance, the higher the probability of crossing over during meiosis. Additionally, 534

genetic architecture is dynamic, especially in plants. Genomes can grow, e.g., 535

by polyploidisation (Van de Peer et al. 2017), and shrink in size, both of which 536

affects genetic linkage and potentially genetic variation. Since polyploidisation 537

is often a stress response in plants it will arguably affect survival (Rice et al. 538

2019). Subsequent gene loss may then even initiate speciation, therefore provid- 539

ing new opportunities for emerging species (Albalat and Cañestro 2016). Our 540

model hence represent the effects of genetic linkage and genome sizes without 541

explicitly considering their respective genetic origins. Nevertheless, our findings 542

on the interaction betweeen genetic and ecological traits call for empirical works 543

identifying the factors that trigger these genomic processes and assessing their 544

evolutionary relevance (Van de Peer et al. 2017). 545

To make our model and the findings on genomic and ecological traits un- 546

der temporal evironmental variation more applicable and relevant to real-world 547

systems, the model could be constrained by real data in further studies. For in- 548

stance, the model could be initiated with simulation arenas which can be directly 549

derived from actual landscapes, including environmental conditions (e.g. from 550

Karger et al. 2017). Species-specific parameters could be taken from databases 551

for phenotypic traits (Kattge et al. 2011) and occurence records (GBI) and en- 552

riched by genomic information (Dong et al. 2004, Howe et al. 2020) to constrain 553

initial parameter space for the creation of random communities. Thus, our 554

model represents an oppurtunity to integrate different datasets from genomes 555

over traits and occurrences to environmental in a single mechanistic framework. 556
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Even in the current state, our model addresses a number of eco-evo-environ- 557

mental phenomena (cf. Govaert et al. 2019). The emerging patterns additionally 558

inspire new hypotheses which can be used to guide fieldwork and experimental 559

studies. The consideration of genomic traits, for example, implicates the explicit 560

consideration of new perspectives on biodiversity dynamics during impending 561

climate change (Fig. 5). For scenarios of short-term change of environmental 562

conditions, i.e., warming, lower or increased precipitation and more frequent 563

extreme events, adaptation can only exploit standing intraspecific or genetic 564

variation, rather than novel mutations. Species with high phenotypic variation 565

will likely have good adaptation potential, regardless of genetic characteristics. 566

For species with low phenotypic variation, adaptation potential depends on ge- 567

nomic traits. Species that have highly specialized, i.e., uniform, phenotypes, and 568

show little or no genetic variation will only be able to survive rapidly changing 569

conditions by tracking their specific favourable conditions. Fragmented envi- 570

ronments or poor dispersal abilities therefore will likely lead to the extinction 571

of those species. Even if species have high genetic variation, genetic architec- 572

ture is crucial for their performance. With a high degree of genetic linkage, 573

species might not be able to adapt critical traits in time to react to changing 574

conditions, since a beneficial trait allele might likely be linked to other disadvan- 575

tageous trait alleles. Thus, net fitness is unlikely to increase. Low linkage, on 576

the other hand, might lead to species who quickly adapt to new environments 577

as they are not impeded by genetic hitchhiking. However, if linkage is too low, 578

species will also quickly lose genetic variation, rendering them unfit to react to 579

subsequent change. Any conservation measures targeted at particular species 580

should thus consider population structure and genomic traits of species. Hence, 581

while the importance of genetic diversity is already acknowledged in conserva- 582

tion biology (Ramanatha Rao and Hodgkin 2002) — additional to functional 583

diversity (Dıáz and Cabido 2001), it is genetic architecture that will determine 584

adaptation success. 585

Conclusion 586

In this study we have demonstrated complex interactions between genetic and 587

ecological realms by using a simulation model that explicitly considers ge- 588

netic architecture of plant communities in changing environments. These eco- 589

evolutionary feedbacks broaden our understanding of the role of trait-specific 590

standing variation in species survival and adaptation (Fig. 5). This enabled 591

identifying ecological strategies of species to survive variable environmental con- 592

ditions. Variable environments select species with higher tolerances and faster 593

life cycles while species maintain variable dispersal abilities that facilitate track- 594

ing favorable environmental conditions. These adaptations are, however, mostly 595

enabled by large genomes, which allow maintaining a high degree of genetic vari- 596

ation. Furthermore, we could show that selection pressure differs between traits 597

and that there might even be positive selection pressure to maintain higher 598

genetic variation for dispersal traits. 599

Our findings suggest that genomes are subject to opposing forces — espe- 600

cially under changing conditions. While constant environmental filtering impov- 601

erishes genomes, there is a selective force to maintain variation in the genome 602

to adapt for future change. This conflict can be mediated to a certain degree 603

by genetic architecture, namely a higher number of genes which allows more 604
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Figure 5. Ecological and genomic factors influencing species survival under
variable environmental conditions.

genetic variation and a high linkage of loci which impedes the loss of variation. 605

However, traits that need quick specialization require a low number of weakly 606

linked loci. These complex interdependencies of genomic traits may thus further 607

promote the high diversity in genetic architecture and ecological strategies in 608

real-world species. 609

Additionally, our theoretical approach provided potential mechanisms re- 610

sponsible for the incongruence of phenotypic and genetic variation, which is 611

sometimes found in nature. A mechanistic link between negative correlation 612

in those types of variation means that special care is called for when inferring 613

genetic variation from phenotypic variation and vice-versa. 614

In summary, this study highlights the importance of genomic traits for the 615

functional assessment of local populations, species and metacommunities. We 616

hope that conservation studies make more use of these characteristics to pri- 617

oritize conservation efforts and expect future studies to investigate the genetic 618

architecture of specific traits in natural populations. 619
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Supplementary material Appendix 1

1.1 Model description
The model description follows the ODD (Overview, Design concepts, Details)
protocol (Grimm et al. 2006, 2010).

1.1.1 Purpose

This model is designed to simulate a (meta-)community of plant-like individuals
(Hanski 2001, Leibold et al. 2004) . For this, the model considers factors and
processes across genetic, population and ecological levels. The model is able
to produce several patterns across genetic, individual, population and (meta-
)community levels, including adaptation and speciation through divergence of
populations. Thus, the model expands from basic principles to richer represen-
tation of real-world scenarios.

1.1.2 Entities, state variables and scales

Individuals are the basic entity in the model. Given their attributes and life-
history, these individuals most closely resemble plants. Individuals belong to
different species, which are characterized by similar ecological traits and identi-
cal genetic architecture. The genetic architecture of each individual is comprised
of a diploid set of one or more linkage units, which, in turn, combine a set of
genes. Linkage units are always inherited in their entirety during the recombina-
tion phase of a reproduction event. The higher the number of genes per linkage
unit, the higher the degree of genetic linkage. Some of the genes code for one
ore more traits (pleiotropy, Solovieff et al. 2013), while a trait can be dependent
on more than one gene (polygene). The realized trait value is the mean of all
the trait alleles (quantitative trait loci). Traits thus controlled encompass the
initial body mass (size) of offspring, Ms, the body mass determining onset of
maturity and thus reproductive capability, Mr, mean dispersal distance, µ, the
shape of the dispersal kernel, controlling long-distance-dispersal, s, and values
representing the optimum and the tolerance (standard deviation) of a physical
niche parameter, such as temperature and precipitation (T and σT or P and
σP , resp.). Alternatively to be controlled by mutable genes, traits can also be
fixed. Additionally, individuals carry attributes which describe their bodymass,
M , and their adaptation to the abiotic environmental conditions (fitness), FT

and FP . Furthermore, every individual carries a Boolean marker used to store
whether a given individual has newly arrived to a grid cell or discriminate indi-
viduals from the rest of the community.

The base rates for processes governed by the metabolic theory of ecology
(Brown et al. 2004) — growth, reproduction, mortality — are global constants.
Mutation rate is also a global constant, if mutations are considered in a given
experiment.

Every individual is placed inside an arena of grid cells, each of which has a
location (coordinates) and is characterized by the physical properties tempera-
ture, precipitation and size (carrying capacity). Over the course of the simula-
tion, these properties (location or physical parameters) might change, reflecting
geomorphological dynamics. All individuals within one grid cell constitute a
community. The characteristics of the grid cells combined with the state of
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inhabiting individuals constitute the state variables of the model. Additional
patterns or summary statistics may be calculated based on these individual
information.

Processes and updates are repeated every timestep, while each timestep can
be considered as one year.

1.1.3 Process overview and scheduling

In each discrete, yearly timestep each individual in each grid cell will (in no
particular order unless otherwise stated) undergoes the following processes: (1)
establishment, (2) density independent mortality influenced by adaptation to
temperature, (3) growth, (4) competition (individuals are sorted according to
their adaptation to precipitation), (5) reproduction (6) mutation of offspring,
(7) filtering of unviable individuals, (8) seed dispersal.

After seed dispersal, the physical environment of a grid cell might change.
If that happens, all individuals within that cell are marked to undergo estab-
lishment again.

Updates to individuals and thus the local communities happen instanta-
neously after a specific process has been executed (asynchronous updating).

1.1.4 Design concepts

Basic principles. Metabolic theory of ecology (submodel level). Adaptive
and non-adaptive radiation/evolution (submodel level). Sexual reproduction.
Niche theory (system and submodel level): each individual carries unique eco-
logical and/or functional traits, as well as preferences for their physical environ-
ments. Resource/energy limitation (carrying capacity - system level property,
but invoked at submodel level).

Emergence. Species/Populations/ecotypes. Only constrained via genetic prop-
erties. Community trait composition. Interplay of physical properties (environ-
ment, geographical properties) and within community (competition strength via
reproduction, growth, etc.). Species numbers, endemics, speciation rate.

Adaption and objectives. See entities. Traits follow evolution: a trait
changes its value randomly within a given phylogenetic constraint. The suc-
cess of the change (fitness) emerges as the result of adaption to the physical
environment and the reproductive success of an individual over its competitors.

Sensing. Individuals are directly affected by the properties of their physical
environment (e.g., temperature).

Interaction. Individuals directly interact when sexually reproducing. How-
ever, they are not affected by this interaction themselves. Instead, the inter-
action aims solely at determining the genotype of their offspring. Additionally,
competition for resource/energy/space between individuals represents indirect
interaction.

2
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Stochasticity. Most of the submodels are carried out by all eligible individu-
als. Some submodels (Survival, Competition, Mutation and Dispersal), however,
happen with particular probabilities. In these cases, execution of submodels is
decided at random, taking into account individual characteristics, such as body
size, fitness, genome size, or dispersal abilities. All decisions inside all of the
submodels are stochastic (e.g., number of offspring) to maintain variability and
relax assumptions.

Observation. At the start and end of the simulation and at definable regular
time intervals, the properties of all individuals (including the properties of their
locations) are recorded and written to files.

1.1.5 Initialization

The initialization step creates lineages with randomly chosen genetic and eco-
logical trait values (see Table A1) in each grid cell that is designated to receive
an initial community. This encompasses choosing the number of genes for a lin-
eage, the number of linkage units and the intra-genomic variance of trait values.
Traits with thus distributed trait values are the distributed randomly among
the genes for each individual of a lineage. Population size (number of individ-
uals) of a lineage is determined by the adult body size of individuals from a
lineage. At this point all individuals of a population are identical. Values for
ecological traits are then varied in each gene where a given trait is found, for
all individuals of a lineage. The variation is Normal distributed with the aver-
age lineage trait value as mean and the product of σl (phylogenetic constraint)
and the lineage trait value as standard deviation. This ensures initial genetic
variation within a lineage population. Thus created populations are added to
a grid cell’s community until the additional mass of another population would
exceed the grid cell’s carrying capacity. In the experiment configuration file, it
is possible to specify other methods of initializing communities, e.g., “single”,
where each grid cell receives only one species. Whether a grid cell receives an
initial community depends on the map definition. At the end of initialization
each of the thus populated grid cells holds one or more different populations,
each from a separate lineage.

1.1.6 Input

At the start of a simulation, user defined parameters are read, containing also a
definition of the simulation arena (map definition). This definition is provided
in a separate plain text file. Within the text file, a line at the top containing
a single number defines the number of timesteps the arena definition is valid
for. Every other non-empty line defines one grid cell with a unique identifier (a
number), and the location of the grid cell as two coordinates. Optionally, one
can define the type of the grid cell (island or continent), its temperature and
precipitation values, and size.

Other optional parameters can be set in a separate configuration file and
pertain to defining simulation scenarios (Table A1).

If a parameter value is not specified by the user, its default value is assumed,
which is defined in the simulation code. Global parameter values were either
adapted from the literature (Brown et al. 2004, Fournier-Level et al. 2011) or
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Table A1: Model parameters with variable names as used in the source code.

Name/Function Default value Description

"avgnoloci" 1 average number of loci
"cellsize" 20e6 maximum biomass per hectare (g)
"config" "simulation.conf" configuration file name
"debug" false write out debug statements
"dest" current date output folder name
"fasta" false record fasta data?
"fertility" exp(28.0) global base reproduction
"growthrate" exp(25.2) global base growth
"indsize" "seed" initial individual stage
"lineages" false record lineage and diversity data?
"linkage" "random" gene linkage type ("random"/"full"/"none")
"logging" false write output to logfile
"maps" "" comma-separated list of map files
"maxdispmean" 10 maximum mean dispersal distance
"maxrepsize" 14 log maximum repsize (g)
"maxseedsize" 10 log maximum seedsize (g)
"maxtemp" 313 maximum optimum temp (K)
"minrepsize" 3 log minimum repsize (g)
"minseedsize" -2 log minimum seedsize (g)
"mintemp" 283 min optimum temp (K)
"mortality" exp(22) global base mortality
"mutate" true mutations occur
"mutationrate" 3.6e10 one mutation per individual
"nniches" 2 number of environmental niches
"outfreq" 100 output frequency
"phylconstr" 0.1 phylogenetic constraint
"phylo" false record phylogeny?
"popsize" "metabolic" population size initialization algorithm
"precrange" 10 range from 0 for precipitation optimum
"quiet" false don’t write output to screen
"sdtemp" 0.0 temperature change per time step
"sdprec" 0.0 precipitation change per time step
"seed" 0 seed for the random number generator
"static" false mainland individuals stay static
"traitnames" ["compat", "dispmean", "dispshape", list of traitnames

"precopt", "prectol", "repsize",
"reptol", "seedsize", "tempopt",
"temptol"]

4

GENOM IC TRA I T S UNDER T EMPORAL ENV I RONMENTAL VAR IAB I L I T Y 65



found via trying out a range of values to identify combinations that lead to high
species coexistence.

1.1.7 Submodels

Establishment. Whenever an individual is new to a grid cell (by recent birth,
dispersal event or environmental change), their physical niche preferences are
compared with the actual niche properties, e.g., the temperature, T , of the
present grid cell. The individual adaptation parameter, A, is set according to
the deviation from the optimum value considering the niche breadth as standard
deviation of a Gaussian curve, i.e., an individual’s fundamental environmental
niche (Hutchinson 1978).

A = a exp (−(T − Tmean)2/(2σ2
T )) (1)

where
a = 1/(σT

√
2π) (2)

Competition. If the sum of the community’s bodymass exceed the available
space, this will pick two individuals at random and remove the one that has
lower adaptation to local precipitation, AP . Once total bodymass is below
carrying capacity, the procedure terminates.

