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2.6 Dimension reduction with principal component analysis . . . . . 51
2.7 Exploratory extreme value analysis . . . . . . . . . . . . . . . . . 64
2.8 Comparing extremal and non-extremal dependence . . . . . . . . 70
2.9 Weather data analysis . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Multivariate peaks-over-threshold statistics 84
3.1 Direct estimators and threshold strategies . . . . . . . . . . . . . 86
3.2 Indirect estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3 Proof of consistency for various estimators . . . . . . . . . . . . . 98
3.4 Local and global thresholds . . . . . . . . . . . . . . . . . . . . . 110
3.5 The split-and-merge-procedure . . . . . . . . . . . . . . . . . . . 113
3.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2



Chapter 1

Preliminaries

In Section 1.1 we start with some questions that motivate extreme value theory
and introduce the bare necessities we need to know about univariate extreme
value theory to study multivariate extreme value theory. We introduce the mul-
tivariate max-domain of attraction and the class of simple max-stable random
vectors.

Section 1.2 then introduces many different, but equivalent characterizations
of when a random vector X is in the max-domain of attraction of a simple max-
stable vector Y. Because of how often this theorem appears in the rest of the
thesis it got the name Rosetta Stone theorem.

Section 1.3 then procedes to prove the Rosetta Stone theorem with a great
deal of measure theory.

Section 1.4 investigates what happens if a sequence of D-norms converges
pointwise from a multivariate extreme value view.

Section 1.5 goes into detail how and when we should use the Rosetta Stone
theorem in practical applications. It gives an interesting characterization for
when a random vector has the right marginal distributions, but the wrong de-
pendence structure for the Rosetta Stone theorem.
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1.1 Tail-behavior and the max-domain of attrac-
tion

Many questions that motivate (univariate) extreme value theory fall in one of the
three categories below. In all of them X is a random quantity with a cumulative
distribution function F defined by F (t) = P (X ≤ t).

1. (Probability problem) Given a high threshold t what is the probability

P (X > t) = 1− F (t)?

2. (Quantile problem) Given a low probability p what is a threshold t such
that

P (X > t) = p

holds?

3. (Behavior above a threshold problem) Given a high threshold t what
are the properties of the X under the condition X > t?

Those are abstractions of questions from real life, of which there are some
examples below.

Example 1 (From a dike-building perspective). X is the maximum water level
during a year.

’We have built a dike of height t. How likely is it that the water rises higher
than that in a year?’ is a probability problem.

’We want to build a dike such that the water level exceeds its height on
average once per 100 years. How how high do we have to build it?’ is a quantile
problem with p = 1/100.

’We have build a dike of height t. How high is the average flood that goes
above t?’ is a question about the behavior above a threshold.

Example 2 (From finance perspective). X is the loss from an investment.
’How likely will our investment have a loss of at least t?’ is a probability

problem.
’What is the Value at risk of this investment at level 99%?’ is a quantile

problem with p = 1/100.
’What is the Expected Shortfall of our investment at level 99%?’ is a question

about the behavior above the threshold t, that is the value at risk at level p =
1/100.

In this thesis we will treat the term ’tail-behavior ofX’ not as a mathematical
object, but as mathematical properties of X that help us answer those kinds of
questions.

The most common approach to those questions requires the assumption that
there are scaling constants an > 0, and shifting constants bn ∈ R, such that we
have the limit

an · max
i=1,...,n

X(i) + bn
D→ Y,
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as n→∞ and where X(i) are iid copies of X, and Y is a non-degenerate limit

random variable.
D→ denotes convergence in distribution. By non-degenerate we

mean that Y is not almost surely a constant. We say X is in the max-domain of
attraction of Y and Y has a property called max-stability. Max-stability means
there exist constants cn > 0, dn ∈ R such that

cn · max
i=1,...,n

Y (i) + dn
D
= Y

for iid copies Y (i) of Y .
D
= denotes that the left hand side and the right hand

side follow the same distribution. By setting an := cn and bn := dn we see that
a max-stable distribution is always in its own max-domain of attraction. One
example of a max-stable distribution is the standard Fréchet one with

P (Y ≤ 1/y) = exp(−y)

for all y > 0. One can easily check that for all n we have

1

n
· max
i=1,...,n

Y (i) D= Y,

where Y (i) are iid copies of Y .
Because this thesis is not about univariate extreme value theory, we will not

go into detail about the following facts:

• The family of non-degenerate max-stable value distributions is a paramet-
ric family. One parameter is for the shape, while the other two parameters
are about additive shift und multiplicative scale. In the literature this is
known as the Fisher–Tippett–Gnedenko theorem (see Theorem 1.1.3 in
the book by de Haan and Ferreira (2006))

• If we ignore shift and scale, then a random variable is in the max-domain
of attraction of at most one non-degenerate max-stable distribution.

• Not every random variable is in the max-domain of attraction of a max-
stable distribution (see Example 2.6.1 in the book by Galambos (1978)).

Also we refer to the case studies in the book by de Haan and Ferreira (2006)
on how the max-domain of attraction affects the questions in the beginning of
this section.

In multivariate EVT we are interested in the simultaneous appearance of
extremes in more than one component of a random vector X = (X1, . . . , Xd)

ᵀ.
There is a natural extension of the univariate max-domain of attraction, which
we will call the multivariate max-domain of attraction.

For this it is necessary that there are positive scaling constants ajn and
shifting constants bjn such that

ajn · max
i=1,...,n

X
(i)
j + bjn

D→ Yj
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as n → ∞ for all j = 1, . . . , d, where Yj are max-stable univariate random

variables and X
(i)
j are iid copies of Xj . If it turns out that Y1, . . . , Yd are the

components of a random vector Y and we have the convergence[
ajn · max

i=1,...,n
X

(i)
j + bjn

]d
j=1

D→ Y,

as n→∞, where the X(i) are iid copies of X, then we say X is in the multivariate
max-domain of attraction of Y.

One example of a multivariate limit distribution might be that the limit Y
has independent components Y1, . . . , Yd. Then the components X1, . . . , Xd are
called tail-independent.

Another example of a limit distribution might be a limit Y wich Y1 = Y2 =
· · · = Yd almost surely. Then the components X1, . . . , Xd have the strongest
tail-dependence there is.

If we transform the margins of Y to be standard Fréchet distributed and
call the result Y∗ and we transform the margins of X to be standard Pareto
and call the result X∗, then we get

1

n
· max
i=1,...,n

(X∗)(i) D→ Y∗,

as n→∞, where (X∗)(i) are iid copies of X∗. We have the max-stability

1

n
· max
i=1,...,n

(Y∗)(i) D= Y∗, (1.1)

for all n ∈ N, where (Y∗)(i) are iid copies of Y∗. The details of these results can
be looked up in the book by Resnick (1987). That’s why there is nothing lost
by only investigating max-stable distributions with standard Fréchet margins.

Definition 1. We will call a max-stable distribution with standard Fréchet mar-
gins a simple max-stable distribution.

Every simple max-stable distribution can be characterized by a special type
of norm. Because this norm entails a dependence structure we refer to it as a
D-norm. Further details and a proof of Theorem 1 below can be found in the
book by Falk (2019).

Definition 2. A d-dimensional random vector Z with E(Zj) = 1 and Zj ≥ 0
almost surely for all j = 1, . . . , d is called a D-norm generator and the corre-
sponding D-norm ‖·‖D is defined by

‖x‖D := E
(

max
j=1,...,d

|xj |Zj
)

for all x ∈ Rd. If there are two D-norm generators Z(1) and Z(2) with

E
(

max
j=1,...,d

|xj |Z(1)
j

)
= E

(
max

j=1,...,d
|xj |Z(2)

j

)
(1.2)
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for all x ∈ Rd then we say Z(1) and Z(2) generate the same D-norm.

The most basic instances of different D-norm generators that generate the
same D-norm are given in the following example:

Example 3. If Z generates a D-norm and X is a random variable independent
of Z, with X ≥ 0 almost surely and with expectation E(X) = 1, then Z and
X · Z generate the same D-norm. This is shown immediately by the following
equation:

E
(

max
j=1,...,d

|xj |(X · Zj)
)

= E
(
X · max

j=1,...,d
|xj | · Zj

)
= E(X)︸ ︷︷ ︸

=1

·E
(

max
j=1,...,d

|xj | · Zj
)
,

which holds for all x ∈ Rd. The second step comes from the fact that X is
independent of maxj=1,...,d |xj | · Zj and that the expected value of products of
independent random variables is the product of the individual expected values.

While one does not need to know anything about extreme value theory to
understand D-norms, they have a central place in the theory of multivariate
max-stability as we will see in the following theorem:

Theorem 1. A random vector Y is simple max-stable if and only if there exists
a D-norm ‖·‖D such that

P

(
Y ≤ 1

y

)
= exp(−‖y‖D) (1.3)

for all y > 0.

Note that while Equation (1.3) only covers the multivariate cumulative dis-
tribution function F (x) = P (Y ≤ x) for positive vectors x, we also have
F (x) = 0 for all other vectors x for monotonicity reasons. This is used sev-
eral times implicitely throughout the thesis.

So far we have defined the multivariate max-domain of attraction, but we
have not seen how the max-stable attractor Y gives us informations about a
random vector X in its max-domain of attraction. The next section will change
that.
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1.2 The Rosetta Stone theorem

In Ptolemaic Egypt a royal decree was carved into a stone. Part of the stone
was discovered in Rosetta (Rashid, Egypt). The same content was written
in three languages and for this reason the Rosetta Stone was chosen as the
name-sake for the following theorem, which gives several equivalent definitions
of the same multivariate max-domain attraction. Not only is this a compact
translation guide for multivariate extreme value theory, but also a toolbox,
because depending on the context one characterization is more useful or intuitive
than another.

For one characterization we need the following definition:

Definition 3. A function h : [0,∞)d → [0,∞) is called homogeneous of order
1 if it fulfills

h(λ · x) = λ · h(x)

for all λ ≥ 0 and all x ∈ [0,∞)d.

Example 4 (Examples of homogeneous functions). The following functions are
homogeneous of order 1:

• h(x1, . . . , xd) = maxj=1,...,d xj.

• h(x1, . . . , xd) = minj=1,...,d xj.

• h(x1, . . . , xd) = maxj=1,...,d xj · |yj |, where y is a fixed vector.

• h(x1, . . . , xd) = minj=1,...,d xj · |yj |, where y is a fixed vector.

• h(x1, . . . , xd) = xj, where j is a fixed index from the set {1, . . . , d}.

• h(x1, . . . , xd) =
∑d
j=1 xj.

• h(x1, . . . , xd) = max(xi, xj), where i and j are fixed indices from the set
{1, . . . , d}.

• h(x1, . . . , xd) =
√
xixj, where i and j are fixed indices from the set {1, . . . , d}.

• h(x1, x2) := x1 · 1x1>x2
=

{
x1 if x1 > x2

0 else.

The last example shows that homogeneous functions need not be continuous.

Example 4 illustrates how flexible the class of homogeneous functions is. But
an individual function of this class always turns a random vector X ≥ 0 into
a random variable h(X) ≥ 0. The Rosetta Stone theorem explains how the
multivariate tail-behavior of X affects the univariate tail-behavior of h(X) and
vice versa.
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Theorem 2 (Rosetta Stone). Let Z be the generator of a D-norm ‖·‖D and let
X be a random vector on [0,∞)d with joint cumulative distribution function F .
Then there exists a uniquely determined measure ν on the set [0,∞)dr{0} that
fulfills

ν

([
0,

1

y

]{)
= E

(
max

j=1,...,d
yjZj

)
= ‖y‖D

for all y > 0 and the following five statements are equivalent:

(i)
lim
t→∞

t · P (h(X) > t) = E(h(Z))

for all non-negative, continuous functions h, that are homogeneous of or-
der 1.

(ii)

lim
t→∞

t · P
(

max
j=1,...,d

yjXj > t

)
= E

(
max

j=1,...,d
yjZj

)
= ‖y‖D

for all y ≥ 0.

(iii)

lim
n→∞

Fn
(
n · 1

y

)
= exp

(
−E

(
max

j=1,...,n
|yj |Zj

))
= exp(−‖y‖D)

for all y > 0.

(iv)
1

n
· max
i=1,...,n

X(i) D→ Y,

as n → ∞, where the maximum is meant component-wise, X(i) are iid
copies of X and Y is a max-stable random vector with standard Fréchet
margins and

P

(
Y ≤ 1

y

)
= exp

(
−E

(
max

j=1,...,n
yjZj

))
= exp(−‖y‖D)

for all y > 0.

(v)
lim
t→∞

t · P (X ∈ t ·M) = ν(M) (1.4)

for all measurable M ⊂ [0,∞)d r {0} with ν(∂M) = 0, where ∂M is the
topological boundary of M .

Also if ‖.‖ is an arbitrary norm, such that ‖Z‖ = c holds almost surely, then
the five statements further imply:
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(vi) We have the weak limit

lim
t→∞

P

(
c · X

‖X‖
∈M

∣∣∣∣ ‖X‖ > t

)
= P (Z ∈M) (1.5)

for all measurable sets M with P (Z ∈ ∂M) = 0.

The Rosetta Stone theorem shows that there are several equivalent character-
izations for the same multivariate max-domain of attraction. The equivalences
(ii) ⇔(iii) ⇔ (iv) ⇔ (v) are well known, see e.g. Resnick (1987).

The author has found no prior appearance of characterization (i), but this
limit was at least observed for some homogeneous functions (see e.g. Jessen and
Mikosch (2006) and Segers (2012)).

In the following we will call Statements (i)-(v) the equivalent statements of
the Rosetta Stone theorem. Statement (vi) is slightly weaker than the rest as
we can see in the following example:

Example 5. Let X = (X1, X2) be a random vector that fulfills X1 = X2 almost
surely and P (X1 > t) = 1√

t
for all t ≥ 1. Further let Z be a D-norm generator

with Z = (1, 1)ᵀ almost surely.
First we will show that Statement (vi) of Theorem 2 holds:
For an arbitrary norm ‖·‖ we have ‖Z‖ = ‖(1, 1)ᵀ‖ =: c almost surely and

consequently

c · X

‖X‖
= c · X1 · (1, 1)ᵀ

‖X1 · (1, 1)ᵀ‖
= (1, 1)ᵀ

almost surely. For all measurable sets M and all thresholds t this implies

P

(
c · X

‖X‖
∈M

∣∣∣∣ ‖X‖ > t

)
=

{
1 if (1, 1)ᵀ ∈M
0 else,

which is exactly the same as

P (Z ∈M) =

{
1 if (1, 1)ᵀ ∈M
0 else.

As a trivial consequence the limit in Equation (1.5) holds and so Statement
(vi) of the Rosetta Stone theorem is fulfilled. However Statement (i) is violated,
as we have

lim
t→∞

t · P (X1 > t) = lim
t→∞

√
t =∞ 6= E(Z1).

Nonetheless Statement (vi) is an important part of the Rosetta Stone the-
orem because it opens the way for the peaks-over-threshold approach to infer
the extremal dependence structure (see Section 3.1).

The proof of the Rosetta Stone theorem can be found in Section 1.3.
An immediate consequence of the Rosetta Stone theorem is the following:
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Corollary 1 (Additivity in the Tail). Let X be a random vector that fulfills
one of the equivalent statements of the Rosetta Stone theorem. If h1, . . . , hn are
non-negative, continuous functions that are homogeneous of order 1, then the
following equation holds:

lim
t→∞

t · P

(
n∑
i=1

hi(X) > t

)
=

n∑
i=1

lim
t→∞

t · P (hi(X) > t)

As a special case we get that

lim
t→∞

t · P

 d∑
j=1

Xj > t

 = d

regardless of the underlying dependence structure.

Proof. x 7→
∑n
i=1 hi(x) defines a function that obviously is non-negative, con-

tinuous and homogeneous of order 1, so we can apply the Rosetta Stone theorem
to it. If Z is a generator of the underlying D-norm, we get:

lim
t→∞

t · P

(
n∑
i=1

hi(X) > t

)
=E

(
n∑
i=1

hi(Z)

)

=

n∑
i=1

E(hi(Z)) =

n∑
i=1

lim
t→∞

t · P (hi(X) > t).

By choosing n = d and hi(x) = xi, we get the special case:

lim
t→∞

t·P

 d∑
j=1

hj(X) > t

 =

d∑
j=1

lim
t→∞

P (hj(X) > t) =

d∑
j=1

E(hj(Z)) =

d∑
j=1

E(Zj)︸ ︷︷ ︸
=1

,

as by definition a D-norm generator fulfills E(Zj) = 1 for all j = 1, . . . , d.

Even though in the setting of the Rosetta Stone theorem the functions h
have the trivial minumum 0 and supremum ∞ (as long as h is not the constant
0), it is quite useful to introduce the following notation:

Definition 4. Let h be a non-negative function on [0,∞)d that is homogeneous
of order 1. Then we set

hmax := max

h(x) : x ≥ 0,
d∑
j=1

xj = d

 and

hmin := min

h(x) : x ≥ 0,
d∑
j=1

xj = d

 .
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Effectively we maximize and minimize h on a compact subset, which seems
arbitrary in nature, but there is a thought behind that.

Corollary 2. We have

lim
t→∞

t · P (h(X) > t) ∈ [hmin, hmax]

for all random vectors X that fulfills one of the equivalent statements of the
Rosetta Stone theorem and all h that are non-negative, continuous and homo-
geneous of order 1.

Proof. According to Corollary 4 below there exists a generator Z which fulfills
Z1 + · · · + Zd = d almost surely and which generates the underlying D-norm.
For this generator the random variable h(Z) almost surely falls into the interval
[hmin, hmax], which implies

lim
t→∞

t · P (h(X) > t) = E(h(Z)) ∈ [hmin, hmax].

The notation hmax and hmin will turn out to be useful for investigating the
performance of estimators for the quantity E(h(Z)) in Section 3.1.

The following theorem is also very useful:

Corollary 3. Let Z be a D-norm generator and let U be uniformly distributed
on the interval (0, 1) and independent of Z. Then the random vector

X :=
1

U
· Z = (Z1/U,Z2/U, . . . , Zd/U)

ᵀ

fulfills the equivalent statements of the Rosetta Stone theorem with D-norm gen-
erators Z.

Proof. According to the Rosetta Stone theorem it is sufficient to show the limit

lim
t→∞

t · P (h(X) > t) = E(h(Z))

for all non-negative, continuous h that are homogeneous of order 1. Using the
homogeneity of h and Fubini’s theorem we get:

t · P (h(X) > t) = t · P (h(Z) > t · U) = t ·
∫ 1

0

P (h(Z) > t · u) du

=

∫ t

0

P (h(Z) > s) ds,

where the last step comes from the substitution u 7→ s = t · u. However,
E(h(Z)) =

∫∞
0
P (h(Z) > s) ds is the natural limit of this term, as t→∞.
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Corollary 3 implies that as long we can simulate the D-norm generator,
we can also simulate a random vector in the corresponding max-domain of
attraction. In Section 3.6 we will use this for a simulation study and in Section
3.4 we will use this for some helpful examples.

In the next section we will prove the Rosetta Stone theorem and in Section
1.5 we will talk about when and how the Rosetta Stone theorem is actually
applicable in practice. The whole of Chapter 2 is about applications of the
Rosetta Stone theorem.

13



1.3 Proof of the Rosetta Stone theorem

Before we can prove the Rosetta Stone theorem we need some preparatory
results.

Theorem 3 below can be motivated by Example 3. In the example we realized
that if Z generates a D-norm, then Z′ = X · Z generates the same D-norm, as
long as X ≥ 0 is independent of Z and has expectation E(X) = 1.

In that case we have for every non-negative, measurable function h that is
homogeneous of order 1 the following equation:

E(h(Z′)) = E(X · h(Z)) = E(X) · E(h(Z)) = E(h(Z)).

This is a special case of a more general result:

Theorem 3. Let Z(1),Z(2) be two D-norm generators. Then the following two
statements are equivalent:

(i) Z(1) and Z(2) generate the same D-norm.

(ii) For every non-negative, measurable function h that is homogeneous of
order 1 we have

E(h(Z(1))) = E(h(Z(2))).

This result implies the values E(h(Z)) are uniquely determined by the D-
norm ‖·‖D, which itself is uniquely determined by a max-stable random vector,
which itself is uniquely determined by an arbitrary random vector X in its max-
domain of attraction. This suggests that there is a link between the tail-behavior
of the random vector X and the constants E(h(Z)). This is indeed the case, as
can be seen in Statement (i) the Rosetta Stone theorem under the additional
assumption that h is continuous.

To proof this theorem we need a preparatory result:

Lemma 1. Let Z be a D-norm generator. Then there exists a measure ν on
the set [0,∞)d r {0} with the property

E(h(Z)) = ν({x : h(x) > 1}) = ν({x : h(x) ≥ 1})

for every non-negative, measurable function h that is homogeneous of order 1.
Further the measure ν has the property

ν(c ·M) =
1

c
· ν(M) (1.6)

for c > 0 and every measurable set M .

Proof. Let T : (0,∞)×[0,∞)d → [0,∞)dr{0} be the continuous transformation

T (s, z) =
1

s
· z.
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Further let λ be the Lebesgue measure on (0,∞) and let P be the probability
measure of Z on [0,∞)d. Then we can introduce the measure ν by

ν(M) := (λ× P )(T−1(M)),

where T−1(M) is the pre-image of M under the transformation T and (λ× P )
denotes the product measure.

Now let h be a non-negative, measurable function that is homogeneous of
order 1. By using indicator functions and Fubini’s theorem we get

ν({x : h(x > 1}) =

∫ ∫ ∞
0

1(h ◦ T (s, z) > 1) dsdP (Z = z)

=

∫ ∫ ∞
0

1(h(z) > s) dsdP (Z = z)

=

∫ ∫ h(z)

0

1 dsdP (Z = z) = E(h(Z)).

(1.7)

Note that in Equation (1.7) we can replace all > signs by ≥ signs without
changing the resulting value E(h(Z)).

Equation (1.6) is a consequence of the following:

ν(c ·M) = (λ× P )

({
(s,x) :

1

s
· x ∈ c ·M

})
= (λ× P )

({
(s,x) :

1

c · s
· x ∈M

})
= (λ× P )

({
(s/c,x) :

1

s
· x ∈M

})
= (λ/c× P )

({
(s,x) :

1

s
· x ∈M

})
=

1

c
· (λ× P )

({
(s,x) :

1

s
· x ∈M

})
=

1

c
· ν(M).

With that result we can proceed to prove Theorem 3.

Proof of Theorem 3. The direction (ii) ⇒ (i) is obvious. By definition generat-
ing the same D-norm means

E
(

max
j=1,...,d

|xj |Z(1)
j

)
= E

(
max

j=1,...,d
|xj |Z(2)

j

)
for every vector x ∈ Rd, which is implied by (ii) with the specific choices hx(z) :=
maxj=1,...,d |xj |zj .
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For the direction (i)⇒(ii) let Z(1) and Z(2) be two generators that generate
the same D-norm. From Lemma 1 we already know of the existence of two
measures ν1, ν2 with the properties

E(h(Z(1))) = ν1({x : h(x) ≥ 1})

E(h(Z(2))) = ν2({x : h(x) ≥ 1})

for every non-negative, measurable function h, that is homogeneous of order 1.
So to show (ii) it is sufficient to prove that the two measure ν1 and ν2 coincide.

As Z(1) and Z(2) generate the same D-norm ‖·‖D we get:

ν1

(
[0,x)

{
)

= ν1

({
y ≥ 0 : max

j=1,...,d
1/xj · yj ≥ 1

})
= E

(
max

j=1,...,d
1/xj · Z(1)

j

)
=

∥∥∥∥ 1

x

∥∥∥∥
D

= E
(

max
j=1,...,d

1/xj · Z(2)
j

)
= ν2

(
{y ≥ 0 : max

j=1,...,d
1/xj · yj ≥ 1}

)
= ν2

(
[0,x)

{
)

for all x > 0. The proof of Lemma 21 below shows that this result implies
ν1([y, z)) = ν2([y, z)) for every y ≥ 0,y 6= 0 and z ≥ y. Both measures ν1, ν2

are continuous from below, so we get the following:

ν1([y,∞)) = lim
n→∞

ν1([y,y + n · 1])

= lim
n→∞

ν2([y,y + n · 1]) = ν2([y,∞))

for all y ≥ 0,y 6= 0.
At this point it should be obvious that ν1 = ν2 the same way two random

vectors follow the same probability distribution if they have the same multivari-
ate cumulative distribution function. Thus

E(h(Z(1))) = ν1({x : h(x) ≥ 1}) = ν2({x : h(x) ≥ 1}) = E(h(Z(2)))

holds for all non-negative measurable functions h that are homogeneous of order
1.

For a norm ‖·‖ let us call it the generator-finding-problem to find a D-norm
generator Z ≥ 0, such that

‖x‖ = E
(

max
j=1,...,d

|xj | · Zj
)

holds for all x ∈ Rd is a mathematical problem. By definitions the D-norms
are exactly the norms, where the generator-finding-problem is solvable. The
solution is not unique in the sense that there are always at least two solutions

Z(1) and Z(2) with Z(1) 6D= Z(2), see Example 3. The following result shows us
that we can impose a constraint on the generators Z in the generator-finding-
problem and still get a solution, which is now unique (in distribution).
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Lemma 2. Let ‖·‖D be a D-norm and let ‖·‖ be an arbitrary norm. Then this
D-norm has a generator ZB with ‖ZB‖ = const almost surely. Both the constant
and the distribution of the normed generator Z are uniquely determined by the
D-norm.

Also we have

P (ZB ∈ A) = ν((1,∞) ·A)) (1.8)

for every measurable subset

A ⊂ B := {x : x ∈ [0,∞)d, ‖x‖ = c}

and where ν is the measure from Lemma 1.

Proof. The main bulk of this lemma is the so-called normed-generators theorem
(1.7.1) in the book by Falk (2019). What remains is the proof of Equation (1.8).
Let PB be the probability distribution of ZB . According to the definition of ν
in the proof of Lemma 1 we have

ν((1,∞) ·A) = (λ× PB)

({
(s,x) :

1

s
· x ∈ (1,∞) ·A

})
= (λ× PB)

({
(s,x) :

1

s
· x ∈ (1,∞) ·A, ‖x‖ = c

})
+ (λ× PB)

({
(s,x) :

1

s
· x ∈ (1,∞) ·A, ‖x‖ 6= c

})
︸ ︷︷ ︸

=0

= (λ× P )((0, 1) ·A) = PB(A) = P (ZB ∈ A)

As straightforward consequence of this lemma is the following result:

Corollary 4. Let ‖·‖D be a D-norm. Then it has a generator Z with the

property
∑d
j=1 Zj = d almost surely.

Proof. ‖x‖1 =
∑d
j=1 |xj | defines a norm (the so-called Manhattan-norm), so we

can use Lemma 2 to find a generator Z that fulfills ‖Z‖1 = c for some positive
constant c. Because D-norm generators fulfill E(Zj) = 1 for all j = 1, . . . , d, the
constant c is equal to the number of dimensions d.

The following topological result is crucial for multivariate peaks-over-threshold
methods and is necessary to show (vi) in the Rosetta Stone theorem.

Lemma 3. Let ‖·‖ be an arbitrary norm on Rd and let A be Borel subset of the
normed surface B = {x : x ∈ [0,∞)d, ‖x‖ = 1}. For the set

MA := (1,∞) ·A =

{
x : x ∈ [0,∞)d,

x

‖x‖
∈ A, ‖x‖ > 1,

}
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we have
∂MA ⊂ B ∪ (1,∞) ·

[
A ∩B rA

]
,

where M denotes the topological closure of a set M and ∂M denotes the topo-
logical boundary of the set M .

Proof. Let x ∈ ∂MA. If ‖x‖ = 1, then x ∈ B. So assume ‖x‖ > 1. Then there
exist two sequences (xn)n∈N, (yn)n∈N with

x = lim
n→∞

xn︸︷︷︸
∈MA

= lim
n→∞

yn︸︷︷︸
/∈MA

Because norms on finite dimensional vectorspaces are continuous functions
we can assume without loss of generality ‖xn‖ > 1, ‖yn‖ > 1 for all n ∈ N and
thus we have

x

‖x‖
= lim
n→∞

xn
‖xn‖︸ ︷︷ ︸
∈A

= lim
n→∞

yn
‖yn‖︸ ︷︷ ︸
∈BrA

.

This representation clearly shows x ∈ (1,∞) · [A ∩ B rA], whenever x ∈
∂MA rB.

The last prepatory result has nothing to do with measure theory, but is
useful nonetheless.