Growth. Given an individual has undergone establishment, an individual
changes its size (M + δM ) following the metabolic theory and the global base
growth rate, b0:

δM = b0M
3/4 exp (

−EA

kBT
) (3)

with EA as activation energy and kB the Boltzmann constant. In case this
change results in zero or negative body mass, the individual is removed from
the community.

Density independent mortality/Survival. An individual is removed from
the local community with a probability pmort depending on its sizeM , its adap-
tation to temperature, AT , and a global base mortality rate bmort:

pmort =
1− exp (−bmortM

−1/4 exp (−EA

kBT ))

AT
(4)

Reproduction and mutation. All individuals that have grown to or beyond
their individual reproduction sizes may reproduce. The number of offspring is
randomly drawn following a Poisson distribution with mean N determined by
the individual’s size M and a global base offspring number N0:

N = N0M
−1/4 exp (−EA/(kBT )) (5)

The number of offspring is then multiplied by the seed mass encoded in the
parent’s genome and this total biomass subtracted from the parental biomass.
If the remaining biomass would be equal to or less than 0, the individual will
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not reproduce. Otherwise, possible mates are selected within the same grid cell
based on whether they belong to the same lineage, have reached maturity (which
includes having established on the grid cell) and whether their compatibility se-
quences are sufficiently similar. If a suitable partner is found, both partners
produce gametes, i.e., complete haploid sets of all linkage units, where each
linkage unit is randomly picked either from the maternal or paternal set. The
two gametes, one from each mating partner, comprise the genome for the off-
spring. At this point, mutations in the offspring’s basecode may happen with a
set probability Pm. In the case of mutation all traits associated with the respec-
tive gene will randomly change value V by ε, which is normally distributed and
has as standard deviation the product of σl, i.e., the phylogenetic constraint,
and V .

The new individuals’ trait values are then calculated as the means of all
alleles and the individuals added to the community, with their size set to the
initial biomass Ms (seed biomass).

Dispersal. After reproduction and mutation, each offspring individual may
disperse. For each dispersal event, a new location (i.e. x and y coordinates) is
drawn randomly following a logistic distribution with mean and shape param-
eters (which controls long-distance-dispersal) taken from the individual’s traits
(Bullock et al. 2017). If a suitable grid cell is found at the drawn coordinates,
the dispersing individual will be placed there and removed from the original
community. The removal happens even when there is no destination grid cell
to be found, thus killing the individual. Special attention is paid when the
destination grid cell is of island type, while the origin is on the mainland and
the simulation runs in “static” mode. In this case, the dispersing individual is
copied to the new destination instead of moved.

Habitat change. If enabled, both environmental habitat parameters - tem-
perature and precipitation - change values throughout the simulation arena. The
amount and direction of change is the same for all grid cells across the land-
scape. Changes to temperature and precipitation happen independently from
one another. The change is randomly drawn from a Normal distribution with
the current value as the mean and a user defined standard deviation ("sdtemp"
and "sdprec").

1.1.8 Output/Calculation

The main simulation data output is stored in two separate formats. The first
is a table containing data characterizing the individuals. Each line represents
on individual. The columns describe an individual’s current state. This is char-
acterized by location, environmental conditions, ecological traits and summary
of the genetic architecture. Additionally or alternatively to the individual level
data, the data can be summarized at the population level (i.e., all individuals
of a common lineage within the same grid cell). The second format is a fasta
file containing the entire genome of all individuals. Association of sequences to
individuals, linkage units, genes and coded traits is defined in the fasta headers.
Output is stored at the beginning and end of a simulation and at user-definable
intervals. The output considers the state of all non-seed individuals at those
times.
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1.2 Change of variance along principal components de-
pending on the number of replicates
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Figure A1: Standard deviations of principal components based on the simula-
tions’ output of trait data at the investigated year 500. There is no noticeable
change in standard deviations prior to reaching 90 replicates.
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1.3 Results from principal component analysis and mixed
effects models
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Figure A2: Scree plot of the proportion of explained variance by each of the
principal components for the PCA of trait data at year 500.

Table A2: Quality of representation of traits on the principal component dimensions (“PC”).

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Mean dispersal distance 0.223 -0.237 0.364 -0.228 -0.669 0.331 0.195 -0.335 -0.052
Number of genes 0.053 -0.016 -0.704 0.325 -0.045 0.278 0.017 -0.562 -0.012
Precipitation tolerance -0.136 -0.584 0.097 0.201 -0.120 -0.288 -0.684 -0.156 0.030
Adult biomass (g) 0.619 0.134 0.123 0.095 0.141 0.117 -0.231 -0.021 0.699
Temperature tolerance 0.327 -0.230 -0.178 -0.011 -0.097 -0.753 0.464 -0.099 0.083
Genetic linkage 0.141 0.004 -0.549 -0.516 -0.375 0.011 -0.296 0.428 0.030
Mean genetic variation -0.141 0.599 0.093 -0.346 -0.090 -0.357 -0.287 -0.525 0.008
Long distance dispersal 0.144 -0.378 -0.022 -0.609 0.596 0.141 0.005 -0.275 -0.119
Seed biomass (g) 0.615 0.172 0.073 0.191 0.056 -0.042 -0.237 0.055 -0.697
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Table A3: Results of mixed effects model fits for the different trait as a function
of the type of environment (static or variable), with replicate as a random effect.

Trait Estimate Std. Error df t value Pr(>|t|)
Temperature tolerance (σT ) 0.075 0.006 15232 13.082 0.000
Seed biomass (g, Ms) -0.020 0.022 15215 -0.896 0.370
Precipitation tolerance (σP ) 0.263 0.006 15217 44.525 0.000
Number of genes (nG) 0.037 0.012 15205 3.228 0.001
Mean genetic variation (σG) -0.014 0.001 15212 -9.727 0.000
Mean dispersal distance (µ) -0.003 0.003 15215 -1.178 0.239
Long distance dispersal (s) 0.021 0.002 15215 8.578 0.000
Genetic linkage (L) -0.020 0.012 15216 -1.751 0.080
Adult biomass (g, Mr) -0.487 0.026 15212 -18.621 0.000

Table A4: Results of mixed effects model fits for the variation of traits in phenotypic
and genetic levels as a function of the type of environment (static or variable), with
replicate as a random effect.

Trait Level Estimate Std. Error df t value Pr(>|t|)
Mean dispersal distance phenotypic 0.042 0.004 15228 10.651 0.000
Mean dispersal distance genetic -0.023 0.003 15204 -8.244 0.000
Long distance dispersal phenotypic 0.025 0.003 15250 9.053 0.000
Long distance dispersal genetic 0.009 0.003 15219 3.083 0.002
Precipitation tolerance phenotypic -0.025 0.002 15222 -10.156 0.000
Precipitation tolerance genetic -0.026 0.003 15207 -9.873 0.000
Seed biomass (g) phenotypic -0.019 0.001 15246 -13.153 0.000
Seed biomass (g) genetic -0.009 0.002 15230 -3.832 0.000
Adult biomass (g) phenotypic -0.044 0.003 15218 -13.344 0.000
Adult biomass (g) genetic -0.022 0.003 15222 -8.836 0.000
Temperature tolerance phenotypic -0.020 0.002 15231 -8.684 0.000
Temperature tolerance genetic -0.004 0.003 15221 -1.242 0.214
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1.4 Spatial structuring of ecological patterns in the simu-
lations

Exemplary simulation Average of all simulations

Figure A3: Spatial structuring of ecological variables and traits in static and
variable environments. (a) Local richness (α-diversity) in an exemplary sim-
ulation run, (a) Local richness (α-diversity) averaged over all simulations, (c)
mean adult biomass in an exemplary simulation run, (c) mean adult biomass
averaged over all simulations, (e) mean number of genes in an exemplary sim-
ulation run. (f) mean number of genes averaged over all simulations. The
abbreviation “n.spp.” denotes number of species. Shown is data from time step
500. The initial conditions for both environments were identical.
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5
GENOM IC TRA I T S AF F ECT OCCURRENCE AND
SPEED OF IN SULAR SPEC I E S RAD IAT IONS

Since certain species properties, including genomic traits, all contribute
to a trait syndrome thatmakes speciesmore likely to survive in variable
environments (see chapter 4), I was interested in whether the same
traits could also explain why some species diversify more than others.
Therefore, I conducted island colonization experiments with the same
model as the one developed and presented in the previous chapter to
find outwhich lineage attributes lead to increased numbers of evolving
species.

The findings of the study show that only few lineages diverged into
different species. The lineages that did diverge exhibited a complex ini-
tial trait combination of low dispersal abilities, flexible reproductive
strategies, intermediate genetic linkage and pre-adaptation to environ-
mental conditions. Later evolution of these lineages resulted in trait
syndromes that largely match empirical observations: increased body
sizes, loss of long-distance dispersal, and increased self-compatibility.

At the time of writing, the corresponding manuscript is in prepara-
tion to be submitted to a peer-reviewed journal. The article was drafted
and written by myself with contributions by Juliano Sarmento Cabral.
I performed all research procedures and analyses. The conceptual de-
sign was done by myself and Juliano Sarmento Cabral. My overall con-
tribution amounted to ca. 95 %.
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Abstract

Species radiations on oceanic islands are fascinating evolutionary phe-
nomena. While the effect of external factors like area, age, isolation, and
environmental heterogeneity on radiations is easily investigated, the role
of eco-evolutionary mechanisms and how species traits shape such radi-
ations remains understudied. Current data indicates that at any given
island or archipelago, only a small fraction of lineages radiate. Evidence
for the importance of genome size and genetic linkage for speciation and
adaptation suggests that genomic factors could help explain these pat-
terns. Unfortunately, comprehensive genomic and ecological trait data
for island taxa are scarce. Therefore, we employ a genomically-explicit,
individual- and niche-based model to assess the influence of different ge-
nomic and ecological traits on the occurrence and extent of plant radia-
tions on oceanic islands. In the model, genomic traits encompassed genetic
linkage and genome size, whereas ecological traits coded by the genome
were body sizes (seed and adult), dispersal abilities, environmental prefer-
ences and reproductive strategies (selfing and strength of pre-zygotic bar-
riers). We performed simulation experiments by connecting hypothetical
islands to source pools of species with random trait compositions via long-
distance dispersal to identify the trait syndromes of successful radiators.
We expected low long-distance dispersal and large, intermediately-linked
genomes to promote both the occurrence and extent of radiations. Re-
sults show that only few colonizing lineages diverge into different species.
The species-richest lineages are characterized by high genetic linkage, low
to intermediate long-distance dispersal, and a high propensity to selfing.
Over time, species evolve island syndromes comprised of similar, mostly
increased, body and seed sizes, a loss of barriers to hybridization, and
increased selfing. Our results based on fundamental ecological and evo-
lutionary theory shed new light on the hypothesized island rule in plants
and highlights the importance of genomic traits for evolutionary dynamics
and thus species’ adaptive potential.

1
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1 Introduction1

Species radiations of animal and plant lineages are fascinating phenomena that2

inspired researchers across the last centuries. Radiations taking place on oceanic3

islands have been the most emblematic. Examples include adaptive radiations4

of Aeonium on the Canary islands (Jorgensen and Olesen, 2001) or lobeliads on5

Hawaii (Givnish et al., 2009). A number of abiotic factors have been suggested6

to influence such radiations: area (Kisel and Barraclough, 2010; Losos and7

Schluter, 2000), time (Borregaard, Matthews, and Whittaker, 2016; Whittaker8

et al., 2007), isolation (Steinbauer et al., 2016), and environmental heterogene-9

ity (Cabral et al., 2019; Cabral, Wiegand, and Kreft, 2019), all positively affect10

lineage divergence, and thus radiations. While correlating these abiotic factors11

with the extent of radiations may reveal the role of extrinsic drivers influencing12

radiations, several patterns remain poorly investigated. For example, most of13

the abiotic factors, such as intra-insular isolation, do not explain why only few14

lineages radiate, even though they might have similar geographic opportunities15

and colonization histories as species-rich lineages (Price and Wagner, 2011).16

Many of these few successfully radiating lineages radiate repeatedly in several17

different locations, i.e. wherever they colonize islands or archipelagos (Takayama18

et al., 2018), for instance Psychotria (Rubiaceae) and Asteraceae (Barrabé et19

al., 2014; Crawford et al., 2009; Nepokroeff et al., 2003). This suggests that a20

species-centered, functional perspective might be promising approach to address21

plant radiations on oceanic islands. (Patiño et al., 2017; Warren et al., 2015).22

The fact that some putative traits are already reported to have a strong impor-23

tance on radiations like growth-form, breeding system and dispersal capabilities24

(Price and Wagner, 2004), warrants a more general, systematic investigation.25

However, such a study of traits related to lineage radiations in empirical systems26

may be confounded by the fact that many island plant species evolve similar27

island syndromes of traits, characterized, for instance, by a loss of dispersal abil-28

ities (Biddick, Hendriks, and Burns, 2019; Burns, 2019). This makes it difficult29

to infer the exact characteristics of the successful founder lineages, even when30

taking into account the closest mainland relatives or scarce paleontological data.31

Among the species characteristics that might play important role on radia-32

tions on oceanic islands might be traits related to gene flow. This importance33

can be inferred from the strong focus on isolation-related abiotic factors in recent34

island biogeography research (Warren et al., 2015), in which increasing isola-35

tion increases both non-adaptive (Rosindell and Phillimore, 2011) and adaptive36

(Cabral et al., 2019) radiations. However, even though these eco-evolutionary37

studies represent valuable contributions to our biogeographical understanding,38

genetic and genomic evidence suggests that assumptions such as “protracted39

speciation” might be an oversimplification since they ignore genetic architec-40

ture and its effect on recombination potential (Feder, Egan, and Nosil, 2012;41

Malinsky et al., 2015). In fact, genomic traits can facilitate the divergence42

of populations and thus incipient speciation even under continuing gene flow43

(Nosil and Feder, 2012). One of the traits that plays an important role here is44

genetic linkage, which describes the tendency of genomic regions to be inherited45

in combination (Hawthorne and Via, 2001). This genetic linkage enables the46

selection and isolation of genomic regions associated with adaptive traits while47

other parts of the genome are still subject to gene flow with the diverging popu-48

lation ("divergence hitchhiking", Feder and Nosil, 2010). Another genomic trait49

2
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with functional aspects that may affect speciation is genome size. A number50

of processes can change genome size over the course of a lineage’s evolutionary51

history, e.g. gene duplication and loss, polyploidization and transpositions (Al-52

balat and Cañestro, 2016; Casacuberta and González, 2013; Kraaijeveld, 2010;53

Van de Peer, Mizrachi, and Marchal, 2017). These processes often precede54

major evolutionary transitions such as speciation. Evidence from island floras55

indeed suggests that many genera recently underwent polyploidization prior to56

colonization (Crawford et al., 2009). Given that populations on islands are not57

necessarily isolated enough (neither from the mainland nor within the island)58

to support speciation-by-isolation (non-adaptive radiation), these genomic traits59

could hence be an important factor in understanding island radiations.60

We aim therefore at identifying the genomic and ecological traits that in-61

fluence island species radiations. For this purpose, we employed a theoreti-62

cal approach using a mechanistic agent-based model. Mechanistic simulation63

models have already proven useful in a number of ecological settings (Cabral,64

Valente, and Hartig, 2017) and have also been applied to island biodiversity65

(Leidinger and Cabral, 2017). Since existing island models lack the necessary66

level of detail regarding genomic factors, we applied our own, recently devel-67

oped, individual-based, genome-explicit model for eco-evolutionary dynamics of68

virtual herbaceous plant metacommunities to address these patterns (Leidinger69

and Cabral, 2020). Specifically, we addressed the following questions: (1) Do70

indeed only few colonizing lineages diverge? We expect that only few colo-71

nizers initiate radiations on islands and that the island communities will show72

the typically observed trend that most colonizers remain as the single, original73

species, i.e. monospecific, and only few lineages showing species-rich radiations,74

i.e. divergences (Price and Wagner, 2011). (2) Which trait characteristics and75

trait combinations determine lineage divergence on islands (i.e. a divergence76

syndrome)? We expect that there is a particular combination of traits that77

enables lineage divergence, for instance, large genome sizes, flexible reproduc-78

tive systems, and decreased dispersal abilities (Cabral et al., 2019; Crawford79

et al., 2009). (3) Do the diverging lineages maintain these trait values? We80

expect that diverging lineages optimize their ecological traits to island life (e.g.81

island syndrome) by, for instance, losing their long-distance dispersal ability82

(Biddick, Hendriks, and Burns, 2019; Burns, 2019). We find that only a few83

of the colonizing lineages diverge, that the divergence syndrome is a complex84

combination of limited dispersal abilities, increased propensity to selfing, and85

low to intermediate genetic linkage, and that diverging lineages evolve an is-86

land syndrome comprised of decreased long-distance dispersal, increased seed87

and adult biomass, high selfing, low reproductive barriers, and environmental88

specialization. Our results suggest that genomic traits should be considered89

alongside ecological traits to assess species’ evolutionary potentials and thus90

their potential reactions to future environmental change.91

2 Material and Methods92

2.1 The model93

Most of the previous island models lacked the level of detail required for a94

genomic-focused study on drivers of species radiations (Leidinger and Cabral,95

3
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2017). Therefore, we took advantage of a previously developed model (Lei-96

dinger and Cabral, 2020, https://github.com/lleiding/gemm) to address our97

study questions. The model generates spatially-explicit dynamics of plant meta-98

communities (Hanski, 2001; Leibold et al., 2004) and considers explicit eco-99

evolutionary dynamics at the genomic and individual levels. In the model,100

individuals are characterized by ecological traits for mean dispersal distance,101

long-distance dispersal, seed biomass, reproductive biomass, optima and toler-102

ances toward two environmental conditions (temperature and a surrogate for103

resources, e.g. water, from here on called precipitation for simplicity), propen-104

sity to selfing in the absence of reproductive partners and a sequence-similarity105

threshold determining reproductive compatibility to potential mates. This com-106

patibility represented the individual species boundary, concordant with the bi-107

ological species concept (Mayr, 1982). Each expressed ecological trait is rep-108

resented at least once in the haploid genome. Genomic traits encompass the109

number of genes and linkage units, which combined will determine the degree of110

genetic linkage, i.e. the number of genes per linkage unit. A gene is character-111

ized by a nucleotide sequence and potential associated trait alleles. Individuals’112

states are mainly characterized by their current mass, which, in combination113

with their expressed trait for adult biomass, determines their demographic stage.114

Demographic stage can be seed, juvenile and adult. Adults are monoaecious and115

able to reproduce sexually, which includes gene recombination. When new off-116

spring, i.e. seeds, are produced, they can experience mutations in their genome.117

The number of mutations, Nm, is determined by a global mutation rate, m0,118

scaled by the local temperature, T , following the exponential function term of119

the metabolic theory of ecology (MTE, Brown et al., 2004) as:120

Nm = m0 × exp (
−EA

kB × T
) (1)

where EA is the activation energy (1×10−19 J) and kB the Boltzmann constant121

(1.38 × 10−23 × J × K−1). Each mutation causes a nucleotide change in a122

randomly chosen gene, which, in turn, results in the change of the values of123

all associated trait alleles, concurrent with the potentially pleiotropic genetic124

architecture in the model. This change is drawn from a Normal distribution125

with the current value as mean and the product of current trait value and a126

phylogenetic constraint, cp, (0.1 in the simulations) as standard deviation.127

2.2 Experimental design128

We set our experiments in a mainland-island system. The mainland was charac-129

terized by a single grid cell and acted as the source pool of species. We initialized130

the mainland with individuals from random species in terms of identity, ecologi-131

cal and genomic traits. Once populated with species, the state of the mainland,132

including individuals, was preserved throughout the duration of the simulation133

(i.e. no eco-evolutionary dynamics takes place in the mainland). The only active134

process on the mainland was seed dispersal, based on species-specific dispersal135

traits. Seed dispersal from the mainland did not affect mainland communities,136

i.e. all dispersing individuals were clones of mainland individuals. By chance,137

most of the dispersed seeds ended up in the ocean and perished, but some seeds138

could hit the second landmass, i.e. the island. To reduce confounding effects139

like intra-archipelagic dispersal and geological dynamics (cf. Whittaker et al.,140

4
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2007), we considered only a single, environmentally stable island which was ini-141

tially sterile. This contrasts our system from oceanic islands which originate142

from continental land masses, like Madagascar. The island was comprised of143

9 x 9 grid cells with 100 kg carrying capacity each. A radial temperature gra-144

dient increased from the center to the periphery (294K to 297K) or 21 ◦C to145

24 ◦C), reflecting an elevational gradient with a central mountain peak. A sec-146

ond environmental gradient of an arbitrary, dimensionless quantity (from here147

on called precipitation for simplicity) ran perpendicular to the mainland-island148

axis and represented a surrogate for environmental resources, e.g. water. The149

geographic characteristics represents a mountain structure with a central peak150

which receives more precipitation from one side than the other. These environ-151

mental properties are typical for many oceanic islands of volcanic origin, e.g. in152

the Canaries, and increase within-island environmental heterogeneity.153

For identifying the traits that enable lineage divergence, we ran 90 differ-154

ent replicates, each with a mainland community between ca. 1000 and 3000155

lineages. A lineage comprises individuals of identical genetic architecture and156

initially similar trait values. Each of the lineages was characterized by a set of157

random trait values in terms of their ecological and genomic traits. We recorded158

the complete state of the individuals in our simulation world at the start and at159

each 500 timesteps of a simulation run. This data encompassed individual phe-160

notypic values, individual genotypic values and nucleotide sequences, including161

associated trait alleles. Thus, for every time step, we could track the state of162

all individuals, including location, abundance, demographics, adaptation, and163

trait characteristics for all ecological and genomic traits.164

Some of our simulations ran for several days, and a few did not finish after165

weeks. Therefore, we only analyzed those runs which reached 750000 simulated166

years. Thus, we retained 80 replicates in total.167

2.3 Analyses168

Our simulations provided us with detailed information on each individual present169

on the island at the time of recording. To make sure we only retain those in-170

dividuals that were the offspring from those individuals colonizing the island171

from the mainland, and thus successfully founded island populations, we ex-172

cluded all mainland individuals from the data prior to analysis. We further173

only retained data on adult individuals (i.e. individuals whose size was equal174

to or greater than their adult biomass trait) to reduce overall data size. We175

combined timed data on the individuals from these founder populations with176

the nucleotide sequences of their compatibility genes to infer dated phyloge-177

netic trees for each lineage. For this, we clustered the raw distances between178

sequences using Ward’s method. From the individual clustering, we inferred179

species by cutting the tree at the maximum lineage-specific sequence dissimi-180

larity reproduction threshold from the mainland individuals and combining all181

tips below that threshold to one species. This value directly exploits the actual182

reproductive biology of the lineages. The rationale behind using these lineage-183

specific values is that when individual on the island have diverged sufficiently to184

not be compatible to the most tolerant mainland individual, they can truly be185

considered separate species. We then used these individual-species associations186

to define first and last appearances of each species from the individual data,187

which we input into paleotree to produce dated phylogenies (Bapst, 2012).188

5
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This provided us with species numbers over time for each lineage. As a central189

measure for lineages’ divergence potential, we calculated the maximum number190

of species per lineage that coexisted at a given time on the island.191

For addressing our study question on the proportion of radiating lineages192

(question (1)), we counted all successfully colonizing lineages (i.e. those that193

managed to actually found populations) and related that number to the number194

of successful colonizers that evolved at least two species during their time on195

the island. Additionally, we created a lineage-rank plot showing the maximum196

number of evolved species for each successfully colonizing lineage. Since only197

one to three lineages colonized the island on average per replicate, we pooled198

the data on evolving species numbers per lineage from all replicates.199

To identify ecological and genomic traits affecting radiations, we keep only200

the trait values of the founder individuals (i.e. individuals that most closely201

resemble the original mainland trait characteristics), since traits might change202

over time on the island. We then compared the distribution of trait values203

between lineages that diverged and lineages that remained monospecific. We204

additionally conducted a principal component analysis of these values to iden-205

tify any recurrent trait syndromes. To find out which traits were most important206

in determining whether a lineage diverged (question 2), we conducted a “Her-207

berich” test (Herberich, Sikorski, and Hothorn, 2010) with the different eco-208

logical and genomic traits as response variable and the divergence (diverged or209

monospecific) as explanatory variables. The test we used makes no assumptions210

regarding the distribution, sample sizes or homoscedasticity. Although signif-211

icance levels are deemed inappropriate for simulation model results (White et212

al., 2014), we use the reported significance to identify the traits with the most213

notable differences.214

To answer the third question regarding island syndromes, we identified trait215

syndromes of island lineages considering the evolved trait values from the most216

recent years in the data. For this, we again conducted a “Herberich” test with217

the different ecological and genomic traits as response variable and the phases218

(terminal vs. initial) of the two lineage groups (diverged or monospecific) as219

explanatory variables to identify the strongest trait responses. Additionally,220

the comparison of these patterns with empiric plant island syndromes (Burns,221

2019) allows us to validate our model and to get an idea of the generality of our222

findings (Grimm and Railsback, 2012).223

3 Results224

Of the 964 lineages that managed to reach the island throughout our simulation225

replicates, 29 lineages reproduced on the island, thus temporarily establishing226

populations. Of these 29 colonizing lineages only nine lineages diverged (Fig. 1.227

The average maximum number of species per lineage was 5.1 (σ = 6.8).228

These nine lineages exhibited complex trait syndromes that can be associated229

with their divergences (Fig. 2). In terms of differences in means, the most230

notable trait is a low to intermediate long-distance dispersal (reduced in diverged231

lineages by δ = −3.9, standard error ϵ = 1.2, p = 0.0086). Some other traits do232

not show a notable difference in mean, but their spread is reduced in diverging233

lineages. These traits encompass a intermediate to high propensity to selfing234

(δ = 0.078, ϵ = 0.100, p = 0.85), intermediate temperature optima (δ = −2.8,235

6
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Figure 1: Lineage-rank plot showing the maximum evolved number of species
for each successfully colonizing lineage.

ϵ = 1.3, p = 0.123), and low to intermediate genetic linkage (δ = −30, ϵ = 19,236

p = 0.38; Fig. 3). All other traits do not differ markedly and have a similar237

spread in both diverged and monospecific lineages (see also Fig. 4).238

The lineages that show high evolutionary activity, i.e. lineage divergence,239

also exhibit some common responses in their trait characteristics over time after240

colonization (Fig. 4). They show a tendency toward increased adult biomasses241

(difference of average evolved to average initial trait values, δ = 2.0, standard242

error ϵ = 1.1, p = 0.233; Fig. 4 a), decreased long-distance dispersal δ = −9.9,243

ϵ = 0.9, p < 0.001; Fig. 4 b), decreased precipitation tolerance (δ = −2.3,244

ϵ = 0.4, p < 1×10−4; Fig. 4 e), increased propensity to selfing (δ = 0.26, ϵ = 0.1,245

p = 0.0012; Fig. 4 f), a tendency toward increased seed biomass (δ = 2.5,246

ϵ = 1.3, p = 0.23644; Fig. 4 g), decreased reproductive barriers (δ = −0.40,247

ϵ = 0.12, p = 0.0049; Fig. 4 h), and a tendency toward decreased temperature248

tolerance (δ = −0.78, ϵ = 0.35, p = 0.12; Fig. 4 j). Mean dispersal distance,249

precipitation optimum, and temperature optimum (Fig. 4 c, d, i) do not differ250

noticeably in their means, but their spreads appear decreased. Monospecific, i.e.251

non-diverged species, evolved increased long-distance dispersal (δ = 6.9, ϵ = 2.1,252

p = 0.0070; Fig. 4 b). Other than that, they showed no noticeable change in253

trait characteristics between the start and end of their respective colonization254

histories (Fig. 4).255
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4 Discussion256

4.1 Trait syndromes of great speciators257

In line with empiric evidence, only a fraction of lineages managed to diverge258

into distinct species (Price and Wagner, 2011; question 1). This is indicative259

of the many environmental and biotic filters which have to be surpassed to260

allow lineage divergence. Our results suggest that there is a complex set of261

single trait characteristics which increases the probability of lineages to pass all262

these filters (i.e. a "divergence syndrome"). One of the lineage characteristics we263

identify to increase the probability of a radiation is low long-distance dispersal.264

This is in line with findings describing the "zone of radiation" as a range of265

intermediate isolation of islands to the mainland or between islands, where266

the number of radiations peak (Rosindell and Phillimore, 2011). Since in our267

model the distance between island and mainland is constant for all lineages and268

replicates, effective isolation is a result of the lineages’ dispersal abilities. In269

fact, Cabral et al. (2019) show that isolation based on dispersal traits has similar270

effects on insular biodiversity as isolation based solely on distance. Accordingly,271

the zone of radiation in our simulations is where individuals just reach the island272

(as evidenced by the low long-distance dispersal abilities), but in a sufficiently273

low frequency as to impede gene flow. However, the fact that our results include274

examples of lineages with similar long-distance dispersal abilities which both275

radiate or remain monospecific already suggests that this “zone of radiation” is276

not enough to determine lineages’ radiation potential.277

Indeed, the trend we identify in three additional traits could further ex-278

9
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plain divergence potential. The decreased distribution of temperature optima279

ensures sufficient pre-adaptation to the temperature conditions on the island280

and thus increase the chances of successful establishment. Additionally, an281

increased propensity to selfing allows reproduction of established populations282

even at critically low densities, a trait regularly found on real islands as well283

and hence termed “Baker’s law” (Baker, 1955; Baldwin, 1998). Lastly, in our284

simulations, divergence is associated with low to intermediate levels of genetic285

linkage. While low linkage levels will allow accelerated adaptation at the cost of286

a rapid loss of variation and would thus in fact represent an “evolutionary dead287

end” (Day, Hua, and Bromham, 2016), intermediate linkage ensures that genetic288

variation is maintained and could thus counteract disadvantages introduced by289

a high self-compatibility (cf. Carlquist, 1966). The divergence of this genetic290

variation seems to eventually result in increased species numbers of lineages291

with intermediate linkage.292

Our modeling results hence suggest that the question whether a lineage293

will or will not diverge on an island depends on the probability to reach the294

island in the first place, the probability to establish and reproduce and the295

probability to adapt quickly without losing too much genetic variation. How296

important the associated traits are for lineage evolution on islands is indicated297

by the ensuing trait evolution in diverging lineages, which we will discuss in the298

following section.299

4.2 Island syndromes in virtual plant radiations300

One of the most striking evolutionary responses in the traits of diverging lin-301

eages is a loss of long-distance dispersal. This loss of dispersibility is regularly302

found in island plant endemics as well and reduces the loss of seeds to the ocean303