Lemma 4. Let (xn)n∈N be a sequence of real numbers with limn→∞ xn = x ∈ R.
Then we have the limit

lim
n→∞

(
1 +

xn
n

)n
= exp(x). (1.9)

Proof. For every y ∈ R we have the limit

lim
n→∞

(
1 +

y

n

)n
= lim
n→∞

exp
(
n · log

(
1 +

y

n

))
= exp

(
lim
n→∞

n ·
( y
n

+ o
( y
n

)))
= exp(y),

where we used the continuity of exponential function, the Taylor expansion of
the logarithm around 1 and Landau notation. Now for every ε > 0 we have for
monotonicity reasons:

lim sup
n→∞

(
1 +

xn
n

)n
≤ lim sup

n→∞

(
1 +

x+ ε

n

)n
= exp(x+ ε).

With the same reasoning we have lim infn→∞
(
1 + xn

n

)n ≥ exp(x− ε). Because
this holds for every ε > 0 Equation (1.9) is true.
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Now all pieces are in place to prove the Rosette Stone theorem.

Proof of the Rosetta Stone theorem. The implication (i) ⇒ (ii) is obvious.
Next we prove the implication (ii) ⇒ (iii). We have

lim
n→∞

Fn
(
n · 1

y

)
= lim
n→∞

(
1− 1

n
· n · P

(
max

j=1,...,d
|yj |Xj > n

))n
= exp

(
−E

(
max

j=1,...,d
|yj |Zj

))
,

where the last step comes Lemma 4.
The conclusion (iii) ⇒ (iv) is obvious.
The implication (iv) ⇒ (v) is given by Proposition 5.17 in the book by

Resnick (2008). In its proof the book leaves it to the reader to confirm that
if Equation (1.4) holds for rectangular sets, then we already have vague con-
vergence. The technical details will not be too different from the Lemmata 19
to 24 in thesis if we replace the random variables νn(M) in those Lemmata by
the deterministic values n · P (X ∈ n ·M) and realize that the convergence in
probability then turns into convergence of real numbers.

For (v) ⇒ (i) let h be a non-negative, continuous function that is homoge-
neous order 1 and set M = {x : h(x) > 1}. If we can show that ν(∂M) = 0,
then we have

lim
t→∞

t · P (h(X) > t) = lim
t→∞

t · P (X ∈ t ·M) = ν(M) = E(h(Z)).

The last step of this equation comes from two previous results: Lemma 1
shows that there exists a measure ν∗ with the property ν∗(M) = E(h(Z)) and
the proof of Theorem 3 implies that the measure this ν∗ is the same as the
measure ν of the Rosetta Stone theorem. The continuity of h further implies

∂M = M ∩M{ = {x : h(x) ≥ 1} ∩ {x : h(x) ≤ 1}
= {x : h(x) = 1}.

Lemma 1 then reveals that

ν(∂M) = ν({x : h(x) ≥ 1})− ν({x : h(x) > 1}) = 0.

This shows that M is in fact a continuity set of ν.
In order to prove (v) ⇒ (vi) let us define be the normed surface

B = {x : x ∈ [0,∞)d, ‖x‖ = c}.

Let M be a Borel set with P (ZB ∈ ∂M) = 0. Put A := M ∩ B. Define
MA := (1,∞) · A. Then according to Lemma 3, applied to the norm ‖·‖ /c, we
have
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∂MA ⊂ A ∪ (1,∞) ·A ∩B rA,

ν(∂MA) ≤ ν(A) + ν((1,∞) ·A ∩B rA).

Let us show that the right hand side of this inequality is 0. We have

ν(A) ≤ ν(B) = ν({x : x ≥ 0, ‖x‖ /c ≥ 1})− ν({x : x ≥ 0, ‖x‖ /c > 1}) = 0,

where again the last step is a result of Lemma 1. Thus,

ν((1,∞) ·A ∩B rA) = P (ZB ∈ A ∩B rA)) ≤ P (ZB ∈ ∂M) = 0.

As a consequence MA is a continuity set of ν, and statement (v) becomes
applicable to the limit

lim
t→∞

P

(
c · X

‖X‖
∈M

∣∣∣∣ ‖X‖ > t

)
= lim
t→∞

P

(
c · X

‖X‖
∈M

∣∣∣∣ ‖X‖ > ct

)
= lim
t→∞

P

(
c · X

‖X‖
∈ A

∣∣∣∣ ‖X‖ > ct

)
= lim
t→∞

P (X ∈ t ·MA)

P (‖X‖ > ct)

= lim
t→∞

t · P (X ∈ t ·MA)

t · P (‖X‖ > ct)
=
ν(MA)

1
= P (ZB ∈ A).
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1.4 The topology of D-norms

This section is concerned with the point-wise convergence of D-norms. The
Rosetta Stone theorem says that all information given by the D-norm ‖·‖D can
also be found within the simple max-stable vector Y or within normed D-norm
generators Z.

In practice we can only work with surrogates ‖̂·‖D, Ŷ, Ẑ inferred from the

data. The Rosetta Stone theorem only says, that a perfect D-norm fit ‖̂·‖D =

‖·‖D is equivalent to a perfect max-stable fit Ŷ
D
= Y, which itself is equivalent

to a perfect normed generator fit Ẑ
D
= Z. But in practice there are no perfect

fits, so Theorem 4 is a natural extension of the Rosetta Stone theorem.

Theorem 4. Let (‖·‖Dn)n∈N be a sequence of D-norms and let ‖·‖D be a D-
norm as well.

Then the following are equivalent:

(i) We have the pointwise limit ‖x‖Dn → ‖x‖D as n→∞ for all x ∈ Rd.

(ii) We have the weak convergence Y(n) D→ Y as n → ∞, where Y(n), n ∈ N
and Y are simple max-stable random vectors with

P

(
Y(n) ≤ 1

y

)
= exp(−‖y‖Dn) for all n ∈ N and

P

(
Y ≤ 1

y

)
= exp(−‖y‖D)

for all y > 0.

(iii) We have the weak convergence Z(n) D→ Z as n → ∞, where Z(n), n ∈ N
and Z are generators of the corresponding D-norms that realize almost
surely on the set B := {x : x ≥ 0,

∑d
j=1 xj = d}.

(iv) For every h that is non-negative, continuous and homogeneous of order 1
we have the limit

lim
t→∞

t · P
(
h
(
X(n)

)
> t
)
→ lim

t→∞
t · P (h(X) > t) (1.10)

as n → ∞, where X(n), n ∈ N and X are random vectors on [0,∞)d that
fulfills one of the equivalent statements of the Rosetta Stone theorem with
underlying D-norms ‖·‖Dn , n ∈ N and ‖·‖D.

Note that Theorem 1 guarantees the existence of the max-stable random
vectors in Statement (ii). Also Corollary 4 implies the existence of the generators
in Statement (iii).

For the following technicals details we have to recall the notion of tightness,
when it comes to probability measures:
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Definition 5. A sequence of probability measures (Pn)n∈N on Rd is called tight
if for every ε > 0 there exists a d-dimensional compact rectangle Q with Pn(Q) ≥
1 − ε for all n ∈ N. We will call a sequence of random vectors (X(n))n∈N tight
if the sequence of the corresponding probability measures is tight.

Lemma 5. For a tight sequence of random vectors (X(n))n∈N there exists a

random vector X and a subsequence (X(ni))i∈N that converges in distribution to
X.

If there is a topologically closed set B with X(n) ∈ B almost surely for all
n ∈ N, then this X also fulfills X ∈ B almost surely.

Proof. See Theorem 29.3 in the book by Billingsley (1979) for why for every
tight sequence of probability measures there exists a random vector X and a
subsequence (X(ni))i∈N that converges in distribution to X.

The second assertion can be proven with Skorohod’s theorem (see Theorem
29.6 in the book by Billingsley (1979)). It says we can assume without loss of

generality that (X(ni))i∈N and X are from the same probability space and we

have P (limi→∞X(ni) = X) = 1. Now let B be a closed set. Then we have

P (X /∈ B) ≤ P
(
X 6= lim

i→∞
X(ni)

)
+

∞∑
i=1

P
(
X(i) /∈ B

)
,

because if a realization of X was the limit of elements of B it would be in B
itself. If all the summands are 0, then we have P (X /∈ B) = 0.

The following extension of Lemma 5 becomes important more than once
later.

Lemma 6. Let X be a random vector. If a tight sequence of random vectors
(X(n))n∈N does not converge to X, then there exists a subsequence (X(ni))i∈N

that converges to a random vector X∗ 6D= X.

Proof. Because (X(n))n∈N does not converge to X there exists a continuous,

bounded function f : Rd → R with E(f(X(n))) 6→ E(f(X)). This means there

exists an ε > 0 and a subsequence (X(n′i))i∈N with

|E(f(X(n′i)))− E(f(X))| > ε

for all i ∈ N. This subsequence is tight itself, so there exists a X∗ that is the
limit of a sub-subsequence (X(ni))i∈N.

Also we have

|E(f(X∗))− E(f(X))| = lim
i→∞

|E(f(X(ni)))− E(f(X))| ≥ ε,

which shows that X∗ has a different distribution than X.

The following Lemma is interesting on its own.
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Lemma 7. The set of D-norms is sequentially compact, in the sense that for
every sequence (‖·‖Dn)n∈N of D-norms there exists a D-norm ‖·‖D and a sub-

sequence (‖·‖Dn(i)
)i∈N with ‖x‖Dn(i)

→ ‖x‖D as i→∞ for all x ∈ Rd.

Proof. According to Corollary 4 there exists a sequence of D-norm generators
(Z(n))n∈N, each of which generates the corresponding element of the D-norm

sequence, but which all fulfill Z(n) ∈ B := {x : x ≥ 0,
∑d
j=1 xj = d} almost

surely.
Because B is a bounded set it is very easy to confirm that (Z(n))n∈N is a

tight sequence. According to Lemma 5 there exists a vector Z and a subsequence

(Z(ni))i∈N with Z(ni) D→ Z as i → ∞. Also according the this lemma we have
Z ∈ B almost surely.

Now according to the Portmanteau lemma the convergence in distribution
implies E(f(Z(ni)))→ E(f(Z)) for all bounded, continuous functions f . But it
also holds for arbitrary continuous functions f , as the restriction of a continuous
function on the compact set B is automatically bounded.

For the choice f(z) := zj , j = 1, . . . , d this implies E(Zj) = limi→∞ E(Z
(ni)
j ) =

1 for all j = 1, . . . , d, so Z generates a D-norm ‖·‖D. For the choide f(z) =
maxj=1,...,d |xj |zj for an arbitrary fixed vector x this implies

‖x‖D = E
(

max
j=1,...,d

|xj |Zj
)

= lim
i→∞

E
(

max
j=1,...,d

|xj |Z(ni)
j

)
= lim
i→∞

‖x‖Dni .

We have shown that the set of D-norms is sequentially compact when it
comes to point-wise convergence.

We now have everything we need to prove the equivalences of Theorem 4.

Proof of Theorem 4. The equivalence (i) ⇔ (ii) is obvious.
To prove the implication (iii) ⇒ (iv) let h be an arbitrary, non-negative,

continuous function that is homogeneous of order 1. Restricted on the compact
set B it is also bounded and the Portmanteau lemma then implies convergence
of the moments

E
(
h
(
Z(n)

))
→ E(h(Z)),

which by Statement (i) of the Rosetta Stone theorem already gives Equation
(1.10).

For the implication (iv) ⇒ (i) we have to set h(z) := maxj=1,...,d |xj | · zj for
a constant vector x and use the Rosetta Stone theorem to get

‖x‖D = E(h(Z)) = lim
t→∞

t · P (h(X) > t)

(iv)
= lim

n→∞
lim
t→∞

t · P
(
h
(
X(n) > t

))
= lim
n→∞

E
(
h
(
Z(n)

))
= lim
n→∞

‖x‖Dn .

Because this construction can be done for every x ∈ Rd we have pointwise
convergence.
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The implication (i) ⇒ (iii) remains. Assume that (i) holds, but that Z(n) 6D→
Z. We will show that those assumptions lead to a contradiction. According

to Lemma 6 there exists a vector Z∗ 6D= Z and a subsequence (Z(ni))i∈N that
converges to Z∗ in distribution. With the same arguments as in the proof of
Lemma 5 Z∗ is a D-norm generator and for every vector x ∈ Rd we have

E
(

max
j=1,...,d

|xj | · Z∗j
)

= lim
i→∞

E
(

max
j=1,...,n

Znij

)
= lim
i→∞

‖x‖Dni = ‖x‖D .

So both Z and Z∗ realize almost surely on the same normed surface B, gen-
erate the same D-norm, but have different distributions. This violates Lemma
2. We have a contradiction and therefore there can never be a case, where (i)
is fulfilled but not (iii).

So we are one step forward: Now we know that getting arbitrarily close to
the true D-norm is equivalent to getting arbitrary close to the true max-stable
attractor, which itself is equivalent to getting arbitrarily close to the true values
limt→∞ t · P (h(X) > t) for the attracted random vectors.

Still a proper metric on the set of D-norms would be good and Falk (2019)
suggested using the Wasserstein metric between the normed generators (which
we introduce below), because this results in∣∣‖x‖D1

− ‖x‖D2

∣∣ ≤ max
j=1,...,d

|xj | · dW
(
‖·‖D1

, ‖·‖D2

)
, (1.11)

for all x ∈ Rd see Lemma 1.8.4 in the mentioned reference.

Definition 6. The Wasserstein metric between two D-norms is defined by

dW
(
‖·‖D1

, ‖·‖D2

)
= inf

{∥∥∥Z(1) − Z(2)
∥∥∥

1
: Z(i) generates ‖·‖Di and realizes

almost surely in B, i = 1, 2
}
,

where ‖x‖1 =
∑d
j=1 |xj | is the Manhattan norm.

Note that in the set in this definition is not empty, because we can always
choose Z(1) to be independent of Z(2). If the D-norms are the same we can
chose Z(1) = Z(2) to see that the Wasserstein metric then becomes 0.

Equation (1.11) is a special case of a more general result:

Corollary 5. Let X(1) and X(2) be two random vectors each of which fulfills
the equivalent statements of the Rosetta Stone theorem with underlying D-norms
‖·‖D1

and ‖·‖D2
. If h is a non-negative function, that is homogeneous of order

1 and which is Lipschitz bounded with a constant L such that |h(x) − h(y)| ≤
L · ‖x− y‖1 holds for all x,y ∈ [0,∞)d. Then we have∣∣∣ lim
t→∞

t · P
(
h
(
X(1)

)
> t
)
− lim
t→∞

t · P
(
h
(
X(1)

)
> t
)∣∣∣ ≤ L ·dW (‖·‖D1

, ‖·‖D2

)
.
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Proof. Whenever Z(1) and Z(2) are D-norm generators on the same Probability
space we have∣∣∣ lim

t→∞
t · P

(
h
(
X(1)

)
> t
)
− lim
t→∞

t · P
(
h
(
X(1)

)
> t
)∣∣∣

=
∣∣∣E(h(Z(1)

))
− E

(
h
(
Z(2)

))∣∣∣
≤E

(∣∣∣h(Z(1)
)
− h

(
Z(2)

)∣∣∣) ≤ L · E(∥∥∥Z(1) − Z(2)
∥∥∥) .

We now can take the infimum on the right hand side to end with the Wasserstein
metric.

This way the Wasserstein metric gives a reasonable bound for the loss of
’information’ in the tail when we replace a D-norm ‖·‖D1

by another D-norm
‖·‖D2

. We will do something very similar in Section 2.6, where we reduce the
dimensionality of multivariate extreme events and need a measure for the cost
of doing that.
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1.5 How and when to use the Rosetta Stone the-
orem.

We cannot assume all real life data to originate from a random vector X that
fulfills one of the equivalent statements of the Rosetta Stone theorem. Such a
naive assumption would lead to strange consequences like the following example:

Example 6. If the joint behavior financial loss Xj for different investments j =
1, . . . , d could be described by a random vector X fulfilling one of the equivalent
statements of the Rosetta Stone theorem, then we would have for every portfolio
composition (w1, . . . , wd) with weights wj ≥ 0 that sum up to 1 the following
limit

lim
t→∞

t · P

∑
j=1

wjXj > t

 = E

∑
j=1

wjZj

 =
∑
j=1

wj = 1.

Ultimately the probability of extreme losses would not depend on the compo-
sition of the portfolio at all. This is a strange consequence.

However the Rosetta Stone framework is not too restricting after some trans-
formation as the following theorem will show:

Theorem 5. Let X be a random vector with continuous marginal distribution
functions Fj(x) = P (Xj ≤ d). By setting

X ′j :=
1

1− Fj(Xj)

we get a random vector X′ and for every y ∈ Rd the function

fy(t) := t · P
(

max
j=1,...,d

|yj |X ′j > t

)
maps values t ≥ maxj=1,...,d |yj | to values in the compact interval max

j=1,...,d
|yj |,

∑
j=1

|yj |

 . (1.12)

X′ fulfills the equivalent statements of the Rosetta Stone theorem if and only
if the bounded functions fy also converge as t→∞.

Proof. For y = 0 the bounds are trivial. So without loss of generality we can
assume y 6= 0. Then there exists an index j0 with |yj0 | = maxj=1,...,d |yj | > 0.
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Then we have

t · P
(

max
j=1,...,d

|yj |X ′j > t

)
≥ t · P (|yj0 | ·X ′j0 > t)

= t · P
(
X ′j0 >

t

|yj0 |

)
= t · P

(
Fj(Xj) > 1− |yj0 |

t

)
= t · |yj0 |

t
= max
j=1,...,d

|yj |

for every t ≥ |yj0 |, where we used that Fj(Xj) follows the uniform distribution
on (0, 1). For the same reasons we get

t · P
(

max
j=1,...,d

|yj |X ′j > t

)
≤ t ·

d∑
j=1

P (|yj | ·X ′j > t)

= t ·
d∑
j=1

|yj |
t

=

d∑
j=1

|yj |.

Now to prove the equivalence: If X′ fulfills one of the equivalent statements
of the Rosetta Stone theorem, then we have

lim
t→∞

fy(t) = ‖y‖D

for every y ∈ Rd where ‖·‖D is the underlying D-norm. This means every fy
has a limit.

To show the opposite direction of the equivalence we now assume that every
fy has a limit and we denote it by

g(y) := lim
t→∞

t · P
(

max
j=1,...,d

|yj |X ′j > t

)
.

A careful inspection of Statement (ii) of the Rosetta Stone theorem reveals
that if we can show g to be a D-norm, then we are done with the proof. To do
that we will find a simple max-stable random vector Y with

P

(
Y ≤ 1

y

)
= exp(−g(y))

for all y > 0. Theorem 1 tells us that the existence of such a Y is both necessary
and sufficient for g to be a D-norm.

Y will be the weak limit of the random variables

Mn :=
1

n
· max
i=1,...,n

(X′)(i),
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where (X′)(i) are iid copies of X′ and where the maximum is meant componen-
twise.

For every y > 0 we have

P

(
Mn ≤

1

y

)
= P

(
(X′)(i) ≤ n · 1

y
for all i = 1, . . . , n

)
= P

(
X′ ≤ n · 1

y

)n
=

(
1− 1

n
· fy(n)

)n
→ exp

(
− lim
t→∞

fy(t)
)

= exp(−g(y)).

For the second to last step we used Lemma 4.
We will now prove that the sequence (Mn)n∈N is tight. Let ε be an arbitrary

positive constant. Then there exists a value t′ such that

exp

(
−g
(

1

t′
· 1
))
≥ 1− ε/2,

where 1 = (1, . . . , 1)ᵀ is the d-dimensional vector of ones. This is possible as
g(y) always falls into the interval in Equation (1.12). Also there exists an N ∈ N
such that ∣∣∣∣P (Mn ≤ t′ · 1)− exp

(
−g
(

1

t′
· 1
))∣∣∣∣ ≤ ε

2
for all n ≥ N.

Consequently we have

P (Mn ∈ [0, t′ · 1]) ≥ 1− ε for all n ≥ N.

Also there exist positive constants t1, . . . , tN−1 such that

P (Mn ∈ [0, tn · 1]) ≥ 1− ε for all n = 1, . . . , N − 1.

Now we can confirm that t := max{t1, . . . , tN−1, t
′} has the property

P (Mn ∈ [0, t · 1]) ≥ 1− ε for all n ∈ N.

As we can do this construction for every ε > 0 the sequence of random
vectors is tight. Lemma 5 now states that there is a sub-sequence of (Mni)i∈N
and a limiting random vector Y such that

Mni
D→ Y as i→∞,

where the convergence is meant in distribution. We would then have

P

(
Y ≤ 1

y

)
= lim
i→∞

P

(
Mni ≤

1

y

)
= exp(−g(y))
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for all y > 0. We will even show that the whole sequence (Mn) converges to Y.
We will prove this by contradiction. If this was not the case, then according to

Lemma 6 there would be a random vector Y∗ 6D= Y and a subsequence (Mn′i
)i∈N

that converges to Y∗.
This would result in

P

(
Y∗ ≤ 1

y

)
= lim
j→∞

P

(
Mnij

≤ 1

y

)
= exp(−g(y))

= P

(
Y ≤ 1

y

)
,

for all y > 0 and this contradicts Y∗ having a different distribution than Y.
By contradiction we have shown that the complete series (Mn) converges to

Y. Standard arguments from extreme value theory can be used to show that Y
is simple max-stable and Theorem 1 then implies that g was a D-norm to begin
with.

Ultimately we have shown that Statement (ii) of the Rosetta Stone theorem
holds.

Very loosely speaking Theorem 5 implies that if X has standard Pareto
margins and does not fulfill one of the equivalent statements the Rosetta Stone
theorem, then there exists a constant vector y such that the rescaled probabil-
ities

t · P
(

max
j=1,...,d

Xj · |yj | > t

)
’oscillate’ between a limes superior and a limes inferior, two different finite real
numbers.

Immediately we see that the Rosetta Stone theorem depends on the exact
equality of lim sup and lim inf. A potential direction for future research might
be the following: Under what bounds for the differences between lim sup and
lim inf can weaker version of the statements in the Rosetta Stone be saved? One
possible candidate might be inequalities of the type∣∣∣∣lim sup

t→∞
t · P (h(X) > t)− lim inf

t→∞
t · P (h(X) > t)

∣∣∣∣ ≤ . . . ,
where h is a continuous non-negative function that is homogeneous of order 1.

But these thoughts go beyond the scope of this thesis. Our aim for now is
to use the Rosetta Stone theorem to the fullest. In Chapter 2 we will use it to
prove an extreme value version of the central limit theorem from classical prob-
ability theory, battle the curse of dimensionality and do exploratory statistics
in multivariate extremes. Chapter 3 is all about estimation and inference of the
extremal dependence structure.
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Chapter 2

Managing extremes in
many dimensions

If X = (X1, . . . , Xd)
ᵀ is a random vector, that fulfills one of the equivalent

statements of the Rosetta Stone theorem, then a lot of information about the
joint appearance of extremes in the different componentsX1, . . . , Xd is contained
in the D-norm.

A d-dimensional D-norm is a is a real function on the space Rd. Approxi-
mating the complete D-norm might therefore not be feasible as the dimension
d grows.

One option that remains feasable is to store one value for every pair of indices
(i, j), 1 ≤ i < j ≤ d, because the size of the resulting object grows quadratically
in d. This value can be something like a correlation coefficient, except for
extremal events. This chapter investigates the merits of this approach: Section
2.1 introduces the co-extremality cij , which measures the extremal dependence
between two components Xi and Xj .

Also useful for dealing with many dimensions is the Hüsler–Reiss model,
which is the finite-dimensional version of what is known as the Brown–Resnick
process in the literature. Section 2.2 introduces this parametric family of D-
norms. The Hüsler–Reiss D-norms are generated by multivariate lognormal
generators and are parametrized by their co-extremal matrices, which means
the number of parameters grows quadratically in dimension. To prove this we
need a result we will call the ’geometric mean characterization of D-norms’,
which is proven in Section 2.3.

If a model is easy to handle with mathematics, that does not automatically
mean it is a good model for many practical scenarios. However for the Hüsler–
Reiss distribution there is a central limit theorem which says that a global
medium-tailed phenomenon perturbed by many independent phenomena has a
tail-behavior that can be approximated well with a Hüsler–Reiss distribution.
We introduce this theorem in Section 2.4 and in Section 2.5 we procede to prove
it.
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Section 2.6 approaches the problem of high dimensions with D-norm gener-
ators - a vector X is replaced by a lower-dimensional Φ(X) and the underlying
D-norm generator Z is replaced by Φ(Z).

Regardless of how we ultimately model the multivariate tail-dependence, the
co-extremal matrix can be used for exploratory statistics. Section 2.7 features an
exploratory approach to find clusters of components, such that extreme events
tend to not hit more than cluster at one time.

Section 2.8 aims to compare the joint behavior of extremal events with the
joint behavior of non-extremal events in an exploratory fashion.

In Section 2.9 we apply those tools to German weather data for illustrative
purposes.
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2.1 Co-extremality

Co-extremality is a measure of pairwise tail-dependence. It is not the first of its
kind as the following example shows:

Example 7. For a d-dimensional D-norm ‖·‖D, the value θ = ‖(1, . . . , 1)ᵀ‖D is
called the extremal coefficient (see e.g. the work by Schlather and Tawn (2002)
and the references in there). This can immediately turned into a measure of
pairwise tail-dependence by setting eij = ‖ei + ej‖D , i 6= j. These values are
well understood, especially as they coincide with the stable tail dependence func-
tion evaluated at the positions ei + ej.

If there already exists a measure of pairwise tail dependence, there has to
be a good reason to introduce a new one. For the co-extremality those reasons
will be the connection to the geometric mean characterization of D-norms (see
Theorem 7 below), the applications for dimension reduction (see Section 2.6)
and for exploratory statistics in multivariate extremes (see Section 2.7).

So let’s introduce the co-extremality and investigate its properties.

Theorem 6. Let Y be a max-stable random vector with

P ((Y1, . . . , Yd) ≤ (1/y1, . . . , 1/yd)) = exp (−‖y‖D)

for all y > 0, where ‖·‖D is a D-norm with generator Z. Let X be a random
vector on [0,∞)d with

1

n
· max
i=1,...,n

X(i) D→ Y,

as n→∞, where X(i) are iid copies of X. Then we have the limit

lim
t→∞

t · P (XiXj > t2) = E(
√
ZiZj) (2.1)

for all 1 ≤ i, j ≤ d.

The fact that there is a limit in Equation (2.1) has already been established
by Jessen and Mikosch (2006).

Proof. This is a consequence of Rosetta Stone theorem applied to the function
x 7→ √xixj , which is non-negative, continuous and homogeneous of order 1.

Definition 7. Let us call the constant cij := E(
√
ZiZj) in Theorem 6 the co-

extremality of Xi and Xj. The d × d matrix C := (cij)1≤i,j≤d we will call the
co-extremal matrix.

The name co-extremality was chosen because its properties are similar to
the properties of correlation, as in the Pearson correlation coefficient

ρij =
Cov(Xi, Xj)√

Var(Xi) ·
√

Var(Xj)
,

as will be stated in the next result:
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Corollary 6. With the same assumptions and notations as in Theorem 6 the
number cij lies in the interval [0, 1] and we have cij = 1 if an only if Yi = Yj
almost surely. Also there is the alternative representation

cij = lim
t→∞

P (XiXj > t2)√
P (Xi > t) ·

√
P (Xj > t)

. (2.2)

The matrix C is symmetric and has 1’s on its diagonal.

Proof. By the representation cij = E(
√
ZiZj) we obviously have cij ≥ 0 and

according to the Cauchy–Schwarz inequality we have cij ≤ E(
√
Zi

2
)·E(

√
Zj

2
) =

1 with equality if and only if Zi = Zj almost surely. In that case

P (Yi ≤ 1/yi, Yj ≤ 1/yj) = exp(−E(max{yiZi, yjZj}))
= exp(−E(max{yi, yj}Zi)
= exp(−max{yi, yj}) = P (Yi ≤ 1/yi, Yi ≤ 1/yj)

for all yi, yj > 0, which shows that (Yi, Yj) follows the same distribution as
(Yi, Yi) and thus Yi = Yj almost surely.

To get the alternative representation we use the Rosetta Stone theorem to
see limt→∞ t · P (Xi > t) = E(Zi) = 1 and limt→∞ t · P (Xj > t) = 1 as well.
Then we obtain

cij =
cij√

1 ·
√

1
= lim
t→∞

t · P (XiXj > t2)√
t · P (Xi > t) ·

√
t · P (Xj > j)

,

where we can cancel the factor t to get Equation (2.2). The symmetry of C is
obvious and cjj = E(

√
ZjZj) = E(Zj) = 1 for all j = 1, . . . , d.