(Burns, 2019). The trait responses of diverging species in terms of reproductive304

strategies also highlights the crucial role of population-size reproductive effects,305

i.e. Allee effects, on island populations (Stephens, Sutherland, and Freckleton,306

1999). Since species populations on islands are usually small, finding repro-307

duction partners is unlikely. Therefore, a decrease in pre-zygotic barriers will308

maximize probabilities of finding mates, even if they are distantly related. This309

loss of "barriers to hybridization" can also be observed on real island plant taxa310

(Jorgensen and Olesen, 2001). Failing that, a high propensity to selfing will311

allow reproduction also for single mature individuals. In this case, the high312

reproductive tolerance will ensure gene flow to diverged populations to alleviate313

potential harmful effects, e.g. through inbreeding depression. However, in the314

evolved species, we can actually observe two contrary reproductive strategies.315

Either species will maintain reproductive compatibility with any individuals316

from their own lineage or they will only reproduce with the most similar indi-317

viduals. We hardly observed an intermediate strategy. Thus, lineages evolve to318

be reproductively isolated specialists or frequent hybridizing species.319

This later evolution of selfing propensities hints toward a differentiated selec-320

tion on lineage cohesion. Lineages with low selfing and thus relatively obligate321

out-crossing maintain reproductive contact, whereas lineages with high selfing322

are more independent and can therefore more readily colonize empty habitats.323

This pioneering characteristic will increase the probability of population di-324

vergence following lineage splits. In fact, high self-compatibility is found in325

many island floras, e.g. Hawaii (Baldwin, 1998). However, breeding systems in326
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island floras is diverse and can encompass, e.g. outcrossing, and (leaky) self-327

incompatibility (Crawford et al., 2009). In our model, there is apparently no328

selection pressure that favours evolution towards these more restrictive repro-329

ductive systems. It should be pointed out, though, that outcrossing is always330

the prefered reproductive mode in our model when made possible by the exis-331

tence of reproductive partners, even if individuals have a high propensitiy for332

selfing. Thus, it could be argued that we do not model strict self-compatibility,333

but rather a reproductive mode closer to leaky self-incompatibility. Still, future334

studies could extend the model with additional processes and assumptions to335

identify the factors that facilitate the evolution of all these diverse reproductive336

systems.337

4.3 Challenges and perspectives338

The fact that we observed only 9 radiating lineages throughout our simulations339

makes assessing the relative importance of the various traits for enabling ra-340

diations difficult. Unfortunately, running more replicates, which would have341

also increased the number of successful colonizers, and thus, radiations, was342

not feasible in the time at hand due to limited computational resources. Addi-343

tionally, we observed only lineage splits through divergence in our simulations,344

i.e. adaptive radiation, but no direct instances of anagenetic evolution, e.g. as345

gradual change of the original mainland species on the island that would lead to346

monospecific endemics. This is indicative of most species retaining their repro-347

ductive cohesion with the mainland populations throughout the simulation. A348

possible reason for this circumstance is our choice of number of replicates (i.e.349

number of colonizing lineages), which could have resulted in too few sufficiently350

pre-adapted, small-bodied lineages with short generation times that could have351

accumulated the necessary evolutionary changes to reach reproductive isolation352

even in the limited time span of our simulations. The choice for this tempo-353

ral extent of our simulations, as well as the number of replicates, was due to354

computational feasibility. We therefore expect future studies to increase both355

the number and extent of simulations to obtain clearer patterns of the role of356

traits in island radiations. The number of successfully colonizing lineages could357

also be increased in our model by restricting the potential trait space of main-358

land lineages to values that are more suitable for establishment on the island.359

Nevertheless, even with our limited number of colonizers and simulations, we360

can identify distinct trends which are in accordance with available empirical361

evidence.362

Another potential factor in lineage divergence are the details of genetic ar-363

chitecture: whether, how, and which traits are linked together in the genome364

can play an important role in incipient speciation (Hawthorne and Via, 2001).365

For instance, traits like host choice, habitat preference and sexual selection are366

often linked, which accelerates divergence of populations (Hermann et al., 2013;367

Via and West, 2008). A similar circumstance might be occurring in our simu-368

lations as well. In principle, the detailed genomic data would even provide us369

with the information which traits are linked on which linkage units in which370

lineages. However, due to computational constraints and feasibility of analyses,371

we chose not to retain this information. Therefore, we identify the investigation372

of which trait linkages are associated with increased population divergence in373

island lineages as promising avenues for future studies.374
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Our virtual island has both a certain geographic extent and an environ-375

mentally heterogeneous landscape that provides different ecological opportunity.376

Hence, dependent on species properties, lineage splits (non-adaptive radiations)377

could have been possible as well in our experiments besides the divergences we378

investigated (Lieberman, 2012). In empirical systems, testing which mode ma-379

jorly contributes to a radiation is difficult. This issue of contrasting the causes380

for a radiation could be addressed by our model, which allows explicit definition381

of abiotic conditions during potential radiations. For example, with scenarios382

that contrast high environmental heterogeneity and low geographic isolation383

with low environmental heterogeneity and high geographic isolation, we could384

identify in resulting radiations the phylogenetic and functional signatures of the385

different radiation modes. These signatures could then be translated to empir-386

ical data to find clear evidence for particular radiation modes. Thus, follow-up387

theoretical simulation experiments with our approach can help define patterns388

in empirical data to advance our general understanding of biodiversity.389

Lastly, theory and empirical patterns suggest that island evolutionary his-390

tory is influenced by geomorphological dynamics and archipelago structure (Bor-391

regaard, Matthews, and Whittaker, 2016; Cabral et al., 2019; Whittaker et al.,392

2007). In fact, islands may even provide the origin of other island species and393

even mainland species (Nicholson et al., 2005). At the same time, the frequent394

disturbances during island ontogenies might increase divergence and coexistence395

(Shea, Roxburgh, and Rauschert, 2004; Whittaker et al., 2007). Including these396

processes and factors into our model would likely lead to more complex and397

diverse radiation patterns. To avoid confounding effects, however, we did not398

investigate these factors in the present study. Nonetheless, the generality of our399

model would easily allow investigation of appropriate scenarios. We therefore400

expect future studies to take into account functional-genomic factors for the401

investigation of real radiations across islands with dynamic geomorphological402

history within an archipelago.403

4.4 Conclusion404

Species radiations on islands are fascinating phenomena. With the findings405

of this study, we could shed light on some of the potential functional-genomic406

species characteristics which influence these radiations. These include reduced407

long-distance dispersal, flexible reproductive systems and intermediate genetic408

linkage. While the patterns of functional traits support concepts such as the409

“radiation zone” and increased divergence potential of specialist genera, the410

patterns of genomic traits have to our knowledge not yet been observed or con-411

sidered in island biogeography studies in a comparable extent. Our theoretical412

results agree with empirical findings on island syndromes in plants, which sup-413

ports the generality and validity of our model while providing a mechanistic414

explanation of these syndromes. Although we mainly focused on the impact of415

traits on the evolutionary history of species, it is likely that the same traits which416

enable rapid radiations will also enable taxa to cope with changing conditions. In417

light of current environmental trajectories, studying functional-genomic species418

characteristics enables us therefore not only to understand how a species came419

to be, but also where it is likely to go in evolutionary terms.420
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6
THE INTERPLAY OF TRA I T S AND AB IOT I C
FACTORS ACROS S THE FOUR STAGE S OF INVAS ION

Species traits are likely to play a role in island invasions aswell. The fol-
lowing manuscript therefore describes the investigation of the relative
roles of abiotic factors and species traits on invasion success. This study
also showcases the applicability of the model to conservation-related
issues.

We found that the intensity of species introductions was one of the
major factors which determined invasion success. Successful invaders
were characterized by a relative functional similarity to native species,
but theywere in comparison larger,more dispersive, andhad enhanced
environmental tolerances. This suggests that the invasion syndrome is
comprised of increased competitive and dispersal abilities, and relative
environmental generalism.

At the time of writing, the manuscript has been submitted to Journal
of Applied Ecology. The article was drafted and written by Daniel Ved-
der. I described and performed the trait analysis part, wrote parts of
results and discussion section and produced the figures showing the
ordination of species traits and the differences in traits between species
groups. Both Juliano SarmentoCabral andmyself contributed to all sec-
tions of themanuscript. Daniel Vedder performed research procedures
and I provided materials in the form of the model used to address
the study question. The conceptual design was done by Daniel Ved-
der, Juliano Sarmento Cabral and myself. Both Daniel Vedder and my-
self performed the analysis. The first authorship of the article is shared
by Daniel Vedder and myself. My overall contribution amounted to ca.
40 %.
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Abstract1

1. The success of species invasions depends on multiple factors act-2

ing over the four invasion stages transport, colonisation, establish-3

ment, and landscape spread. Each of these stages is influenced simul-4

taneously by particular species traits and abiotic factors. While the5

importance of many of these determinants has already been inves-6

tigated in relative isolation, they are rarely studied in combination7

and even then mostly ignore the final phase, i.e., landscape spread.8

2. Here we address this shortcoming by exploring the effect of both9

species traits and abiotic factors on the success of invasions using an10

individual-based mechanistic model, and relate those factors to the11

stages of invasion. This approach enables us to explicitly control abi-12

otic factors (temperature as surrogate for productivity, disturbance13
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and propagule pressure) as well as to monitor whole-community trait14

distributions of environmental adaptation, mass and dispersal abili-15

ties. We simulated introductions of plant individuals to an oceanic16

island to assess which abiotic factors and species traits contribute to17

invasion success.18

3. We found that the most influential factors were higher propagule19

pressure and a particular set of traits. This invasion trait syndrome20

was characterized by a relative similarity in functional traits of in-21

vasive species to natives, while invasives had on average higher en-22

vironmental tolerances, higher body mass and increased dispersal23

abilities, i.e., were more generalist and dispersive.24

4. Our results highlight the importance in management practice of re-25

ducing the import of alien species, especially from similar habitats.26

Introduction27

Species invasions are highly complex phenomena, influenced by several interact-28

ing factors, such as species traits, disturbance, or evolutionary history (Theo-29

harides & Dukes, 2007). Gaining an understanding of these factors is necessary30

to understand the whole invasion process (Fleming & Dibble, 2015) and estab-31

lish effective countermeasures (Mehta, Haight, Homans, Polasky, & Venette,32

2007). Yet, the relative importance of various factors are difficult to derive from33

studies focussing only on single invasion events (Catford, Jansson, & Nilsson,34

2009). Considering the impending global change scenarios and increased rate of35

biotic exchange, however, generalizable findings about biological invasions are36

still urgently needed (van Kleunen et al., 2015).37

In the last decades, a number of single factors could be identified that contribute38

to the success of species invasions. A prominent role falls to the number of intro-39
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duced individuals, i.e., propagule pressure, as it ensures minimal viable popu-40

lation sizes (Lockwood, Cassey, & Blackburn, 2005). Other abiotic factors such41

as enhanced productivity and increased disturbance have also been suggested42

to facilitate invasions in some circumstances (Huston, 2004). Beyond these abi-43

otic factors, species traits may also determine invasibility. Arguably the most44

obvious of these traits is sufficient pre-adaptation to the abiotic environmental45

conditions of the invaded habitats (Carboni et al., 2016). Furthermore, invasive46

species need to be able to compete with native species to establish (Hui et al.,47

2016). Lastly, increased dispersal abilities and broad environmental niche pref-48

erences, i.e. generalism, will enable alien species to spread (Rejmánek, 2000).49

All these invasion factors and stages vary in their level of expression, depending50

on the system and taxa.51

Theoharides and Dukes (2007) put forward a helpful framework integrating52

many of these factors and stages. They divide the entire invasion process into53

four stages: transport, colonisation, establishment, and landscape spread. These54

stages represent a set of community assembly filters that must be overcome55

before an alien species may be considered “invasive”. The stages do not represent56

a strict chronology, but rather a set of interlocking and interdependent factors57

and processes. Hence, for a species to become invasive, it must (a) arrive in58

sufficient numbers, (b) be adapted enough to the environment to survive, (c)59

overcome the competition of native species and reproduce, and (d) disperse to60

establish new neighbouring populations (Theoharides & Dukes, 2007). The main61

filters involved in these stages are Allee effects, environmental filtering, biotic62

resistance, and dispersal ability, respectively. Each of these may be influenced63

by species traits as well as environmental conditions, as illustrated in fig. 1.64

Concurrent with this framework, it has been demonstrated that the combination65

of both abiotic factors and species traits has considerable effects on the success of66

3

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 21, 2020. . https://doi.org/10.1101/2020.04.20.050278doi: bioRxiv preprint 

94 TRA I T S AND AB IOT I C FACTOR S DUR ING INVAS IONS



invasions (e.g. Küster, Durka, Kühn, & Klotz, 2010; Mata, Haddad, & Holyoak,67

2013; Thuiller, Richardson, Rouget, Proches, & Wilson, 2006). However, many68

studies in the invasion literature still treat species traits and environmental69

conditions separately, and frequently only consider one factor at a time. To70

address this shortcoming, Catford et al. (2009) proposed an experimental design71

that varies propagule pressure, species composition, and abiotic conditions in72

a full-factorial setup to assess their relative importance for invasion success.73

An experimental approach like this will be necessary to arrive at a generalised74

understanding of the invasion process. However, previous experimental studies75

focused mainly on the earlier stages of invasion and thus, generalized insights76

that include landscape spread are still missing (cf. Alzate, Onstein, Etienne, &77

Bonte, 2020; Kempel, Chrobock, Fischer, Rohr, & van Kleunen, 2013).78

For generalizing invasion processes, islands can be useful model systems. Firstly,79

islands are highly susceptible to invasion-related degradation. For example, in-80

vasive predators have caused multiple species extinctions on islands (Doherty,81

Glen, Nimmo, Ritchie, & Dickman, 2016), and there have been observed cases82

of complete “invasional meltdown” after native keystone species were displaced83

(O’Dowd, Green, & Lake, 2003). Secondly, their small size, isolation, and com-84

paratively simple ecological dynamics mean that islands are popular study sys-85

tems in ecology in general (Patiño et al., 2017). These characteristics therefore86

lend themselves to comprehensively study biological invasions in the context of87

the stages of invasion (Theoharides & Dukes, 2007). Unfortunately, even for88

islands, exhaustive data to investigate invasion factors are difficult to obtain89

and conducting systematic experiments is often unfeasible.90

As an alternative, mechanistic models offer a powerful approach to supplement91

field studies. Such models have previously been used in invasion biology, al-92

though usually in the context of specific invaded sites (e.g. Buckley, Briese, &93
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Rees, 2003). However, they also hold great promise for exploring fundamental94

processes within a more generalised setting (Cabral, Valente, & Hartig, 2017;95

Grimm & Railsback, 2005; Leidinger & Cabral, 2017), and are very useful for96

gaining a mechanistic understanding of complex ecological patterns (Grimm &97

Railsback, 2011). The fact that mechanistic models allow both complete con-98

trol over all environmental variables, as well as complete knowledge of every99

individual’s traits makes them an ideal tool to help us better understand the100

intricacies of the invasion process.101

Here, we therefore used a recently developed trait-explicit, individual-based102

mechanistic model of island plant communities (Leidinger & Cabral, 2020) to103

investigate the relative roles of propagule pressure, productivity, and distur-104

bance, as well as the traits of invasive species relative to natives. Guided by the105

framework of Theoharides and Dukes (2007), we wanted to know which factors106

and trait syndromes increase the success of alien species during the stages of107

invasions on islands (cf. Pyšek et al., 2015). The specific questions we asked are108

found in table 1, covering all stages of invasion and including both trait-based109

and environmental factors. Our experimental setup enabled us to go both broad110

(covering a wide range of ecological factors) and deep (analysing the resulting111

species communities down to the trait level) in our investigation of the invasion112

process. We find that propagule pressure and trait syndromes relative to the113

native community are the most influential factors promoting invasion success,114

and discuss how these factors relate to the stages of invasion.115
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Figure 1: The four stages of invasion (from top to bottom) with their associated
filters and abiotic (left label) and trait (right label) factor groups (Theoharides
& Dukes, 2007). Apart from the transport factor groups, all factor groups were
explicitly modelled (transport factors were combined in a single “introduction”
process.)
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Table 1: Questions regarding species invasions to be explored with the model.
No.Stage Question Expectation
1 Transport How important is

propagule pressure
for invasibility and
why?

Very, because it helps to estab-
lish a minimum viable popula-
tion (Lockwood et al., 2005)

2 Colonisation Do invasives share a
common trait space
with native species?

Yes, as they need to be suffi-
ciently adapted to the environ-
ment (Carboni et al., 2016)

3 Establishment How do productivity
and disturbance
affect invasibility?

Maximum invasibility should
be reached at high productiv-
ity and high disturbance levels
(Huston, 2004)

4 Establishment Do invasives have a
higher fitness than
natives?

Yes, as they have to outcompete
the natives to establish success-
fully (Hui et al., 2016)

5 Landscape
spread

Are invasives more
generalistic and
dispersive than
natives?

Yes, as this enables them to
spread after introduction (Re-
jmánek, 2000)

Methods116

The model117

We extended the model of Leidinger and Cabral (2020) to simulate species in-118

vasions to plant communities on a virtual oceanic island (fig. 2). The island119

consisted of a 5×5 grid depicting a radial elevation (and corresponding temper-120

ature) gradient. Additionally, there was a linear (lee-luv) precipitation gradient,121

which is typical for many oceanic islands. We chose to call this second gradient122

“precipitation” for simplicity, although it could also be interpreted as any other123

environmental characteristic like soil type. Each grid cell was assumed to be124

one hectare in size, with a biomass carrying capacity of two tonnes. Each cell125

could hold its own community, comprised of individuals belonging to one or126

more species. Individual body sizes could range between 150 g and 1.2 tonnnes,127

which puts our system along a range between grassland and shrubland (cf.128
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Deshmukh, 1984). Island geometry and extent were chosen arbitrarily to ensure129

computational feasibility and to provide different environmental combinations,130

to increase coexistence of native species (see Armstrong & McGehee, 1980).131

In the model, each individual had a genome consisting of multiple genes that132

code for a set of traits, which in combination determine the individual’s phe-133

notype. These traits were functional for one or more processes (i.e. traits as134

parameters of biological functions, table 2). They encompassed environmental135

optima and tolerances to temperature and precipitation conditions, seed size,136

reproductive (adult) size, and mean and shape parameters of a logistic dispersal137

kernel (Bullock et al., 2017). Reproduction only takes place with adult members138

of the same species within the same grid cell and includes genetic recombination.139

The probabilities for growth, density-independent mortality, and seed numbers140

were determined using the Metabolic Theory of Ecology (MTE, Brown, Gillooly,141

Allen, Savage, & West, 2004), which links yearly biological rates to body mass142

and to the local temperature. An individual’s adaptation to the local grid143

cell temperature additionally scaled the metabolic density-independent mortal-144

ity probability, whereas adaptation to local precipitation was used to compete145

individuals when determining density-dependent mortality.146

At the initialisation, two species pools were formed with randomly generated147

species (i.e. each species was characterized by a random combination of genomic148

and ecological traits). One species pool was used to initialise the island com-149

munity, and was allowed to stabilise during a “burn-in period” of 500 years.150

This period length was enough to ensure quasi-equilibrium. Depending on the151

scenario, native species numbers per island and replicate ranged between one152

and 15, with a mean of six (Supporting Information, fig. 2). As additions to153

the original model, the second (alien) species pool had a fixed number of 100154

species and was used as a source of alien seeds. After the burn-in period, a155
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Figure 2: Schematic representation of the simulated island. Temperature de-
creased with altitude, giving a radial gradient with a step size of 2°C per unit
of height (greyscale). A second gradient of an abstract environmental resource
(termed “precipitation” for simplicity) was applied longitudinally. The green
grid cell denotes the point of entry for alien species. Pictograms show the three
factors that were varied in the experimental setup, namely temperature, distur-
bance, and propagule pressure.

fixed number of individuals, regardless of species identity, was drawn from this156

alien pool and introduced to a specified grid cell on the island (“point of entry”,157

fig. 2). To further mimic human activities, disturbances also started after the158

burn-in period, consisting of a given percentage of individuals being randomly159

removed from each grid cell every year, in addition to the previously mentioned160

causes of mortality. The model was allowed to run for a total of 1500 years.161

For the choice of parameter values, etc., the reader is refered to the full model162

description in the ODD format (Grimm et al., 2010), found in the Supporting163

Information. The source code for the model was written in Julia (Bezanson,164

Edelman, Karpinski, & Shah, 2017), and is available at https://github.com/165

lleiding/gemm, along with its documentation.166
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Table 2: Ecological and life-history processes included in the invasion model, in
the order of execution.
Process Details
Survival Density-independent mortality relative to an individual’s

temperature adaptation.
Growth Individuals increase in body size until they reach

reproductive size.
Competition If the total biomass in a grid cell exceeds its carrying

capacity, compete pairs of individuals and kill the one with
the lower precipitation adaptation (density-dependent
mortality).

Reproduction Sexual reproduction including recombination of the
parents’ genomes by meiosis, produces multiple seeds.

Disturbance Species- and density-independent mortality of a given
percentage of individuals in each grid cell.

Transport Introduction of aliens (i.e. individuals from the alien
species pool) into the point of entry.

Dispersal Dispersal of seeds produced during reproduction, the
distance is calculated with a dispersal kernel.

Experimental design167

We varied the three factors propagule pressure, productivity, and disturbance168

in a full-factorial design across two levels of each factor to give a total of eight169

scenarios (cf. Catford et al., 2009; fig. 2). 60 replicates of each scenario were170

run, resulting in 480 simulations.171

We used temperature as a proxy for productivity, varying the base (lowland)172

temperature between 15°C and 35°C. These values were arbitrary but provided a173

sufficiently large contrast while maintaining realism. Due to our use of the MTE,174

higher surrounding temperatures lead to an increase in growth and reproduction175

rates and thus satisfy the general requirements for productivity (Huston, 2004).176

Propagule pressure (1 or 10 individuals per year) and disturbance (1% or 10%177

mortality per year) were explicitly implemented in the model, as described above178

(cf. Buckley, Bolker, & Rees, 2007; Kempel et al., 2013, for factor values).179
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Figure 3: a) Island map after the burn-in period (t = 500a), and b) at the end
of the simulation (t = 1500a) for one example run. Each marker represents one
population, colours signify species. Natives are circles, aliens triangles. The
green grid cell is the point of entry, grey scale denotes temperature (cf. fig. 2).

Data recording and analysis180

Every year, the model recorded a log file with the mean and variance of each181

population’s trait values. All data analyses were carried out in R 3.2.3 using182

ggplot2 for visualisation (R Core Team, 2017; Wickham, 2016).183

To quantify the effect of the varying factors on the success of species invasions184

(study questions 1 and 3, table 1), we classified species as native, alien, or185

invasive (species type). Natives were species from the original island species186

pool that were still extant at the end of the burn-in period. Aliens were all187

species introduced to the island from the alien species pool. Invasives were the188

subset of alien species that had established at least one population outside of189

the point of entry, i.e., had undergone landscape spread (Ricciardi & Cohen,190

2007). We then identified all species that became invasive across all replicate191

runs and summed these up by scenario. During each run, we generated island192

maps at regular intervals, showing size, location, and species of all populations193

(e.g. fig. 3).194
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To compare the environmental adaptation Aind of natives, aliens, and invasives,195

(study question 4, table 1) we combined the model’s internal calculation of196

adaptation to temperature and precipitation as follows:197

Aind = G(Topt, Ttol, Tenv)×G(Popt, Ptol, Penv) (1)

where G(b, c, x) is the Gauss function at point x with mean b and a standard198

deviation of c; T is the temperature and P the precipitation; Nopt the indi-199

vidual’s niche optimum value, Ntol its niche tolerance, and Nenv the actual200

environmental niche value in the individual’s grid cell.201

For trait comparisons between alien, invasive and native species (study questions202

2 and 5, table 1), we pooled population data per species type (’alien’, ’invasive’203

or ’native’) from all scenarios. From this pooled data, we used native popu-204

lations at the onset of invasion (year 500), and invasive and alien populations205

over the entire invasion period. The traits we were interested in comprised mean206

dispersal distance, long distance dispersal, precipitation tolerance, temperature207

tolerance, adult biomass in grams, and seed biomass in grams. Since precipita-208

tion and temperature optima traits were primarily influenced by geography and209

the particular temperature scenarios, we omitted them from our analysis of the210

pooled data. Furthermore, we log (x+ 1)-transformed all trait and adaptation211

values to improve normality, because the original distributions were left-skewed212

and contained values < 1. We then performed a principal component analysis213

(PCA) on standardized trait medians of that data to investigate general pat-214

terns of trait space by comparing the size and location of 95% confidence interval215

ellipses corresponding to the different species types. For the PCA, we omitted216

alien populations, since their increased spread in trait values made comparison217

of natives versus alien species unfeasible. To assess how the trait characteristics218

in single traits of native species differed from invasives and identify the most219
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important traits that distinguish native species from invasives, we performed220

linear mixed models with the particular trait as response, species type as fixed221

effect, and the specific replicate as random effect, using the R package lme4222

(Bates, Mächler, Bolker, & Walker, 2015). We do not report statistical sig-223

nificance of results, since this is mostly meaningless for mechanistic simulation224

models, as spurious significance emerges by simply increasing replicate number225

(White, Rassweiler, Samhouri, Stier, & White, 2014).226

Results227

A total of 28 species became invasive over all runs, one of them across two228

different scenarios. We found a strong link between propagule pressure and229

invasibility, with almost four times as many invasives occurring in high-pressure230

compared to low-pressure scenarios (fig. 4). Temperature also had a strong231

influence, with a two- to three-fold difference between levels. There was no232

clear relationship between invasibility and disturbance.233

In terms of the total trait space, invasive populations exhibit a larger spread234

than natives (fig. 5). The center of the invasive populations’ trait space is shifted235

along the second PCA dimension towards higher long distance dispersal, higher236

mean dispersal distance, and higher precipitation tolerance compared to native237

populations.238

The difference in total trait space is associated with specific differences of the239

particular traits between species category. Specifically, mean dispersal distance240

(fig. 6a), long distance dispersal (fig. 6b), precipitation tolerance (fig. 6c), tem-241

perature tolerance (fig. 6d), and adult biomass (fig. 6e) were all increased in242

aliens and invasives compared to natives. Seed biomasses were increased in243

aliens, but slightly decreased for invasives (fig. 6f). For long distance dispersal,244
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Figure 4: Cumulative number of invasive species observed in each of the eight
scenarios (60 replicate runs per scenario).

precipitation tolerance, temperature tolerance, and adult biomass, the differ-245

ences in means between natives and invasives were smaller than between natives246

and aliens. The differences in precipitation and temperature tolerance resulted247

in the lowest adaptation values for aliens and highest adaptation values for248

natives, while invasives shows intermediate adaptation value (fig. 6g).249

The results from the linear mixed models revealed what traits were most im-250

portant to distinguish invasive species from native (table 3). The difference251

in biomass explained by far the most variance, followed by precipitation toler-252

ance, temperature tolerance, long distance dispersal and seed biomass. Mean253

dispersal distance explained only a small amount of variance.254

Discussion255

Although not explicitly imposed by the model, we observe the filtering functions256

of the stages transport, colonisation, establishment, and landscape spread (fig.257
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Figure 5: Principle component analysis (PCA) showing the distribution of pop-
ulation trait medians in the trait space. Each axis arrow represents one trait,
each marker is one population. All traits were log (x+ 1) transformed and nor-
malized before PCA calculation. Natives in purple, invasives in yellow. Ellipses
represent 95 % confidence envelopes.

Table 3: Results of linear mixed-effects model fits comparing the means of
species’ traits with the type of species (native or invasive, with invasive as
reference) as fixed effect and replicate as random effect. Note that invasive
species were more dispersive and generalist with heavier adults, but lighter
seeds than native species. Std. Error: standard error, D.f.: degrees of freedom,
Mean Sq: mean squares.

Trait Estimate Std. Error D.f. t value Mean Sq
Mean dispersal distance -0.044 0.003 32467 -16.915 8.668
Long distance dispersal -0.148 0.004 32438 -41.012 96.768
Precipitation tolerance -0.360 0.005 32502 -68.964 572.091
Temperature tolerance -0.214 0.005 32521 -40.307 203.051
Adult biomass (g) -1.040 0.025 32519 -41.395 4790.100
Seed biomass (g) 0.144 0.028 32521 5.130 92.142
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Figure 6: Distributions of single trait values. (a) Mean dispersal distance, (b)
long distance dispersal, (c) precipitation tolerance, (d) temperature tolerance,
(e) adult biomass in grams, (f) seed biomass grams, (g) adaptation to local tem-
perature and precipitation conditions. All values were log (x+ 1) transformed
before visualisation. Boxes show medians and interquartile range. Red lines
highlight the means. Blue: populations of native species, red: populations of
alien species, yellow: populations of invasive species.