The co-extremal matrix will turn out to parametrize an important class of
multivariate max-stable distributions, the Hüsler–Reiss model, which we will
introduce and investigate in the following sections.
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2.2 The Hüsler–Reiss model

D-norms are inherently connected to their estimators. So any parametric family
of D-norm generators

{Zθ : θ ∈ Θ}

can be turned into a parametric family of D-norms

{‖·‖D : ‖·‖D is generated by Zθ, θ ∈ Θ}.

A well understood parametric class of finite-dimensional distributions are
the multivariate normal distributions. However a multivariate normal random
vector N = (N1, . . . ,Nd)ᵀ in general is not a D-norm generator, as its compo-
nents realize in the negative number with positive probability. One solution to
this problem is to use

Z′ := (exp(N1, . . . , exp(Nd))ᵀ

instead. This vector fulfills Z′ ≥ 0 almost surely and its components have finite
expected values. So by rescaling the components of Z′ we can turn it into a
proper D-norm generator.

Definition 8. Let N = (N1, . . . ,Nd)ᵀ follow a multivariate normal distribu-
tion with mean vector 0 and covariance matrix Σ = (σij)1≤i,j≤d. The D-norm
generated by

(Z1, . . . , Zd) := (exp(N1 − σ11/2), . . . , exp(Nd − σdd/2))

is called a Hüsler–Reiss D-norm and the simple max-stable random vector Y
with

P

(
Y ≤ 1

y

)
= exp

[
−E

(
max

j=1,...,d
yj exp(Nj − σjj/2)

)]
for all y > 0 is said to follow a Hüsler–Reiss distribution.

Lemma 8 will show that this Z is indeed a D-norm generator. The Hüsler–
Reiss distribution is the finite dimensional version of what is called the Brown–
Resnick process.

Definition 9. Let S be an arbitrary index set and let Y = (Ys)s∈S be a ran-
dom process with standard Fréchet margins. We call Y a Brown–Resnick pro-
cess, if there exists a centered Gaussian process N = (Ns)s∈S with covariances
(σst)s,t∈S such that for every finite collection of indices s1, . . . , sd ∈ S we have

P ((Ys1 , . . . , Ysd) ≤ (1/y1, . . . , 1/yd)) = exp

[
−E

(
max

j=1,...,d
yj exp(Nsj − σsjsj/2)

)]
(2.3)

for all y1, . . . , yd > 0.

34



When the index set S is finite, then the Brown–Resnick process follows
a Hüsler–Reiss distribution. If the index set S is infinite, then at least all
finite dimensional margins of the Brown–Resnick process follow Hüsler–Reiss
distributions.

The Gaussian process N in Definition 9 is not unique: For every Brown–
Resnick process there are many different centered Gaussian processes that sat-
isfy Equation (2.3). Kabluchko et al. (2009) showed that two centered Gaussian
processes produce the same Brown–Resnick process if and only if they have
the same variogram (Var(Ns1 − Ns2))s1,s2∈S . In finite dimension this means
the Hüsler–Reiss distribution only depends on the square matrix (Var(Ni −
Nj))1≤i,j≤d. We state this with D-norm notation in Theorem 8 below. But
before we can get to that we need some preparatory results.

Lemma 8. Let N = (N1, . . . ,Nd)ᵀ be a multivariate normal distributed random
vector with mean vector 0 and covariance matrix Σ = (σij)1≤i,j≤d. Then Z
defined by

(Z1, . . . , Zd) := (exp(N1 − σ11/2), . . . , exp(Nd − σdd/2)) (2.4)

generates a D-norm and also we have

E

 d∏
j=1

Z
λj
j

 = exp

−1

4
·
∑

1≤i,j≤d

λiλjVar(Ni −Nj)

 <∞, (2.5)

for all real numbers λ1, . . . , λd that add up to 1.

Note that because Zj > 0 holds almost surely for all j = 1, . . . , d, negative
exponents λj < 0 don’t pose a problem at all in Equation (2.5).

Proof. For all j = 1, . . . , d the random variable exp(Nj − σjj/2) is log-normal
distributed with Parameters −σjj/2 and σjj . Thus, Zj ≥ 0 almost surely and
E(Zj) = 1. This is already sufficient for Z to be a D-norm generator.

Let λ1, . . . , λd be arbitrary real numbers adding up to 1. We will prove
Equation (2.5). For that we will define a random variable Ñ by

Ñ :=

d∑
j=1

λj(Nj − σjj/2) = log

 d∏
j=1

Z
λj
j

 .

Then Ñ is a normal distributed random variable with mean

E
(
Ñ
)

= −1

2
·
d∑
j=1

λjσjj
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and variance

Var
(
Ñ
)

=
∑

1≤i,j≤d

λiλjσij

=
∑

1≤i,j≤d

λiλj(σii + σjj −Var(Ni −Nj))/2

=
1

2
·

[
d∑
i=1

λiσii

d∑
j=1

λj︸ ︷︷ ︸
=1

+

d∑
j=1

λjσjj

d∑
i=1

λi︸ ︷︷ ︸
=1

−
∑

1≤i,j≤d

λiλjVar(Ni −Nj)



=

d∑
i=1

λiσii −
1

2
·
∑

1≤i,j≤d

λiλjVar(Ni −Nj),

where we used that Var(Ni − Nj) = σii + σjj − 2σij for all pairs of indices
i, j. With this information we can calculate the expected value of the random

variable exp
(
Ñ
)

. It follows a lognormal distribution and, thus,

E

 d∏
j=1

Z
λj
j

 = E
(

exp
(
Ñ
))

= exp

(
E
(
Ñ
)

+
1

2
·Var

(
Ñ
))

= exp

−1

4
·
∑

1≤i,j≤d

λiλjVar(Ni −Nj)

 ,

which is what we wanted to prove.

If Z is a D-norm generator with Zj > 0 almost surely for j = 1, . . . , d, then
there is no obvious connection between a D-norm ‖y‖D = E(maxj=1,...,d |yj |Zj)
and the values E

(∏d
j=1 Z

λj
j

)
, where λj are real numbers adding up to 1. But

with a combination of probabilistic tools - namely the Cramér–Wold device
and the method of moments - one can show that the D-norm ‖·‖D is uniquely

determined by the values E
(∏d

j=1 Z
λi
j

)
, if they are finite.

This is what we call the geometric mean characterization of D-Norms.

Theorem 7 (Geometric mean characterization of D-norms). Let Z(1) and Z(2)

be two random vectors on (0,∞)d that generate the D-norms ‖·‖D1
and ‖·‖D2

.
If we have

E

 d∏
j=1

(Z
(1)
j )λj

 = E

 d∏
j=1

(Z
(2)
j )λj

 <∞ (2.6)

for all real numbers λj adding up to 1, then ‖·‖D1
= ‖·‖D2

.

Note that once again Z
(1)
j , Z

(2)
j > 0 almost surely by requirements of the

theorem and, therefore, negative exponents λj < 0 don’t pose a problem. The
proof of Theorem 7 is in Section 2.3.
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With these preparatory results the proof of the following result becomes very
easy to prove.

Theorem 8. Let N (1),N (2) be two d-dimensional multivariate normal dis-

tributed random vectors with Var(N (1)
i − N (1)

j ) = Var(N (2)
i − N (2)

j ) for all

1 ≤ i, j ≤ d. If Z(1) and Z(2) are defined as in Equation (2.4), then Z(1)

and Z(2) generate the same D-norm.

Proof. We have minj=1,...,d Z
(1)
j > 0 and minj=1,...,d Z

(2)
j > 0 almost surely.

According to Lemma 8 we have E
(∏d

j=1(Z
(1)
j )λj

)
= E

(∏d
j=1(Z

(2)
j )λj

)
< ∞,

whenever λ1, . . . , λd are real numbers adding up to 1. Thus, Theorem 7 becomes
applicable and Z(1) and Z(2) generate the same D-norm.

Corollary 7. A Hüsler–Reiss D-norm is uniquely determined by its co-extremal
matrix.

The multivariate tail-dependence of a random vector X, that fulfills the equiv-
alent statements of the Rosetta Stone theorem with an underlying Hüsler–Reiss
D-norm, is determined by the joint extremal behavior of the bivariate random
vectors (Xi, Xj), 1 ≤ i, j ≤ d.

Proof. If for two indices i 6= j we set λh := 1/2 if h ∈ {i, j} and λh := 0 else,
then Equation (2.5) reduces to

cij = E((Zi · Zj)1/2) = exp

(
−1

8
·Var(Ni −Nj))

)
,

which is equivalent to

Var(Ni −Nj) = −8 · log(cij), (2.7)

so by Theorem 8 the Hüsler–Reiss D-norm is uniquely determined.
If we introduce a vector X that fulfills the equivalent statements of the

Rosetta Stone theorem, then Equation (2.7) turns into

Var(Ni −Nj) = −8 · log
(

lim
t→∞

t · P (Xi ·Xj > t2)
)
,

where the right hand side only depends on the pair-wise tail dependence.

To capture the complete dependence structure of the Hüsler–Reiss model
Corollary 7 says it is sufficient to know the co-extremal matrix C, which only
contains d2 entries. We can reduce this even further, because we already know

that C is symmetric and has 1’s on the diagonal, so there are only d·(d−1)
2 free

parameters.
This is a nice mathematical property, when we deal with high dimensions.

But when is it reasonable to assume a vector X to be in the max-domain of a
Hüsler–Reiss distribution? Section 2.4 gives an answer to that. But before that
we will prove the geometric mean characterization of D-norms.
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2.3 Proof of the geometric mean characteriza-
tion of D-norms

The following result is crucial in showing that the distribution of a Brown–
Resnick process only depends on the variogram of the underlying Gaussian
distribution. It was first proven by Kabluchko et al. (2009), but here is a proof
using D-norm terminology.

Proof of the geometric mean characterization. Let Z(1) and Z(2) be two D-norm
generators with

min
j=1,...,d

Z
(i)
j > 0

almost surely for i = 1, 2. We will show that if Equation (2.6) holds for all real

numbers λj adding up to 1, then Z(1) and Z(2) generate the same D-norm.

Let us apply Lemma 1 to the generators Z(1),Z(2) to get to measures ν1, ν2

on the set [0,∞)d r {0} with the property

νi({x : h(x) ≥ 1}) = E(h(Z(i))) for i = 1, 2

for every non-negative, measurable function h that is homogeneous of order 1.
Define the sets

Mn :=
{
x : x ∈ [0,∞)d, n · (x1 + · · ·+ xd) · 1minj=1,...,d xj=0 ≥ 1

}
for every n ∈ N and

M∞ :=
⋃
n∈N

Mn =

{
x : x ∈ [0,∞)d,x 6= 0, min

j=1,...,d
xj = 0

}
.

The function x 7→ n · (x1 + · · ·+ xd) · 1minj=1,...,d xj=0 is non-negative, mea-
surable and homogeneous of order 1. By choice of ν1, ν2 we have

νi(Mn) = E(n · (Z1 + · · ·+ Zd) · 1minj=1,...,d Zj=0︸ ︷︷ ︸
=0 almost surely

) = 0, i = 1, 2 n = 1, 2, 3, . . .

and consequently
ν1(M∞) = 0 = ν2(M∞). (2.8)

Define the surface B by

B = {x : x ∈ (0,∞)d, x1 = 1}.

Using Equation (2.8) and by the choice of ν1 we have

ν1((1,∞) ·B) = ν1({x : x ∈ (0,∞)d, x1 ≥ 1})
(2.8)
= ν1({x : x ∈ [0,∞)d, x1 ≥ 1}) = E(Z

(1)
1 ) = 1.
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The function
A 7→ ν1([1,∞) ·A) =: P

(1)
B (A)

for all measurable subsets A ⊂ B obviously defines a probability measure P
(1)
B .

Just like in the proof of Lemma 1 we set

ν′1(M) := (λ× P (1)
B )(T−1(M))

for all measurable M , where λ is the Lebesgue measure on (0,∞), × denotes
the product measure and T is the transformation (s,x) 7→ 1

s · x.

Let Z
(1)
B be a random vector that follows the probability distribution P

(1)
B .

We will prove ν1 = ν′1, which implies that Z(1) and Z
(1)
B generate the same

D-norm. For an arbitrary vector y ∈ (0,∞)d define

Ay := {x : x1 = 1,x ≥ y/y1} ⊂ B,

which gives us the convenient equality [y1,∞) · Ay = [y,∞). This can be used
in the following:

ν1([y,∞)) = ν1([y1,∞) ·Ay)

=
1

y1
· ν1([1,∞) ·Ay)

=
1

y1
· P (1)

B (Ay) = ν′1([y,∞)).

Further we have ν1(M∞) = 0 from Equation (2.8) and ν′1(M∞) = 0 because

T−1(M∞) ∩ (0,∞) ·B = ∅

and the product measure (λ×P (1)
B ) puts zero mass outside of the set (0,∞) ·B.

Combining this with ν1([y,∞)) = ν′1([y,∞)) for all y > 0 we get ν1 = ν′1.

So there exists a D-norm generator Z
(1)
B of ‖·‖D1

with P (Z
(1)
B ∈ B) = 1 and

with exactly the same reasoning there exists a D-norm generator Z
(2)
B of ‖·‖D2

with P (Z
(2)
B ∈ B) = 1 as well. We will proceed to show that the distributions

of Z
(1)
B and Z

(2)
B coincide. It is sufficient to show that

(log(Z
(1)
B2), . . . , log(Z

(1)
Bd))

D
= (log(Z

(2)
B2), · · · , log(Z

(2)
Bd).

We prove this using the Cramér–Wold device and the method of moments
as described by Billingsley (1979).

1. Two random vectors X(1) and X(2) follow the same distribution if and only
if the linear combinations yᵀX(1) follows the same univariate distribution
as yᵀX(2) for all constant vectors y ∈ Rd. This is the Cramér–Wold
device.
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2. If two random variables have the same moment generating function that is
finite on an open interval around 0, then they follow the same distribution.
This is called the method of moments.

Let y = (y2, . . . , yd)
ᵀ be an arbitrary vector in Rd−1 and let t be an arbitrary

real number. Set λj := t · yj for j = 2, . . . , d and λ1 := 1 −
∑d
j=2 λj . Then we

have

E

exp

t · d∑
j=2

yj · log(Z
(1)
j )

 = E

 d∏
j=2

(Z
(1)
Bj )λj


(a)
= E

 d∏
j=1

(Z
(1)
Bj )λj


(b)
= E

 d∏
j=1

(Z
(1)
j )λj


(c)
= E

 d∏
j=1

(Z
(2)
j )λj


(d)
= E

 d∏
j=1

(Z
(2)
Bj )λj


(e)
= E

 d∏
j=2

(Z
(2)
Bj )λj


= E

exp

t · d∑
j=2

yj · log(Z
(2)
Bj )

 ,

where in (a) and (e) we used Z
(1)
B1 = 1 and Z

(2)
B1 = 1 almost surely. (c) is the ex-

actly Equation (2.6), the main condition of the geometric mean characterization
theorem. As for the steps (b) and (d), we have to introduce hλ by

hλ(x) :=

{∏d
j=1 x

λj
j for minj=1,...,d xj > 0

0 else.

It is non-negative, measurable and homogeneous of order 1. The second case
of its definition is triggered only with probability 0 when we apply hλ to the

random vectors Z(1),Z(2),Z
(1)
B ,Z

(2)
B , because all of them are > 0 almost surely.

Consequently we can use Theorem 3 to get
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E

 d∏
j=1

(Z
(1)
Bj )λj

 = E(hλ(Z
(1)
B )) = E(hλ(Z(1))) = E

 d∏
j=1

(Z
(1)
j )λj

 ,

which is exactly (b) and with the same reasoning we get (d).

Thus, for every y ∈ Rd−1, the linear combination
∑d
j=2 yj · log(Z

(1)
j ) has

the same finite moment generating function as
∑d
j=2 yj · log(Z

(2)
j ). This implies

that Z
(1)
B follows the same distribution as Z

(2)
B and, thus, ‖·‖D1

= ‖·‖D2
.
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2.4 A central limit theorem for the Hüsler–Reiss
distribution

Often the reason for modelling real-life phenomena with normal distributions is
the central limit theorem. The additive effect of many independent small per-
turbations results in distributions increasingly similar to a normal distribution.

There is something similar for the Hüsler–Reiss models. A lot of independent
light-tailed perturbations of a single medium-tailed phenomenon develop a tail-
behavior increasingly similar to that of a Hüsler–Reiss distribution. This will
be verified in Theorem 10, but for proving the theorem we need some auxiliary
results.

The first of those auxiliary results is strongly connected to what is called
D-norm multiplication in a paper by Falk (2013).

Theorem 9. Let X be a random vector on [0,∞)d such that

1

n
· max
i=1,...,n

X(i) D→ Y,

as n → ∞, where X(i) are iid copies of X, and Y is the simple max-stable
random vector with

P

(
Y ≤ 1

y

)
= exp

(
−E

(
max

j=1,...,d
yjZ

(1)
j

))
for all y > 0, where Z(1) is a D-norm generator. Let Z(2) be another D-norm
generator independent of X and independent of Z(1). Put X∗ = X · Z(2) and
Z∗ = Z(1) ·Z(2) where in both cases the product is meant component-wise. Then
we have

1

n
· max
i=1,...,n

(X∗)(i) D→ Y∗

as n→∞, where (X∗)(i) are iid copies of X∗ and Y∗ is the simple max-stable
random vector with

P

(
Y∗ ≤ 1

y

)
= exp

(
−E

(
max

j=1,...,d
yjZ

∗
j

))
for all y > 0.

Note that Z∗ is a D-norm generator itself, as it is a non-negative random

vector with E(Z∗j ) = E(Z
(1)
j · Z

(2)
j ) = E(Z

(1)
j ) · E(Z

(2)
j ) = 1 for all j = 1, . . . , d.

The interesting point of the theorem is that the operation that turns X into
X∗ is the same operation that turns the D-norm generator Z(1) into the D-norm
generator Z∗.

Proof of Theorem 9. According to the Rosetta Stone theorem we have

lim
t→∞

t · P
(

max
j=1,...,d

yjzjXj > t

)
= E

(
max

j=1,...,d
yjzjZ

(1)
j

)
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for all combination of constant vectors y, z ≥ 0. What we have to show is the
limit

lim
t→∞

t · P
(

max
j=1,...,d

yjZ
(2)
j Xj > t

)
= E

(
max

j=1,...,d
yjZ

(2)
j Z

(1)
j

)
, (2.9)

where only y ≥ 0 is constant and z was replaced by the random vector Z(2).
Because Z(2) is independent of both X and Z(1) we can use Fubini’s theorem
on both sides of Equation (2.9). The left hand side turns out to be:

lim
t→∞

t · P
(

max
j=1,...,d

yjZ
(2)
j Xj > t

)
= lim
t→∞

t ·
∫
P

(
max

j=1,...,d
yjzjXj > t

)
dP (Z(2) = z)

= lim
t→∞

∫
t · P

(
max

j=1,...,d
yjzjXj > t

)
dP (Z(2) = z).

At the same time the right hand side of Equation (2.9) is the following:

E
(

max
j=1,...,d

yjZ
(2)
j Z

(1)
j

)
=

∫
E
(

max
j=1,...,d

yjzjZ
(1)
j

)
dP (Z(2) = z)

=

∫
lim
t→∞

t · P
(

max
j=1,...,d

yjzjXj > t

)
dP (Z(2) = z).

To prove Equation (2.9) it is sufficient to show that the pointwise convergence
of t · P (maxj=1,...,d yjzjXj > t) is dominated by an integrable function in the

probability space of Z(2).
The function f(t) = t · P (maxj=1,...,dXj > t) is always lower than the

function t 7→ t and converges to a constant as t→∞. It is elementary to show
that these properties imply a constant upper bound M for f . If ‖·‖∞ is the
supremum norm, that is ‖x‖∞ = maxj=1,...,d |xj |, then for all pairs y, z ≥ 0 we
get the inequality

t · P
(

max
j=1,...,d

yjzjXj > t

)
≤t · P

(
max

j=1,...,d
Xj · ‖y‖∞ ‖z‖∞ > t

)
= ‖y‖∞ ‖z‖∞ ·

t

‖y‖∞ ‖z‖∞
P

(
max

j=1,...,d
Xj >

t

‖y‖∞ ‖z‖∞

)
= ‖y‖∞ ‖z‖∞ f

(
t

‖y‖∞ ‖z‖∞

)
≤ ‖y‖∞ ‖z‖∞ ·M.
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The upper bound z 7→ ‖y‖∞ ‖z‖∞ ·M is an integrable function with respect

to the probability measure of Z(2), as

E
(
‖y‖∞ ·

∥∥∥Z(2)
∥∥∥
∞
·M
)

= ‖y‖∞ ·M · E
(∥∥∥Z(2)

∥∥∥
∞

)
≤ ‖y‖∞ ·M · E

 d∑
j=1

Z
(2)
j

 = ‖y‖∞ ·M · d,

as we required Z(2) to be a D-norm generator.
In the probability space of Z(2) the pointwise convergence

lim
t→∞

t · P
(

max
j=1,...,d

yjzjXj > t

)
→ E( max

j=1,...,d
yjzjXj)

for all z is dominated by the integrable function z 7→ ‖y‖∞ ‖z‖∞ ·M and there-
fore the well-known dominated convergence theorem is applicable and Equation
(2.9) holds.

By setting Z(1) = (1, . . . , 1)ᵀ almost surely in the preceding theorem we
obtain the following two corollaries:

Corollary 8. Let X ≥ 0 be a random variable with limt→∞ t · P (X > t) = 1
and let N be a multivariate normal distributed random vector independent of
X. By setting

X := (X · exp(N1), . . . , X · exp(Nd))ᵀ,

we get the weak limit

1

n
·D · max

i=1,...,n
X(i) D→ Y

as n→∞, where X(i) are iid copies of X, D is the diagonal matrix containing
the values 1

E(exp(Nj)) and Y follows a Hüsler–Reiss distribution with D-norm
generator

Z =

(
exp(N1)

E(exp(N1))
, . . . ,

exp(Nd)
E(exp(Nd))

)ᵀ

.

We can easily turn this multiplicative model into an additive model by taking
the logarithm in every component.

Corollary 9. Let X be a random variable with limt→∞ t · P (X > log(t)) = 1
and let N be a multivariate normal distributed random vector independent of
X. By setting

X := (X +N1, . . . , X +Nd)ᵀ,

we get the weak limit
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max
i=1,...,n

X(i) − b− log(n)
D→ log(Y)

as n→∞, where X(i) are iid copies of X, b is the vector containing the values
log(E(exp(Nj))) and where we used the notation log(n) := (log(n), . . . , log(n))ᵀ

and Y follows the same Hüsler–Reiss distribution as in Corollary 8.

Results like Corollary 8 and 9 have already been established in Krupskii et al.
(2018). This has some importance in real world applications. A system whose
random behavior is the composite of a Gaussian process and some global effect,
which acts on all components at once and behaves like a standard exponential
distribution in its tail, has Hüsler–Reiss tail-behavior and the parameters of the
Hüsler–Reiss distribution are directly determined by the covariance structure of
the Gaussian process.

One problem remains: In practice we will not encounter pure normal dis-
tributions, but rather sums of many small perturbations, which we will denote
by V in the following. The rest of this section is about showing that the asser-
tion in Corollary 9 is robust in the sense that we can replace the N ’s by sums
of small perturbations and still get a limit distribution close to a Hüsler–Reiss
distribution.

Theorem 10 (Central limit theorem for Hüsler–Reiss distributions). Let V =
(V1, . . . , Vd)

ᵀ be a random vector with mean vector 0 = (0, . . . , 0)ᵀ ∈ Rd and
covariance matrix A ∈ Rd×d such that for every j = 1, . . . , d the function s 7→
E(exp(s · Vj)) is finite on some open interval containing 0.

In regular statistics we have a central limit theorem:

W(m) :=
1√
m

m∑
i=1

V(i) D→ N ,

as m→∞ where N follows a multivariate normal distribution with mean 0 and
covariance matrix A.

If we further introduce a random variable X ≥ 0 that is both independent of
all V(i), i ∈ N and of N and which further fulfills limt→∞ t ·P (X > log(t)) = 1,
then we also have the limit

X(m) := (X +W1(m), . . . , X +Wd(m))ᵀ

D→ X := (X +N1, . . . , X +Nd)ᵀ

as m→∞.
This limit also extends to the tail-behavior. First there exists a number

M ∈ N such that

bj(m) := log(E(exp(Wj(m))))
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is well defined for all m ≥ M and all j = 1, . . . , d. For every m ≥ M there
exists a simple max-stable random variable Y(m) that fulfills

max
i=1,...,n

X(i)(m)− b(m)− log(n)
D→ log(Y(m)),

where X(i)(m) are iid copies of X(m), where both the maximum and the loga-
rithm on the right hand side of the limit are meant component-wise and log(n) :=
(log(n), . . . , log(n))ᵀ.

Also there exists simple max-stable Y following a Hüsler–Reiss distribution
that fulfills

max
i=1,...,n

X(i) − b− log(n)
D→ log(Y),

where X(i) are iid copies of X and b is the constant vector containing the values
bj := log(E(exp(Nj))).

The connection between the tail-behavior of X(m),m ≥ M and the tail-
behavior of X is

b(m)→ b and Y(m)
D→ Y as m→∞.

This central limit theorem confirms that for m high enough we can model the
tail-behavior of X(m) with a Hüsler–Reiss distribution. We have convergence of

the shift constants b(m)→ b and of the max-stable limit distributions Y(m)
D→

Y (the importance of that can be looked up in Theorem 4).
A good way to remember Theorem 10 is that

attractor
(

lim
m→∞

X(m)
)

= lim
m→∞

attractor(X(m))

holds, where ’attractor’ stands for the max-stable attractor. Mapping a random
vector to its attractor is not continuous in general (see the ’pitfalls’ in Section
2.8 and also Section 1.4).

We will prove Theorem 10 in the next section.
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2.5 Proof of the central limit theorem for the
Hüsler–Reiss distribution

A multivariate central limit theorem with the weak limit

W(m) =
1√
m

m∑
i=1

V(i) D→ N

as m→∞ is not sufficient for our purposes. What we actually need is

E
(

max
j=1,...,d

|yj | exp (Wj(m))

)
→ E

(
max

j=1,...,d
|yj | exp(Nj)

)
for all y ∈ Rd as m→∞. In the proof of Theorem 10 we will see why this is so
crucial.

Recall the definition of uniform integrability.

Definition 10. A sequence of integrable random variables (Xm)m∈N is called
uniformly integrable if for every ε > 0 there is an α > 0 such that

E(|Xm| · 1|Xm|>α) ≤ ε

for all m ∈ N. By 1|Xm|>α we denote the indicator function which is 1, whenever
|Xm| > α, and 0 otherwise.

Compare this to the notion of tightness in Definition 5. Tightness means
that within the sequence the probability outside of a compact interval has an
upper bound, while uniform integrability means that the ’weighted probabilities’
outside of a compact interval have an upper bound.

The following auxiliary result is obvious.

Lemma 9. Let ((Xm, Ym))m∈N be a sequence of bivariate random vectors with
0 ≤ |Ym| ≤ |Xm| almost surely for all m ∈ N. If the sequence (Xm)m∈N is
uniformly integrable, then so is the sequence (Ym)m∈N.

Our next auxiliary result is Theorem 5.4 in the book by Billingsley (1968).

Lemma 10. Let X be an integrable random variable and (Xm)m∈N be a uni-

formly integrable sequence of random variables such that the limit Xm
D→ X

holds for m→∞. Then limm→∞ E(Xm) = E(X). It is also true, that the con-

vergence Xn
D→ X together with limm→∞ E(Xm) = E(X) implies the uniform

integrability the sequence (Xm)m∈N.

Recall that the moment generating function MV of a random variable V is
defined as MV (s) := E(exp(s · V )). This value is not necessarily finite, but for
our central limit theorem we need finiteness on a neighborhood around 0.
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Lemma 11. If V is a random variable with E(V ) = 0 and E(V 2) = σ2 and
there is an ε > 0 such that the moment generating function MV is finite on
[−ε, ε], then we have the expansion

MV (s) = 1 +
σ2

2
· s2 + o(s2)

for s→ 0.