16

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 21, 2020. . https://doi.org/10.1101/2020.04.20.050278doi: bioRxiv preprint 

TRA I T S AND AB IOT I C FACTOR S DUR ING INVAS IONS 107



1). Therefore, the general patterns of our model results conform to current258

knowledge from the empirical and theoretical literature (Theoharides & Dukes,259

2007). In line with the requirements of the pattern-oriented modelling paradigm260

(Grimm & Railsback, 2011), these emergent patterns are found at different261

ecological levels (individual, population, community, and metacommunity).262

Propagule pressure263

Concerning the question on the importance of propagule pressure for the success264

of invasions (question 1, table 1), our findings mirror ample evidence from em-265

pirical studies, including macroecological analyses (e.g. Carr, Hooper, & Dukes,266

2019; Seebens et al., 2018). Indeed, propagule pressure is well-known as the267

leading driver of invasion success in the current literature (Cassey, Delean, Lock-268

wood, Sadowski, & Blackburn, 2018; Lockwood et al., 2005). This is mainly due269

to Allee effects in introduced populations (Keitt, Lewis, & Holt, 2001; Taylor270

& Hastings, 2005). Only sufficiently large populations will grow fast enough271

to overcome adverse abiotic conditions and inter-specific competition by native272

species. As described in Allee effects theory, this relation of population growth273

to density is typically hump-shaped, and will decrease again beyond a critical274

density (Courchamp, Clutton-Brock, & Grenfell, 1999; Stephens, Sutherland, &275

Freckleton, 1999). Thus, increasing propagule pressure will not increase invasion276

success indefinitely.277

Indeed, Cassey et al. (2018) found a sigmoidal relationship between propagule278

pressure and establishment success. This was also reflected in additional post-279

hoc experiments with our model. With propagule pressure increased to 100280

individuals per year, we did not observe an increase in the number of successful281

invasions (Supporting Information, fig. 1). Unfortunately, a direct comparison282

of our values with those of Cassey et al. (2018) is difficult. This is because283
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Cassey et al. (2018) do not relate their measure of propagule pressure to time,284

but assume a single initial release, which runs counter to the design of our study.285

Rather, the repeated introductions in our model increase our de facto propagule286

pressure beyond the one or ten individuals introduced in one year; but the287

stochastic nature of introductions makes it impossible to quantify exact values288

per species. Nevertheless, the results of our subsequent simulations indicate that289

we did reach propagule saturation as well. The reason for this is likely increased290

intra- and interspecific competition among juvenile alien individuals in already291

saturated communities. This saturation is an effect of our initial simulation292

conditions, where we initialize communities with more species populations than293

they will eventually hold. Given that real islands are known to have lower294

species richness than continents (Whittaker & Fernández-Palacios, 2007) and295

are thus likely un-saturated in terms of species numbers, they will therefore be296

much more susceptible to increased introductions than saturated continental297

systems. This highlights again the vulnerability of island biota to global change298

processes.299

Temperature and disturbance300

The interaction between temperature (our surrogate for productivity) and dis-301

turbance was not as straight-forward as we had expected (question 3, table302

1). The dynamic equilibrium model (Huston, 2004) predicts that invasibility303

approximately increases with native diversity, which is high when both produc-304

tivity and disturbance are high, or when both are low. This is because high305

productivity with low disturbance leads to population extinction through com-306

petitive exclusion, while low productivity with high disturbance means small307

populations that go extinct stochastically (Huston, 2004). Indeed, as described308

by Huston (2004), we did observe a clear peak of mean native species rich-309
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ness in the low-temperature, low-disturbance scenarios (Supporting Informa-310

tion, fig. 2). Despite this, maximum invasibility did not coincide with either low-311

temperature/low-disturbance or high-temperature/high-disturbance scenarios,312

but was driven almost entirely by temperature (fig. 4). This apparent mis-313

match of our model with theory may raise some questions at first, but can be314

explained by a closer look at disturbance and its influence on invasion processes.315

The interplay between productivity and disturbance and its effect on species316

richness and composition has long been discussed in the theoretical literature317

(e.g. Catford et al., 2012; Chesson, 2000) and shown in multiple empirical stud-318

ies (e.g. Huebner, Regula, & McGill, 2018; O’Connor, Falk, Lynch, Swetnam,319

& Wilcox, 2017). However, these interactions are subject to several precondi-320

tions. Firstly, Buckley et al. (2007) point out that disturbance may increase the321

invasibility of a habitat, but can also be a cause of mortality for alien species, re-322

ducing invasibility again. Thus, if disturbance affects natives and aliens equally,323

these two contrary effects may cancel each other out, leaving no net change.324

This was the case in our model, as disturbance-driven mortality was species-325

agnostic. Secondly, the effects of disturbance on native and alien communities326

are likely to change over the full gradient of disturbance intensity (Catford et327

al., 2012). Analysing that many disturbance levels was beyond the scope of328

this study, however. Therefore, our experiment only reflects two points on this329

gradient and may thus give an incomplete picture. And thirdly, an invaded330

community’s response to disturbance can be strongly modulated by the trait331

composition of its native and alien species (Kempel et al., 2013; Mata et al.,332

2013). This includes traits that are represented in our model, which will be333

discussed in the next section.334
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Traits of invasive species335

Although sometimes questioned in studies on species invasions (cf. Catford et336

al., 2009, but see Thuiller et al., 2006), our results provide some insights into an337

“invasion syndrome” relative to the native community and the stages of invasion338

(question 2, table 1; Novoa et al., 2020). In fact, invasive species are more339

similar to native species than alien species in terms of their trait characteristics340

(cf. Küster et al., 2010). This suggests that invasive species have to pass341

similar environmental filters to natives in order to complete the colonization342

and establishment stages.343

However, this trait similarity is not sufficient to surpass native species in terms344

of environmental adaptation (question 4, table 1). Instead, invasive species have345

on average lower environmental adaptation. The fact that some invasive species346

are still successful, and even end up replacing native species, again highlights the347

importance of propagule pressure. This might offset some of the maladaptation348

and the priority effect advantage enjoyed by native species (Chase, 2003). Such349

interaction of traits and propagule pressure is in line with recent evidence from350

field and laboratory experiments (Alzate et al., 2020; Kempel et al., 2013). Still,351

propagule pressure alone does not explain why invasives also manage the fourth352

phase, landscape spread.353

In order for invasives to spread, we expected increased dispersal abilities and a354

rather generalistic niche strategy (question 5, table 1). Indeed, invasive species355

in our simulations not only feature increased mean and long distance dispersal,356

but also have higher environmental tolerances on average (see Grotkopp & Re-357

jmánek, 2007; Schultz & Dibble, 2012). These latter trait characteristics suggest358

the generalist nature of invasive species, at least in comparison to natives. A359

larger biomass and thus reduced mortality in invasives additionally makes them360

stronger competitors (cf. Kempel et al., 2013). This circumstance will also help361
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offsetting relative maladaptation, besides propagule pressure.362

Furthermore, the difference in trait characteristics between species categories363

might also indicate different evolutionary backgrounds. In this respect, our364

island communities are the result of several hundreds of years of ecological in-365

teractions between species and the environment. This is especially evidenced366

by their decreased dispersal ability, which is a typical island adaptation (Burns,367

2019). They are, therefore, sensitive toward invasive species that (1) were not368

restricted by those interactions, and (2) exhibit trait syndromes different from369

those represented in the community. Additionally, invasive species are bigger370

than natives, but not as big as (unsuccessful) alien species. Thus, the inva-371

sion syndrome features adaptation to similar conditions as the invaded native372

community, but sufficiently different other key traits (e.g. biomass), unbounded373

by the local evolutionary history, to fill areas of the trait space with the least374

overlap with native species. If this overlap is enough to induce competitive ex-375

clusion, superior competitive abilities allow invasive species to outperform, and376

thus replace, native species, which we could observe in some of our simulations377

(cf. Flory & Clay, 2010; Pyšek et al., 2012).378

Future considerations379

In our simulations, we could not account for most biological interactions except380

for competition. Mutualisms between native species will likely lead to secondary381

extinctions, or even extinction cascades, if keystone species get lost (Christian,382

2001; Schachtschneider & February, 2013). Trophic interactions can also allow383

effects like enemy-release of alien species. Therefore, the effects of invasions on384

our simulated communities might be very conservative and underestimated. We385

anticipate that the consideration of additional interactions into our modeling386

framework will further increase the impact of species invasions on the native387
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communities.388

In this study, we corroborated the importance of propagule pressure for the389

invasion success. It is important to point out, however, that previous studies390

frequently conflated this with the related but separate concept of colonization391

pressure, i.e., the number of species (rather than individuals) introduced per392

time (Lockwood, Cassey, & Blackburn, 2009). Although the two may interact393

and are difficult to differentiate in the field, they do in fact address two quite394

dissimilar mechanisms: propagule pressure determines how quickly a minimum395

viable population can be established, whereas colonization pressure increases the396

chances of introducing a suitable species. Our experiment does not completely397

disentangle these two aspects, but by using an alien species pool of constant size,398

we still arguably test the more specific understanding of “propagule pressure”.399

However, future investigations could use a model such as ours to fully separate400

the effects of both these factors in designated experiments.401

Increasing the runtime of the model may lead to additional insights. A number of402

studies have pointed to the impact of longer time scales on the invasion process.403

For example, Pyšek et al. (2015) and Carr et al. (2019) show a link between404

residence time or sustained propagule pressure and establishment rates. On the405

other hand, Sheppard and Schurr (2019) observed an increase in biotic resistance406

over time, which decreases the performance of alien species. Investigating such407

long-term and large-scale effects of invasion factors further is possible with our408

model, although this will require significant computational resources.409

Although beyond of the scope of this study, the current model allows us to410

consider genomic traits in the characterisation of species. In a previous study,411

Leidinger and Cabral (2020) show how environmental variation interacted with412

the number of genes and genomic variation of communities. Similarly, inva-413

sive species might display particular genomic profiles which enable them to414
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quickly adapt to novel environments, for example by high standing variation415

or phenotypic plasticity (Zenni, Lamy, Lamarque, & Porté, 2014). To increase416

computational feasibility and preclude possible confounding effects, we chose417

not to include these effects in the present study. However, we expect future418

experimental designs to account for variation in genomic traits and to allow for419

mutations when investigating species invasions.420

This study demonstrates the utility of individual-based mechanistic models for421

understanding biological invasions. Our results hold relevance for policy and422

management, as they reinforce the importance of reducing the import of alien423

species. This is true of alien species in general, but even more so for those424

showing high environmental tolerances and dispersal abilities, as well as those425

coming from habitats with similar conditions as native ecosystems.426
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Supporting Information

Effects of species traits and abiotic factors during the
stages of plant invasions

Vedder, Leidinger & Cabral

1 Figures

Temperature: 15°C Temperature: 35°C

D
isturbance: 10%

D
isturbance: 1%

0 ind. 100 ind. 0 ind. 100 ind.

0

2

0

2

Propagule pressure per timestep

N
um

be
r o

f i
nv

as
ive

 s
pe

ci
es

Figure 1: Number of successful invasions per scenario at higher propagule pres-
sure levels (post-hoc simulation data, 10 runs per scenario).
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2 Model description
The model description follows the ODD (Overview, Design concepts, Details)
protocol (Grimm et al., 2006, 2010).

2.1 Purpose
This model is designed to simulate a (meta-)community of plant-like individ-
uals. For this, the model considers factors and processes across genetic, pop-
ulation and ecological levels. The model is able to produce several patterns
across genetic, individual, population and (meta-)community levels, including
adaptation and speciation through divergence of populations. Thus, the model
expands from basic principles to richer representation of real-world scenarios.

2.2 Entities, state variables and scales
Individuals are the basic entity in the model. Given their attributes and life-
history, these individuals most closely resemble plants. Individuals belong to
different species, which are characterized by similar ecological traits and identi-
cal genetic architecture. The genetic architecture of each individual is comprised
of a diploid set of one or more linkage units, which, in turn, combine a set of
genes. Linkage units are always inherited in their entirety during the recom-
bination phase of a reproduction event. The higher the number of genes per
linkage unit, the higher the degree of genetic linkage. Some of the genes code for
one ore more traits (pleiotropy), while a trait can be dependent on more than
one gene (polygene). The realized trait value is the mean of all the trait alle-
les (quantitative trait loci). Traits thus controlled encompass the initial body
mass (size) of offspring, Ms, the body mass determining onset of maturity and
thus reproductive capability, Mr, mean dispersal distance, µ, the shape of the
dispersal kernel, controlling long-distance-dispersal, s, and values representing
the optimum and the tolerance (standard deviation) of a physical niche param-
eter, such as temperature and precipitation (T and σT or P and σP , resp.).
Alternatively to be controlled by mutable genes, traits can also be fixed. Ad-
ditionally, individuals carry attributes which describe their bodymass, M , and
their adaptation to the abiotic environmental conditions (fitness), FT and FP .
Furthermore, every individual carries a Boolean marker used to store whether
a given individual has newly arrived to a grid cell or discriminate individuals
from the rest of the community.

The base rates for processes governed by the metabolic theory of ecology
(Brown et al., 2004) - growth, reproduction, mortality - are global constants.
Mutation rate is also a global constant.

Every individual is placed inside an arena of grid cells, each of which has a
unique location (coordinates) and is characterized by physical properties such as
temperature, precipiation and size (carrying capacity). Over the course of the
simulation these properties (location or physical parameters) might change, re-
flecting geomorphological dynamics. All individuals within one grid cell consti-
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tute a community. The characteristics of the grid cells combined with the state
of inhabiting individuals constitute the state variables of the model. Additional
patterns or summary statistics may be calculated based on these individual
information.

Processes and updates are repeated every timestep, while each timestep can
be considered as one year.

2.3 Process overview and scheduling
In each discrete, yearly timestep each individual in each grid cell will (in no par-
ticular order unless otherwise stated) undergoes the following processes: (1) es-
tablishment, (2) density independent mortality influenced by adaptation to tem-
perature, (3) disturbance, (4) growth, (5) competition (individuals are sorted
according to their adaptation to precipitation), (6) reproduction (7) mutation
of offspring, (8) filtering of unviable individuals, (9) seed dispersal.

Before seed dispersal, alien individuals might be introduced to designated
grid cells during an invasion process. After seed dispersal, the physical environ-
ment of a grid cell might change. If that happens, all individuals within that
cell are marked to undergo establishment again.

Updates to individuals and thus the local communities happen instanta-
neously after a specific process has been executed (asynchronous updating).

2.4 Design concepts
Basic principles

Metabolic theory of ecology (at the submodel level). Adaptive and non-adaptive
radiation/evolution (mostly submodel level, but geomorphological change at the
system level). Sexual reproduction. Niche theory (both at system and submodel
level). Each individual carries unique ecological and/or functional traits, as
well as preferences for their physical environments. Resource/energy limitation
(carrying capacity: system level property, but invoked at submodel level).

Emergence

Species/Populations/ecotypes. Only constrained via genetic properties. Com-
munity trait composition. Interplay of physical properties (environment, geo-
graphical properties) and within community (competition strength via repro-
duction, growth, etc.). Species numbers, endemics, speciation rate.

Adaption & Objectives

See entities. Traits follow evolution: a trait changes its value randomly within
a given phylogenetic constraint. The success of the change (fitness) emerges as
the result of adaption to the physical environment and the reproductive success
of an individual over its competitors.
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Learning

N/A

Prediction

N/A

Sensing

Individuals are directly affected by the properties of their physical environment
(e.g., temperature).

Interaction

Individuals directly interact when sexually reproducing. However, they are not
affected themself by this interaction. Instead, the interaction aims solely at
determining the genotype of their offspring. Additionally, competition for re-
source/energy/space between individuals represents indirect interaction.

Stochasticity

Most of the submodels are carried out by all elegible individuals. Some sub-
models (Survival, Competition, Mutation and Dispersal), however, happen with
particular probabilities. In these cases, execution of submodels is decided at ran-
dom, taking into account individual characteristics, such as body size, fitness,
genome size, or dispersal abilities. All decisions inside all of the submodels are
stochastic (e.g., number of offspring) to maintain variability and relax assump-
tions.

Collectives

N/A

Observation

At the start and end of the simulation and at definable regular time intervals,
the properties of all individuals (including the properties of their locations) are
recorded and written to files.

2.5 Initialisation
The initialisation step creates lineages with randomly chosen genetic and ecolog-
ical trait values in each grid cell that is designated to receive an initial commu-
nity. This encompasses choosing the number of genes for a lineage, the number
of linkage units and the within genome variance of trait values. Trait with thus
distributed trait values are the distributed randomly among the genes. Popula-
tion (number of individuals) size of a lineage is determined by the adult body
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size of individuals from a lineage. At this point all individuals of a population
are identical. Values for ecological traits are then varied in each gene where a
given trait is found, for all individuals of a lineage. The variation is Normal dis-
tributed with the lineage trait value as mean and the product of σl (phylogenetic
constraint) and the lineage trait value as standard deviation. This ensures ini-
tial genetic variation within a lineage population. Thus created populations are
added to a grid cell’s community until the additional mass of another population
would exceed the grid cell’s carrying capacity. In the experiment configuration
file, it is possible to specify other methods of initializing communities, e.g., “sin-
gle”, where each grid cell receives only one species. Whether a grid cell receives
an initial community depends on the map definition. At the end of initialisation
each of the thus populated grid cells holds one or more different populations,
each from a separate lineage.

2.6 Input
At the start of a simulation user defined parameters are read, containing also a
definition of the simulation arena (map definition). This definition is provided
in a separate plain text file. Within the text file a line at the top containing
a single number defines the number of timesteps the arena definition is valid
for. Every other non-empty line defines one grid cell with a unique identifier (a
number), and the location of the grid cell as two coordinates. Optionally, one
can define the type of the grid cell (island or continent), its temperature and
precipitation values, and size.

Other optional parameters can be set in a separate configuration file and
pertain to defining simulation scenarios:

Name/Function Default value Description

“avgnoloci” 1 average number of loci/copies
per gene

“biggenelength” 200, Sequence length of long genes
“burn-in” 500, timesteps before invasion starts
“cellsize” 2e6, maximum biomass per hectare

in gramm (cf. Deshmukh, 1984;
Clark et al., 2001)

“config” “simulation.conf”, configuration file name
“debug” false, write out debug statements
“dest” string(Dates.today()), output folder name
“disturbance” 0, percentage of individuals killed

per update per cell
“fasta” false, record fasta data?
“fertility” exp(28.0), global base reproduction rate

23.8 from Brown et al. (2004),
alternatively 25.0, default 30.0

“fixtol” true, Reproductive tolerance does
not evolve
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Name/Function Default value Description

“global-species-pool” 100 size of the global species pool
(invasion source)

“growthrate” exp(25.2), global base growth/biomass
production from Brown et al.
(2004)

“indsize” “seed”, initialize organisms as seed,
adult or mixed

“lineages” false, record lineage and diversity
data?

“linkage” “random”, gene linkage type
(random/full/none)

“logging” false, write output to logfile
“maps” “”, comma-separated list of map

files
“maxdispmean” 10, maximum mean dispersal

distance
“maxrepsize” 14, maximal repsize in grams

calculated as exp(maxrepsize)
→ 1.2 t

“maxseedsize” 10, maximal seedsize in grams
calculated as exp(maxseedsize)
→ 22 kg

“maxtemp” 313, max optimum temp in K
“minrepsize” 5, minimal repsize in grams

calculated as exp(minrepsize)
→ 150 g

“minseedsize” 0, minimal seedsize in grams
calculated as exp(minseedsize)
→ 1 g

“mintemp” 283, min optimum temp in K
“mortality” exp(22), global base mortality from

Brown et al. (2004) is 26.3, but
competition and dispersal
introduce add. mort.

“mutate” true, mutations occur
“mutationrate” 3.6e10, one mutation per

generation/individual,
corrected for metabolic
function

“nniches” 2, number of environmental
niches (max. 3)

“outfreq” 100, output frequency

7
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Name/Function Default value Description

“phylconstr” 0.1, phylogenetic constraint during
mutation and inter-loci
variation. scales trait value as
sd.

“phylo” false, record phylogeny?
“popsize” “metabolic”, initialisation algorithm:

metabolic/bodysize/minimal/single
“precrange” 10, range from 0 for precipitation

optimum
“propagule-pressure” 0, number of non-native

individuals introduced per
invasion event

“quiet” false, don’t write output to screen
“sdtemp” 0.0, SD of temperature change per

time step
“seed” 0, for the RNG, seed = 0 →

random seed
“smallgenelength” 20, Sequence length of

regular/small genes
“static” true, mainland sites don’t undergo

eco-evolutionary
“tolerance” 0.8, sequence similarity threshold

for reproduction
“traitnames” [“compat”, “dispmean”,

“dispshape”, “precopt”,
“prectol”, “repsize”,
“reptol”, “seedsize”,
“tempopt”, “temptol”],

minimal required traitnames

“usebiggenes” true Whether to use longer genes

If a parameter value is not specified by the user, the default value for that
parameter set in the simulation code is assumed. Global parameter values were
either adapted from the literature or found via trying out a range of values to
identify combinations that lead to high species coexistence.

2.7 Submodels
Establishment

Whenever an individual is new to a grid cell (by recent birth, dispersal event
or environmental change), their physical niche preferences are compared with
the actual niche properties, e.g., the temperature, T , of the present grid cell.
The individual adaptation parameter, A, is set according to the deviation from
the optimum value considering the niche breadth as standard deviation of a
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Gaussian curve, i.e., an individual’s fundamental environmental niche.

A = a× exp (−(T − T )2/(2σ2
T )) (1)

where
a = 1/(σT

√
2π) (2)

Competition

If the sum of the community’s bodymass exceed the available space, this will
pick two individuals at random and remove the one that has lower adaptation
to local precipitation, AP . Once total bodymass is below carrying capacity, the
procedure terminates.

Growth

Given an individual has undergone establishment, an individual changes its size
(M + δM ) following the metabolic theory and the global base growth rate, b0:

δM = b0 ×M
3
4 × exp

(
−EA

kB × T

)
(3)

with EA as activation energy and kB the Boltzmann constant. In case this
change results in zero or negative body mass, the individual is removed from
the community.

Density independent mortality / Survival

An individual is removed from the local community with a probability pmort
depending on its size M , its adaptation to temperature, AT , and a global base
mortality rate bmort:

pmort =

(
1− exp

(
−bmort ×M− 1

4 × exp

(
−EA

kB × T

)))
×AT

−1 (4)

Reproduction and mutation

All individuals that have grown to or beyond their individual reproduction sizes
may reproduce. The number of offspring is randomly drawn following a Poisson
distribution with mean N determined by the individual’s size M and a global
base offspring number N0:

N = N0 ×M− 1
4 × exp

(
−EA

kB × T

)
(5)

The number of offspring is then multiplied by the seed mass encoded in the
parent’s genome and this total biomass subtracted from the parental biomass.
If the remaining biomass would be equal to or less than 0, the individual will

9
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not reproduce. Otherwise, possible mates are selected within the same grid cell
based on whether they belong to the same lineage, have reached maturity (which
includes having established on the grid cell) and whether their compatibility se-
quences are sufficiently similar. If a suitable partner is found, both partners
produce gametes, i.e., complete haploid sets of all linkage units, where each
linkage unit is randomly picked either from the maternal or paternal set. The
two gametes, one from each mating partner, comprise the genome for the off-
spring. At this point, mutations in the offspring’s basecode may happen with a
set probability Pm. In the case of mutation all traits associated with the respec-
tive gene will randomly change value V by ε, which is normally distributed and
has as standard deviation the product of σl, i.e., the phylogenetic constraint,
and V .

The new individuals’ trait values are then calculated as the means of all
alleles and the individuals added to the community, with their size set to the
initial biomass Ms (seed biomass).

Dispersal

After reproduction and mutation, each offspring individual may disperse. For
each of these, a new location (i.e. x and y coordinates) is drawn randomly
following a logistic distribution with mean and shape parameters (which controls
long-distance-dispersal) taken from the individual’s traits. If a suitable grid cell
is found at the drawn coordinates, the dispersing individual will be placed there
and removed from the original community. The removal happens even when
there is no destination grid cell to be found. Special attention is paid when
the destination grid cell is of island type, while the origin is on the mainland
and the simulation runs in static mode. In this case the dispersing individual is
copied to the new destination instead of moved.

Habitat change

If enabled, both environmental habitat parameters - temperature and precipita-
tion - change values throughout the simulation arena. The amount and direction
of change is the same for all grid cells across the landscape. Changes to temper-
ature and precipiation happen independently from one another. The change is
randomly drawn from a Normal distribution with the current value as the mean
and a user defined standard deviation.

Disturbance

If enabled, a set percentage (determined by the disturbance setting) of individ-
uals in each cell is killed each turn, regardless of species or individual properties.
Disturbance only begins after the burn-in period.

10

132 TRA I T S AND AB IOT I C FACTOR S DUR ING INVAS IONS



Invasion

If enabled, a global species pool is initialised with global-species-pool ran-
dom species. After the burn-in period, propagule-pressure individuals from
this pool are randomly selected and copied to the simulation arena’s point of
entry (multiple selection of the same species per turn is possible).

2.8 Output/Calculation
The main simulation data output is stored in two separate formats. The first
is a table containg data characterising the individuals. Each line represents on
individual. The columns describe an individual’s current state. This is char-
acterised by location, environmental conditions, ecological traits and summary
of the genetic architecture. Additionally or alternatively to the individual level
data, the data can be summarized at the population level (i.e. all individuals
of a common lineage within the same grid cell). The second format is a fasta
file containing the entire genome of all individuals. Association of sequences to
individuals, linkage units, genes and coded traits is defined in the fasta headers.
Output is stored at the beginning and end of a simulation and at user-definable
intervals. The output considers the state of all non-seed individuals at those
times.
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Part III

D I S CUS S ION





7
TRA I T S AND MECHAN I SMS IN I S LAND
B IOD IVER S I TY

In the context of global change and species mass extinctions, under-
standing biodiversity patterns has become one of the most pressing
challenges of ecology. Islands, because of their suitability as “natural
laboratories”, present an ideal context in which to study such patterns
(Whittaker and Fernández-Palacios, 2007). However, functional traits
are still under-represented in island biodiversity theory. This thesis
therefore aims at investigating the role of functional and genomic traits
on the maintenance and evolution of island biodiversity using an indi-
vidual-based model that combines explicit genomes with basic ecolog-
ical and evolutionary principles.

In the previous chapters, I established an explicitly functional per-
spective on island biodiversity that includes genomic traits to investi-
gate some of the trait-related mechanisms that shape island biodiver-
sity, such as environmental variability and adaptive radiations. This
enabledme to address a number of different, and in parts thus far unex-
plained, island biodiversity patterns. I will lay out further implications
of this approach and its results in the following, along with directions
for future work.

7.1 TOWARD A FUNCT IONAL -GENOM IC P ER S P EC T I V E ON I S LAND
B IOD IV ER S I T Y

As stressed throughout this thesis, island evolutionary phenomena can
not be explained satisfyinglywithout taking into account species traits,
and how these traits are represented in the genome. This was made es-
pecially evident by analyzing previous island models (chapter 3). By
choosing a niche- and genome-explicit approach, my model thus fills
a gap that was left by previous island models that were not able to
address adaptive radiations in a general manner. By explicitly consid-
ering a functional genome, I was able to find out that genome architec-
ture can help in maintaining genetic variation under variable environ-
mental conditions that would normally impoverish genomes (chap-
ter 4). Species can thus retain more raw material for selection to act
on when conditions change, which increases their chances of survival.
In order for these reactions to happen in time, plants with smaller
body sizes and thus faster life cycles are more successful, since selec-
tive adaptations can only arise in new offspring.

Some of these genomic traits were also important over an evolution-
ary relevant time scale that considers speciation (chapter 5). Compara-

137



138 TRA I T S AND MECHAN I SMS IN I S LAND B IOD IV ER S I T Y

ble to survival in variable environments, intermediate genetic linkage
maintains a higher degree of genetic variation, which, over time will
increase species numbers due to genetic drift. At the same time, low
genetic linkage enables species to quickly adapt to the new conditions
after colonization of the island. Additional characteristics that deter-
mine high species divergence on islands encompass a complex set of
ecological traits, such as decreased dispersal abilities andmore flexible
reproductive systems (i.e. increased self-compatibility and probability
for hybridization). In fact, a certain degree of self-compatibility was
found to be prevalent formost real islandplant species (Crawford et al.,
2009). Over time, this divergence syndrome becomes more distinct. A
high propensity to selfing, combinedwith a considerable loss of disper-
sal ability will even accelerate divergence. Conflicting strategies with
regard to reproductive compatibility to conspecifics provide a new per-
spective on the evolution of, and through, hybridization. While some
species will evolve high pre-zygotic barriers to inhibit reproduction
with distant relatives, most species go the opposite way and reduce
such barriers to a minimum. These species will therefore hybridize fre-
quently with potentially strongly diverged populations of the same lin-
eage (cf. Jorgensen andOlesen, 2001). As a result, theymight therefore
evolve a smaller number of species as the lineages with increased re-
productive barriers. The gain of such a strategy, however, is that popu-
lations maintain connection to a large pool of genetic variation which
they can exploit to overcome constraints of streamlined genomes spe-
cialized to particular conditions. This could thus counteract the prob-
lem of evolutionary “dead ends” in specialized species (Day, Hua, and
Bromham, 2016), which would render species unable to quickly adapt
to new conditions. This suggests that hybridizations might not be ran-
dom incidents that may give rise to new species, but rather the result
of natural selection on the reproductive mode. While these trait syn-
dromes have not yet been investigated in such a systematic way and
can therefore not easily be validated with empirical data, concurrent
body size evolution which accord with empirical evidence for an is-
land syndrome in plants suggest my simulated patterns are plausible
(Burns, 2019).

As the study on invasion factors could show (chapter 6), addition-
ally to important abiotic factors such as propagule pressure, invasion
success is affected by functional traits as well. The study suggested an
“invasion syndrome” that encompassed increased environmental tol-
erances which enhanced population establishment, larger body sizes
in comparison to native species which increased competitive ability,
and higher dispersibility, which promoted spreading across the island.
All these factors have not yet been studied in combination and over a
larger spatial and temporal extent, which demonstrates the power of
simulation approaches. Since the study on environmental variability
(chapter 4) and island radiations (chapter 5) already highlighted the
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importance of genomic traits for ecological and evolutionary perfor-
mance of species, future efforts should consider the impact of these
traits for biological invasions as well (cf. Bock et al., 2018; Lee, 2002).

In general, this thesis provides a perspective on island biogeography
that goes beyond immigration, extinction and (simplified) speciation.
Congruent with a call for a new kind of island biogeography (Jacquet
et al., 2017; Lomolino, 2000), I consider not only species differences
with regard to their ecological traits but also differences in genome
structure. I could show that trait differences affect survival under vari-
able environmental conditions, speciation abilities and invasion poten-
tial. Given the disharmonic nature of real islands — not only in terms
of species, but also functional composition (Taylor et al., 2019) — the
results presented in this thesis highlight the consideration of traits as a
high priority for future empirical and theoretical island biogeography
research.

This functional island biogeography should not only consider phe-
notypic, but also genomic traits, which affect both short term (eco-
logical) and long term (evolutionary) species performance, reflected
in this thesis as species survival (chapter 4) and radiation potential
(chapter 5), respectively. In empirical studies, sequence data should
therefore be viewed not only as morphological information to infer re-
latedness and thus phylogenies, but also as functional data. After all,
the way a genome is arranged is an important information that can tell
us howgenetic variation is passed on. There are already several studies
fromboth non-island and island systemswhich set themethodological
foundation (Alonso-Blanco et al., 2016; Blankers et al., 2018; Burri et al.,
2015), but more empirical evidence will be needed to identify general
patterns and to assess whether the theoretical results presented in this
thesis reflect valid mechanisms. The theoretical results of this thesis
could help to guide such empirical studies.