Proof. Denote Xn(s) :=
∑n
i=0

(sV )i

i! . Note that these random variables converge
pointiwse to the random variable exp(s·V ). The following inequality shows that
the dominated convergence theorem is applicable:

|Xn(s)| ≤ exp(|sV |) ≤ exp(εV ) + exp(−εV )︸ ︷︷ ︸
integrable

for all s ∈ [−ε, ε] and all n ∈ N. This shows that Xn(s) is integrable for all
s ∈ [−ε, ε] and all n ∈ N and also

V n =
i!

si
· (Xn −Xn−1)

is integrable as well for all n ∈ N.
We then get

MV (s) = E(exp(sV )) = E
(

lim
n→∞

Xn(s)
)

= lim
n→∞

E(Xn(s)) =

∞∑
i=0

siE(V i)

i!

for all s ∈ [−ε, ε]. We have found the Taylor expansion of the moment-generating
function MV around the center 0. This already implies in Landau notation

∞∑
i=0

siE(V i)

i!
= 1 + E(V )s+

E(V 2)

2
s2 + o(s2) = 1 +

σ2

2
· s2 + o(s2),

where we used E(V ) = 0 and E(V 2) = E(V 2)− E(V )2 = σ2.

The Taylor expansion of the moment-generating function is necessary in the
proof of the following result:

Lemma 12. Let V be a d-dimensional random vector with mean vector 0 =
(0, . . . , 0)ᵀ ∈ Rd and covariance matrix A ∈ Rd×d and let N be a multivariate

normal random vector also with mean 0 and covariance matrix A. Let V(i), i ∈
N be iid copies of V and put W(m) := 1√

m

∑m
i=1 V

(i). If there is an ε > 0

such for that every j = 1, . . . , d the random variable Vj has a finite moment
generating function MVj (s) on the interval [−ε, ε] , then we have the limit

lim
m→∞

E
(

max
j=1,...,d

|yj | exp(Wj(m))

)
= E

(
max

j=1,...,d
|yj | exp(Nj)

)
for all y ∈ Rd.
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Proof. We have the convergence W(m)
D→ N by the Cramér–Wold device to-

gether with a suitable univariate central limit theorem. For a fixed y ∈ Rd we
can set c := maxj=1,...,d |yj |. We have the convergence

max
j=1,...,d

|yj | exp (Wj(m))
D→ max

j=1,...,d
|yj | exp(Nj)

by the continuous mapping theorem. According to Lemma 10 we only need to
show the uniform integrability of the sequence (maxj=1,...,d |yj | exp(Wj(m)))m∈N.
We have the inequality

0 ≤ max
j=1,...,d

|yj | exp(Wj(m) ≤ c ·
d∑
j=1

exp(Wj(m)).

By using this inequality and Lemma 10 we only need to show the uniform

integrability of
(∑d

j=1 exp (Wj(m))
)
m∈N

. We have

lim
m→∞

E

 d∑
j=1

exp(Wj(m))


a
=

d∑
j=1

lim
m→∞

E (exp(Wj(m)))

b
=

d∑
j=1

lim
m→∞

MVj

(
1√
m

)m
c
=

d∑
j=1

lim
m→∞

(
1 +

ajj/2 +m · o(1/m)

m

)m
d
=

d∑
j=1

exp(ajj/2) = E

 d∑
j=1

exp(Nj)

 ,

where a comes from the linearity of the expected value and the limes. b uses
the properties of the exponential function and the definition of Wj(m). In c
we used the Taylor expansion from Lemma 11. d is an application of Lemma
4. The second part of Lemma 10 now implies the uniform integrability of the

sequence
(∑d

j=1 exp(Wj(m))
)
n∈N

.

Now that all preparatory results have been proven, the central limit theorem
for the Hüsler–Reiss distributions remains.

Proof of Theorem 10. According to Lemma 12 with the choice y = ej , the j-th
unit vector, we have the limit

lim
m→∞

E (exp (Wj(m))) = E (exp (Nj)) > 0
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for every j = 1, . . . , d. Then there exists an M ∈ N such that for every m ≥M
and every j = 1, . . . , d the expression bj(m) := log(E (exp (Wj(m)))) is well
defined and we also have limm→∞ bj(m) = log(E (exp (Nj))) =: bj for all j =
1, . . . , d.

For m ≥M we can define D-norm generators Z(m) by

Zj(m) =
exp (Wj(m))

E (exp (Wj(m)))
, j = 1, . . . , d.

By definition of Xj(m) in Equation (10) we obtain

exp(Xj(m)− bj(m)) = exp(X) · Zj(m)

for all j = 1, . . . , d. With this representation and with Theorem 9 applied to
Z(1) = 1 almost surely and Z(2) := Z(m) we get the limit

max
i=1,...,n

X(i)(m)− b(m)− log(n)
D→ log(Y(m)),

where X(i)(m) are iid copies of X(m), the maximum is meant component-wise
and where Y(m) is simple max-stable with

P

(
Y(m) ≤ 1

y

)
= exp

(
−E

(
max

j=1,...,d
yjZj(m)

))
for all y > 0. If we take the limit n→∞ we obtain

lim
n→∞

P

(
Y(n) ≤ 1

y

)
= lim
n→∞

exp

(
−E

(
max

j=1,...,d
yjZj(n)

))
= exp

(
−E

(
max

j=1,...,d
yj

exp(Nj)
E(exp(Nj))

))
for all y > 0, where we used the continuity of the exponential function and
Lemma 12.

We have seen that the parametric model of Hüsler–Reiss distributions is
one way to deal with high dimensions in extreme value theory. The number of
parameter only grows quadratically in dimension, but its use is justified in the
context of the central limit theorem. The next section features a completely
different approach to dealing with high dimensionality.
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2.6 Dimension reduction with principal compo-
nent analysis

Before we introduce some new techniques to reduce dimension in extreme value
theory, let’s first have a look at what we might need it for in practice:

Example 8. If wind speed is measured simultaneously at d locations, this pro-
duces a single observation x ∈ Rd. If we collect those data over a long time, we
get a dataset

M = {x(1), . . . ,x(n)} ⊂ Rd

of historic wind data. We can also define a set E ⊂ Rd as those possible
realization of windspeeds, we would call a storm. M ∩ E then becomes our
historic storm data.

For each historic storm x ∈M ∩E we can research whether people were hurt
or infrastructure was damaged. This gives us a function

` : E ∩M → {1, 2, 3, 4},

where 1 stands for no harm done, 2 stands for hurt people, 3 stands for damaged
infrastructure and 4 stands for both people hurt and infracstucture damaged.

` only classifies past storms. If we could extend it to a classifier

̂̀ : E → {1, 2, 3, 4}

that will classify future storms correctly, this would be of great use. During the
next storm we could plug the observed speed of wind x ∈ E into the function ̂̀
and know what to expect.

Learning the classifier ̂̀ is almost a classical classification problem, except
only the extreme observations get a label `. But extreme events are by nature
rare, so the set M of all training data gets reduced to a much smaller set E∩M
of relevant training data.

This is a problem, because a classifier should generalize from the training
data, not memorize it. And the potential of overfitting is large, if there are few
training data placed sparsely in many dimensions. It is therefore reasonable to
first reduce the dimension of the problem with a transformation Φ : E → E′,
where E′ has a lower dimension than E and then to train a classifier ̂̀Φ on the
transformed training data

{(Φ(x), `(x)) : x ∈M ∩ E}

and to set the final classifier as

̂̀(x) := ̂̀
Φ(Φ(x)), for all x ∈ E.

One the one hand every dimensions we remove reduces the risk of overfit-
ting. But on the other hand every dimension we remove carries the risk of also
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removing the information we need for correct classification. To make reason-
able decisions in this trade-off scenario we first need a reasonable metric for the
’information loss’. After we have done that we will set our minds to find proper
dimension reduction techniques with respect to that metric. This is the main
purpose of this section.

Before we go into extreme value theory, let us have a look at dimension
reduction in classical statistics:

Lemma 13. Let X = (X1, . . . , Xd)
ᵀ be a square-integrable random vector. Fur-

ther let f : Rd → R be a Lipschitz bounded function with a constant L such that

|f(x)− f(y)| ≤ L · ‖x− y‖2 , (2.10)

holds for all x,y ∈ Rd, where ‖·‖2 denotes the Euclidean norm. Then for every
function Φ : Rd → Rd such that Φ(X) is a square integrable random vector we
have

|E(f(X))− E(f(Φ(X)))| ≤ L ·
√
E
(
‖X− Φ(X)‖22

)
.

This lemma shows that E
(
‖X− Φ(X)‖22

)
is a reasonable metric for the

information lossfrom replacing X with Φ(X).

Proof. It is elementary to show:

|E(f(X))− E(f(Φ(X)))| = |E(f(X)− f(Φ(X)))|
≤ E(|f(X)− f(Φ(X))|)
≤ L · E (‖X−AX‖2) .

Recall Jensen’s inequality (see Section 5 in the book by Billingsley (1979)),
which says that g(E(Y )) ≤ E(g(Y )) for all convex functions g and all integrable
random variables Y . Applying this to the convex function y 7→ y2 and the
random variable Y = ‖X− Φ(X)‖2 we get

|E(f(X))− E(f(Φ(X)))| ≤ L · E (‖X−AX‖2) ≤ L ·
√
E
(
‖X− Φ(X)‖22

)
.

Now let us only consider Φ that are linear affine, i.e. Φ(x) = A · x + b for a
square matrix A and a vector b. We now wish to optimize the function

(A,b) 7→ E
(
‖X− (AX + b)‖22

)
under the condition rank(A) := dim(image(A)) = d′, where d′ = 0, 1, . . . , d.
Making no restriction of the dimension leads to the trivial minimizer A = I, the
d× d identity matrix.
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Lemma 14. Let X = (X1, . . . , Xd)
ᵀ be a square integrable random vector with

mean vector µX = E(X) and covariance matrix Σ = Cov(X), where Σ has the
ordered eigenvalue

λ1 ≥ · · · ≥ λd ≥ 0

and corresponding orthogonal eigenvectors

v(1), . . . , v(d).

For every d′ ≤ d a minimizer of the optimization problem

min
A∈Rd×d

rank(A)≤d′

min
b∈Rd

E
(
‖X− (AX + b)‖22

)
(2.11)

is the choice A = Pd′ , where Pd′ is the orthogonal projection onto the subspace

Vd′ := span({v(j) : j = 1, . . . , d′})

and b = µX −A · µX.
The minimal value is

∑d
j=d′+1 λj.

Proof. This proof consists of four parts.

(i) We will find a closed form of

min
b∈Rd

E
(
‖X− (AX + b)‖22

)
for arbitrary matrices A by solving the inner minization problem in Equa-
tion (2.11).

(ii) We will show that we can always replace A by the orthogonal projection
onto the space image(A) in the outer minization problem in Equation
(2.11).

(iii) We will refer to the literature for why Pd′ is the best orthogonal project
for outer optimization problem.

(iv) We will show that the minimal value is
∑d
j=d′+1 λj

Part (i) can be shown with the well known fact that for a square integrable
random variable Y the expression b 7→ E

(
(Y − b)2

)
is minimized by the choice

b = E(Y ). For a fixed square matrix A we can define a random vector Y =
X−AX and get

E
(
‖X−AX− b‖22

)
=E

(
‖Y− b‖22

)
=

d∑
j=1

E
(

(Yj − bj)2
)
.
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Each summand of this can be minimized separately to get the minizer b =
E(Y) = µX −A · µX. We then have

min
b∈Rd

E
(
‖X− (AX + b)‖22

)
= E

(
‖X− µX −A · (X− µX)‖22

)
for arbitrary A.

For Part (ii) let A be an arbitrary square matrix, let V := image(A) be its
image space and let PV be the orthogonal projection onto V . For every x ∈ Rd
the vector PV x − Ax is an element of V , because V is linear subspace of Rd.
Therefore PV (PV x−Ax) = PV x−Ax. Consequently we have

(PV x−Ax)ᵀ · (x− PV x) = (PV x−Ax)ᵀ · (P ᵀ
V x− P ᵀ

V PV x)︸ ︷︷ ︸
=0

= 0.

This means PV x − Ax is orthogonal to the residual x − PV x after the or-
thogonal projection. This implies

‖x−Ax‖22 = ‖x− PV X + PV x−Ax‖22
= ‖x− PV x‖22 + ‖PV x−Ax‖22 ≥ ‖x− PV x‖22 .

We can replace the constant x by the random X − µX and integrate over
the both sides of this inequality to get

E
(
‖X− µX −A(X− µX)‖22

)
≥ E

(
‖X− µX − PV (X− µX)‖22

)
.

So for the outer minimization problem in Equation (2.11) it is never wrong
to replace A by the orthogonal projection onto image(A).

For (iii) it is convenient to set Xc := X−µX. For every orthogonal projection
P we have

const = E
(
‖Xc‖22

)
= E

(
‖Xc − PXc‖22

)
+ E

(
‖PXc‖22

)
,

so minimizing E
(
‖Xc − PXc‖22

)
is equivalent to the maximization of E

(
‖PXc‖22

)
.

We will investigate this term further with the trace operator tr, that maps a
square matrix to the sum of its diagonal elements. It is well known, that

tr(AB) = tr(BA),

if the row-dimension of A is the column-dimension of B and vice versa. Also we
will also identify vectors as 1× d matrices and real numbers als 1× 1 matrices.
The trace of a 1× 1 matrix is also the single entry it has. For every projection
matrix P we have

E
(
‖PXc‖22

)
= E (Xᵀ

cP
ᵀPXc)

= E (Xᵀ
cPXc)

= E (tr (Xᵀ
cPXc))

= E (tr (PXcX
ᵀ
c ))

= tr (P · E (XcX
ᵀ
c )) = tr(P · Σ),
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where we used the linearity of the trace operator and that E(XcX
ᵀ
c ) = Σ. With

similar reasoning we can show that E
(
‖Y− PY‖22

)
= tr((I − P ) · Σ), as the

matrix (I − P ) is a projection matrix as well.
Paragraph 16.4 in the book by Puntanen et al. (2013) can be used to show

that of all rank d′ projection matrices the projection Pd′ onto the subspace Vd′

maximizes the term tr(P · Σ).
For Part (iv) it is possible to confirm that the projection matrix Pd′ onto

the space Vd′ and the residual Rd′ = I − Pd′ can be represented by

Pd′ =

d′∑
j=1

v(j)(v(j))ᵀ

Rd′ =

d∑
j=d′+1

v(j)(v(j))ᵀ.

We then end up with

E
(
‖Y− Pd′Y‖22

)
= tr(Rd′ · Σ)

=

d∑
j=d′+1

tr(v(j)(v(j))ᵀ · Σ)

=

d∑
j=d′+1

tr((v(j))ᵀ · Σ · v(j))

=

d∑
j=d′+1

tr(λj) =

d∑
j=d′+1

λj .

The underlying theory of Lemma 14 is principal component analysis of the
covariance matrix. We will now develop a way to apply this to reduce the
dimension in multivariate extreme value theory. The interesting part is that
both the dimension of the vector X as well as the dimension of an abstract
D-norm generator Z is reduced. For that we will have to look at the following
lemma:

Lemma 15. Let Φ : [0,∞)d → [0,∞)d be a continuous function that is ho-
mogeneous of order 1 in the sense that Φ(λx) = λΦ(x) for all λ ≥ 0 and all
x ≥ 0.

Let X be a random vector that fulfills one of the equivalent statements of the
Rosetta Stone theorem with corresponding D-norm generator Z.

For every function h : [0,∞)d → [0,∞) that is continuous and homogeneous
of order 1 we have the following limits:
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lim
t→∞

t · P (h(X) > t) = E(h(Z))

lim
t→∞

t · P (h(Φ(X)) > t) = E(h(Φ(Z))).

If h is also Lipschitz-bounded in the sense that there exists a constant L such
that |h(x)− h(y)| ≤ L · ‖x− y‖2, where ‖·‖2 denotes the Euclidean norm, than
we further have:

|E(h(Z))− E(h(Φ(Z)))| ≤ E(‖Z− Φ(Z)‖2) ≤
√
E
(
‖Z− Φ(Z)‖22

)
. (2.12)

Proof. The limits are a consequence of the Rosetta Stone theorem and the fact
that h ◦Φ is a continuous function that is homogeneous of order 1 as well. The
inequalities in Equation (2.12) can be shown exactly as in the proof of Lemma
13.

One noteworthy detail in Equation (2.12) is that the term E(‖Z− Φ(Z)‖2)
does not depend on the specific choice of the generator, as z 7→ ‖Z− Φ(Z)‖2
is homogeneous of order 1 and we can apply Theorem 3. This quantity solely
depends on the underlying D-norm. However this does not apply to the term

E
(
‖Z− Φ(Z)‖22

)
as we will see in the following example:

Example 9. Let Φ : [0,∞)d → [0,∞)d be an arbitrary continuous function
that is homogeneous of order 1 and let Z be an arbitratry D-norm generator.
Further let U be a random variable following the uniform distribution on the
interval (0, 2). Then for every continuous function h that is homogeneous of
order 1 we have

E(h(U · Z)) = E(U · h(Z)) = E(U) · E(h(Z)) = E(h(Z)),

where we used that U is also independent of the random variable h(Z) and U
has expectation 1, which is easy to confirm. According to Example 3 the random
vectors Z and U · Z generate the same D-norm. Also with the special choice
h(x) := ‖x− Φ(x)‖2 we get

E(‖U · Z− Φ(U · Z)‖2) = E(‖Z− Φ(Z)‖2).

However it turns out that

E
(
‖U · Z− Φ(U · Z)‖22

)
= E

(
U2 · ‖Z− Φ(Z)‖22

)
= E(U2) · E

(
‖Z− Φ(Z)‖22

)
=

4

3
· E
(
‖Z− Φ(Z)‖22

)
,

where we used that U2 is independent of ‖Z− Φ(Z)‖22 and U2 has the expected
value 4/3.
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The switch from Z to U ·Z has changed neither the underlying D-norm nor

the expression E(‖Z− Φ(Z)‖2), but its upper bound

√
E
(
‖Z− Φ(Z)‖22

)
was

increased by factor
√

4/3 > 1. Obviously an upper bound is less useful, the
higher it is.

In the following we will restrict ourselves to a D-norm generator Z that fulfills∑d
j=1 Zj = d almost surely. Such a generator exists according to Corollary 4

and all generators that fulfill
∑d
j=1 Zj = d almost surely follow the same unique

distribution according to Lemma 2.
Let P be a d×d projection matrix with rank k with the property 1ᵀ ·P = 0ᵀ.

If we replace Z by Z′ := P · (Z− 1) + 1, then we have

E(Z′) = P · E(Z′ − 1)︸ ︷︷ ︸
=0

+1 = 1 for all j = 1, . . . , d

and
d∑
j=1

Z ′j = 1ᵀZ′ = 1ᵀP︸︷︷︸
=0ᵀ

·(Z− 1) + 1ᵀ · 1︸ ︷︷ ︸
=d

= d almost surely.

At a first glance it would seem that Z′, which realizes on the rank(P )-
dimensional affine space {1 + Px : x ∈ Rd} is a normed D-norm generator as
well, but there is no guarantee that Z′ ≥ 0 holds almost surely.

We will fix this by introducing Z′′ = max(Z′,0), where the maximum is
meant componentwise. Essentially, whenever one of the random variables Z ′j
realizes as a negative number it is replaced by 0. It only takes little effort to
prove that ∥∥Z′′ − Z

∥∥2

2
≤
∥∥Z′ − Z

∥∥2

2

holds almost surely.
Now will introduce a homogeneous function ΦP that depends on the under-

lying projection matrix P . We set

ΦP (x) := max

(
P ·

(
x−

∑d
j=1 xj

d
· 1

)
+

∑d
j=1 xj

d
· 1,0

)
,

where the maximum is once again meant component-wise. Observe that this is
in fact continuous and homogeneous of order 1. Also we have Φ(Z) = Z′′ almost

surely, as Z was chosen as a generator that fulfills
∑d
j=1 Zj

d = 1 almost surely.
In terms of dimensions we should note that

image(ΦP ) ⊂ {max(y,0) : y ∈ image(P ) + (R · 1)︸ ︷︷ ︸
vectorspace of

dimension rank(P )+1

}.

We also have
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ΦP (Z) = Z′′ ∈ {max(y,0) : y ∈ image(P )︸ ︷︷ ︸
vectorspace of

dimension rank(P )

+{1}} almost surely.

So by replacing X with Φ(X) we have reduced the degrees of freedom of X
and by replacing Z with Φ(Z) we have have reduced the degrees of freedom of
Z. In general Φ(X) has a different tail behavior than X in the sense that

lim
t→∞

t · P (h(X) > t) 6= lim
t→∞

t · P (h(Φ(X)) > t)

in general, but if h is Lipschitz-bounded with constant L, we get

| lim
t→∞

t · P (h(X) > t)− lim
t→∞

t · P (h(Φ(X)) > t)|

=|E(h(Z))− E(h(Φ(Z)))|

≤L ·
√
E
(
‖Z− Φ(Z)‖22

)
≤L ·

√
E
(
‖(Z− E(Z)− P (Z− E(Z)))‖22

)
.

So a low value for E
(
‖(Z− E(Z)− P (Z− E(Z)))‖22

)
guarantees that the

tail-behavior of the lower-dimensional Φ(X) is a good approximation for the
tail-behavior of the original X. Principal component analysis helps us find such
projection matrices:

Corollary 10. Let Z be a D-norm generator that fulfills
∑d
j=1 Zj = d almost

surely. Further let Σ be its Covariance matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0

and corresponding orthonormal eigenvectors v(1), . . . , v(d). Further let d′ be
a dimension strictly less than d. Then of all orthogonal projection P with
rank(P ) = d′ the projection Pd′ onto the vectorspace Vd′ = span(v(1), . . . , v(k))
minimizes the expression

E
(
‖(Z− 1)− P (Z− 1)‖22

)
.

The minimum value is
∑d
j=j′+1 λj.

This is an immediate consequence of Lemma 14.

Corollary 11. If have E
(
‖(Z− 1)− Pd′(Z− 1)‖22

)
> 0 in the previous corol-

lary, then we also have 1ᵀPk = 0ᵀ.
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Proof. First we will show that Σ1 = 0, where Σ was the covariance matrix of
the D-norm generator Z that fulfills

∑d
j=1 Zj = d almost surely. Observe that

1ᵀΣ1 = E


 d∑
j=1

(Zj − 1)

2
 = E(0) = 0.

At first this looks weaker than Σ1 = 0. The matrix Σ however is symmetric
and positive semidefinite and therefore there exists a matrix A with the property
AᵀA = Σ. And we get

‖A1‖22 = 1ᵀΣ1 = 0

and consequently A1 = 0 and finally Σ1 = AᵀA1 = Aᵀ0 = 0.
Pd′ is the projection onto the space span(v(1), . . . ,v(d′)), which are eigenvec-

tors to eigenvalues ≥ λd′ . If λd′ was 0, then we would have 0 =
∑d
j=k+1 λj =

E
(
‖(Z− 1)− Pk(Z− 1)‖22

)
, which would violate the condition of this corollary.

Consequently all v(1), . . . ,v(d′) are eigenvectors of Σ to eigenvalues greater zero
and consequently perpendicular to 1, which is an eigenvector to the eigenvalue
zero. Therefore 1ᵀPd′ = 0ᵀ.

We will now illustrate dimension reduction with two examples. They are the
extreme cases of tail-dependence. First the case of complete tail-dependence in
Example 10 and then the case of tail-independence in Example 11.

Example 10. The D-norm that corresponds to complete tail-dependence is the
norm ‖x‖D = maxj=1,...,d |xj |. A generator Z with P (Z = 1) = 1 generates this

D-norm and fulfills
∑d
j=1 Zj = d almost surely. The covariance matrix of Z is

the matrix that has the value 0 in every entry.
No matter what projection matrix P we chose, we get

Z′ = 1 + P · (Z− 1)︸ ︷︷ ︸
=0 almost surely

= 1 = Z

almost surely. In a way we can no longer reduce the dimension of Z, as Z already
realizes on the ’0-dimensional’ set {1}. But we still can reduce the dimension
of X, where X is a random vector on [0,∞)d with

lim
t→∞

t · P (h(X) > t) = E(h(Z)) = h(1)

for every non-negative continuous function h that is homogeneous of order 1.
By choosing P = 0, the matrix that has the values 0 in every entry, we get:

ΦP (X) =

∑d
j=1Xj

d
· 1.

The random vector ΦP (X) only realizes on the one-dimensional set

{λ · 1 : λ ≥ 0},
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but it has the same tail-behavior as X in the sense of

lim
t→∞

t · P (h(X) > t) = E(h(Z)) = E(h(Z′)) = lim
t→∞

t · P (h(ΦP (X) > t)

for every non-negative, continuous h that is homogeneous of order 1.

Example 11. The D-norm that corresponds to tail-independence is the norm
‖x‖D =

∑d
j=1 |xj |. A generator Z with P (Z = d · ej) = 1/d, for all j =

1, . . . , d and where ej is the j-th unit vector, generates this D-norm and fulfills∑d
j=1 Zj = d almost surely. It turns out that the covariance matrix Σ of Z has

the entries:

σij =

{
d− 1 if i = j

−1 else.

It takes little effort to show that

Σ1 = 0 and

Σx = d · x if

d∑
j=1

xj = 0.

This implies that the ordered eigenvalues of Σ are

λ1 = · · · = λd−1 = d

λd = 0.

The projections Pk in Corollary 10 are not unique (as we can find different
orthonormal bases of the (d−1)-dimensional eigenspace to the eigenvector λ = d,
but in any case those Pk fulfill

E
(
‖(Z− 1) + Pk · (Z− 1)‖22

)
=

d∑
j=k+1

λj = (d− k + 1) · d.

One can say that each successive reduction by one dimension ’costs the same’.

We will end this section with a variation of principal component analysis.
Again we will have a continuous transformation Φ : [0,∞)d → [0,∞)d that is
homogeneous of order 1. Again for every projection matrix P we have one such
transformation ΦP . But this ΦP is defined differently than before:

Definition 11. Let P be a projection matrix. Then we will define the square
space projection ΦP by

ΦP (x) := (max(y1, 0)2, . . . ,max(yd, 0)2)ᵀ,

where y1, . . . , yd are the entries of the vector y := P
√
x.

60



The square space projections are obviously continuous and homogeneous of
order 1. Also we have

E
(∥∥∥√Z−

√
ΦP (Z)

∥∥∥2

2

)
≤ E

(∥∥∥√Z− P
√

Z
∥∥∥2

2

)
for every D-norm generator Z. If X is a vector [0,∞)ᵀ, such that the equivalent
statements of the Rosetta Stone theorem hold for X and Z, then we also have:

d = lim
t→∞

t · P

 d∑
j=1

Xj > t


= lim
t→∞

t · P
(∥∥∥√X

∥∥∥2

2
> t

)
= E

(∥∥∥√Z
∥∥∥2

2

)
= E

(∥∥∥P√Z
∥∥∥2

2
+
∥∥∥√Z− P

√
Z
∥∥∥2

2

)
= E

(∥∥∥P√Z
∥∥∥2

2

)
+ E

(∥∥∥√Z− P
√

Z
∥∥∥2

2

)
= lim
t→∞

t · P
(∥∥∥P√X

∥∥∥2

2
> t

)
+ lim
t→∞

t · P
(∥∥∥√X− P

√
X
∥∥∥2

2
> t

)
.

Essentially the mass in the tail is split up between the projection and the
remainder.

Corollary 12. Let X be a random vector on [0,∞)d that fulfills one of the
equivalent statements of the Rosetta Stone theorem with co-extremal matrix

C = (cij)1≤i,j≤d =
(

lim
t→∞

t · P (XiXj > t2)
)

1≤i,j≤d

Let
λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0

be the eigenvalues of C with corresponding orthonormal eigenvectors v(1), . . . , v(d).
Further let d′ be a dimension less than d. Then of all orthogonal pro-

jection P with rank(P ) = d′ the projection Pd′ onto the vectorspace Vk =
span(v(1), . . . , v(d′)) minimizes the expression

lim
t→∞

t · P
(∥∥∥√X− P√X∥∥∥2

2
> t

)
.

The minimum value is
∑d
j=k+1 λj.
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Proof. Let Z be a generator of the corresponding D-norm. Prior to this corollary
we have shown that

E
(∥∥∥P√Z

∥∥∥2

2

)
+ lim
t→∞

t · P
(∥∥∥√X− P

√
X
∥∥∥2

2
> t

)
= d = const,

for all projections P , so the minimization problem of the right summand is
equivalent to the maximization problem of the left summand in this equation.

Exactly as in the proof of Lemma 14 we can show that

E
(∥∥∥P√Z

∥∥∥2

2

)
= tr

(
P · E

(√
Z ·
√

Z
))

= tr(P · C),

where C is the co-extremal matrix. At this point we can proceed just like in
the proof of Lemma 14.