Ultimately, the eco-evolutionary effects of genomic traits offer a new
perspective on the debate about “junk DNA” (Doolittle, 2013; Palazzo
and Gregory, 2014) — those segments in the genome that do not seem
to code for proteins or functional RNA(Biémont andVieira, 2006;Orgel
andCrick, 1980). Even if genomic segments do not provide some direct
function, they will contribute to the molecular structure of a chromo-
some. This structure, however, will determine the crossing-over poten-
tial duringmeiosis and thus affect recombination. Anything that modi-
fies the physical distance between genes will thus have an effect on the
linkage between those genes, regardless of whether such a DNA seg-
ment is translated into protein or not. “Junk DNA”, including transpos-
able elements, could therefore be an important eco-evolutionary factor,
since it directly modifies genetic linkage and thus adaptation potential
as evidenced in my simulation experiments. Comparative genomics
should therefore use the abundant sequence information to also in-
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fer and analyze genome structure (cf. Fournier-Level et al., 2011). This
could shed new light on the dynamics of plants’ adaptive strategies.

7.2 I S LAND MODEL S A S A TOOL TOWARDS A SYNTHE S I S O F B IO -
LOG I CAL THEOR I E S

Since the formulation of the equilibrium theory of island biogeogra-
phy (ETIB), there were several attempts to extend the theory with ad-
ditional relevant factors and process and to unify it with theories from
other disciplines (Chen and He, 2009; Rosindell and Phillimore, 2011;
Whittaker et al., 2007). This is often hampered by the difficulty to in-
tellectually grasp the resulting complex interactions of factors. Simula-
tion models provide an elegant way out of this issue. As evidenced in
this thesis, models can easily integrate any number of processes and
factors. In most cases, the emerging patterns can, in retrospect, be ex-
plained as plausible outcomes or evenmatch empirical patterns. Some-
times, the results are initially unexpected, but, once understood, they
inspire new hypotheses which can be tested experimentally. The pos-
itive effect of genetic linkage on emerging species numbers presented
in chapter 5 is one such example.

The study on island invasion (chapter 6) exemplifies how detailed
models are often more general than simple models, because their in-
tegrated processes and structures can be turned on or off as needed
(Evans et al., 2013). In this case,we addressed a study question, namely
factors of invasion success, that did not require mutations or consider-
ation of genomic traits. Hence, we simply turned offmutations and set
genomic traits to fixed values for all species. We can proceed similarly
for many different possible study questions. The added benefit of this
modularity is that the effect of any factor or processes can easily be iso-
lated by comparing the results of the model with disabled versus en-
abled module (cf. Cabral, Wiegand, and Kreft, 2019). Contrary to em-
piric experiments, we can control any confounding effects and ensure
identical initial conditions. Finally, if done right, i.e. built on first prin-
ciples in a modular manner, island models, albeit designed to investi-
gate island phenomena, are not restricted to only one system. Instead
they may easily be adapted to fit other systems, by simply changing
the geography of the simulation arena. This is evidenced by the study
on environmental variation (chapter 4): even though relevant in the
island context, the geography could also reflect a continental system.
Therefore, having synthesized theories, islandmodels provide a direct
interface to other biological systems, following a tradition established
by ETIB.

Besides unifying theories, island models could also help in unifying
concepts. In evolutionary biology, many categories revolve around the
process of speciation. Albeit an arbitrary delimitation in itself, specia-
tion is commonly classified according to its geographic extent (“sym-
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patric” vs. “allopatric”), the rate of change and the occurrence of diver-
gences or lineage splits (“anagenesis” and “cladogenesis”). However,
as was pointed out, these concepts are arbitrary categorizations that
often do not reflect the actual underlying mechanisms (Vaux, Trewick,
and Morgan-Richards, 2016). The reason for this incongruency lies in
spatial and temporal scales that can vary hugely for different taxa and
the scarcity of informative data. If we take into account the findings
of this thesis, that genomic traits, especially genetic linkage, relativize
even the putative underlying mechanisms such as lineage splits and
hybridization, all these concepts become even more diffuse. Hence, fu-
ture efforts should work toward a genome-explicit theory of “specia-
tion modes”. Since mechanistic models provide us with an omniscient
perspective, they could help in identifying the exact discriminating
characteristics of all these concepts as well as commonalities. Some of
these might then likely turn out to be opposing ends across a continu-
ous spectrum rather than mutually exclusive, discrete categories.

This is but one example for identifying shared, general principles
instead of focusing on discerning characteristics (cf. Lawton, 1999).
Mechanistic models are useful tools in helping to find processes that
produce realistic patterns for a large range of systems and scales and
thus qualify for such general principles. A set of premises follow from
that paradigm. For one, processes should represent rather small scales,
since scaling up from them is only a computational hurdle, whereas
scaling down from too coarse processes is much more challenging, if
not impossible. Where possible, processes should therefore even relate
to natural laws of physics and chemistry, e.g. metabolism (Brown et al.,
2004). Second, so far the one identified fundamental biological process
is evolution by selection of variation and mutation. It is therefore criti-
cal for any biological system at any scale that spans generations. Third,
only by comparing to and calibrating with empirical data will models
produce realistic patterns. As it happens, the model I presented in this
thesis conforms tomost of these premises. However, some of the imple-
mented processes, e.g. dispersal following a dispersal kernel, still only
reproduce patterns. Even then, there is a lot of opportunity to finding
fundamental mechanisms using mechanistic models.





8
OUTLOOK

I was able to address a variety of topics concerning the impacts of ge-
nomic traits on ecological functioning and island biogeography. For
the quest of a more integrative island biology and identifying funda-
mental principles, however, there are a number of additional related
phenomena which could very well be addressed with mymodel. Most
of these pertain to two different scale levels: the macro-ecological or
biogeographic scale and the genomic scale. In the following Iwill present
some possible research avenues for each of these, including their re-
spective implementation. First, however, I will address the issue of
bias introduced by model choice and parameter uncertainty and an
approach to alleviate this.

8.1 ECO - EVOLUT IONARY MODEL ENS EMBL E S TO ID ENT I F Y GEN -
ERAL PR INC I P L E S

In all experimental approaches, results are often biased by the choice
of employed methods. This holds true especially for mechanistic mod-
els, since models can and will only produce patterns based on their
defined behavior. While the implementation of agents and processes
giving rise to a model’s behavior should always be informed by estab-
lished theories and empirical findings, and built on first principles, the
choice of processes and theories is often subjective. Evenwith the same
processes modeled, models’ output might still differ, because of de-
velopers’ differences in coding style, language choice and general pro-
gramming approach. Reliable conclusions drawn from models should
therefore include not one, but many different models— similar to how
meteorology has been proceeding for decades (Lewis, 2005; Urban et
al., 2016).

The center of such as multi-model approach could be represented
by a central repository which collects and combines different mod-
els (a “model base”). Requirements for a model to be included in the
model base should encompass processing similar input data and re-
turning comparable output, in terms of the level of detail. At least,mod-
els should produce patterns at comparable organizational levels (Rad-
chuk et al., 2019; Zurell et al., 2016). To achieve this, all models need to
be characterized systematically in terms of the type of input, the imple-
mented factors and processes, and the produced patterns. This model
base would then allow comparing the results of different models that
match certain characteristics to address the same study question and
assess how robust particular patterns are or how much they depend
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on implementation. Additionally, the model base might be used by
empiricists to find models for making hypotheses or conducting ex-
ploratory simulations prior to intended experiments. And lastly, this
model base would allow compiling model ensembles for predictive
purposes. For such an application, a set of appropriate models would
be fed with the same input parameters and run until all simulations
reached the situation in question.

In order to increase predictive quality, the model base could be con-
nected to resources which store environmental, geographical or organ-
ismal data, for example the TRY database (Kattge et al., 2011). This
would enable a potential user to not only select one or multiple mod-
els from the model base, but also select the specific organisms and ge-
ographic region she is interested in. The model base would then re-
trieve the appropriate data from the respective databases. Ideally, it
would consider all of the provided details, so that when the user spec-
ifies both species and region, and the species occurs in several regions,
only the data corresponding to the populations in the specified region
would be selected. However, given the incompleteness of most of to-
day’s databases in terms of intraspecific variation, this functionality
might only be feasible in a couple of years.

In a further step, components of the individual models might be
made modular, so that one model is able to use processes from several
other models (Cabral, Valente, and Hartig, 2017). This is no small task,
since it calls for standardization of interfaces between components. The
potential user might then select processes she needs for a given exper-
iment and the order these processes should occur in. This mix-and-
match model toolbox, will ultimately allow to assess whether a single
processes depends on implementation. Only processes independent
from implementation can be considered general enough to qualify for
the representation of putative fundamental principles.

A suite of different and detailed mechanistic models will generate
biological patterns which can directly be traced back to the underly-
ing processes. This makes it possible to infer processes also in empiric
data, where mechanisms are obfuscated in the system’s complexities
or the patterns hidden in the sheer extent of the data. In such scenar-
ios, output from models could help guide analysis, since researchers
would already know what to look for. Alternatively, mechanistic mod-
els could help validate assumed causalities behind correlations in em-
pirical data by directly testing hypotheses with designated simulation
experiments. Advances in artificial intelligence methods even provide
another alternative: the data from simulations could, for instance, be
used to train neural networks, which are then applied to empiric data
to infer the underlying conditions. This exemplifies one of the qualities
of a model as detailed as the one I developed, namely that it may pro-
duce complex data, i.e. data ofmany different types and organizational
levels, all from one single, synchronized system. This harmonized data
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allows direct causal inference between processes and patterns at dif-
ferent levels, contrary to integrating several different empirical data
sources to substitute missing data between systems or points in time.
Thus, the combination of mechanistic models with integrated empir-
ical data supported by modern artificial-intelligence methods might
offer unprecedented insights into the processes of real biological sys-
tems — on islands and beyond.

8.2 COMPLEX B IOGEOGRAPHY

Inmymodeling experiments, I used geographically static systemswith
a single isolated island. However, in a spatial or temporal extent larger
than those considered in my experiments, this is hardly a realistic as-
sumption. Islands do not appear out of nowhere, but rather gradually
emerge from the ocean - into which they ultimately disappear more or
less dramatically. Especially islands of volcanic origin usually follow
a defined trajectory of emergence, erosion and submergence (Whit-
taker et al., 2007). The hypothesized impact of temporal biodiversity
patterns could already be investigated experimentally usingmechanis-
tic models (Borregaard, Matthews, and Whittaker, 2016; Cabral et al.,
2019). The detailed genomic aspects considered inmymodel, however,
would allow assessing if the assumptions in those previous models
are plausible. One common assumption in those models is the way a
species cladogenetically gives rise to two species. This process is often
represented by a point speciation mode, where speciation happens al-
ways after a specified time of population isolation. Mymodel could re-
flect the effects of population bottlenecks and divergence hitchhiking,
both of which have been found to affect speciation. Under the condi-
tions of dynamic island geography, which imposes frequent changing
of conditions and thus adaptation, genomic traits might play an even
more important role than under static conditions, as indicated in chap-
ter 4.

A number of studies investigated the effect of gene flow not only on
speciation but also on population divergence within an island (John-
son, Adler, and Cherry, 2000; Rosindell and Phillimore, 2011). The pre-
dictions of these models, however, are based on very simplifiedmodes
of gene flow and genetic architecture. Thus, these hypotheses should
be re-evaluated in light of the evidence of the impact of genetic linkage
on the extent of population divergence. The genome-explicit nature of
mymodel would be a useful opportunity to investigate the effects of in-
tra-insular isolation on speciation under more realistic assumptions of
population genomics. Gene flow also plays role in the biogeography of
island groups, i.e. archipelagos. Colonization events between islands
in an archipelago shaped many island communities of today (Emer-
son, Oromí, and Shaw, 2005; Juan et al., 2000). Since this might result
in frequent hybridization, only by considering genomic traits will we
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be able to understand how species maintained their respective ranges.
This evidence furthermore highlights the need to systematically inves-
tigate the effect of the past and present structure of archipelagos on
evolutionary patterns on islands.

8.3 GENOME DYNAM IC S

The structure of the genomes of all individuals in my model remain
static throughout the simulation. Only at the genesis of a species is
genome structure determined and then fixed for all species originat-
ing from that lineage. Albeit a sensible simplification, numerous ex-
amples from empiric genomic studies show that static genomes are
seldom the case. Instead, genomes may grow and shrink in size, e.g.
throughwhole genome duplication (Baduel et al., 2018), polyploidiza-
tion (Van de Peer, Mizrachi, and Marchal, 2017), and subsequent gene
loss (Albalat and Cañestro, 2016). Additionally, mobile elements, such
as transposons, can change genome structure and lead to loss or gain
of function in affected genes (Casacuberta and González, 2013). These
processes often initiate evolutionary transitions and are thus good can-
didates for improving our understanding of speciation, but they can
also be a response to changing conditions, e.g. stress (Rice et al., 2019).
Andwhile these phenomena have often been observed in nature, there
is few, if any, attempts at experimentally investigating or modeling
genome dynamics, especially in the eco-evolutionary contexts exem-
plified in this work. Thus, the direct causal effects and origins of these
type of genome dynamics remain unclear. However, they too could be
addressed with my model with some modification.

8.4 PO S S I B L E IMPL EMENTAT ION

The model used in this thesis to address the respective experiments is
designed to be flexible andmodular. This flexibility allows (i) applying
themodel to diverse study questions by adapting the respectivemodel
parameters as shown above, and (ii) easy extensibility by adding pro-
cesses or specific model behavior not considered in the present ver-
sion. Examples for additional applications include studying the impact
of geo-morphological dynamics on island biodiversity (cf. Whittaker
et al., 2007) or the consideration of multiple islands, i.e. archipelagos
(Gascuel et al., 2016; Triantis et al., 2015). Both of these applications
could be realized by providing suitable simulation arena definitions,
taking advantage of the possibility of inputting a sequence of defini-
tions to represent geomorphological changes. To include genome dy-
namics, some aspects of the model would need to be extended and
changed. Besides adding the necessary functions to carry out genome
dynamics themselves, e.g. polyploidization, transposition or gene loss,
the functions assessing compatibility of two individuals need to be
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adapted to allow for mismatch in genome structure. Additionally, ge-
nomes might need to be subjected to energetic constraints to impose
an opposing force to accumulate genetic material. To allow backwards-
compatibilitywith previous versions of themodel, these changes should
include additional parameters defaulting to values which disable the
novel behavior.





9
CONCLUS ION

Islands are an ideal context in which to study biodiversity patterns.
For this reason, island biology remains an exciting research discipline.
While island phenomena motivate a lot of primary research, island
characteristics like confinement make findings relevant for other dis-
ciplines as well. In this thesis, I exemplified an approach based on
process-based models to investigate island phenomena in a mechanis-
tic matter. To achieve this, I closed a gap in the landscape of current is-
land models by developing a model that explicitly considers genomes
and micro-evolution. I used this model to investigate the effect of eco-
logical and genomic traits on species survival under environmental
variation and radiation potential. Furthermore, I presented an appli-
cation of the model to a current conservation-related research topic,
namely the invasiveness of species on islands. These examples high-
light the generality of the model and its potential to address many
other research questions. However, for a new synthesis of island bi-
ology theory, there remains a lot to be done. Only adding additional
processes and levels and comparing them to alternative implementa-
tions and empiric evidence will allow identification of fundamental
principles — not only in island biology but in ecology and evolution
in general. This thesis represents one small step towards this goal.
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