Working with the co-extremal matrix C instead of Σ has an advantage: Each
entry cij of this matrix only depends on the joint extremal behavior of Xi and
Xj . It can be estimated with a structure variable estimator (see Section 3.1) or
with a local threshold procedure (see Section 3.4).

For the matrix Σ however there is no obvious way to estimate it. Most likely
one could adapt the global threshold procedure for a consistent estimator. This
is troublesome, as our ultimate goal is to handle datasets with many dimension,
datasets with missing values, merged datasets from different sources and the
global threshold procedure does not fare well in those scenarios.

As for the root-space principal component analysis there is an open problem:
Is there a monotone function f such that we have

E(‖Z− ΦP (Z)‖) ≤ f
(
E
(∥∥∥√Z−

√
ΦP (Z)

∥∥∥2

2

))
?

Other instances of when people used dimension reduction in multivariate
extremes include the following:

Example 12. Very similar to our dimension reduction techniques is the ap-
proach in a work by Drees and Sabourin (2019). They work with the assumption
that there exists a linear subspace V ⊂ Rd such that

ν([0,∞)d r V ) = 0,

where ν is the measure from the Rosetta Stone theorem and aim to indentify V
from the the data.

Under their assumption the measure ν is uniquely identified by its restriction

ν|V ∩([0,∞)d)r{0})

and they don’t lose any information about the multivariate tail-behavior by
switching from [0,∞)d to the lower dimensional [0,∞)d ∩ V .

In this thesis we did not make this assumption about the underlying tail-
dependence here and consequently had to pay for every reduction of dimension.
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A similar approach is used in a work by Clémençon et al. (2017), where they
call an observation an anomaly if it falls into a set t ·M , where M is a cone
with ν(M) ≈ 0 as this is at odds with the limit

lim
t→∞

t · P (X ∈ t ·M) = ν(M) ≈ 0.

Example 13. Chautru (2015) reduces dimension by picking subsets (clusters)
of indices I ⊂ {1, . . . , d} and modelling the dependence structure between (Xi)i∈I
rather than the dependence structure of (Xi)i∈{1,...,d}.
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2.7 Exploratory extreme value analysis

In Section 1.1 we introduced tail-behavior not as a mathematical object, but as
mathematical properties that help us answer questions about the appearance
of extreme events. Following this philosophy tail-dependence between the com-
ponents X1, . . . , Xd of a random vector X should be mathematical properties
that help us answer question about the joint appearance of extreme events. The
D-norm framework is tailored to approach problems like the following:

Example 14. Let X = (X1, . . . , Xd)
ᵀ be a random vector with continuous

marginal distributions Fj(x) = P (Xj ≤ x), j = 1, . . . , d, such that

X′ :=

(
1

1− F1(X1)
, . . . ,

1

1− Fd(Xd)

)ᵀ

fulfills one of the equivalent statements of the Rosetta Stone theorem with D-
norm ‖·‖D and D-norm generator Z = (Z1, . . . , Zd).

We now want to approximate P (X1 > x1, X2 > x2), where the individual
probabilites p1 = P (X1 > x1) and p2 = P (X2 > x2) are small. We use the
Rosetta Stone theorem to get:

1

p1
· P (X1 > x1, X2 > x2) =

1

p1
· P
(
X ′1 >

1

p1
, X ′2 >

1

p2

)
=

1

p1
· P
(

min

(
X ′1,

p2

p1
X ′2

)
>

1

p1

)
≈ E

(
min

(
Z1,

p2

p1
Z2

))
= E

(
Z1 +

p2

p1
Z2 −max

(
Z1,

p2

p1
Z2

))
= 1 +

p2

p1
−
∥∥∥∥(1,

p2

p1

)ᵀ∥∥∥∥
D

and therefore P (X1 > x1, X2 > x2) ≈ p1 + p2 − ‖(p1, p2)ᵀ‖D.

In this example we were given a concrete problem, which was ’What is the
value of P (X1 > x1, X2 > x2)?’ and our solution was an extrapolation justified
by the Rosetta Stone theorem. In contrast we might be given the task to
’explore’ the data.

In this section we will introduce some tools to do exploratory multivariate
extreme value analysis. A task that falls unter this umbrella is the following:

Definition 12. We will call it the ’Cluster Problem’ to find clusters of indices
in {1, . . . , d} such that extreme events tend to not hit more than one cluster at
the same time. A solution to the Cluster Problem has to include a reasonable
metric what constitutes a good clustering and a strategy or an algorithm to find
one.
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We call it a binary clustering if the set {1, . . . , d} splits into a disjoint union
of exactly two clusters.

The following example shows that binary clusterings can be turned into more
general clusterings:

Example 15. Assume we have two binary clusterings (I1
+, I

1
−) and (I2

+, I
2
−) of

the same index set I = {1, . . . , d}. Then we can produce a clustering on I with
22 = 4 clusters by intersecting the binary clusterings, by which we mean the
following:

I++ = I1
+ ∩ I2

+

I+− = I1
+ ∩ I2

+

I−+ = I1
+ ∩ I2

−

I−− = I1
− ∩ I2

−.

If an extreme event now hits for example I++ at the same time as it hits
I+−, then it also hits I2

+ at the same time as it hits I2
−, which whould happen

rarely if (I2
+, I

2
−) is a good binary clustering. The resulting non-binary clustering

inherits the quality of the underlying binary clusterings.

Note that Example 15 is not useful if either one binary clustering is trivial
(e.g. I+ = ∅) or if the binary clusters are too similar to one another with the
extreme case I1

+ = I2
+. The optimal case would be something like

|Ii+|
d

=
|Ii−|
d

= 1/2 for all i = 1, 2 and

|I++|
d

=
|I+−|
d

=
|I−+|
d

=
|I−−|
d

= 1/4.

If we introduce vectors y(1),y(2) ∈ {−1, 1}d with

j ∈ I(i)
+ ⇔ y

(i)
j > 0 for all j = 1, . . . , d and all i = 1, 2, (2.13)

then the optimal case above is equivalent to

y(i) ⊥ 1 for i = 1, 2

y(1) ⊥ y(2).

So to produce good non-binary clusters it is sufficient to look for orthogonal
vectors y ∈ {−1, 1}d that are also perpendicular to 1 = (1, . . . , 1)ᵀ and which
also produce good individual binary clusters. Those are pretty strong restric-
tions. The size of our search-space {−1, 1}d grows exponentially in d. Also the

condition
∑d
j=1 y

(i)
j = 0 can only be fulfilled if d is an even number.

If we lessen our restrictions we actually end up in a scenario, where principal
component analysis is our solution.
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First we lift the restriction y ∈ {−1, 1}d to y ∈ Rd. Those vectors still create
binary clusterings by Equation 2.13. We still want orthogonal vectors y(i) and
we still require that there exists a x > 0 with xᵀy(i) = 0 for all i.

As we will later see the eigenvalue/eigenvector decomposition of the co-
extremal matrix C will provide such vectors. But first we need some theory.

Lemma 16. Let X = (X1, . . . , Xd)
ᵀ be a random vector that fulfills one of

the equivalent statements of the Rosetta Stone theorem and which has the co-
extremal matrix C = (cij)1≤i,j≤d. Further let y = (y1, . . . , yd)

ᵀ be an arbitrary
vector in Rd. Then we have

yᵀCy = lim
t→∞

t · P


 d∑
j=1

yj ·
√
Xj

2

> t

 . (2.14)

The Co-extremal matrix is positive semidefinite.

Proof. We have

yᵀCy =

d∑
i=1

d∑
j=1

yiyjE(
√
ZiZj)

= E

 d∑
i=1

d∑
j=1

yiyj
√
ZiZj

 = E


 d∑
j=1

yj ·
√
Zj

2
 .

Note that z 7→ (
∑d
j=1 yj ·

√
zj)

2 is non-negative, continuous and homogeneous
of order 1. Therefore the Rosetta Stone theorem is applicable, which leads us to
Equation (2.14). Because this equation holds for all y, the co-extremal matrix
is positive semidefinite.

For a given y ∈ Rd Equation (2.13) gives a binary clustering (I+, I−). We
can write the following: d∑

j=1

yj ·
√
Xj

2

=

∑
i∈I+

|yi|
√
Xj −

∑
i∈I−

|yi|
√
Xj

2

.

Extreme events that only hit indices I+ lead to a high positive value in-
side the brackets, while extreme events that only hit indices in I− lead to a
low negative value. Extreme events that hit both clusters in general don’t
cancel the value to zero, but should go together with a reduced probability

P

((∑d
j=1 yj ·

√
Xj

)2

> t

)
and therefore a low value of yᵀCy by Lemma 16.

At first it looks like yᵀCy is a reasonable metric for the quality of the cluster
that y generates by Equation (2.13). But only at first glance, because if what
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happens if we replace y by c · y, where c > 1? We have the same binary
clustering, but the value yᵀCy is increased artificially!

Therefore yᵀCy is a reasonable metric for the quality of a binary cluster if
we further make the restriction ‖y‖2 = 1, where ‖·‖2 is the Euclidean norm.

Now let

λ1 ≥ λ2 ≥ . . . ,≥ λd ≥ 0

be the eigenvalues of C with multiplicities and let y(1), . . . ,y(d) be the corre-
sponding orthogonal eigenvectors with

∥∥y(j)
∥∥

2
= 1 for all j = 1, . . . , d.

Then we have orthogonal vectors y(j), j = 1, . . . , d with

(y(j))ᵀC · y(j) = λj .

In this sequence the first elements produce the strongest binary clusterings.
Under a weak assumption only the first eigenvector produces a trivial binary
clustering, as we will see in the following Lemma:

Lemma 17. Let C be a co-extremal matrix with cij > 0 for all 1 ≤ i, j ≤ d with
eigenvalues λ1 ≥ λ2 ≥ . . . ,≥ λd ≥ 0 and corresponding orthogonal eigenvectors
with Euclidean norm 1. Then y(1) > 0 or −y(1) > 0.

Proof. First we will define v := |y(1)|, where the absolute value is defined
component-wise. Then v has Euclidean norm 1 and it has a representation

v =

d∑
j=1

ajy
(i),

where aj are real numbers satisfying
∑d
j=1 a

2
j = 1. This is possible because

the change of Euclidean coordinates to coordinates in the orthonormal base
{y(j) : j = 1, . . . , d} is an isometric linear transformation.

Then on the one hand we have

vᵀCv =

d∑
j=1

d∑
i=1

ai · aj · (y(j))ᵀCy(i)︸ ︷︷ ︸
=δ(i,j)·λj

=

d∑
j=1

a2
j · λj ≤ λ1,

where δ(i, j) = 1 if i = j and δ(i, j) = 0 else. On the other hand we have

vᵀCv =

d∑
j=1

d∑
i=1

cij |y(1)
i | · |y

(j)
i | ≥

d∑
j=1

d∑
i=1

cij · y(1)
i · y

(j)
i = λ1.

If there was a pair of indices (i, j) with yj ·yi < 0, then the second inequality
would be strict, which would violate the first inequality. This means we either
have y(i) ≥ 0 or −y(i) ≥ 0. Now we will show that those inequalities have to
be strict. We do that by contradiction.
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Assume there was an index j with vj = 0. Then for every ε ∈ [0, 1] we could
define a vector v(ε) =

√
1− ε2v + ε · ej , where ej is the j-th unit vector. v(ε)

has Euclidean norm 1 and therefore

v(ε)ᵀCv(ε) ≤ λ1 (2.15)

with the same reasons as above. But we would have

∂

∂ε

∣∣∣∣
ε=0

v(ε)ᵀ · C · v(ε)

=
∂

∂ε

∣∣∣∣
ε=0

(1− ε2)︸ ︷︷ ︸
=0

·vᵀCv +
∂

∂ε

∣∣∣∣
ε=0

ε2︸ ︷︷ ︸
=0

·eᵀ
jCej +

∂

∂ε

∣∣∣∣
ε=0

√
1− ε2 · ε︸ ︷︷ ︸

=1

·2vᵀCej ,

but all components of the vector Cej are positive (this is the first and only
time we use the condition cij > 0 for all i, j) and thus vᵀCej > 0. So for
small values of ε the inequality in Equation (2.15) is violated. By contradiction
there cannot be such an index j. Therefore v > 0 and either y(1) = v > 0 or
−y(1) = v > 0.

Under the condition of Lemma 17 all orthogonal eigenvectors y(2), . . . ,y(d)

that follow after the eigenvector y(1) produce binary clusterings, that are non-
trivial (because they are all perpendicular |y(1)| > 0) and dissimilar to each
other (because of orthogonality) and which are ordered by strength, with the
strongest being produces by y(2) and the weakest produced by y(d).

Example 16. If each index j ∈ {1, . . . , d} corresponds to a position on a 2-
dimensional map, the binary clustering produced by an (eigen)vector y can vi-
sualized the following way: Plot the map and at each of the d locations plot a
symbol, where the color of the symbol represents if yj > 0 or yj < 0 and the size
of the symbol is proportional to |yj |.

This was actually in done in Figure 2.8 with the colours black and white on a
map of Germany. The 3 plots in the right column are the first three eigenvectors
of the co-extremal matrix C of extreme temperature drops in winter.

From a cluster analysis standpoint the following happens: The first eigenvec-
tor produces the trivial binary clustering ’All Locations vs Empty Set’, the second
eigenvector produces the binary clustering ’North-East Germany vs South-West
Germany’, while the third eigenvector procuces the binary clustering ’North-
West vs Central Germany’. Doing all intersections as in Example 15 we a
clustering of north-west Germany vs central Germany vs south-west Germany.

This is not the first instance principal component analysis was used in ex-
treme value analysis. Cooley and Thibaud (2018) introduced a matrix that
contains measures of pairwise extremal dependence, too, so they could find a
discrete model thats produces the same matrix. In their data analysis part they
described eigenvectors with geographic directions (north, south, east and west),
too.
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Definition 13. If we can match explanatory variables/features with eigenvec-
tors, there still remains the problem, whether this is just a coincidence or the
effect of a causal relationship. We will call this the ’Attribution Problem’.

One can solve the Attribution Problem with absolute certainty only in a
controlled environment, like laboratory experiments or computer simulations.
Investigating extreme events with those tools is not unheard of, see the following
two examples:

Example 17. The sinking of the M.V.1 Derbyshire faced the court with many
technical questions like how much pressure could hitting waves exert on hold
covers under different conditions. Heffernan and Tawn (2003) based their ex-
treme value analysis for this question on data produced by a 1 : 65 replica of the
Derbyshire placed in a programmable test tank.

Example 18. Sippel et al. (2015) explore the idea of combining extreme value
theory with computer simulations to investigate rare weather events.

1motor vessel

69



2.8 Comparing extremal and non-extremal de-
pendence

This main goal of this section is to introduce a novel way to compare the joint
behavior of extremal events with the joint behavior of non-extremal events of a
random vector X = (X1, . . . , Xd)

ᵀ.
The following example will introduce the concept.

Example 19. Let there be 4 cities A,B,C and D such that between both A and
B and also between C and D you can travel by plane and by train. Let TAB be
the time it takes to travel between A and B by train and let PAB be the price
it takes to travel between A and B by plane. TCD and PCD are corresponding
values if you travel between C and D.

We cannot compare TAB with PAB. One is time and the other is currency.
However we would expect that both of them are monotone functions of the dis-
tance between city A and city B. A longer distance means both more time to
travel by train and more kerosine burnt by the plane that someone has to pay for
with their ticket price. When this expectation is true, then Plane-Ticket-Price
P is a monotone function of Train-Travel-Time T .

But what if it turns out that

TAB < TCD and (2.16)

PAB > PCD? (2.17)

This does not violate the laws of logic, physics or economics, it just defies
our expectation. We also get an immediate push to investigate this further.
Are there in differences in infrastructure or terrain, that negatively affect train-
travel-time between C and D? We could have a look at a good map and find out.
Or is there an economy of scale effect for air-travel between city C and D? We
could have a look at what types of planes are used in air travel between those
pair of cities, how full they are, etc and interview someone from the industry.

If we are given a larger data-set about train-travel-times and plane-ticket-
price between many different cities, we should look for instances of four cities
(A,B,C,D) that fulfill Equation (2.16) and (2.17). We will call this an instance
of reversion.

If our larger data-set contains no reversion and additionally we have TAB 6=
TCD, when (A,B) is a different pair than (C,D), then there exists a monotone
increasing function f with

f(TAB) = PAB for every pair of cities (A,B). (2.18)

So our exploratory analysis has two possible outcomes: We find reversions,
which are interesting or we find a monotone function f that fulfills Equation
(2.18). A possible application of such a function f is the following:

Assume that in our data-set there is a city Z such that the values

PAZ , PBZ , PCZ , . . .
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are known but the values
TAZ , TBZ , TCZ , . . .

are not. Then we can predict these with P̂AZ = f(TAZ), P̂BZ = f(TBZ), P̂CZ =
f(TCZ), . . . .

These predictors are valid in the following sense: Let A be a city different
than Z. If L1, L2 and U1, U2 are the cities with

TL1L2 = max{TXY : X,Y are cities with , X 6= Z, Y 6= Z, TXZ ≤ TAZ}
TU1U2 = min{TXZ : X,Y are cities with , X 6= Z, Y 6= Z, TXZ ≥ TAZ},

(2.19)

and the are no reversions in the complete dataset, then we have PAZ ∈ [PL1L2
, PU1U2

]
and also

P̂AZ = f(TAZ) ∈ [f(TL1L2
), f(TU1U2

)] = [PL1L2
, PU1U2

],

so both the true and the predicted value fall into the same interval. Obviously
this only works if the completed dataset has no reversions and the sets in (2.19)
are not empty.

Every point raised and explored in this example will reoccur in this section.
We will investigate a random vector X = (X1, . . . , Xd)

ᵀ that has continuous
marginal distributions Fj(x) = P (Xj ≤ x) and one of the equivalent statements
of the Rosetta Stone theorem applies to the random vector(

1

1− F1(X1)
, . . . ,

1

1− Fd(Xd)

)ᵀ

.

We will reduce its extremal dependence structure to the co-extremal matrix

C = (cij)1≤i,j≤d =

(
lim
t→∞

t · P
(

1

(1− Fi(Xi))(1− Fj(Xj))
> t2

))
1≤i,j≤d

and the non-extremal dependence structure we will reduce to the matrix

R := (rij)1≤i,j≤d := (Corr(Fi(Xi), Fj(Xj)))1≤i,j≤d.

Even though both cij and rij are numerical values, comparing them in a
naive way suffers from the following pitfalls:

1. One cannot compare the entries of those two matrices numerically. A
correlation of 0.05 cannot be called ’weaker’ than a co-extremality of 0.95
without context. This might seem paradox, because a big motivation for
multivariate extreme value theory are scenarios where the joint appearance
of extremes events is more likely than anticipated with regular models and
’more likely’ sounds like a comparison. But this just means the regular
models can be a bad context for comparison.
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2. Extreme value theory and regular statistical theory work with different
topologies. Take for example the bivariate Gaussian copula that has cor-
relation coefficient ρ as parameter. Without getting technical regular
statisticians can treat ρ → 1 as a continuous transition of the under-
lying copulae, while for extreme value theory all Gaussian copulae with
ρ < 1 are tail-independent, which at ρ = 1 discontinuously switches to the
strongest tail-dependence there is, skipping everything in between (see e.g.
Donelly and Embrechts (2010))

We cannot compare correlation with co-extremality just like we could not
compare currency with time in our introductory Example 19. What we can
do however is compare correlation with correlation and co-extremality with co-
extremality and introduce the concept of reversion:

Definition 14. We will call an instance of four indices (i, j, k, `) a reversion,
if they fulfill:

rij > rk` and (2.20)

cij < ck`. (2.21)

The set

{(rij , cij), 1 ≤ i < j ≤ d} ⊂ R2 (2.22)

we will call the reversion diagram.

See Figure 2.1 for some very simple reversion diagrams. Those are for illus-
trating purposes and are not based on real data. Figure 2.5 contains a reversion
diagram based on real world data.

Investigating reversions is a way to investigate the difference between the
extremal dependence and the non-extremal dependence of components of X
that falls in none of the pitfalls described above.

Finding reversions is straightforward in theory. Either we simply search
the finite set {(i, j, k, `), 1 ≤ i, j, k, ` ≤ d} for reversions or we plot the rever-
sion diagram. If the points of the reversion diagram can be connected with a
monotonously increasing curve, as in the top diagram of Figure 2.1, there are
no reversions. If not, every instance where one point is to the bottom right of
another point stands for a reversion. In the bottom diagram of Figure 2.1 we
can see this between the two points with the respective x-coordinates 0.4 and
0.6.

In practice however we can only plot

{(r̂ij , ĉk`) : 1 ≤ i, j, k, ` ≤ d} ⊂ R2, (2.23)

where r̂ and ĉ are estimators for the true values. An example of this can be
seen in Figure 2.5.

While an individual instance of where (2.20) and (2.21) are fulfilled can
be interesting, from a data analysis point of view there is no deeper structure
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Figure 2.1: Very simple exemplary reversion diagrams.
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than ’we have found this instance in our data’. But the collection of all those
instances should be investigated with methods of data analysis for the following
reasons:

R.1 The instances are set in four dimensions (2 pairs of indices), which is hard
to visualize.

R.2 There might be too many instances to investigate separately

R.3 Individual reversions might be the result of estimation errors.

R.4 Our goal might be to find the cause of those instances (e.g. geographic fea-
tures with a strong effect on regular dependence but no effect on extremal
dependence) instead of cataloging the individual instances.

The very last point is something that occured to us in our introductory
example. Planes can fly straight above uneven terrain, while train tracks are
seldom constructed ’as the crow flies’. One way to look for such geographic
features is the following: We will do a principal component analysis of the
matrix R and a principal component analysis of the matrix C and visualize the
result side by side (for the details of the visualization see Example 16 and for
a concrete case see Figure 2.8). Differences in the visualization of this parallel
principal component analysis will give hints to the underlying effect that causes
reversions. The mathematics behind that we will explain below:

Let λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 be the eigenvalues of the matrix R = (rij)1≤i,j≤d
with corresponding eigenvectors q(h), h = 1, . . . , d, while µ1 ≥ µ2 ≥ · · · ≥
µd ≥ 0 are the eigenvalues of C = (cij)1≤i,j≤d with corresponding eigenvalue
p(h), h = 1, . . . , d.

Then we have R = Q · diag(λ1, . . . , λd) ·Qᵀ, where Q is the matrix that has
the vectors q(h) as columns. This matrix equality is equivalent to

rij =

d∑
h=1

λhq
(h)
i q

(h)
j for all 1 ≤ i, j ≤ d,

which is the same equality, just expressed as an equality of every entry of the

matrix R. So an eigenvector q(h) with q
(h)
i · q(h)

j < 0 is a negative summand
in the representantion of rij . In a visualization of an eigenvector (every single
plot of Figure 2.8) this can be seen that i has a white symbol and j has a black
symbol or vice versa. Also the negative effect on the dependence grows with the
size of the symbols in the visualization.

If we also do this for a second pair of indices (k, `) and also for the matrix
C this results in
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rij − rk` =

d∑
h=1

λh(q
(h)
i q

(h)
j − q(h)

k q
(h)
` ),

cij − ck` =

d∑
h=1

µh(p
(h)
i p

(h)
j − p

(h)
k p

(h)
` ) for all 1 ≤ i, j, k, ` ≤ d.

So if (i, j, k, `) is an instance of a reversion, then there has to be a difference
between the two sequences of eigenvectors q(h), 1 ≤ h ≤ d and p(h), 1 ≤ h ≤ d or
a difference in the two sequences of eigenvalues λh, 1 ≤ h ≤ d and µh, 1 ≤ h ≤ d
that assign weight to the eigenvectors.

Example 20. In Figure 2.8 we have done a parallel principal component anal-
ysis of the correlation matrix and the co-etremal matrix of temperature drops in
winter in Germany between 16 different weather stations and then visualized the
first three eigenvectors of each matrix. There is a noticeable difference in the
third eigenvector: For extremal dependence Sylt is seperated more strongly from
Central Germany than it is in regular dependence.

Later in Section 2.9 we will see that Sylt is also responsible for many ’isom-
etry violations’, which is a concept similar to reversions.

Isometry violations are a derivation of reversions:

Definition 15. Let j = 1, . . . , d be geographic locations with a matrix D =
(distij)1≤i,j≤d, where distij is the geographic distance between i and j. Further
let A be an arbitrary Rd×d matrix.

We will call an instance of four indices (i, j, k, `) a violation of (monotone)
isometry if they fulfill:

distij < distk` and

aij < ak`.

The set
{(dist(i,j), aij), 1 ≤ i < j ≤ d} ⊂ R2 (2.24)

we will call the (monotone) isometry diagram.

In theory finding violations of isometry is as straightforward as was find-
ing reversions. Either we search the finite set {(i, j, k, `), 1 ≤ i, j, k, ` ≤ d}
for violations or we plot the set from Equation (2.24). If the points are on a
monotonously decreasing curve, there are no violations of monotone isometry.
If not, every instance where one point is to the bottom left of another point
stands for a violation. Again we have to keep in mind that if the entries aij of
A are quantities that have to be estimated from data, then we can only plot

{(dist(i, j), âij), 1 ≤ i < j ≤ d} ⊂ R2,
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where âij are estimators for aij . Examples of isometry diagrams can be seen in
Figure 2.6.

The concept of reversion diagrams and isometry diagrams are exceedingly
simple and can be applied to any combination of pairwise quantities. However
we will not digress further from multivariate extreme value theory and continue
with a thought experiment:

Example 21. Let X = (X1, . . . , Xd)
ᵀ be a random vector of dimension d. Set

X′ = (X1, . . . , Xd′)
ᵀ, where d′ < d.

Assume that we know the correlation matrix R of X, but only the co-extremal
matrix C ′ of X′.

If we find X′ to be free of reversions, then there exists a montone function
f that fulfills

cij = f(rij) for every pair of indices (i, j) with 1 ≤ i, j ≤ d′

and we can predict the missing co-extremalities as

ĉij = f(rij) for every pair of indices (i, j) with i > d′ or j > d′.

For the validity of this prediction we refer to the thoughts about Price-
Prediction in Example 19. The main point is that the complete vector X also
has to be free of reversions, too.

We can do similar things if instead of the correlation matrix R we have a
matrix of distances D and we find the vector X′ to have a monontone isomet-
ric extremal dependence function. By that we mean there exists a monotone
function g that fulfills

cij = g(distij) for every pair of indices (i, j) with 1 ≤ i, j ≤ d′

and we can now predict the missing co-extremalities as

ĉij = g(distij) for every pair of indices(i, j) with i > d′ or j > d′.

Again the validity of this prediction depends on whether the whole vector X
has a monotone isometric dependence structure.

The scenario of Example 21 is not too farfetched. In general it takes less
data to reliably estimate dependence in regular statistics than in extreme value
statistics.
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Figure 2.2: Weather Station Locations

2.9 Weather data analysis

The previous sections featured some new concepts of exploratory extreme value
analysis (reversion diagrams, isometry diagrams, parallel principal component
analysis) and it is therefore reasonable to apply those to an example from the
real world.

Our data originates from the DWD, the German Weather Service and is
free to the public. Germany consists of 16 states and we included one weather
station per state as can be seen in illustration 2.2.

Our mathematical modelling is that for every day there is a random vector
X = (X1, . . . , X16), such that Xi is the difference between the average temper-
ature of the current day and the average temperature of the previous day at the
i-th location.

For a normal year there are 365 random vectors of this kind, but it would
not be reasonable to assume them iid. In spring there would be a bias towards
increasing temperatures and in autumn the reverse, so we can’t assume identical
distributions. If there was independence and by using telescopic sums we would
have the following equation:

Var(Tin − Ti0) = Var

 n∑
j=1

X
(j)
i

 =

n∑
j=1

Var
(
X

(j)
i

)
,

where Tin, Ti0 stand for the average temperatures at location i and at one
day we declare day zero and the n-th day after day zero. However it would not
reasonable for this quantity to approach infinity as n→∞.
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Our assumption for the data analysis is that there are two random vectors
Xwinter and Xsummer, such that if we evaluate the temperature differences during
December/January/February, we get iid observations of Xwinter by skipping at
least 5 days between. By this we mean that for example (TBerlin, Jan 2nd −
TBerlin, Jan 1st) is independent of (TBerlin, Jan 8th − TBerlin, Jan 7th).

We assume the same for Xsummer in the months of June/July/August.
The reason for choosing a lag of 6 was a look at the autocovariance functions

of the differenced data during those months, see Figure 2.3.
If Fj , j = 1, . . . , 16 are the marginal distribution functions of Xwinter and

Gj , j = 1, . . . , 16 of Xsummer respectively we also assume that the four derived
random vectors

(
1

1− Fj(Xj,winter)

)16

j=1

,

(
1

Fj(Xj,winter)

)16

j=1

,(
1

1−Gj(Xj,summer)

)16

j=1

,

(
1

Gj(Xj,summer)

)16

j=1

are in the max-domain of attraction of 4 simple max-stable random vectors with
co-extremal matrices Cup, winter, Cdown,winter, Cup,summer, Cdown, summer.

Also we have matrices Rwinter, Rsummer with entries

Rij,winter = Corr(Fi(Xi,winter), Fj(Xj,winter))

Rij,summer = Corr(Gj(Xj,summer), Gj(Xj,winter), 1 ≤ i, j ≤ 16.

And with no randomness we also have the matrix D, where the entry Dij

stands for the distance between weather station i and weather station j.
See Figure 2.4 for which of these quantities measures the strength of which

phenomenon.
The purpose of this data analysis is to illustrate the exploratory approaches

to multivariate extreme value theory described in Section 2.7 and Section 2.8.
Consequently any claim about German Weather announced in this section is
not valid unless the assumptions are checked more rigorously.

The correlation matrices were measured with Spearman’s rank correlation,
the co-extremalities with the local threshold approach as described in Section
3.4.

So one instance of an reversion diagram would be in Figure 2.5. With the 6
different matrices we can potentially plot

(
6
2

)
= 15 different reversion diagrams.

To not get overwelmed we simply plot the isometry diagrams (see Figure 2.6).
The extreme temperature shifts (both ups and downs) in winter are of interest,
because in those two diagrams there are many outliers above and below the cen-
tral diagonal clouds, which is a strong violation of isometry. We will investigate
this violation further. We use the same diagram type, but instead of plotting
one point per pair of location we plot an ASCII-symbol that indicates the rela-
tive positions on the map (a little horizontal bar when they are east/west from
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Figure 2.3: Autocorrelation of Temperature differences
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Phenomenon
Season

Winter Summer

increasing/decreasing temperatures at location i go
together with increasing/decreasing temperatures at
location j

Rij,winter Rij,summer

extreme increases of temperature at location i go to-
gether with extreme increases of temperature at lo-
cation j

Cij,up,winter Cij,up,summer

extreme decreases of temperature at location i go
together with extreme decreases of temperature at
location j

Cij,down,winter Cij,down,summer

Figure 2.4: Dependency measures and corresponding phenomena

Figure 2.5: An example of a reversion diagram

one another, a little vertical bar when they are north/south from one another,
and two diagonal symbols for northwest/southeast and northeast/southwest).
The result is shown in Figure 2.7. A careful inspection reveals the outliers to
the top right of the data cloud are predominantly east/west pairs, while none
of the outlieres to the bottom left are. This indicates that a distance along
the north/south axis reduces the extremal dependence more than the same dis-
tance but along the east/west axis. For the sake of illustration we will also
apply parallel principal component analysis on the matrices Cij,down,winter and
Rwinter.

The third eigenvector of the winter-correlation makes a clean split between
weather stations of the east and weather stations of the west. The third eigen-
vector of the winter-co-extremality however makes a split between the weather
stations of the east and the weather stations of the north-west with a strong
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Figure 2.6: Isometry diagrams

Figure 2.7: Isometry diagram with directions
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Figure 2.8: Parallel Principal Component Analysis
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Figure 2.9: Isometry diagrams where pairs (Sylt, . . . ) are marked with an x

emphasis on the island Sylt.
To investigate this further we will the isometry diagrams of winter-co-extremality

again, but this time we highlight the points, where Sylt is involved. This results
in the diagrams in Figure 2.9.

We can immediately see that Sylt is responsible for almost all outliers to the
bottom left of the data clouds. But keep in mind that removing Sylt from the
data analysis would not change the fact that most pairs of locations that are
east/west are to the top right of the data clouds in Figure 2.7.

We have used the exploratory tools of the previous sections to get the fol-
lowing results: The difference of temperature from one day to the other has a
positive spatial correlation in Germany. The correlation becomes weaker the
further two places are apart. The same holds for co-extremality, but in winter
you have to go farther east or west to experience the same co-extremality as
you would experience from going north or south. The island Sylt is responsible
for the strongest cases of isometry violation, but not all of them.
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Chapter 3

Multivariate
peaks-over-threshold
statistics

We have seen in Chapter 1 that if X is in the max-domain of attraction of some
other random vector, then there are quantitites H = E(h(Z))) that govern the
joint appearance of extremes in different components of X. Example 14 and the
whole of Chapter 2 give applications for when we know those quantities. But in
practice we have to estimate those and that is what this chapter is all about.

Section 3.1 introduces some non-parametric estimators for those quantitites.
What these estimators have in common that we have to pick a parameter k,
such that n/k is our threshold for making the distinction between extreme and
non-extreme observations. Picking a suitable k is a non-trivial task: Literature
references are given at the end of Section 3.1 for how other authors approach
this problem in the multivariate case. The author’s personal approach is stated
in the parts denoted by ’threshold strategy’. It is not about finding optimal
solutions, but solutions that fall into a tolerable level of inaccuracy.

Section 1.5 has told us that the Rosetta Stone theorem is rarely applicable
without marginal transformations. The ’direct estimators’ from Section 3.1 do
not cover this, but we can extend them to consistent ’indirect estimators’ in
Section 3.2. We also cover threshold strategies for those cases.

The consistency of the indirect estimators is proven in Section 3.3. This sec-
tion also contains a valuable observation for how the estimation of the margins
affect the behavior of D-norm estimators.

Section 3.4 introduces the concept of local and global thresholds. A pair of
examples shows that local thresholds are neither superior to global thresholds
nor inferior, but an argument is made why it is more reasonable to use local
thresholds, especially in high dimensions.

The split-and-merge-procedure presented in Section 3.5 splits up the sample
into different blocks and then evaluates the estimators on each bin separately.
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This allows us to investigate the inherent variability of the estimators to produce
confidence intervals and to check if our data is really iid.

The chapter concludes with Section 3.6, which features a simulation study to
approach some open problems in estimation and statistical inference of extremal
dependence structure.
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3.1 Direct estimators and threshold strategies

When a random vector X fulfills one of the equivalent statements of the Rosetta
Stone theorem, then its multivariate tail-behavior can be characterized by the
values E(h(Z)), where Z is a corresponding D-norm generator.

But how can E(h(Z)) be estimated from iid observations X(1), . . . ,X(n)?
The Rosetta Stone theorem motivates two possbilities, which we introduce

in Definition 16 and Definition 17. Both of them fall under the broad term
peak-over-threshold approach, as they rely on observations that exceed some
kind of threshold.

For the sake of completeness we will not forget that there is another promi-
nent estimation approach in extreme value theory, the so-called block-maxima
approach, which we will briefly cover in Example 26 at the end of this section.

Definition 16. The following procedure results in what we will call the structure-
variable estimator for H := E(h(Z)).

1. Choose a number k = k(n), such that t = n/k is a large threshold.

2. Our estimator is Ĥ = 1
k

∑n
i=1 1h(X(i))>n/k.

The motivation for this estimator is H = limt→∞ t · P (h(X) > t) and the
following approximations:

H ≈ n

k
· P (h(X) > n/k) ≈ n

k
· 1

n

n∑
i=1

1h(X(i))>n/k =
1

k

n∑
i=1

1h(X(i))>n/k.

The estimator follows a rescaled binomial distribution and has the following
bias:

E(Ĥ)−H =
n

k
· P (h(X) > n/k)−H, (3.1)

which is a function of the threshold n/k and which converges to 0 as n/k →∞.
The variance of the estimator turns out to be:

Var(Ĥ) =
1

k
·
(n
k
· P (h(X) > n/k)

)
· (1− P (h(X) > n/k))

=
1

k
· (H + Bias) · (1− P (h(X) > n/k)),

(3.2)

which on the long run behaves like H
k .

Unfortunately without further assumptions on how the bias depends on n/k
we can’t minimize the mean squared error MSE with respect to k to find the
’best’ value of k, which would look like the following:

kbest(n) = arg min
k

MSE(n, k).
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Knowing the bias in advance is not a realistic assumption. We need another
strategy. For that it is important to recall the notation hmax in Definition 4 and
Corollary 2.

Threshold Strategy 1 (Direct structure-variable estimator). When choosing
the value for k in the structure-variable estimator for H, there are two conflicting
interests: On the one hand n/k has to be high so the bias is low. On the other
hand k has to be high, because even if the estimator hits the true value in mean
the variance is still proportional to 1/k.

One solution to this dilemma is the following: We should figure out what
variance for the estimator is tolerable in our practical situation and call it Vartol
and then choose k = hmax

Vartol
. By choosing a k as low as we can tolerate it in terms

of variance we are doing our best to diminish the bias.

The Rosetta Stone theorem motivates another estimator for H. Because
H = E(h(Z)) is the integral of a probability distribution, we can estimate it as
an arithmetic mean. The D-norm generator Z is an abstract object, but (vi) of
the Rosetta Stone theorem indicates that we can treat the angular components
of extreme observations as if they were observations of a generator Z of the
underlying D-norm.

Definition 17. The following procedure results in what we will call the peaks-
over-threshold estimator for H := E(h(Z)).

1. Determine the radii ri := (X
(i)
1 + · · ·+X

(i)
d )/d

2. Choose a number k = k(n), such that t = n/k is a large threshold.

3. Determine the set M := {i : 1 ≤ i ≤ n, ri > t}.

4. Our estimator is Ĥ := 1
|M |

∑
i∈M h

(
X(i)

ri

)
Let’s investigate the behavior of this estimator:

Theorem 11. Let X(1), . . . ,X(n) be iid random vectors on [0,∞)d, let k be
an arbitrary positive number and let h be an arbitrary non-negative, continuous
function that is homogeneous of order 1. If we set Ĥ as in Definition 17, then
we have

E
(
Ĥ
∣∣∣ |M | = m

)
= E

(
h

(
X(1)

r1

)∣∣∣∣∣ r1 > n/k

)
(3.3)

Var
(
Ĥ
∣∣∣ |M | = m

)
=

1

m
·Var

(
h

(
X(1)

r1

)∣∣∣∣∣ r1 > n/k

)
≤ |hmax − hmin|

4m
(3.4)

for every m ≥ 1, where hmax and hmin are notations from Definition 4.
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Proof. Let Pn/k be the conditional distribution of h
(

X(1)

r1

)
under the condition

r1 > n/k and let h̃1, . . . , h̃n be iid random variables following Pn/k, which also

are independent of the sample X(1), . . . ,X(n). By putting

hi =

{
h
(

X(i)

ri

)
if ri > t

h̃i else

for i = 1, . . . , n we end up with iid random variables (hi)i=1,...,n following the dis-
tribution Pn/k, which are independent of the indicator functions (1ri>t)i=1,...,n.
Also we have the equation

Ĥ =
1

|M |

n∑
i=1

h

(
X(i)

ri

)
· 1ri>t =

1

|M |

n∑
i=1

hi · 1ri>t

because whenever there is a difference between h
(

X(i)

ri

)
and hi, the indicator

function 1ri>t becomes 0.
Now let m be an arbitrary positive integer. Then we get

E
(
Ĥ
∣∣∣ |M | = m

)
· P (|M | = m) = E

(
Ĥ · 1|M |=m

)
=

1

m

n∑
i=1

E(hi · 1ri>t · 1|M |=m)

=
1

m

n∑
i=1

E(hi) · E(1ri>t · 1|M |=m)

= E(h1)E

(
n∑
i=1

1ri>t/m · 1|M |=m

)
= E(h1)E

(
|M |/m · 1|M |=m

)
= E(h1)E(1|M |=m) = E(h1) · P (|M | = m),

which shows Equation (3.3). We will also evaluate the variance of Ĥm. For
that we have to keep in mind that E(X2) = Var(X) + E(X)2 for every square
integrable random variable X.

We evaluate the following:
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E
(
Ĥ2
∣∣∣ |M | = m

)
· P (|M | = m) = E

(
Ĥ2 · 1|M |=m

)
(a)
=

1

m2

∑
1≤i,j≤n

E
(
hi · hj · 1ri>t · 1rj>t · 1|M |=m

)
(b)
=

1

m2

∑
1≤i,j≤n

E(hi · hj) · E
(
1ri>t · 1rj>t · 1|M |=m

)
(c)
=

1

m2

 ∑
1≤i,j≤n

E(hi) · E(hj) · E(1ri>t · 1rj>t · 1|M |=m) +

n∑
i=1

Var(hi) · E(1ri>t · 1|M |=m)


(d)
=E(h1)2 · E

 ∑
1≤i,j≤n

1ri>t · 1rj>t/m2 · 1|M |=m

+
Var(h1)

m
· E

(
n∑
i=1

1ri>t/m · 1|M |=m

)

=E(h1)2 · E(|M |2/m2 · 1|M |=m) +
Var(h1)

m
· E(|M |/m · 1|M |=m)

=

(
E
(
Ĥ
∣∣∣ |M | = m

)2

+
Var(h1)

m

)
· P (|M | = m).

In step (a) we simply evaluated the square of a single sum as a double sum.
For (b) we used that every random variable that depends on the hi, i = 1, . . . , n
(including hi · hj) is independent from every random variable that depends on
the indicator function 1ri>t, i = 1, . . . , d (including (1ri>t · 1rj>t · 1|M |=m). In
step (c) we used that

E(hihj) =

{
E(h1)2 if i 6= j

E(h1)2 + Var(h1) if i = j.

Step (d) simply uses the linearity of the expected value several times.
All those steps together imply that the variance of the conditional distribu-

tion of the estimator (the condition is |M | = m) is equal to Var(h1)
m .

Note that we did not derive a closed expression for the variance of Ĥ. How-
ever the term Var(h1) is bounded by (hmax−hmin)2/4, so when we evaluate the

point estimator Ĥ we get |M | as a side product and[
Ĥ − 3 · hmax − hmin

2
√
|M |

, Ĥ + 3 · hmax − hmin

2
√
|M |

]
is a confidence interval for the expected value of the estimator with the 3σ rule
derived from Chebyshev’s inequality (see also Section 3.5). In the proof of the
previous theorem we can see that the bias is equal to E(h1)−H which according
to the Rosetta Stone theorem together with the Portmanteau lemma converges
to 0 as the threshold n/k converges to ∞.
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Also according to the Rosetta Stone theorem the probability P (ri > n/k) ≈
k/n · E((Z1 + · · · + Zd)/d) = k/n, so the value of |M | should be somewhere
around k as n/k →∞.

Threshold Strategy 2 (Direct peaks-over-threshold estimator). When choos-
ing the value for k in the peaks-over-threshold estimator for H, there are two
conflicting interests. On the one hand n/k has to be high, so the bias is low.
On the other hand k should be high, so |M | hits large values with increased
probability, which reduces the conditional variance.

One solution to this dilemma is the following: We should figure out what
variance of the estimator is tolerable in our practical situation and call it Vartol

and the choose k = (hmax−hmin)2

4·Vartol
. If we then evaluate the estimator and it turns

out |M | ≥ k then we are fine. If not, we can ask ourselves, if (hmax−hmin)2

4·|M | is

still a tolerable variance.

Threshold strategies other authors used in multivariate extremes include the
following:

Example 22. Jeon and Smith (2012) included a short discussion about thresh-
olds. Their contribution was that for a given model you can do a simula-
tion study to find the threshold that minimizes the Mean-Squared-Error, but
concluded that in general finding the optimal threshold (with respect to Mean-
Squared-Error) is an open problem.

Example 23. Einmahl et al. (2009) approached to threshold choice problem
for estimating ‖x‖D = limt→∞ t · P (maxj=1,...,d |xj |Xj > t) with a structure-

variable estimator ‖̂x‖D in the following way: Instead of minmizing the true
Mean Squared Error

E
((
‖̂x‖D − ‖x‖D

)2
)
,

with respect to the underlying threshold n/k, they suggested minizing

E
((

2 · ‖̂x‖D − ‖̂2 · x‖D
)2
)

with a bootstrap procedure.

Example 24. Davis and Wan (2019) present an algorithm for finding a thresh-
old. The basis for this is a result similar to Equation (1.5) in the Rosetta Stone
theorem, which says that for increasing thresholds t = n/k the angular compo-
nent X

‖X‖ ’becomes’ independent from the radial component ‖X‖. The algorithm

checks if this holds for different threshold t and chooses k accordingly.

Example 25. Fan et al. (2015) go into a similar direction. For a given com-
bination of

1. a threshold t and
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2. a model of how the data should behave above t

they introduce a test-statistic T to test the Null-hypothesis: ’Above t the data fol-
lows this model.’ They suggest p-values of this test should then be incoroporated
into the choice of the threshold.

Ultimately the purpose of thresholds is to divide the data into an extreme
and a non-extreme part. This sharp division is avoided, when we only investigate
maxima:

Example 26 (Direct block-maxima). Let X be a random vector that fulfills
one of the equivalent statements of the Rosetta Stone theorem. Then there is a
simple max-stable random vector Y with

Mn :=

[
1

n
· max
i=1,...,n

X
(i)
j

]d
j=1

D→ [Yj ]
d
j=1.

If we have N = n ·m independent samples X(1), . . . ,X(N), we can split this
sample into m blocks of size n, e.g. the first block consists of X(1), . . . ,X(n),
the second one consists of X(n+1), . . . ,X(2n), etc. For each block we get one
observation of the rescaled block-maxima vector Mn.

If we treated those iid observations of Mn as if they were iid observations of
Y to infer the distribution of Y, we end up with what we will call the multivariate
block-maxima method (see also Example 29).

There are no thresholds in the block-maxima methodology. So it looks like
we could have saved our effort of thinking about threshold strategies by only
using the block-maxima method. But what about choosing block size n and
number of blocks m? What’s a reasonable choice for those? The higher n, the
closer the distribution of Mn is to the true distribution Y. The higher m, the
more iid observations we have for inference. But m ·n is bounded by our sample
size N . Suddenly we have two conflicting interests when choosing n and m and
have to start with the strategic thinking again. This thesis is not about block-
maxima methods, so we won’t do this. But we will to block-maxima again in
Example 29.
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3.2 Indirect estimators

In the previous section we only investigated random vectors X that fulfill one
of the equivalent statements of the Rosetta Stone theorem. In Section 1.5 we
learned that this is a rather restricting assumption. A much weaker assumption
is that X has continuous marginal distributions Fj(x) = P (Xj ≤ x), j = 1, . . . , d
and that the transformed random vector

X′ =

(
1

1− Fj(Xj)

)d
j=1

fulfills one of the equivalent statements of the Rosetta Stone theorem. As the
transformation x 7→ 1

1−Fj(x) is monotonous the underlying D-norm governs the

joint appearance of extremes in different components of X′, but also the joint
appearance of extremes in different components of X.

Our new task is to estimate the value H = limt→∞ t · P (X′ > t) for non-
negative, continuous functions that are homogeneous of order 1 from iid obser-
vations X(1), . . . ,X(n) of X without further assumptions.

If we knew the functions Fj in advance we could transform the iid observa-

tions X(1), . . . ,X(n) of X′ to

(X′)(i) :=

(
1

1− Fj(X(i)
j )

)d
j=1

,

which results in iid observations (X′)(1), . . . , (X′)(1) of X′. We can then use
the direct estimators from the previous sections. But in general we don’t know
Fj and have to use surrogates F̂j . This could for example be the empirical
distribution function of Xj or it could be a parametric model fitted to the
observations of Xj .

We can still apply the transformation

(X′′)(i) :=

(
1

1− F̂j(X(i)
j )

)d
j=1

, (3.5)

and evaluate the direct estimators on those observations.

Definition 18. The following procedure results in what we will call the indirect
structure-variable estimator for H := E(h(Z)).

0. Transform all observations with Equation (3.5). For the sake of notation

we will keep using the term X(i) for the transformed data.

1. Choose a number k = k(n), such that t = n/k is a large threshold.

2. Our estimator is Ĥ = 1
k

∑n
i=1 1h(X(i))>n/k.
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Definition 19. The following procedure results in what we will call the indirect
peaks-over-threshold estimator for H := E(h(Z)).

0. Transform all observations with Equation (3.5). For the sake of notation

we will keep using the term X(i) for the transformed data.

1. Determine the radii ri := (X
(i)
1 + · · ·+X

(i)
d )/d

2. Choose a number k = k(n), such that t = n/k is a large threshold.

3. Determine the set M := {i : 1 ≤ i ≤ n, ri > t}.

4. Our estimator is Ĥ := 1
|M |

∑
i∈M h

(
X(i)

ri

)
Note that if F̂j = Fj holds for all j = 1, . . . , d, the indirect estimator is the

direct estimator applied to the true realizations of X′ and inherits all the proper-
ties from the previous section. But (X′′)(1), . . . , (X′′)(n) are neither guaranteed
to be iid, nor to follow the same distribution as X′. This makes investigating
the properties of the indirect estimators especially hard.

But the following result shows us that consistency is achieved under ex-
tremely mild assumptions.

Theorem 12. (Consistency of various estimators) Let X be a random vector
with continuous marginal distribution functions Fj(x) = P (Xj ≤ x), x ∈ R, j =
1, . . . , d such that X′ := ( 1

1−F1(X1) , . . . ,
1

1−Fd(Xd) )ᵀ fulfills one of the statements

of the Rosetta Stone theorem and let h : [0,∞)d → [0,∞) be continuous and
homogeneous of order 1. Then both the indirect structure-variable estimator
in Definition 18 and the indirect peaks-over-treshold estimator in Definition 19
produce a consistent sequence of estimators for the quantitiy

H = lim
t→∞

t · P (h(X′) > t)

under the condition that the sample consists of iid repetitions of X, the sequence
k = k(n) fulfills n/k → ∞ and k → ∞ and for every j = 1, . . . , d the random

function F̂j always realizes as an montonously increasing, right continuous func-
tion that fulfills

n

k
· (1− Fj) ◦ (1− F̂j)(−1)

(
k

n
· x
)
→ x in probability as n→∞ (3.6)

for all x > 0.

Those assumptions on F̂j are really mild as we will see in the following
lemma:

Lemma 18. Let F be a continuous distribution function. Then for every iid
sample of size n the empirical distribution function F̂ is monotonously increas-
ing, right continuous and fulfills the limit in Equation (3.6) for all x > 0 as long
as k = k(n) is a sequence with k(n)→∞ and k(n)/n→ 0 as n→∞.
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Proof. Let x be an arbitrary positive real number. Further let (Xi)i∈N0 be
sequence of iid random variable with distribution function F . Because F is
continuous we can assume without loss of generality that there are not ties in
the sequence. Now let F̂ be the empirical distribution function of the sample
X1, . . . , Xn (note that the i = 0 is excluded).

For all n that are large enought the term k
n · x falls into the interval (0, 1)

and we get

(1− F̂ )(−1)

(
k

n
· x
)

= Xn−[k·x],n,

the n− [k · x]-th order statistic. We further get

(1− F )(Xn−[k·x],n) = P (X0 > Xn−[k·x],n)

for every realization of X1, . . . , Xn. This probability is

([kx] + 1) · n!

(n+ 1)!
=

[kx] + 1

n+ 1

for combinatorical reasons: There are (n + 1)! permutations of the indices
{0, . . . , n} and the order of the iid sequence X0, . . . , Xn corresponds to one
of those permutations without preference. In ([kx]+1) ·n! cases the indix 0 falls
in one of the last [kx] + 1 slots.

If we now multiply this probability with n
k we get

n

k
· [kx] + 1

n+ 1
=

n

n+ 1︸ ︷︷ ︸
→1

· [kx] + 1

k︸ ︷︷ ︸
∈[x,x+2/k]

→ x

as n→∞ and k(n)→∞. This can be done for all x > 0.

We will prove Theorem 12 in the next section. We will now have a look
at the role of the parameter k for indirect estimators. For Theorem 12 both k
and n/k have to converge to infinity as n increases. In a finite-sample world (a
world where the sample size n is constant) this obviously poses two conflicting
interests. Again we need threshold strategies for picking k. We suggest the
following strategy:

Threshold Strategy 3. (Indirect estimators) Just like in Strategies 1 and 2 we
should first realize what variance is tolerable in the practical situation and vall
it Vartol. For the indirect structure-variable estimator we should only consider
values

k ≥ hmax

Vartol

and for the indirect peaks-over-threshold estimator we should only consider val-
ues

k ≥ (hmax − hmin)2

4 ·Vartol
.

94



The rationale behind this is the following: The indirect estimators are essen-
tially direct estimators after applying the transformation

(xj)
d
j=1 7→

 1

(1− F̂ ) ◦ (1− F )(−1)
(

1
xj

)
d

j=1

(3.7)

to every observation. If there was a value k, such that the direct estimator does
not fulfill the needs of our practical application, but the indirect estimator does,
then this would imply the distortion in Equation (3.7) somehow works in our
favor. This is not impossible (see also Example 27 below), but it definitely not
an effect we should count on without further explaination.

The following example givese a case where the indirect estimator is better
than the direct estimator, so a case where distortion works in our favor.

Example 27. Let X = (X,X)ᵀ be a bivariate random vector such that X has
a continuous distribution function F . ( 1

1−F (X1) ,
1

1−F (X2) ) fulfills the equivalent

statements of the Rosetta Stone theorem with the D-norm generator Z = 1
almost surely. We then want to investigate the structure-variable estimator for
h(z1, z2) = max(z1, z2). The true value is H = E(h(Z)) = 1.

So let X(i), i = 1, . . . , n be iid copies of X. Consequently X(i) = (X(i), X(i))ᵀ

are iid copies of X. Further let k be a positive integer. The direct structure-
variable estimator turns out to be

1

k

n∑
i=1

1
h

(
1

1−F (X(i))
, 1

1−F (X(i))

)
>n/k

=
1

k

n∑
i=1

1F (X(i))>1− kn
.

This is a rescaled sum of iid Bernoulli random variables with parameter k
n .

If we instead use the empirical distribution functions F̂j , j = 1, 2 it first turns

out that F̂1 = F̂2 and also with probability 1 there are no ties and therefore

{F̂j(X(i)) : i = 1, . . . , n} = {i/n : i = 1, . . . , n}

almost surely by the nature of the empirical distribution function. The indirect
estimator (that uses the empirical marginal distributions functions) estimator
turns out to be

1

k

n∑
i=1

1
h

(
1

1−F (X(i))
, 1

1−F (X(i))

)
>n/k

=
1

k

n∑
i=1

1F̂1(X(i))>1− kn

=
1

k
|{i/n : i = 1, . . . , n, i/n > 1− k/n}| = 1

almost surely. Both estimators have no bias, but by switching from the direct
estimator to the indirect estimator the variance was reduced to 0.

Example 27 fits well into another result from literature.
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Example 28. Bücher (2014) compared the behavior of two possible estimators
for ∥∥∥∥(z1

z2

)∥∥∥∥
D

= lim
t→∞

t · P (max(X1 · |z1|, X2 · |z2| > t).

In our terminology those estimators were the direct and the indirect structure-
variable estimators, where the indirect estimator uses the empirical marginal
distribution functions.

Under certain conditions on X he found out that both estimators estimators
are asymptotically normal, but the asymptotic variance of the indirect estimator
is always less or equal than the the asymptotic variance of the direct estimator.

This effect holds for all z ∈ R2.

We will return to this example in Threshold Strategy 4.
In this section we switched from direct to indirect estimators because the

assumption that X fulfills the equivalent statements of the Rosetta Stone the-
orem is too restricting. So the block-maxima methods from Example 26 also
needs to adapt to our weaker assumptions:

Example 29 (Indirect block-maxima method). Let X be a random vector with
continuous marginal distribution functions Fj , j = 1, . . . , d. If the random vec-

tor
(

1
1−F1(X1) , . . . ,

1
1−Fd(Xd)

)ᵀ
fulfills one of the equivalent statements of the

Rosetta Stone theorem, then there is a simple max-stable random vector Y with

Mn :=

[
1

n
· max
i=1,...,n

1

1− Fj(X(i)
j )

]d
j=1

D→ [Yj ]
d
j=1

as n→∞, where the convergence is meant in distribution. If we have N = n ·m
independent samples X(1), . . . ,X(N), we can split this sample into m blocks of
size n, e.g. the first block consists of X(1), . . . ,X(n), the second one consists of
X(n+1), . . . ,X(2n), etc. For each block we get one observation of the rescaled
block-maxima vector Mn.

If we knew the marginal distribution functions Fj in advance, we could apply
the determistic transformation

(x1, . . . , xj)
ᵀ 7→

(
1

1− F1(X1)
, . . . ,

1

1− Fd(Xd)

)ᵀ

and have independent blocks to use the direct block-maxima method from Ex-
ample 26 on. But in general those marginal distributions have to be estimated
themselves with F̂j (e.g. the empirical marginal distribution function). After
applying the random transformation

(x1, . . . , xj)
ᵀ 7→

(
1

1− F̂1(X1)
, . . . ,

1

1− F̂d(Xd)

)ᵀ

the blocks that are no longer guaranteed to be independent.
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If we still proceed as in Example 26 this results in what we will call the indi-
rect block-maxima method. For limit results see the following literature: Cooley
et al. (2009) for the bivariate case and an introduction to the λ-Madogram,
Bücher and Segers (2014) for a limit results in more than 2 dimensions and
also Bücher et al. (2018) as a most recent contribution. All those papers work
with empirical copula processes, which means that observations (X1, . . . , Xd)

are replaced by (F̂1(X1), . . . , F̂d(Xd)), where F̂j are the empirical distribution
functions.
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3.3 Proof of consistency for various estimators

Let X be a random vector with continuous marginal distributions Fj , j =
1, . . . , d such that X′ := ( 1

1−F1(X1) , . . . ,
1

1−Fd(Xd) )ᵀ fulfills one of the statements

of the Rosetta Stone theorem. Further let ν be the measure with

lim
t→∞

t · P (X′ ∈ t ·A) = ν(A)

for every measurable continuity set M .
Estimating the values ν(A) for different sets A is an important task as not

only we can express the underlying D-norm by∥∥∥∥1

z

∥∥∥∥
D

= ν([0, z){)

for every z > 0 (see Lemma 1), but we also have

H := lim
t→∞

t · P (h(X′) > t) = ν({x : x ≥ 0, h(x) > 1})

for every non-negative, continuous function h that is homogeneous of order 1.
So the complete tail-dependence structure given in the Rosetta Stone theorem
is hidden in the values ν(A), the measure ν assigns to certain sets A.

For any pair (n, k) of integers and any measurable continuity set A we will
define a non-parametric estimator for ν(A) by

νn,k(A) :=
1

k
·
∣∣∣{i : 1 ≤ i ≤ n,

(
(X′′)(i)

)ᵀ
∈ n

k
·A
}∣∣∣ , (3.8)

where X(i), i = 1, . . . , n are iid copies of X, which are transformed to (X′′)(i), i =
1, . . . , n with Equation (3.5).

For convencience let us write k = k(n) as a function of n and put

νn := νn,k(n)

The following result is well known and it is quite important as the value
ν(A) is equal to

∥∥ 1
z

∥∥
D

, the underlying D-norm evaluated at the position z > 0.

Lemma 19. Under the conditions of Theorem 12 and under the condition that
F̂j , j = 1, . . . , d are chosen as the empirical distribution functions νn(A) is a
consistent estimator of ν(A), whenever A is a set of the form

A = {x : x ∈ [0,∞)d, there is an index j with xj ≥ zj}, (3.9)

where z is a vector in (0,∞)d.

The proof for the bivariate case can be looked up in the book by de Haan
and Ferreira (2006)[Theorem 7.2.1], but a careful inspection of it reveals that it
can be repeated almost line by line for dimension d > 2 and therefore Lemma
19 holds.

We will now show a slightly more general result than Lemma 19, which allows
us to use different marginal estimators than the empirical marginal distribution
function without changing the fact that the resulting estimator is consistent.
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Lemma 20. Under the conditions of Theorem 12 νn(A) is a consistent estima-
tor of ν(A), whenever A is the set in Equation (3.9) for a vector z ∈ (0,∞)d.

Proof. Let Fj be the true distribution function of the j-th margin, while F̂j is
the surrogate the indirect estimator uses. Then we have

1

1− F̂j(Xj)
≥ n

k
· z

⇔ 1− F̂j(Xj) ≤
k

n
· 1/z

⇔ 1− Fj(Xj) ≤ (1− Fj) ◦ (1− F̂j)(−1)

(
k

n
· 1/z

)
⇔ 1

1− Fj(Xj)
≥ n

k
· 1
n
k (1− Fj) ◦ (1− F̂j)(−1)

(
k
n · 1/z

)
for all z > 0. For any zj > 0 we define the random variable ẑj by

ẑj :=
1

n
k (1− Fj) ◦ (1− F̂j)(−1)

(
k
n · 1/zj

) , (3.10)

which implicitely depends upon n and k = k(n) and which converges in proba-
bility to zj as n→∞ because we required Equation (3.6) to hold.

So let z = (z1, . . . , zd)
ᵀ be a vector in (0,∞)d and let the set A be defined

by Equation (3.9). Then we have

νn(A) =
1

k

n∑
i=1

1

(
there is an index j with

1

1− F̂j(X(i)
j )
≥ n

k
· zj

)

=
1

k

n∑
i=1

1

(
there is an index j with

1

1− Fj(X(i)
j )
≥ n

k
· ẑj

)

by virtue of the previous equivalences. The estimator∥̂∥∥∥ 1

z′

∥∥∥∥
D

:=
1

k

n∑
i=1

1

(
there is an index j with

1

1− Fj(X(i)
j )
≥ n

k
· z′j

)
︸ ︷︷ ︸

iid indicator functions

(3.11)

is a consistent estimator of
∥∥ 1
z′

∥∥
D

for every z′ > 0. The argument by de Haan
and Ferreira (2006)[Theorem 7.2.1], where they used the characteristic functions

can be adapted to more than 2 dimensions to prove this. Alternatively
∥̂∥ 1
z′

∥∥
D

is a direct structure-variable estimator on the data transformed with the true
marginal distribution function. Bias and variance are covered in Equation (3.1)
and (3.1): They converge to 0 and one could use Chebyshev’s inequality (see
Section 3.5) to show consistency.
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The indirect structure-variable estimator turns out to be

νn(A) =

∥̂∥∥∥1

ẑ

∥∥∥∥
D

. (3.12)

It randomly chooses a ẑ close to the true z and then evaluates the true direct
estimator not at 1

z but at 1
ẑ .

To show that this is a consistent estimators, we will resort to an ε-argument,
which essentially does the same as the local uniform convergence argument by
de Haan and Ferreira (2006)[Theorem 7.2.1].

So let ε be a positive constant. We will show that the probability

P (|νn(A)− ν(A)| > 2ε) = P

(∣∣∣∣∥∥∥∥1

ẑ

∥∥∥∥
D

−
∥∥∥∥1

z

∥∥∥∥
D

∣∣∣∣ > 2ε

)
converges to 0 as n → ∞. As z′ 7→

∥∥ 1
z′

∥∥
D

is a function that is monotonous
in every component and continuous at z, we can find a z+ and z− such that
0 < z+ < z < z− and additionally[∥∥∥∥ 1

z−

∥∥∥∥
D

,

∥∥∥∥ 1

z+

∥∥∥∥
D

]
⊂
[∥∥∥∥1

z

∥∥∥∥
D

− ε,
∥∥∥∥1

z

∥∥∥∥
D

+ ε

]
.

At first we we get

P

(∣∣∣∣∣
∥̂∥∥∥1

ẑ

∥∥∥∥
D

−
∥∥∥∥1

z

∥∥∥∥
D

∣∣∣∣∣ > 2ε

)
= P

(∥̂∥∥∥1

ẑ

∥∥∥∥
D

/∈
[∥∥∥∥1

z

∥∥∥∥
D

− 2ε,

∥∥∥∥1

z

∥∥∥∥
D

+ 2ε

])

≤P

(∥̂∥∥∥1

ẑ

∥∥∥∥
D

/∈

[∥̂∥∥∥ 1

z−

∥∥∥∥
D

,

∥̂∥∥∥ 1

z+

∥∥∥∥
D

])

+P

([∥̂∥∥∥ 1

z−

∥∥∥∥
D

,

∥̂∥∥∥ 1

z+

∥∥∥∥
D

]
6⊂
[∥∥∥∥ 1

z−

∥∥∥∥
D

− ε,
∥∥∥∥ 1

z+

∥∥∥∥
D

+ ε

])

+P

([∥∥∥∥ 1

z−

∥∥∥∥
D

− ε,
∥∥∥∥ 1

z+

∥∥∥∥
D

+ ε

]
6⊂
[∥∥∥∥1

z

∥∥∥∥
D

− 2ε,

∥∥∥∥1

z

∥∥∥∥
D

+ 2ε

])
︸ ︷︷ ︸

=0

,

which implies for monotonicity reasons

P

(∣∣∣∣∣
∥̂∥∥∥1

ẑ

∥∥∥∥
D

−
∥∥∥∥1

z

∥∥∥∥
D

∣∣∣∣∣ > 2ε

)
≤P (ẑ /∈ [z+, z−])

+P

(∥̂∥∥∥ 1

z−

∥∥∥∥
D

<

∥∥∥∥ 1

z−

∥∥∥∥
D

− ε

)

+P

(∥̂∥∥∥ 1

z+

∥∥∥∥ > ∥∥∥∥ 1

z+

∥∥∥∥
D

+ ε

)
.

(3.13)
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Because ẑj converges to the true zj in probability for all j = 1, . . . , d and the
direct estimators are consistent estimators, all three probabilities on the right
hand side of Equation (3.13) converge to 0 as n→∞. Consequently νn(A) is a
consistent estimator for ν(A).

The notation in this proof already suggests that ν̂(A) estimates
∥∥ 1
z

∥∥
D

, the

underlying D-norm evaluated at the position 1
z . And it does so consistently.

Threshold Strategy 4. (Choice of marginal estimators for D-norm estima-
tion)

If we estimate the value of the D-norm∥∥∥∥1

z

∥∥∥∥ = ν(A)

using the estimator ∥̂∥∥∥1

ẑ

∥∥∥∥ = νn(A)

with the notation from the proof of Lemma 20, what estimators F̂j should we
use for the true marginal distribution functions Fj? Should we use the empirical
marginal distribution functions, which are rescaled ranks, or should we use more
sophisticated (parametric) estimators?

This is a non-trivial problem. Example 28 and the reference in there imply
that in dimension d = 2 even if we somehow picked F̂j = Fj , j = 1, 2, the true
marginal distribution functions, the resulting estimator would have an asymp-
totic variance greater or equal than the asymptotic variance of the rank-based
estimator. Intuitively any ’move’ away from ranks into the ’direction’ of true
distribution function will eventually be harmful for the variance of the estimator.

On the other hand Equation (3.13) finds an upper bound for the probability

P
(∣∣∣∥∥ 1

z

∥∥
D
−
∥̂∥ 1

ẑ

∥∥∣∣∣ > 2ε
)

.

The upper bound consists of three summands, two of which do not depend
upon the marginal estimators at all, while the remaining summand is the proba-
bility that ẑ falls into a small rectangle around the true value z. This probability
mainly depends upon how well the marginal estimators model the univariate tail
behavior (see Equation (3.10), which defines the components of ẑ).

To reduce the upper bound in Equation (3.13) it is thefore reasonable to in-

corporate more sophisticated estimators F̂j from univariate extreme value theory.

Obviously minimizing an upper bound is not the same as minizing the quan-
tity itself. Let us return to Example 27 with z = (1, 1) for a case where this is
most obvious:

If F̂j is the true distribution function Fj for every j = 1, 2, then the ẑ coin-
cides with the true z, and the probability P (ẑ ∈ [z+, z−]) is zero, the absolute
minimum. So for every ε > 0, the upper bound in Equation (3.13) is mimized

for the choice of F̂j := Fj .
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But if F̂j is chosen as the empirical marginal distribution function, then the
estimator in Example 27 is almost surely equal to the true value and therefore
the left-hand side of Equation (3.13) is equal to 0, the absolute minimum for
every ε > 0.

Estimating the values of the D-norm

∥∥∥∥1

z

∥∥∥∥
D

= E
(

max
j=1,...,d

Zj/zj

)
= lim
t→∞

t · P
(

max
j=1,...,d

Xj/zj > t

)
= ν

({
x : x ≥ 0, max

j=1,...,d
xj/zj > 1

})
for different vectors z > 0 is a very central part of multivariate extreme value
statistics, but not everything. The quantities

E(h(Z)) = lim
t→∞

t · P (h(X) > t) = ν({x : x ≥ 0, h(x) ≥ 1})

for other non-negative continuous functions h that are homogeneous of order 1
are of interest, too, as we have seen in Chapter 2.

To show the consistency of estimators for those quantitites we need some
auxiliary results. The first of those is that (νn(A))n∈N is a consistent sequence
of estimators for ν(A), whenever A is a rectangle aligned with the Cartesian
coordinate grid.

Lemma 21. νn([y, z)) is a consistent estimator of ν([y, z)) for every y ∈
[0,∞)d,y 6= 0 and z > y.

Proof. We will show that the indicator function 1[y,z) can be written as a linear
combination of certain other indicator functions. For a subset I ⊆ {1, . . . , d}
define the set AI by

AI = {x : x ∈ [0,∞)d, there is an index j ∈ I with xj ≥ yj
or there is an index j /∈ I with xj ≥ zj}

Also define I+ := {j : yj > 0} as the set of indices, where y is positive. Note
that I+ is not empty. We will prove that the following equation holds for every
x ∈ [0,∞)d:

1[y,z)(x) =
∑
I⊆I+

(−1)|I|+11AI (x). (3.14)

For that we will investigate three cases. For the first case let us assume that
there is an index j such that xj ≥ zj . Then we have 1AI (x) = 1 for all subsets
I and thus ∑

I⊆I+

(−1)|I|+11AI (x) =
∑
I⊆I+

(−1)|I|+1 = 0,

where the second step comes from Combinatorics.
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For the second case let us assume that there is an index j such that xj < yj .
This implies j ∈ I+. Observe that the expression 1AI (x) no longer depends on
whether j ∈ I or not. Therefore we get

∑
I⊆I+

(−1)|I|+11AI (x) =
∑
I⊆I+
j /∈I

(−1)|I|+1 (1AI (x)− 1AI∪{j}(x))︸ ︷︷ ︸
=0

= 0.

For the third case let us assume x ∈ [y, z). Then because xi ≥ yi for all i,
we have x ∈ AI for all non-empty subsets I ( I+. However because xi < zi for
all i, we have x /∈ A∅. Then we get∑

I⊆I+

(−1)|I|+11AxI
(x) =

∑
∅(I⊆I+

(−1)|I|+1 = 1

again from Combinatorics.
With these three cases we have shown Equation (3.14) to hold for all x ≥ 0.

Observe that Lemma 19 applies to every set AI that appears in the sum, which
leads us to the conclusion that

νn([y, z)) =
∑
I⊆I+

(−1)|I|+1νn(AI)

is a consistent estimator for

ν([y, z)) =
∑
I⊆I+

(−1)|I|+1ν(AI).

These rectangles will be our building blocks to approximate continuous func-
tions.

Lemma 22. If f is a bounded, continuous function on [0,∞)d such that f
vanishes on a neighborhood around 0, then

∫
f dνn is a consistent estimator for∫

f dν.

Proof. Without loss of generality we can assume ‖f‖∞ := sup |f | = 1. Let
ε, δ > 0 be two arbitrary positive real number. We will show that

P

(∣∣∣∣∫ f dνn −
∫
f dν

∣∣∣∣ > 9ε

)
< 3δ (3.15)

holds for all n that are large enough.
For that purpose we will partition the set [0,∞)d into three subsets A,B and

C and integrate the function f over those sets seperately. To define those sets we
need a vector y > 0 with f(x) = 0 for all x ∈ [0,y]. Such a y exists because we
assumed f to vanish in a neighborhood around 0. Further let z > y be a vector
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with ν([0,∞)d \ [0, z)) < ε. Such a z exists because ν([0, z){) =
∥∥ 1
z

∥∥
D
→ 0 as

z→∞.
Then let us define A, B and C by

A = [0,y),

B = [0, z) \A,
C = [0,∞)d \ (A ∪B).

Firstly we have∫
A

f dνn −
∫
A

f dν =

∫
A

0 dνn −
∫
A

0 dν = 0.

Secondly

∣∣∣∣∫
C

f dνn −
∫
C

f dν

∣∣∣∣ ≤ ∫
C

‖f‖∞ dνn +

∫
C

‖f‖∞ dν = νn(C) + ν(C).

According to Lemma 19 the term νn(C) is a consistent estimator for ν(C)
and because ν(C) < ε we can assume P (|

∫
C
f dνn −

∫
C
f dν| > 3ε) < δ for all

n that are large enough.
For the set B we will assume that there exists a function g that is a linear

combination of indicator functions of rectangles of the form [x`,xu) that are
completely contained in B and the approximation

sup
x∈B
|f(x)− g(x)| · ν(B) < ε (3.16)

holds. Essentially such a g can be constructed by putting a Cartesian grid on
the set B and assigning each cell the value of f in the center of the cell. Because
f is continuous on the compact set [0, z], it is uniformly continuous on B and
it is only a matter of decreasing the maximal cell size until inequality (3.16) is
achieved.

Because of Lemma 21 we know that
∫
g dνn is a consistent estimator for∫

g dν and thus for n high enough we get P (|
∫
g dνn −

∫
g dν| > ε) < δ. Also

for n large enough we get P (νn(B) > 2ν(B)) < δ and, thus,

P

(∣∣∣∣ ∫
B

(f − g) dνn︸ ︷︷ ︸
≤‖f−g‖∞·νn(B)

∣∣∣∣ > 2ε

)
< δ (3.17)

for those n. Also Equation (3.16) implies

P

(∣∣∣∣ ∫
B

(f − g) dν︸ ︷︷ ︸
≤‖f−g‖∞·ν(B)

∣∣∣∣ > ε

)
= 0.
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Consequently we have

P

(∣∣∣∣∫
B

f dνn −
∫
B

f dν

∣∣∣∣ > 6ε

)
=P

(∣∣∣∣∫
B

f dνn −
∫
B

g dνn +

∫
B

g dνn −
∫
B

g dν +

∫
B

g dν −
∫
f dν

∣∣∣∣ > 6ε

)
≤P

(∣∣∣∣∫
B

f dνn −
∫
B

g dνn

∣∣∣∣ > 2ε

)
︸ ︷︷ ︸

≤δ

+P

(∣∣∣∣∫
B

g dνn −
∫
B

g dν

∣∣∣∣ > 3ε

)
︸ ︷︷ ︸

≤δ

+P

(∣∣∣∣∫
B

f dν −
∫
B

g dν

∣∣∣∣ > ε

)
︸ ︷︷ ︸

=0

for all n that are large enough. Ultimately we get

P

(∣∣∣∣∫ f dνn −
∫
f dν

∣∣∣∣ > 9ε

)
≤P

(∣∣∣∣∫
B

f dνn −
∫
B

f dν

∣∣∣∣ > 6ε

)
+ P

(∣∣∣∣∫
C

f dνn −
∫
C

f dν

∣∣∣∣ > 3ε

)
≤ 2δ + δ

for all n that are large enough. Because these constructions can be done for all
ε, δ > 0, the estimator is consistent.

The following lemma is essential for proving the consistency of peak-over-
threshold estimators.

Lemma 23. Let f be a continuous, bounded function and let the set D be
defined by

D := {x : x ∈ [0,∞)d, x1 + · · ·+ xd > 1}.
Then

∫
D
fdνn is a consistent estimator for

∫
D
fdν.

Proof. Without loss of generality we can assume that |f | is bounded by 1. Let
ε, δ be two positive real numbers where without loss of generality we can assume
ε ∈ (0, 1). We will show that for all n that are large enough we have

P

(∣∣∣∣∫
D

f dνn −
∫
D

f dν

∣∣∣∣ > (4d+ 2)ε

)
< δ (3.18)

Define two rescaled versions of D, D+ε and D−ε by

D+ε =

{
x : x ∈ [0,∞)d, x1 + · · ·+ xd >

1

1 + ε

}
D−ε =

{
x : x ∈ [0,∞)d, x1 + · · ·+ xd >

1

1− ε

}
.
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Note that D−ε ⊂ D ⊂ D+ε. Then we can construct functions f+ and f− on
[0,∞)d that fulfill the following properties:

• f+ and f− are continuous,

• |f+| and |f−| are bounded by 1,

• f+(x) = 0 for all x /∈ D+ε,

• f+(x) = f(x) for all x ∈ D,

• f−(x) = 0 for all x /∈ D,

• and f−(x) = f(x) for all x ∈ D−ε.

One example for such a construction is

f+(x) =


f(x) for

∑d
j=1 xj > 1

0 for
∑d
j=1 xj <

1
1+ε

f

(
x∑d
j=1 xj

)
· ((1 + ε) ·

∑d
j=1 xj − 1) else.

Note that f+ and f− coincide outside the set D+ε \D−ε and therefore

∣∣∣∣∫ f+ dν −
∫
f− dν

∣∣∣∣ ≤ ∫
D+ε\D−ε

‖f+ − f−‖∞ dν

≤ 2 · (ν(D+ε)− ν(D−ε))

= 2 ·

E

(1 + ε)

d∑
j=1

Zj

− E
(1− ε)

d∑
j=1

Zj

 = 4 · d · ε,

where Z is an arbitrary generator of the underlying D-norm and where we used
Lemma 1.

Because f− ≤ f · 1D ≤ f+ we have

∫
D

f dν ∈
[∫

f− dν,

∫
f+ dν

]
and

∫
D

f dνn ∈
[∫

f− dνn,

∫
f+ dνn

]
.

Because of Lemma 22 we have

P

([∫
f− dνn,

∫
f+ dνn

]
⊆
[∫

f− dν − ε,
∫
f+ dν + ε

])
> 1− δ
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for all n that are large enough.
In this event both

∫
D
fdν and

∫
D
fdνn are located in the interval[∫

f− dν − ε,
∫
f+ dν + ε

]
,

which has a length of at most (4d+ 2)ε. This implies Equation (3.18) for all n
that are large enough.

Lemma 24. Let h be a continuous, non-negative function on [0,∞)d that is
homogeneous of order 1 and let A = h−1((1,∞)). Then νn(A) is a consistent
estimator of ν(A).

Proof. This proof will be similar to the proof of Lemma 23. We set f = 1A. We
then have ν(A) =

∫
f dν and νn(A) =

∫
f dνn. The function f is not continuous

so we can’t apply Lemma 22 directly. But for every ε ∈ (0, 1) we can introduce
the sets

A+ε := h−1

((
1

1 + ε
,∞
))

A−ε := h−1

((
1

1− ε
,∞
))

.

We now can introduce two functions f+, f− by

f+(x) :=


1 for h(x) > 1

0 for h(x) < 1
1+ε

1+ε
ε · h(x)− 1

ε else

and

f−(x) :=


1 for h(x) > 1

1−ε
0 for h(x) < 1
1−ε
ε · h(x)− 1−ε

ε else.

Both f+ and f− are continuous and the coincide outside the set A+εrA−ε.
This leads us to

∣∣∣∣∫ f+ dν −
∫
f− dν

∣∣∣∣ =

∣∣∣∣∣
∫
A+εrA−ε

f+ − f− d ν

∣∣∣∣∣
≤ ‖f+ − f−‖∞ ν(A+ε rA−ε)

≤ 2 · (ν(A+ε)− ν(A−ε))

= 2 · (E((1 + ε) · h(Z))− E((1− ε) · h(Z))) = 4 · ε ·H,

where Z is an arbitrary generator of the underlying D-norm and H = E(h(Z)).
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Just like in the proof of Lemma 23 the constant value
∫
f dν falls into the

constant interval
[∫
f− dν,

∫
f+ dν

]
and the random value

∫
f dνn falls into the

random interval
[∫
f− dνn,

∫
f+ dνn

]
. Because the endpoints of the random

interval converge to the endpoints of the constant interval in probability we
have for all n that are high enough

P (|νn(A)− ν(A)| ≤ (4H + 2)ε)

≥P
(∫

f dνn ∈
[∫

f− dν − ε,
∫
f+ dν + ε

])
≥ (1− δ),

where we used that the inveral in the second line contains the true value ν(A)
and has a lenght of at most (4H + 2)ε.

These constructions can be done for every ε ∈ (0, 1) and every δ > 0, so
νn(A) is a consistent estimator for ν(A).

So far the integral
∫
f dνn has been treated like an abstract object and the

only thing we have investigated is the random difference between it and the
non-random integral

∫
f dν. But this will change in the following proof: We

will find the connection to the peaks-over-threshold estimators.

Proof of Theorem 12. Note that for every realization of X(1), . . . ,X(n) the mea-
sure νn := νn,k(n) in Equation (3.8) is a sum of n point masses. So if we define
the set A = h−1((1,∞)) we have can evaluate νn(A) as

νn(A) =
1

k

d∑
i=1

1h((X′′)(i))>n/k,

which is exactly the indirect structure-variable estimator. Because of Lemma 24
we know that this produces a consistent sequence of estimators for ν(h−1((1,∞))).
In the proof of the Rosetta Stone theorem (the step denoted by ’(v) ⇒ (i)’) we
have seen that this quantity is equal to H = limt→∞ t · P (h(X) > t).

To prove the consistency of the peaks-over-threshold estimator we need a
generator Z of the underlying D-norm that fulfills

Z ∈ B := {x : x1 + · · ·+ xd = d}

almost surely. Such ta Z exists by virtue of Corollary 4. By the proof of Lemma
2 we have P (Z ∈ A) = ν((1,∞) ·A) for all Borel subsets A ⊆ B. We can rewrite
this to

E(1A(Z)) =

∫
D

1A

(
x

(x1 + · · ·+ xd)/d

)
dν,

where the set D is defined just like in Lemma 23. Linearity of both the expected
value and the integral this leads us to

E(f(Z)) =

∫
D

f

(
x

(x1 + · · ·+ xd)/d

)
dν, (3.19)
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whenever f is a linear combination of indicator functions of measurable subsets
A ⊂ B. Now we can use monotone convergence on both sides of Equation
(3.19) to show that Equation (3.19) holds for arbitrary continuous, non-negative
functions f : B → [0,∞).

By choosing f(x) = h(x) for all x ∈ B we get

E(h(Z)) = E(f(Z)) =

∫
D

f

(
x

(x1 + · · ·+ xd)/d

)
dν

=

∫
D

h

(
x

(x1 + · · ·+ xd)/d

)
dν.

Again for every realization of X(1), . . . ,X(n) the measure νn consists of
finitely many point masses, which we can use to evaluate the integral

∫
D

h

(
d · x

x1 + · · ·+ xd

)
dνn =

∑
i:X(i)∈D

h

(
d ·X(i)

ri

)
· νn({X(i)})

=
1

k
·
∑
i∈M

h

(
d ·X(i)

ri

)
.

According to Lemma 23 this is a consistent estimator for E(h(Z)). But in
the peaks-over-threshold estimator we have the random term 1

|M | instead of the

constant term 1
k . What remains to be shown is |M |/k →p 1.

With the same arguments as before

|M |
k

=
∑
i∈M

1/k =

∫
D

1 dνn

is a consistent estimator for E(1) = 1.
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3.4 Local and global thresholds

This section is concerned about estimating E(h(Z)) = limt→∞ t · P (h(X) > t),
where h is as usual a continuous, non-negative function that is homogeneous of
order 1, but which only depends on some components of its input. One example
for this is h(x1, . . . , xd) = max(x1, x2). This function only depends on the input
x1 and x2 and is not affected by x3, . . . , xd. More formally we are referring to
functions of the following type:

h(x) = g(x′), (3.20)

where there is a lower dimension d′ < d, indices j1 < j2 < · · · < jd′ and where we
use the notation x′ := (xj1 , . . . , xjd′ ) and where g is a non-negative continuous

function on [0,∞)d
′
, that is homogeneous of order 1.

The direct structure-variable estimator Ĥstruct for H = E(h(Z)) ignores the
additional components as can be seen in the following:

Ĥstruct =
1

k

n∑
i=1

1h(X(i))>n/k

=
1

k

n∑
i=1

1g(X′(i))>n/k.

However, for the direct peaks-over-threshold estimator it does make a dif-
ference, whether we involve all d dimensions or only the necessary subset of
d′ dimensions. The global threshold procedure is the direct estimator as we
already know it:

ri :=
1

d

d∑
j=1

X
(i)
j , i = 1, . . . , n,

M := {i : 1 ≤ i ≤ d, ri > n/k},

ĤPoT :=
1

|M |
∑
i∈M

h

(
X(i)

ri

)
.

The local threshold procedure is defined by:

r′i :=
1

d′

d′∑
k=1

X
(i)
jk
, i = 1, . . . , n,

M ′ := {i : 1 ≤ i ≤ d, r′i > n/k},

Ĥ ′PoT :=
1

|M ′|
∑
i∈M

g

(
X′(i)

ri

)
.
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The following two examples will show, that comparing the performance of
the local threshold procedure with the performance of the global threshold pro-
cedure is not easy.

Example 30. Let Z be 4-dimensional D-norm generator defined by the following
probabilities:

P (Z = (2, 2, 0, 0)ᵀ) = P (Z = (0, 0, 2, 2)ᵀ) = 1/2, (3.21)

while U is a random variable independent of Z and uniformly distributed on
(0, 1). According to Corollary 3 the random vector X = 1

U · Z fulfills the equiv-
alent statements of the Rosetta Stone theorem with the D-norm generator Z.

We now want to estimate E(max(Z1, Z2)) = 1 with a direct peaks-over-
threshold estimator. Using a local threshold on X1 +X2, all normed exceedances
are of the form (1, 1) and the estimator becomes

1

|M ′|
∑
i∈M ′

max(X
(i)
1 /r′i, X

(i)
2 /r′i) =

1

|M ′|
|M ′| ·max(1, 1) = 1,

for any choice of threshold as long as M ′ 6= ∅.
If we use a global threshold on X1 +X2 +X3 +X4, then for every i ∈M there

is a 50% chance that the normed exceedance is (2, 2, 0, 0) and a 50% chance that
it is (0, 0, 2, 2). The estimator becomes:

1

|M |
∑
i∈M

max(X
(i)
1 /ri, X

(i)
2 /ri) =

2

|M |
·
∑
i∈M

1
X

(i)
1 >0

.

If we condition the estimator on |M | = m ∈ N we can repeat the steps in the
proof of Theorem 11 to show that under this condition the estimator is distributed
like 2/m·B(m, 1/2), where B(m, 1/2) stands for a binomially distributed random
variable with parameters m and p = 1/2.

So while the bias of zero remained unchanged, the best possible variance of
0 became 1/m (under the condition |M | = m) by switching from local to global
thresholds.

Example 31. Let Z be 3 dimensional D-norm generator defined by the following
probabilities:

P (Z = (1.5, 0, 1.5)ᵀ) = P (Z = (0, 1.5, 1.5)ᵀ) = P (Z = (1.5, 1.5, 0)ᵀ) = 1/3,

while U is a random variable independent of Z and uniformly distributed on
(0, 1). Once again X = 1

U · Z fulfills the equivalent statements of the Rosetta
Stone theorem with D-norm generator Z.

This time we want to estimate E(max(Z1, Z2)) = 1.5 with a peaks-over-
threshold procedure. Using global thresholds, every normed excedance is one of
the following types:

(1.5, 0, 1.5)ᵀ, (0, 1.5, 1.5)ᵀ, (1.5, 1.5, 0)ᵀ
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In any case the maximum of the first two components is 1.5, which means
the global threshold procedure produces the constant 1.5, which is the true value
of what we want to estimate. A local threshold estimator procedure can only be
worse than that.

Threshold Strategy 5. (Local or global threshold) We have seen a case, where
switching from a global to a local threshold is a mistake, but we have also seen a
case where switching from a global to a local threshold is a mistake as well. It is
therefore reasonable to chose that kind of threshold procedure, where the upper
bound of the variance conditioned on the number of exceedances |M | = m, which
is hmax−hmin

4m is minimal. This is always the local threshold procedure, as we will
see in Lemma 25.

Lemma 25. Let g : [0,∞)d
′ → [0,∞), h : [0,∞)d → [0,∞) be a continuous

functions that are homogeneous of order 1 and that are connected by Equation
(3.20). Then we have

hmax − hmin ≥
d

d′
· (gmax − gmin),

where we used notation from Definition 4.

Proof. Let I = {1, . . . , d} be the set of indices and I ′ = {ij : j = 1, . . . , d′} be
the set of indices that are not lost in the projection x 7→ x′. The inequality
hmax ≥ gmax can be shown by

hmax = max

h(x) : x ≥ 0,

d∑
j=1

xj = d


≥ max

h(x) : x ≥ 0, xj = 0 for all j /∈ I ′,
d∑
j=1

xj = d


= max

g(x′) : x′ ≥ 0,

d′∑
j=1

x′j = d

 =
d

d′
· gmax,

where in the last step we used that g is non-negative and homogeneous of order
1.

Also hmin = 0, because we can construct a vector x ≥ 0 that places its sum
of d on components with indices /∈ I ′.

In fact a scenario like in Example 30 happens quite naturally. If you in-
vestigate the extremal dependence of components Xi, i ∈ I of a random vector
such that I = A∪̇B, the disjoint union of A and B and (Xi)i∈A is indepen-
dent of (Xi)i∈B . In that case extreme events in group A will contribute to the
total of global threshold exceedances without carrying information about the
extremal dependence within B and vice versa. This will unnecessarily increase
the variance of estimators as shown in the example.
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3.5 The split-and-merge-procedure

One problem in estimating quantitites in multivariate extreme value theory are
the conflicting interests for choosing the parameter k, which determines the
threshold n/k.

Threshold Strategies 1 and 2 were founded on clear relationships between
the parameter k and upper bounds for variance of the direct estimators. For
indirect estimators we have Threshold Strategy 3, but it only tells us what not
to do. It is not constructive.

This is where the split-and-merge-procedure steps in. In this procedure we
can freely speculate about the relationship between the parameter (in our case
k) of a point estimator and its variance. No matter how wrong we are in the
speculation phase, in the end we get an interval estimator for the expected value
of the point estimator with a guaranteed coverage probability, but of random
length. If our assumptions about the variability of our point estimator are
wrong, we are will notice it by the length of the confidence intervals.

The math behind the split-and-merge-procedure is simple as we will see.

Definition 20. Let L be a natural number. We call it the split-and-merge-
procedure to split up an iid sample X(1), . . . , X(n) into L non-overlapping blocks
of size bn/Lc and evaluate an estimator on every block separately, which results

in different point estimators Ĥ1, . . . , ĤL. The arithmetic mean

Ĥ :=
1

L

L∑
`=1

Ĥ`

we call the merged point estimator. The split-and-merge-interval is defined by

IL =

[
Ĥ − 3 ·

√
S2
L + ∆√
L

, Ĥ + 3 ·
√
S2
L + ∆√
L

]
, (3.22)

where

S2
L :=

1

L− 1

L∑
`=1

(
Ĥ` − Ĥ

)2

(3.23)

is the sample variance of the point estimators and ∆ := 3 ·
√
|hmax−hmin|4

12L and

where hmax and hmin are values such that

P (Ĥ1 ∈ [hmin, hmax]) = 1.

Theorem 13 (Split-and-merge-interval as a confidence interval). The interval
in Equation (3.22) has a probability of at least 71/90 ≈ 78.8% to cover the

expected value E(Ĥ1).

To prove Theorem 13 we need some inequalities for the second and forth
centered moment of a bounded random variable.
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Lemma 26. Let X be a random variable that only takes values in the closed
interval [a, b]. Then we have

E((X − µ)2) ≤ 1

4
(b− a)2 and

E((X − µ)4) ≤ 1

12
(b− a)4,

where µ = E(X).

Proof. Without loss of generality we can assume a = 0 and b = 1. The proof
for the variance is straightforward once we realize that µ is the minimizer of the
quadratic function y 7→ E((X − y)2), which leads us to the following inequality:

E((X − µ)2) = min
y∈R

E((X − y)2) ≤ E(|X − 1/2|︸ ︷︷ ︸
≤1/2

2
) ≤ 1

4

The proof for the fourth centered moment is more complicated. First we will
show that for a given expected value µ a Bernoulli random variable maximizes
the fourth centered moments. Let X be a random variable that only takes
values in the interval [0, 1] and which has an expected value of µ. Let us define
a second random variable X ′ with the following conditional probabilities:

P (X ′ = 1|X = x) = x,

P (X ′ = 0|X = x) = 1− x for all x ∈ [0, 1].

This results in a Bernoulli random variable X ′ as we have

P (X ′ /∈ {0, 1}) =

∫ 1

0

P (X ′ /∈ {0, 1}|X = x) dP (X = x)

=

∫ 1

0

0 dP (X = x) = 0.

Also we get

E(X ′) =

∫ 1

0

E(X ′|X = x) dP (X = x) =

∫ 1

0

x dP (X = x) = E(X) = µ.

Because x 7→ (x− µ)4 is a convex function we also have

(x− µ)4 ≤ x · (1− µ)4 + (1− x) · (0− µ)4

for all x ∈ [0, 1]. This leads us to
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E((X − µ)4) =

∫ 1

0

(x− µ)4 dP (X = x)

≤
∫ 1

0

x · (1− µ)4 + (1− x) · (0− µ)4 dP (X = x)

=

∫ 1

0

E((X ′ − µ)4|X = x) dP (X = x) = E((X ′ − µ)4).

Therefore the Bernoulli random variable with parameter p = µ maximizes
the fourth centered moment under all random variables X on [0, 1] with expected
value µ. The fourth centered moment of a Bernoulli random variable is

µ · (1− µ)4 + (1− µ) · µ4 = −3µ4 + 6µ3 − 4µ2 + µ.

On the interval [0, 1] this polynomial has 5 extremal points. The trivial
minima at µ = 0 and µ = 1, the local minimum at µ = 1/2 and the two local

maxima at µ = 1
2 ±

√
3

6 . At both of those points the function has the value 1
12 .

The main point of the split-and-merge-procedure is that we can estimate
Var(Ĥ1) with the sample variance S2

L. For that we also need to know some
properties about the sample variance:

Lemma 27 (Properties of the sample variance). S2
L is an unbiased estimator

for Var(Ĥ1) and if L ≥ 3 it has a variance of less or equal than |hmax−hmin|4
12L .

Proof. The bias of 0 is elementary to show and will be omitted here. It is more
tedious to show that the variance of the sample variance is given by

Var(S2
L) =

1

L
·
(
µ4 −

L− 3

L− 1
σ4

)
,

where µ4 is the fourth centered moment of Ĥ1. The calculations for that be
looked up in a work by Cho and Cho (2009), where it was formulated for sam-
pling with replacement from a finite set. Their calculations hold nonetheless for
arbitrary random variables. From Lemma 26 we know that the forth centered

moment is less or equal |hmax−hmin|4
12 . This then implies

Var(S2
L) ≤ 1

L
· µ4 ≤

|hmax − hmin|4

12L
.

For the proof of Theorem 13 we also need two very basic inequalities: Cheby-
shev’s inequality and Cantelli’s inequality. They can be looked up in Chapter
1, Section 5 in the book by Billingsley (1979) and essentially say, that if X is a
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square integrable random variable with mean µ and standard deviation σ, then
for every positive value α we have

P (|X − µ| ≥ α) ≤ σ2

α2
(Chebyshev)

P (X − µ ≥ α) ≤ σ2

σ2 + α2
(Cantelli).

With the special choice of α = 3σ those inequalities become

P (|X − µ| ≥ 3σ) ≤ 1

9

P (X − µ ≥ 3σ) ≤ 1

10
,

which we will use in the following proof.

Proof of Theorem 13. Let µ be the expected value of Ĥ1. Obviously µ = E(Ĥ)
for the merged estimator as well. We will introduce the following random inter-
val:

ĨL =

[
Ĥ − 3 ·

√
Var

(
Ĥ
)
, Ĥ + 3 ·

√
Var

(
Ĥ
)]

. (3.24)

We can apply Chebyshev’s inequality to get µ ∈ ĨL with a probability of at
least 8/9. Consequently we have

P (µ /∈ IL) = P (µ /∈ IL, µ /∈ ĨL)︸ ︷︷ ︸
≤1/9

+P (µ /∈ IL, µ ∈ ĨL).

The event µ /∈ IL, µ ∈ ĨL implies that ĨL 6⊂ IL. Comparing the definitions of
those two intervals in the Equations (3.22) and (3.24) we can see that ĨL 6⊂ IL
implies the inequality √

S2
L + ∆√
L

<

√
Var(Ĥ),

which together with the results of Lemma 27 and the definition of ∆ leads to

S2
L − E(S2

L) = S2
L −Var(Ĥ) · L < −∆ ≤ −3 ·

√
Var(S2

L).

According to Cantelli’s inequality this only happens with a probability of at
most 1/10. Consequently P (µ /∈ IL) ≤ 1/9 + 1/10 = 19/90, which means the
split-and-merge-interval has a coverage probability of at least 71/90.

The split-and-merge-procedure can be applied to every estimator that falls
into a finite interval [hmin, hmax]. But we can also use it for a threshold strategy
for indirect estimators that is more constructive than Threshold Strategy 3, that
only tells us what not to do.
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Threshold Strategy 6. (Split-and-merge-procedure) First we should figure out
what width of a confidence interval is tolerable in our practical situation and call
it wtol.

The number of blocks L we set to

L :=

⌈
36
3
√

12
·
(
|hmax − hmin|

wtol

)4/3
⌉

and just like in Definition 20 we define ∆ by

∆ := 3 ·
√
|hmax − hmin|4

12L

for this value L.
Then we need a function f : k 7→ f(k), of which we suspect that Var(Ĥ) ≤

f(k). In the case of the structure-variable estimator that might be f(k) = hmax

k
inspired by Threshold Strategy 1.

The parameter k is then picked as

k := f−1(∆).

Then we split the dataset into L overlapping blocks of the same size, eval-
uate the point estimators Ĥ`, ` = 1, . . . , L individually on each block using the
parameter k, determine the merged estimator Ĥ and the sample variance of the
estimator S2

L.

The random length of the split-and-merge-interval is 6 ·
√
S2
L+∆
√
L

. If our

suspicion about the relationship between the parameter k and the variance of the
point estimator is correct, then the empirical variance S2

L will tend to below ∆.
Whenever we have S2

L ≤ ∆ we also have

6 ·
√
S2
L + ∆√
L

≤ 6 ·
√

2∆

L
= 6 ·

√
6 ·
√
|hmax − hmin|4

12L3
≤ 6 ·

√
6 ·
√
w4

363
= w.

The following example will illustrate the split-and-merge-procedure.

Example 32. In this scenario we have an iid sample X(1), . . . ,X(n) of a bi-
variate random vector X = (X1, X2)ᵀ in the max-domain of attraction of a
max-stable distribution, which has a dependence structure given by a D-norm
‖·‖D with generator Z = (Z1, Z2)ᵀ. We want to estimate the value H =
E(max(Z1, Z2)) = ‖(1, 1)ᵀ‖D. We are also in a scenario, where a confidence
interval of length 0.1 would be acceptable.

First and foremost hmin = 1 and hmax = 2. The number of blocks will
therefore be

L =

⌈
36
3
√

12
·
(
|2− 1|

0.1

)4/3
⌉

=

⌈
36
3
√

12
· 104/3

⌉
= 339.
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We would then set ∆ to

∆ = 3 ·
√
|2− 1|4
12 · 339

≈ 0.0470.

If we use the structure-variable estimator on each block we would suspect that
f(k) = hmax

k is an upper bound for the variance and we would set k = 2
∆ ≈ 42.5.

If we use the peaks-over-threshold estimator on each block we would suspect
that f(k) = hmax−hmin

4k is an upper bound for the variance and we would set
k = 2−1

4∆ = 5.32.

In each of those cases our threshold in each block would be t = bN/Lc
k .

This example shows us that even for moderate requirements on the interval-
estimator we end up with a number L in the hundreds. This shows that the
split-and-merge-procedure is not a ’one size fits all’ solution, but it was never
meant to be to begin with. Its purpose is to cover a gap in between the theory of
multivariate extremes, the theory of univariate extremes and statistical practice.

Asymptotic normality of estimators for the quantitites H = limt→∞ t ·
P (h(X′) > t), where X′ is defined with Equation (3.2), has been proven for
the case that h has the form h(x) = maxj |zj |xj , the estimator is the structure-
variable estimator, the marginal distributions are estimated with ranks and that
there is second order convergence (see Einmahl et al. (2012) and Bücher et al.
(2014)). To the knowledge of the author asymptotic normality has never been
proven for the peaks-over-threshold estimator, for when a different kind of func-
tion h is picked, for when there is no second-order convergence or for when the
marginal distributions are not estimated with ranks.

Especially the last part is problematic: If multivariate extreme value theory
restricts itself to only working with ranks, then it can never incorporate results
from univariate extreme value theory. Threshold Strategy 4 made a case for why
better estimation of the marginal tail behavior leads to better upper bounds for
error probabilities for D-norm estimators.

The split-and-merge-procedure allows one to combine marginal estimators
without knowing their joint asymptotics and the effect of their joint asymptotics
on the asymptotic behavior of the the estimator Ĥ and still produce a confidence
interval.

As for the the ’multivariate extreme value theory will not incorporate uni-
variate extreme value theory’, there is a noteworthy observation to be made:
In the opposite direction researchers in univariate extreme value theory have
realized that they can use multivariate extreme value theory to their advantage:

Example 33. Clémençon and Dematteo (2016) investigated the scenario, where

they have iid observations X(i), i = 1, . . . , n of a random vector X = (X1, . . . , Xd)
ᵀ,

where all the components have they same tail index α > 0. To estimate α one

can apply the Hill-estimator on the iid sequence (X
(1)
1 , . . . , X

(n)
1 ), but also on

the iid sequence (X
(1)
2 , . . . , X

(n)
2 ), etc. This results in one Hill-estimator per

component, that is α̂1, . . . , α̂d. They figure out the best way to merge those in-
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dividual estimators into a single estimator depends on the underlying extremal
dependence structure of the components of X.

Example 34. Kim and Lee (2017) treat the very same problem, while in their
solution they apply the Hill-estimator on different linear combinations of the
form

d∑
j=1

λj ·Xj , where λj ≥ 0 for all j and

d∑
j=1

λj = 1.

Let us also discuss an interesting side product of the split-and-merge-procedure:
For each dimension we end up with L iid estimators for the marginal distribu-
tion, one estimator per block. This lets us evaluate the inherent variability of
the marginal estimators. If it is too high and we have made a parametric as-
sumption about the univariate tail behavior, then this indicates our parametric
assumption might be wrong. Or it might mean that the ’identically distributed’
part of ’iid’ does not hold. Let’s investigate the second scenario in a non-extreme
setup.

Example 35. Let X1, . . . , Xn be an iid sequence of random variables and let
Y1, . . . , Yn be another iid sequence of random variables independent of the first
sequence. Further let there be two sequences of real numbers Tx1, . . . , Txn and
Ty1, . . . , Tyn, both of which are monotonously increasing.

Then Xi+Txi is independent of Yi+Tyi for all i = 1, . . . , n, so the dependence
structure (the underlying copula) does not change by adding the trends. But if
we observe the sequence (Xi + Txi, Yi + Tyi) and treat it as an iid sample, we
would think the components are positively correlated, because large observations
in the first component tend to appear for higher indices i and for higher indices
i, the second component tends to be higher as well.

The standard way to detect the trends Txi and Tyi in Example 35 would be
to apply a moving average filter, which is not too different from splitting the
sample into blocks and doing a statistical procedure (taking the average) on
each block.

In extreme value statistic one could imagine something similar to trends in
the margins: For example the probability to exceed a certain threshold increases
over time. Or the value at risk for a certain probability level increases over time.
If the direction of the trends in all margins is the same, statistical procedures
would tend to overestimate the extremal dependence. For example the first
component will exceed its threshold more often during times, where the second
component exceeds its threshold more often as well.

As the split-and-merge-procedure produces both estimates for the marginal
distributions as well a measure of extremal dependence, it is more robust for
changes in the marginal distributions. One could even go so far as to say, that
a change in the univariate extremal behavior of the marginal distributions is a
’quantitative change’, while a change in the extremal dependence structure is a
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’qualitative change’ in the sense that switching from tail-independence of two
components to tail-dependence is of deeper nature.

The split-and-merge-procedure could be a standard tool in investigating the
changes of the extremal behavior of random vectors, both in margins and in
copula. If we use it for that purpose, the parameter L can be chosen more
freely than in Example 32.
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3.6 Simulation study

This simulation study will investigate several open questions.

Q.1 Equations (3.1) and (3.2) and Theorem 11 show that the bias of the direct
estimators is a function of the height of the threshold n/k, while the
variance essentially depends on the parameter k. Does this also hold for
the indirect estimators?

Q.2 The structure-variable estimators from the Definitions 16 and 18 are fun-
damentally different from the peaks-over-threshold estimators from the
Definitions 17 and 19, but they both aim to estimate the same values.
Which is the better option?

Q.3 Let Z = (Z1, Z2) be a bivariate lognormal D-norm generator. It generates
the 2-dimensional Hüsler–Reiss D-norm with parameter v = Var(log(Z1)−
log(Z2)). Now on the one hand we have

v = −8 · log(E(
√
Z1Z2)), (3.25)

and on the other hand we have

v =

(
2 · Φ−1

(
E(max(Z1, Z2))

2

))2

, (3.26)

where Φ is the cumulative distribution function of the standard normal
distribution. Equation (3.25) is a consequence of Equation (2.5) with
λ1 = λ2 = 1/2, while Equation (3.26) is a consequence from Equation (1)
in the work by Huser and Davison (2013).

Now we can estimate both the co-extremality c = E(
√
Z1Z2) and the

extremal coefficient e = E(max(Z1, Z2)) and end up with two different
ways to infer the parameter v:

v̂c := −8 · log(ĉ)

v̂e :=

(
2 · Φ−1

(
ê

2

))2

.
(3.27)

The question is: Which of these options is better?

To investigate these questions we will draw samples from the two classes of
bivariate distributions:

1. This class of distributions is parametrized by v ≥ 0. We generate two in-
dependent random variables, U and Z2, where U is uniformly distributed
on (0, 1) and log(Z2) follows a normal distribution with variance v and
mean −v/2. According to Corollary 3 the random vector (X1, X2) =
(1/U,Z2/U) fulfills the equivalent statements of the Rosetta Stone theo-
rem with a bivariate Hüsler–Reiss D-norm.
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2. This class of distributions is parametrized by ρ ∈ [0, 1]. We generate
three independent random variables, U, V and B, where U und V are
uniformly distributed on (0, 1) and B is a Bernoulli random variable with
parameter ρ. If B = 1 we set (X1, X2) = (1/U, 1/U) and if B = 0 we
set (X1, X2) = (1/U, 1/V ). One can confirm that the tail-behavior of
(X1, X2) is governed by the D-norm that is generated by (Z1, Z2) that
has the following probabilites:

P (Z1 = 1, Z2 = 1) = ρ,

P (Z1 = 2, Z2 = 0) = (1− ρ)/2,

P (Z1 = 0, Z2 = 2) = (1− ρ)/2.

This model is known as the Marshall–Olkin model (one can check that the
min-stable multivariate distributions by Marshall and Olkin (1967) can be
’flipped’ to multivariate max-stable distribution with this underlying D-
norm).

To investigate Q.1 we will pick different thresholds n/k = 10, 100, 1000 and
different values of k = 10, 100, 1000. For each combination we will determine
bias and variance of the estimator. As for the random vectors from which we will
draw n samples: 3 of them will be in the max-domains of attraction of different
Hüsler–Reiss models und another 3 will be in the max-domains of attraction
of different Marshall–Olkin models. The parameters are chosen in a way such
that e := E(max(Z1, Z2)) ∈ {1.25, 1.5, 1.75}, hence the 3 possbilities. As for
the estimators themselves, one time we will use the multivariate peaks-over-
threshold method, another time we will use the structure-variable estimator.
The margins are estimated with ranks all the time.

Our results are visualized in the Figures 3.1 and 3.2. Every individual plot
contains 9 data points. The parameter k can be read on the horizontal axis,
while datapoints that have the same threshold n/k are connected with a line.

Note that for e = 1.75 the bias varies in n/k, but barely in k, but for the
other cases the bias changes both in n/k and k in approximately the same order
of magnitude. This is a resounding ’no’ to Q.1 when it comes to bias.

Now for analyzing variance: Here we want to check if the variance of the
indirect estimator is proportional to 1/k’ holds. Therefore we multiply the
variances by k before plotting them on the vertical axis in the Figures 3.3 and
3.4.

The lines in the plots are not perfectly horizontal, but k · Var(Ĥ) remains
remarkably stable within the setting of this simulation study. So we have a
conditional ’yes’ to Q.1, when it comes to variance.

Question Q.2 is about whether the structure-variable estimator or the peaks-
over-threshold estimator is better. A simple comparison of the mean squared
error MSESV(n, k) with the mean squared error MSEPoT(n, k) for different val-
ues of n and k would be naive: The role of k in the structure-variable estimator
is a different role than it has in the peaks-over-threshold estimator.

122



SV-Estimator PoT-Estimator

e
=

1
.2

5
e

=
1.

50
e

=
1.

75

Figure 3.1: Bias (Hüsler–Reiss model, indirect estimator)
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Figure 3.2: Biases, (Marshall–Olkin model, indirect estimator)
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Figure 3.3: Variances, (Hüsler–Reiss model, indirect estimator)
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Figure 3.4: Variances, (Marshall–Olkin model, indirect estimator)
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An alternative would be to compare mink MSESV(n, k) to mink MSEPoT(n, k),
but in practice our choice of k will always be suboptimal, so we also need com-
parisons between suboptimal choices of k in the structure-variable estimator
versus suboptimal choices of k in the peaks-over-threshold estimators.

To do that we will plot the squared bias versus the variance of the estimators
into the same plot for different values of k. We have done this in the Figures 3.5
and 3.6 with sample size is now fixed to n = 10000 and our models are the usual
6 models we have used in this simulation study, which are the Hüsler–Reiss
model and the Marshall–Olkin model with e ∈ {1.25, 1.50, 1.75}.

Note that for the indirect estimators the structure-variable estimators are
toe-to-toe with the peaks-over-threshold estimators. With a few exceptions both
types of estimator follow the same bias-variance-tradeoff-curve.

But for the direct estimators we realize that if a the peaks-over-threshold
estimator has the same variance as a structure-variable estimator, it beats the
structure-variable estimator in bias. And if it has the same bias a structure-
variable estimators, it beats the structure-variable estiamtor in variance. Keep
in mind that the diagrams use the natural logarithm, the inverse of the expo-
nential function, to scale the points. So a shift of ≈ 2.3 to the right or to the top
in the diagram means multiplication with factor 10. We can check the diagrams
again to see that switching from the structure-variable estimator to the peaks-
over-threshold estimator improves bias or variance by orders of magnitute.

To approach question Q.3 we will generate samples from the bivariate ran-
dom vector in the max-domain of the Hüsler–Reiss distribution and evaluate
the estimators v̂e and v̂c from Equation (3.27) by plotting their squared biases
versus their variances to visualize our results in Figure 3.7.

We can’t say if the black symbols reliably beat their white counterparts or
vice versa in these diagrams.

The following answers are by nature only valid within in the limits of the
simulation study:

A.1 Regarding Q.1: The variance of the indirect estimator seems to be pro-
portional to 1/k. The idea that the bias only depends on n/k, but not on
k does not carry over to indirect estimators.

A.2 Regarding Q.2: For indirect estimators with rank-based estimation of
the margins switching from structure-variable estimation to peaks-over-
thresholds is no improvement. For direct estimators it is - we can improve
bias or variance by orders of magnitude without hurting the other.

It is possible that if we don’t estimate the margins with ranks, but with
more sophisticated methods that the properties of the indirect estimators
become closer to the properties of the direct estimators and peaks-over-
threshold is preferable then, too.

But if we only use ranks and only estimate the D-norm evaluated at one
point, the most conservative choice is the structure-variable estimator.
This estimator is better understood in the literature and there are results
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Figure 3.5: Bias versus Variance, Direct Estimator
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Figure 3.6: Bias versus Variance, Indirect Estimator
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Figure 3.7: Inference of the Hüsler–Reiss parameter.
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like asymptotic normality under certain second order conditions, see Ein-
mahl et al. (2012) and Bücher et al. (2014). It should therefore be the
default.

A.3 Regarding Q.3. In our study we could not find a consistent improvement
by switching from v̂e to v̂c. We should go with what is better understood
in the literature (see the references in A.2) and that is estimating e and
then transforming it into an estimator v̂e for the unknown variogram v.
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Bücher, A., S. Volgushev, and N. Zou (2018). On second order condi-
tions in the multivariate block maxima and peak over threshold method.
https://arxiv.org/abs/1808.10828.

Chautru, E. (2015). Dimension reduction in multivariate extreme value analysis.
Electronic Journal of Statistics 9, 383–418.

Cho, E. and M. J. Cho (2009). Variance of sample variance with replacement.
International Journal of Pure and Applied Mathematics 52 (1), 43–47.
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